
Extension of the Business Process Execution Language
(BPEL) with probabilistic time management of

choreographies and time constraints in workflow systems

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Christian Österle
Matrikelnummer 0226594

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: o.Univ.Prof. Dipl.Ing. Dr. A Min Tjoa
Mitwirkung: Dipl.Ing. Dr. Amirreza Tahamtan

Wien, 25.01.2011
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Eidesstattliche Erklärung

Name: Christian Österle
Adresse: Gernotgasse 9/15, 1150 Wien

“Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem
Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe
der Quelle als Entlehnung kenntlich gemacht habe.”

Wien, am 25. Januar 2011 ..
(Christian Österle)

i

Abstract

WS-BPEL (=Web Service Business Process Execution Language) provides a language for
describing the behavior of a business process based on interactions between the process
and its partners. The interactions of partners occurs through web service interfaces which
ensure interoperability between applications by using web standards.
Time management and temporal conformance is an important criteria for business pro-
cesses. It ensures that activities are performed in a timely manner and that the right
information is delivered to the right activities at the right time, such that overall tempo-
ral restrictions are satisfied and no deadline is violated. Deadline violations increase the
execution time and cost of business processes because they require some type of exception
handling.
The contribution of this diploma thesis will be the implementation of a tool that enables
users to augment WS-BPEL-processes with temporal information in design time and a run
time component for checking the temporal behavior of the processes at run time.
In design time a valid temporal interval for (activities of) each process is calculated with
consideration for the structure of each process and the interactions between different pro-
cesses and then checked if the model is temporally feasible, i.e. there is a solution satisfying
all temporal constraints. Calculating the temporal intervals and checking the temporal con-
formance will be performed for two scenarios. The interval-based scenario, which allows
a variable duration of activities within an interval. The stochastic scenario, that allows
the definition of different activity durations with different probabilities and also takes the
conditional branching behavior into account.
In run time, it is checked if the activities are executed within the valid calculated intervals
at design time. Therefore the time points of all processes are mapped to a calendar with
current dates and times. Then, the temporal status of each process instance can be moni-
tored.
The prototype of this diploma thesis can be downloaded at
http://www.ifs.tuwien.ac.at/oesterle.

ii

Kurzfassung

WS-BPEL (=Web Service Business Process Execution Language), eine XML-basierte Sprache,
dient zur Beschreibung von Geschäftsprozessen, wobei Interaktionen zwischen Prozessen
und deren Partnern dargestellt werden können. Die Realisierung dieser Interaktionen er-
folgt über Web Services, da somit die Kompatibilität zwischen den einzelnen Applikationen
durch Web Standards garantiert werden kann.
Im Prozessmanagement wird vor allem dem Zeitmanagement bzw. zeitlich korrekt ablaufenden
Prozessen ein besonders hoher Stellenwert beigemessen.
Die exakte zeitliche Steuerung im Prozessmanagement trägt dafür Sorge, dass die richtige
Information zur richtigen Zeit am richtigen Ort verfügbar ist und Deadlines eingehalten
werden können. Diese Tatsache ist insofern wichtig, als dass nicht eingehaltene Fristen ein-
erseits dem Image eines Unternehmens großen Schaden zufügen können und andererseits
auch hohe Kosten durch den Einsatz von Alternativlösungen entstehen können.
Aufgrund dieser Umstände wurde im Rahmen der vorliegenden Diplomarbeit ein Proto-
typ entwickelt, der die Modellierung von Zeitaspekten für BPEL-Prozesse ermöglicht. In
Design time erfolgt die Überprüfung der Einhaltbarkeit der zugewiesenen zeitlichen Werte
einerseits und der gesetzten Deadlines andererseits. Die Modellierung von Zeitaspekten
kann sowohl mittels Zeitintervallen erfolgen als auch Zeitdauern und deren Wahrschein-
lichkeiten. Letztgenannter Ansatz ermöglicht auch die Definition von Wahrscheinlichkeiten
für Verzweigungen. Mit der Prozessinstanziierung werden die Zeitwerte in Kalenderdaten
und -zeiten umgewandelt. Anschließend besteht die Möglichkeit die tatsächliche Einhal-
tung der vorgesehenen zeitlichen Einschränkungen zu überprüfen.
Der Prototyp dieser Diplomarbeit kann unter http://www.ifs.tuwien.ac.at/oesterle herun-
tergeladen werden.

iii

Acknowledgements

I would like to thank all my friends who supported me during my thesis with patience,
knowledge and any other respect. It is a pleasure to thank my parents who always believed
in me and made all this possible. I am also grateful to my girlfriend Kathrin for motivat-
ing me in any situation and proofreading my thesis again and again. Last but not least, I
would like to show my gratitude to my housemates for being patient with me all the time
and to my uncle Hubert for his intellectual support.

Christian Österle

iv

Contents

1 Introduction 1

2 Related works in Time Management 6
2.1 Temporal reasoning problems . 6

2.1.1 The Simple Temporal Problem . 8
2.1.2 Temporal Constraint Satisfaction Problem & Disjunctive Temporal

Problem . 9
2.2 Time calculation techniques in Project Management 10

2.2.1 Critical Path Method . 10
2.2.2 Metra Potential Method . 11
2.2.3 GANTT . 12
2.2.4 Program Evaluation and Review Technique 12

3 WS-BPEL 15
3.1 Web Services . 15
3.2 The development of WS-BPEL . 17
3.3 The BPEL Language . 18
3.4 Definitions of Business Processes in WS-BPEL 19

4 Time Management in BPEL 23
4.1 Related works . 23
4.2 Calculation in Design time . 27

4.2.1 Calculation of time constraints . 27
4.2.2 Probabilistic Time Management . 36

4.3 Calculation in Run time . 42
4.3.1 Calculation of time constraints . 43
4.3.2 Probabilistic Time Management . 43

v

CONTENTS vi

5 Prototypical Implementation 45
5.1 Development Environment . 45

5.1.1 Requirements . 46
5.1.2 Eclipse BPEL-Designer . 46
5.1.3 BPEL Engine - Apache ODE . 49
5.1.4 Integrating Apache ODE in Eclipse BPEL-Designer 51

5.2 Modifications . 52
5.2.1 Eclipse BPEL Designer . 53
5.2.2 Apache ODE . 59

5.3 Validation . 60

6 Conclusion and Outlook 61

A Installation 63
A.1 Configuratin of Apache ODE . 64
A.2 Configuration of the Eclipse BPEL-Designer 64
A.3 Creating a BPEL Choreography with time constraints 67

A.3.1 Definition of the dependencies of the choreography 78
A.3.2 Calculating the time constraints of the choreography 78
A.3.3 Preparing the choreography for the execution 79

A.4 Execution of the choreography in Apache ODE 80
A.4.1 Instantiation of a process . 82

Chapter 1

Introduction

The management of a company has radically changed in the last years. Frederich Winslow
Taylor (*1856, †1915) is regarded as the founder of scientific management and predicted:
“In the past man was first. In the future the system will be first”. His forecast got highly
accurate. In the past, the management of a company was defined by leading a company
in the economical sense. It was important to make profit; questions like “how to make
profit”, “to whom is the product directed” or “how to be better than the competitors to
satisfy the customer” were negligible.
Today, the idea of management is more complex, based on the different requirements.
First of all, companies are more focused on the customer’s needs. The economical idea of
leading a company is also important, but satisfying the customer’s needs and all involved
parties that are responsible for a good product is crucial. It is a consequence of the glob-
alization that a product life cycle may depends on other companies which can be far away
from each other. Another requirement is to be better and faster than the competition.
The increasing competition forces a company to make products free of errors, deliver it
fast to the customer and convince the customer of the innovativeness and magnificence of
the product. Based on these requirements, a company needs efficient internal structures,
which is a challenge of planning-, controlling- and organization systems. At the beginning
of the 1990s, business process reengineering and the application of workflow management
systems renewed the traditional design of the company management. Consequently, the
use of information systems for the process orientated paradigm followed [1].

One approach to make a company more competitive is the planning, controlling and au-
tomation of business processes. To make business processes more efficient the idea of
workflows and workflow management systems is important. The challenge for workflow

1

CHAPTER 1. INTRODUCTION 2

management systems at the moment is the consideration of temporal aspects, in particu-
lar with regard to interorganizational workflows. Even thinking about an activity which
represents the smallest step in a workflow, it is difficult to forecast its duration because of
different aspects. An activity not always consumes the same amount of time. Human er-
rors or failures can cause a delay of an activity as well as unfulfilled required dependencies.
Also sickening staff or a loss of machines can lead to a delay of an activity. However, the
prediction of an exact activity duration is hard to realize and there is a need to express
durations in a useful manner.
As a consequence, the duration of a whole workflow is more difficult to predict than a
particular activity, considering that a workflow is a sequence of activities. If an activity of
a workflow is delayed, the workflow itself runs the risk of also being delayed.
Interorganizational workflows make the prediction of temporal aspects even more difficult,
as they consist of several workflows. Different workflows can have activities in common.
From this point of view it is not sufficient to forecast the duration of an activity, a workflow
or an interorganizational workflow. If the same activity is used in different workflows, the
right temporal position of the activity is important to satisfy the overall deadline of all
workflows containing this activity. In other words, for all workflows W1...Wi with an activ-
ity A must be ensured, that A begins and ends at the same date and time, such that the
overall deadlines of the workflows W1...Wi are not violated. Thus, not only the duration
of an activity is needed, also its start time and end time is important in order to meet the
deadline of all workflows.
Another important temporal aspect in workflows is the modeling of an interval between
two not necessary adjacent activities in a workflow. Such intervals can be necessary to
express a minimal or maximal temporal distance between two activities.
Beside the temporal problems of interorganizational workflows, there is also still the need
of a suitable platform. “Partners of an interorganizational workflow belong to autonomous
and organizationally independent and possibly geographically distant entities [2]”. On the
one hand, a medium to share information between different companies and workflows is
required. On the other hand, a platform independent software has to be used, considering
that different companies use different systems. Additionally, processes have to be stan-
dardized, that all participants know how to design their processes.
To sum up, a system for the design and monitoring of standardized and interorganizational
workflows is necessary, which allows the expression of activity and process durations in a
useful manner and facilitates the communication between different companies.
The following example will illustrate this issue.

CHAPTER 1. INTRODUCTION 3

The starting point for this example is provided by 4 workflows which have activities in
common. The 4 workflows are depicted in figure 1.1. Workflow G illustrate in this exam-
ple the core process. G1 and G2 realizes G, i.e. the core process G needs the support of
G1 and G2 to finish execution. G1 and G2 contain an extended subset of the activities of
the core process G. In other words G1 and G2 partially realize G and share at least one
activity with the core process G and also have at least one different activity. Additionally,
G3 realizes G2.
The arrow between G1 and G3 as well as G1 and G2 signifies the temporal dependency
among each other. Although there is no realization dependency between G1 and G3 or
G1 and G2, they can affect each other temporally by sharing the same activity. To make

Figure 1.1: Dependencies of workflows

things more clearly, figure 1.2 shows the more detailed processes illustrated in figure 1.1.
One can see that all processes (G, G1, G2 and G3) contain the same activity A. G, G2

and G3 additionally share the activity B. To plan and calculate the duration of the core
process G, all dependent processes have to be considered. Activity A is the first activity of
process G and G2 but the second activity in process G3 and the last activity in process G1.
For a temporally conformant execution of process G, activity A must have the same start
and end time in all related processes. Although activity A could start and finish earlier
in process G than in process G1, A needs a starting and finishing time which satisfy all
processes. Otherwise, a deadline violation is likely to occur. If there is an additional need
to express an interval between two not necessary adjacent activities in a process, it must
be ensured that all other dependent processes consider the effect of this restriction. For
instance, process G3 could have such an interval between the two non-adjacent activity A
and B. Let a time interval between A and B be defined with 4 time units. If the restriction
causes any changes of starting and finishing times in G3, all dependent processes have to

CHAPTER 1. INTRODUCTION 4

consider this change to be temporal conformant.

Figure 1.2: Different workflows with activities in common

This thesis provides a solution for the problems discussed previously. A prototype is
developed that enables in design time the expression and calculation of temporal aspects
of interorganizational workflows, such that all participating processes in an interorganiza-
tional workflow are temporal conformant. The theoretical foundation for this prototype
was investigated by Tahamtan in [2]. As discussed previously, activity durations are of-
ten hard to predict. Tahamtan describes two different ways to simplify the prediction of
activity durations. The first one is an interval-based approach, which enables the defini-
tion of a maximum duration (upper bound constraint) and a minimum duration (lower
bound constraint) for an activity. Upper bound constraints and lower bound constraints
can also be used to define an interval between two not necessary adjacent activities. The
second approach enables the expression of uncertainty, i.e. every activity has a duration

CHAPTER 1. INTRODUCTION 5

histogram that contains at least one duration with its belonging probability. This approach
also considers the conditional branching behavior. For the calculation of the workflows,
Tahamtan provides an algorithm for both approaches, namely temporalConformanceFeder-
ationUbcLbc() and temporalConformanceFederation(certainty). The former calculates for
every activity the earliest possible start (=EPS) and the latest allowed end (=LAE) for
both, worst case scenario and the best case scenario. The latter calculates for every activity
a time histogram with EPS and LAE values. At process instantiation, the prototype of
this thesis checks the precalculated values in design time and monitors the health status
of the process.

The workflow language used for this prototype is WS-BPEL (=Web Service Business
Process Execution Language). BPEL enables the modeling of executable processes (or-
chestrations) and abstract processes (choreographies). All functionalities are realized via
Web Services, all interactions are performed through Web Service interfaces. BPEL pro-
vides a standardized language and uses the Internet as communication medium. This is a
prerequisite for interorganizational workflows, considering that participants of interorgani-
zational workflows belong to autonomous and organizationally independent and possibly
geographically distant entities.

This thesis is structured as follows:

Chapter 2 gives an overview of related works in time management. The first part de-
scribes the mathematical fundamentals of temporal reasoning, the second part discusses
different time calculation techniques used in project management.

Chapter 3 presents the concept of Web Services and BPEL. Architecture and function-
alities of BPEL are discussed as well as its application area.

Chapter 4 provides an overview of the theoretical basis of time management in BPEL,
based on the investigation of Tahamtan in [2].

Chapter 5 describes the prototypical implementation of this thesis. It presents the de-
velopment environment, used frameworks, data model, most important classes and the
validation of the prototype.

Chapter 2

Related works in Time Management

“Management is continually seeking new and better control techniques to cope with the
complexities, masses of data, and tight deadlines that are characteristic of highly competi-
tive industries. Managers also want better methods for presenting technical and cost data
to customers [3]”.

2.1 Temporal reasoning problems

Temporal knowledge and temporal reasoning is important in a wide range of disciplines,
e.g. computer science, psychology, philosophy and linguistic. In computer science, it is
applicable for information systems, artificial intelligence, program verification and other
areas involving process modeling [4]. The form, in which temporal knowledge can be ex-
pressed is called temporal representation. Temporal representation should allow significant
imprecision and uncertainty of information, because temporal knowledge can not always
be presented in precise dates (which may be necessary for computers for temporal com-
putations). “Often, the exact relationship between two times is not known, but some
constraints on how they could be related are known [4]”.
The area of temporal reasoning problems deals with scheduling and planning of activities
and consists of qualitative & quantitative problems. Qualitative problems describe the
order of two events. Event A must occur before event B refers to a qualitative problem.
Quantitative problems allow the ordering of events with durations. Event A must occur
20 minutes before event B refers to a quantitative problem [5].
Defining durations needs the allocation of time points or time intervals. An example for a
time point is “we will meet us today at exactly 12 noon”. In contrast to a time point, a time
interval could be for instance “we met us yesterday”. In this example it is not specified

6

CHAPTER 2. RELATED WORKS IN TIME MANAGEMENT 7

at which time exactly the meeting occurred yesterday. An interval can be presented by
modeling the endpoints of two or more time points. “Assuming a model consisting of a
fully ordered set of points of time, an interval is an ordered pair of points with the first
point less than the second [4]”. Unfortunately, temporal information not always refers to
a date system. Temporal relations like “we met us, while John ate pizza” do not have
durations but the “while” indicates, that the event “we met us” was during the time when
John ate pizza. Allen presents in [4] a calculus for temporal reasoning and depicts how to
formalize (vague) temporal information. Seven basic relations are proposed for ordering
paired objects, namely before, equal, meets, overlaps, during, starts, finishes and 13 rela-
tions exist by inverting them (except the relation equal).
Given the temporal information several requests can be satisfied. Such requests can be for
example:

• Does a proposition P holds for a time t1

• Which possible times hold for a proposition P

• The definition of the possible temporal relationships between two propositions P &
Q

With the 13 relationships of Allen, any relationship that can hold between two intervals can
be expressed. For instance, the sentence “during dinner, Peter is reading the newspaper”
can be formalized in Allen’s Interval Algebra [4] as follows:
newspaper {d,s,f} dinner
In this expression, “d” stands for the relation during, “s” for starts and “f” for finishes.
Relationships between intervals can be depicted in a network. Nodes represent the individ-
ual intervals and the edge indicates a relationship between two intervals. Such a network
is called temporal constraint network (=TCN). If a new interval is added to an existing
network, all consequences have to be computed by the transitive closure of the temporal
relations [4]. For example, if the fact A is before B is added and B is before C, then it is
inferred that A must be before C (and B).

B → C (B is before C)
A→ B (Insertion of A is before B)
A→ B → C (A is before B and B is before C)

The temporal reasoning problems, which are discussed in this chapter are the Simple
Temporal Problem (=STP), the Temporal Constraint Satisfaction Problem (=TCSP)

CHAPTER 2. RELATED WORKS IN TIME MANAGEMENT 8

and the Disjunctive Temporal Problem (=DTP). Before the particular problems are dis-
cussed, the notion of a constraint has to be clarified. In [6], three types of temporal
constraints are presented, the fixed-point constraint, the duration constraint and the in-
terdependent constraint. The last constraint can be seen as a combination of the first two
constraints [7]. The fixed-point constraint is given by an absolute time value, like the 15th
of March. The duration constraint is a relative value given in time units and refers to
another constraint. For instance, activity A should start ten minutes after activity B has
been finished, is a duration constraint.

2.1.1 The Simple Temporal Problem

Although the simple temporal problem does not cover a wide area of problems, efficient
solving algorithm exist for that problem. A simple temporal problem consists of the fol-
lowing items: Variables depict a time point for an event. A Domain is a set of real numbers
(=time instants). Constraints denote an edge between two events and have a weight, that
offers the time difference between those two events. A solved STP problem calculates
the events by taking into consideration, that all constrains have to be satisfied. The rep-
resentation of constrains can be done by temporal reference points, which picture some
agreed-upon epoch [5]. Figure 2.1 presents on the left hand side a network for a simple

Figure 2.1: A simple temporal problem and its corresponding minimal network1

temporal problem. The right hand side provides the solution for the network on the left
side, using the method of tightening. Every constraint has been tightened for its maxi-
mum, taking into consideration that no solution gets invalid. The result in that case is
called minimal network. Note that the schedule of a STP only works, if no cycles with
negative total weight exist. Solution techniques for the STP are provided by the following
algorithm with given complexity: A minimal network is calculated by using the algorithm
of Floyd & Warshall O(n3), Johnson O(n2 log n+m · n) and Bliek & Sam-Haroud O(n3).
The consistency of a STP to check whether a STP does not contain cycles with negative

1Image from [5]

CHAPTER 2. RELATED WORKS IN TIME MANAGEMENT 9

total weight can be determined by the following algorithms: Bellmann & Ford O(n · m)
and Dechter et al. O(nW · (d)2).

2.1.2 Temporal Constraint Satisfaction Problem & Disjunctive
Temporal Problem

The problem scope of the simple temporal problem is not very wide. As soon as several
alternative ways for performing an action exist or two events occur in an arbitrary order
without overlapping, the STP does not provide any solution. Therefore, the formalism for
modeling disjunctions is needed. In other words, the union of several temporal intervals
has to be considered. The extension of the STP which allows the disjunction formalism
was first described as the Temporal Constraint Satisfaction Problem (=TCSP) in [8] and
later on expanded as the Disjunctive Temporal Problem (=DTP) in [9]. Figure 2.2 shows a
temporal constraint satisfaction problem. For instance, between the time point x1 and the
time point x2, two intervals [30,40] and [60,∞] exist that describe the temporal consumption
between x1 to x2. The former needs between 30 and 40 time points, the latter at least
60 time points. In the TCSP, a constraint between two time points can be expressed as
a union of the intervals [5]. The same problem can be transformed from a temporal

Figure 2.2: A TCSP example2

constraint satisfaction problem into a disjunctive temporal problem. “A DTP can be
viewed as encoding a collection of alternative STPs [10]”. DTP has the advantage, that
two disjunctions can have different temporal variables for the same disjunctive constraint
[11]. Compared with a TCSP where constraints are binary, every constraint in a DTP is
the disjunction of inequalities, where each of them involves two time points. The outcome
of a TCSP or a DTP is also the determination of path consistence and the calculation of
a minimal network. For solving a TCSP or DTP problem, two categories of algorithm can
be used. The former category refers to a constraint satisfaction problem approach where

2Image from [5]

CHAPTER 2. RELATED WORKS IN TIME MANAGEMENT 10

all variables are instantiated step by step until a solution has been found or a dead end
is detected. The latter category deals with the abstraction of inequalities using the TSAT
algorithm. One of the most efficient algorithms at the moment for solving a TCSP or DTP
problem is called TSAT++ [5].

2.2 Time calculation techniques in Project Manage-
ment

Time calculations in workflows refer to the area of network planning. In project manage-
ment and workflow management, graph-based representation methods of timed workflows
offer many advantages. They can be visualized immediately, restrictions and errors can be
identified very fast and changes can be performed easily. This section provides models and
solutions for calculating network plans. Such techniques are necessary for planning time,
costs and capacities. The purpose of time management in workflows is the determination
of the shortest overall time i.e. the execution of all activities in a workflow in a minimal
time, the finding of the earliest & latest possible begin & end of activities, the detection of
buffer times and critical paths. A critical path is the longest sequence of activities which
has to be completed on time in terms of meeting the workflow deadline. For calculating
time constraints in workflows four common used network scheduling techniques in project
management can be used, namely the CPM (=Critical Path Method), MPM (=Metra
Potential Method) and PERT (=Program Evaluation, Review Technique) or the GERT
(= Graphical Evaluation and Review Technique).

2.2.1 Critical Path Method

The critical path method is a deterministic model for calculating the critical path in a
workflow and works with the end - start relation. A prerequisite for calculating the critical
path in a network plan is an acyclic digraph, which means a directed graph without any
loops. The end time of an activity signals the start time of the following activity. Nodes
are numbered and an arrow between two nodes represents the activity duration as well as
the relation of predecessor and successor activities (see figure 2.3). The determination of
the critical path consists of three steps. First step is a forward pass to calculate the earliest
occurrence times of activities, i.e. the start time of an activity is calculated by the start
time plus the duration of its predecessor. If an activity has more than one predecessor, the
predecessor with the minimal value (start time + duration) is selected. In the second step,

CHAPTER 2. RELATED WORKS IN TIME MANAGEMENT 11

the latest occurrence times are calculated by a backward pass of each activity. Finally, the
critical path can be identified by selecting the activities, where the earliest occurrence time
equals the latest occurrence time (= critical activities). Graphically, the critical path can
be determined by spanning the entire network plan from start to finish, passing only the
critical activities (see figure 2.3). The total duration is calculated by adding all durations
of the critical activities in the critical path. Note, that a network plan can have more than
one critical path [12]. “Dijkstra’s algorithm computes the shortest paths from a source
vertex to every other vertex in a graph, the so-called single source shortest path (SSSP)
problem. Dijkstra’s algorithm is frequently used because of its time bound O(m+n log n),
implemented by using a binary heap, remains the best for computing single source shortest
path problem with non-negative weighted graphs” [12].

2.2.2 Metra Potential Method

MPM is a network planning method of the type activity on node. The difference between
the notion of a CPM and a MPM is illustrated in figure 2.3. Although a huge amount of
different notions of CPM and MPM exists, this work references on the differences between
CPM and MPM illustrated in [13]. In MPM, every activity with its name is illustrated as
a node and the directed edges between two activities represent the weight (duration). In
a CPM network, all nodes get numbers with its start and finishing times and the edges
between two nodes illustrate the name of the activity with its duration. The metra potential
method enables the definition of the earliest possible & latest allowed start by using the
forward termination, as well as the earliest possible & latest allowed end of an activity
by using the backward termination [14]. Every arrow of a node has to refer to another

Figure 2.3: CPM vs. MPM

node. The main advantage of the MPM method is the ability to coordinate activities [15].
Therefore, activities can have positive and negative arrows. A positive arrow with the
value 5 between an activity A and an activity B means, that B can start 5 time units after
A has started. A negative arrow with the value 10 between an activity A and an activity

CHAPTER 2. RELATED WORKS IN TIME MANAGEMENT 12

B defines, that B has to start within 10 time units after A has started. The possibility
of positive and negative arrows between two activities effects, that a network plan can
contain cycles.
For the calculation of a network plan with the MPM method, two algorithms are presented.
The first one is called “Floyd’s and Warshall’s algorithm” and calculates all pairs shortest
paths (=APSP) on a graph with the complexity O(n3).
“The algorithm runs a loop of n iterations, for 1 ≤ k ≤ n. In each iteration, the algorithm
computes for each pair (i,j) (including i = j) the shortest distance from node xi via xk

to xj and updates the weight wi→j if the new value is less than the original value. After
n iterations, all wi→j have been set to their minimal values. The initial value of all wi→j

(the weight of the virtual edge from a node to itself) is taken to be zero; if it is ever to be
changed to a negative value, a negative cycle has been detected and inconsistency can be
concluded” [5].
The second presented algorithm for calculating the MPM method is called “Bellman’s and
Ford’s algorithm” and works similar to Dijkstra’s algorithm. The outcome of this algorithm
is the shortest path to all vertices in a distance matrix with the complexity O(n·m). Unlike
Dikstra’s algorithm, this algorithm can deal with negative edge weights.
“If the graph contains a negative cycle, the algorithm will detect this in the final for loop.
The reason for this is that in a negative cycle, the distance matrix will keep being updated
and is never finished” [5].

2.2.3 GANTT

The GANTT chart was developed by the management consultant Henry L. Gantt and
is a horizontal bar chart to illustrate the temporal sequence of activities. The duration
of activities in a GANTT chart are better depicted than in a network plan, whereas the
representation of dependencies between activities are better illustrated in a network plan.
The structure of a GANTT chart is illustrated as a matrix which is composed of a vertical
axis that lists all activities and a horizontal axis to indicate the duration of an activity.
Furthermore, fields like skill level to perform an activity and the name of the person who
is responsible for the activity can be also depicted.

2.2.4 Program Evaluation and Review Technique

PERT works quite similar to CPM. The main difference is the handling of the activity
times. CPM assumes, that activity times are deterministic. PERT allows the definition of

CHAPTER 2. RELATED WORKS IN TIME MANAGEMENT 13

stochastic activity times [16]. Whereas the activity can have stochastic time values, the
structure of the network itself has to be deterministic. A PERT chart can realize parallel
executions of tasks, but does not offer a conditional branching behavior. Slack times are
usually depicted by a dotted line between the end of the predecessor task and the start of
the successor task. The PERT chart is completed if and only if all tasks come together at
the end node.
The concept of PERT is to combine the huge number of uncertain durations to three
estimated time values for each activity, an optimistic (=DO), a pessimistic (=DP) and a
most likely duration (=DM). The aim is to obtain a quantitative prediction based on the
probability calculus. Based on the values DO, DP and DM an expected duration (=DE) is
determined by a probability density function. Chronometries revealed, that the frequency
of the obtained expected durations (DE) approximates to a beta distribution [17]. The
formula for the calculation of DE can be expressed as follows:

DE = DO+4DM+DP
6

A second formula presented in [13] does not include the most likely duration DM because
of its uncertainty. DM is the statistical dispersion or the mean square error. Without
taking the DM value into account the formula is expressed as follows:

DE = (DP−DO
6)2

The usage of PERT makes good economic sense, when certain activities have performed for
a large time under essentially the same conditions, such that the duration of activities can
be interpreted statistically. The outcome of PERT is also the critical path of a network
plan. Its requirements are that all activities have to be finished before the project can
be finished. Additionally, PERT assumes that all activities with a successor need to be
completed before the successor can be performed [18].
The usage of a stochastic model for the calculation of a network plan facilitate a more real-
istic scenario but also causes consequences. The calculated expected duration (DE) based
on a beta distribution do not conform to the most likely duration (DM). Sophisticated
worker assigned to an activity or a whole process specify the most likely duration based
on their (past) experiences. One disadvantage is, that they often calculate with the most
likely duration (DM), even if the expected duration (DE) is already in use for the process
computation. Another drawback is the assignment of the optimistic (DO) and pessimistic
duration (DP). Past experiences revealed, that the distance between DP and DM is often
bigger than the distance between DO and DM [13]. As a consequence, DM tends to be
smaller than the DE. As far as the expected duration DE is the standard duration of an

CHAPTER 2. RELATED WORKS IN TIME MANAGEMENT 14

activity and DM < DE, the addressed people to that activity tend to consume more time
for the activity than they actually would need. On the other side, a very important as-
pect in process designing is the consideration of buffer times. Even if the employees meet
exactly the time scales it is also possible that a third involved party does not fulfill some
requirements and the employees can’t perform the next activities [13].

GERT provides an extension to the PERT approach. GERT takes the probabilistic branch-
ing into account, which allows the modeling of a stochastic network structure. It also allows
the looping of activities and enables the possibility of multiple outcomes of a workflow [19].
The branching behavior can be realized by three logical operators (XOR, OR, AND). Nodes
of a GERT network are numbered, directed edges between two nodes are indicated with
the activity, the possibility and the duration.

Chapter 3

WS-BPEL

This chapter provides an overview of the Web Services Business Process Execution
Language (=WS-BPEL). The first section deals with Web Services in general. The second
section describes the development of WS-BPEL. In section three, the BPEL language is
presented and the last section describes the structure of a business process in BPEL.

3.1 Web Services

To understand the meaning of a Web Service, the idea of a service itself has to be discussed.
A service is a self describing open component with defined interfaces, that enables a fast
and economic composition of distributed applications. It follows a wide-spread standard
and allows re-usability. Services are offered by a service provider, which is responsible for
the implementation and the technical support of the service. A “service consumer” calls
a service, using the specified name of the service interface. Every service needs a name,
a service interface for the access and a service contract with the information about the
responsibility, functionality and the restrictions of the service. The service implementation
is the technical realization of the service [20, 21]. The Service Orientated Architecture
(=SOA) is an architecture model which contains the services in consideration of certain
design rules [22].
One of the most important concepts of SOA in contrast to other standardized architectures
are Web Services and the modeling of executable processes [20]. They transform the basic
mechanism of the web (sharing information) into more complex, functional systems. Web
Services enable the public access of electronic services, as we know from using the Internet,
for getting textual information [20].
The W3C defines a “Web Service” as “a software system designed to support interop-

15

CHAPTER 3. WS-BPEL 16

erable machine-to-machine interaction over a network. It has an interface described in
a machine-processable format (specifically Web Services Description Language WSDL).
Other systems interact with the Web Service in a manner prescribed by its description
using SOAP messages, typically conveyed using HTTP with an XML serialization in con-
junction with other Web-related standards [23]”. A web Service works in a similar manner
to a web site. A client sends a HTTP request to a Web Service that contains a SOAP
message using the URL, the name and the parameters of the Web Service. The Web
Service receives the request over a listener and passes it to the business interface, which
converts the SOAP message into a Web Service readable format. For the processing of
the information, the message gets forwarded to the business logic. The result of the data
processing is converted back to a SOAP message and is returned to the client [24].
The basic technology behind Web Services is limited to XML for the description of the
complex interactions and HTTP for the exchange of the messages. A more complex tech-
nology for Web Services is provided by Dustdar in [25]. Dustdar presents a layer model of a
Web Service architecture and differs between core layers and higher layers. The core layers
include XML, SOAP and HTTP for the transmission of data. The higher layers include
BPEL (=Business Process Execution Language) and WSDL (=Web Services Description
Language).
A Web Service works as follows: The service provider (=supplier) offers the Web Service
and registers it at a Service Broker. The standardized Service Broker is called UDDI
(=Universal Description, Discovery and Integration). The Service Broker lists all Web
Services in a directory. The service requester (=customer) searches for a service in the
directory of the service broker and is able to call it.
SOAP is a protocol for the exchange of XML data over the web. It is the common lan-
guage of all involved parties (service requester and provider) and contains information
about security, routing and additional information. SOAP assumes a communication over
a WAN. WSDL describes the interfaces and the functionality of a Web Service and how it
can be accessed. A WSDL document contains the following fields: A type, where the data
types are defined. The message contains the abstract definition of the exchanged data.
An operation describes the supported functionality of a service. A Port Type defines a
set of operations, which are supported by one or more network endpoints. The binding
specifies the used protocol and the supported operations of a port type. A port is a net-
work endpoint and specifies how a service can be accessed. The service is a collection of
related endpoints. A WSDL message can be of the type one-way, request/response, solicit
response and notification [20].

CHAPTER 3. WS-BPEL 17

3.2 The development of WS-BPEL

In the past, the realization of workflows was often managed manually. BPEL enables the
graphical presentation of a workflow and automatically produces the executable code.
WS-BPEL is a specification of Microsoft, IBM, Siebel Systems, BEA and SAP. The
BPEL4WS 1.1 specification was presented in 2004 to OASIS (= Organization for the
Advancement of Structured Information Standards is a consortium that drives the devel-
opment, convergence and adoption of open standards such as Web Services [26]), and after
three years of work, the OASIS standard WS-BPEL 2.0 was released on April 12, 2007.
WS-BPEL is a successor of WSFL (IBM) and XLANG (Microsoft) [27][28]. WSFL de-
scribes the sequence of business processes within a Web Service. XLANG describes the
message exchange between Web Services. WS-BPEL is the combination of WSFL and
XLANG [2]. The interface of a Web Service in BPEL is defined in the Web Service de-
scription language (=WSDL).
OASIS summarizes some main objectives for the development of BPEL in [29]. The defi-
nition of XML based business processes have the ability to interact with external entities
through Web Service operations. Web Service orchestrations concepts can be used in com-
mon by both the external (abstract) and internal (executable) views of a business process.
BPEL should meet the requirements of providing both hierarchical and graph-like control
systems, and allow their use to be combined as perfectly as possible. Hierarchical blocks
can be nested and are represented in BPEL as structured activities like for instance “If”.
BPEL offers functions for simple data manipulations. It provides an identification mech-
anism at the application message level for process instances and offers the ability for the
implicit creation and termination of process instances. BPEL is build on compatible Web
Service standards, defines a long running transaction model and uses Web Services as the
model for process decomposition and assembly [29].
BPEL is capable to model stateful processes by modeling the behavior and interactions
among involved partners. “For example, a process that receives a message, transforms
it, sends it to a business partner, and then waits for an asynchronous response is state-
ful” [30]. All functionalities are realized via Web Services, all interactions are performed
through Web Service interfaces.
WS-BPEL enables the modeling of two kinds of business processes:

1. Executable processes (orchestrations): “Refers to an executable business process that
may interact with both internal and external Web Services. Orchestration describes
how Web Services can interact at the message level, including the business logic and
execution order of the interactions. These interactions may span applications and/or

CHAPTER 3. WS-BPEL 18

organizations, and result in a long-lived, transactional process. With orchestration,
the process is always controlled from the perspective of one of the business parties.”
[31]

2. Abstract processes (choreographies): “More collaborative in nature, where each party
involved in the process describes the part they play in the interaction. Choreogra-
phy tracks the sequence of messages that may involve multiple parties and multiple
sources. It is associated with the public message exchanges that occur between mul-
tiple Web Services.” [31]

Data associated to an executable process is referred to as “opaque data”, to an abstract
process “transparent data”. There is an implicit relationship between executable processes
and abstract processes. “The executed paths and decisions made at choice nodes may
depend on exchanged messages in the abstract process [2].”
WS-BPEL extends the Web Services interaction model and makes it possible to support
business transactions. The definition of the interoperable integration model of WS-BPEL
had the aim to smooth the progress of the expansion of automated process integration [32].
One advantage is that there is no need to reveal the service or the provider’s internal process
logic. The business know-how is protected but nevertheless it’s possible to communicate
with other partners. Another advantage is the fact that “as long as an abstract process
remains the same, the executable process can be changed and modified with no external
effect [2].”

3.3 The BPEL Language

BPEL is a workflow definition language based on XML and allows the description of busi-
ness processes within and between companies, which are connected via Web Services.
BPEL can integrate Web Services into a steady business solution and facilitates the or-
chestrated interaction by doing so.
“A Business Process using BPEL can compose multiple Web Services, effectively creating
a completely new business application with its own public interface to end users (internal
or external). BPEL opens a completely new way, or at least enhanced way, for software
development for mainstream business applications to allow a programmer to describe a
business process that will take place across the Internet [33].” BPEL is a language for
the description of the logic to coordinate and control Web Services during a process flow.
It builds on XML and Web Services specifications and also extends them [33]. It is an

CHAPTER 3. WS-BPEL 19

orchestration language and not a choreography language [34]. The difference is that an or-
chestration involves message exchanges within different systems by controlling parts of this
exchange by the orchestration designer, while choreography is a protocol for peer-to-peer
interaction with the aim to guarantee interoperability. However, the protocol provides the
possibility for defining choreographies as well and there are different approaches how to
adopt BPEL to a choreography language. One approach, presented in [35], is the mapping
of choreography parts to abstract BPEL process models.
One of the participating business parties controls the BPEL orchestration engine. The
BPEL Engine executes all activities in a process flow, which are compatible to the BPEL
standard. It invokes Web Services, maps data content, handles errors, enables transactions
and provides security mechanism [36]. BPEL “is comparable to general purpose program-
ming language such as Java, but it is not as powerful as Java. One can say that it is simpler
and better suited for business process definition. Therefore BPEL is not a replacement but
rather a supplement to modern languages such as Java [37].”

3.4 Definitions of Business Processes in WS-BPEL

The structure of a business process in BPEL consists of fault handlers, compensation han-
dlers, event handlers, partner links, message exchange, variables, correlation sets and activ-
ities. During the execution of a BPEL process faults may occur. Therefore BPEL provides
fault handling mechanism that work similar to the one of Java. A catch block within the
XML structure allows the fault handling. Fault handlers can be referred to activities and
specifie the behavior in case of a fault. For instance, a compensation handler can be called
that allows the functionality of a rollback and thus enables the undoing of a completed
faulty process in the reverse order of the normal process execution.
Event handlers can be used to start an activity when certain events or alarms occur.
In WS-BPEL, a partner participates in a Web Service transaction and communicates with
other partners over defined interfaces. A partner can either call another process by a ser-
vice endpoint reference or can be called by another process. A partner is connected to
a partner link, which models interactions with other services. Partner links describe the
range of functions, indicate the role of the process and include information about commu-
nication data. Every partner link is referenced to a partner link type. Partner link types
are specified in the Web Service description language file and describe the relationship
between two services and their roles.
For saving the information of a message exchange in BPEL, the usage of variables is nec-

CHAPTER 3. WS-BPEL 20

essary. BPEL provides the data types “WSDL message types”, “XML scheme types” or
“XML scheme elements”. A variable may have an initializer which assigns a fixed value to
it. A validator can proof the conformance of a variable in terms of the XML or WSDL
definition.
Correlations are important, when a message is used for several conversations. For example,
an invoice number can be important for more than one conversation between partners. If
more than one correlation exists for a specific purpose, they can be collected to a corre-
lation set. Local and global correlation sets exist. Local ones lose visibility outside the
associated scope and global ones are valid for the entire business process. A correlation set
has a name and an ID for the instance of a process.
For creating a BPEL project, the following files are needed: A BPEL file for the description
of the process, a WSDL file that offers the interface how to communicate with the Web
Service and an optional XML scheme file for the definition of data types.
A BPEL process is initiated after the receipt of a message by a receive or pick activity with
the attribute createInstance = “yes”. Its termination can happen through the execution
of all activities, a modeled exit activity or a fault. A BPEL process can be whether syn-
chronous or asynchronous. The former contains either a request/response activity or an
invoke activity with input and output variables and is a blocking process. The latter does
not wait for a respond before proceeding further, but can optionally inform the sender by
a callback.
Activities are the basic units of work in the course of a business process and they include
control flows, invocations of other Web Services, interaction and messaging. An activity
can be a task, a complex activity or a (sub-) workflow. BPEL does not provide sophisti-
cated activities for data manipulations or alphanumerical operations, because they assume
that data manipulations and computations are basically carried out externally by Web
Services [2]. BPEL provides the following activities:

• Invoke: An invoke provides the possibility of invoking exposed services of other Web
Services.

• Receive: A receive activity waits until a message of a partner arrives and might be a
creator of a new process instance. It is a blocking activity, i.e. the process halts till
the arrival of a message.

• Assign: It assigns values to variables with either a XPATH expression or a literal.

• Reply: A reply is a response which can be always sent after a receive activity or a
pick activity. It is only used for synchronous interactions. Receive and reply must

CHAPTER 3. WS-BPEL 21

have the same partner link, port type, operation and if necessary the same correlation
set.

• Throw: A throw is used when faults are expected.

• Wait: The activity wait can be used for time management purposes when delays need
to be inserted in a business process. A delay can be specified by giving a duration or
a time point.

• Empty: It is a basic activity, does nothing and has no effect. It is useful for debugging
and avoids faults when the execution of activities are expected.

• Sequence: It defines in which order a group of activities will be performed. A chain
of activities is executed one after another.

• If: An if activity can model the conditional behavior (XOR-split). Every branching
needs a condition, specified for example in XPATH.

• While: It is used to model loops and repeat child elements until the condition is false.
The condition is at the beginning of the loop.

• RepeatUntil: Child elements of a repeatUntil activity are executed until the condition
is true. The condition is at the end of the loop, i.e. the child activities are executed
at least once.

• ForEach: Provides the iteration over activities and enables parallel execution of ac-
tivities.

• Pick: A Pick might instantiate a process and is used for event handlers. It waits for
a message, a timeout or an alarm and handles the first arriving event and discards
the subsequent events.

• Scope: It “provides the context which influences the execution behavior of its enclosed
activities [32].”

• Flow: A flow models parallelism and concurrency of activities. A flow activity finishes
after all child elements are finished.

• Exit: It enables the prematurely termination of a process.

CHAPTER 3. WS-BPEL 22

For every activity a name can be specified which makes a process more understandable.
Additionally, every activity can have the child element link. A link consists of a source and
a target link and thus connects a source activity with a target activity. They are needed
for ordering activities. Note that links must not form a cyclic graph. The definition of links
can be important for example in a flow activity. As long as no links exist, all activities
in a flow are executed parallel. If an activity A has one or more incoming links, a join
condition is needed. A can only start, if the join condition is “true”, i.e. the states of all
incoming links are set to “true”. SupressJoinFailure allows a fault mechanism, which is
enabled when the join condition is set to “false”. In that case and if the supressJoinFailure
is set, it allows the skipping of the activity associated with the false join condition.

Chapter 4

Time Management in BPEL

This chapter presents techniques for checking the temporal conformance of federated chore-
ographies. Temporal conformance of federated choreographies in BPEL ensures, that “ac-
tivities are performed in a timely manner and the right information is delivered to the
right activity at the right time such that the overall temporal restrictions are satisfied”
[2]. This is an important quality criteria for reducing costs and gaining the highest level
of efficiency in federated choreographies. The earlier a time violation can be detected, the
less costs are necessary to handle the violation.
This chapter is organized as follows: The first section briefly discusses related works of time
management in BPEL. The second section describes the investigation of time management
in BPEL by Tahamtan in [2]. His approach consists of two parts, the calculation of tem-
poral constraints in design time and their monitoring in run time. The used algorithms for
those calculations, based on [2] are also proposed in this section.

4.1 Related works

In the past, the modeling of temporal features for workflow systems was not a widely
investigated area [38]. “Commercial workflow systems (as reviewed, e.g., in [Alonso et
al., 1997] are usually limited to the specification of a deadline for each activity or global
plan. In some cases more elaborated temporal conditions can be specified, but no reason-
ing other than run-time evaluation on these conditions is supported [39]”. Before different
approaches of temporal constraints in workflow systems are presented, a briefly description
about workflow models is given.
Van der Aalst proposes in [40] an approach how to map workflow management concepts
to Petri Nets. Activities are modeled as transitions, conditions are modeled as places

23

CHAPTER 4. TIME MANAGEMENT IN BPEL 24

and cases are modeled as tokens. Directed edges describe dependencies between activities.
Conditional branching behavior can be realized by using a place with multiple outgoing
edges (OR-split) and a place with multiple incoming edges (OR-join). Parallel processing
of activities can be represented by a transition with multiple outgoing edges (AND-split)
and a transition with multiple incoming edges (AND-join).
Another concept of a workflow model is called Precedence Graphs. A Precedence Graph is
a directed acyclic graph. Activities are represented as nodes and the order of the activities
is realized with edges. A directed edge from activity node A to node B means that activity
A has to be executed before B can start. If an activity A has more than one incoming edge,
all predecessor activities have to be finished that A can start. Precedence Graphs also al-
low conditional branching behavior and parallel execution of activities. For that purpose,
the graph has to be augmented with control nodes that allow split and join structures as
well as the parallel processing of activities [39].
In [41], Wodtke and Weikum present a solution how a workflow can be represented as a
State Chart. A State chart is principally a finite state machine and consists of a initial
state and transitions driven by ECA (=Event Condition Action) rules. A State reflects an
activity in a workflow. A Transition represents a relationship between two states (activi-
ties) and is annotated with an ECA triple. “A transition from state X to state Y fires if
the specified event E occurs and the specified condition C holds. The effect is that state
X is left, state Y is entered, and the specified action A is executed [41]”. Conditions can
be modeled as data item variables.
Another modeling concept how to specify a workflow is using a script language. Eder
presents in [42] a workflow definition language (=WDL) which allows the description of a
workflow in a textual manner. The WDL language consists of five basic units: the workflow
specification part, activities, roles, organization structures and inter-process communica-
tion. The structure of a workflow specification reminds of the structure of procedural
programs and consists of a header, a declaration part, a body and a set of rule-based lan-
guages.

With the fundamentals of different workflow models, several time management approaches
based on those models can be discussed.
In [38], an approach is presented which offers a formalism to specify quantitative tempo-
ral constraints for an activity and a process as well as a reasoning tool for the workflow
management and the workflow enactment service. Regarding the granularity of the tem-
poral values, the special type Temporal Constraint with Granularity (=TCG) is presented
which allows the allocation of time points like for example in days, hours, minutes etc.

CHAPTER 4. TIME MANAGEMENT IN BPEL 25

Algorithms for the consistency, prediction and enactment services are provided. The con-
sistency service ensures, that temporal constraints of a process are possible to satisfy. The
prediction service calculates start and end times for an activity or a process, while the
enactment service is responsible for the monitoring of instantiated activities. If an activity
finishes after its predicted end time, an exception occurs.

Kao and Garcia-Molina present in [43, 44] a strategy, how to deal with tasks in a dis-
tributed environment. A distributed task usually consists of several subtasks which can
be executed at different locations in a given order. Those subtasks can be executed in a
sequential, parallel or serial order. Real time systems often need an overall deadline that
indicates the end of a distributed task. Considering that a distributed task consists of
several subtasks which also have assigned deadlines, a strategy is presented how to deal
with those subtask deadlines.

Adam uses in [45] a block structured process description language for modeling a workflow
based on ADEPT. Different types of nodes are used to facilitate for example the mod-
eling of branchings and loops. The possibility, that nodes can be nested reminds of the
functionality of BPEL. Dynamic changes like insertions, deletions and shifts (changing the
sequence of steps) are supported. Minimal and maximal durations can be specified for each
activity in a workflow as well as time dependencies between two not necessary adjacent
activities in a workflow. In the prototype of this thesis, such dependencies between two
activities are modeled as lower bound and upper bound constraints. At build time, the
temporal feasibility of the workflow is checked such that all constraints are satisfied and no
deadlines are missed. At run time, these values are compared with the actually durations.
If a deadline is likely to be missed, the user gets informed.

In [46, 47] relative and absolute time values are used to model durations. Relative time
(three hours, 20 minutes) is used at build time, absolute time (31.12.2009::15:30) at run
time. For every activity node, a minimum and maximum duration can be assigned. Ad-
ditionally, a relative deadline “defines when a task should start/finish relative to the
start/finish of another task [46]“. This concept works similar to the approach with lower
bound and upper bound constraints which is used in this thesis. Beside the relative dead-
line, an absolute deadline defines the start or end of an activity during the execution of a
workflow.

In [48], common project management tools are used for the time management of a work-

CHAPTER 4. TIME MANAGEMENT IN BPEL 26

flow. The main problem is, that several concepts of a workflow can not be mapped into
project management concepts like the conditional branching, a loop or a recursion.

Pozewaunig in [49] describes a concept for time management in workflow systems using an
extension of the network diagram technique PERT. This extension covers the computation
of internal activity deadlines and considers the execution of sequential, alternative and
concurrent activities. Activities can be assigned with 3 values, namely minimum duration,
maximum duration and average duration. Using the β-distribution, execution times of
activities as well as the shortest and longest process execution time can be calculated.

An approach for modeling and analyzing time constraints in BPEL is presented in [50]
and [51]. This approach uses the transformation of a BPEL process to a Web Service
Timed Transition System (=WSTTS), which extends the formalism of a State Transition
System (=STS). Web Services Timed Transition Systems allow the modeling of temporal
constraints in a BPEL composition and work similar to the formalism of timed automata.
The time consumption of an operation is modeled by a time increment in the state. To
check whether the transition takes place at the right moment, states and transitions are
defined as special clock variables. Using simple modeling constructs and complex Dura-
tion Calculus formulas presented in [52] and [53], various time related constructs can be
expressed. Model checking techniques enable the verification and computation of timed
Web Service compositions. Deadlines can be defined, best case and worst case scenarios
can be calculated at build time and the calculated process can be monitored at run time [2].

Another approach, presented in [54] “enables a declarative, separate, and verifiable speci-
fication of temporal properties [54]”, using the formal language namely XTUS-Automata.
A XTUS-Automata combines the functionality of a timed automata (=TA) with the ex-
tended time unit system (=XTUS). This approach provides a solution for the specification
of temporal constraints with relative and absolute time as well as their monitoring at run
time, using the aspect oriented workflow language AO4BPEL based on XML. AO4BPEL
is presented in [55] and raises the limitations of the static Web Service model. Temporal
constraints can be translated into modular aspect code that listens to activities during the
execution of a process. An activity will be only executed, if the temporal constraints are
satisfied.

Guermouche, Perrin and Ringeissen in [56] also represent Web Services as an automata
using the Roman model [57, 58]. That model differs between internal and external con-

CHAPTER 4. TIME MANAGEMENT IN BPEL 27

straints. Internal constraints specify a relative time period (= local clock) and an absolute
time period (= global clock) and they can be used for the expression of activation and
dependency conditions. External constraints are exposed by the client and the provider
service and they have to be checked before the initialization of the interaction. They infer
from internal constraints and allow the detection of incompatibilities of services.

In [2], different concepts of related works come together and a new approach of calcu-
lating time constraints in federated choreographies is presented.
The approach, presented by [2] provides a solution for the calculation of time constraints
at design time as well as a solution to check these values at run time. Time constraints
are divided into implicit and explicit constraints.
Implicit constraints are execution durations for activities and can be designed at the
specification level by experienced specialists or through workflow logs from past executions.
They can also be derived implicitly from control dependencies between the start and end
time of activities. For example, an activity B can only start if and only if all of its prede-
cessors have finished. Such constraints are also called structural time constraints.
Explicit time constraints “are either temporal relations between events or bindings of
events to certain sets of calendar dates [59]”. They can be based on organizational rules
and business policies, laws and regulations [59].

4.2 Calculation in Design time

For calculating federated choreographies in design time, two approaches are presented. The
first is called calculation of time constraints and needs a duration for each activity and a
deadline for each choreography or orchestration. The second approach is called probabilistic
time management and calculates the temporal values based on time histograms with a
duration and its belonging probability.

4.2.1 Calculation of time constraints

For every basic activity, a time duration can be defined (see figure 4.1). Apart from
the durations of an activity, lbc (= lower bound constraints) and ubc (=upper bound
constraints) can be defined. A lower bound constraint defines the minimum duration be-
tween two events A and B. An upper bound constraint defines the maximum duration
between two events A and B. Lbc and ubc can be used for defining the duration of one
activity and for setting the duration between two activities. Assuming that one activity A

CHAPTER 4. TIME MANAGEMENT IN BPEL 28

Figure 4.1: Durations of Activities

has a lbc of 5 and an ubc of 10 time points, the minimum duration of the activity would
be 5 time points and the maximum duration of the activity 10 time points (see figure 4.1).

Lbc(a,c,15) and upc(a,c,20) between a source activity A and a target activity C means
that the duration between activity A and C must have at least 10 time points and must
not have more than 15 time points (see figure 4.1). Note that the source and target activity
are not necessarily adjacent.
Apart from defining durations for each activity of a BPEL process, a process itself needs
a maximum duration, in which the whole process has to be finished.
After defining the maximum duration of a process, the durations of its containing activities
and the durations between activities, the whole process can be calculated by setting the
following values to each activity (see table 4.1):

• BC EPS (=Best Case Earliest Possible Start): Defines the earliest point in time for
the best case scenario, in which an activity can start execution.

• WC EPS (=Worst Case Earliest Possible Start): Defines the earliest point in time
for the worst case scenario, in which an activity can start execution.

• BC LAE (=Best Case Latest Allowed End): Defines the latest point in time for the
best case scenario, in which an activity can start execution.

• WC LAE (=Worst Case Latest Allowed End): Defines the latest point in time for
the worst case scenario, in which an activity can start execution.

CHAPTER 4. TIME MANAGEMENT IN BPEL 29

Activity Name Activity Duration
BC EPS WC EPS
BC LAE WC LAE

Table 4.1: Example of a timed activity

Algorithm

For the calculation of the time constraints, the algorithms in [2, S. 157] provides the basis.
Due to some calculation errors of those algorithms, a few modifications had to be made.
Therefore, the complete algorithms for calculating time constraints in [2] are depicted in
this work with its modifications.
The main algorithm is called temporalConformanceFederationUbcLbc() and consists of the
following subalgorithms:

• Initialize(G): All EPS and LAE values of activities of a process G are set to 0 and
∞.

• Calculate(G, G.deadline): It is necessary to calculate for each activity A of a process
G the EPS and LAE values for best case and worst case scenario. The EPS values are
calculated in a forward pass by considering existing EPS values, the newly calculated
EPS values and possible lower bound constraints. For activities after “FLOW” or
“IF” controls, worst case values can differ from best case values, as there are different
branches for the calculation. The LAE values are calculated in a backward pass in
consideration of three values: the existing LAE value, the newly calculated LAE
value, and the possible lower bound constraint.

• incorporateUbc(G,G.deadline): This method applies the upper bound constraints
into the process G. Before applying the upper bound constraints, it is checked, if the
time values of the source activity plus the time value of the ubc are smaller than
the time values of the target activity. If so, the EPS values of the source activity
are set with the EPS values of the target activity minus the time value of the up-
per bound constraints. Analog to the EPS values, the LAE values of the source
activity are set with the LAE values of the target activity plus the time value of
the upper bound constraints. Afterwards, the process is recalculated by the method
calculate(G, G.deadline) and the conformance is checked by the method checkCon-
formance(G). If the time values of the target activity have changed, a violation occurs
and the method incorporateUbc(G,G.deadline) stops.

CHAPTER 4. TIME MANAGEMENT IN BPEL 30

• checkConformance(G): This method checks for all activities in the process G, if the
sum of EPS and duration of an activity is less than or equal lae. If this condition is
not fulfilled, the method return the value false.

• propagate(G,H): For all activities owned of the process G AND the process H, the
following changes are made: If the EPS values of an activity in H are smaller than
the EPS values of the same activity in G, the EPS values of the activity in H are
set to the EPS values of the activity in G. If the LAE values of an activity in H are
bigger than the LAE values of the same activity in G, the LAE values of the activity
in H are set to the LAE values of the activity in G. If any changes were made, the
method returns the value true, otherwise false.

The algorithm temporalConformanceFederationUbcLbc() consists of two steps. The first
step is the initialization and precalculation. The global choreography Cg is initialized
and calculated. Upper bound constraints for Cg are incorporated and the conformance is
checked. Then, all directly and indirectly supporting choreographies and realizing orches-
trations G of Cg are considered. For each directly and indirectly supporting choreography
or orchestration G, the following is applied: After the initialization of G, the global chore-
ography Cg is propagated to G, if both have activities in common with EPS (LAE) values
of Cg bigger (smaller) than EPS (LAE) values of G. If so, the EPS (LAE) values of G
are applied with the EPS (LAE) values of Cg and the deadline of G is newly determined
because of its changing values. Furthermore, G is calculated again with its changes. Next,
G is propagated back to Cg. If a change occurs, the global choreography Cg is calculated
again and its conformance is checked. All incoming and outgoing edges of Cg are marked.

In the second step, dependencies between all supported choreographies and supporting
choreographies or realizing orchestrations are considered. Note that in the first step only
dependencies between the global choreography and all directly and indirectly supporting
choreographies and realizing orchestrations are considered. Like in the first step, supported
choreographies are propagated to supporting choreographies or realizing orchestrations and
vice versa. If any changes occur they are calculated again and their conformance is checked.
The algorithm stops, if (i) all dependencies between supported choreographies and sup-
porting choreographies or realizing orchestrations are processed and thus a stable model
exists that satisfies all temporal restrictions or (ii) a conformance condition is violated.

CHAPTER 4. TIME MANAGEMENT IN BPEL 31

Algorithm 1: temporalConformanceFederationUbcLbc()

// initialization and precalculation

1 conf:=true;
2 initialize(Cg);
3 calculate(Cg, Cg.deadline);
4 incorporateUbc(Cg, Cg.deadline);
5 conf:=checkConformance(Cg);
6 for all directly and indirectly supporting choreographies and realizing

orchestrations G of Cg in a topological order do
7 initialize(G);
8 change:=propagate(Cg, G);
9 if change = true then

10 G.deadline := G.first.wc.eps+G.d.max;
11 calculate(G,G.deadline);
12 end
13 change:=propagate(G,Cg);
14 if change = true then
15 calculate(Cg, Cg.deadline);
16 conf:=checkConformance(Cg);
17 mark all incoming and outgoing edges of Cg;
18 end
19 end

// recalculation and conformance checking

20 repeat select randomly a marked edge e such that G is the supported
choreography and H the supporting choreography or realizing orchestration

21 change:=propagate(G,H);
22 if change = true then
23 calculate(H,H.deadline);
24 conf:=checkConformance(H);
25 mark all incoming and outgoing edges of H;
26 end
27 unmark e;
28 change:=propagate(H,G);
29 if change = true then
30 calculate(G,G.deadline);
31 conf:=checkConformance(G);
32 mark all incoming and outgoing edges of G;
33 end
34 until all edges are unmarked ∨ conf=false;

CHAPTER 4. TIME MANAGEMENT IN BPEL 32

Algorithm 2: initialize(G)

1 for all activities a ∈ G do
2 a.wc.eps := 0;
3 a.bc.eps := 0;
4 a.wc.lae :=∞;
5 a.bc.lae :=∞;
6 end

Algorithm 3: propagate(G,H)

1 change:=false;
2 for all activities {x ∈ H | ∃a ∈ G : x ≡ a} in a topological order do

// Propagation of eps
3 if x.wc.eps < a.wc.eps or x.bc.eps < a.bc.eps then
4 x.bc.eps := a.bc.eps;
5 x.wc.eps := a.wc.eps;
6 change:=true;
7 end

// Propagation of lae
8 if x.wc.lae > a.wc.lae or x.bc.lae > a.bc.lae then
9 x.bc.lae := a.bc.lae;

10 x.wc.lae := a.wc.lae;
11 change:=true;
12 end
13 end
14 return change;

Algorithm 4: calculate(G,G.deadline)

1 forwardCalculation(G);
2 for all activities a ∈ G with a.pos = end do
3 if G.deadline < a.wc.lae then
4 a.wc.lae := G.deadline;
5 end
6 if G.deadline < a.bc.lae then
7 a.bc.lae := G.deadline;
8 end
9 end

10 backwardCalculation(G);

CHAPTER 4. TIME MANAGEMENT IN BPEL 33

Algorithm 5: forwardCalculation(G)

1 for all activities a ∈ G in a topological order do
// Worst Case

2 if a is the destination of a lbc(s, a, δ) then
3 a.wc.eps = Max({b.wc.eps+b.d.max | b ∈ a.pred}, a.wc.eps, s.wc.eps+δ);
4 else
5 a.wc.eps = Max({b.wc.eps+ b.d.max | b ∈ a.pred}, a.wc.eps);
6 end

// Best Case
7 if a is the immediate successor of a XOR-Join then
8 if a is the destination of a lbc(s, a, δ) then
9 a.bc.eps = Max(Min{b.bc.eps+ b.d.min | b ∈

a.pred}, a.bc.eps, s.bc.eps+ δ);
10 else
11 a.bc.eps = Max(Min{b.bc.eps+ b.d.min | b ∈ a.pred}, a.bc.eps);
12 end
13 else
14 if a is the destination of a lbc(s, a, δ) then
15 a.bc.eps = Max({b.bc.eps+b.d.min | b ∈ a.pred}, a.bc.eps, s.bc.eps+δ);
16 else
17 a.bc.eps = Max({b.bc.eps+ b.d.min | b ∈ a.pred}, a.bc.eps);
18 end
19 end
20 end

CHAPTER 4. TIME MANAGEMENT IN BPEL 34

Algorithm 6: backwardCalculation(G)

1 for all activities a ∈ G with a.pos 6= end in a reverse topological order do
// Worst Case

2 if a is the source of a lbc(a, d, δ) then
3 a.wc.lae = Min({c.wc.lae− c.d.max | c ∈ a.succ}, a.wc.lae, d.wc.lae− δ);
4 else
5 a.wc.lae = Min({c.wc.lae− c.d.max | c ∈ a.succ}, a.wc.lae);
6 end
7 end

// Best Case
8 if a is the immediate predecessor of a XOR-Split then
9 if a is the source of a lbc(a, d, δ) then

10 a.bc.lae = Min(Max{c.bc.lae−c.d.min | c ∈ a.succ}, a.bc.lae, d.bc.lae−δ);
11 else
12 a.bc.lae = Min(Max{c.bc.lae− c.d.min | c ∈ a.succ}, a.bc.lae);
13 end
14 else
15 if a is the source of a lbc(a, d, δ) then
16 a.bc.lae = Min({c.bc.lae− c.d.min | c ∈ a.succ}, a.bc.lae, d.bc.lae− δ);
17 else
18 a.bc.lae = Min({c.bc.lae− c.d.min | c ∈ a.succ}, a.bc.lae);
19 end
20 end

Algorithm 7: checkConformance(G)

1 conf:=true;
2 for all activities a ∈ G in a reverse topological order do
3 if a.wc.eps+ a.d.max > a.wc.lae then
4 conf:=false;
5 end
6 if a.bc.eps+ a.d.max > a.bc.lae then
7 conf:=false;
8 end
9 end

10 return conf;

CHAPTER 4. TIME MANAGEMENT IN BPEL 35

Algorithm 8: incorporateUbc(G,G.deadline)

1 violation:=false;
2 conformance:=false;
3 oldValue:=0;
4 repeat
5 for all ubc(s, d, δ) in G do

// Worst Case
6 if s.wc.eps+ δ < d.wc.eps then
7 s.wc.eps := d.wc.eps− δ;
8 oldV alue := d.wc.eps;
9 calculate(G,G.deadline);

10 conf:=checkConformance(G);
11 if d.wc.eps 6= oldV alue then
12 violation:=true;
13 end
14 end
15 if s.wc.lae+ δ < d.wc.lae then
16 d.wc.lae := s.wc.lae+ δ;
17 oldV alue := s.wc.lae;
18 calculate(G,G.deadline);
19 conf:=checkConformance(G);
20 if s.wc.lae 6= oldV alue then
21 violation:=true;
22 end
23 end

// Best Case
24 if s.bc.eps+ δ < d.bc.eps then
25 s.bc.eps := d.bc.eps− δ;
26 oldV alue := d.bc.eps;
27 calculate(G,G.deadline);
28 conf:=checkConformance(G);
29 if d.bc.eps 6= oldV alue then
30 violation:=true;
31 end
32 end
33 if s.bc.lae+ δ < d.bc.lae then
34 d.bc.lae := s.bc.lae+ δ;
35 oldV alue := s.bc.lae;
36 calculate(G,G.deadline);
37 conf:=checkConformance(G);
38 if s.bc.lae 6= oldV alue then
39 violation:=true;
40 end
41 end
42 end
43 until violation=true ∨ conf=false;

CHAPTER 4. TIME MANAGEMENT IN BPEL 36

4.2.2 Probabilistic Time Management

Dealing with Web Services revealed, that the definition of activity durations is difficult to
predict. The reason for that is the variable duration of activities in the real world as well
as the forecast of branching behavior in case of XOR branches. The proposed approach
presents a possibility how to consider stochastic values for the calculation of federated
choreographies.
For the probabilistic time management, every basic activity needs a time histogram. A
time histogram defines durations with different probability values (see table 4.2). Given a
time histogram for each activity, the process including the containing activities also needs
a deadline. In contrast to the calculated time constraints approach, probabilistic time
management also includes probabilities for XOR branches. The affected BPEL activity
in this case is the complex activity “IF”. For the calculation of the probabilistic time

Activity Name Time Histogram
a (0.2,1),(0.5,5),(0.3,10)
b (0.5,4),(0.5,8)
c (0.1,8),(0.9,15)

Table 4.2: Example of a time histogram

management approach, “EPS” and “LAE” is calculated for each activity. As an activity
has a time histogram containing several durations and probabilities, the Cartesian product
is used for calculating two time histograms of two activities.

Algorithm

The algorithms for calculating the probabilistic time management are based on [2, S. 168].
Due to some calculation errors of those algorithms, a few modification had to be made.
Therefore, the complete algorithms for calculating the probabilistic time histograms are
presented in this work with its modifications. The main algorithm is called temporalCon-
formanceFederation(certainty) and needs the following methods for the calculation:

• initialize(G): For all activities of the process G, the EPS value is set to {(1.0,0)} and
the LAE value is set to {(1.0,∞)}. Additionally, the variables EPS’ and LAE’ are
set to 0. They are used for the propagation of interval restrictions.

• propagate(G, H, certainty): This method propagates time-interval restrictions from
process G to process H, if the interval [EPS, LAE] of the propagated process H gets
tighter.

CHAPTER 4. TIME MANAGEMENT IN BPEL 37

• calculate(G, certainty): This method uses the same technique as the method of the
calculation of time constraints. EPS histograms are calculated by a forward pass,
LAE histograms are calculated by a backward pass. The Max operator compares
a newly calculated EPS histogram with an existing EPS histogram and applies the
maximum histogram under a certain degree for the EPS value. The Min operator
is responsible for the determination of the minimal LAE value under a certain de-
gree between an existing and a newly calculated LAE histogram. EPS and LAE
histograms are merged with EPS’ and LAE’ histograms, except EPS’ or LAE’ are
set to 0.

• checkConformance(G, certainty): For all activities of process G is checked if the EPS
histograms are bigger than the LAS histograms or the EPS histograms are bigger
than the EPE histograms. If one of these conditions is true, the method returns the
value false.

The algorithm temporalConformanceFederation(certainty) consists of two steps. The first
step is the initialization and precalculation, the second step is responsible for the recalcu-
lation and conformance checking. Beginning with the first step, the global choreography is
initialized and calculated. After a conformance check of the global choreography Cg, all di-
rectly and indirectly supporting choreographies and realizing orchestrations G are included.
In a topological order, they are first initialized. Then, the propagation is applied which
means that if common activities between Cg and G exist and the EPS (LAE) histograms
of Cg are with a certain probability bigger (smaller) than the EPS (LAE) histograms of
G, the EPS’ (LAE’) values of Cg are filled with the EPS (LAE) histograms of G. If a
propagation occurred, the deadline of G is newly determined and G has to be calculated
again because of its changing activity histograms. Afterwards, G is propagated back to
Cg, if the interval [EPS, LAE] of G gets tighter. If the propagation effect any changes, Cg

is calculated, its conformance is checked and all incoming and outgoing of Cg are marked.
Note that in the first step only changes between the global choreography and all directly
and indirectly supporting choreographies and realizing orchestrations happen.

In the second step, the recalculation and conformance checking, dependencies between
all supported choreographies and supporting choreographies and orchestrations are con-
sidered. If possible, the outcome of the algorithm is a temporal conformant model for all
choreographies and orchestrations. Otherwise the algorithm stops after a violated confor-
mance checking.

CHAPTER 4. TIME MANAGEMENT IN BPEL 38

Algorithm 9: temporalConformanceFederation(certainty)

// initialization and precalculation

1 conf:=true;
2 initialize(Cg);
3 calculate(Cg, Cg.deadline, certainty);
4 conf:=checkConformance(Cg, certainty);
5 for all directly and indirectly supporting choreographies and realizing

orchestrations G of Cg in a topological order do
6 initialize(G);
7 change:=propagate(Cg, G, certainty);
8 if change = true then
9 G.deadline := Max(G.first.eps,G.first.eps′) +G.d.max;

10 calculate(G,G.deadline, certainty);
11 end
12 change:=propagate(G,Cg, certainty);
13 if change = true then
14 calculate(Cg, Cg.deadline, certainty);
15 conf:=checkConformance(Cg, certainty);
16 mark all incoming and outgoing edges of Cg;
17 end
18 end

// recalculation and conformance checking

19 repeat select randomly a marked edge e such that G is the supported
choreography and H the supporting choreography or realizing orchestration

20 change:=propagate(G,H, certainty);
21 if change = true then
22 calculate(H,H.deadline, certainty);
23 conf:=checkConformance(H, certainty);
24 mark all incoming and outgoing edges of H;
25 end
26 unmark e;
27 change:=propagate(H,G, certainty);
28 if change = true then
29 calculate(G,G.deadline, certainty);
30 conf:=checkConformance(G, certainty);
31 mark all incoming and outgoing edges of G;
32 end
33 until all edges are unmarked ∨ conf=false;

CHAPTER 4. TIME MANAGEMENT IN BPEL 39

Algorithm 10: initialize(G)

1 for all activities a ∈ G do
2 a.eps := (1.0, 0);
3 a.lae := (1.0,∞);
4 a.eps′ := ∅;
5 a.lae′ := ∅;
6 end

Algorithm 11: checkConformance(G, certainty)

1 conf:=true;
2 for all activities a ∈ G in a reverse topological order do
3 if a.eps >certainty a.las then
4 conf:=false;
5 end
6 if a.eps >certainty a.epe then
7 conf:=false;
8 end
9 end

10 return conf;

Algorithm 12: propagate(G,H, certainty)

1 change:=false;
2 for all activities {x ∈ H | ∃a ∈ G : x ≡ a} in a topological order do

// Propagation of eps
3 if x.eps <certainty a.eps then
4 x.eps′ := a.eps;
5 change:=true;
6 end

// Propagation of lae
7 if x.lae >certainty a.lae then
8 x.lae′ := a.lae;
9 change:=true;

10 end
11 end
12 return change;

CHAPTER 4. TIME MANAGEMENT IN BPEL 40

Algorithm 13: calculate(G,G.deadline, certainty)

1 for all activities a ∈ G in a topological order do
2 if a is the immediate successor of a XOR-Join then
3 a.eps = Max({∨{b.epe ∗ pb} | ∀b ∈ a.pred}, a.eps);
4 else if a is the immediate successor of a AND-Join then
5 a.eps = Max({∧max{b.epe} | ∀b ∈ a.pred}, a.eps);
6 else
7 a.eps = Max({b.epe | b ∈ a.pred}, a.eps);
8 end
9 if a.eps′ 6= ∅ then

10 a.eps := a.eps ∧max a.eps
′;

11 a.eps′ := ∅;
12 end
13 a.epe := a.eps+ d;
14 end
15 for all activities a ∈ G with a.pos = end do
16 if G.deadline <certainty a.lae then
17 a.lae := G.deadline;
18 end
19 end
20 for all activities a ∈ G with a.pos 6= end in a reverse topological order do
21 if a is the immediate predecessor of a XOR-Split then
22 a.lae = Min({∨{b.las ∗ pb} | ∀b ∈ a.succ}, a.lae);
23 else if a is the immediate predecessor of a AND-Split then
24 a.lae = Min({∧min{b.las} | ∀b ∈ a.succ}, a.lae);
25 else
26 a.lae = Min({b.las | b ∈ a.succ}, a.lae);
27 end
28 if a.lae′ 6= ∅ then
29 a.lae := a.lae ∧min a.lae

′;
30 a.lae′ := ∅;
31 end
32 a.las := a.lae− d;
33 end

CHAPTER 4. TIME MANAGEMENT IN BPEL 41

For the calculation of the temporal values, the algorithms above need histogram operations.
Those operations, presented in [2], are briefly discussed below.

• Histogram addition: Is used for calculating the EPE values and generates the Carte-
sian product of the tuples of two histograms. Probabilities are multiplied and dura-
tions are added:
{(0.25, 3), (0.75, 5)}+{(0.5, 3), (0.5, 5)} = {(0.125, 6), (0.125, 8), (0.375, 8), (0.375, 10)}.
Resulting tuples with equal durations are merged by summing up their probabilities
(=aggregation): {(0.125, 6), (0.5, 8), (0.375, 10)}.

• Histogram substraction: Is used for calculating the LAS values and generates the
Cartesian product of the tuples of two histograms. Probabilities are multiplied and
durations are substracted:
{(0.5, 10), (0.5, 15)}−{(0.3, 3), (0.7, 7)} = {(0.15, 7), (0.35, 3), (0.15, 12), (0.35, 8)}. As
all resulting tuples have different durations, no aggregations is needed.

• Histogram conjunction (max-conjunction): Is used for the calculation of the EPS val-
ues after an AND-join. The outcome of this operation is a Cartesian product. Prob-
abilities are multiplied and the maximum duration of each tuple-combination deter-
mines the duration of the resulting tuple: {(0.25, 3), (0.75, 5)}∧max{(0.5, 3), (0.5, 5)} =
{(0.125, 3), (0.125, 5), (0.375, 5), (0.375, 5)}. After aggregating the resulting tuples,
the result is: {(0.125, 3), (0.875, 5)}.

• Histogram conjunction (min-conjunction): Is used for the calculation of the LAE
values before an AND-Split. Again, the Cartesian product is generated, probabilities
are multiplied and the minimum duration of each tuple-combination is selected for
the resulting tuple:
{(0.25, 3), (0.75, 5)}∧min{(0.5, 3), (0.5, 5)} = {(0.125, 3), (0.125, 3), (0.375, 3), (0.375, 5)}.
The aggregation of those tuples yields to: {(0.625, 3), (0.375, 5)}.

• Weight-operation and Histogram disjunction: Is used for the calculation of the EPS
(LAE) values after (before) a XOR-Join (XOR-Split). The weight-operation multi-
plies all probabilities in a histogram with a given probability:
{(0.25, 3), (0.75, 5)} ∗ 0.25 = {(0.0625, 3), (0.1875, 5)} and
{(0.5, 3), (0.5, 5)} ∗ 0.75 = {(0.375, 3), (0.375, 5)}. As the weight operation produces
an invalid histogram with the sum of all probabilities less than 1.0, it always ap-
pears in combination with the histogram disjunction, which merges two weighted
histograms: {(0.0625, 3), (0.1875, 5)} ∨ {(0.375, 3), (0.375, 5)} =

CHAPTER 4. TIME MANAGEMENT IN BPEL 42

{(0.0.625, 3), (0.1875, 5), (0.375, 3), (0.375, 5)} and after aggregation
{(0.4375, 3), (0.5625, 5)}.

• Histogram comparison: Is used for comparing two histograms with each other. As
durations always come with its possibilities, they can not be compared without taking
their possibilities into account. Thus a comparison of the form h1 <certainty h2 is
needed to express that h1 is smaller than h2 under a specific certainty. In table
4.3, two histogram are compared. The label p in the table stands for probability,
t for its time (=duration) and rel for the relation between two times and their
belonging probability. Based on the two histograms h1 and h2 in table 4.3, the
following statements can be made: “up to a degree of 0.545, h1 is greater than h2

and up to a degree of 0.35, h1 is equal to h2. Thus, for instance, the following
expressions are true: h1 <0.05 h2, h1 >0.25 h2, h1 >0.545 h2 and the following are false:
h1 >0.7 h2, h1 ≥0.9 h2 [2]”.

p1 t1

0.15 10
0.50 15
0.35 20

Histogram h1

p2 t2

0.30 9
0.70 15

Histogram h2

p1 ∗ p2 t1 rel t2

0.045 10 > 9
0.150 15 > 9
0.105 20 > 9
0.105 10 < 15
0.350 15 = 15
0.245 20 > 15

calculated results

rel p
t1 > t2 54.5%
t1 = t2 35.0%
t1 < t2 10.5%
t1 ≤ t2 45.5%
t1 ≥ t2 89.5%

histogram
comparison

Table 4.3: Calculating the values for histogram comparison1

4.3 Calculation in Run time

During the runtime of a BPEL process, the calculated constraints in design time are
checked. The following two sections describe the runtime calculations of time constraints
and of probabilistic time values.

1Example from [2]

CHAPTER 4. TIME MANAGEMENT IN BPEL 43

4.3.1 Calculation of time constraints

“At process instantiation time, an actual calendar is used in order to transform all time
information which was computed relative to the start of the workflow to absolute time
points [59]”.
For every instantiated activity, the calendar value EPS is compared with the start date of
the instantiated activity. Analog to the EPS value, the mapped calendar value LAE is also
compared with the end date of the instantiated activity. In addition to the EPS and the
LAE values, the values LAS (=Latest Allowed Start) and EPE (=Earliest Possible End)
are calculated in run time. The LAS of an activity A is calculated by the formula: a.LAS
= a.LAE - a.duration. The EPE value of an activity A can be calculated by the formula:
a.EPE = a.EPS + a.duration. The monitoring of a timed process during the execution
of a BPEL process instance is realized by the traffic light approach, presented in [60] (See
table 4.4).

Color Explanation Formula
Green The process can be finished in time without

any delays
now ≤ BC LAS

Yellow Yellow indicates, that a delay occurred in the
past, but the process still can be finished
within the specified maximum duration of
the process. Future delays should be avoided,
as the process is already delayed

now ≤ WC LAS

Red Red means, that the probability to miss the
deadline is high.

now ≥ WC LAS

Table 4.4: Monitoring the process health enabled by the traffic light system

4.3.2 Probabilistic Time Management

The probabilistic time management approach during run time can be also monitored by
the traffic light model. Eder and Pichler describe this model in [61]. A prerequisite
for this approach is the representation of a table with different duration values and the
cumulated probabilities like presented in table 4.5. In other words, probabilities with the
same duration values are summed up. At the instantiation of a process in run time, two
thresholds can be defined. “The first determines the workflows state-change from green to
yellow (warn) and the second determines the state-change from yellow to red (alarm) [61]”.
The defined thresholds are compared with the cumulated probabilities ci like depicted in

CHAPTER 4. TIME MANAGEMENT IN BPEL 44

table 4.5. For instance, the first threshold is set to 90% and the second one to 50%. If
the activity, presented in table 4.5, of a process instance requires 22 time points till it is
finished, the status has to be switched from green to yellow, because the 90% threshold has
not been reached. If the calculated end time value ei does not match with the actual end
time like in the example above, the nearest higher value must be chosen. In the example,
it would be 96%. The threshold values can be chosen freely, the higher the values the

ci pi di si ei

0,048 0,048 24 24 29
0,480 0,432 27 21 26
0,528 0,048 29 19 24
0,960 0,432 32 16 21
0,964 0,004 38 10 15
1,000 0,036 41 7 12

Table 4.5: Duration histogram of an activity with the cumulated probability ci, the prob-
ability pi, the duration di, the start time si and the end time ei

3

riskier the adjustment. It is also possible to define more than two thresholds for an exacter
prediction of executed activities.

3Based on the example from [61]

Chapter 5

Prototypical Implementation

The main task of this thesis is the extension of the business process execution language with
probabilistic time management and time constraints of choreographies. For that purpose
the selection of an appropriate BPEL-Designer and BPEL-Engine was required. Several
solutions exist for modeling and executing BPEL-Processes, like ActiveVOS, Oracle BPEL
Process Manager, NetBeans Enterprise Pack etc. For this prototypical implementation the
following open source software, written in Java, was used.

1. BPEL-Designer: Eclipse BPEL-Designer, because it supports the current BPEL 2.0
specification and is stable.

2. BPEL-Engine: Apache ODE (Orchestration Director Engine), because it can be in-
tegrated in the Eclipse BPEL-Designer and also supports the BPEL 2.0 specification
and has a stable release.

This chapter is organized as follows: Section 1 describes the architecture of the used
software, a guide how to compile and install the chosen software from its sources as well
as possible problems during this process. In Section 2, the modification of the selected
software will be presented and section 3 provides an overview of the validation of the
modified software.

5.1 Development Environment

As BPEL is a language in which activities are implemented through Web Services, the
software environment for modeling and running the BPEL processes is quite complex.
Especially for the development of BPEL extensions, the building of a stable development
environment can be difficult due to insufficient documentations.

45

CHAPTER 5. PROTOTYPICAL IMPLEMENTATION 46

5.1.1 Requirements

For extending the Eclipse BPEL-Designer and Apache ODE a working Java Development
Kit (=JDK) is obligatory. According to the Eclipse BPEL-Team, every JDK version bigger
than 1.5 works fine for the Eclipse BPEL-Designer and Apache ODE. Java is a platform
independent language, therefore the software mentioned above can be developed and used
in several operations systems.

5.1.2 Eclipse BPEL-Designer

The Eclipse BPEL-Designer is an open source project under the Eclipse Technology Project.
This software provides a GEF based Designer, in which the BPEL processes can be created,
opened, viewed, graphically modeled by drag and drop and saved as “.bpel” files. It also
allows the modification directly in the “.bpel” source files. An EMF model represents the
BPEL 2.0 specification. The BPEL Designer contains a validator that checks the EMF
model for a BPEL conformed language based on the specification. For executing the BPEL
processes in the Engine, a runtime framework allows their deployment and execution.

Figure 5.1: Eclipse BPEL Designer1

1Source: http://www.eclipse.org/bpel/images/screenshot.png

CHAPTER 5. PROTOTYPICAL IMPLEMENTATION 47

EMF & GEF

EMF (=Eclipse Modeling Framework) and GEF (=Graphical Editing Framework) are
the frameworks, on which the BPEL-Designer is based. The Eclipse Modeling Framework
allows the design and implementation of a structured model. The model can be defined
graphically (see figure 5.2) and its Java code generated automatically. That helps to keep
the focus on the model itself and prevents the user from making errors while implementing
the model. The generated code can be extended after the code generation. While using
Java Annotations the extensions of generated code are not discarded after a next code
regeneration.
The model can be serialized over one of the interfaces provided by the EMF Persistence
framework (Resource, ResourceSet, Resource.Factory and URIConverter). The Eclipse
BPEL-Designer serializes the model in XML files.

Figure 5.2: Eclipse Modeling Framework

The Graphical Editing Framework allows the building of graphical user interfaces that
correspond with existing models. The graphical part is done by the Draw2D framework.
GEF is based on a MVC (=Model View Controller) architecture (see figure 5.3). MVC
handles the connection between the model and the graphical representation.
A user interacts with the graphical representation (View). In case the user makes some
changes in the graphical editor, the view passes a request to the controller. Using a
command, GEF updates the model with the changes made by the user. The model fires
an event to the view and changes in the graphical editor are visible to the user.
GEF provides the functionality that a change in the graphical editor effects in the first
place only a change in the model without persisting that change in the XML files. To
persist the changes, the file has to be saved by CTRL+S or over the menu File/Save. An
example for a graphical Editor is presented in figure 5.1.

CHAPTER 5. PROTOTYPICAL IMPLEMENTATION 48

Figure 5.3: Model View Controller

Installing the sources

For the development of the Eclipse BPEL-Designer, a working Java runtime environment
(at least JDK 1.5) and Eclipse (at least 3.3) is required. To be sure that the Eclipse BPEL-
Designer can be installed properly it is recommended to use exactly the Eclipse version 3.3,
because the BPEL-Designer was tested in this release. The prototype of this thesis was
developed in the newest version of Eclipse (Eclipse HELIOS), due to a lot of comfortable
usability and performance updates from the old version to the current version. During the
development of the prototype, only a handful errors occurred in the new version of Eclipse.
After installing Eclipse, the BPEL-Designer can be installed as a plug-in over the menu
Help/Install new software. Therefore, a new remote update site with the URL
“http://download.eclipse.org/technology/bpel/update-site/” has to be created. Then the
Eclipse BPEL-Designer can be installed. Required frameworks like EMF, GEF, JEM and
WST will automatically be installed, if they have not been installed already.
The original source code can be downloaded over a CVS repository:

• Host: dev.eclipse.org

• Repository path: /cvsroot/technology

• User: anonymous

• Password: anonymous

• Connection type: pserver

The prototype of this thesis is packed in an archive file and can be imported over the menu
“File/import/General”. A new window “Import” appears. “General/Existing Projects into

CHAPTER 5. PROTOTYPICAL IMPLEMENTATION 49

Workspace” has to be clicked after clicking “next”. The zipped prototype can be selected
and the projects imported. Running the BPEL-Designer from its sources is facilitated over
the menu “Run/Run as/Eclipse Application”.

Problems

In case of compile errors after building the project from its sources, the following instruc-
tions should help.

• Under menu “Window/Preferences/Java/Compiler/Errors/Warnings”, the section
“Deprecated and restricted API” can be expanded. The forbidden references (ac-
cess rules) should be switched to “Warning” instead of “Error”.

• In case of the error message “The container Plug-in Dependencies references non ex-
isting library /ECLIPSE HOME/plugins/javax.wsdl 1.5.1.v200806030408.jar”, the
file “javax.wsdl 1.5.1” can be download in the Internet and has to be moved in the
/ECLIPSE HOME/plugins/ path.

• If the exception “java.lang.OutOfMemoryError: PermGen space” is thrown, the Java
Virtual Machine has not enough memory. To change this, the dialog “Run/Run
Configurations” has to be opened. In the tab “arguments”, “-XX: PermSize=64m
-XX: MaxPermSize=128m” should be raised. Those settings can be also changed in
the Eclipse configuration file “eclipse.ini”.

In this section, an overview of the architecture of the BPEL-Designer was given as well
as an instruction how to build the designer from its sources. The next section describes
how to install the BPEL-Engine Apache ODE and how to integrate it into the Eclipse
BPEL-Designer.

5.1.3 BPEL Engine - Apache ODE

In Apache ODE, BPEL conform business processes can be executed. Apache ODE talks
to Web Services, sends and receives messages and handles data manipulation and error
recovery as described by the process definition [62].

Installing the sources

For the development of the prototype, Apache ODE 1.3.4 was used because it is the latest
stable release. After downloading of the source distribution of Apache ODE there are two

CHAPTER 5. PROTOTYPICAL IMPLEMENTATION 50

ways how to build in Eclipse. The first way is to use “Buildr”.
Apache Buildr is a system that enables the building of java-based applications. Under
windows 7 x64, it was not possible to build Apache ODE from its sources. Buildr under
Linux works better, but still has problems with building Apache ODE properly. The second
and recommended way to build the sources is to use Maven 2.
Apache Maven is a software project management tool, that runs the whole life cycle of a
software (building, tests, generating of documentation and reports etc.). Each project of a
software project contains a configuration file “pom.xml”, where “pom” stands for Project
Object Model. Maven makes the building of the process easy because it automatically
downloads dependencies like Java libraries or Maven plug-ins.
After downloading and installing Maven 2 the following configurations have to be done:

• First step is adding the bin directory of Maven to the PATH

• Step two is setting the JAVA HOME variable to the location of the JDK

After downloading the Apache ODE sources and installing & configuration of Maven 2, the
following command has to be executed in the folder of the Apache ODE sources in order
to build an Eclipse project:

• mvn eclipse:eclipse

In the next step, the Apache ODE sources can be imported in Eclipse under
“File/Import/Existing Projects into Workspace”. The root directory of the Apache ODE
sources has to be selected, afterwards the project can be imported.
The execution of Apache ODE is described in the following section.

Preparing Apache ODE

Since Apache ODE is a BPEL-Engine that listens and executes Web Services, it has to
be run in a web server. For this prototype, the web server Apache Tomcat was used. To
integrate Apache ODE in the web server, the sources have to be compiled to a “.war” file
(=Web Archive). This can be done in the root directory of the Apache ODE sources by
the command

• mvn install -DskipTests

The compiled “.war” file is placed in “/distro/target/apache-ode-war-1.3.4.zip” of the Apache
ODE root directory. In the zipped file “apache-ode-war-1.3.4.zip”, the file “ode.war” has

CHAPTER 5. PROTOTYPICAL IMPLEMENTATION 51

to be copied into the Tomcat’s webapp directory “PathToApacheTomcat/webapps”. After-
wards, the Apache Tomcat server has to be started to configure the “ode.war” file properly
in the “PathToApacheTomcat/webapps/ode” directory. For that purpose, the directory
has to be changed to “PathToApacheTomcat/bin”. The execution of the following com-
mand starts and configure Apache Tomcat:

• catalina start

The next step is the integration of Apache ODE in the Eclipse BPEL-Designer, to deploy
the created BPEL-processes in Apache ODE.

5.1.4 Integrating Apache ODE in Eclipse BPEL-Designer

For integrating the Apache ODE as a server in Eclipse, the “server view” has to be opened
by the menu bar “Window/Show View/Other”. Then, the item “Servers” under the folder
“Server” has to be opened. In the server view, a right-click opens a dialog, where a new
server has to be selected. The configuration of the appearing window should be similar to
figure 5.4. After this step, a new Apache ODE server appears in the “Server view”. With

Figure 5.4: Configuration of Apache ODE in Eclipse

a right-click on the server, the context menu entry “Add and Remove Projects” can be
selected. In the appearing window, BPEL processes can be added or removed. In case of
adding a BPEL process to the server, the process has to be published. This can be done
over a right-click on the server and the selection of the context menu entry “Publish”. The
system is now prepared to execute BPEL processes.

CHAPTER 5. PROTOTYPICAL IMPLEMENTATION 52

Problems

In case of errors, the following instructions should help:

• In the Eclipse Build Path, the classpath variable “M2 REPO” has to be set to
the Maven 2 repository. This can be done from the menu bar by selecting “Win-
dow/Preferences”. A preferences dialog appears. Under “Java/Build Path/Classpath
Variables”, a new variable should be created with the name “M2 REPO”. That vari-
able has to point to the Maven 2 repository, which is normally in the “/home/.m2”
directory.

• Maven 2 can be integrated as a plug-in in Eclipse. It is highly recommended not
to install this Plugin because the building process of Apache ODE does not work
properly with that plugin. The Maven 2 integration of Eclipse always removes the
target directory, where the generated byte codes of XMLBeans and OpenJPA are
saved.

• In case of a System.OutOfMemoryException, a environment variable “MAVEN OPTS”
should be created with the value “-Xmx512M”.

• If there are still building errors after considering the instructions above, the Apache
ODE sources should be rebuilt with the command “mvn eclipse:eclipse”.

• Alternatively, the link
http://eclipse.org/bpel/users/pdf/HelloWorld-BPELDesignerAndODE.pdf gives also
hints about installing & configurating the Eclipse BPEL-Designer

5.2 Modifications

In this section, the modified prototypes of the Eclipse BPEL-Designer and the Apache ODE
BPEL-Engine are described. Starting with the Eclipse BPEL-Designer, the modifications
of the graphical user interface are depicted as well as the used algorithms for the calculations
of time constraints and probabilistic time values. Later the most important Java classes
are described, in which the modifications were made and how exceptions are handled there.
Next, the modifications of Apache ODE are described. An overview of the most important
Java classes is given. It is also explained, how the time calculations of the BPEL designer
are checked in Apache ODE. After that, the section Validation provides information on
how the whole system was tested.

CHAPTER 5. PROTOTYPICAL IMPLEMENTATION 53

5.2.1 Eclipse BPEL Designer

The implemented prototype calculates constraints in two ways. On the one hand, every
activity gets time values like a minimum duration, a maximum duration and durations
between two activities. On the other hand, every activity gets durations in combination
with probabilities. The first way of calculation is called calculation of time constraints,
the second one probabilistic time management. Both types of calculations consider the
approach of federated choreographies. That means, that not only one BPEL process is
calculated, but several BPEL processes that depend on each other.

Graphical User Interface

In this section, the modified graphical user interface of the Eclipse BPEL-Designer is pre-
sented. The modified BPEL Designer allows to define activities with time values. Consider
that only basic activities like Empty, Invoke, Receive, Reply, OpaqueActivity, Assign, Val-
idate and Wait can have time values. Based on figure 5.5, the 3 most important changes
are explained. The modification of the GUI mostly concerns the property view, which is
marked in figure 5.5. In general, the Eclipse BPEL-Designer manages all properties of ac-
tivities, controls etc. in that property view. A property view is divided in several sections.
On the left side of the property view are 3 sections in red rectangles. Those rectangles
show the added sections of the prototype.

The first section is called choreography. In this section dependencies of choreographies
and orchestrations can be defined (see figure 5.6). Under “Select Process”, a process can
be chosen in a combo box which should be marked as a supported process. In the underly-
ing combo box, another process can be selected which should be marked as the supporting
process. After pushing the “Add” button, a XML file “dependencies.xml” is written in
which the dependencies are visible. The button “remove” removes an already existing
dependence between a supported and a supporting choreography. In figure 5.6, the chore-
ography G will be supported by S1.

The next property section is called constraints. This section provides all the necessary
dialogs for calculating the time constraints (see figure 5.7). The necessary fields for the
calculation of the time constraints are the duration and the process deadline. The optional
fields are the lower bound constraints and the upper bound constraints. For adding a lbc
or ubc, the button “Add” has to be pressed. Lower bound constraints and upper bound
constraints can be set as often as necessary. They can be removed separately over the

CHAPTER 5. PROTOTYPICAL IMPLEMENTATION 54

Figure 5.5: Changes in the GUI BPEL-Designer

CHAPTER 5. PROTOTYPICAL IMPLEMENTATION 55

Figure 5.6: Managing dependencies of choreographies

Figure 5.7: Calculating time constraints

“remove” button. For creating a lbc or an ubc, a target activity has to be chosen. Then a
lbc or (and) a ubc can be defined. After the creation of a lbc or a ubc an arrow connects
the source activity with its target activity (see figure 5.8). The fields “WC EPS, BC EPS,
WC LAE and BC LAE” are not changeable because they only inform the user about the
calculated values after a performed calculation of a process.

The third new section in the property view of the Eclipse BPEL-Designer is called “Cer-
tainty”. This section is required to calculate a process using the probabilistic time man-
agement approach. For every process, a deadline have to be set and for every activity of
a process, at least one duration with a given probability has to be defined. The so called
time histogram for each activity can be created, extended or removed by the two buttons
“Add” and “Remove”. Furthermore, probability values have to be set for every XOR split,
which concerns the control activity “IF”. Figure 5.9 shows the GUI where the probabilistic
time values for activities can be set. To add or change values for XOR splits, the user has
to click on a branch like “If”, “Else” or “ElseIf”. A new field with the name “branching
probability” appears. Note, that XOR split nodes can not have durations. Because of this,

CHAPTER 5. PROTOTYPICAL IMPLEMENTATION 56

Figure 5.8: Representation of lbc and ubc in the graphical editor

Figure 5.9: Representation of the graphical interface for probabilistic time management

the button for adding or removing time histograms is disabled in this view. In contrast to
the calculation of the time constraints approach, the calculated values of the probabilistic
time management are stored in an external file, which is called “certaintyValues.xml”.

Data Model

In this section, the extended data model for the implemented prototype is presented. In the
eclipse modeling framework, the root object of every model is called “EObject”. In case of
the BPEL-Designer, the “ExtensibleElement” extends the “EObject”. Every activity (basic
activities and control activities) of the BPEL-Designer extends the “ExtensibleElement”.
The data model of the prototype also extends the “ExtensibleElement”. That enables every
activity to access the data model of the presented prototype. Figure 5.10 shows the class
diagram of the data model. The class “Constraint” and “Probability” extends the “Exten-

CHAPTER 5. PROTOTYPICAL IMPLEMENTATION 57

sibleElement”. The “ExtensibleElement” and thus every “Activity” has access to the class
“Constraint” and “Probability” over the methods getConstraint(), setConstraint(), get-
Probability() and setProbability(). Every “Constraint” has getter and setter methods for
the attributes “BC EPS”, “BC LAE”, “WC EPS”, “WC LAE”, “minDuration” and “max-
Duration”. Additionally, a method getConstraintSet() with the return value “Constraints”
exists. “Constraints” contains the attributes “lbc”, “ubc” and “targetActivity”. As far as
an activity can have several lower bound constraints and upper bound constraints, one
“Constraint” refers to many “Constraints”. Every “Activity” refers to exactly one “Con-
straint” or one “Probability”.

Analog to the class “Constraint”, the class “Probability” also refers to many “Probabilities”
by the method getProbabilitySet(). GetProbabilitySet() returns the class “Probabilities”
with the attributes duration and certainty. The class “Probability” itself does not contain
any attributes.

Figure 5.10: Class diagram of the data model

CHAPTER 5. PROTOTYPICAL IMPLEMENTATION 58

Description of the created Classes

This section contains a short overview of the most important classes, used for the modifi-
cation of the graphical user interface and the created algorithms for the calculations (see
table 5.1).

Package: org.eclipse.bpel.ui.properties

This package contains all the classes, which are responsible for the modification of the
property view in the Eclipse BPEL-Designer.

Class Function
ChoreographySection.java Creates the section “Choreographie” in the

property view, where dependencies of chore-
ographies and orchestrations can be managed

ConstraintsSection.java Responsible for the property view section
“Constraints”, where a timed graph can be
defined and calculated afterwards

CertaintySection.java This section is used for calculating a process
with the probabilistic time management ap-
proach

Table 5.1: Created classes for the GUI of the BPEL-Designer

Package: org.eclipse.bpel.ui.util

This package contains the classes for the calculations of constraint and probabilistic time
values.

Class Function
BPELConstraintsCalculator.java Calculation of the time constraints approach
BPELCertaintyCalculator.java Calculation of the probabilistic time manage-

ment approach
CalculatorUTIL.java Helper Class for several common used meth-

ods by the time constraints and probabilistic
time management approach

Table 5.2: Created classes for the Calculation in the BPEL-Designer

CHAPTER 5. PROTOTYPICAL IMPLEMENTATION 59

Exception Handling

The exception handling is important for a calculation free from errors. Before starting a
calculation with the time constraints approach, several checks have to be performed. A
process needs a set deadline and for all activities, the definition of the duration is obligatory.
If lower bound constraints or upper bound constraints are set, also a target activity has to
be set. A target activity can’t be defined without setting either a lower bound constraint
or an upper bound constraint. Furthermore, a lbc has to be smaller than an ubc as well as
the minimum duration has to be smaller than the maximum duration. In case of an “IF”
control or an “AND” control, no lbc or ubc constraints can be set between the branches.
For the calculation with the probabilistic time management approach, a deadline must be
set. For every activity, the sum of the probability values has to be 100. Using “IF” control
activities, all branches need a probability value and the sum of all branches also has to be
100.
For every exception, a dialog appears with the specific problem message and the name of
the activity, in which the problem exists.
A process has to contain unique activities, otherwise calculation errors can occur due to
redundancy.

5.2.2 Apache ODE

In the BPEL-Engine Apache ODE, the time values calculated in the BPEL-Designer are
controlled. After the instantiation of the first activity, all temporal time values calculated
by the Eclipse BPEL-Designer are mapped to fixed date values. At this time, a dialog
pops up which contains the traffic light.
In the following section, the main classes are described in which the monitoring of the
calculated BPEL processes is implemented.

Description of the created Classes

The most important class, where all the information about start-time, end-time, name etc.
of activities comes together is called “ACTIVITYGUARD.java” and can be found in the
package org.apache.ode.bpel.runtime. With the 2 helper classes BpelREADER.java and
BpelWRITER.java, the calculated time constraints of the activities can be loaded. In the
helper classes, the mapping of the calculated time points in design time to the calendar
dates occur.

CHAPTER 5. PROTOTYPICAL IMPLEMENTATION 60

5.3 Validation

The validation of the prototype is divided into JUnit-Tests an human GUI-Tests. JUnit
was used for testing the correct input and output of time constraint values and probabilistic
values.
A JUnit test is composed of the three methods “setUp()”, “runTest()” and “tearDown()”.
The “setUp()” method prepares the test environment for the underlying tests. “RunTest()”
executes the particular tests. Finally, the “tearDown” method resets all the changes, which
were made during the “setUp()” and the test methods.
As far as BPEL files are serialized and deserialized to XML, unit tests were used for checking
weather values are written correctly to XML or read correctly from XML. The calculations
were also tested with unit tests. For that purpose, a BPEL file without any time constraints
or probabilistic values is read in the “setUp()” method. After that, constraint values or
probabilistic values are set. In the actual test, several calculation methods of the prototype
are executed. The calculated results are compared with the hard coded, expected values.
After finishing the unit tests, all the changes in the BPEL files are reverted to the original
state.
GUI tests were used to validate changes in the graphical user interface. After defining lower
bound constraints or upper bound constraints, it was tested if the source and the target
activity are connected by an arrow. Another test scenario is the correct representation of
calculated values in the property view.

Chapter 6

Conclusion and Outlook

The contribution of this thesis is the implementation of a tool that enable users to augment
WS-BPEL-processes with temporal information in design time and the development of a
run time component for checking the temporal behavior of the processes at run time. In
design time, temporal information can be expressed in two ways. On the one hand, valid
temporal intervals for (activities of) each process can be defined. On the other hand, a
stochastic approach can be used to express activity durations with different probabilities
that also takes the conditional branching behavior into account. For both approaches can
be checked, if a temporally feasible model exists, that satisfies all temporal constraints
with consideration for the structure of each process and the interactions between different
processes. At run time, the precalculated time values in design time are checked and the
health of a process instance can be monitored. The developed prototype consists of two
parts:

• A BPEL-Designer for the expression and calculation of temporal information, based
on the Eclipse BPEL-Designer by IBM.

• A runtime component for checking the precalculated temporal information in design
time, based on Apache ODE by the Apache Software Foundation.

Both software products are Open Source and written in JAVA. A prerequisite for the
selection of the software was the Open Source criterion. Unfortunately, this restriction
limited the amount of available software products of BPEL. After testing several Open
Source BPEL solutions, the Netbeans BPEL-Designer and the Eclipse BPEL-Designer were
shortlisted. Finally, the Eclipse BPEL-Designer by IBM was used because of the available
documentations and tutorials for this product. Apache ODE was selected, because the
Eclipse BPEL-Designer facilitates an integration of Apache ODE. However, both products

61

CHAPTER 6. CONCLUSION AND OUTLOOK 62

possess a high potential for improvement, concerning usability, stability and documenta-
tion. To make those products more interesting for companies, they should be realized as
standalone platforms. As far as BPEL is a Web Service Business Execution Language,
it is obvious that a BPEL-Designer and a BPEL-Engine should be realized by a Web 2.0
based application. The BPEL solution Orchestra [63] of the company BULL offers such a
product, which is fully Open Source. Unfortunately, their Web 2.0 based product was not
completed when the development of the prototype of this master’s thesis started.

Appendix A

Installation

This section provides a step by step guide to install the Eclipse BPEL-Designer and the
Apache ODE BPEL-Engine, as well as a guide to model a test choreography and execute
that choreography in the BPEL-Engine. Download

• the sources of this master thesis’ prototype can be downloaded at
http://www.ifs.tuwien.ac.at/oesterle.

• the Eclipse IDE for Java EE Developers Galileo (3.5) Package at
http://www.eclipse.org/downloads/, unpack it and name it to Eclipse-BPEL-Designer.

• the Eclipse Ganymede enterprise project bundle at
https://www.ibm.com/developerworks/eclipse/downloads/ganymede/, unpack it and
name it to Eclipse-BPEL-Engine

• the Java Development Kit JDK 6 update 21 at
http://www.oracle.com/technetwork/java/javase/downloads/index.html and install
it.

• JDOM 1.1 at
http://www.oracle.com/technetwork/java/javase/downloads/index.html, unpack it and
copy the file “PathToJdom/build/jdom.jar” into the directory “PathToJDK/jre/lib/ext/”.

• JAXEN 1.1.3 at
http://jaxen.codehaus.org/releases.html, unpack it and copy the file “PathToJaxen/jaxen-
1.1.3.jar” into the directory “JDK HOME/jre/lib/ext/”.

63

APPENDIX A. INSTALLATION 64

• Apache Tomcat 6.0.29 at
http://tomcat.apache.org/download-60.cgi and unpack it. Set the JAVA HOME en-
vironment variable and point it to the directory, where the JDK is installed.

A.1 Configuratin of Apache ODE

Go to the directory “PathToApacheTomcat/webapps/ and copy the ode.war, which was
modified in this thesis, into that directory. Then, open a command prompt and point it to
“PathToApacheTomcat/bin” directory. Execute the command “catalina run”. The instal-
lation of Apache ODE starts. Wait until the message appears “INFO: Server startup...”.
Then, hit CTRL+C to terminate the installation process. In the directory “PathToApa-
cheTomcat/webapps”, a subdirectory “ode” should be created.

A.2 Configuration of the Eclipse BPEL-Designer

Start the Eclipse IDE for Java EE Developers from the directory, where it was installed.
In Eclipse, click in the menu bar on “Help/Install new Software...”. In the appearing
window, click on “Add...”. In the field name, type in “BPEL” and point the location to
“http://download.eclipse.org/technology/bpel/update-site/” (see figure A.1).

Figure A.1: Eclipse - Install new Software

APPENDIX A. INSTALLATION 65

Select the Eclipse BPEL Designer Nightly Build Update Site as shown in figure A.2
and follow the upcoming dialogs. After finishing the installation, a restart of eclipse is
necessary.

Figure A.2: Eclipse - Install the BPEL-Designer

In the next step, the sources of the prototype of this thesis have to be installed.
In Eclipse, click on the menu bar “File/Import”, select “General/Existing Projects into
Workspace” in the appearing window and click on next. Click on “Select archive file” and
then on the button “browse”. Chose the zipped prototype and click on open. To finish the
import, click on “finish” (see figure A.3).

Figure A.3: Importing the BPEL prototype sources

APPENDIX A. INSTALLATION 66

To run the modified Eclipse BPEL-Designer, click on the menu bar “Run/Run config-
urations...”. With a right mouse click on “Eclipse Application”, a new Eclipse instance can
be created (see figure A.4). Select a workspace location by clicking on “File System...” and
choosing a directory, where the BPEL - processes will be saved. Before clicking on run,
the tab “Arguments” have to be opened and the memory for the Java Virtual Machine has
to be raised. Type into the field “VM arguments” the value as seen in the red rectangle in
figure A.5.

Figure A.4: Run the modified Eclipse BPEL-Designer

Figure A.5: Raise memory of the JVM

Now the “run” button can be pressed to launch the BPEL-Designer prototype of this
thesis. A new Eclipse instance appears. Go to menu bar “Window/Show View/Other...”

APPENDIX A. INSTALLATION 67

and select in the folder “General” the “Properties” entry. Click again on the menu bar
“Window/Show View/Other...” and select in the folder “Server” the “Servers” entry.

A.3 Creating a BPEL Choreography with time con-
straints

First of all, a new BPEL project has to be created. Click on menu bar “File/New/Other...”
and expand the folder “BPEL 2.0” in the list. Select the entry “BPEL Project” and click
on next. Give the project the name “Choreography” and select Apache ODE in “Target
runtime” as shown in figure A.6. After clicking on “Finish”, a new project appears in the
project explorer of Eclipse.

Figure A.6: Creating a new BPEL project

A BPEL process have to be added to the project. Therefore, perform a click on the
created project and select “New/Other...”. In the appearing window, expand the folder
“BPEL 2.0”, select “New BPEL Process File” and click on next. Fill out the fields as

APPENDIX A. INSTALLATION 68

shown in figure A.7. After a click on “Finish”, a new BPEL process file has been added
to BPEL project “Choreography”. With a double click on the created “G.bpel” file, the
process will be displayed in the graphical BPEL Editor.

Figure A.7: Creating a new BPEL process

To start modeling the process, the palette with the activities has to be rolled out.
Therefore, perform a click on the arrow on the right top of the BPEL editor (see the red
rectangle in figure A.8).

APPENDIX A. INSTALLATION 69

Figure A.8: Rolling out the BPEL palette

The created process “G.bpel” already contains the activities “receiveInput” and “re-
plyOutput”. Between those two activities, create a new “Assign” activity by selecting the
activity “Assign” of the palette and moving it in between the activities “receiveInput” and
“replyOutput”. Perform a right click on the new “Assign” activity and select “Show in
Properties”. In the section “Description”, type in the name “createResponse”. Click on
the section “Details” and click on “New”. Assign the variable “input/payload/input” to
the variable “output/payload/result” as shown in figure A.9. A initializer popup appears
and asks whether a new initializer variable should be generated. Click on Yes. Till now,
we have 3 activities in the process “G”. A “Receive” activity, which receive a message of
a Web Service, an “Assign” activity, which assigns the received message to the variable
input and forwards the message to the “Reply” activity.

APPENDIX A. INSTALLATION 70

Figure A.9: Assigning variables

The next step is adding a “Flow” activity into the process after the “replyOutput”
activity. Into this flow activity, add two “Wait” activities with the names “Wait5s” and
“Wait10s”. Furthermore, augment the process with an “If” activity. Perform a right click
on the “If” activity and click on “Add ElseIf”. Add a “Wait” activity after the “If” branch
and name it to “Wait2s”. Add also a “Wait” activity after the “ElseIf” branch and name it
to “Wait4s”. To create conditions for the If branches, first click on the “If” branch. Click
on the section “Details” and press the button “Create New Condition”. Type in
$output.payload/tns:result=’ger’ as shown in figure A.10. Next, click on the “ElseIf”
branch, go to the section “Details” and press the button “Create New Condition”. Type in
$output.payload/tns:result=’eng’. The conditions for the “If” activity are set. If the “re-
ceiveInput” activity gets the message “ger”, the activity “Wait2s” will be executed and
for the message “eng”, the activity “Wait4s” will be executed. For all other messages, no
activity in “If” will be executed.

Figure A.10: Creating a condition in an “If” activity

Add a “While” activity to the process. Click on the section “Details” and press the
button “Create a New Condition”. The condition has the value “true()”, which causes a
infinity loop. Put a “Wait” activity into the “While” activity and name it to “Wait3s”. In
the next step, a duration for each “Wait” activity has to be defined. Therefore, select a

APPENDIX A. INSTALLATION 71

wait activity, click on the section “Details” and press the button “Create New Condition”.
Set the duration to the amount of seconds which are defined in the name of each “Wait”
activity. Repeat this step, until all “Wait” activities have a duration. The created process
should look like the figure A.11 without the tables next to the activities.

APPENDIX A. INSTALLATION 72

Figure A.11: Process G with time durations

APPENDIX A. INSTALLATION 73

The next step is to define the time values of each activity of the process “G.bpel”.
Therefore, select an activity, click on the section “Constraints” and set the duration to
the value according to the table beside the selected activity in figure A.11. For the whole
process, a deadline has to be specified. Therefore, select an activity, click on section
“Constraints” and set the deadline according to the deadline value in figure A.11.
Before the process is ready for executing, the Web Service description file “GArtifacts.wsdl”
has to be prepared. Perform a double click on this file. In the appearing window, perform a
right click in the blank area. Click on “Add Service” and give it the name “GBPELService”.
Again, perform a right click in the blank area and click on “Add Binding”. Right-click
the appearing element and select “Show properties”. Name it to GBinding. Select in the
ComboBox “PortType” the entry “Browse...”. Select the port “G” in the appearing window
and press OK. Finally, press the button “Generate Binding Content...”, select “SOAP” as
protocol as shown in figure A.12 and click on “Finish”.

Figure A.12: Create the binding

Perform a right click on the automatically created Port of the “GBPELService” and
select “Show Properties”. Name it to GPort and select the entry “GBinding” in the “Bind-
ing combo box”. In the address field, add the URL
“http://localhost:8080/ode/processes/GBPELService”. The process “G.bpel” can later be

APPENDIX A. INSTALLATION 74

instantiated over that URL. Finally “GArtifacts.wsdl” should look like figure A.13 Save
the performed changes by pressing CTRL+S.

Figure A.13: Setting up the Web Service description file

Add a new process to the project. Name it S1 and set the namespace to
“http://www.choreography.com”. Again, choose a synchronous BPEL Process as template.
Model the process as shown in figure A.14. Add the activities to the process, assign the
variables for the activity “createResponse”, set the time durations for all “Wait” activities
and define the time constraints according to the tables beside the activities in figure A.14.
Set the deadline for the entire process S1 to the value, specified in figure A.14. Analog to the
preparation of the Web Service description file of process G, the Web Service description
file “S1Artifacts.wsdl” has to be prepared for process S1. Add a Service, name it to
“S1BPELService”. Rename the automatically generated port to “S1Port”, add the address
http://localhost:8080/ode/processes/S1PELService and choose the SOAP protocol. Add
a new binding, name it to S1Binding, select the PortType “S1” and generate the binding
content.

APPENDIX A. INSTALLATION 75

Figure A.14: Process S1 with time durations

APPENDIX A. INSTALLATION 76

Add a new process to the project. Name it S2 and set the namespace to
“http://www.choreography.com”. Again, choose a synchronous BPEL Process as template.
Model the process as shown in figure A.15. Add the activities to the process, assign the
variables for the activity “createResponse”, set the time durations for all “Wait” activities
and define the time constraints according to the tables beside the activities in figure A.15.
Set the deadline for the entire process S1 to the value, specified in figure A.15. For the
“If & While” activity, use the same conditions like used in process G. Analog to the
preparation of the Web Service description file of process G, the Web Service description
file “S2Artifacts.wsdl” has to be prepared for process S2. Add a Service, name it to
“S2BPELService”. Rename the automatically generated port to “S2Port”, add the address
http://localhost:8080/ode/processes/S2PELService and choose the SOAP protocol. Add
a new binding, name it to S2Binding, select the PortType “S2” and generate the binding
content.

APPENDIX A. INSTALLATION 77

Figure A.15: Process S2 with time durations

APPENDIX A. INSTALLATION 78

A.3.1 Definition of the dependencies of the choreography

The next step is defining the dependencies of the choreography. Process “G” is in that
example the supported choreography, “S1” and “S2” are the supporting choreographies.
Therefore, select the section “Choreography” in the Eclipse BPEL-Designer. Select “G” as
process. In the underlying row, the message “Process[G] is supported by” appears. Select
the process “S1” and hit the button “Add”. Select “S2” and hit “Add” again (see figure
A.16). The dependencies for the choreography are defined now and after refreshing the
project “Choreography”, a new file “dependencies.xml” appears.

Figure A.16: Defining the dependencies of the choreography

A.3.2 Calculating the time constraints of the choreography

After the definition of the process dependencies the time constraint values can be calcu-
lated. Therefore perform a click on the “Constraints” section in the Properties (see figure
A.17) and click on the button “calculate”. The “EPS” and “LAE” values for best case
and worst case scenario are calculated in consideration of the process dependencies of the
choreography.

Figure A.17: Calculation of the Choreography

APPENDIX A. INSTALLATION 79

A.3.3 Preparing the choreography for the execution

The next step is the deployment of the generated processes. Perform a right click on
the project “Choreography”, select “New/Other...”. Expand the folder “BPEL 2.0”, select
“Apache ODE Deployment Descriptor”, click on next and then on finish. A new window
appears in the BPEL-Designer. In the section “Inbound Interfaces (Services)”, choose the
Associated Port “GPort”, which was specified above in the Web Service description file of
process “G”. Figure A.18 shows the correct deployment of process G. In the left bottom of
figure A.18, a red rectangle shows the 3 specified processes “G, S1 and S2”. Click on the
other processes and perform the deployment as described above. Note, that for “G” the
“GPort”, for “S1” the “S1Port” and for “S2” the “S2Port” have to be selected.

Figure A.18: Deployment of the processes

Finally the processes have to be published in order to start the execution of the pro-
cesses. Therefore, start the other unpacked Eclipse with the name Eclipse-BPEL-Engine.
Point the workspace to the directory, where the BPEL-process was created. Go to the
menu bar “Help/Software Updates...”, select the tab “Available Software”, and press the

APPENDIX A. INSTALLATION 80

button “Add Site...”. Copy the link “http://download.eclipse.org/technology/bpel/update-
site/” as the location of the site and click on “OK”. Select the “Eclipse BPEL Designer
Nightly Build Update Site” as shown in figure A.2. Add the Server view by clicking on the
menu bar “Window/Show View/Other...” and select in the folder “Server” the “Servers”
entry.

A.4 Execution of the choreography in Apache ODE

Start the Eclipse with the name Eclipse-BPEL-Engine. Point the workspace to the di-
rectory, where the BPEL-process was created. In the bottom of the Eclipse, the view
“Servers” appear. Click on “Servers” and perform a right click in the “Servers” view. Se-
lect “New/Servers”. In the list, expand the “Apache” folder, select “Ode v1.x Server” and
go to next. In the appearing dialog, the path to the ODE’s home directory and to Tomcat’s
home directory have to be set. Point the ODE home directory to “PathToApacheTom-
cat/webapps/ode” and the Tomcat’s home directory to “PathToApacheTomcat” as shown
in figure A.19.

Figure A.19: Integrating the Apache ODE Server in Eclipse-Designer

After clicking on “Finish”, the integration of Apache ODE in the Eclipse is finished.
In the “Server’s” view, the integrated ODE Server appears. Click on the property view
“Servers”, perform a right click on the existing ODE Server and select “Add and Remove”.

APPENDIX A. INSTALLATION 81

Select the processes “G, S1 and S2” and click on “Add >”. The windows should look similar
to the figure A.20. Click on “Finish” to add the processes to the Apache ODE Server.

Figure A.20: Add the processes to the ODE Server

Perform a right click on the ODE Server and click “Publish”. The publishing is finished,
after the following output in the console appears:

13:16:07,509 INFO [CronScheduler] Cancelling PROCESS CRON jobs for:
http://www.choreography.comS1-1
13:16:07,509 INFO [CronScheduler] Scheduling PROCESS CRON jobs for:
http://www.choreography.comS1-1
13:16:07,509 INFO [CronScheduler] Cancelling PROCESS CRON jobs for:

APPENDIX A. INSTALLATION 82

http://www.choreography.comG-1
13:16:07,510 INFO [CronScheduler] Scheduling PROCESS CRON jobs for:
http://www.choreography.comG-1
13:16:07,510 INFO [CronScheduler] Cancelling PROCESS CRON jobs for:
http://www.choreography.comS2-1
13:16:07,510 INFO [CronScheduler] Scheduling PROCESS CRON jobs for:
http://www.choreography.comS2-1

A.4.1 Instantiation of a process

For instantiating a process (for example process “G”), perform a right click on the Web
Service description file “GProcessArtifacts.wsdl” and click “Web Services/Test with Web
Services Explorer”. In the appearing window, expand all list items in the navigator and
click on “process”. On the right side, enter a message in the blank text field and click on
“Go” (see figure A.21). The process initiates and the traffic light appears to check the
calculated durations at design time.

Figure A.21: Using the Web Services Explorer of Eclipse

List of Algorithms

1 temporalConformanceFederationUbcLbc() 31
2 initialize(G) . 32
3 propagate(G,H) . 32
4 calculate(G,G.deadline) . 32
5 forwardCalculation(G) . 33
6 backwardCalculation(G) . 34
7 checkConformance(G) . 34
8 incorporateUbc(G,G.deadline) . 35
9 temporalConformanceFederation(certainty) 38
10 initialize(G) . 39
11 checkConformance(G, certainty) . 39
12 propagate(G,H, certainty) . 39
13 calculate(G,G.deadline, certainty) . 40

83

List of Tables

4.1 Example of a timed activity . 29
4.2 Example of a time histogram . 36
4.3 Calculating the values for histogram comparison 42
4.4 Monitoring the process health enabled by the traffic light system 43
4.5 Duration histogram of an activity with the cumulated probability ci, the

probability pi, the duration di, the start time si and the end time ei 44

5.1 Created classes for the GUI of the BPEL-Designer 58
5.2 Created classes for the Calculation in the BPEL-Designer 58

84

List of Figures

1.1 Dependencies of workflows . 3
1.2 Different workflows with activities in common 4

2.1 A simple temporal problem and its corresponding minimal network 8
2.2 A TCSP example . 9
2.3 CPM vs. MPM . 11

4.1 Durations of Activities . 28

5.1 Eclipse BPEL Designer . 46
5.2 Eclipse Modeling Framework . 47
5.3 Model View Controller . 48
5.4 Configuration of Apache ODE in Eclipse 51
5.5 Changes in the GUI BPEL-Designer . 54
5.6 Managing dependencies of choreographies 55
5.7 Calculating time constraints . 55
5.8 Representation of lbc and ubc in the graphical editor 56
5.9 Representation of the graphical interface for probabilistic time management 56
5.10 Class diagram of the data model . 57

A.1 Eclipse - Install new Software . 64
A.2 Eclipse - Install the BPEL-Designer . 65
A.3 Importing the BPEL prototype sources . 65
A.4 Run the modified Eclipse BPEL-Designer 66
A.5 Raise memory of the JVM . 66
A.6 Creating a new BPEL project . 67
A.7 Creating a new BPEL process . 68
A.8 Rolling out the BPEL palette . 69

85

LIST OF FIGURES 86

A.9 Assigning variables . 70
A.10 Creating a condition in an “If” activity . 70
A.11 Process G with time durations . 72
A.12 Create the binding . 73
A.13 Setting up the Web Service description file 74
A.14 Process S1 with time durations . 75
A.15 Process S2 with time durations . 77
A.16 Defining the dependencies of the choreography 78
A.17 Calculation of the Choreography . 78
A.18 Deployment of the processes . 79
A.19 Integrating the Apache ODE Server in Eclipse-Designer 80
A.20 Add the processes to the ODE Server . 81
A.21 Using the Web Services Explorer of Eclipse 82

Bibliography

[1] H. Gehring, A. Gadatsch, “Ein Rahmenkonzept für die Modellierung von
Geschäftsprozessen und Workflows,” tech. rep., FernUniversität Hagen, 1999.

[2] A. Tahamtan, Modeling and Verification of Web Service Composition Based Interor-
ganizational Workflows. PhD thesis, Universitiy of Vienna, 2009.

[3] H. Kerzner, Project Management: A Systems Approach to Planning, Scheduling, and
Controlling. New York, NY, USA: John Wiley & Sons, Inc., 2009.

[4] J. F. Allen, “Maintaining knowledge about temporal intervals,” Commun. ACM,
vol. 26, no. 11, pp. 832–843, 1983.

[5] L. R. Planken, “Temporal reasoning problems and algorithms for solving them (liter-
ature survey),” literature survey, Delft University of Technology, October 2007.

[6] H. Zhuge, T.-y. Cheung„ H.-K. Pung, “A timed workflow process model,” J. Syst.
Softw., vol. 55, no. 3, pp. 231–243, 2001.

[7] H. Li, Y. Yang, “Dynamic checking of temporal constraints for concurrent workflows,”
Electron. Commer. Rec. Appl., vol. 4, no. 2, pp. 124–142, 2005.

[8] R. Dechter, I. Meiri„ J. Pearl, “Temporal constraint networks,” Artif. Intell., vol. 49,
no. 1-3, pp. 61–95, 1991.

[9] K. Stergiou, M. Koubarakis, “Backtracking algorithms for disjunctions of tempo-
ral constraints,” in AAAI ’98/IAAI ’98: Proceedings of the fifteenth national/tenth
conference on Artificial intelligence/Innovative applications of artificial intelligence,
(Menlo Park, CA, USA), pp. 248–253, American Association for Artificial Intelligence,
1998.

[10] I. Tsamardinos, M. E. Pollack, “Efficient solution techniques for disjunctive temporal
reasoning problems,” Artif. Intell., vol. 151, no. 1-2, pp. 43–89, 2003.

87

BIBLIOGRAPHY 88

[11] Y. Liu, H. Qian„ Y. Jiang, “Graph-dtp: Graph-based algorithm for solving disjunctive
temporal problems,” in TIME ’07: Proceedings of the 14th International Symposium
on Temporal Representation and Reasoning, (Washington, DC, USA), p. 190, IEEE
Computer Society, 2007.

[12] N. R. Sahkar, V. Sireesha, “Using modified dijkstra’s algorithm for critical path
method in a project network,” International Journal of Computational and Applied
Mathematics, vol. 5, no. 2, pp. 217–225, 2010.

[13] N. Thumb, Grundlagen und Praxis der Netzplantechnik. Verlag Moderne Industrie,
1975.

[14] J. Kerbosch, H. Schell, “Network planning by the extended metra potential method,”
tech. rep., University of Technology Eindhoven, 1975.

[15] H. Wieczorrek, P. Mertens, Management von IT-Projekten. Von der Planung zur Re-
alisierung. Springer, 2005.

[16] H. S. Swanson, R. E. D. Woolsey, “A pert-cpm tutorial,” SIGMAP Bull., no. 16,
pp. 54–62, 1974.

[17] R. Berbig, F. Franke, Netzplantechnik. VEB Verlag für Bauwesen, 1969.

[18] D. E. Douglas, “Pert and simulation,” in WSC ’78: Proceedings of the 10th conference
on Winter simulation, (Piscataway, NJ, USA), pp. 89–98, IEEE Press, 1978.

[19] J. E. Hebert, “Applications of simulation in project management,” in WSC ’79: Pro-
ceedings of the 11th conference on Winter simulation, (Piscataway, NJ, USA), pp. 211–
219, IEEE Press, 1979.

[20] D. Liebhart, SOA goes real. Service-orientierte Architekturen erfolgreich planen und
einführen. Hanser, 2007.

[21] T. Vogel, Servicebasiertes Business Networking. PhD thesis, University of St. Gallen,
2009.

[22] R. Heutschi, Serviceorientierte Architektur. Architekturprinzipien und Umsetzung in
die Praxis. Springer, 2007.

[23] H. Haas, A. Brown, “Web services glossary.” http://www.w3.org/TR/ws-gloss/, 2004.

[24] V. Vasudevan, “A Web Services Primer,” tech. rep., University of Konstanz, 2001.

BIBLIOGRAPHY 89

[25] S. Dustdar, H. Gall„ M. Hauswirth, Software-Architekturen für Verteilte Systeme.
Springer, 2003.

[26] “Oasis.” http://www.oasis-open.org/who/.

[27] F. Leymann, “Web services flow language (wsfl 1.0),” tech. rep., IBM, 2001.

[28] S. Thatte, “Web services for business process design,” tech. rep., Microsoft, 2001.

[29] F. Leymann, D. Roller„ S. Thatte, “Goals of the bpel4ws specification.”
http://xml.coverpages.org/BPEL4WS-DesignGoals.pdf.

[30] ORACLE, “Building stateless and stateful business processes.”
http://download.oracle.com/docs/cd/E14981 01/wli/docs1031/bpguide-
/bpguideState.html, 2008.

[31] C. Peltz, “Web services orchestration and choreography.” http://soa.sys-
con.com/node/39800, 2003.

[32] D. Jordan, J. Evdemon, “Web services business process execution language version
2.0.” http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html, 2007.

[33] M. Cobban, “What is bpel and why is it so important to my business?.”
http://www.softcare.com/whitepapers/wp whatis bpel.php, 2004.

[34] J. Matlis, “Quickstudy: Business process execution language (bpel).”
http://www.computerworld.com/s/article/102580/BPEL?taxonomyId=061, 2005.

[35] O. Kopp, F. Leymann, “Choreography Design Using WS-BPEL,” Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering, vol. 31, pp. 31–34,
September 2008.

[36] K. R. Moorthy, “An introduction to bpel.” http://www.developer.com/services-
/article.php/3609381/An-Introduction-to-BPEL.htm, 2006.

[37] M. Juric, “Bpel and java.” http://www.theserverside.com/news/1364554/BPEL-and-
Java, 2005.

[38] C. Bettini, X. S. Wang„ S. Jajodia, “Temporal reasoning in workflow systems,” Distrib.
Parallel Databases, vol. 11, pp. 269–306, May 2002.

BIBLIOGRAPHY 90

[39] W. Gruber, Modeling and Transformation of Workflows with Temporal Constraints.
PhD thesis, Universitiy of Klagenfurt, 2004.

[40] V. D. Aalst, “The application of petri nets to workflow management,” The Journal of
Circuits, Systems and Computers, vol. 8, pp. 21–66, 1998.

[41] D. Wodtke, G. Weikum, “A formal foundation for distributed workflow execution
based on state charts,” in Proceedings of the 6th International Conference on Database
Theory, (London, UK), pp. 230–246, Springer-Verlag, 1997.

[42] J. Eder, H. Groiss„ W. Liebhart, “The workflow management system panta rhei,”
Advances in Workflow Management Systems and Interoperability, pp. 129–144, 1997.

[43] B. Kao, H. Garcia-Molina, “Deadline assignment in a distributed soft real-time sys-
tem,” IEEE Trans. Parallel Distrib. Syst., vol. 8, pp. 1268–1274, December 1997.

[44] B. Kao, H. Garcia-Molina, “Subtask deadline assignment for complex distributed soft
real-time tasks,” tech. rep., Stanford University, Stanford, CA, USA, 1993.

[45] P. Dadam, M. Reichert„ K. Kuhn, “Clinical workflows - the killer application for
process-oriented information systems?,” in 4th International Conference on Business
Information Systems (BIS 2000, pp. 36–59, 1997.

[46] O. Marjanovic, “Dynamic verification of temporal constraints in production work-
flows,” in Proceedings of the Australasian Database Conference, ADC ’00, (Washing-
ton, DC, USA), pp. 74–, IEEE Computer Society, 2000.

[47] O. Marjanovic, M. Orlowska, “On modeling and verification of temporal constraints
in production workflows,” in Knowledge and Information Systems, pp. 157–192, 1999.

[48] C. Bussler, “Workflow instance scheduling with project management tools,” in Pro-
ceedings of the 9th International Workshop on Database and Expert Systems Applica-
tions, DEXA ’98, (Washington, DC, USA), pp. 753–, IEEE Computer Society, 1998.

[49] H. Pozewaunig, J. Eder„ W. Liebhart, “epert: Extending pert for workflow man-
agement systems,” in In First European Symposium in Advances in Databases and
Information Systems (ADBIS, pp. 217–224, 1997.

[50] R. Kazhamiakin, P. Pandya„ M. Pistore, “Timed modelling and analysis inweb service
compositions,” in ARES ’06: Proceedings of the First International Conference on

BIBLIOGRAPHY 91

Availability, Reliability and Security, (Washington, DC, USA), pp. 840–846, IEEE
Computer Society, 2006.

[51] R. Kazhamiakin, P. Pandya„ M. Pistore, “Representation, verification, and computa-
tion of timed properties in web,” in ICWS ’06: Proceedings of the IEEE International
Conference on Web Services, (Washington, DC, USA), pp. 497–504, IEEE Computer
Society, 2006.

[52] P. K. Pandya, “Specifying and deciding quantified discrete-time duration calculus
formulae using dcvalid,” tech. rep., Proc. Real-Time Tools, 2000.

[53] C. Hoare, A. Ravn, “A calculus of durations,” tech. rep., Information Processing
Letters, 1991.

[54] S. Kallel, A. Charfi, T. Dinkelaker, M. Mezini„ M. Jmaiel, “Specifying and monitoring
temporal properties in web services compositions,” in ECOWS ’09: Proceedings of the
2009 Seventh IEEE European Conference on Web Services, (Washington, DC, USA),
pp. 148–157, IEEE Computer Society, 2009.

[55] A. Charfi, M. Mezini, “Ao4bpel: An aspect-oriented extension to bpel,” World Wide
Web, vol. 10, no. 3, pp. 309–344, 2007.

[56] N. Guermouche, O. Perrin„ C. Ringeissen, “Timed specification for web services com-
patibility analysis,” Electron. Notes Theor. Comput. Sci., vol. 200, no. 3, pp. 155–170,
2008.

[57] D. Berardi, Automatic Service Composition. Models, Techniques and Tools. PhD
thesis, La Sapienza University Roma, 2005.

[58] D. Berardi, D. Calvanese„ G. D. Giacomo, “Automatic composition of e-services that
export their behavior,” tech. rep., University of Rome, 2003.

[59] J. Eder, E. Panagos„ M. Rabinovich, “Time constraints in workflow systems,” Pro-
ceedings of the 11th International Conference of Advanced information Systems Engi-
neering, pp. 286 – 300, 1999.

[60] J. Eder, E. Panagos, “Managing time in workflow systems,” Workflow Handbook 2001,
pp. 109–132, 2000.

BIBLIOGRAPHY 92

[61] J. Eder, H. Pichler, “Duration histograms for workflow systems,” in Proceedings of
the IFIP TC8 / WG8.1 Working Conference on Engineering Information Systems in
the Internet Context, (Deventer, The Netherlands, The Netherlands), pp. 239–253,
Kluwer, B.V., 2002.

[62] Apache, “Apache ODE.” http://ode.apache.org/.

[63] “Orchestra.” http://orchestra.ow2.org/xwiki/bin/view/Main/WebHome.

	Introduction
	Related works in Time Management
	Temporal reasoning problems
	The Simple Temporal Problem
	Temporal Constraint Satisfaction Problem & Disjunctive Temporal Problem

	Time calculation techniques in Project Management
	Critical Path Method
	Metra Potential Method
	GANTT
	Program Evaluation and Review Technique

	WS-BPEL
	Web Services
	The development of WS-BPEL
	The BPEL Language
	Definitions of Business Processes in WS-BPEL

	Time Management in BPEL
	Related works
	Calculation in Design time
	Calculation of time constraints
	Probabilistic Time Management

	Calculation in Run time
	Calculation of time constraints
	Probabilistic Time Management

	Prototypical Implementation
	Development Environment
	Requirements
	Eclipse BPEL-Designer
	BPEL Engine - Apache ODE
	Integrating Apache ODE in Eclipse BPEL-Designer

	Modifications
	Eclipse BPEL Designer
	Apache ODE

	Validation

	Conclusion and Outlook
	Installation
	Configuratin of Apache ODE
	Configuration of the Eclipse BPEL-Designer
	Creating a BPEL Choreography with time constraints
	Definition of the dependencies of the choreography
	Calculating the time constraints of the choreography
	Preparing the choreography for the execution

	Execution of the choreography in Apache ODE
	Instantiation of a process

