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i

Abstract

Answer Set Programming (ASP) is nowadays a well known and well acknowl-
edged paradigm for declarative problem solving as can be seen by many successful
applications in the areas of artificial intelligence and knowledge-based reasoning.
Evaluating logic programs that follow the ASP paradigm is usually implemented
as a two-step procedure: First, the grounding step (i.e. the instantiation of variables
occurring in the program) and second, the actual solving process which works on
ground logic programs. In this thesis we introduce a novel approach for dealing
with the latter.

Solving ground logic programs is, in general, still an intractable problem.
Therefore most standard ASP solvers rely on techniques originating in SAT solving
or constraint satisfaction problem solving. In contrast, the algorithm presented in
this thesis was developed with techniques that stem from parameterized complex-
ity theory. The idea here is to consider a certain problem parameter as bounded by
a constant and thereby obtain a tractability result for the given problem. One such
parameter which has lead to many interesting results is treewidth which represents
the “tree-likenes” of a graph. Treewidth is defined in terms of tree decomposi-
tions which in turn can be used by dynamic programming algorithms to solve the
problem under consideration.

We introduce a novel dynamic programming algorithm based on the above
approach that is specifically tailored for solving head-cycle free logic programs.
Using a purpose-built framework for algorithms on tree decompositions, an actual
implementation of the algorithm is presented, carefully evaluated and compared to
existing ASP solvers. Experimental results show significant potential for problem
instances of low treewidth.
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Kurzfassung

Answer Set Programming (ASP) ist heutzutage ein bekanntes und etabliertes
Paradigma für deklarative Wissensverarbeitung und wurde bereits in mehreren Ge-
bieten (z.B. im Bereich der künstliche Intelligenz oder der wissensbasierten Sys-
teme) erfolgreich eingesetzt. Grundsätzlich ist die Auswertung von logischen Pro-
grammen ein zweistufiges Verfahren: In einem ersten Schritt werden alle Regeln
des Programmes grundiert (d.h. falls Variablen in diesen Regeln vorhanden sind,
werden Sie durch konkrete Werte ersetzt). Erst im zweiten Schritt erfolgt dann
die eigentliche Auswertung des Programmes, da Algorithmen für diesen Schritt
nur auf grundierten Programmen arbeiten. In dieser Arbeit stellen wir einen neuen
Ansatz für letzteren Schritt vor.

Das Auswerten von Logikprogrammen ist grundsätzlich eine aufwendige Auf-
gabe. Für ähnlich schwere Probleme im Bereich des SAT-Solvings bzw. im Bere-
ich von Constraint Satisfaction wurden bereits erfolgreich effiziente Algorithmen
gefunden, weswegen die meisten modernen Algorithmen für ASP auf Techniken
aus diesem Bereich aufbauen. Im Gegensatz dazu setzt der in dieser Arbeit präsen-
tierte Algorithmus auf ein neues Prinzip, das auf Ergebnissen der parametrisierten
Komplexitätstheorie basiert. Hierbei wird ein bestimmter Problemparameter fix-
iert, wodurch das Problem im Allgemeinen leichter lösbar wird. Ein solcher Pa-
rameter ist die sg. “Treewidth”, die, grob gesprochen, die “Baumähnlichkeit” eines
Graphen beschreibt. Sie wird mit Hilfe von Tree Decompositions definiert, auf
welchen der hier vorgestellte Algorithmus aufbaut.

Dieser Algorithmus, der auf obigem Prinzip und dynamischer Programmierung
basiert, ist speziell auf die Klasse der sg. “head-cycle-freien” logischen Programme
zugeschnitten. Mit Hilfe eines eigens entwickelten Frameworks für Algorithmen
und Tree Decompositions wurde der Algorithmus implementiert und anschließend
ausführlich getestet. Experimentelle Ergebnisse zeigen großes Potential für Prob-
leme mit kleinen Parameterwerten (d.h. mit kleiner Treewidth).
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1 Introduction

Answer Set Programming (ASP) [Marek and Truszczyński, 1999, Niemelä, 1999] to-
day is a well known and well acknowledged paradigm for declarative problem solv-
ing in the scientific community as can be seen by many successful applications in the
areas of artificial intelligence [Novák, 2009, Köster et al., 2009] and knowledge-based
reasoning (cf. for instance [Grasso et al., 2009]). Evaluating logic programs that fol-
low the ASP paradigm is usually implemented as a two-step procedure: First, the
grounding step (i.e. the instantiation of variables occurring in the program) and sec-
ond, the actual solving process itself which works on ground (that is, propositional)
logic programs. For the latter task, many different solvers exist today, see for instance
[Lin and Zhao, 2004, Leone et al., 2006, Gebser et al., 2007]. In this thesis we intro-
duce a novel approach for dealing with the second step of this process.

The idea of answer set programming in particular and logic programming in gen-
eral is to follow a declarative programming style. Contrary to imperative programming
languages such as C, C++, Java etc., that deal with states and sequences of operations
to change them, a declarative programming language tries to describe the problem in a
more flexible way.

Example 1.1. The following example encodes knowledge about birds in an imperative
style:

boolean bird(x)
{

if(x == "tweety") return true;
if(penguin(x)) return true;
return false;

}

The corresponding logic program would look like this:

bird(tweety).
bird(X)← penguin(X).

The imperative procedure represents the knowledge in a rather static way, as in order
to extend it with new species of birds or new individual birds would require the addition
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4 CHAPTER 1. INTRODUCTION

of many if-else constructs in the program which, for more complicated examples, can
easily get confusing. On the other hand the logic programming approach can simply be
extended by adding additional facts or rules to the program.

Answer set programming as a paradigm was defined in the late 1980s and early
1990s with stable model semantics that were first defined for normal logic programs
[Gelfond and Lifschitz, 1988] and later on extended also to disjunctive logic programs
[Gelfond and Lifschitz, 1991]. In this work we use answer set semantics synonymously
with stable model semantics and only deal with programs containing negation-as-failure
but no strong negation. Negation-as-failure is closely related to Reiter’s Default Logic
[Reiter, 1980] and hence also often called default negation. An overview of the different
semantics for logic programs can e.g. be found in [Dix, 1995].

Deciding consistency for ground logic programs under answer set semantics is, in
general, an intractable problem. For disjunctive logic programs, decision problems
reside on the second level of the polynomial hierarchy (i.e. being complete for Σ2

P,
see [Eiter and Gottlob, 1995]), and even for disjunction-free logic programs (usually
called normal logic programs) these decision problems are generally still NP-complete
[Marek and Truszczynski, 1991]. If certain restrictions are placed on the use of dis-
junctions (that is, to head-cycle free disjunctive logic programs) the complexity can be
lowered from the second level of the polynomial hierarchy to the same level as that of
normal logic programs as shown in [Ben-Eliyahu and Dechter, 1994]. For a more exten-
sive overview on complexity results in this area, see for instance [Dantsin et al., 2001].
In light of these intractability results, most standard ASP solvers rely on techniques
originating in SAT solving [Eén and Sörensson, 2003] or constraint satisfaction prob-
lem solving [Badros et al., 2001], where such intractability results have already been
successfully tackled for practical applications. A good overview of current SAT solvers
can for example be found in [Kullmann, 2009] and the accompanying SAT competition.

The algorithm presented in this thesis was developed with techniques that stem
from a more theoretical point of view, namely parameterized complexity theory (see
e.g. [Downey and Fellows, 1999]) and fixed-parameter algorithms [Niedermeier, 2006].
The idea here is to consider a certain problem parameter as bounded by a constant and
thereby obtain a tractability result (i.e. polynomial runtime) for the given problem. A
fixed-parameter algorithm is one where the runtime can be described as a function

f (k) · nO(1)

where f (k) is a computable function solely depending on the parameter k.
One such parameter which has lead to many interesting results is called treewidth

[Robertson and Seymour, 1984, Kloks, 1994]. Treewidth represents, informally speak-
ing, the “tree-likeness” of a graph. For disjunctive logic programs, the consistency
problem (i.e. checking whether such a program has an answer set) has been shown to be-
come tractable when considering only programs whose incidence graphs have bounded
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treewidth (cf. [Gottlob et al., 2010]). Treewidth is defined in terms of tree decompo-
sitions which in turn can be used by dynamic programming algorithms to solve the
problem under consideration. A survey on such applications can for instance be found
in [Bodlaender, 1997].

Main Contributions In this thesis we present a novel dynamic programming-based
algorithm working on tree decompositions. This fixed-parameter algorithm is specifi-
cally tailored for solving head-cycle free answer set programs. The main idea is to first
obtain a tree decomposition representation of such a logic program and subsequently
evaluate the logic program set by step, by doing a bottom-up traversal of the tree de-
composition. In addition to the answer set characterization of head-cycle free programs
given in [Ben-Eliyahu and Dechter, 1994], we provide an alternative characterization
which forms the basis of our algorithm. This alternative characterization provides a
new way of interpreting answer sets for head-cycle free disjunctive logic programs.

In order to realize the algorithm, a general-purpose framework for working with tree
decompositions has been implemented. Using this framework, various algorithms based
on tree decompositions can be developed. Currently under development are algorithms
for argumentation [Dvorák et al., 2010] or multi-cut in graphs [Pichler et al., 2010]. An
implementation of the algorithm described in this thesis was created using said frame-
work and the implementation was thoroughly benchmarked and evaluated against exist-
ing answer set programming solvers.

Benchmark results show significant potential for instances of low treewidth. Due to a
linear runtime behavior for a bounded parameter, the overall runtime of the algorithm is
very competitive when compared to existing systems such as DLV [Leone et al., 2006]
and depending on the program size a huge performance increase can be observed. As
however good runtime results can only be obtained for low parameter values (i.e. low
treewidth), we see this approach–albeit able to evaluate every head-cycle free disjunc-
tive logic program–as an augmentation and benchmarking tool for current solvers that
could be used as a component in existing solvers to speed up the computations of low-
treewidth programs, whereas for high treewidth, the original solver would be used.

Organization This thesis is organized into four parts, namely the Introduction, Pre-
liminaries, Main Results and Final Thoughts.

The preliminaries part introduces the basic concepts needed for our algorithm and is
split into three chapters: In chapter 2, the foundations of mathematical logic and logic
programming under various semantics are laid out. Chapter 3 deals with the defini-
tion of treewidth, tree decompositions and heuristics used to calculate one. Chapter 4
introduces basic classical notions of complexity theory and then deals with parameter-
ization and parameterized complexity theory. In that chapter, also the use of treewidth
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as a parameter is discussed and its use for directly classifying fixed-parameter tractable
problems is explained.

The main results comprise two chapters: In chapter 5, the theoretical foundations of
the algorithm, including the alternative characterization for answer sets in head-cycle
free programs is laid out, and the formal definition of the algorithm is given, includ-
ing an example evaluation of a logic program. Chapter 6 then deals with the general-
purpose framework for working with tree decompositions including a short tutorial on
how such algorithms can be implemented. In section 6.2, the actual algorithm imple-
mentation (dubbed “dynASP”) is discussed. Finally, section 6.3 details the benchmark
setup and benchmarking results of our algorithm when compared to the DLV system
[Leone et al., 2006].

In the final thoughts part, in chapter 7 we discuss the obtained results, and finally
provide some concluding remarks and future work ideas in chapter 8.



Part II

II Preliminaries
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2 Answer Set Programming

This chapter introduces the necessary theoretical basis of mathematical logic and answer
set programming. In the first two sections, basic notions from mathematical logic are
briefly reviewed and notational agreements are set.

Formal logic systems, as defined in the following sections, consist of the following
three components:

• Grammar G: A tuple 〈V,T,P,S〉, consisting of the set of non-terminal symbols
(or variables) V, the set of terminal symbols T, the set of productions P and the
starting symbol S. For logic systems the set T is usually called the alphabet and
consists of the signature of the program, notational symbols and symbols for the
logical connectives. The productions in P define the actual syntax of the language
of the logic system. A sentence that is produced by the grammar is called a
formula in the context of a logic system.

• Interpretation I: A function that provides a way to interpret the syntax of the
language defined by the grammar. Using an interpretation the semantics of a
sentence in the language can be determined.

• Satisfaction relation |=Σ: A relation between interpretations and formulas that
determines whether a given interpretation function (or interpretation, for short)
satisfies a given formula with respect to the language signature Σ.

In the following sections we will establish the foundations of two formal logic sys-
tems, namely propositional logic and predicate logic. This introduction to answer set
programming roughly follows the same structure as [Beierle and Kern-Isberner, 2008],
therefore we refer to that book for a more thorough introduction to the subject. The in-
terested reader may also find more in-depth information on the subjects of this chapter
in e.g. [Baral, 2003, Huth and Ryan, 2004].

2.1 Propositional Logic
Propositional logic is a formal system as described at the beginning of this chapter. A
sentence (or formula) in propositional logic represents a proposition (hence the name).
Throughout this thesis, propositional logic and predicate logic (see section 2.2) are the

9



10 CHAPTER 2. ANSWER SET PROGRAMMING

fundamental systems used to formalize propositions in a uniform way, so that they can
be processed by a computer system. The following definitions lay out the syntax and
semantics.

Definition 2.1. The syntax of PL0 is defined by a grammar GPL0 = 〈V,A = ΣPL0 ∪

Conn∪ Sym,PPL0,S〉, with the set of non-terminals (variables) V, the alphabetA and
the starting symbol S of the grammar.

• V = {ϕ}

• A consists of the following disjoint components:

– The signature ΣPL0, a set of propositional variables.
– The set of logical connectives Conn = {¬,∨,∧,⇒}.
– The set of auxiliary symbols Sym = {(, )}.

• P, the set of productions of the grammar consists of the following single rule:

– ϕ→ (¬ϕ) | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | (ϕ⇒ ϕ) | a, for a ∈ ΣPL0

• S = ϕ.

Definition 2.2. An interpretation of a PL0 formula is an interpretation function I which
is defined in the following way:

• I(a) ∈ {true, false} for every a ∈ ΣPL0

• I(F ∧ G), I(F ∨ G), I(¬F), I(F ⇒ G): After evaluation of I(F) and I(G), the result
is given by the truth tables in 2.1.

¬

false true
true false

(a) not

∧ false true
false false false
true false true

(b) and

∨ false true
false false true
true true true

(c) or

⇒ false true
false true true
true false true

(d) implies

Table 2.1: Interpretation function for logical connectives in PL0

Definition 2.3. The satisfaction relation |=ΣPL0 of PL0 is defined as follows:

I |=ΣPL0 F if and only if I(F) = true

where F is a PL0 formula. An interpretation that satisfies F under above relation is
called a model of F.
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Definition 2.4. A formula F is satisfiable if it has at least one model and F is valid if
every interpretation is a model, whereas it is unsatisfiable if it has no model.

Definition 2.5. A literal is either an atom or the negation of an atom. A formula is
in conjunctive normal form (CNF), if it is a conjunction of clauses, where a clause
consists of a disjunction of literals.

Example 2.6. Consider the formula ϕ = a ∧ (b ∨ c) ∧ d. ϕ is in CNF whereas the
formula ψ = a ∨ (b ∧ c) ∨ d is not.

Remark 2.7. Every formula can be converted to a logically equivalent formula in con-
junctive normal form at the cost of an (in the worst case) exponential increase in the
size of the formula (see e.g. [Jackson and Sheridan, 2004]). However, with only a poly-
nomial blow-up of the formula size, a SAT-equivalent formula in conjunctive normal
form can be constructed (i.e. a CNF-formula that is satisfiable if and only if the original
formula is satisfiable).

2.2 Predicate Logic
Predicate logic (PL1) is an extension of propositional logic whereby in PL1 it is possible
to form sentences that quantify over single objects: Where in propositional logic it was
impossible to say that every car is red, this is now possible in PL1. The following
definitions set forth the syntax and semantics of PL1:

Definition 2.8. The syntax of PL1 is defined by a grammar GPL1 = 〈V,A = ΣPL1 ∪

Conn ∪ Var ∪ Sym,PPL1,S〉, with the set of non-terminals (variables) V, the alphabet
A and the starting symbol S of the grammar.

• V = {τ, ϕ}

• A consists of the following disjoint components:

– The signature ΣPL1 = Func ∪ Pred itself consisting of the sets of function
symbols and predicate symbols and their respective arities.

– The set of logical connectives Conn = {¬,∨,∧,⇒,∀,∃}.
– The set of variables Var.
– The set of auxiliary symbols Sym = {(, )}.

• P, the set of productions of the grammar consists of the following rules:

– τ→ x | f (τ, . . . , τ) for x ∈ Var, f/n ∈ Func
– ϕ→ p(τ . . . τ) | (¬ϕ) | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | (ϕ⇒ ϕ) | (∃xϕ) | (∀xϕ)

for x ∈ Var, p/n ∈ Pred
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• S = ϕ.

The intuitive meaning of all words produced by the non-terminal τ is that they rep-
resent basic objects or facts and are called terms. A term is called ground if it contains
no variables. A function of arity 0 is called a constant. All words produced by ϕ are
called formulas that can be either true or false. The production ϕ → p(τ . . . τ) with p
being a predicate is called an atom. An atom is called ground if all the terms contained
in it are ground.

Definition 2.9. An interpretation of a PL1 formula is a tuple I = 〈D, Iµ, µ〉, where D
is an arbitrary domain, Iµ is the interpretation function and µ : Var→ D is a variable
assignment.

The interpretation function Iµ is defined in the following way:

• Iµ(c) ∈ D for every function symbol c of arity 0
• Iµ(x) = µ(x) for every variable x ∈ Var
• Iµ( f ) : D × · · · ×D→ D for every function symbol f of arity > 0
• Iµ(p) ⊆ D × · · · ×D for every predicate symbol p
• Iµ(F ∧ G), Iµ(F ∨ G), Iµ(¬F), Iµ(F⇒ G): See definition of PL0
• Iµ(∀xF) = true if and only if ∀c ∈ D : Iµ∪{x7→c}(F) = true
• Iµ(∃xF) = true if and only if ∃c ∈ D : Iµ∪{x7→c}(F) = true

Note that the above definition does not deal with unquantified variables and double
quantified variables. W.l.o.g. we may assume that all variables are quantified (i.e. un-
quantified variables are implicitly universally quantified) and no variable is quantified
over twice, which can be achieved by introducing additional variables.

Definition 2.10. The satisfaction relation |=ΣPL1 of PL1 is defined as in PL0, with I =
〈D, Iµ, µ〉, as defined in 2.9.

I |=ΣPL1 F if and only if Iµ(F) = true

where F is a PL1 formula. An interpretation that satisfies F under above relation is
called a model of F.

Definition 2.11. The definitions of satisfiability, validity and unsatisfiability are equiv-
alent to PL0.

It can now be easily seen that PL0 is a subset of PL1 where the set of variables and
the set of function symbols is simply empty (which implies that only predicates of arity
0 can exist). Every PL0 formula is also a PL1 formula. Therefore PL0 ⊆ PL1 can
be easily established. It can be shown that this inclusion is, in fact, strict: We look at
the complexity of the satisfiability problem: The problem of checking whether a given
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propositional formula is valid (i.e. true in all possible interpretations) is known to be
coNP-complete, as shown in e.g. [Cook, 1971]. However, checking whether a given
PL1 formula is valid is an undecidable problem, following from the Church-Turing
thesis ([Church, 1936, Turing, 1937]) and therefore PL0 ⊂ PL1.

2.3 Monadic Second-Order Logic
Monadic second-order logic (MSO, MSOL) is in turn an extension of predicate logic
whereby in MSOL it is not only possible to form sentences that quantify over single
objects as in PL1, it is also possible to quantify over sets of objects. The following
definitions set forth the syntax and semantics of MSOL:

Definition 2.12. The syntax of MSOL is defined by a grammar GMSO = 〈V,A =
ΣMSO ∪Conn∪Var∪ SVar∪ Sym,PMSO,S〉, with the set of non-terminals (variables)
V, the alphabetA and the starting symbol S of the grammar.

• V = {τ, ϕ}

• A consists of the following disjoint components:

– The signature ΣPL1 = Func ∪ Pred itself consisting of the sets of function
symbols and predicate symbols and their respective arities.

– The set of logical connectives Conn = {¬,∨,∧,⇒,∀,∃,∈}.
– The set of variables Var.
– The set of set variables SVar.
– The set of auxiliary symbols Sym = {(, )}.

• P, the set of productions of the grammar consists of the following rules:

– τ→ x | f (τ, . . . , τ) for x ∈ Var, f/n ∈ Func
– ϕ → p(τ, . . . , τ) | (¬ϕ) | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | (ϕ ⇒ ϕ) | (∃xϕ) | (∀xϕ) |

(∃Xϕ) | (∀Xϕ) | (x ∈ X), for x ∈ Var,X ∈ SVar, p/n ∈ Pred.

• S = ϕ.

The semantics are essentially those of PL1 except that now it is also possible to
quantify over sets by means of the set variables. These set variables represent a subset
of the domain that is part of an interpretation.

Definition 2.13. An interpretation of an MSO formula is a tuple I = 〈D, Iµ, µ, ν〉,
where D is an arbitrary domain, Iµ,ν is the interpretation function, µ : Var → D is a
variable assignment and ν : SVar→ 2D is a set assignment.

The interpretation function Iµ,ν is defined in the following way:
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• Iµ,ν(c) ∈ D for every function symbol c of arity 0
• Iµ,ν(x) = µ(x) for every variable x ∈ Var
• Iµ,ν( f ) : D × · · · ×D→ D for every function symbol f of arity > 0
• Iµ,ν(p) ⊆ D × · · · ×D for every predicate symbol p
• Iµ,ν(F ∧ G), Iµ,ν(F ∨ G), Iµ,ν(¬F), Iµ,ν(F ⇒ G), Iµ,ν(∀xF), Iµ,ν(∃xF) with x ∈ Var:

See definition of PL1
• Iµ,ν(x ∈ X) = true if and only if µ(x) ∈ ν(X), with x ∈ Var, X ∈ SVar
• Iµ,ν(∀XF) = true if and only if ∀C ∈ 2D : Iµ,ν∪{X 7→C}(F) = true, with X ∈ SVar
• Iµ,ν(∃XF) = true if and only if ∃C ∈ 2D : Iµ,ν∪{X 7→C}(F) = true, with X ∈ SVar

We deal with unquantified and multiply quantified variables as in PL1.

Definition 2.14. The satisfaction relation |=ΣMSO of MSOL is defined as in PL1

I |=ΣMSO F if and only if Iµ,ν(F) = true

where F is an MSO formula. An interpretation that satisfies F under above relation is
called a model of F.

Definition 2.15. The definitions of satisfiability, validity and unsatisfiability are equiv-
alent to PL1.

Monadic second-order logic distinguishes itself from “full” second-order logic only
in the fact, that the function ν in an MSO-interpretation maps a set variable X to a
subset of the domain, and therefore, MSO-formulas can only include sentences of the
form x ∈ X for establishing relations between variables and set variables. In full second-
order logic, set variables can also be mapped to sets of function symbols or predicates
in the language, where instead of x ∈ X one would write X(x) to establish relationships
between variables and set variables. If X ranges over a subset of the domain, X(x) has
the same semantics as x ∈ X. If, however, X ranges over a set of predicates (say of arity
one), then X(x) says that for every predicate p in X, p(x) must be provable.

2.4 Logic Programs and Answer Set Semantics
In this section the basic concepts of logic programs and logic programming under
answer-set semantics are introduced.

2.4.1 Logic Programs
Logic programming follows a central paradigm: The declarative encoding of knowledge
and problems as a logical formula whereby the resulting model(s) represent solutions.
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Traditional programs on computers are procedural: They execute a fully determined se-
quence of commands that calculate the solutions to a given problem. In logic program-
ming one only states, in a declarative way, what the problem is. A logic programming
solver can then obtain a solution without knowing any procedural, problem-specific rou-
tines. Figure 2.1 shows the relation between real-world problems and their declarative
encoding as a logic program in a graphical way:

State Problem Solutions

Real world

Representation

Facts
Logic

Program Models

Figure 2.1: The relation between real-world problems and logic programs.

This relation is also illustrated in the following example that encodes a graph three-
coloring problem as a logic program. Graph three-coloring takes a graph and as input
and tries to color its vertices with tree colors in such a way that no two adjacent vertices
have the same color.

Example 2.16. Let P be a logic program consisting of the following four clauses:

V(a).V(b).V(c).
E(a, b).E(b, c).E(c, a).
R(X) ∨ G(X) ∨ B(X)← V(X).
⊥ ← E(X,Y),R(X),R(Y).
⊥ ← E(X,Y),G(X),G(Y).
⊥ ← E(X,Y),B(X),B(Y).

Example 2.16 describes a graph with three vertices represented by V, three edges
between them, represented by E, the condition that every vertex must have a color (being
a vertex implies that either R,G or B holds for that vertex), and the conditions that if
there is an edge between two vertices, then those two cannot have the same color.

We will see later on when defining the semantics for such logic programs, that
the solutions of Example 2.16 correspond exactly to the solutions of the graph three-
colorability problem for a graph with three vertices and three edges.

We begin with a few basic definitions concerning logic programs:

Definition 2.17. A Horn clause is a rule of the form

H← B1, . . . ,Bn
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where H,Bi are atoms as defined in predicate logic. In such a rule, H is called the head
and B1, . . . ,Bn is called the body. If n = 0 then such a rule is called a fact.
A Horn or classical logic program is a finite set of Horn clauses. If none of these
clauses contain any variables, the program is called ground.

The Herbrand universe UL of a PL1-language L is the set of all ground terms that can
be formed in L.

The Herbrand baseH(L) of a PL1-language L is the set of all ground atoms that can
be formed in L.

With each logic program P we associate the PL1-language LP that generates it. The
signature of LP consists exactly of the predicates and functions occurring in P.

A Herbrand interpretation of a program P is a subset M ⊆ H(LP). M is called a
Herbrand model of P if 〈H(LP),M, ∅〉 |=LP P, i.e. if it satisfies for every rule in P the
formula ∀x(B1∧· · ·∧Bn ⇒ H) where x contains all the variables occurring in the rule.
We write M |=LP P, as the domain and µ function are implicitly given by P and M.

We consider in the following only programs that are function-less, i.e. that have only
function symbols of arity 0.

The following example shows a simple such logic program and subsequently its
Herbrand universe and base as well as a Herbrand interpretation that is obviously also a
model.

Example 2.18. Let P be a logic program consisting of the following four clauses:

B(tweety).
P(skipper).
B(X)← P(X).
F(X)← B(X).

ULP = {tweety, skipper}

H(LP) = {B(tweety), B(skipper), P(tweety), P(skipper), F(tweety), F(skipper)}

A Herbrand model: M = {B(tweety), B(skipper), P(skipper), F(tweety), F(skipper)}

Notice that in the above example, as we associate with program P the language LP

as defined above, the set of function and predicate symbols is finite (as the program
is function-less) and implicitly given by the program itself. As this holds for every
(finite) classical logic program, instead of we can simply view clauses with variables as
“abbreviations” for all the ground clauses that they represent, e.g. the rule B(X)← P(X)
in the above example actually represents the two clauses B(tweety) ← P(tweety) and
B(skipper) ← P(skipper). From this point onward we consider only ground programs
and non-ground rules used as abbreviations for the corresponding ground program.
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Semantics of classical logic programs

Deciding the smallest Herbrand model for a given ground (Horn) logic program is P-
complete [Dantsin et al., 2001]. This tractability result is due to the following property:

Proposition 2.19. Let M1 and M2 be Herbrand models of a program P. Then also
M = M1 ∩M2 is a Herbrand model of P.

The set of all Herbrand modelsM(P) of a program P is therefore said to be closed
under intersection. From Proposition 2.19 the following corollary immediately follows:

Corollary 2.20. P has a unique smallest Herbrand model given by the following for-
mula:

LM(P) =
⋂

M∈M(P)

M

2.4.2 Types of Logic Programs
In the last section we already introduced the concept of Horn (or classical) logic pro-
grams. However this notion seems not to be expressive enough in certain cases. There-
fore, other types of logic programs exist that extend the classical logic programs. We
first take a look at normal logic programs.

Definition 2.21. A normal logic program P is a set of rules of the following form:

H← P1, . . . ,Pn, not N1, . . . , not Nm

where H, Pi and Ni are atoms (called literals) and P1, . . . ,Pn (resp. N1, . . . ,Nm) are
called the positive body (resp. negative body) of the rule.

The not operator is a unary logical connective, called the negation as failure oper-
ator or, alternatively, default negation. Its semantics is the following: not A is true if
A cannot be proved and false otherwise. The not operator therefore also in a sense
represents a closed-world assumption: If some fact A cannot be shown to hold, the fact
notA is assumed.

Lets take another look at Example 2.18, interpreting the predicates in the following
way:

• B(X) represents that X is a bird.
• P(X) represents that X is a penguin.
• F(X) represents the fact that X can fly.

The intuition of the two non-ground rules in the program is then the following: Every
bird flies and every penguin is a bird. However in Example 2.18 above we could not rep-
resent an exception to the first statement: Every bird flies, except when it is a penguin.
Example 2.22 shows how to implement this particular kind of exception:
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Example 2.22. Let P be a logic program consisting of the following clauses:

B(tweety).
P(skipper).
B(X)← P(X).
F(X)← B(X), not P(X).

It is evident that the above program now regards the case that penguins are birds
but cannot fly. However we need to define a meaningful semantics for normal logic
programs, which will be done collectively for normal, disjunctive and head-cycle free
logic programs in subsection 2.4.3.

Definition 2.23. Disjunctive logic programs are programs that consist of rules of the
form

H1 ∨ · · · ∨Hk ← P1, . . . ,Pn, notN1, . . . , notNm

where Hi, Pi and Ni are atoms and all atoms H1, . . . ,Hk are called the head atoms, and
P1, . . . ,Pn (resp. N1, . . . ,Nm) are called the positive body (resp. negative body) of the
rule.

To simplify matters in this section we introduce the following notational aid: For
a rule r in a logic program, by H(r) we denote the set of head atoms of the formula
(i.e. H(r) = {H1, . . . ,Hk}), the positive body we denote by B+(r) = {P1, . . . ,Pn} and the
negative body by B−(r) = {N1, . . . ,Nn}.

The algorithm presented in this thesis specifically deals with head-cycle free disjunc-
tive logic programs (cf. [Ben-Eliyahu and Dechter, 1994]). This type of logic program
is defined as follows:

Definition 2.24. A disjunctive logic program P is called head-cycle free if there exists
a function l : H(LP) → N that maps every atom in the Herbrand base to an integer
and fulfills the following properties for every rule r in P:

1. ∀a ∈ H(r), b ∈ B+(r) : l(a) ≥ l(b)
2. ∀a ∈ H(r), b ∈ H(r) : a , b⇒ l(a) , l(b)

The function l in the above definition defines a level mapping of the atoms occurring
in the program. If such a level mapping can be found, the dependency graph of the
program does not contain a directed cycle that contains two distinct atoms occurring
together in the head of some rule in the program (hence the name head-cycle free). The
dependency graph simply contains an edge (a, b) if a and b are atoms that occur together
in the same rule, where b is contained in the head and a is contained in the positive body.

Lemma 2.25. [Ben-Eliyahu and Dechter, 1994, Dix et al., 1996] Every head-cycle free
disjunctive logic program can in polynomial time be reduced to an equivalent normal
logic program .
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2.4.3 Stable Model Semantics
Stable model semantics (introduced in [Gelfond and Lifschitz, 1988]) gained much trac-
tion in the answer-set programming community (see [Marek and Truszczyński, 1999,
Provetti and Son, 2001, Gelfond and Leone, 2002] for examples) in the following years
and, in the logic programming field, is by now a generally accepted semantics for eval-
uating normal (and in a slightly extended form also disjunctive) logic programs with
many applications, e.g. in the field of planning [Lifschitz, 2002], constraint satisfaction
[Niemelä, 1999], or ontological reasoning [Eiter et al., 2006]. The basic definitions for
stable model semantics (which in this thesis we use synonymously with “answer set
semantics”) are laid out in the following paragraphs.

Definition 2.26. A reduct PS of a normal logic program P with respect to a set S of
atoms is defined as:

PS = {H(r)← B+(r)|r ∈ P,B−(r) ∩ S = ∅}

Example 2.27. Let a program P be given by the following two rules:

r1 : a← not b

r2 : b← not a

S1 = {a} : PS1 = {a←}

S2 = {b} : PS2 = {b←}

The reduct PS is computed in two steps:

1. Remove all rules where some atom in S occurs in the negative body of the rule.
2. In all remaining rules, remove all default-negated literals.

PS depends heavily on S but it still contains all facts and all rules that did not have any
default-negated literals in P. We can now define a stable model:

Definition 2.28. S is a stable model of a logic program P if

• for P without default-negation: S is the minimal Herbrand model of P.
• for P with default-negation: S is the minimal Herbrand model of PS

Example 2.29. Consider the program

a← not a
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This program has no stable model. Consider on the other hand the following program:

a← not b. b← not a.

This program has two stable models, namely {a} and {b} as can easily be seen from
Definition 2.28 and Example 2.27.

If we take another look at Example 2.22 we can see that the stable model semantics
provide us with a model that reflects our intentions: The atom F(skipper) is not included
in the model.

2.4.4 Alternative characterization of stable models for head-cycle
free logic programs

In [Ben-Eliyahu and Dechter, 1994], a different characterization of stable models is
given for head-cycle free problems. For the following theorem, let A(P) denote the
set of atoms and R(P) the set of rules occurring in a logic program P.

Theorem 2.30. [Ben-Eliyahu and Dechter, 1994] Let P be a grounded head-cycle free
disjunctive logic program then a set M ⊆ A(P) is a stable model if and only if the
following conditions hold:

1. M satisfies all the rules in P
2. There exists a function f : A(P)→N+ such that ∀a ∈M∃r ∈ R(P) :

• B+(r) ⊆M ∧ B−(r) ∩M = ∅

• H(r) ∩M = {a}
• ∀b ∈ B+(r) : f (b) < f (a)

Informally the above theorem says that for every atom a in a stable model there must
exist a sequence of rules such that every rule derives exactly one atom, the first rule in
the sequence is a fact and the last rule in the sequence derives exactly atom a. All the
bodies of the rules must be satisfied under the condition that no rule derives an atom
used to satisfy a body of a rule that occurs earlier in the sequence.

2.4.5 Computational complexity
Usually solvers for logic programs only work on ground programs and therefore follow
a two-step approach to handle non-ground programs: In the first step, compute the
explicit ground representation of the non-ground program (by instantiating the variables
in the non-ground rules with all possible combinations of constants). Secondly, solve
the original problem on the grounded program. Note that the grounded program can
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be exponentially larger than the non-ground version considering the (implicit) domain
size.

Taking another look at Example 2.16, we can, from the non-ground rules in the
program now calculate all the ground rules that they represent. The grounded program
is shown in Example 2.31.

Example 2.31. Let P be the logic program of Example 2.16. Then the grounding of P
(denoted ground(P)) is the following program:

V(a).V(b).V(c).
E(a, b).E(b, c).E(c, a).
R(a) ∨ G(a) ∨ B(a)← V(a).
R(b) ∨ G(b) ∨ B(b)← V(b).
R(c) ∨ G(c) ∨ B(c)← V(c).
⊥ ← E(a, a),R(a),R(a).⊥ ← E(b, b),R(b),R(b).
⊥ ← E(c, c),R(c),R(c).
⊥ ← E(a, b),R(a),R(b).⊥ ← E(b, a),R(b),R(a).
⊥ ← E(a, c),R(a),R(c).⊥ ← E(c, a),R(c),R(a).
⊥ ← E(b, c),R(b),R(c).⊥ ← E(c, b),R(c),R(b).
⊥ ← E(a, a),G(a),G(a).⊥ ← E(b, b),G(b),G(b).
⊥ ← E(c, c),G(c),G(c).
⊥ ← E(a, b),G(a),G(b).⊥ ← E(b, a),G(b),G(a).
⊥ ← E(a, c),G(a),G(c).⊥ ← E(c, a),G(c),G(a).
⊥ ← E(b, c),G(b),G(c).⊥ ← E(c, b),G(c),G(b).
⊥ ← E(a, a),B(a),B(a).⊥ ← E(b, b),B(b),B(b).
⊥ ← E(c, c),B(c),B(c).
⊥ ← E(a, b),B(a),B(b).⊥ ← E(b, a),B(b),B(a).
⊥ ← E(a, c),B(a),B(c).⊥ ← E(c, a),B(c),B(a).
⊥ ← E(b, c),B(b),B(c).⊥ ← E(c, b),B(c),B(b).

It can bee seen that the program size increases very quickly if a rule with more
than one variable is encoutered. The algorithm for solving head-cycle free programs
that is presented later on is designed to work with ground programs, therefore we will
also restrict our complexity analysis to ground programs. Making this restriction, the
complexity of such a program is often called the data complexity the program.

By proposition 2.19 we have already established that, given a ground Horn logic pro-
gram, checking whether it has a model is P-complete. However, stable model semantics
and the smallest Herbrand model coincide for these types of programs. Therefore we
now look at how the complexity changes under stable model semantics for normal and
disjunctive logic programs in the ground case.

The sensible candidate set for models of normal logic programs is still the Her-
brand base of the program as no strongly negated atoms occur (only positive or default-
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negated atoms). Dealing with negation as failure however require techniques different
from simple Herbrand model semantics. Proposed approaches include stratification
[Apt et al., 1988], well-founded semantics [Gelder et al., 1991] and stable model/an-
swer set semantics [Gelfond and Lifschitz, 1988, Gelfond and Lifschitz, 1990]. For the
last, the following theorem establishes NP-completeness for the consistency problem
(i.e. checking whether a stable model exists):

Theorem 2.32. [Marek and Truszczynski, 1991, Dantsin et al., 2001] Given a ground
normal logic program P, deciding whether P has a stable model is NP-complete.

When disjunctions are added to the head of rules, the expressiveness of the programs
increases. Therefore, deciding the consistency problem for disjunctive logic programs
in the ground case is Σ2

P-complete as the following theorem states:

Theorem 2.33. [Eiter and Gottlob, 1995, Dantsin et al., 2001] Given a grounded dis-
junctive logic program P, deciding whether P has a stable model is Σ2

P-complete.

As this thesis deals mostly with head-cycle free disjunctive logic programs as de-
fined before, we also investigate the complexity of this class of logic programs. The
following theorem gives us an NP-completeness result for stable model semantics.

Theorem 2.34. [Ben-Eliyahu and Dechter, 1994] Given a grounded disjunctive logic
program P where P is head-cycle free, then deciding whether P has a stable model is
NP-complete.

Proof. The theorem follows directly from lemma 2.25 and theorem 2.32. �

Another example for a head-cycle free ground logic program is the one presented
in Example 2.35. Note that in this example we use only predicate symbols of arity 0,
basically making the program an instance of PL0. Note also that this program is trivially
head-cycle free as there are no disjunctions in the program.

Example 2.35. Let P be the following program:

r1 = u← v, y; r2 = z← u; r3 = v← w;
r4 = w← x; r5 = x← ¬y,¬z.

The only stable model of P is the set v,w, x.

In the future (and also as the algorithm presented here works on these kinds of
programs) we will henceforth only consider programs of the kind of Example 2.35.
Note that it is easy to transform a ground disjunctive logic program to a program that
only contains predicates of arity 0: We can represent each atom in the original program
by some new predicate of arity 0.



3 Treewidth

Hard problems on graphs often become very easy when being restricted to trees. For
instance, the VERTEX COVER or DOMINATING SET problems, that are in general
NP-hard, can be solved in linear time when restricted to trees. Also many constraint
satisfaction problems, when their graph-representation is restricted to trees, become
easy to solve, e.g. deciding boolean conjunctive query containment becomes LOGCFL-
complete when restricted to acyclic queries, as shown in [Gottlob et al., 2001].

Looking at these results it is natural to ask what the properties of trees are that make
them nice to work with and whether they can be generalized to graphs or, in other words,
we would like to have a measure of the “tree-likeness” of a graph.

3.1 Tree Decompositions
The notion of tree decompositions tries to address this matter. In their 1984 paper,
Robertson and Seymour introduce the concepts of tree decompositions and treewidth
which nowadays play an important role in the field of graph theory but also in the field
of fixed-parameter algorithms (see [Robertson and Seymour, 1984]). In this section the
basic definitions about tree decompositions and treewidth are given. Many survey pa-
pers (e.g. [Bodlaender, 1993b, Bodlaender, 1997, Bachoore and Bodlaender, 2005]) ex-
ist that give good overviews over the material. We refer the interested reader to those
and to [Kloks, 1994] for details.

Definition 3.1. An (undirected) graph G is a pair G = (V,E) of sets, where the set V
contains all the vertices in the graph and E consists of the edges. An edge is identified
by an unordered pair (v1, v2), v1 ∈ V, v2 ∈ V of adjacent vertices.

A graph is called simple if it only contains edges between distinct vertices and there
exists at most one edge between any two vertices.

In the following we only deal with simple, undirected graphs and therefore use the
word “graph” in that sense. Note that, as in a simple graph every edge is uniquely
identified by the two distinct vertices that it connects, we simply refer to an edge con-
necting vertices v1 and v2 as (v1, v2) instead of assigning each edge a label. Therefore,
(v1, v2) ∈ E represents the fact that graph G = (V,E) contains an edge between vertices
v1 and v2.

23
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Definition 3.2. A tree decomposition of a graph G = (V,E) is a pair (χ,T = (N,F))
where T is a (rooted) tree with nodes N and edges F and χ : N → 2V is a labeling
function assigning for each node n ∈ N a set χ(n) ⊆ V, such that they satisfy the
following properties:

•
⋃

n∈N χ(n) = V
• (v1, v2) ∈ E⇒ ∃n ∈ N : {v1, v2} ⊆ χ(n)
• v ∈ χ(n1) ∧ v ∈ χ(n2) ∧ n3 ∈ path(n1,n2)⇒ v ∈ χ(n3)

The set χ(n) is also called the bag of node n.

The third of these conditions is referred to as the connectedness condition. The
path(n1,n2) function used in that condition returns the set of all tree nodes along the
unique path from n1 to n2.

Example 3.3. Let G be the following graph:

u v w x y z

r1 r2 r3 r4 r5

A tree decomposition for G may look like this:

y, r1, r5

z, r1, r5

z, r1, r2

u, r1, r2

w, x, r5

w, x, r4

v,w, r1

v,w,r3

The tree decomposition above has a width of 2.

Definition 3.4. The width of a tree decomposition is the size of the largest bag occurring
in it, minus one.

The treewidth of a graph G is the minimum width of all possible tree decompositions of
G.
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An intuitive characterization of tree decompositions and treewidth is given by the
so-called robber-cop game as established in [Seymour and Thomas, 1993]: In the graph
the robber occupies a vertex and wants to avoid the cops. To that end he can, at any time,
run from his current vertex to any other vertex in the graph as long as there is a path
connecting the two. However he is not permitted to pass a vertex occupied by a cop.
Cops either occupy a vertex or they fly to another vertex at any given time. The goal
for the cops is to fly to the vertex that the robber currently occupies. However when
the robber sees the cops approaching he will run to another vertex, therefore the only
way for the cops to catch the robber is to occupy all adjacent vertices and then, with
another cop, fly to the vertex that the robber occupies. The treewidth of a graph is then
the minimum number of cops needed to do this, minus one.

3.1.1 Normalization
A distinctly “nice” class of tree decompositions are so-called normalized tree decom-
positions. These exhibit a particularly simple structure and are therefore easy to work
with and simplify the task of developing dynamic-programming algorithms for solving
problems based on such tree decompositions.

Definition 3.5. [Kloks, 1994] A tree decomposition (χ,T) is called normalized or nice
if it satisfies the following properties:

• Every node of the tree decomposition has at most two children.
• If a node n has two children m and p, then χ(n) = χ(m) = χ(p). Node n is then

called a JOIN or BRANCH NODE.
• If n has only one child m, then abs(|χ(n)| − |χ(m)|) = 1.

– If χ(n) ⊂ χ(m), then n is called a FORGET or REMOVAL NODE.
– If χ(m) ⊂ χ(n), then n is called a INTRODUCTION NODE.

• If n has no child nodes, then n is called a LEAF NODE.

Conveniently, normalizing a tree decomposition does not incur any penalties regard-
ing its width:

Lemma 3.6. For a graph G, given a tree decomposition of width k and with n nodes,
one can in O(n) time find a normalized tree decomposition of width k for graph G that
has O(n) nodes.

Proof. (Idea) It can easily be seen that, given a tree decomposition, the properties de-
fined in Definition 3.5 can be satisfied by firstly modifying branch nodes in such a way
that they only have two children (by creating new child branch nodes as long as there
are too many child nodes), and inserting new removal and introduction nodes between



26 CHAPTER 3. TREEWIDTH

nodes whose bags differ by more than one node. This simple procedure yields a nor-
malized tree decomposition. �

Example 3.7. Revisiting the tree of Example 3.3, we can easily adapt the tree decom-
position to the following:

y, r1, r5

r1, r5

r1, r5

z, r1, r5

z, r1

z, r1, r2

r1, r2

u, r1, r2

r1, r5

w, r1, r5

w, r1, r5

w, r5

w, x, r5

w, x

w, x, r4

w, r1, r5

w, r1

v,w, r1

v,w

v,w,r3

As the tree decomposition in Example 3.3, also this tree decomposition has width 2.

3.2 Tree Decomposition Algorithms
In order to find an optimal tree decomposition for a given graph, one can make use of
a number of algorithms. One such approach, capable of computing an optimal tree de-
composition is bucket elimination. A survey and implementation of this approach has
been done in [McMahan, 2004]. Originally based on the Adaptive Consistency algo-
rithm in [Dechter, 2003], it stems from solving constraint satisfaction problems (CSPs).
These problems, represented by a hypergraph, are solved by computing a generalized
hypertree decomposition (which generalizes tree decompositions) and then solving the
original CSP problem on the decomposition. The central idea to obtain a tree decompo-
sition by bucket elimination is the notion of an elimination ordering:
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Definition 3.8. An elimination ordering for a given graph G = (V,E) is an ordering
σ = (v1, . . . , vn) of the n vertices in V.

Given a graph and an elimination ordering, the bucket elimination algorithm de-
scribed in [McMahan, 2004] returns a tree decomposition. The general idea is to remove
a vertex from the graph (placing it and its neighbors in a bag) and then connecting all the
neighbors in the graph, in the end yielding a valid tree decomposition, after appropriate
connections between the bags are made.

In general one tries to compute tree decompositions of small width. Therefore a tree
decomposition whose width equals the treewidth of the graph would be optimal. The
formal decision problem regarding treewidth is defined as follows:

Input: A graph G = (V,E) and an integer k ≥ 1.

Question: Does there exist a tree decomposition for graph G whose width is
less than or equal to k?

Unfortunately the decision problem above is NP-complete [Arnborg et al., 1987]
and therefore it is very hard–and therefore slow–to algorithmically obtain an “opti-
mal” tree decomposition (with optimality being defined in terms of smallest width).
From [Rose, 1972, Koster et al., 2001] it follows that there exists an elimination order-
ing such that the bucket elimination algorithm returns a tree decomposition of optimal
width. However, as the optimal tree decomposition problem is NP-complete and, given
an elimination ordering, the bucket elimination algorithm is polynomial, finding such
an optimal elimination ordering must itself be NP-complete. This has also been shown
in e.g. [Arnborg et al., 1987].

In the light of these negative complexity results, heuristic methods are usually used
to efficiently compute a near-optimal tree decomposition. Such heuristic methods can
among other papers be found in [Bachoore and Bodlaender, 2005, Schafhauser, 2006,
Dermaku et al., 2008, Bodlaender and Koster, 2010].

3.2.1 Elimination Orderings and the Bucket Elimination
Algorithm

The heuristics described here make use of the concept of elimination orderings as dis-
cussed above. To give a more accurate description over the bucket elimination algorithm
that lies at the heart of obtaining a tree decomposition as discussed earlier, we need an
alternative (but equivalent) definition of elimination orderings.

Definition 3.9. Given a graph G = (V,E) with (ordered) vertices {v1, . . . , vn}, an elimi-
nation ordering is a bijective function σ : {1, . . . ,n} → {1, . . . ,n}.
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That is, an elimination ordering is a permutation function, resulting in a reordering
of the vertices of a graph G. We naturally extend the function σ to vertices, where, if
σ : i 7→ j, then σ : vi 7→ v j. If for two vertices vi and v j we have that σ(i) < σ( j), then
we say that vi is lexicographically smaller than v j and v j is lexicographically bigger
than vi.

The algorithm that creates a tree decomposition given an elimination ordering is
called bucket elimination and works in the following way:

Initially a bucket (of vertices) is created for each vertex in the graph G. For each
edge in G, we put both incident vertices into the bag of the lexicographically smaller
one.

After this preparatory step the buckets are processed in the order given by the elim-
ination ordering σ. When the bucket for a node vi (lets call it Bvi) is processed, the set
R = Bvi \ {vi} is copied to the bucket of the lexicographically smallest vertex (say v j) in
R. Finally the buckets Bvi and Bv j are connected by an edge.

After processing every bucket according to the elimination ordering, a tree decom-
position is obtained from the buckets as bags and the edges between the buckets as the
edges in the tree decomposition.

Finding an elimination ordering that, with the algorithm outlined above, yields
an optimal tree decomposition with respect to width is always possible according to
[Clautiaux et al., 2004], as at least one such optimal elimination ordering must always
exist.

Other methods than the bucket elimination algorithm are known and can be used to
obtain a tree decomposition given an elimination ordering, but subsequently we assume
that bucket elimination is used.

In the following we give a short overview over heuristics that have proven to be
usable in practice.

3.2.2 Heuristics for Elimination Orderings

In light of the intractability result for obtaining a “perfect” elimination ordering, we
resort to approximation in order to guarantee good runtime behavior. A multitude of
heuristics (and also exact algorithms) are available to obtain good elimination orderings
for a given graph. An overview of these methods can be found in [Schafhauser, 2006].
The algorithm presented in chapter 6 does not itself specify how a tree decomposition
shall be computed, several existing implementations of heuristic methods have been
used for the implementation described in chapter 6.2. Therefore we will at this point
give a quick overview of the methods used. A more accurate description can be found
in e.g. [Schafhauser, 2006, Dermaku et al., 2008, Bodlaender and Koster, 2010].
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Min-Fill Heuristics

The Min-Fill (MF) heuristics obtains an elimination ordering for graph G in the follow-
ing way:

• Make a copy of G, call it G′.

• Order the vertices v1, . . . , vn as follows:

1. Select the vertex vi that introduces the minimum number of edges into G′

when eliminated, and add it to the elimination ordering.

2. Eliminate vi from G′ and introduce as many edges into G′ as are needed so
that all the neighbors of vi form a clique in G′.

3. If there are vertices left in G′, go to step 1.

• Return the thus obtained elimination ordering for G.

Min-Induced-Width Heuristics

The Min-Induced-Width heuristics obtains an elimination ordering for G based on the
following steps:

• Make a copy of G, name it G′.

• Order the vertices v1, . . . , vn as follows:

1. In G′, contract the edge between a minimum degree vertex vi and one of its
neighbors (say v j) that has minimum degree with respect to the neighbor-
hood of vi.

2. Add vertex vi to the elimination ordering.

3. If there are vertices left in G′, go to step 1.

• Return the thus obtained elimination ordering for G.

Maximum Cardinality Search Heuristics

The Maximum Cardinality Search (MCS) heuristics obtains an elimination ordering for
G based on the following steps:

• Make a copy of G, name it G′.

• Order the vertices v1, . . . , vn as follows:
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1. In G′, add the vertex vi to the elimination ordering that has maximum cardi-
nality in G′.

2. Eliminate vi from G′ using the same method as in the MF heuristics.

3. If there are vertices left in G′, go to step 1.

• Return the thus obtained elimination ordering for G.

3.3 Working with Tree Decompositions
Once a tree decomposition for a given graph is obtained, one can then easily solve many
problems while only considering the information currently available at the given node
(or bag) in the tree decomposition. Usually a uniform approach is used (for normalized
tree decompositions):

1. Process the nodes of the tree decomposition in a bottom-up manner, starting at the
leaf nodes.

2. For each leaf node, consider all possible partial solutions that can be obtained
from the vertices in the corresponding bag. Check that for each of these partial
solutions, no problem constraint is violated, otherwise abandon the partial solu-
tion.

3. For each introduction or removal node, check whether the corresponding vertex
can be introduced/removed, without violating problem constraints. If so, calculate
all new partial solutions from the old one, otherwise abandon the partial solution.

4. For each branch node, merge matching partial solutions, that is, combine the par-
tial solutions of the left and right subtree, if no problem constraints are violated
by doing so.

5. At the root node, check all partial solutions for constraint violations. If there is
one or more of them left after this final check, one or more solutions have been
found.

The approach described above works mainly because of the defining conditions of
tree decompositions: Because every two adjacent vertices must occur in some bag to-
gether, at some point the consequence of their relation in the graph will influence the
(partial) solutions. Because of the connectedness condition, one knows that a vertex,
once removed, will never be encountered again and therefore checking constraint viola-
tions for that vertex is already completed when the vertex is removed.

Based on this approach we get to the possibility of deriving fixed-parameter algo-
rithms based on tree decompositions.



4 Parameterized Complexity

In this chapter the basic notions of parameterized complexity are introduced. The first
section briefly introduces a few basic classical complexity classes. The following sec-
tion deals with the motivation behind parameterizing problems and the implications
that these parameters have for the runtime of algorithms. Later on the notion of fixed-
parameter tractability is defined and fixed-parameter algorithms are briefly discussed.

4.1 Complexity Theory
In this section we briefly introduce the most basic notions of classical complexity theory
in order to have the basis of a comparison to parameterized classes of complexity, as
introduced in the following sections. A more comprehensive overview can be found
in e.g. [Papadimitriou, 1993]. We start of with the defintion of the TIME and NTIME

complexity classes, which are defined by the widely known and acknowledged concept
of deterministic (resp. non-deterministic) Turing machines, which for brevity we do not
restate here.

Definition 4.1. For languages L and a function t : N+
→ N+, the complexity class

TIME(t(n)) is defined as follows:

TIME(t(n)) = {L | ∃ deterministic Turing machine deciding L in O(t(n)) time.}

Definition 4.2. For languages L and a function t : N+
→ N+, the complexity class

NTIME(t(n)) is defined as follows:

NTIME(t(n)) = {L | ∃ non-deterministic Turing machine deciding L in O(t(n)) time.}

From these definitions we can now define the complexity classes P and NP:

Definition 4.3. The complexity class P is defined as follows:

P =

∞⋃
k=0

TIME(nk)

where n represents the length of the input.
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A language or (decision) problem that can be decided in deterministic polynomial
time is therefore said to be a member of the complexity class P. Such a problem is called
tractable.

Definition 4.4. The complexity class NP is defined as follows:

NP =

∞⋃
k=0

NTIME(nk)

where n represents the length of the input.

A language or (decision) problem that can be decided in non-deterministic polyno-
mial time is said to belong to the complexity class NP. If the problem can only be solved
in non-deterministic polynomial time (or more), the problem is said to be intractable.
If in finite time the problem cannot be decided at all it is said to be undecidable. The
fundamental difference between non-deterministic and deterministic polynomial time is
that in non-deterministic polynomial time, a multitude of polynomial-length computa-
tion paths can be explored at the same time, whereas in deterministic polynomial time
only one such path can be explored. Therefore, in order to explore all the paths in deter-
ministic Turing machines, one generally needs exponential time, as a non-deterministic
computation path can, at every computation step, potentially split into multiple new
computation paths.

One usually distinguishes between “easy-to-solve” (tractable) and “easy-to-verify”
(intractable) problems, where “easy” stands for “in less than non-deterministic poly-
nomial time”. For example, given a propositional logic formula in conjunctive normal
form, it is easy to verify that a given interpretation is indeed a model. However, calcu-
lating a model is not.

Note that by definition of the complexity classes P and NP, the following theorem
clearly holds:

Theorem 4.5. P ⊆ NP

Proof. A deterministic Turing machine running in O(t(n)) time has an equivalent non-
deterministic Turing machine running in O(t(n)) time. �

Definition 4.6. The complexity class ΣP
i is defined inductively as follows:

ΣP
0 = P

ΣP
i+1 = NPΣP

i

where NPC is the set of decision problems decidable in polynomial time by a non-
deterministic Turing machine that has access to an oracle for complexity class C.
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A Turing machine with an oracle for some complexity class C can in one computa-
tion step obtain an answer for a decision problem in class C.

In order to define the relation between complexity classes, we define here the con-
cept of reducibility.

Definition 4.7. Let L1,L2 ⊆ Σ∗ be two languages (or problems). We say that L1 reduces
to L2 by a polynomial (many-one-)reduction if and only if there is a function R : Σ∗ →
Σ∗ such that

• For any x ∈ Σ∗, R(x) is computable in polynomial time in the size of x

• x ∈ L1 if and only if R(x) ∈ L2

Definition 4.8. A language or problem L is said to be hard for a complexity class C if
every problem X ∈ C can be reduced to L.

Starting with the complexity class P, for a complexity class C it follows that, by the
above definition, no problem in C can be harder than L, as an algorithm for L can solve
any problem in C. We now define the central concept of completeness:

Definition 4.9. If a language or problem L is a member of a complexity class C (i.e.
L ∈ C), and if L is also hard for C, then L is said to be complete for C.

4.2 Fixed-Parameter Tractability
In this section we give a short overview over parameterized complexity theory and
its core concepts. The interested reader can find good disquisitions on the matter in
[Downey and Fellows, 1999, Flum and Grohe, 2006, Niedermeier, 2006].

4.2.1 Why parameterization?
In traditional complexity theory, the single property that is examined about a problem is
its input size: For a problem in NP, a problem instance of size n can be decided by a non-
deterministic Turing machine in an amount of time that is polynomial in n. Therefore
the only “parameter” that classical complexity theory knows is the problem size. In
practice there are many computationally hard (i.e. intractable) problems that have to be
solved. It turns out however, that, even though the problem is known to be intractable in
general, there are a number of instances for which solving the problem is easy. But still
classical complexity theory tells us that the problem is hard. Parameterized complexity
tries to deal with this seemingly contradictory phenomenon.

Unless P = NP, in order to solve NP-hard problems algorithms need exponential
running time. The idea of parameterized complexity is to find problem-specific parame-
ters of problems, such that the running time of a suitable algorithm can be expressed (in
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big-O notation) as a function of the parameter and the input size, with the underlying
idea that the exponentiality of the running time can be restricted to the parameter and
only the parameter. For relatively “small” values of the parameter, solving the problem
can then be very efficiently done. If such a parameterization exists the problem is said
to be fixed-parameter tractable, as bounding the parameter by some constant yields a
polynomial-time algorithm.

4.2.2 A Parameterized Complexity Class
Fixed-parameter tractability (or FPT, for short) is a complexity class defined as follows
(cf. [Downey and Fellows, 1999]):

Definition 4.10.

FPT = {L | ∃ deterministic Turing machine deciding L in f (k) · nO(1) time}

where n is the input size, k is a problem-specific parameter and f (k) is some computable
function depending only on k.

The main idea of this definition is to exclude problems with runtime nk, for a param-
eter k: The runtime in terms of the input size n only depends on the input size and not
on the parameter.

Consider the problem SATISFIABILITY:

Input: A boolean formula F.

Question: Does there exist a truth assignment for the variables in F so that F
evaluates to true?

Example 4.11. The formula
(x ∨ y) ∧ (x ∨ ¬y)

is satisfiable, e.g. by a truth assignment assigning x the value true and y the value
false.

It is known by Cook’s theorem (cf. [Cook, 1971]), that the SATISFIABILITY problem
is NP-complete and therefore intractable in general. However in practice it turns out that
many instances of the problem are much easier than one would expect in light of this
intractability result. Therefore it is natural to ask if more about the complexity of the
problem can be learned by studying different parameterizations.

One such parameter is the number of variables k used in the formula of length
n = |F|. Independent of the length of the formula, there can only be a maximum number
of 2k truth assignments for the k variables in the formula. This immediately leads to an
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algorithm that checks (in the worst case) for all 2n truth assignments whether F evalu-
ates to true. Such an algorithm has a runtime of O(2k

·n) which gives us fixed-parameter
tractability for the SATISFIABILITY problem. Thus, if we consider the number of vari-
ables in a formula as fixed, we essentially obtain a linear-time algorithm for the problem
(similar results can be obtained for parameterization by the length of the formula, or,
if the formula is in conjunctive normal form, by the number of clauses). Note however
that the above fixed-parameter tractability result for parameterization by the number of
variables is only an illustrative example as it is extremely trivial.

Fixed-parameter algorithms are thus developed to exploit the parameterization of a
problem in such a way that, when the parameter is of small value, the runtime of the
algorithms are favorable. This means that efficient algorithms for solving the problems
can be found, as long as the parameter is small. Another well-known approach to get
efficient algorithms for problems is the use of approximation algorithms or heuristics.
However, there are advantages to using fixed-parameter algorithms:

• Fixed-parameter algorithms always yield optimal solutions.

• Fixed-parameter algorithms have provable upper bounds on the computational
complexity.

Both of the above statements are, in general, not true for heuristics-based algorithms.
However, fixed-parameter algorithms also have a disadvantage and that is the exponen-
tial runtime with regard to the parameter. Therefore, fixed-parameter algorithms are
only efficient as long as the parameter is of a small value, otherwise the exponentiality
quickly becomes prohibitive.

One well-known and very natural parameter for optimization problems is the size of
the solution. For example the classical definition of the VERTEX COVER problem is the
following:

Input: A graph G = (V,E).

Task: Find a minimal subset of vertices C ⊆ V such that each edge in E is
incident to at least one vertex in C.

We can now parameterize the VERTEX COVER problem by its solution set size k.
That means that we consider the size of the solution as part of the input of the prob-
lem. The definition of the parameterized version of the VERTEX COVER problem then
becomes the following:

Input: A graph G = (V,E) and a non-negative integer k.

Task: Find a subset of vertices C ⊆ V with k or fewer vertices such that each
edge in E is incident to at least one vertex in C.
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Observe that the difference to the classical definition is that the parameter (i.e. in this
case the intended solution set size) is known beforehand. With this parameterization,
VERTEX COVER is known to become fixed-parameter tractable (as originally shown in
[Nemhauser and Trotter, 1975]). Note however that this parameterization assumes that
some a-priori knowledge about the solution of the problem is available (i.e. the solution
set size). We will explore another wide-spread parameterization in section 4.3.

By a well-known result in [Bodlaender, 1993a], finding a tree decomposition with
minimal treewidth is itself fixed-parameter tractable when parameterized by solution
size (i.e. bu the treewidth). Recall that this is in general an NP-complete problem.
However, this result does not provide us with an efficient algorithm, as the constant
factors hidden in the big-O notation are quite big. Therefore, simply establishing fixed-
parameter tractability does not necessarily lead to an efficient algorithm.

4.3 Parameterization by Treewidth
As we have seen in chapter 3, given a tree decomposition T, we can for certain problems
obtain algorithms that only use local information at the individual nodes in T to decide
the problem. Using a dynamic programming approach on the tree decomposition (that
is, discarding computation paths as early as possible–i.e. as soon as a problem constraint
violation is discovered) the solution to a (decision) problem can be obtained on the tree
decomposition because of its defining properties.

A simple example (based on a normalized tree decomposition) in this context would
be VERTEX COVER:

• At each leaf node containing the vertices v1, . . . , vl where k is the treewidth and
l ≤ k + 1 consider all the possible combinations of these vertices (i.e. “guess”)
which vertices to place in the vertex cover and which ones not. If there is an
edge between any of the vertices vi in the current bag, discard any combination
of vertices that do not cover that edge. For each combination count the vertices in
the vertex cover and associated that count with the combination.

• At each introduction node (introducing vertex v), for each combination of its child
node create two new copies. To one copy, add v and increase the count by 1. For
both cases individually, check that all edges in the bag are covered.

• At each removal node, simply remove the node from all combinations. If two
combinations coincide, associate the minimum count of the two with the resulting
combination.

• At each join node, simply join coinciding combinations of the two child nodes.
Associate with the resulting combination the sum of the two counters minus the
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overlapping vertices (that is, the vertices of the combination that are currently
visible in the bag).

• After processing the root node, check if there is a combination with its count
smaller than the requested size of the vertex cover. If so, answer “yes”, otherwise
answer “no”.

The above algorithm is a fixed-parameter algorithm for vertex cover when the prob-
lem is parameterized by treewidth: Given a tree decomposition of bounded width k, it
takes a linear amount of time (in the size of the graph) to visit each node of the tree
decomposition. At every node an exponential number of combinations has to be gener-
ated and checked, however the number of combinations is only exponential in the width
of the tree decomposition, giving us an algorithm with runtime 2k

· O(n), which shows
fixed-parameter tractability.

For many problems that can be represented as a whole or in part as a graph such
an approach is feasible. Examples include many problems on graphs (e.g. VERTEX

COVER, DOMINATING SET, MULTICUT, see [Niedermeier, 2006, Pichler et al., 2010]
for more) and other problems like answer set programming (as presented in this the-
sis and also in e.g. [Jakl et al., 2009, Morak et al., 2010]), argumentation problems (as
found for example in [Dvorák et al., 2010]), belief revision (e.g. [Pichler et al., 2009])
and many more. Research in this area is very active and there surely will be more
interesting results in this area in the future.

4.3.1 Courcelle’s Theorem
One very important aspect of parameterization by treewidth is that, in conjunction with
monadic second order logic (as introduced in section 2.3), fixed-parameter tractability
can be shown fairly easily for this parameter. First, we extend the interpretations used
for MSO formulas to graphs.

Making a slight extension to MSO syntax we provide the definition below. We
introduce the formula xy ∈ E to express that (x, y) ∈ E, i.e. that there is an edge between
x and y.

Definition 4.12. We say that a graph G = (V,E) satisfies a given MSO formula, or

G |= ϕ

if and only if all interpretations whose domains D consist of all the vertices and edges
in the graph (i.e. D = V ∪ E) and whose interpretation functions reflect the edges in G
(i.e. xy ∈ E = true if and only if (x, y) ∈ E) satisfy ϕ.

Given this definition we can now state the core result in this field due to Bruno
Courcelle:
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Theorem 4.13. [Courcelle, 1990] Let k ≥ 1 and let ϕ be an MSO formula. Then, given
a graph G and a tree decomposition of width at most k, there is linear-time algorithm
that decides whether

G |= ϕ.

MSO formulas in conjunction with a graph structure can be used to establish fixed-
parameter tractability with respect to treewidth as the parameter. However this result
is seemingly only of theoretical importance as a classification tool due to the fact that
algorithms derived directly from this approach usually have very big factors hidden in
the big-O notation and are therefore unusable in practice.

In order to illustrate this, we provide the following example:

Example 4.14. Given a graph G = (V,E), the fact that G is bipartite can be expressed
using the following MSO-formula:

∃X∃Y∀x(x ∈ V → (x ∈ X ∨ x ∈ Y))∧

∀x∀y((xy ∈ E)→ ¬((x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y)))

and thereby establish fixed-parameter tractability for deciding whether a given graph is
bipartite or not, with respect to the parameter treewidth.
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5 The Algorithm

In this chapter we outline a novel algorithm (“dynASP”) for solving head-cycle free
disjunctive logic programs, using a dynamic-programming approach based on a tree
decomposition of the logic program.

The first section outlines methods to represent logic programs as graphs. Section
5.2 contains the formal definition of the algorithm and the outline of the corresponding
correctness proof.

5.1 Tree Decompositions of Answer Set Programs
In order to utilize tree decompositions for dynamic-programming algorithms, the prob-
lem (or a core part of it) has to be representable as a graph. For logic programs, we al-
ready informally examined the concept of the dependency graph in section 2.4.2 in order
to provide an alternative definition of head-cycle freeness in disjunctive logic programs.
However this concept turns out to be too weak to use for a tree decomposition-based
algorithm. This is due to the fact that program rules are only implicitly represented in
the dependency graph. However in order to evaluate logic programs, it is convenient to
have an explicit representation of the rules as entities. To include these, we here define
the concept of incidence graphs.

Definition 5.1. The incidence graph of a disjunctive logic program Π = (A,R) with
atomsA and rules R is a bipartite graph G = (V,E). G is constructed in the following
way:

• For every atom a ∈ A, add a vertex a to V.

• For every rule r ∈ R, add a vertex r to V.

• For every rule r ∈ R and atom a occurring in the rule, add an edge (a, r) to E.

Example 5.2 illustrates the concept of a incidence graph for a specific program.
Therefore we take another look at the program in Example 2.35.
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Example 5.2. Let P be the program from Example 2.35. We re-state it here for conve-
nience:

r1 = u← v, y; r2 = z← u; r3 = v← w;
r4 = w← x; r5 = x← ¬y,¬z.

From this program we construct the incidence graph as defined in Definition 5.1:

u v w x y z

r1 r2 r3 r4 r5

With the concept of the incidence graph in hand, we can now create a tree decom-
position representing a disjunctive logic program. An example for such a tree decom-
position of the program in Example 5.2 is already provided in Example 3.3.

Definition 5.3. A tree decomposition T = (χ,T) of a logic program Π is a tree decom-
position as defined in Definition 3.2, wherebyT is a tree decomposition of the incidence
graph of Π.

Given such a tree decomposition, it can now intuitively be seen that the principles
for developing algorithms on tree decompositions as laid out in section 4.3 can now be
applied to logic programs with a tree decomposition. Informally, the algorithm follows
the following line of thought:

For each node in the tree decomposition, only consider a part of the program, namely
the part that is induced by the subtree rooted at that node. Consider all possible partial
models in the bag. For each of them, check whether it is an answer set of the reduced
program. If not, disregard that computation path. If yes, continue with this computation
path to the next tree node. Note that partial models are represented only by the atoms and
rules occurring in the bag of a node. However, implicitly they also contain knowledge
about the subtree rooted at that node, hence they represent a partial model of that whole
subtree.

In normalized tree decompositions of logic programs, we now distinguish between
ATOM INTRODUCTION and RULE INTRODUCTION and respectively, ATOM REMOVAL

and RULE REMOVAL nodes, depending on what type of vertex gets introduced or re-
moved.
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5.2 Formal Definition and Correctness
The algorithm described in this section is based on an alternative characterization of
answer sets for head-cycle free disjunctive logic programs. We therefore begin with this
new characterization.

5.2.1 Alternative Characterization of Answer Sets
In the following, let Π = (A,R) be a head-cycle free disjunctive logic program with
atoms A and rules R. Recall Theorem 2.30 which provided a characterization of an-
swer sets for head-cycle free disjunctive logic programs. From this characterization, the
following corollary characterization immediately follows:

Corollary 5.4. Let Π = (A,R) be a grounded head-cycle free disjunctive logic pro-
gram. Then, a set M ⊆ A is an answer set of Π if and only if the following conditions
hold:

1. S satisfies each rule r ∈ R,

2. There exists a partial order E ⊆ (A ∪ R)2 such that for each atom a ∈ M, there
exists a rule r ∈ R where

a) M satisfies B(r),

b) H(r) ∩M = {a},

c) for each atom b ∈ B+(r), b E r, and

d) r E a.

Proof. Let M ⊆ A satisfy both conditions above and let E be the partial order from
Condition 2. By removing all rules fromE, we construct a new partial orderE′ ⊆ A×A.
Then, M clearly satisfies the new condition

2’. there exists a partial order E′ ⊆ A × A such that, for each atom a ∈ M, there
exists a rule r ∈ R such that

a) M satisfies B(r),

b) H(r) ∩M = {a},

c) for each atom b ∈ B+(r), b E′ a.

Now let the total order ≤ on set A be any linear extension of E′. It is then clearly
possible to find a function f : A → {0, . . . , |A|} such that ∀a, b ∈ A : f (a) ≤ f (b) ⇔
a ≤ b. Then f satisfies Condition 2 of Theorem 2.30 and therefore M is an answer set
of Π.
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Conversely, suppose that M is an answer set of Π. By Theorem 2.30 there exists
a function f satisfying Condition 2. This function gives rise to a total order E′ on A.
Since every total order is also a partial order, E′ satisfies Condition 2’ above.

We now construct the partial order E ⊆ (A∪ R)2 by extending E′ in the following
way: For each a ∈ M let r ∈ R be one of the rules satisfying Condition 2’. Then we
add (r, a) and for all b ∈ B+(r) the pair (b, r) to E. Now E satisfies Condition 2 of this
corollary and therefore M satisfies all conditions, which clearly follows from Theorem
2.30. �

Given this corollary, the following clearly follows as well:

Corollary 5.5. Let Π = (A,R) be a grounded head-cycle free disjunctive logic pro-
gram. Then, a set M ⊆ A is an answer set of Π if and only if the following conditions
hold:

1. M satisfies each rule r ∈ R,

2. There exists a set ρ ⊆ R and a partial order E ⊆ (M ∪ ρ)2 such that, M =⋃
r∈ρ(H(r) ∩M) and for all r ∈ ρ

a) M satisfies B(r),

b) |H(r) ∩M| = 1,

c) for each atom b ∈ B+(r), b E r, and

d) for each atom a ∈ H(r) ∩ S, r E a.

Proof. Let M ⊆ A satisfy both conditions above and let ρ be the set of rules and E be
the partial order of Condition 2. E is also a partial order over the set E ⊆ (A∪R)2 which
is needed in Condition 2 of Corollary 5.4. Since M =

⋃
r∈ρ(H(r) ∩M) there clearly

exists for each a ∈ M at least one rule r ∈ ρ such that a ∈ H(r). From |H(r) ∩M| = 1
it follows that H(r) ∩M = {a} and therefore r satisfies Condition 2 of Corollary 5.4.
Hence, M is an answer set of Π.

Now suppose that M is an answer set of Π. By Corollary 5.4 there exists a partial
order E satisfying Condition 2 of Corollary 5.4. Furthermore, for each atom a ∈ S there
exists a rule r ∈ R satisfying this condition. Let ρ ⊆ R be the set containing exactly
these rules (i.e.

∣∣∣ρ∣∣∣ = |M|). Hence, for each a ∈ M there exists exactly one r ∈ ρ with
H(r) ∩M = {a} and therefore M =

⋃
r∈ρ(H(r) ∩ S). Now let E′ be the partial order

obtained by restricting E to the set M ∪ ρ. Then ρ and E′ clearly satisfy Condition 2 of
Corollary 5.5 and hence, M satisfies all conditions of this corollary. �

For the characterization of answer sets that we provide in Theorem 5.7, we first need
the following definition:
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Definition 5.6. For a given head-cycle free disjunctive logic program Π = (A,R), let
M ⊆ A and ρ ⊆ R. Then the derivation graph G = (V,E) induced by M and ρ is given
by V = M ∪ ρ and E is the transitive closure of the edge set E′ = {(b, r) : r ∈ ρ, b ∈
B+(r) ∩M} ∪ {(r, a) : r ∈ ρ, a ∈ H(r) ∩M}.

With this definition, we can now state a novel, alternative characterization for answer
sets in head-cycle free disjunctive logic programs:

Theorem 5.7. Let Π = (A,R) be a grounded head-cycle free disjunctive logic program.
Then, a set M ⊆ A is an answer set of Π if and only if the following conditions hold:

1. M satisfies each rule r ∈ R,

2. There exists a set ρ ⊆ R such that,

• M =
⋃

r∈ρ(H(r) ∩M),

• the derivation graph induced by M and ρ is acyclic,

and for all r ∈ ρ

a) M satisfies B(r), and

b) |H(r) ∩M| = 1.

Proof. Let M ⊆ A satisfy the conditions above. Let ρ be the set of rules of Condition
2 and let G = (V,E) be the derivation graph induced by M and ρ. Since G is acyclic
and E is transitively closed, it gives rise to a partial order E =⊆ V2 = (S ∪ ρ)2 with
aE b⇔ (a, b) ∈ E. From the construction of E in Definition 5.6, it immediately follows
that ρ and E satisfy Condition 2 of Corollary 5.5. Hence, M satisfies both conditions of
that corollary and is therefore an answer set of Π.

Now suppose that M is an answer set. By Corollary 5.5 there exists a set ρ and a
partial order E satisfying Condition 2 of that corollary. Let G′ = (V′,E′) be given by
V′ = M ∪ ρ and E′ = E. Since E is a partial order, G′ is acyclic. Let G = (V,E) be the
derivation graph induced by M and ρ. Then clearly V = V′ and E ⊆ E′, therefore G is
acyclic as well. Hence, ρ satisfies Condition 2 of Theorem 5.7 and M, by Corollary 5.5,
satisfies both conditions. �

From this point on, we shall refer to the set ρ as the proof set for a given answer set
M.
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5.2.2 Algorithm Description
The algorithm for evaluating a head-cycle free disjunctive logic program is given below
in form of a rule-based program. In order to simplify notation we extend the element-of
relation ∈ to graphs in the following way: (x, y) ∈ G is true if graph G contains the edge
(x, y). x ∈ G is true if graph G contains the vertex x.

Before restating the definition in full we briefly sketch the semantics of the used
predicates in the rule-based program that describe the semantics and represent the tree
decomposition.

Without loss of generality, we assume here that the tree decomposition is normal-
ized (see Definition 3.5) and has empty leaf and empty root nodes. This can easily be
achieved by append a sufficient number of removal nodes to the leafs and prepend a
sufficient number of removal nodes to the root node. Clearly this does not lead to an
increase in width.

• The T(n,G,S,DA,DR) predicate represents a tuple for a given node n. Each tuple
represents a possible partial interpretation (i.e. a partial answer set) and consists
of a derivation graph G, a set of satisfied rules S, a set of derived atoms DA and
a set of rules that have already derived an atom DR. The partial interpretation is
implicitly represented by the graph: Each atom that is a vertex in the graph is true
in the interpretation.

• The ∗err(n,G,S, . . . ) predicates represent an error/abort condition. If such a pred-
icate can be derived for a tuple, the tuple is discarded (i.e. the partial interpretation
represented by the tuple turned out not to be a valid partial answer set).

• ~G� represents the transitive closure of a graph G and G1 ∪ G2 is a graph union,
where the resulting graph consists of the vertices and edges of both G1 and G2.

• The child(n,n′) and children(n,n1,n2) predicates represent the structure of the
tree decomposition, where n is the parent and n′,n1,n2 are its immediate children.

• The bag(n, x) predicate represents the bags of a given node n in the tree decom-
position. It can be derived if x is contained in the bag of node n.

• The acyclic(G) predicate can be derived, if the graph G is acyclic.
• The notational aids H(r),B+(r),B−(r) for rules that were introduced in section

2.4.1 correspond directly to the predicates H,B+ and B− in the logic program.

The following paragraphs state the definition of the dynASP algorithm in detail. The
rule-based program is split into six parts, one for each node type in the tree decomposi-
tion.

As input, the algorithm accepts a tuple 〈T ,Π〉 consisting of a head-cycle free dis-
junctive logic program Π and a tree decomposition T of that program. Tree Decom-
position and logic program are encoded as ground facts using the predicates described
above.
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Definition 5.8. The dynASP algorithm does a bottom-up traversal of the tree decom-
position in the following manner:

Leaf node:

T(n,G,S,DA,DR) ← leaf(n),G = (∅, ∅),S = ∅,DA = ∅,DR = ∅.

Atom removal node:

T(n,G \ {x},S,DA \ {x},DR) ← ar(n, x), child(n,n′),T(n′,G,S,DA,DR), x ∈ G, x ∈ DA.
T(n,G,S,DA,DR) ← ar(n, x), child(n,n′),T(n′,G,S,DA,DR), x < G.

Rule removal node:

T(n,G \ {r},S,DA,DR \ {r}) ← rr(n, r), child(n,n′),T(n′,G,S,DA,DR), r ∈ G, r ∈ DR.
T(n,G,S \ {r},DA,DR) ← rr(n, r), child(n,n′),T(n′,G,S,DA,DR), r ∈ S.

Rule introduction node:

T(n,G,S ∪ {r},DA,DR) ← ri(n, r), child(n,n′),T(n′,G,S,DA,DR), bag(n′, x), x ∈ G, x ∈ B−(r).
T(n,G,S ∪ {r},DA,DR) ← ri(n, r), child(n,n′),T(n′,G,S,DA,DR), bag(n′, x), x ∈ G, x ∈ H(r).
T(n,G,S ∪ {r},DA,DR) ← ri(n, r), child(n,n′),T(n′,G,S,DA,DR), bag(n′, x), x < G, x ∈ B+(r).
T(n, ~G′�,S,D′A,D

′

R) ← ri(n, r), child(n,n′),T(n′,G,S,DA,DR),not rierr(n′,G,S, r),
riadapt(G,DR,DA, r,G′,D′A,D

′

R), acyclic(G′).
rierr(n,G,S, r) ← bag(n, x), x ∈ G, x ∈ B−(r).
rierr(n,G,S, r) ← bag(n, x), x < G, x ∈ B+(r).
rierr(n,G,S, r) ← bag(n, x), bag(n, y), x , y, x ∈ G, y ∈ G, x ∈ H(r), y ∈ H(r).
riadapt(G,DA,DR, r,G′,D′A,D

′

R) ← G = (V,E),G′ = (V′,E′),V′ = V ∪ {r},
E′ = E ∪ {(x, r)|x ∈ V, x ∈ B+(r)} ∪ {(r, x)|x ∈ V, x ∈ H(r)},
D′R = DR ∪ {r′|r′ = r, (r′, x) ∈ E′},D′A = DA ∪ {x|x ∈ V, (r, x) ∈ E′}.

Atom introduction node:

T(n,G,S′,DA,DR) ← ai(n, a), child(n,n′),T(n′,G,S,DA,DR),not ainerr(n′,G,S, a),
ainadapt(G,S, a,S′).

T(n, ~G′�,S′,D′A,D
′

R) ← ai(n, a), child(n,n′),T(n′,G,S,DA,DR),not aiperr(n′,G,S,DR, a),
aipadapt(G,S,DA,DR, a,G′,S′,D′A,D

′

R), acyclic(G′).
ainerr(n,G,S, a) ← bag(n, r), r ∈ G, a ∈ B+(r).
aiperr(n,G,S,DR, a) ← bag(n, r), r ∈ G, a ∈ B−(r).
aiperr(n,G,S,DR, a) ← bag(n, r), r ∈ G, r ∈ DR, a ∈ H(r).
ainadapt(G,S, a,S′) ← S′ = S ∪ {r|r < G, a ∈ B+(r)}.
aipadapt(G,S,DA,DR, a,G′,S′,D′A,D

′

R) ← G = (V,E),G′ = (V′,E′),S′ = S ∪ {r|r < G, a ∈ B−(r)},V′ = V ∪ {a},
E′ = E ∪ {(a, r)|r ∈ V, a ∈ B+(r)} ∪ {(r, a)|r ∈ V, a ∈ H(r)},
D′A = DA ∪ {a′|a′ = a, (r, a) ∈ E′},D′R = DR ∪ {r|r ∈ V, (r, a) ∈ E′}.

Branch node:

T(n, ~G�,S,Dl
A ∪Dr

A,D
l
R ∪Dr

R) ← branch(n), children(n,nl,nr),T(nl,Gl,Sl,Dl
A,D

l
R),T(nr,Gr,Sr,Dr

A,D
r
R),

agree(Gl,Gr,Dl
R,D

r
R),G = Gl ∪ Gr,S = Sl ∪ Sr, acyclic(G).

agree(G1,G2,D1,D2) ← G1 = (V1,E1),G2 = (V2,E2),V1 = V2,
{r|r ∈ D1, r ∈ D2, (r, a) ∈ G1, (r, a) ∈ G2, a ∈ H(r)} = D1 ∩D2.
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5.2.3 Correctness

In order to prove the correctness of the algorithm given in Definition 5.8, we introduce
the following notation: For a tree decomposition T = (χ,T) with tree T rooted at node
nroot, we denote that a node n is part of T by writing n ∈ T. Furthermore we use the
shorthands χA(t) = χ(t) ∩ A and χR(t) = χ(t) ∩ R to denote the atoms and rules in
a bag respectively. We denote by Tn the subtree of T rooted at node n ∈ T. For a
logic program Π, we denote by Πn = (An,Rn) the subprogram induced by Tn, i.e.,
An =

⋃
t∈Tn

(χA(t)) and Rn = {rn : r ∈
⋃

t∈Tn
(χR(t))}, where rn denotes the rule r after

removing every head and body atom not occurring inAn.
The algorithm contains the crucial predicate T(n,G,S,DA,DR) with the following

intended meaning: For a program Π = (A,R), n denotes a node in the tree decomposi-
tion of Π. G = (V,E) is a derivation graph where V ⊆ χ(n) and V represents a partition
of χ(n), such that every atom in V is part of an answer set and every rule in V is part
of a corresponding proof set. S and DR denote subsets of χR(n). DA denotes a subset
of χA(n). For all values of n,G,S,DA,DR, the ground fact T(n,G,S,DA,DR) shall be
true for a given HCF logic program Π, if and only if the following property holds:

Property 1. There exists an extension V′ of the partition V toAn ∪ Rn such that V′ ∩
χ(n) = V, such that the following conditions hold for the sets M = V′ ∩ An of atoms
and ρ = V′ ∩ Rn or rules:

1. M satisfies each rule r ∈ (Rn \ χR(n)) ∪DR ∪ S

2. DA ∪ (M \ χA(n)) =
⋃

r∈ρ(H(rn) ∩M)

3. The derivation graph G induced by M and ρ is acyclic,

4. for all r ∈ ρ

• M satisfies the body of rn

• |H(rn) ∩M| ≤ 1

5. for all r ∈ DR ∪ (ρ \ χR(n)), |H(rn) ∩M| = 1

From this point onward, we may for simplicity also refer to the extension defined
above also as “an extension of G”, instead of “an extension of V”.

Lemma 5.9. The T-predicate has the intended meaning above, i.e. for all values of
n,G,S,DA,DR, the ground fact T(n,G,S,DA,DR) can be derived for a given HCF
logic program Π, if and only if Property 1 holds.
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Proof Sketch. We have to show that the T-predicate computed by the program in Defi-
nition 5.8 has the intended meaning. This is shown by structural induction over T . We
at this point only sketch the most important details of the proof.

Base case For every (empty) leaf node n exactly the fact T(n, (∅, ∅), ∅, ∅, ∅) is de-
rived. It is easy to verify, that Property 1 holds for this tuple, as every extension is also
empty. Conversely, as the leaf node n is empty (i.e. χ(n) = ∅), the only possible value
for all of G,S,DA,DR is the empty set. If for these values Property 1 holds, the fact
T(n, (∅, ∅), ∅, ∅, ∅) is clearly derived by definition of the algorithm.

Induction step–“only if”-direction: Suppose that for arbitrary values of n,G,S,DA

and DR, the ground fact T(n,G,S,DA,DR) was derived. To show that Property 1 then
holds, we distinguish between the five different cases of node types in the tree decom-
position.

1. Atom removal node n with removal of atom a: Let the fact T(n,G,S,DA,DR)
be derived and n′ be the child of n. Then also T(n′,G′,S,D′A,DR) with G =
G′ \ {a} and DA = D′A \ {a} must have been derived in the program. By induction
hypothesis, for that fact there must then be an extension (M ∪ ρ) of G′ as defined
in Property 1. As howeverAn = An′ and Rn = Rn′ , this extension then is also a
desired extension of G: Conditions 1, 3, 4 and 5 are clearly satisfied, and the set
of atoms used in Condition 2 does not change.

2. Rule removal node n with removal of rule r: Let the fact T(n,G,S,DA,DR) be
derived and n′ be the child of n. Then also T(n′,G′,S′,DA,D′R) with G = G′ \{r},
S = S′\{r} and DR = DR\{r}must have been derived in the program. By induction
hypothesis, for that fact there must then be an extension (M ∪ ρ) of G′ as defined
in Property 1. As howeverAn = An′ and Rn = Rn′ , this extension then is also a
desired extension of G: Conditions 2, 3 and 4 are clearly satisfied, and the set of
rules used in Conditions 1 and 5 does not change.

3. Atom introduction node n with introduction of atom a: Let T(n,G,S,DA,DR) be
derived and n′ be the child of n. Then, when compared to n′, either atom a has
been added to G or not.
In case of the latter, a fact of the form T(n′,G,S′,DA,DR) must also have been
derived and by induction hypothesis Property 1 holds for that fact, i.e. there exists
an extension (M∪ ρ) of G for that fact. This extension is also a desired extension
for T(n,G,S,DA,DR): Conditions 3, and 5 are clearly satisfied. Because of the
connectedness condition of the tree decomposition, the set of atoms in Condition
2 does not change, as a does not occur in any descendant of n, and therefore
the condition is satisfied. Condition 1 is satisfied, as, by the definition of the
algorithm (i.e. by the definition of the predicate ainadapt), S′ is extended to S by
adding all rules of the current bag that are satisfied by setting a to false (that is,
not adding it to G). Finally, Condition 4 is satisfied as the ainerr predicate would
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have prevented derivation if setting a to false would have resulted in a rule in G
not being satisfied.
In the case that a has been added to G, a fact of the form T(n′,G′,S′,D′A,D

′

R)
must have been derived for which by induction hypothesis Property 1 holds and
thus there exists an extension (M′

∪ρ) of G′. From this we construct an extension
M ∪ ρ of G with M = M′

∪ {a}. This extension indeed satisfies all the conditions
of Property 1: By definition of the algorithm, G is constructed from G′ by adding
those edges of the derivation graph that include atom a. Also, G is acyclic which
is asserted by the use of the predicate acyclic. Therefore Condition 3 holds. By
definition of the predicate aipadapt, D′A = DA \ {a}, DR is constructed from D′R
by adding all rules in G′ with a ∈ H(rn) and S is constructed from S′ by adding
all rules not in G′ whose body is satisfied by a. From this construction it clearly
follows that Conditions 1 and 2 are satisfied by M and ρ. Finally, Conditions 4
and 5 are satisfied, as the definition of the aiperr predicate asserts that each rule
derives at most one atom and all rules in G are still satisfied after setting atom a
to true.

4. Rule introduction node n with introduction of rule r: The proof for rule introduc-
tion nodes generally follows the approach used in the proof for atom introduction
nodes, distinguishing between the cases that r is added to the graph or not and
making use of the connectedness condition of tree decompositions, by which it
can be assured that r does not occur in the subtree rooted at n (excluding n). The
proof itself is tedious but straightforward, therefore we omit giving details here.

5. Branch node n: Let the fact T(n,G,S,DA,DR) be derived and nl,nr be the chil-
dren of n. Then the factsT(nl,Gl,Sl,Dl

A,D
l
R) andT(nr,Gr,Sr,Dr

A,D
r
R) must have

been derived in a previous step for nl and nr. By induction hypothesis, there then
exist extensions (Ml ∪ ρl) of Gl and (Mr ∪ ρr) of Gr satisfying Property 1. From
these two extensions we construct an extension (M ∪ ρ) for T(n,G,S,DA,DR),
such that M = Ml ∪Mr and ρ = ρl ∪ ρr. This extension also satisfies the prop-
erty: G is constructed from Gl and Gr by forming a union over those two graphs.
Predicate acyclic of the algorithm definition asserts that G is acyclic and predi-
cate agree asserts that no two atoms are true in the same rule head. Therefore
Condition 3 is satisfied. As the algorithm sets S = Sl ∪ Sr, DA = Dl

A ∪ Dr
A and

DR = Dl
R∪Dr

R, it can be checked that Conditions 1, 2 and 4 also hold for (M∪ρ).
Given the earlier established fact, that it is assured that (as established earlier) no
rule head has more than one true atom and the fact that Condition 5 was already
true for both (Ml ∪ ρl) and (Mr ∪ ρr), it is easy to see that Condition 5 also holds
for (M ∪ ρ).

Induction Step–“if”-direction (idea): For this direction we start with arbitrary val-
ues of n,G,S,DA,DR and assume that Property 1 holds. We have to show that then the
ground fact T(n,G,S,DA,DR) is indeed derived in the program. Again this can be done
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by distinguish between the five different cases of node types in the tree decomposition.
By a number of subsequent case distinctions the “if”-direction can then be shown for
each of these nodes. As the proof is straightforward but lengthy we will not state it here
explicitly, but state the overall idea:

The general approach for removal nodes n to verify that all the conditions of Prop-
erty 1 are satisfied for the derived fact of child n′ and then by induction hypothesis
construct from it the fact T(n,G,S,DA,DR). For introduction nodes, the same basic
principle is used but making use of the connectedness condition of the tree decomposi-
tion. �

Theorem 5.10. The program given in Definition 5.8 decides the consistency problem
for head-cycle free answer set programs, i.e. the ground fact T(root, (∅, ∅), ∅, ∅, ∅) can
be derived if and only if the input 〈T ,Π〉 encodes a head-cycle free disjunctive logic
program with at least one answer set, and a corresponding tree decomposition.

Proof. By Lemma 5.9, the ground fact T(nroot, (∅, ∅), ∅, ∅, ∅) is derived if and only if it
satisfies Property 1. By the definition of the property there then exist sets M ⊆ Anroot

and ρ ⊆ Rnroot that satisfy conditions 1 and 2 of Lemma 5.9. From Theorem 5.7 it
then follows immediately that M then is an answer set which proves Theorem 5.10, as
Property 1 and the characterization of answer sets in 5.7 coincide for empty root nodes
in a tree decomposition. �

5.3 Example

Example 5.11. Let P be the following logic program:

r1 = a← b; r2 = b;

From this program we construct the incidence graph as defined in Definition 5.1:

a b

r1 r2

A tree decomposition for this graph is given below:
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root: ∅

n1: r1

n2: r1, b

n3: r1, b

n4: r1

n5: r1, a

n6: a

n7: ∅

n8: r1, b

n9: b

n10: r2, b

n11: b

n12: ∅

For this example the algorithm above generates the following predicates T:

Node Derived Predicates
n7 T(n7, (∅, ∅), ∅, ∅, ∅)
n6 T(n6, (∅, ∅), ∅, ∅, ∅), T(n6, ({a}, ∅), ∅, ∅, ∅)
n5 T(n5, (∅, ∅), ∅, ∅, ∅), T(n5, ({a}, ∅), {r1}, ∅, ∅), T(n5, ({r1}, ∅), ∅, ∅, ∅),

T(n5, ({a, r1}, {(r1, a)}), ∅, {a}, {r1})
n4 T(n4, (∅, ∅), ∅, ∅, ∅), T(n4, ({r1}, ∅), ∅, ∅, ∅), T(n4, ({r1}, ∅), ∅, ∅, {r1})
n3 T(n3, (∅, ∅), {r1}, ∅, ∅), T(n3, ({r1, b}, {(b, r1)}), ∅, ∅, ∅),

T(n3, ({r1, b}, {(b, r1)}), ∅, ∅, {r1}), T(n3, ({b}, ∅), ∅, ∅, ∅)
n12 T(n12, (∅, ∅), ∅, ∅, ∅)
n11 T(n11, (∅, ∅), ∅, ∅, ∅), T(n11, ({b}, ∅), ∅, ∅, ∅)
n10 T(n10, (∅, ∅), ∅, ∅, ∅), T(n10, ({b}, ∅), {r2}, ∅, ∅), T(n10, ({r2}, ∅), ∅, ∅, ∅),

T(n10, ({b, r2}, {(r2, b)}), ∅, {b}, {r2})
n9 T(n9, ({b}, ∅), ∅, ∅, ∅), T(n9, ({b}, ∅), ∅, {b}, ∅)
n8 T(n8, ({r1, b}, {(b, r1)}), ∅, ∅, ∅), T(n8, ({b}, ∅), ∅, ∅, ∅),

T(n8, ({r1, b}, {(b, r1)}), ∅, {b}, ∅), T(n8, ({b}, ∅), ∅, {b}, ∅)
n2 T(n2, ({r1, b}, {(b, r1)}), ∅, ∅, ∅), T(n2, ({r1, b}, {(b, r1)}), ∅, ∅, {r1}),

T(n2, ({r1, b}, {(b, r1)}), ∅, {b}, ∅), T(n2, ({r1, b}, {(b, r1)}), ∅, {b}, {r1}),
T(n2, ({b}, ∅), ∅, ∅, ∅), T(n2, (∅, ∅), ∅, ∅, ∅)

n1 T(n1, ({r1}, ∅), ∅, ∅, ∅), T(n1, ({r1}, ∅), ∅, ∅, {r1}), T(n1, (∅, ∅), ∅, ∅, ∅)
root T(root, (∅, ∅), ∅, ∅, ∅)

As the program of this example has an answer set {a, b}, the empty T-predicate is
derived at the root node, and the algorithm answers the consistency problem with “yes”,
as expected.



6 From Theory to Practice

In this chapter the implementation of the algorithm described in chapter 5 is laid out.
The implementation is done on the basis of a purpose-built framework (called SHARP1)
for working with tree decompositions.

6.1 The SHARP Framework
The basic idea of the SHARP framework (or just SHARP for short) essentially lies in
the fact that to develop paramaterized (or fixed-parameter) algorithms for problems one
usually follows a uniform approach:

1. From the input problem, obtain the parameterized representation of the problem.
2. Using the fixed-parameter algorithm, obtain the solution.

This can be narrowed down even further when considering only a specific parame-
terization: Treewidth. The algorithm then basically follows the following steps:

1. From the input problem, obtain a tree decomposition with a specific treewidth,
representing the parameterized version of the problem.

2. On the thus obtained tree decomposition, do a traversal of the tree in order to
check for a solution.

3. Depending on what type solution is sought (i.e. in our case enumeration of stable
models for a given logic program), do a second traversal of the tree, generating
only the relevant solutions in the process.

The algorithm laid out in chapter 5 follows this pattern. Therefore, choosing to
implement the algorithm in a purpose-built framework specifically designed for this
task was a natural choice. SHARP provides a set of base classes that provide the means
to focus on implementing the actual algorithm without having to deal with the problems
of data management, flow control, etc. which usually is a time-consuming and tedious
task.

The following section provides a general overview over how to implement algo-
rithms based on tree decompositions in the SHARP framework.

1Smart Hypertree-Decomposition-based Algorithm fRamework for Parameterized Problems

53
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6.1.1 Framework Description
Parsing

Parsing the input usually is the first thing that needs to be done. The framework allows
much freedom at this point as different problems usually tend to have different input for-
mats therefore not much common ground could be found to provide base functionality
out of the box.

The usual method (which is currently used in all existing algorithm implementation)
is to write a lexer and parser with lex2 and yacc3 set of tools.

Also, if possible one might run certain preprocessing and pre-optimization subrou-
tines at this point (e.g. redundancy reduction/elimination, consolidation, etc.).

Provided Parameters

The parser should be able to start work with two parameters: A stream which yields the
entire input when read and a pointer to the Problem class (see section 6.1.4).

In order to work with the framework, the parser has to store the input in such a way
that later on the graph representation of the problem can be constructed from it. This can
either be in form of a graph itself or in the form of an intermediate data structure more
suited for working with later on in the algorithm. Usually this is done by implementing
the necessary methods in the problem class and calling them from the parser class,
whereby all the input data is stored in the Problem class.

6.1.2 Tree Decomposition
Once the input is read, the goal is to obtain the parameterized version of the problem
or, in other words, to generate a tree decomposition of the graph representation of the
input. This is done in three steps:

1. Obtain the graph representation of the input.
2. Decompose the thus created graph into a tree.
3. Normalize the tree decomposition for easier use later on in the algorithm.

Each of these steps is discussed in detail in the following sections.

Graph Representation

In order to use the SHARP framework, it must be possible to represent the problem (or
at least certain aspects thereof) by a graph. This usually is the case when the problem

2http://dinosaur.compilertools.net/lex/index.html
3http://dinosaur.compilertools.net/yacc/index.html

http://dinosaur.compilertools.net/lex/index.html
http://dinosaur.compilertools.net/yacc/index.html
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consists of entities and relations between entities. Except the problem of solving answer
set programs that is discussed in depth in this thesis, following is a short list of example
problems that can be implemented in the framework:

• Argumentation problems: Here the vertices are the arguments and the attack rela-
tion directly corresponds to the edges in the graph (see [Dvorák et al., 2010]).

• Multi-Cut problems: Here the input is already a graph and therefore can be di-
rectly used for the tree decomposition step (see [Pichler et al., 2010]).

• Satisfiability problems: Given a propositional logic formula in conjunctive normal
form, one can compute an incidence graph similar to the one defined in section
5.1.

The graph representation in the framework is represented by the Hypergraph
class (the framework is actually implemented for hypergraphs and hypertree decom-
positions). This implementation is a straight-forward approach as the Hypergraph
class consists of two collections, one for the vertices and one for the edges. In order to
fill the Hypergraph class so that the framework can work with it, one has to instan-
tiate the Node class for each vertex and the Hyperedge class for each edge between
them. The following is an example, instantiating a graph that has two vertices and one
edge that connects them.

Listing 6.1: Example of a graph with two nodes and one edge.
Hypergraph *hg = new Hypergraph();
Node *a = new Node(1, 1), *b = new Node(2, 2);
Hyperedge *e = new Hyperedge(1, 1);
e->insNode(a); e->insNode(b); a->insEdge(e); b->insEdge(e);
a->updateNeighbourhood(); b->updateNeighbourhood();
e->updateNeighbourhood();
hg->iMyMaxNrOfNodes = 2;
hg->iMyMaxNrOfEdges = 1;

However, in order to avoid having to implement the tedious subroutine of moving
vertices and edges into the Hypergraph class, the framework provides a ready-to-use
method doing exactly that for the case that the graph representation of the problem is
indeed a graph (i.e. each edge connects exactly two vertices). This (static) method can
be found in the Problem class and has the following signature:

Listing 6.2: The createGraphFromSets method signature.
Hypergraph *Problem::createGraphFromSets

(VertexSet, EdgeSet);

The VertexSet and EdgeSet data types are defined as an STL set of integers
(i.e. std::set<int>) and an STL map from integers to integers (std::map<int,
int>) whereby each integer represents the internal number of the corresponding vertex
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in the graph. This internal number should be defined during the parsing process as it
is the only way to map the labels in the tree decomposition back to the corresponding
vertices.

Decomposition

The tree decomposition step turns the graph representation of the problem (as provided
in the Hypergraph class) into a tree, trying to minimize the treewidth in the process.
As finding a tree decomposition with minimal width is in itself an NP-hard problem
(as discussed in chapter 3), this is done by a heuristic to speed things up. There-
fore the generated tree will not necessarily have minimal width. The specific heuris-
tics currently implemented can be found in [Dermaku et al., 2008]. Standalone im-
plementations can be obtained from http://www.dbai.tuwien.ac.at/proj/
hypertree/downloads.html.

The tree decomposition routine yields an instance of the Hypertree class which
represents one of the possible trees corresponding to the given graph.

Normalization

In the normalization step the previously obtained Hypertree class is transformed into
an instance of the ExtendedHypertree class which provides additional methods
for easily accessing the bags in the tree decomposition. During this conversion the tree
decomposition is normalized as discussed in section 3.1.1.

6.1.3 Algorithm Implementation

Walking the Tree

This is where the core algorithm is executed. The AbstractAlgorithm class rep-
resents a tree decomposition-based algorithm. Recall that in a normalized tree decom-
position there are only four types of nodes in the tree decomposition and only four
operations need to be implemented for the following types of nodes. See chapter 3.3 for
details of the general approach.

The Algorithm Class

The algorithm has to specify actions taking place when each of these node types is
encountered. Listing 6.3 shows the declaration of the algorithm class as seen in the
corresponding C++ header file. In order to implement an algorithm in the SHARP
framework, one has to implement the five purely virtual (i.e. abstract) methods as seen
in the listing.

http://www.dbai.tuwien.ac.at/proj/hypertree/downloads.html
http://www.dbai.tuwien.ac.at/proj/hypertree/downloads.html
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Listing 6.3: The AbstractAlgorithm class header.
class AbstractAlgorithm
{
public:

AbstractAlgorithm(Problem *problem);
virtual ~AbstractAlgorithm();

protected:
Instantiator *instantiator;
Problem *problem;

public:
void setInstantiator(Instantiator *instantiator);
Solution *evaluate(const ExtendedHypertree *root);

protected:
virtual Solution *selectSolution(

TupleSet *tuples,
const ExtendedHypertree *root) = 0;

virtual TupleSet *evaluateLeafNode
(const ExtendedHypertree *node) = 0;

virtual TupleSet *evaluateBranchNode
(const ExtendedHypertree *node) = 0;

virtual TupleSet *evaluateIntroductionNode
(const ExtendedHypertree *node) = 0;

virtual TupleSet *evaluateRemovalNode
(const ExtendedHypertree *node) = 0;

TupleSet *evaluateNode
(const ExtendedHypertree *node);

};

The evaluate*Node methods represent the actions the algorithm takes when
encountering one of the four node types. The framework automatically calls the correct
method when the evaluateNode method is called for a node.

Tuples and Possible Worlds

In order to pass data calculated in one node on to the next one, the concept of tuples
is introduced: One Tuple instance represents a possible world for a particular node.
Basically a bottom-up tree decomposition-based algorithm calculates at each node all
the possible worlds for that node by applying incremental operations to all the possible
worlds of its child node(s). All “impossible” worlds are simply omitted or eliminated
which results in a classical dynamic programming algorithm.

As the Tuple data structure varies strongly from algorithm to algorithm, one needs
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to derive the Tuple class and define the data structures needed for each tuple (i.e.
each possible world of the specific algorithm). As an example, one might consider
an algorithm for the CNF-SATISFIABILITY problem, given by a PL0-formula in
conjunctive normal form, where each conjunct is called a clause and represented by its
incidence graph. For this problem each tuple just contains the set of positive atoms,
the set of negative atoms and the set of clauses, as these three sets suffice to represent
a possible world in a node (as the bags of the tree-nodes would contain a subset of the
atoms and a subset of the clauses of the original problem). Note that the set of negative
variables could also be stored implicitly as the difference of the variables in the Node
and the positive variables.

Usually the information that is stored in the Tuple class is enough to calculate an
answer for the decision problem (i.e. answer “yes” or “no”). However, usually one also
wants to actually find one or more solutions to the problem (i.e. in case of the CNF-
SATISFIABILITY problem, one wants to not only know that the input formula is
satisfiable, but also what all the satisfying truth assignments look like). In order to do
just that, the concept of a Solution is introduced.

Solution and SolutionContent classes

Each Tuple in a node represents a possible world from which one or more partial–
partial in the sense that one node only represents a part of the whole problem–solution
to the problem can be generated. However calculating all (partial) solutions during
the bottom-up traversal would ultimately lead to an exponential running time for hard
problems which is what we want to avoid. Also many of these partial solutions would
never be needed again as the corresponding Tuple may at some point be eliminated.
Therefore the SHARP framework provides the Solution and SolutionContent
classes. Again the structure of a solution to the problem depends on the problem, there-
fore one has to define the data structure for the solutions. This is done by deriving
the SolutionContent class. One instance of the SolutionContent class repre-
sents one or more partial solutions associated with a Tuple instance (i.e. with a possible
world).

The framework already provides ready-made derived SolutionContent classes
for some common solution types (namely Enumeration, Counting and Boolean solution
types). However, new derived SolutionContent classes may be implemented as
needed. Each SolutionContent must provide implementations for the three (idem-
potent) merging operations:

• Union: When by modifying the Tuple instances from a child node (i.e. in
an introduction or removal node) after modification two Tuple instances co-
incide, their associated SolutionContent instances are merged using the
calculateUnion method.
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• CrossJoin: When in a branch node a Tuple instance of the left child and right
child are joined, their associated SolutionContent instances are merged us-
ing the calculateCrossJoin method.

• AddDifference: When in an introduction node a Tuple instance is modified by
incorporating the introduced vertex, its associated SolutionContent instance
incorporates the same vertex using the calculateAddDifference method.

All these operations can be triggered by calling the appropriate method of the pro-
vided Instantiator class instance associated with the algorithm. This class han-
dles SolutionContent instantiation and also ensures lazy evaluation of solutions if
needed.

Skeleton Implementation

Once the Tuple class is derived from and the algorithm-specific Tuple is defined,
one can start implementing the respective node evaluation methods. For a bottom-up
traversal, the implementation usually takes the form of listing 6.4 (here the case of an
introduction node is taken as an example).

Listing 6.4: Generic skeleton for implementing the algorithm methods.
TupleSet *SomeAlgorithm::
evaluateIntroductionNode(const ExtendedHypertree *node)
{
// call this method first to do a bottom-up traversal
TupleSet *base = this->evaluateNode(node->firstChild());

// instantiate the new Tuple set for this node
TupleSet *ts = new TupleSet();

for(TupleSet::iterator it = base->begin();
it != base->end(); ++it)

{
SomeTuple &told = *(SomeTuple *)it->first;

// calculate the new Tuple based on the
// old one and the node type/difference
// NOTE: this is where the actual code goes
SomeTuple &tnew = modify(told, node);

// incorporate the change into the solution
// by calling the appropriate method of the
// Instantiator instance
// NOTE: This is only an example, your code
// may call other Instantiator methods
Solution *snew = this->instantiator->

addDifference(it->second,
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node->getDifference());

// try to insert the new Tuple into the set
pair<TupleSet::iterator, bool> result =

ts->insert(TupleSet::value_type(
&tnew, snew));

// if the very same Tuple is already contained
// in the Tuple set, merge the solutions using
// the Union operation, then insert it instead
// of the old one
if(!result.second)
{

Solution *sold = result.first->second;
ts->erase(result.first);
ts->insert(TupleSet::value_type(&tnew,

this->instantiator->combine
(Union, sold, snew)));

}
}

// free up some memory, old Tuples not needed anymore
delete base;

// return the new Tuple set
return ts;
}

After evaluating the last node (i.e. the root node of the decomposition), the method
selectSolutions is called. This method should simply check all TupleSets and re-
turn the Union (using the Instantiator) of all solutions that belong to valid tuples.

6.1.4 Pulling it all together

Now that we have all the principal components to run our algorithm, the only thing that
still lacks is a class that provides the necessary program flow control (i.e. that determines
when to do what and in which order). In order to do this, the framework provides the
Problem class:

The Problem Class

The Problem class is provided as a base class by the SHARP framework and handles
the earlier mentioned task of flow control. The Problem class also acts as the interface
to the “outside world” such that it provides simple methods to read a problem instance
and generate a solution for it.
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For each new problem the framework should handle, the Problem class needs to
be derived from (i.e. one may have an AnswerSetProblem class for answer set pro-
grams and a SatisfiabilityProblem class for the SATISFIABILITY problem).
Each one of these derived classes then may use multiple different parsers (i.e. for differ-
ent input formats of the same problem) and different tree decomposition algorithms

In order to implement a Problem class, one needs to implement three methods:

1. The parse method: This method should call the parser (if there is one) and store
the problem in an internal data format, which can be defined as needed (i.e. private
fields in the Problem class, etc.).

2. The preprocess method: This method should perform preprocessing tasks on
the problem stored in the internal data format.

3. The buildHypergraphRepresentationmethod: This method should con-
vert the internal representation of the problem to an instance of the Hypergraph
class, as discussed in section 6.1.2.

The Problem class must be instantiated by passing as a parameter in the construc-
tor an instance of the AbstractAlgorithm class that should be used to solve the
problem. Once this is done and the methods discussed above are implemented, the
Problem class is ready for use and will use the specified algorithm to solve the prob-
lem read by the parse method. This is done by calling the calculateSolution
method of the Problem class. This method handles the program flow. Its (for the sake
of readability simplified) definition is provided in listing 6.5.

Listing 6.5: Definition of the parse method of the Problem class (simplified).
Solution *Problem::calculateSolution(Instantiator *inst)
{

this->parse();
this->preprocess();

Hypergraph *hg =
this->buildHypergraphRepresentation();

H_BucketElim be;
Hypertree *ht =

be.buildHypertree(hg, BE_MIW_ORDER);

ht = new ExtendedHypertree(ht);
((ExtendedHypertree *)ht)->normalize();

this->algorithm->setInstantiator(inst);
return this->algorithm->

evaluate((ExtendedHypertree *)ht);
}
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Obviously this method does what is expected in order to run the whole algorithm
from parsing to solution generation. First, the parser is started, then, after preprocessing,
the hypergraph representation is built, which is then decomposed into a hypertree and
subsequently normalized, after which the actual algorithm is run using the provided
Instantiator instance.

As discussed in section 6.1.3, the Instantiator instance that is used by the al-
gorithm determines which SolutionContent class will get instantiated. Therefore,
by just calling the calculateSolution method of the Problem class with differ-
ent Instantiator instances, one can easily specify what the solution should look
like (i.e. a call with an Instantiator that creates boolean SolutionContent in-
stances, only a yes/no answer is provided, whereas when the Instantiator creates
CountingSolutionContent instances, the solution yields a number–counting for
example the number of answer sets).

6.2 Implementation of the dynASP Algorithm
The “dynASP” algorithm is a novel dynamic programming-based algorithm for solv-
ing ground answer-set programs (that is, for determining the stable models of such a
program). Based on a tree decomposition of the incidence graph of the program, the
algorithm does a bottom-up traversal of said tree decomposition, checking whether a
solution to the program exists and if it does, output either just “yes”, or count the num-
ber of stable models, or enumerate the stable models. A first prototype of this imple-
mentation was presented at JELIA 2010 (see [Morak et al., 2010]). Generally, solving
disjunctive logic programs under stable semantics is known to be a hard problem (as
discussed in chapter 2). However it is known to be fixed-parameter tractable and a first
FPT-algorithm was published in [Jakl et al., 2009].

As an example, take the program from Example 2.35.
This program has an incidence graph equal to the one in Example 5.2, and a tree

decomposition for this graph is given in Example 3.3. The (simplified) implementation
of the algorithm is described in the following sections. Atoms in the logic program are
referred to as “variables” in the code.

6.2.1 Implementing the Problem Class

Listing 6.6: Definition of the DatalogProblem class (simplified).
typedef Vertex Rule;
typedef Vertex Variable;
typedef VertexSet RuleSet;
typedef VertexSet VariableSet;
typedef std::map<Rule, std::map<Variable, bool> > SignMap;
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typedef std::vector<VariableSet> HeadMap;

class DatalogParser;
class DatalogProblem : public Problem
{
public:

DatalogProblem(std::istream *stream);
Rule addNewRule();
Variable addVariable(std::string name);
void addEdge(Rule rule, Variable variable,

bool positive, bool head);
protected: ... // declaration of parse, preprocess

// and buildHG methods
private:

SignMap signs;
HeadMap heads;
TypeMap types;
DatalogParser *parser;

};

Listing 6.6 shows the (simplified) declaration of the derived Problem class. The
main points are the following:

• Declaration of the internal data structures to store the answer-set problem. The
SignMap stores the rules (including body and head atoms) and the HeadMap
stores the rule heads.

• Declaration of methods called by the parser (addNewRule, addVariable,
addEdge) when the respective event is encountered during parsing. These meth-
ods then store the data in the HeadMap and SignMap.

• Stream that supplies the input is used as parameter of the constructor and a pointer
to the parser instance (DatalogParser) is kept.

The implementation of the various functions is fairly self-explanatory so we omit
details here but only try to make the main points clear. The constructor of the Problem
class above simply initializes the corresponding parser class (i.e. creates an instance of
the DatalogParser) and passes a pointer to itself and the input stream to the parser.

6.2.2 Implementing the Parser
The parser in this particular program is written with the lex/yacc combination as already
discussed previously in section 6.1.1. The parser is written in such a way that it accepts
as constructor arguments the stream that yields the input and a pointer to the Problem
class mentioned in section 6.2.1. Whenever the parser encounters a new rule during
parsing, the addRule method of the Problem class is called. Analogously, for each
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variable the addVariable method is called and for each occurrence of a variable in a
rule the addEdge method is called, including information whether the variable occurs
negated or in the head of the rule.

6.2.3 Implementing the Algorithm
Implementing the algorithm is fairly straight-forward given the structure that is already
provided by the framework. Doing a bottom-up traversal of the tree using the method
described in section 6.1.3 and 6.1.3 immediately results in an easy way to implement
the algorithm in the framework. There are however a few points worth noting when
looking at the declarations in listing 6.7:

Listing 6.7: Definition of the AnswerSetAlgorithm class and corresponding tuple
(simplified).
class AnswerSetTuple : public Tuple
{
public:

set<Variable> variables;
set<Rule> rules;
set<Atom> guards;

};
class AnswerSetAlgorithm : public AbstractAlgorithm
{
public:

AnswerSetAlgorithm(Problem *problem);
protected:

virtual Solution *selectSolution
(TupleSet *tuples, const ExtendedHypertree *node);

virtual TupleSet *evaluateLeafNode
(const ExtendedHypertree *node);

... // declaration of all other evaluation methods
private:

DatalogProblem *problem;
};

• In the constructor a pointer to the Problem instance is taken. This is usually
needed, as all the information about the problem (i.e. in this case HeadMap,
SignMap) is stored in the Problem instance.

• For the sake of clarity, equality and less-than operators have been omitted in the
Tuple declaration. These operators are however needed in order to store Tuple
instances efficiently in sets.

• In the evaluateLeafNode method, the Solution instances are created us-
ing the Instantiator’s createLeafSolutions method for every parti-
tion of the variables in the node.
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6.2.4 Implementing the Instantiator

No separate implementation for the Instantiator class is needed, as the frame-
work already provides a GenericInstantiator class which can be used for all
SolutionContent-derived classes, as long as they implement the same constructors
as the prototype. Also, default-implementations for enumerating solutions, counting
solutions and boolean solutions are provided by the framework. The Instantiator
instance can thus simply be obtained by using the code in listing 6.8.

Listing 6.8: Using the generic Instantiator class.
Instantiator *inst =

new GenericInstantiator<EnumerationSolution>(true);
// or...
inst =

new GenericInstantiator<CountingSolution>(false);

The parameter passed to the GenericInstantiator constructor is a boolean
determining whether to enable lazy evaluation or not. Enable this (i.e. call with “true”)
when exponential blowup is otherwise to be expected. For example when enumerating
stable models, at each step in the tree enumerating all partial solutions would be infea-
sible. Therefore in this case we enable lazy evaluation so that only the partial solutions
that actually contribute to the full solution are enumerated. On the other hand when
counting is the objective, we may safely disable lazy evaluation as in each step only a
number needs to be updated.

6.2.5 Result

The implementation described above results in a runnable program reading proposi-
tional disjunctive logic programs in a DLV-based input format (see [Leone et al., 2006]).
Experimental results of the implementation are discussed in section 6.3.

Currently, also other algorithms based on tree decompositions are being imple-
mented, most notably an algorithm to solve argumentation problems under various se-
mantics (see [Dvorák et al., 2010]) and multicut algorithms in graphs as described in
[Pichler et al., 2010].

6.3 Experimental Results
Figures 6.1 to 6.6 show experimental runtime results for answer-set programs of con-
stant treewidth and increasing size. As our implementation is designed to work with the
DLV syntax (see [Leone et al., 2006]), we simultaneously ran the benchmarks on the
DLV system for comparison.
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Benchmarks were done on an Intel Core2Duo 2.6GHz, Ubuntu 10.10 32bit ma-
chine. Random CNF-SATISFIABILITY programs of constant treewidth were gen-
erated, converted to ASP programs and passed to the solver. In order to generate the
CNF-SATISFIABILITY programs, the mkcnf tool4 was used. For a sufficiently
large number of atoms, the clause size correlates with the treewidth of the incidence
graph of a generated program, making it easy to generate a sufficient number of pro-
grams with the same treewidth (based on the incidence graph). The programs are then
translated to equivalent answer set program.

In the following diagrams, the vertical axis represents the time in seconds to solve
the consistency problem (i.e. check, whether an answer set exists) and the horizontal
axis the number of clauses (the size) of the generated CNF-SAT program.
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Figure 6.1: Benchmarks: Treewidth 4, average runtime

As Figure 6.1 shows, for small treewidth the system performs fairly well in the
average case, beating the DLV system even for problems of small size.

4ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/
UCSC/instances

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/UCSC/instances
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/UCSC/instances
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Figure 6.2: Benchmarks: Treewidth 4, worst-case runtime

The worst-case runtime for small treewidth shows a mixed picture: On the one hand,
the overall picture is similar to the one for the average runtime, on the other hand, the
spikes at problem sizes 2600, 3600 and 5100 show that in certain cases the worst-case
runtime is not yet optimal. Further investigations in this area are needed.
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Figure 6.3: Benchmarks: Treewidth 5, average runtime

The average runtime increases overall, once the treewidth is increased from 4 to 5.
The overall percentage of time taken up by the dynASP routine increases when com-
pared to the time needed for the tree decomposition step. Also notice that for smaller
problems (i.e. size 600 to 2100) DLV is now faster on average.
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Figure 6.4: Benchmarks: Treewidth 5, worst-case runtime

For treewidth 5, worst-case runtime behavior shows the same picture as for treewidth
4: For e.g. a problem size of 4600 SAT clauses the worst-case runtime is about twice the
time it takes on average, whereas DLV only experiences a 6 percent increase in runtime.
It is at the moment unclear which parameters determine these runtime fluctuations and
this is a topic for further investigation.
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Figure 6.5: Benchmarks: Treewidth 7, average runtime

For treewidth 7, determined by the f (k) · n runtime of the dynASP algorithm, the
expected increase in runtime of the dynASP component can clearly be seen. As f (k)
is in our case an exponential function, an increase of k from 4 to 7 leads to a signif-
icant increase in runtime costs. Due to limitations of the testing environment, it is at
the moment impossible to reliably generate big programs with treewidth 7. Therefore
benchmark data stops at 3100 SAT clauses at the moment.
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Figure 6.6: Benchmarks: Treewidth 7, worst-case runtime

Considering the linear increase of the dynASP portion of the runtime, it can be
expected, that for problems of 5000 SAT clauses and up, the overall runtime of the
dynASP algorithm is able to outperform DLV. As the proportionate tree decomposition
runtime seems to increase as the problem size increases, finding good and efficient tree
decomposition heuristics would significantly improve the overall runtime of our algo-
rithm.
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7 Discussion

We presented a novel algorithm for evaluating head-cycle free disjunctive logic pro-
grams. The algorithm was then implemented in C++, carefully evaluated and bench-
marked against the DLV system for evaluating general disjunctive logic programs. This
implementation of the algorithm we named “dynASP”.

First experiments with the dynASP implementations show great potential for pro-
grams of low treewidth, as seen in section 6.3, when compared to state-of-the-art an-
swer set programming solvers. Particularly in situations where the task only requires
one pass on the tree decomposition, our algorithm outperforms traditional solvers. This
is the case e.g. for the decision problem, where the algorithm only has to check, whether
at the (empty) root node, a tuple still exists, and therefore no second pass (as in e.g. enu-
meration) is required to calculate the actual solution.

Also in comparison to a reference implementation of the algorithm described in
[Jakl et al., 2009], our algorithm performs better in the average case. Therefore, the
optimization for head-cycle free disjunctive logic programs has paid off in the sense
that the specially tailored algorithm described in this thesis does not only outperform
the more general algorithm of Jakl et. al. in theory, but this could also be verified in
practice.

One major performance impact results from slow tree decomposition heuristics.
Currently there are (to the best of our knowledge) no implementations available that
significantly outperform the library that we used in SHARP. Also, depending on the
shape of the tree decomposition, the worst-case runtime of the algorithm is sometimes
200 percent of the average case runtime. This is a significant improvement over the
initial implementation that was presented in [Morak et al., 2010], where it was almost
1000 percent, however there is still room for improvement. Also the libraries currently
in use for representing internal data structures represent a bottleneck in the algorithm as
well as in the SHARP framework itself.

Related Work In [Jakl et al., 2009, Jakl, 2010], a fixed-parameter tractable algorithm
for evaluating general disjunctive answer set programs is introduced. This approach
is also based on tree decompositions and treewidth as parameter and the initial imple-
mentation was done in Haskell1. However this approach required an extensive amount

1www.haskell.org

75

www.haskell.org
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of preprocessing (i.e. transforming the program to a graph representation, building the
tree decomposition by an external tool, transforming the output into static Haskell code
and adding it to the Haskell program, then finally compiling and running the Haskell
program). This approach was not competitive when compared to out-of-the-box solvers
that simply read the problem description and do all these preprocessing steps directly
and in memory. However, for preliminary benchmarking, an implementation of this
algorithm in the SHARP framework has been created.

Another work that is based on the same principle as the work described in this thesis
was presented in [Samer and Szeider, 2010]. In this paper the #SAT problem was solved
using dynamic programming based on tree decompositions. However, the structure
needed for the tuples in the tree is much simpler than the one used in this thesis.

Related problems of answer set programming are classically the problems of con-
straint satisfaction (CSP) and conjunctive query (CQ) evaluation. For both, treewidth-
based approaches as well as other, structural decomposition-based approaches have
been examined (see e.g. [Chekuri and Rajaraman, 2000, Gottlob et al., 2000]). These
approaches (when using treewidth) also follow the general approach of propagating
data upward by a bottom-up traversal of the tree decomposition. However, also the idea
of a top-down traversal for post-processing for conjunctive queries has been examined.

Also for conjunctive queries, treewidth-related notions have been examined. In
[Gottlob et al., 2001] the concept of hypertree decompositions is discussed. In a nut-
shell, hypertree decompositions satisfy all the properties of tree decompositions (ex-
tended to hypergraphs and hyperedges), and one tries to minimize the number of hy-
peredges occurring in a tree bag. This approach has been shown to generalize tree
decompositions (see [Gottlob et al., 1999] for the definition of hypertree decomposi-
tions). Bounding the hypertree width, conjunctive query evaluation is shown to be in the
complexity class LOGCFL which entails that conjunctive query evaluation is a highly
parallelizable task.



8 Conclusion

In this thesis we presented a novel algorithm for evaluating head-cycle free disjunctive
logic programs. This algorithm is based on results from parameterized complexity the-
ory, using treewidth as a problem parameter to restrict the complexity of evaluating said
class of logic programs.

In the course of developing this algorithm, we established an alternative characteri-
zation of answer sets in head-cycle free disjunctive logic programs. Given a set of atoms
one has to check whether there is a corresponding set of rule-sequences such that every
rule derives exactly one atom, all the atoms in the set are derived and each sequence of
rules starts with a fact. If the set of atoms then satisfy all the rules of the given program,
it represents an answer set. In the characterization, these sequences of rules are repre-
sented by means of a derivation graph. If this graph is acyclic, then the rules fulfill the
conditions discussed above.

These results lead to an algorithm that, in short, calculates the derivation graph for
a given set of atoms and rules and checks whether the appropriate conditions are met.
This is done by means of tree decompositions, evaluating in a bottom-up manner for
each node in the tree decomposition, whether the derivation graph property is locally
satisfied. Making use of the special properties of a tree decomposition, when arriving
at the (empty) root node, one can immediately decide whether answer sets for the given
program exist or not. This approach then yields an algorithm with runtime of the form

f (k) · nO(1)

where k is the width of the tree decomposition and n is the size of the program. Such an
algorithm is called a fixed-parameter algorithm as, when the parameter k is regarded as
fixed, the runtime becomes polynomial ( f (k) for an NP-complete problem is necessarily
exponential, as otherwise it would follow that P = NP).

Although this approach yields an algorithm that is able to evaluate every possible
head-cycle free disjunctive logic program, best performance is achieved for instances
with small parameter values, as can easily be seen from the runtime function.

In order to implement the algorithm, a special framework for working with tree
decompositions has been designed, yielding a flexible means to rapidly implement var-
ious algorithms based on tree decompositions. Using this purpose-built framework, the
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dynASP algorithm was then implemented1 and carefully evaluated and benchmarked
against existing systems such as DLV [Leone et al., 2006], where actual runtime results
confirm the theoretical runtime behavior, outperforming DLV for instances of small
treewidth.

In light of these results we see the future of our solver as a benchmark tool for current
answer set programming solvers and also as a possible augmentation of current systems,
where e.g. it could after parsing be decided whether an instance of low treewidth is
encountered and if yes, our algorithm is executed. Otherwise the original algorithm is
used to evaluate the logic program.

8.1 Future Work

In the future we plan to further optimize the implementation of the algorithm in order to
be competitive also at higher treewidths. Therefore we plan to optimize data structures
used in our algorithm as well as do away with the niceness property (i.e. normaliza-
tion as laid out in Definition 3.5) of the tree decomposition as handling a non-nice tree
decomposition directly would result in a substantial performance increase.

Furthermore, as the tree decomposition heuristics currently in use present a bottle-
neck in our implementation, we will investigate the area of tree decomposition upper
bounds and approximation algorithms for tree decompositions that yield trees of low
width (that is, near the actual treewidth of the problem) while still exhibiting a favorable
runtime behavior. Furthermore we plan on investigating tree decomposition heuristics
for certain restricted classes of graphs. For example, the incidence graph used in this
thesis to represent answer set programs is always bipartite. However this fact is not
used by the current tree decomposition heuristics, and it would be worth investigating
whether such properties can be exploited in order to increase efficiency of the heuristics
or approximation algorithm.

In light of the results in [Gottlob et al., 2001], it would be interesting to pinpoint
the exact complexity of parameterized answer-set programming with treewidth as its
parameter. Tree decompositions make for good parallelization opportunities in actual
implementations, however a native approach would require for each sequence of non-
branch nodes in the tree decomposition a sequential number of computation steps of the
same size (one for each tree node). Investigating the complexity of the parameterized
problem, it may be possible to find that the problem is indeed highly parallelizable, that
is, no such sequence of computation steps is in fact needed.

Another area worth investigating is the field of testing and benchmark generation.
Currently there is a lack of benchmark suites for ground answer set programs in general
and ground answer set programs for restricted settings in particular (i.e. instances of

1http://dbai.tuwien.ac.at/proj/dynasp/

http://dbai.tuwien.ac.at/proj/dynasp/
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constant, but low treewidth). Therefore it would be interesting to look into meaningful
benchmark generation for this area, as has for instance been done for SAT with bounded
width resolution refutations in [Atserias et al., 2009].

Finally the area of evaluating non-ground answer set programs directly is an area that
we will definitely look into in the future. As discussed earlier in this thesis, virtually all
current ASP solvers employ a two-step approach when evaluating answer-set programs:
A grounding and subsequently a solving step. Except for [Palù et al., 2009], to the
best of our knowledge, no investigations in this area have been undertaken. It would
therefore be interesting to combine the idea of lazy grounding with tree or hypertree
decompositions. Also a two-step decomposition approach could be interesting where a
hypertree decomposition of a static (non-ground) program is generated and can then be
evaluated over multiple knowledge bases or domains. This approach would resemble
a compiler for non-ground logic programs, where the program is compiled and can
then be executed on multiple inputs without having to reconstruct the tree or hypertree
decomposition every single time, while at the same time eliminating the time for the
(hyper-)tree decomposition step in the runtime.





Part V

V Appendices
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A Benchmark Data

Find below the raw benchmark data of the dynASP implementation.

Benchmark Setup
• Intel Core2Duo P9500 (2.6 GHz, 1066 MHz FSB)

• 4096 MB DDR2-RAM

• Ubuntu 10.10

Benchmark Method
• Random-generated SAT problems of increasing size, constant treewidth

• Conversion to ASP problems

• Single-threaded benchmark, using /usr/bin/time -a -v
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Size Parsing Tree Decomposition dynASP DLV
600 0.012 0.080005 0.092006 0.1
600 0.012 0.088006 0.080005 0.11
600 0.012 0.088005 0.100007 0.12
600 0.008 0.080005 0.092006 0.11
600 0.012 0.084005 0.092006 0.11
600 0.012 0.092005 0.100007 0.12
600 0.008 0.088006 0.084005 0.1
600 0.012 0.092006 0.088006 0.11
600 0.012 0.096006 0.088006 0.12
600 0.012 0.088006 0.104006 0.12
600 Average 0.0112 0.0876055 0.092006 0.112
1100 0.024001 0.256016 0.16001 0.34
1100 0.020001 0.248016 0.16401 0.35
1100 0.020001 0.256016 0.16401 0.4
1100 0.020001 0.252016 0.152009 0.36
1100 0.020001 0.248016 0.16801 0.36
1100 0.020001 0.256016 0.192012 0.36
1100 0.008 0.252016 0.176011 0.38
1100 0.020001 0.256016 0.200012 0.38
1100 0.020001 0.248016 0.17601 0.35
1100 0.020001 0.252016 0.176011 0.4
1100 Average 0.0192009 0.252416 0.1728105 0.368
1600 0.024001 0.512032 0.288018 0.83
1600 0.028001 0.492031 0.244015 0.74
1600 0.032002 0.48803 0.264017 0.78
1600 0.032002 0.504032 0.224013 0.82
1600 0.036002 0.492031 0.248015 0.74
1600 0.028001 0.500032 0.232014 0.74
1600 0.036002 0.516032 0.248016 0.8
1600 0.032002 0.504031 0.256016 0.79
1600 0.040002 0.504032 0.264016 0.79
1600 0.036002 0.500031 0.248016 0.78
1600 Average 0.0324017 0.5012314 0.2516156 0.781

Table A.1: Benchmark data, Treewidth 4
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Size Parsing Tree Decomposition dynASP DLV
2100 0.048003 0.836052 0.332025 1.33
2100 0.052003 0.836052 0.316025 1.3
2100 0.040002 0.872055 0.312023 1.34
2100 0.048003 0.828051 0.284016 1.22
2100 0.056003 0.824051 0.292016 1.22
2100 0.056003 0.836052 0.348025 1.3
2100 0.052003 0.860054 0.308023 1.35
2100 0.044002 0.848053 0.284015 1.31
2100 0.044002 0.840053 0.320025 1.22
2100 0.048003 0.844052 0.308025 1.3
2100 Average 0.0488027 0.8424525 0.3104218 1.289
2600 0.052003 1.27608 0.388027 2.35
2600 0.064004 1.26408 0.356016 2
2600 0.064004 1.26808 0.364026 2
2600 0.072004 1.25608 0.456026 2.28
2600 0.068004 1.30408 0.424026 2.15
2600 0.060003 1.29208 0.420027 2.68
2600 0.064004 1.26008 0.724046 1.9
2600 0.040002 1.69611 0.388018 2.05
2600 0.068004 1.26008 0.272016 2.02
2600 0.060004 1.27608 1.848116 2.62
2600 Average 0.0612036 1.315283 0.5640344 2.205
3100 0.084005 1.78011 0.460035 2.87
3100 0.076004 1.76411 1.188076 3.6
3100 0.084005 1.82811 1.276085 2.76
3100 0.080005 1.77611 0.468035 2.8
3100 0.076004 1.72811 1.000056 3.34
3100 0.092005 1.80411 0.456035 2.69
3100 0.084005 1.73611 0.440025 3.7
3100 0.080005 1.78011 1.460095 3.79
3100 0.080005 1.78411 0.504035 2.8
3100 0.076004 1.78011 1.260076 3.66
3100 Average 0.0812047 1.77611 0.8512553 3.201

Table A.2: Benchmark data, Treewidth 4, continued
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Size Parsing Tree Decomposition dynASP DLV
3600 0.104006 2.30414 0.516034 3.58
3600 0.092005 2.34415 1.384085 5.47
3600 0.124007 2.35215 0.560033 3.73
3600 0.104006 2.35615 0.508034 5.19
3600 0.100006 2.63616 1.056074 5.4
3600 0.108006 2.34415 0.524034 3.81
3600 0.112007 2.34815 1.440083 5.32
3600 0.088005 2.34415 2.856175 5.14
3600 0.104006 2.38015 0.580034 5.36
3600 0.100006 2.78417 0.504034 3.71
3600 Average 0.103606 2.419352 0.992862 4.671
4100 0.120007 3.07219 2.260143 7.11
4100 0.120007 3.04019 1.476093 6.86
4100 0.116007 3.79224 1.072063 4.93
4100 0.120007 3.00819 1.496093 6.75
4100 0.124007 3.37221 0.732043 4.94
4100 0.112007 3.05619 1.928123 7.24
4100 0.124008 2.97619 1.660102 7.15
4100 0.120007 3.05619 0.616043 6.98
4100 0.116007 3.05219 1.920123 6.84
4100 0.132008 3.27621 0.824042 5.06
4100 Average 0.1204072 3.170199 1.3984868 6.386
4600 0.120007 3.83224 2.244143 9.16
4600 0.144009 3.84824 1.680101 8.68
4600 0.128008 3.83624 1.424092 9.96
4600 0.136008 4.52428 1.388092 9.44
4600 0.132008 4.06025 1.948122 8.69
4600 0.140009 3.78824 2.136131 8.95
4600 0.124008 3.92024 0.788052 8.8
4600 0.144009 4.50428 2.484151 8.87
4600 0.132008 3.99625 1.420092 9.5
4600 0.132008 3.78024 0.608032 9.58
4600 Average 0.1332082 4.00905 1.6121008 9.163

Table A.3: Benchmark data, Treewidth 4, continued
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Size Parsing Tree Decomposition dynASP DLV
5100 0.152009 4.90431 1.164071 9.88
5100 0.144009 4.66029 3.860241 10.67
5100 0.16801 4.55628 1.78812 10.12
5100 0.152009 4.7723 1.660101 11.59
5100 0.136008 5.52034 1.168082 11.06
5100 0.156009 5.33633 1.088071 10.66
5100 0.148009 5.37234 1.652101 11.72
5100 0.16801 5.31233 1.6441 11.42
5100 0.156009 4.96831 1.352081 10.99
5100 0.144009 4.8603 4.752301 10.92
5100 Average 0.1524091 5.026313 2.0129269 10.903
5600 0.188011 5.99637 2.364149 14.31
5600 0.196012 6.88443 1.096068 13.41
5600 0.204012 5.95237 2.064128 13.53
5600 0.196012 6.3804 3.788188 13.74
5600 0.220014 5.90037 1.960126 12.82
5600 0.208013 6.30039 1.464097 13.93
5600 0.204013 6.32439 1.932127 13.5
5600 0.184011 5.54035 2.928179 13.85
5600 0.208013 6.00438 2.776167 13.03
5600 0.204012 6.81243 0.904048 13.08
5600 Average 0.2012123 6.209588 2.1277277 13.52
6100 0.220013 8.0605 1.204077 15.71
6100 0.228014 7.26445 3.032236 15.16
6100 0.224014 7.28045 2.088136 15.92
6100 0.216013 7.08044 2.264147 16.89
6100 0.236014 7.22445 1.888116 15.66
6100 0.240015 7.53247 1.964125 16.72
6100 0.212013 7.44046 1.820117 16.02
6100 0.204012 7.02844 1.728108 17.49
6100 0.232014 8.45653 1.400056 16.13
6100 0.244015 7.28846 1.828115 15.76
6100 Average 0.2256137 7.465665 1.9217233 16.146

Table A.4: Benchmark data, Treewidth 4, continued
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Size Parsing Tree Decomposition dynASP DLV
600 0.048003 0.388024 1.6841 0.5
600 0.040002 0.372023 1.00406 0.47
600 0.032002 0.368023 1.15207 0.43
600 0.036002 0.388024 1.04407 0.49
600 0.036002 0.376023 0.984062 0.46
600 0.040002 0.384024 0.744046 0.48
600 0.032002 0.380024 1.5361 0.46
600 0.048003 0.388024 1.10007 0.48
600 0.040002 0.372023 0.984061 0.44
600 0.036002 0.384024 1.5561 0.47
600 Worst-Case 0.048003 0.388024 1.6841 0.5
1100 0.096006 1.07207 4.26027 2.11
1100 0.092006 1.10407 3.02419 1.62
1100 0.076005 1.08407 2.96019 1.58
1100 0.088005 1.10407 2.52416 1.59
1100 0.084005 1.07207 2.64017 1.54
1100 0.088005 1.08407 1.89612 3.07
1100 0.084005 1.09607 2.89218 2.12
1100 0.092005 1.08407 2.64817 2.44
1100 0.076004 1.09207 4.19226 2.17
1100 0.124008 1.34408 2.04413 2.21
1100 Worst-Case 0.124008 1.34408 4.26027 3.07
1600 0.16001 2.89218 8.12051 4.79
1600 0.152009 2.10013 6.61641 5
1600 0.16401 2.15213 3.84824 4.12
1600 0.156009 2.09613 7.02044 4.75
1600 0.16401 2.10813 3.30021 5.59
1600 0.17201 2.17214 6.4764 5.54
1600 0.144009 2.26414 4.08026 5.06
1600 0.152009 2.18414 6.23239 5.62
1600 0.176011 2.24014 6.49641 5.86
1600 0.136008 2.19214 6.30039 4.54
1600 Worst-Case 0.176011 2.89218 8.12051 5.86

Table A.5: Benchmark data, Treewidth 7
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Size Parsing Tree Decomposition dynASP DLV
2100 0.17201 4.54828 5.44034 8.67
2100 0.192012 3.65223 5.72436 8.22
2100 0.224014 3.59622 8.59254 8.94
2100 0.196012 4.23627 9.15257 9.06
2100 0.204012 5.02431 8.0045 8.47
2100 0.200012 4.58429 5.77236 8.86
2100 0.192012 4.57629 8.42853 8.51
2100 0.208013 4.52028 8.36852 10
2100 0.204013 4.50428 8.11651 8.82
2100 Worst-Case 0.224014 5.02431 9.15257 10
2600 0.244015 6.82043 10.2566 13.44
2600 0.252015 7.18845 10.9047 13.2
2600 0.272017 6.66042 7.12444 13.23
2600 0.248015 7.02444 6.56841 13.54
2600 0.268016 6.78842 11.0287 13.12
2600 0.244015 7.11244 4.34427 14.23
2600 0.248015 6.65642 7.14845 13.76
2600 0.260016 6.78843 7.06044 13.42
2600 0.260016 6.55641 10.4447 13.67
2600 0.284017 7.25245 10.9207 14.02
2600 Worst-Case 0.284017 7.25245 11.0287 14.23
3100 0.284017 9.69661 12.6008 18.66
3100 0.280017 9.69661 12.9208 18.58
3100 0.312019 9.71661 12.6968 19.55
3100 0.296018 9.6286 8.50453 19.68
3100 0.356022 10.1926 8.13651 19.3
3100 0.32002 10.3286 12.6168 19.16
3100 0.300018 9.81261 13.4008 19.26
3100 0.32002 10.1966 12.8328 19.44
3100 0.260016 9.84461 12.8768 18.9
3100 0.32002 9.6046 9.12857 19.74
3100 Worst-Case 0.356022 10.3286 13.4008 19.74

Table A.6: Benchmark data, Treewidth 7, continued





B SHARP Class List

• Problem-the class providing flow control and acting as the interface to the “out-
side world”

• AbstractAlgorithm-the algorithm skeleton for tree-based algorithms

• Tuple-skeleton class, represents the data the algorithm needs to represent one
possible world in a tree node

• SolutionContent-skeleton class, represents the solution data associated with
one possible world (i.e. Tuple)

• Solution-framework helper class that provides lazy solution evaluation support

• Instantiator-framework class for instantiating the Solution class and the
SolutionContent classes

• GenericInstantiator–framework class that provides a generic instantiator
supporting lazy evaluation and supports all derived SolutionContent classes
that implement the skeleton constructors of the SolutionContent class

• EnumerationSolutionContent–SolutionContent class that a set of
sets of vertices (i.e. multiple (partial) solutions per Tuple may be possible here
as one solution is represented by a set of vertices)

• ConsistencySolutionContent–SolutionContent class that stores a
simple boolean value representing the answers “yes” or “no”

• CountingSolutionContent–SolutionContent class that stores an ar-
bitrarily large number for counting purposes

• Hypertree-represents a tree

• ExtendedHypertree-represents a tree with specifically extended functional-
ity (i.e. vertex-aware, normalization capabilities, etc.) for easier use in the algo-
rithm

• Hypergraph-represents a graph
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• Hyperedge-represents an edge in a graph

• Node-represents a vertex in a graph
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