
Diese Dissertation haben begutachtet:

D I S S E R T A T I O N

Weak System Models for
Fault-Tolerant Distributed

Agreement Problems

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

Univ.Prof. Dr. Ulrich Schmid
Institut für Technische Informatik (E182-2)

Technische Universität Wien

eingereicht an der
Technischen Universität Wien, Fakultät für Informatik

von

Dipl.-Ing. Peter Robinson
Matr.Nr. 9827102

Badgasse 11, 7432 Oberschützen, Österreich

Wien, Dezember 2010

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

Diese Arbeit untersucht Synchronitätsaspekte fehlertoleranter, verteilter Systemmo-
delle. In Teil I wird die Einbettung der Arbeit erläutert und die verwandte Literatur
besprochen, sowie ein Überblick über die grundlegenden Systemannahmen gegeben.

In Teil II wird das Asynchronous-Bounded-Cycle-Modell (ABC Modell) eingeführt,
welches ohne explizite Echtzeitschranken auf Kommunikationskanäle bzw. Taktge-
schwindigkeiten auskommt. Stattdessen verwendet das ABC Modell eine graphentheo-
retische Sychronitätsbedingung auf gewissen kausalen Ketten. Weiters vergleichen wir
das ABC Modell mit anderen partiell synchronen Modellen, insbesondere mit den
klassischen Modellen von Dwork, Lynch und Stockmeyer. Wir zeigen, wie man im
ABC Modell eine Gleichtaktsimulation trotz Byzantinischer Fehler bewerkstelligen
kann und beweisen deren Korrektheit. Daraus folgt, dass im ABC Modell auch das
– für verteilte Systeme fundamentale, in asynchronen Systemen jedoch unlösbare –
Konsensusproblem gelöst werden kann.

Danach präsentieren wir das formal schwierigste Resultat dieser Arbeit: Wir bewei-
sen, dass jeder Algorithmus, dessen Korrektheit für das Θ-Modell (von Le Lann und
Schmid) bereits bewiesen wurde, auch in unserem ABC Modell funktioniert. In dem
technisch aufwendigen Beweis verwenden wir eine Variante des Farkas’schen Theo-
rems über lineare Ungleichungssysteme und entwickeln einen neuartigen Zyklenraum
auf gerichteten Graphen, um die Existenz gewisser Formationen kausaler Ketten zu
beweisen. Damit zeigen wir, dass jede zeitfreie Safety-Bedingungen auch im ABC Mo-
dell gilt. Mittels mengentheoretischer Topologie erweitern wir dieses Resultat dann auf
Liveness-Bedingungen.

In Teil III wenden wir uns dem Grenzbereich zwischen Modellen, wo Konsensus
erreichbar ist, und dem asynchronen Modell zu. Zu diesem Zweck betrachten wir ei-
ne Generalisierung des Konsensusproblems: Das sogenannte k-Set-Agreement-Problem
verlangt, dass sich alle korrekten Prozesse systemweit auf höchstens k unterschiedliche
Entscheidungswerte einigen. Wir präsentieren zwei sehr schwache Modelle Manti und
Msink und beweisen, dass Konsensus in diesen Modellen nicht erreicht werden kann.
Weiters untersuchen wir den Bezug zwischen dem Modell Msink und den f -source Mo-
dellen von Aguilera et al. Nichtsdestotrotz zeigen wir, dass in Manti und Msink das
(n−1)-Set-Agreement-Problem gelöst werden kann, indem wir eine Implementierung
des Fehlerdetektors L angeben.

Weiters diskutieren wir den Fehlerdetektor L(k), welcher eine Generalisierung von
L darstellt und beweisen die Korrektheit eines Algorithmus, der mittels L(k) das k-
Set-Agreement-Problem löst. Ein interessanter Aspekt dieses Algorithmus ist, dass er
auch in anonymen Systemen funktioniert.

iii

Im darauffolgenden Kapitel analysieren wir das Verhältnis zwischen L(k) und be-
reits existierenden Fehlerdetektoren für das k-Set-Agreement-Problem. Wir diskutie-
ren auch diverse Aspekte von L(k) in anonymen Systemen.

Danach präsentieren wir ein generisches Theorem, welches zur Charakterisierung der
Unlösbarkeit des k-Set-Agreement-Problems verwendet werden kann. Dies ermöglicht
es uns zu zeigen, dass (Σk,Ωk) nicht ausreichend für k-set agreement ist. Die Klasse
der partiell synchronen Systeme liefert uns einen weiteren Anwendungsfall für dieses
Theorem.

Danach beschäftigen wir uns mit dem k-Set-Agreement-Problem in rundenbasierten
Systemen. Zuerst erläutern wir eine graphentheoretische Abstraktion, den sogenann-
ten Skelettgraphen, welcher die kontinuierlich vorhandene Synchronität eines Laufs
des Systems verkörpert. Wir präsentieren einen Algorithmus, der es Prozessen ermög-
licht, den Skelettgraphen lokal zu approximieren. Weiters führen wir ein Prädikat
Psrcs(k) ein, welches eine hinreichende Synchronitätsbedingung zur Lösung des k-Set-
Agreement-Problems beschreibt, und beweisen, dass die nächstschwierigere Instanz,
nämlich (k−1)-Set-Agreement, mit Psrcs(k) nicht lösbar ist. Abschliessend zeigen wir,
wie man basierend auf unserer Skelettgraphenapproximation das k-Set-Agreement-
Problem in Systemen, wo Psrcs(k) hält, lösen kann.

iv

Abstract

This thesis1 investigates various aspects of weak system models for agreement prob-
lems in fault-tolerant distributed computing. In Part I we provide an introduction
to the context of this work, discuss related literature and describe the basic system
assumptions.

In Part II of this thesis, we introduce the Asynchronous Bounded-Cycle (ABC)
model, which is entirely time-free. In contrast to existing system models, the ABC
model does not require explicit time-based synchrony bounds, but rather stipulates a
graph-theoretic synchrony condition on the relative lengths of certain causal chains of
messages in the space-time graph of a run. We compare the ABC model to other mod-
els in literature, in particular to the classic models by Dwork, Lynch, and Stockmeyer.
Despite Byzantine failures, we show how to simulate lock-step rounds, and therefore
make consensus solvable, and prove the correctness of a clock synchronization algo-
rithm in the ABC model.

We then present the technically most involved result of this thesis: We prove that
any algorithm working correctly in the partially synchronous Θ-Model by Le Lann
and Schmid, also works correctly in the time-free ABC model. In the proof, we use
a variant of Farkas’ Theorem of Linear Inequalities and develop a non-standard cycle
space on directed graphs in order to guarantee the existence of a certain message delay
transformation for finite prefixes of runs. This shows that any time-free safety property
satisfied by an algorithm in the Θ-Model also holds in the ABC model. By employing
methods from point-set topology, we can extend this result to liveness properties.

In Part III, we shift our attention to the borderland between models where con-
sensus is solvable and the purely asynchronous model. To this end, we look at the
k-set agreement problem where processes need to decide on at most k distinct deci-
sion values. We introduce two very weak system models Manti and Msink and prove
that consensus is impossible in these models. Nevertheless, we show that (n−1)-set
agreement is solvable in Manti and Msink, by providing algorithms that implement the
weakest failure detector L. We also discuss how models Manti and Msink relate to the
f -source models by Aguilera et al. for solving consensus.

In the subsequent chapter, we present a novel failure detector L(k) that generalizes
L, and analyze an algorithm for solving k-set agreement with L(k), which works even
in systems without unique process identifiers. Moreover, We explore the relationship
between L(k) and existing failure detectors for k-set agreement. Some aspects of L(k)
relating to anonymous systems are also discussed.

1This research has been supported by the Austrian Science Foundation (FWF) projects P17757 and
P20529.

v

Next, we present a generic theorem that can be used to characterize the impossibility
of achieving k-set agreement in various system models. This enables us to show that
(Σk,Ωk) is not sufficient for solving k-set agreement. Furthermore, we instantiate our
theorem with a partially synchronous system model.

Finally, we consider the k-set agreement problem in round-based systems. First, we
introduce a novel abstraction that encapsulates the perpetual synchrony of a run, the
so called stable skeleton graph, which allows us to express the solvability power of a
system via graph-theoretic properties. We then present an approximation algorithm
where processes output an estimate of their respective component of the stable skeleton
graph. We define a class of communication predicates Psrcs(k) in this framework,
and show that Psrcs(k) tightly captures the amount of synchrony necessary for k-set
agreement, as (k−1)-set agreement is impossible with Psrcs(k). Based on the stable
skeleton approximation, we present an algorithm that solves k-set agreement when
Psrcs(k) holds.

vi

Contents

I. Introduction and Prerequisites

1. Introduction and Related Work 7
1.1. Solvability of Distributed Computing Problems 8
1.2. Failures and Consensus . 9
1.3. Exploring the Space of System Models 11
1.4. The k-Set Agreement Problem . 15
1.5. Comparison of System Models . 16
1.6. Roadmap and List of Contributions 18

2. Basic System Assumptions 21
2.1. Computation and Communication . 21
2.2. Failures . 22
2.3. Admissibility of Asynchronous Runs 23

II. Above Consensus Solvability

3. The ABC Model 27
3.1. Synchrony in the ABC Model . 28
3.2. Knowledge Acquisition and Failure Detection 32
3.3. Practical Aspects . 34
3.4. Comparing the ABC Model to Other System Models 35

3.4.1. Relation to the classic partially synchronous model 35
3.4.2. Relation to other partially synchronous models 38

3.5. Discussion and Weaker Variants of the ABC Model 40

4. Byzantine Clock Synchronization 43
4.1. The Clock Synchronization Algorithm 43

4.1.1. Progress and Precision of Clocks 44
4.1.2. Clock Synchronization with Bounded Progress 49

4.2. Simulating Lock-Step Rounds . 51
4.3. Discussion . 52

5. Model Indistinguishability 53
5.1. The Θ-Model . 54

1

Contents

5.2. System Properties as Sets of Runs . 55
5.3. Indistinguishability for Timing Independent Properties 56

5.3.1. Safety Properties . 56
5.3.2. The Topology on Runs . 57

5.4. Proof of the Main Theorem . 59
5.4.1. Modeling Causality as a System of Linear Inequalities 59
5.4.2. The Cycle Space of the Execution Graph 64

5.5. Discussion . 72

III. Below Consensus Solvability

6. Almost Asynchronous System Models 77
6.1. Weak System Models for Set Agreement 77

6.1.1. The model Manti . 78
6.1.2. Implementing L in Model Manti. 79
6.1.3. The Model Msink . 79
6.1.4. Implementing L in Model Msink. 82

6.2. Consensus Impossibility . 84
6.3. Comparing Msink to an f -Source Model 85
6.4. Discussion . 86

7. The Generalized Loneliness Detector L(k) 87
7.1. k-Set Agreement . 87
7.2. Failure Detectors . 88
7.3. Tightness of L(k) . 89
7.4. Solving k-Set Agreement with L(k) . 89
7.5. Relation between L(k) and Sn−k+1 . 93
7.6. Relation between L(k) and Σk . 96
7.7. L(k) in Anonymous Systems . 99
7.8. Discussion . 101

8. On the Impossibility of k-Set Agreement 103
8.1. T -Independence . 104
8.2. The Impossibility Theorem . 105
8.3. Applying Theorem 8.2.1 . 107

8.3.1. The Partially Synchronous Case 107
8.3.2. Failure Detector (Σk,Ωk) . 109

8.4. Discussion . 112

9. A Communication Predicate for k-Set Agreement 115
9.1. The Round Model . 115
9.2. Predicate Psrcs(k) . 120

2

Contents

9.3. Solving k-Set Agreement . 122
9.3.1. Approximation of the Stable Skeleton Graph 122
9.3.2. k-Set Agreement . 128

9.4. Discussion . 132

IV. Appendix

List of Figures 137

List of Algorithms 139

Bibliography 141

Curriculum Vitae 151

3

I
Introduction and Prerequisites

5

Chapter 1

Introduction and Related Work

A distributed system is one in
which the failure of a computer
you didn’t even know existed
can render your own computer
unusable.

(Leslie Lamport)

Adistributed system is a collection of processes that communicate with each
other by sending messages over a network. In order to achieve a common goal,

every process executes an instance of a distributed algorithm, which is modeled as a
deterministic state machine, as proposed by Lynch and Fischer (1979). Taking into
account the current, (locally) accessible state of the process and the received messages,
the algorithm specifies what happens when a process takes a computing step, i.e., it
determines which messages to send and what state transition to perform.

The so called space-time diagram provides an intuitive way to visualize the causality
and communication between processes in a run of a distributed system. Figure 1.1
shows the space-time diagram of a run, for processes p1, p2, and p3. Processes p1 and
p2 communicate in a ping-pong like manner, by sending messages back and forth, and
process p3 periodically sends messages (m1, m2,. . .) to process p1. Two computing
steps are causally related, if one is reachable from the other in the space-time diagram
without going backwards in time: For example, the step φ3 at process p1 causally
depends on the steps φ1 and φ2, whereas steps φ1 and φ2 are causally unrelated.

While computer networks are without doubt the most prominent examples, dis-
tributed systems have meanwhile penetrated almost all areas of computing. The
theory of distributed computing is also applied to diverse fields like VLSI systems on
chip (e.g. Fuegger et al., 2006; Dielacher et al., 2009) and wireless ad hoc networks (e.g.
Malpani et al., 2000; Wagner and Wattenhofer, 2007). Considering that distributed
systems are frequently employed in safety-critical applications where the correct out-
come of a distributed computation is a matter of life and death, it is indispensable to
mathematically prove the correctness of distributed algorithms.

7

Chapter 1. Introduction and Related Work

p1

p2

p3

m1

m2

φ1

m3

φ3

φ2

Figure 1.1.: The space-time diagram of a run of a distributed system.

For the purpose of a formal analysis, a crucial first step is to find a suitable math-
ematical abstraction that hides the implementational details of the system while still
retaining all of the important real world properties. The so called system model de-
scribes the behaviour of the system by mathematical axioms, the model assumptions,
which determine the set of admissible runs of the model. For example, a model as-
sumption could be that processes perform computing steps in round-robin order and
no more than half of the processes malfunction. Depending on how well our obser-
vations correspond to the real system, the admissible runs of the model may or may
not exactly match the runs that are actually possible in the system. The so called
assumption coverage measures how well the model describes the real system. Care
must be taken when choosing model assumptions, as a too restrictive model will be
applicable to very few systems, whereas too relaxed assumptions might severely reduce
the set of problems that can be solved in the model.

1.1. Solvability of Distributed Computing Problems

Given a problem P and a system model M, the pivotal question in distributed com-
puting is concerned with determining whether P is solvable in the model, i.e.,

is there any algorithm that solves problem P in model M?

To be able to prove or disprove an instance of this rather generic question, we must
first understand the meaning of the slightly more specific statement,

does a given algorithm A solve problem P in model M?

As we have explained above, the set of admissible runs of model M consists of all
possible runs where the model assumptions hold. In general, this set will also contain
runs that are simply impossible when processes execute algorithm A. For example,
inspecting the source code of algorithm A might reveal that two specific processes in
fact never communicate; note that this is the case for processes p2 and p3 in Figure 1.1.
We could therefore safely discard all runs where messages between those processes are

8

1.2. Failures and Consensus

sent, as they are irrelevant for our purpose. What we end up with is a set of “interesting
runs” that is restricted in two ways: (a) by the model assumptions and (b) by the
actual algorithm at hand.

Having identified the set of interesting runs, we will now take a closer look at
the concept of a “distributed computing problem”. Just like in the case of system
models, the specification of a problem P induces a set of runs, which are precisely the
runs where P holds. The above question, whether algorithm A solves problem P in
model M, can then be answered by simply comparing this set with the above set of
interesting runs. That is, if every run that is generated by the algorithm and that
is admissible in the model is also in the set of runs fulfilling the specification of the
problem, then algorithm A solves problem P in model M.1 In other words, M is a
sufficiently restrictive model and A is a cleverly-enough designed algorithm such that
this combination produces only runs that satisfy the specification of P .

Returning to the first, more general question, i.e., whether there exists any algorithm
that solves problem P in model M, we could of course answer this question for a
given algorithm by performing the above set-inclusion test. However, disproving the
existence of any such algorithm, i.e., showing the impossibility of solving problem P
in model M is considerably more involved, as we can no longer reason about the
runs generated by one specific algorithm. Instead, famous impossibility results like
the consensus impossibility by Fischer et al. (1985) (described below), make use of an
indirect argument: For the sake of a contradiction, assume that such an algorithm A
exists. While we do not know the source code of this algorithm A, we might be able to
make use of some (generic) properties that any algorithm that solves P must possess,
simply because it solves P , in order to identify an appropriate run where algorithm A
fails. If we can then show that this run where P does not hold is admissible in model
M, this of course yields a contradiction to our assumption that A solves problem P
in M, and therefore lets us conclude that no such algorithm can exist.

1.2. Failures and Consensus

Since distributed systems consist of multiple (independent) processes and communica-
tion links, a failure in some part of the system does not necessarily lead to an immediate
failure of the entire system. Many distributed algorithms are therefore designed to be
fault-tolerant, which means that they can cope with a certain amount of failures while
still delivering the expected outcome. Essentially, failures can be classified either as
link failures (see e.g. Schmid et al., 2009), where messages might be lost or corrupted,
and process failures. When considering process failures, we can further distinguish
between processes that fail by crashing, so called “benign failures”, and processes that
exhibit Byzantine behaviour. A process that crashes simply stops taking any comput-
ing steps and stays mute with respect to sending messages throughout the rest of the
execution. Byzantine processes on the other hand were first introduced by Lamport
et al. (1982) and capture the case where faulty processes not just stop working, but

1Note that we use the terms “run” and “execution” of an algorithm interchangeably.

9

Chapter 1. Introduction and Related Work

might also intentionally spread false information or attempt to corrupt other processes
in order to jeopardize the successful operation of the algorithm. Apart from the kind
of failures that can occur, the distribution of failures during a run is also important.
For example, Biely and Hutle (2009) consider a model where processes might recover
during a run, after exhibiting Byzantine behaviour.

A common requirement in a distributed system is the task of achieving agreement
despite crashes of processes. In the pivotal consensus problem, which was formally
defined by Pease et al. (1980) and originated from the transaction commit problem in
distributed database systems (Dolev and Strong, 1982; Garcia-Molina, 1982; Lampson
and Sturgis, 1979), all processes start out with (possibly distinct) input values from
some domain. The specification of consensus then induces the set of runs where all
non-faulty processes eventually decide on the same input value. In 1985, Fischer
et al. showed in a seminal paper that there is no algorithm that solves the consensus
problem in the asynchronous model, which has very weak model assumptions that
are satisfied by many practical distributed systems of interest: Intuitively speaking,
in runs of this model processes might crash and consecutive computing steps of a
process can be separated by an arbitrarily long (finite, but unbounded) amount of
time. Moreover, messages sent over communication links can suffer from unbounded
(finite) transmission delays. Interestingly, the consensus impossibility holds even if we
restrict the asynchronous model to the case where only a single process may crash per
run, no matter how many other correct processes are part of the system. We will briefly
sketch the main argument to emphasize the connection to the general impossibility
argument described in the previous section. The impossibility proof of Fischer et al.
(1985) exploits the fact that the asynchronous model assumptions are far too weak
to implement a timeout mechanism or failure detection. That is, a process can never
safely distinguish between the case where a message from some process p is still in
transit, or in reality was never sent because p has previously crashed. Using this
fact, the authors construct an infinite run where some correct processes never decide.
Since in this run all messages are eventually delivered and every correct process takes
infinitely many steps, it is admissible in the asynchronous model. As we will discuss
below, circumventing this impossibility—by adding synchrony conditions or failure
detectors to the asynchronous model—turned out to be one of the major research
directions in distributed computing throughout the last decades.

Unsurprisingly, the amount of process failures directly influences the solvability
power of a model. It was shown by Lamport et al. (1982) that consensus is solv-
able in the fully synchronous model only if less than a third of the processes are
Byzantine. When considering crash failures and the wait-free failure assumption (see
Herlihy, 1991), which allows all but one process to crash in a run, consensus, and in fact
any other non-trivial agreement task, requires more restrictive synchrony assumptions
compared to the case where only up to half of the processes might fail. Note that as-
sumptions like wait-freedom can also be considered as progress conditions (Taubenfeld,
2010), since they specify under which conditions a process is expected to successfully
complete a computation.

10

1.3. Exploring the Space of System Models

The probably first example of achieving agreement in the presence of link failures
was introduced in Akkoyunlu et al. (1975) and called the “Two Generals Problem” by
Gray (1978). In this problem a fortified city is besieged by two armies, each of which is
lead by a general. In order to succeed, the two armies must both attack exactly at the
same time; initially neither of them plans to attack. The generals can communicate by
sending messengers to each other, which, however, might fail to deliver the message.
That is, the only way general G1 can be sure that his message has been delivered
reliably, is by receiving some form of acknowledgement message from general G2. To
ensure the receipt of this acknowledgement, however, general G2 in turn requires an
acknowledgement from general G1, and so forth. It can easily be shown that there is
no finite protocol that allows the two generals to successfully coordinate an attack;
see Akkoyunlu et al. (1975) and Halpern and Moses (1990) for a formal impossibility
proof, and Schmid et al. (2009) for a refined argument.

1.3. Exploring the Space of System Models

The previous example shows that model assumptions can loosely be divided into failure
assumptions and synchrony requirements. The former limits what kind of failures (e.g.,
Byzantine or benign) and what number (e.g., up to f faulty processes) can occur in
runs admissible in the model.

Before discussing synchrony requirements in more detail, we need to clarify that we
assume the existence of a discrete Newtonian timebase. That is, we assume a fictitious
global clock such that every computing step is associated with a time-stamp that
adheres to the usual causality assumptions. Note that this timebase is not necessarily
in correspondence to real-time: In some system models, this fictitious clock might
advance whenever a process has taken a computing step, disregarding how much actual
real-time has passed between consecutive steps. Since causality between computing
steps is fully captured by the happens-before relation introduced by Lamport (1978),
and there is a compatible time-stamp assignment called logical time (Lamport, 1978;
Mattern, 1992), this is indeed feasible. Very recently, the happens-before relation has
been extended to non-asynchronous systems by Ben-Zvi and Moses (2010).

Synchrony requirements of a model essentially ensure that processes and communi-
cation network operate within some a priori given bounds with respect to this timebase.
As we will see below, many existing models use synchrony requirements to (implicitly
or explicitly) bound the so called end-to-end delays of messages, which spans the time
interval starting at the computing step where a message is sent to the computing step
when it is processed at the receiver.

The Synchronous Model

The space of system models for message passing systems is bounded by the fully
(lock-step) synchronous model (see Lynch (1996, Chapter 2); Attiya and Welch (2004,
Chapter 2)) on one hand, and by the aforementioned asynchronous model on the other
hand. In the synchronous model, processes execute in so called lockstep rounds. A

11

Chapter 1. Introduction and Related Work

round consists of correct processes sending out messages to other processes and the
reception and processing of these messages. Note that the round assumption by itself
is not a real synchrony restriction, since we can structure the computing steps of
processes into rounds even in the asynchronous model.2 The distinguishing feature of
the synchronous model is the fact that all messages that were sent at the beginning
of the round are guaranteed to be delivered by the end of the round.

It is easy to see that the above mentioned consensus impossibility proof cannot be
applied to this model: Operating in lockstep rounds guarantees reliable timeouts, in
the sense that if a process does not receive the round-r message from process p by the
end of round r, it can conclude with certainty that p has crashed.

Partially Synchronous Models

Now that we have roughly outlined the space of system models by introducing the syn-
chronous and asynchronous models, we will explore its inner structure in more detail.
When considering the consensus problem, it is well known that the model assumptions
of the synchronous model are in fact unnecessarily strong. Several weaker models have
been proposed where strict lockstep rounds are replaced by weaker synchrony assump-
tions.

The classic partially synchronous models introduced by Dolev et al. (1987); Dwork
et al. (1988) and the semi-synchronous models (Ponzio and Strong, 1992; Attiya et al.,
1994), incorporate a bound Φ on the relative speed of processes, in addition to a trans-
mission delay bound ∆. All those models allow a process to timeout messages: The
semi-synchronous models assume that local real-time clocks are available, in the sense
that every process can query its local clock, while in the classic partially synchronous
models computing steps (of the fastest process) are used as a timebase; in the latter
case, using a spin-loop with loop-count ∆ is sufficient for timing out the maximum
message delay.

The seminal work of Dolev et al. (1987) contains the first systematic analysis of
the impact of (un)favourable choices of system parameters on the solvability of the
consensus problem. More specifically, Dolev et al. (1987) distinguish between point-
to-point message transmission and broadcast communication, bounded vs. unbounded
computing speed of processes and message delays, whether messages must be delivered
in order, and the atomicity of the computing steps of processes. For example, Dolev
et al. (1987) show that neither synchronous message transmissions nor synchronous
computing steps alone are sufficient to circumvent the impossibility result of Fischer
et al. (1985). Atomicity, which represents the power of a computing step, is often
overlooked but nevertheless important. When speaking of atomicity here, we do not
mean the granularity of computing steps with respect to real or logical time: Almost all
existing distributed computing models assume that computing steps happen atomically
and that steps are discrete, in the sense that they take zero time units.3 Rather,
atomicity refers to the ability of receiving and sending messages in the same computing

2The beginning of a round is not necessarily a vertical cut in the timeline.
3See Moser (2009) for an in-depth analysis of allowing non-zero computing steps.

12

1.3. Exploring the Space of System Models

step. At a first glance, this might appear to be a minor technicality, however, Dolev
et al. (1987) show that consensus is still solvable when communication is broadcast-
based and synchronous, despite asynchronous processes, if processes can send and
receive within the same computing step.

One of the first partially synchronous models is the Archimedean model of Vitányi
(1985), which assumes a bounded ratio s > u/c on the minimum computing step time
c and u, which is the maximum computing step time together with the transmission
delay u. Analogously to the case of partially synchronous models described above, a
process can timeout other processes by means of a local spin-loop with loop count s.

Probabilistic Synchrony Assumptions and Message Classification

While the partially synchronous models are close cousins to the synchronous model,
the Finite Average Response time (FAR) model (see Fetzer and Schmid, 2004; Fetzer
et al., 2005) is essentially a probabilistic assumption on top of the purely asynchronous
model. More specifically, the properties of the FAR model are an unknown4 lower
bound for the computing step time, and an unknown finite average of the round-trip
delays between any pair of correct processes. The latter condition allows runs where
round-trip delays increase without bound, provided that there are sufficiently many
short round-trips in between that amortize for the resulting increase of the average.
Due to the computing step time lower bound, any process can implement a bounded-
drift clock via a local spin-loop, which allows to safely timeout messages by using the
timeout values adapted at runtime.

The message-classification (MCM) model by Fetzer (1998) assumes that all received
messages are correctly flagged as “slow” or “fast”, depending on their message delays,
with the requirement that the end-to-end delay of any slow message is more than twice
as big as the end-to-end delay of any message flagged as fast. To prohibit flagging all
messages as “slow”, (Fetzer, 1998) assumes the existence of at least one correct process
p that can eventually communicate bidirectionally with all correct processes via “fast”
messages. Except for messages sent/received by this eventual bidirectional source p,
the MCM model also allows message loss and even transient partitioning. Since the
message classification assumption allows the implementation of a time-free timeout
mechanism for “fast” round-trips (by means of local messages, sent from a process
to itself, which are always delivered as “slow”), the MCM model makes consensus
solvable.

Message-Driven Computation

When a process takes a computing step in any of the models we have seen so far, it
removes zero or more messages from its receive buffer, and then runs the corresponding
code of the algorithm that determines which messages to send. What we have not yet
discussed is the enabling condition for such a computing step. System models can

4The bound is “unknown” in the sense that it cannot be used in the code of the algorithm, while it
is still available for the purpose of an analysis.

13

Chapter 1. Introduction and Related Work

essentially be classified into time-driven and message-driven models. In time-driven
system models like the partially synchronous models mentioned above, the computing
steps of processes are triggered at specific points in time, usually determined by a
local clock. In message-driven models, on the other hand, a process can only take
a computing step when its receive buffer is nonempty, i.e., every computing step is
triggered by the arrival of some message. The Θ-Model (see Le Lann and Schmid,
2003; Widder and Schmid, 2009) is a message-driven model where processes do not
have access to hardware clocks. The synchrony assumption of the Θ-Model requires
that the ratio between the maximum and minimum end-to-end delay of all messages
currently in transit is, at all times, bounded by some possibly unknown constant Θ.
Other similar message-driven models were used by Biely and Widder (2006, 2009) and
Mattern (1989).

Failure Detectors

In contrast to the preceding models, failure detectors (Chandra and Toueg, 1996) pro-
vide a different approach for circumventing the impossibility result of Fischer et al.
(1985). Instead of requiring additional synchrony assumptions, the asynchronous
model is augmented by giving every process access to an oracle that reveals infor-
mation about the global state of the system. Chandra and Toueg (1996) introduce
several failure detector classes of various strength and provide an algorithm that solves
consensus in the asynchronous model augmented with the eventual weak failure de-
tector ♦W or, equivalently, the leader election oracle Ω by Chandra et al. (1996),
assuming that no more than half of the processes can fail by crashing. Obviously such
failure detectors for consensus are not directly implementable in the asynchronous
model, as this would contradict the impossibility of Fischer et al. (1985).

Since these failure detector models are “homogeneous” in the sense that the com-
puting steps of processes and other system parameters are the same in all models,
Chandra and Toueg (1996) introduce a “weaker than” relation on failure detectors,
which we will discuss in more detail in Section 1.5.

The fact that the implementation of a failure detector requires some amount of
synchrony in the underlying model, sparked the quest for the minimal synchrony
requirements to implement failure detector Ω, which is sufficient for solving consensus
(see Chandra et al., 1996). The first implementation of Ω was provided by Larrea
et al. (2000) and was based on rather strong synchrony assumptions. The series of
Weak Timely Link (WTL) models (Aguilera et al., 2001, 2008, 2004; Mostéfaoui and
Raynal, 1999a; Anceaume et al., 2004; Malkhi et al., 2005; Hutle et al., 2006, 2009)
can be viewed as a relaxation of the classic partially synchronous or semi-synchronous
models, in the sense that only some communication links need to adhere to the bound
on message delays. The latest WTL model of Hutle et al. (2006, 2009) requires just
a single process p, a so called timely f -source, with f eventually timely links that
connect p to a possibly changing set of f receiver processes. These models are less
restrictive than the classic partially synchronous models, since communication over all
other links in the system can be totally asynchronous.

14

1.4. The k-Set Agreement Problem

Fernández and Raynal (2007, 2010) present the intermittent rotating f -star as-
sumption that can be seen as a generalization (and a further weakening) of the above
mentioned timely f -source assumption. Interestingly, the Ω implementation of Fer-
nández and Raynal works even in runs where this star structure is not guaranteed
during finite periods of time.

For shared memory systems, an implementation of Ω using a weak system assusmp-
tion was presented by Fernández et al. (2010).

Round Models

We have already described the structure of “rounds” when discussing the synchronous
model. The round-by-round (RbR) failure detector framework of Gafni (1998) and the
heard-of (HO) model of Charron-Bost and Schiper (2009) provide an elegant way for
specifying predicates on the structure of rounds. More specifically, the communication
predicates in the HO model limit the amount of lost communication in rounds, and
therefore provide a way to ensure that certain synchrony conditions and failure con-
ditions are met. Such a predicate could, for example, express that the system cannot
be partitioned in any round. In every round r, the HO-set of a process p contains
the ids of processes from which p has received a round, i.e., “has heard of” in round
r. The round-by-round (RbR) failure detector framework of Gafni (1998), which is
also applicable to shared memory systems, follows a complementary approach: Every
process can query a local failure detector function D that returns a (not necessarily
correct) list of suspected processes for the current round.

1.4. The k-Set Agreement Problem

While the consensus problem is indisputably the most important agreement problem in
distributed computing, it is not always feasible in real systems. Especially in systems
that need to function under wait-free failure assumptions, a temporary partitioning of
the communication network might lead to scenarios where isolated parts of the system
(must!) decide on different values.

Nevertheless, it is desirable that the processes still achieve agreement locally in every
partition, i.e., if there are k partitions, there should be at most k different decisions.
The so called k-set agreement problem introduced by Chaudhuri (1993) requires that
in every run there are at most k different decision values among non-faulty processes.
Clearly k-set agreement is a generalization of the consensus problem since 1-set agree-
ment corresponds exactly to consensus. Furthermore, it was shown independently by
Borowsky and Gafni (1993); Herlihy and Shavit (1993); Saks and Zaharoglou (2000)
that k-set agreement is impossible in the asynchronous model if the possible number of
failures in a system exceeds or is equal to k.5 Analogously to consensus, matching fail-
ure detectors that make k-set agreement solvable in asynchronous systems have been

5Note that this perfectly matches the previously mentioned consensus impossibility in the asyn-
chronous system with just 1 crash failure.

15

Chapter 1. Introduction and Related Work

discovered recently. For example, the loneliness detector (see Delporte-Gallet et al.,
2008) enables the weakest instance of k-set agreement, i.e., (n−1)-set agreement to
be solved in asynchronous message passing systems. A detailed discussion of failure
detectors for k-set agreement will be presented in Chapter 7.

A class of partially synchronous models that allow k-set agreement to be solved in
shared-memory systems6 have been proposed by Aguilera et al. (2009). These models
generalize the partial synchrony assumptions of Dolev et al. (1987); Dwork et al.
(1988) by assuming that only certain sets of processes need to behave synchronously
as a whole, whereas individual processes might violate any synchrony bound. To the
best of our knowledge, no weak system models for k-set agreement have been presented
so far.

Other ways to circumvent the impossibility of k-set agreement (and hence also con-
sensus) include the use of randomization (see e.g. Mostefaoui and Raynal, 2001) and
weakening of the problem itself. An approach that restricts the problem at hand in-
stead of augmenting the model is taken by Mostéfaoui et al. (2002), where a subset of
allowed input vectors (i.e., the combinations of input values of processes) is identified
such that k-set agreement is still solvable in asynchronous systems.

1.5. Comparison of System Models

One way to gain a deeper understanding of the space of system models that we have
seen so far is to analyze the relative strength of models with respect to problem
solvability. That is, we say that a model M1 is weaker than model M2 if every
problem that can be solved with some algorithm in modelM1 can also be solved with
some (possibly distinct) algorithm in model M2. If also the opposite relation holds,
we say that the models are equivalent, otherwise M1 is strictly weaker than M2. We
have already argued, for example, why the synchronous model is strong enough to
solve consensus, whereas the asynchronous model is not. Clearly, the asynchronous
model is strictly weaker than the synchronous model.

An important point in our discussion is that system models that are equivalent with
respect to problem solvability, do not necessarily share the same set of admissible runs.
There are numerous cases of distinct models that are sufficient for solving consensus,
despite the fact that neither set of admissible runs is a subset of the other. For
example, the previously mentioned FAR model (Fetzer et al., 2005) and the MMR
model (Mostefaoui et al., 2003) are an instance of such a case. Nevertheless, it makes
sense to define an alternative comparison relation on models by using set-inclusion,
where a model M1 is weaker than model M2 if any run that is admissible in M2 is
also admissible inM1. Compared to the relation on problem solvability defined above,
this relation on the sets of admissible runs yields a more fine-grained order where the
space of system models is a lattice, but not a linear order.

It is easy to see that being weaker with respect to inclusion of admissible runs also
implies being weaker with respect to problem solvability power: Suppose that any run

6In this thesis we focus exclusively on message passing systems.

16

1.5. Comparison of System Models

admissible in modelM1 is admissible in modelM2. Let A be an algorithm that solves
problem P in modelM2, i.e., the set of runs generated by A in modelM2 is contained
in the set of runs that satisfy the specification of P . By transitivity of set-inclusion
it follows that P also holds for the set of runs generated by A in model M1, which
means that any problem solvable in model M1 is also solvable in model M2. Note
that this line of reasoning is only valid, if algorithm A “works” in model M1, in the
sense that its operations are valid in M1. For example, algorithm A might require
processes to periodically send out specific messages. Clearly such an algorithm would
not be applicable in some message-driven model M1.

The comparison relation based on sets of admissible runs is therefore often useful
when analyzing a class of closely related models that are all strong enough to solve a
specific problem P . If the sets of admissible runs of these models are linearly ordered,
we can use our relation to determine weaker models (w.r.t. this class!) to solve problem
P . For example, the above approach was employed in the quest for the weakest
model for solving consensus in the class of time-driven partially synchronous system
models with weak timely links (WTL), as described in Section 1.3. Apart from its
theoretical impact, finding weak system models is also of practical interest, since the
implementation of such a system will be less costly and easier to achieve in general.

As we have mentioned previously, the WTL models do not directly strive to solve
consensus, but rather implement the failure detector Ω, which in turn is sufficient for
solving consensus. The leader oracle Ω outputs a single process id at every process
and eventually stabilizes on the same correct id at every process. The reason why Ω
was the target of choice for the WTL models is that Chandra et al. (1996) showed that
Ω is the weakest failure detector where consensus is solvable. In more detail, Chandra
et al. (1996) provide a generic reduction algorithm that, given any failure detector
that solves consensus with some algorithm, implements Ω. In general, the possibility
of transforming one failure detector into another, naturally defines a “weaker than”
relation. Since it was shown by Jayanti and Toueg (2008) that there exists a weakest
failure detector for every distributed computing problem, the transformation relation
can also used to compare the hardness of distributed computing problems by compar-
ing the corresponding weakest failure detectors.

17

Chapter 1. Introduction and Related Work

1.6. Roadmap and List of Contributions

This thesis consists of three parts. In the remainder of Part I, we will establish some
basic system assumptions in Chapter 2 and present a high level overview of the space
of system models in Figure 1.2. The detailed content of Parts II and III is outlined
below:

Part II

• In Chapter 3, we present the Asynchronous Bounded-Cycle (ABC) model, which
is a novel time-free system model and also briefly discuss some practical aspects
of the ABC model. Furthermore, we compare the ABC model to other already
existing models, in particular to the classic model (Dwork et al., 1988) by Dwork,
Lynch, and Stockmeyer.

• We then show how to simulate lock-step rounds in this model in Chapter 4 and
solve bounded clock synchronization, despite Byzantine failures.

• In Chapter 5, we present the technically most involved result of this thesis: We
prove that any algorithm working correctly in the partially synchronous Θ-Model
also works correctly in our time-free ABC model. In the proof, we first apply a
novel method for assigning certain message delays to asynchronous executions,
which is based on a variant of Farkas’ theorem of linear inequalities and a non-
standard cycle space of graphs. Using methods from general topology, we then
prove that the existence of this delay assignment implies model indistinguisha-
bility for time-free safety and liveness properties.

Part III

• We introduce two very weak system models Manti and Msink in Chapter 6 and
prove that consensus is impossible in these models. We show how to solve (n−1)-
set agreement in Manti and Msink by implementing the corresponding weakest
failure detector. Analyzing how our model Msink relates to the WTL models for
solving consensus concludes Chapter 6.

• Chapter 7 introduces the generalized loneliness detector L(k), and shows how to
solve k-set agreement without requiring unique process identifiers. Furthermore,
we analyze how our failure detector L(k) relates to existing failure detectors
for k-set agreement and discuss its impact on the quest for the weakest failure
detector in anonymous systems.

• We present a generic theorem in Chapter 8 that characterizes the impossibility of
achieving k-set agreement in various settings. More specifically, Theorem 8.2.1
reduces the impossibility of achieving k-set agreement to the consensus impos-
sibility in a subsystem, assuming that there are certain runs with at least k − 1
distinct decision values. We apply Theorem 8.2.1 to show that failure detector

18

1.6. Roadmap and List of Contributions

(Σk,Ωk) is too weak for k-set agreement and prove that k-set agreement is im-
possible in certain instances of the partially synchronous models of Dolev et al.
(1987).

• In Chapter 9 we present a class of weak communication predicates Psrcs(k) and
show how to use graph theory to express the inherent synchrony of a run. We
then prove the correctness of a novel algorithm that solves k-set agreement by
approximating the so called stable skeleton graph.

Parts of this thesis have been previously published: See Robinson and Schmid (2008a,c,b,
2010) and Biely et al. (2009a,b, 2010a).

19

Chapter 1. Introduction and Related Work

(n
−

1)
-s

et
ag

re
em

en
t

k
-s

et
ag

re
em

en
t

co
ns

en
su

s

bo
un

de
d

cl
oc

k
sy

nc
hr

on
iz

at
io

nSYNC

DLS,DDS ParSync

Θ-Model

ABC

FARWTL MMR

Psrcs(k) 〈MASYNC,L(k)〉

Msink Manti

MASYNC

Figure 1.2.: The space of system models. The main focus of this thesis is an in-depth
analysis of the emphasized (novel) models and the relationships between them. The
vertical alignment shows the respective solvability power of models. For models that
are equivalent in this aspect, the alignment reflects the strictness of their synchrony
requirements. For example, while consensus is solvable in the ABC model and the Θ-
Model, the ABC model requires less strict synchrony assumptions than the Θ-Model.

20

Chapter 2

Basic System Assumptions

In this chapter we will establish the system assumptions of model MASYNC, which
are relevant for all of the subsequently introduced models. It provides a formal basis

for our journey through the space of system models of Figure 1.2 (Page 20).1

We will not, however, try to define a generic model and express the subsequent mod-
els as special instances. The reason why we choose a different approach here is that
the underlying principles of some models discussed in this thesis are based on funda-
mentally different schools of thought and have little in common, apart from requiring
the same set of the (very) basic system assumptions given below. For example, the
ABC model (see Chapter 3) assumes message-driven computations and a synchrony
assumption based on the structure of the space-time diagram (see Figure 1.1, Page 8),
whereas the weak timely link model Msink of Chapter 6 requires processes to perform
partially synchronous computation in a time-driven manner. Trying to formulate such
models as instances of a “greatest common denominator” model, would result in tech-
nically cumbersome proofs and obfuscate the essential properties of the respective
model.

2.1. Computation and Communication

Since this thesis focuses on message passing systems, we consider a set Π of n dis-
tributed processes, connected by a point-to-point network with unbounded but finite
transmission delays. Unless stated otherwise, this communication network corresponds
to a fully connected graph. We neither assume first-in-first-out (FIFO) message deliv-
ery guarantees nor the existence of an authentication service; we do assume, however,
that a process knows the sender of a received message.

Every process executes an instance of a distributed algorithm and is modeled as
a deterministic (and possibly infinite) state machine. Its local execution consists of
a sequence of atomic, zero-time computing steps, each involving the reception of a

1Of course, these very basic system assumptions alone are insufficient for solving any non-trivial
agreement problem, as we have already outlined in Chapter 1.

21

Chapter 2. Basic System Assumptions

set of messages In, a state transition, and the sending of zero or more messages to a
subset of the processes in the system, denoted as Out. We assume that processes have
access to a broadcast primitive, i.e., a process can send a message to all processes in
the system in a single step. Note that, together with our assumptions that processes
have unique identifiers, it is trivial to simulate point-to-point links on top of broadcast
steps.

As we have pointed out in Section 1.3, there is a fundamental difference between
models that use time-driven computation and the message-driven models. In the
latter case, the set In contains exactly 1 message, i.e., every computing step of a
process p is exclusively triggered by a single incoming message at p; process p’s very
first computing step is initiated by some external “wake-up message”. To avoid the
loss of messages, we assume that this very first step happens before p receives any
message from another process.

For time-driven models, on the other hand, the set In can be of arbitrary finite size,
meaning that processes can take steps independently of the communication within the
network. To ease the analysis of algorithms in such time-driven models, we assume
the existence of a discrete global clock T . The progress condition of T is specified by
the model at hand, for now we can assume that T ticks whenever a correct process
takes a step. Note that processes do not have access to T , which is merely a fictitious
device.

2.2. Failures

We assume that among the n processes, at most f can be faulty. In this thesis, we are
mainly concerned with crash failures and Byzantine processes.

If a process crashes (possibly within a step), it takes no further computing steps
afterwards. We call a process alive at time t if it does not crash before or at time t.2

Moreover, a process is alive in a time interval I when it is alive at every tick of T in I.

Definition 2.2.1. The failure pattern of a run α is a function F : T → 2Π that
outputs the set of crashed processes for a given time t. Moreover, we denote the set
of faulty processes in the run as

F =
⋃
t>0

F (t).

�

Since we assume that faulty processes do not recover, we have that

∀t > 0: F (t) ⊆ F (t+ 1).

2Note that time t refers to the fictitious timebase of the discrete global clock T .

22

2.3. Admissibility of Asynchronous Runs

The set of possible failure patterns is called environment. In Chapter 6, for example,
we will consider any environment that allows up to n − 1 crashes, i.e., the wait-free
environment (see Herlihy, 1991).

We conceptually distinguish between the reception of messages and the computing
step where the process can react to this reception. In case of a correct receiver process,
both refer to the same event. In case of a crash faulty or Byzantine receiver process,
however, we separate the reception of a message, which is not under the control of the
adversary but initiated by the network, from the processing of this message, which
is under the adversary’s control and hence arbitrary in the case of a faulty receiver.
Consequently, even faulty processes eventually “receive” messages that are addressed
to them.

In message-driven models we say that a message m sent by process p has been
processed (or executed) by the correct process q, if a computing step triggered by m
has been executed by q. Similarly, when considering time-driven computations, we say
that m has been received by the (correct or faulty) process r if a receive event for m
has occurred at r. Note that we do not define failure patterns for the Byzantine case,
since Byzantine processes are considered to be faulty right from the start.

2.3. Admissibility of Asynchronous Runs

We can now specify necessary conditions for the admissibility of runs in our message
passing systems. Depending on whether we are interested in message-driven or time-
driven computations, either condition 4 or condition 5—which provide corresponding
fairness conditions—need to hold. We have already discussed the atomicity of com-
puting steps in Chapter 1. For message-driven computations, we always require that
steps are atomic, since non-atomic steps where processes can either send or receive
messages in a step (but not both), do not make sense in this setting.

Definition 2.3.1 (Admissibility in MASYNC). A run is admissible in model MASYNC

if all of the following conditions hold:

1. There are at most f < n faulty processes.

2. Suppose that message m is sent by some correct process at time t. Then m
is received, but not necessarily processed, by every (correct or faulty) recipient
within finite time.

3. A message is only received at time t by process p if it was sent by some process
q (and addressed to p) at some time t′ 6 t.

4. (Message-driven only)

• Computing steps are atomic.

• If an infinite number of messages are sent to a correct process, it executes
infinitely many computing steps.

23

Chapter 2. Basic System Assumptions

5. (Time-driven only) A correct process executes infinitely many computing steps.

�

Our previous assumption that the global clock T ticks whenever a process takes
a step, rules out so called “Zeno” behaviour, where processes can accelerate without
bound and therefore might execute infinitely many computing steps before reaching
some finite point in time. For instance, Sastry et al. (2009) present a system model
that allows processes to accelerate and decelerate with respect to T , which corresponds
to real time in the celerating model. Algorithms for this model explicitly require the
exclusion of Zeno behaviour in order to work correctly.

24

II
Above Consensus Solvability

25

Chapter 3

The Asynchronous Bounded-Cycle Model

I can’t work without a model. I
won’t say I turn my back on
nature ruthlessly in order to turn
a study into a picture, arranging
the colors, enlarging and
simplifying; but in the matter of
form I am too afraid of
departing from the possible and
the true.

(Vincent van Gogh)

Adding synchrony conditions, relating the occurrence times of certain events
in a distributed system to each other, is the “classic” approach for circumventing

impossibility results like Fischer et al. (1985) in fault-tolerant distributed computing.
Apart from the message classification model (Fetzer, 1998) and the MMR model

(Mostefaoui et al., 2003), all other models introduced in Chapter 1 refer to individual
message delays and/or computing step times, and most of them even involve explicit
time bounds and system-wide global constraints. In this chapter we show how to add
synchrony assumptions—sufficiently strong for implementing lock-step rounds, and
hence for solving many important distributed computing problems like consensus—to
the asynchronous model in a way that

• entirely avoids any reference to message delays and computing step times, and

• does not require system-wide constraints on communication patterns and net-
work topology.

More specifically, our Asynchronous Bounded-Cycle (ABC) model bounds the ratio
of the number of forward and backward messages in certain “relevant” cycles in the
space-time diagram of an asynchronous execution only. Intuitively speaking, there is
only one scenario that is admissible in the purely asynchronous model but not in the
ABC model: A chain C1 of k1 consecutive messages, starting at process q and ending
at p, that properly “spans” (i.e., causally covers, see Figure 3.1 on Page 30) another

27

Chapter 3. The ABC Model

causal chain C2 from q to p involving k2 > k1Ξ messages, for some model parameter
Ξ > 1.

Consequently, individual message delays can be arbitrary, ranging from 0 to any
finite value; they may even continuously increase. There is no relation at all be-
tween computing step times and/or message delays at processes that do not exchange
messages; this also includes purely one-way communication (“isolated chains”). For
processes that do exchange messages, message delays and step times in non-relevant
cycles and isolated chains can also be arbitrary. Only cumulative delays of chains C1

and C2 in relevant cycles must yield the event order as shown in Figure 3.1. That is,
the sum of the message delays along C2 must not become so small that C1 could span
k1Ξ or more messages in C2. ABC algorithms can exploit the fact that this property
allows to “time out” relevant message chains, and hence failure detection.

3.1. Synchrony in the ABC Model

In this section we will present a formal basis for the intuitive nature of the ABC
model by stating the assumptions that need to hold, in addition to the ones required
by MASYNC (see Definition 2.3.1 on Page 23).

The ABC model is a message-driven model, which means that the size of the set
of received messages In per computing step, as defined in Chapter 2, is exactly 1.
Throughout this chapter and Chapter 4, we assume that there are at most f Byzan-
tine faulty processes in any admissible run, which means that these processes may
deviate arbitrarily from the behavior of correct processes as described above. Since
we distinguish between the reception and the actual processing of a message, there is
a total order on the receive events at every process, no matter whether it is Byzantine
or correct. Note that we do not assume anything about messages sent by Byzantine
processes here, as they are usually unconstrained anyway.

Relevant Cycles and Causal Chains

The ABC model just adds one additional constraint on the admissible executions
defined in Definition 2.3.1. It is based on the space-time diagram representing the
happens-before relation (see Lamport, 1978), which captures the causal flow of in-
formation in an admissible execution. In order to properly include faulty processes,
we just drop every message sent by a faulty process from the space-time diagram.1

Note that a similar message dropping could be used for exempting certain messages,
say, of some specific type or sent/received by some specific processes, from the ABC
synchrony condition.

Definition 3.1.1 (Execution graph). The execution graph Gα is the digraph corre-
sponding to the space-time diagram of an admissible execution α, with nodes V (Gα) =

1Recall that in this chapter we consider message-driven computation with zero-time atomic receive-
compute-send steps only: every send event is triggered by some reception.

28

3.1. Synchrony in the ABC Model

Φ corresponding to the receive events in α, and edges reflecting the happens-before re-
lation without its transitive closure: The pair (φi, φj) is in the edge relation→α⊆ Φ×Φ
if and only if one of the following two conditions holds:

1. The receive event φi triggers a computing step where a message m is sent from
correct process p to process q; event φj is the receive event of m at q. We call
the edge φi →α φj non-local edge or simply message in Gα.

2. The events φi and φj both take place at the same processor p and there exists
no event φk in α occurring at p with i < k < j. The edge φi →α φj is said to be
a local edge.

�

We will simply write G and → instead of Gα and →α when α is clear from the
context.2

In Figure 3.1 on Page 30, for example, the edge `1 that is incident to the messages
m1 and m2 is a local edge, as it lies on the timeline of a single process.

Definition 3.1.2 (Causal chain and cycle). A causal chain φ1 → · · · → φl is a directed
path in the execution graph, which consists of messages and local edges. The length
of a causal chain D is the number of non-local edges (i.e., messages) in D, denoted by
|D|. A cycle Z in G is a subgraph of G that corresponds to a cycle in the undirected
shadow graph of G. �

Consider the causal chains

C1 = m6m7m8m9

and

C2 = m1`1m2m3m4m5`2

in the execution graph of Figure 3.1. Clearly we have |C1| = 4 and |C2| = 5, as the
local edges `1 and `2 are not considered when calculating the length of a chain. To
see why these chains form a “cycle” (as defined in Definition 3.1.2), first observe that
C1 and C2 share two common vertices, namely the events φ1 and φ2. Now, taking a
look at the undirected shadow graph depicted in Figure 3.2, we can see the undirected
cycle Z̄ that is spanned by the two disjoint paths that connect φ1 and φ2. The “cycle”
Z that we are actually interested in is the subgraph in Figure 3.1 that is isomorphic
to Z̄, i.e.,

Z = m6m7m8m9`2m5m4m3m2`1m1.

Until now, we have not at all considered the orientation of edges in the execution
graph. Since messages cannot be sent backwards in time, every cycle consists of (at

2Note that we will also consider execution graphs of finite prefixes of runs in Chapter 5.

29

Chapter 3. The ABC Model

least) 2 disjoint causal chains that share common events. When starting out at some
event in the cycle and traversing the entire cycle, we will inevitable traverse some edges
oppositely to their orientation. If, for example, in Figure 3.1, we started at event φ1

and continued to traverse along m6,m7, m8, and m9 we would move along the edges
`2, m5, . . . ,m2, `1, m1 in the opposite way, until we return to φ1. That is, such a cycle
traversal allows us to partition its edges into “forward” and “backward” edges, which
is made explicit in the following definition:

Definition 3.1.3 (Relevant cycles). Let Z be a cycle in the execution graph, and
partition the edges of Z into the class of backward edges Ẑ− and the class of forward
edges Ẑ+ as follows: Identically directed edges are in the same class, and

|Z+| 6 |Z−|, (3.1)

where
Z− ⊆ Ẑ− and Z+ ⊆ Ẑ+

are the restrictions of Ẑ− resp. Ẑ+ to non-local edges (i.e. messages). The orientation
of the cycle Z is the direction of the forward edges Ẑ+, and Z is said to be a relevant
cycle if all local edges are backward edges, i.e., if Ẑ+ = Z+; otherwise it is called
non-relevant. �

p

q

r

s

φ1

m1
`1 m2 m3

m4 m5 `2

φ2

m6

m7 m8

m9
Z

Figure 3.1.: A relevant cycle Z, where a causal chain C2 = m1`1m2 . . .m5`2 is spanned
by the “slow” chain C1 = m6m7m8m9. Message m3 has zero delay.

Consider for example Figure 3.1: No matter how we traverse the cycle Z, we will
end up with the unique partitioning

{{m1, `1,m2, . . . ,m5, `2} , {m6, . . . ,m9}}

30

3.1. Synchrony in the ABC Model

p

q

r

s

φ1

φ2

Z̄

Figure 3.2.: This figure shows the undirected shadow graph of the execution graph of
Figure 3.1. The two disjoint paths between events φ1 and φ2 span the cycle Z̄.

of the edges, w.r.t. their orientation. Property (3.1) states that the set of backward
messages Z− is never smaller than the set of forward messages Z+. It follows that we
have the following assignment for cycle Z:

Ẑ− = {m1, `1,m2, . . . ,m5, `2} ,
Z− = {m1,m2, . . . ,m5} , and

Z+ = Ẑ+ = {m6, . . . ,m9} .

Since there are no local edges in Ẑ+, cycle Z in Figure 3.1 is an example of a
relevant cycle: Its cycle orientation is opposite to the direction of all local edges, and
the backward messages are traversed oppositely with respect to their direction when
traversing the cycle according to this orientation. In Figure 3.5 (Page 33) on the other
hand, the order of events φ and ψ make the cycle N non-relevant, as the local edge
between φ and ψ is a forward edge. The reason why we choose to call some specific
cycles “relevant” and others “non-relevant” will become apparent in Section 3.2, where
we will see that relevant cycles allow processes to perform failure detection.

Bear in mind, however, that labelling an edge in a cycle as a “forward” or “back-
ward” edge is only of local significance. For example, in Figure 3.3, the forward
message e in cycle X is actually a backward message in cycle Y (i.e., e ∈ X+ and
e ∈ Y −).

p0

p1

p2

p3

e
X

Y

Figure 3.3.: An execution graph containing relevant cycles X, Y , and the combined
cycle X ⊕ Y , consisting of all edges except the oppositely oriented edge e.

31

Chapter 3. The ABC Model

Definition 3.1.4 (ABC synchrony condition). Let Ξ > 1 be a given rational number,
and let G be the execution graph of an execution α where processes perform message-
driven computation. Then α is admissible in the ABC model if α is admissible in
MASYNC (see Definition 2.3.1) and, for every relevant cycle Z in G, we have that

|Z−|
|Z+|

< Ξ. (3.2)

�

Intuitively speaking, (3.2) ensures that the ratio of backward messages (i.e. edges
in Z−) to forward messages is bounded in relevant cycles. Returning to the example
in Figure 3.1, this execution graph would be admissible in an ABC model with

Ξ >
5
4

,

since |Z−| = 5 and |Z+| = 4, and Z is the only relevant cycle here.
Apart from the above condition, there is no other constraint in the ABC model

with respect to the purely asynchronous model: Only the ratio of the number of
backward vs. forward messages in relevant cycles is constrained. There is no system-
wide assumption that restricts the behavior of processes that do not communicate
with each other, no delay constraints whatsoever are put on individual messages, and
messages in non-relevant cycles and isolated chains are totally unconstrained.

3.2. Knowledge Acquisition and Failure Detection

Despite the absence of explicit synchrony bounds, we will prove in Chapter 4 that the
ABC synchrony condition is sufficient for simulating lock-step rounds, and hence for
solving e.g. consensus by means of any synchronous consensus algorithm.

Informally, this is true because condition (3.2) facilitates “timing out” message
chains and hence failure detection3: For example, a correct process p could use its
knowledge of Ξ to timeout a crashed process pslow, by communicating in a ping-pong-
like manner with a correct process pfast. That is, process p sends a message to pfast
which immediately sends back a reply. This in turn causes p to send another message
to pfast and so forth. Suppose that, as depicted in Figure 3.4, p has initially broadcast
a message to pslow and pfast. Assume that, after Ξ = 2 ping-pong sequences (i.e., a
causal chain of length 2Ξ) between p and pfast, no reply message from pslow has yet
arrived at p. If this reply message arrived at p at some point later on, then the receive
event of this message would close a relevant cycle and thereby violate the synchrony
assumption (3.2). Hence, in computing step ψ, process p can safely conclude that
pslow must have crashed. Note that the ABC synchrony condition is used indirectly
here: The absence of a reply message allows p to timeout pslow, because its later arrival
would violate the ABC synchrony condition.

3Note that in this example we consider only crash-faulty processes rather than Byzantine behaviour.

32

3.2. Knowledge Acquisition and Failure Detection

pfast

p

pslow

Z

ψ

Figure 3.4.: If a reply message arrived from pslow after event ψ, there would be a
relevant cycle Z where |Z−|

|Z+| = 4
2 .

It is instructive to consider what happens if the message from pslow arrives before the
event ψ occurs, as shown in Figure 3.5. In that case, ψ closes a non-relevant cycle—the
local edge (φ, ψ) between the receive events φ and ψ has the same direction as the
orientation of the cycle N . In sharp contrast to the situation depicted in Figure 3.4,
however, p does not gain any new information about pfast in the computing step ψ
closing the resulting non-relevant cycle: Process p has already inferred that pslow is
still alive in the previous computing step φ (which actually closes a smaller relevant
cycle!). Therefore, non-relevant cycles are indeed irrelevant for an ABC algorithm.

p

q

r

N φ

ψ

Figure 3.5.: Example of a non-relevant cycle N .

At a first glance, the above examples suggest that we could simplify the ABC syn-
chrony condition by stating certain order properties on fast resp. slow message chains,
i.e., by considering relevant cycles that consist of exactly one fast and one slow message
chain only. However, this would unnecessarily restrict the way algorithms could ex-
ploit the ABC synchrony condition: It may well be the case that some clever (not-yet
discovered) algorithm could infer synchrony information from more complex message
patterns. Moreover, in the case of Byzantine failures, there can be cycles involving
multiple overlapping message chains. For example, the correctness proof of Algo-
rithm 1 shown in Figure 4.1 would no longer work with this simplified assumption, as
the cycle consists of 3 separate message chains:

φ0 → ψ2, ψ1 → φ′′, and φ0 → φ′′.

This makes it necessary to state Definition 3.1.4 in terms of general cycles, as we did,
rather than via causal chains.

33

Chapter 3. The ABC Model

3.3. Practical Aspects

Since the ABC model shares many features with the Θ-Model, most of the applicability
and model coverage aspects discussed by Widder and Schmid (2009) apply a forteriori
to the ABC model. In particular, as a message-driven model, the ABC model suffers
from the problem that the entire system may become mute in case of excessive message
loss and/or partitioning, and that the overhead of continuously sending messages may
become significant. Although there are ways of mitigating these problems, they cannot
be ruled out completely. At the same time, ABC algorithms are easily portable and
benefit from the ABC model’s good coverage in real systems.

Moreover, the non-global scope of the ABC synchrony condition (3.2), which only
constrains messages in relevant cycles on a per-cycle basis, makes the ABC model also
applicable to in systems that cannot be modeled by the existing partially synchronous
models. Consider a formation of spacecraft, for example, where clusters of spacecraft
continuously move away from each other but stay close within a cluster: If an algorithm
generates only message chains that span multiple clusters in relevant cycles, a properly
chosen ABC synchrony condition in the corresponding execution graph will always
be maintained. No existing partially synchronous model can adequately model such
systems: The DLS Model (Dwork et al., 1988), the Archimedean Model (Vitányi, 1984)
and the WTL Models (Aguilera et al., 2004; Malkhi et al., 2005; Hutle et al., 2006)
assume some (possibly unknown) global delay bound for all timely messages. The Θ-
Model (Widder and Schmid, 2009), on the other hand, suffers from the problem that
all messages simultaneously in transit within the whole system must obey the global
delay ratio Θ. Somewhat an exception is the FAR-Model, which does not require any
correlation between the delays of messages exchanged by different processes; it fails to
model the above example, however, because of the ever-growing delays.

Interestingly, the ABC model is also a promising candidate for modeling distributed
algorithms in very large scale integration (VLSI) circuits:4 Due to continuously shrink-
ing feature sizes and increasing clock speeds, today’s deep sub-micron VLSI have
much in common with loosely-coupled asynchronous distributed systems studied in
distributed computing for decades, see e.g. (Sutherland and Ebergen, 2002; Eber-
gen, 1991). Given that the delays observed in a particular chip depend heavily on
the VLSI implementation technology, as well as on the actual place-and-route of the
components and wires, it is definitely sub-optimal to compile time values into a dis-
tributed algorithm here — in particular, when those values affect its internal structure
(message-buffer sizes, for example): Re-using such an algorithm in conjunction with a
different implementation technology or within a different application would be difficult.

By contrast, when an ABC algorithm is used in the VLSI context, there is a very
good chance that the algorithm can be re-used without a change. In particular, when
a design is migrated to a, say, faster implementation technology, both minimum and
maximum delay paths are usually sped up in a similar way. Hence, the algorithm’s

4See e.g. the Dagstuhl seminar Fault-Tolerant Distributed Algorithms in VLSI Chips organized by
(Charron-Bost et al., 2009).

34

3.4. Comparing the ABC Model to Other System Models

Ξ is likely to continue to hold. Similarly, if an ABC algorithm is employed within a
different VLSI application, one can usually guarantee its Ξ by setting suitable con-
straints during place-and-route. Thanks to the ABC model’s weak properties, these
constraints concern cumulative delays, and timing ratios only. They are hence much
easier to satisfy than explicit timing constraints put on individual components and
wires.

3.4. Comparing the ABC Model to Other System Models

In this section, we relate the ABC model to some of the existing partially synchronous
models described in Section 1.3.

The fact that we will primarily discuss aspects where the ABC model surpasses
alternative models should not be taken as a claim of general superiority, however:
A fair model comparison is difficult and also highly application-dependent; it almost
always leads to the conclusion that any two models are incomparable, in the sense
that model A is better than B in aspect X but worse in aspect Y , cp. Widder and
Schmid (2009). We start with a brief account of the major features of those models.

3.4.1. Relation to the classic partially synchronous model

In this section, we relate the ABC model to the classic partially synchronous model,
to which we will refer to as DLS model from now on. Note that we consider only the
perpetual variants of the DLS model here, i.e., for the global stabilization time tGST
we have tGST = 0.5 introduced by Dwork et al. (1988). The model DLS stipulates
a bound Φ on relative computing speeds and a bound ∆ on message delays, relative
to an (external) discrete “global clock”, which ticks whenever a process takes a step:
During Φ ticks of the global clock, every process takes at least one step, and if a
message m was sent at time k to a process p that subsequently performs a receive step
at or after time k + ∆, p is guaranteed to receive m.

First of all, we note that the ABC model and DLS are equivalent in terms of solv-
ability of timing independent problems in fully connected networks. In Widder and
Schmid (2009), it was shown that the Θ-Model and DLS are equivalent in this regard:
Since the synchrony parameters Φ, ∆ of the DLS model imply bounded (and non-
zero) end-to-end delays, any Θ-algorithm can be run in a DLS system if Θ = Θ(Φ,∆)
is chosen sufficiently large. Conversely, using the lock-step round simulation for the
Θ-Model provides a “perfect” DLS system (Φ = 1 and ∆ = 0), which obviously al-
lows to execute any DLS algorithm atop of it. The claimed equivalence thus follows
from the model indistinguishability of the ABC model and the Θ-Model established
in Section 5.

This problem equivalence does not imply that the models are indeed equivalent,
however. First, as shown below, there are problems that can be solved in the ABC

5Some issues related to the eventual variants (tGST > 0) were discussed in Section 3.5. A detailed
relation of all variants of DLS models to the corresponding variants of the Θ-Model was presented
in (Widder and Schmid, 2009).

35

Chapter 3. The ABC Model

model but not in DLS in the case of not fully connected networks and/or distributed
algorithms where processes communicate only with a subset of the other processes.
Moreover, whereas we can choose Ξ such that every execution of a message-driven
algorithm in DLS with Φ, ∆ is also admissible in the ABC model for some Ξ >
Θ(Φ,∆), we can even conclude fromMABC ⊃MΘ that some ABC executions cannot
be modeled in DLS. In fact, it has been shown by Widder and Schmid (2009) that
there are Θ-executions that cannot be modeled in DLS.

To investigate this issue also from a different perspective, it is instructive to embed
the ABC model in the taxonomy of partially synchronous models introduced by Dolev
et al. (1987): In this seminal work, the exact border between consensus solvability
and impossibility has been determined. It distinguishes whether (c) communication
is synchronous (∆ holds) or asynchronous, whether (p) processes are synchronous (Φ
holds) or asynchronous, whether (s) steps are atomic (send+receive in a single step)
or non-atomic (separate send and receive steps), whether (b) send steps can broadcast
or only unicast, and whether (m) message delivery is (globally) FIFO ordered or out-
of-order.

We will argue below that, within this taxonomy, the ABC model model must be
mapped to the case of asynchronous communication, asynchronous processes, atomic
steps, broadcast send and out-of-oder delivery. Using the corresponding “binary encod-
ing” (c = 0, p = 0, s = 1, b = 1,m = 0) of Dolev et al. (1987, Table 1), it turns out that
consensus is not solvable in the resulting DLS model. The apparent contradiction to
the solvability of consensus in the ABC model is due to the ABC synchrony condition,
which (weakly) restricts the asynchrony of processes and communication. Since this
restriction is not expressible in the taxonomy of Dolev et al. (1987), the ABC model
must be “over-approximated” by totally asynchronous processes and communication
here.

p

q

r

s

Figure 3.6.: A relevant cycle, valid for any Ξ > 1. Note that r takes no step while p and q
can make progress only bounded by |Z−|.

Asynchronous communication and asynchronous processes:

Consider a 2-player game where the Prover first chooses Ξ and the Adversary, know-
ing Ξ, chooses a pair (Φ,∆). Finally, the Prover has to choose an execution satisfying

36

3.4. Comparing the ABC Model to Other System Models

(3.2) for Ξ; the Prover wins iff this execution violates the adversary-chosen parame-
ters (Φ,∆). The Prover has a winning strategy: It suffices to choose any execution
containing a relevant cycle as shown in Figure 3.6, which respects (3.2) but lets |Z−|
be greater than both Φ and ∆: While the (slow) message from q to r is in transit,
process q executes more than ∆ steps. Moreover, neither process r nor s execute a
step during the more than Φ steps of q. As a consequence, both communication and
processes must be considered asynchronous (c = 0, p = 0).

Atomic steps and broadcast:

Whereas it is clear that out-of-order delivery (m = 0) makes it more difficult to
solve problems, one may be wondering whether the “favorable” choices s = 1 and
b = 1, rather than the ABC synchrony condition, make consensus solvable in the ABC
model. Dolev et al. (1987, Table 1) reveals that this is not the case, however: All
the entries corresponding to p = 0, c = 0,m = 0 are the same (consensus impossi-
ble), irrespectively of the choice of b and s. And indeed, the assumption of atomic
send+receive steps with broadcast in the ABC model’s definition in Section 3.1 is just
a simplifying abstraction: Every non-atomic unicast execution can be mapped to a
causally equivalent atomic send+receive+broadcast step execution with appropriately
adjusted end-to-end delays. The ABC model can hence also be used for making clas-
sic distributed algorithms results applicable to non-atomic models like the Real-Time
Model introduced by Moser and Schmid (2006).

Another major difference between DLS and the ABC model results from the cumu-
lative and non-global character of the ABC synchrony condition. Since (3.2) needs
to hold only in relevant cycles, which are in fact defined by the message patterns of
the specific algorithm employed, the ABC model is particularly suitable for modeling
systems with not fully connected communication graphs: For choosing Ξ, only the
cumulative end-to-end delay ratio over certain paths counts.

Consider the execution shown in Figure 3.7, for example, which corresponds to
a system where process q exchanges messages directly with p (over a 1-hop path
Pqpq), and indirectly with s (over a 2-hop path Pqrsrq via r). As long as the sum of
the delays along Pqrsrq is less than the cumulative delay of Ξ instances of Pqpq, the
individual delays along the links between q, r and r, s are totally irrelevant. In the VLSI
context, for example, this gives more flexibility for place-and-route, as well as some
robustness against dynamic delay variations. By contrast, in DLS, very conservative
values of Φ, ∆ would be needed to achieve a comparable flexibility; obviously, this
would considerably degrade the achievable performance system-wide.

In the case of not fully connected networks, there are even situations which cannot
be modeled in DLS at all. Consider the message-pattern given in Figure 3.8 in a
system with Ξ = 4, for example: The ABC synchrony condition ensures FIFO order
of the messages sent from p2 to q1, even when their delay is unbounded (and may even
continuously grow, as e.g. in a formation of fixed-constellation clusters of spacecraft
that move away from each other): If there was a reordering of φ and φ′, a relevant
cycle with Ξ = 5 would be formed, which is not admissible for Ξ = 4 and hence cannot

37

Chapter 3. The ABC Model

p

q

r

s

Figure 3.7.: The long delay on the link between q and r is compensated by the fast
delay on the link between r and s.

p1

p2

q1
φ φ′

Figure 3.8.: A system implementing bounded-size FIFO channels. If the order of φ
and φ′ changed, there would be a relevant cycle violating (3.2) if Ξ = 4.

occur. Note that processes p1, p2 make unbounded progress while a message to q1 is
in transit here. Hence, as in the example of Figure 3.6 mentioned before, the problem
cannot be solved in DLS. Clearly, such message ordering capabilities are very useful in
practice, e.g., for implementing stable identifiers, bounded-message size, single source
FIFOs etc.

3.4.2. Relation to other partially synchronous models

In this section, we will briefly relate the ABC model to the remaining partially syn-
chronous models MCM and MMR listed in Section 1.3.

Whereas most existing partially synchronous models refer to message delays and
computing step times, the ABC model only constrains the ratio of the number of
backward vs. forward messages in relevant cycles. Moreover, the ABC model neither
assumes any relation between computing step times and message delays, nor real-time
clocks, hence is less constraining than the models considered in Section 3.4.1. Note
that this is also true for the FAR-Model by Fetzer et al. (2005), which requires a
bounded-speed clock and hence introduces some (weak) dependency between average
message delays and computing steps as well. The only exceptions are the Θ-Model,
which constrains the maximal/minimal end-to-end delay ratio, the MCM model by
Fetzer (1998) that assumes a classification of received messages in “slow” and “fast”
ones, and the MMR model of Mostefaoui et al. (2003), which restricts the message
order in round-trip communication patterns.

Like the ABC model, the MCM model is totally time-free, yet allows to reliably
timeout certain messages. However, whereas the MCM uses local “slow” messages

38

3.4. Comparing the ABC Model to Other System Models

to timeout a round-trip of “fast” ones, the ABC model uses “fast” message chains to
timeout “slow” ones6. The message classification assumption is hence more demanding
than the ABC condition, since no two messages with delay ratio in the interval (1, 2]
may ever be in transit simultaneously (unless they are both “slow”).

The MMR model by Mostefaoui et al. (2003) also applies to systems with at most
f process crash failures. It assumes that, in every round-trip of process pi with all
its peers, there is a fixed set of processes Qi the responses of which are among the
first n − f responses received by pi. This property turned out to be sufficient for
implementing the eventually strong failure detector �S and, hence, to solve consensus.

Like the ABC condition, the MMR condition enforces a certain order of events.
Although this condition cannot be expressed explicitly in the ABC model, it can
be interpreted as a special instance of the (undefined7) situation Ξ = 1 for certain
messages. Due to its order-based synchrony condition, the MMR model shares several
advantages of the ABC; on the down side, it is restricted to a specific communication
pattern and has a quite demanding synchrony requirement (albeit for certain messages
only). Moreover, the ABC model is superior w.r.t. solvability of problems, since the
MMR model does not allow to reliably timeout messages. It is hence impossible to
implement uniform lock-step rounds, for example: If a process q sends a round message
to p and then immediately crashes, p cannot distinguish this from the scenario where
q has crashed before sending the round message. Consequently, neither Lemma 4.1.6,
which gives a bound on the failure detection time, nor the bounded progress condition
in Theorem 4.1.11 could be derived in the MMR model. Actually, the same is true
for any model that does not provide stronger synchrony properties than provided by
a perfect failure detector, i.e., for any model where the Strongly Dependent Decision
Problem cannot be solved (see Charron-Bost et al., 2000).

A particularly attractive property of the ABC model is its ability to deal with
unbounded message delays. Among the existing partially synchronous models, this
is also true for the MCM model, the MMR model, the FAR-Model and the dynamic
Θ-Model. The FAR-Model actually surpasses the ABC model here, in the sense that it
does not require any correlation between the delays of messages exchanged by different
processes. On the other hand, the FAR-Model is inferior to the ABC model due to
its requirement of finite average message delays, which rules out continuously growing
delays (occurring e.g. in a formation of spacecraft that continuously move away from
each other). The remaining partially synchronous models also allow growing delays,
although all message delays must change roughly at the same rate. By contrast, as
already mentioned in Section 3.4.1, the ABC model does not force unrelated messages
to meet any constraints, and even allows messages with zero delay.

The partially synchronous modelM∗ of Sastry et al. (2009) distinguishes itself from
existing models by considering so called “celerating” environments, where processes

6Note that, in contrast to the MCM model, in the ABC model there is no global classification of
messages into “fast” and “slow” messages, as a “fast” (i.e. backward, see Definition 3.1.3) message
in one cycle Z might actually be a “slow” (i.e. forward) message in another cycle Y .

7Since this would make the definition of forward and backward edges (and hence of relevant and
irrelevant cycles) superfluous, the ABC model does not allow Ξ = 1.

39

Chapter 3. The ABC Model

can arbitrarily accelerate or decelerate. Sastry et al. (2009) show how to implement
the eventually perfect failure detector inM∗ by using a bichronal clock, which allows
processes to perform failure detection by combining a real-time clock and a logical
clock. In contrast to the partially synchronous models of Dolev et al. (1987) and
Dwork et al. (1988), model M∗ separates the bound on message delays from the
bound on the computing speed of processes, i.e., processes might speed up (or slow
down) while message delays remain the same. Model M∗ is not directly comparable
to the ABC model, as the message-driven assumption always requires process and
message transmissions to accelerate (decelerate) simultaneously.

3.5. Discussion and Weaker Variants of the ABC Model

There are various interesting ways how the synchrony condition (3.2) can be weakened.
Analogously to Dwork et al. (1988) and Widder and Schmid (2009), it is possible to
define 4 variants of the ABC model:

• ABC model: Ξ is known and holds perpetually (the model introduced in Sec-
tion 3.1)

• ?ABC model: Ξ is unknown and holds perpetually

• �ABC model: Ξ is known and holds eventually

• �?ABC model: Ξ is unknown and holds eventually

For the latter two models, we assume that only relevant cycles starting at or after some
(unknown) consistent cut CGST (replacing the “global stabilization time” of Dwork
et al. (1988)) in the execution graph satisfy (3.2).

Due to the “indistinguishability” of the ABC model and the Θ-Model for Θ-like
algorithms, established in Chapter 5, one can immediately use the algorithms proposed
by (Widder and Schmid, 2009) for providing eventual lock-step rounds in the ?Θ-, �Θ-,
and �?Θ-Models to achieve the same in the ?ABC model, �ABC model, and �?ABC
model.

In the case of the ?ABC model and the �?ABC model, the resulting algorithms
are not particularly efficient, however, since they double the round duration with
every round. A more clever algorithm could exploit the ABC synchrony condition to
eventually learn a feasible value for Ξ: Suppose p’s current estimate Ξ̂ of Ξ is 2 in the
execution depicted in Figure 3.4 on Page 3.4. In the computing step ψ, process p finds
out that either Ξ̂ = 2 is wrong or pslow has crashed; it can hence increase its estimate
Ξ̂ as soon as the slow message from pslow arrives. The definition and analysis of such
refined algorithms is a subject to future work.

An orthogonal way of weakening the ABC model is to drop all cycles from the
space-time diagram that exceed a certain length. The clock synchronization algorithm
presented in Chapter 4 will still work correctly even in an ABC model where only
cycles consisting of at most 2 forward messages are considered.

40

3.5. Discussion and Weaker Variants of the ABC Model

It is still an open question, however, whether the ABC model can contribute another
step beyond the currently weakest model by (Hutle et al., 2009) for solving consensus
in the presence of crash failures. Both the time-freeness and the non-global scope of
the ABC synchrony condition make it a promising candidate. However, answering
this question boils down to finding “minimum” execution graphs (recall Section 3.1),
i.e., ways of dropping almost all messages (and hence exempting them from the ABC
synchrony condition) except for a minimal set that cannot be dropped without running
into the FLP impossibility.

For example, one could just adopt the idea underlying the simple Ω failure detector
(Chandra and Toueg, 1996) for the Θ-Model (Biely and Widder, 2009): The ABC
synchrony condition could be restricted to a fixed subset of f + 2 processes in the
system, which elect a leader among themselves and disseminate its id to the remaining
processes in the system. By virtue of our “model indistinguishability” result (see
Chapter 5), it immediately follows that the algorithms of (Biely and Widder, 2009)
are correct Ω-implementation in the ABC model as well. Similarly, using a quite
straightforward extension of the ABC model to time-driven systems (a process can
model time-driven execution by sending messages to itself), it would also possible to
adapt the Ω-implementations developed for the WTL models to the ABC model.

41

Chapter 4

Byzantine Clock Synchronization
in the ABC Model

Don’t walk behind me; I may
not lead. Don’t walk in front of
me; I may not follow. Just walk
beside me and be my friend.

(Albert Camus)

We will show in this chapter that the fault-tolerant generation algorithm intro-
duced by Widder and Schmid (2009) can be used for clock synchronization in

the ABC model.
Since processes do not have access to local hardware clocks in the ABC model, we

do not consider fault-tolerant clock synchronization in the classical sense (see Lamport
and Melliar-Smith, 1985). Instead, we consider logical clock synchronization, where
every process maintains a designated clock integer variable that can be increased
whenever the process takes a computing step. While this might appear to be an
unnatural assumption at first sight, it makes sense from an systems point of view,
since such a clock-free design has the benefit of getting by without any underlying
free-running clock source, which otherwise would present a single point of failure and
therefore limit the achievable level of fault-tolerance (see Fuegger et al., 2006).

4.1. The Clock Synchronization Algorithm

Algorithm 1 tolerates up to f Byzantine process failures in a system consisting of a
fully connected network of

n > 3f + 1

processes adhering to the ABC model and works as follows: Every process p maintains
a local variable k that constitutes p’s local clock as follows: Initially, process p sets
k ← 0 and broadcasts the message (tick 0); for simplicity, we assume that a process
sends messages also to itself. If a correct process p receives f + 1 (tick `) messages
(catch-up rule, Line 3), it can be sure that at least one of them was sent by a correct

43

Chapter 4. Byzantine Clock Synchronization

Algorithm 1 Byzantine Clock Synchronization

Variables and Initialization:
1: k ∈ N initially 0;
2: send (tick 0) to all [once];

3: if received (tick l) from f + 1 distinct processes
and l > k then // catch-up rule

4: send (tick k + 1),. . . ,(tick l) to all [once];
5: k ← l;

6: if received (tick k) from n− f distinct processes then // advance rule
7: send (tick k + 1) to all [once];
8: k ← k + 1;

process that has already reached clock value l. Therefore, p can safely catch-up to l
and broadcast

(tick k + 1),. . . ,(tick l).

If some process p receives
n− f > 2f + 1

(tick k) messages (advance rule, Line 6) and thus advances its clock to k+1, it follows
that at least f+1 of those messages will also be received by every other correct process,
which then executes Line 3. Hence, all correct processes will eventually receive n− f
(tick k) messages and advance their clock to k + 1.

4.1.1. Progress and Precision of Clocks

We will now prove that the algorithm guarantees progress of clocks and a certain
synchrony condition, which can be stated in terms of consistent cuts in the execution
graph. Note that using causality as a reference—rather than a common point in time,
as in traditional clock synchronization—is natural in the time-free ABC model. Since
the classic definition of consistent cuts does not take faulty processes into account,
we will use the following correct-restricted version that fits to our notion of execution
graphs:

Definition 4.1.1 (Consistent Cut). Let G be an execution graph and denote by ∗→
the reflexive and transitive closure of the edge relation →. A subset S of events in G
is called consistent cut, if

(a) for every correct process p, there is an event φ ∈ S taking place at p, and

(b) the set S is left-closed for ∗→; i.e., S contains the whole causal past of all events
in S.

�

44

4.1. The Clock Synchronization Algorithm

Given an event φp at process p, we denote by Cp(φp) the clock value after executing
the computing step corresponding to φp. Recall that the latter need not be correctly
executed if p is faulty. The clock value of a (correct) process p in the frontier of a
consistent cut S is denoted by Cp(S); it is the last clock value of p w.r.t. ∗→ in S. Since
it follows immediately from the code of Algorithm 1 that local clock values of correct
processes are monotonically increasing, Cp(S) is the maximum clock value at p over
all events φp ∈ S.

We will first show that correct clocks make progress perpetually.
Lemma 4.1.2 (One step progress). Let S be a consistent cut such that all correct
processes p satisfy

Cp(S) > k,

for a fixed k > 0. Then there is a consistent cut S ′ where every correct process has
set its clock to at least k + 1.

Proof. If all correct processes pi have a (possibly distinct) clock value ki > k in the
frontier of S, the code of Algorithm 1 ensures that they have already sent (tick k).
Since all messages in transit are eventually delivered, there must be a (not necessarily
consistent) cut S ′′, in the frontier of which every correct process has received n − f
tick k messages and thus set its clock to k+1. The left-closure of S ′′ yields the sought
consistent cut S ′.

Theorem 4.1.3 (Progress). In every admissible execution of Algorithm 1 in a system
with n > 3f+1 processes, the clock of every correct process progresses without bound.

Proof. The theorem follows from a trivial induction argument using Lemma 4.1.2,
in conjunction with the fact that the cut S0 comprising the initial event φ0

p of every
process p is trivially consistent and satisfies Cp(S0) > 0.

We will now show that our logical clocks guarantee a certain kind of precision, for
which we will need the following technical lemma.
Lemma 4.1.4 (First advance). If a correct process q sets its clock to k > 1 in event
ψq, then there is a correct process p that sets its clock to k using the advance rule in
some event ψp with ψp

∗→ ψq.

Proof. If q uses the advance rule for setting its clock to k in ψq, the lemma is trivially
true. If q uses the catch-up rule instead, it must have received f +1 (tick k) messages,
at least one of which was sent by a correct process q′ in an event ψq′

∗→ ψq. If q′

also sent its (tick k) via the catch-up rule (Line 3), we apply the same reasoning to q′.
Since every process sends (tick k) only once and there are only finitely many processes,
we must eventually reach a correct process p that sends (tick k) in event ψp

∗→ ψq via
the advance rule.

Lemma 4.1.5 (Causal chain length). Assume that a correct process sets its clock to
k + m, for some k > 0 and m > 0, at some event φ′, or has already done so. Then,
there is a causal chain D of length |D| > m involving correct processes only, which

45

Chapter 4. Byzantine Clock Synchronization

ends at φ′ and starts at some event φ where a correct process sets its clock to k using
the advance rule (k > 1) or the initialization rule (k = 0).

Proof. Let p be the process where φ′ occurs. If p has set its clock in some earlier
computing step φ′′′ ∗→ φ′, we just replace φ′ by φ′′′ and continue with the case where p
sets its clock to k +m in φ′. If p sets its clock in φ′ using the catch-up rule, applying
Lemma 4.1.4 yields a correct process that sets its clock to k +m in an event ψ ∗→ φ′

using the advance rule. To prove Lemma 4.1.5, it hence suffices to assume that p sets
its clock to k + m in φ′ via the advance rule (k + m > 1) or the initialization rule
(k +m = 0), as we can append the chains cut before to finally get the sought causal
chain D.

The proof is by induction on m. For m = 0, the lemma is trivially true. For m > 0,
at least

n− 2f > f + 1

correct processes must have sent (tick k +m− 1). Let q be any such process, and φ′′

be the event in which (tick k+m− 1) is sent. Since q also sets its clock to k+m− 1
at φ′′, we can invoke Lemma 4.1.4 in case

k +m− 1 > 1

to assure that the advance rule is used in φ′′; for k + m − 1 = 0, the initialization
rule is used in φ′′. We can hence apply the induction hypothesis and conclude that
there is a causal chain D′ of length at least m − 1 leading to φ′′. Hence, appending
q’s (tick k + m − 1) message [and the initially cut off chains] to D′ provides D with
|D| > m.

The following Lemma 4.1.6 will be instrumental in our proof that Algorithm 1
maintains synchronized clocks. It reveals that when a correct process p updates its
clock value in some event φ′, then all messages of correct processes of a certain lower
tick value must have already been received by p, i.e., must originate from the causal
cone of φ′.
Lemma 4.1.6 (Causal Cone). For some k > 0, suppose that

Cp(φ′) = k + 2Ξ

at the event φ′ of a correct process p. Then, for every 0 6 ` 6 k, process p has already
received (tick `) from every correct process.

Proof. The general proof idea is to show that the arrival of (tick `) in some event
φ′′ after φ′ would close a relevant cycle in which the synchrony assumption (3.2) is
violated. See Figure 4.1 for a graphical representation of the scenario described below.

Let Cp(φ′) = k + 2Ξ and assume, for the sake of contradiction, that (tick `) from
some correct process q was not yet received by p before or at φ′, for some ` 6 k.
Consider the last message that p received from q before (or at) φ′. If such a message
exists, we denote its send event at q as ψ′; otherwise, we simply define ψ′ to be the
(externally triggered) initial computing step at q.

46

4.1. The Clock Synchronization Algorithm

From Lemma 4.1.5, we know that there is a causal chain

D = φ′1 → · · · → φ′

of length
|D| > k + 2Ξ− (`+ 1),

where a (tick `+ 1) message is sent in φ′1 by some correct process p1 via the advance
rule and, by assumption, Cp(φ′) = k+2Ξ. Since φ′1 executes the advance rule, p1 must
have received n − f (tick `) messages to do so. Denoting by 0 6 f ′ 6 f the actual
number of faulty processes, it follows that

n− f − f ′ > f + 1

of these messages were sent by correct processes; we denote this set by P1.

Since Theorem 4.1.3 ensures progress of all correct processes, there must be an event
ψ1, coinciding with or occurring after ψ′, in which q broadcasts (tick `). Eventually,
this message is received by p in some event φ′′, which must be after φ′ since by
assumption (tick `) was not received before (or at) φ′. Furthermore, we claim that q
receives at least n− f ′− f (tick `) messages from correct processes after (or at) event
ψ1; let P2 be that set. Otherwise, q would have received at least

n− f ′ − (n− f ′ − f) + 1 = f + 1

(tick `) messages from correct processes by some event

ψ′1
∗→ ψ1,

and therefore would have broadcast (tick `) already in ψ′1 according to the catch-up
rule.

Since P1 ∪ P2 is of size at most 2n − 2f ′ − 2f and we have only n − f ′ correct
processes, it follows by the pigeonhole principle that

2n− 2f ′ − 2f − (n− f ′) = n− 2f − f ′ > n− 3f > 0

correct processes are in P1 ∩ P2. Choose any process

p0 ∈ P1 ∩ P2,

which broadcasts its (tick `) in some event φ0. This message is received at q in some
event ψ2, and at p1 in event φ1.

It is immediately apparent from Figure 4.1 that the causal chains

φ0 → φ1
∗→ D

∗→ φ′′, φ0 → ψ2, ψ1
∗→ ψ2, and ψ1 → φ′′

47

Chapter 4. Byzantine Clock Synchronization

form a relevant cycle Z: The number of backward messages is

|Z−| = |D|+ 1 > k − `+ 2Ξ > 2Ξ,

since ` 6 k; the number of forward messages |Z+| is 2. But this yields

|Z−|
|Z+|

>
2Ξ
2

= Ξ,

contradicting the ABC synchrony assumption (3.2).

p

q

p1

p0

φ′1
|D| > (k + 2Ξ)− (`+ 1)

φ′

ψ1

tic
k
`

φ′′

φ0

tick
` φ1

tick `

ψ2

n− f messages︷︸︸︷

Z

ψ′

Figure 4.1.: Proof of Lemma 4.1.6

We can now easily prove that Algorithm 1 maintains the following synchrony con-
dition:
Theorem 4.1.7 (Synchrony). For any consistent cut S in an admissible execution of
Algorithm 1 in a system with n > 3f + 1 processes, we have

|Cp(S) − Cq(S)| 6 2Ξ

for all correct processes p and q.

Proof. Assume that the maximum clock value in the frontier of S is k + 2Ξ, and let
p be a correct process with

Cp(S) = k + 2Ξ.

From Lemma 4.1.6, we know that p must have seen (tick `) from every correct process
q for any ` 6 k. Since S is consistent, all the corresponding send events at q must be
within S, such that Cq(S) > k.

Even though the ABC model is entirely time-free, we can immediately transfer the
above synchrony property to real-time cuts according to the results of Mattern (1992),
in order to derive the following theorem:

48

4.1. The Clock Synchronization Algorithm

Theorem 4.1.8 (Clock Precision). Let Cp(t) denote the clock value of process p at
real-time t. For any time t of an admissible execution of Algorithm 1 in a system with
n > 3f + 1 processes, we have

|Cp(t)− Cq(t)| 6 2Ξ,

for all correct processes p and q.

4.1.2. Clock Synchronization with Bounded Progress

We have already seen that in Algorithm 1 clocks make progress perpetually and remain
synchronized while doing so. However, precision and progress define a fairly weak
version of the clock synchronization problem only. In our setting, for example, one
could easily simulate optimal precision clock synchronization (i.e., a precision of 1) by
introducing an artificial “macro”-clock, which ticks once every 2Ξ ticks of our “micro”-
clock Cp.1 Optimal precision of the “macro”-clocks would also be maintained if we
increased X with every “macro”-clock tick throughout the execution.2 Clearly, X
would grow without bound in such a simulation, which makes it apparent that neither
precision nor progress constrains the rate of progress (w.r.t. logical time) of a clock
synchronization algorithm.

In classic clock synchronization, this is usually enforced by means of some linear
envelope condition, which asserts a linear relation between clock time and real-time
and thereby also rules out “degenerated” solutions (Dolev et al., 1986). In our asyn-
chronous setting, we obviously cannot refer to real-time, but what we can do is to
relate the rate of progress of the fastest and the slowest correct clock to each other.
We will show that our algorithm also satisfies a suitably defined bounded progress
condition based on consistent cuts as defined in Definition 4.1.10 below.

Definition 4.1.9 (Consistent Cut Interval). Let φ be an event at a correct process
and denote the left closure w.r.t. the causality relation→ as 〈φ〉. If ψ is an event such
that φ→ ψ, we define the consistent cut interval as

[〈φ〉, 〈ψ〉] := 〈ψ〉 \ 〈φ〉.

�

Note that, when considering the real-time transformation of Mattern (1992), a con-
sistent cut interval can essentially be seen as a real-time interval. Since the ABC
model is a message-driven model, we only care about the rate of progress of certain
distinguished events that affect the message complexity, i.e., we do not want to include
events where messages are only received but not sent.

1In fact, this is the main idea of the lock-step round simulation Algorithm 2 below.
2This can be used to simulate eventual lock-step rounds in the weaker variants of the ABC model

introduced in Section 3.5, cp. Widder and Schmid (2009).

49

Chapter 4. Byzantine Clock Synchronization

Definition 4.1.10 (Bounded Progress Condition). An algorithmA has bounded progress
% for some (set of) distinguished events iff the following holds true in all admissible
executions of A: Whenever a correct process p performs at least % > 0 distinguished
events in a consistent cut interval [〈φp〉, 〈φ′p〉], every correct process performs at least
one distinguished event in [〈φp〉, 〈φ′p〉]. �

Theorem 4.1.11. Algorithm 1 has the bounded progress

% = 4Ξ + 1

for the distinguished event that represents clock incrementing and message broadcast-
ing, i.e., send to all.

Proof. From the code of Algorithm 1, it is apparent that incrementing the clock
value and broadcasting messages is done in the same step. Let the distinguished
events considered here be exactly those steps. Suppose that a correct process p has
performed at least 4Ξ+1 distinguished events in between events φp and φ′p, i.e., in the
cut interval [〈φp〉, 〈φ′p〉]. Furthermore, assume in contradiction that there is a correct
process q that does not perform any distinguished event in [〈φp〉, 〈φ′p〉]. Assuming that

Cp(〈φp〉) = k,

for some k > 0, it follows that

Cp(〈φ′p〉) > k + 4Ξ + 1.

By assumption, q does not perform a distinguished event in [〈φp〉, 〈φ′p〉], hence

Cq(〈φp〉) = Cq(〈φ′p〉).

We distinguish two cases for the number of distinguished events, i.e., the clock
values, in event φp:

1. Cp(〈φp〉) > Cq(〈φp〉): Since Cq(〈φp〉) = Cq(〈φ′p〉), we immediately arrive at a
contradiction to Theorem 4.1.7.

2. Cp(〈φp〉) 6 Cq(〈φp〉): We have

Cp(〈φ′p〉)− Cq(〈φ′p〉) > k + 4Ξ + 1− Cq(〈φ′p〉) = Cp(〈φp〉)− Cq(〈φ′p〉) + 4Ξ + 1

> Cp(〈φp〉)− Cq(〈φp〉) + 4Ξ + 1.

Applying Theorem 4.1.7 to Cp(〈φp〉)− Cq(〈φp〉 yields

Cp(〈φ′p〉)− Cq(〈φ′p〉) > −2Ξ + 4Ξ + 1 = 2Ξ + 1,

contradicting Theorem 4.1.7 for 〈φ′p〉.

50

4.2. Simulating Lock-Step Rounds

From the general perspective of solvability, Theorem 4.1.11 shows that “bounded”
clock synchronization is solvable in the ABC model. The following corollary makes
this fact explicit and puts the results of this section into the high-level perspective of
Figure 1.2 on Page 20.

Corollary 4.1.12. Bounded clock synchronization is solvable in the ABC model.

4.2. Simulating Lock-Step Rounds

Finally, we will show how to build a lock-step round simulation in the ABC model
atop of Algorithm 1. A lock-step round execution proceeds in a sequence of rounds
r = 1, 2, . . . , where all correct processes take their round r computing steps (consisting
of receiving the round r− 1 messages3, executing a state transition, and broadcasting
the round r messages for the next round) exactly at the same time.

Algorithm 2 A Lock-Step Round Simulation Tolerating Byzantine Faults

Variables and Initialization:
1: r ∈ N initially 0;
2: call start(0);

3: Whenever k is updated do
4: if k/(2Ξ) = r + 1 then
5: r ← r + 1
6: call start(r)

7: procedure start(r:integer)
8: if r > 0 then
9: read round r − 1 messages
10: execute round r computation
11: send round r messages

We use the same simulation as Widder and Schmid (2009), which just considers
clocks as phase counters and introduces rounds consisting of 2Ξ phases. Algorithm 2
shows the code that must be merged with Algorithm 1; the round r messages are
piggybacked on (tick k) messages every 2Ξ phases, namely, when k/(2Ξ) = r. The
round r computing step4 is encapsulated in the function start(r) in Line 7; start(0)
just sends the round 0 messages that will be processed in the round 1 computing step.

3For notational convenience, we enumerate the messages with the index of the previous round.
4Note that we assume that computing steps happen atomically in zero time.

51

Chapter 4. Byzantine Clock Synchronization

To prove that this algorithm achieves lock-step rounds, we need to show that all
round r messages from correct processes have arrived at every correct process p before
p enters round r + 1, i.e., executes start(r + 1).
Theorem 4.2.1 (Lock-Step Rounds). In a system with

n > 3f + 1

processes, Algorithm 2 merged with Algorithm 1 correctly simulates lock-step rounds
in the ABC model.

Proof. Suppose that a correct process p starts round r + 1 in event φ. By the code,
Cp(φ) = k with

k/(2Ξ) = r + 1, i.e., k = 2Ξr + 2Ξ.

By way of contradiction, assume that the round r message, sent by some correct
process q in the event ψ, arrives at p only after φ. By the code,

Cq(ψ) = k′ with k′/(2Ξ) = r, i.e., k′ = 2Ξr.

However, Lemma 4.1.6 reveals that p should have already seen (tick 2Ξr) from q before
event φ, a contradiction.

4.3. Discussion

In this chapter we have shown that the causality based synchrony condition of the
ABC model is sufficient for achieving synchrony despite Byzantine processes.

Actually, the proofs in this chapter establish uniform (see Hadzilacos and Toueg,
1993) lock-step rounds, i.e., lock-step rounds that are also obeyed by faulty processes
until they behave erroneously for the first time: If the messages sent by faulty processes
also obey the ABC synchrony condition (3.2), then the proof of the key Lemma 4.1.6
actually establishes a uniform causal cone property: Assuming that

(i) process q performs correctly up to and including at least one more step after
event ψ′, and

(ii) p works correctly up to and including event φ′,

then p would receive (though not necessarily process) the message from q in φ′′, thereby
closing a relevant cycle that violates Ξ. Hence, p must have received all messages from
its causal cone by φ′ already, which carries over to a uniform version of Theorem 4.2.1.

One (strong) assumption that we have made throughout this chapter is that under-
lying communication network is fully connected. Due to the recent rise in popularity
of dynamic networks (see for example Kuhn et al., 2010), an interesting direction of
our future research is concerned with weakening the connectivity assumption. It is
possible to extend our algorithms to sparse network scenarios: Assuming only crash
failures, it is sufficient if the network graph is at least (f + 1)-connected. Handling
Byzantine processes, however, requires a stronger restriction on the network topology.

52

Chapter 5

Indistinguishability of the ABC Model and
the Θ-Model

We are always more anxious to
be distinguished for a talent
which we do not possess, than
to be praised for the fifteen
which we do possess.

(Mark Twain)

The indistinguishability of system models is a frequently used argument for
showing that the properties of a specific algorithm that were proven to hold

in one model also hold in another model. For example, the following is a (rather
trivial) model indistinguishability argument that is often used in conjunction with
asynchronous algorithms, which obviously work correctly also in synchronous systems:
Since synchronous admissible runs are just a subset of the runs admissible in MASYNC,
every property guaranteed by an algorithm in the asynchronous model also holds in
the synchronous model.

In this chapter, we will develop a non-trivial model indistinguishability argument
which enables us to show that any algorithm designed for the Θ-Model (Le Lann and
Schmid, 2003; Widder et al., 2005; Widder and Schmid, 2009) also works correctly in
our ABC model, presented in Chapter 3.

It is non-trivial, since most of the admissible ABC executions are not admissible
in the Θ-Model. Nevertheless, no additional simulation layer will be involved in our
argument: the original Θ-algorithms can be used “as is” in the ABC model, without
sacrificing performance!

More specifically, provided that Ξ < Θ, where Θ is the system parameter of the Θ-
Model defined below, we will show that every algorithm designed and proved correct
for the Θ-Model will also “work” (w.r.t. timing independent properties) in the corre-
sponding ABC model with parameter Ξ. Since the algorithms analyzed in Section 4 are
essentially the same as the algorithms for clock synchronization and lock-step round
simulation in the Θ-Model introduced in (Widder and Schmid, 2009), one may wonder
whether it would not have been possible to just transfer the results of the Θ-based

53

Chapter 5. Model Indistinguishability

analysis to the ABC model using these results. This is not possible, however, since
some of the properties studied in (Widder and Schmid, 2009) refer to real-time and
are hence not timing independent.

5.1. The Θ-Model

Just like the ABC model, all variants of the Θ-Model are message-driven models, i.e.,
every computing step is triggered by exactly one incoming message, and processes can
communicate by broadcasting messages. It is essential that the ABC model and the
Θ-Model have compatible system assumptions in order to ensure that every algorithm
A of one model can be run in the other without non-trivial adaptations. The only
significant difference concerns synchrony assumptions, which we will discuss next:

Definition 5.1.1. In the simple static Θ-Model (Le Lann and Schmid, 2003), it is
assumed that there are (unknown but finite) upper resp. lower bounds τ+ > 0 resp.
0 < τ− 6 τ+ on the end-to-end delays of all correct messages in all admissible runs.
The ratio of τ+ to τ− matches the model parameter

Θ =
τ+

τ−
. (5.1)

�

As the static Θ-Model does not sufficiently capture the case where end-to-end delays
grow without bound throughout a run, Widder and Schmid (2009) introduced a more
flexible version of condition (5.1): Let τ+(t) respectively τ−(t) denote the maximum
resp. minimum end-to-end delay of all messages in transit at time t.

Definition 5.1.2. A run is admissible in the dynamic Θ-Model, if

∀t : τ
+(t)
τ−(t)

6 Θ,

for some fixed system parameter Θ. �

Clearly, the synchrony assumption of the dynamic model variant is more relaxed,
in the sense that τ+(t) and τ−(t) are a function of real-time.1 That is, the ratio
between upper and lower bound of the end-to-end delay of messages that are in transit
simultaneously, is bounded by Θ at all times.

However, for the purpose of this chapter, it is sufficient to consider only the simpler
static Θ-model, as these two variants been shown to be equivalent from the point of
view of solvability power (see Widder and Schmid, 2009).

1Note that t refers to real time in the Θ-Model.

54

5.2. System Properties as Sets of Runs

5.2. System Properties as Sets of Runs

In this section we will formalize the meaning of “solving a specific problem”, which
we have already informally introduced in Section 1.1. Consider the runs of some
fixed algorithm A. Let MASYNC be the set of runs of A that are admissible in the
asynchronous system model. Note that we consider timed runs here, i.e., runs along
with the occurrence times of their events, as measured by the discrete clock T (see
Chapter 2).

Definition 5.2.1. A property P is a subset of the runs generated by some algorithm
A in MASYNC. �

In other words, a property is defined by the runs of A that satisfy it. LetM be the
set of admissible runs of A in some model M that restricts the asynchronous model,
by adding additional constraints like for example the ABC synchrony condition (3.2).
Clearly, M is the intersection of some model-specific safety and liveness properties in
MASYNC, since it was shown by Alpern and Schneider (1985) that every property can
be expressed as the intersection of some safety and liveness properties.

Definition 5.2.2. We say that an execution (or run) α is in model M if α ∈M, i.e.,
if α is admissible in M . If M ⊆ P , we say that algorithm A satisfies property P in
the model M . �

Since there is no notion of real-time in the ABC model, we restrict the focus of this
chapter to so called timing independent properties.

Definition 5.2.3 (Timing independent property). A property P is called timing in-
dependent , if

α ∈ P ⇒ α′ ∈ P ,

for every pair of causally equivalent executions α, α′, i.e., executions where Gα =
Gα′ . �

Using a trivial model-indistinguishability argument, it is easy to show that properties
of an algorithm proved to hold in the ABC model also hold in the Θ-Model, for any
Θ < Ξ: The following Theorem 5.2.4 exploits the fact that the relevant cycles in
the execution graph Gα, corresponding to an admissible execution α in the Θ-Model,
also satisfy the ABC synchrony condition (3.2), i.e., α is an admissible execution in
the ABC model as well. We denote the set of executions that are admissible in the
Θ-Model (resp. ABC model) as MΘ (resp. MABC).
Theorem 5.2.4. For any Θ < Ξ, it holds that MΘ ⊆MABC. Hence, if an algorithm
satisfies a property P in the ABC model, it also satisfies P in the Θ-Model.

Proof. If Z is any relevant cycle in Gα, then no more than |Z+|Θ backward messages
can be in Z; otherwise, at least one forward-backward message pair would violate
(5.1). It follows that |Z−|/|Z+| 6 Θ < Ξ as required. Hence, MΘ ⊆ MABC ⊆ P ,
since the algorithm satisfies P in the ABC model.

55

Chapter 5. Model Indistinguishability

The converse of Theorem 5.2.4 is not true, however: The time-free synchrony as-
sumption (3.2) of the ABC model allows arbitrary small end-to-end delays for indi-
vidual messages, violating (5.1) for every Θ. For example, see Figure 3.1 on Page 30,
where the end-to-end delays of messages m1 and m6 would require a very large Θ to
be admissible in the Θ-Model. Given any fixed Θ, we could easily violate (5.1) by
letting the delay of message m1 converge to 0. Therefore, from the perspective of
model coverage, the ABC model is indeed strictly weaker than the Θ-Model, hence
MABC 6⊆ MΘ. Nevertheless, Theorem 5.3.1 below shows that, given an arbitrary
finite execution graph G inMABC, it is always possible to assign end-to-end delays in
(1,Ξ) to the individual messages without changing the event order at any process.

5.3. Indistinguishability for Timing Independent Properties

We will now show that any timing independent property that holds in the Θ-Model,
also holds in the ABC model. For safety properties, it will turn out that we can
“deform” the execution graph (see Chapter 3) of a given run in the ABC model
generated by some algorithm A (that was originally designed for the Θ-Model) in a
way that does not change the event ordering but satisfies (5.1).

Theorem 5.3.1. Let G be the (finite) execution graph of some prefix of a run in
the ABC model. There is an end-to-end delay assignment function τ , such that the
weighted execution graph Gτ is causally equivalent to G and all messages in Gτ satisfy
(5.1).

Since we first want to present the main indistinguishability argument from a more
high level perspective, we delay the very involved proof of Theorem 5.3.1 until Sec-
tion 5.4.

For now, we will assume that Theorem 5.3.1 is true and informally argue why our
indistinguishability result holds: Let τ be such a delay assignment function, and let
Gτ be the weighted execution graph obtained from G by assigning the correspond-
ing delays to the messages. Since Θ-algorithms are message-driven and do not have
access to hardware clocks, G and Gτ are indistinguishable for every process, as the
sequence of events and state transitions is exactly the same. Consequently, an al-
gorithm that provides certain timing independent properties when being run in the
Θ-Model also maintains these properties in the ABC model, as stated in the main
result, Theorem 5.3.7, below.

5.3.1. Safety Properties

In order to formally prove the claimed model indistinguishability of the ABC model
and the Θ-Model, we proceed with the following Lemma 5.3.2. It says that processes
cannot notice any difference in finite prefixes in the ABC model and in the Θ-Model,
and therefore make the same state transitions.

56

5.3. Indistinguishability for Timing Independent Properties

Lemma 5.3.2 (Safety equivalence). If an algorithm satisfies a timing independent
safety property S in the Θ-Model, then S also holds in the ABC model, for any
Ξ < Θ.

Proof. Suppose, by way of contradiction, that there is a finite prefix β of an ABC
model execution α ∈ MABC, where S does not hold. Furthermore, let β′ be a finite
extension of β such that all messages sent by correct processes in β arrive in β′, and
denote the execution graph of β′ by Gβ′ . From Theorem 5.3.1, we know that there
is a delay assignment τ such that the synchrony assumption (5.1) of the Θ-Model is
satisfied for all messages in the timed execution graph Gτ

β′ , while the causality relation
in Gβ′ and Gτ

β′ (and, since Gτ
β′ ⊇ Gτ

β, also in Gβ and Gτ
β) is the same.

We will now construct an admissible execution γ in the Θ-Model, which has the
same prefix Gτ

β′ : If t is the latest occurrence time of all events in Gτ
β′ , we simply

assign an end-to-end delay of τ+ to all messages still in transit at time t and to all
messages sent at a later point in time. Note that γ may be totally different from
the ABC-execution α with respect to the event ordering after the common prefix β′.
However, due to this τ+-assignment, γ is admissible in the Θ-Model since (5.1) holds
for all messages, but violates S, which provides the required contradiction.

5.3.2. The Topology on Runs

Unfortunately, we cannot use the above reasoning for transferring liveness properties
from the Θ-Model to the ABC model, since the indistinguishability of finite prefixes of
an execution is not sufficient to show that “something good” must eventually happen
or happens infinitely often. Nevertheless, Theorem 5.3.5 below will reveal that all
properties satisfiable by an algorithm in the Θ-Model can be reduced to (possibly
stronger) safety properties, in the following sense: For every property P (which could
be a liveness property like eventual termination) satisfied by A inMΘ, there is actually
a (typically stronger) safety property P ′ ⊆ P (like termination within time X) that is
also satisfied by A inMΘ and immediately implies P . Hence, there is no need to deal
with liveness properties here at all!

For our proof, we utilize the convenient topological framework introduced by Alpern
and Schneider (1985), where safety properties correspond to closed sets of executions
in MASYNC, and liveness properties correspond to dense sets:

Definition 5.3.3. Let α and β be infinite runs in some model M . The function
d :M×M→ R defined as

d(α, β) =

{
0 α and β are the same;
2−N α and β are distinct,

where N is the index of the first event where α and β differ. �

57

Chapter 5. Model Indistinguishability

It can easily be shown that d is a metric and therefore induces a metric space on
the set of runs M. This topological space has the so called ε-balls as basic open sets,
defined as

Bε(α) = {β ∈M | d(α, β) < ε}. (5.2)

We will now show that safety properties correspond to closed sets: If an execution
α does not satisfy a safety property Ps, i.e. α /∈ Ps, then there is an index N where
all executions β that share a prefix longer than N with α are not in Ps.2 Formally
speaking, suppose that α /∈ Ps. If there exists an N > 0 such that for all β ∈M where

d(α, β) < 2−N ,

it follows that β /∈ Ps. Thus, the set of runs Ps is closed by definition, since its
complement is open.

If Pl is a liveness property then, for all executions α and for every N > 0, there is
an execution β ∈ Pl such that d(α, β) < 1

2N . That is, no matter what a finite prefix
looks like, it is always “live” in the sense that we can extend it appropriately such that
liveness holds. Clearly Pl is a dense set, since it intersects every basic open set Bε(α)
defined in (5.2).

Definition 5.3.4 (Closed Model). If a model M is determined solely by safety prop-
erties S1, . . . , Sk, then the set

M =
k⋂

i=1

Si

corresponding to the executions admissible in M is closed, since finite intersections of
closed sets are closed. We say that M is a closed model. �

Theorem 5.3.5 (Safety-only in closed models). Let M be a closed model augmenting
the asynchronous model, and letM⊆MASYNC be the set of all admissible executions
of an algorithm A in M . To show that A satisfies some arbitrary property P in M , it
suffices to show that A satisfies the safety property P ′ = P ∩M.

Proof. Suppose that A satisfies some property P ⊆ MASYNC in M , i.e., M ⊆ P .
Then, M = M∩ P and since M is closed, it follows that P ′ = M∩ P is closed (in
MASYNC) as well. But this is exactly the definition of a safety property P ′ ⊆MASYNC

and, since M⊆ P ′ ⊆ P , it indeed suffices to show that A satisfies P ′ in M .

Theorem 5.3.5 is not limited to the context of the Θ-Model, but rather applies
to any system model that is specified by safety properties. Note carefully that this
argument does not work for models that have system assumptions which must hold
only eventually.
Lemma 5.3.6 (Closedness of Θ-Model). The Θ-Model is closed.

2This closely matches intuition, since once a safety property is violated in a prefix, it makes no
difference how this prefix is extended.

58

5.4. Proof of the Main Theorem

Proof. We need to show that the set MΘ of executions in the Θ-Model is closed. If
some execution α violated the end-to-end timing assumption (5.1) of the Θ-Model,
there would be a finite prefix of α within which this violation has happened. This
characterizes a safety property in MASYNC, which by definition coincides with some
closed set.

Theorem 5.3.5 in conjunction with Lemma 5.3.6 reveals that every property satis-
fiable in the Θ-Model is a safety property. Hence, Lemma 5.3.2 finally implies Theo-
rem 5.3.7:
Theorem 5.3.7. All timing independent properties satisfied by an algorithm in the
Θ-Model also hold in the ABC model, for any Ξ < Θ.

5.4. Proof of Theorem 5.3.1

In this section we present the previously deferred and technically involved proof of
Theorem 5.3.1, which provides the last missing piece for our indistinguishability argu-
ment.

We start our detailed treatment with the definition of a non-negative weight function
τ on the edges of a given execution graph G, where τ will be such that (5.1) is satisfied
for all messages in G.

5.4.1. Modeling Causality as a System of Linear Inequalities

A necessary and sufficient condition on τ for preserving the causality relation → is to
require that the sum over all edges in a cycle, taking into account their direction, is
zero. Recall from Chapter 3 that the edge relation of an execution graph is defined on
the set of events Φ. We will now define an orientation assignment on edges.

Definition 5.4.1. Let Z be a (relevant or non-relevant) cycle (see Definition 3.1.3 on
Page 30) and let the map

sgnZ : Φ× Φ→ {−1, 0, 1}

be such that

sgnZ(e) =

+1 for e ∈ Z̄−;
−1 for e ∈ Z̄+;
0 for every e not in Z.

�

Definition 5.4.2. The mapping τ : Φ× Φ → Q+ is said to be an assignment for the
cycle Z if ∑

e∈Z

sgnZ(e)τ(e) = 0. (5.3)

�

59

Chapter 5. Model Indistinguishability

Note carefully that this “zero-sum” condition must hold for all cycles. A message e
that is not contained in any cycle can safely be disregarded, since any value τ(e) will
do for preserving →.

Definition 5.4.3. We call τ a normalized assignment for G if

1 < τ(e) < Ξ, (5.4)
0 < τ(ē) <∞, (5.5)

for all non-local edges (i.e., messages) e and all local edges ē in G. Furthermore, we
call G together with a normalized assignment τ a timed execution graph, denoted as
Gτ . �

Due to (5.4), a normalized assignment τ satisfies (5.1) for all messages in G since
Ξ < Θ. In addition, condition (5.5) ensures that all receive events at the same process
are strictly ordered; since τ(ē) may be chosen arbitrarily small, this is not a restriction
in practice. In fact, allowing τ(ē) = 0 would allow a local edge ē = (φ1, φ2) to
“disappear”, which could alter the causality relation: The event order of simultaneous
receive events φ1, φ2 could be determined by some tie-breaking rule, which might end
up with φ2 → φ1.

To show the existence of a normalized assignment, for a given finite execution graph
(corresponding to a finite prefix of an ABC execution; this is sufficient for our purposes,
as we have argued in Lemma 5.3.2), we combine the above conditions on τ in a system
of linear inequalities of the form Ax < b as follows: First, we split (5.4) into the
conjunction of the lower bound condition −τ(e) < −1 and the upper bound condition
τ(e) < Ξ, for all messages e. Moreover, assigning weights to all messages in a relevant
cycle Z in a way such that ∑

e−∈Z−

τ(e−)−
∑

e+∈Z+

τ(e+) < 0 (5.6)

holds, leaves “space” for assigning a positive weight to the local edges of Z, cp. Fig-
ure 3.1, and hence to satisfy (5.5). Since every cycle has at least one local edge, the
local edge weights can in fact be chosen such that the required cycle condition∑

e∈Z

sgnZ(e)τ(e) = 0

also holds. The same reasoning applies if Z is a non-relevant cycle, except that the
sums in (5.6) must have the opposite sign, see. Figure 3.5. As a consequence, it suffices
to deal with assignments τ for messages only.

Listing these conditions for, say, k messages, l relevant cycles, and m non-relevant
cycles in G yields the system of linear inequalities

Ax < b,

60

5.4. Proof of the Main Theorem

This row vector is
a cycle vector corre-
sponding to a rele-
vant cycle.

−1 0 . . . 0
0 −1 . . . 0
...

...
. . .

...
0 0 . . . −1
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

a2k+1,1 a2k+1,2 . . . a2k+1,k

a2k+2,1 a2k+2,2 . . . a2k+2,k

...
...

. . .
...

a2k+l,1 a2k+l,2 . . . a2k+l,k
...

...
. . .

...
a2k+l+m,1 a2k+l+m,2 . . . a2k+l+m,k

x1

x2
...
xk

 <

−1
−1
...
−1
Ξ
Ξ
...
Ξ
0
0
...
0
...
0

Figure 5.1.: Matrix Form of the Linear System Ax < b.

as illustrated in Figure 5.1. The matrix A is of size n× k, for

n = 2k + l +m.

The coefficient xj of the solution vector x is just the assignment τ(ej) for message ej ∈
G. The matrix-vector multiplication of the first k rows of A by vector x corresponds
to the lower-bound condition on τ for each message, while the upper-bound conditions
are represented by the multiplication of rows k + 1 to 2k by x. The next l rows
of A reflect condition (5.6) for all relevant cycles Zi; a forward message will have a
coefficient −1 here, whereas a backward message has +1, i.e.,

a2k+i,j = sgnZi
(ej).

The remaining m rows represent the sign-flipped version of (5.6) for the non-relevant
cycles Zi that is,

a2k+i,j = − sgnZi
(ej).

Note that a2k+i,j = 0 for every message ej that is not in Zi. Figure 5.2 shows an
example of this correspondence of cycles and cycle vectors.

61

Chapter 5. Model Indistinguishability

We will use the following variant of Farkas’ lemma for linear inequalities to prove
that Ax < b always has a solution, that is, a normalized assignment for G always
exists.3

Theorem 5.4.4 (Farkas lemma variant, see Carver (1921)). The system Ax < b has
a solution x if and only if all vectors y > 0 where yTA = 0 satisfy yTb > 0.

If a vector y > 0 satisfies yTA = 0, we have

k∑
i=1

ai,jyi +
2k∑

i=k+1

ai,jyi +
l+m∑
i=1

a2k+i,jy2k+i = 0,

for all columns j in the matrix A. Observing that the first 2k rows of A correspond
to the identity matrices −Ik and Ik, we can rewrite this as

yk+j − yj +
l+m∑
i=1

a2k+i,jy2k+i = 0. (5.7)

Note that we call the first 2k rows of A the upper-part of A, and the first 2k coefficients
of y upper-coefficients of y; the rest of the rows of A resp. the coefficients of y is called
cycle-part of A resp. cycle-coefficients of y. Moreover, we call a row vector in the
cycle-part of A cycle vector. We split the indices of the cycle-part of A into the set
R, containing all indices 1 6 i 6 l of relevant cycle vectors, and the set N , containing
all indices

l + 1 6 i 6 l +m

of non-relevant cycle vectors. Since equation (5.7) sums up to zero for every column
j, the sum over all columns is also zero, that is,

k∑
j=1

yk+j −
k∑

j=1

yj +
∑

i∈R∪N

k∑
j=1

a2k+i,jy2k+i = 0.

For a relevant cycle Zi, the sum of the positive resp. the sum of the negative entries
in a row i in the cycle-part of A is just the number of backward messages |Z−i | resp.
forward messages |Z+

i |; for non-relevant cycles, we have the opposite correspondence.
We can therefore rewrite the sum over all columns as

k∑
j=1

yj −
k∑

j=1

yk+j =
∑
i∈R

(
|Z−i | − |Z

+
i |

)
y2k+i +

∑
i∈N

(
|Z+

i | − |Z
−
i |

)
y2k+i. (5.8)

We will first prove that ȳTb > 0 for a special type of solutions, called canonical
solutions ȳ, from which we will derive yTb > 0 for arbitrary solutions y later on.

3Note that yT denotes the transpose of vector y.

62

5.4. Proof of the Main Theorem

m1 m2 m3 m4

m5 m6
Z1

m7
m8 m9

m10 m11

Z2

Figure 5.2.: For the relevant cycle Z1 and the non-relevant cycle Z2 we have cycle vec-
tors z1 = (1, 1, 1, 1,−1,−1, 0, 0, 0, 0, 0) and z2 = (0, 0, 0, 0, 0,−1,−1,−1,−1, 1, 1).

Definition 5.4.5. A canonical solution ȳ must satisfy ȳ > 0, with integer coefficients,
ȳTA = 0, and either ȳj = 0 or ȳk+j = 0, or both, for all upper-coefficients j of ȳ. �

Comparing (5.8) with

ȳTb = Ξ
k∑

j=1

ȳk+j −
k∑

j=1

ȳj ,

suggests to consider the linear combination of all rows in the cycle part of A, multiplied
with the cycle-coefficients ȳT , which sum up to the “combined” row vector s: Recalling
ȳTA = 0, we need to distinguish 2 cases for the upper-coefficients of ȳ:

1. If ȳk+j > 0 and ȳj = 0, for some upper-coefficient j, then equation (5.7) implies

ȳk+j = −sj > 0.

2. If ȳj > 0 and ȳk+j = 0, then
ȳj = sj > 0.

Hence, we can rewrite condition

ȳTb = Ξ
k∑

j=1

ȳk+j −
k∑

j=1

ȳj > 0

as
Ξs+ + s− < 0, (5.9)

where s+ is the sum over all negative coefficients in the sum vector s, while s− is
the sum over all non-negative coefficients in s. Observe that we have chosen the
same notation for the entries of s as we have used for relevant cycles. This is by no
means a coincidence: In fact, if s represented a relevant cycle, condition (5.9) would

63

Chapter 5. Model Indistinguishability

immediately follow from the ABC synchrony condition (3.2)4. Even though s is not a
cycle vector in general, since its coefficients are usually not in {0,±1}, we will exploit
the fact that s is always a non-negative integer (since ȳ > 0) linear combination of
relevant and non-relevant cycles. Since we will prove (5.9) separately for non-negative
linear combinations of relevant and non-relevant cycles, we split

Ξs+ + s− < 0

into two parts, i.e.,
Ξs+ + s− = Ξs+

R + s−R + Ξs−N + s+
N ,

where s+
R, s−R, s+

N , s−N , are the appropriate restrictions to the index sets R and N . Bear
in mind that the sign of the coefficients of non-relevant cycle vectors are opposite to
the relevant case.

Lemma 5.4.6 proves (5.9) for the non-relevant part; Lemma 5.4.15 will show the
same result for the relevant part.

Lemma 5.4.6 (Non-relevant sum property). Let z1, . . . , z`, ` > 1, be cycle vectors
representing non-relevant cycles and let sN be the vector corresponding to a non-
negative linear combination of z1, . . . , z`. Then, it holds that Ξs−N + s+

N < 0.

Proof. Since, for every i, we have

|Z−i | − |Z
+
i | > 0,

it follows immediately, by summing up, that every non-negative linear combination
sN also satisfies

|s−N | − |s
+
N | > 0.

Since Ξ > 1, this implies
Ξs−N + s+

N < 0.

5.4.2. The Cycle Space of the Execution Graph

Proving (5.9) for the relevant part, however, will turn out to be much more involved.
The reason for this is that coefficients with opposite sign in a row cancel; this situation
occurs for edge e in Figure 3.3, for example. As a consequence, we cannot carry over
the ABC synchrony condition (3.2) that holds for every constituent cycle vector to
their sum (5.9). In order to solve this problem, we will show that there is a way to
get rid of such cancellations, by constructing an equivalent set of cycle vectors that do
not have coefficients with opposite sign in any row.

4If s corresponds to a relevant cycle S, the definition of the cycle vector coefficients yields |S−| = s−

and |S+| = −s+ and hence −Ξs+ − s− = Ξ|S+| − |S−| > 0 by (3.2).

64

5.4. Proof of the Main Theorem

For proving Lemma 5.4.15, we will make use of some non-standard5 cycle space of
the underlying execution graph G.

Definition 5.4.7. The cycle space C of G is the sub-space of the vector space of the
edge sets in G over Q spanned by G’s (oriented) cycles. �

Since every cycle Zi corresponds to a unique set of messages in G, which can be
uniquely identified by a k-tuple ordered according to the columns in the matrix A,
there is a one-to-one correspondence between cycles Zi in G and the cycle vectors zi

in A, cp. Figure 5.2. To avoid ambiguities w.r.t. indices, we will usually denote the
coefficient for message e in zi by (zi)e.

Definition 5.4.8. A cycle space element

Z = λ1Z1 ⊕ λ2Z2 ⊕ · · · ⊕ λ`Z`

is a linear combination of some relevant cycles Z1, . . . , Z`, with all coefficients λi ∈ Q,
and the corresponding cycle vector reads

z = λ1z1 + λ2z2 + · · ·+ λ`z`.

�

Note that we will use both representations interchangeably in the sequel. The cycle
addition operation ⊕ is defined as follows: If the cycles Z1, Z2 corresponding to the
cycle vectors z1, z2 are disjoint, i.e.,

Z1 ∩ Z2 = ∅,

then the cycle space element

Z = Z1 ⊕ Z2 = Z1 ∪ Z2

is the union of the two cycles Z1, Z2; it corresponds to the sum of the cycle vectors

z = z1 + z2.

Note that disjoint cycles may have common vertices (and even partially overlapping
local edges), but no common messages. If the cycles have a common message e, the
outcome of adding z1 and z2 depends on the cycle vector orientation of Z1 and Z2: If
e is oppositely oriented in Z1 and Z2, formally

(z1)e · (z2)e < 0,

5Our “cycle space” is quite different from the well known cycle space in graph theory, cp. (Diestel,
2006), since our notion of “cycles” correspond to cycles in the undirected shadow graph while still
taking edge orientation into account.

65

Chapter 5. Model Indistinguishability

then the coefficients cancel and hence (z)e = 0. We also say that that e is a mixed
edge, i.e.,

e ∈ Z−1 ∩ Z
+
2 or e ∈ Z+

1 ∩ Z
−
2

in relevant cycles, cp. message e in Figure 3.3. Consequently, e is no longer present in
Z = Z1⊕Z2. Otherwise, if e is identically oriented in Z1 and Z2 (we say that message
e is either a forward or a backward edge in both cycles), formally

(z1)e · (z2)e > 0,

then the coefficients do not cancel and (z)e 6= 0. In this case, e becomes a double-edge
in

Z = Z1 ⊕ Z2.

Hence, in general, the subgraph Z = Z1 ⊕ Z2 corresponding to z = z1 + z2 is not a
cycle, and

(Z1 ⊕ Z2) = (Z1 ∪ Z2)

is not necessarily true. In fact, the general cycle space element

Z = λ1Z1 ⊕ · · · ⊕ λnZn

is made up of multi-edges e with arbitrary multiplicity that is,

(z)e = λ1(z1)e + · · ·+ λn(zn)e ∈ Q.

We will show, however, that every non-negative integer linear combination of cycle
vectors representing relevant cycles yields a “relevant cycle-like” vector z, in the sense
that its coefficients satisfy the ABC synchrony assumption (3.2). This immediately
implies

Ξs+
R + s−R < 0

and thus proves (5.9) for the relevant part, see Lemma 5.4.15.

We start with the following Definition 5.4.9 of consistent cycles, which are such that
all common edges consistently have either the same or the opposite orientation.

Definition 5.4.9 (Consistent cycles). The cycles Z1 and Z2 are consistent, if there is
some d ∈ {−1,+1} such that the entries in the corresponding cycle vectors satisfy

(z1)e · (z2)e = d,

for all messages e ∈ Z1 ∩ Z2. If d = +1 resp. d = −1, then Z1 and Z2 are called i-
consistent (identically consistent) resp. o-consistent (oppositely consistent). If Z1 and
Z2 are disjoint, then they are i-consistent by definition. A set of cycles M1, . . . ,Mn

is consistent (i-consistent/o-consistent) w.r.t. a cycle Z, if Mi and Z are consistent
(i-consistent/o-consistent), for every 1 6 i 6 n. �

66

5.4. Proof of the Main Theorem

For convenience, we say that Z1∩Z2 contains (resp. consists of) oppositely oriented
messages, if for some (resp. every) message e ∈ Z1 ∩ Z2 it holds that

(z1)e · (z2)e = −1.

We proceed with several technical lemmas devoted to the removal of mixed edges in
sums of cycle vectors.

Lemma 5.4.10 (Mixed edge removal (two cycles)). Let Z1 and Z2 be o-consistent
cycles, such that all common message chains m1, . . . ,mn in Z1∩Z2 consist of oppositely
oriented messages only. Then, there are disjoint cyclesM1, . . . ,Mn that are i-consistent
w.r.t. both Z1 and Z2, such that

Z1 ⊕ Z2 = M1 ⊕ · · · ⊕Mn.

Moreover,

|M1 ⊕ · · · ⊕Mn| = |Z1 ⊕ Z2| − 2
n∑

i=1

|mi|.

Proof. Let

Z1 = v1m1v
′
1 . . . v2m2v

′
2 . . . vn−1mn−1v

′
n−1 . . . vnmnv

′
n . . . v1,

where vi and v′i denote the vertices incident to the message chain mi, be the sequence
of vertices and edges of Z1 listed according to its cycle vector orientation. Since Z2

traverses all common edges in the opposite direction, its analogous representation reads

Z2 = v′nmnvn . . . v
′
n−1mn−1vn−1 . . . v

′
2m2v2 . . . v

′
1m1v1 . . . v

′
n.

Hence, the chains m1, . . . ,mn are cancelled in Z1⊕Z2, only leaving the disjoint cycles

M1 = v1 . . . v
′
n . . . v1,

M2 = v2 . . . v
′
1 . . . v2,

...
Mn = vn . . . v

′
n−1 . . . vn.

Every cycle
Mi = vi . . . v

′
i−1 . . . vi (with v′0 = v′n)

consists of exactly one chain of messages v′i−1 . . . vi in Z1, and one chain of messages
vi . . . v

′
i−1 in Z2, and is hence trivially i-consistent w.r.t. both Z1 and Z2.

Lemma 5.4.11 (Mixed edge removal (single set)). Let Z be a cycle. If M1, . . . ,Mn

are disjoint cycles such that every Mi and Z are either o-consistent or disjoint, then

67

Chapter 5. Model Indistinguishability

there is a set of disjoint cycles M ′
1 . . . ,M

′
l′ , all of which are i-consistent w.r.t. Z, such

that
Mn ⊕ · · · ⊕M1 ⊕ Z = M ′

1 ⊕ · · · ⊕M ′
l′ .

Proof. We will construct M ′
1 . . . ,M

′
l′ recursively. For n = 1, if Z and M1 are disjoint

(and hence i-consistent by definition), we just set M ′
1 = Z, M ′

2 = M1 and trivially get

M1 ⊕ Z = M ′
1 ⊕M ′

2.

Otherwise, Z and M1 must be o-consistent and the statement of our lemma follows
immediately from Lemma 5.4.10, applied to Z and M1.

Now suppose that we have already constructed a set of disjoint cycles M ′
1, . . . ,M

′
l′

that are all i-consistent w.r.t. Z with

Mn−1 ⊕ · · · ⊕M1 ⊕ Z = M ′
1 ⊕ · · · ⊕M ′

l′ .

Since ⊕ is commutative and associative, it holds that

Mn ⊕Mn−1 ⊕ · · · ⊕M1 ⊕ Z = Mn ⊕M ′
1 ⊕ · · · ⊕M ′

l′ = M ′
1 ⊕M ′

l′ ⊕Mn.

By our hypothesis, every M ′
`, 1 6 ` 6 l′, and Z are i-consistent, whereas Mn and

Z are either disjoint or o-consistent. It follows immediately that every M ′
` and Mn

is either o-consistent or disjoint. Since these are exactly the preconditions of our
lemma, our recursive construction can be applied again. The termination of this
recursive construction is guaranteed, since every application of Lemma 5.4.10 reduces
the number of edges in the result.

Lemma 5.4.12 (Mixed edge removal (general set)). Let Z1, . . . , Zn be a set of cycles
such that, for 1 6 i < j 6 n, cycles Zi and Zj are either disjoint or o-consistent.
Then, there exist disjoint cycles M1, . . . ,Ml that are all i-consistent w.r.t. every Zi,
1 6 i 6 n, such that

Z1 ⊕ · · · ⊕ Zn = M1 ⊕ · · · ⊕Ml.

Proof. The proof is by induction. For n = 1, Z1 andM1 = Z1 are trivially i-consistent,
hence establishing the induction base. For the induction step, suppose that there are
disjoint cycles M1, . . . ,Ml that are i-consistent w.r.t. every Zi, 1 6 i 6 n − 1, such
that

Z1 ⊕ · · · ⊕ Zn−1 = M1 ⊕ · · · ⊕Ml.

Now, since every M`, 1 6 ` 6 l, and every Zi, 1 6 i 6 n − 1, are i-consistent,
whereas every Zi and Zn are o-consistent, it follows immediately that every M` and
Zn is either o-consistent or disjoint. Hence, we can apply Lemma 5.4.11 with Z = Zn,
which provides the required set M ′

1 . . . ,M
′
l′ of disjoint cycles that are i-consistent w.r.t.

every Zi, 1 6 i 6 n and satisfy

M ′
1 ⊕ · · · ⊕M ′

l′ = Z1 ⊕ · · · ⊕ Zn

68

5.4. Proof of the Main Theorem

as required.

Theorem 5.4.13 (Mixed-free decomposition). Let C ∈ C be a cycle space element
such that

C = Z1 ⊕ · · · ⊕ Zn.

Then, there are cycles M1, . . . ,Ml, which are all i-consistent with respect to every Zi,
for 1 6 i 6 n, and no Mj ∩Mj′ , for 1 6 j < j′ 6 l, contains oppositely oriented
messages, such that

Z1 ⊕ · · · ⊕ Zn = M1 ⊕ · · · ⊕Ml.

Proof. Let Γ be any non-empty subset of the multi-edges in C, i.e., of messages e
that have some integer coefficient

(c)e 6∈ {0,±1}

in the cycle vector corresponding to C. We can define an extended cycle space C[Γ]
as follows: Given some multi-edge e ∈ Γ, there must be at least k = |(c)e| cycles
Zπ1 , . . . , Zπk

where e has the same orientation

d = sgn((c)e) = sgn((zπi)e) (1 6 i 6 k).

For every such Zπi , we introduce a new edge labeled eZπi and replace Zπi by Z ′πi
,

where (z′πi
)e = 0 but (z′πi

)
eZπi

= d. Doing this for all e ∈ Γ provides a new set of
cycles

Z1[Γ], . . . , ZnΓ [Γ] ∈ C[Γ],

which sum up to
C[Γ] = Z1[Γ]⊕ · · · ⊕ ZnΓ [Γ].

Note that the only difference between C and C[Γ] is that we have split all multi-edges
∈ Γ occurring in C into separate new edges (which all have coefficients ∈ {0,±1}) in
C[Γ]. Let Γ∗ denote the set of all multi-edges in C; note that Γ ⊂ Γ∗ implies that
C[Γ] still contains multi-edges in Γ∗\Γ.

We will now prove by means of backwards induction on |Γ| that the statement of
our theorem actually holds for every cycle space element C[Γ]. Since C[∅] = C, this
will also prove Theorem 5.4.13.

For the induction base, let Γ = Γ∗. Since all multi-edges have been split in C[Γ∗],
every pair Zi[Γ∗], Zj [Γ∗], for 1 6 i < j 6 nΓ∗ , is either disjoint or o-consistent.
Lemma 5.4.12 thus reveals that there are disjoint cycles

M1[Γ∗], . . . ,Mk[Γ∗] ∈ C[Γ∗]

that are all i-consistent w.r.t. every Zi[Γ∗], where

M1[Γ∗]⊕ · · · ⊕Mk[Γ∗] = Z1[Γ∗]⊕ · · · ⊕ ZnΓ∗ [Γ∗]

69

Chapter 5. Model Indistinguishability

as required. Note that no Mi[Γ∗] ∩Mj [Γ∗] can contain oppositely oriented messages
because they are disjoint.

For the induction step, we assume that there are cycles

M ′
1[Γ], . . . ,M ′

k[Γ] ∈ C[Γ],

which are all i-consistent w.r.t. every Zi[Γ], 1 6 i 6 nΓ and no M ′
j [Γ] ∩M ′

j′ [Γ], for
1 6 j < j′ 6 k, contains oppositely oriented messages, such that

M ′
1[Γ]⊕ · · · ⊕M ′

k[Γ] = C[Γ].

Let M ′
j [Γ], for 1 6 j 6 k, be such a cycle. Suppose that M ′

j [Γ] contains α > 1
“instances” of a multi-chain c ⊆ Γ, i.e., α maximum-length chains cZ1 , . . . , cZα which
have all been obtained by introducing new edges for the multi-edges making up the
single multi-chain c. W.l.o.g., we can write

M ′
j [Γ] = vZ1

1 cZ1vZ1
2 . . . vZ2

1 cZ2vZ2
2 . . . vZα

1 cZαvZα
2 . . . vZ1

1 .

Consequently, we have the following chains in M ′
j [Γ]:

vZ1
1 cZ1vZ1

2 . . . vZ2
1 cZ2 = Mj1c

Z2 ,

vZ2
1 cZ2vZ2

2 . . . vZ3
1 cZ3 = Mj2c

Z3 ,
...

vZα
1 cZαvZα

2 . . . vZ1
1 cZ1 = Mjαc

Z1 .

Now, if we rejoin all the edges in cZ1 , . . . , cZα to form the multi-chain c again, that is,
if we make a transition from C[Γ] to C[Γ\c], then all instances of cZ1 , . . . , cZα in the
above chains collapse to the single multi-chain c. Consequently, in C[Γ\c], every of the
Mj`

, 1 6 ` 6 α, above actually forms a cycle Mj`
[Γ\c]—note that the vertices vZ`

1 and
v

Z`+1

1 also collapse to a single vertex. Since M ′
j [Γ] is i-consistent w.r.t. every Zi[Γ],

1 6 i 6 nΓ, every Mj`
[Γ\c] must be i-consistent w.r.t. every Zi[Γ\c], 1 6 i 6 nΓ\c, as

well. Furthermore, according to the construction above, every edge of M ′
j [Γ] (except

the edges in cZ1 , . . . , cZα , of course) is contained in exactly one cycle Mj`
[Γ\c], and no

Mj`
[Γ\c] ∩Mj`′ [Γ\c] can contain oppositely oriented edges. Finally, no

Mi` [Γ\c] ∩Mj`′ [Γ\c],

for i 6= j, can contain oppositely oriented edges either, since M ′
j [Γ] and M ′

i [Γ] are
disjoint. Hence, taking all the sets Mj`

[Γ\c] (or, if α = 0 for M ′
j [Γ], then Mj [Γ\c] :=

M ′
j [Γ]) provides the sought set

M1[Γ\c], . . . ,Mk[Γ\c] ∈ C[Γ\c],

thereby completing our proof.

70

5.4. Proof of the Main Theorem

Corollary 5.4.14. Let C ∈ C be such that C = Z1 ⊕ · · · ⊕ Zn, for relevant cycles
Z1, . . . , Zn. Then, |C−|

|C+| < Ξ.

Proof. Applying Theorem 5.4.13 yields cycles M1, . . . ,Ml such that

C = Z1 ⊕ · · · ⊕ Zn = M1 ⊕ · · · ⊕Ml,

which do not contain oppositely oriented messages that would cancel when summing
up. In order to prove |C−|

|C+| < Ξ, it hence suffices to show |M−
i |

|M+
i |
< Ξ for every Mi. There

are only two possibilities:

1. M−
i ⊆ C−,M

+
i ⊆ C+: If Mi is relevant, then obviously

|M−
i |

|M+
i |

< Ξ.

Assume, for the sake of contradication, that Mi is non-relevant. Then there is
a local edge κ ∈Mi that is traversed forward (causally) in Mi, and hence in C.
Since

C = Z1 ⊕ · · · ⊕ Zn,

there must be some Zj with κ ∈ Zj where κ is traversed in the same way as in
C and, hence, in Mi. This contradicts Zj being a relevant cycle, however.

2. M+
i ⊆ C−,M

−
i ⊆ C+: By (3.1), it holds that |M−

i | > |M
+
i | and hence

|M+
i |

|M−
i |

6 1 < Ξ.

Since M−
i resp. M+ correspond to edges in C+ resp. C−, it follows that Mi

contributes properly to |C−|
|C+| < Ξ as required. Note that this holds independently

of whether Mi is relevant or not.

This completes the proof of Corollary 5.4.14.

As a consequence, we finally get the desired proof of (5.9) for the relevant part:
Lemma 5.4.15 (Relevant sum property). Let z1, . . . , z` be cycle vectors representing
relevant cycles and let sR be the vector corresponding to a non-negative integer linear
combination of z1, . . . , z`. Then, it holds that Ξs+

R + s−R < 0.

Proof. Corollary 5.4.14 does not require the Zi to be distinct. Since

SR = λ1Z1 ⊕ · · · ⊕ λ`Z`

for non-negative integer coefficients λi, we can hence invoke Corollary 5.4.14 with λi

instances of the same relevant cycle Zi, for 1 6 i 6 `.

71

Chapter 5. Model Indistinguishability

Combining Lemma 5.4.6 and Lemma 5.4.15 immediately proves that every canonical
solution ȳ (see Definition 5.4.5) satisfies ȳTb > 0. It only remains to extend this result
to arbitrary solution vectors y, which is done in the following Theorem 5.4.16:
Theorem 5.4.16 (Existence of a normalized assignment). The system Ax < b cor-
responding to a finite execution graph has always a solution, and hence a normalized
assignment.

Proof. The statement follows immediately from Theorem 5.4.4, if we can show that
every y > 0 with coefficients yj ∈ Q satisfying yTA = 0 also fulfills yTb > 0. If y is
a canonical solution ȳ, then ȳTb > 0 follows from adding the results of Lemma 5.4.6
and Lemma 5.4.15, recall (5.9) in conjunction with

Ξs+ + s− = Ξs+
R + s−R + Ξs−N + s+

N .

Otherwise, we can derive a canonical solution ȳ from a non-canonical solution y as
follows:

1. For all upper-coefficients 1 6 j 6 k of y: If yj > yk+j , then ȳj = yj − yk+j and
ȳk+j = 0; otherwise, ȳk+j = yk+j − yj and ȳj = 0.

2. For all cycle-coefficients 2k + 1 6 i 6 2k + l +m of y: ȳi = yi.

3. Finally, multiply every ȳj by the least common multiple of ȳ1, . . . , ȳ2k+l+m to
get integer coefficients.

Since yTA = 0, it follows immediately from the above definition of ȳ that ȳTA = 0.
Hence, ȳTb > 0. Now consider (yT − ȳT)bT ; after cancelling the common parts of ȳ
and y, according to our construction, we get

(yT − ȳT)bT =
∑

j:yk+j>yj

(Ξ− 1) yj +
∑

j:yj>yk+j

(Ξ− 1) yk+j .

This term is non-negative, since y is non-negative and Ξ > 1. Hence,

yTb > ȳTb > 0

and we are done.

Theorem 5.4.16 immediately implies the sought Theorem 5.3.1.

5.5. Discussion

In this chapter we have presented a non-trivial model indistinguishability argument
where our main purpose was to show the existence of an end-to-end delay assignment
of the execution graph of a run in the ABC model that is compatible with the Θ-
Model. While the presented proof is not constructive—recall that Theorem 5.4.4 only

72

5.5. Discussion

guarantees that a solution exists—we could nevertheless easily obtain such an end-to-
end assignment by running a linear programming algorithm on our system of linear
inequalities, if needed.

Part of our future work is devoted to finding other applications where such a causal-
ity preserving space-time transformation might be of use.

73

III
Below Consensus Solvability

75

Chapter 6

Almost Asynchronous System Models

In this chapter we will focus on the lower end of the model hierarchy depicted
in Figure 1.2 (Page 20). More specifically, we will introduce two very weak sys-

tem models, Manti and Msink, that are close to the asynchronous model (MASYNC)
of Fischer et al. (1985), with respect to inclusion of admissible runs and therefore
also problem solvability power. 1 Nevertheless, we will show that Manti and Msink are
non-trivial restrictions of MASYNC, by proving that (n−1)-set agreement—the weakest
instance of the generalized agreement problem—is solvable in our models.2 We will not
show this result by providing a set agreement algorithm, but rather by implementing
the weakest failure detector L (see Delporte-Gallet et al., 2008) for set agreement.

6.1. Weak System Models for Set Agreement

In this section, we introduce two system models Manti and Msink with very weak
synchrony conditions. By implementing L in both of these models, we show that they
are strong enough to solve set agreement. In order to allow this, we need to restrict
the set of admissible runs of MASYNC by adding some—albeit very weak—synchrony
conditions. While set agreement is solvable in either one of these models, the partial
synchrony-like assumptions of Msink are fundamentally different from the time-free
message-ordering properties of model Manti.

We first present the formal definition of L (see Delporte-Gallet et al., 2008); we
assume that the reader is familiar with the notion of a failure detector (see Chandra
and Toueg, 1996), which we formally introduce in Section 7.2.

1The content of this chapter originated from joint work with Martin Biely (see Biely et al., 2009a).
2Recall that (n−1)-set agreement (also known as “set agreement”) is impossible in the purely asyn-

chronous model (see Section 1.4).

77

Chapter 6. Almost Asynchronous System Models

Definition 6.1.1. The loneliness detector L outputs either true or false, such that
for all environments E and for all failure patterns F ∈ E the following hold:

∃p ∈ Π ∀t : H(p, t) = false (6.1)
|F | = n− 1 =⇒ ∃q /∈ F ∃t ∀t′ > t : H(q, t′) = true (6.2)

�

Essentially, the conditions of Definition 6.1.1 require the existence of some (possibly
faulty) process that never outputs true, and that, in the case that all but one process
crash, the remaining process “detects” its loneliness by outputting true.

6.1.1. The model Manti

Analogously as for the ABC model presented in Chapter 3, we consider a set Π of n
distributed processes, which communicate via message passing over a fully connected
point-to-point network. Model Manti is—just like the ABC model—a message-driven
execution model where computing steps are triggered by the arrival of messages in-
stead of the passage of time. Inspired by the round-trip-based model introduced by
Mostefaoui et al. (2003, 2004), we specify our synchrony requirements as conditions
on the order of round-trip message arrivals. In this model computations proceed in
asynchronous rounds: At the start of a round, every process p sends a (query)-message
to all processes, including itself. If a process receives a (query)-message from some
process q, it replies by sending a (resp)-message to q. When p has received at least
n− f (resp)-messages, it starts a new round, by sending out another (query)-message
to all processes. Since we aim at (n−1)-set agreement with f = n− 1 here, processes
hence start their new round after receiving just 1 response. In the case where all other
processes crash, the remaining process will end up receiving only messages sent by
itself.

Definition 6.1.2 (Anti source). Let p be a correct or faulty process. Process p is an
anti source, if, whenever p sends a query to all processes, then the response from some
other (possibly changing) process arrives at p before process p starts a new round. �

Intuitively speaking, an anti source is an (unknown) process whose round-trips with
itself are never the fastest. Note that this definition also implies that the anti source
can never be the last remaining correct process. Figure 6.1 on Page 79 shows an
example execution where process p is an anti source.

Definition 6.1.3. Let α be a run of a distributed algorithm. Then, α is admissible
in Manti if the following holds:

1. Processes perform message-driven computation in α and α is admissible in
MASYNC (see Definition 2.3.1 on Page 23).

2. At least one process is an anti source in α.

�

78

6.1. Weak System Models for Set Agreement

p

p1

p2

Figure 6.1.: An execution of an algorithm in model Manti where process p is an anti
source. Note that p needs to send (resp)-messages even in reply to (query)-messages
sent by itself. Reply messages are depicted as dotted lines. For the sake of readability,
(query)-messages sent by p1 and p2 were omitted.

6.1.2. Implementing L in Model Manti.

Algorithm 3 provides an implementation of the loneliness failure detector L in Manti.
Note that, since Manti is a message-driven model, the intuition behind Algorithm 3
is fairly easy to understand: A process sets its outputL to true if and only if it
receives its own reply to its round-trip first. In every run, the anti source p will always
receive the reply message from some other process first and therefore never changes
its variable outputL to true.
Theorem 6.1.4. Failure detector L is implementable in model Manti.

Proof. Let p be an anti source in a run of Algorithm 3. At the start of every round,
process p sends a (query)-message to all other processes. By the definition of an anti
source, p always receives a (resp)-message to its query from some process q 6= p as its
first reply. Process p will therefore pass the test in Line 5 and set alone← false. It
follows that p will always pass the test in Line 7 and therefore outputL remains false
forever, which proves Property (6.1).

To show Property (6.2), we consider the case where q is the only correct process in
α. Then there is a time after which q does not receive any more messages from other
processes. That is, there is a time t such that whenever q sends out a (query)-message,
it only receives its own response, hence, it never sets alone← false at any time t′ > t.
The one (resp) message that q receives, however, is sufficient to subsequently cause q
to set outputL to true in Line 10.

6.1.3. The Model Msink

The model Msink is a time-driven model, similarly to the weak-timely link (WTL)
models (Aguilera et al., 2004, 2003; Malkhi et al., 2005; Hutle et al., 2009) that we
have introduced in Section 1.3. Essentially, the WTL models assume that processes
are partially synchronous (Dwork et al., 1988) while trying to minimize the synchrony
requirements on communication delays.

79

Chapter 6. Almost Asynchronous System Models

Algorithm 3 Implementing L in Model Manti

Variables:
1: outputL, alone ∈ {true, false}

Initially:
2: outputL ← false;
3: startRound()

4: upon rcv (resp) from process q do
5: if p 6= q then
6: alone← false
7: if alone = false then
8: startRound()
9: else

10: outputL ← true

11: upon receive (query) from q do
12: send (resp) do q

13: procedure startRound()
14: alone← true
15: send (query) to all

In the model Manti, there was no bound on the duration of a round-trip as only the
order of the arrival of messages mattered. Our second model Msink enforces a similar
order by means of explicit communication delay bounds and message timeouts, like
the WTL models. A simple approach would be to assume a bound on the round
trip time, which is essentially equivalent to requiring a moving bi-directional link
from one process. Note that this assumption would make one process permanently
1-accessible (in the notation of Malkhi et al. (2005)), which is unnecessarily strong for
implementing L. Analogously to the WTL models, we restrict the power of computing
steps by requiring that a process can either receive a (possibly empty!) set of messages
or send messages to an arbitrary set of processes, but not both.

While we did not use the discrete global clock T that we introduced in Chapter 2 for
the analysis of our message-driven models (i.e., the ABC model and model Manti), we
will make heavy use of it throughout the following section. Like Dwork et al. (1988),
we assume two bounds Φ and ∆, where Φ bounds the relative speed of processes,
whereas ∆ bounds the transmission delay of a timely message m, i.e., the number of
steps of processes take during the transmission of m. We say that a message m is
delivered timely over the link (p, q) iff it is sent by p at time t and received by q not
later than in the first reception step taken by q at (or after) time t+∆. Note that this

80

6.1. Weak System Models for Set Agreement

definition implies that all messages sent to a crashed process (or a process that crashes
before taking the decisive reception step) are considered to be delivered timely.

As in the WTL models (and in contrast to (Dwork et al., 1988)), we do not require
∆ to hold for all messages. Rather, we base our synchrony conditions on the notion of
a sink, which is a process q that can always receive some messages timely (see below).

Definition 6.1.5 (Sink). A process q is a sink in a run α if there is a correct process
p such any message sent from p to q before q has possibly crashed, is delivered timely
to q. �

Note that we only consider p to be correct here to keep the definition simple. In
case the sink q crashes, the sender p may crash as well, as long as it does so after q.
Note that this is actually the decisive difference between q being a sink and p being a
perpetual 1-source (in the notation of Aguilera et al. (2003)), which in contrast must
always be a correct process. However, this synchrony requirement can be weakened
even further, if we restrict our attention to algorithms with a “round like” structure—
that is, algorithms where each process repeatedly sends messages to all other processes,
as it is often the case for heartbeat-based failure detector implementations. For such
algorithms, one could also use the following Definition 6.1.5, where the timely process
p may change. In contrast to the timely f -source model with moving timely links of
Hutle et al. (2009), however, we cannot rely on a single (send-)event as a common
reference point in the definition.

Definition 6.1.6 (Sink’). A process q is a sink in a run α if, for every i > 1, there is
a (possibly changing) process p such that the i-th message sent by p to q is delivered
timely to q. �

Note carefully that, since all messages sent to crashed processes are by definition
delivered timely, a sink can also be an initially faulty process.

Definition 6.1.7 (Model Msink). Let α be a run of a distributed algorithm. Then, α
is admissible in Msink if the following holds:

1. Run α is admissible in MASYNC and processes perform time-driven computation.

2. There is a bound Φ, such that in every interval of Φ ticks of T , every process
that is alive throughout the interval takes at least one step.

3. At least one process is a sink in α.

�

At a first glance, it might be surprising that model Msink is a perpetual model, i.e.,
a model where all model properties must hold at all times. This is necessary in order
to implement L (see Definition 6.1.1), which itself is a non-eventual failure detector.
In fact, this is no peculiarity of set agreement: The weakest failure detector for n− 1
resilient consensus is 〈Σ,Ω〉, which has also perpetual properties (see Delporte-Gallet
et al., 2010).

81

Chapter 6. Almost Asynchronous System Models

Moreover, the definition of L makes it necessary that at least one process never
falsely suspects “loneliness”, i.e., the model parameters Φ and ∆ must be known and
hold right from the start. While it would be sufficient if only the sink knew the real
model parameters Φ and ∆, we do not assume that a process knows whether or not it
is the sink in a particular run.

6.1.4. Implementing L in Model Msink.

Algorithm 4 on Page 83 shows a simple protocol that implements L in model Msink:
Variable outputL contains the simulated failure detector output. Every process p
periodically sends out (alive, phase)-messages that carry the current phase-counter
phase. In addition, it sets a timer that is implemented using simple step counting. If
p does not receive a timely (alive, ph′)-message that was sent by some other process
in the current (or a future) phase, it sets outputL ← true in Line 16. Note that in
this case the timer is not restarted; the algorithm continues to send (alive, phase)-
messages to the other processes, however. Clearly Algorithm 4 would also work in an
anonymous system (see Attiya et al., 1988; Angluin, 1980), where processes do not
have unique identifiers but can only distinguish their neighbors via local port numbers.

We now prove the correctness of Algorithm 4. The following lemma shows that the
emulated L at a sink never outputs true:

Lemma 6.1.8. If process q is a sink, then q never executes Line 16 of Algorithm 4.

Proof. We must show that q receives the (alive, k)-message from some process before
its timer runs out the (k + 1)-st time, for any k > 0. Since q is a sink, the (alive, k)
is delivered timely to q from some process p. Let T (ψ) denote the time on our global
clock T when event ψ takes place somewhere in the system. Suppose that p sends the
(alive, k)-message in some step ψp. By the code of the algorithm and the simultaneous
initial start-up, process p must have executed kη steps. Since processes are partially
synchronous, we have

T (ψp) 6 Φkη.

Now suppose that q’s timer expires in step ψq for the (k + 1)-st time. That is, q has
made (k + 1)(Φη + ∆) steps by ψq. Obviously, we have

T (ψq) > (k + 1)(Φη + ∆).

Considering that the message from p to q is delivered timely, we are done if we can
show

T (ψp) + ∆ 6 T (ψq).

82

6.1. Weak System Models for Set Agreement

Algorithm 4 Implementing L in Model Msink

Variables:
1: outputL ∈ {true, false}
2: phase,maxSeen ∈ Z

Initially:
3: outputL ← false
4: phase← −1
5: maxSeen← −1
6: startPhase()

7: every η steps do:
8: startPhase()

9: upon receive (alive, ph′) do
10: maxSeen← max(maxSeen, ph′)
11: upon expiration of timer do
12: if maxSeen > phase then
13: timer ← Φη + ∆
14: start timer
15: else
16: outputL ← true

17: procedure startPhase()
18: phase← phase+ 1
19: send (alive, phase) to all remote processes

We find that for all k > 0 it holds that

T (ψp) + ∆ 6 kΦη + ∆
< (k + 1)Φη + ∆
6 (k + 1)(Φη + ∆)
6 T (ψq),

which completes the proof.

Theorem 6.1.9. Algorithm 4 implements failure detector L in model Msink for f =
n− 1.

Proof. Let α be a run of Algorithm 4 in Msink, and p be any sink. Lemma 6.1.8
implies that p perpetually outputs false in α, so (6.1) holds.

For proving (6.2), suppose that n−1 processes crash in α. Since there must be some
process from which the sink p receives timely messages, p cannot be the only correct

83

Chapter 6. Almost Asynchronous System Models

process in α. Let q 6= p be the only correct process in α. Since q only sends its alive-
messages to remote processes and no other process is alive, q’s timer will eventually
expire without receiving any message, Therefore, q will set outputL ← true in Line 16.

6.2. Consensus Impossibility

So far, we have shown that our models are strong enough to solve set agreement. This
fact alone, however, is of little use, since we could have done the same in one of the
existing models for consensus. To show that our results have merit, we will prove that
consensus is impossible in our models. Due to the fact that our models are very close
to the asynchronous model, the proof is surprisingly simple.

Theorem 6.2.1. Consider a message passing system of size n > 3, where up to n− 1
processes may fail by crashing. There is no algorithm that solves consensus in model
Manti or in model Msink.

Proof. Suppose, for the sake of a contradiction, that there is an algorithm Asink (resp.
Aanti) that solves consensus in model Msink (resp. Manti).
Msink: Consider a run α of Asink where some process p is initially dead. Since p
satisfies the definition of a sink, there are no other synchrony requirements on the
links connecting the remaining correct processes. Hence the set of the runs where p is
initially dead is indistinguishable from the set of runs generated by Asink in a system
MASYNC with just n− 1 > 2 processes, where processes are partially synchronous, all
links are asynchronous, and f = n− 2 > 1 processes can still crash. This contradicts
the impossibility results of Dolev et al. (1987, Table 1).
Manti: Consider a run α of Aanti, where some process p is initially dead. Since p
satisfies the definition of an anti source, there are no other synchrony requirements at
all in Manti. Therefore, the set of these runs where p is initially dead is indistinguishable
from the set of runs generated by Aanti in a system MASYNC with n− 1 > 2 processes,
where still f = n − 2 > 1 processes can crash. This, however, contradicts the FLP
impossibility (Fischer et al., 1985).

While Theorem 6.2.1 states the important impossibility of consensus for our models,
we can show an even tighter bound for Manti:

Corollary 6.2.2. There is no algorithm that solves (n−2)-set agreement in Manti, for
n > 3.

Proof. In the proof of Theorem 6.2.1 we show that Manti is equivalent to the asyn-
chronous system MASYNC with n − 1 processes, of which n − 2 can crash. Applying
the k-set agreement impossibility (Saks and Zaharoglou, 2000; Borowsky and Gafni,
1993; Herlihy and Shavit, 1993) to this system completes the proof.

84

6.3. Comparing Msink to an f-Source Model

6.3. Comparing Msink to an f-Source Model

It is interesting to compare Msink to the f -source model S→f∗ of Hutle et al. (2009),
which is strong enough to solve consensus by implementing the leader oracle Ω. Failure
detector3 Ω eventually outputs the id of a correct process at every process, and was
shown to be sufficient for solving consensus in an asynchronous system when no more
than f < n/2 processes fail by crashing (see Chandra and Toueg, 1996; Chandra et al.,
1996).

Just like Msink, model S→f∗ assumes that processes are partially synchronous and
that processes can send a message to multiple receivers in a single step. Moreover, in
every run that is admissible in S→f∗, there is some correct process p that is an eventual
moving-f -source. This means that eventually p has at least f outgoing timely links,
i.e., messages are delivered timely, to a (possibly changing!) set of f processes.

Since we consider a perpetual model Msink, with wait-free failure patterns where
up to n − 1 processes can crash, we will compare Msink to a perpetual model S→n−1∗
that contains at least one perpetual moving-(n−1)-source p. Clearly, since f = n − 1
comprises all remote processes, there is no difference between a moving and non-
moving source in this scenario, as the timely links are fixed. Since every process q 6= p
receives all messages from p timely, every such process q is in fact a sink. Hence, it is
not difficult to show that Msink has weaker synchrony requirements than S→n−1∗.

Theorem 6.3.1. Any run α that is admissible in the (perpetual) model S→n−1∗ is
admissible in Msink, but there are runs admissible in Msink that are not admissible in
S→n−1∗.

Proof. The first part of the theorem is immediate from the previous discussion. To
see that there are runs that are only admissible in Msink but not in S→n−1∗, consider,
for example, the run α where the (only!) sink is initially dead. As there are no other
synchrony requirements on any remaining messages in α, the existence of a timely
(n−1)-source is not guaranteed.

Reliability of Communication Links

In S→f∗, links are assumed to be reliable as in Msink, but it is argued by Hutle et al.
(2009) that this assumption is unnecessary. In the work by Aguilera et al. (2003)
and Malkhi et al. (2005) on weak system models for implementing Ω, links can be
unreliable. This leads us to the question of whether we could drop the reliable links
assumption for model Msink as well. In fact, we can answer this question in the
affirmative: If we are only interested in implementing L in Msink, it suffices that all
messages sent over a timely link arrive; all other links may be totally unreliable.

3We formally introduce failure detectors in Chapter 7.

85

Chapter 6. Almost Asynchronous System Models

6.4. Discussion

In this chapter we have introduced two weak system models that are just strong enough
to solve the weakest instance of the set agreement problem. The WTL models, to which
our model Msink belongs, are frequently employed for finding weak(est) system models
for consensus, as we have discussed previously in Section 1.5.

From the perspective of searching for a weakest model for set agreement, we conjec-
ture that our synchrony conditions are not only sufficient but also necessary, since our
models hold even if all but one process are unable to obtain anything more than local
knowledge of the system. Loosening this requirement would mean that processes are
unable to perform any sort of failure detection, which makes it unlikely that there is
a WTL model for set agreement that is substantially weaker than Msink.

86

Chapter 7

The Generalized Loneliness Detector L(k)

All generalizations are
dangerous, even this one.

(Alexandre Dumas père)

In this chapter we will introduce our generalization of the loneliness detector
L (Delporte-Gallet et al., 2008) and show that it is sufficient for solving k-set

agreement. Instead of detecting loneliness, L(k) provides information on “(n−k)-
loneliness”. Intuitively speaking, the output of L(k) can be used by some correct
process to eventually detect the case where at least k processes have crashed.1

We will also discuss various relationships between L(k) and existing failure detectors
for k-set agreement in non-anonymous and anonymous settings.

7.1. k-Set Agreement

The k-set agreement problem was introduced by Chaudhuri (1993) as a generalization
of the consensus problem (see Section 1.4). Every process p starts with a proposal
value v and must eventually and irrevocably decide on some value adhering to the
following three constraints:

k-Agreement: Processes must decide on at most k different values.

Validity: If a process decides on v, then v was proposed by some process.

Termination: Every correct process must eventually decide.

Note that the k-set agreement problem was shown to be impossible in the asyn-
chronous system model (see Borowsky and Gafni, 1993; Herlihy and Shavit, 1993;
Saks and Zaharoglou, 2000)) if f > k processes can crash.

1The L(k) failure detector was developed in joint work with Martin Biely (see Biely et al., 2009a).

87

Chapter 7. The Generalized Loneliness Detector L(k)

7.2. Failure Detectors

In Chapter 6 we have shown how to simulate the output of a failure detector in a
partially synchronous system. We will now formally introduce failure detectors in the
context of asynchronous system.

Throughout this section we assume the model MASYNC (see Chapter 2) without
any additional synchrony requirements. A failure detector (see Chandra and Toueg,
1996) D is an oracle that can be queried by processes in any step, before making a
state transition. The behaviour of D in a run α depends on the failure pattern F (see
Chapter 2), which defines the set of admissible failure detector histories. The value of
a query of a process p in a step at time t is defined by the history function H(p, t),
which maps process identifiers and time to the range of output symbols of D.

We denote the augmented asynchronous model, where runs are admissible in MASYNC

and processes can query failure detector D in any step, as 〈MASYNC,D〉.

Definition 7.2.1. If there is an algorithm A that solves problem P in 〈MASYNC,D〉,
we say that D solves P . �

We say that algorithm AD→D′ transforms D to D′, if processes maintain output
variables outputD′ that emulate failure detector histories of D′ that are admissible
for F . Based on this notion of transforming oracles, Chandra and Toueg (1996) have
introduced a comparison relation on failure detectors:

Definition 7.2.2. We say that D′ is weaker than D and call D stronger than D′, if
such an algorithm AD→D′ exist. If there is also an algorithm AD′→D, we say that D
and D′ are equivalent. If no such algorithm AD′→D exists, we say that D is strictly
stronger than D′; strictly weaker is defined analogously. If neither AD→D′ nor AD′→D
exists then we say that D and D′ are incomparable. A failure detector D′ is the weakest
for problem P if D is weaker than any failure detector D that solves P . �

Recently, it was shown by Delporte-Gallet et al. (2008) that the “loneliness”-detector
L is the weakest failure detector for message passing (n−1)-set agreement. Intuitively
speaking, there is one (not necessarily correct!) process where L perpetually outputs
false, and, if all except one process p have crashed, L eventually outputs true at p
forever.

We now present a natural generalization of L that will turn out to be sufficient for
k-set agreement.

Definition 7.2.3. The (n−k)-loneliness detector L(k) outputs either true or false,
such that for all environments E and ∀F ∈ E it holds that there is a set of processes
Π0 ⊆ Π, |Π0| = n− k and a correct process q /∈ Π0 such that:

∀p ∈ Π0 ∀t : H(p, t) = false (7.1)
|F | > k =⇒ ∃t ∀t′ > t : H(q, t′) = true (7.2)

�

88

7.3. Tightness of L(k)

7.3. Tightness of L(k)

To show that L(k) tightly encapsulates the necessary amount of solvability power for k-
set agreement, we will first prove that L(k) does not provide much stronger properties
than needed, by showing that (k−1)-set agreement is impossible.
Theorem 7.3.1. Let k be such that 2 6 k 6 n− 1. There is no algorithm that solves
(k−1)-set agreement in the model 〈MASYNC,L(k)〉.

Proof. We assume by contradiction that such an algorithm A exists. Now consider
the failure detector history where L outputs true at processes p1, . . . , pk, while it
outputs false at the other processes. Formally speaking, this means the following:

∀t : H(pi, t) =

{
true if 1 6 i 6 k;
false otherwise

Clearly, this defines a legal history for L(k) in a run where the n− k processes

pk+1, . . . , pn

crash initially. For the remaining k processes, the failure detector provides no (further)
information about failures, as it outputs true perpetually. Since A is able to solve
(k−1)-set agreement in any such run by assumption, it can also be used to solve (k−1)-
set agreement in an asynchronous system of k processes, equipped with a dummy
failure detector (Guerraoui et al., 2007) that always outputs true. This, however,
contradicts the (n−1)-set agreement impossibility in a system of n processes (see Saks
and Zaharoglou, 2000; Borowsky and Gafni, 1993; Herlihy and Shavit, 1993).

7.4. Solving k-Set Agreement with L(k)

In this section, we present an algorithm that solves k-set agreement in the asyn-
chronous model augmented with L(k). The original algorithm for solving (n−1)-set
agreement with L (see Delporte-Gallet et al., 2008) requires a total order on process
identifiers. Algorithm 5, in contrast, also works in anonymous systems.2 We therefore
consider the variant of model MASYNC where process identifiers are indistinguishable
by the algorithm. Note carefully that this means that processes do not know the sender
of a received message. Clearly, point-to-point communication does not make sense in
this setting; we assume that processes have access to broadcast communication

Overview of the Algorithm

Algorithm 5 proceeds in asynchronous rounds. In every round r, every process p that
has not yet decided, queries its failure detector and decides if L(k) outputs true.

2Note that Algorithm 5 does require knowledge of n, i.e., of the total number of processes in the
system.

89

Chapter 7. The Generalized Loneliness Detector L(k)

Algorithm 5 Solving k-set agreement with L(k)

Variables:
1: v ∈ N // the input input value
2: x ∈ N // the estimated decision value
3: rnd ∈ N

Initially:
4: x← v
5: rnd← 0
6: broadcast (round, 0, x)

In any later step:
7: receive messages
8: if L(k) = true then
9: broadcast (dec, x)

10: decide x
11: halt
12: else if received (dec, y) then
13: broadcast (dec, y)
14: decide y
15: halt
16: else if received > n− k + 1 (round, rnd, y) messages then
17: S ← {y1, . . . , yn−k+1}
18: x← min(S)
19: if rnd = k + 1 then
20: broadcast (dec, x)
21: decide x
22: halt
23: rnd← rnd+ 1
24: broadcast (round, r, x)

Otherwise, p checks if it has received n − k + 1 round r messages; note that this
check is non-blocking. If so, p updates its current estimate x to the minimum of these
messages.

At a first glance, it might appear to be counterintuitive that processes terminate
after k + 2 rounds. After all, it would be reasonable to expect that harder agreement
tasks like consensus require more rounds than, for example, (n−1)-set agreement. The
reason why this is not the case here is that L(k) itself becomes much weaker for values
of k close to n − 1, since there are less processes that perpetually output false. To
see why k+ 2 rounds are necessary, suppose that the process, which has currently the
largest decision estimate, decides in Line 10 after sending its round r(= 0) message.
We will show below (see Lemma 7.4.2) that the number of distinct values of x in
the system is at most k after the remaining processes have received n − k + 1 round

90

7.4. Solving k-Set Agreement with L(k)

messages and executed Line 18. Thus, we might end up with k + 1 distinct decision
values if these processes do not continue to round r+1. Then, again the process having
the largest value could decide in Line 10 after having sent its round r+1 message and
the same argument applies. At the end of round k + 1 every process that has not yet
decided, decides on its current estimate. As we will show below, this decision is safe,
due to the fact that L(k) outputs true at no more than k processes.

Proof of Correctness

For the purpose of our correctness proof, we denote by Xr the possibly empty array
containing the (not necessarily distinct) x-values of all alive processes in the system
after the assignment in line 18 when rnd = r. We assume that Xr is ordered by
decreasing values, i.e., Xr[1] is the maximal value, if it exists. Furthermore, we denote
the support of Xr, i.e., the number of nonempty entries in Xr by |Xr|, and the number
of unique values among those by ur. We immediately have the following fact:
Observation 7.4.1. For all rounds r, it holds that

|Xr| 6 n− ar,

where ar is the number of processes which never sent their respective (round, r, x)
message.
Lemma 7.4.2. For any round r > 1, the number of unique values in Xr is

ur 6 k − ar.

Proof. First, we observe that x is updated by a process p only after receiving n−k+1
round r messages. Let p be the process that assigns the largest value in Line 18. Since
any process p sets x to the minimum of the n − k + 1 round r values received, there
must be n−k+1 messages containing values y1, . . . , yn−k+1 > x among those received
by p.

By Observation 7.4.1, it follows that only

n− ar − (n− k + 1) = k − ar − 1

values in Xr can be smaller than p’s minimum. Thus, processes assign at most k− ar

different values to x and subsequently send them as (round, r + 1, x)-messages.

Lemma 7.4.3. Processes do not decide on more than k different values.

Proof. Regarding the number of different decision values, processes deciding due to
receiving a (dec, y) message (line 14) make no difference, since some other process
must have decided on y using another method before. Thus we can ignore this case
here.

What remains are decisions due to L(k) being true (line 10) and due to having
received n− k + 1 messages in round k + 1 (line 21). For each r > 0, we denote by `r
the number of processes which have decided due to their failure detector output being

91

Chapter 7. The Generalized Loneliness Detector L(k)

true while their rnd = r. Thus the number of processes that have decided in line 10
with rnd 6 r for some r > 0 is Σr

s=0`s. In the following we use Σr as an abbreviation
for this sum. Since processes halt after deciding, we can deduce that the number of
processes which do not send round r messages ar, is at least Σr−1. Thus, Lemma 7.4.2
tells us that

ur 6 k − Σr−1.

Now assume by contradiction that there are actually D > k decisions, with D =
uk+1 + Σk+1, that is the number of different values decided on in line 21 plus those
that decided based on L(k). Thus we get

uk+1 > k − Σk+1,

and by using the above property of ur, we deduce that Σk+1 > Σk, and thus `k+1 > 1.
These processes must have decided on some values in Xk, however, which implies
D = uk + Σk, as obviously x ∈ Xk+1 ⇒ x ∈ Xk. We can repeat this argument until
we reach

D = u1 + Σ0 = u1 + `0.

Here, Lemma 7.4.2 gives us the trivial upper bound u1 6 k, which entails the require-
ment `0 > 1 as D > k.

By now, we have shown that, assuming D > k decisions `r > 1 for r ∈ {0, . . . , k+1}.
In other words we have deduced that

Σk+1 > k + 1

processes have decided due to their L(k) output being true. This contradicts property
(7.2) of L(k), thus proving Lemma 9.3.15.

Theorem 7.4.4. Algorithm 5 solves k-set agreement in the anonymous asynchronous
system augmented with L(k), where up to n− 1 processes can fail by crashing.

Proof. Validity is evident, since no value other than the initial values v of processes
are ever assigned directly or indirectly to x. k-Agreement follows from Lemma 7.4.3,
and since either n − k processes send messages in each round or some process has
L(k) = true, every correct process terminates.

From Delporte-Gallet et al. (2008), we know that L can be extracted anonymously
from any failure detector D which solves set agreement using some algorithm A: Every
process executes an independent instance of A (without any other process participat-
ing) using D as failure detector. The simulated L outputs true at p only after A has
terminated at p. In conjunction with Theorem 7.4.4, this implies the following fact:

Corollary 7.4.5. L is the weakest failure detector for set agreement in anonymous
message passing systems.

92

7.5. Relation between L(k) and Sn−k+1

7.5. Relation between L(k) and Sn−k+1

In the remainder of this chapter, we will analyse how the L(k) failure detector relates
to existing failure detectors for k-set agreement. Figure 7.1 on Page 96 visualizes
our results for the non-anonymous setting by showing the relative strength of various
failure detector classes.

In this section we will analyze the relationship between L(k) and failure detector
Sn−k+1. The strong failure detector S (see Chandra and Toueg, 1996) outputs sets
of process ids, a so called suspect list, and ensures that some correct process is never
(falsely) suspected, a property which is called weak accuracy. Moreover, the strong
completeness property of S guarantees that eventually all faulty processes are sus-
pected. As shown by Chandra and Toueg (1996), S is sufficient for solving consensus.

The limited scope failure detectors of Mostéfaoui and Raynal (1999b) and Guerraoui
and Schiper (1996) have the strong completeness property (see condition (7.4) below)
of S, but their accuracy property is limited to a set of processes called the scope (see
(7.3)). In the special case where the scope comprises all processes, Sn coincides with
S. It was shown by Mostéfaoui and Raynal (2000) that Sn−k+1 is sufficient for k-set
agreement in a wait-free environment.

Definition 7.5.1. The strong failure detector with x-limited scope is denoted by Sx

and is defined such that for all environments E and ∀F ∈ E , there is a set Q ⊆ Π :
|Q| = x such that:

∃p ∈ (Q \ F) ∀t ∀q ∈ Q : p 6∈ H(q, t) (7.3)
∀p ∈ F ∃t ∀t′ > t∀q ∈ Π: p ∈ H(q, t′) (7.4)

�

In Theorem 7.5.5 we will show that, except in the canonical cases k = 1 and k = n−1,
failure detectors Sn−k+1 and L(k) are incomparable. We will start out with some
technical lemmas:
Lemma 7.5.2. L(1) is stronger than Sn = S.

Proof. In order to show that L(1) is stronger than Sn, we show that we can implement
Sn with L(1). For S, we have to find one correct process which is never suspected
by anyone (weak accuracy), while eventually every faulty process is suspected (strong
completeness). As L(1) must output true at one correct process only if at least one
process has crashed, the idea of the transformation is quite simple: A process always
outputs the empty set as its suspicion list, unless (1) it is instructed otherwise by
another process, or (2) its L(1) outputs true. Since n − 1 processes must output
false, case (2) can only occur at a single process p, which then sends a message to all
other processes telling them to suspect everyone but p.

Strong completeness follows, because if one (or more) processes crash, L(1) will
eventually output true at some correct p, causing all faulty processes to be suspected
(along with all correct processes apart from p) by all other processes. Weak accuracy
follows from p never being suspected.

93

Chapter 7. The Generalized Loneliness Detector L(k)

Next we consider the general case, i.e., 1 < k < n. We will show that, for any such
k, L(k) is not stronger than even the weakest (non-trivial) instance of Sx, namely S2.

Lemma 7.5.3. Failure detector L(k) is not stronger than S2, for all k > 1.

Proof. Assume in contradiction that a transformation T exists, which implements S2

based on L(k). Now consider a run α where only p crashes initially, i.e., |F | = 1. Since

|F | 6 1 < k,

L(k) can perpetually output false at all processes in α. By the strong completeness
property of S2, transformation T must ensure that there is some time t such that all
processes suspect p.

Now consider a different run α′ where all messages from p to other processes are
delayed until t′ > t. Moreover, assume that all processes except p crash at some time
t′′ > t′ in α′ and consider the failure detector history H where L(k) outputs true at p,
and false at all processes q 6= p. Clearly H is a valid history for α′ and p has to be in
the output suspect-list of all processes q 6= p by time t, as α′ is indistinguishable until
t′ from α. But since in α′ all processes except p crash at time t′′, p is the only correct
process, but was suspected by all other processes, contradicting 2-weak accuracy (7.3).

For the converse case, we show that no reduction from Sn−k+1 to L(k) exists.

Lemma 7.5.4. Sn−k+1 is not stronger than L(k), for k < n− 1.

Proof. We again assume by contradiction that a suitable transformation algorithm T
exists, which builds L(k) from Sn−k+1. Let αi be the run where all processes except pi

crash initially. Moreover, suppose that pi suspects every other process throughout the
entire execution. Then, as pi is the only remaining correct process, it must eventually
set outputL(k) to true at some time ti. By applying this construction to a set

S = {p1, . . . , pk−1}

of processes, we get a time

t = max {t1, . . . , tk−1} ,

when every pi has set outputL(k) to true in the respective αi.

Now consider a run α where every process in the set S perpetually suspects every
other process, that is

∀t ∀pi ∈ S : H(pi, t) = Π \ {pi},

94

7.5. Relation between L(k) and Sn−k+1

process pk never suspects anyone, and every process in Π \ S ∪ {pk} does not suspect
pk. Setting

x = n− k + 1,
Π \Q = S,
p = pk ∈ Q, and
q ∈ Q \ {pk}

in Definition 7.5.1 reveals that this does not violate (n − k + 1)-weak accuracy of
Sn−k+1. Moreover, in run α, the delivery of all messages from all processes to any
process in S is delayed until time t.

Then, for any process pi ∈ S, the run α is indistinguishable from the run αi where
only pi is alive and so all k − 1 processes in S have set outputL(k) to true by time t
in α. Now suppose that all processes in S crash at some time t′ > t, and also assume
that pk initially crashes.

Since k processes crash in α, it follows by the fact that T implements L(k) that at
least one of the remaining processes

pk+1, pk+2, . . . , pn

has to set outputL(k) to true eventually. Without loss of generality, let pk+1 be that
process and let tk+1 be the time when it does so. Since n > k+2, we can assume that
pk+1 crashes after tk+1 as well, and repeat the argument for process pk+2. But then
k + 1 processes have set their output variable outputL(k) to true, which contradicts
the requirement (7.1) of L(k).

We are now ready to state the following theorem:
Theorem 7.5.5. Failure detector Sn is strictly weaker than L(1), and S2 is strictly
stronger than failure detector L(n − 1). For 1 < k < n − 1, L(1) and Sn−k+1 are
incomparable.

Proof. From Lemma 7.5.2 and 7.5.4 it follows that Sn is strictly weaker than L(1).
Moreover, Lemma 7.5.3 and the result that L = L(n−1) is the weakest failure detector
for set agreement (Delporte-Gallet et al., 2008) implies that S2 is strictly stronger
than L(n − 1). For the remaining choices of k, we get that Sn−k+1 and L(k) are not
comparable by Lemma 7.5.4 and 7.5.3, which completes the proof.

Recalling the result of Jayanti and Toueg (2008), namely that every problem has a
weakest failure detector, Theorem 7.5.5 immediately implies:
Corollary 7.5.6. Neither L(k) nor Sn−k+1 is the weakest failure detector for general
message passing k-set agreement.

Despite this somewhat negative result, L(k) appears to be a promising candidate for
a weakest failure detector for message passing k-set agreement in anonymous systems,
as we will discuss in the following section.

95

Chapter 7. The Generalized Loneliness Detector L(k)

Consensus k-Set Agr. (n−1)-Set Agr.

L(1) . . . L(k) . . . L(n− 1) = L

Sn . . . Sn−k+1 . . . S2

〈Σ,Ω〉 . . . 〈Σk,Ωk〉 . . . 〈Σn−1,Ωn−1〉

Σ1 = Σ . . . Σk
. . . Σn−1

Figure 7.1.: Failure detector classes for wait-free k-set agreement. A unidirectional ar-
row from X to Y indicates that failure detector X is strictly stronger than Y . Arrows
in both directions correspond to equality, while the crossed-out arrows indicate incom-
parability. There are known algorithms for k-set agreement for the failure detectors
that are located within the respective shaded box.

7.6. Relation between L(k) and Σk

We now explore the relationship between L(k) and the generalized quorum detector
of Bonnet and Raynal (2009). While the weakest failure detector for message passing
k-set agreement is still unknown, the quorum family Σk was shown to be necessary
for solving k-set agreement with any failure detector X , in the sense that there is a
transformation that implements Σk in the system 〈MASYNC,X〉.

Definition 7.6.1 (Bonnet and Raynal (2009)). The generalized quorum failure detec-
tor Σk, with Σ = Σ1, outputs a set of trusted process ids, such that for all environments
E and for all failure patterns F ∈ E the following holds:

Intersection: For every set of k + 1 processes {p1, . . . , pk+1} and for all k + 1 time
instants t1, . . . , tk+1, there exist indices i and j with 1 6 i 6= j 6 k+1, such that

H(pi, ti) ∩H(pj , tj) 6= ∅.

Liveness: ∃t ∀t′ > t ∀pi /∈ F : H(pi, t
′) ∩ F = ∅.

If a process p crashes at time t, i.e., p ∈ F (t), we define that

∀t′ > t : H(p, t′) = Π.

96

7.6. Relation between L(k) and Σk

�

We will first consider the standard quorum failure detector Σ = Σ1. The following
result is obtained by generalizing the result of Delporte-Gallet et al. (2008, Lemma 4)
by finding a suitable partitioning.
Theorem 7.6.2. L(k) is not stronger than Σ, if n > 2 and k > 2.

Proof. Assume that there exists an algorithm A that transforms L(k) (for some k > 2)
into Σ. Consider the partitioning of Π given by

P = {{p1}, {p2}, P3}.

Since
n− 1 > k > 2,

this is a valid partitioning. Moreover, assume two runs r1 and r2 such that process pi

is correct in run ri and all other processes are faulty from the beginning. Moreover,
let the output of L(k) at process pi be true from the beginning as well; note that the
output at all other processes is false by definition. Since A must guarantee liveness
for Σ, it eventually has to output {pi} in run ri, say, at time ti. Now imagine a run
r in which the processes p1 and p2 are correct, the output of L(k) is true from the
beginning, and L(k) outputs false at processes in P3. Additionally, no message of a
process from a different partition is received by these two processes before time

t = max{t1, t2}.

Then, runs r1 and r2 are indistinguishable from run r before time t. Therefore, the
output of Σ at pi at time ti will be the same as in ri. But this contradicts the
intersection property of Σ. So there exists no such algorithm A.

When considering the generalized quorum failure detector Σk, we know by Bonnet
and Raynal (2009, 2010b) that Σk is necessary for solving k-set agreement, hence, Σk

is weaker than L(k), for all 1 6 k 6 n− 1. Note, however, that it is unknown whether
there is an algorithm for solving k-set agreement with Σk. The following theorem
shows that Σk is strictly weaker than L(k), for any k < n− 1.
Theorem 7.6.3. Let k < n− 1. Failure detector Σk is strictly weaker than L(k).

Proof. The proof is similar to the proof of Lemma 7.5.4. We assume in contradiction
that there is a suitable transformation algorithm T that implements L(k) in the system
〈MASYNC,Σk〉.

Let αi be a run where all processes except pi crash initially and assume that

∀t′ : H(pi, t
′) = {pi} .

Then, as pi is the only remaining correct process, it must eventually set outputL(k) to
true at some time ti. By applying this construction to a set of processes

S = {p1, . . . , pk−1} ,

97

Chapter 7. The Generalized Loneliness Detector L(k)

we get a time
t = max {t1, . . . , tk−1} ,

when every pi has set outputL(k) to true in the respective αi.

Now consider a run α where, just like in αi, every process in S trusts no other
process until time t, i.e.,

∀t′ 6 t ∀pi ∈ S : H(pi, t
′) = {pi} ,

and suppose that process pk crashes initially:

∀t′ : H(pk, t
′) = Π. (7.5)

For any process p` /∈ S ∪ {pk}, we assume that

∀t′ : H(p`, t
′) = Π \ F . (7.6)

Moreover, let the run α be such that the delivery of all messages from other processes
to any process in S is delayed until time t.

Clearly, for any process pi ∈ S, the run α is indistinguishable from the run αi where
only pi is alive and so all k − 1 processes in S have set outputL(k) to true by time t
in α. Assume that all processes in S crash at time t+ 1 in α.

Since k processes crash in α and due to the assumption that the transformation T
implements L(k) it follows that at least one of the remaining processes

pk+1, pk+2, . . . , pn

has to set outputL(k) to true eventually; w.l.o.g. let pk+1 be that process and let tk+1

be the time when it does so. However, since n > k + 2, we can assume that pk+1

crashes in α at tk+1 + 1, and repeat the argument for process pk+2; again, assume
that pk+2 sets outputL(k) to true at time tk+2 and then crashes at tk+2 + 1. We have
therefore constructed α such that, by time

max {t, tk+1, tk+2} ,

k + 1 processes have set their output variable outputL(k) to true, which contradicts
the requirement (7.1) of L(k).

What remains to be shown is that the failure detector histories of the constructed
run α satisfy the definition of Σk (see Definition 7.6.1). First, observe that (7.6)
implies the liveness condition of Σk, since all correct processes are in Π \ S. For the
intersection property, consider any set M of k + 1 processes. Since |S| = k − 1, at
least two processes pj , p

′
j ∈ M are in Π \ S. Then, (7.5) and (7.6) guarantee that the

corresponding histories H(pj , t1) and H(p′j , t2) intersect for any two points in time t1
and t2, which completes the proof.

98

7.7. L(k) in Anonymous Systems

7.7. L(k) in Anonymous Systems

In this section we will focus on systems where processes do not have unique identifiers.
More specifically, throughout this section we assume a variant of the asynchronous
model MASYNC where all process identifiers are identical and processes communicate
via a broadcast primitive. Recall from Chapter 7 that Algorithm 5 (on Page 90)
achieves k-set agreement in this setting when processes have access to L(k).

Recently, Bonnet and Raynal (2010a) have presented an in-depth analysis of var-
ious failure detectors for solving consensus (i.e. 1-set agreement) in such anonymous
systems. We will now restate the properties of some of these failure detectors:

Definition 7.7.1 (Bonnet and Raynal (2010a)). The identity-free perfect failure de-
tector AP provides processes with an integer variable acnp such that the following
hold:

(1) acnp is never greater than the number of crashed processes.
(2) Eventually acnp is exactly equal to the number of crashed processes.

�

Intuitively speaking, variable acnp provides an (eventually tight) lower bound on
the number of crashes.

Definition 7.7.2 (Bonnet and Raynal (2010a)). The identity-free eventual leader
oracle AΩ provides a boolean value a_leader at each process, such that

(1) eventually a_leader is forever true at exactly 1 correct process pi, and
(2) eventually a_leader is forever false for all processes 6= pi.

�

Bonnet and Raynal (2010a) also introduce an anonymous counterpart of the quorum
failure detector Σ; as we will not use this failure detector AΣ directly, we omit the
formal definition here.

Furthermore, Bonnet and Raynal (2010a) conjecture that (AΣ, AΩ) ⊕ AP is the
weakest failure detector for solving anonymous consensus. This ⊕-combination is
defined as the failure detector that outputs ⊥ for an arbitrary finite prefix and then
chooses an output that is admissible for either (AΣ, AΩ) or AP at every process. Note
that this choice is completely independent of the failure pattern of the run.

In the remainder of this chapter we will disprove this conjecture by showing that
(AΣ, AΩ)⊕AP cannot be extracted from L(1).
Lemma 7.7.3. Failure detector L(1) is not stronger than (AΣ, AΩ) ⊕ AP , in an
anonymous system of at least 2 processes.

Proof. We assume in contradiction that there is some extraction algorithm T that
implements (AΣ, AΩ)⊕AP on top of L(k).

Consider a run α where no process crashes, processes perform steps synchronously
and L(1) outputs false at every process forever. Since we have assumed an anonymous
system, it suffices to notice that processes do not have a way of eventually breaking
this symmetry, which is required for satisfying the properties of AΩ (Definition 7.7.2).

99

Chapter 7. The Generalized Loneliness Detector L(k)

Therefore, the extraction algorithm T must eventually output a history that is admis-
sible for AP in α, from some time t on. (Before time t, algorithm T outputs ⊥ at
every process.)

Now consider a run β that is identical to α up to time t and where some process
p1 crashes at time t+ 1. The history of L(1) (see Definition 7.2.3 on Page 88) in β is
such that it will output true at time ttrue > t at some correct process; without loss of
generality, let p2 be that process. Definition 7.7.1 requires the set of remaining correct
processes

S = {p2, . . . , pn}

to eventually set their simulated output variable

acnp = 1.

Let tacnp be the time when the first process pi ∈ S does so; note that tacnp > t+ 1, by
Definition 7.7.1.(1). Now consider a run γ that is otherwise identical to β, but where
all messages sent by p1 are delayed until after time tacnp, and where L(1) outputs
true (only) at process p2 at time ttrue. Note that this is still a valid history for
L(1). Moreover, all processes in S perform the exact same steps at the same time in
both runs until time tacnp. Clearly, γ is indistinguishable for all processes in S from
run β until time tacnp, and hence pi ∈ S must also set acnp = 1 at time tacnp in γ.
Considering that acnp is an over -approximation of the number of crashed processes
in γ, we have a contradiction to Definition 7.7.1.

Lemma 7.7.4. Failure detector (AΣ, AΩ)⊕AP is not stronger than L(1) in an anony-
mous system of at least 3 processes.

Proof. Since any failure detector history of AP is also a valid history for (AΣ, AΩ)⊕
AP , it will be sufficient to show that L(1) cannot be built from AP . Therefore,
assume in contradiction that such a transformation algorithm exists. Consider a run
α where some process p1 crashes initially. In order to satisfy the properties of L(1),
some correct process p2 must eventually set its simulated output variable of L(1) to
true at some time t. Note that failure detector AP does not provide p2 with any
information on whether it will crash in the run or not. Furthermore, recall that L(1)
outputs false at n− 1 processes perpetually. Thus, if p2 crashes at time t+ 1, none
of the remaining processes can set its output to true without violating the perpetual
property of L(1).

Theorem 7.7.5. Consider an anonymous asynchronous system of at least 3 processes.
Failure detectors (AΣ, AΩ)⊕AP and L(1) are incomparable.

Proof. Follows immediately from Lemmas 7.7.3 and 7.7.4.

Corollary 7.7.6. Neither (AΣ, AΩ) ⊕ AP nor L(1) is a weakest failure detector for
solving consensus in an anonymous asynchronous system.

100

7.8. Discussion

7.8. Discussion

In this chapter we have introduced the generalized loneliness detector L(k) and showed
how it can be used to solve k-set agreement. In fact, Algorithm 5 revealed that L(k)
provides enough information for solving k-set agreement even in anonymous systems
without unique process identifiers, which implies that L(n − 1) is the weakest failure
detector for (n−1)-set agreement in this setting.

Recall that L(n− 1) coincides with L, which is implementable in our models Manti

and Msink (see Chapter 6). In the context of Figure 1.2 on Page 20, we must therefore
place the model 〈MASYNC,L(k)〉 just above Manti and Msink and below the ABC model
of Chapter 3.

We have also presented several relations between L(k) and existing failure detectors.
While we have proved that L(k) cannot be the weakest one in non-anonymous systems,
it surpasses existing failure detectors for k-set agreement in the aspect of not requiring
processes to have unique ids, i.e., L(k) also works in anonymous systems, as we have
shown in Theorem 7.4.4.

Considering the incomparability of L(k) and Sn−k+1 for 1 < k < n−1, the combined
failure detector L(k)⊕Sn−k+1 might be a promising candidate for the weakest failure
detector for these cases. It is trivial to show that L(k) ⊕ Sn−k+1 can solve k-set
agreement by simply ignoring the finite prefix where the failure detector outputs ⊥,
and then using one of the existing algorithms for L(k) or Sn−k+1, as needed. Moreover,
it is also obvious that this detector is weaker than L(k) and Sn−k+1, as any history
that is admissible for L(k) or Sn−k+1 is also admissible for L(k) ⊕ Sn−k+1. Further
investigation of L(k)⊕ Sn−k+1 is part of our future research.

Another interesting research direction is the quest for the weakest failure detector
in anonymous systems. The results of Section 7.7 show that finding a suitable candi-
date failure detector in the anonymous setting is a difficult task, due to the inherent
incomparability of different anonymous failure detectors and the inability to specify
suitable extraction algorithms without referring to process identifiers. Nevertheless,
the combined detector (AΣ, AΩ)⊕AP ⊕ L(1) appears to be worth pursuing.

101

Chapter 8

On the Impossibility of k-Set Agreement

A likely impossibility is always
preferable to an unconvincing
possibility.

(Aristotle)

In this chapter1 we will present a theorem that provides us with a generic mech-
anism for proving the impossibility of achieving k-set agreement in different sys-

tem models. Unlike previous impossibility results for shared-memory systems (see
Borowsky and Gafni, 1993; Herlihy and Shavit, 1993; Saks and Zaharoglou, 2000),
Theorem 8.2.1 is much more straightforward: Instead of using algebraic topology or
a variant of Sperner’s Lemma, our result employs a reduction to the impossibility of
achieving consensus in a certain subsystem.

We have employed a similar reduction technique in the proofs of Theorem 6.2.1
(Page 84) and Theorem 7.3.1 (Page 89), where we showed that consensus is impossi-
ble in models Manti and Msink. Bouzid and Travers (2010) have also used a similar
reduction argument.

Restrictions of Algorithms and Indistinguishability of Runs

Throughout this chapter we basically assume the model MASYNC. For the concrete
instantiations of our theorem in Section 8.3, we will sometimes assume that MASYNC

is augmented with a failure detector (see Section 7.2), or strengthen the model by
assuming (partially) synchronous processes, as we did for model Msink in Chapter 6.

In the previous chapters of this thesis we always assumed some system model M

and a fixed set of processes Π running in M. In this chapter we will occasionally use
a subsystem M′ that is a restriction of M, in the sense that it consists of a subset of
processes in Π, while using the same mode of computation (atomicity of computing
steps, time-driven vs. message-driven, etc.) as M. We therefore use the notation

M = 〈Π〉

103

Chapter 8. On the Impossibility of k-Set Agreement

and

M′ = 〈D〉,

for some set of processes D ⊆ Π.

Definition 8.0.1 (Restriction of an Algorithm). Let A be an algorithm that works in
system M = 〈Π〉 and let D ⊆ Π be a nonempty set of processes. Consider a restricted
system M′ = 〈D〉. The restricted algorithm A|D for system M′ is constructed by
dropping all messages sent to processes outside D in the message sending function of
A, obtaining the message sending function of A|D. �

Note that we do not change the actual code of algorithm A in any way. In particular,
the restricted algorithm still uses the value of |Π| for the size of the system, even though
the real size of D might be much smaller.

Whereas this is sufficient for running an algorithm designed for M in the restricted
system M′, in practice, one would also remove any dead code (resulting from state
transitions triggered by message arrivals from processes in Π \D, from the transition
relation of A to obtain the actual transition relation of A|D. Just like in Chapter 5,
we use MA to denote the set of runs of algorithm A in model M.

We will use a concept of similarity/indistinguishability of runs that is slightly weaker
than the usual notion (see Lynch, 1996, Page 21), as we require the same states only
until a decision state is reached.2 This makes a difference for algorithms where p can
help others in reaching their decision after p has decided, for example, by forwarding
messages.

Definition 8.0.2 (Indistinguishability of Runs). Two runs α and β are indistinguish-
able (until decision) for a process p, if p has the same sequence of states in α and β
until p decides. By

α
D∼ β

we denote the fact that α and β are indistinguishable for every p ∈ D. �

Definition 8.0.3 (Compatibility of Runs). Let R and R′ be sets of runs. We say
that runs R′ are compatible with runs R for processes in D, denoted by R′ �D R, if

∀α ∈ R′ ∃β ∈ R : α D∼ β.

�

8.1. T -Independence

We will now introduce a notion for message passing systems that is similar to the
progress conditions of concurrent objects (see Taubenfeld, 2010; Imbs et al., 2010) in
shared memory models.

2Note that this notion of indistinguishability differs from the one used in Chapter 5, where we
required all finite prefixes to be indistinguishable.

104

8.2. The Impossibility Theorem

Note that we consider algorithms for decision tasks, like for example k-set agreement.
That is, every correct process must eventually decide.

Definition 8.1.1 (T -independence). Consider a model M = 〈Π〉 and some family of
sets of processes T ⊆ 2Π. We say that A satisfies T -independence in M, if for all
sets D ∈ T it holds that in every run in MA where the processes in D only receives
messages from other processes in D, all processes in D either decide or crash.

If p decides or crashes in every run inMA where p eventually only receives messages
from processes in D, we say that A satisfies eventual T -independence in M. �

Two observations are immediate:
Observation 8.1.2. The following hold:

(a) Eventual T -independence implies T -independence.

(b) If algorithm A satisfies T -independence in M and T ′ ⊆ T then A satisfies T ′-
independence in M.

We can express the following classic progress conditions in terms of T -independence:
Wait-freedom (see Herlihy, 1991) corresponds exactly to eventual 2Π-independence.
Moreover, obstruction-freedom is implied by

eventual {{p1} , . . . , {pn}}-independence.

The classic assumption of an f-resilient algorithm can be expressed by

eventual {D | (D ⊆ Π) ∧ (|D| > |Π| − f)}-independence,

whereas using (non-eventual) {D | (D ⊆ Π) ∧ (|D| > |Π| − f)}-independence is equiv-
alent to tolerating up to f initial crash failures. Analogously to Imbs et al. (2010),
T -independence also enables us to specify asymmetric progress conditions, e.g.,

eventual {D | {p1} ⊆ D ⊆ Π}-independence

ensures wait-freedom for process p1.

8.2. The Impossibility Theorem

In this section we will present our general k-set agreement impossibility theorem. Due
to its very broad applicability, the theorem itself is stated in a highly generic way. The
intuition behind this rather technical exposition will reveal itself in Section 8.3.
Theorem 8.2.1 (k-Set Agreement Impossibility). Let M = 〈Π〉 be a system model
and consider the runsMA that are generated by some fixed algorithm A in M, where
every process starts with a distinct input value. Fix some nonempty disjoint sets of
processes D1, . . . , Dk−1, and a set of distinct decision values {v1, . . . , vk−1}. Moreover,
let D =

⋃
16i<k Di and D = Π \D. Consider the following two properties:

105

Chapter 8. On the Impossibility of k-Set Agreement

(dec-D) For every set Di, value vi was proposed by some process in D, and every
correct p ∈ Di decides on vi.

(dec-D) If pj ∈ D then pj receives no messages from any process in D until after pj

has decided.

LetR(D) ⊆MA andR(D, D) ⊆MA be the sets of runs of A where (dec-D) respectively
(dec-D) and (dec-D) hold.3 Suppose that the following conditions hold:

(A) Algorithm A satisfies
{
D

}
-independence.

(B) R(D) is nonempty.

(C) R(D) �D R(D, D).

In addition, consider a restricted model M′ = 〈D〉 such that the following hold:

(D) There is no algorithm that solves consensus in M′.

(E) M′
A|D
�D MA.

Then, A does not solve k-set agreement in M.

Proof. Consider some system M and assume for the sake of a contradiction that there
is a k-set agreement algorithm A for M, sets of runs R(D) and R(D, D) and some sets
of processes D1, . . . , Dk−1 such that (A)-(C) hold. These conditions imply that all
processes in D decide in every run in R(D, D), independently of the decision values
of the processes in D. Observe that (dec-D) ensures that there are > k − 1 distinct
decision values in every run in R(D, D). Due to (C) this implies the following fact:
(Fact 1) To guarantee k-agreement, all processes in D must decide on the same value,
in all runs in R(D). We will now show that this fact yields a contradiction.

Starting from M′
A|D

we know by (E) that for each ρ′ ∈ M′
A|D

, there exists a run

ρ ∈ MA such that ρ′ D∼ ρ. Obviously no process p ∈ D receives messages from a
process q ∈ D in ρ′ before p’s decision (as such a process q does not exist in M′);
clearly this also holds for the indistinguishable run ρ. Therefore, we have that, in
fact, ρ ∈ R(D), and due to (Fact 1), we know that all processes decide on the same
value in all runs ρ′ ∈M′

A|D
. This, however, means that we could employ A|D to solve

consensus in M′, which contradicts (D).

There are several noteworthy points about Theorem 8.2.1:

• Our impossibility argument uses a 2-partitioning argument but does not require
the system to (temporarily or permanently) decompose into k+ 1 partitions. In
particular, there is no further restriction on the communication among processes
within D, respectively within D.

3Note that R(D) is chosen such that it is compatible with the runs of A|D.

106

8.3. Applying Theorem 8.2.1

• The proof neither restricts the types of failures that can occur in M nor the
underlying synchrony assumptions of M in any way.

• At a first glance, requirement (C) might appear to be redundant. After all, it
should always be possible to find a run in R(D, D) that is indistinguishable for
the processes in D, given some run in R(D). We will now try to give an intution
for its necessity; in the proof of Theorem 8.3.6 we will see that (C) is non-trivial
in realistic settings.

To see why (C) is necessary, first consider some run γ (of some algorithm in some
model M) that satisfies property (dec-D). This stipulates k− 1 distinct decision
values among the processes in D, which essentially means that γ was a quite
“asynchronous” run for the processes in D. It could therefore be the case that
the synchrony assumptions of M require γ to be “synchronous” for the processes
in D.

Now suppose that we are a given a run α ∈ R(D) and we need to find a run
β ∈ R(D, D) that is indistinguishable for processes in D, in order to make (C)
hold. If α is an “asynchronous” run for the processes in D, we might not be able
to find a matching run β ∈ R(D, D), as the above setting requires such runs to
be “synchronous” for the processes in D.

8.3. Applying Theorem 8.2.1

In this section we will apply Theorem 8.2.1 to various system models. More specifically,
we will first apply our theorem to asynchronous message passing systems and then show
that failure detector (Σk,Ωk) (see Bonnet and Raynal, 2009, 2010b) is not sufficient
for k-set agreement.

8.3.1. The Partially Synchronous Case

It is easy to show that k-set agreement is impossible in model MASYNC if we assume a
wait-free environment, for any k < n, by simply partitioning the system into |Π| par-
titions until every process has decided. No such simple method is known when things
become more complicated: When, for example, f (i.e. the number of possible failures)
is somewhat restricted and/or the model is partially synchronous, a more involved ar-
gument is necessary. We will now show how to avoid proving the impossibility “from
scratch” by instantiating Theorem 8.2.1.4

Theorem 8.3.1. There is no algorithm that solves k-set agreement in an asynchronous
system M of n processes, for any

k 6
n− 1
`

, (8.1)

4To ease the presentation of the theorem, we define ` = n− f .

107

Chapter 8. On the Impossibility of k-Set Agreement

where, from the f = n− ` possibly faulty processes, f − 1 can fail by crashing initially
and 1 process can crash during the execution. This holds even if processes are syn-
chronous in M, communication is broadcast-based, and computing steps are atomic.

Proof (Theorem 8.3.1). Assume in contradiction that some f -resilient algorithm A
solves k-set agreement. We will show that conditions (A)–(E) of Theorem 8.2.1 are
satisfied, thus yielding a contradiction.

As a first step, we will identify suitable sets Di such that (A)–(C) hold for the runs
in R(D), respective R(D, D). For 1 6 i < k, define Di =

{
p(i−1)`+1, . . . , pi`

}
and let

D =
⋃

16i6k−1

Di.

Note that the failure assumption (8.1) guarantees that these sets Di exist.

Lemma 8.3.2. The set D contains at least n− f + 1 processes.

Proof. We are done if we can show that |D|+ n− f + 1 6 n, i.e.,

(k − 1)(n− f) + (n− f + 1) = k(n− f) + 1 = k`+ 1 6 n,

which matches exactly (8.1).

(A) Recalling that algorithm A is resilient to f−1 initial crashes and tolerates up to 1
(normal) crash, it follows by Observation 8.1.2.(a) that A is {H | |H| > n− f}-
independent and thus also

{
D1, . . . , Dk−1, D

}
-independent. By virtue of Obser-

vation 8.1.2.(b), A is
{
D

}
-independent, which implies (A).

(B) It suffices to realize that the set of runs, where all communication from processes
in D to processes in D is delayed until every correct process in D has decided, is
nonempty. Since communication is asynchronous, this set is obviously nonempty
and thus R(D) is nonempty.

(C) Consider the set of runs H where all communication between the sets of processes
D1, . . . , Dk−1, D is delayed until every correct process has decided. Clearly H ⊆
R(D, D), and, for any ρ ∈ R(D) we can easily find a matching run in R(D, D) that
is indistinguishable for all processes in D, yielding (C).

(D) Now consider a system M′ = 〈D〉 that has the same system assumptions as M,
with the restriction that at most 1 process can crash in M′ at any time. Condition
(D) follows immediately from the result of Dolev et al. (1987, Table I), since we
have already shown in Lemma 8.3.2 that

|D| > n− f + 1 > 2

and 1 process can crash in the runs of M′.

108

8.3. Applying Theorem 8.2.1

(E) We will show that for every run ρ′ ∈M′
A|D

, there is a corresponding run ρ ∈MA,

such that ρ′ D∼ ρ. Fix any ρ′ ∈M′
A|D

and consider the run ρ ∈MA where every

correct process in D has the same sequence of states in ρ as in ρ′, and all
remaining processes—of which there are 6 f − 1—are initially dead in ρ. Such
a run ρ exists, since A|D is the restriction of A (see Definition 8.0.1).

We can therefore apply Theorem 8.2.1 and conclude that A does not solve k-set agree-
ment. (Proof of Theorem 8.3.1)

8.3.2. Failure Detector (Σk, Ωk)

While the asynchronous model is without doubt the classical setting for an impossi-
bility result, it does not fully exploit the advantages of our approach. In this section
we will demonstrate the full power of Theorem 8.2.1 by deriving a new result: We
will show the impossibility of achieving k-set agreement with failure detector (Σk,Ωk),
which was thought to be a promising candidate for the corresponding weakest failure
detector (see Bonnet and Raynal, 2009).5

We have already introduced failure detector Σk in Section 7.6 (see Definition 7.6.1).
We will now restate the failure detector class Ωk, which was introduced by Neiger
(1995).6

Definition 8.3.3. The output of the generalized leader oracle Ωk, for 1 6 k 6 n− 1,
satisfies the following properties:

• (Validity) For all processes p and all times t, history H(p, t) is a set of k process
identifiers.

• (Eventual Leadership) There exists a time tGST and a set LD, such that

(LD ∩ (Π \ F) 6= ∅) ∧ (∀t > tGST ∀p : H(p, t) = LD).

�

For our impossibility proof, we will make use of certain failure detector histories
that allow up to k partitions.

Definition 8.3.4. Let
{
D1, . . . , Dk−1, D

}
be a partitioning of the processes in Π

where |D| > k, and let Dk = D. We call a failure detector history H of 〈Σk,Ωk〉 a{
D1, . . . , Dk−1, D

}
-partitioning history, if the output of 〈Σk,Ωk〉 satisfies the following

properties:

1. For 1 6 i 6 k, the output of Σk at every process in Di is a valid history for
Σ (= Σ1) in the restricted model Mi = 〈Di〉.

5Despite the negative results of this section, Σk remains interesting in its own right, as it was shown
by Bonnet and Raynal (2009) to be necessary for solving k-set agreement with any failure detector.

6Recall from Definition 2.2.1 (Page 22) that F denotes the set of faulty processes in a run.

109

Chapter 8. On the Impossibility of k-Set Agreement

2. There exists some fixed point in time tGST such that the following holds: Let
LDt

i denote the leader set that is output by Ωk at process pi, for some point in
time t. For all t < tGST and for pj ∈ Di we have that

LDt
j ∩Di 6= ∅, (8.2)

if 1 6 i 6 k − 1, whereas
LDt

` ⊆ D,

for p` ∈ D. For all t > tGST, the output of Ωk is the same set LD at every
process p and depends on the failure pattern F in a run:

(a) If D * F , then LDt
p ⊆ D.

(b) If D ⊆ F , then LDt
p ∩Di 6= ∅ and LDt

p ∩ (Π \ F) 6= ∅, for 1 6 i 6 k.

�

Lemma 8.3.5. Every
{
D1, . . . , Dk−1, D

}
-partitioning history of 〈Σk,Ωk〉 is a valid

history for 〈Σk,Ωk〉.

Proof. Consider an arbitrary finite stabilization time tGST. Obviously the history
satisfies the (Eventual Leadership) property of Ωk, since the output stabilizes with
respect to the failure pattern of a given run. The (validity) property of Ωk holds by
construction.

For Σk, choose any set P of k+1 of processes in Π. First, observe that the combined
liveness conditions of the local Σ histories immediately imply that liveness holds for
Σk (see Definition 7.6.1). By the pigeon principle, at least two processes of P must
be in in the same set Di, for some 1 6 i 6 k, where Dk = D. Observing that the
intersection property of Σ also implies that the history is valid for Σk completes the
proof.

Theorem 8.3.6. There is no (n − 1)-resilient algorithm that solves k-set agreement
in an asynchronous system with failure detector 〈Σk,Ωk〉, for any

3 6 k 6

⌊
n+ 1

2

⌋
. (8.3)

Proof (Theorem 8.3.6). We assume by contradiction that there is such an algorithm A.
We use the following partitioning of Π: Let D = {p1, . . . , pk} and choose D1, . . . , Dk−1

such that they partition the set Π \D. Since (8.3) holds and

|D| = k,

we have that

|D1 ∪ · · · ∪Dk−1| > k − 1;

thus such a partitioning exists.

110

8.3. Applying Theorem 8.2.1

We will show the impossibility for the failure detector 〈Σ′
k,Ω

′
k〉, which restricts

〈Σk,Ωk〉 by allowing only
{
D1, . . . , Dk−1, D

}
-partitioning histories.7 Due to Lemma 8.3.5,

〈Σk,Ωk〉 is weaker than 〈Σ′
k,Ω

′
k〉; therefore, this impossibility carries over to 〈Σk,Ωk〉.

Lemma 8.3.7. Suppose that processes can query 〈Σ′
k,Ω

′
k〉. Then, algorithm A

is
{
D1, . . . , Dk−1, D

}
-independent.

Proof. Consider any Di, for 1 6 i 6 k, where Dk = D and assume in contradic-
tion that there is a run α with history Hα and failure pattern Fα such that some
correct process pi ∈ Di does not decide. Also assume that pi does not receive
any messages from processes in Π \Di in α. Consider a run β with history Hβ

and failure pattern Fβ where all processes not in Di are initially dead. Let tpi be
the time in β when the correct process pi decides. Furthermore, every process
pj ∈ Di takes the same steps in α and β, and

Hβ(pj , t) = Hα(pj , t),
Fβ = Fα,

∀t : Fα(t) ∩Di = Fβ(t) ∩Di,

for all t 6 tpi . The last condition guarantees that pi will receive the same
messages in both runs from the other processes in Di. Such a run β exists, due
to the facts that A is n − 1 resilient and that the above restriction of Hβ is a
legitimate output of 〈Σ′

k,Ω
′
k〉. Since α and β are indistinguishable for process

pi, it must decide in α at time tpi , yielding a contradiction.

(A) Together with Observation 8.1.2.(b), Lemma 8.3.7 immediately implies that A is{
D

}
-independent.

(B) Since there are runs inMA where all processes except the ones in D are initially
dead, the correctness of A implies that there are runs where processes in D
decide without receiving any messages from processes in D =

⋃
16i6k−1Di. Thus

R(D) 6= ∅, i.e. requirement (B) of Theorem 8.2.1 holds.

(C) Consider any run α ∈ R(D) with a (partitioning) failure detector history Hα and
failure pattern Fα, and let R ⊆ R(D, D) be the set of runs where all communica-
tion between the sets of processes D1, . . . , Dk−1, D is delayed until every correct
process has decided. Note that Lemma 8.3.7 guarantees that R is nonempty.
By definition, α is such that a process p ∈ D does not receive messages from
processes in D until after p has decided (or crashed). Let tdec denote the time
where every process in D has decided or crashed in α. We consider a run β ∈ R
with the partitioning history Hβ and failure pattern Fβ, where processes in D
take the same steps as in α until time tdec, and

Fα(t) ∩D = Fβ(t) ∩D,

7Note that processes do not know this partitioning.

111

Chapter 8. On the Impossibility of k-Set Agreement

for all times t 6 tdec. Moreover, for all p ∈ D, we assume that

Hα(p, t) = Hβ(p, t), (8.4)

for all t 6 tdec. Note carefully that we do not restrict Hβ at processes in D in any
way. Since Hα is a partitioning history, (8.4) reveals that Hβ is a valid partition-
ing history for Fβ as well. Furthermore, α and β are clearly indistinguishable for

processes in D until time tdec; recalling that β ∈ R ⊆ R(D, D) shows that α D∼ β,
and thus R(D) �D R(D, D).

(D) We will first choose an appropriately restricted model M′; recall that

|D| = k > 3.

That is, M′ = 〈D〉 is an asynchronous system augmented with 〈Σ′
k,Ω

′
k〉 of size

> 3 where |D| − 1 processes fail by crashing. Since we are only considering
partitioning histories, processes in M′ effectively access a failure detector 〈Σ,Γ〉,
where Γ satisfies the part of Definition 8.3.4 that concerns Ωk, for the processes
in D: More specifically, Γ outputs a set of k process ids, which according to
Definition 8.3.4 2.(a) is the whole set D, since D contains at least one correct
process. Obviously, Γ is implementable in a purely asynchronous system of size
k, which means that the combination 〈Σ,Γ〉 is too weak for solving consensus.

(E) Finally, we note that for any run inM′
A|D

there is a run inR(D) where all processes

in D are initially dead, and the processes in D take identical steps, fail at the
same time, and receive the same failure detector output, i.e., M′

A|D
�D R(D)

and hence M′
A|D
�D MA.

Applying Theorem 8.2.1 yields the required contradiction. (Proof of Theorem 8.3.6)

It is worth noting that Definition 8.3.4 (in particular 2.(a)) in conjunction with our
freedom to choose a suitable failure environment for M′ allows us to use the failure
detector output for processes in D “as is”, i.e., without modification, when making
the transition from M = 〈Π〉 to M′ = 〈D〉.

Note that we explicitly need k > 2 in Theorem 8.3.6, since for k = 2 we have a system
of two processes where Σ is equivalent to Ω and thus sufficient to solve consensus, as
was shown by Delporte-Gallet et al. (2010).

8.4. Discussion

In this chapter we have introduced a generic way of characterizing the impossibility of
k-set agreement in message passing systems. The main advantage of our approach is
that we are independent of a specific system model, since Theorem 8.2.1 neither makes

112

8.4. Discussion

assumptions on the available amount of synchrony, nor on the power of computing
steps, nor on the communication primitives available to processes.

Future work on this topic will involve

• identifying other settings where Theorem 8.2.1 can be applied,

• developing a general theory of T -independence for failure detectors and other
message passing systems, and

• finding weak system models that provide just enough synchrony to circumvent
impossibility.

113

Chapter 9

A Weak Communication Predicate for
k-Set Agreement

Honest disagreement is often a
good sign of progress.

(Mahatma Gandhi)

We have already seen two system models where (n−1)-set agreement is achiev-
able by implementing failure detector L, and have shown how to solve k-set

agreement with L(k). In this chapter we will focus on solving the k-set agreement
problem (see Section 7.1) in a round-based setting, where 1 6 k < n.1 In the round
model that we will introduce below, all processes are considered to be “internally”
correct, although they may be perceived as faulty by other processes. We therefore
actually consider the variant of k-set agreement where all processes must eventually
decide. In this setting, “crashed” processes are modeled as processes from which no
one else receives messages.

9.1. The Round Model

We assume that the computation is organized in an infinite sequence of communication-
closed (Elrad and Francez, 1982) rounds; that is, any message sent in a round can be
received only in that round. Using rounds instead of a synchrony assumption allows
us to focus on what processes perceive instead of treating failures and asynchrony
separately. This idea was introduced in a seminal paper by Santoro and Widmayer
(1989) who coined the term “transmission fault”, and is also prominent in the round
models of Gafni (1998) and Charron-Bost and Schiper (2009), which were discussed
in Section 1.3. Another example of a round-based model is the perception-based
hybrid failure model (Schmid and Weiss, 2002; Biely et al., 2010b) where processes
can experience a (bounded) amount of receive failures and send failures per round.

1The results of this chapter are joint work with Martin Biely (see Biely et al., 2010a).

115

Chapter 9. A Communication Predicate for k-Set Agreement

Widder and Schmid (2007) extended this failure model to a variant of the Θ-Model
(see Section 5.1) where processes do not startup simultaneously.

The round model that we have described so far shows little resemblance to the
basic system assumptions introduced in Chapter 2, since untimely messages cannot be
received in any later round and thus are lost. Nevertheless, we can outline a mapping
for asynchronous runs to this round structure by making the following assumptions:

• Processes perform time-driven computations in a synchronous manner.

• Processes have read-access to some variable r that contains the current round
number.

In order to be able to actually execute algorithms designed for the round model in
such a system we need an additional layer of simulation:

• A messages that is sent is tagged with the value of r.

• The first time that p reads a new value of r, process p executes the round
algorithm by providing all previously received messages tagged with r− 1 as the
input parameters of the transition function.

• Process p discards all messages that have a tagged value smaller than the current
value of its round variable r (and buffers all messages with a tag value that is
greater or equal).

This way asynchrony is transformed to message loss in the round.
As in the models of Gafni (1998) and Charron-Bost and Schiper (2009), we will

express assumptions about the synchrony and the reliability of communication in a
system by a predicate that characterizes the set of edges in the communication graph
of each round. Intuitively speaking, there is an edge from process p to q in the com-
munication graph of round r if q received p’s round r message. We will in fact identify
a system by its predicate, that is, in a system P the collections of communication
graphs of each run of an algorithm in that system must fulfill predicate P . For ex-
ample, a predicate that requires the communication graph of each round to be fully
connected, corresponds to the synchronous (fault-free) model. Obviously, our goal is
to find a weak predicate for k-set agreement that avoids such unnecessarily strong
assumptions, i.e., a weak system model.

We now formally define computations in our round model. Algorithms are composed
of two functions: The sending function determines, for each process p and round
r > 1, the message p broadcasts in round r based on the p’s state at the beginning
of round r. Recall that we consider communication-closed rounds, which means that
a message sent in round r cannot be received in any later round. The transition
function determines, for each p and round r and the vector of messages received in r,
the state at the end of round r, i.e., at the beginning of round r + 1. Clearly, a run
of an algorithm is completely determined by the initial states of the processes and the
sequence of communication graphs.

116

9.1. The Round Model

Definition 9.1.1. Consider round r > 0. We denote the communication graph of
round r by Gr = 〈V,Er〉, where each node of the set V is associated with one process
from Π, and where Er is the set of directed timely edges for round r. There is an edge
from p to q, denoted as (p→ q), if and only if q receives p’s round r message (in round
r). �

To simplify the presentation, we will denote a process and the associated node in the
communication graph by the same symbols. We will write p ∈ Gr and (p → q) ∈ Gr

instead of p ∈ V resp. (p→ q) ∈ Er.

Definition 9.1.2. We denote the stable skeleton graph of round r by G∩ r and define
G∩ r := 〈V,E∩ r〉 where

E∩ r :=
⋂

0<r′6r

Er.

�

Intuitively speaking, G∩ r is the subgraph consisting of the edges that have been
timely in all rounds up to round r. The crucial property of E∩ r is that once an edge
is untimely in some round r, it cannot be in G∩ r′ , for any r′ > r. That is,

∀r > 0: E∩ r ⊇ E∩ r+1,

which implies the subgraph relation

∀r > 0: G∩ r ⊇ G∩ r+1. (9.1)

Stable Skeleton Graphs and Timely Neighborhoods

We are particularly interested in certain graphs that model the perpetual timeliness
throughout a run.

Definition 9.1.3. The stable skeleton of a run, is defined as the intersection2 over all
rounds, i.e.,

G∩∞ :=
⋂

r>0 G∩ r. (9.2)

�

Figures 9.1 and 9.2 show the stable skeleton of round 2 and of an entire run, respec-
tively.

Considering that a run α consists of infinitely many rounds, whereas our system
consists of only a finite number of processes, it follows that the number of possible
distinct stable skeletons must also be finite. Consequently, the subgraph property
(9.1) implies that there is some round rST when G∩∞ has stabilized, i.e.,

∀r > rST : G∩ r = G∩∞.
2For simplicity, we set G ∩G′ := 〈V ∩ V ′, E ∩ E′〉.

117

Chapter 9. A Communication Predicate for k-Set Agreement

p1 p2p3

p4 p5 p6

Figure 9.1.: G∩ 2

The k-set agreement algorithm in Section 9.3 will approximate the stable skeleton
of a run. The first step in this effort is to use the locally available information about
the communication graph, which is captured by the notion of timely neighbourhoods.

Definition 9.1.4. The timely neighborhood of p until round r, denoted as PT (p, r),
is the set of processes that process p has perceived as perpetually timely until round r.
Formally,

PT (p, r) :=
{
q | (q → p) ∈ G∩ r

}
.

�

In other words, p has received a message from every process in PT (p, r) in every
round up to and including r. Analogously to (9.1) and (9.2), we have

PT (p, r) ⊇ PT (p, r + 1) (9.3)

and define

PT (p) :=
⋂
r>0

PT (p, r). (9.4)

We will make heavy use of the standard graph-theoretic notion of a strongly con-
nected component of G∩ r. Note that we implicitly assume that strongly connected
components are always nonempty and maximal. We use the superscript notation Cr

when talking about a strongly connected component of G∩ r. Moreover, we write Cr
p to

denote the (unique) strongly connected component of G∩ r that contains process p in
round r. The strongly connected component C∞p ⊆ G∩∞ that contains p in a run is
defined analogously to (9.2) as

C∞p :=
⋂
r>0

Cr
p .

Note that when p and q are strongly connected in G∩ r, then they are also strongly
connected in all G∩ r′ , for 0 < r′ 6 r. From property (9.1) of G∩ r, we immediately
have

∀r > 0: Cr
p ⊇ Cr+1

p . (9.5)

We will also use directed paths in G∩ r, where we assume that all nodes on a path are
distinct.

118

9.1. The Round Model

Definition 9.1.5. Let Cr ⊆ G∩ r be a strongly connected component. Cr is a root
component in round r, if

∀p ∈ Cr ∀q ∈ G∩ r : (q → p) ∈ G∩ r ⇒ q ∈ Cr.

�

Informally speaking, Cr is a root component if it has no incoming edges from any
q ∈ G∩ r \ Cr. Figure 9.2 shows a graph with 2 root components.

p1 p2p3

p4 p5 p6

Figure 9.2.: The stable skeleton graph G∩∞ of an entire run. Each of the sets of
processes {p1, p2} and {p3, p4, p5} forms a root component in G∩∞.

Regarding the relation to the existing round-by-round models, we shortly recall what
their predicates are based on: In the Heard-Of model (Charron-Bost and Schiper,
2009), for each round r and each process p, the set HO(p, r) contains those processes
that p hears from, i.e., receives a message from, in round r. In the case of the Round-
by-Round Fault Detectors (Gafni, 1998), the output of p’s fault detector in round r is
referred to by D(p, r). In each round r, process p waits until it receives a message from
every process that is not contained in D(p, r). While it is possible that p also receives
a round r message from a process in D(p, r), we assume that these messages are
discarded. From this it is evident that we have the following correspondence between
our skeleton graphs and the HO/RbR model:

(p→ q) ∈ E∩ r ⇐⇒
{
∀r′ 6 r : p ∈ HO(q, r′)
∀r′ 6 r : p 6∈ D(q, r′)

(9.6)

Thus a process can determine its timely neighbourhood in the two models as follows:

PT (p, r) =

{⋂
0<r′6r HO(p, r′)

Π \
(⋃

0<r′6r D(p, r′)
) (9.7)

As in the HO-model, we model a crashed processes by an “internally correct” process
that no other process receives messages from after it has crashed (Charron-Bost and
Schiper, 2009, Sec. 2.2). This modelling is the reason why we require all processes to
decide. For a more detailed discussion on the relation between models where crashed
processes actually stop and the HO-model, we refer to Hutle and Schiper (2007).

119

Chapter 9. A Communication Predicate for k-Set Agreement

9.2. Predicate Psrcs(k)

In this section, we introduce a predicate that, together with Algorithm 6 in Section 9.3,
is sufficient for solving k-set agreement.

For a run α, predicate Psrcs(k) requires that in every set S of k+ 1 processes, there
are two processes q, q′ that receive timely messages from the same common process p,
in every round. We say that p is a 2-source and q, q′ are timely receivers of p in α.

Psrc(p, S) :: ∃q, q′ ∈ S, q 6= q′ : p ∈
(
PT (q) ∩ PT (q′)

)
Psrcs(k) :: ∀S, |S| = k + 1 ∃p ∈ Π: Psrc(p, S) (9.8)

Note that p is not required to be distinct from q and q′: Psrcs(k) still holds if p = q,
i.e., p always perceives itself in a timely fashion. Regarding communication graphs,
this predicate ensures that any induced subgraph S of G∩∞ with k+1 nodes contains
distinct nodes q and q′, such that, for some node p, edges (p→ q) and (p→ q′) exist
(one of which may be a self-loop). Figure 9.2 shows the stable skeleton graph in a run
where Psrcs(k) holds for k = 3.

At a first glance, it might appear that the perpetual nature of Psrcs(k) is an un-
necessarily strong restriction. To see why some (possibly weak) perpetual synchrony
is necessary, consider the predicate ♦Psrcs(k) that satisfies (9.8) just eventually, and
suppose that there is an algorithm A that solves k-set agreement in system ♦Psrcs(k).
Due to its “eventual” nature, ♦Psrcs(k) allows runs where every process forms a root
component by itself, i.e., it receives no timely messages from other process, for a finite
number of rounds. Moreover, for any k, the (infinite) run, where a single process forms
a root component forever and thus has to decide on its own input value, is admissible.
Using a simple indistinguishability argument, it is easy to show that processes decide
on n different values.

The following result will be instrumental in Section 9.3, where we show how to
solve k-set agreement with Psrcs(k). Note that Theorem 9.2.1 is independent of the
algorithm employed.

Theorem 9.2.1. There are at most k root components in any run that is admissible
in system Psrcs(k).

Proof. Assume by contradiction that there is a run α of some algorithm A that is
admissible in system Psrcs(k), where there is a set of ` > k+1 disjoint root components

R =
{
C∞p1

, . . . , C∞p`

}
containing processes p1, . . . , pk+1, . . . , p`. Let r be the round where every strongly
connected root component C∞pi

∈ R has stabilized, i.e.,

∀i : Cr
pi

= C∞pi
.

120

9.2. Predicate Psrcs(k)

That is, any two distinct root components in R must already be disjoint from round
r on. Since α satisfies Psrcs(k) and ` > k + 1, there must be a 2-source p such that,
for two distinct processes

pi, pj ∈ {p1, . . . , pk+1} ,

it holds that
p ∈ (PT (pi) ∩ PT (pj)) .

By (9.6), it follows that the edges ei = (p → pi) and ej = (p → pj) are in G∩ r.
Considering that Cr

pi
and Cr

pj
are root components by assumption, i.e., do not have

incoming edges, it must be that ei ∈ Cr
pi

and ej ∈ Cr
pj

, and therefore

p ∈ Cr
pi
∩ Cr

pj
.

This, however, contradicts the fact that Cr
pi

and Cr
pj

are disjoint, which completes our
proof.

Impossibility of (k−1)-Set Agreement

We will now show that Psrcs(k) does not allow to solve (k−1)-set agreement. More
specifically, we will prove this by assuming the existence of such an algorithm A, and
then construct a run fulfilling Psrcs(k) where processes decide on k (instead of k − 1)
different values.
Theorem 9.2.2. Consider any k such that 1 < k < n. There is no algorithm A that
solves (k−1)-set agreement in system Psrcs(k).

Proof. Assume for the sake of a contradiction that such an algorithm A exists. Sup-
pose that all processes start with pairwise distinct input values. Consider the run α
and a fixed set L of k−1 processes that only hear from themselves, formally speaking,

∀p ∈ L : PT (p) = {p} .

Moreover, there is one process s such that every process not in L only hears from itself
and s, i.e.,

∀p ∈ Π \ L : PT (p) = {p, s} .

By validity and termination (see Section 9.3), processes eventually have to decide on
some input value and processes in L∪{s} cannot learn any other process’ input value,
thus they have to decide on their own value. Thus, we have k different decision values,
as we have assumed a unique input value for each process, and therefore a violation
of (k−1)-agreement.

What remains to be shown is that this run α actually fulfills Psrcs(k). Recall equation
(9.8), i.e., the definition of Psrcs, and consider for any set S of size k+1 the set P = S\L.
Since |S \ L| > 2, the set P contains at least two distinct processes that permanently
receive timely messages from s (one of which may be s). That is, process s is the
required 2-source for any set S of k + 1 processes.

121

Chapter 9. A Communication Predicate for k-Set Agreement

9.3. Approximating the Stable Skeleton Graph and Solving
k-Set Agreement

In this section, we present and analyze an algorithm that solves k-set agreement with
predicate Psrcs(k). Algorithm 6 employs a generic approximation of the stable skeleton
graph of the run, which works as follows: First, every process p keeps track of the
processes it has perceived as timely until round r in the set PTp, updated in Line 9.
Lemma 9.3.2 will show that PTp satisfies the definition of PT (p, r), for all rounds r.
In addition, every process p locally maintains an approximation graph Gp of the stable
skeleton, denoted Gr

p for round r, which is broadcast in every round. If a process q
receives such a graph Gr

p from some process p in its timely neighborhood PT (q, r), it
adds the information contained in Gr

p to its own local approximation Gr
q. Note that,

in contrast to the stable skeleton graph G∩ r, the approximation graph Gp is actually
a weighted directed graph. The edge labels of Gp correspond to the round number
when a particular edge was added by some process, i.e., the edge (q′ r→ q) is in Gp

if, and only if, q′ ∈ PT (q, r) (cf. Lemma 9.3.2(b)). To prevent outdated information
from remaining in the approximation graph permanently, every process p purges all
edges in Gr

p that were initially added more than n − 1 rounds ago. Figures 9.3a-9.3f
show this approximation mechanism at work.

For k-set agreement, process p only considers proposal values for its estimated de-
cision value xp that were sent by processes in its current timely neighborhood, i.e., in
PTp. This ensures that p and q will have a common estimated decision value xp = xq

in round n, if they are in the same strongly connected component (cf. Lemma 9.3.14).
To determine when to terminate, p analyzes its approximation graph in every round
r > n and decides if Gr

p is a strongly connected graph.
Why is this decision safe with respect to the agreement property? Using our graph

approximation results, we will show in Lemma 9.3.15 that any strongly connected ap-
proximation graph contains at least one root component in the stable skeleton graph.
Furthermore, if two processes decide on different values, it follows that their approx-
imated graphs in the rounds of their respective decision are disjoint. Since Theo-
rem 9.2.1 confirms that there are at most k root components in any run where Psrcs(k)
holds, there can be in fact at most k different decision values.

9.3.1. Approximation of the Stable Skeleton Graph

Throughout our analysis, we denote the value of variable var of process p at the end of
round r as varr

p. When we use the subgraph relation (⊆) between graphs Cr
p and Gr

p,
we mean the standard subgraph relation between Cr

p and the unweighted version of Gr
p.

We first state some obvious facts that follow directly from the code of the algorithm:

Observation 9.3.1. For any round r > 0 it holds that p ∈ Gr
p and that no edge

(q′ r′→ q) ∈ Gr
p has r′ 6 r − n.

122

9.3. Solving k-Set Agreement

p1 p2p3

p4 p5 p6

1

1

(a) G1
p6

p1 p2p3

p4 p5 p6

2

2

1

1

(b) G2
p6

p1 p2p3

p4 p5 p6
3

2

1

1

(c) G3
p6

p1 p2p3

p4 p5 p6
4

3

2

2

1

1

1

(d) G4
p6

p1 p2p3

p4 p5 p6
5

4
3

2

2

(e) G5
p6

p1 p2p3

p4 p5 p6
6

5
4

3

(f) G6
p6

Figure 9.3.: Figures 9.3a-9.3f show the local approximation of G∩∞ depicted in Fig-
ure 9.2 (Page 119) and of G∩ 2 (Figure 9.1, Page 118) during rounds 1 to 6 by process
p6. For simplicity, we omit self-loops that is we assume that every process always
perceives itself as timely, formally, ∀pi : pi ∈ PT (pi).

Note that, after the initial assignment, p only updates variable PTp in Line 9, which
is equivalent to (9.7). From this and the inspection of Lines 14 and 16, Lemma 9.3.2
follows immediately:
Lemma 9.3.2. It holds that q ∈ PT (p, r) if, and only if, all of the following are true:

(a) q ∈ PT r
p ,

(b) p adds a directed edge q r→ p to Gr
p by executing Line 16 in round r, and

(c) for any r′ 6= r, there is no other edge q r′→ p in Gr
p.

The following lemma shows that the approximation graph Gp`+1
accurately reflects

the timely neighborhood of a process. That is, if p1 is connected to p`+1 through a
path of length `, then p`+1 will add the timely neighborhood information of p1 to its
approximated graph by round `.
Lemma 9.3.3. Suppose that there exists a directed path

Γ = (p1 → . . .→ p`+1)

in G∩ r for round r > n, where Γ has length ` 6 n− 1. Then, for all q ∈ PT (p1, r − `)
it holds that

(a) edge (q
rq→ p1) is in Gr

p`+1
where r > rq > r − `, and

123

Chapter 9. A Communication Predicate for k-Set Agreement

Algorithm 6 Approximating the stable skeleton graph and solving k-set agreement
with Psrcs(k)

Variables and Initialization:
1: PTp ∈ 2Π initially Π
2: xp ∈ N initially vp // Estimated decision value
3: Gp := 〈Vp, Ep〉 initially 〈{p} , ∅〉 // weighted digraph
4: decidedp ∈ {0, 1} initially 0 // is 1 iff p has decided

Round r: sending function Sr
p:

5: if decidedp = 1 then
6: send (decide, xp, Gp) to all processes
7: else
8: send (prop, xp, Gp) to all processes

Round r: transition function T r
p :

9: update PTp

10: if received (decide, xq,_) from q ∈ PTp and decidedp = 0 then
11: xp ← xq

12: decide on xp

13: decidedp ← 1

14: Gp ← 〈{p} , ∅〉
15: for q ∈ PTp do
16: add directed edge (q r→ p) to Ep

17: Vp ← Vp ∪ Vq

18: for every pair of nodes (pi, pj) ∈ Vp × Vp do
19: Ri,j ← {re | ∃q ∈ PTp : (pi

re→ pj) ∈ Eq}
20: if Ri,j 6= ∅ then
21: rmax ← max(Ri,j)
22: Ep ← Ep ∪ {(pi

rmax→ pj)}
23: discard all (pi

re→ pj) from Ep where re 6 r − n
24: discard pi 6= p from Vp if p is unreachable from pi

25: if decidedp = 0 then
26: xp ← min {xq | q ∈ PTp}
27: if r > n and Gp is strongly connected then
28: decide on xp

29: decidedp ← 1

(b) Gr
p`+1

contains no other edges from q to p1.

124

9.3. Solving k-Set Agreement

Proof. Consider an arbitrary q ∈ PT (p1, r−`). The proof proceeds by induction over
the edges of path Γ indexed by k. That is, we show that for all k, with 0 6 k 6 `, it
holds that there is an edge e = (q rk→ p1) in Gr−`+k

p1+k
where

r − `+ k > rk > r − `.

For the base case (k = 0), we have to show that the edge e is in Gr−`
p1

, but this
already follows from q ∈ PT (p1, r − `), by Lemma 9.3.2.

For the induction step, we assume that the statement holds for some k < ` and then
show that it holds for k + 1 as well. In round r − `+ (k + 1) process p1+k broadcasts
its current graph estimate, i.e., Gr−`+k

p1+k
to all. We know that p1+(k+1) will receive this

message since (p1+k → p1+(k+1)) is in the path Γ ⊆ G∩ r, which means that

p1+k ∈ PT (p1+(k+1), r − `+ (k + 1)).

By the induction hypothesis, the edge (q rk→ p1) is in Gr−`+k
p1+k

and therefore will be
among the edges that p1+(k+1) considers in Line 19. This in turn implies that p1+(k+1)

will add an edge q
rk+1→ p1 to its graph Gr−`+(k+1)

p1+(k+1)
in Line 22, whereby rk+1 is calculated

in Line 21 such that rk+1 > rk. Moreover, by induction hypothesis we have

rk > r − ` > r − n,

which ensures that the edge will not be discarded in Line 23. Since the code following
the for-loop in Line 18 is executed exactly once for every edge, no other edge q r′→ p1

is added to Gr−`+(k+1)
p1+(k+1)

. This completes the proof our lemma.

The next lemma shows that the approximation graph of correctly (over)estimates
the strongly connected component from round n on:
Lemma 9.3.4. Let r > n and consider the strongly connected component Cr

p contain-
ing p in G∩ r. Then, it holds that Gr

p ⊇ Cr
p .

Proof. Consider any edge (q′ → q) ∈ Cr
p . Since Cr

p is strongly connected, there is
a directed path between any pair of processes in Cr

p , in particular there is a path of
length ` 6 n− 1 from q to p. By the definition of Cr

p we know that q always perceives
q′ as timely in all rounds up to round r, which means that

q′ ∈ PT (q, r − `).

Then, by applying Lemma 9.3.3, we get that the edge (q′ r′→ q) is in Gr
p, for some

r′ > r − `,

which shows that Cr
p is a subgraph of Gr

p.

Lemma 9.3.2 showed that the timely neighborhood is eventually in the approximated
graph. We now show that our approximation contains only valid information:

125

Chapter 9. A Communication Predicate for k-Set Agreement

Lemma 9.3.5. Let r > 1 and suppose that there is an edge e = (q′ r′→ q) in the
approximated stable skeleton graph Gr

p of process p. Then it holds that q′ ∈ PT (q, r′).

Proof. Note that processes only add edges to their approximation graphs in Line 16
or in Line 22. If an edge is added via Line 22, then this edge has previously been added
by another process by executing Line 16. Therefore, every edge must have been added
by some process via Line 16. For edge e, this process can only be q. By Lemma 9.3.2
this happens in round r′ and q′ ∈ PT (q, r′).

The following Lemma 9.3.6 is in some sense the converse result of Lemma 9.3.4, as
it states that the approximated graph must approach Cr

p from below, if it is strongly
connected:
Lemma 9.3.6. Let r > 1 and consider the strongly connected component Cr

p . If the
approximated skeleton graph Gr+n−1

p is strongly connected, then

Cr
p ⊇ Gr+n−1

p .

Proof. Consider any edge
e = (q′ r′→ q) ∈ Gr+n−1

p .

By Lemma 9.3.5, we know that q′ ∈ PT (q, r′). It follows by the subset property (9.3)
that q′ ∈ PT (q, r), as Observation 9.3.1 implies

r′ > (r + n− 1)− n = r − 1.

Therefore, there is an edge (q′ → q) in G∩ r. It follows that Gr+n−1
p is isomorphic

to a (not necessarily maximal) strongly connected component Sr in G∩ r. Because Cr
p

and Sr both contain p, their intersection is nonempty, i.e.,

Cr
p ⊇ Gr+n−1

p .

As a final result about the approximated skeleton graph, we show that once the
approximation Gr

p is strongly connected in round r > n, it is closed w.r.t. strongly
connected components. This means that Gr

p can be partitioned into disjoint strongly
connected components in G∩∞.
Theorem 9.3.7. Suppose that R > n. If the approximated skeleton graph GR

p is
strongly connected, then it contains the strongly connected component C∞q of every
q ∈ GR

p .

Proof. Consider any q ∈ GR
p and its strongly connected component C∞q . From (9.5)

and Lemma 9.3.6 it follows that

q ∈ GR
p ⊆ CR−n+1

p ⊆ C1
p ,

i.e., q ∈ C1
p ∩ C1

q .

126

9.3. Solving k-Set Agreement

Now suppose the theorem does not hold. Then there exists some q′ ∈ C∞q such that
q′ 6∈ GR

p . Due to Lemma 9.3.4, q′ cannot be contained in CR
p , but due to (9.5),

q′ ∈ CR
q ⊇ C∞q .

Therefore, CR
q 6= CR

p , and thus
CR

q ∩ CR
p = ∅.

Since GR
p is strongly connected and contains q, it also contains a path

Γ = (q = p` → · · · → p0 = p),

such that
∀i, 0 6 i < ` : pi+1 ∈ PT (pi, R− i).

Let j be the minimal index i such that pj ∈ CR
q , and let

Γj = (pj → · · · → p0)

be the path remaining from pj .

As both q′ and pj are in CR
q , there is a path Γ′ in CR

q . Let k be the length of this
path. Moreover, by applying Lemma 9.3.3, we get that GR−j

pj contains the outgoing
edge e of q′ on this path, labeled with some round

r′ > R− j − k. (9.9)

But then, by the definition of Γ, it follows that when GR
p contains pj — which it does —

then it must also contain q′, unless some process pi (i < j) removed e from its set of
edges in Line 23 in round R− i because

r′ 6 R− i− n.

Since round R at process p(= p0) is the latest round when this can occur, we get that
r′ 6 R− n, and thus, by (9.9),

R− j − k 6 r′ 6 R− n, i.e., j + k > n. (9.10)

Let ∆ be the subgraph obtained by concatenating paths Γ′ and Γj . By construction,
Γj and Γ′ only share node pj , and thus ∆ is a (simple) path and must have length

j + k 6 n− 1,

as no path can exceed length n − 1. This contradicts (9.10) and thus completes the
proof that q′ is in GR

p . The proof showing that all edges of C∞q are in GR
p proceeds

analogously, by assuming that some edge in C∞q ending in q′ is not in GR
p .

127

Chapter 9. A Communication Predicate for k-Set Agreement

9.3.2. k-Set Agreement

In this section, we will show that Algorithm 6 not only approximates the stable skeleton
graph, but also solves k-set agreement. Our previous results allow us to immediately
prove the validity and the termination properties.
Lemma 9.3.8 (Validity). If a process decides on v, then v was the initial value of
some process.

Proof. Observe that the decision value xp of any process p is initially set to its proposal
value vp, which is then broadcast. On all subsequent updates of xp in Line 26, a value
xq that was sent by some process q (which originated from some vq′) is assigned,
therefore validity holds.

Lemma 9.3.9. Every process decides at most once in any run.

Proof. Observe that no process executes Line 28 and Line 12 in the same run. This
is guaranteed by the fact that process p cannot pass the if-conditions in Line 10 or in
Line 25 after decidedp is set to 1, which happens whenever p decides.

Lemma 9.3.10 (Termination). Every process decides exactly once.

Proof. Lemma 9.3.9 shows that every process decides at most once. We will now
show that every process decides at least once. First, we will show that there is a
root component in every round. Consider the strongly connected components that
partition the set of nodes of the stable skeleton graph G∩ r in some round r. Such a
set always exists, since the strongly connected components form equivalence classes
of nodes. It is well known that the contraction of the strongly connected components
results in a directed acyclic graph, which reveals that there is at least one node Cr in
the contracted graph that has no incoming edges. Clearly, Cr satisfies the definition of
a root component in G∩ r. Therefore, there is a nonempty set Rr of strongly connected
components all of which are root components in round r.

Let r > 1 be the earliest round where G∩ r is stable for at least n− 1 rounds, i.e.,

∀r′ ∈ [r, r + n− 1] : G∩ r′ = G∩ r.

Note that property (9.1) implies that r exists. Now, consider any root component
Rr ∈ Rr: Clearly, since every process is in exactly one strongly connected component,
we have

∀p ∈ Rr : Cr
p = Rr = Rr+n−1 = Cr+n−1

p . (9.11)

We will now show that the approximated skeleton graph of such a process p is in
fact exactly the strongly connected component of p. Consider any p ∈ Rr(= Cr+n−1

p).
First, since

r + n− 1 > n,

Lemma 9.3.4 and (9.11) imply that

Rr ⊆ Gr+n−1
p .

128

9.3. Solving k-Set Agreement

We will now show that Rr ⊇ Gr+n−1
p , which proves that these graphs are equal: Since

Gr+n−1
p is connected by construction, it is sufficient to show that every edge in Gr+n−1

p

is also in Rr. Assume in contradiction that there is an edge

e = (q′ r′→ q) ∈ Gr+n−1
p

such that q ∈ Rr but q′ /∈ Rr; note that the other way round (q′ ∈ Rr but q /∈ Rr)
is impossible by construction. Using Lemma 9.3.5 we know that q′ ∈ PT (q, r′), and
Observation 9.3.1 implies that

r′ > (r + n− 1)− n = r − 1,

i.e., r′ > r. Then, by definition, we have that e ∈ G∩ r, i.e., e is an incoming edge
of Rr, contradicting the assumption that Rr is a root component. We can therefore
conclude that

Rr = Gr+n−1
p .

By assumption, Rr is a root component, which tells us that Gr+n−1
p is strongly

connected, i.e., p will pass the if-condition in Line 27 in round r + n − 1 and decide.
Recall the contracted stable skeleton graph of round r + n − 1. Since every path in
this graph is rooted at some node corresponding to a root component in the set Rr,
it follows that all processes that are not in a root component will receive a decision
message by round r + 2n− 1 and also decide, which completes our proof.

In the remainder of this section we will prove that Algorithm 6 satisfies the k-
agreement property. We will start out with some basic invariants on decision esti-
mates.
Observation 9.3.11 (Monotonicity). In any run of Algorithm 6 it holds that

∀r > 0: xr
p > xr+1

p .

Lemma 9.3.12. If process p does not decide in Line 12, we have

∀r > n− 1: xr
p = xr+1

p .

Proof. Suppose that there is an r > n − 1 such that p sets xr+1
p ← xq and xr

p 6= xq.
This can only occur in Line 26, if the process does not decide in Line 12. From
Observation 9.3.11 and validity (cf. Lemma 9.3.8), we know that p did not previously
receive xq and that xq is the initial value of some distinct process q. Since processes
forward their estimated decision value in every round, (9.3) implies that the shortest
path from q to p (along which xp has been propagated to p) in G∩ r+1 has length r+1.
However, this is impossible as r+1 > n and the longest possible path has length n−1.

Lemma 9.3.13. Suppose that some process p decides on xp in round r by executing
Line 12. Then some process q 6= p has decided on xp in round r′ < r by executing
Line 28.

129

Chapter 9. A Communication Predicate for k-Set Agreement

Proof. Every process decides either in Line 28 or in Line 12, but not both (Lemma 9.3.9).
Since p decided in Line 12 it must have received a (decide, xq,_) message from some
distinct process q. If q decided in Line 28 we are done; otherwise q decided in Line 12
in round r− 1, we can repeat the same argument for q. After at most n− 1 iterations,
we arrive at some process that must have decided using Line 28.

Lemma 9.3.14. Let Cn
p be the strongly connected component of process p in round

n. Then, it holds that
∀q ∈ Cn

p : xn
q = xn

p .

Proof. First, observe that due to Lemma 9.3.13 and the fact that no process can pass
the check in Line 27 before round n, no process can decide before round n. Therefore,
processes can update their estimate values until at least round n.

Suppose that there are processes p, q ∈ Cn
p , such that xn

p 6= xn
q . In particular we

assume without loss of generality, that xn
q is minimal among all round n estimation

values of processes in Cr
p , i.e., xn

p > xn
q .

Let rq be the round where q first sets xq to the value xn
q . By Observation 9.3.11 it

follows that q does not update xq anymore before round n. Since Algorithm 6 satisfies
validity (Lemma 9.3.8), we know that there is some process s that is the source of
this value, i.e., s initially proposed xr

q. By the code of the algorithm we know that in
round r process p only considers values in Line 26 that were sent by some process in
PT (p, r). This implies that there is a sequence of pairwise distinct processes

s = q1, . . . , q` = q,

such that
∀i, (1 6 i < `) : qi ∈ PT (qi+1, i). (9.12)

Clearly, rq = ` − 1. Let j 6 ` be such that qj ∈ Cn
p and j is minimal, let Γq be the

path in G∩ 1 induced by the sequence s up to qj . Moreover, since qj ∈ Cn
p , there is a

path Γp in Cn
p from qj to p. Since

Cn
p ⊆ G∩ 1,

Γp is a path in G∩ 1 as well. Let Γ be the path in G∩ 1 obtained by appending Γp to Γq.
By construction Γ is simple, and therefore its length is bounded by n− 1. Moreover,
the initial value of s was propagated along this path — over Γq by construction and
over Γp, because xn

q is minimal in Cn
p . This leads to process p assigning this value to

xp in some round
rp 6 n− 1,

which contradicts the assumption that xn
p > xn

q .

Lemma 9.3.15 (k-Agreement). Processes decide on at most k distinct values.

Proof (Lemma 9.3.15). For the sake of a contradiction, assume that there is a set of
` > k processes

D = {p1, . . . , p`}

130

9.3. Solving k-Set Agreement

in a run α where pi decides on x∞i = xri
i

3 in round ri > n and

∀pi, pj ∈ D : x∞pi
6= x∞pj

.

By virtue of Lemma 9.3.13, we can assume that every pi has decided by executing
Line 28. Considering that no process decides before round n, applying Lemma 9.3.12
yields that

∀r > n ∀pi, pj ∈ D : xr
pi
6= xr

pj
. (9.13)

Note that the approximated skeleton graphs Gri
pi

and G
rj
pj are strongly connected in

round ri resp. rj , otherwise the processes could not have passed the if-condition before
Line 28.

We will first show that the different decision values of pi and pj imply that their
approximated skeleton graphs in rounds ri resp. rj are disjoint. Lemma 9.3.6 reveals
that these skeleton graphs are contained within the respective strongly connected
components of an earlier round, i.e.,

Cri−n+1
pi

⊇ Gri
pi

and Crj−n+1
pj ⊇ Grj

pj .

If these strongly connected components of pi and pj are disjoint, then so are the
approximated skeleton graphs and we are done. Therefore, assume in contradiction
that

I = Cri−n+1
pi

∩ Crj−n+1
pj 6= ∅.

We will now prove that one of these components contains the other. Without loss
of generality, suppose that ri 6 rj and consider any node

p ∈ I ⊆ Crj−n+1
pj .

Clearly, p is strongly connected to every node in Crj−n+1
pj . Let Z be the induced

subgraph of Crj−n+1
pj in the skeleton graph G∩ ri−n+1. By the subgraph property (9.5)

and since ri 6 rj , it follows that

Z = Crj−n+1
pj ,

and hence
Z ∩ Cri−n+1

pi
6= ∅.

By the fact that p ∈ I, we know that p ∈ Cri−n+1
pi

. That is, in the skeleton graph
G∩ ri−n+1, process p is strongly connected to all nodes in Cri−n+1

pi
and Z. But since

the strongly connected component Cri−n+1
pi

is maximal, we actually have

Cri−n+1
pi

⊇ Z = Crj−n+1
pj ,

3Note that x∞p denotes p’s final “estimate”, i.e., the actual decision value of process p.

131

Chapter 9. A Communication Predicate for k-Set Agreement

which means that pj ∈ Cri−n+1
pi

. Then, Lemma 9.3.14 readily implies that ∀q ∈ Cri−n+1
pi

it holds that xn
pi

= xn
q and, in particular,

xn
pi

= xn
pj

,

which contradicts (9.13). We can therefore conclude that the intersection of the
strongly connected components, and therefore, by Lemma 9.3.6, also the intersection
of Gri

p and G
rj
pj is indeed empty, i.e.,

∀pi, pj ∈ D : (Gri
pi
∩Grj

pj) = ∅. (9.14)

By Theorem 9.3.7 it follows that each of the strongly connected approximated skele-
ton graphs Gri

pi
can be partitioned into a set Di of strongly connected components in

G∩∞. Note that (9.14) implies that no strongly connected component is in two distinct
sets Di, Dj .

Lemma 9.3.16. Every set of strongly connected components Di contains a root
component, for 1 6 i 6 `.
Proof. For the sake of a contradiction, assume that (w.l.o.g.) the set D` cor-
responding to Gp

r`
`

does not contain a root component. Now consider the con-
tracted graph of G∩∞ where the nodes are the strongly connected components.
Since the contracted graph is acyclic, it follows that there exists a path Γ in
the (non-contracted) graph G∩∞ that ends at process p` ∈ D`, and is rooted at
some process q ∈ C∞q where C∞q is a root component and thus by assumption
not in D`. However, by the subgraph property (9.1), we know that the path Γ
is also in G∩ r` . But then Lemma 9.3.3 implies that q ∈ Gri

pi
, and Theorem 9.3.7

shows that
C∞q ∈ D`,

i.e., one of the components in D` in fact is a root component, which provides a
contradiction.

By Theorem 9.2.1, at most k of the sets Di can contain a root component, which
directly contradicts Lemma 9.3.16. (Proof of Lemma 9.3.15)

Tying together the results of this section yields the following theorem:
Theorem 9.3.17. Algorithm 6 solves k-set agreement in system Psrcs(k).

Proof. Lemma 9.3.15 implies k-agreement. Termination is guaranteed by Lemma 9.3.10
and Lemma 9.3.8 shows validity.

9.4. Discussion

The results of this chapter allow us to place the communication predicate Psrcs(k) just
above the models Manti and Msink in Figure 1.2 on Page 20. Note that for the case
n − 1, predicate Psrcs(n − 1) stipulates slightly stronger synchrony assumptions than

132

9.4. Discussion

the models of Chapter 6, since it requires the common source to be fixed throughout
the run. Weakening this condition is part of our current research.

Throughout this chapter we have concentrated on k-set agreement in round-based
systems. We now discuss how our results relate to other systems with up to n−1 crash
failures. For the shared memory case, a class of partially synchronous system models
was presented by Aguilera et al. (2009) recently, which allow to solve k-set agreement
by implementing the corresponding weakest failure detector k-anti-Ω (see Gafni and
Kuznetsov, 2009).

In Chapter 6 we have presented Msink, which is a partially synchronous model where
(n−1)-set agreement can be solved. That is, model Msink assumes that processes take
steps in accordance with an upper bound on the relative process speeds. In contrast
to Dolev et al. (1987); Dwork et al. (1988), however, there is no global bound on the
maximum message delay in this model. Rather, we have used the notion of a timely
link. In this spirit we can define the equivalent of a 2-source of a set of processes S,
by requiring that there are distinct processes p1, p2 ∈ S such that the links from some
process p ∈ Π to p1 and p2 are timely; it may be that p = p1 or p = p2. If there is
such a 2-source for any set of k+1 processes, we obtain a partially synchronous model
Msrcs(k) corresponding to Psrcs(k).

With regard to our results from Chapter 7, a question that arises naturally is whether
we can implement L(k) in such a model Psrcs(k). We conjecture that this is impossible
for k < n− 1, since the ability to detect n− k loneliness is a much stronger property
(in particular for values of k close to 1) than the mere existence of a limited amount
of timely links, as provided by Msrcs(k).

133

IV
Appendix

135

List of Figures

1.1. The space-time diagram of a run of a distributed system. 8
1.2. The Space of System Models . 20

3.1. Relevant Cycle . 30
3.2. The Undirected Shadow Graph. 31
3.3. Combined Relevant Cycle . 31
3.4. ABC Synchrony Condition . 33
3.5. A Non-Relevant Cycle . 33
3.6. An Asymmetric Relevant Cycle . 36
3.7. A Multi-Hop Relevant Cycle . 38
3.8. Bounded-Size FIFO Channel Implementation 38

4.1. Proof of Lemma 4.1.6 . 48

5.1. Matrix Form of the Linear System Ax < b. 61
5.2. Cycle Vectors of a Relevant Cycle . 63

6.1. A Run in Model Manti . 79

7.1. Failure Detector Classes for k-Set Agreement 96

9.1. The Stable Skeleton in Round 2 . 118
9.2. The stable skeleton graph G∩∞ . 119
9.3. The Approximation of the Stable Skeleton 123

137

List of Algorithms

1. Byzantine Clock Synchronization in the ABC Model 44
2. A Lock-Step Round Simulation Tolerating Byzantine Faults 51

3. Implementing L in Model Manti . 80
4. Implementing L in Model Msink . 83

5. Solving k-Set Agreement with L(k) . 90

6. Approximating the Stable Skeleton Graph and Solving k-Set Agreement 124

139

Bibliography

Aguilera, M. K., Delporte-Gallet, C., Fauconnier, H., and Toueg, S. (2001). Stable
leader election. In DISC ’01: Proceedings of the 15th International Conference on
Distributed Computing, pages 108–122. Springer-Verlag.

Aguilera, M. K., Delporte-Gallet, C., Fauconnier, H., and Toueg, S. (2003). On imple-
menting Omega with weak reliability and synchrony assumptions. In Proceedings of
the 22nd ACM Symposium on Principles of Distributed Computing, pages 306–314,
Boston, Massachusetts, USA.

Aguilera, M. K., Delporte-Gallet, C., Fauconnier, H., and Toueg, S. (2004).
Communication-efficient leader election and consensus with limited link synchrony.
In Proceedings of the 23th ACM Symposium on Principles of Distributed Computing
(PODC’04), pages 328–337, St. John’s, Newfoundland, Canada. ACM Press.

Aguilera, M. K., Delporte-Gallet, C., Fauconnier, H., and Toueg, S. (2008). On imple-
menting omega in systems with weak reliability and synchrony assumptions. Dis-
tributed Computing, 21(4).

Aguilera, M. K., Delporte-Gallet, C., Fauconnier, H., and Toueg, S. (2009). Partial
synchrony based on set timeliness. In PODC ’09: Proceedings of the 28th ACM
symposium on Principles of distributed computing, pages 102–110, New York, NY,
USA. ACM.

Akkoyunlu, E. A., Ekanadham, K., and Huber, R. V. (1975). Some constraints and
tradeoffs in the design of network communications. In SOSP ’75: Proceedings of
the fifth ACM symposium on Operating systems principles, pages 67–74, New York,
NY, USA. ACM.

Alpern, B. and Schneider, F. B. (1985). Defining liveness. Information Processing
Letters, 21(4):181–185.

Anceaume, E., Fernández, A., Mostéfaoui, A., Neiger, G., and Raynal, M. (2004). A
necessary and sufficient condition for transforming limited accuracy failure detectors.
J. Comput. Syst. Sci., 68(1):123–133.

Angluin, D. (1980). Local and global properties in networks of processors (extended
abstract). In Proceedings of the Twelfth Annual ACM Symposium on Theory of
Computing, pages 82–93. ACM.

141

Bibliography

Attiya, H., Dwork, C., Lynch, N., and Stockmeyer, L. (1994). Bounds on the time to
reach agreement in the presence of timing uncertainty. Journal of the ACM (JACM),
41(1):122–152.

Attiya, H., Snir, M., and Warmuth, M. K. (1988). Computing on an anonymous ring.
J. ACM, 35(4):845–875.

Attiya, H. and Welch, J. (2004). Distributed Computing: Fundamentals, Simulations
and Advanced Topics (2nd ed.). John Wiley & Sons, Inc.

Ben-Zvi, I. and Moses, Y. (2010). Beyond lamport’s happened-before: On the role of
time bounds in synchronous systems. In Lynch, N. and Shvartsman, A., editors,
Distributed Computing, volume 6343 of Lecture Notes in Computer Science, pages
421–436. Springer Berlin / Heidelberg.

Biely, M. and Hutle, M. (2009). Consensus when all processes may be byzantine for
some time. In Proceedings of the 11th International Symposium on Stabilization,
Safety, and Security of Distributed Systems, SSS ’09, pages 120–132, Berlin, Heidel-
berg. Springer-Verlag.

Biely, M., Robinson, P., and Schmid, U. (2009a). Weak synchrony models and failure
detectors for message passing k-set agreement. In Proceedings of the International
Conference on Principles of Distributed Systems (OPODIS’09), LNCS, pages 285–
299, Nimes, France. Springer Verlag.

Biely, M., Robinson, P., and Schmid, U. (2009b). Weak synchrony models and failure
detectors for message passing k-set agreement. In Proceedings of the 23rd Interna-
tional Symposium on Distributed Computing (DISC’09), pages 260–261.

Biely, M., Robinson, P., and Schmid, U. (2010a). Solving k-set agreement with stable
skeleton graphs. Research Report 28/2010, Technische Universität Wien, Institut
für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria.

Biely, M., Schmid, U., and Weiss, B. (2010b). Synchronous consensus under hybrid
process and link failures. Theoretical Computer Science, In Press, Corrected Proof:–.

Biely, M. and Widder, J. (2006). Optimal message-driven implementation of Omega
with mute processes. In Proceedings of the Eighth International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS 2006), volume 4280
of LNCS, pages 110–121, Dallas, TX, USA. Springer Verlag.

Biely, M. and Widder, J. (2009). Optimal message-driven implementations of omega
with mute processes. ACM Transactions on Autonomous and Adaptive Systems,
4(1):Article 4, 22 pages.

Bonnet, F. and Raynal, M. (2009). Looking for the weakest failure detector for k-set
agreement in message-passing systems: Is Πk the end of the road? In Guerraoui,
R. and Petit, F., editors, 11th International Symposium on Stabilization, Safety,

142

Bibliography

and Security of Distributed Systems (SSS 2009), volume 5873 of Lecture Notes in
Computer Science, pages 129–164.

Bonnet, F. and Raynal, M. (2010a). Anonymous asynchronous systems: The case of
failure detectors. In Lynch, N. and Shvartsman, A., editors, Distributed Computing,
volume 6343 of Lecture Notes in Computer Science, pages 206–220. Springer Berlin
/ Heidelberg.

Bonnet, F. and Raynal, M. (2010b). On the road to the weakest failure detector for k-
set agreement in message-passing systems. Theoretical Computer Science, In Press,
Corrected Proof:–.

Borowsky, E. and Gafni, E. (1993). Generalized FLP impossibility result for t-resilient
asynchronous computations. In STOC ’93: Proceedings of the twenty-fifth annual
ACM symposium on Theory of computing, pages 91–100, New York, NY, USA.
ACM.

Bouzid, Z. and Travers, C. (2010). (Ωx,Σz) based k-set agreement algorithms. In
OPODIS 2010. Springer, Heidelberg. to appear.

Carver, W. B. (1921). Systems of linear inequalities. Annals of Mathematics, 23:212–
220.

Chandra, T. D., Hadzilacos, V., and Toueg, S. (1996). The weakest failure detector
for solving consensus. Journal of the ACM, 43(4):685–722.

Chandra, T. D. and Toueg, S. (1996). Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM, 43(2):225–267.

Charron-Bost, B., Dolev, S., Ebergen, J., and Schmid, U., editors (2009). Fault-
Tolerant Distributed Algorithms on VLSI Chips, Schloss Dagstuhl, Germany.
http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=1927.

Charron-Bost, B., Guerraoui, R., and Schiper, A. (2000). Synchronous system and
perfect failure detector: Solvability and efficiency issues. In Proceedings of the IEEE
Int. Conf. on Dependable Systems and Networks (DSN’00), pages 523–532, New
York, USA. IEEE Computer Society.

Charron-Bost, B. and Schiper, A. (2009). The Heard-Of model: computing in dis-
tributed systems with benign faults. Distributed Computing, 22(1):49–71.

Chaudhuri, S. (1993). More choices allow more faults: set consensus problems in
totally asynchronous systems. Inf. Comput., 105(1):132–158.

Delporte-Gallet, C., Fauconnier, H., and Guerraoui, R. (2010). Tight failure detection
bounds on atomic object implementations. J. ACM, 57:22:1–22:32.

143

Bibliography

Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., and Tielmann, A. (2008). The
weakest failure detector for message passing set-agreement. In DISC ’08: Proceed-
ings of the 22nd international symposium on Distributed Computing, pages 109–120,
Berlin, Heidelberg. Springer-Verlag.

Dielacher, A., Fuegger, M., and Schmid, U. (2009). Brief announcement: How
to speed-up fault-tolerant clock generation in VLSI systems-on-chip via pipelin-
ing. In Proceedings of the 28th ACM Symposium on Principles of Dis-
tributed Computing (PODC’09), page 423. ACM Press. An extended ver-
sion is available as RR 15/2009, Institut für Technische Informatik, TU-Wien,
http://www.vmars.tuwien.ac.at/documents/extern/2571/techreport.pdf.

Diestel, R. (2006). Graph Theory (3rd ed.). Springer.

Dolev, D., Dwork, C., and Stockmeyer, L. (1987). On the minimal synchronism needed
for distributed consensus. Journal of the ACM, 34(1):77–97.

Dolev, D., Halpern, J. Y., and Strong, H. R. (1986). On the possibility and impossibil-
ity of achieving clock synchronization. Journal of Computer and System Sciences,
32:230–250.

Dolev, D. and Strong, R. (1982). Distributed commit with bounded waiting. In Pro-
ceedings of the 2nd Symposium on Reliability in Distributed Software and Database
Systems,, pages 53–60, Pittsburgh.

Dwork, C., Lynch, N., and Stockmeyer, L. (1988). Consensus in the presence of partial
synchrony. Journal of the ACM, 35(2):288–323.

Ebergen, J. C. (1991). A formal approach to designing delay-insensitive circuits. Dis-
tributed Computing, 5:107–119.

Elrad, T. and Francez, N. (1982). Decomposition of distributed programs into
communication-closed layers. Science of Computer Programming, 2(3):155–173.

Fernández, A., Jiménez, E., Raynal, M., and Trédan, G. (2010). A timing assump-
tion and two t-resilient protocols for implementing an eventual leader service in
asynchronous shared memory systems. Algorithmica, 56(4):550–576.

Fernández, A. and Raynal, M. (2007). From an intermittent rotating star to a leader.
In Proc. 11th Int’l Conference On Principles Of Distributed Systems (OPODIS’07),
pages 189–203. Springer-Verlag.

Fernández, A. and Raynal, M. (2010). From an asynchronous intermittent rotating
star to an eventual leader. IEEE Trans. Parallel Distrib. Syst., 21(9):1290–1303.

Fetzer, C. (1998). The message classification model. In Proceedings of the Seventeenth
Annual ACM Symposium on Principles of Distributed Computing, pages 153–162,
Puerto Vallarta, Mexico. ACM Press.

144

Bibliography

Fetzer, C. and Schmid, U. (2004). Brief announcement: On the possibility of consensus
in asynchronous systems with finite average response times. In Proceedings of the
23th ACM Symposium on Principles of Distributed Computing (PODC’04), page
402, Boston, Massachusetts.

Fetzer, C., Schmid, U., and Süßkraut, M. (2005). On the possibility of consensus
in asynchronous systems with finite average response times. In Proceedings of
the 25th International Conference on Distributed Computing Systems (ICDCS’05),
pages 271–280, Washington, DC, USA. IEEE Computer Society.

Fischer, M. J., Lynch, N. A., and Paterson, M. S. (1985). Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382.

Fuegger, M., Schmid, U., Fuchs, G., and Kempf, G. (2006). Fault-Tolerant Distributed
Clock Generation in VLSI Systems-on-Chip. In Proceedings of the Sixth European
Dependable Computing Conference (EDCC-6), pages 87–96. IEEE Computer Soci-
ety Press.

Gafni, E. (1998). Round-by-round fault detectors (extended abstract): unifying syn-
chrony and asynchrony. In Proceedings of the Seventeenth Annual ACM Symposium
on Principles of Distributed Computing, pages 143–152, Puerto Vallarta, Mexico.
ACM Press.

Gafni, E. and Kuznetsov, P. (2009). The weakest failure detector for solving k-set
agreement. In 28th ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC 2009).

Garcia-Molina, H. (1982). Elections in a distributed computing system. IEEE Trans.
Comput., 31(1):48–59.

Gray, J. N. (1978). Notes on data base operating systems. In R. Bayer, R.M. Graham,
G. S., editor, Operating Systems: An Advanced Course, volume 60 of Lecture Notes
in Computer Science, chapter 3.F, page 465. Springer, New York.

Guerraoui, R., Herlihy, M., Kouznetsov, P., Lynch, N., and Newport, C. (2007). On the
weakest failure detector ever. In Proceedings of the twenty-sixth annual ACM Sym-
posium on Principles of Distributed Computing (PODC’07, pages 235–243. ACM.

Guerraoui, R. and Schiper, A. (1996). “gamma-accurate” failure detectors. In WDAG
’96: Proceedings of the 10th International Workshop on Distributed Algorithms,
pages 269–286, London, UK. Springer-Verlag.

Hadzilacos, V. and Toueg, S. (1993). Fault-tolerant broadcasts and related problems.
In Mullender, S., editor, Distributed Systems, chapter 5, pages 97–145. Addison-
Wesley, 2nd edition.

Halpern, J. Y. and Moses, Y. (1990). Knowledge and common knowledge in a dis-
tributed environment. J. ACM, 37(3):549–587.

145

Bibliography

Herlihy, M. (1991). Wait-free synchronization. ACM Transactions on Programming
Language Systems, 13(1):124–149.

Herlihy, M. and Shavit, N. (1993). The asynchronous computability theorem for t-
resilient tasks. In STOC ’93: Proceedings of the twenty-fifth annual ACM symposium
on Theory of computing, pages 111–120, New York, NY, USA. ACM.

Hutle, M., Malkhi, D., Schmid, U., and Zhou, L. (2006). Brief announcement: Chasing
the weakest system model for implementing omega and consensus. In Proceedings
Eighth International Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS 2006), LNCS, pages 576–577, Dallas, USA. Springer Verlag.

Hutle, M., Malkhi, D., Schmid, U., and Zhou, L. (2009). Chasing the weakest system
model for implementing omega and consensus. IEEE Transactions on Dependable
and Secure Computing, 6(4):269–281.

Hutle, M. and Schiper, A. (2007). Communication predicates: A high-level abstraction
for coping with transient and dynamic faults. In 37th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN’07), pages 92–101.

Imbs, D., Raynal, M., and Taubenfeld, G. (2010). On asymmetric progress conditions.
In PODC, pages 55–64.

Jayanti, P. and Toueg, S. (2008). Every problem has a weakest failure detector.
In Proceedings of the twenty-seventh ACM symposium on Principles of distributed
computing (PODC ’08), pages 75–84, New York, NY, USA. ACM.

Kuhn, F., Lynch, N. A., and Oshman, R. (2010). Distributed computation in dynamic
networks. In STOC, pages 513–522.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565.

Lamport, L. and Melliar-Smith, P. M. (1985). Synchronizing clocks in the presence of
faults. Journal of the ACM, 32(1):52–78.

Lamport, L., Shostak, R., and Pease, M. (1982). The Byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4:382–401.

Lampson, B. W. and Sturgis, H. E. (1979). Crash recovery in a distributed data
storage system.

Larrea, M., Fernández, A., and Arévalo, S. (2000). Optimal implementation of the
weakest failure detector for solving consensus. In Proceedings of the 19th IEEE Sym-
posium on Reliable Distributed Systems (SRDS), pages 52–59, Nürnberg, Germany.

Le Lann, G. and Schmid, U. (2003). How to implement a timer-free perfect failure de-
tector in partially synchronous systems. Technical Report 183/1-127, Department of

146

Bibliography

Automation, Technische Universität Wien. (Replaced by Research Report 28/2005,
Institut für Technische Informatik, TU Wien, 2005.).

Lynch, N. (1996). Distributed Algorithms. Morgan Kaufman Publishers, Inc., San
Francisco, USA.

Lynch, N. A. and Fischer, M. J. (1979). On describing the behavior and implementa-
tion of distributed systems. In Proceedings of the International Sympoisum on Se-
mantics of Concurrent Computation, pages 147–172, London, UK. Springer-Verlag.

Malkhi, D., Oprea, F., and Zhou, L. (2005). Ω meets paxos: Leader election and
stability without eventual timely links. In Proceedings of the 19th Symposium on
Distributed Computing (DISC’05), volume 3724 of LNCS, pages 199–213, Cracow,
Poland. Springer Verlag.

Malpani, N., Welch, J. L., and Vaidya, N. (2000). Leader election algorithms for mobile
ad hoc networks. In DIALM ’00: Proceedings of the 4th international workshop on
Discrete algorithms and methods for mobile computing and communications, pages
96–103, New York, NY, USA. ACM.

Mattern, F. (1989). Virtual time and global states of distributed systems. In Parallel
and Distributed Algorithms, pages 215–226. North-Holland.

Mattern, F. (1992). On the relativistic structure of logical time in distributed systems.
In Parallel and Distributed Algorithms, pages 215–226. Elsevier Science Publishers
B.V.

Moser, H. (2009). A Model for Distributed Computing in Real-Time Systems. PhD
thesis, Technische Universität Wien, Fakultät für Informatik. (Promotion sub aus-
piciis).

Moser, H. and Schmid, U. (2006). Optimal clock synchronization revisited: Upper and
lower bounds in real-time systems. In Proceedings of the International Conference on
Principles of Distributed Systems (OPODIS), LNCS 4305, pages 95–109, Bordeaux
& Saint-Emilion, France. Springer Verlag.

Mostefaoui, A., Mourgaya, E., and Raynal, M. (2003). Asynchronous implementation
of failure detectors. In Proceedings of the International Conference on Dependable
Systems and Networks (DSN’03), San Francisco, CA.

Mostéfaoui, A., Rajsbaum, S., Raynal, M., and Roy, M. (2002). Condition-based
protocols for set agreement problems. In DISC, pages 48–62.

Mostéfaoui, A. and Raynal, M. (1999a). Solving consensus using Chandra-Toueg’s
unreliable failure detectors: A general quorum-based approach. In Jayanti, P., edi-
tor, Distributed Computing: 13th International Symposium (DISC’99), volume 1693
of Lecture Notes in Computer Science, pages 49–63, Bratislava, Slovak Republic.
Springer-Verlag GmbH.

147

Bibliography

Mostéfaoui, A. and Raynal, M. (1999b). Unreliable failure detectors with limited scope
accuracy and an application to consensus. In FSTTCS, pages 329–340.

Mostéfaoui, A. and Raynal, M. (2000). k-set agreement with limited accuracy fail-
ure detectors. In PODC ’00: Proceedings of the 19th annual ACM symposium on
Principles of distributed computing, pages 143–152, New York, NY, USA. ACM.

Mostefaoui, A. and Raynal, M. (2001). Randomized k-set agreement. In SPAA ’01:
Proceedings of the thirteenth annual ACM symposium on Parallel algorithms and
architectures, pages 291–297, New York, NY, USA. ACM.

Mostefaoui, A., Raynal, M., and Travers, C. (2004). Crash-resilient time-free eventual
leadership. In Proceedings of the 23rd IEEE Symposium on Reliable Distributed
Systems (SRDS 2004), pages 208–217. IEEE Computer Society.

Neiger, G. (1995). Failure detectors and the wait-free hierarchy (extended abstract).
In Proceedings of the fourteenth annual ACM symposium on Principles of distributed
computing, PODC ’95, pages 100–109, New York, NY, USA. ACM.

Pease, M., Shostak, R., and Lamport, L. (1980). Reaching agreement in the presence
of faults. Journal of the ACM, 27(2):228–234.

Ponzio, S. and Strong, R. (1992). Semisynchrony and real time. In Proceedings of the
6th International Workshop on Distributed Algorithms (WDAG’92), pages 120–135,
Haifa, Israel.

Robinson, P. and Schmid, U. (2008a). The Asynchronous Bounded-Cycle Model.
Research Report 24/2008, Technische Universität Wien, Institut für Technische In-
formatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria.

Robinson, P. and Schmid, U. (2008b). The Asynchronous Bounded-Cycle Model.
In Proceedings of the 10th International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS’08), volume 5340 of Lecture Notes in Computer
Science, pages 246–262, Detroit, USA. Springer Verlag. (Best Paper Award).

Robinson, P. and Schmid, U. (2008c). Brief announcement: The asynchronous
bounded-cycle model. In Proceedings of the 27th ACM Symposium on Principles
of Distributed Computing (PODC’08), page 423. ACM Press. (extended version
appeared at SSS’08).

Robinson, P. and Schmid, U. (2010). The Asynchronous Bounded-Cycle Model. The-
oretical Computer Science, 5340.

Saks, M. and Zaharoglou, F. (2000). Wait-free k-set agreement is impossible: The
topology of public knowledge. SIAM J. Comput., 29(5):1449–1483.

Santoro, N. and Widmayer, P. (1989). Time is not a healer. In Proc. 6th Annual
Symposium on Theor. Aspects of Computer Science (STACS’89), LNCS 349, pages
304–313, Paderborn, Germany. Springer-Verlag.

148

Sastry, S., Pike, S. M., and Welch, J. L. (2009). Crash fault detection in celerating
environments. In IPDPS ’09: Proceedings of the 2009 IEEE International Sympo-
sium on Parallel&Distributed Processing, pages 1–12, Washington, DC, USA. IEEE
Computer Society.

Schmid, U. and Weiss, B. (2002). Synchronous Byzantine agreement under hybrid
process and link failures. Technical Report 183/1-124, Department of Automation,
Technische Universität Wien. (replaces TR 183/1-110).

Schmid, U., Weiss, B., and Keidar, I. (2009). Impossibility results and lower bounds
for consensus under link failures. SIAM Journal on Computing, 38(5):1912–1951.

Sutherland, I. E. and Ebergen, J. (2002). Computers without Clocks. Scientific
American, 287(2):62–69.

Taubenfeld, G. (2010). The computational structure of progress conditions. In Lynch,
N. and Shvartsman, A., editors, Distributed Computing, volume 6343 of Lecture
Notes in Computer Science, pages 221–235. Springer Berlin / Heidelberg.

Vitányi, P. M. (1984). Distributed elections in an archimedean ring of processors. In
Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages
542–547. ACM Press.

Vitányi, P. M. (1985). Time-driven algorithms for distributed control. Report CS-
R8510, C.W.I.

Wagner, D. and Wattenhofer, R., editors (2007). Algorithms for Sensor and Ad Hoc
Networks, Advanced Lectures [result from a Dagstuhl seminar], volume 4621 of Lec-
ture Notes in Computer Science. Springer.

Widder, J., Le Lann, G., and Schmid, U. (2005). Failure detection with booting
in partially synchronous systems. In Proceedings of the 5th European Dependable
Computing Conference (EDCC-5), volume 3463 of LNCS, pages 20–37, Budapest,
Hungary. Springer Verlag.

Widder, J. and Schmid, U. (2007). Booting clock synchronization in partially syn-
chronous systems with hybrid process and link failures. Distributed Computing,
20(2):115–140.

Widder, J. and Schmid, U. (2009). The Theta-Model: Achieving synchrony without
clocks. Distributed Computing, 22(1):29–47.

Curriculum Vitae of Peter Robinson

Address: Vienna University of Technology
Department of Computer Engineering
Embedded Computing Systems Group
Treitlstrasse 3, 2nd floor, 1040 Wien, Austria

Email: robinson@ecs.tuwien.ac.at
Web: http://ti.tuwien.ac.at/ecs/people/robinson

Phone: +43 (1) 58801-18253
Fax: +43 (1) 58801-18297

Education

2006 M.S. degree (with distinction) in Computational Intelligence
Vienna University of Technology
Master thesis nominated for Distinguished Young Alumnus Award

2005 B.S. degree in Software & Information Engineering
Vienna University of Technology

Employment History

Since 2007 Research assistant in FWF-projects PSRTS and THETA
Project head: Prof. U. Schmid
Department of Computer Engineering, Vienna

2006 – 2007 Technical assistant in FWF-project “Skolem functions”
Project head: Prof. M. Baaz
Institute of Discrete Mathematics and Geometry, Vienna

2002, 2003, 2004 Tutor for “Object Oriented Programming”
Institute of Computer Languages, Vienna

Aug. – Sept. 2002 Software Engineer at Siemens AG, Vienna, Austria
August 2001 Software Engineer at Hartter Gruppe, Oberwart, Austria

June 1998 – March 1999 Military service, Austria

151

