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Abstract

Residual stresses determine the mechanical properties of metal films. To model these, nu-
merous models based on continuum mechanics have been created which are applicable only
for simplified situations. To investigate more sophisticated situations, crystal microstruc-
ture morphology simulations can be used as basis. However for this approach the results
need to be in a format usable for the subsequent stress simulations. This is possible for the
algorithm described in the course of this work, which is based on the Van der Drift model.
The approach taken in the creation of the algorithm is flexible and allows for more general
cases than previous algorithmic formulations of the model. The program implemented on
basis of this algorithm is capable of exporting a mesh usable for the simulation of stress
by the finite element method. In addition to the algorithm and its implementations the
scaling of the average in-plane crystal size and the a possible extension of the model are
investigated. These theoretical results are then used for the simulations and for the analyse
of their results.
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Introduction

The manufacturing process of metal layers produces large residual stresses which are built
during the process itself or thereafter. These residual stresses determine the mechanical
properties of metal films. In the case of interconnect reliability, the residual stresses play
a significant role for electromigration failure. Such residual stresses arise from two main
sources. First, there is the tendency of copper to shrink or expand, once deposited on the
substrate, and second there is the thermal mismatch between adjacent layers. Generally,
thin films change their volume during the deposition process itself and aftermath due to
the evolution of the metal microstructure [9, 16] thus generating microstrains.
The lack of appropriate measurements makes it impossible to obtain detailed stress load dis-
tributions as necessary for an assessment of metallization reliability. The realistic material
properties of an interconnect tightly packed in surrounding layers depend on its geometry
and grain size effects and are also hardly reachable by experimental means [7].
The distribution of the stress which arises due to microstrains strongly depends on the mor-
phology of the grains. Different aspects of the connection between microstructure and stress
have been investigated in the last 30 years. The focus was mainly on some specific grain-
grain boundary configurations in early or mature stages of microstructure evolution [16]. As
a result, numerous models on the basis of continuum mechanics have been derived, which
are applicable only for highly simplified situations. For example, the model of Nix [27]
describes the initial build-up of tensile stress during Volmer-Weber crystal growth with a
simple hexagonal grain morphology. In turn, Sheldon et al. [2] describes the rise of compres-
sive stress in a late phase of film growth. Again, grains with simple geometries are assumed,
with grain boundaries perpendicular to the substrate surface. In deriving the model it has
been assumed that the stress in the film is determined by mechanisms that operate at the
grain boundaries and that it is a result of insertion of excess adatoms at grain boundaries.
Parallel to the development of mechanical models, a group of researchers, mostly mathe-
maticians, have developed complex models for describing the morphology of the microstruc-
tural evolution. The study was initiated by the work of Van der Drift [1], which has in-
troduced an algorithm for competitive grain growth capable of reproducing the network
of grain boundaries. The work on microstructure morphology culminates in multi-level-set
models of grain evolution [20, 22]. Even though these models do not include any stress
generation mechanisms, they can reproduce microstructures with a high degree of accuracy
and provide a basis for the investigation of grains size statistics [3], which can then be used
as an input for stress calculations [8]. By this means the stress distribution of a copper film
on a TaN/SiO2 layer [9] and of a fixed or deflected cantilever [10] have been simulated.
To directly use results of morphology simulations without using statistical parameters for
the transfer, typically a mesh is needed for the discretisation of the underlying system of
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INTRODUCTION 6

equations. On this mesh the stress simulations can be carried out for example using the
finite element method. The generation of such a mesh is difficult to do in the case of the
level-set method but easily done in case of the Van der Drift model. An algorithm for this
model is given and a program is implemented which is capable of generating a mesh needed
for stress simulations.
Before looking at the Van der Drift model, all phases of crystal growth are enumerated
and an overview over the different possible simulation models is given. It is succeeded by
the investigation of the scaling of the average in-plane crystal size and the asymptotical
behaviour based on the proof by Thijssen, Knops and Dammers [15]. The proof is extend
to a starting configuration consisting of right-angled triangles instead of squares. After
this, the layout of the algorithm is given and the restrictions needed for the simulation of a
case where the diffusion is limited to a crystal are discussed. Finally, the simulation results
are compared with the theoretical results and examples are given of other possibilities for
simulations that stem from the approach taken in the construction of the algorithm.



Chapter 1

Crystal Growth

1.1 Overview

There are different possibilities for creating thin crystal films: electrodeposition, growth
from liquid solutions or from melts and the most common, growth through condensation
from vapour. The process and its parameters influence the microstructual development
which determines the residual stresses present in a film.
One type of growth from vapour is the Volmer-Weber growth (see figure 1.1). In the early
stage of growth of a metal film on a substrate by the Volmer-Weber mechanism, a tensile
stress in the film is observed to arise, when islands of deposited material begin to coalesce.
The mechanism commonly proposed as the origin of this tensile stress is that the coalescing
islands deform in order to form a relatively low energy grain boundary, at the expense of
surface energy due to the surface area reduction. This mechanism proceeds until a stress
magnitude sufficient to prevent further area reduction is generated. This initial phase is
followed by competitive grain growth and an insertion of atoms from the film surface into the
grain boundaries. Therefore, the Volmer-Weber mechanism represents a complex process
of interaction between microstructure evolution and stress build-up.
In the following chapters the Van der Drift model is used to approximate the morphology
of Volmer-Weber growth, or more exactly, Type 1 thickening as shown in figure 1.1. There
are different models and a short overview of them is given.

1.2 Simulation Models

The first type of models in this overview is based on the Monte Carlo method and simulate
the dynamics of atoms or small particles. Since the crystals are composed out of numerous
small objects, which can be handled individually, many details of the simulation can be
controlled. However, as large amounts of data have to be handled, most simulations are
two dimensional or limited to a few atomic layers. Examples can be found in [12, 19] or
more recently [23].
Alternatively the crystals of the film can be modelled by a set of functions. There are two
different governing equations which can be used for this: The phase model [13, 14, 18, 24]
and the level set method [6,20]. Using these formulations, the solution is approximated by
the use of an appropriate discretization.

7
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Figure 1.1: Volmer-Weber Growth

To get a grid for stress simulations using the e.g. finite element method, an interpolation
of the grain boundaries is needed. Instead of using these approaches, which require post-
processing to fit the requirements for the algorithm given in this work, the Van der Drift
model [1] is used. Since it uses the grain boundaries as the main means to simulate the
growth, the generation of the grid is straightforward. The details of this model are discussed
in the next chapters.



Chapter 2

Scaling of the Average In-Plane
Crystal Size

In this chapter we look at the scaling of the average in-plane crystal size which is part of the
important structural characteristics of a crystal film, among crystal shapes, crystal sizes,
the distribution of crystal sizes and the distribution of the crystal orientations in a crystal
film. By in-plane size of a crystal we define the area the crystal occupies in an intersecting
plane which has the same orientation as the plane the material is deposited on, which we
call substrate. If the area of the crystals increases, in turn the number of crystals decreases
given the space limitation on the substrate. For this reason we can deduct how coarse the
surface of the crystal film is. In particular we look at the 2D Van der Drift model, for which
also a description of a numerical simulation follows in the next chapter.

2.1 Introduction

The 2D Van der Drift model is a model for competitive crystal growth at the surface of
growing films after a continuous film has formed. An overview of all phases is given in [4].
This competitive growth is often described as evolutionary selection, as only crystals with
the most favourable characteristics remain at the surface or - to put it in the terms of an
evolutionary process - survive. In such a model the reduction of the number of crystals
is a result of evolutionary selection. Therefore, it can be quantified how far the selection
has evolved and how uniformly, in the sense of the characteristics of its crystals, the film is
structured on the surface.

Definition 1 (Growth of the average in-plane crystal size). Let ξ(t) be the average in-plane
crystal size at t. We define the growth rate p by the following asymptotic relation for large
t:

ξ(t) ∼ tp ⇔ p ∼ ln(ξ(t))

ln t
. (2.1)

The fact that the scaling of the average in-plane crystal size is polynomial has first been
stated by Lifshitz and Slyozov [11] and found in the growth of silicon carbide films under
various conditions by Roy and Messier [22].
Numerous models for this type of growth have been proposed with differing growth rates.
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For example, the growth rate starting with a uniform distribution in the Huygens model is
1/3 [3] in contrast to the lower bound of the growth rate of 1/2 we proof for the 2D Van
der Drift model. In this example the difference can be explained by the fact that the 2D
Van der Drift model is a local model in contrast to the Huygens model, which is global.
The difference between a local and a global model lies in its growth rules which describes it.
The growth rules of a crystal in a local model is dependent on the crystals surrounding it,
whereas in contrast the growth rules in a global model are independent of the local situation
of a crystal.
We now take a closer look at the 2D Van der Drift model, for which we prove a lower bound
of the growth rate. The model was first introduced in [1]. It describes crystal film growth,
where the evolutionary selection happens out of the differences in height growth of the crys-
tals. Therefore, in the long term the crystals which remain involved in the growth process
on the surface are the ones which are orientated within a small derivation of the orientation
with maximum growth. Van der Drift analyses these maxima for a variety of cases. For
the case of infinite surface diffusion along the surface of the film for 2-dimensional crystals,
he gives a graphical growth model, which we in short refer to as 2D Van der Drift model.
This has been used model for example to explain crystal size and crystal film structure in
diamond films [5].
In the 2D Van der Drift model the starting point is a set of convex polygons, describing
the crystals of the film, of which either only a vertex or a whole side lies on the substrate.
Because of the assumed infinite surface diffusion, the amount of material deposited per area
on each of the side of the crystals is the same. This results in an equal growth speed in nor-
mal direction for all sides of all crystals of the film except those which describe boundaries
between crystals or a crystal and the substrate as these are immobile. If during growth
two crystals connect, a new boundary is formed, which is the result of the averaging of the
growth of these sides. We explain this rule in more detail in the next chapter, where we
also give an algorithm for the simulation of this model. As the sides grow, the area and
the height of the crystals increase. The latter is defined as the maximum distance of a
vertex of crystal to the substrate. Even though the height of the crystal can be defined by
differing vertices during growth, the most important vertex for survival in the long term is
the vertex which describes it at the start. If this vertex, which we also call the top vertex,
is not defining the height any longer, it has been covered by a side of another crystal with
greater height. The top also has the fastest height growth, therefore the other vertices get
overgrown in the end by either the crystal which covered the top or another. Hence there
is no chance of survival in the long term once the top vertex has been covered.
In the following sections we prove a lower bound for the growth of the average in-plane
crystal size using two different starting configurations of the crystal film. We use the proof
from Thijssen, Knops and Dammers [15] as a starting point for the proof for the first con-
figuration. They state that their proof suffices to show asymptotical equivalence, which it
does not. The reasons for this and other differences are given at the end of the following
section.



2.2. SQUARE CRYSTALS 11

Figure 2.1: Characterization of the Orientation of a Square Crystal

2.2 Square Crystals

In this section we look at films consisting of square crystals of equal size and differing
orientations. Because of the reasons already given, the most important quantity regarding
survival is the top vertex. Therefore, we define the orientation of the square crystals using
the top vertices of the crystals.

Definition 2 (Orientation of a square crystal). Given a square crystal in the starting
configuration. Then the orientation of the crystal is given by the angle between the diagonal
from the top vertex to the vertex on the substrate and the normal vector of the substrate.

From this definition follows that the possible values for θ are in the range of
(
−π

4 ,
π
4

)
.

To calculate the average in-plane crystal size directly, we need to know the geometry of
every crystal in the film. This geometric information is normally gathered by simulation,
because it is nearly impossible by theoretical means in all but the simplest cases. Therefore,
we look at the number of crystals, which survived until certain time, and divide the length
of the substrate by it. This amounts to the same values as the sum of all in-plane crystal
sizes equals the length of the substrate. For this reason we look at the number of crystals
and use the reciprocal relation to analyse the long term behaviour.

Definition 3. We define
N(θ, t)

as the number of square crystals with orientation θ which survived until time t. Here,
survival means that the top vertex of the crystal has not been covered by any other crystal.

The type of survival used in this definition has one shortcoming: The average in-plane
crystal size calculated from it is not always equal to measurements on the surface of the
film. The reason is that a side of a crystal can remain at the surface of the crystal film
even though the top of the crystal has been covered. This results in a measured average
in-plane crystal size which is lower than the value calculated using the number of surviving
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crystals. But this is only a momentary situation.
As N(θ, t) denotes the number of squares with angle θ to survive until time t, N(θ, 0) is
therefore the initial distribution of the number of square crystals in dependence of its angle.
Integration over all possible θ yields the number of surviving crystals at time t, which are
used to calculate the average in-plane crystal size.

Definition 4 (Survival Probability). Let N(θ, t) be the number of squares with angle θ to
survive until time t. Then the survival probability for a seed with angle θ is given by:

S(θ, t) =
N(θ, t)

N(θ, 0)
. (2.2)

Note that the survival probability also has a reciprocal connection to the growth rate as
it is only normalized by the number of crystals at time t = 0. This means that a backward
transformation only yields an additional constant with regard to the asymptotic behaviour.
The reason for the introduction of this quantity is that we can handle the influences altering
it, as we can give the exact circumstances when a crystal top is covered - or, in other terms
the crystal, is overlapped.

Definition 5 (Base Point). We define the Base Point of a vertex as the bottom vertex in
the starting configuration.

Lemma 1. Given an overlap of two square crystals which base points are a distance x
apart, with orientations θ ≥ 0 and θ′ ≥ 0, respectively. The distance of the base point to the
top vertex for both crystals is d. Furthermore, the right crystal overlaps the left (see figure
2.2). Under these conditions the following equation holds:

sin θ + sin θ′ + (cos θ′ − cos θ) tan
(π

4
− θ′

)
=
x

d
(2.3)

For the case of an overlap of the right crystal by the left we get:

sin θ + sin θ′ + (cos θ − cos θ′) tan
(π

4
− θ
)

=
x

d
(2.4)

Proof. We start with the proof for θ ≥ θ′. For this we compose x out of three parts which
are all part of different right-angled triangles.

x = x′ + x′′ + x′′′ (2.5)

For the first two parts x′ and x′′′ we use the sine-theorem:

x′

sin θ
=

y

sin
(
π
2 − θ

) ⇔ x′ =
y sin θ

sin
(
π
2 − θ

) =
y sin θ

cos θ
, (2.6)

x′′′

sin θ′
=

y′

sin
(
π
2 − θ′

) ⇔ x′′′ =
y′ sin θ′

sin
(
π
2 − θ′

) =
y′ sin θ′

cos θ′
. (2.7)
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Figure 2.2: Two Crystals Overlap

Figure 2.3: Magnification of the Overlap
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Using the sine-theorem again on the triangle, which in contrast to the other properties
stems from the intersection, we get:

x′′

sin
(
π
4 − θ′

) =
y′ − y

sin
(
π
2 −

[
π
4 − θ′

]) (2.8)

⇔ x′′ =
(y′ − y) sin

(
π
4 − θ

′)
cos
(
π
4 − θ′

) = (y − y′) tan
(π

4
− θ′

)
(2.9)

To eliminate the occurrences of y we use the following properties of a right-angled triangle:

y

d
= cos θ ⇔ y = d cos θ, (2.10)

y′

d
= cos θ′ ⇔ y′ = d cos θ′. (2.11)

Now we put everything together:

x =
y sin θ

cos θ
+
y′ sin θ′

cos θ′
+ (y − y′) tan

(π
4
− θ′

)
, (2.12)

⇔ x = d

(
cos θ sin θ

cos θ
+

cos θ′ sin θ′

cos θ′
+ (cos θ − cos θ′) tan

(π
4
− θ′

))
, (2.13)

⇔ x

d
= sin θ + sin θ′ + (cos θ − cos θ′) tan

(π
4
− θ′

)
. (2.14)

Looking at the case of θ ≤ θ′ we note changes only in the small triangle at the top of (figure
2.3). The angles change dependence from θ′ to θ and the height is y − y′ instead of y′ − y.
Therefore the equation transforms to:

x

d
= sin θ + sin θ′ + (cos θ′ − cos θ) tan

(π
4
− θ
)
. (2.15)

Corollary 1. Given an overlap of two square crystals whose bottom vertices are a distance
x apart. The orientations of the crystals are θ and θ′, respectively. Let the size of both
diagonals be d. If the crystal with orientation θ is overlapped, the following equation holds:

sin |θ|+ sin |θ′|+ (cos |θ| − cos |θ′|) tan
(π

4
− |θ′|

)
=
x

d
(2.16)

Proof. If θ ≥ 0 then θ ≥ θ′ ≥ 0 which is the first case of lemma 1.
If θ ≤ 0 the overlapping crystal must lie to the left. Therefore, it is the second case of
lemma 1 only swapping θ and θ′ and taking the absolute value.

Theorem 1. Let S(θ, t) be the survival probability of a crystal with orientation θ and
Pd(θ, t|θ′) the probability of a crystal with orientation θ to be overgrown at time t by a
crystal with orientation θ′. Then

ln(S(θ, t)) ≤ − 1

∆x

(
√

2vt+d0) sin |θ|∫
0

θ∗∫
θ

Pd(θ
′, t′|θ) dθ′ dx, (2.17)
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where t′(θ, θ′, x) is implicitly defined by

sin |θ|+ sin |θ′|+ (cos |θ| − cos |θ′|) tan
(π

4
− |θ′|

)
=

x√
2vt′ + d0

(2.18)

with θ∗ being the solution for θ′ in this equation for the case t′ = t, ∆x being the distance
between two adjacent squares, v the growth rate of a crystal edge in normal direction and
d0 the initial size of the diagonals of the crystals.

Proof. Suppose two squares which base points are x units apart (see figure 2.2), character-
ized by θ and θ′ respectively. The growth rate of each side is v. Therefore, the lengths of
the sides grow by 2vt, hence the diagonal grows by 2

√
2vt. The centre point of the crystals

does not move, therefore, the growth in direction of the surface plays no part in the height
growth the distance of the top vertex to the base point increases by

√
2vt.

We can express the survival probability for a time-step ∆t by:

S(θ, t) =
∏
x,t′

(1− Pd(x, t′|θ))∆t, (2.19)

where Pd(θ, t|θ′) is the probability of a crystal with orientation θ to be overgrown at time
t by a crystal with orientation θ′. To handle infinitesimal time-steps, we transform the
product to a sum and in the end to an integral:

S(θ, t) =
∏
x,t′

(1− Pd(x, t′|θ))∆t. (2.20)

We use the inequality ln (1 + x) ≤ x for the right hand side of the equation to the get the
inequality:

⇔ lnS(θ, t) =
∑
x,t′

ln((1− Pd(x, t′|θ))∆t), (2.21)

⇔ lnS(θ, t) ≤ −
∑
x

∑
t′

Pd(x, t
′|θ)∆t, (2.22)

⇔ lnS(θ, t) ≤ − 1

∆x

∑
x

∑
t′

Pd(x, t
′|θ)∆x∆t. (2.23)

Note that in (2.23) we have two Riemann sums and therefore get a double integral for
infinitesimal time-steps. Although the sum with respect to x seems to pose a problem at
the first glance because of the fraction in front of the sum, it does not pose one as the
distance of two crystals is constant and as a consequence the integral equals the sum.
We do not need to integrate over all possible values, only cases where Pd(x, t

′|θ) 6= 0. If
this is the case, (2.18), which comes from corollary 1, holds and we can derive better limits
for the integral:

lnS(θ, t) ≤ − 1

∆x

t∫
0

(
√

2vt+d0) sin |θ|∫
0

Pd(x, t
′|θ)dx dt′. (2.24)
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The use of the complementary event to the survival of a crystal has the advantage that
through x, t′ and θ one distinct situation of interaction of two crystals is characterized,
giving us the possibility to use (2.18) to transform the coordinates of our integrals.

lnS(θ, t) ≤ 1

∆x

(
√

2vt+d0) sin |θ|∫
0

θ∗∫
|θ|

Pd(x, θ
′|θ)dθ′ dx, (2.25)

where θ∗ is the solution of (2.18) for θ′ for the case t′ = t.

Corollary 2. Let S(θ, t) be the survival probability of a crystal with orientation θ ≈ 0.
Then

S(θ, t) ≤ e−
3(
√

2vt+d0)
2∆x

θ2

. (2.26)

Proof. To proof this we use theorem 1:

sin |θ|+ sin |θ′|+ (cos |θ| − cos |θ′|) tan
(π

4
− |θ′|

)
=

x√
2vt+ d0

(2.27)

As we look at orientations near zero we can approximate sin θ ≈ θ and cos θ ≈ 1 and
therefore both equation by:

|θ′| ≈ x√
2vt+ d0

− |θ| (2.28)

We now use this approximation in conjunction with the upper bound of the probability
Pd(θ

′, t|θ) ≤ 1 to get:

lnS(θ, t) ≤ 1

∆x

(
√

2vt+d0) sin |θ|∫
0

θ∗∫
|θ|

Pd(x, θ
′|θ)dθ′ dx (2.29)

⇒ lnS(θ, t) ≤ 1

∆x

(
√

2vt+d0)|θ|∫
0

x√
2vt+d0∫
|θ|

1 dθ′ dx (2.30)

⇒ lnS(θ, t) ≤ −
3
(√

2vt+ d0

)
2∆x

θ2 (2.31)

⇔ S(θ, t) ≤ e−
3(
√

2vt+d0)
2∆x

θ2

(2.32)

Corollary 3. Let ξ(t) be the average size of a mono-crystalline domain at time t � 0,
then:

ξ(t) ≥
√
v√

∆x
t

1
2 c̃(d0), (2.33)
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where v is the growth rate of the sides of the square crystals in normal direction, ∆x the
distance between two crystals and d0 the initial size of the diagonals. c̃(d0) is a constant
dependent on d0.

Proof. For the previous corollary 2 to hold we need the orientations of the crystals to be
near zero. We note that this is the case for t� 0 as the prevalent orientation for advanced
stages of growth is near zero. This follows from the fact that a square with orientation θ
can only be covered by another if the orientation of the other is smaller.
We therefore start with the previous corollary and integrate over all orientations to get the
survival probability for all squares at time t and then use the inverse, which is up to a factor
equal to the quantity we look for.

S(t) ≤

π
4∫

−π
4

e−
3(
√

2vt+d0)
2∆x

θ2

dθ (2.34)

≤ 2

∞∫
0

e−
3(
√

2vt+d0)
2∆x

θ2

dθ = 2

√
π

2

√
3(
√

2vt+d0)
2∆x

=

√√
2π√
6

√
∆x√
v
t−

1
2

1√
1 + d0√

2vt

(2.35)

≤
√

∆x√
v
t−

1
2 c(d0). (2.36)

c(d0) is an upper bound for the factor dependent on d0, which is possible as the fraction in
which it is involved tends to 1. Therefore:

ξ(t) ≥
√
v√

∆x
t

1
2 c̃(d0), (2.37)

where c̃(d0) is the inverse of c(d0) and the factor needed to transform S(t) to average
in-plane size.

Now we want to highlight the problems in the paper [15].

• The deletion probability Pd(x, t
′|θ) is dependent on θ, which the paper does not

recognize or at least not emphasizes. This is problematic in so far that it is needed
for the integral transformation to work.

• In the paper only one of the cases of overlap is looked at, namely a crystal getting
overgrown from the right, and it does not state how it is connected to the other case.

• When
S(θ, t) =

∏
x,t′

(1− Pd(x, t′|θ))∆t (2.38)

in the corresponding form is handled it is transformed to:

lnS(θ, t) = − 1

∆x

∑
x

∑
t′

Pd(x, t
′|θ)∆x∆t. (2.39)

This would imply ln (1− x) = −x which only has some validity in the case of x ≈ 0.
This is used without a word for its reason.
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• They state:

Pd(x, t
′|θ) =

∣∣∣∣dθ′(x, t′, θ)dt

∣∣∣∣ P̃ (θ′, t′|θ), (2.40)

where P̃ (θ′, t′|θ) is the probability of a square at distance x and orientation θ′ in
presence of a square with orientation θ to survive at time t′. This integral trans-
formation has one problem: It is a coordinate transformation which transforms the
deletion probability to the aforementioned survival probability. But these describe
complementary events and because of this that it is not possible using a coordinate
transformation as it does not change the value of the function.

• Next they use a mean-field type assumption:

P̃ (θ′, t′|θ) = P (θ′, t′). (2.41)

This assumes - as they put it - that one can neglect the correlation of the orientations
between the squares arising during growth. This assumption seems only being rectified
in the paper by its similarity to the assumption in mean field theory [17]. The other
problem with this equation is that P (θ′, t′) is the probability of a chosen square at
time 0 to survive until time t′. This in turn means that one assumes even more than
small correlation, which the paper mentions.

Because of these problems, we only followed the proof in the paper [15] up to the first
problematic equation, which is more or less theorem 1.
For easier understanding, we introduced the survival probability using the number of crys-
tals. In the paper, P (θ, t) is used, which is introduced as probability without an exact
definition. It can be looked at as the ratio of surviving crystals with orientation θ at time t
to the number of crystals present at time t = 0, which is a normalized form of the function
used in this proof.

2.3 Right-Angled Triangles

Looking at the previous section, we note that only the upper part of the crystals are playing
any part in the evolutionary process. Therefore, it would be of interest to have a look at a
case without the bottom part, which had no influence in the survival. For this we can use
right-angled triangles of which the bases lie on the substrate as a start. The question is if
the growth fulfils the same inequality.
We start with a lemma, which gives us a connection of the starting angles of a triangle to
its height growth rate (see figure 2.4).

Lemma 2. Let v be the growth of the side b in normal direction in one time-step. Then
the height of the triangle increases by

h′ =
sin(β)

sin(α+ β)
v∆t. (2.42)
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Figure 2.4: Growth of a Triangular Crystal
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Proof. The first thing we notice is that α = α1, β = β1 and γ = γ1, because the triangles
ABC and A′BC ′ are similar. To get to an expression for the increase in height we need
two properties of the small triangle at the top. The first is a relation using the area of the
triangle:

h′c′

2
=
b′v

2
⇔ h′ =

b′v

c′
. (2.43)

The second uses the law of sine:

c′

sin(180− α− β)
=

b′

sin(β)
⇔ b′ =

c′ sin(β)

sin(180− α− β)
. (2.44)

Putting these two properties together, we get to:

h′ =
c′ sin(β)v

c′sin(180− α− β)
=

sin(β)

sin(α+ β)
v. (2.45)

Corollary 4. Let v1 be the growth of the side b and v2 be the growth of the side a. Then
we get for the height increase h′ the following equation:

h′ =
sin(β)

sin(α+ β)
v1∆t +

sin(α)

sin(α+ β)
v2∆t (2.46)

Proof. Using Lemma 2 and symmetry we obtain the property.

Theorem 2. Let ξ(t) be the average in-plane crystal size at time t� 0, then:

ξ(t) ≥
√
vt√
∆x

t
1
2 c̃(ch), (2.47)

where ∆x is the minimum distance between two bottom vertices of the inlaid squares in the
film, vt the speed in normal direction at which the sides of the triangle grow, and ch is the
constant in the equation h0 = ch (sinα+ sinβ) for the initial height, where α and β are the
angles of the sides to the base of the triangle.

Proof. The idea is to embed square crystals in the triangular crystals. Then we can use the
proof of corollary 3 to prove the inequality.
Looking at figure 2.5, we get the following relation between the height h of the triangle and
the diagonal d of the square:

d =
h

sin
(
π
4 + α

) . (2.48)

We now use the values of d and h for the particular case of this proof and then use corollary
3 in conjunction with corollary 4. The size d in our proof is different to the quantity used
in the proof of 3, where only the part above the substrate is measured instead of the whole
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Figure 2.5: Embedding a Square in a Triangle Crystal

diagonal. As the square grows, the diagonal grows at twice the speed of the length from
the bottom to the top vertex. Taking this into account, we get:

2
√

2vgt+ d0 =
h0 + (sinβ + sinα) vtt

1√
2

(sinα+ sinβ)
, (2.49)

⇔ 2
√

2vgt+ d0 =
√

2vtt+

√
2h0

(sinα+ sinβ)
, (2.50)

⇔ 2
√

2vgt+ d0 =
√

2vtt+
√

2ch. (2.51)

We see that we can view the configuration as a film consisting of square crystals. The
survival of the two geometrical objects is equal because the top of a triangle is only covered
if the top of its square is covered. For this reason, the survival probability for both is the
same. We still have to cope with the varying distances of the bottom vertices of the inlaid
squares, because we considered square crystals spaced equidistantly in the previous section.
But the only influence the spacing had on the derivation was as a factor for the integral.
Therefore, to circumvent this problem we can use the minimum distance of two squares as
this gives us an upper bound for 1

∆x
.

To draw a the connection to the previous section, we have varying starting heights for
the different orientations of the triangles in this setting. But the initial height only has
short term influence in the evolution as the differences in height growth will dominate in
the long term. Therefore it still holds true in the long term for other starting configurations
with the exclusion of extreme deviations.



Chapter 3

An Algorithm for the Van der
Drift Model

With the algorithm presented in this chapter we take a new approach to the Van der Drift
model. A rigorous comparison is difficult because most papers focus on the results of their
algorithms rather than on the details of the algorithm.
Since its introduction in [1], the Van der Drift model has been implemented in a variety of
ways based on the construction given by Van der Drift. Initially it was used for the case of
square crystals growing on a line representing the substrate in the way shown in figure 3.1.

In addition to the result of an example crystal configuration, the two construction rules used
for the configuration are given (see figure 3.2). To apply these rules, information about the
neighbours of all crystals are needed. A neighbour of a crystal is a crystal which has or will
have an inter-crystalline boundary with it. Such an approach was taken by A. J. Dammers
and S. Radelaar in [26], where they used the so-called ”winged edge” data structure to hold
this information. An extension of this algorithm to a more general setting is complicated,
because neighbour information is needed for the interaction of two crystals. This is due to
the two construction rules, which use the boundaries of the two interacting crystals to con-
struct the inter-crystalline boundary. Taking for instance two-dimensional crystals placed
freely in the space, which can be viewed as a cross-section of a three dimensional crystal
film parallel to the substrate, a side of a crystal can have more than one neighbour. This
increasing topological complexity is the reason why this problem is presently unsolved for
the three-dimensional case of the model.
To circumvent the difficulties resulting from the topological complexity, a level set formula-
tion of the problem as given by G. Russo and P. Smeraka [6] can be used. This formulation
uses smooth functions on a finite grid to create an approximation of the model. This grid
based approach has the advantage that the move from a two dimensional model to a three-
dimensional model is straightforward, because the dimension of the grid, the functions
and the interface conditions need to be extended; the data structure, however, remains un-
changed. On the other hand, this approach has the drawback that we get a smooth solution
and smooth corners in contrast to a solution found by a constructive method which includes
sharp edges. We can neglect these artefacts of the approximation, if we use a fine grid, but
this automatically leads to a larger memory footprint. Using the working memory in an

22
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Figure 3.1: Example for the Van der Drift Growth Model



3.1. POSSIBLE EVENTS ON A CRYSTAL SIDE 24

(a) First Rule (b) Second Rule

Figure 3.2: The Two Growth Rules Used by Van der Drift

efficient way by writing the inactive parts of the grid to the disk and only looking at the
active narrow band of the crystals, they were constrained to a grid of 350x350x1200 and
200 level-set functions on a machine with 1 GB of memory [20]. This approach gives good
results and the precision and the number of crystals can be increased as more memory is
now available and being a grid based approach, the algorithm can be parallelized. However,
such an increase rapidly reaches the limits of available computing power.

3.1 Possible Events on a Crystal Side

In this section we look at the different events which can happen on a crystal side. On
this information we build our algorithm, which, in contrast to a grid-based approach, does
not suffer from the problem of a large memory footprint and is more flexible than a ver-
tex tracking approaches, e.g. [21]. Rather than a vertex tracking approach, we use a side
tracking approach and the vertices are properties of the sides and are only used for drawing
and exporting purposes. The construction rules used by Van der Drift require the use of
neighbour information prior to a formation of a new boundary. As mentioned at the begin-
ning of this chapter, this topological information is difficult to gather, therefore, we seek to
avoid its use. For this reason we reformulate the rules to a single simpler one. Looking at
figure 3.2 we see that the inter-crystalline boundary, which is visualized by the dashed lines,
consists of the trace of the intersection points of the two crystals. Since the sides of the
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(a) Start (b) Event

(c) Result

Figure 3.3: Vertex Hits Side

crystals grow in a linear fashion, the trace is also linear. Therefore, it suffices to calculate
two of the intersection points to construct the boundary.
Another characteristic of our algorithm is that we use an event based approach. We react
on an event happening on a side of a crystal and use these to build the inter-crystalline
boundaries. Using such an event based approach leads to less topological information in
our data structures and is close to a manual construction. A downside of this approach is
the need for a time resolution which is fine enough to capture all events early enough to
handle them in the right way. Additionally, the numerical nature can lead to instabilities
result of certain singular events.
To handle the growth process using an event based approach we need to identify the dif-
ferent possible events. In this section we give a set of topological configurations sufficient
for this purpose, including cases which can only arise in a more general case than the one
shown in figure 3.1. For instance a two dimensional setting, which describes the growth of
the bases of three dimensional crystals on the substrate.

3.1.1 Vertex hits Side

This event, shown in figure 3.3, gives rise to two actions on the sides of these crystals:

1. Side Splitting in the case of the grey crystal. This event results in the side being split
with two inter-crystalline boundaries in the middle.
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(a) Start (b) Event & Result

Figure 3.4: Fusion of Three Sides

2. Softened Corner in the case of the green crystal. This event results in the creation of
two inter-crystalline boundaries beginning at the corner involved in the event. The
term ’softened’ stems from the fact that the angles created by the new inter-crystalline
boundaries are greater than the angle of the edge before the event.

3.1.2 Fusion

In figure 3.4 a case of fusion is depicted, where three crystals are fused together. There are
different possibilities with similar pictures involving more crystals. The event in the view of
each of the three sides is called Deletion, because they vanish and only the inter-crystalline
boundaries remain.

3.1.3 First Type of Overgrowth

In the figure 3.5 we see the green crystal overgrowing the grey crystal. The actions for this
event are:

1. The action Overgrown Edge happens on the side of the grey crystal. This action
results in a deleted side and a new inter-crystalline boundary of the neighbouring side
with the green crystal.

2. In the case of the green crystal, the action Overgrowing an Edge is shown. In view of
this crystal only a new inter-crystalline boundary is created.

3.1.4 Second Type of Overgrowth

Figure 3.6 shows the second type of overgrowth, where in contrast to the first type only
three crystals are involved. The events are:

1. Deletion for the side of the grey crystal. Resulting in a deleted side.
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(a) Start (b) Event

(c) Result

Figure 3.5: First Type of Overgrowth
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(a) Start (b) Event

(c) Result

Figure 3.6: Second Type of Overgrowth
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Figure 3.7: Model Problem

2. Side hits Side for the side of the green crystal. The action results in a new inter-
crystalline boundary between the green and the black crystal.

3. Side hits Side for the black crystal. This action results in a new inter-crystalline
boundary.

Additional topological configurations can arise in a simulation run. There are possibilities
of more than three interacting crystals, but they are composed of the side events described.

The event based approach is versatile enough to handle other cases than the one of infinite
surface diffusion, for example the case of infinite diffusion restricted to a crystal. For this
case Van der Drift calculated the direction with maximum growth based on the difference in
the normal speed. The dependence of the growth speed to the orientation poses no problem
in the calculation of the maximum growth. However, given two sides with different growth
speeds, the following situation can arise (see figure 3.7). Even though the side a grows
faster than side b in figure 3.7 the side a shrinks and the side b gains size. There are two
possible ways of avoiding this kind of problem:

1. Restricting the orientations of the crystals

2. Using the counter-intuitive result given by the trace of the intersections of the sides
as depicted in figure 3.7. The dashed line in the figure shows the inter-crystalline
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Figure 3.8: Small Side After Side Splitting

boundary that would be created. We see that because of the orientation of the
boundary, the slower growing crystal will overgrow the faster one.

This is a weakness of the formulation and not of the model. A possible solution is to
alter the growth speed by incorporating diffusion along the connected crystals. This is not
straightforward and stands in conflict with the assumption of constant normal velocity, since
the speed of normal growth would differ dependent on the sides surrounding it, describing
a model which is different to the Van der Drift model considered.

3.2 Identification of Events

Knowing the different events which can arise during a simulation run is not enough for an
implementation of the algorithm. The events have to be identified to be handled in the way
described in the previous section.

3.2.1 Side Splitting or Softened Edge

These actions are easily identified by the presence of two new intersections for a side or an
edge respectively.

3.2.2 Deletion

A naive approach is to iterate over all sides and delete the ones smaller than a certain
threshold. There are two reasons this straightforward method cannot work. First, the
situation in figure 3.8 can arise which shows the creation of a small side by a hit of a
another crystal. This small side is not certain to vanish.
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Figure 3.9: Missed Deletion

Second, the time-steps where the length is smaller than the minimum (see figure 3.9) could
be missed.
There are two possibilities to deal with this: One is to calculate the time the side will vanish
using the length difference of two time-steps. This works, because all interacting entities
are of linear nature. The disadvantage is that the prediction has to be changed every-time
another crystal interacts with the side.
A more elegant way is to use the outcome of a missed deletion in figure 3.9 as a way of
identification. If a deletion is missed, the normal vector calculated using the beginning
and the end of the line points in the opposite direction to the normal of the line, which it
otherwise does not.

3.2.3 Side hits Side

This action is triggered by a new boundary between two previously unconnected crystals.

3.2.4 Overgrown Edge or Overgrowing an Edge

At the beginning, two crystals are connected with an inter-crystalline boundary (see figure
3.5). One of the adjacent sides of this boundary is deleted and the edge lies on the inter-
crystalline boundary. The first possible solution is to intersect each line of both crystals at
every time-step and detect new intersection points. As soon as the edge lies on the inter-
crystalline boundary, we get a new intersecting point. But because of the nature of the
problem, we will always miss the exact time-step, therefore we need to include a tolerance
for accepting the points (see figure 3.10). The problem with this approach is to find the
right value for this tolerance. If set to low, we miss crystal overgrowth and if we set it to
high, we get false results.
Looking at figure 3.10, we notice that the boundary line of the crystal in light grey is longer
than the boundary line of the dark grey crystal. This can only be a result of overgrowth and
is not a possible result of the simulation, since inter-crystalline boundaries are not visible
on the surface. Therefore, this second strategy is the better way of identification.
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Figure 3.10: Overgrowth Problem

3.3 Technical Implementation

This section gives an overview over the technical implementation of the algorithm used for
the simulations. First, we look at the program flow, which reveals the implicit assumption
that only one event happens at each time-step. If this was not the case, the order of the
tests for the events could influences the simulation outcome. By the right choice of time-
step size this should pose no problem.
The structure of the program as we see in figure 3.11 is almost serial. The conditional
flow breaks the otherwise serial nature and has furthermore the most potential for errors,
because it relies on the numerical results of the test for intersections. This is the Achilles
heel of this algorithm, but this is a numerical problem common in graphical algorithms and
difficult to solve [25].

The structural overview of the implementation shows the connections of the different
classes used in the program. The main class is Crystal Configuration, used for admin-
istration of the crystal growth on the substrate and, therefore, is the root of figure 3.12.
Other than this class, three different graphical classes exist in the program.
At every time-step, the bounding box of the crystals is cached and used in the main class
to improve the speed of the intersection tests. The performance gain is significant, be-
cause for the intersection of two bounding boxes only comparisons are needed, whereas
the intersection of the crystals themselves need multiplications and divisions in addition to
comparisons to be performed.
The instance of the polygon class is used in the main class for the borders which limit the
simulation vertically and horizontally. These borders need to be intersected with all of the
crystals and therefore the bounding box class is part of this class for speed-up.
In contrast, the polygon in the crystal class are used to get the intersection points of
two crystals. The polygon represents the crystal growing in its starting shape without the
interaction with other crystals. This simplifies and speeds up the process, as otherwise all
instances of a side created through splitting by other crystals have to be handled separately.
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Figure 3.11: Program Flow
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Figure 3.12: Program Structure



Chapter 4

An Extension of the Van der Drift
Model

In this chapter, we look at the restriction or the partial restriction of the surface diffusion to
a crystal. In addition to the derivation of the orientation of maximal speed, the orientations
admittable for simulations are investigated.

4.1 Surface Diffusion Restricted to a Crystal

In this case we assume that infinite surface diffusion is restricted to the crystals instead
of the whole film. Because the material is not distributed evenly along the whole film,
the normal growth speed of two crystals differs depending on the the amount of material
collected. The amount varies because of the surface and the orientation of its sides. This
has been investigated by Van der Drift [1] in the case of needles. However, needles are
with respect to their growth one-dimensional. For two-dimensional simulations, an angle
dependent growth rate for a right-angled triangle is derived, for which the maximum growth
speed and the admittable angles for the material are calculated.
In the following we assume that the amount of deposited material is one unit for a line of
length one, which is perpendicular to the direction of the incoming material.

Lemma 3. If the angle between the needle and the substrate is θ and the orientation of the
incoming material is θ′, then the amount of material collected by a needle is

sin
∣∣θ′ − θ∣∣ (4.1)

per unit length.

Proof. Looking at the figure 4.1, we see thatm, the amount of material coming in orthogonal
direction, is sin |θ′ − θ| times the amount of material which in our case is 1.

Although the case is simple, it is related to the case of right-angled triangles, which can
be viewed as two needles in terms of material gathering.

35



4.1. SURFACE DIFFUSION RESTRICTED TO A CRYSTAL 36

Figure 4.1: Needle

l

l

l

Figure 4.2: Surface of a Right-Angled Triangle
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Theorem 3 (Growth Speed of a Right-Angled Triangular Crystal). Given the angle of the
incoming material θ, the angle α of the crystal and assuming the lateral size of the crystal
to be l, we get for the normal velocity v of the edges with the proportionality factor v0:

v =
max (sin (θ − α) , 0) cosα+ max (cos (θ − α) , 0) sinα

sinα+ cosα
v0, (4.2)

or in different form:

θ >
π

2
+ α : v =

sin (θ − α) cosα

sinα+ cosα
v0,

α ≤θ ≤ π

2
+ α : v =

sin θ

sinα+ cosα
v0,

θ < α : v =
cos (θ − α) sinα

sinα+ cosα
v0.

The vertical growth rate h of the crystals is

h = v (sinα+ cosα) .

Proof. Looking at figure 4.2, we see that the amount of material collected by the two edges
is l cosα max (sin (θ − α) , 0) and l sinα max (cos (θ − α) , 0). This material is distributed
evenly along the surface of the crystal, which is l sinα + l cosα. Putting this together we
get the first part of the theorem.
For the second part, we look at the cases where one of the maxima is less than zero.
The third is an application of the corollary 4.

Corollary 5 (Maximum Vertical Growth Rate of a Right-Angled Triangular Crystal).
Given the angle θ of the incoming material, the maximum vertical growth rate vmax and the
angle α of maximum growth are:

θ >
π

2
: α =

θ

2
− π

4
,

vmax = sin

(
θ

2
+
π

4

)
cos

(
θ

2
− π

4

)
v0,

θ =
π

2
: vmax = sin θ v0, For every α.

θ <
π

2
: α =

θ

2
+
π

4,

vmax = cos

(
θ

2
− π

4

)
sin

(
θ

2
+
π

4

)
v0,

where v0 is the proportionality factor of the growth speed.

Proof. If we remove the the maximum function from (4.2) in theorem 3, we note that the
growth rate equals:

sin θ

sinα+ cosα
v0. (4.3)
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Figure 4.3: Model Problem

In this case the vertical growth rate is sin θ v0 independent of the angle α of the crystal. The
removal of the maximum function made the value smaller, hence if the contribution of a
side of the crystal is negative, the contribution of the other is greater than sin θ, which is the
sum of both. So we separately look at the collection of the two sides, which in conjunction
with differentiation gives us the result.

The calculation of the growth speed of a given triangle allows a simulation. However, we
have to ascertain that a case similar to the one shown in figure 4.3 cannot arise, where even
though the growth speed of the side a is greater than that of side b, the inter-crystalline
boundary given by the model makes the side a smaller with every time step. This can
happen, because in contrast to the previous case, a left-oriented crystal can overgrow a
right-oriented crystal and vice versa. This can be avoided by ensuring that the vertical
growth of a side of a crystal is less than the vertical growth of the top of crystal, regardless
of its orientation.

Lemma 4 (Admittable Material Deposition Angles). A starting configuration consisting
of right-angled triangular shaped crystals and assuming infinite surface diffusion restricted
to each crystal does not suffer from the model problem shown in figure 4.3 if the angle θ of
incident material is in the interval

[
1
4π,

3
4π
]
.

Proof. θ ≥ π
2 : For θ > π

2 , the ray of material comes from the left hand side, therefore the
side which collects the most material is on the left side of the triangle. Hence the maximum
growth m of side fulfils the following equation:

m (α) =
sin (θ − α) cosα

sinα+ cosα
v0. (4.4)

The minimal vertical growth for a crystal in the configuration is sin θ v0. The problematic
case can only arise if the vertical growth of the side is greater than the minimal verti-



4.2. SURFACE DIFFUSION PARTIALLY RESTRICTED TO CRYSTALS 39

cal growth for a whole crystal. Extracting the vertical component of m, which equals a
multiplication by cosα, we can compare the two growth speeds:

g (α, θ) =
sin (θ − α) cos2 α

sinα+ cosα
− sin θ. (4.5)

The function g is smaller than zero if θ is π
2 regardless of the choice of α. As the function

is smooth, its value is zero before it becomes positive and simulation is not possible. For
this reason we equate the points where the function is zero.

g (α, θ) = 0 (4.6)

⇔ sin θ =
sin (θ − α) cos2 α

sinα+ cosα
(4.7)

⇔ sin θ =
(sin θ cosα− cos θ sinα) cos2 α

sinα+ cosα
(4.8)

⇔ 1 =
cos3 α− sinα cos2 α cos θ

sin θ

sinα+ cosα
(4.9)

⇔ − cot θ =
sinα+ cosα− cos3 α

cos2 α sinα
(4.10)

⇔ tan θ = − cos2 α sinα

sinα+ cosα− cos3 α
(4.11)

⇔ θ = tan−1

(
− cos2 α

sinα cosα+ 1

)
(4.12)

Looking at first derivative of this equation

g′ (α, θ) =
cosα (cosα+ 2 sinα)

− cos4 α+ cos2 α+ 2 sinα cosα+ 1
, (4.13)

we see that it is positive because sinα and cosα are positive as α ≤ π
2 . Therefore, we get

the minimal θ for α = 0 and θ ≤ 3
4π.

The second case follows because of symmetry.

For the growth rule to hold, we have assumed a constant ratio of the sides of a crystal,
which are allowed to vary during a simulation. However, these restrictions are imposed by
the use of the Van der Drift model which uses constant velocities.
The use of right-angled triangles for this case is reasonable, because if squares would be
used the question of the influence of the downward orientated sides would have to be dealt
with.

4.2 Surface Diffusion Partially Restricted to Crystals

Lemma 5 (Admittable Material Deposition Angles). A starting configuration consisting of
right-angled triangular shaped crystals assuming infinite surface diffusion partially restricted
to each crystal does not suffer from the model problem shown in figure 4.3 if the angle θ of
incident material is in the interval

[
1
4π,

3
4π
]
.
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Proof. Let m1 be the material diffused only on the crystal and m2 the material distributed
along the film. The angle α is the angle of the triangle threatening the overgrowth and α1

the angle of the other triangle. For making sure that the situation depicted in figure 4.3 can
not happen we use a proof similar to the one of lemma 4 and compare the vertical growth
of the two triangles.

m1 (cosα− sinα1 − cosα1) +m2

(
sin (θ − α) cos2 α

sinα+ cosα
− sin θ

)
≥ 0. (4.14)

As we see the two influences of the growth speed can be readily separated. Therefore, we
only have to deal with the new one. However, this turns out to be simple, as cosα ≤
sinα1 + cosα1 regardless of the angle α1:

sinα1 + cosα1 ≥ 1 (4.15)

⇒ sin2 α1 + cos2 α1︸ ︷︷ ︸
=1

+2 sinα1 cosα1 ≥ 1 (4.16)

Since all quantities are positive and therefore the square is a monotone function, the proof
is complete.



Chapter 5

Simulation

In this chapter the results of the simulations are presented, which are using an implemen-
tation of the algorithm discussed in the previous chapter. First we look at the classical
example of the Van der Drift model using an initial configuration consisting of squares of
equal size and the equivalence to a case consisting of right-angled triangles in regard to
the average in-plane crystal size. Both results are then compared to the theoretical result
regarding the growth rate of such a setting.

5.1 Infinite Surface Diffusion on the Film

Since we assume infinite surface diffusion, any differences of the amount of material a
crystal collects are evened out. For the classical example of the Van der Drift model, we
start with squares of equal size, but different orientations. Two distinct distributions for
the orientations of the square crystals are used: an uniform distribution and a normal
distribution, cut off to stay in the interval of the possible cases (zero mean and variance
equal half the size of the interval). The orientations of the crystals lie in the interval
[−π/8, π/8] and the sample size for the first simulations is 40 crystals.
The number is limited by problems of the graphical algorithm arising form the vertices on
the side of the squares. These vertices can come very near to hitting each other, making
it difficult for the algorithm to determine the side which is spilt. These problems become
significant as the size of the crystals gets smaller, and with it the difficulty of choosing
the right course of action increases. In figures 5.3 and 5.4 we see that the decrease of the
number of crystals in the simulation is in agreement with our theoretical findings.
The equivalence regarding the growth rate, which we proved for the configuration consisting
of right-angled triangles, exhibits itself in figures 5.5 and 5.6. The growth rate is as before
proportional to

√
t. However, in comparison to the previous setting, the vertices on the sides

now lie on the substrate and are handled - as termed in the description of the algorithm - as
second type of overgrowth. For this reason an increase of the number of crystals to 100 is
possible. The number is limited by the proper identification of the first type of overgrowth.
A threshold of the length difference of constant sides is used, but depending on the sides
involved a higher or a lower value is appropriate. Currently, a constant value is set. This
can lead to mishandling of overgrowth, especially if the simulation involves interaction of
crystals of largely varying size.

41
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Figure 5.1: Simulation Results Starting with Squares

Figure 5.2: Simulation Results Starting with Right-Angled Triangles
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Figure 5.3: Number of Square Crystals over Time
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Figure 5.4: Number of Square Crystals over Time (Logarithmic Scales)
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Figure 5.5: Number of Right-Angled Triangular Crystals over Time
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Figure 5.6: Number of Right-Angled Triangular Crystals over Time (Logarithmic Scales)



5.1. INFINITE SURFACE DIFFUSION ON THE FILM 45

Figure 5.7: Remaining Angles Starting with a Uniform Distribution

In figure 5.7 the distribution of the angles of the triangles are shown, which survived until
the current time-step. The angles are separated into 15 groups of equal size. The rapid
decline of the unfavourable orientations is clearly visible with the rest resembling a log-
normal distribution.
Comparing the two results (see figure 5.1, 5.2), the only visible difference is the kink in the
film near the substrate if we start with squares. Up to this level the bottom sides of the
squares play a part in the simulations which shows how little the influence of these sides
on the simulations is.
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Figure 5.8: Number of Crystals over Time (θ = 0.7π)

5.2 Infinite Surface Diffusion Restricted to a Crystal

If the assumed infinite surface diffusion is restricted to a crystal, the material each crystal
collects becomes an important part of the survival. This amount is dependent on the angle
of incidence and the surface of the crystal. This case has been investigated in terms of the
orientation of maximum speed for the case of a needle by Van der Drift [1].
To emphasize the orientation of the surviving crystals, the angle is chosen near the admit-
table maximum. If for the case of material coming from the left, θ is chosen smaller than
for example θ = 0.6π, the maximum speed is reached by an angle of α = 0.05π and the
vertical growth speed is sin θ for all α ≥ 0.1π. Therefore, only a small percentage of the
angles are influenced and only in the extremal regions for α, where computation becomes
more difficult. For these reasons we look only at three cases: θ = 0.7π, θ = 0.3π and
θ = 0.5π. The distribution of the angles chosen for the simulation is uniform and out of
the interval α ∈ [0.1π, 0.4π].
In figures 5.8 and 5.9, we see that the growth rate for the crystal film does not clearly follow
the power law proven for the case of infinite surfaces diffusion. It seems that a fit of the
form x0.6 is better, although looking at the logarithmic plot figure 5.13, it is dubious if a
power law is followed at all.
The picture for the case of the material coming from the right (figure 5.10, 5.11) is similar
to the one coming from the left. As the same sample of the angle distribution is used, we
can see that the outcome of the previous simulation was not due to an overweight in the
sample.
Next, three different choices of normal growth speed are compared (see figures 5.12, 5.13).
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Figure 5.9: Number of Crystals over Time (θ = 0.7π, Logarithmic Scales)
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Figure 5.10: Number of Crystals over Time (θ = 0.3π)
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Figure 5.11: Number of Crystals over Time (θ = 0.3π, Logarithmic Scales)
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Figure 5.12: Number of Crystals over Time (θ = 0.5π)
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Figure 5.13: Number of Crystals over Time (θ = 0.5π, Logarithmic Scales)

The first case, which uses the law used throughout this section, again shows the familiar
picture of the decrease of crystals not clearly following a power law. However, the equal
mixture of the two choices for the normal growth rate exhibits interesting characteristics.
Although deviating a little from the power law, the influence of the infinite diffusion along
the whole film seems to be enough for it to hold.
With this transition an increasing sharpness of the distribution of the surviving angles is
visible (see figure 5.14, 5.15 and 5.16).
The results of the simulations (figures 5.17 and 5.18) show the preference regarding the
orientation, which is expected from these cases.
The result of another case of mixture of the two types of diffusion is shown in figures 5.19,
5.20 and 5.21, where the material comes from the right. We see that the diffusion along the
substrate quickly dominates the behaviour of the evolution, even though we are using the
same angle of incidence (θ = 0.3π) as before, which was chosen for the variety of growth
speeds it creates. Figure 5.22 shows the decrease of the numbers of crystals and exhibits a
familiar characteristic: Assuming only half the diffusion is limited to the crystal suffices for
the asymptotic rate to be followed. With this comes a dominance of the angles near π/4,
which is clearly visible in figure 5.23. As the results for θ = 0.7π, θ = 0.3π and θ = 0.5π
are symmetrical, the corresponding figures are left out.
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Figure 5.14: Material from the Middle, Material Diffusion Restricted to the Crystals

Figure 5.15: Material from the Middle, 75% Material Diffusion Restricted to the Crystals
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Figure 5.16: Material from the Middle, 50% Material Diffusion Restricted to the Crystals

Figure 5.17: Material from the Left



5.2. INFINITE SURFACE DIFFUSION RESTRICTED TO A CRYSTAL 52

Figure 5.18: Material from the Right

Figure 5.19: Material from the Right, Material Diffusion Restricted to the Crystals
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Figure 5.20: Material from the Right, 75% Material Diffusion Restricted to the Crystals

Figure 5.21: Material from the Right, 50% Material Diffusion Restricted to the Crystals
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Figure 5.22: Number of Crystals over Time, Material Coming from The Right

Figure 5.23: Simulation Result for Material from the right and 50% Material Diffusion
restricted to the Crystals
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Figure 5.24: Crystals Growing in a Valve

5.3 General Two-dimensional Cases

In this section, two examples for other applications of the algorithm are given. The first
figure 5.24 shows a valve, in which crystals grow from all sides. The right angles of the
crystal planes are chosen out of convenience with regard to the generation. From the view-
point of the algorithm, the right angles are not optimal.
The second figure 5.25 show the outcome of growth of triangular two dimensional crystals
which lie freely in space. These can, for example, represent a cut plane of a crystal con-
figuration consisting of pyramid shaped crystals. Using a number of these cuts, one could
generate a three dimensional grid of this configuration. As the program allows all convex
polygons, different cases could be also be looked at. However, this case is beyond the scope
of this work.
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Figure 5.25: A General Two-dimensional Case



Chapter 6

Conclusion and Outlook

The proof for the average in-plane crystal size and its caveats were investigated, and com-
pared them with the results of the simulations. The flexibility of the algorithm was shown
by two examples. In addition to the classic example, another setting by restricting the
diffusion to the separate crystals and the influence of the diffusion along the surface when
mixed with it were looked at. The simulation of the classic case has been verified by a
comparison with the theoretical result of asymptotical behaviour of the average in-plane
crystal size. The problems in the proof [15] were highlighted and a possible solution was
suggested.
The program allows to export the results of the simulation for postprocessing in mesh gen-
erators. On the resulting mesh it is possible to set the parameters of the grains and their
boundaries and use it as an input for stress simulations calculating the distribution of the
stress and its change with regard to e.g. temperature or force.
There are numerous possibilities of extending the algorithm introduced in this work. The
most interesting extension is a three dimensional setting, which is certainly possible in a
limited way using the two dimensional simulation program to calculate cross sections. The
problem of combining these in a way to get a good representation of the three dimensional
case remains, but it should be solvable for simple situations.
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