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Abstract

The transition of the landscape from frozen to non-frozen conditions has far-reaching con-
sequences on numerous geo- and biophysical processes such as plant growth and the hy-
drologic cycle. Microwave remote sensing has been shown to be an apt tool for monitoring
the landscape freeze/thaw state. As the measured signal σ0 is sensitive to different factors
at different radar frequencies, the combination of distinct data sources can potentially lead
to improved results.

In light of this observation, a novel sensor fusion algorithm is proposed – it estimates
the F/T state based on scatterometer data: SeaWinds on QuikScat in Ku band and ASCAT
on MetOp in C band. In addition, a widely used backscatter model for snow packs is
extended, whose purpose is twofold: firstly, it can give insight into the dependence of σ0

on various factors and secondly, it facilitates the parameterization of the aforementioned
sensor fusion model.

The sensor fusion approach is based on a probabilistic model, an adaptation of the well-
known Hidden Markov model (HMM). The F/T state is assumed to be a Markov chain,
whose value is not directly observable. At each epoch, however, its current state influences
the measurements: σ0 at both frequency bands. The simple structure assures that inference
can be done efficiently, e.g. the calculation of the probability of the state on a given day.
The algorithm does not use training data; the parameters are estimated for each time series
in an unsupervised fashion. This is achieved by maximizing the marginal likelihood in the
framework of the Expectation Maximization algorithm.

The algorithm is analyzed and tested in a study area in Russia and northern China, which
encompasses the region of 120− 130 E and 50− 75 N. The time series of the probability
of the state are validated with in-situ snow and temperature data as well as global climate
models. In general, the accuracy exceeds 90%, but the algorithm can fail in agriculturally
used land (fields, pastures) and bare rock outcrops in mountainous regions. On a more
qualitative level, the study affirms the importance of using two distinct frequencies, as
particularly dry snow, vegetation and the freezing of the soil water manifest themselves
differently at Ku and C band.
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Zusammenfassung

Der Frier/Tau Zustand (Freeze/Thaw state) der Landschaft kann mit Methoden der Mikro-
wellenfernerkundung beobachtet und analysiert werden. Da die Bedeutung diverser Ein-
flussfaktoren auf das gemessene Signal σ0 eine Funktion der Radarfrequenz ist, erscheint
die Kombination unterschiedlicher Datenquellen eine vielversprechende Möglichkeit zur
Verbesserung der Ergebnisse.

Angesichts dieser Erkenntnis wird ein neuartiger Sensor-Fusionsalgorithmus vorgestellt,
welcher den Frier/Tau (F/T) Zustand anhand von Scatterometerdaten schätzt: QuikScat
im Ku-Band und ASCAT im C-Band. Darüber hinaus wird ein weit verbreitetes Backscatter
Modell adaptiert. Dieses vereinfacht einerseits der Parametrisierung des Sensor-Fusions-
modells und ermöglicht andrerseits ein besseres Verständnis der Abhängigkeit von σ0 von
verschiedenen Einflussfaktoren.

Der Sensor-Fusionsalgorithmus basiert auf einem wahrscheinlichkeitstheoretischen Mo-
dell, einer Adaption des Hidden Markov Models (HMM). Der F/T Zustand, dessen Wert
nicht direkt beobachtbar ist, wird durch eine Markov-Kette beschrieben. Allerdings bein-
flusst der F/T Zustand die gemessenen Signale: σ0 in beiden Frequenzen. Die einfache
Struktur des Modells garantiert, dass beispielsweise die Wahrscheinlichkeit des Zustandes
an einem einzelnen Tag effizient berechnet werden kann. Der Algorithmus benötigt keine
Trainingsdaten; die Parameter werden für jede Zeitreihe geschätzt. Dies wird durch Max-
imierung der marginalen Likelihood auf Basis des Expectation Maximization Algorithmus
erreicht.

Das Verfahren wird anhand eines Testgebiets in Russland und Nordchina (120− 130 E,
50− 75 N) analysiert und validiert. Die Zeitreihen der Wahrscheinlichkeit des F/T Zus-
tandes werden mit In-Situ Schnee- und Temperaturmessungen sowie globalen Klimamod-
ellen verglichen. Im Allgemeinen werden Genauigkeiten von mehr als 90% erzielt, jedoch
kann der Algorithmus in landwirtschaftlich genutzten Gebieten sowie über blankem Fels
im Gebirge versagen. Darüber hinaus bestätigt diese Arbeit die Bedeutung der Kombina-
tion zweier verschiedener Frequenzen, da inbesondere trockener Schnee, Vegetation und
das Gefrieren des Bodenwassers unterschiedliche Auswirkungen auf σ0 im Ku- und C-Band
haben.
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1. Introduction

1.1. Remote sensing

Remote sensing aims at retrieving relevant information by measurement devices that are
not in physical contact with the object of interest. More specifically, the scope of the dis-
cipline is usually restricted to those approaches that employ electromagnetic radiation to
collect data [84]. The radiative energy can either be naturally occurring (e.g. thermal emis-
sion) or generated as part of the measurement process – the former methods are referred
to as passive, the latter as active.

Besides platforms mounted on airplanes, helicopters, balloons etc., space-borne instru-
ments are at the heart of the practice of remote sensing. They are particularly suitable for
mapping global, large-scale processes which would be impossible to monitor otherwise.
This point is particularly important when considering remote regions such as the oceans
or the high-latitude landmasses, where extensive in-situ data collection is not feasible.

Many different processes and factors determine the signal detected by the sensor. Con-
sequently, it cannot be expected that unambiguous inferences are possible: the problem of
retrieving parameters of the surveyed scene is generally ill-posed [57]. It is thus unavoid-
able to make simplifying assumptions or rely on simplistic empirical methods altogether.

Apart from the interaction of the electromagnetic waves with the object of interest, an-
other important factor to consider is the way the radiation propagates between the sensor
and the target. If one is primarily interested in the monitoring of the Earth’s surface,
only those regions of the spectrum where a significant amount of radiation is transmitted
through the atmosphere may be used. Such parts of the spectrum are called atmospheric
windows; the frequency of the analyzed radiation is one of the properties the most common
remote sensing methods for studying the Earth’s surface can be classified by:

Passive Visible to Short-Wave Infrared methods employ electromagnetic radiation in the
visible part as well as the near and short-wave infrared, chiefly reflected sun light.

LiDAR - Light Detection and Ranging is an active method concerned with the analysis of
backscattered pulses of electromagnetic radiation – typically in the visible and near
infrared.

Passive Thermal Infrared remote sensing deals with thermal infrared radiation. It makes
use of the fact that the thermal radiation emitted by any object depends on its tem-
perature and material properties.

Passive Microwave sensors detect thermal radiation in the microwave region.

Active Microwave measurements employ artificially generated microwave radiation to study
the target of interest.

Active microwave remote sensing techniques are particularly suitable for regular, global
monitoring because they do not depend on the illumination by the sun and because they
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1. Introduction

are insensitive to the state of the atmosphere (e.g. cloud cover). The way microwave
radiation is scattered by a target chiefly depends on two parameters: firstly, the structure
and roughness of the surface and secondly, its dielectric properties.

Such data are generally difficult to interpret because the factors influencing the backscat-
tered signal are different from those which determine our visual perception of the very
same target [106]. For certain types of instruments, the imaging geometry can also lead to
counterintuitive results.

Nevertheless, the usefulness of active microwave data has led to the development of
numerous instruments [106]. Scatterometers are radar instruments used to accurately mea-
sure the backscattered energy, whereas radar altimeters are designed to determine the
range with high precision. Side-looking radars focus on recording a continuous map of
the illuminated region. Wave diffraction dictates that in order to provide high spatial res-
olution, a large antenna is needed. Synthetic aperture radars circumvent this limitation by
mimicking a huge antenna by coherent processing of the data. By comparing the phases
of the received signals, additional kinds of information such as the topography or surface
deformation can be retrieved; this is called radar interferometry [3]. Another property of
electromagnetic waves that can be used to infer properties of the target is the polarization.
The study of the dependence of the backscatter on polarization is referred to as polarimetry
[21].

Scatterometers are particularly suitable for global earth observation purposes because
they offer excellent temporal resolution and spatial coverage, albeit at the cost of a rather
poor spatial resolution.

1.2. Sensor fusion and data assimilation

The idea of sensor fusion, although ubiquitous in the Earth sciences, is very hard to pin-
point. Different terms, such as fusion, integration, merging and combination, can take on
a myriad of meanings depending on the context and background. Wald [103] provides an
overview of various definitions and interpretations with the emphasis on remote sensing.

In this thesis, the term ’sensor fusion’ is employed to describe the process of combining
information from different sources in a systematic fashion, the aim being better results.
The phrasing is deliberately vague. The focus, however, is clearly on the organized nature
of the fusion, whereas quite often it is simply considered to be a collection of tools and
algorithms, e.g. [79].

The benefits generally attributed to this process derive from the varying properties of the
distinct data sources. In the present context, primarily the dependency of the backscatter-
ing mechanisms on frequency are of interest, as are differences in the temporal coverage.

The combination of the various kinds of data is often deemed to take place at different
levels of abstraction [103]. In the context of this thesis, fusion at the data level consists of
merging the data before inferring the freeze/thaw state. An alternative would be to derive
independent estimates of the freeze/thaw states and combine these.

In this work, we fuse the distinct measurements directly and the framework we employ
is that of probability theory. The concept of probability, as summarized by the axioms of
Kolmogorov, allows us to describe non-deterministic phenomena such as instrument noise
in a clearly specified way. After having made certain kinds of observations, inferences
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1.3. Freeze/thaw state

about the unknown quantities can be made. Alternative frameworks for problems of this
kind are, for example, fuzzy methods and the belief theory of Dempster and Shafer [111].

In contrast to the terms listed in the first paragraph, ’data assimilation’ usually has
a narrower scope [103]: it describes the incorporation of measurements into numerical
models. The most well-known example is that of weather forecasting, e.g. by the ECMWF
[78].

A popular tool for data assimilation is the Kalman Filter and its variants, which is an
efficient algorithm to make certain kinds of inferences in a particular probabilistic state
space model. The Hidden Markov Model employed in this work belongs to the same
family of models; it is applicable when the state – the freeze/thaw state in our case – is
described by a discrete variable.

The approach taken in this thesis is very similar to the data assimilation schemes de-
scribed above. Due to the lack of input data, the models describing the physical phenom-
ena as well as the observation process are empirical in nature, rather than having a sound
physical basis. These different kinds of measurements can then be used, depending on
availability, to infer the freeze/thaw state. The framework employed is sufficiently flexible
to handle missing data and varying noise levels.

1.3. Freeze/thaw state

The transition of the landscape from frozen to non-frozen conditions has far-reaching con-
sequences on numerous geo- and biophysical processes. The snow cover is another factor
of crucial importance with similar implications for those very same processes. These two
physical phenomena affect the backscatter which thus enables us to study them with active
microwave remote sensing techniques. It should be mentioned that in the remote sensing
literature, often no distinction is made between snow cover and the state of the soil water
[10] when referring to the freeze/thaw state at continental scale.

One of the processes most affected by the freeze/thaw state is the hydrologic cycle. The
liquid water generated when snow melts infiltrates the soil or leads to overland run-off [16].
The former process, however, is severely inhibited in many soils in high-latitude regions
because the soil is frozen or close to saturation.

The annual duration of frozen conditions limits the extent of the growing season of
plants in high latitudes. Low temperatures inhibit protein synthesis and activity and con-
sequently the metabolism [54]. Frozen conditions also lead to reduced water and nutrient
availability. The lack of light in winter, together with the screening effect of snow, has to
be considered as well. Plants thus enter a state of dormancy characterized by significantly
reduced metabolic activity [95].

The transition to non-frozen conditions also triggers significant changes in the carbon
balance [44]: carbon sequestration by the vegetation increases, whereas the accelerated
decomposition of organic soil matter releases CO2. The carbon cycle at high latitudes is
still not very well understood and opposing views regarding the feedback mechanisms
with climate are commonly held; Davidson and Jannsens [23] provide a balanced review.
Another important gas in the carbon cycle is methane CH4 [20], which is produced by an
anaerobic form of respiration called methanogenesis. It has recently received considerable
attention due to it being a greenhouse gas with significant global warming potential [53].

3



1. Introduction

1.4. Previous work

As the freeze/thaw states has significant implications to ecological and geochemical pro-
cesses, numerous studies about its derivation from remotely sensed data have been con-
ducted. At this point, several seminal papers will be briefly introduced; the physical back-
ground of many of these approaches will be described later.

The excellent temporal resolution and spatial coverage of scatterometers and radiometers
– in conjunction with the sensitivity of microwave signals to snow and water – make them
particularly suitable for deriving large-scale products. The complexity of the topography
and the land cover as well as the low spatial resolution renders the estimation of parameters
by model inversion difficult; instead, change detection approaches are preferred.

Numerous approaches for monitoring the freeze/thaw state of the landscape using active
microwave remote sensing have been developed and applied [10][69]:

Seasonal threshold The key idea of these techniques is to contrast the observation at a
given time with typical values for the frozen and thawed state. The freeze/thaw state
can consequently be estimated by comparing it with a threshold derived from the
reference values. The determination of the parameters and the cut-off varies. This
approach is particularly suitable for sensors with poor temporal sampling [69]. It has
thus been applied to SAR data [85], but also to scatterometers [14][63].

Moving average With these approaches, it is attempted to track changes in the signal and
derive salient events. These can then be related to the phenomena of interest. Com-
monly, the measurement is compared to a moving average of the preceding days. The
difference or some related measure is subsequently compared to various thresholds.
Studies relying on such an approach include [62][38].

Diurnal difference Kidd et al. [61] proposed to detect thawing by analyzing the diurnal
changes of the signal measured by the SeaWinds scatterometer, which offers excel-
lent temporal coverage at high latitudes. A day is flagged by means of a statistical
test. The variance of the test statistic incorporates both the noise level of the cell
and the number of observations. The significant events, called thaw indicators, are
subsequently combined to determine the periods of thawing.

Several change detection approaches applied to scatterometer data have also been used to
determine the freeze/thaw state based on radiometer measurements [69]. There have also
been numerous studies based on a static approach originally proposed by Zuerndorfer et
al. [112], whereby the brightness temperature at one band and the difference between two
bands is used to determine the freeze/thaw state of bare soil based on a simple rule-based
approach.

In addition, many algorithms for determining the snow cover and snow water equivalent
have been developed, e.g. [19][81]. They are usually based on the inversion of radiative
transfer models or semi-empirical simplifications thereof. The most serious limitation is
due to the unknown structure of the snow, particularly the size of the grains. In order to
take these effects into account, assimilation of in-situ data [80] and temporal modelling of
the snow metamorphosis [59] have been suggested.

In the visible and near-infrared domain, the freezing of the soil water barely influences
the reflection properties. Snow cover, on the other hand, can be retrieved rather easily; this
is, for example, routinely done for MODIS data [45].
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1.5. Scope and structure

1.5. Scope and structure

The purpose of this thesis is essentially twofold. The first – more specific – point is
the development and validation of a probabilistic sensor fusion model for estimating the
freeze/thaw state based on different sensors: SeaWinds QuikScat Scatterometer operating
at Ku-band and MetOp ASCAT Scatterometer operating at C-band. The second – more
general – objective concerns the study of the general characteristics of the backscatter for
frozen and non-frozen conditions in these two bands. This analysis is based on the afore-
mentioned data sources and the probabilistic model as well as a simple model capable of
simulating the backscatter of several layers of snow as well as a bare soil surface.

The insight gained from this analysis helps explain the benefits associated with the sensor
fusion: increased robustness and flexibility and more accurate results, when compared to
ad hoc empirical methods. In addition, it might be useful for designing algorithms, e.g. for
the proposed Dual Frequency Scatterometer [56] operating at Ku- and C-band (its launch
onboard the GCOM-W2 satellite is scheduled for 2016).

Information about the freeze/thaw state can also be put to good use in other remote
sensing applications. In the course of the retrieval of soil moisture from active microwave
remote sensing data, frozen conditions have to be detected as they might otherwise lead to
gross errors [89].

Chapter 2 is concerned with the geographical and geophysical aspects of the freeze/thaw
state, covering topics such as the dependence of the freezing point of water on the soil ma-
trix and the amount of solutes, permafrost and snow metamorphosis. In addition, a brief
overview of the test area is provided. In chapter 3, the physical principles of remote sensing
and the backscattering behaviour of the landscape at high latitudes are discussed. It in-
troduces concepts such as Mie scattering, complex dielectric constants and the equation of
radiative transfer. Chapter 4 contains a concise summary of the theory of Hidden Markov
Models: their key properties, how inferences can be made efficiently and how parameters
can be estimated. Among the ideas presented in that chapter are Belief Networks, the
Forward-Backward Algorithm and the Expectation Maximization Algorithm.

Chapter 5 provides an overview of the data sources used in the context of this thesis. The
detailed description of the probabilistic model for sensor fusion can be found in chapter 6.
The backscatter model used for validation purposes is also presented. The discussion of
the data and the model forms the backbone of chapter 7: it contains a general study of the
properties of the backscatter time series and an analysis of the most important contributing
factors. The results of the sensor fusion are compared to external data in chapter 8, which
also includes an investigation of the assumptions and limitations of the method. Chapter
9 wraps up this thesis by providing an outlook into possible extensions and improvements
as well as summing up the crucial aspects.
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2. Geography

In this chapter, the two crucial geophysical aspects that determine the freeze/thaw state
will be discussed: the freezing and thawing of the soil water as well as snow. The descrip-
tion is focussed on the most important properties and interactions with processes such as
the hydrologic cycle.

There is also a second part to this chapter: a brief overview of the test area.

2.1. Freezing and thawing of the landscape

2.1.1. Freezing and thawing of soil

Physical description

The phase transition of water between its liquid and solid form1 results in abrupt changes
of most material properties such as density or heat conductivity. At the phase transition
boundary, both phases can co-exist: they are in equilibrium. There is a state function
(analogous to a potential) which is thus the same for both phases. At constant temperature
T and pressure p, this is the Gibbs free energy G (2.1) and its partial derivative with respect
to the number of moles is the chemical potential µ [43]:

G(p, T) = U + pV − TS (2.1)

µi =

(
∂G
∂Ni

)
T,V,Nj 6=i

(2.2)

where U is the internal energy, S the entropy, V the volume and Ni the number of parti-
cles of species/phase i. The Gibbs free energy tends towards a minimum, which implies
equilibrium. At the transition, in particular, the chemical potentials have to be equal:
µsolid = µliquid.

The Gibbs free energy G considers both energetic and entropic aspects. The solid phase
is more structured and in order to move from the solid to the liquid state, heat has to be
added to overcome particle interactions. It is called the latent heat of fusion or enthalpy of
fusion ∆H f usion and for water it is given by [66]

∆H f usion = 333.55 kJ/kg (2.3)

The importance of the enthalpy of fusion for the heat balance is illustrated by the follow-
ing example. We will assume a temperature-independent specific heat capacity of liquid

1there are actually many different solid phases, the most recently discovered being ice XV [88]. The only
form commonly encountered on Earth is ice lh.

7



2. Geography

water (at constant pressure) of 4.22 kJ/kg K [109]. The heat energy needed to melt one kilo-
gram of ice is sufficient to raise the temperature of 1 kg of water by almost 80◦ C. Imagine
you had 1 kg of frozen and 1 kg of liquid water at 0◦ C in separate containers and suppose
you wanted to raise their temperature to 10◦ C. In this case, you would need almost nine
times as much energy for the ice block than for the water.

The freezing point of water depends on the pressure; at standard atmospheric pressure,
it is at 0◦ C. Two very important factors can also change the freezing point [49]:

Solutes Dissolved constituents in the liquid water such as salts lead to an increase of the
entropy, thus lowering µliquid and the freezing point.

Surface Tension Interactions at the interface of the water with e.g. the soil matrix influence
the energy. Adsorption to the soil matrix results in a lower µliquid and this change
depends on the pore size. Consequently, as the freezing point depression grows as
the pore size decreases, the water in the larger pores is first converted to ice, whereas
the tightly bound water only freezes at lower temperatures.

When simulating the freezing of a soil, the energy and mass balance have to be satisfied
and the changes in the material properties with the phase transition considered. The Stefan
equation is a commonly used simplification [110]: the phase transition is assumed to occur
at a fixed temperature, the fluid movements are not considered and the heat capacity of
the frozen soil is neglected. It describes the slow propagation of the freezing front.

Consequences

The freezing and thawing of the soil have important implications for its structural stability;
a particularly famous example being frost heave. At a constant temperature below the
freezing point, there is ice present in the larger pores and liquid water in the smaller ones.
Due to the surface tension, there is a pressure difference between the two phases and it
depends on the pore size. As the temperature drops, additional pores freeze over and
the pressure difference has to increase to maintain equilibrium [49]. Liquid water is thus
sucked towards the ice and under the right conditions, ice lenses form.

These processes have a great influence on the metabolic activity of the organisms in
the soil and they also regulate the hydraulic conductivity and thus water and nutrient
availability, cf. section 1.3.

Permafrost

Permafrost can be defined to be ’perennially frozen ground – rock, sediment or any other
earth material with a temperature that remains below 0◦ C for two or more years’ [86].

The ice contained in permafrost is of great importance for the stability of the ground.
The top layer, which thaws in summer and re-freezes in autumn, is called the active layer.
Permafrost has recently received considerable attention due to the discussion about global
change. It is expected that, in general, the growth in depth of the active layer will continue
and that overall permafrost will warm or thaw [86]. Apart from the impacts on the hydro-
logical cycle and the stability of the ground, the interconnection with the carbon cycle is
a focus of research. As the permafrost thaws, the increased decomposition of the organic
matter stored therein leads to the emission of carbon dioxide and methane, cf. 1.3.

8



2.1. Freezing and thawing of the landscape

2.1.2. Snow

Formation

Snow is ’frozen precipitation in the form of ice crystals that fall in soft, white flakes’ [6].

Snow flakes are crystalline ice particles that form due to the accumulation of H2O
molecules. Pure liquid water can be supercooled to about −40◦ C without the presence
of condensation nuclei [65], which enable nucleation to set in at higher temperatures. The
reason why this does not already happen at the freezing point is surface tension: this is re-
ferred to as the Gibbs-Thomson effect. The Gibbs free energy G (2.1) thus has to be adapted
to account for the surface tension [36]. In a way similar to the influence of the soil matrix
on the bound water, the complex interaction between the nucleus and the water molecules
affects the surface tension and can thus facilitate nucleation.

As the snowflake grows, the new molecules have to be incorporated into the crystal,
additional molecules transported to the site by diffusion and heat removed by heat diffu-
sion. Libbrecht [65] provides an overview of these mechanisms and how they lead to the
remarkable variability in shapes and sizes.

Melting and sublimation

When the snow melts, the ice is converted to liquid water. This process sets in at the
snow-air boundary once the temperature has risen to the melting point. The liquid water
percolates downwards where it re-freezes, thus increasing the temperature of the snow
pack due to its ∆H f usion (2.3) [98]. There is thus a wetting front which propagates from the
surface. This process is associated with metamorphism (see below).

Sublimation is the direct transition from the solid state to the vapour phase; it is thus
somewhat equivalent to evaporation. The process is governed by the difference between the
actual and the saturation vapour pressure [74]. It is important for the mass balance of the
snow pack as well as the heat balance due to the enthalpy associated with the sublimation.

Metamorphism

A snow pack is not static but evolves dynamically – it metamorphoses. According to the
classification of Colbeck [22], two kinds have to be distinguished: dry-snow and wet-snow
metamorphism.

Dry-snow metamorphism is, as the name suggests, prevalent in dry snow; it is a rather
slow process towards bigger, less intricate snowflakes. Two regimes are commonly con-
sidered, depending on the temperature profile of the snow [83]. In case of only a small T
gradient, the differences in the radii of curvature are the driving force. Due to surface ten-
sion, water molecules tend to sublimate from the convex parts and re-condense at concave
interfaces. This very slow process leads to more rounded grains.

When the temperature at the air-snow interface is much less than the one close to the
ground, the differences in vapour pressure lead to a flux towards the surface [83]. Along
the way, the vapour molecules can attach to grains, thus enlarging them. This process is
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2. Geography

much quicker than the previous one and is the driving force in the formation of depth hoar
(large crystals that are detrimental to the structural stability of the snow pack).

Wet-snow metamorphism occurs in snow containing liquid water. When the snow is
close to saturation, metamorphism proceeds very quickly, the crucial limit being the heat
transport [22]. As the melting point of small grains can be very low, they preferentially
melt while the bigger ones might re-freeze. This leads to very large grains. When there is
only a small amount of liquid water present, the crystals tend to join by forming interfaces.

A particular aspect of wet-snow metamorphism occurs in the presence of freeze/thaw
cycles; it can result in multicrystalline grains and a very stratified appearance (especially
when it rains) [83].

Consequences

Snow cover greatly influences the heat balance in the following ways [6]:

• due to its high albedo in the visible and near infrared, the incoming solar radiation
cannot efficiently increase the temperature

• the significant enthalpy of fusion leads to a delayed warming in spring; it acts as a
heat sink

• it is a formidable insulator and thus keeps the soil temperature from falling precipi-
tously in winter

Barry et al. [6] provide a concise summary of the most important ecological impacts
of snow. It greatly influences many aspects of the hydrological cycle such as run-off and
thus human activities, e.g. agriculture, power generation and drinking water consumption.
It is also of great importance to many animals by limiting access to food, regulating the
temperature changes or providing shelter. Snow limits the growing season of plants and
greatly affects their growth due to its impacts on the heat and water balance.

2.2. Study area

The test area is between 120◦E and 130◦E north of 50◦ latitude. A small part is in Chinese
territory, but most of it belongs to Russia, cf. figure 2.1.

2.2.1. Topography

Figure 2.2 provides an overview of the most important topographic features and land cover
classes.

The lowlands are dominated by the Lena River, whose source is close to Lake Baikal and
which flows in a northeastern direction until about Yakutsk (62◦N, 129◦E). From there it
flows northwest before continuing northwards until it reaches the delta.

East of the Lena River, the Verkhoyansk Range runs in a meridional direction. Its highest
peaks in the test area rise above 2000 metres.
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80◦E

110◦E 140◦E

40◦N

60◦N

Figure 2.1.: Location of the test area. Albers Equal Area projection.

The Stanovoy Range and nearby highlands stretch in an east-west direction at around
57◦N. Towards the south they give way to the foothills of the Great Khingan. The river
Amur forms the boundary between China and Russia; its watershed dominates the very
South-East of the study area.

2.2.2. Land cover

Tundra vegetation prevails in the northernmost part of the test area, such as the wetlands
in the Lena delta. The grasses and shrubs gradually give way to larches towards the south
[94]. Stretches of the Lena River and its tributaries are fringed with wetlands and pastures.
The Verkhoyansk range is mostly barren except for the valleys, cf. fig 2.2b.

Towards the south-west of the study area, the taiga gives way to the steppe, with some
fields close to the rivers. Pastures and crops also characterize the areas close to the Amur
river and its tributaries in the south-east of the test area.

2.2.3. Climate

The climate of the study area is continental; it is in fact quite well-known for the huge dif-
ferences between winter and summer temperatures. Jakutsk, for example, has an average
minimum temperature of −46◦ in winter and an average maximum temperature of 25◦C
in summer [48].

In winter, the area is at the heart of the Siberian Anticyclone – a stable high-pressure
field of very cold and dry air.

The study area is characterized by rather arid conditions. The annual precipitation is
around 200− 300mm in the north and 400− 600mm in the south [48]. There are of course
topographically induced variations. Most precipitation falls between June and October.
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3. Remote Sensing of the Freeze/Thaw State

Many relevant geophysical and biophysical parameters can be estimated on the basis of
space- and air-borne measurements. Different sensors and techniques have been shown to
be sensitive to different properties of snow, liquid water and ice, which are the features we
are primarily interested in.

In the first part of this chapter, the physical principles of electromagnetic waves and their
interaction with matter are described. This knowledge is then applied to characterize the
backscattering behaviour of the targets of interest in more detail.

3.1. Physical principles

3.1.1. Electromagnetic waves and their interactions with matter

Electromagnetic waves are at the heart of microwave remote sensing and their propagation
and interaction with the targets of interest make the inference of quantities of interest
possible. The following concise summary generally follows [51].

Maxwell’s equations

Maxwell’s equations are central to the theory of electromagnetism. In their differential
form and separating free and bound charges and currents, they are given by [21]:

∇ ·D = ρ f (3.1)

∇ · B = 0 (3.2)

∇× E = −∂B
∂t

(3.3)

∇×H = j f +
∂D
∂t

(3.4)

where ρ f is the volumetric density of free charges and j f is the current density of free
charges.

The D and E fields are related by the properties of the material. For a linear, isotropic
and homogeneous material, the constitutive relations for the static case are [51]:

D = εE = εrε0E (3.5)
= ε0E + P

Vacuum has a relative permittivity εr of 1 and thus the polarization density P is 0. The
latter expresses the volumetric density of dipole moments. In a dielectric medium, an
external E field leads to a re-arrangement of the internal charges. Even though the net
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3. Remote Sensing of the Freeze/Thaw State

charge does not change, the formation and re-orientation of electric dipoles results in a
non-zero polarization density.

In the case of time-varying fields, the constitutive relations become more complicated.
If the temporal evolution of the external fields is sufficiently fast, the polarization cannot
follow instantaneously. It is usually assumed that P and E are related by a causal linear
time-invariant (LTI) system. As the complex exponentials are eigenfunctions of any LTI, the
constitutive relations reduce to simple proportionality in the frequency domain. The per-
mittivity ε( f ) as a function of frequency is a complex number and commonly decomposed
as:

ε( f ) = ε′( f )− iε′′( f ) (3.6)

The relation between H and B is essentially analogous (at least for dia- and paramagnetic
materials), the proportionality constant being the relative permeability µ [21]:

B = µH = µrµ0H (3.7)
= µ0(H + M)

For most materials of interest in remote sensing, µr ≈ 1 to a very good approximation, so
that it is usually assumed to be one [106].

Electromagnetic waves

Light and other forms of electromagnetic waves in vacuum can be described mathemati-
cally by the wave equation [51]:

∇2E = µ0ε0
∂2E
∂t2 (3.8)

This equation can be derived from Maxwell’s equations assuming no currents and no free
charges by combining the curl of Faraday’s law (3.3) and Ampere’s law (3.4). Simultane-
ously, H has to fulfill its own wave equation:

∇2H = µ0ε0
∂2H
∂t2 (3.9)

The plane harmonic wave given by [21]

E = E0e
i(kTx−ωt)eE (3.10)

H = H0e
i(kTx−ωt)eH =

1
η

E0e
i(kTx−ωt)eH (3.11)

can be shown to satisfy both (3.8) and (3.9). It is the real part that is of physical significance.

The quantity k is called the wave vector – its direction determines the direction of prop-
agation and its magnitude satisfies the dispersion relation |k| = k = ω/c, where c =

√
1/ε0µ0

is the velocity of light in vacuum. The ratio of E0 and H0 is called the impedance of free
space and is given by η = µ0/ε0. As it is real, the two fields are in phase.

The three vectors eE, eH and k are mutually orthogonal. For a fixed direction of propaga-
tion, there is still an inherent symmetry, which gives rise to the phenomenon of polarization
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3.1. Physical principles

[21]. A planar wave as given by (3.8) and (3.9) is called linearly polarized because both field
vectors oscillate in a plane. In remote sensing, the polarization is usually referred to with
respect to a vertical plane: vertical and horizontal.

In lossless media – εr being real – there are analogous relations between the properties
of the waves. The most important difference is the change in phase velocity [21]. In media
with losses, most of these quantities are complex, leading to exponential decay of the
amplitudes and a phase difference between the two fields.

It can be shown that the power transported by an EM wave is proportional to |E|2 [51].
More specifically, it is given by the Poynting vector S = E×H, which points in the direction
of energy transport.

Fresnel equations

When a plane wave impinges on a planar, infinitely extending interface between two me-
dia, one part of the energy is reflected and another transmitted [106]. The geometry is
illustrated in figure 3.1. Two different polarization states have to be distinguished:

TM H perpendicular to the plane of incidence

TE E perpendicular to the plane of incidence

It can be shown that a stationary solution to Maxwell’s equations for the appropriate
boundary conditions is given by the Fresnel equations. They characterize the magnitude
of the reflected and transmitted E field relative to the incident one by the reflection coeffi-
cient Γ and the transmission coefficient T, respectively. Assuming perfect (non-conducting)
dielectrics with µr = 1, the Fresnel equations are given by [51]:

Law of Reflection

θr = θi (3.12)

Snell’s Law

sin θi

sin θt
=

√
ε2

ε1
=

n2

n1
(3.13)

TM polarization

ΓTM(θi) =

√
ε2 cos θi −

√
ε1 cos θt√

ε2 cos θi +
√

ε1 cos θt
(3.14)

TTM(θi) =
2
√

ε1 cos θi√
ε2 cos θi +

√
ε1 cos θt

(3.15)

TE polarization

ΓTE(θi) =

√
ε1 cos θi −

√
ε2 cos θt√

ε1 cos θi +
√

ε2 cos θt
(3.16)

TTE(θi) =
2
√

ε1 cos θi√
ε1 cos θi +

√
ε2 cos θt

(3.17)
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3. Remote Sensing of the Freeze/Thaw State

Medium 1

Medium 2

θi

θt

θr

Figure 3.1.: Geometry of the interface and the plane waves

Scattering of EM waves by a rough surface

The reflection implied by the Fresnel equations is perfectly specular. However, when the
interface is rough compared to the wavelength, the scattering behaviour becomes more
complex. When dealing with natural surfaces, the minute variations in height are usually
neither known nor of interest, so that a statistical description seems reasonable. The RMS
height s is a measure of the deviation from the mean height. Additionally, it is important
to know how rapidly the height changes in the horizontal direction; this can be described
by an autocorrelation function, which can often be summarized by a characteristic length l.

In order to quantify the roughness with respect to a specific measurement, it has to be
related to the geometry and the frequency. The Rayleigh criterion states that a surface can
be considered as smooth if [106]

s ≤ λ

8 cos(θ)
(3.18)

In general it holds that the rougher a surface, the more diffuse the backscatter. Thus for
the measurement geometries commonly experienced with scatterometers, an increase in
surface roughness leads to an increase in the backscatter.

The considerations above only apply for surfaces whose height varies in a random fash-
ion; periodic undulations are excluded. They can lead to constructive interference of the
scattered components depending on the direction. If the variations in height are small
compared to the wavelength, the scattering regime is referred to as Bragg scattering and
described by the Small Perturbation model [84].

Another widely used approach is the Kirchhoff approximation: the key assumption is
that the radius of curvature of the surface is small compared to the wavelength. Thus it is
usually more appropriate at lower frequencies [84].

As these two models cater to different regimes regarding the patterns of the surface,
many more methods that are applicable in different circumstances have been proposed,
among them the widely used Integral Equation model by Fung [39]. The majority of these
physically based models try to capture the structure of the surface by making use of com-
plex parameterizations. In practice, these descriptions are often too intricate to be measured
in situ or to be estimated by inverting such models [102].

Due to the small range of validity and the issues concerning the characterization of
the roughness, semi-empirical models enjoy considerable popularity. These are based on
extensive experiments and are usually parameterized by the permittivity of the soil and
some measure of the roughness. Among them are the models by Oh [77] and Dubois [26].
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3.1. Physical principles

Scattering of EM waves by a particle

Electromagnetic waves interact with particles; the redirection of energy is called scattering.
The proportional amount of scattering, for fixed frequency and particle shape and size,
depends on the direction of both incoming and outgoing wave. The total cross section
σs summarizes how much energy is scattered, the directionality is described by a phase
function. These terms are introduced more formally in section 3.1.2.

The most important observation is the strong dependence of σs on the size of the particle
with respect to the wavelength. Due to the complexity of solving Maxwell’s equations
for an arbitrary scattering, the discussion is restricted to a qualitative description of the
arguably simplest geometric shape: the sphere.

The analytical solution for the scattering of a plane EM wave by a dielectric sphere is
provided by Mie theory. Figure 3.2 illustrates the importance of the particle size and the
frequency.
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Figure 3.2.: Ratio Q of σs to the geometric cross section as predicted by Mie theory (in
the Walstra approximation [104]) for εr = 1.25. The scattering behaviour of a
perfectly conducting sphere shows similar patterns.

In the optical limit – the particle being much bigger than the wavelength – σs becomes
proportional to the geometric cross-section. Strong fluctuations are characteristic for the
transition region – the Mie regime.

The Rayleigh approximation is valid if the particle is smaller than the wavelength. In the
microwave region, due to the long wavelengths, this regime is thus applicable for a wide
range of scatterers – snow being the most important example in the context of this thesis.
The total cross-section is given by [84]:

σs =
128π5

3c4 r6 f 4
(

ε− 1
ε + 2

)2

(3.19)

where r is the radius of the sphere, ε its permittivity and c the velocity of light. Note the
strong dependence on the frequency f for fixed particle size.
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3. Remote Sensing of the Freeze/Thaw State

For symmetry reasons, the directional behaviour is completely described by the angle
between the incoming and outgoing wave, θ. If we do not distinguish different polariza-
tions, the phase function is proportional to 1+ cos(θ)2. The scatterer can be thought of as a
small dipole antenna, resulting in the two terms for unpolarized light. The dependence of
the scattering behaviour on the polarization is more complicated for arbitrary scatters and
beyond the scope of this thesis.

3.1.2. Radiative transfer

When describing the propagation of electromagnetic radiation through a medium that con-
sists of many small particles (e.g. snow), it turns out to be convenient to consider the
changes of intensity along the path. This intensity can be expressed mathematically as
follows:

Definition (Brightness) The brightness (or radiance) L is defined by:

L =
d2Φ

dA cos(θ)dΩ
(3.20)

where Φ is the power, A the area and Ω the solid angle. The spectral brightness L f is
defined as the brightness per unit frequency.

Other radiometric quantities of interest can be obtained by integration; most importantly
the power density S by integrating with respect to Ω. The power density is directly related
to the power detected by the sensor, cf. section 3.1.3.

The radiative transfer equation (RTE) expresses the conservation of energy by balancing
the change in power with the external losses and gains. By only considering the intensity
rather than the E-field, the effects of interference due to coherent superposition cannot be
modelled and are thus neglected. In the stationary case, the RTE can be written as

dL f (s, Ω)

ds
= −β f (s)L f (s, Ω) + j f +

1
4π

α f (s)
∫∫
4π

L f (s, Ω′)p f (Ω
′ → Ω)dΩ′ (3.21)

where α f , β f = α f + γ f and γ f are referred to as the spectral scattering, extinction and
absorption coefficients, respectively. Often, ω = α f/β f is called the single scattering albedo.
j f accounts for the thermal emission, but it is negligible compared to the other effects
when dealing with active radar measurements. The phase function p f (Ω

′ → Ω) describes
the scattering of radiation from direction Ω′ into Ω. This last term turns (3.21) into an
integro-differential equation, which is extremely hard to solve in general.

For sparse media, it is commonly assumed that the scattering coefficient simply scales
with the number of particles per unit volume N [30]:

α = N σs (3.22)

Copious methods for approximating solutions to the RTE have been proposed in the
literature [37], many of which aim at replacing the integral with a sum by transforming,
discretizing or parameterizing the solution and thus reducing the task to the solution of a
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3.1. Physical principles

system of linear ordinary differential equations (ODEs). A very simple approach is the so-
called two-stream approximation, whereby only two streams F↓, F↑ are considered. They
satisfy a system of ODEs [70]:

d
ds

(
F↓

F↑

)
=

(
γ1 −γ2
γ2 −γ1

)(
F↓

F↑

)
(3.23)

subject to appropriate boundary conditions1. Many methods lead to this system; the mean-
ing of the F↓, F↑ and the coefficients depends on the specific approach [70]. Commonly,
L f (Ω) is assumed to be of a certain nature, and averaging with respect to the upper and
lower hemisphere leads to the diffuse fluxes F↓, F↑.

Alternatively, if only forward and backward scattering are accounted for, L f (Ω) can be
thought of as a pair of delta functions: F↓ = S1 δ(Ω) and similarly for F↑. This is usually
referred to as the δ two-stream approximation. A further simplification can be achieved if
the backward scattering is only considered if it points towards the sensor, corresponding
to

d
ds

(
F↓

F↑

)
=

(
γ1 0
γ2 −γ1

)(
F↓

F↑

)
(3.24)

At the lower boundary surface at depth d, the upwelling radiation F↑(d) = γ0
sur f F↓(d) =

σ0
sur f/cos(θ) F↓(d). After reparameterization with respect to depth (z = cos(θ) s), (3.24) can be

solved easily (e.g. by an eigendecomposition):

F↑(0) =
γ2

2γ1

(
1− e−2γ1d/cos(θ)

)
F↓(0) + γ0

sur f e
−2γ1d/cos(θ)F↓(0)

σ0 =
cos(θ)γ2

2γ1

(
1− e−2γ1d/cos(θ)

)
+ σ0

sur f e
−2γ1d/cos(θ) (3.25)

The first term corresponds to the volume scattering, the second to the attenuated reflec-
tion. This interpretation forms the basis of the famous cloud model for vegetation [2] and
also to the most widely used simple model for the scattering of snow, cf. section 3.2.2.

Several assumptions are inherent to the basic theory of radiative transfer as treated above,
the most important of which are [90]:

• the scatterers are independent and do not interact

• the fields add incoherently (e.g. the scattering and the reflection from the boundary)

• the scattering is elastic so that the radiation at each frequency can be considered
independently

The RTE in the form of (3.21) does not account for polarization; this can be circumvented
by adopting the Stokes formalism [25].

3.1.3. Monostatic radar equation

The radar equation relates the target with the geometry and instrumental properties of the
measurement. It is expressed in the quantities of radiometry described in table 3.1.

1The different signs of the coefficients are due to the fact that s is now a global parameter: compared to (3.21),
the sign is flipped for F↑.
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3. Remote Sensing of the Freeze/Thaw State

Table 3.1.: Quantities in the radar equation

Symbol Unit Description
Pe W power emitted by the antenna
Pr W power received by the antenna
Si Wm−2 Irradiance incident at the target
Ss Wm−2 Irradiance scattered by the target
R m distance between the antenna and the target
σ m2 radar cross section
Ar m2 (effective) area of the antenna
G 1 gain w.r.t. an isotropic antenna with the same Pe

For an antenna emitting a power Pe in a direction where its gain is G, the irradiance
at the target is given by Si = PeG/4πR2. The target is replaced by a hypothetical perfectly
scattering and isotropic scatterer of size σ in such a way that the irradiance at the receiving
antenna is the same as the one actually measured [51]:

σ = lim
R→∞

4πR2 Ss

Si

The receiving (isotropic) antenna thus measures a power of Pr = Ss Ar. Combining these
results, we arrive at the monostatic radar equation for lossless, isotropic antennas:

Pr = Ss Ar =
Siσ

4πR2 Ar

=
GPeσ

(4π)2R4 Ar

The gain pattern of the antenna is described by G, which itself is related to the effective
area and the wavelength [51]. The received power can thus be expressed by [106]

Pr =
PeσG2λ2

(4π)3R4 (3.26)

Any losses in the atmosphere or due to the measuring device have to be accounted for
separately, as does the polarization of the EM waves. Furthermore, both the gains and the
radar cross section vary with direction.

Extended targets are conveniently described by a radar cross section per unit area σ0,
also referred to as normalized radar cross section and backscattering coefficient. σ0 is a
dimensionless quantity that is usually reported in decibels.

3.2. Backscatter behaviour

3.2.1. Permittivity of liquid and frozen water

Water

Water molecules have a permanent dipole moment. An external electric field E thus exerts
a torque on them, causing them to preferentially align in the direction of E [34]. This
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3.2. Backscatter behaviour

tendency is counteracted by the internal, thermal energy. This alignment and thus the
macroscopic polarization is not instantaneous, but happens on a characteristic timescale
τD, the relaxation time. The permittivity is thus a function of frequency and its dependence
is often considered to follow the Debye model [64]:

ε( f ) = ε∞ +
εs − ε∞

1− i f
fD

(3.27)

where fD = τ−1
D is the relaxation frequency and εs and ε∞ the permittivity in the static and

the high-frequency case.
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Figure 3.3.: Spectra for liquid water at T = 0◦ C and T = 20◦ C [71].

Figure 3.3 illustrates a Debye spectrum for water at T = 0◦ C and T = 20◦ C. The
imaginary part of the dielectric constant has a peak at fD. The relaxation time decreases
with increasing temperature.

Ice

In the solid phase, the structure of the lattice gives rise to a very high static permittivity
[47]. It even turns out that the frequency dependence can also be approximated with the
Debye model, albeit at a much smaller relaxation frequency. Consequently the dielectric
constant is rather small at C- and Ku-band; even more so the absorption – cf. figure 3.4.

3.2.2. Land cover types

Bare ground

The backscatter of bare soil is mainly influenced by two features: roughness and soil mois-
ture [106]. The effect of surface roughness is discussed in section 3.1.1.
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Figure 3.4.: Spectrum for pure ice at T = −0.1◦ C [71].

The water content in the top layers of a soil is referred to as soil moisture. As already
mentioned in section 3.2.1, the permittivity of water is remarkably high. The Fresnel equa-
tions as well as all models describing scattering from rough surfaces are a function of the
dielectric constant; thus wet soils can be recognized by their high σ0. The water molecules
in the soil experience various kinds of interactions with the soil matrix which reduce their
polarizability; consequently free and bound water should be distinguished [24]. The di-
electric constant of soils as a function of soil moisture can be expressed mathematically by
so-called mixing formulas, e.g. [12][24].

As the water in the soil freezes, the dielectric properties in the microwave range change:
both ε′r and ε”r decrease and due to their comparatively small values, frozen soil shows
striking similarities to very dry soil [105]. Tikhonov [96] provides a model as well as
experimental data.

Water bodies

The huge dielectric contrast between air and water results in strong reflection – mainly in
the specular direction unless the surface is sufficiently roughened by wind or otherwise.
For the viewing geometries commonly employed for scatterometers and SARs, specular
reflection leads to very low backscatter.

Periodic undulations that are of similar size as the wavelength are particularly important
as they result in coherent Bragg scattering. The azimuthal dependence of this backscatter
is used to infer the wind direction with scatterometers [40].

Vertically oriented features such as tree trunks can result in the so-called double bounce
effect, whereby the surface acts like a corner reflector: a significant amount of the energy
is reflected specularly by both the water surface and the vertical object [28].

Vegetation

Vegetation canopies consist of an intricate arrangement of scatterers of different sizes,
shapes and orientations. In addition, the contribution of the underlying soil has to be con-
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3.2. Backscatter behaviour

sidered. If the surface is sufficiently smooth, the vertical features of the plants can induce
a so-called double bounce, cf. section 3.2.2. Due to the complexity of vegetation canopies,
numerous studies on the backscattering characteristics have been conducted, some of them
of entirely empirical nature, others based on modelling considerations. The observed de-
pendence of σ0 on frequency, polarization and incidence angle are of particular interest.

The radar cross section of a scattering object is very sensitive to the observation fre-
quency. Consequently, small wavelengths such as Ku-band are subject to strong volume
scattering from leaves and twigs, whereas longer wavelengths are less affected. The backscat-
ter at P-band, for example, is dominated by large elements such as trunks and the under-
lying ground [106].

Vegetation canopies give rise to distinctive polarimetric characteristics of the backscatter.
The cross-polarized backscatter σ0

hv is usually very low for bare soil surfaces. Multiple scat-
tering as encountered in dense canopies, however, leads to elevated σ0

hv. The co-polarized
backscatter is sensitive to the orientation of the canopy elements: the E-field of vertically
polarized waves induces currents in vertical structures much more efficiently than in hori-
zontally oriented ones (this is also the principle behind linear polarizers based on parallel
wires).

Another key feature of vegetation canopies is the dependence of σ0 on the incidence
angle θ. The larger θ, the longer the optical path in the canopy and consequently the
contribution of volume scattering compared to the surface. Very dense canopies can be
assumed to be perfect volume scatterers at Ku- and C-band with good accuracy.

Water is the main constituent of most kinds of plant tissues. The permittivity of dried
plants is in general rather small: around 2 for the real and less than 0.1 for the imagi-
nary part. The dependence of the dielectric constant on the volumetric water content was
studied by Ulaby and El-Rayes [99]. They developed a simple model, which distinguishes
between bound and free water (this is somewhat similar to soil water). In the former, the
interactions with surrounding molecules inhibit the rotational alignment: it is modelled as
a Cole dielectric with a relaxation frequency f = 0.18 GHz. The latter is assumed to behave
like pure liquid water. Based on empirical data, the mixture data permits calculation of the
permittivity as a function of the gravimetric moisture content; an example plot is shown in
figure 3.5.

The freezing of water is accompanied by a large drop of the permittivity at the frequen-
cies of interest. Depending on the moisture content in autumn, this trend also manifests
itself in plant tissue to a certain extent [62]. From a qualitative point of view, the backscatter
change due to freezing is thus expected to be quite similar in plants and soils.

A simple way to describe the backscatter from vegetation is the Cloud model by Attema
and Ulaby [2]. It is equivalent to the simplified solution (3.25) to the Radiative Transfer
Equation. More elaborate models such as MIMICS [100] have been proposed to obtain a
better description of the scattering processes. The drawback, however, is that they tend to
rely on a rather intricate parametrization of the canopy.

Snow

The backscatter from snow is often considered to consist of three parts: scattering from
the top surface and the underlying surface as well as volume scattering from within the
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Figure 3.5.: Relative dielectric constant of plant tissue as a function of the gravimetric mois-
ture content [99]. The difference between C- and Ku-band is neglible, so only
Ku-band data are shown.

snow pack. A commonly used model is the extension of the simple RTE model (3.25) with
a surface scattering term:

σ0 =
cos(θ)γ2

2γ1

(
1− e−2γ1d/cos(θ)

)
+ σ0

grounde
−2γ1d/cos(θ) + σ0

snow_sur f ace (3.28)

where the notation of the preceding sections is employed. The coefficients γ1 and γ2 have
to be related to the shape, size and density of the snow grains.

Due to its simplicity, this model or variants thereof are commonly applied, e.g. [1][72]. Its
most important limitations are the neglect of multiple scattering, the simplistic description
of the particles (spherical, uniform size) and that the scatterers are treated independently.
The interactions, however, can become significant for dense snow packs. In order to allevi-
ate these problems, several approaches have been suggested, e.g. [33].

A snow pack consists of particles of a variety of sizes and shapes. Consequently, the ra-
dius r in (3.19), as well as other parameters in different models, refer to an effective quantity
which is chosen as to mimic the overall backscattering behaviour well. Snow grains act as
Rayleigh scatterers in the microwave region, thus leading to a strong dependence on fre-
quency and particle size.

Dry snow exhibits very little absorption; the extinction coefficient is dominated by the
scattering coefficient. This changes drastically with the introduction of liquid water, which
is characterized by a large ε′′r . The permittivity as a function of liquid water content can
be described by mixing formulas, e.g. [68]. The simple model in (3.28) correctly predicts a
strong diminishment of the backscatter in the presence of liquid water in the snow. This is
caused by the steep increase in absorption.

The remarkable dependence of σ0 with respect to frequency is illustrated in figure 3.6.
The behaviour is generated using the model described in section 6.2, where more details
about the implementation can be found.
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Figure 3.6.: Simulation of σ0 of dry snow for the frequencies and incidence angles of
QuikScat and ASCAT; cf. section 6.2 for a detailed description of the model
and 7.1.2 for the parameters used.

Freshwater ice

Many different parameters govern the backscatter characteristics of ice, so that it is chal-
lenging to infer geophysical variables using radar data. The most important factors influ-
encing σ0 are:

Surface Roughness Differences in the texture of the ice surface can be brought about by
e.g. the movement of water masses and pressure due to the loading with snow [55].
Increased roughness leads to a higher backscatter coefficient in general.

Grounded vs. floating ice For the frequencies of interest, the difference in the permittivity
between water and either ice or soil is much bigger than between the latter. The
reflectivity is thus greatly enhanced in the presence of a liquid water layer between
the ice and the ground. Floating ice appears brighter in radar images than grounded
ice, all other factors being equal.

Bubbles and inclusions The number, sizes and orientations of bubbles depend on many
factors during ice formation and metamorphosis [55]. They influence the volume
scattering behaviour and thus the σ0 of the ice. Vertically oriented, tubular bubbles
have been reported to increase backscatter in floating ice due to a double bounce
mechanism [27].

Snow cover and layered structure Due to the coherent nature of radar systems, layers
of different electromagnetic properties can lead to interference effects – similar to
a Fabry-Pérot interferometer, but more complex because of the geometry, surface
roughness and volume scattering. Snow-covered ice is very common and the increase
in its liquid water content leads to a sharp decrease in backscatter during melting.
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4. Hidden Markov Models

A Hidden Markov model (HMM) is a probabilistic model of a sequence of observations.
These observations are assumed to be generated by an unobserved process. HMMs have
been successfully applied in a host of scientific applications [18]. Their use is particularly
widespread in the analysis of DNA and protein sequences, as well as in text and speech
recognition.

Ghahramani [41] gives a brief overview of Hidden Markov models and some of their
generalizations, whereas Elliott et al. [31] provide an in-depth, self-contained treatment.

This chapter contains an elementary presentation of Belief networks, which are graphical
representations of probability distributions. They are introduced because Hidden Markov
models can be conveniently expressed as Belief networks. Subsequently, the probabilistic
structure of HMMs, as well as the important tasks of inference and the learning of param-
eters are described.

4.1. Belief networks

Belief networks (BN), also called Bayesian networks, are a widespread form of graphical
model of multivariate probability distributions. In a graphical model, each random variable
is represented as a vertex in a graph. The edges of the graph encode relations between the
variables. There are different kinds of graphical models, but Bayesian networks are among
the most common and are particularly amenable for the description of Hidden Markov
models. The following brief survey mainly follows Barber [4] and Bishop [13].

Random variables are denoted by capital letters, e.g. X. In the discrete case, they can can
take on any of the states x1 . . . xn in their domain ΩX and the probability of the event X = xi
is described by a probability mass function P(X = xi). For simplicity, in the continuous
case, the probability density function will also be denoted in the same way P(X = x).
When describing graphical models, it is commonplace to abbreviate P(X = x) as P(x),
thus making the random variable and the associated distribution function implicit. When
marginalizing over a variable, ∑x P(x, y) is shorthand for ∑sεΩX

P(X = s, Y = y).

Belief networks are motivated by the fact that any probability distribution over the ran-
dom variables X1, X2 . . . XN can be written in cascade form [4]:

P(x1, x2 . . . xN) = P(x1)P(x2|x1) . . . P(xN |x1, x2 . . . xN−1)

More specific distributions might allow for factorizations where some of the dependencies
in can be dropped, e.g.

P(x1, x2, x3) = P(x1)P(x2|x1)P(x3|x2) (4.1a)
P(x1, x2, x3) = P(x1)P(x2|x1)P(x3|x1) (4.1b)

P(x1, x2, x3, x4) = P(x1)P(x2)P(x3|x1, x2)P(x4|x3) (4.1c)
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4. Hidden Markov Models

Belief networks are graphical representations of such factorizations. Each node (vertex)
of the graph encodes a variable. A directed link is drawn from node i to j if j is condi-
tioned on i in the factorization. Figure 4.1 illustrates these principles by depicting the BN
corresponding to equation 4.1.

(a) Markov Chain (b) 3-node BN (c) 4-node BN

Figure 4.1.: Three simple Belief networks, cf. equation 4.1 for the corresponding factoriza-
tions

For the subsequent sections some terminology has to be introduced. We follow the
notation of [4]. If there is a directed arc from node i to j, j is said to be a child of i and i a
parent of j. A path is a sequence of vertices and two consecutive vertices are connected by
an edge. Note that, unless explicitly stated otherwise, we do not consider the direction of
the arcs in the definition of a path, i.e. we neglect the arrows. A vertex i is called a collider
relative to a path, if the arcs connecting it to both its neighbours point to i.

These concepts are now illustrated by referring to figure 4.1. In figure 4.1a, X2 is child
of X1 and parent of X3 In figure 4.1b, X2 and X3 are both children of X1. The fact that a
collider is defined relative to a path can be appreciated in figure 4.1c, where X3 is a collider
on the path from X1 to X2, but not from X1 to X4.

4.1.1. Conditional independence

The links in the graph, or rather the lack thereof, give important information about the
conditional independence relations of the probability distribution. Variable X is said to be
conditionally independent of Y given Z if for all x, y, z P(X = x, Y = y|Z = z) = P(X =
x|Z = z)P(Y = y|Z = z) or equivalently if P(X = x|Y = y, Z = z) = P(X = x|Z = z).

The concept of d-separation allows one to read off the conditional independence struc-
tures of a distribution from its graph. The following definition is taken almost verbatim
from [4].

Definition (d-separation) Let X ,Y ,Z be disjoint sets of vertices of a graph G. X and Y are
d-separated iff all paths1 between any x ∈ X and any y ∈ Y are blocked.

A path U is said to be blocked if there is a node w on U such that either

• w is a collider and neither w nor any of its descendants is in Z
1the direction of the arcs is not taken into account
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4.2. Probabilistic structure of Hidden Markov models

• w is not a collider on U and w is in Z

The sets of variables X and Y are conditionally independent given Z in any probability
distribution that can be represented by G, if they are d-separated by Z .

4.2. Probabilistic structure of Hidden Markov models

An HMM is a probability distribution of two sequences of random variables: X1:T
2 and

Y1:T. Xi and Yi are called the state and observation random variable at time i, respectively.

HMMs get their name from the fact that the sequence x1:T is not known. At a given
epoch i, however, the current value of the state xi influences the probability distribution of
the variable Yi, whose observed realization is yi.

Definition (Hidden Markov Model) Let X1:T and Y1:T be sequences of random variables.
Each Xi is a discrete random variable over the states s1 . . . sn. Each observation yi can be
multi-dimensional and either continuous or discrete. The joint probability of a Hidden
Markov Model is given by [41]:

P(x1:T, y1:T) = P(x1)P(y1|x1)
T

∏
t=2

P(xt|xt−1)P(yt|xt) (4.2)

In this notation, xi is a realization of the random variable Xi and thus represents an arbi-
trary fixed element of the state space ΩXi = {s1 . . . sn}. The Hidden Markov Model can
thus be represented by the Bayesian network shown in figure 4.2.

Figure 4.2.: Belief network of the Hidden Markov model.

The Belief network in figure 4.2 encodes many different conditional independence as-
sumptions. The following two are the most important ones and can be easily checked
using the concept of d-separation:

• Two observations Yi and Yj are independent given any state Xk if i ≤ k ≤ j. Without
conditioning on any state, they are dependent.

• Given the current state Xt, any future state Xu is independent from any past state Xv,
where u > t and v < t. They are said to fulfill the Markov Property [42].

2X1:T is shorthand for X1, . . . XT
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4. Hidden Markov Models

Probability distributions that can be described by the BN of figure 4.2 are often referred
to as state-space models, of which the HMM is an important example. Characteristics of
this BN such as the Markov Property also hold when the state variable is continuous. An
important example of this class is the linear Gaussian state-space model, which is also often
called Kalman Filter. This nomenclature, however, is slightly confusing because it does not
distinguish between the probabilistic model and an algorithm to estimate the state [5].

4.3. Inference

Inference describes the determination of posterior probabilities given some observed vari-
ables [13]. Such computations can become intractable very quickly for general probability
distributions, but due to the structure of the Hidden Markov Model, several types of infer-
ence can be done efficiently. In this thesis, we require two different kinds.

Firstly, we are interested in the probability distribution of the state variable Xi at a fixed
epoch i, having observed Y1:T = y1:T. That is, we want to compute P(Xi = xi|Y1:T = y1:T).
This can be achieved in a fast way with the Forward-Backward algorithm.

Secondly, the most probable sequence of states X?
1:T is of interest and can be determined

by the Viterbi algorithm.

4.3.1. Forward-Backward algorithm

The objective of the Forward-Backward algorithm is to compute P(xi|y1:T) for a given i. It
turns out that it is hardly more time-consuming to compute the posterior probabilities for
all epochs i.

The quantity of interest can be expressed in a more amenable form:

P(xi|y1:T) =
P(xi, y1:T)

P(y1:T)
∝ P(xi, y1:T)

= ∑
x1:i−1,xi+1:T

P(x1:i, xi+1:T, y1:i, yi+1:T)

= ∑
x1:i−1

P(x1:i, y1:i)︸ ︷︷ ︸
P(xi, y1:i) ≡ α(xi)

∑
xi+1:T

P(xi+1:T, yi+1:T|xi)︸ ︷︷ ︸
P(yi+1:T |xi) ≡ β(xi)

The simplification in the last step is allowed due to the distributive law and the conditional
independence relations. α(xi) can be expanded as

α(xi) = P(xi, y1:i)

= ∑
xi−1

P(xi, xi−1, y1:i−1, yi)

= ∑
xi−1

P(yi|xi, xi−1, y1:i−1)P(xi|xi−1, y1:i−1)P(xi−1, y1:i−1)

= ∑
xi−1

P(yi|xi)P(xi|xi−1) P(xi−1, y1:i−1)︸ ︷︷ ︸
α(xi−1)
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4.3. Inference

Algorithm 1 Alpha messages

Base case:

α(x1) = P(x1)P(y1|x1) (4.3)

Recursion step:

α(xi) = P(yi|xi) ∑
xi−1

P(xi|xi−1)α(xi−1) (4.4)

Algorithm 2 Beta messages

Base case:

β(xT) = 1 (4.5)

Recursion step:

β(xi) = ∑
xi+1

P(yi+1|xi+1)P(xi+1|xi)β(xi+1) (4.6)

This is the key idea of the recursive scheme outlined in algorithm 1, and similarly for the
β-messages in algorithm 2.

These two types of messages can be combined to compute the required posterior dis-
tribution P(xi|y1:T). The numerator ensures the normalization of the posterior. Because
of this, the messages can also be normalized at intermediate steps to alleviate numerical
errors [4]. It can also be helpful to work with the logarithms of the messages [13]. Provided
all the α and β-messages are stored, the posterior can be evaluated very efficiently at any
time step.

P(xi|y1:T) =
α(xi)β(xi)

∑xi
α(xi)β(xi)

(4.7)

Note that this approach can also be applied to more general graphs, namely those with-
out undirected loops. These are called singly-connected graphs and the message-passing
is referred to as the Sum-Product algorithm [13].

The computation of the marginal probabilities is only possible by clever exploitation of
the structure of the joint distribution. The number of possible time-series x1:T grows as
O(NT) where N is the number of states. Evaluating the posterior distribution P(xi|y1:T)
corresponds to taking weighted averages of this exponentially growing number of time-
series of the state, which would be infeasible even for small T. The message passing
framework ensures that this can be done efficiently, namely in time linear in the length,
O(TN2).

In case of a continuous state, the idea of the recursive message passing scheme can still
be applied. The sums, however, have to be replaced by integrals and these integrals cannot
be evaluated in closed form in general [5]. The particle filter approximates the probability
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density functions by sampling and the integrals thus reduce to sums. The linear Gaussian
state-space model, on the other hand, has the property that all probability distributions
involved are Gaussians [4]; the message passing can thus be reduced to sequential compu-
tation of the mean and covariance. This is done by the Kalman Filter, which corresponds
to the α-messages.

4.3.2. Viterbi algorithm

The Viterbi algorithm can be employed to find the most probable sequence of states X?
1:T

conditioned on all the observations. For fixed y1:T, this is equivalent to maximizing the
joint probability P(x1:T, y1:T):

X?
1:T = arg max

x1...xT

P(x1:T, y1:T) (4.8)

As probabilities are non-negative, the operation of maximization is distributive over mul-
tiplication, so that message-passing can be employed to make the computations very effi-
cient. The computations are almost the same as in the Forward-Backward algorithm. On
more general singly-connected graphs, the sum product algorithm is replaced with the max
product algorithm, of which the Viterbi algorithm is a special case. The following formulae
(with a slightly different notation) are taken from [4].

Algorithm 3 Viterbi algorithm

Forward Pass

Base case:

µ(xT) = 1 (4.9)

Recursion step:

µ(xi−1) = max
xi

P(yi|xi)P(xi|xi−1)µ(xi) (4.10)

Backward Pass

Base case:

X?
1 = arg max

x1

P(x1)P(y1|x1)µ(x1) (4.11)

Recursion step:

X?
i = arg max

xi

P(xi|X?
i−1)P(y1|x1)µ(xi) (4.12)

The latter pair of equations in algorithm 3 is also referred to as backtracking. Because
the logarithm is a monotonous function, it is again possible to work with logarithms [13].
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4.4. Learning

4.4. Learning

In Machine Learning and Pattern Recognition, the expression ’Learning’ refers to the esti-
mation of parameters. In this section, the paradigms of Maximum Likelihood and Maxi-
mum A Posteriori estimation are presented. In presence of hidden variables, the likelihood
is usually very difficult to evaluate and manipulate, so that more sophisticated tools are
called for. One of these is the Expectation Maximization algorithm, which can be used to
estimate parameters in Hidden Markov models.

4.4.1. Maximum likelihood and maximum a posteriori

Every sufficiently complex model of a real-world phenomenon has parameters, which are
not or only approximately known. The objective of learning is the estimation of these
parameters.

According to the Bayesian philosophy, parameters are treated as random variables. Hav-
ing observed some data D, the posterior distribution of the parameters θ is given by Bayes’
rule [67]:

P(θ|D) = P(D|θ)P(θ)
P(D) (4.13)

where P(D|θ) is called the likelihood of θ and P(θ) is referred to as the prior. It encodes
the a priori assumptions of the modeller. Predictions and inferences are performed by av-
eraging with respect to all the parameters. These computations, although straight-forward,
are very challenging from a computational point of view [67]. Also for this reason, it is
common to only consider point estimates, i.e. to determine one vector of parameters.

(4.13) suggests to take the maximum of either P(D|θ) or P(D|θ)P(θ) as point estimate.
These approaches are called the Maximum Likelihood and the Maximum A Posteriori
estimates, respectively. These, particularly the former, also have a rich history in their own
right. As Maximum Likelihood estimators can be derived in a systematic fashion and can
be shown to possess very pleasing properties as the number of observations grows, they
are very popular.

It is common to work with the logarithm of the likelihood (log likelihood), because it
tends to be more suited for computations.

4.4.2. Learning in presence of hidden variables

The log likelihood l(θ) of the parameters θ often becomes difficult to evaluate and handle
in presence of latent variables. More specifically for the HMM, where y1:T is one sequence
of observations:

l(θ) = log (P(y1:T|θ)) = log

(
∑
x1:T

P(x1:T, y1:T|θ)
)

(4.14)

Note that P(Y|θ) simply means that the parameters of the distribution take the value θ. The
function on the right-hand side of (4.14) is also referred to as the marginal log likelihood.
It only provides reasonable information about the parameters if the hidden variables are
’missing at random’ [4], which, however, is the case for the given problem.
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The marginal log likelihood is rather cumbersome to deal with because it is the logarithm
of a sum. The EM algorithm provides an elegant framework for estimating the parameters
without having to work with l(θ) directly.

Before describing the algorithm, the Kullback-Leibler divergence has to be introduced.

Definition (Kullback-Leibler (KL) divergence, relative entropy) The KL divergence between two
probability distributions P(X), Q(X) is given by [67]:

DKL(P||Q) =

〈
log

P(x)
Q(x)

〉
P(x)

(4.15)

where 〈〉P(x) denotes averaging with respect to P(x). DKL(P||Q) can be shown to be non-
negative, with equality if and only if the distributions P and Q are identical.

Expectation Maximization algorithm

There are different ways to motivate and interpret the EM algorithm. This concise survey
adopts the approach taken by Neal[73]. In the following, Y and X refer to all the observed
and hidden variables, respectively.

Instead of maximizing the log likelihood l(θ), the objective function is taken to be
F (θ, Q(x)), which is analogous to the ’variational free energy’ in statistical physics [67].
Q(x) is a probability distribution over the hidden variables. F (θ, Q(x)) is given by the
following equivalent expressions [73]:

F(θ, Q(x)) = 〈log P(x, y|θ)〉Q(x) − 〈log Q(x)〉Q(x) (4.16)

= l(θ)− DKL (Q(x)||P(x|y, θ)) (4.17)

(4.16) puts emphasis on the decomposition into an energy term and an entropy term. The
former, 〈log P(x, y|θ)〉Q(x), has a much more pleasing structure than the log likelihood
because it is the sum of logarithms rather than the other way round. It is this fact that
makes the optimization problem easier. (4.17), on the other hand, shows that the variational
free energy is a lower bound on l(θ), which the EM algorithm maximizes by performing
the two steps in algorithm 4 repeatedly [73].

Algorithm 4 Expectation Maximization
E-Step Set Q(x) to P(x|y, θ)

M-Step Choose θ so that F (θ, Q(x)) or equivalently 〈log P(x, y|θ)〉Q(x) is maximized

Due to the non-negativity of the KL-Divergence and (4.17), the E-Step also corresponds
to a maximization of F(θ, Q(x)) w.r.t. Q(x). The EM algorithm can thus be interpreted as
a coordinate descent scheme on the variational free energy.

Determining Q(x) in the E-Step corresponds to performing inference in the probability
distribution. In the given case, the Forward-Backward algorithm ensures that this can be
done efficiently.

It can be shown that the likelihood increases after each step, which, for bounded l(θ),
entails convergence (of the likelihood)[108]. There is no guarantee that the EM algorithm
converges to the global optimum, so that it is advisable to use different initial values [4].
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5.1. SeaWinds on QuikScat

5.1.1. Instrument

SeaWinds was a Ku band scatterometer instrument onboard the QuikScat satellite, which
was launched on June 19th, 1999 [97]. It was the first ’pencil-beam’ scatterometer in space
– the spatial coverage was achieved by a spinning dish. This rotating motion enabled the
instrument to sample the swath with its two beams: inner and outer. Table 5.1 contains a
summary of the two modes.

Table 5.1.: Key parameters of the two modes. Source: [97].

Parameter Inner Beam Outer Beam
Polarization HH VV
Frequency [GHz] 13.4 13.4
Incidence Angle [◦] 47 55
Slant Range [km] 1100 1245

SeaWinds employed pulse compression using a linear chirp to achieve range discrimina-
tion inside the footprint [107]. The range-resolved measurements are referred to as ’slices’
[93], whereas the measurements encompassing the entire footprint are called ’eggs’. As the
noise of the σ0 measurements is considered to be of prime importance in most applications,
the slices are averaged to composites to achieve the required balance between spatial and
radiometric resolution. The technical specifications of the data products can be found in
[58].

On November 23rd, 2009, NASA [17] reported that the mechanical system responsible
for spinning the antenna ceased operating due to wear and tear. The life-span of the
instrument was much longer than the two-year period originally envisaged.

5.1.2. Pre-processing

The data are taken from the archive at the Institute of Photogrammetry and Remote Sens-
ing, TU Vienna, a detailed description of which can be found in [60].

The raw data were processed at the Jet Propulsion Laboratory (JPL), and published in
different formats. The L2A product consists of slice-composite backscatter measurements
and they are spatially grouped into ’wind vector cells’, which make up a preliminary grid
for each orbit [58].

In order to analyze the data in a systematic fashion and conduct time-series studies, these
σ0 measurements including relevant meta-data have to be re-gridded.
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In the processing chain described by [60], the same ellipsoid (GRS 80) as the one used by
JPL is adopted. The surface of this ellipsoid is tesselated by a grid with a fixed spacing of
10km. These grid points are further grouped into cells to facilitate processing tasks.

All σ0 measurements extracted from the L2A product whose centre of the footprint is
within 12.5km of the centre of the grid point are allocated to the respective grid point.

5.2. ASCAT on MetOp

5.2.1. Instrument

ASCAT is the C band scatterometer onboard the MetOp-A satellite, which was launched
into its sun-synchronous orbit in October 2006 [32]. Like its predecessor SCAT onboard the
ERS satellites, it is a fan beam instrument, but it contains six antennae, three on each side
[40]. The two swaths guarantee an improved temporal coverage compared to the previous
fan beam instruments [35]. The main characteristics of the scatterometer are summarized
in table 5.2.

Table 5.2.: Characteristics of the ASCAT instrument. Adapted from [40]

Parameter Value
Frequency 5.255GHz
Polarization VV
Swath Width 550km

5.2.2. Pre-processing

In order to derive a σ0 value, normalized to an incidence angle of 40◦, the following pre-
processing steps have to be applied [9]:

Resampling The backscatter coefficient σ0 and additional parameters are resampled to a
grid, which is similar to the one used for archiving the QuikScat data but based on
the GEM6 Ellipsoid [8].

Azimuthal normalization An azimuthal correction, which also depends on the incidence
angle, is applied. The value of the correction is estimated based on previously ac-
quired data.

Incidence angle normalization The backscatter coefficient σ0 is extrapolated to an inci-
dence angle of θ = 40◦, based on a second-order polynomial. As the dependence of
σ0 on θ is very sensitive to the vegetation cover, the parameters of the polynomial
have to be determined dynamically; cf. [9] for a detailed description.

5.3. ERA-Interim

The ERA Interim data set, produced by the European Centre for Medium Range Weather
Forecasts (ECMWF), encompasses a host of meteorological and oceanographic parameters
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[11]. It is a data assimilation scheme that incorporates in-situ and satellite observations into
a physical model of the atmosphere, oceans and land surface [92]. The spatial resolution of
the model and the data is about 80km (which is less than the one of the ECMWF Forecasts).
The set of parameters includes the air temperature at two meter height and the temperature
of the topmost soil layer.

5.4. IMS

The Interactive Multisensor Snow and Ice Mapping System (IMS) is a global snow and
sea/lake ice data set produced by the National Oceanic and Atmospheric Administration’s
National Environmental Satellite Data and Information Service (NOAA/NESDIS) [76]. The
reference resolution is 4 km but a product with 24 km resolution is disseminated as well;
this is the data used in this work. The areal extent of the snow and ice cover are derived
manually by analysts on the basis of the following data sources [46]:

Visible and IR instruments on polar satellites e.g. AVHRR, MODIS

Visible and IR instruments on geostationary satellites e.g. Meteosat-5

Microwave radiometers e.g. AMSR-E

Active microwave instruments e.g. ASCAT, ASAR

External products meteorological data, snow models (e.g. SNODAS)

According to Helfrich et al. [46], the analysts prefer to work with visible and IR data but
have to rely on microwave and external data when the former are unavailable or inconclu-
sive; this can be due to the viewing geometry at high latitudes, insufficient illumination or
cloud cover.

5.5. In-situ data

5.5.1. Snow measurements

The data set DSI-9808 by the Russian National Climate Data Centre [87] encompasses
around 400 stations in Russia. At these locations, several properties of the snow cover
are monitored every 10 days (or more frequently during the melt periods). Among the
variables recorded in the database are: snow depth, snow structure and ice crust thickness.

5.5.2. WMO CISL RDA ds512.0

This data set, a global collection of in-situ meteorological observations, is maintained by the
Computational and Information Systems Laboratory (CISL) at the National Center for At-
mospheric Research (NCAR) [101]. Subsequently, it will often be referred to as the ’WMO’
data set. Among the variables stored in the archive are the maximum and minimum daily
temperature and precipitation. In addition, observations of the snow height are available
at some of the stations.
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6. Implementation

In this chapter, we describe the processing chain that yields the estimate of the Freeze/Thaw
state, thereby drawing heavily on the theory presented in the preceding chapters. Subse-
quently, the backscatter model will be presented. It allows us to better understand the
signals we observe and intend to combine.

6.1. Sensor fusion model

The flowchart in figure 6.1 illustrates the main steps:

Preprocessing At this stage, the input data are read and the probabilistic model is set up.

Parameter Estimation After having retrieved initial values, the parameters are estimated
with the help of the EM Algorithm.

Inference and Output The quantities of interest such as the marginal posterior distribu-
tions are inferred. Subsequently, these data are summarized to facilitate their inter-
pretation.

Q(xt)

θθI

y1:T

y1:T

QuikScat
σ0

ASCAT
σ0

40

Marginal
P(xt|y1:T)

Most likely
X?

1:T

Calculate
Time-Series

Initial
Values

E-Step

M-Step

Forw./Backw.
Viterbi

Preprocessing Parameter Estimation Inference and Output

Figure 6.1.: Illustration of the data flow.
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6.1.1. Preprocessing

Probabilistic Model

The probability distribution of a Hidden Markov Model is given by equation 4.2

P(x1:T, y1:T) = P(x1)P(y1|x1)
T

∏
t=2

P(xt|xt−1)P(yt|xt) (6.1)

Xt and Yt being the random variables at epoch t of the states and observations, respectively.

The key properties of this model were discussed in chapter 4. In the context of this thesis,
we will associate the latent variables Xt with the Freeze/Thaw state and the observable
variables Yt with the input data.

The idea of the probabilistic modelling can be summarized as follows: the observed
quantities and the unknown state are assumed to follow the distribution (6.1). The prob-
abilistic framework allows us to calculate probabilities of the Freeze/Thaw state based on
these observations.

Input data

This model is very flexible; adaptations to incorporate different sensors as well as weather
forecasts or in situ data are easily possible. In this thesis, however, we concentrate on the
data described in chapter 5: SeaWinds outer beam and the ASCAT measurements reduced
to a fixed incidence angle of θ = 40◦.

Depending on several factors, there can be varying numbers of measurements by each
instrument. To illustrate: SeaWinds can acquire more than 25 recordings for each beam at
high latitudes but significantly fewer closer to the Equator. This is why we summarize the
data by extracting the following three features:

SeaWinds Difference: swd The difference of the mean QuikScat σ0 values (in dB) acquired
in the morning and the evening1. This is in analogy to the diurnal difference approach
discussed in section 1.4.

SeaWinds Mean: swm The daily mean of the SeaWinds σ0 values.

ASCAT Mean: am The daily mean of the ASCAT σ0 values. The grid point closest to
QuikScat point is considered.

The reason for there being no ASCAT diurnal difference feature is the comparably small
number of observations by this instrument even at high latitudes.

These three features are assumed to be independent conditioned on the state Xt. The
Belief network implied by this assumption is sketched in figure 6.2. For each state and
each feature, we assume that the conditional probability distribution (emission probability)
can be reasonably well approximated by a Gaussian distribution.

1Morning: 01:00 - 05:00; Evening: 17:00 - 21:00. Measured in mean local solar time.
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Figure 6.2.: Belief network for a HMM with three independent observational random vari-
ables, indicated by the superscripts.

States

The states Xt are discrete random variables; in our case they correspond to the freeze/thaw
state we want to infer. As briefly described in section 1.4, the existing approaches usually
consider either two or three states. The former just distinguish between frozen and non-
frozen, the latter also allow for a ’thawing’ state, characterized by diurnal thawing and
freezing.

Experiments have shown, however, that due to the different properties of Ku and C band,
a fourth state is called for: the soil being frozen but without snow cover. During these times,
C band backscatter is low (like it usually is in winter), but so is Ku band due to the lack
of snow. Note that, if we only dealt with C band data, we would also restrict ourselves to
three states. The sample space of the states Xt is thus S4 = {0, 1, 2, 3}:
0 Frozen, with snow cover

1 Non-Frozen

2 Thawing

3 Frozen, without snow cover

6.1.2. Estimation of parameters

Based on the assumptions described in the previous section, the probabilistic model of (6.1)
can be expanded as

P(x1:T, y1:T) =P(x1; θ1)P(yswd
1 |x1; µswd, σ2

swd)

· P(yswm
1 |x1; µswm, σ2

swm)P(yam
1 |x1; µam, σ2

am)

·
T

∏
t=2

P(xt|xt−1; A)P(yswd
t |xt; µswd, σ2

swd)

· P(yswm
t |xt; µswm, σ2

swm)P(yam
t |xt; µam, σ2

am) (6.2)

where the symbols after the semicolons represent the parameters of the respective term.
Due to the varying number of observations, the variances of the emission probability terms
are not constant:

SeaWinds diurnal difference swd σ2
i [t] = σ2

swd,i
(Nam[t]+Npm[t])/Nam[t]Npm[t]

SeaWinds mean swm σ2
i [t] = σ2

swm,i/N[t]
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ASCAT mean am σ2
i [t] = σ2

am,i/N[t]

where N is the total number of observations for the given sensor, and Nam (Npm) the number
of those in the morning (evening).

Table 6.1 contains all these parameters of the probabilistic model that have to be esti-
mated or that are held constant based on the backscatter model and empirical data.

We set the parameters based on Maximum Likelihood learning; this approach is often
taken because it provides a convenient framework that fits in nicely with graphical mod-
els. Besides, it is comparatively easy to compute the estimates; in the presence of latent
variables, the EM Algorithm provides an iterative scheme for maximizing the marginal
likelihood, which would be hard to optimize or even evaluate otherwise.

Being an iterative approach, the EM algorithm needs initial values of the parameters.
In addition, several parameters will be constrained based on empirical observations and
theoretical considerations.

Initial values and constraints

The probability of the initial state X1, θ1, is a parameter of the distribution that is specified
beforehand. Similarly, the transition probabilities, as described by the stochastic matrix A,
are held constant. As they are expected to be roughly the same everywhere, only one set
of values is used; these can be found in the appendix.

In contrast to the transition probabilities, the parameters of the emission probabilities
P(yt|xt) depend strongly on the spatial location of the grid point considered. Consequently,
they have to be estimated for each time series.

Extensive data analysis has revealed that the means of the emission probability densities
for the thawing parameter 2 cannot be estimated reliably because they occur so rarely.
They are thus set empirically to the values shown in table 6.1. Similarly, the variances are
chosen to be a multiple of those of state 0 and the means for states 2 and 3 are expressed as
functions of those of states 0 and 1. The means of the diurnal differences are set to zero for
all but the thawing state. The reasoning behind these values will be explained in chapter
7, based on the backscatter model as well as real data.

The initial values for the means of the SeaWinds and ASCAT σ0, these are extracted from
the medians of the measurements in January and July – due to the restrictions described
above, initial values are only needed for states 0 and 1.

EM algorithm

The EM algorithm consists of two steps – the E-Step and the M-Step –, that are applied
repeatedly in an alternating fashion. In order to avoid overfitting (and because it works
well in practice) the EM algorithm is only performed once. This is similar to the regular-
ization induced by limiting the number of steps in the backpropagation algorithm when
estimating the weights in feedforward neural networks [67]. In our case, the likelihood is
a very complicated function exhibiting a possibly large number of local maxima. If we did
not fix the transition probabilities, there would be an inherent symmetry: the state ’frozen’,
for example, could map equally well to 1 instead of 0. Such issues are often encountered
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6.2. Backscatter model

in unsupervised learning [4]. In contrast to typical machine learning situations, we em-
ploy models to fix and constrain certain parameters; the nature of these constraints was
described above.

In the M-Step, the energy term 〈log P(x, y|θ)〉Q(x) has to be maximized. Substituting
(6.2) into this expression, we notice that we only need to know the marginals Q(xt) for es-
timating the parameters of the emission probabilities. These can be found by the Forward-
Backward algorithm (this is the E-Step).

For constant variances of the emission probabilities, the M-Step for the Gaussian HMM
can be found in e.g. [4]. Due to our parameterization, the derivation is a bit more compli-
cated. The resulting equations are summarized in algorithm 5 in the appendix.

6.1.3. Inference

Inference is the task of deriving probabilistic information from the graphical model. In
terms of the Hidden Markov Model, two quantities are important:

Marginal probability P(xt|y1:T) can be determined with the Forward/Backward Algo-
rithm – algorithms 1 and 2, equation (4.7).

Most probable time-series X?
1:T is easily computable by the Viterbi Algorithm – algorithm

3.

The state space S4 = {0, 1, 2, 3} is not very convenient to deal with, particularly because
not only frozen landscapes without snow cover but also thawing landscapes are often
classified as state 3. Thus we map S4 to S3 = {0, 1, 2}: state 3 is converted to 2 from
February to July and to 0 otherwise. When dealing with marginal distributions P(xt),
the probabilities simply have to be added (as they correspond to disjoint events). This
representation is more pleasing intuitively and facilitates visualization and comparison
with other data sources.

These results can be summarized in numerous ways; an example is the extraction of key
dates, such as the date of freeze-up. As will be shown in section 7.2, such very simple
products lend themselves to visualization and human interpretation.

6.2. Backscatter model

The previous discussions have shown that the dynamic evolution of snow as well as the
freezing and thawing of soils manifest themselves in σ0 in a way which is strongly depen-
dent on the observation frequency.

Having primarily the tundra biome in mind, we focus on the contributions by the ground
and snow, which can possibly be layered. The model we adopt is very similar to a family
of approaches, which have been widely used [1][72]; the differences mainly affect smaller
details. The total backscatter is modelled as the incoherent sum of the following terms:

σ0 = κσ0
soil + σ0

snow (6.3)

where κ describes the attenuation of the soil component due to the overlying snow, σ0
soil the

backscatter of the soil and σ0
snow the total backscatter of the snow. The last term contains

the contribution due to volume scattering and any interface, i.e. the surface of the snow.
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6.2.1. Soil

The discussion in section 3.2.2 has shown that σ0 is primarily dependent on two factors:
the dielectric constant and the texture.

Variations of εr of a given soil are mainly caused by changes in soil moisture. Commonly,
mixing models are employed to describe this dependence. Even though quite sophisticated
models which distinguish between bound and free water – which, for a given soil water
content depends on the composition of the soil, e.g. the amount of clay – have been de-
veloped, we adopt the very simple model by Birchak [12]. This model can also be used to
predict εr of the soil when it is frozen.

The second factor is the surface roughness. In order to keep the model and the parametriza-
tion simple, we adopt the empirical model by Oh et al. [77]: the backscatter (for a fixed
polarization and incidence angle) is only a function of the RMS height s and the bulk di-
electric constant εr. The former encompasses equations for co-polarized (horizontal and
vertical) and cross-polarized backscatter:

q =
σ0

hv
σ0

vv
= 0.23ΓTE(0)

(
1− e−ks

)
(6.4)

√
p(θi) =

√
σ0

hh
σ0

vv
= 1−

(
2θi

π

)(3Γ2
TE(0))

−1

e−ks (6.5)

σ0
vv(θi) = 0.7

(
1− e−0.65(ks)1.8

) cos3(θi)√
p

(
Γ2

TE(θi) + Γ2
TM(θi)

)
(6.6)

where the reflectivities Γ(θi) are given by (3.14) and (3.16) and ks is the product of the norm
of the wave vector and the RMS height. According to the authors, the model shows good
agreement with empirical data for 0.1 ≤ kh ≤ 6 and 2.5 ≤ kl ≤ 20.

6.2.2. Snow

The most widespread simple model for describing the backscatter of snow has already
been introduced in section 3.2.2. The formula reads

σ0
snow =

cos(θ)γ2

2γ1

(
1− e−2γ1d/cos(θ)

)
+ σ0

grounde
−2γ1d/cos(θ) + σ0

snow_sur f ace (6.7)

The coefficients γ1 and γ2 have to be related to the physical properties of the snow pack.
By assuming that the medium is not too dense and that due to the long wavelength, the
individual snow grains can be considered as Rayleigh scatterers, α f can be obtained by
substituting (3.22) into (3.19).

α f = N
128π5

3c4 r6 f 4
(

εr − 1
εr + 2

)2

(6.8)

(6.9)

.
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The absorption coefficient can be obtained by analogy with a homogeneous medium: it
is chosen in such a way that the absorption corresponds to the reduction in power encoun-
tered by a planar wave in a medium with complex dielectric constant εr [1]:

γ f = 2|k|=(√εr) (6.10)

In order to apply the simplified treatment of radiative transfer, we choose the δ two-
stream approximation according to Meador & Weaver [70]. For the phase function of
Rayleigh scatterers, the coefficients can be shown to be:

γ1 = β f −
α f

4
(6.11)

γ2 =
3
4

α f (6.12)

In this approximation, the coefficient κ of (6.3) corresponds to e−2γ1d/cos(θ); the surface scat-
tering can be incorporated by setting

κ = T2
↑T2
↓ e
−2γ1d/cos(θ) (6.13)

where T2
↑ and T2

↓ are the appropriate Fresnel power transmission coefficient as defined in
section 3.1.1.

The dielectric constant and thus the absorption coefficient is strongly dependent on the
liquid water content. We use the dielectric mixing formula for snow proposed by Maetzler
et al. [68].

Besides the radiation scattered due to the heterogeneous nature of a layer of snow, such
a layer also acts as a bulk object; this leads to surface scattering. The dielectric contrast is
very low for dry snow, as is thus the surface scattering term. As with the soil contribution,
we employ the empirical model by Oh to describe the scattering off the rough surface, even
though this model was derived on the basis of measurements of bare soil.

Multiple layers

This simple model, where multiple scattering effects are neglected, can be extended to
several planar scattering layers in a straight forward way.

The easiest way to generalize this model is to implement it recursively: the term σ0
soil_sur f ace

can then be thought of as the total contribution of the snow and soil beneath the given layer.

6.2.3. Discussion

The model presented above is semi-empirical in nature; many similar approaches have
been proposed. There are three important points where many of these models differ:

1. Computation of the transmission κ

2. Determination of the incidence angle beneath a scattering layer

3. Choice of the dielectric constant in the rough surface scattering model
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We consider the surface scattering contribution in the computation of κ by the Fresnel
power transmission coefficient. This approach, which has also been taken by Shi & Dozier
[91], suffers from the fact that it is not consistent with the rough surface scattering model,
thus violating the principle of energy conservation. For the situations commonly encoun-
tered when modelling snow, the choice of κ is not very critical. In case of dry snow, the
bulk dielectric constant and thus the surface scattering is very small. The absorption is
extremely high and the contribution of the soil negligible if, on the other hand, the snow is
wet.

The second point concerns the incidence angle on the soil, which we consider to be equal
to the incidence angle at the snow surface. An alternative would be to employ Snell’s law;
this approach is for example taken in [91]. For dry snow, the difference is negligible. For
wet snow, on the other hand, the backscattering from the soil is small due to the absorption.

A tacit assumption of the rough surface scattering model is that the relative dielectric
constant of the upper medium is 1, corresponding to air or vacuum. For loose, dry snow,
this approximation is permissible; it breaks down with increasing liquid water content. Shi
and Dozier [91] replace the permittivity of the soil by its dielectric contrast εnew = εsoil

εsnow
.

There is, however, no physical justification for this assumption; the Fresnel equations call

for replacing the index of refraction:
√

εnew =
√

εsoil
εsnow

. This is the approach taken in our
model. Note that – similar to the varying incidence angle – the contribution of the soil to
σ0 becomes negligible quickly with increasing liquid water content.

6.2.4. Vegetation

The main purpose of the model is to provide a better understanding of the influence of the
snow height and its composition. It is not intended to estimate parameters from measure-
ments. This is the reason why vegetation is not considered; in the following, we will briefly
discuss the expected consequences.

The cloud model is the simplest backscatter model of vegetation. As it is of the same
form as our snow model, it could be easily included as an additional layer. The parame-
ters, however, are usually estimated from data because they do not have a clear physical
interpretation. At C-band, the dynamic effects of the vegetation cover at high latitudes
are presumably rather small. At Ku-band, the scattering from canopy elements is stronger.
Nghiem and Tsai [75], however, report that even in the taiga, the vegetation cover is often
so sparse that σ0 at Ku-band is dominated by the effects of snow and liquid water.
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7. Results

This chapter focusses on the results obtained with the previously discussed algorithm. The
main characteristics of the time-series are analyzed by means of the backscatter model.
Subsequently, several examples of how the probabilistic information can be exploited to
derive higher level products, such as maps, are given.

The results described in this chapter will be discussed in more detail in the next chapter,
where the emphasis is put on validating the outcomes of the sensor fusion algorithm.

7.1. Freeze/thaw time series

According to the analysis of chapters 2 and 3, there are several key factors that have a
significant impact on the dynamics of σ0 and this influence possibly strongly depends on
the radar frequency:

• Frozen and thawed soil

• Snow depth

• Snow metamorphosis (varying grain sizes)

• Liquid water content of snow

• Vegetation

The relative impact of these influences depends on the biome and land cover; the results
of the sensor fusion model applied to real data and the predictions of the backscatter model
can elucidate the connection.

7.1.1. Representative time series

Tundra wetlands

A summary of the key results for a grid point in the tundra (72 N, 121 E) is shown in figure
7.1a. As there is hardly any difference between the time series of the most probable state
Xm

t and the results of the Viterbi algorithm X?
t , only the former is displayed.

The freeze-up in late September is sudden and very evident at C band, less so at Ku
band. The corresponding transition in the estimated state, as described by P(xt), is thus
also clearly defined.

The slow growth of swm suggests a gradual build-up of snow and accompanying struc-
tural changes, which is not noticeable at C band. A melting event in May leads to a
precipitous fall of σ0 at both bands and simultaneously to a significant diurnal difference
(swd). As not all the snow melts, the remaining snow undergoes metamorphosis: an in-
crease in grain size that results in very large backscatter, even at C band. Subsequently,
there is another melting period.
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Larch taiga

A typical time series (63 N, 127 E) for the taiga biome can be found in figure 7.1b.

The transition from frozen to non-frozen conditions is not as sudden and pronounced
as in figure 7.1a. The slow accumulation of snow and its metamorphosis is particularly
evident at Ku band. The melting sets in at the end of April; it leads to the expected changes
in σ0 and the diurnal difference swd. Overall, these transitions are well reflected in Xm

t .

A comparison with the tundra time series, where vegetation presumably plays a com-
paratively minor role, reveals that the influence of the canopy on σ0 is secondary to the one
caused by snow and the freeze/thaw dynamics of the soil. This could partly be explained
by the fact that the larch is a deciduous tree.

Agricultural Velds

The data shown in figure 7.2a are the measurements of agricultural fields close to Kasan
(57 N, 48 E).

During non-frozen condition, the backscatter at C band (and to a much smaller extent
at Ku band) exhibits an interesting behaviour: a sudden increase is followed by a slow
decay. Although the validation with external data is only treated in chapter 8, it should
be mentioned that, as revealed by ERA Interim data, this is caused by rain fall events, or
rather the corresponding evolution of the soil moisture.

Compared to the other time series, the backscatter in winter is not dominated by snow. Its
influence, however, is particularly striking in spring: there are complicated melt/refreeze
patterns. This is noticeable in both bands as well as in the diurnal difference. The results
of the analysis reflect these intricate dynamics.

Steppe

Figure 7.2b contains the results of a representative area (51 N, 119 E) of grasslands typical
for the steppe biome.

The behaviour in summer is similar to the one seen in figure 7.2a; in particular the
sudden increases in soil moisture and thus σ0. Unlike the other time series discussed here,
this one only gradually falls off to its average value in winter, both in Ku and C band.
There is a rather small increase at Ku band, which suggests an accumulation in snow and
continuous metamorphosis.

As opposed to the other time series, this one lacks a clear melting or thawing signature.
Bearing the latitude in mind, it is obvious that due to the aforementioned reasons the
probabilistic analysis is not working very well. In fact, such difficulties are also encountered
in the test area. A more in-depth in analysis (in particular, comparisons with external data)
can be found in chapter 8.
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7.1. Freeze/thaw time series

7.1.2. Model predictions

Snow depth

In light of the theoretical discussion in chapter 3 and the previous examples, it is evident
that the depth of the snow has a significant impact on σ0, particularly at Ku band.

The dependence on the frequency is depicted in figure 7.3, which is actually the same
plot as the one shown in chapter 3. The following parameter settings have been used:

Snow structure Following [15], the number density N = 1.3 · 108 m−3 and the grain radius
r = 4.5 · 10−4 m. The RMS height of the surface is 1 cm.

Snow permittivity The liquid water content is assumed to be 0.

Soil εr = 2.3 for dry soil, which is a reasonable value [12]. The frozen ground has a
volumetric ice content of 0.2 and its RMS height is taken to be 5 cm.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Snow depth [m]

-14.0

-13.0

-12.0

-11.0

-10.0

σ
0

[d
B] SeaWinds 54◦

ASCAT 40◦

Figure 7.3.: Simulation of σ0 of dry snow for the frequencies and incidence angles of
QuikScat and ASCAT

Snow metamorphism

Snow metamorphism is the process of compaction of a snow pack or changes in the grain
size distribution with time; a discussion of the phenomenon and its causes can be found in
section 2.1.2.

Due to the pronounced influence of the size of an object on its scattering cross-section
in the Rayleigh regime, snow metamorphosis manifests itself in σ0. Figure 7.4 depicts
simulation results of the backscatter model, where all other parameters are set to the same
values as before.

The refreezing of a melting snow pack results in characteristically large snow grains; this
is particularly evident in the time series in figure 7.1.
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0.5 1.0 1.5 2.0
Grain radius r [mm]

107 108 109

Number density N

-14.0

-12.0

-10.0

-8.0

-6.0

-4.0
σ

0
[d

B]

SeaWinds 54◦

ASCAT 40◦

Figure 7.4.: Simulation of σ0 of a snow pack of 1 m height: in the left subplot, the number
density varies with the grain size being constant; the grain size is changed at
constant mass density in the right subplot. The other parameters are the same
as in figure 7.3.

Snow melt

There are two striking features dominating the time series during snow melt events: diurnal
cycling and a precipitous drop in σ0. The former is caused by the fact that the backscatter
rises during the night as the liquid water refreezes and the snow undergoes metamorphism.

The latter is due to the steep increase in the absorption; ε”r of water is much bigger than
that of ice. The following simulation can make these assertions more quantitative: a two-
layered snow pack, whose top layer has a varying liquid water content. The lower layer is
half a metre in height, the other properties of this layer and the soil are the same as before.
The parameters of the wet snow layer: h = 0.1 m, N = 7 · 107 m−3, r = 9 · 10−4 m.

Note that the backscatter is increasingly dominated by the contribution of the snow
surface; it is thus very dependent on the roughness.

Frozen and thawed soil

The freeze-up is particularly evident in the time series in figures 7.1a and 7.2a: there is a
precipitous drop of σ0 at C band and, to a lesser extent, at Ku band. Figure 7.6 illustrates
the dependence of σ0 on the volumetric ice/water content, the parameters of the soil being
the same as previously. For simplicity, only completely frozen or non-frozen conditions are
considered and all the liquid water is treated as unbound (as always in the Birchak model
for εr).

7.2. Secondary products

The output of the probabilistic sensor fusion algorithm can be summarized to facilitate
analysis and visualization. The following three examples can only offer a glimpse at the
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0.00 0.02 0.04 0.06 0.08 0.10
Liquid water content
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σ
0

[d
B] SeaWinds 54◦

ASCAT 40◦

Figure 7.5.: Simulation of σ0 of a layered snow pack; the liquid water content of the topmost
layer varies.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Volumetric water/ice content
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-6.0

σ
0
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Ice

Water

SeaWinds 54◦
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Figure 7.6.: Simulation of σ0 of a bare soil as a function of frozen/liquid water content.

wealth of information contained in the time series.

Time of freeze and length of frozen season

The day of freeze-up (figure 7.7a) has been derived from the marginal probabilities by a
very simple method: the first day in autumn when 0 (frozen) is the most probable state.
The number of days between the freeze-up and the beginning of thaw can give insight
into the limitations imposed on many biophysical processes, e.g. metabolic activity; it is
depicted in figure 7.7b. The map clearly exhibits a north-south trend. Furthermore, there is
a striking correlation with topography – in particular the Verkhoyansk Range and Stanovoy
Range, cf. figure 2.2a.

There are two outliers in the Verkhoyansk Range and more importantly severe problems
south of 53◦N. These will be discussed in more detail in chapter 8.
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7. Results

Probability of thaw

The state 2, which corresponds to thawing, is characterized by wet snow during the day
and consequently very low overall backscatter and a significant diurnal difference. Figure
7.7c shows the marginal probability of thawing on 2008-05-16, once again emphasizing the
effects of altitude and latitude.
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8. Validation & Discussion

A discussion of the assumptions and limitations inherent in the probabilistic model forms
the first part of this chapter. The validation of any remote sensing product is of paramount
importance for determining its usefulness: the second section contains a comparison with
in-situ observations and global data products. The third part of this chapter consists of an
in-depth analysis of situations when the approach does not work satisfactorily.

8.1. Discussion of the assumptions

8.1.1. States

The notion of having a small number of discrete states that encode all information about
the physical reality is a serious limitation. Apart from the scale issue inherent to most
remote sensing practices, it would also represent a severe simplification for a perfectly
homogeneous terrain.

The theoretical considerations and the analysis of the data have revealed the following
points:

Snow height/Snow Water Equivalent influence the backscatter gradually, whereas the as-
sumption of having a frozen state 0 calls for a step-like dependence (which would be
a better assumption in the visible spectrum).

Snow metamorphism can lead to changes in σ0; it thus stands to reason that such infor-
mation should be included in the state variables.

Snow melting is the most important indicator for the thawing state 2. The liquid water
content of the snow, however, is not explicitly represented.

Soil freezing is assumed to be a binary decision: frozen or non-frozen. According to the
discussion in section 2.1.1, the larger pores freeze over before the smaller ones. In
addition, the depth profile has to be considered: when the active layer in permafrost
regions begins to freeze, a thawed layer of non-frozen soil can be sandwiched between
two frozen ones. The data, however, often show a distinct, precipitous drop in σ0, in-
dicating that with respect to microwave remote sensing, these limitations are not that
severe. Note that similar observations hold with regards to the freezing vegetation.

Lake ice (although barely considered in this thesis) is not a binary decision either, but de-
pends on many factors; cf. section 3.2.2 for a short discussion regarding its microwave
backscatter characteristics.

Inundation is not explicitly considered either. In the study area, it often occurs in conjunc-
tion with the snow melt due to the limited infiltration capacity of the soil.

In light of these simplifying assumptions, the choice of the number of states appears
rather pragmatic; it is in particular dependent on the sensors/features available. This is
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8. Validation & Discussion

also the reason for adding the state 3 ∈ S4, which enables the model to distinguish frozen
conditions with no or very little snow from conditions with significant snow cover. This
distinction would barely be possible without the simultaneous availability of Ku and C
band observations.

The advantage of adopting a discrete state is chiefly due to the fact that it allows a rather
robust inference (few possibilities) and, more importantly, the use of a simple model for its
evolution.

8.1.2. Conditional independence assumptions

There are several conditional independence relations inherent in the probabilistic model
defined generally in section 4 and specifically in section 6.

Firstly, the time series of the states is assumed to obey the Markov condition: given the
state at time t, states s < t and u > t are independent. This is presumably not the biggest
limitation, even though the continuous variables that are not explicitly considered could
reveal more information. As an example, consider t to be the onset of snow melt. The
knowledge that there was snow cover at s = t− 1 would barely influence the prediction
at u = t + 7, but information about the snow height at s probably would. If this variable
was part of the state, however, it would also be available at t and the Markov assumption
would still be reasonable.

Secondly, the visible variables Y at different epochs are deemed to be independent given
the state. Figure 7.1, for example, suggests that this is not the case. In this example, it is the
soil moisture which makes the backscatter at subsequent days dependent (even if the states
are known). Similar correlations are also induced by the snow height and grain size. The
obvious way to mitigate this issue would be to include such variables in the latent state.

Thirdly, the features Yswm
t , Yswd

t , Yam
t are assumed to be independent given Xt. This

approximation can break down for essentially the same reasons: snow metamorphism, for
example, can greatly increase the backscatter at both Ku and C band.

8.1.3. Parametrization

The decision which parameters to estimate freely and which to constrain was made based
on an analysis of the data and preliminary results. The rather small number of free param-
eters is also due to the fact that there is only a rather small overlap of the times of operation
of the two sensors. The values of the constrained parameters are based on extensive data
analysis and modelling considerations. Similarly, the emission probability distributions are
assumed to be Gaussians mainly for simplicity. More extensive sensitivity studies would be
needed to determine the validity and limits of these assumptions, i.e. in which conditions
they can give reasonable results.

The initial values of the parameters were determined similarly. As the expected values
of Yswm

t and Yam
t vary significantly, the corresponding parameters have to be estimated for

each grid point. The way this is done (taking the median of a representative period) is
quite arbitrary and could certainly be improved upon. It appears to work quite well in
general (and in the high-latitude regions in particular) but can break down when the time
span that forms the basis of the estimation is not representative. This could, for example,
be due to inundation in summer or a snow melt in winter.
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8.2. Comparison with external data sources

As the model is probabilistic in nature, choosing a method for estimating the parameters
that is based on probability theory only seems natural. The (marginal) likelihood has the
key advantage of being comparatively easy to work with and maximum likelihood does not
need any additional assumptions either (as a fully Bayesian approach would). In addition,
the model and the parametrization are sufficiently complex to render an ad-hoc, empirical
approach impossible.

The step-wise nature of the EM Algorithm for maximizing the marginal likelihood may
seem unattractive at first (although there are no known closed-form solutions), but it offers
the ability of regularization by only performing a limited number of steps. The modelling
decisions are included in the likelihood via the constraints and the initial values. In fact, the
’meaning’ of the states is nowhere made explicit. The EM Algorithm, by only considering
the likelihood, has a tendency to run off and choose parameters which are not consistent
with the physical interpretation. In practice, the decision to only make one iteration works
well and in general a second step does not lead to a significant improvement. More detailed
studies about the estimation process could offer additional insight.

8.2. Comparison with external data sources

8.2.1. In-situ observations

In-situ observations provide the opportunity to validate the results of remote sensing. They
are, however, sparse and they refer to a single point. It should be borne in mind that remote
sensing in general and scatterometry in particular pertain to much larger areas. This is
particularly true for the snow cover, which is one of the two in-situ parameters available;
the other is the air temperature.

In general, the transition from frozen to non-frozen conditions and vice versa is marked
by a period when the maximum temperature is above and the minimum temperature below
0◦C. The dependence of the Freeze/Thaw state on air temperature, although quite obvious
at first sight, is not that straightforward. Due to the reasons discussed above and in chapter
2, it should only be regarded as a proxy variable. A description of the data set can be found
in section 5.5.2.

As described in section 5.5.1, the observations of the snow cover were carried out in steps
of either two weeks or four weeks; they begin soon after the first snow fall and stop before
the snow cover disappears. The time of snow fall and melt can thus only be guessed at,
as it is not explicitly recorded. The data set of meteorological observations (section 5.5.2)
contains records of the snow heights at some of the station1; however, the storage of these
parameters was discontinued in December 2007. Figure 8.1 shows the distribution of the
observation stations.

In light of these reasons and the scarcity of the ground stations, the following analysis
will focus on the qualitative aspects.

Freeze-up can be detected quite well in the high latitudes (cf. figure 8.4b); this is mainly
due to the fact that the transition period is very short. The accumulation of snow is rather

1Although the snow height is given in centimeters according to the metadata, the values appear unrealistic,
cf. figure 8.4
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125◦E

55◦N

65◦N

Snow station
WMO station
WMO & Snow

included
not included

Figure 8.1.: Overview of the distribution of the observation stations. The blue symbols
(’included’) represent stations that are analyzed in detail.
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8.2. Comparison with external data sources

slow, which is made evident when comparing the Ku and the C band backscatter. Towards
the south, e.g. figure 8.4a, the transition period is longer but the drop in C band is often
very pronounced. The detected freeze date corresponds well with the first (significant)
snow fall in figures 8.2a and 8.2b.

The point at 50◦N in figure 8.3a exhibits a very gradual change from non-frozen to frozen
conditions; this can be seen in both the remote sensing and the in situ meteorological data.
The description of the freeze/thaw state with a discrete variable thus appears questionable.

The time series of figure 8.3b reveals a temporary snow cover of a few centimetres during
thawed soil conditions. It is not evident in the backscatter data and thus not reflected in
the results.

Midwinter conditions are stable in the study area, which is reflected in the temperature
records. The backscatter can change due to gradual snow metamorphism, which will
subsequently be analyzed in more detail.

A striking feature of the marginal probabilities is the kink in P(Xt = 0) in February,
e.g. in figure 8.3b. This is caused by the mapping from S4 to S3. The data show that the
current implementation leads to a rather unnatural evolution of P(xt) and should thus be
improved upon.

Thawing is characterized by melting snow: very low backscatter and positive diurnal dif-
ferences. The former, however, is also indicative of inundation. Figures 8.3a and 8.4b show
time series with pronounced thawing periods, whereas figures 8.2a, 8.2b and 8.4a exhibit
rapid transitions. These figures show that the period of thawing can be underestimated
at lower latitudes. In figure 8.6b, for example, the transition of P(xt) happens when the
backscatter at Ku band reaches its summer level, even though the one at C band is still
below it; this is corroborated by the snow measurements.

The period when the temperature drops below 0◦C during the night but rises above it
during the day, can be rather long; particularly at lower latitudes. The remote sensing
signal tends to make a quicker transition, particularly when there is comparatively little
snow.

Metamorphism can result in greatly elevated σ0; it is thus possible that the C band mea-
surements barely differ in summer and winter. The influence of gradual snow metamor-
phism is evident in figures 8.4a and 8.4b as opposed to figures 7.1a and 8.2b – one of each
corresponding to the tundra and taiga biome.

In figures 8.2a and 8.2b a single warming event in mid-November, which led to meta-
morphism but – judging from the σ0 observations – not to melting, can be observed. It
increased the backscatter in both bands. Figure 8.4a reveals a similar event in early spring.
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8.2. Comparison with external data sources

8.2.2. Global data products

The global snow data set described in section 5.4 provides binary information – snow
covered (0) or snow free (1) – on a daily basis. Although the data are derived in a semi-
automatic way, there appear to be artifacts in the product.

The ERA Interim product (section 5.3) contains the air and the soil temperature of the top
layer, both of which can be used as proxies for the freeze/thaw state. In order to facilitate
comparison with the results of the sensor fusion model, the four observations per day are
mapped to a discrete Freeze/Thaw state:

Frozen: 0 maximum temperature less than −3◦C

Non-Frozen: 1 minimum temperature above 3◦C

Thawing: 2 otherwise

Based on the confusion matrix defined below, a measure of the accuracy a can be derived:

Reference data
0 1 2

R
es

ul
ts 0 c00 c10 c20

1 c01 c11 c21
2 c02 c12 c22

aT =
c00 + c11

c00 + c01 + c02 + c10 + c11 + c12

aS =
c00 + c11

c00 + c01 + c10 + c11

where the former is applicable to temperature data and the latter to the snow cover data
set. This measure of accuracy does not consider cases when the reference data indicate
thawing as the transition periods predicted by temperature data alone can be very long.

The complete confusion matrix contains a lot of information and thus allows for a very
thorough analysis (bearing in mind, of course, that the standard error of certain entries can
be quite large). The advantage of using a single measure of accuracy lies in the fact that in
can be conveniently mapped and compared. It is thus easily possible to find out in which
situations the algorithm performs unsatisfactorily.

The results for the three data sets are mapped in figure 8.7. Considering the limitations
of the approaches, they give a very clear and uniform picture of the overall quality.
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8.3. Failure cases

The algorithm works well in the higher latitudes, except for the Verkhoyansk Range,
where serious problems are encountered. Even though the land cover and also the climate
are quite different, there is very little overall difference in the performance between the
tundra and the taiga.

The Stanovoy Range and nearby highlands (at around 57◦N) can be clearly discerned in
these maps. In particular, there are two small areas where the approach seems to work
insufficiently: one is barren, mountainous land similar to the Verkhoyansk range, the other
is the Zeyskoye Reservoir.

In the very south of the study area, along the Amur and its tributaries as well as in
the south-west corner, all reference data indicate unsatisfactory results. These areas are
predominantly pastures, fields and grasslands.

Even though the reference data sets should be interpreted with some caution as they
describe related but distinct geophysical parameters and are also subject to errors, they
can give important insight. This is particularly applicable in high-latitudes, where in-situ
observations are very sparse – there is, for example, no station in the Verkhoyansk Range.
Both temperature data sets as well as the snow data reveal similar patters regarding the
overall performance of the algorithm. It works well in vast stretches of the study area, but
breaks down in the south and in mountain ranges. These failure cases are analysed in more
detail in section 8.3.

8.3. Failure cases

The two failure cases identified previously are barren mountainous slopes and agricultur-
ally used areas.

Mountains The time series in figure 8.8a corresponds to a grid point in the Verkhoyansk
Range. The ground is barren and mainly consists of rock outcrops, characterized by ex-
cessive drainage [94]. The overall backscatter is high, which is probably due to roughness
effects. Consequently, the accumulation of dry snow is barely noticeable at Ku band: the σ0

values in winter and summer are almost the same. At C band, the freezing of the ground
diminishes the backscatter by about 1dB, which is a comparatively small drop and caused
by the lack of water due to the rapid infiltration into the ground. The most important
contribution is thus wet snow, as it acts as an absorbing layer and thus strongly decreases
σ0.

The detection of the spring melt works well enough, but the freeze-up is not correctly
identified. This is presumably due to two reasons: firstly, the small difference between
winter and summer backscatter and secondly, the parameter estimation. The initial values
for the mean of swm and am for non-frozen conditions, which are used in the EM algo-
rithm, are given by the median of the features in mid-July. In the present case, these are
particularly low, which is probably caused by remaining wet snow.

Similar effects detriment the performance of the algorithm at the grid point of figure 8.8b:
the difference between σ0 in summer and winter is small, caused by the lack of soil, which
makes the freeze-up only barely visible at C band. The problems are mainly encountered
in winter, when P(Xt = 0) ≈ P(Xt = 1). The sudden change in the probabilities is due to
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8. Validation & Discussion

the mapping from S4 to S3 and could thus be improved by a more sophisticated mapping
or additional data.

Agricultural land The performance of the algorithm varies widely in fields and pastures.
An example where it does not work well can be found in figure 8.9a. As the temperatures
drop in autumn, the soil becomes gradually drier (this is corroborated by ERA Interim
data); the freeze-up is thus not easily identifiable. The thawing signal is not very pro-
nounced either, particularly when compared to the soil moisture dynamics caused by rain.
In addition, there appears to be a backscatter maximum in mid-summer, which is possibly
related to the rather complex vegetation phenology and human interactions such as tillage.

The same patterns are discernible in figure 8.9b, an agricultural area close to the Amur
River. The rather dry conditions in autumn and presumably the plant phenology make
the freeze-up difficult to pick out. Overall, the differences associated with wet and dry soil
are much bigger than those associated with thawed/frozen soil. Particularly at Ku band,
the backscatter within a season varies more than in between seasons and thus cannot be
interpreted as easily as in the higher latitudes.

This example illustrates particularly well that the modelling choice of having one state
for non-frozen condition (and not taking soil moisture into consideration) is a severe sim-
plification. A possible work-around, that does not change the discrete state, could consist
a modification of the transition probabilities so that non-frozen conditions are strongly
favoured in summer.
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9. Conclusion

9.1. Outlook

The probabilistic sensor fusion model introduced in this thesis is a variant of a Hidden
Markov model. Such approaches have recently enjoyed a surge in popularity, particularly
when combined with pre-existing models of the ’state’, in which case the term ’data assimi-
lation’ is often used. Specific applications include weather forecasting (e.g. by the ECMWF
[78]) or ecosystem modelling [82].

Contrary to the aforementioned examples, in this thesis the state is a discrete variable.
This concept of sensor fusion based on Hidden Markov models could be more widely
applicable in remote sensing, e.g. for mapping inundated or burnt areas.

The analysis of the preceding chapters as well as considerations as to possible applica-
tions have raised several points; these concern the input data, the processing chain and the
validation of the results.

9.1.1. DiUerent Sensors

As the SeaWinds instrument onboard the QuikScat satellite has ceased operations, the
question about which sensor could be used instead naturally arises. The most obvious re-
placement is the Ku band scatterometer onboard Oceansat-2 [52], although the combined C
and Ku band scatterometers could be even more interesting: the Chinese satellite FengYun-
3E [50] and the American-Japanese satellite GCOM-W2 [56].

In addition, the use of different polarizations and frequencies could be worthwhile. The
algorithm could also be extended to work with data of a completely different origin, such
as:

Microwave radiometers offer similar spatial and temporal resolution and coverage. The
physics of the measurement process are different and could thus potentially be ex-
ploited to gain a better picture.

Visible/NIR instruments can offer data with sufficient temporal resolution, but suffer
from issues related to insulation and cloud cover. The signal is influenced by different
factors; for example, it would make the detection of very shallow snow possible.

9.1.2. Additional input data

Apart from remote sensing observations, global data sets derived from models could po-
tentially enrich the sensor fusion model. Meteorological models such as the forecasts by
the ECMWF are an interesting example.

Such data can be incorporated into the model in several different ways. Firstly, they can
be additional visible variables Yt; this might, for example, work well with soil temperature.
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9. Conclusion

Secondly, they can be used to parameterize the emission probabilities, which might be
a reasonable idea when working with snow height. Thirdly, they can be used as input
variables, thus essentially modifying the transition probabilities between successive states.
The air temperature lends itself to such an approach.

9.1.3. Spatial independence

In this thesis, each grid point (and thus each time series) is processed independently. In
general, the results between neighbouring grid points correspond quite well; i.e. the results
do not exhibit excessive noise of high spatial frequency.

Nevertheless, there are ways to extend the approach by introducing dependencies be-
tween the time series; the result would be a probability distribution of all epochs and grid
points. Apart from significant difficulties with finding an appropriate parametrization, the
handling would be extremely difficult and the probabilistic inference could only be done
approximately.

9.1.4. NRT processing

Remote sensing data such as raw ASCAT observations are disseminated in near real time
(NRT). The processing pipeline can easily be adapted to also provide results in near real
time.

The inference of the marginal probability P(xt) for data available at epoch t relies exclu-
sively on the α-messages. Due to their recursive nature, the update of the α-messages is
very cheap and fast: O(N2). The β-messages are not necessary for estimating the current
state, but only for estimating past states. In theory, they have to be re-computed every
time new data become available. Depending on the application, simple heuristics (e.g.
only updating them for one week) might work very well in practice. An alternative algo-
rithm suitable for this task is the correction smoothing by γ-messages, which is often the
preferred choice in such online environments.

The Viterbi algorithm for determining X?
t can be adapted for NRT processing as well.

Compared to the implementation presented in section 4.3, the direction of the message
passing has to be changed. Backtracking is not necessary if only the current state is of
interest. This approach yields the state at epoch t of the most probable sequence.

The estimation of the parameters requires a sufficient number of past observations. Rea-
sonable ways of updating them can certainly be found, e.g. re-computing them once per
year.

9.1.5. Open questions

Due to the limited scope of the thesis and the paucity of external data, several important
questions have been left unanswered.

The analysis of the results in chapter 8 is limited to an area with very continental climate.
The next step in validating the sensor fusion algorithm should thus focus on additional
biomes and climate zones.
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The backscatter model and the analysis of the data mostly focus on snow as well as the
freezing and thawing of soil. However, the influence of vegetation, standing water and
freshwater ice is of paramount importance in many parts of the world and these factors
merit additional attention.

The distinct backscatter characteristics of bare rock in the mountains and agricultural
areas often lead to unsatisfactory results. The discussion in section 8 contains several
possible reasons, each of which might be a starting point for possible improvements of the
model:

Parameter estimation and constraints The determination of the initial values and the con-
straints, which are based on the backscatter model and data analysis, are somewhat
arbitrary. They thus warrant additional investigations, as does the number of itera-
tions of the EM algorithm.

State variables The notion of having a discrete state variable presents serious limitations
as to the applicability of the problem. Improvements could include the inclusion of
additional states (e.g. one for dry and one for wet soil) or the adoption of a more
intricate description using continuous states (e.g. snow height).

State transitions As the modification of the representation of the state would necessitate
significant adaptations of the algorithm, a better model of the state transitions appears
very attractive. It could be based on, for example, long-term climate observations or
weather forecast/re-analysis data.

Additional data Apart from such meteorological information, different remote sensing
products can be potentially put to good use.

9.2. Contributions

The main contributions of this thesis can be summarized as follows:

Sensor fusion model A novel approach for sensor fusion has been introduced. The im-
plementation presented in this work relies on Ku and C band σ0 data. The model is
rooted in probability theory; the inference and estimation of parameters can thus be
conducted in a systematic way. The approach can potentially be extended to a much
wider range of sensors and applications.

Backscatter model Due to the lack of literature and experiments concerning Ku and C
band data on such a large scale – in particular in relation to the freeze/thaw state –
a backscatter model applicable to bare ground with multiple layers of snow has been
developed.

Comparison of Ku and C band In combination with extensive data analysis, the backscat-
ter model provides insight into the frequency dependence of σ0. This knowledge is
of vital importance for the sensor fusion; in particular for the parametrization of the
model. The thesis has also illustrated the significance of the metamorphism of snow,
the freezing of the soil water and snow height.
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9.3. Summary

The landscape freeze/thaw state is of paramount importance for all geo- and biophysi-
cal processes at high latitudes, such as the hydrological cycle and vegetation phenology.
Consequently knowledge about its dynamics can be very useful for a host of applications.

For these reasons, there has been considerable interest in inferring the freeze/thaw state
from remote sensing observations. Microwave remote sensing has proven to be an adequate
tool and scatterometers, in particular, can offer global coverage at a reasonable temporal
resolution. As the backscatter at different frequencies is influenced by different physical
phenomena, the combination of several frequencies can be potentially put to good use.

This thesis focusses on two distinct points: firstly, the development and application of a
novel sensor fusion model for determining the freeze thaw state – it incorporates SeaWinds
Ku and ASCAT C band scatterometer measurements. Secondly, it investigates the most
important factors influencing the backscatter. This analysis is based on empirical data
analysis as well as a model capable of describing bare soil covered by multiple layers of
snow.

The sensor fusion model is based on a probabilistic model (the so-called Hidden Markov
model); the tasks of inference and parameter estimation can be conducted in the very same
framework of probability. The most important output of the model is the probability of the
landscape being frozen, non-frozen or thawing.

The validation of the results with external data is very promising in general; issues are,
however, encountered in agricultural land and barren rock outcrops in the mountains. An
in-depth analysis of the results, and the shortcomings in particular, is provided: it focusses
on the validity of the modelling assumptions and points out several possible improvements.

Even though the sensor fusion model is empirical in nature, it greatly benefits from a
good understanding of the signal characteristics. To this end, a widely used backscatter
model for a single layer of snow on top of barren ground has been adapted; it can simulate
σ0 for multiple layers of snow with different snow grain sizes and liquid water content. It
is also capable of accounting for frozen and non-frozen soil water.

The analysis of the data, the results of the sensor fusion and the simulated backscatter
have reaffirmed the importance of the following factors of influence:

Snow height SeaWinds Ku band measurements are particularly sensitive to this parameter;
as opposed to ASCAT C band

Frozen/thawed soil The freezing of the soil water is particularly evident in ASCAT C band.
The drop in σ0 is strongly dependent on the soil moisture

Dry snow metamorphism The backscatter is very sensitive to changes in grain size – a
point which has often been neglected in global freeze/thaw state studies at C-band.

Wet snow metamorphism The absorption in the snow pack grows with increasing liquid
water content; the backscatter thus drops precipitously. It also leads, however, to a
rapid increase in the grain size, which can result in high σ0 once the liquid water
re-freezes.

Overall, the thesis has revealed that probabilistic sensor fusion for determining the land-
scape freeze/thaw state is a very promising remote sensing application. It well warrants
additional studies in order to make it more robust and more widely applicable.
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A.1. EM updates

The energy term of the variational free energy (4.17) for the full probabilistic model in (6.2)
can be written as (considering only one feature in order to minimize the notational burden):

〈log P(x, y)〉Q(x) =
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where the variances depend on the number of observations at that epoch, cf. 6.1.2
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where c is a constant independent of the parameters. Due to the structure of the distribu-
tion, this can be simplified to
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In the M-Step, this function has to be maximized with respect to the parameters. The
formulae corresponding to a simple coordinate ascent scheme are summarized in algorithm
5.

Algorithm 5 M-Step for the Gaussian Hidden Markov model (6.2) with varying variances

Means µi ← ∑T
t=1 ytQ(Xt=i)1/σ2

i [t]

∑T
t=1 Q(xt=i)/σ2

i [t]

Variances σ2
i ←

∑T
t=1(yt−µn)

2Q(Xt=i)1/σ2
i [t]

∑T
t=1 Q(Xt=i)
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A.2. State transitions

The state transition matrix A, which has to be a stochastic matrix, was chosen manually:
0.95 0.05 0.05 0.12
0.01 0.85 0.05 0.01
0.01 0.05 0.85 0.02
0.02 0.05 0.05 0.85


for the time period between 09-15 and 12-31. During the rest of the year it was set to:

0.85 0.05 0.05 0.05
0.05 0.85 0.05 0.05
0.05 0.05 0.85 0.05
0.05 0.05 0.05 0.85
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