
Ph.D. Thesis

An Integrated System for Temporal Data
Abstraction

to Facilitate Guideline Execution

Conducted for the purpose of receiving the academic title

“Doktor der technischen Wissenschaften”

Supervisor

Silvia Miksch
Institute of Software Technology and Interactive Systems

Submitted at the Vienna University of Technology
Faculty of Informatics

by

Andreas Seyfang
8552129

Dr. Josef Reschplatz 1/21
A-1170 Vienna

Vienna, July 16, 2011

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Abstract

Clinical guidelines and protocols are important means to improve the quality of care.
To make their application more efficient, they are translated to computer-interpretable
models (CIMs) using languages such as Asbru. One of the fundamental conditions for
the success of such an application is the integration into the information flow at the
place of care. This demands for temporal data abstraction, which bridges the low-level
data from monitoring devices and laboratory results to the high-level concepts used in
guideline or protocol.

Existing approaches mostly focus on low-frequency domains such as primary care.
Consequently, I focus on high-frequency domains such as intensive care units which
adds the requirement that the algorithms must be noise-resistant and time-efficient.
Asbru was chosen as a starting point because its expressive power with respect to
temporal data abstraction excels the alternative approaches.

From this results the main research question answered in this thesis: How can tem-
poral data abstraction be combined with the execution of clinical guidelines and pro-
tocols in a fashion suitable for high-frequency domains? “Suitable for high-frequency
domains” implies that continuously arriving data is handled in a timely manner irre-
spective of the potentially large history of measurement, and that noise is handled on
many levels, because their combination promises the best success.

In this thesis, I present the following.

• A versatile abstraction algorithm called Spread to handle noise of varying inten-
sity and to generate steady, qualitative values based on such input. It is based on
the standard error or alternatively, the quantiles, for measurements in a moving
time window of configurable size.

• An efficient implementation for matching parameter propositions with input
data. Parameter propositions are at the core of patient monitoring in the Asbru
language. They describe temporal constraints to be met by the measurements in
order for some condition to be fulfilled.

My algorithms replace the repeated queries of potentially large recordings of
data used by existing solutions with multi-dimensional state machines repre-
senting the progress of the matching process for a given parameter proposition.

• Integration of all the involved modules for temporal data abstraction, monitor-
ing, and plan execution into a seamless framework. This reduces system com-
plexity while increasing the potential of the overall system due to the unlimited
combination of modules.

I

• Mapping of Asbru to these modules, and mapping of the abstraction modules to
Asbru. I show how to transform a CIM using Asbru into an assembly of abstrac-
tion modules for which the implementation has been described. In addition, I
expanded the syntax of Asbru to describe novel abstractions, like the Spread.

These above was evaluated on a practical and on a theoretical level. On the prac-
tical level, ideas from this thesis are fundamental in two lines of application. On the
one hand, the abstraction of steady qualitative values from noisy data permits the con-
trol of oxygen supply in a neonatal intensive care unit at the level of a human expert
dedicated to the job, and superior to clinical routing, as shown in a clinical study. On
the other hand, the integrated framework for temporal data abstraction, monitoring,
and plan execution forms the basis of the Asbru interpreter which was (and is) used
successfully in international research projects.

On the theoretical level, this thesis discusses the computational effort associated
with the proposed algorithms, how they meet the objectives, and their benefits and
limitations.

Although the field of application of the work described in this thesis is medicine,
with a focus on intensive care, the described methods apply to data abstraction and plan
execution in any field in which heterogeneous, time-oriented data must be matched
with complex domain knowledge.

II

Zusammenfassung

Therapierichtlinien sind wichtige Mittel zur Qualitätssicherung in der Medizin. Um
ihren Einsatz effizient zu gestalten werden sie in Modelle übersetzt, die durch Com-
puter ausgeführt werden können. Dabei werden Modellierungssprachen wie z.B. As-
bru verwendet. Eine wesentliche Voraussetzung für den Erfolg ist die Integration des
Systems in den bestehenden Informationsfluß am Anwendungsort. Das wiederum er-
fordert zeitbezogene Datenabstraktion, die die Brücke schlägt zwischen den Rohdaten,
die Meßgeräte und Laboruntersuchungen liefern, und den abstrakten Begriffen, die in
Therapierichtlinien verwendet werden.

Existierende Ansätze beschränken sich auf Anwendungen wie sie in der Ordina-
tion eines praktischen Arztes anfallen, d.h. Anwendungen, die durch geringes Daten-
volumen gekennzeichnet sind. Dementsprechend konzentriere ich mich auf sog. Hoch-
frequenzbereiche, in denen große Mengen von Daten in kurzer Zeit anfallen, wie z.B.
Intensivstationen. Lösungsansätze in diesen Bereichen müssen robust in Bezug auf
fehlerhafte Meßwerte sein, und sie müssen eingehende Daten rasch abarbeiten. Als
Modellierungssprache für Therapierichtlinien wurde Asbru gewählt, weil es andere
Sprachen an Ausdrucksmöglichkeiten bezüglich der zeitbezogenen Datenabstraktion
übertrifft.

Daraus folgt die Forschungsfrage, die in dieser Dissertation beantwortet wird: Wie
kann zeitbezogene Datenabstraktion mit der Ausführung von Therapierichtlinien so
verknüpft werden, daß es Hochfrequenzbereichen entspricht? Das heißt, daß kon-
tinuierlich gelesene Daten in kurzer Zeit verarbeitet werden müssen, auch wenn die
Ausführungseinheit lange in Betrieb ist und daher die historischen Daten einen Pa-
tienten betreffend große Ausmaße annehmen. Außerdem müssen Signalstörungen auf
verschiedenen Ebenen aufgefangen werden, weil nur die Kombination verschiedener
Ansätze das beste Ergebnis verspricht.

In dieser Dissertation werden die folgenden Lösungsansätze beschrieben:

• Ein vielseitiger Abstraktionsalgorithmus namens Spread, der aus numerischen
Eingaben mit wechselndem Anteil an störenden Schwankungen kontinuierliche
qualitative Werte generiert. Er beruht auf dem Standard Error (oder alternativ
dazu den Quantilen) von Meßwerten innerhalb eines frei definierbaren Zeitfen-
sters, das mit fortlaufender Messung weitergeschoben wird.

• Eine effiziente Implementierung des Abgleichs von Parameter Propositions mit
Eingabedaten. Parameter Propositions sind das Herzstück der Überwachung des
Patientenzustandes in Asbru. Sie beschreiben zeitbezogene Bedingungen, die
Meßwerte erfüllen müssen, um eine bestimmte, in der Therapierichtlinie defi-
nerte, Bedingung zu erfüllen.

III

Mein Algorithmus ersetzt die wiederholten Abfragen von potentiell großen Da-
tenbeständen durch einen mehrdimensionalen endlichen Automaten, der den
Fortschritt beim Abgleich einer bestimmten Parameter Propositions mit schritt-
weise verfügbar werdenden Eingabedaten modelliert.

• Integration aller Module für die zeitbezogen Datenabstraktion, die Überwachung
des Patientenzustandes und die Ausführung der Therapierichtlinie in einem ein-
heitlichen Gesamtsystem. Dadurch wird die Systemkomplexität reduziert und
gleichzeitig durch die freie Kombinierbarkeit aller Module die Problemlösungs-
kapazität erhöht.

• Die Abbildung des Funktionsumfangs von Asbru auf die zuvor genannten Mo-
dule. Ich zeige wie Therapierichtlinien, die in Asbru formuliert sind, in ein Netz-
werk von Abstraktionsmodulen übergeführt werden, und beschreibe die Imple-
mentierung dieser Module. Zusätzlich erweiterte ich den Sprachumfang von As-
bru, um neue Abstraktionsalgorithmen wie den Spread in Asbru parametrisieren
zu können.

Die in dieser Dissertation beschriebenen Ansätze wurden auf praktischer und theo-
retischer Ebene evaluiert. Auf praktischer Ebene bilden sie die Grundlage für zwei
Anwendungen. Einerseits erlaubt die Gewinnung kontinuierlicher qualitativer Werte
aus teilweise fehlerbehafteten Meßwerten die Steuerung der Sauerstoffzufuhr in einer
Frühgeborenenintensivstation, gleich gut wie durch einen Experten der sich ausschließ-
lich dieser Aufgabe widmet, und besser als im Alltag, wie durch eine klinische Studie
gezeigt wurde. Andererseits bilden die hier beschriebenen Module zur zeitbezogen
Datenabstraktion, Überwachung des Patientenzustandes und Ausführung der Thera-
pierichtlinie die Grundlage des Asbru Interpreters, der in mehreren internationalen
Forschungsprojekten erfolgreich eingesetzt wurde bzw. wird.

Auf theoretischer Ebene beschreibt diese Dissertation die Algorithmenkomplexität
sowie die Vorteile und Grenzen der einzelnen Teilösungen, und wie sie den gesetzten
Zielen entsprechen.

Obwohl das Anwendungsgebiet der hier beschriebenen Ideen die Medizin, ins-
besondere die Intensivmedizin ist, können die beschriebenen Lösungen ohne weiteres
auf andere Gebiete übertragen werden, in denen heterogene, zeitbezogene Daten und
komplexes Wissen über das Anwendungsgebiet zusammentreffen.

IV

Contents

1 Introduction and Motivation 1
1.1 Domain description . 1

1.1.1 Guidelines and decision support 2
1.1.2 Temporal data abstraction 3
1.1.3 Integration . 4
1.1.4 Importance of the field . 6

1.2 Research Question . 8
1.2.1 Main Question . 8
1.2.2 Sub Questions . 8

1.3 Approach . 9
1.4 Dissemination . 13

1.4.1 First ideas on the system architecture 13
1.4.2 Implementation of the Asbru interpreter 14
1.4.3 The Spread algorithm and its application 14
1.4.4 Bridging to the patient record 15

1.5 Conventions . 17
1.6 Abbreviations . 17

2 Related Work 18
2.1 Computer-interpretable models of guidelines and protocols 18

2.1.1 Individual guideline representations 18
2.1.2 Comparisons . 32
2.1.3 Discussion . 33

2.2 Temporal data abstraction . 35
2.2.1 Conceptual work . 35
2.2.2 Definitions by Shoham . 35
2.2.3 Implemented systems . 36
2.2.4 Discussion . 44

2.3 Neighbouring fields . 47
2.3.1 Statistics . 47
2.3.2 Artificial Neural Networks 47
2.3.3 Planning . 49

3 Problem Description and Objectives 50
3.1 Objectives related to data abstraction 50

3.1.1 Coping with noisy and missing data 50

V

3.1.2 Flexible definition of time windows for statistical analysis . . 51
3.1.3 Utility functions . 53
3.1.4 Integration of abstraction modules into a uniform framework . 53

3.2 Objectives related to guideline execution 53
3.2.1 Online-algorithms for the detection of temporal patterns . . . 53
3.2.2 Integration of plan execution 54
3.2.3 Bridge from Asbru to abstraction modules 55

4 Solutions 56
4.1 Uniform framework . 57

4.1.1 The nature of data . 58
4.1.2 Implementation decisions 62
4.1.3 Overview of principal parts 63

4.2 Utility functions . 66
4.2.1 Arithmetic operations . 66
4.2.2 Date and time . 68
4.2.3 Logical operations . 69
4.2.4 Miscellaneous abstractions 71

4.3 Multiple sliding time windows for statistical analysis 73
4.3.1 Types of time windows . 73
4.3.2 Analyzing time windows . 75
4.3.3 Accessing time window properties 76
4.3.4 Properties and abstractions of linear regression 77

4.4 Coping with noisy data . 79
4.4.1 Error detection . 79
4.4.2 Rule-based repair of data . 82
4.4.3 Stable quantitative abstractions 86
4.4.4 Abstraction of qualitative values from noisy quantitative input 86

4.5 Online-algorithms for monitoring temporal patterns 90
4.5.1 Related language features of Asbru 90
4.5.2 Monitoring parameter propositions 98
4.5.3 Monitoring plan state constraints 116
4.5.4 Monitoring temporal constraints 116
4.5.5 Monitoring combinations of temporal patterns 121
4.5.6 Monitoring count constraints 131
4.5.7 Extracting features of episodes 131

4.6 Integration of plan execution . 134
4.6.1 Asbru plan semantics . 134
4.6.2 Principal design of plan state modules 134
4.6.3 Types of plans . 140

4.7 Bridge to Asbru . 148
4.7.1 Plans . 149
4.7.2 Plan body . 149
4.7.3 Conditions . 153
4.7.4 Temporal patterns . 153
4.7.5 Time annotations . 156
4.7.6 Expressions . 158

VI

4.7.7 Definitions . 158
4.8 Discussion . 163

5 Evaluation 166
5.1 Practical Evaluation . 167

5.1.1 Data abstraction for artificial ventilation 167
5.1.2 Plan execution . 171

5.2 Complexity Analysis . 174
5.2.1 The overall system . 174
5.2.2 Utility functions . 176
5.2.3 Sliding time windows . 177
5.2.4 Coping with noisy and missing data 178
5.2.5 Online-algorithms for the detection of temporal patterns . . . 179
5.2.6 Integration of plan execution 180
5.2.7 Bridge from Asbru to abstraction modules 181
5.2.8 Discussion . 182

5.3 Meeting the Objectives . 184
5.4 Limitations . 187

5.4.1 Coping with noisy data . 187
5.4.2 Online-algorithms for monitoring temporal patterns 187
5.4.3 Multiple sliding time windows for statistical analysis 187
5.4.4 Integration of plan execution 187
5.4.5 Utility functions . 188
5.4.6 Uniform framework . 188
5.4.7 Bridge to Asbru . 188

6 Future Directions of Work 189
6.1 Further development of the system 189

6.1.1 Expansion of the set of abstraction algorithms 189
6.1.2 Better control over user interaction 189

6.2 Neighbouring fields of research . 189
6.2.1 Modelling . 190
6.2.2 Data integration . 190

7 Conclusions 191

VII

Chapter 1

Introduction and Motivation

1.1 Domain description

The field of application of the work described in this thesis is medicine, with a focus
on intensive care. However, the described methods apply to data abstraction and plan
execution in any field in which heterogeneous, time-oriented data must be matched
with complex knowledge.

In the field of medicine, the application of clinical guidelines and protocols helps
to improve the quality of care by ensuring the optimal choice of treatment. Computer-
supported guidelines reduce the workload of professionals by presenting the necessary
information at the point of care. In addition, guidelines reduce expenses for drugs and
other material by eliminating unnecessary examinations or treatment phases. This is
described in detail in Section 1.1.1.

An indispensable precondition for the successful application of clinical guidelines
and protocols is their integration into clinical practice. Besides other issues such as
workflow organisation, hardware compatibility and data access procedures, and the
need to create a computer-interpretable model of the guideline or protocol, temporal
data abstraction is required to automatically map time-annotated raw-data (e.g., per-
cent of oxygen in blood at a certain second) to high-level medical concepts (e.g., suffi-
cient oxygen saturation during an extended period of observation). This is performed
by temporal data abstraction. Section 1.1.2 gives more details on this field.

The procedural knowledge about the treatment, and the current state of the treat-
ment, forms an important context for temporal data abstraction. The same numeric
value delivered by a monitoring device, e.g., an oxygen saturation of the blood mea-
sured by a pulsoximeter device, can mean very different things, depending on the
context of the treatment. Under artificial ventilation, a saturation value of 99% is
considered very high, potentially leading to damage of the retina if maintained over
extended periods of time. Under normal, natural ventilation, the same amount of oxy-
gen saturation of the blood is normal and has no negative consequences for the health.
This means that the abstraction of the value 99 to the medical concept of “too high”
versus “normal” depends on the context which is constituted by performing artificial
ventilation or not.

This means that temporal data abstraction and guideline execution form a symbi-
otic pair:

1

• Guideline execution needs temporal data abstraction to be embedded into the
data flow at the point of care, thus providing the right recommendation at the
right time without additional user input.

• Temporal data abstraction needs guideline execution to provide the context of
abstraction. Without the background formed by the current treatment mode and
general patient situation, it is impossible in many situations to generate mean-
ingful medical concepts from the raw data.

The preferred field of application for this work are high-frequency domains such
as intensive care units. In this context, high frequency refers to 1 Hz to 1 kHz; and
low-frequency refers to measurements lieing many hours, if not days, appart. Typical
examples are intensive care for high-frequency domain; and diabetes monitoring for
for low-frequency.

To handle this type of high-frequency data, implementations must have near real-
time characteristics – they must react quickly enough to the input to ensure processing
at the quoted rate, but strong guarantees that 100 % of all computation paths complete
within a constant time frame are not necessary.

1.1.1 Guidelines and decision support

There is a range of different but related terms and entities associated with guidelines
and decision support.

Clinical guidelines – also called practice guidelines – are “systematically developed
statements to assist practitioner and patient decisions about appropriate health
care for specific clinical circumstances” [54, p. 38]. They focus on important
questions in a specific field, not necessarily providing complete guidance to a
certain medical task, but complementing the available text books. Today, most
clinical guidelines are based on clinical evidence [64].

Protocols are instructions for the staff at a particular site of care, e.g., a particular
hospital [114, 34]. Many of them are based on clinical guidelines. They pro-
vide more concise descriptions of actions and conditions, and generally cover a
certain medical task from start to end.

Computer-interpretable models of guidelines and protocols (CIMs) are represen-
tations of clinical guidelines or protocols in a formal representation language,
such as Asbru, GLIF, Guide or ProForma [106].

Clinical decision support systems (CDSS) Clinical Decision Support Systems are
“active knowledge systems which use two or more items of patient data to gen-
erate case-specific advice” [177]. Systems executing CIMs are seen as CDSS,
e.g., in [48].

Reminder systems can be implemented based on CIMs driven by timers, but also by
data entered into an EPR. They send messages to care staff or patients. In the
first case, they differ from DSS only in their rather reactive nature. In the second
case, they improve compliance in fields like diabetes monitoring, diet planning
or smoking cessation.

2

Trial alert systems can be seen as a subgroup of reminder systems. They compare
entered patient data against eligibility criteria of clinical trials and suggest re-
cruitment as appropriate [51].

Besides improving the quality of care, clinical guidelines and protocols also re-
duce costs. It has be proved that adherence to guidelines and protocols may reduce
healthcare costs by up to 25% [32]. Computer-support is required to improve daily
care practice, distributing paper versions of the guideline alone is not sufficient [45].

There are many flavours of CIMs, not only regarding their deployment, but also
regarding the degree to which the original text is transformed. Simple approaches
restrict themselves to classifying guidelines and symptoms on the level of keys [154].
The main advantage is that the effort for translation of the original guideline into such
an annotated free text form is relatively small. The disadvantage of this approach is
that the computer only performs limited search support, but resorts to the user for any
decision, even simple ones, since the data is not available, nor modelled in the system.

The more advanced alternative to such a solution is the modelling of a guideline
or protocol in a completely computer executable form, such as Asbru [125]. While
this causes considerable modelling effort, it allows the system to select appropriate
treatment steps without user intervention (except where desired). The work described
in this thesis builds on CIMs modelled in Asbru.

Section 2.1 describes the related work in this field including details on Asgaard
and Asbru. It also justifies the decision to use Asbru as a basis for this thesis.

1.1.2 Temporal data abstraction

Data abstraction is the process of mapping low-level raw-data to high-level concepts.
In the medical domain, typical examples for raw data are the mostly numerical (i.e.,
quantitative) results delivered by various laboratory tests or monitoring devices in an
intensive care unit. Examples for high-level concepts, or pieces of information, are
high fever and sufficient oxygen.

The mapping between the data and information is context dependent – the same
percentage of oxygen in the blood can be normal in one context and health-threatening
in another context. The context is formed by features such as age of patient, underlying
diseases, and current mode of treatment.

The field of temporal data abstraction deals with the abstraction of measurement
series taken over a certain time span. Analyzing the temporal dimension is important
for both long term evaluation of a treatment and short term detection of changes in
the patient’s state. Furthermore, many high-level concepts contain temporal aspects in
their specification, such as “serious fever is high fever lasting for more than 12 hours”.
We therefore cannot abstract information about the presence of serious fever without
considering the temporal aspect of the measurements.

Section 2.2 describes the related work in the field of temporal data abstraction.
An important hurdle to overcome in this abstraction process is noise. Merriam-

Webster defines noise (among other things) as “an unwanted signal or a disturbance
(as static or a variation of voltage) in an electronic device or instrument (as radio or
television)” or “irrelevant or meaningless data or output occurring along with desired
information” [4].

3

In the context of computer applications in medicine, it is an unexplained distortion
of the measurement. The reason is often a combination of technical difficulty and phys-
iological limitation. E.g., measuring the oxygen saturation in the blood using a sensor
in the artery would deliver perfect data, but the health implications of setting such a
sensor cannot be justified in many cases. A pulsoximeter device placed on the finger
or toe measures the light refraction of oxygen-saturated and unsaturated haemoglobin
through the skin without hurting it or causing discomfort, but its measurements are
unstable.

This is but one example where considerations of care practice result in a suboptimal
setting for data processing. Put in a positive way, advances in data processing remove
the negative side effects of older measuring technology without reducing the level of
care.

1.1.3 Integration

An important aspect of CIM execution is the integration into the data flow at the point
of care [74].

A cluster randomized controlled trial in the field of screening and treatment of
dyslipidemia carried out in 38 Dutch general practices compared automatically gener-
ated alerts with on-demand decision support [178]. In those practices receiving alerts
based on the data entered into the electronic health record as part of daily practice,
65% of the patients requiring screening were screened and 66% of patients requiring
treatment were treated. For those practices where the user had to active access the
recommendations, 35% of the patients requiring screening were screened and 40% of
patients requiring treatment were treated. In the control group without electronic de-
cision support, 25 % of the patients requiring screening were screened and 36% of
patients requiring treatment were treated.

A systematic review of trials to identify features critical to success, analysing 70
studies, four the following four features to be independent predictors of improved clin-
ical practice: automatic provision of decision support as part of clinician workflow,
provision of recommendations rather than just assessments, provision of decision sup-
port at the time and location of decision making, and computer deployment in decision
support [85].

In a review of 100 controlled trials on practitioner performance or patient out-
comes, improved practitioner performance was associated with (1) automatically prompt-
ing users compared with requiring users to activate the system, and (2) studies in which
the authors also developed the DSS software compared with studies in which the au-
thors were not the developers [57]. While the latter can be seen as either bias or
improved integration, the former clearly supports the findings above.

From the technical perspective, integration must be achieved on three different levels:

1. Hardware must lay first foundations for the data flow. An example, related to
the work presented here, is the communication between the laptop running our
system, the pulsoximetry device measuring the oxygen saturation in the blood
of the patient, and the respirator, controlling the oxygen supply for the patient. It
took years to find a ventilator manufacturer willing to provide a serial connection
(or any connection) to an external computer. Today, our solution is considered

4

for integration into a respirator device. Further details on this project are given
in Section 5.1.1.

2. Software interfaces must bridge the DSS to the electronic patient record and
other relevant information. The link from this thesis to work on this level is pro-
vided by my participation in the projects OncoCure1 [47] and Remine2. In the
former, the Asbru interpreter [125] (implementing the ideas described here) is
integrated with the electronic patient record system at an Italian hospital. In the
latter, the Asbru interpreter is integrated with a comprehensive database system
which aims at capturing all information needed to reduce adverse events at four
different hospitals in three countries. Further details on both projects are given
in Section 5.1.2.

There is comprehensive work on binding the data-item references in a CIM to
controlled vocabularies and ontologies, which is beyond the scope of this thesis.

3. Temporal data abstraction algorithms must transform the low-level data to high-
level concepts. This is the main focus of this thesis.

Besides all the technical solutions to various challenges, there are many important
factors for success which are also clearly documented in the literature.

• The persons dealing with the system must see some personal benefit in using it;
Or they need to feel pressure from close collaborators who see direct benefits
from the system [111]. Involving users in early phases of the design process
increases their willingness to use the system later in their daily routine. Users
only use a system if they believe that they need it, before trying it [170].

• There must be support from the organization. If the decision makers in an orga-
nization are decided to make a new system a success, because they see a strong
benefit for the organization, then initial obstacles are overcome and the benefit
of the system can be felt before disappointment can set in [111, 115, 182]. Or-
ganizational changes associated with the introduction of DSS can be significant
and need attention [82].

• The time available to physicians to reason about recommendations seems to
be a factor, too. A survey of factors affecting clinician acceptance of clinical
DSSs showed that respondents had a generally positive attitude towards DSSs,
but 80% state that they were less likely to accept alerts when they were behind
schedule and 84% admitted to being at least 20 minutes behind schedule at least
some time [144]. Embedded explanation modules linking the recommendation
to all relevant pieces of the underlying guidelines with minimal user intervention
could help to overcome such barriers.

1http://www.donau-uni.ac.at/en/department/ike/forschung/
planmanagement/projekte/11128/index.php, last accessed May 5th, 2011

2www.remine-project.eu, last accessed Oct 20th, 2010

5

http://www.donau-uni.ac.at/en/department/ike/forschung/planmanagement /projekte/11128/index.php
http://www.donau-uni.ac.at/en/department/ike/forschung/planmanagement /projekte/11128/index.php
www.remine-project.eu

1.1.4 Importance of the field

In a recent commentary on the past, present and future [69], two views on important
future research fields are given. In the traditional view, “computer-enhanced decision-
support for health care professionals, combined with appropriate concepts for reason-
ing and knowledge representation” [69, p. 606] is one of ten important research fields,
and electronic patient records another. In the revolutionary view, five of 16 items relate
to work presented here. They are:

1. “seamless interactivity with automated data capture and storage for patient care,
and beyond (from perception to high-level semantic concepts, related to human-
human, machinemachine, as well as humanmachine interaction; beyond in the
meaning of not being restricted to certain disease episodes);” [69, p. 606]

2. “knowledge-based decision-support for diagnosis and therapy, and beyond (with
decision-support in its broadest meaning, i.e. from simply pointing persons to
important knowledge by identifying latest results in knowledge bases to context-
aware, individualized decision proposals using formally represented knowledge;
beyond in the meaning of also including, e.g. prevention);” [69, p. 606]

3. “patient-centered data analysis and mining (with representations of patient data
based on appropriate semantic concepts);” [69, p. 606]

4. “informatics diagnostics, where informatics tools (with corresponding method-
ology) form the major part of the diagnostic entity;” [69, p. 606]

5. “informatics therapeutics, where informatics tools (with corresponding method-
ology) form the major part of the therapeutic entity;” [69, p. 606]

Item 1-3 directly relate to the close integration of data abstraction and treatment
planning. Item 4 refers to image processing as well as to sophisticated temporal data
abstraction. For clinical decision support systems, item 5 may not match. For advisory
systems it might. Another item of the 16 is “automated, individualized health advice
and education;” [69, p. 606] which is an alternative application to the same framework
(presented here). With a text generation module or a nice graphical interface, the rec-
ommendations generated by the DSS can be mapped to recommendations addressed
at the patient. The fully automated nature of the framework presented here makes is
most suitable for scalable advisory systems where many users receive advise with-
out expert intervention. Fields like diabetes involve both complex and time-oriented
data abstraction; and the demand for automatic patient reminders or encouragement,
combined with alarming of human experts in case of serious non-compliance.

At the same time, we must be aware that even simple changes to user interfaces can
seriously impact user performance, however sophisticated or simple the system behind
it might be. In a prospective study, the subset of tests in a computerized provider order
entry system which can be ordered via a simple checkbox was altered. The newly
added tests saw an increase of 60% and 90% in the following two years. The orders
which needed more than ticking a checkbox after the change saw a decrease of 27%
and 19%. This group constituted 50% of the tests on the initial list. The development of
tests remaining on the list of checkboxes was stable. However, the decision which tests

6

to remove and which to add was based on clinical best practice recommendations. This
means that part of the change could be attributed to physicians increasingly following
these guidelines, independently of the data input format [138].

7

1.2 Research Question

In the following, I present the research question and its subquestions.

1.2.1 Main Question

The main research question answered in this thesis is:

How can temporal data abstraction be combined with the execution of
clinical guidelines and protocols in a fashion suitable for high-frequency
domains?

Suitability is defined by efficient processing of input data as explained below.

1.2.2 Sub Questions

The main research question can be broken into the following subquestions.

Subquestion 1: How can short response times be established for arbitrar-
ily high volumes of data?

The domain of application (intensive care medicine) does not demand for true real-time
behaviour like the control of engines does. However, it is crucial that the response time
does not depend on the total length of historic recordings, and that it is a fraction of a
second in the general case.

Subquestion 2: How can steady values be abstracted from qualitative
input with varying amounts of noise and gaps of varying length?

Noise and missing data is one of the dominant problems in medicine. While statistics
provides some solutions to deal with both, the medical domain demands knowledge-
based solutions which take into account the role of a signal in the decision process.
A solution which may be perfect for one input can be unacceptable for another. Fur-
thermore, sources of disturbances, like patient movement or care interventions result
in large variations of noise and/or fraction of missing data. Again, the domain knowl-
edge demands special solutions ranging from waiting for the end of the disturbance to
graceful degradation.

Subquestion 3: How can the execution of Asbru plans be combined with
temporal data abstraction in an efficient way?

In this thesis, Asbru is used as an example of a guideline modelling language. The
choice is explained in Section 2.1.3. The question is, if and how the semantics of this
language can be combined with time-efficient data abstraction, meeting the constraints
sketched above.

8

1.3 Approach

This section describes the reasoning behind the individual chapters of my thesis, and
the approach I took to solve the given problems and to answer the research question.

The scientist builds in order to study;
the engineer studies in order to build.

[24, p. 62]

Brooks, who stated the above, argues that computer science is an engineering dis-
cipline. Others see it as part of social sciences. In this thesis, I try to cover both views
as far as possible, by describing what I built and what I studied in what I built.

The obvious answer of an engineer to a question like “How can temporal data
abstraction be combined with the execution of clinical guidelines and protocols?” is to
design such a system.

The scientist then explores whether it is a good and useful solution. This is done
along two dimensions – rigor and relevance. Fällman and Grönlund define rigor as
“a structured and controlled way of planning, carrying out, analyzing, evaluating and
producing products of research, independently of the research method used”, and rele-
vance as “the act of making efforts into research issues that is of concern to a perceived
audience” [53]. They point out that both depend on the intended audience.

For this thesis, the intended audience are computer scientists interested in further
development of applied medical informatics. For the individual ideas contained in it,
the audience are physicians as far as application in clinical practice is concerned, and
computer scientists as far as publication is concerned.

The rigor of my work is established by a clear path from problem statement and the
discussion of related work, to defining objectives, presenting a solution, and evaluating
it. The relevance of my work is documented by its practical application and being
accepted in scientific media.

To learn about the state of art, I read journals like International Journal of Medical
Informatics, Artificial Intelligence in Medicine, and Journal of the American Medical
Informatics Association and browsed the websites of colleagues working in the field to
find additional publications. In addition, I attended conferences like European Confer-
ence on Artificial Intelligence (ECAI), Conference on Medical Informatics (MedInfo),
and European Conference on Artificial Intelligence in Medicine (AIME); and work-
shops on Intelligent Data Analysis in Medicine and Pharmacology (IDAMAP) and on
computerised guidelines (under various names). Section 2 describes those parts of
research which directly relate to my thesis.

Based on this, and on the problem description detailed in Section 3, I developed
objectives, and solutions to meet them. The guiding principles common to all partial
solutions were that the solution must meet a clearly defined demand and that it must
be novel enough to be of interest for the computer science community.

The work described in this thesis consists of the following lines of development.

Steady qualitative abstractions of noisy quantitative data. Data from monitoring
devices is noisy. Existing approaches mostly use fixed thresholds or rules to eliminate
errors and more extreme noise. However, for the purpose of artificial ventilation in
neonates, we needed a method to map such input to steady qualitative values in such a

9

fashion that smooth input leads to quick reaction to changes and noisy input leads to
retaining the status-quo, and – most importantly – there is a smooth transition between
the two extremes, i.e., medium noisy input leads to medium response time to changes.

The basic idea was to represent the measurements in a band (or Spread) of varying
width, with the width depending on the amount of oscillation, because this resembled
the physician’s perception of the signal plot. The soundest measure for such deviations
we found was the standard error, calculated for a linear regression of the measurements
in a time window containing the last five minutes of measurements. The interval at
which the input was re-evaluated, the size of the time window, the limits outside which
input was discarded, and the minimum amount of remaining valid measurement per
minute was defined by physicians in a series of meetings.

We evaluated the approach on previously recorded real patient data and found the
signal asymmetric – decreased from the middle region were far more pronounced than
increases. We therefore replaced the standard error plotted up and down from the
centre by the 10% quantiles. The new version performed satisfactory in clinical trials,
first in an open-loop setting, then in closed loop. Details are described in Section 5.1.1.
Currently, the system is tested in a multi-centre study in three hospitals and a company
is interested in integrating it into their respirators.

Statistical analysis of sliding time windows. The Spread is but one of a series of
possible uses of a sliding time window which aggregates the measurement of a certain
history of recent measurements. Figure 3.1 illustrates the necessity to slide this time
window in small steps along the time axis instead of aggregating fixed intervals which
introduces arbitrary separation into the input data which again leads to distortions.

Aggregating high-frequency input into intermediate formats with a lower frequency
reduces computational load and eases the perception by the human.

Discussions with experts in intensive care showed that only few signals need to be
monitored with minimal time delay, and that these monitoring tasks are carried out by
commercial devices and additional alarms by our system would not be appreciated.

We therefore focused on high-quality abstractions to gain deeper insight into changes
in the patient state.

Unfortunately, the practical hurdles of performing clinical studies did not permit us
to evaluate more advanced ideas in clinical practice. As a consequence, I implemented
these abstractions as a toolbox ready to use when a practical application requires them.
The modular architecture of the system makes it easy to add modules if necessary.

Online-algorithms for the detection of temporal patterns. Asbru contains power-
ful means to describe the temporal constraints in input data. The measured data must
be matched with these complex constraints. When a matching episode is found, the
corresponding condition of an Asbru plan is fulfilled and the plan state changes.

Existing implementations were based on repeated queries of databases, and thus
not suitable for high-frequency domains. A suitable solution had to be based on a
finite-state machine. Analysing the complex semantics of the Asbru time annotation, I
designed such multi-dimensional state machines – different variants of Asbru elements
necessitated different state machines.

10

The algorithm was tested against the test data generated from the semantics defi-
nition of the time annotation. Section 5.2.5 shows the high efficiency of the solution.
The relevance is given by the relevance of Asbru. Section 2.1 shows why Asbru is
the best choice for combining temporal data abstraction with guideline execution in
high-frequency domains.

Utility functions and an integrated framework. Studying the literature, I found
many accounts on special abstraction algorithms for a given purpose. However, dis-
cussions of real-world problems showed that all such algorithms must become mod-
ules in a framework where the output of one module can be the input of another, and
that simple things like arithmetic or logical combinations are absolutely mandatory
components of such a toolbox.

In many cases, the best way to abstract raw data to medical concepts is not known
in advance, but must be tried out in the knowledge acquisition process. To this end,
many different abstractions must be performed side by side. It is therefore desirable
that the code implementing the abstraction algorithm of a module is not called for
every time step, but only if new input is available for this module. This is a prerequi-
site for benefiting from the reduction in data volume achieved by time-window-based
abstraction and temporal pattern matching.

Therefore, I designed a central management unit which only enacts the neces-
sary abstraction modules and keeps the others dormant. I also designed a hierarchy
of time-annotated data-points, some of which represent measurements, some complex
intermediate abstraction results like linear regression lines. Feature-extraction mod-
ules, while trivial by themselves, permit the conversion of complex abstractions back
to simple values, e.g., to feed the slope of a regression line as a number into another
abstraction module.

While these solutions are standard software engineering practice, they multiply the
potential of the other parts of the solutions, and for any real-world application, they
are indispensable. This is illustrated in [126].

Integrating plan execution. Asbru plans define the conditions under which the plan
state changes in a declarative way, specifying a frequency at which the conditions are
to be re-evaluated. In order to make the execution of Asbru plans ready for high-
frequency domains, I ventured to remove the need for such resource-wasting active
polling.

The original idea was to have a monitoring unit as a mediator between the data
abstraction unit and the plan execution unit. It would receive requests to monitor from
the plan execution unit. The latter would cancel these requests as conditions become
irrelevant due to plan state changes effected by other circumstances. This called for
extensive book keeping effort.

After the successful conversion of the declarative, retrospective definition of tem-
poral constraint monitoring to state machines mentioned above, I tried with success
to convert the Asbru plan semantics to state machines driven by the state of the plan
conditions. Under this scheme, parent-child (i.e., plan-subplan) relations are imple-
mented as a stream of complex (time-stamped) data-points. This makes the solution
compatible with the unified abstraction framework, into which I already integrated the

11

monitoring of temporal constraints before.
This integration expands the capabilities of the system even further, permitting the

feedback from plan execution into data abstraction. Such cycles introduce difficulties,
which do not exceed the difficulties introduced by the bi-directional communication
between parent plan and child plan. Section 5.2.6 discusses the theoretical and practi-
cal impact of both sources of difficulties.

Mapping to Asbru. Since the above mentioned modules (state machines) to imple-
ment are designed to implement guideline models formalised in Asbru plans, a map-
ping of the syntax elements to the modules must be provided, but in theory (in Section
4.7) and in practice by making it part of the Asbru interpreter.

Following the principle to streamline model specification, I expanded the Asbru
syntax [125] to cover data abstraction definitions in addition to plans.

This is a prerequisite for the efficient deployment of the above solutions – the
elegance and usefulness of a seamless execution framework would be lost if not all
of these modules could be described in a single configuration file, which is the Asbru
plan library in this case.

These partial solutions form the Asbru interpreter, which is used in three interna-
tional research projects and published in various scientific media as detailed in Section
1.4.

This thesis describes the following details on rigor and relevance in Section 5.

• The practical use of the Spread to control artificial ventilation in clinical studies.

• The practical deployment of the Asbru interpreter in scientific projects.

• The very favourable computational complexity of the proposed algorithms.

• How the proposed solutions meet the objectives set forth in Section 3.

• The description of the current limitations of these solutions, and how to over-
come them.

This is rounded off by pointers at future work and a conclusion.

12

1.4 Dissemination

In the following, I describe the scientific articles in which the work described in this
thesis is presented to various communities.

1.4.1 First ideas on the system architecture

The original idea was to have three entities, the data abstraction unit, the guideline
execution unit, and the monitoring unit mediating between them. (Compare Section
4.1.) It is reflected in the following papers.

• S. Miksch and A. Seyfang. Continual planning with time-oriented, skeletal
plans. In Proceedings of the 14th European Conference on Artificial Intelligence
(ECAI 2000), pages 511-515, Berlin, 2000. IOS Press.

In this paper, we take an AI perspective, using terminology from the planning
community, and stressing the need to continually monitor patient state through
treatment plan execution.

• A. Seyfang and S. Miksch. Integrating diagnosis and treatment in a flexible way.
In R. Bellazzi and B. Zupan, editors, The Sixth Workshop on Intelligent Data
Analysis in Medicine and Pharmacology (IDAMAP-2001) in Conjunction with
the Conference on Medical Informatics (MedInfo 2001), 2001.

In this workshop paper, we present our ideas based on an example from the field
of artificial ventilation.

• A. Seyfang and S. Miksch. Modelling Diagnosis and Treatment, in Second
Workshop on Computers in Anaesthesia and Intensive Care: Knowledge-Based
Information Management, in Conjunction with the European Conference on Ar-
tificial Intelligence in Medicine (AIME 2001), Cascais, Portugal, pp. 20–24,
2001.

This presents our ideas to the AI in Medicine community, using an example
from a guideline for the management of chronic cough.

• S. Miksch, A. Seyfang, and R. Kosara. Plan management: Supporting all steps
of protocol development and deployment. In EUNITE Workshop on Intelligent
Systems in Patient Care, Vienna, 2001.

Here, we describe our ideas on plan execution and data abstraction as part of
a bigger picture comprising all steps from modelling to execution of clinical
protocols.

• A. Seyfang, S. Miksch, and M. Marcos. Combining diagnosis and treatment
using Asbru. Proceedings of the Conference on Medical Informatics (MedInfo
2001), pp. 533–537, 2001.

In this paper, we describe the combination of data abstraction (for diagnosis
modelling) and plan execution (for treatment modelling) from a medical infor-
matics perspective.

13

• A. Seyfang, S. Miksch, and M. Marcos. Combining diagnosis and treatment
using Asbru. International Journal of Medical Informatics, 68(1–3):49-57, 2002.

This article is the revised version of the above conference presentation.

• A. Seyfang and S. Miksch. Advanced temporal data abstraction for guideline ex-
ecution. In Symposium on Computerized Guidelines and Protocols (CGP 2004),
pages 88-102. IOS Press, 2004.

Here, we take a slightly different view at the system architecture, discussing
examples from artificial ventilation and diabetes.

• S. Miksch, A. Seyfang, W. Horn, C. Popow, and F. Paky. Methods of temporal
data validation and abstraction in high-frequency domains. In K. Cios, edi-
tor, Medical Data Mining and Knowledge Discovery, pages 320-357. Springer,
2001.

Early ideas on temporal data abstraction and validation are described in this
book chapter.

1.4.2 Implementation of the Asbru interpreter

The ideas presented in this thesis were implemented by Peter Votruba, Micheal Paesold
and Gilbert Wondracek under my guidance. The resulting system is called the Asbru
interpreter (compare Section 5.1.2 for the technical description and 5.1.2.1 for the
description of the project funding this work). We presented the implemented system
in the following publications.

• P. Votruba, A. Seyfang, M. Paesold, and S. Miksch. Environment-driven skele-
tal plan execution for the medical domain. In 17th European Conference on
Artificial Intelligence (ECAI 2006), pages 847-848. IOS Press, 2006.

• P. Votruba, A. Seyfang, M. Paesold, and S. Miksch. Improving the execution of
clinical guidelines and temporal data abstraction in high-frequency domains. In
AI Techniques in Healthcare: Evidence-based Guidelines and Protocols, work-
shop in conjunction with ECAI 2006, pages 112-116, 2006.

• A. Seyfang, M. Paesold, P. Votruba, and S. Miksch. Improving the execution of
clinical guidelines and temporal data abstraction in high-frequency domains. In
A. ten Teije, S. Miksch, and P. Lucas, editors, Computer-based Medical Guide-
lines and Protocols: A Primer and Current Trends, pages 978-971, Amsterdam,
2008.

1.4.3 The Spread algorithm and its application

The Spread algorithm (compare Sections 4.4.4 and 5.1.1) and its application to con-
trol the artificial ventilation of preterm neonates was presented in the following set of
publications.

• S. Miksch, A. Seyfang, W. Horn, and C. Popow. Abstracting steady qualitative
descriptions over time from noisy, high-frequency data. In Artificial Intelligence
in Medicine (AIME 1999), pages 281-290, Berlin, 1999. Springer.

14

This describes the first version of the Spread algorithm.

• A. Seyfang, S. Miksch, W. Horn, M. S. Urschitz, C. Popow, and C. F. Poets.
Using time-oriented data abstraction methods to optimize oxygen supply for
neonates. In Artificial Intelligence in Medicine (AIME 2001), pages 217-226,
Berlin, 2001. Springer.

The application of the further developed algorithm to online control of oxygen
supply in neonates is described in this paper.

• M. S. Urschitz, V. Von Einem, A. Seyfang, and C. F. Poets. Use of pulse oxime-
try in automating O2 delivery to ventilated infants. In STA-ISAPO Meeting
Supplement to Anesthesia and Analgesia 94, 2002.

This presents our approach from a medical perspective to neonatologists.

In addition, our project was introduced to the medical community by the following
two abstracts.

• M. Urschitz, C. Poets, A. Seyfang, S. Miksch, W. Horn, and C. Popow. Konzept
einer automatischen Anpassung des Sauerstoffbedarfs an die speziellen Bedürf-
nisse kleiner Frühgeborener. Monats-schrift für Kinderheilkunde, 149(4), 2001.

• M. Urschitz, C. Poets, A. Seyfang, S. Miksch, W. Horn, and C. Popow. Konzept
einer automatischen Anpassung des Sauerstoffbedarfs an die speziellen Bedürf-
nisse kleiner Frühgeborener. Pneumologie, 55(4), 2001.

The results of the clinical study evaluating our application of the Spread algorithm
were presented in the following publications.

• M. S. Urschitz, W. Horn, A. Seyfang, A. Hallenberger, T. Herberts, S. Miksch,
C. Popow, I. Müller-Hansen, and C. F. Poets. Automatic control of the inspired
oxygen fraction in preterm infants, a randomized cross-over trial. American
Journal Respiratory and Critical Care Medicine (AJRCCM), 170, pages 1095-
1100, 2004.

• S. Miksch, C. Popow, A. Seyfang, A. Hallenberger, M. Urschitz-Duprat, M.
Urschitz, W. Horn, I. Müller-Hansen, C. Poets. “Klinische Evaluation einer
automatischen FiO2-Regelung bei beatmeten Frühgeborenen”; Poster: GNPI
2003, Köln; 2003; in: “29. Jahrestagung der Gesellschaft für Neonatologie u.
Pädiatrische Intensivmedizin”, (2003).

1.4.4 Bridging to the patient record

One of the prerequisites for the deployment of the work described in this thesis is the
integration with the electronic patient record at the point of care. Our work on bridging
the Asbru model to a real-world electronic patient record as part of the OncoCure
project (compare Section 5.1.2.2) is presented in the following publications.

• C. Eccher, A. Seyfang, A. Ferro, and S. Miksch. Bridging an Asbru protocol
to an existing electronic patient record. In Workshop on Knowledge Repre-
sentation for Health-Care: Patient Data, Processes and Guidelines (KR4HC) in
conjunction with AIME 2009, 2009.

15

• C. Eccher, A. Seyfang, A. Ferro, and S. Miksch. Embedding oncologic protocols
into the provision of care: The Oncocure project. In The XXII International
Conference of European Federation for Medical Informatics (MIE 2009). IOS
Press, 2009.

16

1.5 Conventions

In this document, the following conventions are used.

• The word I is used to talk about my personal achievements while we is used
when describing the group effort of the team of which I am a member.

• Throughout this thesis, the words temporal and time-oriented are used synony-
mously.

• To improve readability, I use the word guideline to replace abbreviations CIM
(Computer-Interpretable Model) and CGP (Clinical Guideline or Protocol), when-
ever possible without loss of clarity.

• In Section 4, Asbru elements are set in italics while abstraction module names
are set in sans serif font.

• This thesis does not contain references to the gender of an unknown person
taking on a certain role. Such reference was however not removed in two cases
where the gender of the individual concerned is known.

1.6 Abbreviations

CDSS Clinical Decision Support System

CIM Computer-Interpretable Model (of a CGP)

CGP Clinical Guideline or Protocol

DSS Decision Support System

EPR Electronic Patient Record

17

Chapter 2

Related Work

In this chapter, related work in the field of my thesis is divided three groups: Computer-
interpretable guideline models (Section 2.1), temporal data abstraction (Section 2.2),
and neighbouring field, which do not form part of the work presented here, but influ-
ence it to a noteworthy extent (Section 2.3.

2.1 Computer-interpretable models of guidelines and proto-
cols

Section 1.1.1 established the benefits of clinical guidelines. One of the reasons for the
lack of impact of guidelines lies in the fact that they are not available at the point of
care or difficult to handle [25].

Embedding them in the care process facilitates the spreading of high standard prac-
tices that otherwise would have much less impact [62]. Modelling guidelines as CIMs
and integrating them at the point of care was shown to increase adherence to the guide-
line [82, 61].

LIFe-reader R©, a DSS implemented in a PDA with barcode reader, for use by
nurses in homecare, was perceived as easily providing drug-related information on the
patient (called patient profile in this context) and improve the quality of the medication
[81].

In bigger projects, knowledge modelling issues become important. Many repre-
sentations for CIMs have been proposed. Section 2.1.1 gives a brief overview of them,
focusing on the topic of this thesis – temporal data abstraction and execution of the
model. Section 2.1.2 summarizes comparison articles published by various authors.
Ten Teije et al. [158] give a comprehensive introduction.

2.1.1 Individual guideline representations

All of the approaches discussed below feature interactive editing tools, which are be-
yond the scope of this thesis. In the following, I focus on a brief introduction, followed
by a discussion of guideline execution and data abstraction facilities in each of the ap-
proaches. With the exception of Asbru, which form the basis of later chapters of this
thesis, representation details are only described where they are characteristic or unique.

18

2.1.1.1 Asbru

Asbru was jointly developed by Silvia Miksch, Yuval Shahar, and Peter Johnson at
Stanford in 1996 [95]. It is part of the Asgaard framework [135]. Retaining the original
overall idea, its finer details were significantly revised in 2000, replacing the Lisp-style
syntax by XML and defining precise syntax for the content of the knowledge roles
[125]. This description is adapted from [127].

Asbru focuses on the representation of protocols, but guidelines can be modelled,
too, as shown in the Protocure project (compare Section 5.1.2.1). Both are repre-
sented as time-oriented, skeletal plans. Skeletal plans are plan schemata at various
levels of detail, which capture the essence of the procedure, but leave enough room for
execution-time flexibility in the achievement of particular goals [55]. Thus, they are
usually reusable in various contexts. Asbru expands the idea of skeletal plans through
the addition of knowledge roles, a rich set of ordering of actions and plans, and tem-
poral dimension of states, actions, and plans.

Time-oriented, skeletal plans are uniformly represented and organized in the plan
library. Atomic plans - called actions or operators in the planning literature are mod-
elled as user-performed plans. The language definition caters for external software
objects as an alternative to user-performed plans, but practical implementations never
used this feature. Instead, external wrappers bridge the Asbru interpreter to the em-
bedding system.

Each non-atomic plan in the plan library is hierarchically composed of a set of
plans with arguments and time annotations (representing the temporal scope of a plan).
A plan is identified by its name and consists of five knowledge roles: preferences,
intentions, conditions, effects, and a plan body (layout) which describes the steps to be
taken. The major features of Asbru are that

• prescribed actions and states can be continuous;

• intentions, conditions, and world states are temporal patterns;

• uncertainty in both temporal scopes and parameters can flexibly be expressed by
bounding intervals;

• particular conditions and operators are defined to monitor the plans execution;
and

• explicit intentions and preferences can be stated for each plan separately.

All conditions for the transition from one plan state to another are expressed in
terms of temporal patterns. A temporal pattern consists of one or more parameter
propositions or plan-state constraints. Each parameter proposition contains a param-
eter name, a value description, a context description and a time annotation. The time
annotation allows the representation of uncertainty in starting time, ending time, and
duration. The time annotation supports multiple time lines (e.g., different zero-time
points and time units) by providing arbitrary reference annotations. Temporal shifts
from the reference annotation are used to define the uncertainty in starting time, end-
ing time, and duration [42, 112]. To allow temporal repetitions, sets of cyclical time
points and cyclical time annotations are defined.

19

In the case of plans which are not user-performed, the subplans defined in the plan
body are performed either cyclical, sequentially, in parallel, unordered, or they are
any-order-plans. While unordered subplans are completely free from any constraint,
only one of a set of any-order-plans may be performed at a time, but their ordering is
not fixed. Parallel plans start together, but no constraints on their ends are established.
Sequential plans are executed exactly in the order in which they are given, without
temporal overlap.

For each type of subplans (including unordered) none of the children are started
before the parents start and all of them are terminated if the parent terminates. The suc-
cess or failure of child plans are propagated to the parent under various schemes (de-
fined by the propagation specification). The parent can have its own complete and/or
abort condition and it can wait for the completion of all its children or of a subset of
them (as defined in the continuation specification). Only if both the complete condition
and the continuation specification are satisfied the parent terminates.

Both a plan itself and the activation of a plan can contain a time annotation limiting
its temporal extend in the same way as it is done for parameters in the parameter
proposition.

Section 4.5.1 discusses technical details of the language elements central to mon-
itoring (time annotation, parameter propositions, and conditions). Section 4.6.1 con-
tains further details on the plan semantics.

Apart from the Spock system described in Section 2.1.1.3, there are two imple-
mentations of Asbru execution systems.

Bosse’s interpreter [22] consists of a parser written in Prolog which translates As-
bru Light [130] to CLIPS rules, and a CLIPS programme implementing the Asbru se-
mantics. It did not include monitoring of time-annotations. Temporal data abstraction
is restricted to measuring the change between two succeeding values, and mapping a
numeric value to a qualitative one. One of its fundamental problems was that it ran at
constant speed. This speed could be increased by a given factor, but since this reduced
the time available for data input, there was a limit to such speed-up. All data was en-
tered interactively when prompted. The output was an execution trace in free-text. This
tool was used to validate Asbru guidelines in the Protocure I project (compare Section
5.1.2.1), and to gain an insight into the Asbru semantics in the course of training Asbru
modelling.

Fuchsberger reduced Asbru Light further, focussing on those language elements
which were present in the guideline for artificial ventilation which he modelled. He
implemented a new interpreter, AsbruRTM [56] in Java, based on the ideas in [93].
Temporal data abstraction was again omitted. Patient data was acquired from a dedi-
cated user interface via CORBA.

2.1.1.2 Arden Syntax

Arden Syntax is the oldest approach, with its first version dating back to 1989 [33].
And it has since become an ANSI standard [1]. Knowledge is modelled in Medical
Logic Modules (MLMs) [76]. Besides Maintenance and Library slots, holding admin-
istrative information, the Knowledge slot contains sub-slots for data, evoke, logic and
action, among others. Data specifies the data used in the MLM and how it is retrieved

20

Figure 2.1: The DeGeL approach to gradual guideline formalisa-
tion [136].

(in term specific to the local installation. Evoke describes the event triggering the eval-
uation of this MLM. Logic specifies the condition for carrying out the action defined
in slot action.

Unfortunately, the content of the logic slot is not standardised. Consequently, each
installation uses its own syntax for this key part which severely limits compatibility of
models produced with tools from different vendors. Also referencing the data is not
standardised.

Sherman et al. [140] proposed a complementary approach to better represent tem-
porally complex plans and improve dealing with unavailable data. They store interme-
diate patient states in a central data repository. Like the syntax definitions described
below, this solution is not part of the language specification.

Arden/J introduces mapper elements to improve the portability of MLMs [84]. Mc-
Cauley et al. [91] used the language MUMPS (Massachusetts General Hospital Utility
Multi-Programming System) [41, 171] to replace free-text in the Arden syntax. Kuhn
et al. [87] use a C++-based precompiler for the same purpose. Tiffe [163] proposed an
extension to the syntax of logics slot to incorporate fuzzy linguistic terms.

2.1.1.3 Digital Electronic Guideline Library (DeGeL)

The DeGeL framework [136] features a set of distributed tools (compare Figure 2.1).
The focus is on the gradual conversion of guidelines from free-text to formal notations,
via semi-formal representations. Formal target languages are Asbru (compare Section
2.1.1.1) and GLIF (compare Section 2.1.1.8). It supports mixed – or hybrid – repre-
sentations, in which parts of the guideline are specified in a more formal way while
others remain free-text.

Within the DeGeL framework, the guideline execution is implemented in the Spock
execution engine [180]. It is able to process hybrid guideline models, e.g., hybrid As-
bru [137]. The Spock system also adapts for the availability or lack of patient data.
Missing data is queried from the user. If the guideline is fully formalised, and the
required data is found in the electronic patient record, the execution of the guideline
is automatic. Otherwise, interaction of the user is required. Published descriptions of

21

Figure 2.2: The Spock architecture [179].

practical evaluation focus on the later case [181].
Figure 2.2 illustrates the Spock engines and the other modules related to guideline

execution. The IDAN server supplies temporal abstractions, which are discussed in
Section 2.2. KNAVE II [134] is a further development of the graphical user interface
also used in the EON project, which is described next.

2.1.1.4 EON

EON was developed by the Stanford University. It is a framework for modelling and
executing guidelines. It includes different servers to support specific tasks (compare
Figure 2.3). The Padda guideline execution server [167], combines clinical guidelines
formalised using the Dharma guideline ontology [165] and patient data to situation-
specific recommendations.

The Dharma guideline ontology uses three different query languages: object-orien-
ted, logic-based and temporal. The first provides form-based templates for simple
cases. The second, Protege-2000s PAL language, implements a subset of first-order
logic. The third, Tzolkin queries, are sent to the second server in the framework, the
Tzolkin temporal data mediator, which is described in Section 2.2.3.5.

The WOZ server [139], complements the previous two by providing explanations.
It features a model of argumentation based on the work of Toulmin [164], explicitly
modelling data (what is given), warrant and backing of the warrant, claim (the result
of the conclusion), qualifier (modulating the claim), and rebuttal (defining exceptions
from the rule). Figure 2.4 shows their relation. The data, i.e., the dynamic input for
triggering the argumentation process, comes from the graphical user interface called
KNAVE [133].

Patient data is modelled as static (always valid), time-stamped, or associated with
a time interval during which it is valid [168].

22

Figure 2.3: System architecture of EON [168].

Figure 2.4: Toulmins argument structure as used in WOZ [139].

23

2.1.1.5 Guideline Elements Markup (GEM)

GEM was introduced by Shiffman et al. in 2000 [141]. In 2006, its second version
(GEM II) became an ASTM standard [2]. Figure 2.5 shows the concept hierarchy.
It focuses on high-level annotations of guidelines. For the clinical algorithm, it uses
GLIF (compare 2.1.1.8) [142].

An execution engine was proposed which consisted of eXstensible Server Pages
(XSP) transforming a GEM-annotated guideline into a web form into which the user
would fill in all patient data [59]. It does not discuss storage and retrieval of data and
does not appear to be developed further. Most work of this group deals with modelling
and guideline appraisal.

2.1.1.6 GASTON

The GASTON framework consists of a guideline representation based on Problem
Solving Methods (PSMs), an authoring environment, and an execution engine [36].
The latter consists of a core which is complemented by plug-ins to interface to patient
record systems and monitors.

Four applications of the system are mentioned in [39], of which three concern
low-frequency domains: GRIF: a reminder system that provides automated feedback
on test ordering in general practice [18]; M-PADS: a psychopharmacological advisory
system that provides decision support concerning the selection of the most suitable
psychoactive drug [78]; and a system for the management of chronic diseases [37].

The application in the high-frequency domain is CritICIS. It is described as a real-
time critiquing system used in critical care environments such as Intensive Care Units
[35]. However, temporal data abstraction is not performed. The system focus is on
checking manually entered data for completeness and on potentially undesired inter-
actions between ordered drugs.

This is the only system discussed here which explicitly covers requirements of
high-frequency domains, such as short response time to input, and tasks are described
as event-based.

2.1.1.7 GLARE

The GLARE framework builds on ontology modelling work started in 1997 [162].
Figure 2.6 shows the ontological hierarchy.

Originally, the need for explicit primitives to represent conditions was denied [63].
Later, it integrated temporal reasoning for consistency checks within the guideline
[161]. Similar to Asbru, plans (called actions here) have states active, suspended,
aborted, and completed [160]. Decisions are modelled as separate decision actions.
Data input is modelled as query actions. Treatment actions are named work action.
Conclusion actions simply add a given name of a diagnostic hypothesis to a list recorded
for the patient. They are omitted in later papers (e.g., [13]).

The system has been integrated using Java and an Oracle database. During exe-
cution, the steps already performed are marked in the task graph to show the user the
current state of the treatment. Quoted sample applications belong to the low-frequency
domain. Temporal data abstraction is not included [160].

24

Figure 2.5: GEM concept hierarchy [141].

25

Figure 2.6: GLARE concept hierarchy [161].

A later paper [13] shows how GLARE models can be mapped to Petri nets [107]. In
particular, they use stochastic well-formed coloured Petri nets [28] and a composition
operator [16] to superimpose transitions or places with matching labels. However,
this work does not seem to concern guideline execution in practice, but rather aim at
presenting formal semantics for the GLARE representation similar to those defined for
Asbru [11].

2.1.1.8 Guideline Interchange Format (GLIF)

The Guideline Interchange Format (GLIF) was developed by the InterMed collabora-
tory, a joint project of Harvard, Columbia, and Stanford universities [102]. It is based
on four precursors: (1) the Arden Syntax (compare Section 2.1.1.2); (2) GEODE-
CM, combining guidelines with structured data entry and data retrieval, in use at
the Brigham and Women’s Hospital; (3) MBTA, an architecture for building large
knowledge-based medical systems, used at the Massachusetts General Hospital; and
(4) EON a component-based architecture for guideline-based care and decision sup-
port, developed at Stanford university (compare Section 2.1.1.4).

Figure 2.7 shows the concept hierarchy. Care actions are formalised in action
steps, conditional steps, branch steps, and synchronisations steps. Where Asbru has
parallel and unordered subplans, GLIF has branch steps to start parallel actions and
synchronisation steps to merge the parallel branches into one again.

A special construct is the k of n Criterion. It is fulfilled if k out of n criteria are
fulfilled. The criterion elements in GLIF specify the eligibility criteria, resembling the
filter-precondition in Asbru.

The original GLIF notation left room for further development as far as the precise
representation of medical concepts, criterion logic, temporal information, and uncer-
tainty is concerned.

The current version, GLIF3, features the use of Health Level 7 (HL7) standards
and the ability to incorporate standard medical terminologies, features to manage com-
plexity of large guidelines, a layered model to interface the patient data and medical
knowledge involved, and the object oriented query language GELLO [23]. Its syntax
is based on the Resource Description Framework (RDF) [88].

26

Figure 2.7: GLIF concept hierarchy, adapted from [102].

GELLO [152] is a further development of the Guideline Expression Language
(GEL) [101], which was based on Arden Syntax. GELLO is based on the Object
Constraint Language (OCL) [7].

GLEE, the Guideline Execution Engine for GLIF3 is designed as middleware to
be integrated with the clinical information system at a local institution. It generates
suggestions for actions to be taken by the user. If connected to a patient monitor, it
produces these suggestions automatically. However, the authors stress the “system
suggests, user controls” approach [173].

Besides clinical decision support, GLEE supports quality assurance, guideline de-
velopment, and medical education. Combined with GELLO, it can specify concise
conditions. However, GELLO is an object-oriented query language rather than a time-
oriented one [174]. With EON being part of the InterMed collaboratory, the availability
of the resources described in Section 2.1.1.4 seems to be assumed.

The Guideline Execution by Semantic Decomposition of Representation (GES-
DOR) model [172] bridges ProForma to GLIF by defining a modified version of the
ProForma representation (with modified expression language, cyclic task execution,
and patient data definition). An implementation of the GESDOR execution engine
was shown to perform exactly like GLEE in test runs on two guidelines.

The “Online Guideline Assist” (OLGA) project1 translated guidelines formalised
in GLIF into workflow specifications formalised in JPDL (jBPM Process Definition
Language2). Using custom middleware, the workflow execution was integrated into
the patient data management system in use at the point of care, avoiding any additional

1http://www.fit.fraunhofer.de/projects/prozesse/olga.html, last accessed
Oct 20th, 2010

2http://docs.jboss.org/jbpm/v3/userguide/jpdl.html, last accessed Oct 20th,
2010

27

http://www.fit.fraunhofer.de/projects/prozesse/olga.html
http://docs.jboss.org/jbpm/v3/userguide/jpdl.html

Figure 2.8: Guide Enactment Tool system architecture [31].

effort for the user and writing recommendations back into the patient record [120, 119,
118].

This system is evaluated in the field of weaning from long-term artificial ventila-
tion in adult intensive care units. However, only the chain of checks and decisions is
modelled. The latest readings of some values which could arrive at a higher frequency
are accessed, but only once per day. Temporal data abstraction is not mentioned.

2.1.1.9 Guide and NewGuide

Developed at the University of Pavia, both representations share a flowchart-like rep-
resentation of treatment and diagnosis steps, inspired by Petri Nets [107].

Guideline execution is performed by the Guide Enactment Tool (GET) in an inter-
active way. The GET uses a Workflow Management System to implement functions
like waiting for a given period of time. Figure 2.8 shows the system architecture.
Guide permits three levels of integration: (1) stand-alone system, with all data entered
interactively, (2) data retrieved from the EPR at the point of care but user interface
still supplied by the Guide system, and (3) interaction with Guide via the hospital
information system [31].

The NewGuide system adds medical knowledge components, improved expres-
siveness of the external temporal server (see below), and GEM attributes to describe
the guideline. Also, the graphical editor was improved. NewGuide models can be
translated to Petri net models for simulation purposes [109].

Fields of application are pressure ulcer prevention, stroke (all phases from emer-
gency to rehabilitation), and heart failure management. In the latter case, Guide is
fully integrated with the existing EPR and careflow management system and manages
the prescription of laboratory examinations by general practitioners [30].

The NewGuide system employs an HTTP-based server for temporal abstractions,
which is capable of detecting qualitative trends and Allen relations [29]. However, for

28

each abstraction to perform, the complete set of data must be sent to the server, together
with the description of the abstraction, which then returns the abstraction [15].

2.1.1.10 HELEN

The HELEN-Project was established to introduce guideline-based care at the Depart-
ment of Neonatology of the Heidelberg University Medical Center.

The Guideline Execution Engine serves to guide users through the various steps of
guidelines. It is capable of sending messages to Personal Digital Assistants, but it does
not process high-frequency data. Temporal data abstraction is not mentioned [145].

Two guidelines were implemented for an in-depths evaluation of the system: One
for the management of hyperbilirubinemia in the healthy newborn as published by the
American Academy of Pediatrics. The second deals with the management of apnoea
in pre-term newborns. Management actions foreseen in this guideline range from food
adaptation to introduction of mechanical ventilation, which itself is not controlled by
the HELEN system. I.e., both applications belong to the low-frequency domain.

2.1.1.11 PLAN

This approach differs from most others in using Event-Condition-Action (ECA) rules
[58, 104] to model clinical test ordering protocols [79].

The rules could easily become unmanageable in number for a realistically sized
protocol. The PLAN language prevents this, providing a more conventional presenta-
tion of a protocol model and all its associated rules to the user [175].

This work builds on TRiPS (Test Request Order System) developed by the TUDOR
project which also supplied an editor to conveniently edit the ECA rules from which a
protocol is built [17].

Later, PLAN was further developed into an XML-based language, called AIM. The
corresponding modelling and execution framework is called CIM (Complex Informa-
tion Management framework) [90], SEM (Specification, Execution, and Management
framework) [176] and SpEM (Specification, Execution, and Management) [44].

Although this approach is event based, it does not aim at high-frequency appli-
cations, but test ordering. Therefore, the authors do not give details concerning the
response time of the system. Data abstraction is not within their scope either.

2.1.1.12 PRODIGY

Funded by the UK Department of Health and co-ordinated by the Sowerby Centre for
Health Informatics at the University of Newcastle (SCHIN), PRODIGY (Prescribing
Rationally with Decision-Support in General Practice Study) tried to bring decision-
support system for drug prescription to clinical practice.

It can be seen as a forerunner of the other systems described here, in terms of
practical application. In phase two, nationwide evaluation in general practices in the
UK, implementations of decision support systems which were based on the ideas in
the PRODIGY project achieved up to 27% use rate, which was a significant progress
over phase one [113].

However, the system did not succeed to change guideline compliance which was
attributed to the difficulty to show changes in an application domain such as chronic

29

Figure 2.9: SAGE system architecture [110].
Abbreviations used in the figure:
CIS = clinical information system, VMR = virtual medical record,
Svcs = services, Term = Terminology.

diseases [49]. This was also connected to the premature state of the software [108].
Later studies confirmed these assumptions [57, 85, 144].

Temporal data abstraction was not involved [150].

2.1.1.13 ProForma

ProForma [155] was developed by Cancer Research UK. Its first version is commer-
cialized under the name ArezzoTM, a second version is implemented in the Tallis sys-
tem [156]. It features an elaborate decision model where strong and weak arguments
for and against an action can stated independently and the execution module weighs
them against each other. This sets it off against other approaches where such decision
processes are modelled explicitly.

The Arezzo guideline enactment engine guides the user through the collection of
data. Emphasis is put on leaving all decisions to the end user [6]. Application is thus
limited to low-frequency domains. Temporal data abstraction is not mentioned. In the
low-frequency domain, the list of applications ranges from drug prescription at general
practitioners to cancer referral.

Proforma is also used by the agent-based Health Care Services release 2 platform
(HeCaSe2) [80].

2.1.1.14 SAGE

SAGE, the Standards-Based Active Guideline Environment project, can be seen as
successor of the EON project. It builds on existing approaches, bridging them to
workflow, standards, and electronic patient records [166]. The main focus is on the
integration with the native clinical information system (CIS) and its user interfaces.

Figure 2.9 shows the system architecture. For maximum portability, the event lis-
tener is implemented as a web service and the SAGE project aims at interfacing the
VMR/Action services with standards such as HL7. As a demonstrator, the SAGE sys-
tem was integrated with IDX System Corporation’s commercial CarecastTM CIS. The
demonstrated application population-based reminder scenario in the field of vaccina-
tion [110].

30

2.1.1.15 Representations without execution engine

The following projects developed representations or tools, but did not deal with guide-
line execution or temporal data abstraction.

HGML. HGML (Hypertext Guideline Markup Language) is an XML-based format
to mark up conditions and recommendations within free text guidelines [65].

Prestige. The EU project Prestige is an early attempt to tackle computer-aided guideline-
based care involving a large number of scientific and commercial partners. Already in
1998, it pointed out that the two major bottlenecks were the creation of formal models
and the bridging to the EPRs [60].

Stepper. Stepper is an editor for document-centric guideline modelling in a multi-
step process. Target representations can be Java or Asbru [116, 157].

2.1.1.16 Guideline execution without new representation language

The following projects deal with guideline execution but did not develop their own
guideline representation language. Some of them were pioneering in bringing guideline-
based care into care practice. However, within the community described above, it is
established that modelling complex medical knowledge requires a dedicated represen-
tation. The motivation is to ease the knowledge engineering task rather than formal
necessity.

ASTI. The ASTI (Aide à la Stratégie Thérapeutique Informatisée) project uses if-
then rules, decision trees and a drug database to improve the practice of drug prescrip-
tion. It has two modes of operation. In the critic mode, the orders entered by the
user are evaluated against this knowledge base and constructive criticism is displayed
as appropriate. In the guided mode, the user is patient-centred solution to a given
therapeutic problem [123]. It is deployed in the management of arterial hypertension
[122].

ONCOCIN. Developed for the Stanford Oncology Day Care Center since 1979,
ONCOCIN is one the founding projects in the field. It is a consultation system for
chemotherapy dose selection and included a customised keyboard with 21 extra keys
to enter the required information with minimal typing. It was one of the first to empha-
sise the need for symbolic representation of knowledge and to explain the reasoning
behind a recommendation [117]. It was also one of the first to show that use of a
computer-supported DSS improves the quality of data entry [86], and that modelling
the patient history and representing temporal relations and facts is a important part of
the challenge [83].

OncoDoc. OncoDoc is a decision support system based on decision trees and hyper-
text. It is focussed on treatment selection in oncology. It is used at Institut Gustave

31

Roussy to increase physician awareness of trials open to new participants and lead to
an increase of patient enrolment in clinical trials by 17% [121].

In an ongoing clinical trial evaluates the effect of the routine use of OncoDoc2
during multidisciplinary staff meetings regarding the compliance of decisions made in
these meetings with guidelines [5].

PRESGUID. The PRESGUID project implemented guidelines in the form of deci-
sion trees linked to a commercial drug database and recommendations in XML format
[46]. In a comparison between physicians using paper-based guidelines and the PRES-
GUID system in hypertension management, diabetes mellitus treatment and peripheral
arterial disease, the group using PRESGUID showed significantly higher compliance
rates [45].

2.1.2 Comparisons

Over the years, a series of authors compared approaches to guideline modelling and
execution. Their work is summarised in this subsection.

2.1.2.1 Peleg et al. 2003

An international consortium modelled sections from two guidelines in Asbru, EON,
GLIF, GUIDE, PRODIGY, and ProForma. Both guidelines dealt with low-frequency
domains, namely managing chronic cough and prevention, detection, evaluation, and
treatment of high blood pressure. The study focussed on the representations and their
individual features, not on guideline execution. It comprised eight dimensions:

1. organization of guideline plans,

2. goals,

3. model of guideline actions,

4. decision model,

5. expression language,

6. data interpretation/abstractions,

7. medical concept model, and

8. patient information model [106].

The comparison of language features showed that Asbru only lacked regarding
the expression of preferences associated with plans and in argumentation rules. Here,
ProForma offers a complete framework while other representations (including Asbru)
imply the preferences in the conditions modelled. Decision trees were found to be
missing but the if-then-else element covers this functionality (in more recent language
versions).

32

2.1.2.2 De Clercq et al. 2004

The authors compare acquisition, verification, and execution aspects for the following
representations: Arden Syntax, GLIF, ProForma, Asbru 6.3 and EON [34]. An updated
version has been published in 2008 [34].

Regarding temporal reasoning, they state that “the Asbru approach contains the
most sophisticated structures. EON and GLIF both adopt a subset of the Asbru tem-
poral language.”[34, p. 38]

2.1.2.3 Isern & Moreno 2008

The authors compared guideline representations and architectures for creating and ex-
ecuting them for the following execution engines. The name of the representation is
stated in brackets where it has its own name: ArezzoTM (ProForma), DeGeL (Hybrid-
Asbru), GLARE, GLEE (GLIF3), HeCaSe2 (ProForma), NewGuide, SAGE, SpEM
(PLAN) [79].

They found the following two common limitations in these approaches:

1. While the representations are rather similar in their features, there is no stan-
dardization. Each execution engine uses its own representation.

2. The problem of mapping to the EMR is not solved in a general way. Instead,
individual solutions are created in each case.

They also point out that health care is not fully computerized in most countries,
and therefore, it is not astonishing that – except for some limited use of ArezzoTM –
these systems have not been used in daily routine.

Execution engines are divided into two groups: event-based and rule-based. In
the first case, events are handled by the system as they appear. This group comprises
SpEM, GLEE, HeCaSe2 and SAGE. In the second case, rule execution is triggered by
the user. This group comprises NewGuide, GLARE, DeGeL and ArezzoTM.

For high-frequency domains, the event-based paradigm is the appropriate one,
since alarms must be generated and treatment must be adjusted as indicated by ar-
riving data, independent of the time and inclination of the care personal. In contrast,
for low-frequency domains, the rule-based approach is suitable, since data entry is
sparse and it occurs when the care staff deals with a patient, e.g., at an encounter in the
practice, and only then recommendations are appreciated.

2.1.2.4 Weng et al. 2010

This paper focuses on the formal representation of eligibility criteria. For 27 different
approaches, it discusses expression language, representation of patient data and repre-
sentation of medical concepts. Only the first is relevant for this thesis. In this regards,
the authors state that “Asbru excels in expressing temporal constraints among events.”
[174, p. 456].

2.1.3 Discussion

Despite the large number of representations proposed, the differences in syntax do not
map to equally significant differences in the basic capabilities of the system.

33

Name of syntax Temporal data Data-driven
and execution engine abstraction implementation
Arden Syntax not in core various

definition [76] implementations
EON subset of Asbru [40] yes [168]
Hybrid Asbru/DeGeL yes [179] no [79]
GASTON no [35] yes [35]
GEM as GLIF [141] no [59]
GLARE no [160] no [79]
GLIF3, GELLO/GLEE subset of Asbru [40] yes [79]
NewGuide via external server [29] no [79]
HELEN no [145] yes [145]
PRODIGY no [150] no [113]
ProForma/ArezzoTM no [155] no [79]
ProForma/HeCaSe2 no [155] yes [79]
SAGE based on GELLO [166] yes [79]
PLAN/SpEM no [79] yes [79]

Table 2.1: Comparison of executable CIMs regarding (1) the
availability of temporal data abstraction within the system, and
(2) whether progress is driven by data arriving without direct user
intervention or not.

Most systems focus on application on low-frequency domains. As a consequence,
their natural mode of application is interactive, with the user triggering individual
guideline steps and/or entering patient data. In such a setting, computational effort
in data abstraction is not an issue.

Table 2.1 shows the two aspects most relevant for this thesis, for all the CIG rep-
resentations:

1. Are there temporal abstraction facilities, and how do they compare to Asbru?

2. Does execution of the CIG progress according to data arriving without user inter-
vention, or is it driven by requests from the user to take the next step or perform
the next decision.

The conclusion from the table is that there are several approaches featuring tem-
poral data abstraction and many systems are data-driven. However, only the group
formed by EON, GEM, GLIF, and SAGE features both temporal data abstraction and
a data-driven implementation. For this group, the expressiveness of the data abstrac-
tion facilities can be considered a subgroup of Asbru 7.4 [40]. Therefore, Asbru is
selected as the sample representation language, for which solutions are presented in
this thesis.

34

Relation Description Inverse relation
A before B A ends before B starts. B after A
A during B A starts after B starts and ends B contains A

before B ends.
A overlaps B A ends after B starts. B overlapped-by A

A meets B A ends at the same time B starts. B met-by A
A starts B A and B start at the same time. B started-by A

A finishes B A and B end at the same time. B finished-by A
A equals B Both start and end of A and B The equality relation

are exactly the same. is reflexive.

Table 2.2: Temporal relations defined by Allen [8].

2.2 Temporal data abstraction

In this section, I first describe conceptual work as far as it is relevant for the later
described systems, followed by implemented systems. Then, I discuss how these ap-
proaches relate to the challenges associated with guideline execution in high-frequency
domains. A recent overview of temporal data abstraction in the medical domain is
given in [38].

2.2.1 Conceptual work

2.2.1.1 Allen’s temporal relations

Allen [8] defined 13 temporal relations defined by the relations of their start and end
points. Six of them are the inverse of 6 others, as shown in Table 2.2. These definitions
were used by many researchers, most of whom only modelled those 7 which are not
the inverse of others. Also the definition of temporal relations in Asbru builds on them.

2.2.2 Definitions by Shoham

Shoham [143] tried to combine the work of McDermott and Allen, pointing out short-
comings in their work. He defined a set of relations between the truth value of propo-
sitions over different intervals

downward-hereditary. Whenever a proposition holds over an interval, it holds over
all that intervals subintervals, possibly excluding its end points.

upward-hereditary. Whenever a proposition holds for all proper subintervals of some
non-point interval, except possibly at that intervals end points, it holds over the
non-point interval itself.

gestalt. A proposition never holds over two intervals, one of which properly contains
the other.

concatenable. Whenever a proposition holds over two consecutive intervals, it holds
also over their union.

solid. A proposition never holds over two properly overlapping intervals.

35

These definitions were used in the RÉSUMÉ system discussed in Section 2.2.3.3.

2.2.2.1 TSQL2

TSQL2 merged the various approaches into a suggestion for an extension of SQL. Its
features are: snapshot equivalence and identity are synonymous; support for only one
valid-time dimension; tuple timestamping is employed; it is based on homogeneous
tuples. valid time support for both the past and the future; timestamp values are not
limited in range or precision [146, 148].

After some modifications and defining formal semantics for TSQL2 [21], it was
approved by the ANSI SQL3 committee and forwarded to the ISO SQL3 committee
[149]. However, due to differences, the project was cancelled [68, 147].

None of the existing database implementations fully supports TSQL2, but the Ora-
cle Database 11g Workspace Manager supports a range of its features [12]. In addition,
a range of database products support features described in TSQL2.

2.2.3 Implemented systems

2.2.3.1 TrenDx

Haimowitz et al. [67] developed TrenDx. It models temporal pattern in trend templates.
These patterns consist of a partially ordered set of temporal intervals with uncertain
end points. Value constraints – which are polynomials of degree 0, 1, and 2 to specify
constant values, linear and quadratic growth or decrease – are linked to each of the
temporal intervals.

Matching can be regression-based or constraint-based. The second approach is
computationally attractive. The first is more robust to noise at a higher computational
cost. It also provides a statistically grounded ranking of competing patterns, based on
the mean absolute percentage error of each hypothesis. However, to reduce the oth-
erwise prohibitive computational complexity of the search, the number of hypothesis
under consideration is restricted. This number must be chosen carefully, since a too
small value makes the algorithm susceptible to noisy signals.

Le [89] evaluated TrenDX in the field of endocrinology (paediatric growth mon-
itoring) in a study involving 22 physicians rating 95 children and found that TrenDx
performed worse than physicians. He attributes this finding to insufficient models (i.e.,
definitions of templates) and the inappropriateness of linear regression in situations
with very scarce data, like in endocrinology.

In addition to endocrinology, Haimowitz et al. applied TrenDx in the field of arti-
ficial ventilation in intensive care, in a small experiment on a single patient [66].

2.2.3.2 VIE-VENT

VIE-VENT [92, 75] is a knowledge-based system written in CLIPS3 to support physi-
cians in the task of artificial ventilation in neonates. It features data abstraction,
knowledge-based data validation and repair, selection of therapy recommendations,
and visualisation.

3http://clipsrules.sourceforge.net/WhatIsCLIPS.html, last accessed October
20th, 2010

36

The data abstraction methods are the following: transformation of quantitative
point data into qualitative values using context-specific schemata for data-point trans-
formation; smoothing of these schemata for data-point transformation where the con-
text changes; smoothing of data oscillating near limits between qualitative regions;
context-sensitive adjustment of qualitative values (implemented by rules operating
on qualitative values); transformation of interval data using schemata for trend-curve
fitting. Data smoothing near thresholds is terminated when the input value exceeds
the limit of region plus a predefined value, or after a predefined duration of constant
smoothing application. Trend curve fitting uses a complex definition of the expected
sequence of measurements when returning to region of the normal values, which is an
important concept in artificial ventilation.

Figure 2.10 shows complex arrangement of functions for knowledge-based data
validation and repair. They perform the following functions:

Range checking determines if a quantitative value is within a plausible range. This is
performed for raw values and for trends.

Causal dependencies invalidates a second parameter if the first is invalid, as specified
in a dedicated dependency rule set.

Functional dependencies specified for qualitative or quantitative values are used of
error checking on the one hand, and data repair on the other hand.

Temporal validity determines the length of the interval starting at the measurement
for which the value is valid (unless a new value is read or the value is explicitly
declared invalid.

Stability check enforces a short time period during which a previously invalid param-
eter has to be stable before it becomes valid again.

Cross-validation checks for consistency of different parameters. It is typically used
to validate a frequently available parameter against a more reliable, but less fre-
quently available parameter which reflects the same measured entity, e.g., two
sources of partial pressure of CO2 in the blood.

Dynamic calibration repairs invalid values during a time interval. It applies a calibra-
tion function to a continuously-assessed parameter utilizing a valid (discontinuously-
assessed) parameter, relying on the assumption that the invalid, continuously-
assessed parameter has a valid trend.

Modified Hojstrup method. The original calculates a prediction for each new data
point, based on the mean, variance and point-to-point correlation of the already
known time series. If the difference is too big, the new data point is discarded
[73]. The VIE-VENT version uses the deviation of the last two values from the
mean instead of the correlation of the past measurements in the prediction calcu-
lation to obtain response times suitable for online processing of high-frequency
data.

Functional trend dependency checks. Based on qualitative abstractions of trends, a
set of rules define cases in which values are not plausible. They compare the

37

Figure 2.10: The VIEVENT modules for data validation (on the
left) and for repair and adjustment (on the right) [92].

38

behaviour of two different parameters. If plausibility rules are violated, both
values are marked ambiguous.

Parameter assessment for trends discards the last measurement if the trend is not in
the same or a neighbouring qualitative region, i.e., if the change is too abrupt in
qualitative terms.

Predicting values uses the last valid measurement while still valid and optionally the
last trend. Both are controlled by plausibility checks on different levels to limit
prediction to safe cases.

The generation of treatment recommendations is based on rules in a stepwise pro-
cess as follows.

1. All recommendations matching the input are collected, maintaining the infor-
mation on the basis of the recommendation.

2. Importance ranking of parameters gives priority to recommendations based on
more reliable input sources. It also ranks reactions to decreased blood saturation
higher than reactions to increased values.

3. The priority lists of attainable goals ranks recommendations such that certain
options are tried first. Only if they fail twice, the next one on the priority list is
tried.

4. Finally, any inconsistent recommendations left are removed from the list.

Figure 2.11 shows the user VIE-VENT interface.
Experiences collected with VIE-VENT lay the foundations for both the design of

Asbru and the Pulsoximetry project described in Section 5.1.1.
Belal et al. [14] further developed the ideas in VIE-VENT using fuzzy logic. In a

clinical evaluation if their system (also in artificial ventilation of neonates), they found
91% agreement between actions suggested by the system and physician decisions.

2.2.3.3 RÉSUMÉ

RÉSUMÉ [132] distinguishes five subtasks of the abstraction task: temporal context
restriction, vertical temporal inference, horizontal temporal inference, temporal in-
terpolation, and temporal pattern matching. Each of them is supported by its own
problem-solving mechanism (compare Figure 2.12).

Temporal Context Restriction. The context-forming mechanism transforms abstrac-
tion goal intervals, event intervals, abstractions and existing context intervals
into context intervals based on the domain’s temporal abstraction ontology.

Vertical Temporal Inference. The contemporaneous-abstraction mechanism transforms
contemporaneous parameter points, parameter intervals, and context intervals
into abstraction points and intervals of type state based on the parameter ontol-
ogy.

39

Figure 2.11: The user interface of VIE-VENT. To the top-left,
qualitative temporal abstractions of blood gas measurements are
shown. The actual and recommended ventilator settings are shown
below. To the right, important parameters are plotted over the most
recent four hours. Grey bars indicate intervals of data which was
found to be invalid [92].

40

Figure 2.12: The RÉSUMÉ temporal abstraction method [132].
The rectangles denote tasks; the rounded rectangles denote meth-
ods; the diamonds denote knowledge types.

41

Horizontal Temporal Inference. The temporal-inference mechanism performs two
subtasks: temporal-semantic inference and temporal horizontal inference. The
former infers specific types of interval-based logical conclusions, given interval-
based propositions, using a deductive extension of Shohams’s temporal semantic
properties [143].

Temporal horizontal inference determines the domain value of an abstraction
created from two (or more) joint abstractions, e.g., moderately increased and
significantly increased can be joint to a new abstraction increased.

Temporal Interpolation. The temporal-interpretation mechanism bridges gaps be-
tween time points or time intervals, using local (forward and backward) and
global (between two abstractions) truth-persistence functions. The output is an
interval during which a parameter holds.

Temporal Pattern Matching. The temporal-pattern-matching mechanism extends the
temporal-inference and temporal-interpolation mechanisms by abstracting over
multiple intervals and parameters, and typically reflects heuristic domain- and
task-specific knowledge.

The computational complexity is quotes as O(N3) per basic temporal abstraction
mechanism, where N is the number of relevant parameter propositions, where a pa-
rameter propositions is a combination of a parameter, a parameter value, and an inter-
pretation context.

A prototype of RÉSUMÉ was implemented in the CLIPS4 expert system shell.

2.2.3.4 Chronus II

Chronus II is a temporal database mediator which extends SQL by temporal queries
[100]. It supports valid time for entries in the database, Allen relations [8], temporal
joins [98] and temporal indeterminacy [99]. Temporal information is stored in ded-
icated fields of standard SQL tables. Each request to Chronus results in a query for
complete join of the relevant tables. From this potentially large result set, the Chronus
system removes those which do not meet the temporal constraints. Temporal inde-
terminacy is represented as intervals within which a probability distribution function
holds. E.g., “probably late” in a day is represented by increasing probability within the
temporal interval constituting the day in question.

2.2.3.5 Tzolkin

Tzolkin complements Chronus and RÉSUMÉ by another mediator module [96]. It
takes a query containing temporal abstractions and checks whether these abstractions
have already been created and stored in the database. If this is not the case, RÉSUMÉ
is invoked to produce them and store them in the database. Then, Chronos is invoked
to query the database of abstractions and create the answer to the original request sent
to the Tzolkin system.

4http://clipsrules.sourceforge.net/WhatIsCLIPS.html, last accessed October
20th, 2010

42

Tzolkin matches the probability rating returned by Chronus and only considers
such solutions for which the probability rating exceeds a probability factor given as an
argument of the query.

2.2.3.6 CAPSUL

The Constraint-based Pattern Specification Language CAPSUL expands RÉSUMÉ by
the definition of periodic patterns. A periodic pattern is a series of intervals, during
each of which exactly one instance of the repeating event occurs [26].

Gaps between intervals are defined by their minimum and maximum duration.
These definitions must remain constant over all repetitions. Temporal relations be-
tween intervals are defined by Allen’s 7 relations. Composite repeated patterns must
retain their temporal relation through all repetitions.

Gap constraints are evaluated for pairs of intervals only once, which results in a
computational complexity which is proportional to the number of intervals, for the
verification of a single constraint, given a set of sorted elements. The constraints are
designed specifically to maintain this linear effort, which sets the approach off from
more theoretical work permitting exponential growth of combinations under consider-
ation.

CAPSUL was experimentally used in oncology. It was found that the huge amount
of abstractions generated by RÉSUMÉ was intractable for human expert who should
evaluate them. In conclusion the strength of RÉSUMÉ lies in finding patterns involv-
ing multiple parameters on a higher abstraction level. A human expert could not easily
find such patterns and the higher abstraction level reduced the data volume [27].

2.2.3.7 Momentum

Both Tzolkin and Chronus II suffer from computationally expensive, especially when
population querying is involved. The Momentum system overcomes this by imple-
menting temporal abstraction in event-condition-action rules. It dynamically generates
and stores abstractions, similar to Tzolkin, but performed dynamically and incremen-
tally. Unlike Tzolkin and Chronus-II, Momentum generates new abstract concepts
only when relevant primitive (raw) data is added to the system, without recomputing
previously generated abstractions [153].

2.2.3.8 IDAN

IDAN further develops the ideas in Tzolkin into a modular, distributed architecture
incorporating the use of controlled vocabularies. Its default module for temporal rea-
soning tasks is called Alma [19]. It implements the expressiveness of CAPSUL [20]
and uses the language TAR (for Temporal Abstraction Rules), which is a typed logic
languages supporting subject types (e.g., patients), time (time points, intervals, and
durations) and values [10].

2.2.3.9 KDOM

The Knowledge-Data Ontological Mapper (KDOM) provides basic temporal abstrac-
tions, but “is not intended to be a formal method for the specification of elaborate

43

temporal-abstraction knowledge . . . as is done in the RESUME and IDAN projects”
[105, p. 187]. The main focus is on bridging guideline execution to patient records in
practice.

2.2.3.10 Hunter et al.

Hunter and McIntosh [77] proposed an abstraction based on linear regression lines
which were joined until they were too dissimilar. This resulted in long lines for steady
data and short lines at points of change or noise.

Rules referring to these steady lines were applied, to detect patterns in groups of
signals monitored in parallel. It was experimentally evaluated in an neonatal care unit.

2.2.4 Discussion

The aim of this thesis is to bridge temporal data abstraction to guideline execution. As-
bru was chosen as the reference representation for guidelines based on the discussion
given in Section 2.1.3. Therefore, this discussion focuses on two aspects:

• How to the above concepts map to Asbru?

• Which abstraction methods should be added to the original Asbru (version 6.4)
definition to extend guideline execution by capable temporal data abstraction
methods?

Asbru stores the history as a series of time-stamped measurements. However, this
event-based approach is complemented by defining a trust period for each parame-
ter, which expands the historic recordings to intervals during which given proposition
holds.

Asbru includes those 7 Allen relations which are not the inverse of another one.
The inverse relations are denoted by swapping the arguments.

Shoham’s properties [143] apply to Asbru as follows. All parameters are downward-
hereditary and concatenable. Parameter proposition resp. the intervals matching them
are gestalt.

VIE-VENT contributes the following items to the list of desired functionality for
the system described in this thesis:

• Transformation of quantitative data to qualitative values using context-specific
schemata for data-point transformation. When the context changes, the limits
between the qualitative regions change, too. This can lead to undesired changes
in the qualitative output – a stable quantitative input maps to a different output
after the context switch. However, it can also be argued that this difference is
intended.

• Smoothing of oscillating quantitative input to produce stable qualitative output.

• Rules operating on quantitative and qualitative values, to adjust the abstractions
in freely configurable ways.

• Trend curve fitting could be substituted by rules stating how long the transition
from one qualitative value to the next better one is expected to take.

44

• Comparing qualitative and quantitative values of the measurements and their
trend, for pairs of input channels, or with constants, forms the basis of a whole
range of checks.

• Temporal validity is implemented in Asbru by specifying the trust period for
each parameter.

• Stability checks call for user-defined delays in the abstraction network.

• Simple versions of the Hojstrup method can be constructed based on a regression
model of a few most recent measurements.

• Predicting values is a delicate topic in medical care. If rules can be found which
define the physician’s strategy when faced with missing values, the model is
guaranteed to meet the expectations, which is not as easy with simulation and
prediction.

The abstraction tasks defined by RÉSUMÉ are implemented in Asbru as follows.

Temporal Context Restriction. The context is implemented as a set of qualitative
variables defined by the designer of the plan library. The values of each context
variable can be set independently by either a statement in a plan, or by the user.
In addition, the value of a context variable can be derived from other values
through data abstraction.

Vertical Temporal Inference. There are three forms of classification : (1) the ab-
straction of a qualitative parameter based on translation tables, or (2) based on
logical expressions, and (3) the abstraction of Boolean values. These abstrac-
tions are context dependent – each translation table or each condition of such
a parameter is valid for a certain context, which itself is defined as a logical
expression based on context variables and their values. Computational trans-
formation is performed through a set of arithmetic or logical combinations of
parameters.

Horizontal Temporal Inference. Temporal-semantic inference of properties defined
by Shoham is discussed above. Temporal horizontal inference is implemented
in Asbru by combining arbitrary combinations of qualitative values into a new
qualitative value. The underlying values need not be adjacent, e.g., decreased
and increased can be joint to a new value pathologic. These combinations are
defined for each abstract data-type which ensures flexibility but avoids redun-
dancy.

Temporal Interpolation. The truth-persistence function is binary. It is modelled by
the definition of two durations per parameter, a trust period following the mea-
surement and a retrospective trust period preceding the measurement during
which the parameter is considered to hold the value measured. If the trust pe-
riod of a measurement overlaps the retrospective trust period of the next mea-
surement, they are reduced proportionally until they meet.

A complex form of defining a global truth-persistence function is the application
of the Spread algorithm described in section 4.4.4.

45

Temporal Pattern Matching. The most common form of queries is the predicate
query implemented by the parameter proposition. Due to its usage in conditions
triggering plan state transitions, it has different semantics than its RÉSUMÉ
pendant: If there is no interval in the past matching the proposition, the system
waits until such an interval occurs. Only if it is impossible that a matching inter-
val will occur (e.g., since the latest finish time already passed) false is returned
and the waiting is terminated.

The result of set queries are used as means for further queries such as asking
for the start of the first of these intervals. Sets of intervals cannot be stored
and handled explicitly. Value queries in Asbru only return the current value of
a parameter at the time of the query, there is no way to obtain the value of a
parameter at some past time5, but its existence can be queried using predicate
queries.

The Tzolkin architecture resembles the original design of the Asbru execution en-
gine [93] described at the start of Section 4.1. However, the solutions described in
this thesis transformed the separate mediator between separate module blocks by a
shared management unit which continuously triggers those bits of the system which
need to take small steps to incrementally enrich the history of abstractions. This
approach is necessary to meet the requirements of high-frequency domains, while
in low-frequency domains, database-oriented approaches like Tzolkin, Chronus, and
RÉSUMÉ balance the longer response time to queries with the advantage of distribut-
ing the abstraction process over arbitrary spans of time.

To handle complex constraints possible in CAPSUL, Asbru needs to be combined
with sliding time windows and utility functions to handle calendar references.

5The delay module described in Section 4.2.2.5 provides a work-around.

46

2.3 Neighbouring fields

This section briefly introduces a range of fields and gives a few examples of work in
them. Some of these fields contribute indirectly to the work described in this thesis.
Some of them present alternatives for it. Of the latter, some can be integrated with my
work, as described below.

2.3.1 Statistics

Statistics play several roles in temporal data abstraction. See [3] for an introduction to
the field.

Descriptive statistics provides abstractions from a group of values, such as maxi-
mum, minimum, mean, median, and centiles. Computed at regular intervals, they can
abstract high volumes of data into a stream of lower volume and more significance
for the next processing steps, if the definition of the abstraction matches the view of
domain experts on the data. Applied to the content of sliding time windows, they are
included in the range of abstractions described in Section 4.3.2.

Statistical modelling plays an important role at design time of temporal data ab-
straction systems. On the one hand, the knowledge engineer selects one or more suit-
able algorithms and sets their parameters to reflect the information received from do-
main experts. On the other hand, domain experts can be asked to annotate sample data
sets with the desired output.

Statistical methods, like multiple regression, can then create a sound model of the
dependencies between the inputs of the abstraction process and the output or target
function (or dependent variable in statistics terminology), which is the markup by the
domain expert. Comparing them to the manually crafted abstraction algorithm will
be instructive even though it need not be identical. Domain experts may have good
reasons to suggest rules which seem to contradict the sample data, but such contradic-
tions need to be discussed carefully. Other statistical methods allow the exploration of
the quality of several candidate models to guide the development of data abstraction
schemes.

2.3.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) [70] are popular means for mapping multiple quan-
titative inputs to a single qualitative output. They are computational expensive and
mapping their internal configuration to domain knowledge can be difficult. However,
some studies report better results than for logistic regression, e.g., in [50], while oth-
ers only show noteworthy differences in the ROC6 curve but no general advantage of
either approach over the other [151].

ANNs generally require a carefully chosen set of training data to configure them.
In contrast, clinical guidelines specify the details of data abstraction more or less ex-

6Receiver Operating Characteristic. The ROC curve plots the true positive rate (sensitivity) over the
false positive rate (1-specificity) [185]

47

plicitly, which is difficult to translate into ANNs (and the autonomous learning is seen
as their main advantage).

Still, the following example is instructive in the context of this thesis, since it
combines ANNs with non-ANN artefact detection, and it deals with high-frequency
data similar to the ideas presented in this thesis.

Zoubek [183, 184] build an automatic system for the classification of polysomno-
graphic recordings into different sleep/wake stages. Recordings comprised Electroen-
cephalography (EEG), Electrooculography (ECG), and Electromyography (EMG). These
signals are prone with artefacts. The frequency of all three signals is 128 Hz.

In a first step, artefacts are detected using the PRANA R© package and eight differ-
ent rules for eight different classes of artefacts, such as loss of signal or 50 Hz power
line artefacts. The recording is broken into 20 second segments. If more than two
artefacts are detected in a segment, the whole segment is discarded. The EEG is con-
sidered the most important signal. If it is discarded, this segment is not analysed at
all. If one or both of the other signals are missing, the classification is still performed
with the non-disturbed signal. This leads to four different settings (EEG alone, EEG
+ EOG, EEG + EMG, all three signals). About 25% of the segments showed at least
one artefact, but only 20% of these segments showed an artefact in the EEG and had
to be discarded, while the switching to alternative input combinations salvaged 80%
of these artefact-affected segments.

Next, a band pass filter was applied to each of the three signals. The measurements
in a segment (128× 20× 3 = 2560) were considered too numerous as input for auto-
matic classifiers (ANNs). Therefore, 33 features were extracted from each segment.

The first group is constituted of features often referred to in the literature, namely
the relative power of the EEG signal in five different frequency bands, the relative
power of the EMG signal in a high frequency band, and the highest frequency below
which 95% of the total spectral power is located, for all three inputs. The second
group is a set of standard statistics metrics, computed for each of the three signals:
standard deviation, skewness, kourtosis, upper quartile, and entropy. The The third
group consists of three parameters suggested by Hjorth [72], namely activity, mobility
and complexity. Activity is equal to variance, mobility is a measure for the mean
frequency. Complexity is the ratio of mobility and the first derivative of the signal.

Then, a combination of Sequential Forward Selection, Sequential Backward Se-
lection, and ANNs (multi-layer perceptrons) was used to find the optimal number of
features. This was performed for each of the four combinations of available signals,
i.e., if all three signals are available, then features are taken from all three, but if one is
missing, features are taken from the other two. Therefore, the classification algorithm
needs not deal with missing values. The total number of features is always seven.
Based on them, an Artificial Neural Network assigns one of five sleep stages to each
segment.

The overall classification accuracy is 85.6%. A single classifier without prior arte-
fact removal achieved 83.2% on the same data. For those 20% of the input data where
at least one artefact was removed and only two or one or the three input signals were
available, accuracy was the described system was still 81.2%.

The above example showed how combining a rich set of abstractions in more than
one step to merge traditional medical knowledge with insight gained by data analysis
can lead to results not obtainable otherwise. The work in this thesis follows a similar

48

approach, albeit using statistical abstraction instead of neuronal networks.

2.3.3 Planning

The AI field of planning deals with the optimal arrangement of actions (called plans)
which have pre-conditions (which must be fulfilled before the action can be taken) and
post-conditions (which are assumed to be true after the action has been taken). Un-
fortunately, in the medical domain, the effect of an action, i.e., the post-condition, can
rarely ever be given with certainty, which greatly complicates the reasoning process
connected to the quest for an optimal (or possible) solution.

Anselma and Montani [9] present an overview of planning in the context of guide-
line execution.

As for other guideline representation languages, the ideas of Hierarchical Task
Networks (HTN) [52] are present in Asbru, although dormant in part.

Asbru does represent a guideline as a hierarchy of skeletal plans, implementing the
stepwise refinement generally characterising HTNs, with conditions on each level of
the hierarchy.

The semantics of the setup-precondition specify that the execution engine is to
match it against effects and intentions of other plans. Matching plans are to be activated
which would result in fulfilling the setup-precondition, if and when the defined effects
take place or the intentions are achieved in the real world.

However, in past project, acquiring solid information on intentions and effects
proved unexpectedly difficult, because they are rarely stated explicitly and precisely in
guidelines or protocols. Without a complete set of plans for which effects or intentions
are known, attempts to matching setup-preconditions against them cannot succeed.

Our collaboration also showed that in the medical field, high degrees of control
over all details of plan execution are generally desired. We therefore focus on syn-
chronisation and adaptation of plans.

The first is implemented by monitoring the parameter propositions in the condi-
tions of plans. The second is modelled as switching between plans as mandated by the
patient condition.

Asbru plan hierarchies deal with a single patient by definition. Approaches which
deal with patient groups may find useful applications of optimising the resource utili-
sation by arranging treatment schedules on a multi-patient level. This is, however, far
beyond the scope of this thesis.

49

Chapter 3

Problem Description and
Objectives

This chapter develops a problem description from the domain description in Section
1.1 and the state of the art described in Section 2. It also states concise objectives to be
met by the solutions described in detail in Section 4. Section 5.3 discusses how these
solutions meet the objectives.

3.1 Objectives related to data abstraction

This section develops objectives regarding temporal data abstraction, while the next
subsection focuses on guideline execution.

3.1.1 Coping with noisy and missing data

Health care today utilizes a large variety of technical equipment to exactly monitor the
patient state. However, these measurements suffer from distortions caused by broad
range of factors. Some examples are:

• Movements of the patient can lead to movements of a sensor which again dis-
turbs the measurement during the time of movement.

• External events such as care activities influence the patient’s condition. Without
knowledge about these activities, the resulting changes in physical parameters
of the patient may appear as unexplained artefacts in the data.

• Measurements of the same physical entities by different means often do not pro-
vide the same value due to inherent bias or lack of precision of each technology.
In particular, laboratory tests provide more precise measurements at a low fre-
quency and higher cost (in terms of labour and patient discomfort) while moni-
toring devices provide continuous information with little patient discomfort but
also reduced reliability.

• Measurement may be missing due to sensor failure. Also, the responsible person
may simply forget to take a measurement, e.g., in the field of self-monitoring in
diabetes.

50

The reaction to missing or erroneous data can be manifold, depending on the kind
of information to be abstracted from the data. Bad measurements can simply be erased,
they can be replaced by estimates, or the abstraction process can be designed in a way
which is robust with respect to disturbed input. Clearly, the third choice is the most
advantageous and difficult.

A very important issue in medical data abstraction – and badly affected by noise –
is the abstraction of qualitative values from quantitative ones, e.g., to decide whether
saturation of oxygen was sufficient in the previous minute or not, based on measure-
ments delivered every second. Here ignoring a few measurements is no problem, but
inserting gaps in the output is not appreciated since we later want to ask questions
like “For how long was oxygen low?”, which will be rendered impossible by inserting
small gaps frequently, just because of single bad values in the raw data. On the other
hand, the amount of uncertainty must be considered, if it is increasing during some
phases.

The resulting objectives can therefore be divided into two groups: Integration of
existing approaches into the framework for data abstraction, and creation of a new
solution to the problem of abstracting qualitative values from noisy quantitative raw
data.

Existing methods for to detect and remove faulty measurements range from static
measurements such as fixed boundaries (minimum and maximum) for the value itself
and for the difference to the previous value to more advanced boundaries that can be
derived from a set of previous measurements by statistical analysis. Another approach
is to define dependencies between different parameters, in terms of rules [75].

Objective 1. To combine existing approaches such as comparing differ-
ent input channels, averaging and comparing against the average, into the
framework for data abstraction, error detection and repair.

The sample application for the abstraction of steady qualitative values is the artifi-
cial ventilation of neonates. Here, it is important to react to good quality input swiftly
when it is available, while exhibiting a robust or defensive behaviour during phases of
significant noise, and to change gradually between them.

Objective 2. To find a new solution for abstracting steady qualitative
values from quantitative data containing varying parts of noise, such that
the threshold used to suppress undesired changes in the output depends on
the current amount of noise.

3.1.2 Flexible definition of time windows for statistical analysis

Descriptive statistics are a powerful and widely used and accepted means to obtain
high level descriptions from a large set of measurements. However, analyzing a whole
recording, e.g., one night as a whole, does not allow the comparison of parts with each
other to detect subtle trends or patterns.

Separating the measurement into equal slices of, e.g., 1 hour does allow this, but
there are some drawbacks of this approach.

51

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12

Measurement Moving window average Fixed window average

Figure 3.1: Comparing the average of 4 measurements for fixed
(disks) and sliding (squares) time windows. The average of each
of the 3 groups of four measurements is 2.75. However, the av-
erage measured of a time window of 4 measurements which is
advanced by 1 clearly reflects the three high values at time 4 to 6
and the three low ones at time 7 to 9. If the task were to detect
time periods for which the average was greater than 3, then look-
ing at the average of fixed groups of measurements would not find
a matching episode, while using a sliding time window does.

• An occurrence of the pattern searched for can be split across two slices and
each of the resulting halves may be fail to be detected since it does not appear
significant enough within its slice.

• The analysis of a time slice is performed at fixed times with considerable inter-
vals in between. A pattern at the start of a time window is only detected at the
end, which may cause undesired delays, e.g., in alarming.

• Reducing the time window size reduces this delay, but increases the risk of split
patterns.

Figure 3.1 illustrates this. In the example, the average for a time window of length
4 is examined. If it is greater than 3, an alarm is to be triggered. Grouping the mea-
surements in fixed time windows of size 4 fails to detect the increase on the border
between the first and the second time window. In contrast, the average calculated from
a sliding time window with step width 1 exceeds this threshold at 3 positions.

A standard solution to this problem is the application of a moving time window
which slides steps smaller than its width along the time axis as shown in Figure 3.1.
This approach must be integrated in the framework of data abstraction and various
statistical evaluation methods for the contents of a time window must be provided.

Objective 3. To integrate the aggregation of input in sliding time win-
dows of freely defined size and step width into the common framework,
together with evaluation functions such as average, mean, quantiles, and
linear regression.

52

3.1.3 Utility functions

To solve real world problems, each framework for data abstraction needs simple but
indispensable abstractions such as arithmetic and logical combinations. Consider, e.g.,
the above example of analyzing different sliding time windows. We can abstract the
average and trend of different time windows. But to define the abstraction “average of
previous minute lies two or more units above the average of the previous hour and the
trend is negative” we need addition, comparison, and the Boolean and-operator.

Therefore, the following groups of operations must be added to the (much more)
sophisticated abstraction described in other sections:

• arithmetic operations,
• logical operators, and
• comparisons.

Objective 4. To integrate utility functions implementing arithmetic and
logical operators as well as comparison operators with the other modules.

3.1.4 Integration of abstraction modules into a uniform framework

It is clear, that all abstraction modules described in this thesis must interoperate. To
this end, they must be part of a framework in which they are as interchangeable as
possible, given their different nature.

This framework must ensure that the input is processed with minimal computa-
tional effort, i.e., the logic of abstraction modules must only be consulted if new input
is available for this module.

Objective 5. To integrate all the algorithms presented in this thesis in a
framework permitting the greatest possible freedom in combining them.
Data flow in this framework must be organised in such a way as to min-
imise computational effort.

3.2 Objectives related to guideline execution

As argued in Section 2.1.3, Asbru is the formalism of choice to model temporal pat-
terns in connection with guideline execution. It also excels in temporal aspects of
plans. Therefore, the following objectives are aimed at implementing the execution of
Asbru plans within the framework described above.

3.2.1 Online-algorithms for the detection of temporal patterns

Asbru contains powerful means to describe the temporal extent of parameter-value
pairs, plan activations, etc., but previous implementations were not suitable for high-
frequency domains.

For such a domain, an implementation must process incoming data measurement
by measurement and output any abstractions immediately. It must meet both the de-
mand from plan execution and data abstraction.

53

Plan execution uses temporal patterns in the conditions of plans. Data abstraction
uses temporal patterns as most complex form of temporal abstraction. The most im-
portant parts of the Asbru element temporal-pattern, which needs to be implemented
by the proposed solution, are the following.

parameter-proposition describes a value for a parameter and an interval during which
this value must hold, as well as a context which must be given. It is the core unit
of environment monitoring.

plan-state-constraint describes a plan state for a plan and an interval during which
the plan must be (or have been) in that state. It resembles the parameter propo-
sition with the main difference that plan states, which are changed internally
by the plan execution unit, are monitored instead of parameters reflecting the
external world, and the minor difference that no context is given.

temporal-constraint defines the qualitative relation of intervals which again are de-
fined by temporal patterns.

constraint-combination defines Boolean combinations such as conjunction and dis-
junction for temporal patterns.

count-constraint contains a temporal pattern and a minimum number of occurrences
for this temporal pattern. Only if this number is reached, the count constraint is
fulfilled.

simple-condition defines a relation between two instantaneous values. These values
can be parameters or variables. In the first case, the current value of the parame-
ter is accessed, so there is no abstraction in addition to supplying the abstractions
defined for this parameter.

The implementation of the semantics of these Asbru elements must be compatible
with the data flow in the abstraction framework, and with the implementation of plan
execution.

Objective 6. To find implementations for the Asbru elements parameter-
proposition, plan-state-constraint, temporal-constraint, constraint-combination,
count-constraint, and simple-condition. They must be integrated into the
framework of temporal data abstraction and guideline execution, and han-
dle high volumes of data efficiently.

3.2.2 Integration of plan execution

Plan execution in the context of this thesis refers to the implementation of the seman-
tics of the Asbru plan. The most important parts, or knowledge roles, concerning
execution are conditions and plan body. The functionality of conditions is covered by
the objective above. The plan body organises subplans (or child plans) in one of the
following:

• Sequential: all subplans are performed as listed.

54

• Parallel: all subplans are started at the same time.

• Unordered: subplans are started whenever they are ready.

• Any-order: only one plan is active at any time, the order is not predefined.

• Cyclical: the subplan is performed several times.

Another important aspect of the parent-child relation is the propagation of success
and failure, given in the continuation-specification and propagation-specification.

The implementation of this part of the Asbru syntax must follow the same princi-
ples as the data abstraction – execution must be input-driven, avoiding active polling
(which is used in other implementations of Asbru) because it is not suitable for high-
frequency domains.

Objective 7. To translate the semantics of Asbru plans to the process-
logic the abstraction framework.

3.2.3 Bridge from Asbru to abstraction modules

The ultimate aim of the execution unit is to execute plans specified in Asbru. There-
fore, in addition to the modules described above, a mapping of all relevant Asbru
elements to modules which implement their semantics must be described.

In terms of implementation, this means that an Asbru compiler must read the Asbru
plan library, create instances of suitable modules, and link them such that the flow of
data from the input devices through data abstraction modules to monitoring modules
and from there to modules representing Asbru plans results in a system behaviour
which is compliant with the semantics of Asbru.

For example, a user-performed plan with a filter-precondition stating that parame-
ter A must be higher than 5 for 1 hour will create something like the following.

• A module representing input A;

• A module representing the constant 5;

• A comparison module outputting true if the input coming from the module rep-
resenting A is greater than the input comming from the constant module (i.e.,
5);

• A monitoring module which receives the output of the comparison module as its
input and which outputs condition fulfilled when its input is true for one hour
without interruption.

• A module representing the user-performed; Its input named filter-precondition
will be connected to the output of the monitoring module.

Objective 8. To map all Asbru elements relevant for plan execution to
one or more modules implementing the semantics of this element.

55

Chapter 4

Solutions

This chapter takes a bottom-up approach to describing the solutions to the problems
described in the previous chapter. They are ordered as follows.

Uniform framework below describes the foundations and design of a framework in
which the work described in the other sections is integrated.

Utility functions on page 66 describes a set of simple but indispensable abstractions.
In combination with more complex ones described in other sections they are
needed to meet the demand from practical applications.

Multiple sliding time windows for statistical analysis on page 73 describes abstrac-
tions based on subsets of the data defined by a time window which progresses
along the time axis.

Coping with noisy data on page 79 shows abstractions specifically designed to arrive
at the most reliable abstractions possible in the presence of noise. Many of these
solutions are combinations of abstraction modules introduced in Sections 4.2
and 4.3.

Online-algorithms for monitoring temporal patterns on page 90 contains several
algorithms to implement various complex abstractions which are fundamental
to the plan representation language Asbru.

Integration of plan execution on page 134 describes abstraction modules which in
fact implement Asbru plans. The achievement of mapping all Asbru plan func-
tionality to state machines which take inputs and produce output in the form of
abstract data points is key to the seamless integration of temporal data abstrac-
tion and plan execution.

Bridge to Asbru on page 148 describes in detail how Asbru elements map to the
abstraction modules described in the section before.

56

4.1 Uniform framework

This section describes the framework for the solutions of subproblems presented in the
following sections. The foundations for the design of this framework are the original
design of the Asgaard runtime system for executing Asbru plans, and the nature of the
data and the abstraction process.

The historic background

One of the main characteristics of the Asgaard runtime system is continual environ-
ment monitoring [93]. This means that throughout all phases of plan execution, the
current state of the environment is observed and changes in the environment influence
the execution of plans. This means that the patient state is monitored and changes in
the patient’s condition change the way the guideline is executed. Originally, we dis-
tinguished plan synchronization: the start and end time of a plan or treatment step are
synchronized with the patient’s condition, plan adaptation: the modalities of a treat-
ment steps depend on measurements taken from the patient, and replanning where
the original plan is discontinued and new plans (e.g., different treatment options) are
selected.

This lead to the following principal design.

• New measurements arrive at the data abstraction unit whenever they are avail-
able (independent of plan execution). If appropriate, they are abstracted to
higher-level concepts. These abstractions are specified in the domain definition
part of the Asbru plan library.

• The monitoring unit receives the output from the data abstraction unit and con-
tinuously searches for temporal patterns such as high fever for more than 1 hour
in the streams of data. It is informed by the plan execution unit which patterns
are relevant. If a pattern is detected, the monitoring unit informs the plan execu-
tion unit.

• The plan execution unit controls the states of the plans described in the Asbru
plan library. Changes in these states require conditions to be fulfilled. Con-
ditions contain temporal patterns. Whenever a plan state transitions becomes
possible (because the plan in question reached the relevant state), the plan exe-
cution unit sends a request to detect the temporal pattern in this condition to the
monitoring unit. As soon as the pattern is detected, the plan execution unit is
informed. It then changes the state of the plan whose condition is fulfilled.

The new idea

The potential large history of input data prohibits repeated searches for patterns from
scratch. Instead, on-line algorithms must be found to detect temporal patters as soon as
they occur, based on continually arriving input from the abstraction unit. This means
that the internal structure of the monitoring unit must be similar to that of the abstrac-
tion unit.

If an implementation of plan execution can be found, which is compatible with
the scheme of data abstraction and monitoring, then the matching process of requests

57

from the execution unit and found patterns in the monitoring unit is no more needed.
The monitoring unit feeds its output unprompted to the execution unit. Monitoring and
execution unit then share their architecture with the abstraction unit, which means that
all steps are implemented within a uniform, seamless framework.

The abstraction unit is implemented by modules described in Sections 4.2 to 4.4.
The monitoring unit is implemented by modules described in Section 4.5. The plan
execution unit is implemented by modules described in Sections 4.6 and 4.2. However,
there is no strict boundary between these parts. In contrast to the original design, out-
put from the monitoring and plan execution process can be fed back into the abstraction
process, multiplying the power of the resulting system.

4.1.1 The nature of data

Before designing the framework itself, it is necessary to explore the nature and features
of the data to be handled within this framework.

4.1.1.1 Sources of data

There are three sources of data: user input, measuring devices, and storage devices.
In theory, storage devices are not a source of data, but in practice they often serves
as such - the data is collected by other software and served in to the data abstraction
process in the form of files or databases.

Each source of data brings in different types of error. User input is sometimes
distorted due to human errors, it is often missing due to time constraints or motivation
of the humans performing the measurement (e.g. in emergency care or Diabetes), and
it can be substantially delayed. Automatic measurements suffer from various technical
problems such as loss of calibration and disturbance of measurements due to patient
movements or interventions by care personal.

Input from file storage such as patient data records often suffers from incomplete
data and the general inability to obtain missing information. In an interactive envi-
ronment, where the patient record is accessed during patient encounter, data can in-
teractively be complemented as required. However, in batch processing historic data
to evaluate a guideline model, or to verify a hypothesis, such supplements are not an
option. This can render significant portions of stored data useless, unless the protocol
model is robust enough to handle these cases.

4.1.1.2 High-frequency versus low-frequency

In high-frequency domains, data arrives, e.g., once per second on a typically regular
basis from a monitoring device or file. In the second case, data is typically entered by
the user or obtained by potentially complex queries to data bases at a rate of several
times per day or week.

Due to the fact that measurement are automatic, there is a tendency to have many
measurements available in high-frequency domains, e.g., to judge the oxygen supply
of the previous minute from 60 measurements. Still these need not be too many since
the quality of the input signal can be bad enough to require a large sample of raw data
to make any safe conclusions.

58

Low-frequency domains often suffer from missing information or to sparse mea-
surements. At the same time, the measurements are not always reliable either (e.g., for
self-monitoring in Diabetes). In many cases, single measurements in this domain con-
stitute valid information by themselves although there are counter examples. E.g., a
careful measurement of body temperature reliably gives the amount of fever for about
half an hour before and after the measurement. In contrast, a single measurement of
oxygen saturation in blood using pulsoximetry does not even give a reliable informa-
tion, even for the second of measurement, only several measurements together prove
whether there was an artefact or not.

Abstracting this situation, we could say that high-frequency domains suffer from
a lack of information and at the same time from a flood of information while low-
frequency domains suffer from a lack of data. Therefore, in high-frequency domains
major effort goes into data validation and abstraction of reliable information from un-
reliable measurements while in low-frequency domains major effort goes into the care
flow process to ensure that the right measurements are taken at the right time and that
they are entered into the system with minimum loss or distortion of information.

Loosely coupled to this distinction is the separation by mode of patient encounter.
A patient may be available all the time during treatment, e.g., in a hospital. In another
setting, the patient may be absent most of the time an only encounter the physician
for routine control or in case of any emergencies. This is the case for chronic diseases
which do not require hospital stay.

Closely coupled to the distinction of patient availability is the degree of responsi-
bility. While in an intensive care unit the medical staff handles all steps to obtain any
needed information, outpatients with chronic diseases perform the monitoring task
themselves. Therefore, in the first case there is a host of (potentially erroneous) data
and the main issue is find those pieces of information in the which are important (e.g.,
triggering an alarm if a disadvantageous trend is observed) while in the second case
motivation of the patient is an important precondition of successful patient monitoring.

It follows from the above, that the distinction between low-frequency and high-
frequency of data is not the most important distinctions between these domains, but
it is the common term to distinguish them and so I keep these labels in this docu-
ment. By the same token we could talk about automatic versus manual data-domains
or permanent versus sporadic patient availability domains.

Table 4.1 summarizes the characteristics of the two types of data. Note that the
gap in data frequency is not definite, it is only there since there is little data at such a
rate.

4.1.1.3 Quantitative versus qualitative

In any case, data can be both quantitative, i.e. numeric, or qualitative, i.e. symbolic.
An example for the first is fever in degrees Celsius, while fever expressed as “high”,
“moderate”, or “no fever” is an example for the second case.

Asbru defines a series of data types for numeric data, e.g., length, volume, but
also time (i.e., temporal distance) and date (i.e., absolute point in time). The data
abstraction unit only distinguishes between integer and real values, but to the interface
to the plan library converts these simple representation into more complex Asbru value
objects.

59

High frequency Low frequency
Interval of mea-
surements

1 ms – 1 s hours to months

Mode of input automatic manual or automatic
Patient availability permanent occasional (permanent for

self monitoring)
Major issue transforming unreliable

snap shots into useful
information

ensuring sufficient avail-
ability of data

Table 4.1: Typical characteristics of high-frequency and low-
frequency data.

Purpose Automatic plan execution, patient monitoring
by humans, knowledge discovery

Mode of operation real-time or playback
Nature of values Quantitative or qualitative

Table 4.2: Characteristics common to both high-frequency and
low-frequency data.

4.1.1.4 Continuous versus discontinuous

Data can also be separated into continuous and discontinuous data. However, seen
from the implementation side, the differences are not significant. One definition is
that continuous data is entered on a regular basis. This is true for data delivered from
a monitoring device as well as for laboratory tests in chronic diseases. Both share a
lack in precision of the time point of measurements – neither are 1 Hz measurements
delivered 1000 ms after the previous one, nor are routine tests performed exactly on
the day they should. Both domains share the lack of data – either from sensor failure
or from patient unwillingness or patient management faults. There is data which is
strictly discontinuous – single measurements that cannot be compared to each other –
but they can be treated by data abstraction just as continuous values that are surrounded
by huge gaps if these algorithms are subtle enough. If they would not, missing data
would lead to wrong abstractions.

To summarize, Table 4.2 shows the dimensions of data abstraction that need to be
considered in parallel in the rest of this document.

4.1.1.5 Valid time and transaction time

Each measurement is taken at a certain point in time. For some applications this time
may not be important but in most cases it is. Queries for data which do not consider
the temporal aspect can easily be mapped to such with a temporal dimension which is
arbitrary, so they are not considered in the rest of this section. Similarly, measurements
that do not come with a precise time of measurement are fitted with the time at which
they first appear to the system (i.e., the data abstraction unit.

60

We distinguish two times for each measurement: The valid time and the transac-
tion time [132]. The valid time is the time at which the measurement was originally
taken and at which the measured value is known. The transaction time is the time at
which the value was entered into the system.

Input from users is often considerably delayed, i.e., there is a considerable dif-
ference between valid time and the transaction time. This causes particular problems
in domains with high-frequency data, which must be synchronized with the delayed
low-frequency data. An example is the measurement of blood gases with a fast but
inaccurate pulsoximeter and by slow but precise laboratory test in parallel to validate
the first with the second.

Input from monitoring devices can be delayed too, although on a smaller scale. In
a practical application of a pulsoximeter which is expected to deliver one data record
per second, we found that for 10 % of all seconds during measurement there was either
no or two records. This is explained by the varying work load of the device’s processor.
It is not considered harmful because the latency of a human in processing the delivered
information exceeds the maximum latency of the device which is about one second.
Still, on the implementation level, this property of the raw data can cause additional
effort.

In any case the maximum difference of valid time and transaction time must be
defined for each parameter to limit the uncertainty in the abstraction process. Without
waiting for this delay, irrevocable measures could be taken based on wrong informa-
tion. In the following, this difference is called the maximum data delay.

4.1.1.6 Data validity over time

Another aspect is the time between two measurements. It is clear, that a measurement
is not invalid the moment after it is taken, but it is also clear that it cannot be valid with-
out a temporal limit. So the decay in trust into the measurement needs to be modelled.
This can be done by introducing an additional dimension – the trustworthiness of each
measurements, but this would dramatically increase the complexity of the abstraction
process, especially for values which are derived from several sources. In practice, an
exact modelling of the trust into a value over time is neither necessary nor possible.
For our purpose, we opted for a single parameter, the trust period. It defines an interval
starting at the valid time during which the measurement is considered valid. After it,
the measurement is considered invalid, i.e., until there is a new measurement available,
the value of the parameter is considered unknown.

Besides this trust period, there is also a retrospective trust period. If a certain
parameter has a certain value at a certain time, it is very likely that it has the same
value shortly before. The interpretation of shortly strongly depends on the parameter
and the domain, but it will always be a considerable amount of time relative to the usual
frequency of measurements. E.g., for a parameter measured every second it might be
1/4 of a second while for fever measure 3 times a day it may be one hour.

The relation of trust period and retrospective trust period varies depending on the
mode of measurement. If measurements are performed automatically or otherwise
without influence of the patient on the timing, then both periods will be equal. Exam-
ples are oxygen levels in blood measured each second and blood analysis performed at
health checks which are scheduled on a regular basis, e.g. once per year. If the patient

61

takes a new measurement after experiencing a change, as it is the case for fever, then
the reverse trust period will not be as long as the trust period. If the parameter is a
symptom the patient can observe easily like coughing or itching, then the reverse trust
period will shrink to nearly zero, since there cannot be an unobserved change (except
for biases in the patient’s cognition).

For pragmatic reasons, the trust period will often be extended beyond what would
be justified by an exact model because one often prefers to use an old but outdated
information to total blindness due to lack of any information.

A third aspect is brought in by the fact, that measurement are often performed
rather regular, which gives some guarantee that after one measurement there is a time
span during which no further measurement is expected. This means, that for this in-
terval, the value can be considered the finally valid one. This interval is called the
minimal interval between measurements.

4.1.2 Implementation decisions

This section briefly lists the choices taken for the implementation of various issues
described above.

4.1.2.1 Time of abstracting

Obviously, there are two options for calculating abstractions from the input: imme-
diately or on demand. Demand is defined by the plan execution unit or by the user
depending on the application.

For immediate abstraction, the effort is proportional the number of different ab-
stractions, i.e., the number of parameters abstracted from the raw data. This number
can be considerable in plan execution, since it not only comprises those abstractions
explicitly defined in the plan library, but also any reference to the data in any condition
in the plan library.

On the other hand, calculating only those abstractions which are needed at a certain
moment brings along the undesired possibility that abstractions are calculated multiple
times during plan execution if they are needed several times with breaks in between.
As a remedy, all abstractions calculated on any occasion should be stored, but if their
calculation is discontinued when they are not further interesting, then managing the in-
formation, which pieces of abstraction have already been calculated becomes difficult.

In the case of patient monitoring, additional requests will be rare, because all ab-
stractions are defined in the protocol or guideline on which the treatment is based.

While storing all abstractions is advisable from the point of saving computation
time, it becomes a problem when looking at storage space, at least in high- frequency
domains. A single parameter measured once per second needs more then 1 MB in 24
hours (see the implementation section about the exact details). Therefore, storing all
abstractions may not be feasible in such a domain. A compromise can build on finding
the “important” nodes in the stream or graph of abstractions and storing only them, but
the definition of “important” itself is difficult.

The mentioned storage shortage can only occur for high-frequency streams of sin-
gle point data. Temporal abstractions always summarize several, if not many of them
into one (complex) data item. Therefore abstracting the raw data and working on the

62

A

B C

D

Figure 4.1: Sample dependency graph.

abstractions reduces the storage problem. For low-frequency domains these problems
rarely occur since the data collected during the life of a diabetes patients is smaller
than that collected for a patient in an intensive care unit per day.

4.1.3 Overview of principal parts

In the abstraction process, various classes or groups of classes take over different roles.
The following describes these roles and thereby gives a first introduction to the class
hierarchy.

4.1.3.1 Management of timing

The data flow through the abstraction modules forms a directed graph. It is frequently
the case that two branches of different length meet at some node as depicted in Figure
4.1. In such a case it is important to observe one of the few correct sequences of
processing the abstraction steps, e.g., A-B-C-D, and not to process D before B or C.
Note that neither depth-first nor breadth-first search would produce the right sequence
but more sophisticated graph analysis is needed.

Therefore, the abstraction modules cannot directly feed the data to each other.
Instead, a managing module must be implemented, which analyses the data flow before
processing starts and which for each input value activates the abstraction steps in the
correct order.

A second complication arises from the fact that different signals may have different
frequencies and also abstraction modules can have a frequency of output different from
their input. Even worse, no source of data nor abstraction module is obliged to operate
at a fixed frequency at all. This again calls for careful control by the management
module.

The same problem occurs when comparing manually entered measurements with
those automatically entered. The first ones will come many minutes later then the
latter. The result can only be that the signal abstracted from both inputs will be as
delayed as the manual input.

4.1.3.2 Source interfaces

Independent of the source of data it needs to be stored in an intermediate format before
it is processed. Qualitative values are mapped to integers, while quantitative values
are stored in real numbers (float). In both cases, a time stamp is attached to each
measurement.

63

4.1.3.3 Abstraction modules

The heart of the abstraction unit are, of course, the abstraction modules. Each takes
input in the form of single data points or complex objects and process it in some
individually defined way. Each abstraction step, i.e., the processing of each data point
is triggered by the management module. At the end of processing a data point, the
module returns the result of abstraction to the management module which passes it on
to those other modules which are connect with the module in question. The abstraction
modules need not produce output for each step. An example for such an abstraction is
to sum up the input and calculate the average in certain intervals, e.g., after 10 input
data-points.

Each abstraction module implements the methods newData and timeout. Both
are called by the management module. The first is called when a new data point is
ready for processing. Modules with multiple input sources (e.g., add) are only called
once for each value of valid time. If some of the sources did not supply new values, the
management module supplies the most recent values from previous processing steps.

Some abstraction modules react not only on new data but also on the progress of
time. In these cases, they call the either setPreAlarm or setPostAlarm of the
management module with the valid time at which the module needs to be activated
independently of the data flow. For each step in valid time the management module
first calls timeout for all PreAlarms for that time stamp, then it calls newData in a
suitable sequence and finally it calls timeout for all PostAlarms for that time stamp.
The differentiation of the two alarm varieties is necessary for the implementation of
convex and concave time intervals.

Both timeout end newData return a new data point output by the module in
reaction to the event or input, or null if no new output was produced.

4.1.3.4 Data types

While input data is restricted to qualitative and quantitative values, data points result-
ing from abstraction need not be single measurements, they can also contain complex
structures. But they are all subclasses of a common root class (AbstractDataPoint)
and all contain the field validTime. This way the management module can handle
them in a uniform way, while different objects can receive different forms of input
and produce complex output within this framework. The following data points are
currently implemented.

FloatDataPoint contains only a float in addition to the valid time. It is the standard
class to store quantitative measurements. Float.NaN is used to declare the
value unknown.∞ and−∞ are represented by Float.POSITIVE INFINITY
and Float.NEGATIVE INFINITY.

IntDataPoint contains a int instead of the float. It is used for qualitative values includ-
ing Booleans. Qualitative values are numbered starting with 0. For Booleans, 0
is false and 1 is true. −1 marks an undefined value in both cases.

TimeDataPoint contains a time value, i.e., a data point in which the value describes
either a data or a duration.

64

FloatDataPointSeries contains an array of arbitrary data points representing a se-
quence of measurements taken from the same input. It is produced by modules
such as time window.

RegressionLineDataPoint describes a linear regression model computed for the con-
tent of a time window at a specific point in time. The RegressionLineModule
desribed in Section 4.3.3.2 translates each FloatDataPointSeries to a Regres-
sionLineDataPoint.

EpisodeDataPoint contains information about an episode, which is an interval match-
ing a time annotation, as described in Section 4.5.2.

PlanModuleOutputDataPoint contains the plan state, signals to the child plans of
the sender, and optional numeric output from the plan module sending it. It is
mostly used for communication between plans. See Section 4.6 for details.

65

4.2 Utility functions

The more sophisticated abstraction functions are glued together by a set of simple util-
ity functions. While their description might seem trivial, it is an important feature
of the described framework to contain such simple complements to the sophisticated
modules, because only the combination of both can satisfy the demands met in prac-
tice.

Since their description also provides a gentle introduction into the complex consid-
eration of timing and side considerations which occur in temporal data abstraction, I
put their description before, and not after, the description of the sophisticated modules.

Where appropriate, details of the implementation are given. Each abstraction mod-
ule is described in terms of its input, output, and timing. Timing is only mentioned
where output is not produced in reaction to each input data-point becoming available.

Where appropriate, arguments of the algorithm are described. The difference be-
tween inputs and arguments is that inputs always change dynamically and are subjected
to preprocessing while arguments specify the form of processing and are constant dur-
ing the time of processing. This does not mean that they must be constants in the Asbru
plan library. They can be variables which are evaluated before monitoring starts. The
values of arguments are often given in the plan library, while the value of inputs is
always delivered by other modules (or data sources).

4.2.1 Arithmetic operations

Based on the number of inputs per module, arithmetic operations can be grouped into
n-ary calculations (with any number of inputs, typically greater one), binary inputs
(with exactly two inputs), and unary calculations (based on only one input).

4.2.1.1 N-ary calculations

This section summarizes the behavior of add, multiply, minimum, and maximum.

Input. These four calculations take two or more values from different channels at the
same time (FloatDataPointSet). Note that minimum and maximum can be applied on
a sorted time window of a single channel, too – see Section 4.3.2.1. For minimum and
maximum, the input can be qualitative or quantitative, for add and multiply it can only
be quantitative.

Output. The sum, product, minimum, or maximum of the most recent values of the
input channels. If at least one input value is undefined, then the output is undefined,
too.

Timing. Whenever new input is available from at least one channel, new output is
generated. If the trust period of an input channel is over without a new value available,
recomputation of the output is triggered using the undefined value for the missing
input. This leads to undefining the output. Compare figure 4.2.

4.2.1.2 Binary calculations

This section summarizes the behaviour of subtract, divide, root, exponent, and loga-
rithm.

66

6

-

A

valid time

va
lu

e

0 1 2 3 4 5 6

r r r

6

-

B

valid time

va
lu

e

0 1 2 3 4 5 6

r r

6

-

A+B

valid time

va
lu

e

0 1 2 3 4 5 6
x

r r

x

r

Figure 4.2: Timing of addition as an example for the reaction to
missing values. The graph at the bottom shows the result while
the graphs above show the input. Initially, no output is produced
which can be interpreted as undefined. With valid time 2 one in-
put produces the value 1. Since the other input is undefined, the
addition yields undefined – shown as an x below the time axis.
With valid time 3 the other input arrives, so a valid sum can be
computed. With valid time 4 the trust period for channel B has
expired with a new value being supplied, so the output is unde-
fined again. Note that here the recalculation was triggered by time
out rather than new input. With valid time 5 a value from channel
B arrives (together with a value from A), so a new valid sum is
calculated.

67

Input. These calculations take two or more numbers from different channels at the
same time (FloatDataPointSet).

Output. The difference, quotient, root, exponent, or logarithm of the two inputs. If at
least one input value is undefined, the output is undefined.

Timing. As for n-ary calculations.

4.2.1.3 Unary calculations

This section summarizes the behaviour of absolute value and sign.

Input. Both operations take one number as input (FloatDataPoint).

Output. The absolute value or sign of the input (FloatDataPoint). If the input is
undefined, the output is so, too.

4.2.2 Date and time

This section describes miscellaneous utility functions related to the temporal dimen-
sion.

4.2.2.1 Current date and time

Some applications operate with time and date in addition to time annotated values.
They also need the current time point – the now – as a reference. It is also defined in
Asbru as a special value.

Input. None.

Output. The current date and time (TimeDataPoint). In Asbru, it is a value of type
date, in the implementation it is an int just like the valid time of data points. Indeed,
the valid time and the value have the same content. Still it is necessary to duplicate the
value in order to make this data point a regular input to modules such as add.

Timing. Output is only produced when needed, as for constant above.

4.2.2.2 Current day of week

In some domains the day of the week is an important part of data abstraction. One
example is diabetes, where you look for weekly patterns or distinguish measurements
during the weekend from those during the week.

Input. None.

Output. The current day of the week as qualitative value of type weekday (new in
Asbru 7.4).

Timing. Output is only produced when needed, as for constant above.

68

4.2.2.3 Valid time of measurement

Sometimes explicit reasoning about the temporal dimension is desired. Then the valid
time – usually hidden in the background of the abstraction process – must become a
value of data points. This is accomplished by this module.

Input. A data point.

Output. A data point where the integer value is equal to the valid time (DateData-
Point).

4.2.2.4 Duration

This element makes the durations of intervals of a steady qualitative value as values
available.

Input. A qualitative data point.

Output. A data point where the integer value is equal to the difference between the
valid time of the latest data point and the preceding one (TimeDataPoint).

4.2.2.5 Delaying data

In most cases one wants to have all the information as soon as possible, so artificial
delays seem ridiculous. Still there are important applications for it, most when com-
paring several periods of time with each other, e.g., the average in the most recent
minute with that of the minute before. While the change in average could be computed
by connecting a ChangeModule to an AverageModule, such questions as “Was the av-
erage in the most recent minute twice as high as in the minute before?” can only be
answered by connecting the average to a the module described here, multiplying this
delayed average and comparing it against the most recent one (using a GreaterModule).

Input. Any data point.

Output. The same data point, with the delay added to the valid time.

Arguments. The time by which the input is delayed.

Timing. Output is produced whenever new input arrives. Therefore, the data points
output can lie in the future which is not a problem for the management module, which
stores them until it is time to produce that time slice.

4.2.3 Logical operations

The modules described in this section implement the Boolean operators, switching
between different input channels, and the comparison of two values.

4.2.3.1 Logical conjunction

Input. Two or more Boolean values (IntDataPointSet).

Output. True if all inputs are true, false if at least one of the inputs is false, unknown
otherwise, i.e., in cases in which there is at least one unknown input and all others are
true.

69

4.2.3.2 Logical disjunction

Input. Two or more Boolean values (IntDataPointSet).

Output. True if at least one input is true, false all are false, unknown otherwise, i.e.,
in cases in which there is at least one unknown input and all others are false.

4.2.3.3 Logical XOR disjunction

Input. Two Boolean values (IntDataPointSet).

Output. True if both inputs are known and unequal, false if they are equal and un-
known if at least one input is unknown.

4.2.3.4 Logical NOT

Input. One Boolean value (IntDataPoint).

Output. False if the input is true, true if it is false, unknown if it is unknown.

4.2.3.5 Switching between alternatives

There are situations in which the output of an abstraction step cannot be described as
a logical or numeric function, but only in the form of conditions under which different
forms of output are produced – similar to an if-then-else statement on programming
languages.

Input. For each processing step, several values are input. They form pairs. For each
pair, the second value is output if the first value is greater zero. Otherwise the next pair
is examined. If the number of inputs is uneven, the last input is output if the first value
of all pairs preceding this last number were not greater zero. Consider for example the
tuple (a, b, c, d, e). If a > 0 then b is output. Otherwise, if c > 0 then d is output. If
neither a > 0 nor c > 0 holds, then e is output. If the tuple would not contain e but be
a quadruple, the undefined value would be output if neither a > 0 nor c > 0 holds.

Output. One of the inputs, selected as described above. Since the input is passed
through, it is not restricted to data point, it can also contain sets of data points. This
feature is important for the implementation of context selection, which is an feature
specific to the Asbru language.

4.2.3.6 Comparison

Among other usages, the modules described here are used to implement the value
description in the Asbru element parameter-proposition. Table 4.3 lists operators,
Asbru syntax and module names.

Input. Two data points.

Output. A Boolean data point.

70

Operator Asbru name Module name
< less-than LessModule
≤ less-or-equal LessEqualModule
> greater-than GreaterModule
≥ greater-or-equal GreaterEqualModule
= equal EqualModule
6= not-equal UnequalModule

Table 4.3: Comparison modules.

4.2.4 Miscellaneous abstractions

The miscellanea found in this section comprise the simple abstraction of qualitative
values based on quantitative ones, a module to implement constants for use with com-
parisons and calculations, and a module mapping known values to the Boolean value
true and unknown values to false.

4.2.4.1 Qualitative values based on numeric input

While the above algorithm provides a sophisticated answer to suppressing undesired
oscillations, in many cases a simple solution is more suitable. This module simply
maps its numeric (quantitative) input to qualitative values represented by integers using
a range of limits.

Input. A numerical value plus a set of limits. These limits are not fixed, for each
numerical input another set of limits can be supplied. This is necessary to implement
Asbru’s context dependent data abstraction feature which is described in detail in Sec-
tion 4.7.7.4.

Output. An integer representing the qualitative value where 0 represents the value
corresponding to the numerical range between the first and second limit.

4.2.4.2 Constant

Motivation. Some modules allow many degrees of freedom some of which are not
always needed. In this cases the input can be feed from this module.

Input. None.

Output. The constant given in the argument.

Arguments. The constant.

Timing. Output is only produced when needed, i.e., when other modules producing
input for the module to which this module is connected produce output. It is neither
useful nor technically possible to connect the use a constant as sole input of another
module. In such a case the output of the constant module would never be triggered.

71

4.2.4.3 Checking for existence

Motivation. There are Asbru elements querying whether a parameter has a know value
at the current point in time or not. This can be implemented by this simple mapping
module.

Input. One parameter of any type.

Output. True if the input is not undefined. False if it equals undefined.

72

4.3 Multiple sliding time windows for statistical analysis

The objective of the algorithms in this section is to use overlapping time windows to
individually analyze fractions of the input data-stream. They are called sliding time
windows because the interval under examination is slid along the time axis as time
progresses.

The step width is independent of the size of the window. Therefore, the first can
be adjusted to the granularity at which the input should be examined while the second
solely depends on the size of the searched pattern.

Time windows of different size can be used in parallel. The logical combination
of their output is often required to provide results of sufficient reliability.

In the Asgaard data abstraction unit, the creation of time windows is separated
from the analysis of its content. The following first describes three different ways to
create time windows (Section 4.3.1). Then, the analysis methods which can be applied
on the content of time windows are described (Section 4.3.2). There are several simple
feature extraction modules to make properties such as duration of an episode available
to further abstractions. They are described in Section 4.3.3. Some of the abstractions
based on time windows – most importantly linear regression – themselves produce
complex results. Specialized feature extraction modules are applied to access single
features in such cases. They are described in Section 4.3.4.

4.3.1 Types of time windows

There are three ways to specify the extent of time windows in the Asgaard data ab-
straction unit: (fixed) temporal extend, number of measurements, and episode.

4.3.1.1 Time windows based on time interval

The most intuitive way to specify the size of a time window is to give its size in units
of time such as 1 hour. This means that the number of measurements in a time window
can vary, if they are not available at a fixed rate without any gaps.

To ensure that missing data do not induce abstraction with a basis which is too
weak, i.e., based on too few measurements, a minimum number of measurements can
be given. If fewer measurements lie in the window, then the result is undefined, i.e., a
gap in the abstracted values is inserted.

Input. A series of measurements from a single source (FloatDataPoint).

Output. A data point series object (FloatDataPointSeries). Undefined input values are
skipped. Output can be sorted by value or transaction time. Note that first data point
stored in the object need not lie inside the time window. It is still needed to define the
value at the start of the time window. Compare figure 4.3.

Arguments. Size of the time window and frequency of output. Both are of Asbru type
time. Plus a flag indicating whether sorting is by value or by transaction time.

Timing. The output is performed on a regular basis defined by the output frequency.
To ease synchronization, the output is produced whenever the current time is a mul-
tiple of the output frequency. This means that after the start a much smaller set of
measurements is output at the first moment of output.

73

6

-

valid time
va

lu
e

r r r r
time window� -

Figure 4.3: Time points in a time window. Note that the first and
the last measurement in the picture both contribute to the values
in the time window.

4.3.1.2 Time windows based on number of measurements

In some cases, one wants to summarize the previous n statements independent of the
time at which they were taken. This of course imposes some vagueness at the interpre-
tation of the result, but on the other hand ensures that exactly the expected number of
measurements is the basis of the calculation.

To avoid too excessive growth to the time window’s duration, a maximum duration
(in time units) can be specified. If the previous n measurements lie further apart,
the undefined value replaces this instance of time window to show that here no valid
abstraction was possible.

Input and output. As above.

Arguments. Size and output frequency given as number of measurements. Flag indi-
cating whether sorting is by value or by transaction time.

Timing. Output is produced whenever the given count of input measurements is read.
There is no synchronization in terms of actual time intervals.

4.3.1.3 Time windows based on episodes

Sometimes for each occurrence of a certain episode one wants to calculate a certain
aggregation the measurements during this episode. Suppose, for example, we want to
compare the standard deviation of the heart rate during different hypoxic episodes. An
hypoxic episode is defined as SpO2 lower then 80 for at least 4 seconds. Start and
end of each such episode form a time window. These time windows are of extremely
varying size and they are not at all evenly distributed over the total duration of the
measurement. Therefore, regular time windows are not applicable at all. Furthermore,
we want to precisely cut off the time window at start and end of each episode to avoid
the distortion of the results by values outside the episode.

The episode based time window is designed to meet these requirements. It takes
a stream of episodes produced, e.g., by matching a parameter proposition or a gener-
alized pattern description, and a second, independent input which supplies the values
to be grouped in time windows. For each episode one time window is output, starting
at the start of the episode, ending at the end of the episode, and containing all values
from the second input which fall into this temporal interval.

74

Input. A series of measurements from a single source (FloatDataPoint) plus episodes
(EpisodeDataPoint).

Output. As above.

Argument. A flag indicating whether sorting is by value or by transaction time.

Timing. Output is produced whenever an episode is complete, i.e., both start and end
are known and end already passed. At this point in time a window with all measure-
ments recorded during the episode is output.

4.3.2 Analyzing time windows

The stream of time windows generated by one of the three modules described in the
previous subsection is feed into one or more of the modules described in this section.
Only the combination of both abstraction steps provides output meaningful for the
user.

In all cases, output is produced whenever new input arrives. This means that if the
input comes from a TimeWindowModule, output will be produced on a regular basis. If
input comes from a MeasurementSeriesModule, it will only be as regular as the input
series. If input comes from a EpisodeTimeWindowModule, output is only produced
when an episode is found, i.e., rather irregularly.

4.3.2.1 Parameterless statistical measures

The standard abstractions median, minimum, maximum, average and standard devia-
tion are all based solely on the content of a time window without further parameters.
All these measures ignore the temporal dimension of the input.

Input. Sorted data point series produced by a TimeWindowModule, MeasurementSeries-
Module, or EpisodeTimeWindowModule.

Output. The median, minimum, maximum, average, or standard deviation of the
series.

4.3.2.2 Change

Analyzing the change of a value over time is a cheap and often sufficient way of deter-
mining the trend in a measurement series, provided that the input is not too noisy. For
a moderate, constant amount of noise, averaging a small time window and observing
the change between these averages is an attractive alternative to calculating the slope
of a linear regression (Section 4.3.3.2 and 4.3.4.1).

This module simple calculates the difference between the first and the last point in
the time window. This means that most of the values in the time window are ignored.
Still, this is an intended behaviour for slowly changing values where the assumption,
that the values in between form a monotonous connection of the first and last value is
justified.

Input. Either a time window or a series of data points.

Output. The difference between the first and the last value with the valid time of the
last.

75

6

-

valid time
va

lu
e time window� -

r r r r

Figure 4.4: Time points in a time window. Note that the first and
the last measurement in the picture both contribute to the values
in the time window.

4.3.2.3 Time-oriented average of data-point series

This module does not only average the values of the data points but instead adds the
areas of all rectangles defined by the value of each measurement and its valid time
interval as shown in figure 4.4.

Input. Unsorted data-point series produced by one of the three time window producing
modules.

Output. The average given as number of the same type (at the Asbru level) as the
input (FloatDataPoint). The average is not calculated from the values alone, but each
value is weighted with the duration of its validity.

4.3.2.4 Centiles

The value of an X-%-centile is that value in the time window for which X % of the val-
ues in the time window are smaller. The described implementation of this abstraction
allows dynamic changes of the threshold X to adapt to changing context.

Input. A sorted series of data points and a percentage.

Output. The value in the series of data points for which the given percentage of data
points in the series are smaller then itself.

4.3.3 Accessing time window properties

This subsection describes simple abstractions which are similar in their input – the
content of a time window – but dissimilar in their output. While the first group pro-
duces numeric time values, the second generates regression lines which themselves are
complex objects; their properties are accessed by modules described in Section 4.3.4.

4.3.3.1 Start, end, and duration

In some cases, explicit calculations based on the start or ending time of each of the set
of data points which actually form the time window are necessary. The start is defined
as the valid time of the first measurement in the time window. The end is the valid time
of the last measurement. The duration is the difference between these two values.

76

Note that even for the time window defined by its temporal extend (TimeWindow-
Module) the actual time span between the first and last value can be a varying entity
for irregular measurements.

Input. A series of data points produced by one of the three time window producing
abstraction modules.

Output. A numeric value of Asbru type date in the first two cases, and of Asbru
type time in the third case reflecting the first valid time, last valid time, and difference
between them respectively.

4.3.3.2 Linear regression

All of the above abstraction based on time windows ignore the temporal order of the
measurements. However, treating the measurements in a time window in a two dimen-
sional way instead of ignoring the temporal dimension is important if the measure-
ments show an increase or decrease over time. In this case, the line resulting from a
linear regression (approximation) of the content of the time window is not horizontal.

This has two consequences: First, the ascent of the regression line is a good esti-
mate of the trend of the measurements, and second the standard deviation and other
measures for the deviation of single data points from the regression line are smaller
and more precise then for a one-dimensional analysis.

A side product of this analysis is the temporal dimension of the centre of the dis-
tribution. For regular measurements, this is the middle of the interval. If there is a gap
in the measurements lying not in the middle, then the centre lies nearer to the majority
of measurements. This image shows that the centre represents the “centre of gravity”
of all measurement in the time window which could be used in calculation trust in the
result. However, in online settings this advantage is completely lost by the fact that the
result of the analysis is not known before the end of the interval.

Input. A series of data points produced by the modules in Section 4.3.1.

Output. A linear regression line object (RegressionLineDataPoint). It contains the
centre (time and value), the standard deviation, the standard error, the slope and the
start and end of the time window for which the calculation was done.

4.3.4 Properties and abstractions of linear regression

This section comprises a group of simple modules which output numeric properties
of regression lines on the one hand, and the intersection of a regression line and a
horizontal line demarking an alarm value, on the other hand.

4.3.4.1 Extraction of details of the regression line

The following features of a regression line can be extracted. All of them are output in
the form of a FloatDataPoint.

slope. The ascent or slope of the regression line, i.e., the trend of the time window
from which the regression was calculated.

77

standard deviation. The standard deviation is the calculated as the root of the sum of
squared distances between the data points and the regression line.

standard error. The standard error is calculated by multiplying the standard deviation
by
√
m√
n

where m is the maximal count of time points in the time window and n

is the number of valid data points in the time window.

end point. The end point of the regression line is formed by the valid time of the last
measurement and the y-coordinate of the regression line at this position.

centre. The centre is the point in the two-dimensional plane formed by value and time
axis, for which the squared distance to all data points is at its minimum.

Input. A regression line.

Output. As described above.

Arguments. A flag indication whether the time of the centre or the end of the regres-
sion line should form the valid time of the data point.

4.3.4.2 Time to alarm

In online monitoring, the time until a certain threshold is reached if the current trend
continues is an interesting parameter. This is calculated as the intersection of the re-
gression line with a horizontal line defined by the threshold.

Input. A regression line and a threshold.

Output. The time left until the threshold is reached. I.e., the difference between the
(continuation of the) regression line and the horizontal line defined by the threshold
on the one side and the end point of the regression line on the other side. If the trend
leads away from the threshold, the result is infinite. If the regression line crosses the
threshold before the end of the regression line is beyond the threshold, the result is
negative.

Arguments. A flag indicating whether the threshold is an upper limit or lower limit. If
the starting end of the regression line is below the threshold and the end point is above,
and if the threshold is an upper limit, then the result is the negative temporal distance
between the end point and the intersection. If in the same example the threshold is a
lower limit, the result is infinite.

78

4.4 Coping with noisy data

The previous section described a set of abstraction modules on a technical level. This
section takes an application focus and describes how the above modules can be com-
bined to cope with noisy data in different ways. This is followed by the introduction
to more complex abstractions in Section 4.4.4.

Data in the medical domain is often distorted by single errors and noise originating
from technical limitations in the monitoring process and circumstances in the treatment
process such as interventions of the care personal. In addition, data may temporarily be
missing. There are several possible reactions to this, ranging from simple to complex.

There are several simple rules to detect errors in data, which can be defined for
most types of input. Examples are a maximum and a minimum for the value (e.g., it is
not possible for a living person to have a body temperature of 30oC). Nearly as simple
to find is a maximum for the change in this value.

The simplest reaction to finding an error is to remove the data point. This causes a
gap in the stream of measurements which has undesired effects. Another option is to
replace the faulty value by some estimate. Since this risky, it needs control by explicit
rules defining the estimate in many cases. Section 4.4.2 shows some examples based
on previous work in this field.

The most attractive solution is the design of abstraction algorithms which perform
sufficiently even on noisy input data. This of course is not possible for the general case,
but it is for specific cases. The fundamental precondition for success is integration of
domain knowledge about the interpretation of the results of abstraction. E.g., it may
be safer to assume a value lower than it actually is in one case, while in another case it
is safer to assume a higher value. This depends not only on the information behind the
measured value, but only on the context, which may change over time.

Descriptive statistics offer a set of stable abstractions from varying input data. Sec-
tion 4.4.3 describes the means available in our system and how to combine them for
more sophisticated quantitative abstractions. While simple measures such as exclusion
of outliers may be sufficient for a group of tasks, there is a considerable amount of sit-
uations in which only specific combinations of different methods arrive at sufficiently
clean data without loss of too much information.

Medical knowledge is often expressed using qualitative concepts rather then quan-
titative ones. Abstracting such concepts directly from noisy quantitative input reduces
the distortion of the input through intermediate abstractions such as averaging, but
handling varying amounts of noise is not trivial. Section 4.4.4 shows some solutions
to this problem.

4.4.1 Error detection

In this section, the detection of errors using fixed and dynamically changing limits as
well as arbitrary rules is described.

The basic reaction to errors is the removal of the faulty value. The resulting gap in
the input need not be necessary. In some cases, previous measurements allow the ap-
proximation of the real value. In this section, only the solution of taking the previous,
correct measurement is used. See Section 4.4.2 for more complex estimates.

79

4.4.1.1 Static limit check

A considerable fraction of input errors can be detected by simple checks. This module
compares the input against a given minimum and maximum. It also compares the
change since the last measurement against the given minimum and maximum. If one
of these four checks fails, then the reaction depends of the flag mark gap given as
argument. If it is set to true on the implementation level or yes on the Asbru level, the
undefined data point is output, otherwise nothing is output.

The consequence of not outputting the undefined data point is that the parameter
may still be considered valid and having the last correct value, as long as the trust
period of this measurement is not expired.

If the value does not exceed any of the limits, it is output unaltered.
If one of the limits is not defined, the corresponding value can be set to positive or

negative infinity to disable the check.

Input. The following input values are of type FloatDataPoint.

• The measurement to be examined.

• Minimum of the value.

• Maximum of the value.

• Maximum of the difference between the previous value and this value. It is given
per time step, i.e., if the atomic time step is 1 second and 2 seconds passed since
the previous measurement, then the double change is allowed without exceeding
the limit.

• Minimum of the difference. This is identical to the maximum of decrease with
a negative sign.

Output. Same as input, except if one or more limits are exceeded. Then a data point
with the undefined value is output, if mark gap is true.

Arguments. The flag mark gap specifying whether a faulty value should be replaced
by the undefined value or simply be ignored.

4.4.1.2 Dynamic limit check

The above module method is not capable to react to changing amount of noise in the
data. If there are wide oscillations, a large amount of the input will be discarded, while
no outlier will be removed if the oscillations are small.

In many cases, a pragmatic approach is necessary, such as the elimination of a
certain percentage of outliers, independent of their actual value and the distribution of
the remaining value. Since the LimitModule described above allows for dynamically
changing limits, such a solution can be implemented by replacing the static limits by
arbitrary abstractions.

Figure 4.5 shows the definition of 10 % centiles as the limit of a value. This means
that the resulting value, X-cleaned contains the central 80 % values of the values in the
raw data X. In the example, the limits are calculated for the previous minute.

80

parameter-def name=”X-raw” type=”distance”
raw-data-def mode=”automatic”

parameter-def name=”X-cleaned” type=”distance”
limit-def

maximum-value
centile-def

limit
numerical-constant value=”90” unit=”%”

source
parameter-ref name=”X-previous-minute”

minimum-value
centile-def

limit
numerical-constant value=”10” unit=”%”

source
parameter-ref name=”X-previous-minute”

source
parameter-ref name=”X-raw”

parameter-def name=”X-previous-minute” type=”time-window”
time-window-def

window-length
numerical-constant value=”1” unit=”min”

step-width
numerical-constant value=”1” unit=”sec”

source
parameter-ref name=”X-raw”

Figure 4.5: Dynamic limit checks. X-cleaned is X-raw without
any measurements lower or higher then 90 % of the measurements
in the previous minute.

81

4.4.1.3 Complex rules for the dynamic definition of erroneous measurements

The application if the limit module as described above is limited to cases in which
numeric limits for a certain numeric value are defined. If the validity is defined by
more complex rules, a logical-dependency-def is needed to implement them.

The basic design is to implement the rules which define the validity of the input
as a combination of abstraction steps and to gate it through the mentioned logical
dependency module. There are two ways to react to invalid input. Either a undefined
value is output, or no value at all is output. In the second case, the value of the previous
(valid) measurement may be used until the trust period is over. This is an important
option in cases where it is important to avoid gaps in the data and where it is safe to
assume that suspicious values result from transient measuring faults rather then the
development of a new – potentially alarming – trend.

In the following example, A-checked is abstracted from A-raw by eliminating any
values for which both the value itself and the absolute value of change lie above the
average for A-checked for the previous minute. To this end, the value of A-raw is
passed on as A-checked if and only if A-is-ok is true. The Boolean value of A-is-ok is
a true if either A-raw is lower or equal than the average of A-checked or if the change
is lower or equal than the average change of A-checked.

If A-is-ok is not true, no output of A-checked is produced. This means that the
previous measurement is only invalidated through the end of the trust period which is
defined as 5 hours.

4.4.2 Rule-based repair of data

Leaving a gap in the stream of information should only be the last resort. Often, as-
sumptions about the real value of the missing parameter can be made for a certain time
after the last valid measurement. The function to compute replacements for the miss-
ing values is always highly domain dependent. Therefore, the Asgaard data abstraction
framework does not provide default extrapolation modules, but allows the definition of
any estimation as abstractions based on arbitrary previous measurements (potentially
from different channels).

In the example in Figures 4.7 and 4.8 gaps of up to one minute in the raw data (raw)
are closed by the following function: The gradient (estimated-change) is supposed
to approach zero in 30 equal steps during the first 30 seconds, starting with the last
measured gradient (measured-change). For the remaining 30 seconds, the value is
estimated to be equal.

In the following equation, Ci is the change or gradient of the function i seconds
after the last measurement, and Vi is the value of the estimation function i seconds
after the last measurement.

V0 = M

Ci = C·i
30 if i ≤ 30
0 otherwise

Vi = Vi−1 + Ci

82

plan-library
domain-defs

domain name=”complex-limit-check”
parameter-group

parameter-def name=”A-raw” type=”weight”
raw-data-def unit=”g” mode=”manual”

parameter-def name=”A-is-ok” type=”boolean”
logical-combination-def operator=”or”

comparison-def operator=”less-or-equal”
left-hand-parameter

parameter-ref name=”A-raw”
right-hand-parameter

average-def
interval

numerical-constant value=”1” unit=”h”
source

parameter-ref name=”A-checked”
comparison-def operator=”less-or-equal”

left-hand-parameter
calculation-def operator=”absolute-value”

change-def
interval

numerical-constant value=”2”
source

parameter-ref name=”A-raw”
right-hand-parameter

average-def
interval

numerical-constant value=”1” unit=”h”
source

calculation-def operator=”absolute-value”
change-def

interval
numerical-constant value=”2”

source
parameter-ref name=”A-checked”

parameter-def name=”A-checked” type=”weight”
trust-period

numerical-constant value=”5” unit=”h”
logical-dependency-def

if
parameter-ref name=”A-is-ok”

then
parameter-ref name=”A-raw”

Figure 4.6: Checking A against its average and the average of its
change.

83

plan-library
domain-defs

domain name=”repair”
parameter-group

parameter-def name=”raw” type=”volume”
raw-data-def mode=”automatic” unit=”ml”

parameter-def name=”time-since-last-measurement” type=”time”
calculation-def operator=”subtract”

now
valid-time-def

parameter-ref name=”raw”
parameter-def name=”measured-change” type=”volume”

change-def
interval

numerical-constant value=”1”
source

parameter-ref name=”raw”
parameter-def name=”estimated-change” type=”volume”

logical-dependency-def
if

comparison-def operator=”less-or-equal”
left-hand-parameter

parameter-ref name=”time-since-last-measurement”
right-hand-parameter

numerical-constant value=”30” unit=”sec”
then

calculation-def operator=”divide”
parameter-ref name=”measured-change”
numerical-constant value=”30”

default
numerical-constant value=”0”

Figure 4.7: Sample repair function defined in Asbru, part 1. The
change is assumed to approach zero in equal steps during the first
30 seconds of the gap. The estimate is valid for the first 60 seconds
only.

84

parameter-def name=”estimated-value” type=”volume”
logical-dependency-def

if
comparison-def operator=”less-or-equal”

left-hand-parameter
parameter-ref name=”time-since-last-measurement”

right-hand-parameter
numerical-constant value=”60” unit=”sec”

then
calculation-def operator=”add”

delay-def
delay

numerical-constant unit=”sec” value=”1”
source

parameter-ref name=”estimated-value”
parameter-ref name=”estimated-change”

parameter-def name=”resulting-value” type=”volume”
logical-dependency-def

if
parameter-proposition parameter-name=”raw”

is-known-parameter
context

any
time-annotation

now
then

parameter-ref name=”raw”
default

parameter-ref name=”estimated-value”

Figure 4.8: Sample repair function defined in Asbru, part 2. If
there is a valid measurement, it is used as the result. Otherwise,
the estimate is used, which itself is valid for the first 60 seconds
only.

85

4.4.3 Stable quantitative abstractions

Standard statistical analysis provides an easy to communicate way to abstract poten-
tially noisy data. The result is a quantitative value, i.e., a floating point number.

4.4.3.1 Average and median

Average and Median are popular means to estimate the centre of a distribution. Using
a sliding time window (Section 4.3) and the modules described in Section 4.3.2.1 they
can be computed for arbitrary time periods which are advanced in time steps of choice.

The results for various time windows can be freely combined. This allows to “fail
to the safe side” in those cases where the safe side is known. E.g., if it is unsafe
to assume a certain value too high, considering the minimum of the median for the
previous minute and the previous three minute interval should be safe.

The median can also be used to compute a replacement for missing values. E.g., if
the most recent value exceeds the median by Y %, that value is used instead of the too
high measurement. Such an abstraction could be considered a repair function, if used
by all further abstractions. It can also be interpreted as special purpose abstraction if
other abstractions from the same noisy input use different assumptions or restrictions.

4.4.3.2 Centiles

To increase the level of safety, the median may be replaced by a centile. E.g., suppose
it is alarming if A > B and both are oscillating and we want to avoid false alarms.
Comparing the median or average of both parameters for the previous minute1 will
reduce false alarms but introduce the danger that the alarming conditions exists for
several seconds and that these measurements are correct. Reducing the time window
size to a few seconds will reduce this danger, but bring back false alarms to some
extend.

Replacing the median of A by its 60 % centile means that an alarm is triggered if
only 40 % of the measurements of A in the previous minute are bigger then the median
of B. This way we gain sensitivity while retaining the size of the time window. After
replacing the median of B for its 40 % centile, the absence of an alarm means that 60
% of the measurements for A are smaller than 60 % of the measurements for B. For
the medians, this guarantee referred to only 50 %.

The decision, which of the solutions is the most appropriate greatly depends on the
possibilities of knowledge acquisition. Clinical knowledge may be available in a large
range of different forms. It is important for the knowledge engineer to have a equally
diverse set of abstractions at his hands to meet the demands from practice.

4.4.4 Abstraction of qualitative values from noisy quantitative input

Qualitative concepts such as high and low values play an important role in medical
knowledge. They are abstracted from numerical values by comparing the input against
certain limits2. The qualitative abstractions are should be stable, i.e., that they do not

1It is assumed that new measurements arrive once per second.
2These limits are context dependent. Here, I focus on the problems caused by noise in the input.

86

time-window 1

parameter
values

time

time-window 2

time-window n

(b)

time-window 1

parameter
values

time

(a)

Figure 4.9: For each instance of a sliding time window of fixed
size a linear regression is calculated. (a) shows a single time win-
dow, (b) the whole series [94].

change between different values unless necessary. Oscillations in the input may cause
such undesired switches between different qualitative values.

A standard solution to this problem is the introduction of a threshold around each
limit. However, the bigger the threshold, the bigger the delay in the abstraction. I.e., for
a slowly and steadily increasing value, we would like to change to the next qualitative
region as soon as the input value exceeds the limit. At the same time, for noisy data,
we want to delay the change of the qualitative value, and once it changed, we want to
maintain it even if the input value oscillates back to the previous region for insignificant
fractions of the observation time window.

Static thresholds cannot help here. Instead, the threshold must be adapted to the
amount of noise continuously.

The abstractions described below were developed and evaluated for the domain of
controlling oxygen supply in a neonatal intensive care unit. However, they can be used
in any other setting where steady qualitative abstractions are derived from input data
of varying quality.

4.4.4.1 The Spread

The basic answer to representing oscillations of varying intensity is to take the follow-
ing steps.

1. Find a centre value for the measurements in each instance of the sliding time
window.

2. Calculate a measure of deviation within this time window.

3. Plot it up and down from the centre found in step 1.

4. Connect all upper ends of the resulting bars, and all lower ends.

The resulting band of varying width is called Spread.
The first design is described in [94] from which figures 4.9 to 4.11 are taken.
The centre value is the centre of a regression line laid through the data point in the

time window. This centre will however carry the time stamp of the end of the window

87

time-window 1

parameter
values

time

(a)

time-window 1

parameter
values

time

time-window 2

time-window n

2 x SD

(b)

Figure 4.10: The measure of deviation is plotted up and down
from the centre of each line [94].

(a) (b)
parameter

values

time

time-window 2

parameter
values

time

time-window 1

Figure 4.11: All upper end and all lower ends are connected to
yield a band of varying width, called the Spread [94].

88

in real-time monitoring, since only at the end of the time window this calculation can
be performed.

The measure of deviation was the standard deviation or standard error in the orig-
inal version. However, the input data – oxygen saturation measured by pulsoximetry
on neonates – proved to be asymmetric and the standard deviation overly exaggerated
outliers, from the perspective of the application at hand (finding a stable estimate of
the oxygen level to devise necessary changes in the oxygen supply).

Therefore, I replaced the standard deviation by centiles. They are calculated of
values above and below median independently, and the value of outliers does not in-
fluence them, only the value of the majority of data points does.

Input. A linear regression line object (RegressionLineDataPoint, compare Section
4.3.3.2).

Output. A twin data point representing the limits resulting from this regression line.
Depending on the variant of the module, the distance between the two data points
and the center of the regression line is the standard error, the standard deviation, of a
centile.

Arguments. For the centile, the argument holds the percentage of the cut-off, i.e., 10
for a 10% centile.

Timing. Output is produced whenever new input arrives. Note that the valid time is
that of the end of the regression line.

4.4.4.2 Spread-based qualitative values

Based on the above described group of abstractions, a qualitative value is generated in
a conservative way by only changing to the next value if the whole Spread changes to
a new qualitative region.

Input. Two data points (FloatDataPointSet) either produced by two different input
channels or by a channel producing pairs of data points such as the Spread.

Output. A qualitative value computed as described in the next paragraph.

Arguments. The value of the normal region and a flag memory-on indicating whether
the starting point of assigning the new state should be either the previous state or the
normal region. In both cases, the qualitative value is decreased as long as the upper
limit of the Spread is lower then the lower limit of the current qualitative region. And
it is increased as long as the lower limit of the Spread is higher then the upper limit of
the Spread. Compare Table 4.4.

89

upper limit 25
of Spread
lower limit 15
of Spread

Qualitative from to
region
very low -10 0
low 0 10
medium 10 20
high 20 30
very high 30 40

Base value Resulting
value

very low medium
low medium
medium medium
high high
very high high

Table 4.4: Qualitative value computed for a Spread depending on
different starting values. The base value is the previous resulting
value if memory-on is true or the normal value otherwise.

4.5 Online-algorithms for monitoring temporal patterns

In real-world applications such as medicine, plan execution must be synchronized with
the environment, i.e., the patient’s health condition. One of the main features of the
Asbru language is to provide a strong bridge between the observation of the environ-
ment and the plan execution. This is achieved by changing the plan states if and only
if certain conditions are fulfilled.

However, until the introduction of the solutions described in this chapter, only
implementations which relied on repeated database queries were available [97]. They
were not suitable for high-frequency domains.

In the following, I take a bottom-up approach to describe them. First some deeper
details of the concepts in the Asbru language are discussed which affect the design of
monitoring algorithms. Then each of the major issues is discussed in detail. These are:

• Parameter proposition (Subsection 4.5.2 on page 98)

– with fixed reference point

– with repeated reference point

– with reference point now

• Plan state constraint (Subsection 4.5.3 on page 116)

• Temporal constraint (Subsection 4.5.4 on page 116)

• Boolean combination of temporal patterns (Subsection 4.5.5 on page 121)

• Count constraint (Subsection 4.5.6 on page 131)

Section 4.1 describes how the output of these algorithms is integrated and used by
other modules. Section 4.7 describes how the relevant language elements map to the
abstraction modules described here or to simpler ones which are described in Section
4.2.

4.5.1 Related language features of Asbru

The above mentioned conditions in Asbru are based on temporal patterns containing
parameter propositions which again contain time annotations. The subsections 4.5.1.1

90

value default
ESS −∞
LSS ∞
EFS −∞
LFS ∞

MinDu 0
MaxDu ∞

Table 4.5: Defaults for unspecified parts of a time annotation.

to 4.5.1.4 describe these basic concepts – time annotation, parameter proposition, and
temporal pattern. In subsections 4.5.2 to 4.5.7, concrete algorithms for the monitoring
process are given.

4.5.1.1 Time annotation

A time annotation describes an interval of time in a flexible way. It specifies an interval
within which the starting point must lie and another one for the end point. In addition, it
specifies minimum and maximum of the duration of the interval. Using three intervals
to constrain start, end, and duration of an interval was first proposed by Rit [112].
In Asbru, all 6 constraints are defined based on a reference point. Using different
reference points in different time annotations allows for different time lines in the
monitoring process. In detail, a time annotation consists of

Reference point (RP): The time point, to which the following four values (called
shifts) are offsets. Examples for reference points are the birth of the patient,
now (the current time point), or some event like the start of a plan.

Earliest starting shift (ESS): The earliest point in time (relative to the reference point),
at which a fitting interval may start.

Latest starting shift (LSS): The latest point in time (relative to the reference point),
at which a fitting interval may start.

Earliest finishing shift (EFS): The earliest point in time (relative to the reference
point), at which a fitting interval may end.

Latest finishing shift (LFS): The latest point in time (relative to the reference point),
at which a fitting interval may end.

Minimum duration (MinDu): The shortest time span of an interval to be a fitting
interval.

Maximum duration (MaxDu): The longest time span of an interval to be a fitting
interval.

Each of these except the reference point may be undefined. In this case, the defaults
shown in Table 4.5 are used.

91

An illustrative example. Something happens on the second day of life.

• Reference point is the birth of the patient.

• If we want to express that the interval is fully contained in this day but do not
care about the duration, then we demand that ESS=1 day, LFS=2 days.

• To express that it happens the whole day, but we do not care when it started and
ends, we give LSS=1 day and EFS=2 days, but leave ESS and LFS undefined.

• If we demand that the interval spans exactly the 2nd day, then we define all four
spans as given above. Note that in this case, the chance to find a fitting interval
is very small, since there is no flexibility both at start and end of the interval and
thus an interval must last exactly 24 hours and start exactly at midnight to match
the time annotation.

• In practice the shifts explicitly define intervals for start and end during which
they are considered to be acceptable near the intended time points. So we could
define ESS=23 hours, LSS=25 hours, EFS=47 hours, LFS=49 hours to demand
that the interval spans the second day of life and not more, but we allow 1 hour
tolerance in both directions on both ends.

• Now the interval will last between 22 and 26 hours. If so much uncertainty
is not acceptable, MinDu=23 hours and MaxDu=25 hours can be defined to
additionally limit the duration. Doing so, we arrive at a quite complex notion
of an interval which spans quite exactly the second day of life and which allows
start, end, and duration to deviate from the ideal by 1 hour in both directions.

A time annotation can be illegal or abnormal. An illegal time annotation is one
which cannot match any interval. An abnormal time annotation can match intervals
but is specified in a suboptimal way. These checks can be performed as soon as all
values are known. This is the time at which the execution unit evaluates the time an-
notation. Only if all values are constants, the checks can be performed before starting
plan execution.

Illegal time annotations. A time annotation is illegal if one of the following rules
are violated.

ESS ≤ LSS

EFS ≤ LFS

ESS ≤ EFS

LSS ≤ LFS

MinDu ≤ MaxDu

EFS − LSS ≤ MaxDu

MinDu ≤ LFS − ESS

92

While the first five simply define that the end must follow the start and the minimum
must not be greater than the maximum, the last two are more complex. If EFS −
LSS > MaxDu then even the smallest possible interval – starting the latest and
finishing the earliest is longer than MaxDu and therefore not admissible. Similarly, if
MinDu > LFS −ESS then even the longest interval formed by the earliest starting
point and the latest finishing point is longer then MinDu.

Annormal time annotations. A time annotation is annormal if one of the following
rules are violated.

EFS − LSS ≤ MinDu

MaxDu ≤ LFS − ESS

MinDu ≤ EFS − ESS

MinDu ≤ LFS − LSS

EFS − ESS ≤ MaxDu

LFS − LSS ≤ MaxDu

If the first rule is violated, then MinDu could as well be undefined, since it is smaller
than any interval allowed by the shifts (EFS − LSS is the shortest one). The same
hold for MaxDu if it is bigger then the longest interval stretching from ESS to LFS.

If MinDu > EFS − ESS then an interval starting at ESS must end some time
after EFS (at ESS +MinDu) so EFS could be increased to this value either MinDu
or ESS should be decreased. The same holds for the latest finishing and starting shifts.

Similarly, if EFS − ESS > MaxDu then an interval starting at ESS must end
before EFS or exceed MaxDu. The same holds for LFS − LSS.

Note that these cases only describe suboptimal formalization of the time annota-
tion. They are still valid and can occur in practice, especially in those cases, in which
the values used in the time annotation are supplied by variables which are changed in
a complex way during plan execution.

Types of reference points. The reference point in the time annotation can either be

• a single, fixed time point (possible only found at runtime, e.g., the start of a
certain plan);

• a repeated time point, e.g., a change of a parameter to a certain value which can
occur more then once;

• the moving time point now which designates the valid time the data abstraction
unit is currently processing.

There is a fundamental difference in the monitoring process between these cases for
time annotations in which at least one of the four shifts are defined. If only MinDu
and/or MaxDu are specified, the reference point is arbitrary. These distinctions are
discussed in the next subsection, since they are strongly connected to monitoring pa-
rameter propositions.

93

4.5.1.2 Parameter proposition

The heart of environment monitoring, i.e., the synchronization of plan execution with
world state is the parameter proposition. It is used in the conditions governing plan
state transitions, in the Asbru parameter definition boolean-def, and in the abstraction
module parameter proposition.

In Asbru 6.5 it was only used in temporal patterns which again were only con-
tained in conditions of plans. Permitting is usage in abstraction statements in Asbru,
too, increases the efficiency of the monitoring process as the outcome of monitoring a
certain parameter proposition can be used by more than one condition.

A parameter proposition is fulfilled, if a certain parameter has a certain value for a
period of time described by a time annotation in a certain context.

A parameter proposition consists of the following.

Parameter name: name of the parameter referred to, e.g., X or fever.

Value description: either a value or a value range describing the permitted values of
the parameter, e.g., equal to 5, or ranging from 3 to 5, or qualitative values such
as high.

Time annotation: a described in the preceding section.

Context: A set of qualitative variables and their allowed values, e.g., ventilation mode
equals CPAP.

Starting with Asbru version 7.2, value description, context, and time annotation
can contain variables in Asbru. Therefore, the actual values passed on to the data ab-
straction unit are only decided during plan execution. For the issue of data abstraction,
the only consequence lies in the fact that it is not possible to monitor the status of a
parameter proposition in the plan library from program start, and that the same pa-
rameter proposition in the plan library will be represented by different instances of the
parameter proposition module in the data abstraction unit depending on the changing
values of variables.

Depending on its usage, the parameter proposition has one of two types of result:

• If used in a condition, it is first not yet fulfilled. If the first fitting interval is found,
the parameter proposition (and the condition containing it) is fulfilled. Under
certain circumstances it is also possible to decide, that a particular parameter
proposition will be never fulfilled, i.e., there cannot be a fitting interval in the
future (and there was none in the past. The implications of such a finding are
discussed in detail in Section 4.5.1.4.

• If used as an abstraction step, the result of applying a parameter proposition is
a series of fitting intervals. Note that a single parameter propositions can match
more then one interval (e.g., the times of fever for more then one day in your
life).

Abstracting from the value matching process, we define:

94

Positive flank (PF): A point in time after which the parameter has a value prescribed
in the value description and before which it does not. In addition, the context
described in the parameter proposition must be given, otherwise the parameter
is ignored.

Negative flank (NF): The counterpart of a positive flank. It can be caused by ei-
ther the value of the parameter or the context not meeting the description in
the parameter proposition anymore. This means that if the parameter still has
the correct value but the context changes and the new context does not fit the
context description in the parameter proposition, the effect is the same as if the
parameter value would have changed and does not meet the value description
anymore.

Fitting interval: The interval formed by a positive and the consecutive negative flank
which matches the temporal constraints of the time annotation.

In the following, we will focus on PF and NF, treating the input as Boolean and
leaving the comparison of the parameter to the value description and the context to its
specification to other modules of the abstraction system, as it is described in detail in
Section 4.7.

If a time annotation with a fixed reference point is fulfilled, it will remain so for-
ever. E.g., if the value for total serum bilirubin (TSB) is high on the second day of life,
this fact can never change in the future. In contrast, a time annotation with reference
point now can end being fulfilled. E.g., for a parameter proposition stating that the
interval of high fever must start 4 hours before now and fever changes from normal to
high now, then this parameter proposition is fulfilled for the current time being, but it
is clear that it will not be fulfilled in 4 hours and 1 minute, since then the start of this
episode of high fever will is past 4 hours from the then current time.

On the other hand, for a time annotation based on now there retains always a
chance to be fulfilled in the future, since the reference point is forever changing and
new intervals can be matched. In contrast, for a time annotation with a fixed time
point and some of the shifts defined, we can find a time point after which it is sure that
the parameter proposition will never more be fulfilled. E.g., a parameter proposition
describing high TSB on the second day of life will never more be fulfilled after the end
of that day, if it was not fulfilled on that day.

A time annotation with a repeated reference shares properties with both other
cases. On the one hand, it is the same as a set of time annotations with fixed refer-
ence points – each instance of the repeated reference point founds one time annotation
with this reference point as its single, fixed reference. On the other hand, since there
will always be new instances of the repeated time point in the future3, monitoring never
completes.

The consequences of knowing that a parameter proposition will not be fulfilled in
the future are examined in Section 4.5.1.4.

3There is one exception: If the repeated time point is a parameter change and we know for some
reason, that this parameter will never change again, then we know that there will not be another instance
of the time annotation with a new reference point. However, determining this case is a complex task and
the consequences are negligible in practice.

95

4.5.1.3 Temporal pattern

Temporal patterns are the heart of the conditions governing the change of plan states.
Besides other things not related to data abstraction, temporal patterns can contain the
following.

• A single parameter proposition.

• A plan state constraint.

• Several temporal patterns connected by Boolean operators.

• Two temporal patterns connected by qualitative temporal operators such as be-
fore or during. Asbru implements 7 of the 13 temporal relations defined by Allen
[8]. The missing 6 are inversions of other relations which can easily be achieved
in Asbru by swapping the arguments.

• A count constraint consisting of a temporal pattern and a number specifying how
often the temporal pattern must be fulfilled to fulfil the count constraint.

Monitoring a count constraint is implemented by a simple comparison of the num-
ber of episodes as describe in Section 4.7. Monitoring the three varieties of parameter
propositions is described in Section 4.5.2.1 through 4.5.2.3. Monitoring temporal re-
lations is described in Section 4.5.4.

4.5.1.4 Plan and condition

The treatment is formalized as a hierarchy of skeletal plans in Asbru. These plans are
stepwise refine by selecting appropriate children for each plan at runtime.

A plan in Asgaard has various states. The change between states is governed by
conditions. These conditions are built from temporal patterns (and other things which
have no connection to data abstraction).

In managing plan states, the fact that a condition will never be fulfilled has conse-
quences. Table 4.6 gives a short overview of the conditions and the consequences of
fulfilling or not fulfilling them.

To distinguish the success or failure of a plan from that of a single condition, a
condition succeeds if it is fulfilled and it fails if it cannot be fulfilled in the future and
never was in the past. In contrast, a plan aborts if its abort condition succeeds and
completes if its complete condition succeeds.

Conditions contain parameter proposition which contain time annotations. The
shifts in these time annotations can contain references to parameters, variables, and
arguments in addition to constants. Therefore, their value is not known at program
start, but only when the plan containing them comes into life.

To cope with this situation, the ParameterPropositionModules described in the fol-
lowing have a method startMonitoring which is called with the content of the time
annotation as soon as the plan is instantiated4 and these values are known. Until then,
the inputs to the ParameterPropositionModule are stored in an intermediate buffer.

4Note that on the implementation level, the PlanStateModule is created at program start, while on
the concept level, the plan is instantiated only when its parent is a the right state to do so.

96

condition plan state if condition is
fulfilled not yet fulfilled never more fulfilled

filter possible considered rejected1

setup activated possible rejected2

suspend suspended activated no impact
reactivate activated suspended no immediate change3

complete completed activated no immediate change3

abort aborted activated or suspended no practical impact4

1 Frequent and important. The filter condition is often used to choose
from a set of alternatives and it is crucial for the functioning of the plan
execution to know which plans can be ruled out.

2 This case is very rare. It happens if the plan execution unit can rule out
any action it could take to fulfil the setup condition.

3 If a plan cannot compete in the future, then the plan enters a zombie
state in practice. However, its formal state is not changed since this
would overly complicate the semantics of plan states. If the plan de-
signer wants the plan to abort under this condition, the abort condition
(and the time annotation of the plan activation) can easily be adjusted
accordingly.

4 A plan which will never abort in the future cannot be considered to
be completed. Therefore this bit of positive information is not used in
practice.

Table 4.6: Condition and the consequences of their being fulfilled
or not.

97

RP Reference Point
ESS Earliest Starting Shift
LSS Latest Starting Shift
EFS Earliest Finishing Shift
LFS Latest Finishing Shift
MinDu Minimum Duration
MaxDu Maximum Duration

Table 4.7: Elements of a time annotation and their abbreviations.

4.5.2 Monitoring parameter propositions

In this section, we focus on monitoring the temporal aspect of the parameter proposi-
tion. The part which maps the value description is implemented by different modules
and outputs a Boolean which we call the condition here. E.g., if the parameter propo-
sition specifies “A greater 10 for a minimum duration of 1 hour”, then comparing A
against a constant value of 10 is performed outside the scope of this subsection and it
will yield a stream of Booleans which are true in all time steps at which A is greater
10. In this and the following subsections we focus on the minimum duration of 1 hour,
and efficient and delay-free algorithms to detect the fact that we found an interval at
which the condition is fulfilled and which fulfils the temporal constraints set forth in
the time annotation.

The time annotation contained in a parameter proposition can have three types of
reference point:

• single fixed reference point

• repeated reference point

• the moving reference point now

The principal design is a finite state machine in each of the cases, which reacts on
events caused by both changes in the input and elapse of an interval of time. However,
the algorithms differ significantly depending on the type of reference point. Therefore,
they are described in three distinct subsections, starting with the simplest case, the
fixed reference point, continuing with the second case above, which builds on the first,
and finishing with the moving time point now.

4.5.2.1 Monitoring parameter propositions with a fixed reference point

First, we concentrate on a time annotation which specifies the start and the end of the
interval to find. It is not necessary that the time annotation is complete, i.e., that all
six shifts are given, but there must be enough information to determine start and end
of the interval constraining the start and end of the searched interval. Details on the
complex dependencies of the six shifts are explained below.

Table 4.7 repeats the elements of the time annotation and their abbreviations for
convenience.

In addition, the following abbreviations are used in the following:

98

PF: The first time point at which the condition is fulfilled.

NF: The first time point at which it is no more fulfilled.

For a fixed reference point RP, the following definitions are useful:

Earliest starting time (EST): The absolute time point computed by adding ESS and
RP, or negative infinity if ESS is not specified.

Latest starting time (LST): The absolute time point computed by adding ESS and
RP, or positive infinity if LSS is not specified.

Earliest finishing time (EFT): The absolute time point computed by adding ESS and
RP, or negative infinity if EFS is not specified.

Latest finishing time (LFT): The absolute time point computed by adding ESS and
RP, or positive infinity if LFS is not specified.

In the monitoring process we observe four different and independent processes:

1. The passing of the interval for matching positive flanks ([EST, LST]).

2. The passing of the interval for matching negative flanks ([EFT, LFT]).

3. The passing of one interval per positive flank, based on the duration. Each inter-
val ([PF + MinDu, PF + MaxDu]) constrains the corresponding negative flank
in addition to the above.

4. The state of the condition, i.e., the sequence of positive and negative flanks
as they result from matching the value description to the actual values of the
parameter over time.

Note that if the first two intervals are sufficiently long, several positive flanks can occur,
creating several instances of [PF + MinDu, PF + MaxDu].

Not all time annotations need to constrain both sides of both the interval for the
starting time and that for the finishing time. Undefined values can lead to EST and/or
EFT being infinitely early, PF + MinDu coinciding with PF, and LST and/or LFT
and/or PF + MaxDu being infinitely late. For the monitoring process, this has the
following consequences.

EST: No PF is required for the first interval – the value description simply must be
fulfilled at the start of monitoring. This is implemented by adding a dummy
PF at the start of monitoring (but after the infinitely early EST) if the parameter
meets the value description at the very first measurement, i.e., if a potentially
fitting interval started before program start5. In addition, the monitoring process
must allow the transition resulting from EST to occur indefinitely early, i.e.,
before the processing of the dummy PF.

LST: Any further PF will be accepted, but LFT may put an end to monitoring.
5Note that this only refers to actual start of the data abstraction software, not the start of a plan.

99

EFT: Any NF (before LFT) is suitable. As for EST, the monitoring process must
implement the transition of EFT before processing any flanks.

LFT: The latest time for NF is only constrained by MaxDu + PF. Since this constraint
is renewed at each PF, there is no absolute constraint for the latest NF. However,
LST may constrain the latest PF, imposing an absolute end of monitoring.

MinDu: The minimum duration is EFT - PF, or 0 if EFT already passed.

MaxDu: The latest time for NF is given by LFT alone.

LST and LFT: There is always a chance that a matching interval can be found in the
future and thus waiting for it never ends.

LFT and MaxDu: Once a suitable PF is found, the interval is a fitting interval al-
ready at EFT (if no NF occurred between PF and EFT) because already then all
requirements are fulfilled (NF cannot come too late).

If both EFT and LFT are undefined, the result does not differ from the sum of the
effects described for each of them. The same holds for EST and EFT. I.e., these cases
do not call for special rules.

Figure 4.12 shows a state chart for monitoring parameter propositions with fixed
reference point. As mentioned above, four intervals resp. states are monitored in
parallel:

1. The starting interval SI during which PF must occur to start a fitting interval.
It is started by the event of EST arriving and ended by LST. The state of being
in this interval is represented by the dotted rectangle at the left labelled “SI =
during”. LST causes a shift from the left half of the diagram (states 2, 3, 7, and
8) to the right half of the diagram (states 4, 5, 9, and 10) which mirror the first
group, with the difference that after the end of the current interval the monitoring
process terminates while on the left half of the diagram it continues.

2. The finishing interval FI during which NF must occur to end a fitting interval.
It is started by EFT and ended by LFT. The state of being in this interval is
represented by the dotted rectangle at the lower half of Figure 4.12 labelled “FI
= during”. LFT leads to the ultimate termination in any state.

3. The interval defined by MinDu and MaxDu, DI. It is started by the event of
MinDu being over and ended by either LFT, MaxDu, or NF. It is represented by
a U-shaped polygon labelled “DI = during”.

4. The state of having found a fitting PF, i.e., during a potentially fitting interval.
It is started by PF and ended by many different events, among only NF during
both FI and DI leads to a positive result. It is represented by a dotted rectangle
in the centre of the diagram, labelled “PFfound = true”.

Implementing figure 4.12 node by node and arc by arc as a finite state machine
seems somewhat redundant. Figure 4.13 shows pseudo code for an implementation
which stores the state information in several independent variables described in the
caption on this figure.

The algorithm produces four types of messages or output records:

100

PF

NF

PF

E
F

T

E
F

T

E
F

T

MinDu

MinDu

LFT, LST

NF, MaxDu

LST

te
rm

in
at

e

NF

E
F

T

E
F

T

MinDu

MinDu

LST

LSTLST

NF, MaxDu

M
ax

D
u=

LF
T

=8

MaxDu

NF
NF

NF

NF

MaxDu=LFT=8

NF

MaxDu, LFT

NF, LFT

LFT

LST

report start of fitting interval

report end of before found fitting interval

report complete fitting interval

S
ta

rt EST

DI = during

F
I =

 d
ur

in
g

SI = during

PFfound = true

LFT

1 2 3 4 5

6 7 8 9 10

11

12

Figure 4.12: Full state chart of monitoring a parameter propo-
sition with fixed reference point. Wide, stripped arcs stand for
the action “output description of fitting interval” performed dur-
ing these state transitions. This action is split in cases where the
interval is found to fit before it ends. Compare description on page
100.

101

start: if EST = −∞
then SI := during
else SI := before
if EFT = −∞
then FI := during
else FI := before
PFfound := false

EST: SI := during

LST: if PFfound
then SI := past
else terminate

EFT: FI := during

LFT: terminate

PF: if SI = during
then PFfound := true

set events MinDuEx and MaxDuEx
DI := before

MinDuEx: DI := during
if FI = during and MaxDu =∞ and LFT =∞
then report start of interval

NF: if PFfound and FI = during and DI = during
then if MaxDu =∞ and LFT =∞

then report end of before found interval
else report complete interval

if SI = during
then PFfound := false
else terminate

MaxDuEx: DI := past
if SI = during
then PFfound := false
else terminate

Figure 4.13: Pseudo code for monitoring parameter propositions
based on a fixed reference point.
State variables: SI = Starting Interval [EST, LST], FI = status of
Finishing Interval [EFT, LFT], DI = status of interval of duration
constraints [PF + MinDu, PF + MaxDu], PFfound = most recent
PF was in starting interval.
Events: EST = Earliest Starting Time, LST = Latest Starting
Time, EFT = Earliest Finishing Time, LFT = Latest Finishing
Time, PF = Positive Flank, NF = Negative Flank, MinDuEx =
Minimum Duration Expired, MaxDuEx = Maximum Duration
Expired, start = initialization done before processing first input.
Note: “MaxDu = ∞ and LFT = ∞” as well as MinDuEx are
checked immediately after other state transitions, i.e., more then
one transition can occur at a given value of valid time.

102

• An interval just ended and now is found to fit. Therefore both PF and NF are
known (and output).

• An interval is found to fit, but it has not ended yet. Therefore only PF is known.
Still it is important to report it immediately, since the plan execution unit might
wait for it and reacting to this interval at its end may be far too late.

• The current fitting interval which has been reported before just ended. In addi-
tion to the before output PF, now NF is known too.

• End of monitoring has arrived, either because of LST (and no interval currently
open) or LFT. This information may be used by the plan execution unit to deduce
that a certain condition will never be fulfilled.

4.5.2.2 Monitoring parameter propositions with repeated reference points

Monitoring such parameter propositions consists of monitoring a parameter proposi-
tion with fixed reference point several times, each time with a different reference point.
The union of all episodes found in all of the monitoring sub-processes is the result of
monitoring the parameter proposition with repeated reference point.

On the implementation level, this task consists of

• instantiating the repeated time points,

• starting a monitoring process for each, and

• passing the union of all episodes found by each of the sub-processes on to the
output.

Truly repeated time points are defined by state-change elements, which describe
a qualitative parameter, a qualitative value for it, and whether leaving or entering this
state should produce a repeated time point. On the implementation level, these time
points are produced by a StateChangeModule. The output of each of them is feed into
the RepeatedParameterPropositionModule.

There is also the case that several reference points have been specified in the time
annotations. Their count is fixed and for each of them a ParameterPropositionModule
is instantiated as above and their output is merged. The main difference is that moni-
toring stops after monitoring the last of these parameter propositions stopped. This is
in contrast to monitoring parameter proposition with a truly repeated reference point,
where monitoring does not stop.

“Merging” the episodes does not mean that intervals are joined (in most cases they
could not because of gaps between them), it means that duplicates are removed from
the union of all episodes delivered by the monitoring sub-processes. Consider the
example “X is high for at least 5 minutes during the hour after Y became low”. The
Asbru code is shown in Figure 4.14, while Figure 4.15 shows an example of episodes
where the middle one is a fitting interval for both instances of this repeated parameter
proposition.

The implementation of finding duplicates is simple, since duplicates must have the
same PF.

103

parameter-proposition parameter-name=”X”
value-description type=”equal”

qualitative-constant value=”high”
context

any
time-annotation

time-range
starting-shift

earliest
numerical-constant value=”0”

finishing-shift
latest

numerical-constant value=”60” unit=”min”
duration

minimum
numerical-constant value=”5” unit=”min”

parameter-change value=”low” direction=”enter”
parameter-ref name=”Y”

Figure 4.14: A time annotation with repeated time point, match-
ing all episodes of X being high for at least 5 minutes starting not
before Y became low and finishing 60 after Y became low at the
latest.

1 hour after first episode of low Y

1 hour after first episode of low Y

low Y

high X

Figure 4.15: Episodes of X being high within 1 hour after Y be-
came low. Note that the middle episode of X matches both param-
eter proposition, the one based on the first reference point and the
one based on the second reference point, since it falls within both
1-hour-intervals.

104

ESS LSS EFS LFS now
PF NF

minDu
maxDu

time 0

Figure 4.16: A parameter proposition based on now and a inter-
val fitting at the moment shown.

PF

minDu
maxDu

ESS LSS EFS LFS now

time

Figure 4.17: A potentially fitting interval at the moment now=PF.

4.5.2.3 Monitoring parameter propositions with reference point now

The moving time point now calls for a completely different approach then the above
cases. Now, we can no longer calculate EFT etc. in advance. Also, there is no end
of monitoring. And finally, shifts must be negative or zero, i.e., lying in the past or
in the presence. Figure 4.16 shows a prototypical case of a time annotation based on
now and a fitting interval. Note that the fitting interval moves to the left with respect
to now.

For the above mentioned reasons, the monitoring algorithm focuses on the flanks.
Figures 4.17 to 4.20 illustrate the important phases in comparing an episode to a fully
specified time annotation based on now. At the positive flank (PF) we calculate the
time points between which the negative flank (NF) should lie to fulfil the constraints
set forth by MinDu and MaxDu (Figure 4.17). If NF occurs within these constraints
(Figure 4.18), we know that they are satisfied, but the parameter proposition is not
fulfilled yet – both PF and NF lie past the intervals constraining them.

As time goes by, i.e., as the value of now increases, the time points reflecting these
shifts move to the right relative to the episode. After some time, both PF and NF enter
the intervals constraining them (Figure 4.19). In this figure, both flanks enter their
constraining intervals simultaneously, but this need not be the case. The first value
of now, for which all constraints are satisfied, is called the start of validity (SV). Its

105

time

ESS LSS EFS LFS now
PF NF

minDu
maxDu

Figure 4.18: A future fitting interval at the moment now=NF.
time

ESS LSS EFS LFS now

time

PF NF

Figure 4.19: A fitting interval at the first (lowest) value of now
for which it fits – at Start of Validity (SV).

ESS LSS EFS LFS now

time

PF NF

Figure 4.20: A fitting interval at the last (highest) value of now
for which it fits – at End of Validity (EV).

106

formal calculation is given below.
As now increases further, the first of both flanks will leave the constraining interval

(Figure 4.20). Again, this happens simultaneously in the example which need not be
the case for other time annotations. The value of now at this moment is the end of
validity (EV). For greater values of now, the parameter proposition is no more fulfilled.

Calculating start and end of validity. Both SV and EV can be derived from the
standard constraints for parameter proposition. Replacing the reference point by now,
we arrive at the following constraints for the flanks.

now + ESS ≤ PF ≤ now + LSS
now + EFS ≤ NF ≤ now + LFS
MinDu ≤ NF − PF ≤ MaxDu

Any lower limit of now derived from these constraints constitutes a constraint on
the start of validity, any upper limit constrains the end of validity. ESS, EFS, and
MinDu together with the flanks form the maximum for now, i.e., EV, while LSS and
LFS determine SV.

MinDu influences SV independent from now. Since we cannot state that NF −
PF > MinDu before PF + MinDu, we cannot know that the interval fits earlier.
MaxDu does not directly influence the duration of the validity interval – if it is given,
NF must be awaited and if NF arrives past PF + MaxDu then the interval is not fitting
at all, i.e., for no value of now.

EV PF = PF − ESS SV PF = PF − LSS
EV NF = NF − EFS SV NF = NF − LFS

SV MinDu = PF +MinDu

Since all five constraints must be observed, the valid interval is defined by SV and
EV as:

SV = max(SV PF, SV NF, SV PF)

EV = min(EV PF, EV NF)

For the monitoring process, the question whether EV can lie before SV is impor-
tant. In such a case, we must not report a fitting interval at SV, which for other cases
is very desirable. EV < SV if any of the terms constituting SV is greater then any of
the terms constituting EV. We therefore must examine 6 cases.

1. SVPF is never greater EVPF:

ESS ≤ LSS →
PF − ESS ≥ PF − LSS →

EV PF ≥ SV PF

2. SVNF is greater EVPF if the duration of the interval exceeds LFS - ESS. As dis-
cussed in Section 4.5.1.2, this value is a hidden maximum duration constraint.

107

While it is handled implicitly by the algorithm for detecting parameter proposi-
tions with fixed reference point, here it needs special attention (see below).

SV NF > EV PF ↔
NF − LFS > PF − ESS ↔
NF − PF > LFS − ESS

3. SVMinDu is greater then EVPF if MinDu is greater the absolute value of ESS.
This is a form of malformation of the time annotation (specific to time annota-
tions with reference point now). It means that, PF must not lie further in the past
then ESS and at the same time we must wait for a greater value MinDu after PF
to be sure that NF does not occur before PF + MinDu.

SV MinDu > EV PF ↔
PF +MinDu > PF − ESS ↔

MinDu > −ESS

4. SVPF is greater then EVNF if the duration of the interval is smaller than EFS -
LSS. This means that – as for parameter propositions with fixed reference point
– EFS - LSS imposes a lower limit for MinDu. An other words, this case does
not happen for well-formed time annotations, since MinDu ≥ EFS −LSS is
one of the criterions for being well-formed.

SV PF > EV NF ↔
PF − LSS > NF − EFS ↔

EFS − LSS > NF − PF

5. SVNF is never greater EVNF:

EFS ≤ LFS →
NF − EFS ≥ NF − LFS →

EV NF ≥ SV NF

6. SVMinDu is greater EVNF if the interval is shorter than MinDu under the (proper)
assumption that EFS is not greater zero in time annotations based on now.

SV MinDu > EV NF ↔
PF +MinDu > NF − EFS ↔

MinDu+ EFS > NF − PF
EFS≤0−→

MinDu > NF − PF

This leads to the following conclusions. First, there is an additional constraint
for a time annotation based on now to be well-defined, which do not exist in time
annotations based on a fixed reference point: −ESS ≥ MinDu. It this is violated,
then the validity interval of the time annotation ends before MinDu is over. Therefore,
the monitoring process must fail.

108

The second conclusion lies in the definition of EffMaxDu and EffMinDu as fol-
lows. The term 0 is included for clarity only, since 0 is the default value for undefined
MinDu.

EffMaxDu = min(LFS − ESS,MaxDu)

EffMinDu = max(EFS − LSS,MinDu, 0)

While LFS − ESS ≥ MaxDu is a trivial constraint for the wellformedness of any
time annotation, the above formula is important in those cases, in which one or more
of the three values are undefined. MaxDu and EffMaxDu play an important role in
the monitoring process only through their potential absence. If there is no limit for the
latest occurrence of NF, then the fitting interval must be reported before it is completed.
As for parameter propositions with fixed reference point this is the case, if both MaxDu
and LFS are undefined.

A two-dimensional view. Figures 4.17 to 4.20 seem intuitive, but space consum-
ing. Figure 4.21 integrates both the movement of the flanks and 4.20 to now and the
calculation of the validity interval into one two-dimensional diagram. It shows three
different dimensions on three temporal axes:

1. From the origin to the right the absolute time at which flanks occur is plotted.
This is the valid time of the data points representing them.

2. From the origin to the left, the shifts are plotted. Values on this side of the axis
are relative to now. All shifts in a time annotation based on now are negative
(or zero).

3. On the vertical axis the time of monitoring is shown. This is equal to the values
which now takes during the monitoring process.

The diagonal lines originating from the shifts and ascending at a slope of 1:1 show
how the absolute time points associated with them change over time. With each step in
time, they are shifted to the right relative to the absolute time axis on which the flanks
are plotted. This is the opposite point of view compared to Figures 4.17 to 4.20 where
the shifts are the reference and the flanks move to the left. Still, the depicted process
is the same.

PF is constrained by ESS and LSS. Hence, the vertical position of the intersections
between the vertical line representing PF and the diagonals representing ESS and LSS
mark the end and start of validity defined by this flank (EVPF and SVPF) it projected
to the vertical axis. The same holds for NF. The actual interval of validity is constrained
by the later of both SV and the earlier of both EV.

The constraints EffMinDu and EffMaxDu are plotted on the horizontal axis since
they hold positive values in contrast to the shifts. EffMinDu is represented by a diag-
onal ascending at 1:1 which intersects the vertical axis MinDu units above the origin.
A horizontal line plotted through the intersection of this diagonal with the vertical line
at PF shows SVMinDu.

EffMaxDu does not constrain the interval of validity.
The projection of both EffMinDu and EffMaxDu on the axis of the flanks is show

in dotted lines. Drawing a diagonals descending at a rate of 1:1 from the intersections

109

PF

SVNF

NF

EVPF

LFS valid time of flanks

va
lid

ity
 o

f
ep

is
od

e

EFSLSSESSshifts

SVPF

EVNF

SVMinDu

MinDu

MaxDu

Figure 4.21: Two-dimensional view of matching an interval to a
time annotation based on now.
Usage of the axes: To the right: absolute time at which flanks oc-
cur; to the left: the shifts given in the time annotation; up: the time
of monitoring, i.e., the values of now as monitoring progresses.
The height of the grey rectangle shows the time during which the
parameter proposition is considered fulfilled.
EVPF and EVNF : End of Validity based on Positive and Nega-
tive Flank.
SVPF and SVNF : Start of Validity based on Positive and Nega-
tive Flank.
SVMinDu: Start of Validity based on Minimum Duration.
PF and NF: Positive and Negative Flank for one instance of input
interval.

110

NF

PF

Start

M
in

D
u

NF

M
axD

u

NF

PF
M

in
D

u

NF

MaxDu= LFS = ∞ MaxDu ≠ ∞ or LFS ≠ ∞

report start of fitting interval

report end of before found fitting interval

report complete fitting interval

Figure 4.22: State chart for monitoring parameter propositions
based on now.
Events: PF = Positive Flank, NF = Negative Flank, MinDu = PF
+ EffMinDu arrived, MaxDu = EffMaxDu arrived.

of the vertical line representing PF and horizontals representing EffMinDu and Eff-
MaxDu shows these constraints of NF on the horizontal axis. These considerations do
not contribute to the calculation of SV and EV, but rather to the selection of NF as a
proper end of a fitting interval.

A monitoring algorithm. There are two principal modes of the monitoring algo-
rithm, depending on whether both MaxDu and LSS are undefined, i.e. positive infinite,
or not. In the first case, SV can arrive before NF and at SV at the latest the incom-
plete fitting interval must be reported. More precisely, after PF we must await PF +
Mindu. If NF occurs before, then this interval was too short. Otherwise, we found a
fitting interval with SV = max(PF − LSS, PF + MinDu) which will be now if
−LSS < MinDu or in the future (at PF − LSS).

In the second case, if MaxDu is given, NF must be awaited to see whether it occurs
before PF + MaxDu. Otherwise the interval would not fit. If LFS is given, SV cannot
lie before NF; And NF must be awaited to calculate SVNF.

SV = max(. . . , SV NF, . . .) → SV ≥ SV NF

SV NF = NF − LFS → SV NF ≥ NF

}
→ SV ≥ NF

Figure 4.22 shows the algorithm for monitoring parameter propositions with refer-
ence point now in the form of a state chart. Note that – as for the state charts above –

111

Start: PFfound := false
if MaxDu =∞ and LSS =∞
then noMaximum = true
else noMaximum = false

PF: PFfound := true
MinDuPassed := false
set MinDu and MaxDu events

NF: PFfound := false
if MinDuPassed
then if noMaximum

then report end of before found interval
else report complete interval

MinDu: MinDuPassed := true
if noMaximum
then report start of interval

MaxDu: PFfound := false

Table 4.8: Pseudo code for monitoring parameter propositions
based on now.
Events: PF = Positive Flank, NF = Negative Flank, MinDu = PF
+ EffMinDu arrived, MaxDu = EffMaxDu arrived.

the automaton must be able to take several steps in immediate succession. Also, some
arcs are labelled with queries while most are labelled with events. Therefore, the figure
is an illustration, not a formal specification.

Table 4.8 shows the algorithm as pseudo code.

4.5.2.4 Integrating the output of different types of parameter propositions

Above, three dissimilar monitoring processes were described. In order to process their
output in a satisfying way, it is necessary that this output is as uniform as possible,
independent of the type of reference point in their time annotation. While Section 4.1
describes the integration of all modules, the specific integration of parameter propo-
sition modules is discussed in the following, since it forms the basis of monitoring
combinations of temporal patterns as discussed in Sections 4.5.4 and 4.5.5.

Temporal dimensions of monitoring results. There are two independent temporal
intervals:

1. The temporal episode, i.e., the interval starting at PF and ending at NF.

2. The time, during which this episode is considered to be a fitting interval.
For fixed reference points (including repeated ones) this starts with the moment
at which the fact, that this interval fits is known. There is no end to this interval
for parameter propositions with fixed reference points.
For the moving reference point now, the interval spans from SV to EV, and both

112

PF

SVMinDu

MinDu

NF
valid time of flanks

va
lid

ity
 o

f e
pi

so
de

s

SVPF

SVNF

Figure 4.23: Extent of the episode (horizontally) and time of its
validity (vertically) for a parameter propositions with fixed refer-
ence point.
PF = Positive Flank, NF = Negative Flank, MinDu = Minimum
Duration defined in Time Annotation.
SVPF and SVNF : Start of Validity based on Positive and Nega-
tive Flank.
SVMinDu: Start of Validity based on Minimum Duration.
SVNF is only relevant if the end of the episode is constrained.
SVMinDu is only relevant if MinDu is given.
The effective Start of Validity is the maximum of all relevant SVs.
Once established, the validity of an episode matching a parameter
proposition with fixed reference point never terminates.

are defined by the shifts of the time annotation. SV often lies in the future at
the moment at which the interval is found fit, and it can never lie in the past per
definition.

The second interval can be split into a first part, during which only PF is known
(but the interval is known to fit) and a second part in which both PF and NF are known.

Each parameter proposition can match more than one episode.
Figure 4.23 shows the relation between valid time of the measurements which

specifies PF and NF on the one hand, and the time during which certain episodes are
considered to be matching on the other hand, for a time annotation with fixed reference
points. The cut off corner of the rectangles reflects the time at which the end of the
interval is not known.

Figure 4.24 shows the same relation for a similar time annotation based on now.
Note that the projections need to be different since now is moving, but the basic shape
is the same. However, due to the possible short duration of the validity of the interval
(i.e., the extent along the vertical axis) here we can see cases like the depicted one,
where the “rectangle” does not extend to the full width of NF - PF. Instead it is cut off

113

PF

SVMinDu

MinDu

NF

EVNF

EFS
valid time of flanks

va
lid

ity
 o

f
ep

is
od

e

Figure 4.24: Extent of the episode (horizontally at the right) and
time of its validity (vertically) for a parameter propositions based
on now.

before by the diagonal line representing now = valid time.

Usage of monitoring results. The following questions summarize the capabilities of
the feature abstraction modules deployed on the found episodes, i.e., the information
for which the monitoring process must provide the basis.

• Was there a fitting interval?

• How many fitting intervals are there?

• What is the duration of each of them?

• When does a fitting interval start, when does it end?

Was there a fitting interval? This is easily answered by producing a true value at
SV for the first (or every) episode which fits. At the end of monitoring, a false value
is produced. At the start of monitoring, an undefined value is produced. This is easily
implemented using Asbru Boolean values – they can be undefined.

The recipients of this information are abstraction modules such as Boolean combi-
nations (described in Section 4.5.5) on the one hand and the plan execution unit which
changes a plan state accordingly and ignores any further details on the other hand. The
plan execution unit ignores EV when it arrives, since the change in plan state cannot
be made undone6, but the Boolean combinations do not.

Note that for the behaviour of the plan execution unit the valid time of the data
points received is not relevant – it reacts at transaction time7.

6If desired, this can be modelled explicitly by stating it in another condition.
7If the valid time lies in the future since SV is known in advance, no action is taken until valid time

equals now.

114

How many fitting intervals are there? The solution is clearly to increment the
count at each SV and decrement it at each EV. But there is an important side ques-
tion: When were there how many? Suppose we ask how many episodes of high fever
for at least 1 hour were there? If there is an episode of 2 hours of high fever. Does the
count of such episodes change at PF or at SV?

The solution is to set the transaction time to SV and EV and the valid time of the
change of count to the start and end of the interval, i.e., the valid times of PF and
NF. Such a solution satisfies both plan execution unit and further abstraction modules
analyzing the past as precisely as possible.

What is the duration of each of them? Here, the duration is clearly measured from
PF to NF. But it is only known after NF. So for intervals with unconstrained end (more
precisely for time annotation with undefined LFS and MaxDu) the duration is increas-
ing as time passes while waiting for NF. This is represented by the diagonal border
at the lower right of the filled polygons in Figures 4.23 and 4.24. To be practical, the
module monitoring the parameter proposition should produce output when something
changes in a qualitative way, e.g., if NF occurs but not each second to announce that
the duration until now increased by one second. This can be performed much better
by other abstraction modules extracting the features from the episodes.

Since episodes matched to a parameter proposition based on now lose their sta-
tus as fitting interval at EV, abstraction modules working with the duration must be
informed then, since the duration of the episode in question might be considered zero
after EV.

When does a fitting interval start? When does it end? Here it is clear that PF and
NF are accessed and not SV and EV.

Summary. The demand can be satisfied by the following unified output.

• Each episode is described by one or more objects (of class EpisodeDataPoint)
of the same format with equal episode identifier. The fields of this object are PF,
NF, and episode identifier (ID). If at some time NF is not known, it is set to the
undefined value.

• At SV a first object (with new ID) is output, possibly with undefined NF.

• At NF another object with same ID is output, this time with NF set.

• At EV an object with the same ID and both PF and NF undefined is output.

• At the end of monitoring an object with undefined ID is output to show this
special (terminal) situation.

As shown in the next subsections, this format is not only suitable to describe
episodes found by parameter propositions but also such found be temporal patterns.

115

A before B A ends before B starts
A overlaps B A ends after B starts

A starts B A and B start at the same time
A equals B Both start and end of A and B are exactly the same
A meets B A ends at the same time B starts
A during B A starts after B starts and ends before B ends
A finishes B A and B end at the same time

Table 4.9: The set of Allen’s temporal relations implemented in
Asbru.

4.5.3 Monitoring plan state constraints

Plan state constraints contain a plan state, a plan pointer, and a time annotation. They
are fulfilled, if the plan referred to was in the plan state given during the interval defined
by the time annotation.

The only difference to a parameter proposition applied to a qualitative parameter is
the source of the monitored values. They are supplied by a PlanStateExtractionModule,
which transforms the complex plan-state data-point output by PlanStateModules into
a qualitative value.

Otherwise, the monitoring process is exactly the same as for parameter proposi-
tions, including the implications of different types of reference points.

4.5.4 Monitoring temporal constraints

A temporal constraint consists of two temporal patterns and a temporal relation be-
tween them. It is fulfilled if at least one combination of fitting intervals of the two
temporal patterns meets the temporal relation. Table 4.9 shows those seven of the 13
temporal relations defined by Allen [8] which are implemented in Asbru. The missing
six relations are inverse to six of the implemented ones, i.e., they can be achieved by
swapping the arguments.

The following subsections contain algorithms to monitor each of the relations
shown in Table 4.9. In any case, the input for the monitoring algorithm consists of
episodes represented by EpisodeDataPoints. Therefore, for each input channel there
are four types of events: positive flank, negative flank, end of validity, and end of mon-
itoring. Compare Table 4.10. Since the episodes that are the input to this abstraction
may be found by a parameter proposition based on now, it is possible that one of the
input episodes is revoked, because its end of validity has arrived. In this case, output
already produce based on that episode must be revoked too, and any intermediate state
based on that episode is reset to Start.

All instances of intervals A and B are assumed to start after the start of the state
machines, which is easily implemented by inserting an undefined value as the very first
value of every parameter as described for the matching of parameter propositions.

On the implementation level, the information that there will not be another interval
often arrives together with the start or end of an interval. In this case, the state machines
first process a negative flank event and then the NoMore event.

There can be multiple instances of A and B. For each matching pair a resulting

116

PFA An instance of interval A starts.
PFB An instance of interval B starts.
NFA The most recent instance of interval A ends.
NFB The most recent instance of interval B ends.
NoMoreA There will not be another interval A.
NoMoreB There will not be another interval B.
A revoked End of validity for A has arrived.
B revoked End of validity for B has arrived.

Table 4.10: Events processed when monitoring a temporal con-
straint.

output episode is produced. The start (positive flank) of each episode is the start of the
first of the two episodes in the pair. The end (negative flank) is the end of the later of
both episodes. In other words, the output episode envelopes both input episodes A and
B.

4.5.4.1 A before B

A ends before B starts. There can be many pairs of instances of A and B for which this
relation holds. Finding them is implemented by storing all complete occurrences of A
and producing a set of pairs whenever an instance of B starts. When this instance of B
ends, for each episode previously output NF must be added. When an instance of A or
B is revoked, all episodes previously output must be revoked.

To this end the following records are kept.

Output-list. Whenever an episode is output, it is registered in the output-list by a
record containing the following fields: the ID of the output episode (IDout), the
IDs of those instances of A and B referred to by this output episode (IDA and
IDB), and the valid time of the positive flank (PF).

A-list. For each occurrence of A, PF and ID are stored.

Table 4.11 shows the pseudo code for monitoring this relation.

4.5.4.2 A overlaps B

A ends after B starts. Here the pairs of occurrences of A and B are formed by A’s
ending later then the corresponding B starts. Therefore all occurrences of B must be
stored and whenever an occurrence of A ends, it forms a pair with each of the until
then started occurrences of B.

Most of the previous occurrences of B already ended. For them, only one Episode-
DataPoint is output. Its PFout is the earlier of PFA and PFB and NFout is NFA. One or
– for overlapping occurrences of B – more occurrences of B may be open at the time
an occurrence of A ends. For them, two EpisodeDataPoints are output, one at NFA

with undefined NFout and one at NFB with NFout = NFB.
The records necessary to produce this output are similar to the above case with the

difference that here a list of occurrences of B is kept instead of those of A.

117

Event Reaction
NFA add this occurrence of A to the A-list

PFB for each entry in A-list
output a new episode with NFout undefined
and add it to output-list

NFB for each entry in output-list where IDB

equals the ID of this occurrence
report NFout = NFB of the existing episode

A revoked for each entry in output-list where IDA

equals the ID of the revoked occurrence
revoke the resulting episode and remove it from output-list
remove this occurrence of A from A-list

B revoked for each entry in output-list where IDB

equals the ID of the revoked occurrence
revoke the resulting episode and remove it from output-list

NoMoreB report the end of monitoring

Table 4.11: Monitoring the Allen relation A before B. PFA and
NoMoreA are ignored.

Output-list. This does not differ to the above case.

B-list. For each occurrence of B, PF and ID are stored.

Table 4.12 shows the pseudo code for monitoring this relation.

4.5.4.3 A starts B

The valid time of the starting point of a pair of occurrences of A and B must be equal.
Therefore matching pairs is extremely restricted compared to the above cases. If PFA

and PFB occur together, they form a new output episode. NFout is the later of both NFA

and NFB. As above, the result is revoked if one of both input episodes are revoked.
To implement this, the following records are kept.

Output-list. This does not differ to the above case.

fitting-pair. A Boolean flag showing that PFA and PFB occurred together.

A-ended. A Boolean flag showing that NFA occurred before NFB.

B-ended. A Boolean flag showing that NFB occurred before NFA.

Table 4.13 shows the pseudo code for monitoring this relation.

4.5.4.4 A equals B

Both start and end of a pair of occurrences of A and B must be equal. This cannot be
detected before they are over. Therefore, the algorithm is very simple. Still, a list of
output episodes must be kept in order to revoke episodes if input episodes are revoked.

118

Event Reaction
PFB add this occurrence of B to the B-list

NFA for each entry in B-list
output a new episode with PFout = min(PFA, PFB) and NFout = NFA

and add it to output-list

NFB for each entry in output-list where IDB equals the ID of this occurrence
report NFout = NFB of the existing episode

A revoked for each entry in output-list where IDA

equals the ID of the revoked occurrence
revoke the resulting episode and remove it from output-list

B revoked for each entry in output-list where IDB

equals the ID of the revoked occurrence
revoke the resulting episode and remove it from output-list
remove this occurrence of B from B-list

NoMoreA report the end of monitoring

Table 4.12: Monitoring the Allen relation A overlaps B. PFA and
NoMoreB are ignored.

Event Reaction
PFA and PFB output a new episode with PFout = PFA

simultaneously and add it to output-list
set A-ended := B-ended := false
set fitting-pair := true

NFA if fitting-pair and B-ended and fitting-pair
then report NFout = NFA of the existing episode

set fitting-pair := false
else set A-ended := true

NFB if fitting-pair and A-ended
then report NFout = NFB of the existing episode

set fitting-pair := false
else set B-ended := true

A revoked if there is an entry in output-list where IDA

equals the ID of the revoked occurrence
then revoke the resulting episode and remove it from output-list

B revoked if there is an entry in output-list where IDB

equals the ID of the revoked occurrence
then revoke the resulting episode and remove it from output-list

NoMoreA report the end of monitoring

NoMoreB report the end of monitoring

Table 4.13: Monitoring the Allen relation A starts B. PFA and
PFB are ignored if not occurring simultaneously.

119

Event Reaction
PFA and PFB set started-simultaneously := true
simultaneously

NFA set started-simultaneously := false

NFB set started-simultaneously := false

NFA and NFB if started-simultaneously
simultaneously then report new episode with PFout = PFA and NFout = NFA

and add it to output-list
set started-simultaneously := false

A revoked if there is an entry in output-list where IDA

equals the ID of the revoked occurrence
then revoke the resulting episode and remove it from output-list

B revoked if there is an entry in output-list where IDB

equals the ID of the revoked occurrence
then revoke the resulting episode and remove it from output-list

NoMoreA report the end of monitoring

NoMoreB report the end of monitoring

Table 4.14: Monitoring the Allen relation A equals B. PFA and
PFB are ignored if not occurring simultaneously.

Output-list. This does not differ to the above case.

started-simultaneously. A Boolean flag indicating the both A and B started simulta-
neously.

Table 4.14 shows the pseudo code for monitoring this relation.

4.5.4.5 A meets B

The end of A and the start of B occur simultaneously. This resembles the relation
starts with the difference that it is the end of A which is considered. Therefore, NFout

is always NFB.

The following records are kept.

Output-list. This does not differ to the above case.

fitting-pair. A Boolean flag showing that NFA and PFB occurred with the same valid
time.

Table 4.15 shows the pseudo code for monitoring this relation.

4.5.4.6 A during B

A starts after B starts and ends before B ends. This can be translated to the rule “If
within an occurrence of B A ends and PFA of this occurrence is latter than PFB, then

120

Event Reaction
NFA and PFB output a new episode with PFout = PFA

simultaneously and add it to output-list
set fitting-pair := true

NFB if fitting-pair
then report NFout = NFB of the existing episode

set fitting-pair := false

A revoked if there is an entry in output-list where IDA

equals the ID of the revoked occurrence
then revoke the resulting episode and remove it from output-list

B revoked if there is an entry in output-list where IDB

equals the ID of the revoked occurrence
then revoke the resulting episode and remove it from output-list

NoMoreA report the end of monitoring

NoMoreB report the end of monitoring

Table 4.15: Monitoring the Allen relation A meets B. NFA is ig-
nored if not occurring simultaneously with PFB.

this is a fitting pair”. PFout is always PFB. NFout is always NFB and therefore never
known at the time of finding the fitting pair.

The following records are kept.

Output-list. This does not differ to the above case.

PF-B. The positive flank of the current occurrence of B, or +∞ if there is no occur-
rence of B at this time.

Table 4.16 shows the pseudo code for monitoring this relation.

4.5.4.7 A finishes B

A and B end at the same time. In this case, the obligatory output-list is the only record
needed. This is because at the moment of detecting a fitting pair, all the information is
available and nothing is added later.

The following records are kept.

Output-list. This does not differ to the above case.

Table 4.17 shows the pseudo code for monitoring this relation.

4.5.5 Monitoring combinations of temporal patterns

Temporal patterns can be combined by the Boolean relations and, or, and xor. Also,
the compliment of a temporal pattern can be created by not. In terms of abstraction
algorithm, this means that the episodes matching two temporal patterns are combined
using these operators as described in the following subsections.

121

Event Reaction
NFA if PF-B < PFA

then output a new episode with PFout = PFB

and add it to output-list

PFB set PF-B := PFB

NFB set PF-B :=∞
for each entry in output-list where IDB equals the ID of this occurrence

report NFout = NFB of the existing episode

A revoked if there is an entry in output-list where IDA

equals the ID of the revoked occurrence
then revoke the resulting episode and remove it from output-list

B revoked for each entry in output-list where IDB

equals the ID of the revoked occurrence
revoke the resulting episode and remove it from output-list

NoMoreA report the end of monitoring

NoMoreB report the end of monitoring

Table 4.16: Monitoring the Allen relation A during B. PFA is
ignored.

Event Reaction
NFA and NFB output a new episode
simultaneously with PFout = min(PFA, PFB) and NFout = NFA

and add it to output-list

A revoked if there is an entry in output-list where IDA

equals the ID of the revoked occurrence
then revoke the resulting episode and remove it from output-list

B revoked if there is an entry in output-list where IDB

equals the ID of the revoked occurrence
then revoke the resulting episode and remove it from output-list

NoMoreA report the end of monitoring

NoMoreB report the end of monitoring

Table 4.17: Monitoring the Allen relation A finishes B. PFA and
PFB are ignored.

122

PFA

SVA

MinDu

SVB

NFA

PFB NFB

valid time of flanks

va
lid

ity
 o

f e
pi

so
de

s

Figure 4.25: Defining the intersection of two episodes as their
logical conjunction.

As for temporal constraints, the input can consist of episodes fitting a parameter
proposition based on now in which case they are revoked if their end of validity arrives
and thus the output based on them must be revoked, too.

While temporal constraints combine exactly two input channels, Boolean combi-
nations take an arbitrary number of input channels, with the exception of Not which
has exactly one input.

4.5.5.1 Boolean conjunction and

An episode is output whenever there is an intersection of both the interval of validity
and the interval defined by PF and NF of episodes from all input channels.

Figures 4.25 and 4.26 illustrate this for two episodes. In Figure 4.25 the reference
point is fixed and therefore the validity of the episodes does not end once they are
found. Therefore, the validity of “A and B” starts when the second episode is found
and it never ends.

In contrast, in the case shown in Figure 4.26 for reference point now, there is no
episode of “A and B” since the validity of the episode of A ends before the start of
validity of the episode of B. Of course, there will be other cases, where the intervals of
validity overlap. Figure 4.26 just shows the extreme case to set it off against the case
of the fixed reference point in Figure 4.25.

The following data structures are used in the process of monitoring a conjunction
of episodes.

Output-list. Whenever an episode is output, it is registered in the output-list by a
record containing the following fields: the ID of the output episode (IDout) and

123

PFA

SVA

MinDu

SVB

NFA

PFB NFB

EVA

EVB

valid time of flanks

va
lid

ity
 o

f
 e

pi
so

de
s

EFS

Figure 4.26: Two episodes having no intersection although PF
of the second lies before NF of the first due to the delay in the
matching process which is induced by MinDu and the restriction
in validity imposed by EFS.

the IDs of those instances referred to by this output episode (IDI).

In. A list of Boolean variables indicating the current value of each of the inputs.

Out. A Boolean variable indicating the current status of the monitored combination.

PF. Most recent value of PFout.

Table 4.18 shows an algorithm to implement the conjunction of episodes. See
Table 4.10 for an explanation of the events.

4.5.5.2 Boolean disjunction or

An episode is output whenever there is any episode from one of the input channels.
This same episode is prolonged if another, overlapping episode in the input arrives and
it is shrank or split if one of the episodes it is based on is revoked. Figure 4.27 shows
the following sequence of events.

1. Episode A alone results in an equal output episode.

2. After PF of episode B the result is replaced by an episode which has undefined
NF. Although we do not know, whether B will even stretch as far as A, we know
that the resulting episode will not shrink. We could therefore wait until NFA

with replacing NFout with undefined.

3. At NF of episode B the end of the resulting output episode is reported.

124

Event Reaction
PFi set Ini := true

if and(Ini) for all inputs i
then output a new episode with PFout = PFi

and add it to output-list
set Out := true

NFi set Ini := false
if Out
then report NFout = NFi of the existing episode

set Out := false

i revoked for each entry in output-list where IDi equals the ID of the
revoked occurrence

revoke the resulting episode and remove it from output-list

NoMorei report the end of monitoring

Table 4.18: Monitoring the Boolean conjunction and.

1
2
3
4
5
6
7

1
2
3
4
5
6
7

A
B

B
C

D
E

Figure 4.27: One-dimensional view of changing values of a dis-
junction. The upper half shows the input, the lower half the output.
The numbers at the left show the temporal order.

125

4. After episode C is reported, the output episode is replaced by a longer one.

5. Revoking B leads to a split of the output episode.

6. Reporting episode D which starts before C leads to a prolongation of the second
episode toward the past.

7. Episode E closes the gap in the output. The two episodes are replaced by one.

Note that at each step except step 3 a new instance of output episode is produced and
the previous output is revoked.

The only modification of the flanks of an episode that other modules produce is
the reporting of a previously unknown end. Neither start nor end are modified after
they have been output for the first time. Replacing episodes with new ones which are
shorter or longer on the other hand changes the count of episodes temporarily (between
revoking the original one and outputting the new version). This can be handled by the
abstraction modules receiving these episodes by processing all information at a given
valid time and then producing output. This way, the count of episode does not change
if one is replaced by another and the duration only changes in the appropriate way.
Therefore, the module described here replaces episodes if they change their extent.
The IDs of episodes are reused, i.e., the replacement episode has the same ID as its
precursor.

To achieve this behaviour, the abstraction module must keep track of which input
episodes contribute to which output episodes. Only those output episodes which must
be changed should be revoked, the others should not be touched. To this end the
following data structures are used.

Output-list. This is a list of output segments.

Output-segment. An output segment is a fraction of an output episode which is con-
stituted by the same set of input episodes. I.e., whenever one of the inputs
changes, a new output-segment is created. It contains the following fields:
The start (PFseg) and end (NFseg) of the segment, the ID of the output episode
(IDout), and a list of IDs of input episodes (Contributors) which contributed to
this segment of the output episode.

Gap. A Boolean flag indicating whether the revocation of an input episode cause a
gap in the output just before.

to-report. List of episodes which must be output as new episodes after processing the
current input.

to-revoke. List of episodes which must be revoked after processing of input and be-
fore reporting the new episodes in to-report.

From the example in Figure 4.27 the following complete list of cases can be con-
structed.

Case A. The complete input episode falls into a temporal region in which there previ-
ously was no output episode.

126

Case B. A previously existing episode is prolonged at the start.

Case C. A previously existing episode is prolonged at the end.

Case D. One or more gaps between existing episodes are closed.

Case E. The previously unknown NF of an existing episode is reported.

Case F. An existing episode is shortened at the start.

Case G. An existing episode is shortened at the end.

Case H. An existing episode is split in two episodes with a gap in between.

Case I. An existing episode is revoked completely.

Case J. Nothing changes in the result.

Cases A to D are reactions to PFi. Case E reacts to NFi. Cases F to I are reactions to re-
voking an input episode. Case J results from either PFi of an interval completely lying
within existing episodes or NFi of an interval which in no part is the sole contributor
to an existing episode.

The distinction between A-D+J and F-I lies in the amount of overlap between the
changing episode and the other input episodes. Cases B-D do not exclude each other
and so do F-H.

Tables 4.19 to 4.21 show the pseudo code for an implementation of the necessary
segment management. For PFi we distinguish (in the order it appears in the tables):

A1 The new episode lies completely before all previous ones with a gap in between.

B1 The first episode is prolonged at the start.

A2 The new episode lies past the last one with a gap in between.

C1 The last episode is prolonged at the end.

J1 The existing episode starts the new episode.

J2 The new episode includes the existing episode.

J3 The new episode finishes the existing episode.

J4 The existing episode includes the new period.

D1 The new episode closes a gap leading to a merge of previously distinct episodes.

C2 The previous episode is prolonged at the end.

B2 The next episode is prolonged at the start.

A3 The new episode lies in the middle of a gap.

For better overview, the cases J1 to A3 are depicted graphically in Figure 4.28.

4.5.5.3 Boolean disjunction xor

This is a variant of the above. Episodes are output for those periods of time, during
which exactly one input episode is valid, i.e., if the number of contributors is exactly
1.

127

PFseg NFseg PFnext

PFin NFin

J1

PFin NFin

PFin NFin

PFin NFin
J2

J3

J4

PFin NFin

D1

PFin NFin

PFin NFin

PFin NFin
C2

B2

A3

Figure 4.28: Cases J1 to A3. They are examined for each existing
output-segment.

128

Event Reaction Comment
Case label

PFi if PFi < PFfirst Index first denotes the first output-segment
then if NFi < PFfirst in the chronologically sorted output-list

A1 then insert new output-segment as first in output-list
with new ID, contributors = IDi, PF = PFi, NF = NFi

and add the new ID to to-report
B1 else insert new output-segment as first in output-list

with ID=IDfirst, contributors = IDi, PF = PFi, NF = NFi

and add IDfirst to to-report
if NFi > NFlast Index last denotes the last output-segment

A2 and C1 then append a new output segment similar to the above case
find the first output-segment for which PFi ≥ PFseg

while PFi < NFi The interval is shrunk as
if PFi > NFseg output segments are found
then if PFi = PFseg

then if NFi ≥ NFseg

J1 then add IDi to contributorsseg

PFi := NFseg

J2 Index 1 denotes the first half
of the duplicated segment,

index 2 the second
else duplicate this segment

PF2 := NF1 := NFi

add IDi to contributors1

end loop
else if NFi ≥ NFseg

J3 then duplicate this segment
PF2 := NF1 := PFi

add IDi to contributors2

PFi := NFseg

J4 else triplicate this segment
PF2 := NF1 := PFi

PF3 := NF2 := NFi

add IDi to contributors2

end loop

Table 4.19: Pseudo code for Boolean disjunction or, part 1.

129

Event Reaction Comment
Case label

PFi continued if NFseg < PFnext there is a gap
then if PFi = NFseg

then if NFi ≥ PFnext

D1 then insert new segment with IDnew = IDseg

PFnew := NFseg

NFnew = PFnext

add IDi to contributorsnew

and add IDseg to to-report and to-revoke
replace all occurrences of IDnext by IDseg

add IDnext to to-revoke
PFi := PFnext

C2 else insert new segment with IDnew = IDseg

PFnew := NFseg

NFnew := NFi

add IDi to contributorsnew

and add IDseg to to-report and to-revoke
end loop

else if NFi ≥ PFnext

B2 then insert new segment with IDnew = IDnext

NFnew := PFnext

PFnew := PFi

add IDi to contributorsnew

and add IDnext to to-report and to-revoke
PFi := PFnext

A3 else insert new segment with new IDnew

NFnew := NFi

PFnew := PFi

add IDi to contributorsnew

and add IDnew to to-report
end loop

proceed with next segment
NFi NFlast := NFi only for the last output segment NF

report IDlast can be undefined
IDi revoked for each output segment (in chronological order)

if IDi is in contributorsseg

then remove IDi from contributorsseg

if count of contributorsseg = 0
then if IDseg = IDprevious and IDseg = IDnext

then replace IDseg in all segments after
this one by a new ID
add IDseg and new ID to to-report
add IDseg to to-revoke

else add IDseg to to-report

Table 4.20: Pseudo code for Boolean disjunction or, part 2.

130

NFi NFlast := NFi only for the last output segment NF
report IDlast can be undefined

reporting and performed after each processing of input for a certain valid time
revoking for each IDrevoke in to-revoke

output an EpisodeDataPoint with ID = IDrevoke

and both PF and NF undefined
for each IDrep in to-report

find first sequence with IDseg = IDrep and set PFrep := PFseg

find last sequence with IDseg = IDrep and set NFrep := NFseg

output an EpisodeDataPoint with IDrep, PFrep, and NFrep

Table 4.21: Pseudo code for Boolean disjunction or, part 3.

Event Reaction Comment
PFi if NFlast < PFi

then report NFout = PFi for previous episode
store episode, even if PFout = NFout

NFi report PFout = NFi of a new episode with currently undefined NF
in revoked find IDprevious for which NFprevious = PFi and revoke it

find IDnext for which PFnext = NFi and revoke it
create new episode with PFout = PFprevious and NFout = NFnext

Table 4.22: Pseudo code for Boolean negation not.

4.5.5.4 Boolean complement not

This abstraction takes exactly one stream of episodes as input. It produces an episode
for each gap between the input episodes. The algorithm in Table 4.22 asserts that input
episodes do not overlap.

The only data structure used by the algorithm is a list of output episode. For each
episode, only the start and end are stored.

4.5.6 Monitoring count constraints

The temporal pattern in Asbru traditionally had a child element which specifies that a
temporal pattern given as argument has to occur for a certain number of times. This
is a special case of a constraint on the number of occurrences of a temporal pattern.
It therefore is implemented by the Asgaard data abstraction unit by simply instanti-
ating a count module (Section 4.5.7.3) and a comparison module (Section 4.2.3.6) to
implement this Asbru element.

4.5.7 Extracting features of episodes

All the above abstractions produce output of type EpisodeDataPoint. I.e., each output
item describes one or more interval(s) matching a certain time annotation resp. param-
eter proposition. The following modules extract single features about such episodes
and supply them as numerical values to further abstraction modules.

131

These values can be used in further abstractions. However, their usage is limited
by the fact that they always refer to the most recent episode and there is no way to refer
to a certain instance in a series of episodes.

Also note that depending on the details of the time annotation, the detection of
matching positive flanks can be severely delayed, e.g., if a minimum duration has to
pass before the previous positive flank can be seen as belonging to an interval matching
the time annotation.

In the remainder of this subsection, “at PF” refers to the time point at which a
positive flank is found to be the positive flank of a matching interval, and not the time
at which the positive flank occurs.

4.5.7.1 Episode as Boolean parameter

Output. The output is true during an episode and false otherwise. I.e., at PF a true
value is output with the valid time set to the positive flank for each positive flank, and
a false value is output with the valid time set to the negative flank for each negative
flank.

Timing. Output is produced for each of the two flanks of each input episode. For PF,
it cannot be produced before SV. For NF it is produced at NF (not EV).

4.5.7.2 State of fulfilledness as Boolean parameter

Output. The output is true when at least one episode is valid. It is false if none is
valid and the end of monitoring is reached. This means that initially the output is the
undefined value. At the first SV, a true is output. If the number of valid episodes drops
to zero later, the undefined value is output. Only if no episode is valid and the end of
monitoring is reached, the false value is output.

Timing. Output is produced at SV if previously no episode was valid and at EV if the
corresponding episode was the only valid one; and at end of monitoring if no condition
is fulfilled.

4.5.7.3 Count of episodes

Output. The number of valid (i.e. not yet revoked) episodes. It is increased at each
SV and decreased at the end of validity (EV). PF and NF themselves do not change the
count.

Timing. Output is produced whenever new input arrives.

4.5.7.4 Duration of episode

Output. The duration of the most recent episode. At PF this value is set to zero.
Until NF, the output changes proportionally to the progress of valid time. Then the
output stays unchanged. When the most recent interval is revoked, output is set to
zero. If an episode before the most recent one is revoked, the output does not change.

132

Arguments. The time between two output data points for the time during which the
duration changes continually.

Timing. Output is produced a) at PF, b) between PF and NF at the rate specified by
the argument, c) at NF, and d) at the end of validity of the most recent interval.

4.5.7.5 Total duration of episodes

Output. The sum of all durations of currently valid episodes. This is similar to the
above, with two differences: First, the value is not reset at SV but further increased.
Second, revoking any episode leads to a reduction of the output value by the duration
of the revoked episode.

Arguments. The time between two output data points for the time during which the
duration changes continually.

Timing. Output is produced a) from PF to NF at the rate specified by the argument,
and b) at the end of validity of any episode.

4.5.7.6 Start of episode

Output. The valid time of the positive flank of the most recent episode. It this
episode is revoked, the undefined value is output.

Timing. Output is produced at each positive flank and when the most recent episode
is revoked.

4.5.7.7 End of episode

Output. The valid time of the negative flank of the most recent episode. It this
episode is revoked, the undefined value is output. Also, at the positive flank the unde-
fined value is output since between the positive and the negative flank the end of the
current episode is not known.

Timing. Output is produced at each flank and when the most recent episode is re-
voked.

133

4.6 Integration of plan execution

The following first discusses the life cycle of Asgaard plans in detail. This forms the
basis for the modules implementing the various forms of Asbru plans and plan steps
described thereafter. Here, we focus on the principal mechanisms of plan execution.

4.6.1 Asbru plan semantics

Each plan traverses a graph of plan states during its life cycle. The transition between
these states is controlled by conditions as shown in Figure 4.29. There are three modes
of traversing from one state to another.

1. In the default case, the plan state changes without user interaction as soon as the
condition is fulfilled.

2. If the flag confirmation-required is set to yes, the plan state does not change
automatically. Instead, a request to the user interface is sent, as soon as the
condition is fulfilled. When the user confirms the state transition, then it is
enacted. If the condition becomes no more fulfilled, before the user confirmed
the state transition, then the request to the user interface is cancelled.

3. If the flag overridable is set to yes, the user is free to enact the plan state transi-
tion independent of the condition being fulfilled or not. For such conditions, a
message is sent to the user interface as soon as the plan enters a state in which
the corresponding condition is relevant. If the plan leaves this state, the original
message is cancelled.

When a condition with flag overridable becomes fulfilled based on its inputs,
then it is treated as if the flag was not there. I.e., depending on the value of flag
confirmation-required, case 1 or 2 above are considered.

4.6.2 Principal design of plan state modules

The principal design of plan state modules is similar to data abstraction modules. The
most significant difference is the complex handling of the inputs.

4.6.2.1 Inputs

Each PlanStateModule has the following inputs:

• filter-precondition
• setup-precondition
• suspend-condition
• reactivate-condition
• complete-condition
• abort-from-suspended-condition
• abort-from-activated-condition
• synchronization-input
• parent-plan-state
• child-plan-state

134

Asgaard Plan States Version 3
... Current State of Art ...

considered syncronizing possible

activated suspended

completed aborted

rejected

10
11

7

5

8

1

2 3

4

6

12

9

Figure 4.29: Asbru plan states. State transitions occur under the
following conditions.
1 filter-precondition fulfilled;
2 filter-precondition never more fulfilled;
3 setup-precondition never more fulfilled;
4 setup-precondition fulfilled and child of parallel or any-order
plan;
5 setup-precondition fulfilled and child of sequential or unordered
plan;
6 sole child of an any-order parent plan, or all children of a paral-
lel parent plan;
7 supend-condition fulfilled;
8 reactivate-condition fulfilled and not child of an any-order plan;
9 reactivate-condition fulfilled and child of an any-order plan;
10 complete-condition fulfilled and continuation-specification ful-
filled;
11 abort-condition fulfilled or propagation-specification fulfilled;
12 as previous item, but a different abort-condition can be given
for suspended state.
For all transitions but 2, 3, and 6, the following two rules apply:
If the flag overridable is set, then the user can cause this state tran-
sition at any time.
If the flag confirmation-required is set, then the transition does not
take place before the user confirms it.

135

• earliest-starting-time
• latest-starting-time
• earliest-finishing-time
• latest-finishing-time
• minimum-duration
• maximum-duration

The type of the inputs ending on “condition” is EpisodeDataPoint. Each of these
inputs is connected to the output of a module which implements the corresponding con-
dition, e.g., a ParameterPropositionModule. The mapping from Asbru to abstraction
modules is discussed in 4.7.3. If the abort-condition does not differentiate between the
states suspended and activated, then both inputs abort-from-*-condition are connected
to the same module.

The type of synchronization-input is IntegerDataPoint. This input is connected
to one of the synchronization-outputs of the parent plan. Only two data points are
transferred through the normal lifetime of a plan via this channel. When the plan is
logically instantiated, the parent sends the symbolic value start to the child plan. If the
argument synchronize is true, then the parent sends the symbolic value activate to this
plan causing it to change from plan state synchronized to activated.

The type of inputs ending on “plan-state” is PlanStateDataPoint. In addition to
the valid time, this “data point” contains the new plan state and one synchronization
flag per child plan, called synchronization-outputs here. The parent-plan-state is con-
nected to output my-plan-state of the parent plan. The child-plan-state is connected
to parent-plan-state of all child plans. See further below for the propagation of plan
states between parent and child plans.

The type of the inputs ending on “time” is DateDataPoint. These inputs are con-
nected to modules performing the calculation of these time points, if specified.

The type of the inputs ending on “duration” is TimeDataPoint. These two inputs
are connected to similar modules directly mapping the expression given in the Asbru
element time-annotation in plan-activation. Compare Section 4.7.5.1.

4.6.2.2 Output

Each PlanStateModule outputs PlanStateDataPoints. This “data point” contains the
new plan state, called my-plan-state here; an array of synchronization flags, one per
child plan; and an optional numeric value.

This PlanStateDataPoint is sent to three types of receivers. The parent plan only
reads the plan state of the child. The child plans read the plan state of the parent and
the synchronize flag relating to them. Various abstraction modules read the numeric
value.

4.6.2.3 Arguments

Each PlanStateModule receives a symbolic value named synchronizationmode as an
argument when it is created. It has one of four values.

none. The PlanStateModule directly changes from states possible and suspended to
state activated when the corresponding condition is fulfilled. This is used for se-

136

quential and unordered subplans which do not have an on-suspend plan defined
in their plan activation.

start. The PlanStateModule does not directly change from state possible to activated.
Instead, it enters state synchronizing. It remains in this state, until the parent
sends a data point with the value activate to the synchronization-input. However,
the transition from suspended to state activated occurs instantaneously. This is
used for parallel subplans.

both. Both the transitions from states possible and suspended to state activated are
delayed until the parent sends a data point with the value activate to the synch-
ronization-input. In both cases, the state synchronizing is entered while waiting8.
This is used for any-order subplans.

resume. The PlanStateModule does not directly change from state suspended to ac-
tivated. Instead, it enters state synchronizing and remains in this state, until the
parent sends a data point with the value activate to the synchronization-input.
This is used for plans which have an on-suspend plan defined in their plan acti-
vation.

4.6.2.4 Definition and timing of successful termination

An Asbru plan terminates successful, i.e., it is completed, if all of the following con-
ditions are true:

• Its complete-condition is fulfilled.

• The child plans specified in the continuation specification completed.

• The current time lies in the interval between the Earliest Finishing Time and the
Latest Finishing Time prescribed by the time annotation for this plan.9

The PlanStateModule builds an internal representation of the continuation specifi-
cation when it is created. The continuation specification is given by the Asbru element
wait-for. It is either a logical expression based on plan references or a count. In case
of a logical expression, each leaf of the expression tree is internally represented by
a Boolean which is true if the referenced plan already completed. This expression is
evaluated in certain cases described below.

If only the count of child plans which must complete before the parent can com-
plete is given (as stated by one, cardinality, or all), then only this count is maintained.10

8This means that there is no consequence if the suspend condition is no more fulfilled while still
waiting for the parent to allow the reactivation.

9Compare 4.5.1 for details on mapping a time annotation to absolute time points for earliest and latest
starting and finishing time.

10In the rare case, in which the same child plan completes more than once, each time is counted. This
does not occur for retry-aborted-subplans, but only if a plan is listed more than once in the list of children,
e.g., do first A, then B, then A again, in a sequential plan.

137

4.6.2.5 Definition and timing of failure

An Asbru plan has two modes of failure: It can be rejected or aborted. A plan is
rejected if one of the following is true:

• The filter-precondition can never more be fulfilled, and the plan is still in con-
sidered state.

• The setup-precondition can never more be fulfilled.11

• The Latest Starting Time arrived and the plan is still in state considered or pos-
sible.

A plan is aborted if one of the following is true:

• The abort-condition is fulfilled.

• The propagation specification evaluates to true.

• The Latest Finishing Time arrived and the plan is in state synchronizing, acti-
vated, or suspended.

Furthermore, the plan is terminated if the parent plan aborts. In this case, it is not
important, whether the plan is aborted, completed or rejected.

The internal representation of the propagation specification differs from that for
the continuation specification insofar, as it distinguishes between rejected and aborted
subplans. Therefore, each leaf of the expression tree consists of a pair of Booleans.
One Boolean is true, if rejected is propagated, the other if aborted is propagated.12 A
third Boolean for each leaf is set to true if this plan was rejected and reject is propagated
or if this plan was aborted and abort is propagated. It is this flag which is combined
with those for the other leafs to evaluate the status of the propagation specification.

If the propagation specification is not given, the continuation specification is trans-
lated to a similar propagation specification. This is done by inverting the Boolean op-
erators and setting both Booleans (reject and abort propagation) for each plan which is
mentioned in the continuation specification.

There is no cardinality constraint in the propagation specification in Asbru, but the
inversion of a continuation specification demanding that x out of N subplans complete
means that a plan is aborted if N − x+ 1 subplans fail, where fail means to either be
aborted or rejected.

If the flag retry-aborted-subplans is set, then the failure of a subplan is not prop-
agated to the parent before either the time annotation for that subplan does not al-
low completion anymore13, or the filter-precondition or the setup-precondition become
never more fulfilled.

11This is independent from attempts of the plan execution unit to start plans which lead to fulfilling the
setup-condition. If the setup-precondition is never more fulfilled, these attempts obviously had failed.

12“rejected is propagated” is short for “the rejection of the subplan can lead to aborting the parent
plan”, i.e., the parent can never be rejected because subplans of it were.

13There are two cases: The plan is considered or possible and the Latest Starting Time is passed; or
the plan is synchronizing, suspended, or activated and the Latest Finishing Time is passed.

138

considered, rejected synchronizing, suspended aborted,
possible activated completed

activated + + + + +
suspended + + + +
aborted + +
completed + +

Table 4.23: Possible child plan states for a given parent plan state.
Parent plan states are shown in the first column. A plus means that
the child plan may be in the state named shown in the first line of
the table.

4.6.2.6 Parent-child relations in plans

Table 4.23 shows which plan states of a child are possible for each of the plan states
of the parent plan. During the plan states which are omitted in the table (considered,
possible, and synchronizing), child plans do not exist.

Tables 4.24 to 4.26 show the reactions to all possible types of input or events for
each of the plan states considered, possible, synchronizing, activated, and suspended.
Plan states aborted and completed are terminal, no state transitions occur after one
of these states is reached. In tables 4.25 and 4.26, the word depending stands for
the plan states completed and aborted, depending on the evaluation of the complete-
specification or propagation-specification at the left on the same row.

Initially, when all plan state modules are created, they are in internal state uninstan-
tiated. When the parent instantiates a child, it sends the symbolic value start through
the synchronization connection to that child which then enters the considered state.

The following miscellaneous issues need to be considered.

• If a plan activation contains an on-abort-plan (a plan to be performed instead of
the original one if the original one is aborted), then that plan replaces the original
one in the network of plan-state propagation, as soon as the original plan aborts.
This means that the corresponding child-plan-state input of the parent plan is
connected to the my-plan-state output of the on-abort-plan. Only the success
or failure of the latter plan is propagated to the parent (and only if the plan
activation of the on-abort-plan does not contain an on-abort-plan itself).

• If a plan is waiting for optional subplans to complete when the Latest Finishing
Time arrives, it is aborted.

• The state suspended is entered if either the parent plan is suspended or the
suspend-condition is fulfilled. Each of the two cases has its own trigger for
the end. Both modes of being suspended can overlap. Therefore, they are mod-
eled by two independent Booleans in Table 4.26: parent-suspended and self-
suspended.

• When a plan is suspended, and an on-suspend-plan is defined in the plan activa-
tion, then this plan is started. See Section 4.6.3.6 for the timing of resuming the
suspended plan.

139

current state event condition next state
considered filter-condition fulfilled possible

LST passed rejected
filter-condition cannot be fulfilled rejected
parent completed aborted
parent aborted aborted
parent suspended considered

possible EST passed and synchronize synchronizing
= true

setup-condition fulfilled
EST passed and synchronize activated

= false
setup-condition fulfilled
LST passed rejected
setup-condition cannot be fulfilled rejected
parent completed aborted
parent aborted aborted
parent suspended possible

synchronizing synchronize input from parent activated

Table 4.24: Plan state changes for the selection phase.

• If the parent terminates (i.e., it is completed or aborted), the state of the child
plan is not important. For simplicity, it is considered aborted.

4.6.3 Types of plans

This subsection describes actions carried out to execute each of the plan body types
defined in Asbru. They can be nested in Asbru but nesting need not be discussed here
since the Asbru parser handles the nesting when instantiating the suitable plan state
modules. Also the suitable connections between the PlanStateModules are created by
the Asbru parser.

In the following, only the behaviour in addition to that described above is men-
tioned. I.e., in each of the cases below, the modules behave as described in Figures
4.24 to 4.27.

4.6.3.1 Sequential Plans

As soon as state activated is entered for the first time14, for each of the subplans the
following steps are taken.

• The symbolic value initialize is sent to the PlanStateModule representing the
subplan.

14The state activated is also entered after the reactivate condition is fulfilled if the plan had been
suspended before.

140

event condition reaction next state
suspend condition self-suspended suspended
fulfilled := true
abort condition aborted
fulfilled
propagation- aborted
specification
satisfied
LFT arrived aborted
parent aborted aborted
parent suspended parent-suspended suspended

:= true
subplan aborted RAS = true restart subplan activated
subplan aborted RAS = false initiate

and OAP exists on-abort-plan activated
subplan aborted RAS = false update propagation-

and no OAP exists specification depending
subplan rejected update propagation-

specification depending
complete condition completed
fulfilled and
continuation-
specification satisfied
and EFT passed
child completed update

complete-specification depending
take next plan step
(for sequential and
any-order plans)

Table 4.25: Plan state changes for activated plans. Restarting a
child plan is performed by sending start to its synchronization in-
put.
depending stands for the plan states completed and aborted,
depending on the evaluation of the complete-specification or
propagation-specification at the left of the corresponding cell.
RAS stands for retry-aborted-subplans.
OAP stands for on-abort-plan.

141

event condition reaction next state
reactivate parent-suspended self-suspended activated
condition fulfilled = false := false
reactivate parent-suspended self-suspended suspended
condition fulfilled = true := false
abort condition aborted
fulfilled
propagation- aborted
specification
satisfied
LFT arrived aborted
parent aborted aborted
parent suspended parent-suspended suspended

:= true
suspend condition self-suspended suspended
fulfilled := true
parent reactivated self-suspended = true parent-suspended suspended

:= false
parent reactivated self-suspended = false activated
subplan aborted RAS = true restart subplan
subplan aborted RAS = false

and OAP exists initiate on-abort-plan suspended
subplan aborted RAS = false update propagation-

and no OAP exists specification depending
subplan rejected update propagation-

specification depending

Table 4.26: Plan state changes for suspended plans.
RAS stands for retry-aborted-subplans.
OAP stands for on-abort-plan.

event reaction next state
start initiate conditions considered

Table 4.27: Plan state changes for uninstantiated, completed, and
aborted plans.

142

• When that module sends a PlanStateDataPoint with the value completed, then
loop proceeds to the next subplan.

• The same holds if the value aborted is received from the subplan and retry-
aborted-subplans is false.

• If aborted is received and retry-aborted-subplans is true, then the same subplan
which sent this PlanStateDataPoint receives another initialize signal.

4.6.3.2 Parallel Plans

Here, all subplans enter the preselection phase and the active phase at the same time.

• When the state activated is entered for the first time, all subplans receive the
initialize signal.

• When all subplans sent their ready signal, then they all receive the activate sig-
nal.

• When one of the subplans is aborted and retry-aborted-subplans is true, then
this subplan immediately receives another initialize signal.

4.6.3.3 Any-Order Plans

Here, only one subplan can be active at a time, but the order in which they are per-
formed is not fixed. Subplans which are suspended cannot be reactivated before the
currently activated plan leaves this state. However, they are resumed before other plans
(which were not started) are activated. To this end, two waiting lists are kept, one for
those subplans to resume and one for those to activate.

• When the state activated is entered for the first time, all subplans receive the
initialize signal.

• When a subplan sends its ready signal, it is added to the waiting list subplans
waiting to be activated. If no subplan is activated, the first subplan from this
waiting list is activated.

• When a subplan leaves the activated state, another subplan is activated, if pos-
sible. First, subplans on the waiting list subplans waiting to be resumed are
considered, then the subplans waiting to be activated. If both list are empty, no
subplan is activated until a subplan sends its ready signal.

• When the reactivate condition of a subplan is fulfilled, it does not change to
activated immediately. Instead it sends the signal ready to resume to the parent
plan. If another subplan is active, the parent then adds the suspended subplan to
the list of subplans waiting to be resumed. Otherwise, this subplan receives the
activate signal immediately.

4.6.3.4 Unordered Plans

When the state activated is entered for the first time, all subplans receive their initialize
signal. No further synchronization is performed.

143

4.6.3.5 User-Performed Plans

When the state activated is entered, no further action is taken. Software interpreting
the logfiles which show all plan state changes can interpret the activation of user-
performed plan as issuing a certain recommendation.

4.6.3.6 Plan Activation

This module is instantiated if an Asbru plan-activation contains at least one of the fol-
lowing: plan arguments, return value assignment, on-abort plan activation, on-suspend
plan activation. If none of then are present, then the PlanStateModule representing the
Asbru parent plan and that representing the Asbru child plan are directly connected.
Otherwise, a PlanActivationModule is inserted between them, i.e., it is the child of the
module representing the Asbru parent plan and and the parent plan module of that
representing the Asbru child plan.

This module has the following PlanStateModules associated as subplans:

• One AssignmentModule per argument of the Asbru plan.

• A PlanStateModule representing the Asbru plan itself.

• Optionally a PlanStateModule representing the on-abort plan.

• Optionally a PlanStateModule representing the on-suspend plan.

• One AssignmentModule per return value of the Asbru plan.

The following steps are taken by the PlanActivationModule.

• When this module enters the state activated for the first time, it sends all As-
signmentModules representing argument assignments the initiate signal. As a
result, these modules forward their input to the PlanModifiedParameterModules
representing these arguments. Then they report their completion to the parent
plan module (the module described here).

• Then, the PlanStateModule representing the Asbru plan itself receives the initi-
ate signal.

• If that module’s state becomes aborted and there is an on-abort plan, then this
plan module receives the initiate signal. Its success is treated as the success
of the original plan, but suspending the on-abort plan does not trigger the on-
suspend plan.

• If the PlanStateModule representing the Asbru plan itself is suspended because
of the suspend condition of that plan, the PlanStateModule representing the on-
suspend plan receives the initiate signal15.

• If an on-suspend plan is active and the reactivate condition of the original plan
is fulfilled, the PlanStateModule representing it sends a ready to resume signal
to the parent (the module described here). Only after the on-suspend plan leaves
the activated state, the PlanStateModule representing the waiting plan receives
an activate signal.

15If the parent plan suspends, the child plans are suspended, too, but their on-suspend plans are not
started, because this would contradict the suspended state of the parent.

144

• If the on-suspend plan is aborted, then this is treated as if the original plan was
aborted.

• If either the original plan, the on-suspend plan or the on-abort plan complete,
then all AssignmentModules representing return value assignments receive the
initiate signal. After these subplans completed (which occurs at the next time
steps), the PlanActivationModule also completes.

• If the on-abort plan aborts or the original plan aborts and there is no on-abort
plan, or if the on-suspend plan aborts and there is no on-abort plan, then the
PlanActivationModule also aborts.

4.6.3.7 Assignment

This is instantiated for the Asbru elements variable-assignment, parameter-assignment,
and set-context. It is also instantiated as part of the technical plans which are created
on plan activation as described above.

Compared to other modules implementing plan steps, this module has an additional
input: the source of the value it assigns. This is the output from an abstraction module
(or the interface to file input, if the value is raw data from a file). This value is copied
to the data output when the state activated is entered. Then the state completed is
entered.

All of these activities take place it the same time step. The PlanStateModuleOut-
putDataPoint reporting both the completion of this module and the new value for the
variable etc. have a valid time of one time step later than the current one.

4.6.3.8 If-Then-Else

This module is connected to a ComparisonModule which implements the simple-
condition in the Asbru element. If this input has the value true, then the first child
receives the initiate signal, otherwise the second one. The Asbru parser ensures that
the first child is the then branch of the Asbru element and the second is the else branch.
If more than one single step is contained in a branch, then the Asbru parser creates a
technical plan to contain them (in sequential order). The final state of the selected
subplan is propagated to the parent plan of the IfThenElseModule.

4.6.3.9 Ask

This module receives a reference to the parameter which is asked for and the timeout
from the ask statement (measured in internal time steps) when it is created. Upon cre-
ation the output of the module representing that parameter is connected to the AskMod-
ule.

When the AskModule receives the activate signal, it adds the timeout to the current
valid time and sends a request to the user interface for the given parameter until the
calculated time point. Then sets a postalarm to the time point of the timeout.

If the parameter is entered before the timeout, the AskModule receives the new
value as its input. It ignores the value – only the fact that the value was entered is
important. It then cancels the alarm and completes.

145

If the parameter is not entered in time, the AskModule receives the previously
set postalarm from the ManagementModule. In response, it completes. The current
definition of the Asbru semantics does not include the possibility to abort for ask.

4.6.3.10 Cyclical Plans

Cyclical plans in Asbru have a rich assortment of ways to specify how often the re-
peated action is taken. Consequently, the module implementing them is connected to
the following set of inputs.

• Time points start-time and end-time. These inputs are connected to modules
implementing the calculation of the values given in the Asbru code, e.g., Con-
stantModule for constants, or AssignmentModule for variables. In both cases,
only one data point is read when the cyclical plan enters active state.

• A group of integer inputs fed by similar modules implementing the limits set
forth in Asbru elements maximum-attempts and times-completed. Again, they
are only read on activation. Asbru element maximum-attempts actually imple-
ments six different failure counters. Accordingly, this element is mapped to
six different numeric inputs. They are: rejected-between-completions, aborted-
between-completions, failure-between-completions, rejected-in-total, aborted-
in-total, and failures-in-total.

• A RepeatedTimePointModule which sends a dummy time point whenever a new
instance of the repeated time point specified in Asbru element set-of-cyclical-
time-points has arrived. If this element is not used in the Asbru code, the re-
peated time point is ignored, i.e., no data points are used from this input channel.

• Six values representing the ESS, LSS, EFS, LFS, MinDu, and MaxDu given
in the time-range. These values are only read once, when the cyclical plan is
activated. If they are all undefined, then there is not cyclical-time-annotation in
the Asbru code and the repeated action is started without waiting for a new data
point for the repeated time point.

• Minimum and maximum for duration and retry-delay, if given. Otherwise, these
inputs are connected to the constant undefined.

• A ParameterPropositionModule implementing the until-condition. Again, only
the constant undefined is received if no until-condition is given.

When the CyclicalPlanModule receives the initialize signal from its parent plan, it
first checks whether a start time for the first repetition has been given, i.e., whether
input start-time is undefined. If a value is given, then a timer (prealarm) is set for this
time and only then the child plan receives this signal.

If no start time is given, the module checks whether all six input representing the
time range are connected to the constant undefined. If they are, then there are no time
constraints on the child plan invocation and the first instance of the repeated action is
carried out immediately, which means that the child plan implementing it receives the
initialize signal.

146

If at least one of the six values of the time-range is given, then a cyclical-time-
annotation is specified, which will constrain these invocations. This means that before
each invocation of the repeated action, the CyclicalPlanModule awaits at data point
from the RepeatedTimePointModule, then adds the earliest starting shift to the re-
ceived time point, and sets a timer (prealarm) for this date. Only after this alarm
triggered (and all other conditions are fulfilled), the child plan receives the initialize
signal.

If a minimum duration is given, the CyclicalPlanModule sets a timer accordingly
before activating the child plan and only after this alarm was received and the child
plan terminated, a new iteration is considered. The same method is used to implement
waiting for the earliest finishing time, if the cyclical time annotation specifies it.

If a maximum duration is given, then the child plan is aborted if it did not complete
before this period is elapsed. Likewise a latest finishing time is treated, if given.

If the child plan does not progress from considered state to activated state before
latest starting time arrived or maximum retry delay elapsed, then the child plan is
aborted. The further procedure is as if the child plan would have been activated.

If a minimum retry delay is given, a similar timer is set accordingly on termination
of the child plan.

If a maximum retry delay is given, another timer is set. When this alarm is reached
before the child plan entered active state, then it is terminated and it counts with the
unsuccessful completions.

If an end-time is defined, i.e., if the corresponding input is not undefined, then
another timer, in this case a postalarm, is set for this time. When the alarm is triggered,
the cyclical plan is completed irrespective of the state of the current child plan iteration.

The same form of completion is performed if either a positive flank is read from
the until-condition input.

The CyclicalPlanModule maintains five counters for the child iterations:

1. Rejections between completions, which is reset at each successful completion
and counts rejected child plans.

2. Abortions between completions, which is reset at each successful completion
and counts aborted child plans.

3. Total rejections, which is not reset and counts rejected child plans.

4. Total abortions, which is not reset and counts aborted child plans.

5. Total completions, which is also not reset and counts completed child plans.

failure-between-completions maps to the sum of the first two counters; failures-in-total
to the sum of counters 3 and 4. If the child plan fails and one of the limits set forth
in maximal-attempts is already reached, then the CyclicalPlanModule aborts. If the
child plan completes and the total count of completions is reached, and the complete
condition is fulfilled, if given, then the CyclicalPlanModule completes.

To obtain cyclical reference points, a helper module, the RepeatedTimePointMod-
ule, is needed. It receives the time point at which its operation starts, and the frequency,
as inputs. The first is calculated by adding the content of Asbru elements time-point
and offset. The latter is directly given in the Asbru element frequency. This module
sends a dummy data point whenever a new time point in the series has arrived. Only
the valid time of this time point is important.

147

Asbru Compiler

Execution Manager

Recommendations

and Control Data

Asbru Plan Library

<plan-library>

 <domain-defs>...

 <plans>...

</plan-library>

Patient Data

Module Graph

Execution

Trace

Figure 4.30: System architecture of the interpreter. The Asbru
plan library is translated to a graph of modules by the Asbru com-
piler. This graph is fed with patient data by the execution manager,
producing an execution trace on the one hand, and recommenda-
tions and control data on the other hand [131].

4.7 Bridge to Asbru

This section describes how the Asbru elements map to modules described in the sec-
tions above. A narrative line is followed. In contrast to the previous sections, we can
follow the more intuitive top-down approach, starting at plans and breaking them down
into their parts and subparts.

A full description of Asbru can be found in the Asbru Reference Manual [125].
This thesis section focuses on the mapping of the language elements to the modules
described before. Therefore, only those parts of the language descriptions, which are
indispensable for the understanding are given here. For further details on the usage of
each of the language elements, the reader is referred to the Reference Manual.

The basic design is shown in Figure 4.30. The whole execution system is com-
posed by the Asbru Compiler, the module graph, and the Execution Manager. The
Compiler instantiates modules described in the previous sections to depict the Asbru
Plan Library. The inputs and outputs of these modules are connected to form a graph.
The data flow through this graph is mediated by the Execution Manager as described
in Section 4.1.3. It also feeds patient data into the graph to trigger abstraction and plan
execution.

During this process, an extensive Execution Trace is created to document the
flow of information between the individual modules. Some modules output recom-
mendations or control data, which is used by the environment in an implementation-
dependent way, e.g., as input for user interfaces, or to control devices.

A plan library consists of definitions and plans. The definitions are discussed in
section 4.7.7. The following starts with plans and goes top-down to definitions via

148

conditions and parameter propositions.
Asbru has some elements not related to plan execution. They are simply skipped

in this description.
There are a few features in Asbru 7.4 which were considered interesting when

version 7 was designed in 2000, but never saw a use case in the decade following.
Some of them are excluded from the discussion in this thesis, most notably complex
data structures. See Section 5.4.7 for details.

4.7.1 Plans

Each plan contains conditions (described in Section 4.7.3), a plan body (described in
Section 4.7.2), and various elements such as arguments and return value containing
expressions. Details of expressions are described in Section 4.7.6. Their usage in the
plan header is described here.

4.7.1.1 Arguments

Like functions in programming languages, plans can have arguments to pass values
from the caller (the parent plan) to the invoked child plan. Each module implementing
the computation of one argument value is connected to one assignment module. This
module does nothing but store its input when it is triggered to do so. The trigger is
activated whenever a plan is instantiated. This can happen more than once because
aborted plans can be retried. The output of the assignment module is connected to all
modules using the argument value. This is to ensure that the argument value remains
constant during the lifetime of the plan, even if the basis for its computation changes.

4.7.1.2 Return values

In contrast to many programming languages, Asbru plans can have multiple return
values. They are implemented similar to arguments. Of course, the input of the as-
signment module is a computation module defining the return value and the output of
the assignment module is connected to modules implementing the plan body of the
parent plan, which use this return value.

4.7.2 Plan body

The body of an Asbru plan contains one of the following. Each of the items is discussed
in detail below.

single-step. One basic (atomic) plan step. This is one of the following:

plan-activation. The activation (or call) of another plan including argument
passing and return-value assignment.

subplans. A set of plan body elements, performed in a particular ordering, e.g.,
sequential or parallel.

variable-assignment. The assignment of a value given by an arbitrary expres-
sion to a variable.

parameter-assignment. The same for a parameter.

149

set-context. Changing the value of a context variable.
ask. Requesting input for a parameter from the user.
list-manipulations. List manipulations are not within the scope of this thesis.
if-then-else. This plan step consists of a condition and two branches which

again consist of one or more plan steps.

cyclical-plan. The cyclical plan provides complex and powerful means to describe
repeated actions.

for-each-plan. The for-each plan is used on conjunction with lists, and thus not dis-
cussed in this thesis.

iterative-plan. The iterative plan performs a series of single step repeatedly. It is a
simple alternative to the cyclical plan for list manipulations, and not discussed
in this thesis.

refer-to. This element means that the plan body of another plan is copied here, it does
not influence the execution of a plan.

user-performed. This plan is performed by the user.

In the following, the implementation of these elements is described ordered by
importance for the understanding of their interaction. This means, that first the plan
activation is discussed, followed by the subplans element. Both are key to the plan
hierarchy and the interaction between plans and their superplans (or parent plans) and
subplans (or child plans). Then the remaining elements are discussed in the order
above.

4.7.2.1 Plan activation

The plan activation specifies:

• The name of the plan to be activated.

• A list of arguments for that plan.

• A list of assignments of return values of that plan to variables of the calling plan
(an Asbru plan can have more than one return value).

• A time-annotation limiting the execution time of the called plan.

• The typical duration of the called plan, which does not influence plan execution
and is therefore not discussed here.

• A single step to be performed if the called plan aborts. In most cases, this will
be a plan activation or variable assignment.

• Another single step to be performed if the called plan is suspended.

Only the first item in the list is mandatory.
This is translated to abstraction modules as follows. If there are no arguments,

return values, on-abort and on-suspend plans, then only one PlanStateModule is cre-
ated16. In all other cases, a PlanActivationModule is created. It is connected to the plan
containing the Asbru plan-activation as its child. It has the following subplans:

16The actual type of it depends on the type of the activated plan (sequential, parallel, etc.).

150

• For each argument, an AssignmentModule is created. If the value if an argu-
ment is simply taken form a variable or parameter, then the output of the cor-
responding module is connected to the input of the AssignmentModule. Other-
wise, abstraction modules are created to represent the expression found in the
argument-value element.

The output of the AssignmentModule is connected to the PlanActivationModule
since these modules represent subplans, and to a newly created PlanModified-
ParameterModule which stores the value of the argument for later use in the
activated plan.

• For each return value, another AssignmentModule is created, following the same
scheme as above. The input of each of these modules is connected to a newly
created PlanModifiedParameterModule which stores one return value each (As-
bru plans can have multiple return values). The output of the AssignmentModule
is connected to those PlanModifiedParameterModule to which the return values
are copied (at the Asbru level). These modules had been created before when
the parser found, the Asbru element variable-def or another definition.

• A module for the plan named in the plan-activation is created. It is connected to
the PlanActivationModule as one of its children.

• If the plan-activation contains an on-abort clause, then another PlanStateMod-
ule is created and connected to the PlanActivationModule as one of its children.
The type of this PlanStateModule depends on the type of the plan which is acti-
vated when the originally activated plan is aborted.

• The same happens for the on-suspend clause.

Details on parsing the time annotation are given in Section 4.7.5.

4.7.2.2 Subplans

The key element for building a plan hierarchy is subplans. It contains the following
information:

Type of the plan. This is one of the following four values. For each, there is a plan
module described in Section 4.6.3.

parallel. All children are instantiated and they become considered immediately. Once
they are all ready to become activated, they enter this state at the same time.
After this, there is no further synchronization between them.

sequential. Only the first child is instantiated. After it is either completed or aborted,
the next child is instantiated an so on.

unordered. All children are instantiated immediately and there is no synchronization
between them.

any-order. All children are instantiated. The first one which is ready to be activated is
activated. The next one is activated if the first one is either suspended, completed
or aborted. The suspended plan is not reactivated as long as the second one is
activated.

151

A list of single steps. These are most often plan activations calling other plans, called
children or child plans. They are connected to the above plan module as described
in Section 4.6.2. If a single step is not a plan activation, then a suitable module is
instantiated to form an anonymous child plan, e.g., to implement a variable assignment.

The continuation specification. This specifies which children must complete before
the parent completes, either in the form of a logical expression or as a count. This
is implemented by a tree where the nodes implement the logical combinations via
AndModule and OrModule and the leaves are PlanStateExtractionModules combined
with ComparisonModules. If a count is specified, the a CountModule is feed by an
OrModule combining the ComparisonModules monitoring complete state of all child
plans.

The propagation specification. This specifies those children, for which a failure
leads to the failure of the parent. It is mapped to abstraction modules in a similar way
as the continuation specification.

The flag wait-for-optional-subplans. If it is set, then parent plan waits for all chil-
dren, not only those prescribed in the continuation specification. This is a popular
way to specify wait-for all, but abort-if only for the plans given in the continuation
specification fail.

In this case, an additional tree of abstraction modules is added to that resulting
from the continuation condition (if there is one), which implements the condition that
all child plans must be terminated, i.e., either completed or aborted.

The flag retry-aborted-subplans. If it is set, then subplans are put back to plan state
considered once they reach plan state aborted.

This is implemented by providing variants of the four types of plan modules de-
scribed above.

4.7.2.3 Variable assignment, parameter assignment, and set context

The assignment of a value given by an arbitrary expression is mapped to an Assign-
mentModule, which simply outputs the input at the moment at which it receives the
signal to initialize as a child plan. It then completes as a plan. In the case of a complex
expression, this expression is mapped to a tree of suitable modules, like AddModule.

4.7.2.4 Ask

This plan step requesting input for a parameter from the user. This is mapped to an
AskModule described in Section 4.6.3.9.

4.7.2.5 If-then-else

This plan step consists of a condition and two branches which again consist of one or
more plan steps. It is mapped to an IfThenElseModule as described in Section 4.6.3.8.

152

4.7.2.6 Cyclical plan

The cyclical plan provides complex and powerful means to describe repeated actions.
It is mapped to an CyclicalPlanModule, which is described in Section 4.6.3.10

4.7.2.7 User-performed plan

This plan is performed by the user. A UserPerformedPlanModule is instantiated. The
sole role of this module is to leave a trace in the log to represent the recommenda-
tion of the guideline model, but latter implementations can also realize complex user
interaction in this case.

4.7.3 Conditions

All conditions contain the following parts.

Temporal pattern. This is the core of the condition, containing combinations of pa-
rameter propositions, but also other elements. It is described in Section 4.7.4.

Flag overridable. If set to yes, then the user can cause the plan state transition medi-
ated by this condition, without the condition itself holding.

Flag confirmation-required. If set to yes, then the plan state transition does not take
place before the user confirms it.

To implement the functionality of the two flags, a ConditionModule is inserted
between the output of the module implementing the temporal pattern and the input
of the plan module. Its sole function is sending requests for confirmation to the user
interface and receiving confirmations and override commands.

In addition to the above, two of the conditions contain extras: First, the setup
precondition contains a time annotation labeled waiting-period. It describes the time
during which plans to achieve the state described by the setup precondition are started.
It is treated like the time annotation in plan activations (compare Section 4.7.5.1).

Second, the abort condition permits the modeler to specify whether it is valid for
activated or suspended state only, or for both. By default, it is valid for both states.
The plan modules have two inputs, abort-from-suspended-condition and abort-from-
activated-condition and they are connected according to this flag.

4.7.4 Temporal patterns

The Asbru element temporal-pattern is a placeholder for one of the items discussed in
the following subsections.

4.7.4.1 parameter-proposition

This describes a value for a parameter and an interval during which this value must
hold, as well as a context which must be given. The value is described in one of
several ways.

153

value-description defines a comparison between the parameter and an expression.
Depending on the comparison operator (less, less or equal, etc.), this is mapped
to the corresponding comparison module (Section 4.2.3.6). The inputs to this
module are the module generating the parameter value, and the root module of
the tree implementing the expression. Mapping the expression is described in
Section 4.7.6.

value-range defines upper and lower bounds for the parameter. This is mapped to an
AndModule (Section 4.2.3.1) with two comparison modules as inputs. Depend-
ing on the Boolean flag include-limit in upper-bound resp. lower-bound, the
comparison operator is less or less-or-equal resp. greater-or-equal. The bounds
themselves are expressions handled as described in Section 4.7.6.

is-known-parameter evaluates to true if this parameter is not undefined. This is
mapped to the DefinedModule (Section 4.2.4.3).

is-not-known-parameter is the complement of the above. It is mapped to a NotMod-
ule fed by a DefinedModule.

The context is given as one of the following.

context-ref gives the name of a context variable of type Boolean. It is simply mapped
to the module which supplies the value of this context variable.

context-combination combines two context references using Boolean operators in a
recursive way. It is mapped to a logical comparison module corresponding to
the given operator. The inputs to this module are the modules implementing the
arguments of the Asbru element.

context-not is the negation of the given context value. It is mapped to the NotModule.

one-of specifies a list of constants and a context variable. If the context variable
matches one of the given constants, then the context is given. It is mapped
to an OrModule fed by EqualModules each of which compares the referenced
context variable with one constant.

any is the default value specifying the context which is always given. It is mapped to
a ConstantModule for the value true.

The interval during the which both the value and the context must meet the prescribed
criteria is defined by a time-annotation. Particularities of parsing this element are
discussed in Section 4.7.5.

The output of the modules monitoring the value and the output of the modules
monitoring the context are both fed into an AndModule. The output from this module
is the input of a parameter module. Depending on the reference point of the time anno-
tation, parameter module for fixed reference point (compare Section 4.5.2.1), repeated
reference point (Section 4.5.2.2) or for reference point now (Section 4.5.2.3) is used.

154

4.7.4.2 timeless-parameter-query

This is either is-automatic or is-manual and checks whether a parameter is entered
automatically or manually. There is no temporal abstraction involved. This is evalu-
ated by the Asbru compiler based on the data in the configuration file of the project
which wraps the protocol model at hand. Accordingly, a ConstantModule is generated
outputting true or false, depending on the data in the configuration file.

4.7.4.3 plan-state-constraint

This describes a plan state for a plan and an interval during which the plan must be
(or must have been) in that state. It resembles the parameter proposition. Instead of
connecting to a module providing the parameter value, a plan module is connected to
an EqualModule fed by a PlanStateExtractionModule (Section 4.5.3) and a Constant-
Module representing the plan state.

4.7.4.4 temporal-constraint

This defines the qualitative temporal relation of intervals which again are defined by
temporal patterns. Possible values of the relational operator are: before, overlaps,
starts, equals, meets, during, and finishes. It is mapped to one of the modules described
in Section 4.5.4

4.7.4.5 constraint-not

This defines the Boolean negation of a temporal pattern. It is mapped to a Temporal-
PatternNot module (Section 4.5.5.1).

4.7.4.6 constraint-combination

This defines a Boolean combination such as a conjunction or disjunction for temporal
patterns. It is mapped to the modules described in Section 4.5.5.1 to 4.5.5.3.

4.7.4.7 count-constraint

This contains a temporal pattern and a minimum number of occurrences for this tempo-
ral pattern. Only if this number is reached, the count constraint is fulfilled. This is im-
plemented by a CountModule (Section 4.5.7.3) and an EqualModule (Section 4.2.3.6).
The module implementing the temporal pattern feeds the CountModule which again
feeds the EqualModule.

4.7.4.8 simple-condition

This defines a relation between two instantaneous values. These values can be param-
eters or variables. In both cases, an AssignmentModule is used to forward the current
value at the time of evaluation to the comparison module which implements the com-
parison operator. Of course, constants can be used in the comparison, too, in which
case a suitable constant module is connected to the comparison module.

155

4.7.4.9 refer-to

This element points to another condition containing the definition of a temporal pat-
tern. It is a means of syntactical reuse. Consequently, the output of the modules
implementing the referenced temporal pattern is reused, too.

4.7.4.10 none

This element verbosely states that there is no condition. It is used in conjunction
with the confirmation-required flag where a plan is started at the user’s discretion.
Like missing conditions, conditions defined as none are mapped to a constant element
generating a fulfilled episode data-point.

4.7.4.11 to-be-defined

This shows that this condition needs to be defined but is not yet (in the design process
of a guideline). Execution of an Asbru plan library containing this element is refused
by the Asbru compiler.

4.7.5 Time annotations

Time annotations in Asbru are given by Earliest and Latest Starting Shift (ESS and
LSS), Earliest and Latest Finishing Shift (EFS and LFS), Minimum and Maximum
Duration (MinDu and MaxDu), and the Reference Point (RP) to which the shifts refer
to. All of these seven values can be arbitrary expressions. The reference point can also
contain two special placeholders: now and self.

There are two different modes of using time annotations as far as plan execution is
concerned:

1. Time annotations in defaults in plan and plan-schema in plan-activation govern
plan activations.

2. Time annotations in parameter-proposition and plan-state-constraint, govern
the matching of measured values, either in conditions or in definitions of tem-
poral data abstraction.

4.7.5.1 Restricting plan activation

Time annotations which restrict the time of plan activation are mapped to alarms which
are processed by the PlanModule implementing the plan in question. Setting the alarms
is performed by the PlanModule. Computing their values (time points) is performed
by a tree of abstraction modules implementing the expressions in the shifts in the time
annotation and the addition of the reference point in the first four cases, as detailed
below.

In the Reference Point (RP), special value now is mapped to the time at which the
plan is initiated, i.e., the time at which the plan activation is evaluated. Special value
self is mapped to the time of the first activation of the parent plan. This is implemented
by inserting an AssignmentModule fed by a NowModule as the first child of the plan.

156

Earliest Starting Time. This is the absolute time point computed by adding ESS and
RP. Changing to activated state for the first time is delayed until this alarm ar-
rives.

Latest Starting Time. This is the sum of LSS and RP. If the plan is still in considered
or possible state, it is rejected.

Earliest Finishing Time. This is the sum of EFS and RP. If the complete condition
and continuation condition are fulfilled, the plan still does now complete before
this alarm arrived.

Latest Finishing Time. This is the sum of LFS and RP. If the plan is not completed
or aborted when this time arrives, then the plan is aborted.

Minimum Duration. This is the value as defined in the time annotation. It is added
to the first time of plan activation internally by the PlanModule. The result is
treated like the Earliest Finishing Time.

Maximum Duration. This is also treated like above. The resulting alarm is treated
like that for the Latest Finishing Time.

4.7.5.2 Defining the monitoring process

Time annotations in parameter-proposition and plan-state-constraint map to argu-
ments to the monitoring modules described in Sections 4.5.2.1 through 4.5.2.3.

Special value self is mapped as above. However, it is not permitted in parameter
definitions, because they are not part of any plan. The same holds for filter and setup
preconditions, because the plan is not activated then, and these conditions cannot use
an unknown time point in the future as a reference point.

On a logical level, values in the condition are calculated once when the time anno-
tation is (first) evaluated. These are the following time points depending on the usage
of the time annotation.

• Time annotations in filter precondition: When the plan is initiated.

• Time annotations in setup precondition: When the plan becomes possible.

• Time annotations in suspend, complete, and abort condition: When the plan
(first) is activated.

• Time annotations in reactivate condition: When the plan is (first) suspended.

• Time annotations in parameter definitions: At program start.

There is no need to insert AssignmentModules in this case since the modules monitor-
ing parameter propositions read these inputs only once, when initialized.

Parameter changes as reference point are mapped to a repeated reference point. It
is most useful in parameter definitions. In conditions it can be used, here the condition
is fulfilled if an episode is found for anyone of the reference points. For details see
Section 4.5.2.2.

157

4.7.6 Expressions

Expressions can be used in many places. Only in few cases, the location of the expres-
sion influences its evaluation.

They are always mapped to a tree of abstraction modules.

Constants are mapped to ConstantModule.

Variables, arguments and parameters are mapped the modules producing the ref-
erenced value. I.e., no new module is instantiated during parsing this part of the ex-
pression, only a new connection to the output of an existing module is created.

Arithmetic operations are mapped to the corresponding arithmetic modules like
AddModule, described in Section 4.2.1.1.

Time point now is mapped to the NowModule, which always outputs the current
valid time.

Time point self refers to the first activation of the plan containing the expression.
It is mapped to the helper module SelfModule which takes the PlanStateDataPoints
output by the PlanModule which implements the current plan, and outputs the valid
time of each such data point which marks a change from possible state to activated
state.

Plan state transitions are mapped to a ValidTimeModule fed by a ComparisonMod-
ule fed by a PlanStateExtractionModule fed by the current plan. The second input to
the ComparisonModule is a ConstantModule representing the given plan state.

4.7.7 Definitions

The parts of a domain definition which are relevant to data abstraction are:

• Type definitions: definition of qualitative and numerical scales.

• Parameter definitions.

• Context definitions.

• Constant definition.

4.7.7.1 Type definitions

qualitative-scale-def describes a qualitative scale or data type. On the Asbru level,
the values of a qualitative parameter or variable are referred to by their symbolic names
such as “low” or “medium”. In the data abstraction process, each of them is repre-
sented by an integer, starting with zero for the first entry in the list of qualitative val-
ues. Therefore, the operations minimum, maximum are defined for qualitative values
as well as comparisons such as “less than”.

158

Qualitative scales can have secondary entries, which represent a group of primary
entries. E.g., the secondary entry low can stand for the primary entries very low and
moderately low. Referring to low is the same as referring to “very low or moderately
low” and is implemented exactly in this way. I.e., the plan execution unit produces the
appropriate disjunction.

For such secondary entries, the Asbru compiler must add an OrModule and two or
more EqualModules where otherwise it would just use one EqualModule.

numerical-scale-def allows the user to add scales to the built in ones for numeri-
cal values. The plan execution unit handles various conversions between compatible
scales, e.g., the user can compare a variable containing “1 km” to a parameter deliv-
ering values in “cm”. The data abstraction process handles scales date and time as
integers, and all other scales as float. Each scale has a default unit and values coming
from the data abstraction unit are interpreted as having this is the unit. In summary,
while the plan execution unit handles complex modes of accessing values, the data
abstraction unit is relieved from this and only deals with simple numbers.

4.7.7.2 Parameter definitions

parameter-ref states that the input to this parameter (i.e., abstraction step) comes
from another parameter. Consequently, the output of another module is used as an
input to the module implementing the enclosing statement of the parameter-ref.

raw-data-def defines one original input from outside the system – either user input,
file input, or data received online from measuring devices.

The attribute mode specifies whether input is manual, automatic, or automatic-or-
manual. In addition, this can be specified in the project file for this plan library. This
information is not used for defining the source, but only in Asbru queries at runtime.

For file input and online input, the attribute channel-name specifies the column
containing the data for this parameter. For interactive input, attribute user-text supplies
a message to display when the user is asked for the value.

If attribute use-as-context is yes, the values of this parameter are used as context
variables independent from other usage. Section 4.7.7.4 gives further detail.

If minimum or maximum are defined for value or increase, then a limit check
module is instantiated and the data source is connected to this module. Any references
to this parameter are connected to the output of the limit check module. Otherwise
a raw-data-def does not lead to the instantiation of any abstraction module, but to an
entry in the reference table mapping this parameter to the source given in channel-
name and the selection of the input source by the user.

calculation-def defines one of a set of different operations depending on the value
of attribute operator. For each value of this attribute there is an abstraction module the
name of which is the value of the attribute with “Module” appended, e.g., AddModule
for operator = add.

159

logical-combination-def defines one of four logical combinations of parameters, de-
pending on the value of attribute operator: and, or, xor, not. For each case there is an
abstraction module with that name, appending “Module”.

spread-def defines a Spread as described in Section 4.4.4. Attribute type specifies
whether the Spread is based on the standard error or the quantile.

slope-def represents the slope or ascent of a regression line. It is mapped to a Slope-
Module.

standard-deviation-def represents the standard deviation in the calculation of the
regression line and is mapped to a StandardDeviationModule.

end-point-def represents the end point of the regression line which is a rather lively
predictor of further measurements. It is mapped to a EndPointModule.

time-to-alarm-def defines the time from the end of the regression line to the inter-
section of the regression line with the limit given as an argument. Compare section
4.3.4.2.

change-def represents the difference between a previous measurement and the most
recent one. The temporal distance between the two is given in interval which is a
constant expression. This element is mapped to a ChangeModule.

average-def defines the average of a parameter for the given time window. It is
mapped to a TimeWindowModule connected to an AverageModule.

qualitative-parameter-def defines qualitative values based on either numerical in-
put or a Spread. In the first case the numerical data is directly feed into a Raw-
DataBasedQualitativeModule. In the second case, the numerical input is feed to a
LinearRegressionModule connected to a SpreadModule which again is connected to a
SpreadBasedQualitativeModule.

In each case context sensitive selection of the limits of the qualitative regions is
performed by a separate group of abstraction modules as described in Section 4.7.7.4.

logical-dependency-def implements alternatives (a.k.a. if-then-else) in the data ab-
straction process. It consists of a series of pairs each formed by a condition and a result
which is output if the condition holds.

To implement this statement, the temporal pattern forming each of the conditions
is implemented as described in Section 4.7.4. The result of the first one, representing
the first condition, is feed as first input into a SwitchModule (described in Section
4.2.3.5). The second is used as third input, the third as fifth, and so on. The even-
numbered inputs of the SwitchModule are either obtained directly from the sources
or from ConstantModules, depending on the formulation of the statement in the plan
library.

160

After the last pair of condition and value reference, the element default can give
the value which is used whenever none of the conditions holds. This is mapped an
additional input to the SwitchModule. If no default is given, then this additional input
is omitted.

boolean-def defines the outcome of monitoring a parameter proposition as a Boolean
value. It is implemented by instantiating

1. several ConstantModules and modules comparing them with parameters to im-
plement monitoring the context of the parameter proposition;

2. other ConstantModules and modules comparing them the parameter of the pa-
rameter proposition to implement monitoring the value description;

3. an AndModule combining the output of monitoring item 1 and 2;

4. a ParameterPropositionModule receiving the time annotation as argument and
the output of item 3 as input;

5. a ParameterPropositionToBooleanModule transforming the output of item 4 to
a Boolean.

4.7.7.3 Context definition

Context variables come in different forms: Internally set context, directly entered con-
text, and abstracted context. In the first case, context variables are declared using
Asbru element context-def and set by plans using set-context. This is mapped to an
AssignmentModule. In the second case, the value of the context variables is entered by
the user in parameters defined by raw-data-def with the attribute use-as-context set. In
the third case, the value of a context variable is defined by a parameter abstracted from
others. Again, attribute use-as-context is set in the definition.

In cases two and three, the abstraction graph does not differ because of the attribute
use-as-context. This attribute only influences the name matching performed by the
Asbru compiler.

4.7.7.4 Context usage

There are three different issues in Asbru in which the context plays an important role:
Mapping quantitative values to qualitative ones, monitoring parameter propositions,
and reasoning about the effect of parameter dependencies and plan execution. The
latter is not part of the work described here, for reasons given in Section 5.4.4.

Context-dependent assignment of qualitative values. A quantitative parameter is
abstracted to a qualitative one using a list of limits. If the numeric value of the quan-
titative parameter lies between the first two limits, it is mapped to the first qualitative
value. If it lies between the second and the third limit, it is mapped to the second
qualitative value.

In Asbru, there is not a single fixed set of limits for such a mapping. Instead,
several sets of limits can be given, each for a different context. A context is defined

161

by a Boolean combination of pairs of context variables and their values, e.g., preterm
child is true and mode of ventilation is CPAP.

In the abstraction process this is implemented by

1. one or more modules for each context, outputting true if this context is given;

2. several groups of ConstantModules producing the limits for every context;

3. a SwitchModule selecting that set of limits which is suitable for the given context
– the output of the first step are the odd-numbered inputs, those of the second
step the even-numbered ones, if the last context in the limit declaration is any,
then those limits are the default in the SwitchModule;

4. a RawDataBasedQualitativeModule mapping the quantitative input to qualitative
values based on the selected limits.

Context of parameter propositions. Parameter propositions contain a value de-
scription for a certain parameter, a time annotation, and a context. They are fulfilled if
the parameter’s value meets the description for the time specified in the given context.
In practice this means that the context must be given and the value must fit the descrip-
tion in the prescribed time, i.e., the context description and the value description are
simply and-connected.

This is implemented by feeding the output of the abstraction modules implement-
ing the value description and of those implementing the context into a AndModule.
The output of the latter is the input which is monitored by the ParameterProposition-
Module.

162

4.8 Discussion

In the above sections of this chapter, I presented my solutions to the objectives, which
include novel algorithms and a framework tailored to the challenge. In this section, I
wrap up the reasoning behind the designs, before proceeding to the evaluation in the
next chapter.

Uniform framework

Implementing complex abstractions by decomposing them into small parts which can
be connected freely in a network is a standard technique in system design. There are
three possible approaches to implementing a network of abstraction modules: push,
pull, and mixed. In a push network, new data pushes the abstraction process – when-
ever a new datum arrives, all the abstractions that are based on it are calculated. In
a pull network, abstractions are only calculated on demand whenever their result is
required by a further processing step.

Push networks are advantageous where each bit of input information must be pro-
cessed without delay. Pull networks are advantageous where access to the input data
is infrequent, some of the abstractions of the input would never be used and delays in
responding to input are not significant.

In a push network of i inputs, on average a abstractions of each input, and a depth
of d, iad abstractions are generated – and they must be stored until used. In a pull
network, intermediate abstractions are not stored, which cuts the storage effort but
introduced the danger that intermediate abstractions are calculated multiple times if
used by different other abstractions.

Mixed mode networks combine push and pull networks to circumvent these prob-
lems. The idea is to generate those intermediate abstractions which are expected to be
reused and store them for later use. For example, the IDAN framework [19, 20, 10]
developed significant sophistication storing and retrieving the intermediate results on
various layers of abstraction in a database and in memory. To achieve quick response
times in a high-frequency setting, I avoided the use of databases. After exploring
mixed mode, I opted for a push architecture because the simpler principal architecture
permitted the implementation of other features (described below) to meet the particular
demands of complex networks of high-frequency abstractions.

My key idea for reducing the data volume in a push network is to reduce the fre-
quency at which an abstraction produces new output as soon as possible in the abstrac-
tion process. This is a two-part process. On the one hand, the implementation of the
abstraction algorithms must prevent the generation of redundant output, and the overall
framework must handle data streams of different and varying frequency. On the other
hand, the knowledge engineer must configure the abstractions in such a way that the
frequency of calculation is reduced before the data is fed into a complex network con-
taining a large number of abstractions. Practical experience (compare Section 5.1.1)
shows that such a setting is compatible with the practical reasoning in medicine – first,
potentially noisy, high-frequency data is transformed into qualitative values, for which
it is desired that they are steady. This steadiness translates to low data volume if only
new values are forwarded internally. My design of the abstraction framework ensures
this and only invokes abstraction steps if one of their inputs changed.

163

Online-algorithms for monitoring temporal patterns

In an analogy to the general framework, monitoring the patient in the process of execut-
ing Asbru plans which encode the treatment could be implemented in a mixed mode
approach. Such an approach was envisioned in our early work [93]. However, this
design would require complex data structures to keep track of temporal information
describing those abstractions which are of current importance. More importantly, the
complex semantics of Asbru would make render the handling of these data structures
computationally intensive and error-prone.

I therefore changed the design to a push scheme. This required the design of com-
plex algorithms described in Section 4.5.2. Besides testing them against the require-
ments set forth by the Asbru semantics, which is not described in this thesis, I describe
the upper limits of the computational effort associated with each of the processing
steps in Section 5.2.5.

Previous work in the field [97] used pull approaches, implementing the monitoring
as a set of database queries to be performed at regular intervals. For high-frequency
domains, the data volume and the short processing intervals are preclusive to such an
approach.

Integration of plan execution

The semantics of Asbru are defined with a pull approach in mind. Again, I had to
design a set of algorithms to implement these semantics within a push network. The
benefit of this effort is the immediate response to any change in an input value, prop-
agated to all plans. In high-frequency domains, this is a significant advantage over the
repeated query of conditions foreseen in the original design of Asbru 6.4 [95].

When a condition is fulfilled, this results in a plan state change, which may influ-
ence the plan state of child or parent plan of the plan concerned. This state change
is communicated to other plans as a abstract data point much like an abstraction of
an input data point. Section 5.2.1 shows that upper limit of the response time to plan
state changes is proportional to the product of the depth of the plan hierarchy and the
number of backlinking modules, i.e., those modules where a plan state change occurs
which is relevant for another plan.

Sliding time windows for statistical analysis

To create reliable abstractions of high-frequency input data, I combined descriptive
statistics with the concept of a focus of attention which lies on a time window com-
prising the most recent past. In knowledge acquisition meetings with physicians, I
found that they repeatedly refer to features in the input data occurring in the most
recent 1 or 3 or 5 minutes.

An important feature in this context is the possibility to set the frequency at which
the abstraction is performed independently of the size of the time window. This allows
for overlapping time windows, e.g., evaluating the most recent 3 minutes every minute,
which uncouples response time from window size. It also reduced the chance that a
relevant temporal pattern is not found because it is split by the time window limit.

164

Coping with noisy data

Building on existing work on knowledge-based error detection and removal, I com-
bined the rule-based approach with the statistical approach applied to a sliding time
window. Summarising the data for regular intervals using average or median is not a
new method. Also deriving trends from the most recent measurements has been in-
cluded in previous research [29, 67, 92]. However, I am not aware of an approach
combining these techniques with guideline execution for a high-frequency setting.

The Spread algorithm is a novel contribution to the set of time-window based ab-
stractions. I designed it to model the physicians’ perception of “the majority of the
measurements” in a certain time window. The algorithm has a set of variations to
optimally meet the requirements of the application to develop, e.g., the outliers to be
ignored can be defined based on standard deviation, standard error, or quantiles. These
three measures alternatively define the width of the Spread. A separate limit on this
width excludes episodes in which the input signal oscillates too much. This suspends
the abstraction process for times on unreliable input. If desired, explicit reaction to
this situation can be defined by making undefined output from the Spread algorithm
the filter-precondition (compare Section 4.6.2) of the plan implementing the reaction.

A further variant refers to the modality of mapping the Spread to qualitative values.
With the memory-on flag set, the algorithm reacts very conservative to changes in the
input. It only changes the output value if the whole width of the Spread entered a
qualitative region different from the previous one. This serves as a second layer of
oscillation suppression. First, oscillations within the time window only increase the
width of the Spread but do not lead to oscillations of the Spread itself, only changes in
the average value in a time window do. Second, oscillations of the Spread do not result
in oscillation of the qualitative output as long as the variation is less then the Spread
width.

With the memory-on flag not set, the qualitative value is found based on a normal
region, which is the range of values for which no actions need to be taken. Without
consideration of the past, that margin of the Spread is considered which is nearer to the
normal region. The qualitative region within which this margin lies defines the output
value. This mode is appropriate if there is a normal region for which corrective actions
are not required, and if the second level of smoothing is not desired.

Utility functions

Providing a set of elementary functions performing arithmetics and logical combi-
nations, as well as supplying system information such as the day of the week, is a
necessary precondition for the combination of the more sophisticated parts. It is not
innovative in itself, but greatly extends the usability of a toolbox in practical applica-
tions.

Bridge to Asbru

Mapping the language elements of Asbru to the modules described in the previous sec-
tions is a precondition to applying the modules to execute Asbru plans. Demonstrating
the large extent, to which Asbru can be mapped to solutions presented in this thesis,
Section 4.7 forms a bridge to the next chapter, which describes the evaluation.

165

Chapter 5

Evaluation

This chapter groups the evaluation of the solutions presented above into two parts:
practical evaluation in Section 5.1 and theoretical discussion in Sections 5.2 through
5.4.

Practical evaluation focussed on two parts, the Spread algorithm and the plan ex-
ecution. In the field of medicine, practical evaluation is a major undertaking. Quality
assurance standards in medical care prescribe that the correctness and usefulness of
new systems to be tried out must be proven and acknowledged by ethics commissions;
patients (or their parents) must consent in advance before; and further development of
the technical solution is impeded by the need to resubmit the proposal each time the
changes are of any significance.

At the same time, there are many organisational reasons for under-use or non-use
of a new system. And even if the system is used, it is very difficult to deliver a sound
proof of a clinical impact [49].

However, we completed a controlled clinical trial in very close cooperation with
medical partners, with very favourable results, as described in Section 5.1.1.

Execution a clinical protocol in daily practice is pursued within the OncoCure
project described in Section 5.1.2.2. However, in this case, tangible clinical results
are still well ahead. Two other projects used the Asbru interpreter. The focus of the
Protocure project (Section 5.1.2.1 was a more theoretical one, and that of the Remine
project (Section 5.1.2.3) was on data integration.

In all three projects above, low-frequency domains were modelled. We were not
able to influence the decisions in favour of high-frequency domains. An important
reason is that there are very few guidelines concerning treatment at intensive care units
and a host of guidelines for primary care, cancer treatment, and other low-frequency
domains.

The lack of efficient temporal data abstraction at the point of care makes it unattrac-
tive to formulate protocols or guidelines for high-frequency domains; while in low-
frequency domains, they can readily be applied, relying on simple concepts which are
already available in the electronic patient record.

To complement the practical evaluation of those parts where we could bridge prac-
tice to my ideas, I discuss the complexity of the algorithms (in Section 5.2), how the
proposed solutions meet the objectives (in Section 5.3), and their limitations (in Sec-
tion 5.4).

166

5.1 Practical Evaluation

The work described in this thesis has been deployed by two lines of practical applica-
tion. First, the Spread algorithm described in Section 4.4.4 forms the basis of a system
to control the supply of oxygen in neonatal intensive care. It is described in Section
5.1.1. Second, the framework of temporal data abstraction and guideline execution de-
scribed in Section 4 was implemented. It is since used in a series of research projects,
described in Section 5.1.2.

5.1.1 Data abstraction for artificial ventilation

Artificial ventilation of neonates in an intensive care unit is difficult, because of the
measurements delivered by the pulsoximetry device oscillate to varying degrees. It
is time consuming because the patient state, and thus the oxygen demand, changes
continually which would suggest frequent evaluation of the patient state with corre-
sponding adjustments of the level of oxygen supply. And it is important to optimize it,
because inadequate oxygen supply is associated with damage of the retina.

5.1.1.1 Initial evaluation of the Spread algorithm

Based on the comparison of physician perception of the oscillating graph delivered by
the pulsoximetry device, I introduced the original Spread algorithm (compare Section
4.4.4).

Evaluation setting. We compared the Spread algorithm to median filtering, which
is the established and simpler method of smoothing undesired oscillations, in this field
of application. The retrospective evaluation comprised recordings obtained from 10
patients [128].

Evaluation results. Figure 5.1 shows the data visualisation used throughout the eval-
uation process. The top graph shows the measurements in black, the median as a red
line, and the qualitative values associated with the median, as blue boxes. The graph
in the middle shows the same measurements, but with the Spread in red, and the qual-
itative values derived from Spread in blue. As can be seen, the Spread suppressed
transient changes in the qualitative output which the physicians would rate as irrele-
vant.

“In a total of 126 hours (median 12, range 324) the adjustment based on the Spread
changed 148 times compared to 519 changes in the adjustment based on the median”
[128, p. 225].

5.1.1.2 Addition of complex knowledge-based abstractions

Although “we were able to show that the Spread leads to a more stable judgment of
the patients situation and therefore reduces the number of unnecessary adjustments of
FiO2” [128, p. 225], discussing the records in detail with physicians revealed a set of
situations, in which the Spread algorithm, if used in isolation, is not sufficient.

167

Figure 5.1: Visualisation of abstraction methods for artificial ven-
tilation.
Top row: raw data in black, the median as a red line, and the qual-
itative values associated with the median, as blue boxes.
In the middle: the same raw data, but with the Spread in red, and
the qualitative values derived from Spread in blue.
At the bottom: Wait mode shown as grey bars, check mode in
red, and postpone mode in blue. Black bars above the grey ones
indicate the internal resolution to decrease the oxygen supply,
which is overruled by the other modes. Long green bars indicate
periods of optimal oxygen supply [128].

168

raw-data state-spread

trend-spread

intended-
adjustment

check-
mode

trend

postpone-
mode

final-
adjustment

state

spread slope

Boolean

qualitative
abstractionspreadraw data

Boolean

logical
dependency

logical
dependency

Figure 5.2: Abstraction graph for artificial ventilation control.
Raw data from the pulsoximeter device flows from left to right
via a set of abstraction modules configured according to domain
experts’ suggestions [128].

As a consequence, we devised the abstraction graph shown in Figure 5.2, which
I implemented. In addition to the Spread evaluating the patient state over a longer
period, a second Spread is calculated for the most recent minute. In the final design,
this Spread only contributed the trend for this minute.

We introduced four modes of operation for our ventilation controller [128].

Postpone mode is entered when the recent trend, or the very last measurement, leads
in the same direction as the recommendation which would otherwise be issued
by the controller.

Check mode is entered for a number of reasons each of which suggests that remaining
passive is the best option in situation at hand. These reasons range from a set of
validity checks on the input to the user putting the controller into suspend mode
in order not to disturb a care routine which must lead to measurements which
would confuse the controller (e.g., by taking off the sensor).

Wait mode is entered for a preset time period after a change in the oxygen setting was
enacted. A major design principle of our system is to make changes gradually
and observe their result before proposing another change.

Active suggestion mode is entered if no other mode is active, and if the oxygen satu-
ration of the patient is not in the target region. In this mode, the recommendation
based on the state Spread is shown on a laptop.

The lower region of Figure 5.2 shows states of the controller. Wait mode is shown
as grey bars, check mode in red, and postpone mode in blue. On the black horizontal
line above these bars we see black bars indicating the internal inclination to decrease
the oxygen supply, which is overruled by the other modes. The long green bars in-
dicate regions in which no other (overruling) mode is active, but the patient’s oxygen
saturation is in the target region which means that no change in oxygen supply is
needed.

169

5.1.1.3 Open-loop evaluation

Evaluation setting. We validated the above design by controlling the oxygen in an
open-loop setting, in which a member of the clinical staff performed the changes to
the oxygen supply according to the suggestions generated by our temporal abstraction
system, running on a laptop connected to the pulsoximeter.

In a randomised crossover trial, 12 patients were randomized in 3 groups. Each
group went through the different modes of treatment in another order. These modes
were two baseline periods (always first and last), open-loop control by the controller,
optimal manual control by an expert dedicated exclusively to this task and routine
manual control by the normal care staff. Each of the five periods lasted 90 minutes.

Evaluation results. The target value of the study is the time spent in the target re-
gion of oxygen situation, i.e., the time during which the oxygen supply is considered
optimal. It is denoted TT for target time in the following. In periods of optimal manual
control, TT was 6.1% higher than for routine manual control. For our controller, it was
5.4% higher than for routine manual control [169].

5.1.1.4 Closed-loop evaluation

Based on a careful evaluation of the open-loop phase of the clinical evaluation, we
introduced the quantile-based Spread and performed further fine-tuning regarding the
size of the time windows used.

Evaluation setting. The resulting system was evaluated in a similar study design
as before, as far as patient number and treatment modes are concerned. However,
this time the laptop at the bedside directly controlled the oxygen supply via a serial
connection.

Evaluation results. Again, our system performed equally well as the dedicated ex-
pert and both performed significantly better than the staff in the realistic setting in
which they had to perform the full range of duties besides monitoring the oxygen sup-
ply. TT increased by 11% compared to routine care.

The staff was able to manually change the oxygen saturation in parallel to the con-
troller. None of the changes by the controller was taken back by the study supervisor.
The amount of oxygen adjustments by staff during these phases was only 11% com-
pare to routine care. This indicates significant reduction in work load in addition to
improved care [169].

The paper describing the study won the scientific award of the Society of Neona-
tology and Pediatric Intensive Care (Gesellschaft für Neonatologie und Prädiatrische
Intensivmedizin) in 2005.

5.1.1.5 Multi-center study

Evaluation setting. A multi-center study at four German hospitals, started in 2008,
currently explores the clinical benefit of longer blocks of continuous treatment using
our controller. Following a run-in phase of three hours, the ventilation is controlled by

170

our controller for 24 hours followed by 24 hours of routine control of ventilation by
the personal normally in charge of this task. The order of the two 24-hour blocks is
swapped for 50 % of the patients based on randomisation.

The aim is to demonstrate the benefit in patient state from our controller in a bigger
picture. The definitions of optimal oxygen supply vary significantly between the three
different hospitals which puts our controller to a test of versatility.

Evaluation results. First reports are promising. As of this writing, only one of the
study sites completed the measurements. There, the performance of our controller was
very satisfactory. However, an in-depth analysis of the complete measurements from
all sites is necessary before publishing detailed results.

5.1.2 Plan execution

With my guidance, Peter Votruba, Michael Paesold and Gilbert Wondracek imple-
mented an interpreter for a subset of Asbru, called Asbru Light, which implements
the ideas presented in this thesis. It was originally developed as part of the Protocure
project, and later used by the projects OncoCure and Remine.

The following describes these projects, the application of the interpreter within
them, and the insight we gained in using it.

5.1.2.1 Protocure

The EU project Protocure1, run as a two-phase FETopen project from 2002 to 2006.
Its aim was to apply formal methods to improve guideline quality. Within this context,
we modelled the US guideline for Jaundice in neonates and the Dutch Breast Cancer
guideline in Asbru.

The choice of this guideline was not lucky for the purpose of this thesis, since
breast cancer is a low-frequency domain, but it was lucky in terms of modelling, since
we had the chance to closely cooperate with the Dutch organisation for guideline de-
velopment, CBO.

The Asbru model was further translated to temporal logics and verified, but also
executed by the Asbru interpreter [159].

The aim was to validate the model against a set of test data designed by physi-
cians. Accordingly, the interpreter was designed for batch operation only, reading the
complete patient data and outputting the recommendation in the form of the log file.

Our tests showed not only that the design could be implemented and that it covers
the functionality demanded by the modelled guideline, but also that the implementa-
tion in Java was fast enough to run at an input data frequency of more than 1000 Hz
on an standard notebook in 2006 [103].

5.1.2.2 OncoCure

The aim of the binational OncoCure project was to support the clinical care practice
at the Medical Oncology Unit of the S. Chiara Hospital of Trento. The application
domain was breast cancer again, but here with a strict focus on medical treatment. The

1www.protocure.org, last accessed May 9th, 2011

171

www.protocure.org

Security Layer

Guideline
Execution

Engine

Wrapper

RAPS
Process

Model

RAPS
Mngmnt.
System

Semantic
Annotation

Layer

HIS
(Data)

Guidelines

Processes

H-ERP
Bridge

Data
Acquisition

Layer

Data
Event

Mngmnt.
System

Process
Mapper

Database

Taxonomy

Ontology

MetaDB
Reasoner

Asbru
Interpreter

Knowledge
Inference
System
Data
Mining

Risk
Manager
Interface

Rules
Engine

Web
Services
Wrapper

Layer

Alerting
System

Figure 5.3: Remine system architecture.

basis of this Asbru model (which is unrelated to the one used in the Protocure project)
was the protocol used at the clinic [47].

The interactive context required the creation of a set of wrappers which call the
interpreter repeatedly, feeding it patient data, and translating the results to present it
integrated into the legacy patient management system.

Feedback from clinicians on this system was positive. A detailed analysis of the
impact of the system on the quality of care has not been conducted as of this writing,
because of the optional use of the decision support system at this site.

The practical integration of the interpreter with the clinical routine at the clinic
showed that the demand in a highly interactive setting poses new problems, beyond
the formal integration of user confirmation into the protocol execution process. In
particular, user preferences regarding the sequence of presentation of groups of options
and series of questions impose restrictions on the modelling. It could also lead to the
introduction of new language elements. While this has a strong modelling impact, it
will also influence the further development of the interpreter.

5.1.2.3 Remine

The EU project Remine2 seeked to reduce Risks Against Patient Safety by integrating
various means to improve the quality of care into a complex framework. Within this

2www.remine-project.eu, last accessed Oct 20th, 2010

172

www.remine-project.eu

framework, the Asbru interpreter was used both for decision support at the point of
care, and the analysis of what-if scenarios by a risk manager [124].

Figure 5.3 shows the Remine system architecture. It gives a clear picture of the
limited importance of guideline execution in this project. Unfortunately, the untimely
withdrawal of the consortium member in charge of the interpretation of the Asbru
interpreter prevented the planned evaluation in clinical practice.

In the course of the project, four protocols were modelled, again demonstrating the
appropriateness of Asbru for the task. The domains of application were: management
of active low-risk labour, management of acute ischemic stroke, management of infec-
tion with Methicillin-resistant Staphylococcus Aureus, and management of medical
treatment in the acute care for the elderly.

173

5.2 Complexity Analysis

This section discusses computational complexity and required storage space for all
modules described in Section 4, and for the system formed by these modules, as a
whole.

Since the focus in this thesis is on high-frequency applications, the focus of this
section is on the effort per new measurement. Measured values are assumed to arrive in
groups, at regular intervals, e.g., once per second, or millisecond. Such a synchronised
time point of data input is called a macro time step, or time step.

Of course, not all input channels will deliver new input every macro time step. In
practice, this makes an important factor, although the lower bound of time saving from
this difference depends on the model, i.e., the Asbru plan library at hand.

In contrast to macro time steps, at micro time steps only internally generated data
needs to be processed. This is only the case at circular links in the abstraction graph.
Section 5.2.1 goes into details in this regard.

In this section, O(n) stands for the upper limit of f(n) = c n+ x for any c and x
given sufficiently large n. O(1) stands for constant effort f(n) = x not related to any
changing factor.

5.2.1 The overall system

The complexity of the overall system is the sum of its parts plus the management
overhead. There are three cases to consider for the overall computation taking place
per macro step: Standard operation of abstraction modules, internal playback mode,
and the communication loop between parent and child plan.

5.2.1.1 Standard operation

For each macro time step, computational complexity is proportional to the number of
modules receiving input. The management unit stores them in an ordered graph. At
each macro time step, first the input from outside the system is feed to abstraction
modules directly connected to it. Then, their results are fed on through the graph.

Modules indicate to the management unit whether they produced new output upon
the input. E.g., a module evaluating a > 0 will not produce new output when a changes
from 4 to 5. This is important because in practical abstraction graph, the data volume
output by modules is a fraction of the input volume for most modules.

C = O(n)

with C computational complexity
n number of modules receiving new input

Storage requirements are defined by the management unit keeping track of each
module, and the sum of the requirements of all modules.

S = O(m) +
m∑
i=1

Si

with S storage requirement
m number of modules
Si storage requirement of module i

174

5.2.1.2 Internal playback mode

Asbru permits to specify the parts of the time annotation by arbitrary expressions.
In practice, constants are generally used, but the possibility to use variables requires
the following provisions. If a non-constant reference is found in the Asbru elements
specifying the parts of the time annotation, then an internal buffer is introduced which
stored the input to the ParameterPropositionModule. As soon as the time annotation
is evaluated according to the Asbru semantics, the playback of the stored values is
triggered. This means that these values are fed to the ParameterPropositionModule and
only the last output is forwarded to the modules further down the abstraction graph.

This leads to extra computational effort in a small fraction of time steps. The effort
is proportional to the number of stored data points.

C = O(p h)

with C computational complexity
p number of modules requiring playback
h length of history, i.e., preserved input

Although the likelihood that playback is needed for any abstraction module at a
given time step is small, there is no guarantee that not all of the concerned modules
will require it simultaneously.

The length of history depends on the frequency at which data points needing stor-
age arrive, and the delay between program start and evaluation of the time annotation.
Both depend heavily on the model (i.e., the Asbru plan library).

The storage required is also proportional to the number of modules requiring play-
back multiplied by the (average) length of the recorded history.

S = O(p h)

with S storage requirement
p number of modules requiring playback
h length of history, i.e., preserved input

5.2.1.3 Parent-child communication

When a child plan changes its state, the module implementing it sends a PlanState-
DataPoint to the module implementing the parent. The valid time of this data point
is the next micro time step, since this communication is directed “against the flow”.
The communication from the parent to the child happens “with the flow”, i.e., in the
normal direction of the graph formed by all the modules.

It is possible that the state change of the child plan causes a state change of the
parent. In this case, a chain of PlanStateDataPoint transmissions results. Each link of
this chain is executed in another micro time step. Micro time steps do not depend on
external timing. Since there are very few data points to process (generally only one),
the computational effort per micro step is small. Nonetheless, it is considered here,
in b being the number of plans which change their state at this micro time step and
therefore generate another PlanStateDataPoint.

The maximum number of micro steps depends on the depth of the plan hierarchy,
i.e., on the number of generations from the top-level plan to its furthest child.

175

C = O(d b)

with C computational complexity
d depth of the plan hierarchy
b number of back-linking modules,

i.e., plans changing their state simultaneously

There is not extra storage required by this issue.

5.2.1.4 Summary

In total, the computational complexity and the required storage space are the respective
sums of the three parts described above.

C = O(n) +O(p h) +O(d b)

S = O(m) +
m∑
i=1

Si +O(p h)

with C computational complexity
n number of modules receiving new input
p number of modules requiring playback
h length of history, i.e., preserved input
d depth of the plan hierarchy
b number of back-linking modules,

i.e., plans changing their state simultaneously
S storage requirement
m number of modules
Si storage requirement of module i
p number of modules requiring playback
h length of history, i.e., preserved input

5.2.2 Utility functions

Modules implementing utility functions can be grouped by their number of inputs,
which can be zero, one, two, or any number. Both computational effort and storage
requirement are proportional to the number of inputs.

There is only one exception in this group: Abstracting qualitative values based on
numeric input. Here, there is only one input, the complexity is proportional to the
number of values which the qualitative output can take.

C = S = O(1) if i ≤ 1
C = S = O(i) otherwise

with C computational complexity
S storage requirement
i number of inputs of this module,

number of qualitative levels in case of qualitative abstractions

176

5.2.3 Sliding time windows

The modules presented under this heading are grouped into those collection data and
those evaluating the content of the first group.

5.2.3.1 Collection of data

There are three types of time windows. The number of time points they contain varies
accordingly:

• Interval-based time window. The maximum number of data points within a
time window is given by the (maximum) input frequency times the length of the
window.

• Time window based on number of measurements. Here, the maximum number
of data points is directly stated.

• Episode-based time window. The number of data points depends on the length
of the episode, i.e., the interval matching a given time annotation. There is no
formal limit on the duration of an episode. In practical applications, the time
annotation will impose some limit, if the – often implicit – clinical knowledge
is encoded properly.

Time windows can be sorted by transaction time, i.e., the time of arrival of the data
point, or by value of the data point. In the first case, the effort is only linear. In the
second, it depends on the sorting algorithm. Since steadily increasing measurements,
which lead to a worst case scenario for Quicksort, are often seen in practice, I assume
quadratic effort.

Output occurs at a reduced frequency. Only at these times, sorting is performed.
The effort of adding the input and discarding old data is constant.

C = O(1) +O(1) + O(1)
w = O(1) if sorted by transaction time

C = O(1) +O(1) + O(p2)
w = O(p2) if sorted by value

S = O(p)

with C computational complexity
p number of points in the time window
w step width of data output, in time steps
S storage requirement

The modules analyzing time windows can be grouped according to their complex-
ity as shown in the following subsections.

5.2.3.2 Analyzing the time window content

Based on sorted time windows, the following parameterless statistical measures can
be performed with constant effort: median, minimum, maximum, centiles and change
(between the first and the last measurement. Also accessing temporal properties start,
end, and duration is performed with constant effort.

177

The effort for the calculation of average (normal and weighted by time for which
the measurement is valid), as well as standard deviation within a time window is pro-
portional to the number of data points in the time window.

The effort to calculate the linear regression line for a given content of a time win-
dow is proportional to the number of data points in the window. This comprises cal-
culation all of its features including standard error. Accessing these properties (slope,
standard deviation and error, end point, centre, time to alarm) is performed with con-
stant effort.

C = O(1) for median, minimum, maximum, centiles and change;
start, end, and duration of time window;
and accessing linear regression features;

C = O(p) for average, standard deviation, linear regression;

S = O(1) in all cases

with C computational complexity
S storage requirement
p number of points in the time window

5.2.4 Coping with noisy and missing data

The LimitModule compares the input against two limits, at constant computational ef-
fort. All other modules which can be combined to implement custom solutions to
detect errors in the input have already been discussed above.

The Spread algorithm consists of the following parts.

Sliding time window C = O(1) S = O(p)
Linear regression C = O(p) S = O(1)
Qualitative value abstraction C = O(v) S = O(v)

with C computational complexity
S storage requirement
p number of points in the time window
v number of possible qualitative values

The only new part is the third. Mapping the Spread margin to a qualitative value is
proportional to the total number of possible values which the output can take, both
in computational complexity (going through the limits comparing them against the
quantitative value) and in storage requirement (to store the limits).

The computational effort differs significantly between time steps at which output
is produced and such where none is produced.

The total effort and requirements for the Spread algorithm are:

178

C = O(p) +O(v) for every wth time step
C = O(1) for other time steps
S = O(p) +O(v)

with C computational complexity
S storage requirement
p number of points in the time window
v number of possible qualitative values
w step width at which output is produced

5.2.5 Online-algorithms for the detection of temporal patterns

5.2.5.1 Parameter propositions

Monitoring parameter propositions is implemented in multi-dimensional state ma-
chines which perform zero to two state transitions per time step, resulting in a compu-
tational effort and storage requirement in the order of O(1).

C = S = O(1)

with C computational complexity
S storage requirement

5.2.5.2 Temporal relations

Monitoring temporal relations is summarized in Table 5.1. For different relations,
different combinations of lists are maintained.

Both computational effort and storage requirement depend on the value u which
is the length of current output list. This is the number of concurrently valid matching
pairs of intervals, i.e., a rather small number in practice, yet for relations before, its
theoretical upper bound is ab or O(a2) assuming a and b being of the same order of
magnitude. The reason for this high upper bound is the rare case where all occurrences
of A lie before all occurrences of B. For the other relations, the upper bound of u is
O(a).

Because of this, the storage requirement can be traced back to O(a), too.

S = C = O(a2) for A before B
S = C = O(a) for other relations

with C computational complexity
S storage requirement
a number of intervals A in the past

5.2.5.3 Boolean combinations

Monitoring Boolean combinations of intervals is detailed in Table 5.2. The algorithm
monitoring the or-disjunction runs through the output list and possibly adds entries
to two other lists. For each entry in both, it then runs through the output list again.
Therefore, the worst case computational effort is O(u2).

179

Relation Computationally Computational Storage
name worst case effort requirement

A before B A revoked C = O(a) +O(u) S = O(a) +O(u)
A overlaps B A or B revoked C = O(a) +O(u) S = O(a) +O(u)

A starts B A or B revoked C = O(u) S = O(u)
A equals B A or B revoked C = O(u) S = O(u)
A meets B A or B revoked C = O(u) S = O(u)
A during B A or B revoked C = O(u) S = O(u)

or NFB

A finishes B A or B revoked C = O(u) S = O(u)

Table 5.1: Computation effort and storage requirement for moni-
toring temporal relations.
a is the number of occurrences of interval A in the past. This is
assumed to be in the same order of magnitude as the number of
past interval B occurrences.
u is the length of current output list.
Event “A revoked” means an occurrence of A is no more valid.
Likewise for B.
Event NFB designates the end of an occurrence of B.

C = O(u2) for or and xor
C = O(u) for and and not

S = O(i) +O(u) for and
S = O(u) for other relations

with C computational complexity
S storage requirement
i number of inputs
u length of output list, i.e., number

of concurrently valid matching intervals

5.2.5.4 Extracting features of episodes

A set of utility modules is provided which all operate at constant (and minimal) effort
without requiring storage for themselves.

C = S = O(1)

with C computational complexity
S storage requirement

5.2.6 Integration of plan execution

Each module representing an Asbru plan – or a single plan step in it – is a finite state
machine representing the Asbru plan states. The number of state transitions at any
time step is limited to four by the semantics of Asbru (from initial state via consid-
ered, possible, active to either completed, aborted or suspended). Cycles are only

180

Relation Computationally Computational Storage
name worst case effort requirement
and i revoked C = O(u) S = O(i) +O(u)

PFi C = O(i)
or PFi or C = O(u2) S = O(3u) = O(u)

IDi revoked
xor as above C = O(u2) S = O(u)
not in revoked C = O(u) S = O(u)

Table 5.2: Computation effort and storage requirement for
Boolean combinations of interval series.
i is the number of inputs to the combination.
u is the length of current output list.
Events “i revoked” and “IDi revoked” means that a previously
found interval for input channel i is no more valid.
Event PFi designates the start of a true value at input channel i.

possible between active and suspended and they are prohibited to occur in the same
time step, both by the semantics and the implementation. Therefore, the upper limit of
computational effort is constant.

The plan modules only keep a set of status variables, some of which reflect the
state of child plans. Therefore, the storage requirement depends on the (small) number
of child plans (also called subplans).

C = S = O(1)

with C computational complexity
S storage requirement

C = O(1)

S = O(c)

with C computational complexity
S storage requirement
c number of child plans

5.2.7 Bridge from Asbru to abstraction modules

Transforming the Asbru plan library into a graph of abstraction modules takes place
before monitoring the input is started. Therefore, it does not contribute to the compu-
tational complexity of the data abstraction and plan execution process.

Likewise, storage required for parsing the XML file containing the Asbru plan
library is released before the monitoring is started.

Therefore, no extra burden is added by this part of the solution.
The transformation of the plan library into a set of abstraction modules is propor-

tional to the number of modules.

181

C = O(1) sliding time window aggregation if sorted by transaction time;
feature extraction for time window, episodes, and linear regression;
monitoring parameter propositions in the normal case;
plan execution;

C = O(i) utility functions;

C = O(p) average, standard deviation, linear regression; Spread algorithm;
C = O(a) temporal relations other than A before B; monitoring parameter

propositions at the moment when playback is required;
C = O(u) Boolean combinations and and not

C = O(p2) sliding time window aggregation if sorted by value;
C = O(a2) temporal relation A before B;
C = O(u2) Boolean combinations or and xor;

with C computational complexity
i number of inputs
p number of points in the time window
a length of history
u number of concurrently valid matching intervals

Table 5.3: Summary of computational effort of modules. The
number of possible values on a qualitative scale is assumed to be
much smaller than the number of data points in a time window.

5.2.8 Discussion

The computational complexity varies significantly between classes of modules. In
particular, many of the frequently used building blocks have constant or linear effort
functions, while some have quadratic functions. None of them are NP-hard.

Table 5.3 groups the modules by computational effort.
In practice, the nastiest case are those cases, where the effort depends on the size

of the history, since this can rapidly grow in high-frequency domains. There are two
simple measures to reduce the problem which are natural in care practice:

• The frequency of the input to the computational expensive modules is drastically
reduced by aggregation and abstraction modules which turn the input stream
of high-frequency measurement into a series of rather few changes in clinically
meaningful concepts. While the reduction cannot be quantified in a general way,
a strong guarantee is given by the fact that unstable values are not considered a
meaningful basis of clinical decision making. Sometimes, minimum require-
ments are even explicitly stated, such as “high for 3 minutes”, which means that
the frequency of such a datum cannot exceed 20 per hour.

• There is a temporal limit for the clinical meaningfulness of measurements. This
means, that not all episodes in history are considered, but only those in a lim-
ited time window. Whether this comprises the most recent hour or day or year
depends on the domain, but since human perception cannot deal with large quan-

182

S = O(1) analysing time window content, including linear regression;
feature extraction for time window, episodes, and linear
regression; monitoring parameter propositions;

S = O(i) utility functions;
S = O(c) plan execution;
S = O(p) sliding time window aggregation; Spread algorithm;
S = O(a) temporal relations other than A before B;
S = O(u) Boolean combinations other than and;
S = O(i) +O(u) Boolean combination and;

with S storage requirement
i number of inputs
c number of child plans
p number of points in the time window
a length of history
u number of concurrently valid matching intervals

Table 5.4: Summary of storage requirements in modules. The
number of possible values on a qualitative scale is assumed to be
much smaller than the number of data points in a time window.

tities of information, domain experts tend to specify their abstraction rules in a
way which reduces the amount of data in the time window in a very favourable
way.

Table 5.4 gives an overview of the storage requirements. For those values which
threaten to grow over time – a and u – the precautions described above can be taken.

183

5.3 Meeting the Objectives

In Section 3, I described the objectives for a system which qualifies as an answer to the
research question. In this subsection, I detail how the solutions presented in Section 4
meet these objectives.

Objective 1. To combine existing approaches such as comparing differ-
ent input channels, averaging and comparing against the average, into the
framework for data abstraction, error detection and repair.

Sections 4.2 through 4.4 provide a rich toolset for the detection of errors and the
repair of the gaps.

In particular, Section 4.2.1 describes the following operations directly performed
on numeric input: sum, product, minimum, or maximum for any set of parallel inputs;
difference, quotient, root, exponent, and logarithm for pairs of input; and absolute
value and sign for a single input. Comparison operators and Boolean logics on their
results are implemented as shown in Section 4.2.3.

Section 4.3, also mentioned at Objective 3, provides means to collect measure-
ments in a sliding time window and to calculate change over time and various means
of deviations within them.

Section 4.4.1 describes the combination of the above mentioned modules for er-
ror detection. Section 4.4.2 describes means for data repair. The examples given in
these two subsections illustrate how complex requirements can be broken down and
translated into a combination of modules from the available toolset.

The framework integrating these modules is described Section 4.1.

Objective 2. To find a new solution for abstracting steady qualitative
values from quantitative data containing varying parts of noise, such that
the threshold used to suppress undesired changes in the output depends on
the current amount of noise.

The Spread algorithm described in Section 4.4.4 continuously adapts the threshold
for mapping noisy, quantitative values to steady, qualitative abstractions. It comes in
different versions (e.g., based on standard deviation or quantiles) to adapt to different
types of signal sources and numerous parameters provide rich options for fine-tuning.
It performed very satisfactory in a series of practical clinical studies described in Sec-
tion 5.1.1.

The set of time window property queries described in Section 4.3 permit explicit
reasoning about the data quality during the monitoring process. This can be used to
switch between different modes of abstractions, e.g., to provide an additional fallback
strategy for phases of extreme noise, or to pick between different sources of input,
depending on their current quality.

Objective 3. To integrate the aggregation of input in sliding time win-
dows of freely defined size and step width into the common framework,
together with evaluation functions such as average, mean, quantiles, and
linear regression.

184

Section 4.3 describes how values can be aggregated for different types of time win-
dows: time-oriented, measurement-count oriented, or episode-oriented, where episode-
oriented refers to an state of an external condition (fulfilled or not fulfilled) delineates
the time window.

Section 4.3.2 describes abstractions based on these time windows: median, min-
imum, maximum, average, or standard deviation, change between end points of the
time window, time-oriented average, centiles.

Section 4.1 describes the integration of all these modules into a uniform frame-
work.

Objective 4. To integrate utility functions implementing arithmetic and
logical operators as well as comparison operators with the other modules.

While trivial for themselves, the provided utility functions such as computations
and extraction of features from complex data items significantly increase the usability
of the more complex abstraction algorithms. Their free combination permits the mod-
eller to add arbitrarily complex complements to the specialised abstraction modules
and the plans.

Objective 5. To integrate all the algorithms presented in this thesis in a
framework permitting the greatest possible freedom in combining them.
Data flow in this framework must be organised in such a way as to min-
imise computational effort.

Section 4.1 describes a framework containing the modules described in this the-
sis. Integrating data abstraction, monitoring and plan execution in a single, seamless
framework greatly reduces system complexity while providing new options, e.g., to
feed plan output back into abstraction modules.

The fact that any computation is only performed as mandated by new input or
previously set alarms permits the execution of complex plan libraries at high frequency
on standard computers.

Objective 6. To find implementations for the Asbru elements parameter-
proposition, plan-state-constraint, temporal-constraint, constraint-combination,
count-constraint, and simple-condition. They must be integrated into the
framework of temporal data abstraction and guideline execution, and han-
dle high volumes of data efficiently.

Integrated in the framework described in Section 4.1, the algorithms presented in
Section 4.5 bridge temporal data abstraction to plan execution with minimal compu-
tation effort. This is achieved by implementing the complex matching rules in the
form of state machines. Only when new data arrives, simple rules are evaluated in the
modules concerned and where suitable, the internal state of a monitoring module is
changed.

Table 5.5 shows which section describes which solution in detail, and the compu-
tational effort for each of the Asbru elements listed in the objective.

Objective 7. To translate the semantics of Asbru plans to the process-
logic the abstraction framework.

185

Asbru element Section Computational effort
parameter-proposition 4.5.2 O(1)
plan-state-constraint 4.5.3 O(1)
temporal-constraint 4.5.4 O(a) for temporal relations other than

A before B
O(a2) for temporal relation A before B

constraint-combination 4.5.5 O(u) for Boolean combinations
and and not

O(u2) for Boolean combinations
or and xor

count-constraint 4.5.6 O(1)
simple-condition 4.2.3.6 O(1)

with C computational complexity
p number of points in the time window
a length of history
u number of concurrently valid

matching intervals

Table 5.5: Implementation of Asbru elements from Objective 6.

While the original design of Asbru foresaw querying the state of conditions at a
fixed sampling rate, the presented framework enacts all plan state changes immediately
as soon as the input changes. Besides removing any delays, it is also more efficient
than repeated polling by all plans.

Section 4.7 describes the Asbru semantics and how they are implemented by mod-
ules. These modules communicate among each other using PlanDataPoint objects
which are compatible with those used to communicate values between abstraction
modules. This allows the Management Unit of the abstraction framework to handle
the information flow between parent and child plan in the same fashion as the data
flow within that part of the module network which implements the temporal data ab-
straction.

Objective 8. To map all Asbru elements relevant for plan execution to
one or more modules implementing the semantics of this element.

This thesis describes the implementation of the complete Asbru functionality with
the exception of the setup-precondition and complex data structures. Their omission
has been justified by their redundancy in practical modelling work.

The projects described in Section 5.1 showed that the implemented subset is suf-
ficient model the protocols and guidelines used in these projects (US guideline for
Jaundice in neonates, Dutch guideline for breast cancer, Italian protocol for medical
treatment of breast cancer, management of birth, emergency reception of stroke pa-
tients, management of MRSA infection, management of drug administration for the
elderly at an emergency department).

Details on the mapping between Asbru and the modules described before are found
in Section 4.7.

186

5.4 Limitations

5.4.1 Coping with noisy data

In practical applications, we found that the major limitation is the acquisition of precise
information about the acceptable delays and fine-grained quality measurements for the
quality of the abstraction. Practitioners generally did not reason about such a technical
perception of the patient. The only gold standard is the overall outcome, but this can
be achieved in many different ways.

A minor technical limitation of the described system is the lack of advanced ab-
straction methods from Statistics and Machine Learning. It is easy to write a wrapper
which translates output from this framework to input for systems like R or Weka. Re-
sults from there can be fed back into this framework as parameters.

5.4.2 Online-algorithms for monitoring temporal patterns

There are some limitations in the expressive power and precision of the Asbru syntax.
First, time annotations have only one reference point. It is therefore not possible to
define the end of an interval based on another external reference as the start.

Second, temporal pattern can freely combine complex constraints on episodes in
the input data, but it cannot define two constraints to be applied on exactly the same
instances in the stream of episodes because there is no way to refer to individual in-
stances, only to their class.

5.4.3 Multiple sliding time windows for statistical analysis

It lies in the nature of sliding time windows that the statistical evaluation is performed
more often then for fixed time windows. This may lead to unacceptable delays in
the analysis of large data sets at fine granularity. However, in practical application, it
proved easy to choose a step width large enough to avoid such delays.

While performance issues generally do not limit the amount of parallel and diverse
abstractions based on many different time windows, the acquisition of the medical
semantics of the output proved to be an important limiting factor.

5.4.4 Integration of plan execution

The functionality of the setup-precondition was not implemented. The Asbru design
prescribes that the execution unit autonomously searches suitable plans to fulfil this
condition, based on the plan effects described in the plan library. However, a use case
for this functionality never appeared.

One reason for this is that decisions between alternatives can easily be made ex-
plicit for systems which are not too complex. The other reason is that clinical guide-
lines and protocols seem to be written with such explicit information in mind. Finally,
it is always much more difficult to acquire the hidden knowledge behind the prescribed
processes, than to acquire the direct formulation for the conditions under which a cer-
tain action is performed. The latter goes to the filter-precondition, which is the most
often used condition in all projects, while the setup-precondition together with plan
effects remained generally unused.

187

5.4.5 Utility functions

List manipulation was not implemented in the interpreter and is not discussed here.
It was introduced during the creation of Asbru 7, but practical demand for it did not
appear in the decade thereafter.

5.4.6 Uniform framework

The information flow between the presented system and the user interface needs some
further development. The OncoCure project showed demand to synchronize requests,
presenting alternatives together in one request, and generally presenting more infor-
mation than currently supplied by the interface.

Besides this, the current implementation is optimized for high-frequency domains
and batch processing of protocols based on recorded data. Consequently, the man-
agement unit starts up at program start – before the execution of the guideline – then
performs all steps of the protocol, terminating after completion of the protocol.

With low-frequency domains in mind, the same ideas presented in this thesis could
and should be implemented as a web-service with a database back-end which performs
one step at a time, reading and writing all information to and from a database. This is
more suitable for domains where few processing steps occur during a patient encounter
and nothing happens for many weeks between these encounters.

5.4.7 Bridge to Asbru

Complex data structures as described in Asbru 7.4 were not implemented. They could
be added within the framework presented in this thesis. However, they were contro-
versial when introduced and may not be part of the next major language version.

Consequently, the for-each plan and the iterative plan were omitted in this thesis,
because they are focused on list processing.

188

Chapter 6

Future Directions of Work

6.1 Further development of the system

On a technical level, there are two directions of further developing the system pre-
sented in this thesis: Adding abstraction modules, and better integration of user inter-
action.

6.1.1 Expansion of the set of abstraction algorithms

Numerous as they are, the currently implemented algorithms for temporal data abstrac-
tion are a small fraction of the known corpus of useful algorithms in this field. To avoid
the creation of yet another mighty but hard to learn toolset, this extension process will
need to be application-guided.

6.1.2 Better control over user interaction

The design presented in this thesis focuses on the efficient automatic processing of
large volumes of data, touching user interaction only slightly. Mostly in low-frequency
domains, but also in some high-frequency applications, better control over user inter-
action and presentation of options is desired. Implementing this without breaking the
overall structure of the framework (and thus loosing its advantages) poses an interest-
ing challenge for the future. It also prompts changes in the representation of the plan
library, i.e., the syntax of Asbru.

6.2 Neighbouring fields of research

As shown in Chapter 1, the ideas presented here can only be a small part of the solution.
Our work showed clearly that there are pressing issues in fields related to this work,
which prevent the wider application of the solutions presented here. Most notably,
modelling and data integration are bottlenecks in the development of computer-aided
application of guidelines.

189

6.2.1 Modelling

All three projects described in Section 5.1.2 showed that modelling a guideline requires
international collaboration.

Since physician time is scarce and computer scientist time lesser so, and also since
physicians are not trained to create abstract models, it is frequent practice that the
computer scientist creates the best approximation of the solution based on the available
information, and then discusses it with the physician. This must be repeated many
times, due to the complexity of the domain and the short time slots available in the
daily life of physicians.

A long-standing effort to reduce this problem is the creation of representations
which are meant to be easily understood by persons without IT training. Our experi-
ences in evaluating MHB [129] showed that a prerequisite for success in this pursuit is
an editing environment with embedded just-in-time learning facilities.

In my next project, I will try to answer these challenges.

6.2.2 Data integration

The guideline modelling community focuses on this issue for the recent decade. Un-
fortunately, progress is hard to obtain given the large number of powerful, and not too
flexible, players. Standards for patient data slowly evolve, and as they do, implemen-
tations must ensure that they can work with them.

In the case of the Asbru interpreter, mapping the parameter names to references in
a standard terminology or ontology can already be done, but a wrapper to an existing
system has not yet been implemented.

190

Chapter 7

Conclusions

Clinical guidelines and protocols are an important means to improve the quality of
care. To make their application more efficient, they are translated to computer-interpretable
models using languages such as Asbru, which represents treatment as hierarchy of
plans. Temporal data abstraction is required to bridge the low-level data from monitor-
ing devices and laboratory results to the high-level concepts used in clinical guidelines
and protocols.

The main research question answered in this thesis is:

How can temporal data abstraction be combined with the execution of
clinical guidelines and protocols in a fashion suitable for high-frequency
domains?

This question brings along the following subquestions. The combination of my
answers to them constitutes my answer to the main research question on an abstract
level. On a detailed level, I described a solution building on these answers in Section 4.

Subquestion 1: How can short response times be established for arbitrar-
ily high volumes of data?

The nucleus of my answer is to create a push network of modules each of which
implements a fraction of the overall functionality. Modules are only activated when
new input for them is available. This means that the computational effort is either the
specific effort of the module concerned, for a minority of modules, or zero, for the
majority.

The claim that the majority of modules does not receive new input in any given
time step cannot be specified mathematically. It is based on the common modelling
practices of knowledge engineers who are aware of performance aspects. However, in
the medical domain, it is common to abstract high-frequency data into lower-frequency
abstractions, because they are more tangible to human reasoning and expression. There-
fore, it is only a natural depiction of the domain knowledge to transform high-frequency
signals into lower-frequency streams of information in the first steps into the network.

An important condition for the above is that this abstraction is not just simple
averaging, but modellers can pick from a rich list of alternatives. This is established

191

in the system described in Section 4 by providing a wide range of abstraction modules
which can be freely combined by the knowledge engineer.

Subquestion 2: How can steady values be abstracted from qualitative
input with varying amounts of noise and gaps of varying length?

The answer to this question needs to differentiate between coping with noise and gaps
in the input data on the one hand; and abstracting quantitative values and abstracting
qualitative values on the other hand.

Noise in the measured signal can be separated in cases which can be isolated,
and those which cannot. In the first case, rules to detect them are part of the domain
knowledge. These can be implemented using rather simple abstraction modules. The
key here is the free combination of a range of modules, to permit the knowledge engi-
neer to tailor the rules to the specific characteristics of the signal. In the second case,
it is treated differently in the following depending on the quantitative or qualitative
nature of the abstractions derived from such data.

For quantitative values, statistics provides a range of accepted solutions. In medicine,
considering the median instead the mean is a popular and very simple solution. More
sophisticated but still computationally well affordable is the following: Compute a
linear regression model of the measurements in a certain time window. Then remove
those for which the square of the residuals (i.e., the vertical distance between the data
point and the regression line) exceed the squared standard deviation multiplied by a
chosen factor.

The statistical approaches are complemented by knowledge-based approaches, where
domain knowledge is encoded into consistency checks between multiple input chan-
nels. This permits to draw a more precise line between distorted and undistorted inputs
in those cases where such domain knowledge is available.

To close gaps, interpolation and extrapolation based on a suitable model of the
underlying function can be used. In practice, linear regression models provide a fair
approximation at limited computational cost. Again, domain knowledge can be used
to anticipate changes which are not expressed in the data, but which are given by the
nature of the measured entity. E.g., the slope of a value can be known to become
level in the normal region for some signals, or maxima like 100% saturation cannot be
exceeded.

In the context of combining temporal data abstraction with guideline execution,
extrapolation is rarely used. Instead, gaps in the input data raise alarms which call for
higher-level action, like starting an emergency plan for disconnected sensors, instead
of speculating about the possible value of an unknown input.

For qualititive values, an important target is to obtain steady values. I.e., once
the border between two qualitative values is crossed, then the output should remain
in the other region for some time. At the same time, delays in showing important
changes must be avoided. The general answer to this challenge is the introduction of
a hysteresis, or threshold for changing to the next qualitative value. Unfortunately, a
fixed threshold is only suitable for fixed amounts of undesired oscillation in the input.

Consequenly, I introduced variable thresholds, which are based on the oscillation
of the signal in the observation period. Statistically justified calculations for these

192

thresholds are the standard deviation, standard error, and the distance of centiles to the
mean.

Specifically, in the Spread algorithm, a linear regression model is calculated for a
moving time window. On the end point of the line, i.e., at the last measurement, or
current time point, the standard error is plotted up and down. Only if the whole length
of the resulting bar passes the horizontal line which denotes the border between two
qualitative regions, the qualitative output value is changed. This generates a memory
or delay effect which is the bigger, the bigger the oscillations are.

An alternative design of the Spread is to draw the bar from the 10% centile to the
90% centile (or any other pair of centiles). This proves useful for asymmetric signals,
where the deviations to the lower side differ significantly from those to the upper side.

Besides the amount of oscillation, the delay time is controlled by the centile cho-
sen, or a factor multiplied with the standard deviation or error.

In cases where the delay effect is unacceptable and there is a normal value defined
in the domain knowledge, the following variant proved stable enough in many cases:
The qualitative value is chosen from that region where the margin nearer to the normal
value lies.

All of the above approaches are based on sliding time windows which aggregate
the measurements of the most recent minutes, with the length configured by the knowl-
edge modeller. Linear regression implicitly fills gaps in the input data, but domain
knowledge will define minimum amounts of data required for reliable estimates of the
measured value. Thanks to the arbitrarily complex network of abstraction modules,
rules such as “the output is considered missing if more than 50% of the input values in
the last 5 minutes or more than 20% in the last minute are invalid”.

Since smoothness in qualitative values is a desire property, filling gaps by means of
linear interpolation is the appropriate method in most cases. Non-linear interpolation
is not precluded by the system design. Summing up, it can be said that the problem of
filling gaps is reduced to the problem of defining measures for the acceptability of the
amount of filling performed.

Subquestion 3: How can the execution of Asbru plans be combined with
temporal data abstraction in an efficient way?

My answer to this question is to translate the semantics of Asbru to a set of state charts
which describe all aspects of plan execution. This way, they can be combined with the
push network of data abstraction modules in a way as efficiently as the data abstraction
is implemented.

For plan execution, the gains from the push architecture are even bigger than for
temporal data abstraction. The original Asbru description foresaw repeated queries of
the patient state, which inevitably must lead to futile processing steps and delays in
reaction. In the implementation described in this thesis, plan execution only consumes
computing time if there is a chance to change any plan state. At the same time, changes
in input data take effect without any delay.

Besides transforming the declarative semantics of plans and environment monitor-
ing into state machines compatible with the operation of the data abstraction network,
I had to devise a set of abstract data points to transport the sometimes complex chunks
of information between these modules implementing monitoring and plan execution.

193

Containing a valid time like input data, they are compatible with the time-stamped
data points passed on between abstraction modules. Various property access methods
are used to extract simple numbers like the duration of found intervals out of complex
entities like the group of intervals matching a certain temporal pattern.

The design of an efficient push network for temporal data abstraction, the provi-
sion of a wide range of abstraction modules to filter noise where possible and to handle
that which cannot be filtered out, and the translation of Asbru syntax to state machines
compatible with the abstraction network altogether forms my answer to the question
“How can temporal data abstraction be combined with the execution of clinical guide-
lines and protocols in a fashion suitable for high-frequency domains?”

As discussed in Section 5.2, the computational effort is proportional to the num-
ber of modules with a few exceptions. These exceptions are Boolean combinations of
intervals and temporal relations between intervals which by their nature demand effort
which is proportional to the length of the history under consideration, or its square.
The rich collection of abstraction modules permits the knowledge engineer to reduce
the length of the history on which the computational effort depends, to the time win-
dow which a human expert would examine, thereby cutting out many combinations of
intervals which are only of theoretical value.

The evaluation of the work presented here was performed on a theoretical and a
practical level. On the theretical level, I presented the computational effort and the
storage requirements of the algorithms I introduced. I also describe their limitations,
and who they meet the objectives set forth in this thesis.

On the practical level, my solutions are fundamental in two lines of application.
On the one hand, the abstraction of steady qualitative values from noisy data permitted
the control of oxygen supply in a neonatal intensive care unit at the level of a human
expert dedicated to the job, and superior to clinical routing.

On the other hand, the integrated framework for temporal data abstraction, moni-
toring, and plan execution forms the basis of the Asbru interpreter which was (and is)
used successfully in three international research projects.

While this thesis focuses on medicine, more specifically intensive care, the de-
scribed methods can be applied to other fields with one or more of the following
properties: (1) temporal data abstraction is combined with plan execution; (2) data
is heterogeneous, voluminous, and time-stamped; (3) noise is an issue; and/or (4) the
modelled knowledge is complex.

194

Acknowledgements

I honestly wish to thank the following persons:

Werner Horn for making my master thesis part of a success story, and
Silvia Miksch for recruiting me for the Asgaard project. Without both
together, I would never have started the work described in this thesis.

Katharina Kaiser for being such a great mediator.

Everyone involved in the Pulsoximetry project for making it a success.

Claudio Eccher for taking the Asbru interpreter to clinical practice.

Michael Paesold for his valuable feedback.

All the nice people I met in numerous countries and projects for the good
times we had.

Isabella Seyfang for my strength.

195

Bibliography

[1] Health level seven arden syntax for medical logic systems, version 2.1
ANSI/HL7 Arden V2.1-2002. Technical report, 2002.

[2] ASTM standard E2210-06. Standard specification for Guideline Elements
Model version 2 (GEM II). Document model for clinical practice guidelines.
ASTM International, West Conshohocken, PA, 2006.

[3] Electronic statistics textbook. Technical report, StatSoft, Inc., 2010. Available
at http://www.statsoft.com/textbook/, last accessed October 20th, 2010. Also
available in print: [71].

[4] Free Merriam-Webster dictionary: Noise, 2010. Available at
http://www.merriam-webster.com/dictionary/noise, last accessed Septem-
ber 22nd, 2010.

[5] Impact of oncodoc2 on guideline compliance in the management of
breast cancer. trial description at clinicaltrials.gov, 2010. Available at
http://clinicaltrials.gov/ct2/show/NCT00728442, last accessed October 14th,
2010.

[6] InferMed product information on Arezzo, 2010. Available at
http://www.infermed.com/index.php/arezzo/arezzo technology last accessed
October 11th, 2010.

[7] Object constraint language, version 2.2. Technical report, Object Management
Group, 2010. Available at http://www.omg.org/spec/OCL/2.2, last accessed Oc-
tober 11th, 2010.

[8] J. F. Allen. Maintaining knowledge about temporal intervals. Communications
of the ACM, pages 832–843, 1983.

[9] L. Anselma and S. Montani. Planning: Supporting and optimizing clinical
guidelines execution. In ten Teije et al. [158], pages 101–120.

[10] M. Balaban, D. Boaz, and Y. Shahar. Analysis of temporal abstraction in medi-
cal databases. In Knowledge Representation meets Databases (KRDB), 2003.

[11] M. Balser, C. Duelli, and W. Reif. Formal semantics of Asbru - an overview.
In Proceedings of the 6th biennial world conference on integrated design and
process technology (IDPT-02), page 1, 2002.

196

[12] B. Beauregard. Oracle database 11g workspace manager overview. Tech-
nical report, Oracle Corporation, World Headquaters, 500 Oracle Park-
way, Redwood Shores, CA 94065, USA, September 2009. Avail-
able at http://www.oracle.com/technetwork/database/twp-appdev-workspace-
manager-11g-128289.pdf, last accessed October 29th, 2010.

[13] M. Beccuti, A. Bottrighi, G. Franceschinis, S. Montani, and P. Terenziani. Mod-
eling clinical guidelines through petri nets. In Artificial Intelligence in Medicine,
volume 5651, pages 61–70, 2009.

[14] S. Y. Belal, A. F. G. Taktak, A. Nevill, and A. Spencer. An intelligent ventilation
and oxygenation management system in neonatal intensive care using fuzzy
trend template fitting. Physiological Measurement, 26:555–570, 2005.

[15] R. Bellazzi, C. Larizza, and G. Lanzola. An HTTP-based server for temporal
abstractions. In IDAMAP 1999 working notes, pages 52–62, 1999.

[16] S. Bernardi, S. Donatelli, and A. Horvath. Implementing compositionality for
stochastic petri nets. International Journal on Software Tools for Technology
Transfer, 3(4), 2001.

[17] D. Berry, B. Wu, S. Pardon, F. Duignan, W. Grimson, P. Gaffney, F. Clarke, and
J. Feely. A test request protocol system, 1999. Presentation given at the IFCC
WorldLab Conference, Bologna, Italy.

[18] R. Bindels, P. A. De Clercq, R. A. G. Winkens, and A. Hasman. A test ordering
system with automated reminders for primary care based on practice guidelines.
International Journal of Medical Informatics, 58-59(1):219–233, 2000.

[19] D. Boaz, M. Balaban, and Y. Shahar. A temporal-abstraction rule language for
medical databases. In Proceeding of the workshop on Intelligent Data Analysis
in Medicine and Pharmacology (IDAMAP) 2003, 2003.

[20] D. Boaz and Y. Shahar. Idan: A distributed temporal-abstraction mediator for
medical databases. In Dojat et al. [43], pages 21–30.

[21] M. H. Böhlenand C. S. Jensen. Seamless integration of time into SQL. Tech-
nical Report R-962049, Aalborg University, Department of Computer Science,
Denmark, 1996.

[22] T. Bosse. An interpreter for clinical guidelines in asbru. Master’s thesis, Vrije
Universiteit Amsterdam, Faculty of Exact Sciences, Amsterdam, 2001.

[23] A. A. Boxwala, M. Peleg, S. W. Tu, O. Ogunyemi, Q. T. Zeng, D. Wang, V. L.
Patel, R. A. Greenes, and E. H. Shortliffe. GLIF3: A representation format
for sharable computer-interpretable clinical practice. Journal of Biomedical
Informatics, 37(3):147–161, 2004.

[24] F. P. Brooks Jr. The computer scientist as toolsmith II. Communications of the
ACM, 39:61–68, March 1996 1996.

197

[25] M. D. Cabana, C. S. Rand, R. Powe, A. W. Wu, M. H. Wilson, P.-A. C. Abboud,
and H. R. Rubin. Why don’t physicians follow clinical practice guidelines? A
framework for improvement. Journal of the American Medical Association,
282:1458–1465, 1999.

[26] S. Chakravarty and Y. Shahar. A constraint-based specification of periodic pat-
terns in time-oriented data. In Proceedings of the TIME-99, pages 29–40. IEEE
Computer Society, 1999.

[27] S. Chakravarty and Y. Shahar. Specification and detection of periodic patterns
in clinical data. In Fourth Workshop on Intelligent Data Analysis in Medicine
and Pharmacology (IDAMAP-99), pages 20–31, 1999.

[28] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-
formed coloured nets for symmetric modelling applications. IEEE Transactions
on Computers, 42(11):1343–1360, 1993.

[29] P. Ciccarese, E. Caffi, L. Boiocchi, A. Halevy, S. Quaglini, and A. Kumar. The
NewGuide project: guidelines, information sharing and learning from excep-
tions. In Dojat et al. [43], pages 18–22.

[30] P. Ciccarese, E. Caffi, L. Boiocchi, S. Quaglini, and M. Stefanelli. A guideline
management system. Studies in Health Technology and Informatics, 107(1):28–
32, 2004.

[31] P. Ciccarese, E. Caffi, S. Quaglini, and M. Stefanelli. Architectures and tools
for innovative health information systems: The Guide project. International
Journal of Medical Informatics, 74(7):553–562, 2005.

[32] P. D. Clayton and G. Hripczak. Decision support in healthcare. International
Journal of Biomedical Computing, 39:59–66, 1995.

[33] P. D. Clayton, T. A. Pryor, O. B. Wigertz, and G. Hripcsak. Issues and structures
for sharing knowledge among decision-making systems: The 1989 arden home-
stead retreat. In L. C. Kingsland, editor, Proceedings of the Thirteenth Annual
Symposium on Computer Applications in Medical Care, pages 116–121, New
York, 1989. IEEE Computer Society Press.

[34] P. De Clercq, K. Kaiser, and A. Hasman. Computer-interpretable guideline
formalisms. In ten Teije et al. [158], pages 22–43.

[35] P.A. De Clercq, J.A. Blom, A. Hasman, and H.H.M. Korsten. A strategy for de-
velopment of practice guidelines for the ICU using automated knowledge acqui-
sition techniques. International Journal of Clinical Monitoring and Computing,
15:109–117, 1999.

[36] P.A. De Clercq, J.A. Blom, A. Hasman, and H.H.M. Korsten. Design and im-
plementation of a framework to support the development of clinical guidelines.
International Journal of Medical Informatics, 64(2-3):285–318, 2001.

198

[37] P.A. De Clercq, A. Hasman, and B.H. Wolffenbuttel. A consumer health record
for supporting the patient-centered management of chronic diseases. Medical
Informatics and Internet Medicine, 28(2):117–127, 2003.

[38] C. Combi, E. Keravnou-Papailiou, and Y. Shahar. Temporal Information Sys-
tems in Medicine. Springer, 2010.

[39] P. de Clercq and A. Hasman. Experiences with the development, implementa-
tion and evaluation of automated decision support systems. Studies in Health
Technology and Informatics, 107:1033–1037, 2004.

[40] P. A. de Clercq, J. A. Blom, H. H. Korsten, and A. Hasman. Approaches for
creating computer-interpretable guidelines that facilitate decision support. Arti-
ficial Intelligence in Medicine, 31(1):1–27, 2004.

[41] Ed de Moel. The annotated M[UMPS] standards, 2010. Available at
http://71.174.62.16/Demo/AnnoStd, last accessed October 10th, 2010.

[42] T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson. Planning under time
constraints in stochastic domains. Artificial Intelligence, 76(1-2):35–74, 1995.

[43] M. Dojat, E. T. Keravnou, and P. Barahona, editors. Artificial Intelligence
in Medicine, 9th Conference on Artificial Intelligence in Medicine in Europe,
AIME 2003, volume 2780 of Lecture Notes in Computer Science. Springer,
2003.

[44] K. Dube, E. Mansour, and B. Wu. Supporting collaboration and information
sharing in computer-based clinical guideline management. In Proceedings of
18th IEEE Symposium on Computer-based Medical Systems (CBMS 2005),
pages 232–237. IEEE Press, 2005.

[45] J. Dufour, J. Bouvenot, P. Ambrosi, D. Fieschi, and M. Fieschi. Textual guide-
lines versus computable guidelines: A comparative study in the framework of
the PRESGUID project in order to appreciate the impact of guideline format on
physician compliance. In Proceedings of the AMIA Symposium, pages 219–223,
2006.

[46] J. C. Dufour, D. Fieschi, and M. Fieschi. Coupling computer-interpretable
guidelines with a drug-database through a web-based system – the PRESGUID
project. BMC Medical Informatics and Decision Making, 4(1), 2004.

[47] C. Eccher, A. Seyfang, A. Ferro, and S. Miksch. Embedding oncologic proto-
cols into the provision of care: The Oncocure project. In The XXII International
Conference of European Federation for Medical Informatics. IOS Press, 2009.

[48] C. Eccher, A. Seyfang, A. Ferro, and S. Miksch. Updating a protocol-based
decision-support systems knowledge base: A breast cancer case study. In Lec-
ture Notes in Computer Science, volume 6512, pages 126–138, 2011.

[49] M. Eccles, E. McColl, N. Steen, N. Rousseau, J. Grimshaw, D. Parkin, and
I. Purves. Effect of computerised evidence based guidelines on management of

199

asthma and angina in adults in primary care: cluster randomised controlled trial.
British Medical Journal, 325:941, 2002.

[50] C. Eken, U. Bilge, M. Kartal, and O. Eray. Artificial neural network, genetic al-
gorithm, and logistic regression applications for predicting renal colic in emer-
gency settings. International Journal of Emergency Medicine, 2(2):99–105,
June 2009.

[51] P. J. Embi, A. Jain, J. Clark, S. Bizjack, R. Hornung, and C. M. Harris. Effect
of a clinical trial alert system on physician participation in trial recruitment.
Archives of Internal Medicine, 165(19):2272–2277, October 24 2005.

[52] K. Erol, J. Hendler, and D. S. Nau. Umcp: A sound and complete procedure for
hierarchical task-network planning. In Proceedings of the International Con-
ference on AI Planning Systems (AIPS), pages 249–254, 1994.

[53] D. Fällman and A. Grönlund. Rigor and relevance remodeled. In Proceedings
of Information Systems Research in Scandinavia (IRIS25), 2002.

[54] M. J. Field and K. H. Lohr. Clinical Practice Guidelines: Directions for a New
Program. National Academy Press, 1990.

[55] P. E. Friedland and Y. Iwasaki. The concept and implementaion of skeletal
plans. Journal of Automated Reasoning, 1(2):161–208, 1985.

[56] C. Fuchsberger. Entwicklung einer Ausführungseinheit für Asbru Light. Mas-
ter’s thesis, Vienna University of Technology, Institute of Software Technology
and Interactive Systems, 2003.

[57] A. Garg, N. Adhikari, H. McDonald, M. Rosas-Arellano, P. Devereaux,
J. Beyene, J. Sam, and R. Haynes. Effects of computerized clinical decision
support systems on practitioner performance and patient outcomes: a system-
atic review. Journal of the American Medical Association, 293(10):1223–1238,
2005.

[58] E. Gatziu, A. Geppert, and K. R. Dittrich. Integrating active concepts into an
object-oriented database system. In Proceedings of the 3rd International Work-
shop on Database Programming Languages, pages 399–415, 1991.

[59] P. Gershkovich and R. N. Shiffman. An implementation framework for GEM
encoded guidelines. In AMIA Symposium, pages 204–208, 2001.

[60] C. Gordon and M. Veloso. Guidelines in healthcare: the experience of the
Prestige project. Studies in Health Technology and Informatics, 68:733–738,
1999.

[61] R. Goud, M. van Engen-Verheul, N.F. de Keizer, R. Bal, A. Hasman, I.M. Helle-
mans, and N. Peek. The effect of computerized decision support on barriers to
guideline implementation: A qualitative study in outpatient cardiac rehabilita-
tion. International Journal of Medical Informatics, 79(6):430 – 437, 2010.

200

[62] J. M. Grimshaw and I. T. Russell. Effect of clinical guidelines on medical
practice? A systematic review of rigorous evaluations. Lancet, 342:317–322,
1993.

[63] A. Guarnero, M. Marzuoli, G. Molino, P. Terenziani, M. Torchio, and K. Vanni.
Contextual and temporal clinical guidelines. In Proceedings of the AMIA Sym-
posium, pages 683–687, 1998.

[64] G. H. Guyatt, D. L. Sackett, J. C. Sinclair, R. Hayward, D. J. Cook, R. J. Cook,
and et al. Users’ guide to the medical literature ix: a method for grading
health care recommendations. Journal of the American Medical Association,
274:1800–1804, 1995.

[65] C. G. Hagerty, D. Pickens, C. Kulikowski, and F. Sonnenberg. HGML: a hyper-
text guideline markup language. In Proceedings of the AMIA Symposium, pages
325–329, 2000.

[66] I. J. Haimowitz and I. S. Kohane. Managing temporal worlds for medical trend
diagnosis. Artificial Intelligence in Medicine, 8(3):299–321, 1996.

[67] I. J. Haimowitz, P. Phuc Le, and I. S. Kohane. Clinical monitoring using
regression-based trend templates. Artificial Intelligence in Medicine, 7:473–
496, 1995.

[68] Keith W. Hare. JCC’s SQL standards page. Technical report, JCC Consulting,
Inc., 2010. Webpage at http://www.jcc.com/sql.htm, last accessed October 31st,
2010.

[69] R. Haux. Medical informatics: Past, present, future. International Journal of
Medical Informatics, 79(9):599 – 610, 2010.

[70] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall,
1999.

[71] T. Hill and P. Lewicki. STATISTICS Methods and Applications. StatSoft, Tulsa,
OK, USA, 2007.

[72] B. Hjorth. EEG analysis based on time domain properties. Electroencephalog-
raphy and Clinical Neurophysiology, 29:306–310, 1970.

[73] J. Hojstrup. A statistical data screening procedure. Measurement Science and
Technology, 4(2):153–157, 1992.

[74] W. Horn. AI in medicine on its way from knowledge-intensive to data-intensive
systems. Artificial Intelligence in Medicine, 23(1):5–12, 2001.

[75] W. Horn, S. Miksch, G. Egghart, C. Popow, and F. Paky. Effective data valida-
tion of high-frequency data: Time-point-, time-interval-, and trend-based meth-
ods. Computers in Biology and Medicine, 27(5):389–409, 1997.

[76] G. Hripcsak, P. Ludemann, T. A. Pryor, O. B. Wigertz, and P. D. Clayton. Ratio-
nale for the Arden syntax. Computers and Biomedical Research, 27:291–324,
1994.

201

[77] J. Hunter and N. McIntosh. Knowledge-based event detection in complex time
series data. In Artificial Intelligence in Medicine, pages 271–280, Berlin, 1999.
Springer.

[78] D.M. Van Hyfte, P.F. de Vries Robbe, T.B. Tjandra-Maga, A.A. van der Maas,
and F.G. Zitman. Towards a more rational use of psychoactive substances in
clinical practice. Pharmacopsychiatry, 34(1):13–18, 2001.

[79] D. Isern and A. Moreno. Computer-based execution of clinical guidelines: A
review. International Journal of Medical Informatics, 77(12):787 – 808, 2008.

[80] D. Isern, D. Sanchez, and A. Moreno. HeCaSe2: a multi-agent ontology-driven
guideline enactment engine. In Proceedings of Fifth International Central and
Eastern European Conference on Multi-agent Systems (CEEMAS 2007), vol-
ume 4696, page 322324, Berlin, 2007. Springer.

[81] P.E. Johansson, G.I. Petersson, and G.C. Nilsson. Personal digital assistant with
a barcode reader–a medical decision support system for nurses in home care.
International Journal of Medical Informatics, 79(4):232 – 242, 2010.

[82] T. R. Campion Jr., L. R. Waitman, A. K. May, A. Ozdas, N. M. Lorenzi, and
C. S. Gadd. Social, organizational, and contextual characteristics of clinical
decision support systems for intensive insulin therapy: A literature review and
case study. International Journal of Medical Informatics, 79(1):31 – 43, 2010.

[83] M. G. Kahn, J. C. Ferguson, E. H. Shortliffe, and L. M. Fagan. Representa-
tion and use of temporal information in ONCOCIN. In Proceedings of the An-
nual Symposium on Compututer Applications in Medical Care, pages 172–176,
1985.

[84] H. C. Karadimas, F. Hemery, J. Simonnet, and E. Lepage. Arden/j: An architec-
ture for MLM execution on the Java platform. Journal of the American Medical
Informatics Association, 9:359–368, 2002.

[85] K. Kawamoto, C. Houlihan, E. Balas, and D. Lobach. Improving clinical prac-
tice using clinical decision support systems: a systematic review of trials to
identify features critical to success. British Medical Journal, 330(7494):765,
2005.

[86] D. L. Kent, E. H. Shortliffe, R. W. Carlson, M. B. Bischoff, and C. D. Jacobs.
Improvements in data collection through physician use of a computer-based
chemotherapy treatment consultant. Journal of Clinical Oncology, 3:1409–
1417, 1985.

[87] R. A. Kuhn and R. S. Reider. A C++ framework for developing Medical Logic
Modules and an Arden Syntax compiler. Computers in Biology and Medicine,
24(5):365–370, 1994.

[88] O. Lassila and R. R. Swick. Resource description framework (RDF). model
and syntax specification. w3c recommendation. Report No REC-rdf-syntax-
19990222, World Wide Web Consortium, Cambridge, 1999.

202

[89] P. V. Le. A clinical trial of TrenDx: an automated trend-detection program.
Master’s thesis, Massachusetts Institute of Technology. Dept. of Electrical En-
gineering and Computer Science, 1996.

[90] E. Mansour, K. Dube, and B. Wu. Managing complex information in reactive
applications using an active temporal XML database approach. In Proceed-
ings of the Ninth International Conference on Enterprise Information Systems
(ICEIS 2007), pages 520–523, 2007.

[91] B. McCauley, I. Young, I. Clark, and M. Peters. Incorporation of the arden
syntax within the reimplementation of a closed-loop decision support system.
Computers in Biomedical Research, 29(6):507–518, Dec 1996.

[92] S. Miksch, W. Horn, C. Popow, and F. Paky. Utilizing temporal data abstrac-
tion for data validation and therapy planning for artificially ventilated newborn
infants. Artifial Intelligence in Medicine, 8(6):543–576, November 1996.

[93] S. Miksch and A. Seyfang. Continual planning with time-oriented, skeletal
plans. In Proceedings of the 14th European Conference on Artificial Intelligence
(ECAI 2000), pages 511–515, Berlin, 2000. IOS Press.

[94] S. Miksch, A. Seyfang, W. Horn, and C. Popow. Abstracting steady qualitative
descriptions over time from noisy, high-frequency data. In Artificial Intelligence
in Medicine, pages 281–290, Berlin, 1999. Springer.

[95] S. Miksch, Y. Shahar, and P. Johnson. Asbru: A task- specific, intention-based,
and time-oriented language for representing skeletal plans. In 7th Workshop on
Knowledge Engineering: Methods & Languages (KEML-97), 1997.

[96] J. Nguyen, Y. Shahar, S. W. Tu, A. K. Das, and M. A. Musen. A temporal
database mediator for protocol-based decision support. In AMIA Annual Fall
Symposium, pages 298–302, 1997.

[97] M. J. O’Connor, W. E. Grosso, S. W. Tu, and M. A. Musen. RASTA: A dis-
tributed temporal abstraction system to facilitate knowledge-driven monitoring
of clinical databases. In MedInfo 2001, pages 508–512, 2001.

[98] M. J. O’Connor, S. W. Tu, and M. A. Musen. Applying temporal joins to clinical
databases. In AMIA Annual Symposium, pages 335–339, 1999.

[99] M. J. O’Connor, S. W. Tu, and M. A. Musen. Representation of temporal inde-
terminacy in clinical databases. In AMIA Annual Symposium, 2000.

[100] M. J. O’Connor, S. W. Tu, and M. A. Musen. The Chronus II temporal database
mediator. In AMIA Annual Symposium, 2002.

[101] O. Ogunyemi. The Guideline Expression Language (GEL) user’s guide. Tech-
nical Report DSG-TR-2000-001, Brigham and Women’s Hospital, 2000.

[102] L. Ohno-Machado, J. H. Gennari, S. N. Murphy, N. L. Jain, S. W. Tu, D. E.
Oliver, E. Pattison-Gordon, R. A. Greenes, E. H. Shortliffe, and O. Barnett. The

203

Guideline Interchange Format: a model for representing guidelines. Journal of
the American Medical Informatics Association, 5(4):357372, 1998.

[103] M. Paesold. Monitoring temporal patterns in guideline-based care. Master’s
thesis, Institute of Software Technology and Interactive Systems, Vienna Uni-
versity of Technology, 2006.

[104] N. W. Paton and O. Diaz. Active database systems. ACM Computing Surveys,
31(1), March 1999.

[105] M. Peleg, S. Keren, and Y. Denekamp. Mapping computerized clinical guide-
lines to electronic medical records: Knowledge-Data Ontological Mapper
(KDOM). Journal of Biomedical Informatics, 41:180–201, February 2008.

[106] M. Peleg, S. Tu, J. Bury, P. Ciccarese, J. Fox, R. Greenes, R. Hall, P John-
son, N. Jones, A. Kumar, S. Miksch, S. Quaglini, A. Seyfang, E. Shortliffe, and
M. Stefanelli. Comparing computer-interpretable guideline models: A case-
study approach. Journal of the American Medical Informatics Association,
10(1), 2003.

[107] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall,
1981.

[108] I. N. Purves. Clarifications and lessons from this study. In Replies to Effect of
computerised evidence based guidelines on management of asthma and angina
in adults in primary care: cluster randomised controlled trial, 2003. Available
at http://www.bmj.com/content/325/7370/941/reply last accessed October 11th,
2010.

[109] S. Quaglini, M. Stefanelli, A. Cavallini, G. Micieli, C. Fassino, and C. Mossa.
Guideline-based careflow systems. Artificial Intelligence in Medicine, 20(1):5–
22, 2000.

[110] P. Ram, D. Berg, S. W. Tu, J. G. Mansfield, Q. Ye, R. Abarbanel, and N. Beard.
Executing clinical practice guidelines using the SAGE execution engine. In
Proceedings Of The 11th World Congress On Medical Informatics, pages 251–
255, 2004.

[111] R. Randell and D. Dowding. Organisational influences on nurses’ use of clin-
ical decision support systems. International Journal of Medical Informatics,
79(6):412 – 421, 2010.

[112] J.-F. Rit. Propagating temporal constraints for scheduling. In Proceedings of the
Fifth National Conference on Artificial Intelligence (AAAI-86), pages 383–388,
1986.

[113] J. Rogers, N. L. Jain, and G. M. Hayes. Evaluation of an implementation of
prodigy phase two. In AMIA Symposium, pages 604–608, 1999.

[114] K. Rosenbrand, J. van Croonenborg, and J. Wittenberg. Guideline development.
In ten Teije et al. [158], pages 1–21.

204

[115] S.E. Ross, L.M. Schilling, D.H. Fernald, A.J. Davidson, and D.R. West. Health
information exchange in small-to-medium sized family medicine practices: Mo-
tivators, barriers, and potential facilitators of adoption. International Journal of
Medical Informatics, 79(2):123 – 129, 2010.

[116] M. Ruzicka and V. Svatek. Mark-up based analysis of narrative guidelines with
the Stepper tool. Studies in Health Technology and Informatics, 101:132–136,
2004.

[117] A. C. Scott, M. B. Bischoff, C. D. Jacobs, and E. H. Shortliffe. ONCOCIN:
A cancer protocol consultant. In Proceedings of the Workshop on the Role of
Computers in Cancer Clinical Trials, 1982.

[118] M. Sedlmayr. Proaktive Assistenz zur kontextabhängigen und zielori-
entierten Unterstützung bei der Indikationsstellung und Anwendung
von Behandlungsmanahmen in der Intensivmedizin. PhD thesis,
RWTH Aachen University, 2008. Available at http://darwin.bth.rwth-
aachen.de/opus3/volltexte/2009/2688/pdf/Sedlmayr Martin.pdf last accessed
October 19th, 2010.

[119] M. Sedlmayr, T. Rose, T. Greiser, R. Röhrig, M. Meister, and A. Michel-
Backofen. Automating standard operating procedures in intensive care. In
Advanced Information Systems Engineering, volume 4495 of Lecture Notes in
Computer Science, pages 516–530, 2007.

[120] M. Sedlmayr, T. Rose, R. Röhrig, and M. Meister. A workflow approach to-
wards GLIF execution. In Workshop on AI Techniques in Healthcare - Evidence-
based Guidelines and Protocols, held in conjunction with 17th European Con-
ference on Artificial Intelligence, page 29, 2006.

[121] B. Seroussi, J. Bouaud, E. Antoine, L. Zelek, and M. Spielmann. Using ON-
CODOC as a computer-based eligibility screening system to improve accrual
onto breast cancer clinical trials lecture notes in computer science. In Artificial
Intelligence in Medicine, volume 2101, pages 421–430, 2001.

[122] B. Seroussi, J. Bouaud, D. L. Denke, H. Falcoff, and J. Julien. Using knowledge
modelling to measure how clinical practice could actually be evidence-based: a
preliminary analysis with arterial hypertension management. Studies in Health
Technology and Informatics, 150:668–672, 2009.

[123] B. Seroussi, J. Bouaud, H. Dreau, H. Falcoff, C. Riou, M. Joubert, C. Simon,
G. Simon, and A. Venot. ASTI: a guideline-based drug-ordering system for
primary care. Studies in Health Technology and Informatics, 84(1):528–532,
2001.

[124] A. Seyfang, K. Kaiser, and S. Miksch. Modelling clinical guidelines and proto-
cols for the prevention of risks against patient safety. In The XXII International
Conference of European Federation for Medical Informatics. IOS Press, 2009.

205

[125] A. Seyfang, R. Kosara, and S. Miksch. Asbru’s reference manual, Asbru version
7.3. Technical Report Asgaard-TR-2000-3, Vienna University of Technology,
Institute of Software Technology, 2002.

[126] A. Seyfang and S. Miksch. Advanced temporal data abstraction for guideline
execution. In Symposium on Computerized Guidelines and Protocols (CGP
2004), pages 88–102. IOS Press, 2004.

[127] A. Seyfang and S. Miksch. Asgaard’s contribution to the guideline rep-
resentation comparison. Technical report, Institute for Software Tech-
nology, Vienna University of Technology, Austria, 2010. Available at
http://www.openclinical.org/docs/ext/cigs/comparison/Cough documentation Asbru.pdf,
last accessed September 21th, 2010.

[128] A. Seyfang, S. Miksch, W. Horn, M. S. Urschitz, C. Popow, and C. F. Poets.
Using time-oriented data abstraction methods to optimize oxygen supply for
neonates. In Artificial Intelligence in Medicine, pages 217–226, Berlin, 2001.
Springer.

[129] A. Seyfang, S. Miksch, C. Polo-Conde, J. Wittenberg, M. Marcos, and
K. Rosenbrand. MHB - a many-headed bridge between informal and for-
mal guideline representations. In 10th Conference on Artificial Intelligence in
Medicine (AIME 2005), pages 146–150. Springer, 2005.

[130] A. Seyfang, S. Miksch, P. Votruba, W. Reif, M. Balser, and J. Schmitt. Specifi-
cation of AsbruLight. Technical Report Asgaard-TR-2004-6, Vienna University
of Technology, Austria; University of Augsburg, Germany, 2004.

[131] A. Seyfang, M. Paesold, P. Votruba, and S. Miksch. Improving the execution of
clinical guidelines and temporal data abstraction in high-frequency domains. In
ten Teije et al. [158], pages 978–971.

[132] Y. Shahar. A framework for knowledge-based temporal abstraction. Artificial
Intelligence, 90(1-2):79–133, 1997.

[133] Y. Shahar and C. Cheng. Knowledge-based visualization of time-oriented clin-
ical data. In AMIA Symposium, pages 155–159, 1998.

[134] Y. Shahar, D. Goren-Bar, D. Boaz, and G. Tahan. Distributed, intelligent, in-
teractive visualization and exploration of time-oriented clinical data and their
abstractions. Artificial Intelligence in Medicine, Dec 9 2005.

[135] Y. Shahar, S. Miksch, and P. Johnson. The asgaard project: A task-specific
framework for the application and critiquing of time-oriented clinical guide-
lines. Artificial Intelligence in Medicine, 14:29–51, 1998.

[136] Y. Shahar, E. Shalom, A. Mayaffit, O. Young, M. Galperin, S. B. Martins, and
M. K. Goldstein. A distributed, collaborative, structuring model for a clinical-
guideline digital-library. In Proceedings of the 2003 AMIA Annual Fall Sympo-
sium, 2003.

206

[137] Y. Shahar, O. Young, E. Shalom, A. Mayaffit, R. Moskovitch, A. Hessing, and
M. Galperin. DeGeL: A hybrid, multiple-ontology framework for specification
and retrieval of clinical guidelines. In Dojat et al. [43], pages 122 – 131.

[138] V. Shalev, G. Chodick, and A.D. Heymann. Format change of a laboratory
test order form affects physician behavior. International Journal of Medical
Informatics, 78(10):639 – 644, 2009.

[139] R. D. Shankar and M. A. Musen. Justification of automated decision-making:
Medical explanation or medical argument? In AMIA Symposium, pages 395–
399, 1999.

[140] E. H. Sherman, G. Hripcsak, J. Starren, R. A. Jenders, and P. Clayton. Us-
ing intermediate states to improve the ability of the arden syntax to implement
care plans and reuse knowledge. In Proceedings of the Annual Symposium on
Computer Application in Medical Care, pages 238–242, 1995.

[141] R. N. Shiffman, B. T. Karras, A. Agrawal, R. Chen, L. Marenco, and S. Nath.
Gem: A proposal for a more comprehensive guideline document model using
xml. Journal of the American Medical Informatics Association, 7(5):488–498,
2000.

[142] R. N. Shiffman, P. Shekelle, J. M. Overhage, J. Slutsky, J. Grimshaw, and
AM. Deshpande. Standardized reporting of clinical practice guidelines; a pro-
posal from the Conference on Guideline Standardization. Annals of Internal
Medicine, 139:493–498, 2003.

[143] Y. Shoham. Temporal logics in AI: Semantical and ontological considerations.
Artificial Intelligence, 33:89–104, 1987.

[144] D. Sittig, M. Krall, R. Dykstra, A. Russell, and H. Chin. A survey of factors
affecting clinician acceptance of clinical decision support. BMC Medical Infor-
matics and Decision Making, 6(6), 2006.

[145] S. Skonetzki, H. J. Gausepohl, M van der Haak, S. Knaebel, O. Linderkamp, and
T. Wetter. HELEN, a modular framework for representing and implementing
clinical practice guidelines. Methods of Informatics in Medicine, 43:413–426,
2004.

[146] R. T. Snodgrass. The TSQL2 Temporal Query Language. Kluwer Academic
Publishers, 1995.

[147] R. T. Snodgrass. Tsql2 and sql3 interactions, 2010. Webpage at
http://www.cs.arizona.edu/people/rts/sql3.html, last accessed October 31st,
2010.

[148] R. T. Snodgrass, I. Ahn, G. Ariav, D. Batory, J. Clifford, C. E. DyresonR. Z.
Elmasri, F. Grandi, W. Käfer, N. Kline, K. Kulkarni, T. Y. C. Leung, N. Lorent-
zos, J. F. Roddick, A. Segev, M. D. Soo, and S. M. Sripada. Tsql2 language
specifcation. Technical report, Department of Computer Science, University of
Arizona, Tucson, AZ 85721, USA, September 1994.

207

[149] R. T. Snodgrass, M. H. Bohlen, C. S. Jensen, and A. Steiner. Transitioning
temporal support in tsql2 to sql3. in , o. etzion, s. jajodia, and. In Temporal
Databases: Research and Practice, pages 150–194, 1998.

[150] D. S. Solomon, C. J. Wroe, A. L. Rector, J. E. Rodgers, J. L. Fistein, and P. John-
son. A reference terminology for drugs. Journal of the American Medical In-
formatics Association, 1999 Special Conference Issue:152–155, 1999.

[151] J. H. Song, S. S. Venkatesh, E. A. Conant, P. H. Arger, and CM. Sehgal.
Comparative analysis of logistic regression and artificial neural network for
computer-aided diagnosis of breast masses. Academic radiology, 12(4):487–
495, April 2005.

[152] M. Sordo, O. Ogunyemi, A. A. Boxwala, R. A. Greenes, and S. Tu. GELLO:
An object-oriented query and expression language for clinical decision support.
In AMIA Annual Fall Symposium 2003, page 1012, 2003.

[153] A. Spokoiny and Y. Shahar. Momentum-an active time–oriented database for
intelligent abstraction, exploration and analysis of clinical data. In Proceeding
of the workshop on Intelligent Data Analysis in Medicine and Pharmacology
(IDAMAP) 2003, 2003.

[154] R. Steele and J. Fox. Enhancing conventional web content with intelligent
knowledge processing. In Dojat et al. [43], pages 142–151.

[155] D. R. Sutton and J. Fox. The syntax and semantics of the PROforma guideline
modelling language. Journal of the American Medical Informatics Association,
10(5):433–443, Sep–Oct 2003.

[156] D. R. Sutton and J. Fox. The syntax and semantics of the proforma guideline
modelling language. Journal of the American Medical Informatics Association,
10(5):433–443, Sep 2003.

[157] V. Svatek and M. Ruzicka. Step-by-step mark-up of medical guideline doc-
uments. International Journal of Medical Informatics, 70(2-3):329–335, July
2003.

[158] A. ten Teije, S. Miksch, and P. Lucas, editors. Computer-based Medical Guide-
lines and Protocols: A Primer and Current Trends, volume 139 of Studies in
Health Technology and Informatics. IOS Press, 2008.

[159] A. ten Teije, J. van Croonenborg, C. Duelli, F. van Harmelen, P. Lucas,
S. Miksch, W. Reif, K. Rosenbrand, and A. Seyfang. Improving medical pro-
tocols by formal methods. Artifical Intelligence in Medicine, 36(3):193–209,
2006.

[160] P. Terenziani, F. Mastromonaco, G. Molino, and M. Torchio. Executing clinical
guidelines: temporal issues. In Proc AMIA Symp, pages 848–852, 2000.

[161] P. Terenziani, G. Molino, and M. Torchio. A modular approach for representing
and executing clinical guidelines. Artificial Intelligence in Medicine, 23(3):249–
276, Nov 2001.

208

[162] P. Terenziani, S. Montani, A. Bottrighi, M. Torchio, G. Molino, and G. Cor-
rendo. The GLARE approach to clinical guidelines. Studies in Health Technol-
ogy and Informatics, 101:162–166, 2004.

[163] Sven Tiffe. Defining medical concepts by linguistic variables with fuzzy Arden
syntax. In AMIA Annual Symposium, page 796800, 2002.

[164] S. Toulmin. The uses of argument. Cambridge University Press, Cambridge
MA, 1958.

[165] S. Tu and M. Musen. A flexible approach to guideline modeling. In AMIA
Annual Symposium, pages 475–497, Washington D.C., 1999. Hanley & Belfus.

[166] S. W. Tu, J. G. Mansfield, T. Weida, D. Berg, K. M. Hrabak, C. Parker, J. Mc-
Clay, R. McClure, M. A. Nyman, J. Glasgow, J. R. Campbell, M. A. Musen,
and R. Abarbanel. The SAGE guideline model: Achievements and overview.
Journal of the American Medical Informatics Association, 14:589–598, 2007.

[167] S. W. Tu and M. A. Musen. From guideline modeling to guideline execution:
Defining guideline-based decision-support services. In AMIA Symposium, pages
863–867, 2000.

[168] S. W. Tu and M. A. Musen. Modeling data and knowledge in the EON guideline
architecture. In MedInfo 2001, London, UK, 2001.

[169] M. S. Urschitz, W. Horn, A. Seyfang, A. Hallenberger, T. Herberts, S. Miksch,
C. Popow, I. Mueller-Hansen, and C. F. Poets. Automatic control of the inspired
oxygen fraction in preterm infants, a randomized cross-over trial. American
Journal Respiratory and Critical Care Medicine (AJRCCM), 170:1095–1100,
2004.

[170] F. Verhoeven, M.F. Steehouder, R.M.G. Hendrix, and J.E.W.C. van Gemert-
Pijnen. Factors affecting health care workers’ adoption of a website with
infection control guidelines. International Journal of Medical Informatics,
78(10):663 – 678, 2009.

[171] R. Walters. M Programming: A Comprehensive Guide. Digital Press, 1997.
ISBN 1-55558-167-6.

[172] D. Wang, M. Peleg, D. Bu, M. Cantor, G. Landesberg, E. Lunenfeld, S. Tu,
G. E. Kaiser, G. Hripcsak, V. Patel, and E. H. Shortliffe. GESDOR - a generic
execution model for sharing of computer-interpretable clinical practice guide-
lines. In Proceedings of the American Medical Informatics Annual Symposium,
page 694698, 2003.

[173] D. Wang, M. Peleg, S. W. Tu, A. A. Boxwala, O. Ogunyemi, Q. T. Zeng,
R. A. Greenes, V. L. Patel, and E. H. Shortliffe. Design and implementation
of the GLIF3 guideline execution engine. Journal of Biomedical Informatics,
37(5):305–318, 2004.

209

[174] C. Weng, S. W. Tu, I. Sim, and R. Richesson. Formal representation of eligibil-
ity criteria: A literature review. Journal of the American Medical Informatics
Association, 43(3):451–467, Jun 2010.

[175] B. Wu and K. Dube. PLAN: a framework and specification language with an
event-condition-action (ECA) mechanism for clinical test request protocols. In
Proceedings of the 34th Annual Hawaii International Conference on System
Sciences, page 10, 2001.

[176] B. Wu, E. Mansour, and K. Dube. Complex information management using a
framework supported by ECA rules in XML. In Proceedings of the 2007 inter-
national conference on Advances in rule interchange and applications, pages
224–231, 2007.

[177] J. C. Wyatt and D. J. Spiegelhalter. Field trials of medical decision-aids: po-
tential problems and solutions. In Proceedings of the Annual Symposium on
Computer Applications in Medicine and Care, pages 3–7, 1991.

[178] J. Van Wyk, M. van Wijk, M. Sturkenboom, M. Mosseveld, P. Moorman, and
J. van der Lei. Electronic alerts versus on-demand decision support to im-
prove dyslipidemia treatment: a cluster randomized controlled trial. Circula-
tion, 117(3):371–378, 2008.

[179] O. Young and Y. Shahar. Spock: A hybrid model for runtime application of As-
bru clinical guidelines. In Proceedings Of The 11th World Congress On Medical
Informatics (Medinfo) (CD), page 1922, 2004.

[180] O. Young and Y. Shahar. Applying hybrid-asbru clinical guidelines using the
Spock system. In AMIA Annual Symposium, pages 854–858, 2005.

[181] O. Young, Y. Shahar, Y. Liel, E. Lunenfeld, G. Bar, E. Shalom, S. B. Martins,
L. T. Vaszar, T. Marom, and MK. Goldstein. Runtime application of Hybrid–
Asbru clinical guidelines. Journal of Biomedical Informatics, 40(5):507–526,
Oct 2007.

[182] P. Yu, S. Gandhidasan, and A.A. Miller. Different usage of the same oncology
information system in two hospitals in Sydney–lessons go beyond the initial
introduction. International Journal of Medical Informatics, 79(6):422 – 429,
2010.

[183] L. Zoubek. Automatic Classification of Human Sleep Recordings Combining
Artifact Identification and Relevant Features Selection. PhD thesis, GIPSA-lab,
Universite Joseph Fourier, Grenoble, 2008.

[184] L. Zoubek, S. Charbonnier, S. Lesecq, A. Buguet, and F. Chapotot. A two-
step sleep/wake stages classifier taking into account artifacts in the polysomno-
graphic signals. In Proceedings of the 17th World Congress of the International
Federation of Automatic Control, 2008.

[185] M. H. Zweig and G. Campbell. Receiver-operating characteristic (ROC)
plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry,
39(4):561–577, 1993.

210

Curriculum Vitae

Address Andreas Seyfang
Dr. Josef Reschplatz 1/21
1170 Wien
Austria

Date of Birth May 5th, 1966

Education

Oct. 1989 – Jun. 1996 M.S. studies in computer science
at the Vienna University of Technology

Since 1996 Ph.D. studies in computer science
at the Vienna University of Technology

Project Experience

Jan. 1995 – Jun. 1996 VIE-PNN: Parenteral Nutrition Solutions for Neonates.
For my master thesis at the Institute of Medical Cyber-
netics and Artificial Intelligence, I implemented a web-
based user interface which brought the break-through
into practical application for an existing knowledge-
based system.

Oct. 1998 – May 2002 Asgaard: Designing task-specific problem-solving
methods to support the design and execution of time-
oriented skeletal plans.
I further developed the Asbru representation to the form
currently in use, a framework to combine temporal data
abstraction with plan execution, and various data ab-
straction algorithms, as described in this thesis.

211

Since 1999 Pulsoximetry: Controlling the oxigen supply in
neonates based on input from pulsoximetry.
I designed and implemented the data abstraction and
control algorithm (in close collaboration with experts
of neonatology) and actively participated in the evalua-
tion.

Jan. 2002 – Dec. 2002
and
Jan. 2004 – Jun. 2006

Protocure I + II: Integrating formal methods in the de-
velopment process of medical guidelines and protocols.
I designed an intermediate representation (MHB) to
bridge the gap in representations between the natural
language text of the guideline and Asbru. Furthermore,
I modelled the sample guideline im MHB and Asbru,
and designed the execution unit for Asbru.

Mar. 2007 – Dec. 2009 Oncocure: Supporting medical treatment of breast can-
cer by protocol execution.
I created the Asbru model of the protocol used at the
partner hospital and assisted the integration of the As-
bru execution engine with the Electronic Patient Man-
agement System at the hospital.

Jan. 2008 – Sep. 2011 Remine: High-performance prediction, detection and
monitoring platform for patient safety risk management
I tought the use of MHB to partners and modelled
guidelines and protocols in MHB and Asbru.

Since Nov. 2010 Brigid: Support for Authoring and Transformation of
Clinical Guidelines and Protocols
I develop the representations MHB and Asbru further
and create a distributed, multi-author editing environ-
ment.

Publications Please see
http://www.ifs.tuwien.ac.at/

˜seyfang/publications.html

212

http://www.ifs.tuwien.ac.at/~seyfang/publications.html
http://www.ifs.tuwien.ac.at/~seyfang/publications.html

	Introduction and Motivation
	Domain description
	Guidelines and decision support
	Temporal data abstraction
	Integration
	Importance of the field

	Research Question
	Main Question
	Sub Questions

	Approach
	Dissemination
	First ideas on the system architecture
	Implementation of the Asbru interpreter
	The Spread algorithm and its application
	Bridging to the patient record

	Conventions
	Abbreviations

	Related Work
	Computer-interpretable models of guidelines and protocols
	Individual guideline representations
	Comparisons
	Discussion

	Temporal data abstraction
	Conceptual work
	Definitions by Shoham
	Implemented systems
	Discussion

	Neighbouring fields
	Statistics
	Artificial Neural Networks
	Planning

	Problem Description and Objectives
	Objectives related to data abstraction
	Coping with noisy and missing data
	Flexible definition of time windows for statistical analysis
	Utility functions
	Integration of abstraction modules into a uniform framework

	Objectives related to guideline execution
	Online-algorithms for the detection of temporal patterns
	Integration of plan execution
	Bridge from Asbru to abstraction modules

	Solutions
	Uniform framework
	The nature of data
	Implementation decisions
	Overview of principal parts

	Utility functions
	Arithmetic operations
	Date and time
	Logical operations
	Miscellaneous abstractions

	Multiple sliding time windows for statistical analysis
	Types of time windows
	Analyzing time windows
	Accessing time window properties
	Properties and abstractions of linear regression

	Coping with noisy data
	Error detection
	Rule-based repair of data
	Stable quantitative abstractions
	Abstraction of qualitative values from noisy quantitative input

	Online-algorithms for monitoring temporal patterns
	Related language features of Asbru
	Monitoring parameter propositions
	Monitoring plan state constraints
	Monitoring temporal constraints
	Monitoring combinations of temporal patterns
	Monitoring count constraints
	Extracting features of episodes

	Integration of plan execution
	Asbru plan semantics
	Principal design of plan state modules
	Types of plans

	Bridge to Asbru
	Plans
	Plan body
	Conditions
	Temporal patterns
	Time annotations
	Expressions
	Definitions

	Discussion

	Evaluation
	Practical Evaluation
	Data abstraction for artificial ventilation
	Plan execution

	Complexity Analysis
	The overall system
	Utility functions
	Sliding time windows
	Coping with noisy and missing data
	Online-algorithms for the detection of temporal patterns
	Integration of plan execution
	Bridge from Asbru to abstraction modules
	Discussion

	Meeting the Objectives
	Limitations
	Coping with noisy data
	Online-algorithms for monitoring temporal patterns
	Multiple sliding time windows for statistical analysis
	Integration of plan execution
	Utility functions
	Uniform framework
	Bridge to Asbru

	Future Directions of Work
	Further development of the system
	Expansion of the set of abstraction algorithms
	Better control over user interaction

	Neighbouring fields of research
	Modelling
	Data integration

	Conclusions

