

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Modeling Sources and Sinks in
Crowded Scenes by Clustering
Trajectory Points Obtained by

Video-based Particle Advection

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Medieninformatik

eingereicht von

Mag. Rainer Planinc, BSc.
Matrikelnummer 0425163

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuerin: ao. Univ. Prof. Mag. Dipl.-Ing. Dr.techn. Margrit Gelautz
Mitwirkung: Dipl.-Ing. Dr.techn. Norbert Brändle (Austrian Institute of Technology)

Wien, 09.06.2010

 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Declaration of Authorship

I, Rainer Planinc, declare that this thesis titled, “Modeling Sources and Sinks in Crowded

Scenes by Clustering Trajectory Points Obtained by Video-based Particle Advection”

and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

“It is hard to fail, but it is worse never to have tried to succeed.”

Theodore Roosevelt

Abstract

Analysis of real surveillance video footage is very challenging – hence this thesis provides

solutions to enhance the quality of trajectories of dense crowded scenes in real-time. An

efficient algorithm models dense crowded scenes with the aid of particles, moved by the

optical flow calculated between two consecutive frames. Thus trajectories are obtained

without using a people tracking algorithm. Sources and sinks are modeled by clustering

of start and end points. As dense crowded scenes are analyzed, many trajectories are

interrupted thus making the choice of an appropriate clustering algorithm challenging –

this thesis provides approaches to enhance the quality of trajectories. Furthermore, it

evaluates different clustering algorithms and their practicability in combination with the

real-time particle advection algorithm on benchmark data of a Viennese train station

and additional data provided by the PETS workshop and the University of Central

Florida.

Kurzfassung

Die vorliegende Diplomarbeit stellt einen Ansatz zur Echtzeit-Analyse von Videoszenen

mit dichten Menschenmassen vor. Dazu modelliert ein effizienter Algorithmus die Szene

mit Hilfe von Partikeln, welche auf Grund des optischen Flusses zwischen zwei

aufeinanderfolgenden Videoframes bewegt werden. Dadurch können Trajektorien ohne

den Einsatz eines Tracking-Algorithmus gewonnen werden. Die Modellierung von

interessanten Teilbereichen der Szene erfolgt in einem anschließenden Schritt.

Da es sich bei den Überwachungsvideos um Szenen mit dichten Menschenmengen

handelt, sind viele Trajektorien unterbrochen und stellen so eine große Herausforderung

für die richtige Wahl eines Clustering-Algorithmus dar – diese Arbeit stellt Lösungsansätze

vor, um die Qualität der Trajektorien zu erhöhen. Zur Modellierung von Quellen

und Senken werden einige bekannte Clustering Algorithmen und deren Anwendung für

Überwachungsvideos in Kombination mit dem entwickelten Echtzeit Partikel

Advektionsalgorithmus evaluiert, wobei für die Evaluierung Videos einer Wiener Bahn-

hofshalle und des PETS Workshops, als auch Videos der Universität von Florida ver-

wendet wurden.

Acknowledgements

It is a pleasure to thank ao. Univ. Prof. Mag. DI Dr. Margrit Gelautz who made

this thesis possible. I am very grateful to Dipl.-Ing. Dr.techn. Norbert Brändle, whose

guidance and support enabled me to get a deep insight in really interesting topics and

helped me to improve my skills.

I owe my deepest gratitude to my parents Gertrude and Otto, who supported me with

the best as they could every day in my life and who made my academic studies possible.

Finally, I would like to heartily thank Rebecca, who always had an open ear for me and

who helped me to find the right work-life-balance.

v

Contents

Declaration of Authorship i

Abstract iii

Kurzfassung iv

Acknowledgements v

List of Figures viii

Abbreviations xi

1 Introduction 1

1.1 Challenges . 2

1.2 Modeling Sources and Sinks . 4

1.3 Objectives . 4

2 Real-Time Particle Advection 7

2.1 Basic Algorithm . 7

2.2 Implementation . 11

2.3 Challenges . 14

2.3.1 Occlusions . 14

2.3.2 Perspective View . 16

2.4 Improved Algorithm . 19

3 Sources and Sinks 23

3.1 Modeling . 24

3.2 Clustering Algorithms . 26

3.2.1 K-Means . 27

3.2.2 Expectation Maximization . 28

3.2.2.1 Basic Algorithm . 29

3.2.2.2 Improvements . 30

3.2.3 Mean Shift . 32

3.2.4 DBSCAN . 33

vi

Contents vii

3.2.4.1 Basic Algorithm . 34

3.2.4.2 Improvements . 34

3.2.5 Spectral Clustering . 35

3.2.5.1 Basic Algorithm . 35

3.2.5.2 Improvements . 36

3.2.6 Growing Neural Gas . 37

3.2.6.1 Basic Algorithm . 38

3.2.6.2 Improvements . 39

4 Experimental Results: Particle Advection 41

4.1 Particle Advection Settings using Image Coordinates 46

4.1.1 Parameter Settings for Train Station 46

4.1.2 Parameter Settings for PETS Benchmark Data 52

4.2 Particle Advection Settings using World Coordinates 54

4.2.1 Parameter Settings for Train Station 54

4.2.2 Parameter Settings for PETS Benchmark Data 59

4.3 Ellipse as Stranded Criterion . 59

4.4 Particle Hopping Detection . 60

4.5 Hierarchical Approach . 67

5 Experimental Results: Clustering Sources and Sinks 69

5.1 Data Reduction . 70

5.2 Expectation Maximization . 71

5.3 PG-Means . 76

5.4 Mean Shift . 79

5.5 DBSCAN . 83

5.6 Self-Tuning Spectral Clustering . 83

5.7 Growing Neural Gas . 88

5.8 Comparison of Cluster Algorithm Run Times 92

6 Conclusion 93

Bibliography 94

List of Figures

1.1 Areas of interest like doors (green) and entry to or exit from the camera
field of view (yellow) . 2

1.2 Sources and sinks obtained by trajectories 5

1.3 Flowchart of the proposed particle advection framework 6

2.1 n×m grid of particles at frame t0 . 7

2.2 Forward advection of particles due to passenger movement 8

2.3 Backward advection and resulting trajectories 9

2.4 Comparison of motion vectors . 11

2.5 Timeline . 11

2.6 Insertion of new particles . 12

2.7 List of particles . 12

2.8 Removing particle j (red) from particle list 13

2.9 Coordinate list (orange) for particles (blue) 13

2.10 Dynamic insertion/deletion of motion vectors 14

2.11 Types of occlusions influencing particle advection 15

2.12 Influence of static occlusions on particle advection 16

2.13 Particle hopping . 17

2.14 Relation between camera, image plane and world plane 17

2.15 Perspective view and homography . 18

2.16 Image pyramid showing original and reduced video size 20

2.17 Particle hopping criterion . 21

3.1 Plots showing start and end points and areas, where true sources and
sinks should be found, marked by yellow rectangles 24

3.2 Influence of different particle advection settings on trajectory start and
end points . 25

3.3 Different types of sources and sinks . 26

3.4 k-means (first two iterations) [1] . 28

3.5 Expectation maximization [1] . 29

3.6 Successive computations of mean shift [2] 33

3.7 Gestalt law of proximity . 33

3.8 DBSCAN: (a) density-reachable, (b) density-connected [3] 34

3.9 Neighborhood graph [4] . 36

3.10 Sample data set [4] . 37

3.11 Clustering results using different values for σ [5] 37

4.1 Organization chart of Chapter 4 . 41

4.2 Screenshots of train station video - position 1 44

viii

List of Figures ix

4.3 Screenshots of train station video - position 2 44

4.4 Screenshots of PETS video . 45

4.5 Screenshots of traffic video . 45

4.6 Sources and sinks . 46

4.7 Quality of trajectories depending on particle advection settings (II) 47

4.8 Influence of backward range on trajectory start points (insert rate = 20,
stranded rate = 10, stranded radius = 2) 48

4.9 Influence of backward range on trajectory end points (insert rate = 20,
stranded rate = 10, stranded radius = 2) 49

4.10 Influence of insertion rate on trajectory start points (stranded rate = 10,
stranded radius = 2, backward range = 180) 50

4.11 Influence of insert rate on trajectory end points (stranded rate = 10,
stranded radius = 2, backward range = 180) 51

4.12 Influence of stranded rate and radius on trajectory start points (insert
rate = 50, backward range = 180) . 53

4.13 Influence of stranded rate and radius on trajectory end points (insert rate
= 50, backward range = 180) . 53

4.14 Quality of trajectories depending on particle advection settings 54

4.15 Quality of trajectories depending on particle advection settings using
world coordinates . 55

4.16 Influence of backward range on trajectory start points using world coor-
dinates (insert rate = 20, stranded rate = 10, stranded radius = 25) . . . 56

4.17 Influence of insert rate on trajectory start points using world coordinates
(stranded rate = 40, stranded radius = 50, backward range = 180) 57

4.18 Influence of insert rate on trajectory end points using world coordinates
(stranded rate = 40, stranded radius = 50, backward range = 180) 57

4.19 Influence of stranded rate and radius on trajectory start points using
world coordinates (insert rate = 50, backward range = 180) 58

4.20 Influence of stranded rate and radius on trajectory end points using world
coordinates (insert rate = 50, backward range = 180) 58

4.21 Quality of trajectories depending on particle advection settings 59

4.22 Percentage of valid particle trajectories obtained by using an ellipse as
stranded criterion . 61

4.23 Comparison of trajectory quality and number of particles 62

4.24 Start points using different values for λt 63

4.25 End points using different values for λt . 64

4.26 Start points using different values for acceleration 65

4.27 End points using different values for acceleration 66

4.28 Comparing end points using different settings on hierarchical particle ad-
vection . 68

5.1 Flowchart for clustering sources and sinks 70

5.2 Density plots of start and end points obtained by particle advection on
the second train station video . 70

5.3 Correlation between density and probability of randomly chosen points . . 71

5.4 Source clusters obtained by expectation maximization using different es-
timated number of clusters without applying a threshold T 72

List of Figures x

5.5 Sink clusters obtained by expectation maximization using different esti-
mated number of clusters without applying a threshold T 73

5.6 Source clusters obtained by expectation maximization using different thresh-
olds defined by α (number of clusters=20) 73

5.7 Sink clusters obtained by expectation maximization using different thresh-
olds defined by α (number of clusters=20) 74

5.8 Source clusters obtained by expectation maximization using different thresh-
olds defined by α analyzing the second train station video (number of
clusters=20) . 75

5.9 Sink clusters obtained by expectation maximization using different thresh-
olds defined by α analyzing the second train station video (number of
clusters=20) . 75

5.10 Source clusters obtained by pg-means applying different thresholds de-
fined by α . 76

5.11 Sink clusters obtained by pg-means applying different thresholds defined
by α . 77

5.12 Source clusters obtained by pg-means applying different thresholds de-
fined by α obtained by the second train station video 78

5.13 Sink clusters obtained by pg-means applying different thresholds defined
by α obtained by the second train station video 78

5.14 Source clusters obtained by mean shift using different values as bandwidth
without applying a threshold T . 80

5.15 Sink clusters obtained by mean shift using different values as bandwidth
without applying a threshold T . 80

5.16 Source clusters obtained by mean shift using different thresholds defined
by α (bandwidth=0.05) . 81

5.17 Source clusters obtained by mean shift using different thresholds defined
by α (bandwidth=0.05) . 81

5.18 Source clusters obtained by mean shift on the second train station video
using different thresholds defined by α (bandwidth=0.05) 82

5.19 Sink clusters obtained by mean shift on the second train station video
using different thresholds defined by α (bandwidth=0.05) 82

5.20 Source clusters obtained by DBSCAN using different values for k 84

5.21 Sink clusters obtained by DBSCAN using different values for k 84

5.22 Clusters obtained by DBSCAN using different thresholds α with k = 3 . . 85

5.23 Clusters obtained by DBSCAN using different thresholds α with k = 2 . . 85

5.24 Clusters obtained by DBSCAN using different thresholds α with k = 1 . . 86

5.25 Source clusters obtained by DBSCAN applied on the second train station
video using different thresholds defined by α with k = 2 86

5.26 Sink clusters obtained by DBSCAN applied on the second train station
video using different thresholds defined by α with k = 2 87

5.27 Self-tuning spectral clustering . 88

5.28 Self-tuning spectral clustering - video 2 89

5.29 Source clusters obtained by GNG and MDL 90

5.30 Sink clusters obtained by GNG and MDL 90

5.31 Influence of parameter “edge lifetime” on clustering results 91

Abbreviations

EM Expectation Maximization

GNG Growing Neural Gas

GPU Graphics Processing Unit

KDE Kernel Density Estimator

MDL Minimum Description Length

PETS Performance Evaluation of Tracking and Surveillance

UCF University of Central Florida

xi

Dedicated to my family

xii

Chapter 1

Introduction

Automated video analysis is used in many different environments to fulfill different

objectives. It can be used to retain a high quality standard during a manufacturing

process, as it detects faulty parts automatically. It also deals with object detection

in order to retrieve higher level information from a video sequence. During the last

years, automated video analysis developed further quickly. It facilitates crowd analysis

and detects trends in human behaviors. This knowledge can be used to control and

guide people flows, avoid safety-critical overcrowding and results in advices to improve

orientation systems.

The area of research on automated video analysis in visual surveillance is huge, but most

approaches are interested in detecting motion of people or vehicles. Therefore many

approaches to detect the motion itself or people and vehicles have been developed. If

people or vehicles are detected by a mechanism, the position or change of position of a

person or vehicle over time is analyzed as long as the person or vehicle does not leave

the camera field of view.

Definition 1.1. A trajectory is the spatio-temporal position change of an object due

to motion.

One of the most interesting elements of a scene are areas where subjects come from or

are heading to – such as doors, staircases or areas where subjects get into or leave the

camera field of view. Figure 1.1 shows an example containing five areas of interest: two

doors and three areas of entry to or exit from the camera field of view. The information

about areas of interest already exists indirectly in trajectory data – the first and last

points of a person’s trajectory are the sources and the sinks for a specific subject. One

main objective of this work is to cluster trajectory start and end points representing

sources and sinks to obtain higher level information from a scene.

1

Chapter 1: Introduction 2

Figure 1.1: Areas of interest like doors (green) and entry to or exit from the camera
field of view (yellow)

1.1 Challenges

A common approach to generate people trajectories is to track individual people. Track-

ing of individuals is very complex when using it with real surveillance videos, resulting

in the following challenges:

• Occlusions: It is very important that the tracking algorithm be able to track

the same person throughout the video. This can be very challenging in case of

fully or partially occlusions as the tracking algorithm might follow another per-

son after the occlusion occurred. Hence, some kind of additional knowledge to

separate people after occlusions is required. An approach dealing with short time

occlusions presented by [6] uses templates for subject tracking. The main feature

to enhance stability is a mechanism which detects occlusions and their duration.

If an occlusion is detected, the object is not tracked any more. To detect the end

of the occlusion, the previously used template is matched with all frames from the

beginning of occlusion to a maximum number of frames. The end of the occlusion

is detected to be that frame where the best match with the template was found.

After the end of the occlusion, the object is tracked again. Another approach

presented in [7] does not only use templates but also visual features like color and

texture. Occlusions are detected due to the rapid change in size of the occluded

object. Recovering the occluded object contours facilitates tracking even during

occlusions. A similar approach introduced by [8] is a segmentation algorithm for

not tracking the entire object but parts of the object during severe occlusions.

• Dense Crowded Scenes: Most surveillance cameras are placed in public places

like train stations, airports or streets. Hence, most of these public places are very

Chapter 1: Introduction 3

crowded thus making automated video analysis challenging and resulting in very

complex approaches like in [9] – but most approaches often only work for loose

groups of people. The work of [10] uses a Correlated Topic Model presented by [11]

to generate high-level information in unstructured scenes by analyzing low-level

optical flow vectors.

Definition 1.2. Optical Flow is referred to a vector field, where each vector

represents the direction and amount of motion between two consecutive video

frames.

The generated model is then incorporated into a tracking framework thus reducing

the average tracking error. Another approach by [12] combines feature tracking

and the optical flow to achieve long-range motion estimation. An optimization

process repositions the particles – therefore the video is not analyzed linearly but

nonlinearly. Neither [10] nor [12] are able to overcome the challenges of dense

crowded scenes in real-time. For those who are interested in further approaches,

a survey of different state-of-the-art tracking algorithms can be found in [13].

Definition 1.3. A particle is an image point moved by the underlying optical flow

vectors, thus generating a trajectory.

Definition 1.4. The movement of a particle due to an optical flow vector is called

particle advection.

Definition 1.5. If a particle only moves within a small radius over a specified time and

number of frames, it is called stranded as it does not move any more.

This work provides an alternative to individual people tracking and is based on the

efficient implementation of an optical flow field calculation by [14] facilitating real-time

video analysis. The proposed approach calculates the optical flow field and particle

advection in one step, thus saving time, memory space and enabling real-time particle

advection. First, particles are arranged as a grid. Particles move then according to their

corresponding motion vector until they either leave the frame or get stranded. Particle

trajectories are obtained by moving the particles not only once, but frame by frame over

a longer time period. To ensure that the number of particles remains at an equally high

level, new particles are inserted after a particular time. In order to obtain an entire

trajectory, the newly inserted particles are moved back in time to determine where they

would come from if they had been inserted before.

Definition 1.6. Forward advection is referred to the process of advecting particles

forward in time.

Definition 1.7. Backward advection is referred to the process of advecting particles

backward in time.

Chapter 1: Introduction 4

1.2 Modeling Sources and Sinks

Analyzing the distribution of the start and endpoints (of a set of trajectories) yields

the positions where subjects are likely to enter or leave the scene [15, 16]. Eliminating

all trajectory points except the first and the last, results in two point sets – one for

the sources, the other one for sinks. An approach presented by [17] obtains sources

and sinks by trajectory clustering and analyzing the start and end of clustered paths,

requiring considerably more computational work than our approach and probably having

difficulties to cluster trajectories in unstructured dense crowded scenes.

Definition 1.8. Particle hopping is the process of a particle “jumping” from one

person to another due to occlusion, thus distorting trajectories.

Figure 1.2a shows the particles during particle advection, the corresponding trajectories

are depicted in Figure 1.2b. The correspondent density of start and end points is shown

in Figure 1.2c and 1.2c. The approximate direction of people trajectories is coded by

the use of different colors in Figure 1.2b. Red trajectories indicate people going from

left to right, whereas blue trajectories indicate that people moved from the right to the

left side. People moving from the top downwards are visualized by green trajectories,

trajectories of people moving upwards are yellow. Colors used in Figure 1.2c and Fig-

ure 1.2d represent the density of start and end points - cold colors (e.g. blue) visualize

small densities. The warmer the color gets (e.g. green, yellow, red) the more start and

end points are placed in this area.

Distinction between “real” sources or sinks and sources or sinks caused by noise, par-

ticle hopping or incomplete trajectories is very challenging. This task is approached

by dividing the start and end points into different clusters. Assuming that most tra-

jectories start at a source cluster and end at a sink cluster, dense clusters are more

likely to be a source or sink than clusters with widely distributed data points. Thus,

we consider compact clusters as a good evidence of correctly identifying entry and exit

zones. The information about sources and sinks in a surveillance video facilitates a fun-

damental knowledge about the scene structure, resulting in enhanced trajectories and

the possibility of detecting unusual activities.

1.3 Objectives

The objectives of this master thesis can be described as follows:

Chapter 1: Introduction 5

(a) Particles during particle advection (b) Trajectories obtained by particle
advection

(c) Density of start points (d) Density of end points

Figure 1.2: Sources and sinks obtained by trajectories

• Objective 1: to develop a technique for particle advection introduced in Defini-

tion 1.4 and to overcome the challenges of stranding particles beyond sources and

sinks (due to obstacles) and particle hopping (due to occlusions).

• Objective 2: to implement the developed algorithm in an efficient manner, hence

facilitating real-time video analysis.

• Objective 3: to model sources and sinks using an appropriate clustering algo-

rithm. Ideally, all trajectories should start in sources and end in sinks, but in

practice a criterion for distinguishing between true and wrong sources and sinks

has to be found.

• Objective 4: to evaluate the implemented particle advection and clustering algo-

rithm on crowded benchmark videos provided by PETS (Performance Evaluation

of Tracking and Surveillance) workshop, the University of Central Florida (UCF),

and dense crowded videos of a Viennese train station.

The flowchart depicted in Figure 1.3 shows the workflow of the proposed framework

including inputs and outputs of each step. This thesis is organized as follows: Chapter 2

Chapter 1: Introduction 6

Figure 1.3: Flowchart of the proposed particle advection framework

describes the developed approach of advecting particles. The modeling of sources and

sinks and a short overview over widely used clustering algorithms and proposed im-

provements to enhance the quality of clustering are described in Chapter 3. Chapter 4

and 5 show some experimental results of our particle advection approach and different

clustering algorithms.

Chapter 2

Real-Time Particle Advection

The basic idea of creating particle trajectories is to take video data (from file or webcam)

as input, calculate and stack the optical flow fields, insert particles (Figure 2.1) and

move them according to the corresponding motion vectors of the optical flow. Thus

one can move the particles in a spatio-temporal environment. This Chapter describes

the real-time particle advection algorithm and the challenges caused by analysis of real

surveillance videos and the developed approaches.

2.1 Basic Algorithm

Given two consecutive frames of an image sequence, the real-time optical flow implemen-

tation calculates a motion vector [u v]T for every pixel position with subpixel accuracy.

Figure 2.1: n×m grid of particles at frame t0

7

Chapter 2: Real-Time Particle Advection 8

(a) time instant t0 (b) time instant t1

Figure 2.2: Forward advection of particles due to passenger movement

If a particle is dropped at the image position [xi yi]
T at frame t0, it will move to

[xi +u yi +v]T in frame t1 and so on. The trajectory of the particle is given by its entire

coordinates over time. The basic algorithm is depicted in Algorithm 1.

Algorithm 1 Basic algorithm

1: t← 0
2: insert new particles
3: grab video frame ft
4: while video stream is available do
5: grab next video frame ft+1

6: calculate motion vectors for every pixel between actual video frame ft and the
following video frame ft+1

7: for all particles do
8: move particle according to its corresponding motion vector
9: if particle gets stranded or leaves the video frame then

10: remove particle
11: end if
12: end for
13: if t is a multiple of tinsert then
14: insert new particles
15: move particles backward
16: end if
17: t← t+ 1
18: end while

Figure 2.2 shows two time instants of a video where three people use the escalators.

Person A (at the bottom of the video frame, marked by the blue rectangle) is moving

towards an escalator, Person B and C are located at the top of the video frame (marked

by the red rectangle), using another escalator. Particles are moved from left to right

due to the movement of Person A at the bottom. Particles are also moved from right

to left due to the movement of Person B and C at the top of the video frame shown in

Figure 2.2b.

Chapter 2: Real-Time Particle Advection 9

(a) Backward advection

(b) Trajectories without backward
advection

(c) Trajectories with backward ad-
vection

Figure 2.3: Backward advection and resulting trajectories

Definition 2.1. Active particles are particles which are still moving and not being

stranded.

As particles can get stranded and thus being removed, new particles are inserted on

a regular basis. All newly inserted particles are advected backwards, before they are

advected forward to obtain longer and better trajectories. Why is this important? Fig-

ure 2.3a shows an example clarifying the importance of backward advection. Assuming

there was no motion for longer than tstrand, so all particles stranded (t0). Let the next

particle insertion be at t3. At t1 a new object (dark blue ball) appears at the lower left

corner, moves to the center (t2), and afterwards to the upper left corner (t3). At t3,

new particles (red) are inserted into the system. As the ball moves from the upper left

to the upper right corner (t4), the particle follows this motion and moves together with

the ball.

If the particle were not advected backwards, the only identified movement would be from

the upper left to the upper right corner, leading to the trajectory depicted in Figure 2.3b.

Analyzing this trajectory would suppose the ball appeared at the upper left corner first

and moved straight to the upper right corner. However, the ball appeared at the lower

left corner first. To overcome this problem, all newly inserted particles are advected

backwards. Hence the upper left particle depicted in Figure 2.3a at t3 will go back to

the center where the ball was at t2 and also back to the lower left corner, where the ball

was inserted (t1). After this step, the particle advects forward from the upper left corner

(t3) to the upper right corner (t4). The resulting trajectory is the combined backward

and forward advection and leads to the correct trajectory depicted in Figure 2.3c.

Chapter 2: Real-Time Particle Advection 10

During backward advection, particles can also get stranded as during forward advection

– this reduces the probability of particle hopping. We have implemented two different

ways for calculating the motion vectors for backward advection:

• Approximate Backward Advection: The first method is an approximation

and assumes that the motion of the particle is very smooth (which is often the

case) and that it is very unlikely that it changes direction abruptly. Therefore it

is sufficient to estimate the motion in the preceding frame as the inverted current

motion vector by getting the motion vector [u v]T at the current particle position

[x y]T in frame m + 1. The estimated particle position in frame m would be

the current particle position [x y]T minus the motion vector [u v]T depicted in

Figure 2.4a.

• Exact Backward Advection: The second approach provides the exact motion

vectors by finding the best matching motion vector within an i× i window around

the current particle position (dotted rectangle at frame m in Figure 2.4b). There-

fore the Euclidean distances between all motion vectors and the current particle

position are compared – the motion vector with the minimal Euclidean distance is

taken as the best matching motion vector. This approach finds the motion vector

in frame m, which exactly points at the current particle position [x y]T in frame

m+ 1, but it is much more time consuming, due to the consideration of all motion

vectors within the i× i window.

Figure 2.4 compares these two approaches – the negation of the motion vector of frame

m+ 1 in Figure 2.4a supposes the ball to be in the upper left corner in frame m, though

the exact motion vector would be in the lower left corner, depicted in Figure 2.4b.

Usually both methods should provide similar results and the deviation should not be very

big because of short and smooth motions, but the first method is only an approximation

and may lead to different/wrong results.

Figure 2.5 shows the function of the particle advection algorithm over time – at the

beginning t0, particles are inserted into the system (blue arrow). If a particle only

moves within a certain radius r over a particular time tstrand or leaves the video frame,

it is stranded; hence it is removed from the system. This is required to make sure that

only active particles are in the system, thus avoiding particle hopping.

After a fixed time tinsert new particles are inserted either at all initial n × m grid

positions (n · m particles are inserted, Figure 2.6a) or at randomly chosen k initial

grid positions illustrated in Figure 2.6b. The maximum of k (number of particles to

be inserted) is restricted by the number of available grid positions (k ≤ n ·m) as the

Chapter 2: Real-Time Particle Advection 11

(a) Approximate motion vector determined through
negation

(b) Exact motion vector determined through best
matching

Figure 2.4: Comparison of motion vectors

number of inserted particles cannot be higher than the number of grid positions. One

could insert particles only at positions having a high amount of motion, but this would

exclude areas in advance, even though motion may occur unexpectedly. If there is no

motion, the particles will be removed eventually, because they strand anyway. The

newly inserted particles are first advected backwards for a particular time tback (green

arrow in Figure 2.5), and are subsequently advected forward afterwards.

2.2 Implementation

A particle set is inserted in regular time intervals tinsert, and particles must be removed

when they have stranded. Hence many insertions and deletions of particles occur; there-

fore the implementation requires an efficient data structure. An efficient way to handle

Figure 2.5: Timeline

Chapter 2: Real-Time Particle Advection 12

(a) particles at all 9 × 7 grid positions (b) 40 randomly chosen particles
within 9 × 7 grid positions

Figure 2.6: Insertion of new particles

this are linked lists, where the particles are organized in a (single) linked particle list, de-

picted in Figure 2.7. This list is created during the initialization process. Therefore the

list is created and the particles are inserted into an n×m grid, which drops the particles

uniformly distributed over the frame. Each element in this list represents exactly one

particle with its current coordinates and a list of previous coordinates. It also contains

a “next” pointer to the next element of the list and only contains active particles. If

a particle is marked as stranded, it is removed and the particle respectively its coordi-

nates are stored in a file – if the particle actually moved. If the particle was inserted

and stranded immediately, it will not be stored because particles without movement are

not relevant for motion analysis.

The advantage of lists is the efficiency of sequential insertion and deletion processes,

since only memory has to be allocated / freed and links between elements have to be

changed. Another advantage of lists is dynamic memory allocation, facilitating the

dynamical insertion of new particles. New particles are always added at the end of the

list, therefore only new memory has to be allocated and the next pointer has to be

changed to point to the new element. Particles are removed during forward advection if

they get stranded or leave the video frame. Therefore the next pointer from the element

before the element that should be removed has to be changed to point to the element

after the element that should be removed and memory has to be freed. Figure 2.8 shows

an example, where particle j is removed from the particle list.

Figure 2.7: List of particles

Chapter 2: Real-Time Particle Advection 13

Figure 2.8: Removing particle j (red) from particle list

To obtain a contiguous trajectory, all coordinates for every particle are saved in a doubly

linked list (a doubly linked list is required because of Backward Advection). Figure 2.9

shows the coordinates (orange) at given timestamps ti for n particles. If a particle is

moved according to the motion vector, a new coordinate is inserted at the end of the

list. Coordinates are only added (and not removed) – therefore the structure of a linked

list is reasonable and very efficient.

If a particle is marked as stranded, it is removed from the particle list and the coordinates

are written to an output file. Video footage often contains areas where little or no

movement at all occurs – so there are many particles which do not move at all and are

stranded just after the insertion process. These particle coordinates are not relevant,

because they do not contain information about motion. Thus they are not saved to file

to reduce the overall amount of particles and file size.

The particle advection algorithm is implemented in C using the open source library

OpenCV and FlowLib [14] which calculates the optical flow on the GPU (graphics pro-

cessing unit) efficiently. The dense optical flow implementation calculates the motion

vectors in real-time for every frame. Hence, motion vectors are available for exactly one

frame and they are used to move particles forward. To advect particles backward in time

Figure 2.9: Coordinate list (orange) for particles (blue)

Chapter 2: Real-Time Particle Advection 14

Figure 2.10: Dynamic insertion/deletion of motion vectors

the motion vectors of the last k frames must be known – k represents the number of

frames passed by during time tback. The first idea might be to save all motion vectors

as soon as they are calculated, but this approach is only feasible for a limited video

sequence. Not all motion vectors are needed as the backward advection is restricted on

the last k frames, hence only the last k motion vectors are stored as k elements in a list,

where k acts as buffer size. All calculated motion vectors are added at the end of the

list. As long as the current frame number is lower than k, the motion vectors are only

added to the list. If the current frame number equals k + 1, the current motion vectors

are added and the first element (oldest motion vectors) is removed. Thus only the last

k elements (motion vectors at the last k frames respectively during time period tback)

are available, illustrated in Figure 2.10.

2.3 Challenges

Due to analysis of real surveillance videos, unforeseeable influences like changing weather

or lighting conditions are hard to handle and have major effects on the quality of the

particle advection process. But also the camera position as well as occlusions affect the

quality enormously. This Section describes two major effects influencing the quality of

trajectories.

2.3.1 Occlusions

Particles are advected according to optical flow calculation, not considering the structure

of a scene or any semantic knowledge. Due to occlusions, particles might not follow the

Chapter 2: Real-Time Particle Advection 15

(a) Occlusions due to street lamps (b) Occlusions of moving objects

Figure 2.11: Types of occlusions influencing particle advection

correct motion flow. Instead, there are two possibilities occlusions can lead to:

1. Static Occlusions: a particle does not move any more, because the object (or

part of the object) moves behind a static object (e.g. a car is occluded by a street

lamp, illustrated in Figure 2.11a). If a moving object with particles attached

to it is occluded by a static object, the optical flow algorithm cannot detect the

correct object motion. Hence, the particle is not attached to the moving object any

longer and does not move any more. Even if the moving object appears after the

stationary object again, the particles attached to the moving object are still at the

position where the occlusion began. Figure 2.12b illustrates the problem: particles

are not attached to the bus any more but got stuck at a street lamp. As static

objects do not move in general, particles do not move either and are removed

due to the stranded criterion. Figure 2.12c shows interrupted trajectories, thus

resulting in wrongly detected sinks, because many particles strand at positions

where occlusions take place. Not only sinks are wrongly detected due to occlusions

but also sources may be detected wrongly while using backward advection. This is

due to the fact that particles cannot pass the obstacle in either way. Figure 2.12d

depicts longer trajectories by passing the obstacles.

2. Dynamic Occlusions: a moving object is occluded by another moving object

and the particle jumps from one object to the other and follows another object

after occlusion shown in Figure 2.11b. As we are interested in motion flows and

not in tracking individuals, particle hopping from one moving object to another

moving object heading the same direction need not be detected as particle hopping.

Hence only particle hopping from objects heading in “different” directions and thus

belonging to another motion flow, should be detected. Failing to detect particle

hopping would result in wrong trajectories because the trajectory of one particle is

a mixture of trajectories caused by different objects moving in opposite directions.

Chapter 2: Real-Time Particle Advection 16

(a) Occlusions due to street lamps (b) Particles get stuck due to occlu-
sions

(c) Interrupted trajectories due to oc-
clusion

(d) Longer trajectories due to passing
obstacles

Figure 2.12: Influence of static occlusions on particle advection

Figure 2.13 shows an example of an image sequence, where particle hopping adul-

terates the trajectory. In this example, particle hopping occurred twice – at the

beginning the particle followed person A going from left to right. Person B (head-

ing from right to left) crossed person A’s way and the particles jump from person

A to B and follow person B depicted in Figure 2.13b and 2.13c. Figure 2.13c

and 2.13d show another person C, also heading from left to right crossing person

B’s way and the particles jump from person B to person C and follow person C. In

this example, person A and C are heading in the same directions. If the particle

had jumped only once, it would head in the opposite direction than person A is

heading to. In general one can say that particle hopping results in unpredictable

falsification of trajectories, therefore a mechanism to detect particle hopping is

needed. Assuming that motion of objects is smooth leads to the developed parti-

cle hopping detection mechanisms.

2.3.2 Perspective View

Objects in the front near to the camera appear bigger than objects further away from the

camera, depicted in Figure 2.15a. Hence small movements in the front can be detected

Chapter 2: Real-Time Particle Advection 17

(a) Person A, B and C and their di-
rections

(b) Particles attached to person A, B
and C

(c) Particles hopped from person A to
B

(d) Particles hopped from person B to
C

Figure 2.13: Particle hopping

more easily than small movements in the back as the resolution decreases depending

on the camera distance. A movement of one pixel in the foreground can be equal to a

movement of one cm in world coordinates whereas a one-pixel movement in the back

can be equal to a movement of one meter in world coordinates.

Finding plausible measurement units for the stranded criterion defined in Definition 1.5

Figure 2.14: Relation between camera, image plane and world plane

Chapter 2: Real-Time Particle Advection 18

(a) Perspective view of a train station (b) Relation between image coordi-
nates and world coordinates

Figure 2.15: Perspective view and homography

is challenging: if the radius is measured in pixels, the real movement will be much

smaller in the front than in the back when using the same radius for the whole scene.

The knowledge of (camera) calibration parameters helps to apply the stranded radius

equally to the front as well as to the back of the scene as follows:

[xworld yworld 1]T = H−1 · [xpixel ypixel 1]T , (2.1)

where H is a 3×3 matrix, transforming pixel coordinates pimage into world coordinates

pworld. Homography matrix H [18] describes the relation between the pixel and a world

plane, depicted in Figure 2.14. Applying the inverse homography matrix H−1 on the

pixel coordinates leads to world coordinates.

Figure 2.15b shows the relation between a change of one pixel in y direction in image co-

ordinates and the change of x direction in world coordinates. The dependency between

pixel and world coordinates was calculated within the red boundary depicted in Fig-

ure 2.15a. A change of 1 pixel in image coordinates in y direction results in a minimum

and maximum movement of 3.65 mm and 1.56 m in x direction and a minimum and

maximum movement of 1.05 mm and 0.45 m in y direction. The maximum of movement

is coded red in the upper right corner of Figure 2.15b.

Hence not only pixel coordinates are applied when using the stranded criterion, but also

world coordinates can be used. This leads to a more stable (depending on the accuracy of

the estimation of H) approach as the stranded criterion in the front is the same as it is in

the back, requiring the knowledge of calibration parameters or the inverse homography

matrix.

Due to perspective distortions and restricted resolution the use of world coordinates

instead of image coordinates can improve results, but it does not remove the uncertainty

in different directions. World coordinates can be recalculated using camera calibration

information, but the camera resolution cannot be changed. Thus the change of 1 pixel

Chapter 2: Real-Time Particle Advection 19

in one direction (e.g. y direction) may yield in a higher change in world coordinates

than the change in another direction (e.g. x direction). Due to this fact, the use of a

circle as stranded criterion may be inefficient as the use of an ellipse may provide better

results as it is able to fit the diverse uncertainties much better.

2.4 Improved Algorithm

Algorithm 2 Improved algorithm

1: t← 0
2: insert new particles
3: grab video frame ft
4: while video stream is available do
5: grab next video frame ft+1

6: calculate motion vectors for every pixel between actual video frame ft and the
following video frame ft+1

7: for all particles do
8: if particle hopping detected then
9: remove particle

10: else
11: move particle according to its corresponding motion vector
12: if particle leaves the video frame then
13: remove particle
14: else if particle gets stranded then
15: delete coordinates of the last k frames according to tstrand
16: advect particle on reduced image resolution for the last k frames
17: if particle strands as well then
18: remove particle
19: end if
20: end if
21: end if
22: end for
23: if t is a multiple of tinsert then
24: insert new particles
25: move particles µ frames backward
26: end if
27: t← t+ 1
28: end while

The challenges described in Section 2.3 result in an improved particle advection algo-

rithm, shown in Algorithm 2. The following describes the approaches in detail:

• Coping with static occlusions: To avoid particles getting stuck at obstacles, a

hierarchical approach is used, which facilitates particles to pass small obstacles. An

exact definition of “small” obstacles is desirable, but “small” cannot be specified

as an obstacle being smaller than e.g. two pixels as the current amount of motion

Chapter 2: Real-Time Particle Advection 20

Figure 2.16: Image pyramid showing original and reduced video size

has to be taken into account – the higher the amount of motion, the “larger” the

obstacle can be to be passed by this approach. Therefore, particle advection does

not take place on full video resolution, but rather on a reduced video size where

obstacles appear much smaller. Thereby particles are more likely to pass obstacles

because the amount of motion is higher than the size of obstacle resulting in less

interrupted trajectories. Figure 2.16 shows the original and the reduced video

resolution.

Every time a particle is detected as stranded, it is not removed immediately but

advected on a higher image pyramid level (that means at a reduced resolution) for

a certain time. If the particle strands as well, it is removed from the system. If

it does not strand, the particle is advected for a certain time on the higher image

pyramid level. Afterwards the particle advection is set back to the normal level

and particle advection is continued at the original video size.

Using this approach means accepting some inaccuracies while advecting particles.

Higher level advection results in longer trajectories (Figure 2.12c compared to

Figure 2.12d) thus facilitating the clustering process for finding sources and sinks,

described in Chapter 3. Obviously this approach only works well for small obsta-

cles like street lamps and does not provide a reasonable solution for objects like

billboards.

• Coping with dynamic occlusions - Solution 1: The first mechanism assumes

that a moving object does not change its direction abruptly but smoothly. Before

a particle is advected according to its corresponding motion vector provided by

optical flow analysis, the average motion vector of the last l particle advection

steps is calculated (for experimental results l has been set to 10). If the new

motion vector is not “similar”, an abrupt change of direction occurred and it is

very likely that particle hopping took place. A way of measuring the similarity

Chapter 2: Real-Time Particle Advection 21

(a) Valid motion vector if strict particle hopping criterion is
applied (λt = 45◦)

(b) Invalid motion vector if strict particle hopping criterion is
applied (λt = 45◦)

(c) Valid motion vector if strict particle hopping criterion is
applied (λt = 90◦)

(d) Invalid motion vector if strict particle hopping criterion is
applied (λt = 90◦)

Figure 2.17: Particle hopping criterion

between motion vectors is to calculate the angle λ between them, defined as:

λ = arccos
[uavg vavg]T · [unew vnew]T∣∣[uavg vavg]T

∣∣ · |[unew vnew]T |
, (2.2)

where [uavg vavg]T is the average and [unew vnew]T is the new motion vector. If

λ is smaller than a specified threshold λt, the motion is identified as being smooth.

Otherwise, particle hopping occurred and the particle is marked as “hopped”.

Figure 2.17 shows the last 10 motion vectors (blue), the average motion vector

(orange) and a possible new motion vector (green or red, depending on the chosen

threshold shown as black line). The choice of threshold influences the number

of particle hops and decides whether abrupt changes of particle directions (e.g.

90 degrees) are caused by particle hopping or abrupt object movement. Particle

hopping is only detected if the amount of motion is higher than a threshold.

Chapter 2: Real-Time Particle Advection 22

• Coping with dynamic occlusions - Solution 2: The second mechanism com-

pares the motion vector similarity by analyzing accelerations. Assuming motion to

be smooth, acceleration of a particle should not change very much (except at the

very beginning and end). If particle hopping occurs and the particle were advected

in the opposite direction, the value of acceleration of this particle would be high. If

the value of acceleration is above a threshold, the particle is marked as “hopped”

as when using the first approach.

Chapter 3

Sources and Sinks

Start and end points of a perfect person’s trajectory represent sources and sinks as they

exactly define where the subject started and where it ended. Usually many particles

generate trajectories, thus many start and end points are generated.

Definition 3.1. Valid sources and sinks are sources and sinks which actually exist in

the real world or originated from occlusions.

Definition 3.2. Invalid sources and sinks are sources and sinks which do not exist in

the real world. These often originate from broken trajectories.

Definition 3.3. Primary sources and sinks are sources and sinks which actually exist

in the real world.

Definition 3.4. Secondary sources and sinks are valid from occlusions being not de-

sired, but explainable.

Trajectory start and end points do not only represent valid sources and sinks. As

described in Section 2.3, trajectories are not always perfect – hence start and end points

may belong to invalid sources and sinks caused by errors (i.e. errors due to perspective

distortions), respectively secondary sources and sinks caused by occlusions. Figure 3.1

shows typical results for start and end points of trajectories from a Viennese train

station, not considering the density of these points. As one can see easily, obtaining

primary sources and sinks by clustering is very challenging and further analysis needs to

be done. Hence the calculation of the probability density function using a kernel density

estimator ([19]) yields in easier interpretable results depicted in Figure 3.2. A kernel

density estimator is an enhanced version of a histogram. To construct a histogram,

the interval containing data points is divided into several subintervals, so called bins.

For each bin, the number of data points within this represents the “density”. As the

23

Chapter 3: Sources and Sinks 24

(a) Trajectory start points (b) Trajectory end points

Figure 3.1: Plots showing start and end points and areas, where true sources and sinks
should be found, marked by yellow rectangles

results do not deliver a smooth function and depend on the width for each bin, the

kernel density estimator (KDE) was proposed. The KDE does not divide the interval

into several bins, but uses different functions (e.g. Gaussian) to represent the density.

Therefore a Gaussian kernel is placed over each data point - the sum of all Gaussians at

all points is the desired density function.

Figure 3.2 shows the density function applied on two dimensional data. Colors used in

this figure represent the density of start and end points - cold colors (e.g. blue) visualize

small densities. The warmer the color gets (e.g. green, yellow, red) the more start and

end points are placed in this area. This data is obtained from a video sequence showing

a Viennese train station. The doors to different platforms are located on the right side of

the picture, the escalator to the exit is located on the left side. In this video sequence a

train arrives and passengers are leaving the platform located in the bottom right corner

and are heading to the exit on the left side. Throughout the video sequence which lasts

for 15 minutes, this was the only train arriving thus resulting in one main source and one

main sink because most people directly left the train station. Figure 3.2b and Figure 3.2d

depict results obtained by “optimal” particle advection settings - these settings use a

long backward range, facilitating longer trajectories. The use of a short backward range

results in shorter trajectories, thus making the finding of real sources more difficult.

Figure 3.2a and 3.2c depict the results when using “suboptimal” parameters, where the

true source was not found.

3.1 Modeling

To obtain sources and sinks from start and end points of trajectories, clustering algo-

rithms are applied. One source or sink does not necessarily need to be represented by

Chapter 3: Sources and Sinks 25

(a) Density plot of start points using
suboptimal particle advection settings

(b) Density plot of start points using
optimal particle advection settings

(c) Density plot of end points using
suboptimal particle advection settings

(d) Density plot of end points using
optimal particle advection settings

Figure 3.2: Influence of different particle advection settings on trajectory start and end
points

exactly one cluster, because a large source or sink (e.g. entering or leaving the camera

field of view) can be represented by many small clusters placed in the area of the big

source or sink. To achieve reasonable clustering results the pair-wise similarity between

data points is calculated by using the Euclidean distance, as all points are represented

by 2 dimensional image coordinates. Invalid sources and sinks should be eliminated

by the clustering algorithm, whereas secondary sources and sinks should by avoided by

using better settings for the particle advection process (e.g. by using the developed ap-

proach against stranding particles beyond sinks, introduced in Section 2.3). Figure 3.3

depicts the differences between primary and secondary sources and sinks as well as in-

valid sources and sinks. Figure 3.3a shows all start points divided into primary sources

(green), secondary sources caused by an obstacle (yellow) and invalid sources (red). End

points and the corresponding primary sinks (green), secondary sinks caused by an ob-

stacle (yellow) and invalid sinks are shown in Figure 3.3b. Figure 3.3c and 3.3d depict

all start and end points divided into primary sources and sinks, secondary sources and

sinks and invalid sources and sinks. These figures show that primary sources and sinks

Chapter 3: Sources and Sinks 26

(a) Start points divided into primary
(green), secondary (yellow) and wrong

(red) sources

(b) End points divided into primary
(green), secondary (yellow) and in-

valid (red) sinks

(c) All points with primary (green)
sources and sinks highlighted

(d) All points with secondary (yellow)
and invalid (red) sources and sinks

highlighted

Figure 3.3: Different types of sources and sinks

are only located at the left and right side of the picture, as these are the areas where

subjects enter or exit the camera field of view.

3.2 Clustering Algorithms

This Section gives a brief introduction on different clustering algorithms. There is a

huge variety of clustering algorithms, resulting from diverse clustering methods such

as hierarchical or density-based methods. Some other important criteria to distinguish

between different clustering methods are:

• underlying data distribution: Clustering algorithms can be distinguished by

the need of the underlying data distribution to be specified or not. Usually the

data distribution is not known, hence only assumptions are used thus influencing

clustering results.

Chapter 3: Sources and Sinks 27

• number of clusters: Many clustering algorithms use the expected number of

clusters as input argument, others estimate the number of clusters automatically.

Definition 3.5. A cluster is a subsample of data points, having small distances between

these points.

To obtain distinguished clusters, the distance between different clusters should be high

[1]. Only the basic principle of a few frequently used clustering algorithms will be ex-

plained in short. All introduced algorithms are unsupervised, meaning that no labeled

training data is available and the clusters have to be found automatically by the algo-

rithm.

3.2.1 K-Means

The inputs of this algorithm are n dimensional, unlabeled data points and an expected

number k of clusters. Each cluster is represented by one of k vectors, which describes the

cluster center. To find the local optimum of these cluster centers, an iterative process

enhances the quality of clustering.

Algorithm 3 K-Means

Require: number of cluster centers k
1: randomly locate cluster centers
2: repeat
3: for all data points do
4: calculate Euclidean distance to all cluster centers
5: data point belongs to the cluster center having the smallest distance
6: end for
7: move cluster center to the mean of all data points assigned to this cluster
8: until cluster assignments do not change or maximum number of iterations reached
9: return data points and their corresponding cluster

The basic algorithm is described in Algorithm 3. At first, cluster centers have to be

initialized – this is often done randomly. Figure 3.4a shows the unlabeled data points

(green) and the initialized cluster centers (red and blue). In our example depicted in

Figure 3.4, the number of clusters k has been set to two. In the next step, the Euclidean

distances between each data point and all cluster centers are calculated. Each point is

now assigned to the cluster having the minimum cluster center distance. The results of

this step are two clusters containing all data points, separated by the magenta line and

shown in Figure 3.4b. These clusters are not intuitive, as humans would have clustered

the data points differently. To correct the clusters, the cluster centers are set to the mean

value of all data points assigned to the corresponding cluster depicted in Figure 3.4c.

Chapter 3: Sources and Sinks 28

Figure 3.4: k-means (first two iterations) [1]

These two steps (assignment of data points to the closest cluster center and updating the

cluster centers) are processed repeatedly, until the algorithm converges (cluster assign-

ments do not change or a maximum number of iterations is accomplished). Figure 3.4d

shows the second assignment of data points to their nearest cluster center; Figure 3.4e

depicts the change in cluster centers according to the new mean value of data points.

This simple approach has the drawback of only getting local optima. Therefore, different

initializations of cluster centers yield in different results, which is not desired. As the

input data is unlabeled, the correct estimation of k is very difficult, hence an automatic

selection of cluster numbers is preferable.

3.2.2 Expectation Maximization

Definition 3.6. A normal distribution, also called Gaussian distribution is a

continuous probability distribution and is defined as:

f(x) =
1

σ
√

2π
· e−

1
2(x−µσ)

2

, (3.1)

where µ is called mean and σ is called variance.

Assignment of data points to clusters can be done hard or softly, meaning that hard

assignments assign each data point to exactly one cluster (i.e. k-means) and soft as-

signments only assign a membership probability. Using Expectation Maximization, the

distribution of data points is assumed to be a mixture of normal distributions, which

Chapter 3: Sources and Sinks 29

Figure 3.5: Expectation maximization [1]

yields in more flexible results than k-means, as the underlying data structure is taken into

account (although assuming the underlying distribution to be a mixture of Gaussians).

Given that each cluster is generated by a normal distribution, the clustering algorithm

has to find the mixture of normal distributions and estimate their parameters. Every

data point will not be assigned to one cluster but gets a probability of membership to

every Gaussian distribution.

K-means is very similar to Expectation Maximization, but not assuming the underlying

distribution to be a mixture of Gaussians. For the sake of completeness it should be

mentioned that Expectation Maximization can be used assuming arbitrary distributions

and not only mixtures of Gaussians.

3.2.2.1 Basic Algorithm

The initialization of the Expectation Maximization algorithm is similar to the initializa-

tion of k-means (Section 3.2.1): it is often done randomly, but if the initialization fits the

underlying data, then the algorithm will converge faster. As the number of iterations to

gain an applicable estimation of distribution parameters (means, covariances) is much

higher and more computations are necessary than using k-means, the initialization step

is much more important. Hence the results of k-means are often used as initialization for

the Expectation Maximization [1]. Figure 3.5a shows the unlabeled data points (green)

and the same initialization for the means of the Gaussian distributions (red and blue)

as in k-means (where the means were called cluster centers).

Chapter 3: Sources and Sinks 30

Algorithm 4 Expectation Maximization

Require: number of cluster centers k
1: for all clusters do
2: randomly choose mean µ and covariance σ
3: end for
4: repeat
5: for all data points do
6: assign cluster membership probabilities to each data point (“Expectation”)
7: re-estimate Gaussian distribution parameters µ and σ (“Maximization”)
8: end for
9: until changes of parameter being lower than a threshold or maximum number of

iterations reached
10: return data points and their corresponding cluster

Expectation Maximization’s basic algorithm is shown in Algorithm 4. The expectation

step uses the current distribution parameters of the clusters to assign membership prob-

abilities to every data point. Data points having a high probability for belonging to a

cluster are either marked as red or blue in Figure 3.5b, depending on the cluster they

belong to (red or blue). Points that cannot be clearly assigned to one of the clusters

are marked by a mixture of red and blue depending on their respective membership

probabilities, i.e. data points having equal membership probabilities to the red and blue

distribution are marked purple (50% red and 50% blue). The re-estimation of Gaus-

sian distribution parameters occurs in the second step, the maximization step. Due

to assigned probabilities, the means and covariances of the Gaussian distributions are

re-estimated considering the current membership probabilities.

These two steps are processed repeatedly to increase the accumulated membership prob-

abilities. Because of the maximization step, the Gaussian distributions are going to fit

the underlying data points better and better. Figure 3.5c depicts the Gaussian distribu-

tions after one iteration, Figure 3.5d after two iterations, Figure 3.5e after five iterations

and finally, the enhanced clustering after 20 iterations is shown in Figure 3.5f. This

algorithm terminates when the changes in parameters are below a specified threshold or

the number of iterations exceeds the maximum number of iterations. Furthermore it is

not as fast and simple as k-means, but leads to more accurate results as the underlying

data distribution can be taken into account.

3.2.2.2 Improvements

When analyzing real surveillance videos, clustering trajectory start and end points into

sources and sinks is very hard because of imperfect trajectories caused by noise, track-

ing errors or changing lighting conditions. Hence, many of the start and end points

Chapter 3: Sources and Sinks 31

of the extracted trajectories do not correspond to real sources and sinks and have to

be removed. We assume that wrongly detected sources and sinks are represented by

widely spread Gaussian distributions, whereas correctly detected sources and sinks are

represented by dense Gaussian distributions [15]. This assumption is also motivated by

the observation that the density of start and end points is significantly higher in regions

around real sources and sinks, respectively, since noise, tracking errors and changing

lighting conditions have only a minor effect on the start and end points distribution over

time.

This observation can be exploited to improve the results, as wrong source clusters can

be removed by introducing a density criterion. The measure of density di of the ith

cluster is defined as

di =
wi

π ·
√
‖Σi‖

, (3.2)

where wi is the prior probability and Σi the covariance matrix of the ith cluster. If the

density of the ith cluster is lower than the specified threshold T, the ith cluster will be

classified as noise cluster [15]. Threshold T is defined as:

T =
α

π ·
√
‖Σ‖

, (3.3)

with α being a user defined weight (0 < α < 1) and Σ the covariance matrix of the

entire data set. The norm used in Equations 3.2 and 3.3 is the Frobenius norm.

Another improvement proposed by [20] is called PG-means (projected-Gaussian means)

which detects the number of clusters k automatically. Starting with one cluster, k is

increased by an iterative process if the current model does not fit the underlying data.

Therefore the algorithm learns the model by using the Expectation Maximization (EM)

algorithm. If EM converges, the data and the model are projected into one dimension.

This can be done because a projection of a Gaussian mixture remains a Gaussian mixture

while using linear projections. Executing a model fitness test is much easier to be done in

one dimension than in higher dimensions. The fitness of the projected model to projected

data is tested by using the Kolmogorov-Smirnov test [21]. Multiple executions of this

test lead to multiple results – only if all tests reveal that the current model fits the data,

the algorithm terminates and the number of clusters is found. Otherwise, k is increased

by one and a new model has to be found.

Chapter 3: Sources and Sinks 32

3.2.3 Mean Shift

Mean shift [22] does not make any assumptions about the underlying data distribution or

number of clusters as it is needed for e.g. expectation maximization. The n-dimensional

data points are a sample generated by probability density functions and mean shift finds

the modes of these functions. The number of modes is equal to the number of cluster

centers k.

Algorithm 5 Mean Shift

Require: bandwidth b
1: i← 0
2: while some data points do not belong to any cluster do
3: i← i+ 1
4: choose data point randomly from data points not belonging to any cluster
5: use this point as cluster center
6: repeat
7: for all data points do
8: calculate distance d to start point
9: if d ≤ b then

10: add vote to current data point for cluster i
11: end if
12: end for
13: move cluster center towards the maximum increase of density
14: until movement of cluster center is lower than a threshold
15: if possible, merge cluster centers
16: end while
17: data point belongs to the cluster having the highest number of votes
18: return data points and their corresponding cluster

Algorithm 5 shows the basic function of the algorithm. Starting with a randomly chosen

data point, a density estimator is applied, estimating the density of data points within

a specified radius called bandwidth – depicted by a circle in Figure 3.6. The points

within this circle are marked as belonging to the same cluster as the chosen data point.

Afterwards the gradient of this density function is calculated resulting in the mean shift

vector pointing towards the direction of maximum increase of density. The preliminary

cluster center is now moved into the direction of the mean shift vector. These steps

are executed repeatedly until the movement of the cluster center falls below a threshold.

Successive computations result in a path of the cluster center to the maximum of density

shown in Figure 3.6. If this movement converges, the algorithm starts again with a

randomly chosen data point which does not belong to any cluster, the number of clusters

is increased by one and the algorithm starts again. This will be done until all data points

belong to a cluster.

Chapter 3: Sources and Sinks 33

Figure 3.6: Successive computations of mean shift [2]

If two cluster centers are close to each other, they are merged. To resolve conflicts of one

data point belonging to more than one cluster, each data point gets votes of belonging

to one cluster. After the convergence of this algorithm, every data point belongs to the

cluster having the highest number of votes.

3.2.4 DBSCAN

This algorithm is based on the Gestalt law of proximity: humans interpret near objects

to belong together, whereas sparse objects are not belonging together [23]. Figure 3.7

depicts 9 equal dots, but having different distances. Humans interpret these 9 equal dots

as 3 groups of dots, containing 4, 3 and 2 dots. [3] developed a new clustering algorithm

based on a density based notion called DBSCAN. This Density-Based algorithm was

designed for large spatial databases containing noise and discovers clusters of arbitrary

shape without the need of specifying the number of clusters in advance making the

assumption that the density of points within clusters is much higher than the density

between clusters or areas of noise.

Figure 3.7: Gestalt law of proximity

Chapter 3: Sources and Sinks 34

Figure 3.8: DBSCAN: (a) density-reachable, (b) density-connected [3]

3.2.4.1 Basic Algorithm

The fundamental idea of DBSCAN is the neighborhood analysis of a given point p0

within a radius ε. If the number of points within this radius is higher than a specified

threshold MinPts, every point pi is called directly density-reachable. If a point q is

not directly density-reachable from p, but there is a chain of points whereby q gets

reachable, this point is called density-reachable from p. Given that q is not density-

reachable from p, but a point o exists, from which both are density-reachable, p and q

are called density-connected (Figure 3.8).

A cluster is defined as the maximal subset of points, which are at least density-connected;

all other points are classified as noise or belong to other clusters. In short: all points,

which are density-reachable or density-connected to a specific point p belong to the same

cluster as p, as long as the number of these points is higher than the threshold MinPts.

The basic algorithm is depicted in Algorithm 6.

Algorithm 6 DBSCAN

Require: minimal number of objects considered as a cluster MinPts
1: i← 0
2: calculate radius ε
3: repeat
4: randomly choose a data point p
5: calculate Neighborhood Np {find all density-reachable and density connected data

points to p}
6: if number of points in Np ≥ n then
7: all points in Np belong to a cluster
8: i← i+ 1
9: end if

10: until all data points belong to a cluster
11: return data points and their corresponding cluster

3.2.4.2 Improvements

Because of using real surveillance videos, the same density criteria as introduced in

Section 3.2.2.2 will be used during the experiments. This helps to reduce the amount of

Chapter 3: Sources and Sinks 35

clusters gained by DBSCAN, while preserving relevant clusters.

3.2.5 Spectral Clustering

Spectral Clustering is a graph based algorithm based on a similarity measure between

data points without assuming any knowledge of the underlying data distribution. This

approach calculates a similarity matrix which is used to cluster data points according

to their similarity measure with respect to the given number of clusters k.

3.2.5.1 Basic Algorithm

Algorithm 7 Spectral Clustering

Require: number of cluster k
1: calculate similarity matrix W
2: calculate diagonal matrix D
3: L← D −W
4: calculate first k eigenvectors
5: cluster data points in the k-dimensional space generated by the eigenvectors
6: return data points and their corresponding cluster

Spectral Clustering is based on the use of a similarity graph, the basic algorithm is

shown in Algorithm 7. Data points are represented by nodes and a similarity between

all data points is calculated and stored in a similarity matrix. If nodes are sufficiently

similar, they are connected by an edge weighted with the similarity (Figure 3.9a). Hence

nodes within a group have high weights, nodes from different have low weights. Some

popular similarity graphs mentioned by [24] are the ε-neighborhood graph (all nodes

whose distance is smaller than ε are connected), the k-means neighbor graph (nodes are

connected with their k nearest neighbors) and the fully connected graph (all nodes are

connected).

To cluster nodes according to their weighted edges, a graph cut through the edges having

lower weights must be performed (Figure 3.9b). This can be done by calculating the so

called graph Laplacian matrix L, defined as

L = D −W (3.4)

where D is the diagonal degree matrix with the sum of adjacent weights on the diag-

onal and W is the quadratic weight matrix. Afterwards, the first k eigenvectors with

the smallest corresponding eigenvalues are calculated from L which results in a matrix

Chapter 3: Sources and Sinks 36

(a) Similarity graph

(b) Graph cut

Figure 3.9: Neighborhood graph [4]

containing k n-dimensional vectors. Using row vectors instead of column vectors re-

duces the dimensionality of data from n-dimensional space to a k -dimensional space

where clustering is much easier and the simple k -means algorithm performs very well

(Figure 3.10).

3.2.5.2 Improvements

A common algorithm widely used for spectral clustering is the Ng-Jordan-Weiss algo-

rithm [25], which uses a scale factor σ for calculating the affinity matrix. This scale

factor stays constant for all data points, hence the selection of σ to achieve desired re-

sults is challenging (Figure 3.11). [5] introduced local scaling: the scale factor σ is not

constant for the whole data set, but assigning a local scale factor σi results in high affini-

ties within clusters and low affinities between clusters yielding in improved clustering

results.

A further improvement is the additionally added automatic detection of cluster numbers

k called self-tuning spectral clustering proposed by [5], where using local scaling and

analyzing the eigenvectors lead to the number of clusters. Therefore the graph Laplacian

matrix L is rearranged to be as block diagonal as possible, meaning that each block is

the representation of one cluster.

Chapter 3: Sources and Sinks 37

(a) Data points in original space

(b) Data points in new space given by k eigenvectors

Figure 3.10: Sample data set [4]

3.2.6 Growing Neural Gas

Growing Neural Gas (GNG) is a graph based approach for clustering n dimensional

data, which inserts and removes nodes and edges dynamically to fit the underlying data

structure. Hence no prior information about the number of nodes (clusters) needs to

be specified, but other parameters which influence the number of nodes indirectly have

to be adjusted. This approach is based on Competitive Hebbian Learning (CHL, [26]),

which constructs a topological structure using the vector quantization of Neural Gas

Figure 3.11: Clustering results using different values for σ [5]

Chapter 3: Sources and Sinks 38

(NG, [27]). GNG overcomes the problem of specifying the number of clusters a priori as

when using NG and CHL.

3.2.6.1 Basic Algorithm

Algorithm 8 GNG

1: randomly place two nodes and connect them by an edge
2: i← 0
3: for all edges do
4: age← 0
5: end for
6: repeat
7: choose an arbitrary data point x
8: find nearest node s and second nearest node t to x
9: update local error errors = errors ← ‖ws − x‖2

10: move s and corresponding neighbor nodes towards x
11: for all edges do
12: age← age+ 1
13: end for
14: if s and t are connected then
15: age(edgest)← 0
16: else
17: insert edge between s and t
18: end if
19: if i is a multiple of λ then
20: insert new node
21: end if
22: multiply errors by a factor
23: i← i+ 1
24: until maximum number of nodes or iterations is reached
25: return data points and their corresponding cluster

The basic algorithm of GNG is shown in Algorithm 8. Each cluster is represented

by a node called reference vector describing the cluster center w̄s. Alternatively, the

connected components of a graph can be used as cluster representation as well. Every

node also contains information about the local error and its neighborhood. Information

about neighborhood is stored as the age of edges, connecting the current node with a

neighbor node. All edges exceeding a maximum age will be removed – if this is the last

edge of a node, this node is removed as well. The following steps are repeated, until the

maximum number of nodes or iterations are reached.

The first step sets two nodes randomly in the n dimensional space and connects them

with an edge [28]. Given a data point x̄, the nearest node s and the second nearest node

t are calculated using the Euclidean distance. The error of s is updated with

Chapter 3: Sources and Sinks 39

errors = errors + ‖w̄s − x̄‖2 (3.5)

so it is increased by the Euclidean distance.

The second step moves the node s and its corresponding neighbor nodes connected by

an edge towards x̄. This is done by adding the difference x̄ − w̄s, respectively x̄ − w̄i

(w̄i ∈ neighborhood), multiplied by a factor between 0 and 1. This factor chooses

the flexibility of moving nodes towards points. If it is too high, nodes will change

their positions very often and their oscillation will be high – the smaller the factor, the

more stable the graph acts due to the smaller movements, but the number of iterations

increases as prototypes need longer to converge. The ages of all edges from node s

are incremented, because the reference vector changes its position and its neighborhood

might change as well; hence it is only valid for a certain time. If s and t are connected,

the age of this edge is set to 0; otherwise a new edge between s and t is created.

Every λ iterations, a new node is inserted into the graph. In order to reduce the overall

error as much as possible, the new node is placed between the node with the largest

current error estimate and its neighbor with the maximal error variable. Finally, all

errors are multiplied by a factor α (newly inserted node and nodes connected through

newly inserted edges) and β (all other nodes) to reduce the error and to ensure that

recent error estimates are weighted higher than older ones.

3.2.6.2 Improvements

GNG is very sensitive to the chosen input parameter and tends to under- or overestimate

the number of clusters, due to the fixed insertion rate λ. Hence, the use of minimum

description length (MDL) in combination with GNG suggested by [29] yields in better

results, as it reduces the graph complexity dramatically.

Each cluster is represented by a reference vector describing the cluster center – the set

of all reference vectors and associated errors (Equation 3.5) is called code book. This

approach tries to minimize the costs of describing the code book through eliminating

unnecessary reference vectors. At first, outliers are removed from the code book – outliers

are reference vectors, where the costs of coding the data point directly would be lower

than by describing the data point with a reference vector and its corresponding error.

Afterwards, the reduction of description length is done by eliminating a reference vector,

which causes the maximal reduction in description length. All data points associated

with this reference vector are now associated with their second nearest reference vector

Chapter 3: Sources and Sinks 40

and their errors are recalculated. These two steps are processed repeatedly until no

outlier and no reference vector can be removed any more.

Chapter 4

Experimental Results: Particle

Advection

To obtain highest quality results for accurate source and sink detection, parameter set-

tings of Particle Advection and clustering algorithms have to be optimized and the influ-

ence of different parameters has to be evaluated. This Chapter discusses the evaluation

of different settings for the particle advection process, different settings for clustering

algorithms are discussed in Chapter 5. Figure 4.1 depicts an organization chart of this

Chapter. Section 4.1 shows results of different parameter settings for particle advection

using image coordinates. The improvement of using world coordinates instead of image

coordinates is evaluated in Section 4.2. Using an ellipse as stranded criterion is evaluated

in Section 4.3, particle hopping detection in Section 4.4 and the hierarchical approach

is evaluated in Section 4.5.

The aim of this Chapter is to find “optimal” particle advection settings through maxi-

mizing the percentage of valid trajectories by evaluating the influence of different particle

advection settings on the quality of trajectories. The usefulness of the developed ap-

proaches to enhance the quality of particle advection introduced in Section 2.4 can also

be compared by using the percentages of valid trajectories.

Figure 4.1: Organization chart of Chapter 4

41

Chapter 4: Experimental Results: Particle Advection 42

Table 4.1: Settings for Optical Flow Detection [14]

Definition 4.1. Valid trajectories are all trajectories starting in source areas and

ending in sink areas.

Definition 4.2. Invalid trajectories are all trajectories not starting in source areas

and ending in sink areas.

As the number of particle advection parameters is high (there are 17 different parameters

for optical flow analysis and 26 parameters for the particle advection process itself), not

all parameter settings can be evaluated in reasonable time. The parameters of optical

flow analysis from [14] have been set to values shown in Table 4.1, yielding in good

results verified by visual inspection. If only sources and sinks are detected, the choice of

optical flow parameters is not critical. The four major parameters of particle advection

(insertion rate1, stranded rate, stranded radius and backward range) have been evaluated

first, to enhance trajectory quality before other effects (e.g. perspective view) were taken

into account. Parameter values used for evaluation are shown in Table 4.2 and 4.3.

We evaluated four different insertion and stranded rates using either image or world

coordinates and five or six different backward ranges (Algorithm 2, line 25).

Evaluating only values of these four parameters results in more than 320 possible com-

binations of these parameter values. Advanced settings like using world coordinates

instead of image coordinates or the developed particle hopping detection mechanism

have been evaluated using the “optimal” particle advection settings found in this step.

150 × 50 particles are inserted every x frames

Chapter 4: Experimental Results: Particle Advection 43

Table 4.2: Settings for Particle Advection evaluating train station video using image
and world coordinates

The particle advection algorithm has been evaluated on a dense crowded train station

video, on crowded PETS (Performance Evaluation of Tracking and Surveillance) bench-

mark data and on a crowded traffic video provided by the University of Central Florida

crowd data set. To get an impression of these videos, 9 screenshots of each video have

been made. Figure 4.2 and 4.3 show a Viennese train station from two different positions

- this data was also used in Chapter 3 and video footage contains over 15000 frames per

video showing 15 minutes of travelers moving within the train station. It took the par-

ticle advection algorithm 15 minutes to advect particles throughout the video data on a

Q6600 Quad Core Processor with 2.4 GHz each, 3 GB of RAM and an Nvidia GeForce

8800 GTX, facilitating real-time particle advection on this machine. The PETS video,

depicted in Figure 4.4, contains 232 frames and shows a group of people entering the

camera field of view, moving from left to right and finally leaving the camera field of

view. The scene in Figure 4.5 depicts a dense traffic scene containing 608 frames and

obstacles thus making the detection of real sources and sinks challenging.

Figure 4.6 depicts the areas of interest of a train station and a PETS benchmark video.

The areas of sources and sinks have been predefined by visual inspection of the video

data (rectangular areas), facilitating the classification into valid or invalid trajectories.

The main source and sink found by visual inspection due to the arrival of a train are

marked cyan in figure 4.6a. Green sources and sinks are primary sources and sinks,

yellow sources and sinks mark secondary sources and sinks.

Table 4.3: Settings for Particle Advection evaluating PETS benchmark data using
image and world coordinates

Chapter 4: Experimental Results: Particle Advection 44

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2: Screenshots of train station video - position 1

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.3: Screenshots of train station video - position 2

Chapter 4: Experimental Results: Particle Advection 45

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.4: Screenshots of PETS video

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.5: Screenshots of traffic video

Chapter 4: Experimental Results: Particle Advection 46

(a) Train station (b) PETS benchmark data

Figure 4.6: Sources and sinks

4.1 Particle Advection Settings using Image Coordinates

Using image coordinates as dimension unit may result in problems caused by perspective

distortion, depending on the camera position introduced in Section 2.3.2. This Section

provides data obtained by using the basic particle advection algorithm without any

enhancements.

4.1.1 Parameter Settings for Train Station

Using boxplots, the mean value, quartiles and outliers of 320 runs using different pa-

rameter settings are calculated, shown in Figure 4.7. These plots show that only the

backward range does have a clear major effect on the quality of trajectories. Since

the notches in the boxplot do not overlap, one can say with 95% confidence that the

backward range does influence the quality significantly. There is also a influence of the

stranded rate, but this dependency is not significant.

The second step of evaluation was a qualitative evaluation comparing start and end

points of different particle advection settings using a kernel density estimator introduced

in Chapter 3. Qualitative evaluation has shown that a large backward range and a high

insert rate result in more intensified sources and sinks. Setting a large backward range

means that each particle which is inserted into the system, is advected backwards for

the specified number of frames before it is advected forward. The longer the particle

is advected backwards, the higher the probability of finding the “real” source of this

particle. Thus, particles should be advected backward as long as possible (e.g. 180

frames) shown Figure 4.8. The number of frames, a particle could be advected backward,

is restricted by main memory because every optical flow field has to be hold in main

memory, as it is needed for backward advection. Advecting particles back for a long

Chapter 4: Experimental Results: Particle Advection 47

(a) Insertion rate (b) Stranded rate

(c) Stranded radius (d) Backward range

Figure 4.7: Quality of trajectories depending on particle advection settings (II)

time using a relaxed stranded criterion results in a higher number of particles which can

cause a lack of memory either. Backward advection does not have any influence on the

obtained sinks, as only the start point is changed during backward advection, which has

been verified in Figure 4.9. Figure 4.9 depicts the results of using different backward

ranges, which do not have any influence on the obtained sinks.

Using a high insert rate (e.g. every 20 frames new particles are inserted), meaning that

as many particles as possible (depending on the size of main memory) are in the system

results in more intensified sources and sinks, illustrated in Figure 4.10 and Figure 4.11.

This may be due to the fact of the higher sample that can be evaluated. Inserting

particles every 20 frames results in over 1.2 million particles when analyzing the train

station video, which contains more than 15.000 frames. As the memory consumption

directly depends on the number of particles, the number of particles is restricted by

available main memory.

Chapter 4: Experimental Results: Particle Advection 48

(a) Backward range = 20 (b) Backward range = 60

(c) Backward range = 100 (d) Backward range = 140

(e) Backward range = 180 (f) Ground truth - main
source was identified by vi-
sual inspection to be in the
right bottom corner (cyan)

Figure 4.8: Influence of backward range on trajectory start points (insert rate = 20,
stranded rate = 10, stranded radius = 2)

Chapter 4: Experimental Results: Particle Advection 49

(a) Backward range = 20 (b) Backward range = 60

(c) Backward range = 100 (d) Backward range = 140

(e) Backward range = 180

Figure 4.9: Influence of backward range on trajectory end points (insert rate = 20,
stranded rate = 10, stranded radius = 2)

Chapter 4: Experimental Results: Particle Advection 50

(a) Insert rate = 20 (b) Insert rate = 50

(c) Insert rate = 80 (d) Insert rate = 110

Figure 4.10: Influence of insertion rate on trajectory start points (stranded rate = 10,
stranded radius = 2, backward range = 180)

Chapter 4: Experimental Results: Particle Advection 51

(a) Insert rate = 20 (b) Insert rate = 50

(c) Insert rate = 80 (d) Insert rate = 110

(e) Ground truth - main
sink was identified by visual
inspection to be an escala-
tor on the left side (cyan)

Figure 4.11: Influence of insert rate on trajectory end points (stranded rate = 10,
stranded radius = 2, backward range = 180)

Chapter 4: Experimental Results: Particle Advection 52

A very relaxed stranded criterion also leads to a high number of particles thus intensi-

fying sources and sinks – shown in Figure 4.12 and Figure 4.13. To relax the stranded

criterion, the stranded radius is high and the stranded rate should be low, meaning that

a particle strands after a large number of frames (e.g. particle strands after 100 frames,

if it only moves within a radius of eleven pixels). Not stranding immediately causes the

particles to hop from one person to another one. When the two persons head into the

same direction, this “particle hopping” is not critical as we are only interested in general

motion flows.

These results lead to the following guidelines for the choice of particle advection param-

eters:

• large backward range

• high number of particles, implicating a

• high insertion rate and a

• relaxed stranded criterion

Using these guidelines leads to intensified sources and sinks, but requiring more main

memory.

4.1.2 Parameter Settings for PETS Benchmark Data

Figure 4.14 depicts the quantitative analysis of a PETS benchmark video, showing the

percentage of primary trajectories – these are trajectories which start at a primary source

and end in a primary sink. As the results obtained by analysis of the train station video

are general guidelines, the results of the PETS benchmark data should confirm these

guidelines.

However, Figure 4.14 does not show any clear dependencies of any parameter on the

quality of particle trajectories. This is caused by the short length of the PETS video

of only 232 frames. Results obtained by longer video analysis are more trustful than

results obtained by analysis of a short video sequence. The general purpose of this work

is finding sources and sinks – therefore the analysis is more useful on a longer sequence

than 232 frames.

Chapter 4: Experimental Results: Particle Advection 53

(a) Stranded rate = 10, ra-
dius = 2

(b) Stranded rate = 40, ra-
dius = 5

(c) Stranded rate = 70, ra-
dius = 8

(d) Stranded rate = 100,
radius = 11

Figure 4.12: Influence of stranded rate and radius on trajectory start points (insert rate
= 50, backward range = 180)

(a) Stranded rate = 10, ra-
dius = 2

(b) Stranded rate = 40, ra-
dius = 5

(c) Stranded rate = 70, ra-
dius = 8

(d) Stranded rate = 100,
radius = 11

Figure 4.13: Influence of stranded rate and radius on trajectory end points (insert rate
= 50, backward range = 180)

Chapter 4: Experimental Results: Particle Advection 54

(a) Insertion rate (b) Stranded rate

(c) Stranded radius (d) Backward range

Figure 4.14: Quality of trajectories depending on particle advection settings

4.2 Particle Advection Settings using World Coordinates

To decrease the influence of perspective view and the camera position, particle advection

can also employ world coordinates introduced in Section 2.3.2. This has the advantage

of using a consistent stranded criterion not depending on the actual pixel position or

resolution. Thus using world coordinates should yield in a higher percentage of valid

trajectories.

4.2.1 Parameter Settings for Train Station

Using world coordinates results in an average percentage of 31,61% of valid trajectories,

whereas trajectories obtained by using image coordinates result in an average percentage

of 20,06% of valid trajectories. This comparison demonstrates that the use of perspective

view (and its distortions) has a big influence on the quality – therefore the use of world

coordinates is recommended (if camera calibration data exists). Figure 4.15 shows that

the quality significantly depends on the stranded rate and that the size of backward

range does not influence the quality any more.

Chapter 4: Experimental Results: Particle Advection 55

(a) Insertion rate (b) Stranded rate

(c) Stranded radius (d) Backward range

Figure 4.15: Quality of trajectories depending on particle advection settings using world
coordinates

Analysis of trajectory start and end points confutes these results, because using a long

backward advection intensifies sources thus influencing the quality, shown in Figure 4.16.

In general, the results are very similar to those obtained by particle advection with

image coordinates, thus confirming the general guidelines introduced in Section 4.1.1.

Figure 4.17 and Figure 4.18 show that a higher insertion rate (particles are inserted

every 20 frames) results in more intensified sources and sinks than a lower insertion

rate (particles are inserted every 110 frames). A relaxed stranded criterion also results

in more intensified sources and sinks as this results in more particles, since they are

not removed immediately. Figure 4.19 and 4.20 depict the influence of the stranded

criterion on the obtained sources and sinks: using a strict stranded criterion (particles

are removed after ten frames if they move within a radius of 25 cm) does not intensify

the main source and sink as it does when using a relaxed stranded criterion (particles

are removed after 100 frames if they move within a radius of 100 cm).

Chapter 4: Experimental Results: Particle Advection 56

(a) Backward range = 20 (b) Backward range = 60

(c) Backward range = 100 (d) Backward range = 140

(e) Backward range = 180

Figure 4.16: Influence of backward range on trajectory start points using world coor-
dinates (insert rate = 20, stranded rate = 10, stranded radius = 25)

(a) Ground truth - main
source was identified by vi-
sual inspection to be in the
right bottom corner (cyan)

Chapter 4: Experimental Results: Particle Advection 57

(a) Insert rate = 20 (b) Insert rate = 50

(c) Insert rate = 80 (d) Insert rate = 110

Figure 4.17: Influence of insert rate on trajectory start points using world coordinates
(stranded rate = 40, stranded radius = 50, backward range = 180)

(a) Insert rate = 20 (b) Insert rate = 50

(c) Insert rate = 80 (d) Insert rate = 110

Figure 4.18: Influence of insert rate on trajectory end points using world coordinates
(stranded rate = 40, stranded radius = 50, backward range = 180)

Chapter 4: Experimental Results: Particle Advection 58

(a) Stranded rate = 10, ra-
dius = 25

(b) Stranded rate = 40, ra-
dius = 50

(c) Stranded rate = 70, ra-
dius = 75

(d) Stranded rate = 100,
radius = 100

Figure 4.19: Influence of stranded rate and radius on trajectory start points using world
coordinates (insert rate = 50, backward range = 180)

(a) Stranded rate = 10, ra-
dius = 25

(b) Stranded rate = 40, ra-
dius = 50

(c) Stranded rate = 70, ra-
dius = 75

(d) Stranded rate = 100,
radius = 100

Figure 4.20: Influence of stranded rate and radius on trajectory end points using world
coordinates (insert rate = 50, backward range = 180)

Chapter 4: Experimental Results: Particle Advection 59

(a) Insertion rate (b) Stranded rate

(c) Stranded radius (d) Backward range

Figure 4.21: Quality of trajectories depending on particle advection settings

4.2.2 Parameter Settings for PETS Benchmark Data

The quantitative evaluation of PETS benchmark data is shown in Figure 4.21. As the

benchmark data contain only 232 frames and thus being too short for a reliable analysis,

no assumptions about dependencies between any parameter and the quality of particle

trajectories can be made.

4.3 Ellipse as Stranded Criterion

To evaluate the use of ellipses as stranded criterion, different combinations of axis lengths

were applied – Table 4.4 and 4.5 show the possible combinations. Based on evaluation

done in Section 4.2, the insert rate and the backward range should be high (inserting

particles every 50 frames, advecting them 180 frames back in time), while using world

coordinates and a relaxed stranded criterion (particles strand after 100 frames).

Figure 4.22 depicts the percentage of valid trajectories obtained while using an ellipse

as stranded criterion. The highest percentage can be found when using a long y-axis

(400 cm); using a long x-axis (400cm) results in a lower percentage of valid trajectories.

Hence, the uncertainness in y direction is bigger than in x direction, as a more relaxed

Chapter 4: Experimental Results: Particle Advection 60

x-axis [cm]
25 50 75 100

y-axis [cm]
50 100 150 200
75 150 225 300
100 200 300 400

Table 4.4: Axis Lengths for Elliptical Stranded Criterion (I)

stranded criterion results in more valid trajectories. This confirms the assumption that

the uncertainty in y direction is bigger as a change of one pixel in y direction results in

a higher change in world coordinates than a change of one pixel in x direction.

4.4 Particle Hopping Detection

Both particle hopping detection mechanisms, restricting angle λ and acceleration, were

evaluated on the train station video. As it is a dense crowded scene with many flow di-

rections, many particle hops occurred (verified by visual inspection). By using a particle

hopping detection mechanism, a higher quality of trajectories is expected meaning that

the overall percentage of valid particles is higher than without using a particle hopping

detection mechanism and hence sources and sinks are more distinct. The results were

compared to results of the same scene without eliminating hopped particle trajectories

depicted in Figure 4.23. Figure 4.23a shows the percentage of valid particles using differ-

ent angles (30◦, 60◦, 90◦, 120◦ and 150◦) as threshold for the particle hopping detection.

The blue line depicts the quality of trajectories, if no particle hopping detection mech-

anism is used resulting in a higher quality. The bigger the values for λt, the higher the

quality as the criterion is more and more relaxed, depicted as red line in Figure 4.23a.

Also the results using the acceleration detection mechanism in Figure 4.23b show that

the quality of particles is much lower when a particle detection mechanism is used.

y-axis [cm]
25 50 75 100

x-axis [cm]
50 100 150 200
75 150 225 300
100 200 300 400

Table 4.5: Axis Lengths for Elliptical Stranded Criterion (II)

Chapter 4: Experimental Results: Particle Advection 61

(a) 3D plot

(b) 2D plot (percentage of valid trajectories coded by color)

Figure 4.22: Percentage of valid particle trajectories obtained by using an ellipse as
stranded criterion

Chapter 4: Experimental Results: Particle Advection 62

(a) Percentage of valid particles using
different values for λt

(b) Percentage of valid particles using
different values for acceleration

(c) Number of particles using different
values for λt

(d) Number of valid particles using
different values for acceleration

Figure 4.23: Comparison of trajectory quality and number of particles

These results are astonishing, as we would have expected higher quality trajectories.

Probably this is due to the fact that using a particle hopping detection mechanism re-

duces the number of particles dramatically, shown in Figure 4.23c and 4.23d. Figure 4.24

shows the influence of λt on start points, Figure 4.25 on end points. Both Figures show

that sources and sinks getting more distinctive, if a more relaxed detection is used thus

confirming the results shown in Figure 4.23. Also restricting acceleration results in

higher quality, if the criterion is more relaxed, depicted in Figure 4.26 and 4.27.

If one is interested in exact trajectory data, the use of a particle hopping detection

mechanism is reasonable as trajectory data is not adulterated. The distinctiveness of

sources and sinks depends on the number of particles – the higher the number, the more

distinct the sources and sinks are. As a particle hopping detection mechanism reduces

the number of particles respectively trajectories, sources and sinks are not so distinctive

any more.

Chapter 4: Experimental Results: Particle Advection 63

(a) λt = 30◦ (b) λt = 60◦

(c) λt = 90◦ (d) λt = 120◦

(e) λt = 150◦

Figure 4.24: Start points using different values for λt

Chapter 4: Experimental Results: Particle Advection 64

(a) λt = 30◦ (b) λt = 60◦

(c) λt = 90◦ (d) λt = 120◦

(e) λt = 150◦

Figure 4.25: End points using different values for λt

Chapter 4: Experimental Results: Particle Advection 65

(a) acceleration=2 (b) acceleration=4

(c) acceleration=6 (d) acceleration=8

(e) acceleration=10

Figure 4.26: Start points using different values for acceleration

Chapter 4: Experimental Results: Particle Advection 66

(a) acceleration=2 (b) acceleration=4

(c) acceleration=6 (d) acceleration=8

(e) acceleration=10

Figure 4.27: End points using different values for acceleration

Chapter 4: Experimental Results: Particle Advection 67

4.5 Hierarchical Approach

This approach was evaluated on video data from the UCF Crowd Data Set2. This video

was used because the train station video does not contain any static occlusions and the

PETS video was to short to gain feasible results. The video contains a high density

traffic scene and lasts for 608 frames.

Particles were inserted every 30 frames and were removed if they only moved within a

radius of ten pixels over a period of 100 frames. Newly inserted particles were moved

backward for 50 frames. Figure 4.28a shows a screenshot of the video sequence used

for evaluation and the corresponding areas of interest. There is one main source at the

bottom and 2 sinks in the upper left and right corner. The lamppost acts as a secondary

sink as vehicles are occluded and particles tend to strand due to the lack of motion. Not

using a hierarchical approach results in 12.53% of particles being valid and only 6.16% of

particles are stranding in primary sinks, which is depicted in Figure 4.28b. Figure 4.28c

shows trajectory end points, if the hierarchical approach is used, resulting in 13.77% of

particles being valid and 7.21% of particles strand in primary sinks. If particle advection

is not processed on full but on reduced resolution size, the percentage of valid particles

raises (16.06% of particles are valid) and also the percentage of particles stranding in

primary sinks is higher (9.66%). As the quantitative results are supported by qualitative

results shown in Figure 4.28, primary sinks gain in importance while secondary sinks

(lampposts) become less important. Thus one can say, the usage of hierarchical particle

advection is recommandable if the exact trajectories are needed. For detecting sources

and sinks of a video sequence, the use of a reduced video resolution may be sufficient,

as the quality of trajectories improves with the aspect of loosing accuracy.

2This data set is provided by the University of Central Florida and can be found on
http://www.cs.ucf.edu/∼sali/Projects/CrowdSegmentation/index.html (last accessed on February 15,
2010.)

http://www.cs.ucf.edu/~sali/Projects/CrowdSegmentation/index.html

Chapter 4: Experimental Results: Particle Advection 68

(a) Areas of interest in UCF Crowd
Dataset video

(b) End points obtained by particle
advection not using the hierarchical

approach

(c) End points obtained by particle
advection using the hierarchical ap-

proach

(d) End points obtained by particle
advection on reduced resolution

Figure 4.28: Comparing end points using different settings on hierarchical particle
advection

Chapter 5

Experimental Results: Clustering

Sources and Sinks

This Chapter compares results obtained by different clustering algorithms regarding

cluster results, stability and the dependency on input parameters. All data points (co-

ordinates) were normalized to fit the interval from 0 to 1 and clustering algorithms

were evaluated on the same subset of start and end points. Start and end points were

obtained by particle advection on the train station video, using particle advection param-

eters shown in Table 5.1, resulting in a high quality of trajectories (28.34% of trajectories

start in sources and end in sinks).

The flowchart for clustering sources and sinks is shown in Figure 5.1. At first, data

reduction is applied to all start and end points. Afterwards, different clustering algo-

rithms are used to obtain sources and sinks. Finally, a cluster reduction process using a

threshold T introduced in Equation 3.3 or Minimum Description Length introduced in

Section 3.2.6.2 is used to detect the main sources and sinks.

To verify results, parameters of clustering algorithms have been verified using a second

video sequence from train station, introduced in Chapter 4, Figure 4.2. Figure 5.2

depicts one main source at the right side and two main sinks – one at the left side (door

Parameter Value

Insert Rate 20 frames
Stranded Rate 100 frames
Stranded Radius 100 cm
Backward Range 180 frames

Table 5.1: Settings for Particle Advection

69

Chapter 5: Experimental Results: Clustering Sources and Sinks 70

Figure 5.1: Flowchart for clustering sources and sinks

to the platform) and a larger one at the bottom, where people leave the camera field of

view.

This Chapter is structured as follows: Section 5.1 describes the process of data reduction

before clustering. The expectation maximization algorithm is evaluated in Section 5.2,

PG-means is evaluated in Section 5.3 and the evaluation of mean shift algorithm is shown

in Section 5.4. Section 5.5 depicts the experimental results of the DBSCAN algorithm,

Section 5.6 the results of self-tuning spectral clustering and the evaluation of growing

neural gas is shown in Section 5.7.

5.1 Data Reduction

Particle advection usually results in over 1 million particles, thus making clustering very

time consuming, if not impossible. For example: spectral clustering uses a similarity

matrix to store all similarities between all data points. Using 106 particles results in

106 trajectories, hence 106 start or end points have to be clustered. This results in

(a) Density of start points (b) Density of end points

Figure 5.2: Density plots of start and end points obtained by particle advection on the
second train station video

Chapter 5: Experimental Results: Clustering Sources and Sinks 71

(a) 20 sample pixel densities (b) Pixel densities normalized to
a range from 0 to 1

Figure 5.3: Correlation between density and probability of randomly chosen points

a 106 × 106 similarity matrix storing 1012 values. Using the data type double, which

requires 8 bytes, the similarity matrix uses 8 · 1012 bytes = 8 TB of memory!

The use of a kernel density estimator shows a visual evidence of sources and sinks. This

evidence can be exploited to reduce the number of clustered particles, as a sampling can

be applied according to the probability function. The kernel density estimator provides

a probability for each pixel. Dividing each pixel value by the sum of all values results

in probabilities to a scale from zero to one considering the probability of each pixel.

Afterwards, x random numbers between zero and one were generated (for evaluation of

clustering algorithms, x has been set to 5000 as this provides useful results). A lookup

of this randomly chosen value results in pixel coordinates where a start respectively end

point is set. This method is able to cope with different densities, as the probability of

choosing a pixel having a high probability computed by KDE is higher as the range of

this pixel is bigger.

Figure 5.3a shows 20 sample pixel densities. Dividing each pixel value by the sum of all

values results in unequal probabilities for each pixel, shown in Figure 5.3b. Thus, the

randomly generated number has a higher probability to represent a pixel having a high

density, as the interval for this pixel is larger than for pixels having small densities.

5.2 Expectation Maximization

The Expectation Maximization algorithm takes the estimated number of clusters as

input argument. As one usually does not know the number of clusters, it is very hard

to estimate the number of clusters. In combination with the elimination of widely

distributed clusters described in Section 3.2.2.2, the choice of the number of clusters is

not crucial any more, as only dense clusters should be preserved. The duration needed

for the clustering process depends on the number of clusters and varies from one second

Chapter 5: Experimental Results: Clustering Sources and Sinks 72

(a) number of clusters=5 (b) number of clusters=10

(c) number of clusters=20 (d) number of clusters=30

Figure 5.4: Source clusters obtained by expectation maximization using different esti-
mated number of clusters without applying a threshold T

(five clusters) to 23 seconds (30 clusters). Repeated clustering yields in similar results,

thus the detected clusters are relatively stable.

To estimate the number of clusters is not as crucial as it is when using another clustering

algorithm, as dense clusters are preserved nearly independently of the estimated numbers

of clusters, depicted in Figure 5.4 and 5.5. The main source is modeled accurately

at all estimated number of clusters, but a high number of estimated clusters is more

likely to find real sources and sinks. Hence, the estimated number of clusters has been

set to 20 for the evaluation of different thresholds T introduced in Equation (3.3) to

eliminate widely distributed clusters. To choose an appropriate value for α is challenging

– Figure 5.6 depicts the influence of α on start points, Figure 5.7 the influence on end

points. Expectation Maximization was not able to identify the main source accurately at

any threshold T, but sink clusters were identified correctly at all three chosen thresholds.

The advantage of Expectation Maximization is the easy choice of input parameters and

that it only has minor effects on the results.

These results have been strengthened by the analysis of the second train station video.

Figure 5.8 depicts 20 source clusters and the reduced source clusters after applying the

threshold, the sink clusters are shown in Figure 5.9. The algorithm does not preserve

the main source, but one main exit was preserved during the reduction process correctly

Chapter 5: Experimental Results: Clustering Sources and Sinks 73

(a) number of clusters=5 (b) number of clusters=10

(c) number of clusters=20 (d) number of clusters=30

Figure 5.5: Sink clusters obtained by expectation maximization using different esti-
mated number of clusters without applying a threshold T

(a) α = 0.3 (b) α = 0.4

(c) α = 0.5

Figure 5.6: Source clusters obtained by expectation maximization using different thresh-
olds defined by α (number of clusters=20)

Chapter 5: Experimental Results: Clustering Sources and Sinks 74

(a) α = 0.3 (b) α = 0.4

(c) α = 0.5

Figure 5.7: Sink clusters obtained by expectation maximization using different thresh-
olds defined by α (number of clusters=20)

shown in Figure 5.9. Again, the choice of input parameters does not affect the results

enormously.

Chapter 5: Experimental Results: Clustering Sources and Sinks 75

(a) all 20 clusters (b) α = 0.3

(c) α = 0.4 (d) α = 0.5

Figure 5.8: Source clusters obtained by expectation maximization using different thresh-
olds defined by α analyzing the second train station video (number of clusters=20)

(a) all 20 clusters (b) α = 0.3

(c) α = 0.4 (d) α = 0.5

Figure 5.9: Sink clusters obtained by expectation maximization using different thresh-
olds defined by α analyzing the second train station video (number of clusters=20)

Chapter 5: Experimental Results: Clustering Sources and Sinks 76

5.3 PG-Means

PG-Means is able to detect the number of clusters automatically. Still, there are two

input arguments: γ, the probability of making a type-1 error and the number of pro-

jections, which should be set in a range of 12-18 according to [20]. The number of

projections was set to 15 and γ was set to 0.05. As the detected number of clusters is

higher than the number of real sources and sinks, the threshold criterion was applied

again. Finding the number of clusters is very time consuming, as the number of clusters

is increased iteratively and therefore many computations are done – hence it is not very

astonishing that clustering using pg-means took approximately 20 minutes, detecting 23

clusters.

Figure 5.10a and 5.11a depicts all 23 detected clusters. The real source in the lower

right corner was not detected accurately shown in Figure 5.10b. The real sink cluster

was detected correctly, applying different thresholds α from 0.3 to 0.5. As it took this

clustering algorithm very long to determine the clusters and it did not provide better

results, other clustering algorithms are preferred.

Applying pg-means to the second train station video, neither the main source nor the

main sinks were found by this algorithm. Figure 5.12 depicts the 18 source clusters

(a) all 23 clusters (b) α = 0.2

(c) α = 0.3 (d) α = 0.4

Figure 5.10: Source clusters obtained by pg-means applying different thresholds defined
by α

Chapter 5: Experimental Results: Clustering Sources and Sinks 77

(a) all 23 clusters (b) α = 0.2

(c) α = 0.3 (d) α = 0.4

Figure 5.11: Sink clusters obtained by pg-means applying different thresholds defined
by α

detected by pg-means. The main source was not preserved during the reduction process,

as only one cluster in the middle was preserved, not representing a real source. The 19

sink clusters obtained by pg-means are shown in Figure 5.13. Applying a threshold to

reduce the number of clusters also results in eliminating the main sinks.

Chapter 5: Experimental Results: Clustering Sources and Sinks 78

(a) all 18 clusters (b) α = 0.2

(c) α = 0.3 (d) α = 0.4

Figure 5.12: Source clusters obtained by pg-means applying different thresholds defined
by α obtained by the second train station video

(a) all 19 clusters (b) α = 0.2

(c) α = 0.3 (d) α = 0.4

Figure 5.13: Sink clusters obtained by pg-means applying different thresholds defined
by α obtained by the second train station video

Chapter 5: Experimental Results: Clustering Sources and Sinks 79

5.4 Mean Shift

Repeated Mean Shift clustering does not yield in the same results and it took the

clustering algorithm about 1.5-2 seconds to find the clusters. Mean shift clustering

needs a bandwidth specified, defining the radius within points are classified to belong to

the same cluster. As sources and sinks are usually represented by small dense clusters,

the bandwidth has been set to find many clusters and the number of clusters was reduced

afterwards using a threshold α introduced by [15].

Figure 5.14 and 5.15 show the clustering results using different bandwidth values starting

with a bandwidth of 0.05 up to a bandwidth of 0.1. Setting a bandwidth of 0.05 results

in approximately 100 clusters, whereas a bandwidth of 0.1 results in approximately 15

clusters. Using a bandwidth of 0.1 reduces the number of clusters, thus the primary

source and sink are not obtained, as clusters representing the primary source and sink

were removed during the reduction process. Hence, a bandwidth of 0.05 was used, as it

produces a high number of clusters and reducing the number of clusters yields in better

results.

The influence of different thresholds T introduced in Equation 3.3 is shown in Figure 5.16

and 5.17. Setting α = 0.003 results in too many sources, whereas a value of 0.005

eliminates all sources. Only a value of 0.004 results in reasonable sources – hence the

choice of α is challenging. The sink is more distinctive as the source, thus values from

0.005 to 0.008 preserve the sink while eliminating all other clusters accurately.

Evaluation with another video sequence from the train station shows that mean shift

is not able to detect the main source while using a bandwidth of 0.05, depicted in

Figure 5.18. Figure 5.19 shows the sensitivity of the algorithm to the chosen value of α

- only one main sink is preserved by the algorithm correctly.

Chapter 5: Experimental Results: Clustering Sources and Sinks 80

(a) bandwidth=0.05 (b) bandwidth=0.07

(c) bandwidth=0.085 (d) bandwidth=0.1

Figure 5.14: Source clusters obtained by mean shift using different values as bandwidth
without applying a threshold T

(a) bandwidth=0.05 (b) bandwidth=0.07

(c) bandwidth=0.085 (d) bandwidth=0.1

Figure 5.15: Sink clusters obtained by mean shift using different values as bandwidth
without applying a threshold T

Chapter 5: Experimental Results: Clustering Sources and Sinks 81

(a) α=0.001 (b) α=0.003

(c) α=0.004 (d) α=0.005

Figure 5.16: Source clusters obtained by mean shift using different thresholds defined
by α (bandwidth=0.05)

(a) α=0.001 (b) α=0.003

(c) α=0.004 (d) α=0.005

Figure 5.17: Source clusters obtained by mean shift using different thresholds defined
by α (bandwidth=0.05)

Chapter 5: Experimental Results: Clustering Sources and Sinks 82

(a) All 100 source clusters (b) α=0.003

(c) α=0.004 (d) α=0.005

Figure 5.18: Source clusters obtained by mean shift on the second train station video
using different thresholds defined by α (bandwidth=0.05)

(a) All 84 sink clusters (b) α=0.003

(c) α=0.004 (d) α=0.005

Figure 5.19: Sink clusters obtained by mean shift on the second train station video
using different thresholds defined by α (bandwidth=0.05)

Chapter 5: Experimental Results: Clustering Sources and Sinks 83

5.5 DBSCAN

DBSCAN clustering of 5000 points took between 10 and 30 seconds and repeated DB-

SCAN clustering yielded in exactly the same results. Two parameters can be modified:

k, the minimal number of objects considered as a cluster and the threshold α to eliminate

widely distributed cluster.

Figure 5.20 and Figure 5.21 depict the influence of k on clustering results. Each cluster

is represented by a different marker and color – white points are outliers not assigned

to any cluster. Feasible results are obtained using k <= 3 – the higher k, the higher the

number of points within a cluster. Setting k = 4 results in big clusters, not representing

the real sources and sinks any more as some clusters are merged.

Using k = 3 and applying different thresholds does not yield in desirable results, depicted

in Figure 5.22. Applying a threshold with α = 0.007 does not find the real sources and

sinks. Thus, α was set to 0.005, finding real sources and sinks but not eliminating widely

distributed cluster. Hence, there are too many points within each cluster resulting in

too big clusters. To reduce the cluster size, k needs to be set to a value smaller than

3. Setting k to 2 results in finding the real sources and sinks even after applying the

threshold, depicted in Figure 5.23. The thresholds are very sensitive, hence different

thresholds for sources and sinks were applied. The influence of α should be as low as

possible, thus k has been set to 1. Figure 5.24 depicts different thresholds applied to

clustered data using k = 1. Applying a threshold of α = 0.005 results in eliminating all

sources, but preserving the real sink. As the source is not as distinctive as the sink, it

is harder to preserve the source – therefore the choice of α is crucial. Accepting the fact

that only very distinctive sources and sinks are preserved, the choice of α is not crucial

any more, as the sink was preserved using different values of α up to 0.009.

Analysis of the second train station yields in reasonable results when using k = 2 as

input parameter. Using this configuration and applying a threshold defined by α = 0.003

preserves the main source and the main sinks correctly, as it was not done by any other

clustering algorithm. As the source is not as dense as the sinks, the source was eliminated

while applying other thresholds in Figure 5.25. The sinks are relatively robust against

the choice of α as at least the main sink is preserved depicted in Figure 5.26.

5.6 Self-Tuning Spectral Clustering

Self-tuning spectral clustering takes the number of neighbors to be considered in local

scaling as input parameter – but a change of this parameter does not affect the results.

Chapter 5: Experimental Results: Clustering Sources and Sinks 84

(a) k=1 (b) k=2

(c) k=3 (d) k=4

Figure 5.20: Source clusters obtained by DBSCAN using different values for k

(a) k=1 (b) k=2

(c) k=3 (d) k=4

Figure 5.21: Sink clusters obtained by DBSCAN using different values for k

Chapter 5: Experimental Results: Clustering Sources and Sinks 85

(a) Source clusters (α=0.005) (b) Source clusters (α=0.007)

(c) Sink clusters (α=0.007) (d) Sink clusters (α=0.01)

Figure 5.22: Clusters obtained by DBSCAN using different thresholds α with k = 3

(a) Source clusters (α=0.005) (b) Source clusters (α=0.007)

(c) Sink clusters (α=0.005) (d) Sink clusters (α=0.007)

Figure 5.23: Clusters obtained by DBSCAN using different thresholds α with k = 2

Chapter 5: Experimental Results: Clustering Sources and Sinks 86

(a) Source clusters (α=0.002) (b) Source clusters (α=0.005)

(c) Sink clusters (α=0.002) (d) Sink clusters (α=0.005)

Figure 5.24: Clusters obtained by DBSCAN using different thresholds α with k = 1

(a) All source clusters (b) Source clusters (α=0.003)

(c) Source clusters (α=0.005) (d) Source clusters (α=0.007)

Figure 5.25: Source clusters obtained by DBSCAN applied on the second train station
video using different thresholds defined by α with k = 2

Chapter 5: Experimental Results: Clustering Sources and Sinks 87

(a) All sink clusters (b) Sink clusters (α=0.003)

(c) Sink clusters (α=0.005) (d) Sink clusters (α=0.007)

Figure 5.26: Sink clusters obtained by DBSCAN applied on the second train station
video using different thresholds defined by α with k = 2

On the other hand, it is very memory and time consuming – clustering 5000 points

took approximately 20 minutes, but repeated clustering leads to the same results. As

self-tuning spectral clustering tries to find the correct number of clusters but does not

eliminate any cluster, the threshold criterion introduced in Equation 3.3 was applied.

This algorithm was not able to detect the source, not even approximately – hence the

threshold was not applied to source clusters as it would not yield in desired results.

Figure 5.27a shows the source clusters obtained by self-tuning spectral clustering, Fig-

ure 5.27b depicts the sink clusters. The threshold criterion was applied to sink cluster,

not preserving the main sink, but eliminating it which is shown in Figure 5.27c. Hence,

no more different thresholds were applied as no threshold would be able to preserve the

real sink and eliminate all other clusters.

Figure 5.28 confirms these results by applying spectral clustering to the second train

station video. Again, spectral clustering was not able to detect the main source and the

main sinks correctly, as these clusters were not dense enough to be preserved during the

reduction process.

Chapter 5: Experimental Results: Clustering Sources and Sinks 88

(a) Source clusters (b) Sink clusters

(c) Sink clusters after applying a
threshold T defined by α = 0.02

Figure 5.27: Self-tuning spectral clustering

5.7 Growing Neural Gas

Growing Neural Gas in combination with minimum description length requires over 20

different input parameters and clusters 5000 data points in 15-60 seconds, depending

on the number of clusters. Setting these parameters is very challenging and influences

the results of GNG dramatically. One does not need to specify the number of clusters

directly, but indirectly by setting the number of learning steps and the frequency of

inserting new nodes; also the lifetime of edges and corresponding nodes influences the

number of nodes.

Figure 5.29a and 5.29b depict the influence of the number of learning steps and the

frequency of inserting new nodes on clustering results of source cluster, Figure 5.30a

and 5.30b on the sink cluster. Results after applying the MDL reduction criterion are

shown in Figure 5.29c and 5.29d, respectively in Figure 5.30c and 5.30d. The influence

of edge lifetime is depicted in Figure 5.31.

The choice of the lifetime of edges is not as critical as the choice of the number of nodes.

As GNG and MDL require a huge number of input parameters set, it is very difficult to

find optimal settings. In our evaluation the optimal settings in terms of eliminating as

many nodes as possible and preserving only real sources and sinks, were not found as

Chapter 5: Experimental Results: Clustering Sources and Sinks 89

(a) Source clusters (b) Sink clusters

(c) Source clusters after apply-
ing a threshold T defined by α =

0.02

(d) Sink clusters after applying a
threshold T defined by α = 0.05

Figure 5.28: Self-tuning spectral clustering - video 2

the number of combinations was too high to evaluate all possible combinations. As the

clustering algorithm was not able to represent the main source and sink correctly due

to their functionality, no more evaluation on other videos has been done.

Chapter 5: Experimental Results: Clustering Sources and Sinks 90

(a) high number of nodes (b) low number of nodes

(c) Reduced source cluster (high
number of nodes)

(d) Reduced source cluster (low
number of nodes)

Figure 5.29: Source clusters obtained by GNG and MDL

(a) high number of nodes (b) low number of nodes

(c) Reduced sink cluster (high
number of nodes)

(d) Reduced sink cluster (low
number of nodes)

Figure 5.30: Sink clusters obtained by GNG and MDL

Chapter 5: Experimental Results: Clustering Sources and Sinks 91

(a) Sources obtained with a
short edge lifetime

(b) Sources obtained with a long
edge lifetime

(c) Sinks obtained with a short
edge lifetime

(d) Sinks obtained with a long
edge lifetime

Figure 5.31: Influence of parameter “edge lifetime” on clustering results

Chapter 5: Experimental Results: Clustering Sources and Sinks 92

5.8 Comparison of Cluster Algorithm Run Times

As six different clustering algorithms have been evaluated, large run time differences

have been noticed. In this Section we summarize these differences. All computations

were done on the Intel Core2Quad Q9450 @2.66 GHz using Windows Vista x64 with 4

GB main memory. The run times of evaluated algorithms can be found in Table 5.2.

algorithm run time

Expectation Maximization 1 - 23 seconds
PG-Means approximately 20 minutes
Mean Shift 1.5 - 2 seconds
DBSCAN 10 - 30 seconds
Self-Tuning Spectral Clustering approximately 20 minutes
Growing Neural Gas 15 - 60 seconds

Table 5.2: Run time of cluster algorithms

The evaluation of these clustering algorithms has shown, that PG-Means and Self-Tuning

Spectral Clustering had an extremely long run time hence they are not very feasible – the

run time of GNG may be acceptable, depending on the parameters. The other clustering

algorithms achieved very practicable run times, thus enabling clustering already during

the particle advection process.

Chapter 6

Conclusion

Using a particle advection approach instead of individual tracking facilitates the analysis

of dense crowded scenes in real-time. Analysis over a longer time period yields reason-

able results for obtaining sources and sinks. In our tests we find that using improvements

like hierarchical advection or the use of world coordinates improve the quality of par-

ticle advection algorithm noticeably, whereas the use of a particle hopping detection

mechanism enhances the quality of trajectories but does not improve the overall quality.

Depending on the task, experiments have shown that the quality of trajectories or the

quality of sources and sinks can be improved using the introduced approaches.

Due to the high number of particles used, clustering is still very challenging but a feasible

approach to handle this amount of data was developed by proposing a data reduction

mechanism. Reasonable results have been achieved by using the Expectation Maxi-

mization and the DBSCAN algorithm. All other algorithms (PG-means, Mean Shift,

Self-Tuning Spectral Clustering and Growing Neural Gas) have shown some difficulties,

impeding the correct detection of sources and sinks in our test data.

Future work can deal with the problem of choosing an appropriate threshold to preserve

clusters and sinks correctly. Another goal would be to implement the clustering process

in real-time, to achieve a reasonable combination of the real-time particle advection

algorithm and the higher level knowledge derived from clustering.

93

Bibliography

[1] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York,

2006.

[2] D. Comaniciu and P. Meer. Mean shift analysis and applications. In The Proceedings

of the Seventh IEEE International Conference on Computer Vision, volume 2, pages

1197 – 1203, 1999.

[3] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of 2nd

International Conference on Knowledge Discovery and Data Mining (KDD-96),

pages 226 – 231. AAAI Press, 1996.

[4] D. Greene. Graph Partitioning and Spectral Clustering, 2004. URL http://lab.

bcb.iastate.edu/sandbox/pbais05/backup/goodpapers/Greene_MLG04.ppt.

[last accessed September 24, 2009].

[5] L. Zelnik-Manor and P. Perona. Self-Tuning Spectral Clustering. In Advances in

Neural Information Processing Systems, volume 17, pages 1601 – 1608. MIT Press,

2004.

[6] H. T. Nguyen and A. W. M. Smeulders. Fast occluded object tracking by a robust

appearance filter. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 26(8):1099 – 1104, 2004.

[7] A. Yilmaz, X. Li, and M. Shah. Contour-Based Object Tracking with Occlusion

Handling in Video Acquired Using Mobile Cameras. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 26(11):1531 – 1536, 2004.

[8] C. Gentile, O. Camps, and M. Sznaier. Segmentation for robust tracking in the

presence of severe occlusion. IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2, 2001.

[9] Z. Tao and N. Ram. Tracking multiple humans in complex situations. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 26(9):1208 – 1221, 2004.

94

http://lab.bcb.iastate.edu/sandbox/pbais05/backup/goodpapers/Greene_MLG04.ppt
http://lab.bcb.iastate.edu/sandbox/pbais05/backup/goodpapers/Greene_MLG04.ppt

Bibliography 95

[10] M. Rodriguez, S. Ali, and T. Kanade. Tracking in Unstructured Crowded Scenes.

In International Conference on Computer Vision, 2009.

[11] D. M. Blei and J. D. Lafferty. Correlated Topic Models. Annals of Applied Statistics,

1(1), 2007.

[12] P. Sand and S. Teller. Particle Video: Long-Range Motion Estimation Using Point

Trajectories. International Journal of Computer Vision, 80(1):72 – 91, 2008.

[13] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Computing

Surveys, 38(4):13, 2006.

[14] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof.

Anisotropic Huber-L1 optical flow. In Proceedings of the British Machine Vision

Conference, London, UK, 2009.

[15] D. Makris and T. Ellis. Learning Semantic Scene Models From Observing Activity

in Visual Surveillance. IEEE Transactions on Systems, Man and Cybernetics, Part

B (Cybernetics), 35:397 – 408, 2005.

[16] C. Stauffer. Estimating Tracking Sources and Sinks. In Conference on Computer

Vision and Pattern Recognition Workshop, pages 35 – 35, Madison, Wisconsin,

USA, 2003.

[17] X. Wang, K. Tieu, and E. Grimson. Learning Semantic Scene Models by Trajectory

Analysis. In Computer Vision – ECCV 2006, volume 1, pages 110 – 123, Graz,

Austria, 2006.

[18] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.

Cambridge University Press, second edition, 2004.

[19] E. Parzen. On estimation of a probability density function and mode. The Annals

of Mathematical Statistics, 33(3):1065 – 1076, 1962.

[20] Y. Feng and G. Hamerly. PG-Means: Learning the Number of Clusters in Data.

Advances in Neural Information Processing Systems, 19:393 – 400, 2007.

[21] F. J. Massey Jr. The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of

the American Statistical Association, 46:68 – 78, 1951.

[22] K. Fukunaga and L. Hostetler. The estimation of the gradient of a density func-

tion, with applications in pattern recognition. IEEE Transactions on Information

Theory, 21(1):32 – 40, 1975.

[23] M. Wertheimer. Untersuchungen zur Lehre von der Gestalt. II. Psychologische

Forschung, 4:301 – 350, 1923.

Bibliography 96

[24] U. Von Luxburg. A Tutorial on Spectral Clustering. Statistics and Computing, 17:

395 – 416, 2007.

[25] A. Ng, M. I. Jordan, and Y. Weiss. On Spectral Clustering: Analysis and an

Algorithm. Advances in Neural Information Processing Systems, 14:849 – 856,

2002.

[26] T. M. Martinetz. Competitive Hebbian Learning Rule Forms Perfectly Topology

Preserving Maps. In International Conference on Artificial Neural Networks, pages

427 – 434, Amsterdam, 1993.

[27] T. M. Martinetz and K. J. Schulten. A ”Neural-Gas” Network Learns Topologies.

In T. Kohonen, K. Mäkisara, O. Simula, and J. Kangsa, editors, Artificial Neural

Networks, pages 397 – 402, Amsterdam, 1991.

[28] J. Holmström. Growing Neural Gas. Master’s thesis, Uppsala University, Sweden,

2002.

[29] A. Selb. Modellselektion von Clusteringverfahren mittels minimaler Beschrei-

bungslänge. Master’s thesis, Vienna University of Technology, Austria, 2000.

	diplomarbeit-deckblatt-NEU
	Thesis
	Declaration of Authorship
	Abstract
	Kurzfassung
	Acknowledgements
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Challenges
	1.2 Modeling Sources and Sinks
	1.3 Objectives

	2 Real-Time Particle Advection
	2.1 Basic Algorithm
	2.2 Implementation
	2.3 Challenges
	2.3.1 Occlusions
	2.3.2 Perspective View

	2.4 Improved Algorithm

	3 Sources and Sinks
	3.1 Modeling
	3.2 Clustering Algorithms
	3.2.1 K-Means
	3.2.2 Expectation Maximization
	3.2.2.1 Basic Algorithm
	3.2.2.2 Improvements

	3.2.3 Mean Shift
	3.2.4 DBSCAN
	3.2.4.1 Basic Algorithm
	3.2.4.2 Improvements

	3.2.5 Spectral Clustering
	3.2.5.1 Basic Algorithm
	3.2.5.2 Improvements

	3.2.6 Growing Neural Gas
	3.2.6.1 Basic Algorithm
	3.2.6.2 Improvements

	4 Experimental Results: Particle Advection
	4.1 Particle Advection Settings using Image Coordinates
	4.1.1 Parameter Settings for Train Station
	4.1.2 Parameter Settings for PETS Benchmark Data

	4.2 Particle Advection Settings using World Coordinates
	4.2.1 Parameter Settings for Train Station
	4.2.2 Parameter Settings for PETS Benchmark Data

	4.3 Ellipse as Stranded Criterion
	4.4 Particle Hopping Detection
	4.5 Hierarchical Approach

	5 Experimental Results: Clustering Sources and Sinks
	5.1 Data Reduction
	5.2 Expectation Maximization
	5.3 PG-Means
	5.4 Mean Shift
	5.5 DBSCAN
	5.6 Self-Tuning Spectral Clustering
	5.7 Growing Neural Gas
	5.8 Comparison of Cluster Algorithm Run Times

	6 Conclusion
	Bibliography

