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Kurzfassung

Dank einer breiteren Verfügbarkeit von Internetanschlüssen mit entsprechender Bandbreite er-
freut sich Voice over Internet Protocol (VOIP) Kommunikation im Privaten wie im Geschäfts-
bereich in industrialisierten Ländern immer größerer Beliebtheit. Die meisten VOIP-fähigen
Endgeräte sind jedoch nicht auf die speziellen Bedürfnisse einiger Einrichtungen, wie zum Beispiel
der Luftraumüberwachung, dem öffentlichen Verkehr, oder militärischen Einrichtungen, abges-
timmt.
Um diesen speziellen Anforderungen besser Rechnung tragen zu können wurde im Rahmen eines
Forschungsprojektes ein spezielles Hardwaremodule entwickelt, welches sämtliche Aufgaben den
Sprachdatenaustausch einer VOIP Verbindung betreffend in Hardware realisiert. Dieser Intel-
lectual Property Core (IP-Core), genannt Real-time Transport Protocol (RTP)-Engine, wird in
einer standalone Konfiguration in einem Xilinx Virtex4 Field Programmable Gate Array (FPGA)
auf einer Prototypingplattform betrieben. Die notwendigen Kommunikationsparameter werden
über statische Konfigurationsvektoren gesetzt. Es ist die Aufgabe dieser Diplomarbeit die Kon-
figurationsschnittstelle der RTP-Engine so zu erweitern, dass es zur Laufzeit entsprechend den
Anforderungen einer VOIP-Verbindung konfiguriert werden kann. Ziel dieser Arbeit ist die
Implementierung eines kompletten VOIP-Stacks bestehend aus einem Signalisierungsprotokoll
(Verbindungsaufbau - Abbau), einem Verbindungsqualitätssicherungsprotokoll, und der RTP-
Engine inklusive der zu entwickelnden Konfigurationsschnittstelle. Als Randbedingungen treten
hierbei Embedded System spezifische Beschränkungen bezüglich limitierter Rechenleistung und
eingeschränkten FPGA Resourcen auf. Diese haben direkten Einfluss auf den VOIP-Stack Design-
prozess. Des weiteren müssen gewisse Auflagen betreffend der Hardware/Software Schnittstelle
der RTP-Engine, welche durch die vorgegeben VOIP-Stack Funktionalität induziert sind, einge-
halten werden.
Um die Aufgabenstellung entsprechend umsetzen zu können wird eine Evaluierung des grundle-
genden Aufbaus eines VOIP-Stacks durchgeführt und die Anforderungen an das Design eines
Basis-Systems und der Hardware/Software Schnittstelle der RTP-Engine erhoben. Die so er-
haltenen Anforderungen sowie Randbedingungen fließen in die Auswahl entsprechender Software
und Hardware Komponenten ein. Außerdem wird der Einsatz unterschiedlicher Software-Stacks,
Schnittstellendesigns und User/Kernel -Space Separierungen diskutiert.
Schließlich wird ein funktionstüchtiger Prototyp implementiert, welcher in der Lage ist, einen
VOIP-Sitzung direkt zwischen zwei Prototypingplattformen oder einem Personal Computer (PC)
zu realisieren. Es wird gezeigt, dass eine den Anforderungen entsprechend entwickelte und
umgesetzte Schnittstelle eines IP-Cores welcher den unmittelbaren Sprachdatenaustauch zwis-
chen zwei Kommunikationspartnern durchführt, eine wesentliche Freisetzung von Rechenzeit eines
Prozessors mit sich bringt und somit entsprechende Echtzeitanforderungen leichter erfüllt werden
können. Deshalb wäre es möglich, eine Erweiterung des Prototypen durchzuführen, um Kon-
ferenzschaltungen zu unterstützen.
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Abstract

In recent years, Voice over Internet Protocol (VOIP) communication has become an interesting
alternative to the Public Switched Telephone Network (PSTN) for casual and business phone-
calls in industrialized countries. Most of the available VOIP capable end-devices are considered
for general purpose use, thus neglecting firmer real-time requirements of certain operational en-
vironments, like air traffic management, public transport, or defense.
In order to accommodate these requirements, a dedicated hardware module performing all tasks
necessary to exchange voice packets between two communication partners, called Real-time
Transport Protocol (RTP)-Engine, has been developed in a research project. The Intellectual
Property Core (IP-Core) is operated standalone on a Xilinx Virtex4 Field Programmable Gate
Array (FPGA) sited on a prototyping board. The necessary configuration parameters are sup-
plied through static configuration vectors. It is the objective of this diploma thesis to extend the
module’s interface in such a way that it can be configured in a VOIP-session appropriate way at
run-time. The aim of this work is to design and implement a complete VOIP-stack consisting of a
signaling protocol (call setup - tear-down), a call quality feedback protocol, and the RTP-Engine
including the interface to be designed. However, the a priori chosen prototyping platform induces
several embedded system specific constraints, like limited computing speed and limited FPGA
resources, directly affecting the VOIP-stack design. Moreover, special care in designing the hard-
ware/software interface of the IP-Core must be taken to achieve certain constraints imposed by
the VOIP-stack.
To achieve the given objective, the general design of a VOIP-stack has been evaluated to derive
appropriate constraints when designing a Base-System and the RTP-Engine’s hardware/software
interface. The gained constraints are used to evaluate and decide upon interface design questions
as well as choosing suitable components for the system. Furthermore, several implementation
options considering software-stacks, interface design, and user/kernel -space realization of certain
software related interface parts are discussed.
Finally, an operational prototype able to perform a VOIP-call directly between two prototyping
platforms or a Personal Computer (PC) has been realized. It can be seen that a properly designed
and implemented interface and VOIP-stack for an IP-Core transposing the necessary tasks to
exchange voice packets between two communication partners results in less pressure on the general
purpose processor on meeting the required real-time constraints. Therefore, it would be possible
to extend the prototype in such a way to support teleconference calls as well, which can be the
prospect of future work.
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1 Introduction

In recent years, Voice over Internet Protocol (VOIP) [FCP09] communication has become an
interesting alternative to the Public Switched Telephone Network (PSTN) for casual and business
phone calls in industrialised countries. This is mainly the fact, because of a wider availability of
internet connections offering the needed bandwidth. A convenient example is the wide acceptance
of the VOIP application Skype [73]. Moreover, there exist a wide range of solutions offering ways
to pool telephone and data networks in companies and communities.

However, most of the available VOIP capable end-devices are considered for general purpose use,
thus neglecting special needs of certain operational environments, like air traffic management,
public transport, or defense. In order to facilitate VOIP services in especially isochrone-sensitive
environments, special care must be taken upon regarding the guarantee of isochronous behavior
in the network domain, various ways to achieve this requirement exist. However, considering the
violation of isochronous behavior at the end-devices no wide spread solutions are available.

Therefore, a hardware module performing all isochrone sensitive computations in a deterministic
way has been developed. The module is suited to run on an Field Programmable Gate Array
(FPGA) placed on a prototyping board. It performs the following tasks:

• Capturing and encoding of voice samples,

• Packetizing and scheduling of media packets,

• Transmission and reception of media packets,

• Filling and mangling the jitter buffer,

• Decoding and playback of received voice packets

These tasks are necessary to let an already set-up VOIP-session exchange packets which include
encoded voice samples. This will lead to a reduced end-to-end delay on the terminal device side.
Moreover, the provided module reduces possible non-determinism delays to an insignificant value.
Non-deterministic delays directly affect isochronous requirements in a negative way.

Non-determinism may be introduced by general purpose operating systems like Windows or Linux
because it is possible that, although a media-transport packet is ready to send, the operating
system might postpone its transmission by issuing a context- or mode-switch. The same is true
for corresponding media packet reception.
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Introduction

However, what is still missing is an interface connecting the IP-Core with a Base-System providing
a general purpose CPU, memory, and several peripherals. This leads to a VOIP-stack implemen-
tation in an FPGA, which is a well mastered task by industry and academia in general. To
comply with the requirement to reduce the end-to-end delay on the terminal device further, care
must be taken when designing the interface between the hardware-module and a Base-System.
This is especially true regarding the interface between media-transport and call-quality feedback
protocols due to their strong entanglement.

The aim of this thesis is to perform a hardware/software partitioning of such an interface as well
as providing the following components to let VOIP calls take place between two communication
partners using this dedicated hardware-module:

• A Base-System consisting of a Central Processing Unit (CPU), several peripherals and an
appropriate operating-system, or runtime-environment.

• A hardware/software interface providing access to the hardware-module performing the
VOIP related computations.

• A software stack completing the necessary VOIP-stack functions, like signaling and call-
quality feedback protocol not provided by the hardware-module must be implemented to
verify the interface approach.

To achieve the given objective, the general design of a VOIP-stack has been evaluated to derive
appropriate constraints when designing a Base-System and the RTP-Engine’s hardware/software
interface. The gained constraints are used to evaluate and decide upon interface design questions
as well as choosing suitable components for the system. Furthermore, several implementation
options considering software-stacks, interface design, and user/kernel -space realization of certain
software related interface parts are discussed.

Finally, an operational prototype able to perform a VOIP-call directly between two prototyping
platforms or a Personal Computer (PC) has been realized. It can be seen that a properly designed
and implemented interface and VOIP-stack for an IP-Core transposing the necessary tasks to
exchange voice packets between two communication partners results in less pressure on the general
purpose processor on meeting the required real-time constraints. Therefore, it would be possible
to extend the prototype in such a way to support teleconference calls as well, which can be the
prospect of future work.

The remainder of this theses is structured as follows: In Chapter 2, a general overview on
VOIP communication examining several ways to setup, close, and perform a VOIP call is given.
Furthermore, three different signaling protocols are examined from a functional and structural
point of view. In addition, an overview on media transport and their underlying Open System
Initiative (OSI) transport protocols is presented. Finally, an introduction on several Quality of
Service (QoS) enforcing aspects in general purpose networks is given.

Subsequently, Chapter 3 introduces the design of a VOIP-stack on the target platform basing
on the information gathered by reviewing similar approaches. Therefore, several hardware and
software components and implementation options are evaluated. Furthermore, the IP-Core’s
interface design is examined in detail. Eventually, the hardware/software partitioning of the
interface as well as Base-System to be implemented is presented.

Chapter 4 illustrates the implementation including an evaluation of several implementation op-
tions of diverse components of the design decisions made in the previous Chapter. This Chapter
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focusses on the implementation details and decisions made at the implementation level which have
not been considered in the design phase presented in Chapter 3. Moreover, the implementation
of the supplementary VOIP components like signaling and call-quality feedback protocol stacks
are examined.

Chapter 5 presents synthesis results and a VOIP-session trace showing the validity of the imple-
mented solutions. Moreover, requirements for further extensions are derived from these results.
Finally, Chapter 6 summarizes the insights gained by realizing the designed interface and the
Base-System. Furthermore, possibilities for further extensions gained from the requirements in
Chapter 5 are discussed.
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2 VOIP - An Overview

The first efforts on transmitting voice over packet switched networks were taken in 1974, at the
time of the Advanced Research Projects Agency Network (ARPANET). At that time, Danny
Cohen and his colleagues developed the Network Voice Protocol (NVP) [82] as a counterpart
to Transmission Control Protocol (TCP) [84], in order transmit voice in real-time over the
ARPANET. Cohen saw the need for a dedicated voice protocol because he realized, amongst
others, that the reliability mechanisms built into the current TCP implementation were not suit-
able to transport voice in real-time. [Gra05].

In the mid 1990’s, voice over packet switched networks had a short revival, but due to its poor
quality, its limitation to Internet Protocol (IP) network communication, a not very widely spread
availability of IP networks, and the still limited bandwidth, Voice over Internet Protocol (VOIP)
could not succeed commercially. This was also emphasized by the fact that circuit switched voice
networks provided high quality and high reliability voice calls, so that there was no urge to switch
to VOIP. [VSMH02].

When IP networks became more common, due to the struggle in expanding the infrastructure
for the growing Internet in the 1990s, the advantages of VOIP over Public Switched Telephone
Network (PSTN) became clearer [VSMH02]. Where PSTN had to provide 32 to 64 kbit/s for the
whole communication session, a VOIP based call is able to succeed at a guaranteed bit-rate of 14
kbit/s plus administrative overhead, for example [FCP09]. Another VOIP supporting argument is
that a VOIP call’s bandwidth is only needed if actual voice packets are transmitted, therefore the
capabilities of a packet switched network can be exploited. However, it should have lasted until
the early 2000’s, when VOIP was considered to replace the PSTN, that VOIP communication
gained a broader economic acceptance, according to Bur Goode. [FCP09].

In order to successfully perform a VOIP call between two participants, A and B, several op-
erational supplements are necessary. First of all the communication partners have to establish
a link between each other. The two parties have to agree on a voice-codec, and further infor-
mations to establish a peer-to-peer voice communication. Furthermore, B may want to send A
Dual-tone Multi-frequency (DTMF) signals, and maybe if B called A, A’s phone may display
the Identifier (ID) of B on A’s phone. This is done by so called signaling protocols addressed in
Section 2.1.

After that, A and B may exchange voice packets over so called transport protocols, which are
introduced in Section 2.2. In order to maintain a certain call quality, if B’s bandwidth is smaller
than A one’s, it might be possible that A’s voice packets may congest B’s line. However, in order
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to avoid such issues Quality of Service (QoS) techniques are deployed. These principles can be
enforced by the network infrastructure or by special control protocols. Section 2.3.1 provides an
overview of the most common QoS measurements and their usage in VOIP communication.

In order to get a clearer point of view on the basics of Voice Over IP communication, a schematic
VOIP session, consisting of the call establishment, the call accomplishment and the VOIP-session
tear-down is shown in Figure 2.1. Therefore, the purpose of this Chapter is to introduce the
fundamentals of VOIP communication.

Figure 2.1: VOIP session scheme

2.1 Signaling

As mentioned in the introduction of this Chapter, signaling protocols are responsible for exchang-
ing the necessary information to set up a communication channel between two hosts. There are
two types of signaling protocols according to Goode [FCP09]. On the one hand, there are peer-
to-peer protocols, like the Session Initiation Protocol (SIP) [93], H.323 [LM00], Inter Asterisk
exchange (IAX)1[98], and Jingle[SA07]. On the other hand, there are master-slave protocols like
Media Gateway Control Protocol (MGCP) and Megaco/H.248. However, master-slave protocols
are not very flexible and scalable, due to their nature in processing all calls over a central node
[FCP09]. This section gives an overview on peer-to-peer protocols only.

2.1.1 H.323

The first protocol introduced is H.323, which has been released in its first version by the Interna-
tional Telecommunication Union Telecommunications (ITU-T) Study Group 16 in 1996 [LM00].
H.323 does not specify the physical network, network interface, or the used transport protocol.

1Signaling Protocol for Asterisk based VOIP to PSTN gateways. [98]

5
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However, it defines functions on the application layer by recommending a set of network proto-
cols. Yet, H.323 is not a protocol itself. It subsumes a set of protocols which accomplish the
needed tasks, where the channel signaling protocol H.225.0 is described in [VB01]. In order to
understand the interaction of the used protocols an overview of the structure of a H.323 is given.
Its network may consist of the following components, according to [VB01]:

Terminal A terminal is used as a communication end-point and may be a H.323 capable phone
or a computer with a corresponding softphone.

Gatekeeper A node in a H.323 network which houses a database where address mappings be-
tween alias and transport addresses are kept. Furthermore, it performs address translations.

Gateway This device provides an interconnection between a H.323 network and a PSTN net-
work, for example. It is responsible for the whole communication translation.

Multi-point Control Unit The MCU accommodates services for conference calls. A confer-
ence call is a communication session where more than two communication partners are
interacting with each other simultaneously.

A call setup based on H.323 can be seen in Figure 2.2.

Figure 2.2: H.323 Call Setup

Basically, there are two ways to setup a call between two parties in H.323. On the one hand,
the call setup may take place over a Gatekeeper. On the other hand, the caller might contact
the callee directly. If the Gatekeeper is used, the call setup consists of three phases. First, the
Gatekeeper is queried in order to obtain the call admission and to retrieve the Q.931 address
of the remote peer. Q.931 is a protocol recommended to perform the call setup and call tear-
down hand-shake in a H.323 VOIP session. This is done with the Remote Access Service (RAS)
protocol, which is a subset of the H.225.0 signaling specification for H.323. If the callee’s address

6
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is not known by the Gatekeeper, it may query another Gatekeeper in order to obtain the address.
This is known as Call Admission. If it is not necessary to get a call admission or the remote
peer’s Q.931 address is already known, the connection for the second phase may be established
directly.

In the second phase, Call Setup, the call setup between the two parties takes place. This call
setup is performed by the Q.931 protocol, which is also used by Integrated Services Digital
Network (ISDN) [92]. Since ISDN is a circuit switched service which also provides access to packet
switched networks, Q.931 has the abilities to perform its signaling services in both network types.
In the case of packet switched networks, Q.931 exchanges a number of messages in the following
way: After the call is admitted the terminal sends a SETUP message to the destination, which
responds with a CALL PROCEEDING message. This message includes informations about
the endpoints capabilities. If there are any Gatekeepers involved in the communication these
messages are relayed by the Gatekeeper. Subsequently, if the receiver is not already admitted at
its Gatekeeper, it does so. If the admission has already been approved, the callee sends an ALERT
message to the caller and subsequently, a CONNECT message which contains the needed call
parameters in order to setup a media channel. Now the H.245 transport addresses are exchanged.
This ends the second phase.

In the third and last phase, Endpoint and Call Capability Setup, the protocol H.245 is used to
mediate the endpoints for the transport protocol and to set up a logical channel between the two
parties. Moreover, Q.931 and H.245 are also subsets of the H.225.0 signaling specification for
H.323. [FCP09, LM00]. A call tear-down works the other way round. The transport protocol
relevant data exchanged by the H.323 signaling phase are [Gra04]:

• Used Voice Codecs

• Determine slave-master relation ship between the two communication partners

• Determine Round-Trip-Delay in order to sense whether a peer is alive or not. This infor-
mation can be retrieved periodically.

• Logical Channel Signaling is used to exchange the remote peers transport protocol param-
eters like IP-addresses and port numbers.

2.1.2 Jingle

The second protocol described in this section is Jingle, an extension to the Extensible Messaging
and Presence Protocol (XMPP) which is used to signal and control data streams like voice over
IP networks [SA07]. XMPP is a messaging protocol used to implement the instant messaging
service Jabber, an open alternative to close source instant messaging services like ICQ (Instant
Messaging protocol from ICQ LLC) and IM (Instant Messaging protocol from Microsoft). Al-
though, XMPP is an Extensible Markup Language (XML) based protocol it does not communicate
with a peer by exchanging whole XML-documents or utilizing the Extensible Hypertext Markup
Language (XHTML). In the case of XMPP, the two communication partners exchange messages,
by transmitting so called stanzas, XML tag snippets, which can be seen as the packets used in
the communication on top of the transport layer protocol [SA07]. However, XML tags are not
well suited to transfer large amounts of binary data. To overcome this limitation, Jingle has been
introduced in 2004 [SA05]. Jingle defines a signalisation protocol and uses the Real-time Trans-
port Protocol (RTP) as a transport protocol after the communication parameters are exchanged.
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Since Jingle bases on XMPP it also uses its infrastructure to set up a call between two peer.
Therefore, the basic XMPP stanzas, presented in [SA05] are explained here:

Message A Message is used to propagate information from a source to one or several sinks.
These stanzas may not be acknowledged. They are commonly used in Instant Messages,
Alerts, and Notifications.

Presence This stanza is used to notify several destinations about own state updates.

IQ IQ Means Info/Query and is used like the GET/POST methods in Hypertext Transfer
Protocol (HTTP) for simple information request and post messages.

Due to the extensible nature of XML, it is easily possible to develop further protocols on the top
of XMP, like Jingle [SA07]. A Jingle call signalisation consists of the following steps: A session
example including call setup and session tear-down can be seen in Figure 2.3.

Figure 2.3: Jingle Session

First, a so called Initiator sends an IQ-stanza with an encapsulated ”session-initiate” Jingle-
Action to a Responder. The ”session-initiate” message consists of two parts:

• An application type which describes the media type of the Jingle Session initially.

• A transport method which describes the transport layer protocol to be used for media
exchange.

If the Responder accepts, it answers with another IQ-stanza with an ”session-accept” (ACK) mes-
sage which contains the used voice codec, bit-rates, and port-numbers it agreed on with the Initia-
tor. When the Initiator agrees on the Responder’s offer it sends an acknowledge message. Finally,
the media session is set up. Moreover, Jingle is able to change an ongoing media sessions with
Jingle-Actions like ”content-add”, ”content-remove”, ”content-modify”, and ”transport-replace”
[SA07]. When a Jingle session is to be teared down, one of the communication partners sends a
”session-terminate” message and the other clients acknowledge.
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2.1.3 Session Initiation Protocol

The last signaling protocol discussed in detail is the Session Initiation Protocol (SIP). It has been
proposed by Schulzrinne et. al. in [95]. However, RFC-2543 has been obsoleted by RFC-3261
in 2002 and has been updated several times since then [93]. In contrast to H.323, SIP is an
application layer protocol. SIPs primary intension is to provide signaling methods which apply to
the communication demands of IP networks, like dynamically changing IP addresses and locality
changing communication partners, for example. These are challenges for other protocols like
H.323. [SR00]. To support these functional demands of IP networks, a SIP network consists of
several components which can be split into two groups, namely User Agents (UAs)s, and Servers
[93]. All components are listed in the following.

User Agent Client The UAC is a part of a SIP User Agent which sends requests to each
communication partner and awaits its answer.

User Agent Server A UAS is a part of a SIP User Agent which waits for SIP requests and
replies to the corresponding UAC. Both, UAC and UAS are present in any SIP capable
phone solution.

Registrar Server A Registrar-Server is an optional component in a SIP network. However, it
is needed to utilize the whole capabilities provided by SIP. It associates the IP-address of an
UA with a SIP-URI2(Uniform Resource Identifier), therefore it administers its name-space
domain, on the one hand. On the other hand, a registrar can be used for billing purposes in
conjunction with a SIP-Proxy Server, and selective call-setup policy enforcement, like letting
only a subset of employes place calls outside a companies phone-network, for example.

Redirect Server A Redirect Server’s task is to inform calling parties about their callee’s location
change and reroute their call to the callee’s new address.

Proxy Server Two different kinds of SIP-Proxy Servers exist, stateful and stateless proxies.
A stateful proxy kepdf track on every SIP connection running over it. Where a stateless
proxy only redirects requests and their answers. A SIP-Proxy is a main node however,
not necessarily needed in every SIP network. It provides services to inform communication
partners about the availability of each other and is responsible for routing call-setup requests
throughout the borders of several SIP-domains. Moreover, a SIP-Proxy is able to retrieve a
callee’s SIP-URI by processing a query on another proxy with the help of a name resolution
backend as mentioned by Schulzrinne & Rosenberg [SR00].

Usually, all three types of SIP-Servers are deployed on one physical machine in order to provide
the best service quality [93, SR00]. Considering the call parameter exchange during the call
setup-phase of a VOIP-session, SIP utilizes the Session Description Protocol (SDP). SDP has
been proposed in RFC-2327 in 1998 [96]. Its latest revision, RFC-4566 has been enforced in 2006
[97]. SDP is not a full featured protocol like Q.931 from the H.323 standard. However, it can
be compared with Jingle’s XML-stanza exchange mechanism since it lacks addressing schemes
but defines a set of fields which can be used to exchange call parameters like peer-addresses
port-numbers and voice-codecs. Its intention is to provide a general transportation independent
way to represent data like call parameters and session announcements [97]. However, although

2A SIP-URI is similar to an e-mail address. It has the following form: Username@Provider.TLD E.g.: sigma@sip-
provider.at
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comparable, in contrast to Jingle, SDP does not define any actions, it serves as a message exchange
format only. The appropriate action taken on the reception of a SDP packet are defined by the
protocol utilizing SDP, which is SIP in this case. Yet, SDP is not bound to SIP. It can also be
used with other protocols like Session Announcement Protocol (SAP) and Real-time Streaming
Protocol (RTSP) [94, 85].

A SIP session is characterized by the exchange of messages, where the responses to queries are
categorized by a set of numerical code intervals known as Response Types [93]. Furthermore, it is
classified into transactions. Each transaction begins with a message and ends with a 2xx response
in order to end the transaction. The numerical codes of SIP messages are grouped like in HTTP.
Thus, a code beginning with two, like in 2xx denotes a success message. However, an x can
be a number from zero to nine specifying the meaning of the message more detally. A message
starting with six, like 6xx, indicates global call failures [93]. In the case of an initial INVITE,
the ACK message is part of the transaction if the callee’s response was not of Response Type
2xx. Otherwise it is not part of the transaction [95]. According to [SR00], the most important
message types are:

INVITE The Invite message indicates an initial session announcement. It also provides an SDP
payload with the caller’s call-parameters.

100 TRYING TRYING is the response of a callee on an initial invite. It serves as a INVITE
reception confirmation.

180 RINGING RINGING indicates to the caller that the callees SIP-UAS informs the user
interface of an incoming call.

200 OK This SIP message is known as a positive response to a request. If the OK message
succeeds on an INVITE message, it contains an SDP payload describing the callee’s call-
parameters, respectively the possibly changed call parameters if it follows on another SIP
message type. See [72] for a complete list of SIP parameters.

ACK The ACK message is used to notify a communication partner on the completion of an initial
INVITE transaction. This separately sent message is the first message sent peer-to-peer
within a SIP-session being processed over SIP-proxies only so far [93].

BYE This message is sent upon a communication partner is willing to end an ongoing VOIP
session.

Other possible requests are:

REDIRECT This request indicates that a call is redirected to another endpoint.

REGISTER This SIP message is used to register a user at a Registrar-Server.

OPTION The OPTION request is sent to gain information on the capabilities of a server.

CANCEL This message is used to cancel an ongoing request.

A SIP based VOIP call setup session consists of at least a caller and a callee represented by two
UAs, forming the endpoints of the session. The remaining SIP network nodes, like Registrar-
Server, Redirect-Server, Proxy-Server, are optional. Furthermore, an ongoing session is known as
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Figure 2.4: SIP Session

a call-leg. Moreover, a SIP session is usually characterized by the SIP trapezoid. This shows that
a call partner’s IP address might not be known in advance, but its SIP-URI is. A VOIP session
using SIP as a signaling protocol can be seen in Figure 2.4.

Therefore, a SIP client may contact a Proxy-Server3 by sending an initial INVITE containing a
SDP packet with the caller’s capabilities first. If the Proxy-Server knows the callee’s IP-address
it relays the caller’s INVITE directly to the callee. Otherwise it queries another known Proxy-
Server or informs the caller about the fact that his call is not possible. The callee responds with
a TRYING response to the caller by using the same route back to the caller over the SIP-Proxy.
Subsequently, a RINGING response is sent. Finally, the callee responds with an OK response
containing the complete call parameters, also utilizing the SIP trapezoid. The caller, however,
acknowledges this response with an ACK message. This ACK message is the first message sent
peer-to-peer between caller and callee. Finally, a media transport session can be set up in order
to exchange communication data. When one call-party wants to end the call, it sends a BYE
message which is acknowledged by an OK response.

2.1.4 Signaling Protocol Summary

In the previous Sections, an overview on a selection of signaling protocols was given. Although
the main aims of the introduced protocols are the same, they differ in their architectural design.
H.323 is the oldest of the presented protocols which can be seen, besides its publishing date, by
the fact that it contains the Gateway component, which is used to directly interfere with PSTN
networks. At this time internet connections with appropriately high bandwidth were not that
common, thus H.323 networks were mainly deployed in companies or public facilities. Moreover,
H.323 does not specify a protocol on its own, it rather gives recommendations on which already
available and wide spread protocols to use when building H.323 networks.

In contrast to H.323, SIP is an entirely new developed signaling protocol, which has been ini-
tially designed to provide services in parallel to the conventional PSTN. Furthermore, SIP does
not specify, or recommend any given transport protocol, therefore not introducing any kind of
limitation when considering media transport [93]. Jingle, however, is different to SIP and H.323

3Due to the fact that all SIP-Servers are commonly implemented on one computer, the term Proxy-Server
may be used as replacement for any SIP-Server node, regardless of being a Registrar-Server, Redirect-Server or
Proxy-Server [SR00].
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in its origin, as it is proposed as an extension to a text chat protocol popular in the late 1990’s
[SA07].

Moreover, the three mentioned protocols differ in the way they perform their tasks. On the one
hand, H.323 uses Q.931 as a call establishment protocol which utilizes TCP as a transport layer
protocol to exchange call parameters and provides its own addressing scheme. On the other hand,
SIP and Jingle use the addressing methods provided by their transport protocols. Furthermore,
SIP uses SDP, which is linked to SIP by SIP-messages and Jingle uses XML-stanzas to implement
an according call establishment handshake. Also closed source solutions exist, where Skype is
one of the most wide spread solutions. However, since it is not an open implementation only
speculations and analyses upon its utilized signaling measurements exist [BMMR09].

2.2 Transport

After a call has been established by exchanging an agreed voice codec and corresponding com-
munication endpoint parameters by the means of signaling protocols, an appropriate transport
protocol is needed. Although, the term transport protocol in section 2.1 is used to describe pro-
tocols which actually encapsulate the encoded voice samples, it is used in the context of the Open
System Initiative (OSI). So when we speak about transport protocols we mean protocols on the
transport layer like TCP and Universal Datagram Protocol (UDP) for example. Furthermore,
when one refers to voice-sample transporting protocols they are addressed as media-transport
protocols in this Section. Since voice over IP sessions have to deal with certain QoS issues, which
are addressed in section 2.3, in order to maintain a convenient call process, the chosen transport
protocol is important as well, since its behavior in certain environmental conditions has major
influence on the quality of a call. A corresponding survey has been performed by Sreekanth et.
al. in [AGSS09]. In their survey, the authors compare TCP, UDP and Stream Control Trans-
mission Protocol (SCTP) in order to give recommendations on which one of these is well suited
as a transport protocol for speech. Before the studies results are shown, a short overview on the
analyzed protocols is given.

2.2.1 Transport Protocols

TCP is used, if the connection demands guaranteed delivery. It uses a sliding window protocol
which takes care on timeouts and retransmission requests due to packet loss. Moreover, TCP
establishes a full duplex channel between two communication partners. Each channel is character-
ized by IP-addresses and port-numbers. The protocol transfers the payload as byte-stream which
is split into segments. The number of bytes transported in a packet is determined by the window
size, which is controlled by the sliding window protocol as mentioned above. Furthermore, each
packet has to be acknowledged with a special packet from the receiver. [84].

UDP provides a non-guaranteed packet delivery. It is a lightweight protocol since it only pro-
vides header information for port numbers to identify the endpoints in the communication and
a checksum field. However, since UDP lacks features like retransmission and reliable delivery a
user application would have to handle these. Nevertheless, in contradiction to TCP, UDP is able
to perform broadcast and multi-cast. [99].

Originally, SCTP has been designed to transport PSTN signaling messages over IP networks.
It can be described as a mixture of UDP and TCP since it is a connection-less protocol which
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provides reliability features. It also provides accumulation of several user messages in one packet,
data fragmentation and congestion avoidance behavior as well as prevention mechanisms to flood-
ing and masquerade attacks [100]. In a masquerade attack an attacker pretends to be the actual
destination of an ongoing communication in order to gain sensitive data according to [GR05].

Sreekanth et al. [AGSS09] set up a test network consisting of several subnets with different
bandwidth and traffic. Beside VOIP communication, TCP connections and HTTP connections
were run on the network. Furthermore, the authors defined the scenarios high latency high
bandwidth), high latency low bandwidth) and low Latency high bandwidth in order to measure
their metrics packet loss4, delay5 and delay variation6. The measured values were used to build a
statistic in order to argue which of the mentioned transport protocol is the most suitable for voice
transmission. The conclusion of the authors was that none of the protocols are best suited to
perform this task. However, the authors recommend UDP as a transport protocol for voice since
it performs best by the means of jitter introduction due to line congestion. SCTP’s performance
is comparable to UDP’s, but could be better with slight protocol changes according to Sreekanth
et. al. . Finally, TCP is not very well suited for voice communication due to its connection
oriented operation which introduces too high jitter due to retransmissions [AGSS09].

2.2.2 Media-Transport Protocols

The only media-transport protocol and its extensions used throughout several VOIP communica-
tion specifications is RTP [Gra04, SA07, SR00, Bad07]. Therefore, it is the only media-transport
protocol introduced. The protocol fulfills a number of properties needed in order to transmit
real-time data over IP-networks (see [Bad07, 87]).

• Due to the usage of sequence numbers the ordering of received packets is guaranteed. Even
if they arrive out of order at the destination, it is possible to reorder them due to their
sequence number.

• Moreover, RTP uses times-tamps to guarantee a certain level of isochronous behavior.
Isochronous means that a constant amount of time passes between two suceeding sam-
ples [Bad07, p.166]. Therefore, the arriving voice packets can be played back with the same
relative time difference as they arrived.

• Because RTP uses profiles to determine its payload, it is capable of transporting several
media data types which have been encoded with different codecs.

• When using RTP, one can employ translators and mixers. A translator can be used to
convert media data from one type to another, where a mixer can be used to merge RTP
streams from several sources into one stream.

RTP resides on the session layer of the Open System Interconnection (OSI) ISO standard [ISO]
reference layer model. It is a peer-to-peer media-transport protocol especially designed to carry
real-time data like audio, video or simulation data. It is capable of broadcast, multi-cast and
unicast communications in IP networks. However, RTP does not support QoS mechanisms. These

4The amount of lost packets during a communication session
5The fixed transmission latency, introduced by packet travel time.
6The amount of time added to to delay because of routing strategies, traffic priorisation and line congestion for

example.
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tasks are usually handled by the Real-time Control Protocol (RTCP) protocol, an augmentation
to the RTP protocol, which is addressed in section 2.3.

The RTP protocol uses UDP as its underlying transport protocol. However, it is not bound to it
[87]. In order to gain a better understanding on the decisions made in the succeeding Chapters
of this theses, RTP is described in greater detail. First the header is examined. Afterwards,
the packet body is described. Furthermore, the overall functionality of the protocol and its
capabilities are introduced. The header consists of a fixed and a variable part. The fixed part
must be present in any RTP packet, whereas the presence of the variable part depends on the
scenario the protocol is used in.

The single header fields have the following meaning [87]:

Version This field denotes the protocols version. It is always set to the value 2.

Padding If set, the packet contains one ore more padding bytes at the and of the payload. This
may be neccessary if encryption algorithms are used which require a fixed block size.

eXtension If set, the static part of the header is followed by exactly one header extension.

Counting Contributing Source (CSRC) CC, denotes the amount of CSRCs sent in the vari-
able part of the header.

Marker If set, the Marker bit is interpreted by the profile contained in the packet’s body.

Payload Type This field indicates the payload type transported by the packet’s body. This
identifier specifies the used profile in the packet body. The structure of a payloads profile
is defined in [86].

Sequence Number A monotonically incremented counter which represents the amount of ac-
tually transmitted packets.

Timestamp The value of a monotonically and linearly incremented clock which represents the
instant when the first payload octet has been sampled. It is used for jitter calculation,
which is addressed in Section 2.3.

Synchronization Source The SSRC is used as a media session unique identifier.

Contributing Source The CSRC denotes the media sources participating in the stream. It is
used for Quality of Service message delivering.

The RTP payload is entirely described by profiles. The used profile is transported in the header
field payload type. Furthermore, the marker bit can be used if an additional interpretation of some
profile informations may be necessary [87]. There are several types of payload profiles available,
for example Pulse Code Modulation based on Alaw (PCMA) [91] or Pulse Code Modulation based
on µlaw (PCMU) [91] coded voice. For a detailed list and profile description see RFC-3551 [86].

As mentioned above, RTP features the deployment of mixers and translators. A translator can
be used to convert media data from one format to another. This is done without interfering
into the ongoing session, except for the introduction of a short delay, due to the conversion task.
Therefore, the Synchronisation Source (SSRC) of an ongoing session is not changed [87]. This
procedure is shown in Figure 2.5.
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Figure 2.5: RTP Translator [Bad07, p.156]

In Figure 2.5, a source A using voice codec VC1 communicates with a destination B using voice
codec VC2. Both peers utilize a translator in order to convert their codec used into the one applied
by its callee. The translator converts their codecs without changing their SSRC. Therefore, it
seems like A and B are communicating directly with each other, thus making the translator
transparent by the means of the RTP session.

A mixer is a device which captures media data from different sources with different SSRCs and
combines these streams to a new stream with a new SSRC [87]. This procedure can be seen in
Figure 2.6.

Figure 2.6: RTP Mixer [Bad07, p.157]

The sources S1 and S2 use voice codec V C1 to communicate with a destination D as shown in
Figure 2.6. However, since a mixer M is deployed, the RTP-packets of S1 and S2 are merged into
a new RTP-stream set up by the mixer to communicate with the destination D. Where the RTP-
streams between the sources S1, S2 and the mixer M can be identified with their corresponding
SSRC directly, the destination D uses the CSRCs sent by the mixer to identify the sources.
Moreover, the mixer deploys a new SSRC for the communication with D. A mixer may be useful
in an environment where an audio stream is created from different sources. Furthermore, mixers
and translators may be combined in their application.

The procedure for setting up an RTP based peer-to-peer communication works as follows. The
network addresses, port numbers, and voice codecs needed to set up an RTP based communication
are exchanged by the signaling protocols described in Section 2.1. However, the parameters for
the RTCP protocol may not be transmitted in that way. In this case, RFC 3550 [87] specifies
that the port number used for RTP communication is even and RTCPs port-number is RTPs
port-number +1, therefore odd.

2.2.3 Transport Summary

In the previous section the results of a survey on the usability of certain transport protocols
for real-time media data were presented [AGSS09]. According to this study the UDP protocol
is one of the best suited for this task. Considering media-transport protocols the RTP/RTCP
protocol suite seems to be best suited for this purpose, since it is the only open wide-spread
media-transport protocol [Gra04, SA07, SR00, APSL05].
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2.3 Quality of Service

The main difference between a packet and a circuit switched network is that in a circuit switched
network, once a resource is allocated, it is guaranteed to be available to a user. Since all data
transported within a circuit switched network use the same path through the network, the end-
to-end delay between two communicating parties is constant. Furthermore, the communication
channel is able to use the whole amount of provided bandwidth throughout its lifetime. A major
drawback of circuit switched networks is that the allocated channel resources must also be reserved
if no communication is taking place within an existing connection. (E.g., if no one speaks within
a phone call.) Moreover, if a node in the channel’s path fails, the whole channel fails, even if
another path from source to sink would be available [Gra10, p.682]. Considering packet switched
networks, however, these issues do not arise. Packet switched networks are able to react on
changes of certain operational conditions like the loss of a node in a path by rerouting the packets
of an ongoing communication through another node to their intended destination. The allocated
bandwidth can be provided dynamically according to the needs of the application using it with
respect to the overall amount of available bandwidth in a networks segment.

A packet’s route and a communication link’s bandwidth are not determined in a packet switched
network. Therefore, a packets end-to-end delay is not defined a priori, because packets may take
arbitrarily routes to their destination. Thus, special needs for certain applications which have
time constraints in their functional requirements arise [OS00]. In order to cope with this issues, so
called QoS mechanisms have been proposed and implemented in order to provide services for time
or bandwidth sensitive applications to fulfill their requirements. Moreover, applications of packet
switched networks can be classified in the following ways: Most of them are loss-sensitive. Some
more real-time aware services are also delay- and sometimes also bandwidth-sensitive [OS00].
Although most data applications can handle a certain amount of packet loss generally, it is known
that a loss-rate of larger than 5% leads to poor performance [OS00]. However, media applications,
such as VOIP communication, are often delay-sensitive and require a fixed amount of minimum
bandwidth. This is in contrast to the quality of service mechanisms provided throughout the
Internet and similar IP-networks, as mentioned above [CWX+03, OS00]. Therefore, a set of
techniques introduced in 2.3.1 have been developed to cope with this issue.

2.3.1 QoS Techniques

In order to achieve a better service quality for certain applications a numerous quantity of methods
exist. Some of them are presented here [OS00, CWX+03, Bad07]:

Prioritization of Media Access Control (MAC) Frames This method works by assigning
priorities to certain Ethernet frames demanding a higher priority on their network usage
attempts. However, in order to use this technique, all switches located in the network must
support this technique.

Prioritization of IP Packets This QoS mechanism is applied on the network layer and is also
suitable for wide area networks. The packet prioritization is done on the service type.
Therefore, this technique is also called Differentiated Service or DiffServ. However, in order
to enforce this technique successfully, all networks used by a VOIP session must support
this QoS method.
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Queue Management Each relaying unit in a packet switched network utilizes queues to buffer
outgoing packets before the line on their destination network segment is ready to receive
another packet. These queues are implemented as First In First Out (FIFO)s in the simplest
case. However, since the packets need to wait a short amount of time inside these queues
the method of Queue Management uses this time to reorder the packets in the output
buffers according to defined priorities, thus providing a shorter waiting time for a packet
participating in a VOIP session, for example.

Resource Reservation Protocol (RSVP) RSVP is a protocol to mimic resource reservation
in a circuit switched network way. At the beginning of a media session it is the RSVP’s
duty to reserve a certain amount of bandwidth on the path to the communication part-
ner. However, since all network segments have to support RSVP to let it perform its task
properly, it can only be used in limited environments today because of its short acceptance.

Multi-Protocol Label Switching (MPLS) In IP networks several packets of an IP connec-
tion may take several routes from a source to a destination due to several environmental
conditions like queue congestion or a link failure. However, considering VOIP communica-
tion, this ability of IP networks may lead to poor call quality because the inter-arrival time
of voice packets should be as small as possible. To cope with this application specific issue,
MPLS sets up a virtual channel so that a sessions packets can take the same route between
two communication partners and therefore shortens the difference of adjacent packets inter
arrival times.

However, since the mentioned methods provide no feedback on the call quality of a particular
VOIP session, the introduction of application specific metrics and call quality feedback protocols
is necessary.

Before this is done another way to categorize QoS mechanisms is shown which can be divided
into qualitative and relative Quality of Service mechanism [OS00]. On the one hand, qualitative,
or relative QoS mechanisms relate two categories of packets to each other, like media-streaming
and HTTP traffic, for example. On the other hand, quantitative, or absolute QoS mechanisms
provide metrics for the QoS demand like that not more that 5% of the packets in a session must
get lost. Since applications demand different QoS requirements the current approach to offer all
types of connection the same ”best-effort” service seems not sufficient according to [OS00].

In order to provide feedback on a call’s quality, the following metrics are used to determine the
performance of a VOIP session [Bad07, p.103], [KT01].

End-to-End Delay Is defined as the amount of time needed for voice to get from the mouth of
a call participant to the ear of another. This includes the delays introduced by capturing
and encoding the voice samples (Tcapture&encode) as well as the time needed to add them as
a payload to a packet (Tbuild packet). Moreover the actual transmission time is taken into
account (Ttransmission), as well as the time the packet stays in the jitter buffer at the receiver
side (Tjitter buffer). This is shown in Figure 2.7.

Jitter In order to simulate a real face-to-face communication, a VOIP call’s data packages should
be received and played back with a constant delay between each other, therefore being
isochrone. Jitter is the relative difference in time upon the reception of two subsequently
sent network packets from the same source. Jitter is produced by transporting e.g. voice
samples on packet switched networks. The only significant source of jitter is the time voice
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packets spend in queues of network devices. However, to compensate this effect, a so called
jitter buffer is employed at the receiver’s side. Its purpose is to capture a number of voice
packets and hand them to the receiving user with equal delays between two succeeding
samples. Moreover, Toral-Cruz et al. [TCTR05] observed that media transport-protocols
carrying smaller voice payloads generate smaller jitter throughout VOIP session.

Packet Loss Rate This metric denotes the number of so far lost packets in a session. It may
be used by a sender to change the packet rate of payload size used to transmit its data, or
it may be used by a receiver to adjust its jitter buffer for example.

Figure 2.7: End-to-End Delay [Bad07, p.103]

To exchange these QoS feedback metrics additional protocols are needed. Such a protocol is
RTCP which is specified as an addition to the RTP [87].

2.3.2 QoS Feedback Exchange Protocol RTCP

RTCP has been developed and specified by Schulzrinne et al in RFC-3550 [87]. The Real Time
Control Protocol has been designed as a augmentation to its media transport pendant RTP.
Therefore, its structure and functionality are tightened to the additional needs of RTP. RTCP, as
well as RTP is a session layer protocol and does not rely on UDP as a transport protocol as well.
However, its main purpose is to exchange information upon the packet loss, jitter and end-to-end
delay of an ongoing RTP session. It achieves this by transmitting so called reports.

A report is an RTCP packet consisting of several blocks. There exist report blocks and other
message blocks. A report block is either a sender or a receiver report block. A report block is
called a sender report block if the participant sending an RTCP packet is also an active sender
in a RTP session.

Sender Report block A sender report block contains information on the sent RTP packets,
as well as a timestamp up to the time this report block is generated. See Table 2.1 for a
detailed report block description.

Receiver Report block A receiver report block contains information on the received RTP
packets, as well as the jitter value and some delay information up to the time this report
block is generated. See Table 2.2 for a detailed report block description.

Valid message blocks are Source Description (SDES) blocks, Application (APP) specific blocks
and Bye (BYE) blocks. Message blocks contain no call quality information. However, they may
serve special additional needs in a session.
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SDES block A Source Description message block may consist of several fields providing infor-
mation about the participant in a session. A block containing a CNAME field is mandatory
in every sent report. It is used to identify an RTP session(see section 2.2) including a
corresponding RTCP session between two peers throughout the lifetime of the RTP/RTCP
session. This is necessary since it is possible that SSRCs7 change due to a collision. There-
fore, the CNAME serves as a unique identifier for a call’s duration, even if the SSRC
changes. The CNAME should at least consist of the sender’s IP address in dotted decimal
representation (e.g. 192.168.0.1). Other fields like PHONE or NAME8 are optional. For a
more detailed description see [87, section 6.5].

APP block An Application specific block is intended for experimental use and may contain
arbitrary information.

BYE block A Bye block is used to indicate the end of a RTP/RTCP session. It may contain a
descriptive information for the reason a participant left.

Table 2.1: Sender Report Fields

Field-name Description

Network Time Protocol
(NTP) Time stamp MSW (32
bit)

Most significant word. This field must not reflect the actual
wall-clock time since it may be used for round-trip time cal-
culation in conjunction with the timestamps received from
a corresponding receiver report block. In fact, it could be
set to zero as well

NTP timestamp LSW (32 bit) Least significant word.

RTP tim-stamp (32 bit) This timestamp may be used for inter-media synchroniza-
tion. It is calculated from the NTP timestamp with the
same clock resolution as used by the clock retrieving the
voice samples. In the case of Pulse Code Modulation A-
Law (PCMA) as RTP payload type this would be 8000 Hz.

Sender’s packet count (32 bit) The amount of RTP packets sent until the time this report
is built.

Sender’s octet count (32 bit) The amount of octets sent until the time this report was
built.

Any of the mentioned report and message blocks may be sent as single packets as well. In this
case, the blocks are equipped with a corresponding header. For further information on these
headers see [87, section 6.3-6.7].

It is not possible to send RTCP packets whenever an application desires to. Instead, it must
be guaranteed that an RTCP session does not use more then one fourth of a RTP session’s
bandwidth. This restriction is enforced by the RTCP protocol stack which schedules to be sent
packets periodically. Therefore, the so called message and report blocks are sent in compound
RTCP packets. A compound packet consists of several blocks which are assembled by the RTCP
stack [87]. Moreover, there exist certain rules concerning the structure of a compound RTCP

7RTP and RTCP packets share the same SSRC in a session
8PHONE represents the Phone Address the user was reached at. NAME may show its name.
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Table 2.2: Receiver Report Fields

Field-name Description

SSRC (32 bit) SSRC of the sender this report belongs to.

Fraction Lost (8bit) Fraction of the lost RTP packets since the sent time of the
last report. This field is interpreted as the fraction part of
a a fixed point.

Cumulative number of pack-
ets lost (24 bit)

Total number of not received but expected RTP packets
throughout this RTP session.

Extended highest Sequence
Number (32 bit)

The highest sequence number of an RTP packet received so
far. Since a sequence number is 16 bit wide and thus may
wrap around fast if a high initial random offset has been
used, a 16 bit wide cycle count is added to the sequence
number as a high half word reflecting such overruns.

Jitter (32 bit) Jitter value of the received RTP packets. It is calculated as
a running average value.

Last Sent Report (LSR) (32
bit)

A simplified NTP timestamp consisting only of the low 16
bits of NTPs Most Significant Word (MSW) and the high
16 bits of NTPs Least Significant Word (LSW) of the last
sender report received by that source.

Difference Last Sent Report
(DLSR) (32 bit)

The delay between the last received sender report and the
built time of this report. It is represented as a 32 bit wide
fix point number with 16 bit fraction and 16 bit integer.

packet. A Sender Report block is always located first in a compound packet if the participant
is a sender. Otherwise one or more Receiver Report blocks are encapsulated in the packet. The
Receiver Report block is committed if the participant has not yet received any Sender Report
from a peer. If it is the case that there are more active participants in a session than Receiver
Reports can be sent in a single packet, a round-robin algorithm is applied to serve all session
members equally. Next follows a mandatory SDES block consisting of at least a CNAME chunk9.
APP and BYE blocks are optional, however, BYE blocks must always be located at the end of
an RTCP packet.

RTCP packets are distinguished by their Packet Type field in the common RTCP header. Fur-
thermore, the various RTCP types can be seen in Table 2.3).

The header of an RTCP packet consists of the following parts [87]:

Version Field The Version Field is statically set to the value of 2, like in RTP.

Padding Field This field denotes that there are padding bytes after the last compound block.
The last padding byte reflects the number of padding bytes to be expected. This field might
be needed by encryption algorithms with a fixed block size.

Report Count The RC field indicates the number of receiver report blocks in this packet. If
there is also a sender report block available also this is denoted by the Payload Type field.

9An SDES block consists of several chunks. One chunk would be CNAME or PHONE for example. See [87,
section 6.5].
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Table 2.3: Valid RTCP Packet Types

Name Identifier

Sender Report (SR) 200

Receiver Report (RR) 201

Source Description (SDES) 202

Bye block (BYE) 203

Application Specific block (APP) 204

Packet Type The PT field reflects the RTCP message type. Valid values are shown in Table 2.3

Length Indicates the packets length minus one in 32 bit words.

Synchronization Source The SSRC has the same value as in the associated RTP packets.

A packet may consist of several compound blocks as mentioned above. In this case, the packets
type is determined by the first block contained in the packet. In a compound packet consisting of
a Sender Report Block and a SDES message block the Packet Type would be ”Sender Report”,
for example.

Considering the tear-down of an RTP/RTCP session the quitting party simply ceases sending
RTP packets and RTCP reports. The call termination is then handled by the signaling proto-
col as mentioned in Section 2.1. where an overview on Quality of Service measurements in IP
networks has been given. However, although numerous techniques are available it is not possible
to guarantee certain resources to achieve isochronous behavior for a given VOIP session crossing
several IP network borders. This is mainly the reason because of the vast variety of not necessarily
compatible QoS services. Therefore, media applications like VOIP-phones have to provide several
methods to achieve isochronous media-transport sessions on their own. This is done by using a
jitter buffer as mentioned above. Therefore, in order to inform their communication partners,
Quality of Service feedback protocols like RTCP are employed.

2.3.3 QoS Summary

The previous Sections introduced general QoS measurements on the one hand, and call-quality
feedback mechanisms on the other hand. It has been shown that protocols like RTCP are not able
to actually enforce QoS requirement, but are able to monitor their appliance. Thus, providing
the gained information to algorithms deciding upon the redimension of the jitter buffer of a
VOIP-phone for example.

Although RTP/RTCP has been introduced as the only wide-spread open media-transport and
call-quality feedback protocols there exist closed or commercial solutions like Skype, which also
relies on other methods to perform these tasks [BMMR09]. By now, the fundamental parts of
a VOIP communication from the signaling phase until the actual call have been introduced by
taking a look on transport protocols as well as their quality of service feedback protocols.
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In the previous Chapter an overview on the processing of a Voice over Internet Protocol (VOIP)
call was given. Signaling, media-transport and call-quality feedback protocols have been intro-
duced. However, a description of the audio capturing, encode, and playback phases is still missing.
The capture phase denotes the sampling and digitization process of analogue audio samples. Af-
terwards the digitalized speech is encoded with an appropriate audio code like G.711 (e.g. Pulse
Code Modulation A-Law (PCMA)) and transmitted to the receiver. At the receiver’s side the
encoded voice samples have to be decoded and played back by speakers. [Bad07, p.132ff], [Gra10,
p.192ff]. Therefore, a VOIP application consists of two major parts:

Data Processing part The data processing part of a VOIP phone includes signaling, media-
transport and call-quality feedback protocols so far introduced, as well as the voice sample
handling in the jitter buffer.

Signal Processing part The signal processing part includes the capture and encode phase, as
well as the playback phase for voice samples.

If a VOIP-phone is implemented as a common Personal Computer (PC) application the hardware-
software partitioning is straight forward. It is shown in Figure 3.1. The signal processing part
is usually realized in hardware, by utilizing a sound-codec, like the AC97 from Intel, to perform
the capture and playback functions. Furthermore, the encoding and decoding of voice samples
in a specific codec like G.711, respectively, is primarily realized in software. This is also true for
the data processing part. Common softphones acquiring this architecture are e.g., Ekiga [51],
Kphone [59], Xlite [81], and Linphone [62] Moreover, Figure 3.1 shows the communication fre-
quency of the mentioned modules throughout a VOIP session.

This data is derived from the SIP, RTP, and RTCP Request For Comments (RFCs). The thicker
an arrow in Figure 3.1 is the higher is the communication frequency. The communication fre-
quency is determined by the media-packet and the call quality feedback report transmission
interval. As it can be seen in Figure 3.1 although the media transport protocol and associated
function blocks produce the highest communication frequency, especially the call-quality feed-
back protocol block needs to access the media-transport block more frequently than it transmits
reports. This is because the call-quality feedback protocol needs to gather statistical information
from the media-transport protocol every time a new media-packet is sent or received. Thus,
introducing a higher communication frequency. Furthermore, the arrows are divided into control
(dashed) and data (continuous) arrows.
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Figure 3.1: PC VOIP-Phone Architecture

When a VOIP phone has to be implemented in an embedded device, hardware-software partition-
ing depends largely on the used scenario. Therefore, a variety of VOIP related implementations on
embedded platforms is presented in the Sections 3.1 and 3.2. Basically, it is possible to distinguish
the mentioned approaches in the following way:

• General purpose processor based embedded platforms with dedicated Digital Signal Processor
(DSP) or Intellectual Property Core (IP-Core) support to perform calculation intense work
like transforming speech samples into voice codec samples are addressed in Section 3.1.

• System on Chips (SOCs) on Field Programmable Gate Array (FPGA) platforms with dif-
ferent dedicated hardware support according to the target scenario are introduced in Sec-
tion 3.2.

Section 3.3 introduces the requirements and constraints induced by the target platform. Further-
more, Section 3.5 describes the provided IP-Core RTP-Engine, which implies a major constraint
on the design decisions when implementing a VOIP stack on the target device. Finally, the Sec-
tions 3.6 and 3.7 introduce the abstract component interfaces as well as the HW/SW partitioning
of the interfaces used by the VOIP stack. Moreover, several alternatives on implementing certain
interface parts are shown.

3.1 CPU based Embedded Platforms for VOIP

This Section gives an overview on selected projects building a VOIP capable embedded system
utilizing a given general purpose processor based platform. The first example introduced has
been developed by Xuejing, Jinping and Xiulan [XJX10]. In their approach a TMS320DM642
DSP (with up to 650 MHz core clock frequency) development board from Texas Instruments in
conjunction with an ARM9 processor is used to implement a VOIP unit, which is also capable
of Video over Internet Protocol (IP) transmission. The DSP platform is used to implement the
signal processing part of the VOIP solution. This does also include the speech sample to voice
codec transformation process. The ARM9 processor operates a real-time operating system which
performs the data processing part as well as the scheduling between the video related and the
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audio related processes using the DSP. The communication between the DSP and the ARM9
processor is performed by the utilization of the High Performance Interface (HPI)1. Necessary
synchronization messages are exchanged by mailboxes. Package reception and transmission is
done by a regular Ethernet interface. Furthermore, the filtering and packet encoding process of
media transport packets is done in software.

Another approach presented by Ho et al. [HTL+03], uses a similar method in comparison to the
one by Jinping and Xiulan [XJX10] presented above. Again, general purpose processor based
platform including a DSP and an ARM processor is used to implement a VOIP only solution.
The utilized DSP is a TMS320C54x (100 Million Instruction Per Seconds (MIPS)) from Texas
Instruments. It performs the signal processing part including encoding and decoding of media
transport payload packets. To do so, the processor forwards the entire media-transport protocol
packets to the DSP, which decides if a packet is a speech containing packet or from another
type. In this approach the DSP is capable of providing several codec algorithms like, e.g., G.711,
G.723.1 and G.729. The data processing part is performed by an ARM7 processor. A real-time
operating system is used to schedule the needed tasks.

In [JF10], Jijiang and Fiu introduce a VOIP solution with a bluetooth interface for call control
tasks, as well as headset and microphone connection. They use an ADM5120 VOIP platform from
Infineon, housing a DSP, a MIPS processor and several UARTs to interface with the bluetooth
transceiver. This time an embedded Linux operating system is deployed. Furthermore, the whole
signal processing part, including encoding and decoding of speech samples to and from voice
codecs respectively, is done by the DSP. The platform’s DSP is capable of several voice codecs
provided as software libraries to the DSP. The according voice samples sent to and received from
the DSP are encapsulated into a voice transport protocol by the MIPS processor. Furthermore,
a general purpose Ethernet interface is used to exchange media quality-feedback and signaling
packets.

The last approach presented in this Section has been developed by Zhai and Wang [ZW10].
The authors utilize a Samsung S3C2410 platform containing an ARM9 processor and a Philips
UDA1341 sound codec. In this approach, the ARM9 is directly connected to the sound codec with
a dedicated interface. The whole signal processing part of a VOIP session including encoding and
decoding of voice samples and packets respectively is done by the sound-codec and its DSP. The
encapsulation of encoded voice samples is done by the ARM9 processor running an embedded
Linux distribution. Furthermore, the utilized sound codec can be controlled with native Linux
sound-drivers from the Advanced Linux Sound Architecture (ALSA) sound system. The utilized
audio codecs are PCM encoded and range from 8 kHz to 32 kHz sampling rate. Again, a general
purpose Ethernet interface is used to exchange media, quality-feedback and signaling packets.

The four approaches presented so far have in common that they use a given development platform
including a DSP and a general purpose processor to perform their intended tasks. Apart from
the fact that one of the presented approaches [XJX10] implies a video functionality, they differ
from each other in several aspects. First, there were two methods used to handle media-packets.
On the one hand, the entire packet was forwarded to the DSP by the Central Processing Unit
(CPU) which extracted the payload. On the other hand, the CPU already performed the payload
extraction and the DSP was only responsible for decoding the received samples. Second, the
utilized operating systems differed. Two solutions [XJX10, HTL+03] utilized real-time operating
systems to perform their tasks, whereas [JF10] and [ZW10] use an Embedded Linux distributions.

1HPI is an On-Chip interface being able to access the internal as well as the external memory of the DSP directly
from the outside.
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However, [ZW10] uses native Linux sound drivers from the ALSA package to communicate with
the audio codec device. Considering the general purpose processors, [XJX10, HTL+03, ZW10]
use ARM microcontrollers and [JF10] utilizes a MIPS processor.

The authors focused on general purpose scenarios, where no special constraints on terminal device
delays exist. Furthermore, the utilization of software components to retrieve voice samples and
encode them into appropriate packets introduces a minimum feasible packet size which might not
be small enough for certain environments. The minimum feasible packet size is determined by
the sampling rate of an audio codec, on the one hand. On the other hand, by the time a voice
packet needs to be assembled, put into the transmission queue of a network interface card and
transmitted to a communication partner. This has been described in Section 2.3.1. The smaller
the amount of encoded voice samples in a packet, the smaller is the jitter. This has already been
observed by Toral-Cruz et al. [TCTR05], as mentioned in Section 2.3.1. By implementing the
parts of a VOIP stack in hardware which have direct impact in the minimum feasible packet size,
the constraints on isochronous VOIP sessions mentioned in Chapter 1 can be fulfilled.

3.2 FPGA Embedded Platforms for VOIP

The first approach by Apostolakos et al. [AML+10] describes an attempt to implement an
Internet Protocol Private Branch exchange (IP-PBX)2 to VOIP gateway in an FPGA. The
target platform is a Xilinx Spartan3 4000 FPGA, consisting of 4M gates, 27.648 slices and 1.728
Kbits of On-Chip Block-Random Access Memory (RAM). The SOC deployed on this FPGA
contains two LEON3 32 bit RISC CPUs, whereas each CPU is a master on a discrete Advanced
Microcontroller Bus Architecture (AMBA) Advanced High-performance Bus (AHB). The two
bus systems are connected via an AHB bridge. One of the LEON3 microcontrolers performs the
data processing part and interacts with the Ethernet interface associated with the VOIP capable
network. The other microcontrolers performs the signal processing part. However, in order to
accelerate the signal processing tasks, the processor responsible for signal processing is equipped
with a DSP extension realized as dedicated IP-core. Moreover, the signal processing capable
processor interacts with the PSTN interface. Thus, the data flow of the system works as follows:
Since the purpose of the system is to implement a VOIP to PBX Gateway, no sampling and
playback functions of speech are necessary. Each incoming VOIP session related request is handled
by the data processing microcontroller. Payloads are extracted from media-transport packets and
forwarded to the signal processing controller. It performs the needed translations and interfaces
with the PSTN network. The bridging between PSTN and VOIP networks is performed the other
way round. From the software’s point of view, an embedded Linux distribution is used on the
data processor. The signal processing microcontroller runs a custom standalone implementation
of the required algorithms. The supported voice codecs are G.711 and G.729.

Another approach to implement a VOIP to PSTN gateway on an FPGA has been introduced by
Faroudja et al. [FIT+09]. The authors use open hardware IP-cores from the Opencores website3

and a Xilinx Virtex II XC2V300 FPGA as platform device. This FPGA consists of 14.336 slices
and 768 Kbit of On-Chip Block-RAM. The signal processing part is performed by a dedicated
audio codec located on the FPGA development board. Considering the data processing part, an

2An IP-PBX gateway is used to connect Public Switched Telephone Network (PSTN) telephone networks with
IP telephone networks [Bad07, p.14f].

3www.opencores.org - Visited on 01/17/2011
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open 32 bit RISC processor is utilized. This processor is running uClinux to provide a runtime-
environment for the appropriate algorithms and drivers. The IP-core interconnect is realized as a
wishbone bus housing a 10/100 Ethernet interface to interconnect with appropriate IP networks.
However, the paper does not mention any supported codecs and an interface to a PSTN network.

An approach from 1999 [SHR99], does not fit inside the System On Chip criteria of this Section.
Nevertheless, it is mentioned here because of an interesting combination of hardware components.
The authors propose the development of a VOIP capable cable modem. The design is split onto
two printed circuit boards (PCBs). On the first board, the base system consisting of a general
purpose processor and the needed peripherals to run a cable modem are deployed. An appropriate
real-time operating system is installed here as well. The second board is designed as an add-on
board housing an FPGA controlling two chips, which are responsible for FPGA control aspects
and speech to G.711 conversion. Moreover, a voice compression chip is used which transforms
G.711 encoded voice into a G.729 or G.723.1 compressed format.

The last paper introduced in this Section shows a VOIP phone implementation on a Xilinx XUP
development board providing a Virtex II Pro FPGA [BW05].

The FPGA includes two Power-PC 405 32 bit general purpose processors, where one is used. The
signal processing part of the VOIP stack is performed by an AC97 audio codec. Transceiving
of network packets is done via an on-board Ethernet interface. However, the aim of Van den
Braak’s and Wong’s work is to measure end-to-end delays in VOIP applications and to discover
those components introducing the largest delay. Therefore, two parallel implementations are
presented. The supported and tested codecs were G.711, G.726, G.723.1 and GSM. On the one
hand, the whole decoding and encoding process of voice sample has been implemented in software.
This has been identified to be the largest source of delay in terminal devices when using a GSM
codec. On the other hand, the encoding and decoding phase were implemented in hardware,
which lead to a significant lower delay on the terminal side. The whole data processing part is
realized in software.

In this Section, four approaches to implement VOIP related application in FPGAs have been
presented. However, they had different aims. Two projects [AML+10, FIT+09] proposed methods
to implement PSTN to VOIP gateways inside FPGAs. Considering the signal processing related
tasks both projects used different solutions. On the one hand, a LEON3 soft core processor with
exclusive access to a DSP-like IP-core was used to perform these tasks [AML+10]. On the other
hand, a dedicated sound-codec chip located on the FPGA development board was used [FIT+09].
Furthermore, the remaining two projects also differ in their application. In [SHR99] the design
of a cable modem which may serve as an interface device for VOIP phones was introduced. An
approach to identify the largest terminal device delay element in a VOIP call was shown in
[BW05]. In this paper, two implementations were presented showing that the largest delay was
created by a speech to GSM encoding/decoding block realized in software. However, the authors
focused on general purpose scenarios, where no special constraints on terminal device delays exist.
The autors of [BW05] proposed that an implementation of the encoding/decoding algorithms in
hardware can reduce the terminal device delay in a VOIP session significantly. Nevertheless, Van
den Braak and Wong did not mention that the the minimum feasible packet size is determined by
the sampling rate of an audio codec. By the time a voice packet needs to be assembled, put into
the transmission queue of a network interface card and transmitted to a communication partner.
This has been described in Section 2.3.1. Although saving time by increasing the efficiency of
encoding/decoding algorithms, Van den Braak and Wong could not reduce their media-transport
packet payload sized in order to reduce jitter further. This is required for the use in sensitive
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environments, as mentioned in Chapter 1. The smaller the amount of encoded voice samples in a
packet, the smaller is the jitter. This has already been observed by Toral-Cruz et al. [TCTR05],
as mentioned in Section 2.3.1. By implementing the parts of a VOIP stack in hardware which
have direct impact on the minimum feasible packet size, the constraints on isochronous VOIP
sessions mentioned in Chapter 1 can be fulfilled.

3.3 System Requirements and Constraints

Implementing VOIP stacks for various purposes in embedded devices is a well mastered task by
industry and academia. Especially, when it comes to dedicated general purpose processor based
VOIP platforms as shown in Section 3.1. However, the presented solutions’ aim is to implement
VOIP applications for general purpose use mainly. The only exception is the approach presented
by [BW05]. The authors implemented a VOIP stack into an FPGA development board in order to
identify certain sources of terminal device delays. As a consequence Braak and Wong proposed
that especially the encode and decode blocks implemented in software should be realized in
hardware instead [BW05].

However, to reduce the end-to-end delay on the terminal device further, it would be of use to
implement the whole signal processing part as well as the encoding and packet building and
packet reception functions in hardware. This will reduce possible non-determinism delays to
an insignificant value, as mentioned in Chapter 1. Real-time operating systems can reduce this
issue. However, all presented VOIP stack applications implemented the sample, packetizing,
packet reception and transmission scheduling functions in software.

Therefore, a hardware-only implementation of the following functional blocks might be useful to
make terminal device delays more deterministic:

• Capture and Encode of Voice Samples,

• Packetizing and Scheduling of Media Packets,

• Transmission and Reception of Media Packets,

• Filling and Mangling the Jitter Buffer,

Furthermore, this will also reduce computational pressure on low performance and low power
embedded devices. In order to accomplish this task a specific IP-core fulfilling the stated require-
ments has been developed by Brunmayr et. al [BHS09].

However, what is still missing is an interface connecting the IP-core with a Base-System providing
a general purpose CPU, memory, and several peripherals. The aim of the subsequent Sections is to
perform a hardware/software partitioning of such an interface. Furthermore, the remaining parts
of a functional VOIP stack like signaling and call-quality feedback protocol must be implemented
to verify the interface approach.

In order to partition a hardware/software interface of a dedicated IP-core, as well as implement
certain functions of a VOIP stack in software a reconfigurable hardware platform is required.
The advantages of a reconfigurable hardware platform are that it is possible to exchange parts
of the system quickly. Thus leading to shorter development cycles. A reconfigurable platform
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offers the possibility to evaluate certain architectures and system components. Thus, an FPGA
development board fits best to perform this task. However, certain constraints are opposed on the
platform board. First of all, the FPGA must be large enough to fit a System-on-Chip, consisting
of at least the following components, as shown in Figure fig:base-schem.

Figure 3.2: System on Chip base components

General Purpose Processor The CPU must be fast enough to handle a signaling protocol
stack, a call-quality feedback protocol implementation, and certain administrative tasks.

Serial Interface This module is used for debugging and user I/O purposes.

External Memory Controllers In order to provide a variety of ways to run software on the
Base-System’s processor, several memory controllers should fit inside the FPGA in the
development phase. Therefore, the platform board should provide various memory chips
accessible from the FPGA.

Ethernet Controller An Ethernet controller is needed to let the system run a VOIP session,
eventually.

Dedicated IP-Core This will be an extended version of the IP-Core introduced in [BHS09]. It
is described in Section 3.5 in greater detail with a focus on its interface behavior.

Furthermore, additional space for data and instruction caches to the Base-System’s processor
would be an optional requirement. This would result in a faster program execution. Considering
the target platform, the decision fell on a Xilinx ML405 development board, housing a Xilinx
Virtex4 FPGA[108], because it fulfills all constraints mentioned above. Furthermore, the ML405
was easily available.. It provides a Virtex4 XC4VFX20-FF672 FPGA with 19.224 logic cells,
1.224 Kb on-chip Block, 128 Megabyte (MB) Double Data Rate (DDR) Synchronous Dynamic
Random Access Memory (SDRAM) with a 32-bit interface, 9 Megabit (Mb) Static Random
Access Memory (SRAM), 8MB Flash, a Type I/II Compact Flash disk controller, an RS-232 serial
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interface, an Audio Codec 97 (AC97) Audio Codec, several general purpose leds and buttons, as
well as a Joint Test Action Group (JTAG) interface for programming and debugging purposes,
and many more interface components [106].

3.4 Base-System Design

Although the development platform was predefined, other degrees of freedom exist considering
the Base-System’s general purpose processor and the way the VOIP stack concluding software
elements are executed on it. Therefore, Section 3.4 deals with the evaluation of possible hardware
and software components composing a Base-System.

As mentioned in Section 3.3, this Section surveys a number of possible design decisions consid-
ering the Base-System. The Section is logically divided into a hardware oriented part and a
software oriented part. The hardware part shows implementation options for the deploying of
a general purpose processor and consequences it will impose on the Base-System. The software
part presents ways to run appropriate software on the system-on chip inside the FPGA. The first
subsection introduces a survey on processors which can be used within the ML405 development
board. Furthermore, this subsection shows various methods to boot software programs on the
development board from a hardware point of view. The second subsection describes a selection
of possible ways to boot and run software programs on a chosen processor.

3.4.1 Hardware Components

If general purpose processors are used within FPGAs one can distinct between two types of CPUs
basically. On the one hand, there exist hard core processors. On the other hand soft core proces-
sors can be used. A hard core processor is a a processor already implemented within the FPGA
[DB06]. In today’s FPGAs not only processors are available as hard cores, but embedded multi-
pliers and Block-RAMs, as well as other components are. Multiplier and Block Random Access
Memory (BRAM) components do not have to be mapped to reconfigurable FPGA resources.
Instead, they can directly be represented in special function blocks inside the FPGA. However,
an appropriate interface must be provided by the designer. Their advantages are that they run at
usually higher speed than soft core processors. Moreover, hard cores do not take up any reconfig-
urable FPGA resources, so called Look-Up-Tables (LUTs). Instead they are located on a separate
partition on the chip. Furthermore, they are directly supported by the FPGA and toolchain ven-
dor. Therefore, no porting and excessive testing must be performed. The disadvantages are that
hard cores are mostly available on large and thus expensive FPGA and development platforms
only. Hard core processors provide an interface to a system bus realized inside the programmable
part of the FPGA. Usually, vendors provide a series of on-chip peripherals and off-chip peripheral
interfaces which can be attached to the bus. However, the bus interface of a hard core processor
can not be changed, which results in binding the user to a vendor specific bus-system. Neverthe-
less, bus-bridges translating the commands of one bus to the commands of another bus may be
deployed to overcome this issue.

On the other hand, soft core processors can be used. They are processor models described in
Hardware Description Language (HDL)s like any other component developed to run inside an
FPGA [TAK06]. Therefore, these IP-Cores have to be synthesized and take up FPGA resources.
A soft core processor’s advantage is, that it is possible to tailor it to specific needs, like changing
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it’s interface to a specific bus-system, if allowed by its license. Furthermore, there are two types
of soft core processors. Those, directly support by the FPGA, thus no porting and testing is
needed, and those who are designed by the open-source community, or provided by other vendors.
However, in this case it might be possible that the processor’s model has to be adapted for the
use in a specific FPGA, as mentioned above.

Considering our target platform both types of processors may be used, because the Virtex4 FPGA
on the development board provides a hard core processor. In this case it is a 32 bit Power-PC 405
processor from IBM, supporting the IBM Processor Local Bus as an on-chip bus. The processor
runs up to a speed of 300 Mhz and provides a Memory Management Unit (MMU). It offers no
integrated Floating Point Unit (FPU). Moreover, it provides the ability to configure instruction
and data cache separately by utilizing available Block-RAM on the FPGA [104].

Furthermore, Xilinx provides its soft core processor Microblaze. This processor runs with a speed
up to 200 Mhz on a Virtex 4 FPGA and provides no MMU. It needs 1269 resource elements on
a Virtex4 FPGA[TAK06]. It provides an optional interface to IBMs Processor Local Bus (PLB),
as well as to Xilinx’s Fast Simplex Link (FSL) which can be used to build Multi-Core systems
[105]. Furthermore, no FPU is available to the processor directly. However, this soft core cannot
be modified due to its license.

An open-source soft core processor would be the LEON3. It can be modified, provides no MMU,
but an FPU [TAK06]. The LEON3 is entirely developed in Very High Speed Integrated Circuit
Hardware Description Language (VHDL) and provides an interface to the AMBA bus from ARM
ltd. Moreover, it runs with up to 125Mhz in an FPGA [TAK06].

3.4.2 Booting the Base System

The second part deals with several ways to start software on a processor running inside the
Virtex4 FPGA. Basically, ML405 development board provides three ways to provide software
programs to a utilized processor. The three approaches are presented in Figure 3.3.

The first method is to download a program in the appropriate binary format from the development
workstation directly to the main memory of the processor utilizing the JTAG Debug interface (1)
[108]. This is illustrated in Figure 3.3(a). After downloading the processor’s program counter is
set to the start address of the program. This method is mainly used in the development phase
of a project, where frequent changes to software and possibly hardware occur. Moreover, every
time the target device shall be used, a workstation capable of downloading the desired software
is needed.

The second way to load a program into a processor’s main memory is to utilize the development
board’s flash chip. This is illustrated in Figure 3.3(b). In this approach a program has to be
available in an appropriate binary hex format, which is then downloaded into the flash via the
JTAG Debug interface once (1). From now on, if the Base-System is configured appropriately,
every time the processor is powered up it loads the program from flash (2) into main memory
[108]. This can be achieved with a small small bootloader located in on-chip BRAM on the
ML405.

The third, and last method mentioned here, utilizes the Compact Flash (CF) disk to store the
program. This is illustrated in Figure 3.3(c). In this special configuration an FPGA’s configura-
tion bit-stream and the program to be executed are both located in a special archive on the flash
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(a) Boot via JTAG (b) Boot via Flash

(c) Boot via CF-Disk

Figure 3.3: Ways to boot software on the ML405

disk (1). The the flash disk has to be inserted in the flash disk slot of the development board
(2). If the development board is empowered and configured properly the archive is read from
the flash disk. In the next step, the bit-stream is extracted and the FPGA is configured with it
(3). The last step stores the program, which must be available in the appropriate binary format,
into the processors main memory (4). The processor’s program counter is set to the appropriate
address and the program execution starts [108]. A map of available booting methods and their
support by the presented processors can be seen in Table 3.1.

Table 3.1: Boot Methods

Boot Method PPC405 Microblaze LEON3

JTAG Debug In-
terface

Native Native Requires Porting

Flash Memory Native Native Native

CF-Disk Native Native Requires Porting

The word ”Native” in a cell of the table means that no additional hardware must be developed
to use this boot methods with the corresponding processor. ”Requires Porting” means that it is
necessary to adjust parts of the processor, develop additional hardware, or change certain config-
uration parameters of the vendor’s toolchain to operate this boot method with the corresponding
processor. An overview on the decision relevant features of the processors is given in Table 3.2.
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Table 3.2: Decision Relevant CPU Features

Name Hard/soft core Availability MMU/No MMU FPU/No FPU Bus Interface

PPC405 hard core YES MMU No FPU PLB

Microblaze soft core YES No MMU No FPU PLB, FSL

LEON3 soft core NO No MMU FPU AMBA

The fields used in the table have the flowing meaning:

Hard/soft core It has direct impact FPGA resource usage, and the adaptability of the de-
sign. Furthermore, this decision has influence on the maximum frequency the processor can
operate with [TAK06, DB06].

Availability This field indicates wether a core is natively available on the desired platform, or
if the processor has to be ported to it. This includes pin assignment tasks as well.

MMU/No MMU The presence or absence of a Memory Management Unit has direct impact
on the usability of certain operating systems.

FPU/No FPU An FPU is especially needed if intense calculation like encode/decode operations
of certain voice codecs are necessary.

Bus Interface Describes the natively available interface of the on-chip peripheral bus. This has
direct impact on the usable IP-cores.

3.4.3 Choosing the CPU

Eventually, the Power-PC 405 hard core is chosen as a general purpose processor for the System-
on-Chip realized in this theses, because of the following reasons:

• It is natively supported by the vendor, therefore, no porting is required.

• The processor uses the PLB bus to interact with peripheral devices. The PLB is directly
supported by peripherals provided by the FPGA vendor.

• It does not need any reconfigurable FPGA resources, except for an interface wrapper con-
necting the processor to the FPGA-design, since it is implemented as a hard-macro.

• The processor features an MMU, thus standalone applications and full-featured operating
systems may be utilized.

• Although the CPU does not provide a FPU, it is well suitable for this task because no
complex arithmetic calculation needs to be done by the data processing part of the VOIP
stack in software.

The used boot method will be ”CF-Disk” from Table 3.1. In this method the media is split
into two partitions. The first partition provides the FPGA’s configuration file, as well as the
bootloader, or standalone application, concatenated in one single archive. The second partition
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is able to hold the operating system’s root file-system, for example. Due to this approach, all
relevant data considering hardware and software of the employed system are kept in one place,
therefore, decreasing the time needed to prepare and download hard- and software components
during development.

3.4.4 Software Components

The subsequent Section 3.4.4 gives an overview on the options available when one wants to run
a VOIP stack on the ML405 development board. In Section 3.4.1 a number of proper processors,
as well as boot methods available to run the Base-System were introduced. The decision fell on
the Power-PC 405 processor. This Section will show a variety of ways to operate a VOIP stack’s
software components on this Base-System.

The first possible approach presented here is the so called standalone application. In this case
only the programming language of choice’s standard library and some vendor contributed sup-
port libraries are available, assuming that an appropriate toolchain (compiler, linker) exists for
the target processor. The advantage of this method is that the developer has full control on
the used processor, since no privilege separation is enforced by an operating system. Further-
more, the delay introduced by a system call’s overhead and the non-determinism introduced by
an operating system’s scheduler must not be taken into account. Therefore, for projects with
hard real-time requirements and low task parallelism, the standalone application approach may
be useful. However, the disadvantages are, that a large amount of the application and possi-
ble supportive libraries might have to be ported to the target board, or entirely written from
scratch. This would result in longer development times, due to a possibly higher level of com-
plexity. Moreover, the possibility to introduce severe bugs rises. Furthermore, all protocols and
components needed for a VOIP stack implementation must be designed and implemented from
scratch. Nevertheless, another advantage of the standalone application is, that it makes no a
priori assumption on the provided features by a processor. The standalone application would
be fully supported by the PPC-405 based platform since a complete toolchain exists from the
vendor. Moreover, several drivers and support libraries are available.

The second way to run a VOIP stack on the ML405 development board is to use the Xilkernelenvi-
ronment [103]. It can be seen as an example for a Real-Time Operating system. The Xilkernelen-
vironment provides a real-time capable Portable Operating System Interface (for Unix) (POSIX)
compliant abstraction layer to the underneath hardware. It serves a thread model, socket inter-
face, software timers and amongst others, a user space interrupt handling Application Program-
ming Interface (API) . This API makes it possible to directly attach interrupt service routines
to the interrupt controller of the used processor. Thus no abstraction layer is blocking direct
access to an Interrupt Service Routine (ISR) . This results in a lower overhead when interfering
with interrupt driven hardware from the application layer. Furthermore, the Xilkernel can be
configured to a certain amount, to resize its footprint and features to a projects direct needs. It
provides its own toolchain for the Microblaze and the Power-PC processors. Furthermore, it does
not necessarily require a MMU capable processor. Although providing an operational run-time
environment to develop applications, all software components and protocols needed by a VOIP
stack would need to be ported or entirely engineered from the ground up to run with Xilkernel.
Moreover, an implementation would be highly dependent on Xilinx specific target devices.

The third method presented in this Section is to utilize a wide-spread operating system available
for the platform. In this thesis, Embedded Linux is mentioned as an example. First, it must
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be noted that choosing Embedded Linux does not make any assumption on the availability of
an MMU on a processor. Moreover, it does not make any assumption on the chosen processor
mentioned in the previous subsection. Linux is also available for the architecture of the LEON3
processor, which is fully SparcV8 compliant [TAK06]. However, it is necessary to use a modified
version of the Linux kernel to operate it on a MMU-less CPU. Therefore, uCLinux has been
developed, which is integrated in the mainstream kernel by now [75]. Nevertheless, also full
featured Embedded Linux distributions can be taken into account if the Power-PC hard-macro
is chosen. Regardless of the utilized Linux kernel it provides a fully POSIX compliant API.
However, when using uCLinux it must be mentioned, that no user/kernelspace separation is
enforced. Thus a crashing application might crash the whole system, making uCLinux a bit more
fragile to handle. Moreover, the fork()4 system call is not implemented. Nevertheless, there are
several supportive libraries available when designing a VOIP stack. Considering a Vanilla Linux
Kernel5 these restrictions do not apply.

However, when utilizing an embedded operating system like Linux the need for a bootloader arises.
Depending on the used boot method a bootloader is also necessary when using the Xilkernel and
the standalone application method. Nevertheless, when using an Embedded Linux distribution
on the ML405 the bootloader needs to perform the following key-task as well. The bootloader’s
purpose is to download the Linux kernel from a boot media, unpack it, start it, and hand control
over to the kernel. Considering embedded bootloaders, the only one which is available on a
variety of platforms is U-Boot [CCA07]. Moreover, the bootloader needs to pass platform specific
hardware information to the kernel. In the case of a PC, this information is retrieved and handed
over to the operating system by the Basic Input Output System (BIOS), or the Uniform Extensible
Firmware Interface (UEFI) [76]. However, in embedded devices no such unified approach exists.
Therefore, board and vendor dependent data structures must be used in order to provide these
information. Because this non-uniform approach on handling such sensitive platform data leads
to various problems and large complexity when porting a bootloader to a new platform, the open
firmware flattened device tree has been introduced [GL08]. The flattened device tree represents a
uniform data structure in a tree-like shape, where each node is a hardware component present in
the system and each leave is a property of such a component. It is built once in the development
phase and retrieved by the bootloader from an available media. Subsequently, it is passed to the
Linux kernel. The flattened device-tree is supported by U-Boot.

Finally, a summary of the different software approaches showing the dependencies of certain
hardware and software components is presented in Table 3.3 In this table the field bootloader
shows whether it is necessary to deploy a bootloader in order to use the corresponding approach.
Furthermore, the filed MMU reflects whether an MMU must be present in order to use the
according software approach. If Not Needed is written in any of these fields, the presence of
this component is optional. Therefore, the approach would also succeed if the corresponding
component is present in the design.

This Section introduced a number of available options when designing a Base-System on an a
priori chosen ML405 development board. The tables 3.2 - 3.3 present the available choices and
their dependencies upon each other. In Section 3.4.1 the Power-PC 405 processor and the corre-
sponding PLB peripheral bus has been chosen to operate the Base-System. Considering software
an Embedded Linux distribution will be used to provide the necessary run time environment for

4Is a system call to create a child-process differing only in the Process Identifier (PID). However, file-locks and
pending signals are not passed on. [55]

5The official maintained kernelsource-tree by Linus Torvalds [64].
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Table 3.3: Software Options

SW Approach bootloader MMU Processor

Standalone Not needed Not needed Microblaze, Power-PC, LEON3

Xilkernel Not Needed Not Needed Microblaze, Power-PC

uCLinux Needed Not Needed Microblaze, Power-PC, LEON3

Linux Needed Needed Power-PC

the VOIP stack. The decision fell on embedded Linux because it natively supports a wide variety
of peripheral drivers and libraries. Furthermore, there exists a port to the ML405 development
board. Thus also a complete toolchain is available. Using embedded Linux will result in a more
platform independent VOIP stack implementation, considering the software implemented part.
Moreover, the processor features an MMU, thus there is no need for uCLinux, Xilkernel, and stan-
dalone applications. Deciding on embedded Linux implies to use the bootloader U-Boot, because
certain platform specific information must be supplied to the Linux kernel by the bootloader in
order to work properly. This information is stored in the open firmware device tree data structure
as mentioned above. This leads to the following Base-System configuration:

CPU/BUS Power-PC 405 hard core including several PLB bus masters.

Software approach An Embedded Linux distribution including an appropriate toolchain for
the Power-PC 405 processor.

Bootloader U-Boot with scripting support and support for the flattened device-tree.

3.5 RTP-Engine Description

The previous Section introduced a number of ways to configure a Base-System to interface with
a dedicated IP-Core performing the signal processing, as well as media-packet reception and
transmission part of a VOIP session. Furthermore, the decisions on the main components of the
Base-System have been presented. This Section describes the dedicated IP-Core developed by
Brunmayr et al. [BHS09].

The IP-Core described by the authors is capable of receiving RTP-packets, extracting their pay-
load, decoding it, and playing the voice samples back over a speaker. Thus, realizing the whole
part of a VOIP session concerning data payload This IP-Core is called ”RTP-Engine”. To re-
ceive and playback voice sample encoded in RTP-packets an AC97 audio codec, which is located
off-chip, and an Ethernet [89] Media Access Control (MAC) hard core is used. However, only the
receiver’s functionality is realized on the ML405 development board.

The remainder of this Section is divided into two parts. In the first part 3.5.1, the soft core’s
architecture and its behavior considering transmission and reception of network packets is de-
scribed. In the second part of this Section the IP-Core’s interface is examined. This also includes
its external interface, as well as the interfaces performing sub-system communication.
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3.5.1 Architecture and Behavior

From an architectural point of view the RTP-Engine can be divided into a sender and a receiver
sub-system. The sender sub-system consists of the following function blocks, marked gray in
Figure 3.4, showing the IP-Core’s architecture:

Figure 3.4: Standalone RTP-Engine

AC97 Interface This interface provides read access to the AC97 off-chip sound codec in the
context of the sender sub-system.

G.711 Codec The codec encodes the raw voice samples retrieved from the AC97 sound codec.

RTP-Encoder This function block builds an appropriate RTP-packet consisting of an Ether-
net, an IP, an UDP, and an Real-time Transport Protocol (RTP) header, as well as the
voice samples as payload. All header information, except the RTP sequence numbers and
timestamps are taken from static configuration vectors specified at synthesis time.

Sender Control This module queries the Ethernet MAC in order to hand a readily built frame
for transmission.

Ethernet MAC Interface This module provides an interface to the Ethernet MAC IP-Core.
However, a corresponding packet is not directly written to the Ethernet MAC, but is stored
in a First In First Out (FIFO). This FIFO is needed if two parts of a circuit are supplied
by different clocks. Thus, the FIFO serves as a buffer and synchronization memory. This
is necessary when one circuit part supplied by clock A wants to transmit data to a part
supplied by clock B, where the clocks A and B do not provide the same frequency [Gin03].
This is the case in the MAC-core, since the NIC-Wrapper is driven by a 100 MHz clock and
the MAC-core is supplied by a 12.5 MHz clock if running at 100 Mb/s speed.

The functional blocks of the RTP-Engine’s sender part presented above interact with each other
in the following way to build a packet to be transmitted. First, the AC97 sound codec samples
at an 8 kHz rate to retrieve the appropriate voice samples [86]. In the next step, a retrieved
sample is fed into the PCMA (G.711) encoder, which is realized as a look-up-table. The voice
sample gained is now stored in a sample buffer inside the RTP-Encoder module. These steps are
repeated until enough samples are stored inside the buffer. In the subsequent step, the RTP-
Encoder queries the Sender-Control module. If the MAC-Core signals the Sender-Control unit
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that it is ready to send, the RTP-Encoder starts to move a data packet from its internal buffer
to the MAC-Core, which then sends the RTP-packet of its Ethernet interface.

The receiver sub-system of the RTP-Engine is marked in a dark gray in Figure 3.4. It consists of
the following sub-modules:

Ethernet MAC Interface This interface signals that an Ethernet frame has been received and
stored inside its buffer memory.

RTP-Filter This function block checks whether a received Ethernet frame is an appropriate
RTP-packet belonging to an ongoing RTP-session, thus having a correctly set SSRC. If yes,
the packet is accepted, if no, it is discarded. Moreover, the Filter also discards packets
which do not pass one of the implemented tests: Ethernet frame, IP, Universal Datagram
Protocol (UDP) and RTP. The Filter is able to cope with IPv4 [83] and IPv6 [101] packets,
as well as VLAN-tagged [88] Ethernet frames.

Jitter Buffer As mentioned in Section 2.3, the jitter buffer is used to restate isochronous be-
havior in a media-session.

G.711 Codec This time the G.711 codec is used to decode PCMA samples into raw voice
samples and hand them over to the AC97 sound codec interface.

AC97 Interface The AC97 interface provides write access to the AC97 off-chip sound codec in
the context of the receiver sub-system.

The reception of a RTP-packet is handled in the following way. When the Ethernet MAC Interface
provides a new packet and the Filter is ready it subsequently tests two octets of a received packet.
It is required to fulfill the following conditions imposed by the Filter block:

• Source and destination MAC address match the statically configured one inside the Filter.

• The IP header of the received packet is either an IPv4 or an IPv6 header containing the
correct source and destination addresses.

• Source and destination port of a received UDP packet equal the ones configured inside the
Filter.

• The payload of the UPD packet is of type RTP. Furthermore, the Synchronisation Source
(SSRC) of the received packet must match the one expected by the filter.

If any of these properties are not fulfilled the received packet is discarded. If all properties match,
the packet’s payload is forwarded to the Jitter buffer, which does not support packet reordering
by now. The Jitter buffer is realized in on-chip Block-RAM and is emptied upon overflow. When
no overflow occurs, the payload is handed over to the G.711 codec which processes the voice
samples to the AC97 audio codec, where it is played back via a speaker.
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3.5.2 Interfaces

In the previous part it is shown how the components of the RTP-Engine interact with each other.
However, it was not stated which interfaces the components use to exchange data. Moreover, the
RTP-Engine’s interface to other system components is yet to be discussed. This is the purpose
of this Section.

First, the IP-Core’s external interfaces are presented. The RTP-Engine provides several User IOs
like buttons and leds amongst the usual clock and reset inputs. The buttons are used to control
the AC97 sound codec’s volume control. The leds are provided as visual feedback on certain
operational conditions like a discarded incoming packets, or a Jitter buffer overflow. Furthermore,
the soft core provides an interface to the Ethernet MAC hard core and to the AC97 sound codec.
The AC97 audio interface is realized as a serial interface, complying to the AC97 standard [90].
Since the MAC hard core is interfaced through a wrapper a special interface is deployed by the
FPGA vendor to interface with this wrapper, the Local Link Interface (LLI).

The LLI is a synchronous point-to-point handshake protocol, where a sender side can issue the
availability of data to be written, and a receiver can indicate that it is ready to receive data.
Furthermore, message start word and a message end word signal is used to indicate the beginning
and the end of a transmitted message. This is necessary because it is possible that either receiver
or sender postpones an ongoing transmission. The interface consists of the following signals,
where the clock signal is omitted [110]:

Data This signal represents the data line. Usually, this is a bit-vector, but it can also be
configured as a serial line. Considering the Ethernet MAC interface an eight bit wide word
is transmitted every clock cycle.

Start of Frame If this signal’s level is low, it indicates that the word just sent is the beginning
of a message. A message may consist of one or more words. Furthermore, Start Of Frame
(SOF) and End Of Frame (EOF) are not required for a correct operation of the LLI.
However, they can be used as additional signals to recognize beginnings and endings of
frames.

End of Frame If this signal has a low value it indicates that the word just sent is the last word
of a message.

Source Ready The Source Ready signal indicates that the sender is ready to send a message.
The signal is low active. A sender is able to de-assert this signal while a message is trans-
mitted. In this case, the receiver knows that the sender postpones the transmission and
stops receiving subsequent words until the Source Ready signal is asserted to low again.

Destination Ready This signal corresponds to the Source Ready Signal. Thus, the receiver may
indicate that it is not ready to receive further words during a transmission, and therefore,
postpone it by setting this signal to high.

An example transmission showing a Local Link Interface based message transmission is shown in
Figure 3.5.

First, the sender sets its ”SRC RDY” signal to low, indicating it has new data available. In the
next cycle the receiver answers with its ”DST RDY” signal set to low. By now the first word
of the message can be transmitted. This is done in the next cycle, where the Start Of Frame
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CLOCK
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DST_RDY
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DATA 0x65 0x66 0x67 0x68 0x69

Figure 3.5: Local Link Interface Message Transmission Example

indicator ”SOF” is set to low. However, a few cycles later the sender is not able to provide
any more data, although, the message is not yet transmitted completely. Therefore, it sets its
”SRC RDY” signal to high again, to indicate the receiver that the transmission is postponed.
In the subsequent cycle the ”SRC RDY” signal is set to low again, and the transmission can
continue. One cycle later, the sender tells the receiver that the last word of this message is
transmitted. However, the receiver postpones the reception by setting its ”DST RDY” signal to
high for two cycles. After that, the transmission can be completed by the receiver asserting low
to ”DST RDY” again. Because the transmission is over, all control signals are set to high again,
thus being ready for the next transmission. Moreover, the sub-module communication within the
RTP-Engine is realized with the LLI.

In this Section an overview on the RTP-Engine has been given. The structure and the behavior
of the IP-Core is presented. Furthermore, the interfaces exported by the Engine are described,
as well as the sub-module interfaces are mentioned.

3.6 Interface Concept

Although, the RTP-Engine provides the whole data-path of the media-transport relevant parts
of a VOIP session, as well as the signal processing part, it is still missing an interface providing
configuration and feedback data to and from the RTP-Engine. However, these decisions im-
pose several constraints on the further design of the IP-Core’s interface. However, before these
constraints are examined, the general structure of an interface crossing the hardware/software
boundary, according to Gajski et al. [G.09, p.255ff] is presented. The authors explain that an
interface connecting a custom hardware module may consist of the following parts:

Freely Schedulable Code This part is intended to be software whose execution can be inde-
pendently postponed and revoked by a scheduler. This can be the hardware independent
part of a hardware driver for example. It usually calls functions contained in the Constraint
Schedulable Code.

Constraint Schedulable Code The constraint schedulable code is software which has to obey
certain timing compulsions. This can be the hardware dependent part of a driver, directly
interfering with the Bus Interface.

Bus Interface This interface component is implemented in hardware. It may directly reflect
the bus controller of a CPU.
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This abstract representation shows a reference model when designing hardware/software inter-
faces. It can be seen in Figure 3.6(a). Furthermore, it can be interpreted as a model for an
interface belonging to a general purpose processor, being the master of a peripheral bus. Consid-
ering the design of a peripheral, the layers ”Bus Interface” and ”Constraint Schedulable Code”
can also be applied to a peripheral IP-Core, (see Figure 3.6(b)). As a consequence ”Constraint
Schedulable Code” may be realized in hardware as well, thus reflecting the parts in the peripheral
performing the intended tasks.

(a) HW/SW Interface Model [G.09] (b) HW/HW Interface Model [G.09]

Figure 3.6: Interface Models

Although the presented model is primarily used to reflect certain needs when synthesizing in-
terfaces, it may also be used as a reference model when designing a hardware/software interface
for a given IP-Core like the RTP-Engine. Thus, providing a pattern for the partitioning of such
an interface. A supportive argument for such a point of view is provided by Jensen, Madsen
and Pedersen [JW05]. The authors conclude that there exists a need to model interfaces at a
lower grade of abstraction, than the system model. This is necessary in order to gain information
on certain performance bottlenecks introduced by an intuitive approach when designing hard-
ware/software interfaces. Moreover, Jerraya and Wolf [JW05] mention, that due to the higher
complexity in SOC design, and the tighter entanglement of hardware and software components,
the need for a more interface focused design arises. Due to these reasons and their enhancing
arguments presented above, this Section will give a detailed overview on the interface design of
the RTP-Engine.

Since the ML405 development board does not provide two Ethernet interfaces, the available
Ethernet hard core MAC has to be used by both, RTP-Engine and general purpose networking
interface [106]. This makes the RTP-Engine a sub-module of a bigger IP-Core including the
RTP-Engine’s functionality and the network interface’s functionality, leading to the architecture
shown in Figure 3.7.

40



Designing a VOIP Stack in an FPGA

Figure 3.7: NIC-Wrapper Architecture

The reason for putting these two components in a wrapper block is to keep the interfaces clear
and simple. Since both modules need the same resources and provide similar services, they can
be integrated into a single wrapper module easily. The only additional control blocks to be added
are an arbiter and a module receiving the network packets which are not recognized as RTP-
session aware packets by the RTP-Engine’s Filter module. The arbiter decides which sender,
RTP-Engine or network interface, gets access to the MAC hard-macro transceiving the Ethernet
frames. In order to clarify the terminology used the term NIC-Wrapper (Network Interface Card
Wrapper) is introduced as an umbrella term for the whole IP-Core. The term RTP-Engine refers
to the RTP-Engine including its interfaces. Furthermore, the term General Purpose Network
Interface (GPNIF) is used to address the parts of the NIC-Wrapper belonging only to the GPNIF.
Moreover, sub-modules not belonging to the RTP-Engine or the GPNIF are assigned to the
NIC-Wrapper. Furthermore, the NIC-Wrapper is divided into external and internal interfaces.
External interfaces are those interfering with components outside the NIC-Wrapper like hard
cores and memory controllers. Internal interfaces are used inside the NIC-Wrapper to connect
the arbiter to the RTP-Engine, for example. Note that, although the RTP-Engine’s interfaces
to the MAC hard core and the AC97 audio codec were introduced as external interfaces in
Section 3.5, they are now propagated to the external interfaces of the NIC-Wrapper.

3.6.1 External Interfaces

This Section examines the data to be exchanged in order to let the NIC-Wrapper transmit and
receive Ethernet packets. This includes the interfaces needed by the RTP-Engine and the GPNIF.
Because the RTP-Engine performs the entire signal processing part, as well as the packet mangling
in hardware a full set of network protocol stack headers has to be provided to the IP-Core as
configuration data. The Tables 3.4 to 3.7 give an overview about the requirements imposed on
the RTP-Engine’s configuration interface. The field number (#) of octets describes the amount
of memory octets needed to store the corresponding configuration data. If the addressed field
is needed by both, the sender and receiver units of the RTP-Engine, the first number in the
multiplication is set to 2. Otherwise, if the field is only needed by the sender, it is set to 1.
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Ethernet Protocol

The remaining external interfaces of the NIC-Wrapper consisting of the interfaces to the MAC
hard core and the AC97 Codec are discussed in this Section. First the external interface of the
RTP-Engine is described, starting with an examination of the Ethernet protocol header. Since the
target platform uses an Ethernet MAC hard core as a network transceiver the Ethernet protocol
header is the first one needed. The RTP-Engine’s configuration interface supports Ethernet frames
of the type 802.3 only. Moreover, the preamble at the beginning of the frame, the Start Frame
Delimiter (SFD) octet, as well as the Frame Check Sequence (FCS) fields are omitted because
they are supplied by the hard core. Nevertheless, the fields Source, Destination, and Typ-Field
must be provided. Table 3.4 shows the Ethernet protocol header information to be transmitted
to the IP-Core, as well as the amount of memory needed in the RTP-Engine to store it [89].

Table 3.4: Ethernet Protocol Costs

Field # of Octets Comment

Source Address 2 ∗ 6 The source address is needed by the module
Sender Control and Filter.

Destination
Address

2 ∗ 6 The destination address is needed by the module
Sender Control and Filter.

Type 1 ∗ 2 The Type field is also needed by both modules,
but is the same for Sender Control and Filter.

Sum 25 The amount of octets needed to store the con-
figuration data for the Ethernet protocol.

However, because a sender’s destination address is a receiver’s source address and vice versa, the
amount of memory needed can be reduced by 12 octets and therefore by 48%.

IP Protocol

In order to send properly formatted IP packets a complete header including a precalculated
checksum is needed. The interface will support IP version 4 only. Therefore, only this protocol
header has to be stored in the IP-Core. Nevertheless, Table 3.5 shows the data needed to be
stored in the RTP-Engine [83]. The Table consists of the same fields with the same meanings as
Table 3.4. However, because a sender’s destination address is a receiver’s source address and vice
versa, the amount of needed memory can be reduced by 8 octets. Furthermore, the Protocol, and
Version fields must also be the same for a sender and a receiver, which results in another interface
memory reduction of 1.5 octets. Moreover, the ”Options” field of the IP-header is unnecessary
for the most common communications, according to [83]. Thus it will not be implemented in the
RTP-Engine’s interface. This will free another 40 octets, optimizing the interface by 75%.
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Table 3.5: IPv4 Protocol Costs

Field # of Octets Comment

Version 2 ∗ 0.5 The Version field of the IP header, statically set
to 4. This field is needed by the modules Sender
Control and Filter.

IHL 1 ∗ 0.5 The length of the IP-header represented in mul-
tiples of 32-bit wide words.

TOS 1 ∗ 1 Type Of Service field, can be used for Quality
of Service Operations.

Length 1 ∗ 2 Indicates the payload length of an IP datagram.

Fragmentation &
Offset

1 ∗ 2 Used to show and determine if a datagram has
been split into smaller parts.

TTL 1 ∗ 1 The Time To Live field shows how many hops a
packet may take before it is discarded. A hop in
an IP network is defined as a node which decides
upon a packet’s further transmission by exam-
ining its IP-header. This can be a router for
example.

Protocol 2 ∗ 1 Indicates which type of upper-layer protocol,
like Transmission Control Protocol (TCP) or
UDP is used. This field is also needed by the
modules Sender Control and Filter.

Check-sum 1 ∗ 2 Includes an error detecting code calculated over
the IP-header. The payload is not included.

Source Address 2 ∗ 4 The source address is needed by the units Sender
Control and Filter.

Destination
Address

2 ∗ 4 This field is needed by both Sender Control and
Filter.

Options ≤ 1 ∗ 40 This field is optional and needs up to 40 octets
of memory.

Sum Max 66 The amount of octets needed to store the con-
figuration data for the IPv4 protocol.

UDP Protocol

The UDP protocol header consists of the fields Source and Destination Port, Length, and Check-
sum [99] shown in Table 3.6. The Table consists of the same fields with the same meanings as
Table 3.4. However, because a sender’s destination port is a receiver’s source port and vice versa,
the amount of needed memory can be reduced by 4 octets. This leads to a memory reduction of
33%.
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Table 3.6: UDP Protocol Costs

Field # of Octets Comment

Source Port 2 ∗ 2 Needed by the sub-modules Sender Control and
Filter. The Source Address of the Sender is the
Destination Address of the Filter and vice versa.

Destination Port 2 ∗ 2 Needed by the sub-modules Sender Control and
Filter. The Destination Address of the Sender is
the Source Address of the Filter and vice versa.

Length 1 ∗ 2 Indicates the length of the whole UDP packet
the payload.

Check-sum 1 ∗ 2 Includes an error detecting code calculated over
the IP-header, the UDP-header and the payload.

Sum 12 The amount of octets needed to store the con-
figuration data for the UDP protocol.

RTP Protocol

The RTP-Protocol header consists of a fixed and a variable part like the IPv4 header. The variable
part is mainly introduced by a Mixer [87]. The according header fields, as well as the memory
costs for the interface of the RTP-Engine are shown in Table 3.7. These fields are not described in
detail, as this has already been done in Section 2.2.2. Therefore, the comment Section is omitted
in the table.

Table 3.7: RTP Protocol Costs

Field Version & Padding &
eXtenson & Contribut-
ing Source (CSRC)
count

Marker & Payload Type Sequence Number

# of Octets 1 ∗ 1 1 ∗ 1 1 ∗ 2

Field Timestamp SSRC CSRC

# of Octets 1 ∗ 4 2 ∗ 4 ≤ 1 ∗ 120

Field Extension

# of Octets ≤ 1 ∗ 65536

Since the SSRC has to have the same value as the sender and the receiver participating in a
RTP session, it is possible to reduce the interface costs by 4 octets. Moreover, the CSRC field
can be omitted because these information are provided by Mixers only. Thus no information
must be provided to the module Sender Control in this case. Considering the Filter module it
must be noted that only the SSRC is required to associate RTP-packets to an ongoing RTP-
session. However, the CSRCs provided by incoming packet are needed by the Real-time Control
Protocol (RTCP) protocol in order to transmit receiver reports to these contributing sources [87].
This issue can be solved by forwarding the first RTP packet of a session to the RTCP stack
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implemented in software. The RTCP stack would have to register the contributing sources and
now can transmit receiver reports to the Mixer, which forwards them to the contributing senders
eventually. This reduces the interface costs by 120 octets. Moreover, the ”Extension” field can be
discarded because it is mostly used in experimental implementations testing new payload format
independent functions [87]. This will lead to another 65536 octets freed. Therefore, the memory
consumption of the RTP-Engine’s interface, considering the RTP packet header, can be reduced
by greater than 99%.

The examination of the RTP-protocol header concludes the discussion of the external interface
to the RTP-Engine. The total interface costs are summed up in Table 3.8.

Table 3.8: RTP-Engine Interface Total Costs

Protocol # of Octets

Ethernet 13

IPv4 20

UDP 8

RTP 12

Total 53

GPNIF Interface

In order to transmit and receive Ethernet frames with the MAC hard core, an appropriate interface
has to consist of the following parts:

Receive Frame Memory This memory will be used to store a whole received Ethernet frame.
The maximum packet length of an Ethernet frame leads to a memory size of 1500 octets
[89]

Transmit Frame Memory The transmit buffer needs to be 1500 octets large as well, because
only whole frames can be transmitted by Ethernet MACs. Thus, if a smaller Transmit
Frame Memory is used, but the largest possible frame is to be sent the interception of the
send process will lead to a timing violation of the Ethernet protocol, because the Ethernet
standard does not support postponement of ongoing frame transmissions.

Control Data This part of the interface represents several status and functionality bits. They
can be subsumed in a single 32 bit register together with the control and status bits of the
RTP-Engine.

The whole GPNIF interface requires 3000 octets. The description of the NIC-Wrapper’s ex-
ternal interfaces to the AC97 audio codec and the Ethernet MAC were already introduced in
Section 3.5.2, therefore they are omitted here.
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3.6.2 Internal Interfaces

In the previous Section the external interfaces of the NIC-Wrapper were introduced. This Section
will present the internal interfaces of the IP-Core. In Figure 3.7 it can be seen that the internal
interfaces are located between the Ethernet MAC Interface, the Arbiter, the RTP-Engine, and
the GPNIF. Therefore, a common interface should be deployed for a better extensibility and
maintainability. The RTP-Engine uses the Local Link interface described in Section 3.5 to inter-
face with the MAC IP-Core. Thus, the LLI would be an appropriate interface (see Section 3.5.2).
So in order to use the LLI two more components are necessary. On the one hand, an arbiter is
needed to control between the access to the Ethernet MAC Controller. On the other hand, a
GPNIF to LLI translator is needed. This component is used to translate the LLI read and write
commands into GPNIF conform ones and vice versa. Due to the fact that the GPNIF should be
independent from the rest of the NIC-Wrapper this translator is specified.

Arbiter

The Arbiter’s task is to control the access to the MAC core of the RTP-Engine and the GPNIF.
This is not done arbitrarily, but follows a priority scheme. The Arbiter consists of three interfaces,
one exported to the RTP-Engine, one to the GPNIF, and one fed into the Ethernet MAC Interface.
It’s behavior can be modeled as a state machine, which is shown in Figure 3.8.

Figure 3.8: Arbiter Finite State Machine

The state-machine contains three states. In the ARB state, which is the reset state, the arbiter
awaits requests from either the RTP-Engine, or the GPNIF. If the GPNIF issues its request
(”gpnif req”) first, then it is granted (”gpnif grant”) and the automaton advances to the state
GPNIF. In the case the RTP-Engine issues its request (”rtp req”) first, it is granted (”rtp grant”)
and the next state taken is RTP. In both cases a whole frame is transmitted regardless of any
further requests of either GPNIF or RTP-Engine until (”eof”) is issued. After the end of the
transmission the automaton returns to state ARB again. However, if the RTP-Engine and the
GPNIF issue requests (”gpnif req”, ”gpnif req”) at the same time, the RTP-Engine’s request is
granted (”rtp grant”) reflecting the need for isochronous behavior in a RTP-session. This implies
that the transmission of GPNIF’s Ethernet frame is postponed by the transmission time of the
RTP-frame. Although it is theoretically possible that the GPNIF starves because every time a
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RTP-packet is sent, the RTP-Engine issues another send request immediately, this cannot occur if
the RTP-Engine is configured to follow RFC-3550. In RFC-3550 it is stated that an RTP-packet
usually contains 20 milliseconds of speech, thus, this being the send interval for RTP-packets.
However, it is not possible to send packets which are shorter than the highest sampling rate in
the used codec. This also applies if only one encoded speech sample is sent in a packet.

Translator

This subsection introduces the Translator, a module performing a conversion between memory
read/write commands and the Local Link Interface used throughout the NIC-Wrapper. Con-
sidering the Translator it can be said that the PPC405 processor chosen in Section 3.4.1 uses a
peripheral bus which is either 32, 64, or 128 bits wide. However, the LLI interface on the Ethernet
MAC’s and on the RTP-Engine’s side is specified to be 8 bits wide. Therefore, the translator is
not only required to map read/write commands but also to provide a serializer/deserializer to
translate between these two bit widths.

Furthermore, it is necessary that, since Ethernet frames are not 32, 64 or 128 bit aligned, the
translator is able to cope with single byte aligned frames. The same is true for the converse
direction. Therefore, a frame received, discarded by the Filter module of the RTP-Engine, which
has to be stored in the receiver memory of the GPNIF needs to be parallized to the native word
width needed in the memory. Basically, both modules, the serializer and deserializer work in the
same way. First, a ”start” request to start a serialization/deserialization of a packet is issued.
Until a ”stop” request is issued, the incoming octets are deserialized/serialzed. Therefore, they
are stored in/read from words of 4, 8, or 16 octets per word. However, if ”stop” is recognized the
process terminates immediately regardless of how many octets are unread/unwritten in a word.
In order to keep track of how many octets are actually serialized/deserialized, an appropriate
counter is kept.

3.7 Partitioning of the RTP-Engine Interface

The previous Sections 3.3-3.6 introduced the bases on designing a VOIP stack in an FPGA. A
series of options and decisions regarding the decisions on processors, thus, bus-systems, oper-
ating software and designing hardware interfaces were presented. This Section will take these
information and conclude upon the hardware/software partitioning of the VOIP stack. It will be
shown how the communication frequency of several components inside a VOIP stack influences
the decision on which parts are implemented in hardware and which in software. To be more
precise, which parts of the software components will be implemented in kernel space, and which
in user space, due to the already done decisions upon the Base-System shown in Section 3.4.
The partitioning of the VOIP stack is presented from a protocol’s, and thus interface’s point of
view, in contrast to a hardware and software centered view. This is done because of the need for
a more interface centered hardware/software co-design, as mentioned in Section 3.6. Therefore
the remainder of this Section is split into the following parts: In part one, the data exchanged
between the RTP stack and the RTCP stack are examined. Furthermore, the results are used to
change the interfaces presented so far. In part two, possible location, kernel space, or user space
for the implementation of the RTCP stack are examined. Moreover, the signaling protocols in
the partitioning are defined.
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3.7.1 Refining the Hardware Interface

In order to refine the interface between the RTP and the RTCP stack, the performance crucial
parts have to be detected. Considering the transceiving of RTCP packets the following informa-
tion is needed from a RTP stack implementation [87]:

SSRC The SSRC is needed by a receiver report of the RTCP stack. It must be retrieved every
time it changes. Because the SSRC of a session changes usually only at the beginning of
a session from unknown to a dedicated value, this information has no great impact on the
refinement of the hardware/software interface. However, when the first SSRC is received
there are generally two possibilities to feed it back to the RTP-Engine’s Filter in order to
configure it properly. On the one hand, the whole packet could be transmitted to user space,
parsed, and the retrieved SSRC can be written back to the Filter. On the other hand the
RTP-Engine may issue that an unknown SSRC has been detected and the software driver
reads this information back and configures the Filter appropriately.

Sender’s Packet Count The sender’s packet count is to be read from the RTP-stack every time
a RTCP Sender Report has to be sent. According to RFC-3550, this has to be done in a five
second interval in the worst case, thus putting no significant pressure on the RTP-Engine’s
interface. However, it must be included into the RTP-Engine’s interface, adding another 4
byte of interface costs.

Sender’s Octet Count It has to be read from the RTP-stack every time a RTCP Sender Report
has to be sent. However, it can be calculated from the amount of sent packets, because
the amount of samples stored in a packet has to be known a priori due to RTCP-stack
initialization. Therefore, it must not be included in the RTP-Engine’s interface.

Jitter Because the jitter value has to be calculated as a running average value it must be updated
every time an RTP packet is received. This would increase the stress on the RTP-Engine’s
interface because of the rising interrupt frequency and the therefore resulting increase in
bus communication. Therefore, the jitter calculation may be implemented in hardware to
minimize the hardware/software interaction of the RTP-Engine as much as possible.

A more detailed description of the proposed refinements is shown in Chapter 4. Moreover, the
software driver controlling the RTP-Engine and the GPNIF can be implemented as a single
NIC-Wrapper driver, which would lead to a better maintainability.

3.7.2 Software Partitioning

The RTCP stack can be implemented in kernel or in user space. A motivation for kernel space is,
that if the RTP-stack is implemented in hardware, no mode switches would be necessary when a
VOIP session is operated. The kernel module would only be accessed by the signaling protocol
stack at the beginning and the end of a VOIP session. Such an approach has been proposed
by Guk Sun and Jo Kim [SK05]. The authors propose a kernel level implementation of a whole
RTP/RTCP stack for a Linux 2.6 kernel. Both protocols are implemented in separate modules
which can be interfaced by system calls from the user space. Therefore, the authors implemented
a number of new system calls into the Linux kernel API. However, since system calls can be used
to notify kernel space from the user space, but not vice versa, another mechanism was proposed
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by Guk Sun and Jo Kim. In their approach a kernelmodule should issue so called signals6 from
user space to kernelspace, to notify a user application on the occurrence of an event. Sun and
Kim argued that it is necessary to implement special signal queues, so that no soft-interrupt is
lost7 inside the Linux Kernel. However, Kim and Sun did not realize that at the time of writing,
in 2005, a feature called real-time signals has already been introduced in the Linux kernel in 2004
[65]. In the case of real-time signals also the absolute order of the signals issued is guaranteed.
Moreover, real-time signals already implement a queuing mechanism, therefore obsoleting Kim’s
and Sun’s solution. However, a major downside of this method, regardless of using real-time
signals or not, is that a kernel level implementation of either protocol including a system call
introduction, results in a large kernel dependency. Thus, if a new kernel version shall be used the
whole code has to be ported to it.

An alternative solution would be to implement the RTCP-stack in user space and call the RTP-
Engine’s driver from there. This approach would be independent of the used kernel version.
Considering the signaling protocol a user space implementation is the best suited way. The same
reasons for implementing the RTCP protocol in user space apply here.

3.8 Design Decision Summary

This Chapter introduced the Base-System and NIC-Wrapper interface design. As it is mentioned
in Table 3.8 about 53 octets of memory are needed by the RTP-Engine interface to provide a whole
configuration vector to the RTP-Engine. The hardware/software partitioning of a VOIP-phone
designed for the use in a PC is presented in Figure 3.1.

Figure 3.9: Communication Frequency & Partitioning VOIP Stack

Compared to a VOIP-phone implementing the RTP-Engine the hardware/software partitioning
changed significantly as it can be seen in Figure 3.9. The arrows shown in this figure represent the
communication frequency between the corresponding parts of the stack. The thicker an arrow is,
the higher is the communication frequency and therefore workload for a general purpose processor

6Sometimes also called Soft(ware) Interrupt
7Actually, signals cannot get lost inside the Kernel, but can be overwritten by another signal issued before the

previous signal is handled, because no buffering exists [65].
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and hardware/software interfaces. An overview on the made decisions in this Chapter is shown
in Figure 3.10.

Figure 3.10: Detailed HW/SW Partitioning VOIP Stack

As it was mentioned in the previous Sections, the Base System consists of the Power-PC405
hard-macro providing a PLB bus master. Furthermore, an embedded Linux distribution with U-
Boot as bootloader, and the Open Firmware Flattened Device Tree as board configuration data
structure is used. Moreover, the jitter calculation is processed by the RTP-Engine in hardware.
The SSRC change sequence upon detection of a new SSRC in a RTP-session is performed in kernel
space by the RTP-Engine’s driver. The call quality feedback protocol RTCP is implemented in
user space because of portability reasons, as well es the signaling protocol stack.
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In Chapter 3, a platform design for a VOIP stack implementation in an Field Programmable
Gate Array (FPGA) has been introduced. Several implementation options have been evaluated.
In the end, a Base-System consisting of a Power-PC 405 hard-core providing a Processor Local
Bus (PLB) interface and an Embedded Linux distribution started by the bootloader U-Boot
have been chosen. Furthermore, the architecture and interface of the NIC-Wrapper providing
a unified interface to the GPNIF as well as the RTP-Engine has been introduced. Moreover,
Chapter 3 provided a high-level introduction on the just mentioned components. In this Chapter,
the actual implementation of the whole system is described in detail. Thus the Chapter is divided
into the following subsections. Section 4.1 introduces the implementation of the Base-System in
greater detail. In addition the used Embedded Linux distribution is described in this Section. In
Section 4.2 the NIC-Wrapper’s interface is introduced. Finally, the softphone implementation,
actually operating the RTP-Engine is presented in section 4.3. Figure 4.1 provides an overview
on the whole VOIP stack implementation including the principle structure of the softphone. The
results of Chapter 3 show that the GPNIF and RTP-Engine submodule are both located inside the
NIC-Wrapper module, which provides a uniform interface to the Linux kernel. The Linux kernel
houses the NIC-Wrapper device driver which consists of the GPNIF related driver functions and
the RTP-Engine interface related IOCTL functions. Most of the software components, including
the RTCP stack implementing the user space interface of the RTP-Engine interface, are realized
in user space (see Figure 4.1). Moreover, it can be seen that Busybox is used as an embedded
Linux distribution.

Figure 4.1: NIC-Wrapper Device Driver Architecture
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4.1 Base-System Implementation

In Section 3.4.1, the Power-PC 405 general purpose processor providing a PLB bus master has
been chosen as the main processor for the Base-System. Furthermore, an Embedded Linux was
the operating system of choice. This section shows, how these components are integrated into
the Base-System. First, the hardware components of the Base-System are described. In the next
step, the configuration and operation of U-Boot and Linux on the ML405 is shown.

4.1.1 System On Chip Description

In order to provide a feasible operational environment for the RTP-Engine, the following addi-
tional components are needed:

Main Memory Controller This module provides access to the SSRAM (9 Mbit) and SDRAM
(128 MByte) off-chip memories available on the ML405 development board.

UART Interface The Universal Asynchronous Receiver Transmitter (UART) Interface is used
to export a command shell provided by the Embedded Linux distribution to the user. Thus,
it serves as standard input/output interface.

Interrupt Vector Controller The Power-PC 405 processor’s interrupt controller is capable of
serving several internal interrupt sources, like timer, exception and debug interrupts, as well
as one external interrupt source [104]. Therefore, an external interrupt controller is used to
capture interrupts from peripheral devices.

Initial Boot Memory Although not needed if the primary boot and configuration media is the
CF-Disk, this about 4 kByte large on-chip memory block is used to run peripheral testing
software in the development phase. It is large enough to contain a whole test application
for the NIC-Wrapper.

CF-Disk Controller Interface The CF-Disk serves as a primary boot and configuration me-
dia. Furthermore, it is used as hard disk by the Embedded Linux distribution. It exports
an interrupt source to the Interrupt Vector Controller.

EEPROM Controller Interface The Electrically Erasable Programmable Read-Only Memory
(EEPROM) is used to store persistent bootloader configuration data, which cannot be pro-
vided by the archive stored on the CF-Disk at the time of running the bootloader.

All these components are provided by the Xilinx ISE development environment [78]. This software
package provides a database of several IP-Cores which can be integrated in user specified designs.
ISE serves as a front-end for the Design-Flow1 needed to generate a bit stream to configure the
FPGA. In order to implement the Base-System as a System on Chip, Xilinx Embedded Devel-
opment Kit (EDK), which is a part of the Xilinx ISE, is used. In contrast to ISE, EDK provides
support in designing System-on-Chip platforms. It provides a graphic system representation and

1An FPGA’s design flow covers design-elaboration (Compiling the design’s Hardware Description Language
(HDL) model description into an intermediate, chip independent, but vendor dependent, representation), design-
synthesis (Compiling the intermediate representation into an FPGA specific library), and partition place and
route (Chip specific components are mapped onto the chip, their interconnect is created and the static timing is
computed).
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aids in interconnecting the system’s components. Furthermore, the memory map, and the open
firmware flattened device tree are generated here.

The architecture of the Base-System including the NIC-Wrapper can be seen in Figure 4.2. It
shows the whole system inside the Virtex4 FPGA. All off-chip components are omitted. Only
the interaction of certain peripherals with FPGA IOs are shown by black arrow symbols (↔)
touching the borders of the symbolic FPGA. The main components in Figure 4.2 are presented
in the following:

Figure 4.2: SOC Architecture

The Power-PC 405 hard core utilising on chip memory Block-Ram as instruction (ICACHE) and
data (DCACHE) caches. Each cache is 16 kByte large. Although the caches are optional when the
Power-PC processor wrapper is configured inside Xilinx EDK they are taken into account because
of a study realized by Ben Salem et al. [AKBSS10]. In their study the authors examined, amongst
others, the reaction time needed by a PI-control unit (proportional plus integral) to control a
direct current (DC)-motor implemented in software. The control task was implemented as a
standalone application on a Virtex4 FPGA using a Power-PC-405 processor. In one series of runs
the Power-PC was configured with instruction and data caches. In another series of runs the
Central Processing Unit (CPU) was configured without caches. Moreover, the PLB was used to
interface with the main memory. The experiment showed, that if caches are omitted, the system’s
reaction time rises from 12 to 14 µs to about 85 µs for the speed controller task. And from 16 µs
to about 114 µs for the current controller task. This is a factor of ∼ 6 for the speed controller
task, and a factor of ∼ 7 for the current controller task. Although the examined tasks were hard
real-time tasks in contrast to the time constrained tasks2 in the VOIP stack, it can be seen that
the use of caches decrease a system’s reaction time significantly. Therefore, instruction and data
caches are deployed in the Base-System as well.

2Setting new SSRCs, retrieving statistic data from the RTP-Engine, for example.
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As it can be seen in Figure 4.2 all peripherals are attached to the PLB bus. This is done because
the On-chip Peripheral Bus (OPB)3 support will be discontinued in future releases of Xilinx ISE
[78]. This is possible, because most peripherals available in ISE exist in a version providing an
OPB and a PLB interface.

4.1.2 Processor Local Bus Intellectual Property Interface

A PLB bus master is provided by the Power-PC processor [107]. Nevertheless, it is possible to
have more than one bus master in a PLB comprehending system. However, a bus arbiter must
be utilized to control a master’s bus access in this case. Considering the Base-System only one
bus-master, the Power-PC 405 processor, is used. All other devices are so called PLB slaves.
Each slave device is attached to the bus via the Intellectual Property Interface (IPIF). The IPIF
provides an abstraction layer to the functional implementation of the peripheral. Therefore, the
IPIF is the interface between the ”Bus Interface” and the ”Constraint Schedulable Code” (see
Section 3.6 and Figure 3.6(b)). This abstraction layer provides several services which can be seen
in Figure 4.3 [102]:

Figure 4.3: PLB - IPIF Services

Bus Master Service This function block is optional. If it is used the Intellectual Property
Core (IP-Core) is able to operate as a bus master. Therefore, a bus arbiter is provided with
this module.

Write/Read First In First Out (FIFO) Service The FIFO submodules provide buffer mem-
ories which can be configured in size and word width. Moreover, it can be determined if the

3In contrast to the PLB, the OPB is a low speed bus, connecting peripherals with infrequent CPU/peripheral
demands. Therefore, it is often used to connect UART, or EEPROM modules to the processor.
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memories shall be implemented using Block-Ram or FPGA Look-Up-Table (LUT)s4. The
FIFO Service is optional.

Interrupt Controller Service The interrupt controller service provides mechanisms to capture
and accommodate several interrupt sources of the peripheral. It acts as a unified interface
to a systems vector interrupt controller. It is able to react upon edge and level triggered
interrupts. It is optional.

Software Reset Service The SRS can trigger a synchronous reset of the peripheral if a specified
value is written to it. This service is optional.

Slave Attachment Service The SAS is a mandatory service and provides address resolution
between the PLB and the peripheral device.

Byte Steering Service This mandatory service provides data width conversion mechanisms
between the PLB and the peripheral device.

Most peripheral devices in the Base-System facilitate at least the Interrupt Controller as ad-
ditional IPIF service. Beside these services, there exist also several types of peripheral device
templates. They provide example implementations to access an IPIF attached peripheral via
registers, FIFOs, or Block-Ram. Furthermore, these examples influence the way a peripheral’s
configuration registers, memories and FIFOs are exported to the system’s memory map. This
means that a device using the Block-Ram template has a different offset from the device’s as-
signed memory base-address than a device using the register or FIFO template. This is a result
of the fact that a device may utilise more than one of these templates to export its ”Constraint
Schedulable Code” section to the IPIF. See the PLB-IPIF manual [102] for a detailed description.
However, these templates are not part of the PLB specification, but are provided by Xilinx to
ease the creation of an appropriate interface for a peripheral device.

The remaining peripheral devices, except for the NIC-Wrapper, which is described in Section 4.2
shown in Figure 4.2, are:

SDRAM Controller The two 16 bit wide 64 MB off-chip SDRAM memory banks which are ac-
cessed as a 32 bit wide 128 MB memory bank are used as main memory by the Base-System.
The memory controller does not facilitate an interrupt controller. However, buffering FIFOs
are used.

16550 compatible UART There are three types of UART modules available to serve as a
primary user interface. The UartLite module which can be statically tied to a specific
frame format and baudrate, the 16550, and 16450 full configurable UART modules, also
featuring a modem interface. Although the UartLite uses the least resources, the 16550
compatible module has been chosen because it is natively supported by the Linux kernel.
The module uses the interrupt service of the IPIF.

Interrupt Vector Controller This module is available in one version only. However, the prior-
ity of the attached interrupt service enabled peripheral devices can be configured statically.

4The smallest general purpose unit inside an FPGA is a Logic Block, or Logic Cell. It consists of a LUT holding
a combinatorial function, an optional register, and a multiplexer. All these components are configured by the
bit-stream resulting in the specified hardware implementation [FK09, p.233f].
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Initial Boot Memory The initial boot memory is implemented as an IPIF module including
the Block-Ram template.

CF-Disk Controller & EEPROM Controller These two peripherals are implemented as IPIF
modules using the interrupt service module.

4.1.3 Operating System & Bootloader Description

This section is divided into two parts. In the first one, the utilised bootloader is introduced. In
the second one, the Embedded Linux distribution and its build system is described. As already
mentioned in Section 3.4.4 U-Boot [74] is used as a bootloader for the Base-System. It has
been developed by Wolfgang Denx and is based upon the bootloader project PPCBoot [70],
which is discontinued since 2002. U-Boot is designed to be extensible, therefore providing a core
application and several optional functions. The optional functions can be configured in a board
specific configuration file. This file is used as a central source of information by U-Boots build
system to compile the appropriate U-Boot distribution. Furthermore, the central configuration
file needs to provide information about the target platform’s memory map to U-Boot. The file
containing the Base-System’s memory map can be retrieved from Xilinx EDK after the Base-
System has been synthesized and the appropriate software support libraries have been built.
However, in order to operate U-Boot on the ML405 development board utilising the CF-Disk
boot method, an adapted version of U-Boot is needed. This is necessary because U-Boot is
intentionally designed to run from Flash memory, but the CF-Disk boot method loads U-Boot
directly into RAM. This adapted version can be retrieved from the Xilinx software repository
[80]. As already mentioned in Section 4.1.1 the bootloader’s configuration information consisting
of the following parts is stored in the Base-System’s EEPROM.

• An entry in U-Boots environment pointing to the location on the CF-Disk where the flat-
tened open firmware device tree is located.

• A macro loading the flattened device tree from the CF-Disk to the main memory.

• An entry pointing to the location of the Linux kernel. The kernel has to be available in a
special format called uImage.

• A macro copying the kernel image from the CF-Disk to the Base-System’s RAM.

• A set of macros loading the device tree blob5 and the Linux kernel as well as run the latter.

Considering the Embedded Linux distribution Busybox and its build environment Buildroot is
used. Busybox is a lightweight multi-call binary Linux distribution [Wel00]. It provides size
optimized re-implementations of many services, tools and software packages found in a regular
Linux distribution. The size optimization is achieved by only implementing the parts of a software-
package often used by users. This results in a smaller variety of available options for certain tools.
The term multi-call reflects the fact that there exists only one binary that has to be called in order
to execute a single program available with Busybox. This can be achieved by using symbolic links,
instead of real executables, in the appropriate directories6 of a Linux distribution. Nevertheless,

5The compiled form of the flattened Open-Firmware Device-Tree is called Blob [GL08].
6Usually, the directories /bin, /usr/bin, /usr/local/bin, /sbin, and /usr/sbin are used to house the installed

software packages executables [54].

56



Implementing a VOIP Stack in an FPGA

it is also possible to use third party software within a Busybox distribution. This is the task of
Buildroot, which is a set of makefiles and patches providing the following functions [48]:

• Building a cross compiler toolchain.

• Building an Embedded Linux distribution.

• Handling its root file-system.

• Configuring and building an appropriate bootloader and kernel image.

The tool itself does provide services to download and build the needed software packages for a
fully customized Embedded Linux distribution. Although it also facilitates services to build a
bootloader and a Linux kernel, these features are not used in this thesis. Instead the software
packages own build systems are utilised to build these components. However, the cross compiler
toolchain provided by Buildroot is used to do so. In order to reduce the Base-Systems software
memory footprint further, uclibc is used as a standard C library implementation [Sal08]. The
advantage of uclibc in comparison to a glibc implementation is that uclibc is especially designed
for a low memory usage. Furthermore, uclibc is directly supported by Buildroot.

However, there exist also other cross compiler toolchain generation tools providing similar services
than Buildroot:

Bitbake Bitbake derives from the Gentoo7 package management system portage. It consists of
a set of so called recipes providing the information needed to build a software package. It
can be configured to build an appropriate embedded Linux distribution [47].

Crosstool This software package provides a set of scripts and makefiles suited to build cross
compiler toolchains. However, the building of whole distributions is not supported. Nev-
ertheless, it features the creation of so called build clusters8 in order to speed up the
compilation of large software projects [50].

ELDK The Embedded Development Kit provides several pre-compiled cross-development tools
targeting Power-PC processors. It is primarily focused on the development of standalone
applications [52].

Openembedded It relies on Bitbake and provides configuration services to use Bitbake to gen-
erate Embedded Linux distributions in a convenient way [67].

LFS The project Linux From Scratch does not provide a ready to use build environment, but a
complete set of manuals to build one [63]. This includes manuals for building cross compiler
toolchains and fully customized Linux distributions.

Emdebian Emdebian is the embedded version of the Debian Linux distribution. It features a set
of pre-compiled cross compiler toolchains and a variety of packages ready to be integrated
into the Embdedian installer which creates the target root file-system. This makes it possible
to easily upgrade an Emdebian installation on a target [53].

7A Linux distribution available as source code mainly. Gentoo provides its package management and build
system portage, which compiles and installs each package from source code, giving the user a great level of flexibility
when building her system.

8Distributed compiling on several distinct computers
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The list just presented is not complete, but gives an overview on certain available tools supporting
the creation of embedding Linux distributions. Because of the native support of the uclibc and its
extensibility Buildroot in version 2009.11 has been chosen over the other mentioned approaches
to build an embedded Linux distribution.

Considering the Linux kernel, a Xilinx patched version with support for the ML405 development
board has been used [79]. This Linux kernel supports all vendor provided peripherals. It is used
in version 2.6.34. The Kernel is compiled without module support and with a strong focus on the
available hardware and required software subsystems. Thus, resulting in an application specific
kernel. The module support is omitted to ease the kernel update process on the target system,
as well as to reduce the update cycle times during development phase. This is useful because the
kernel can be exchanged faster, if only one file, the kernel image, has to be copied to the CF-Disk.

4.2 NIC-Wrapper Interface

By now the Base-Systems hardware and software components have been introduced. This section
introduces the NIC-Wrapper interface from a software and a hardware point of view. The interface
itself is divided into a hardware part described in Section 4.2.1 and a software part introduced in
Section 4.2.2.

4.2.1 Hardware Interface Implementation

The hardware interface of the NIC-Wrapper consists of three parts: The GPNIF interface provid-
ing access to the Ethernet Media Access Control (MAC) hard macro; The RTP-Engine interface
exporting the configuration interface of the RTP-Engine; And finally a common interface provid-
ing the access to certain configuration parameters not directly associated with either GPNIF or
RTP-Engine. As already described in Section 4.1.1, each module attached to the Base-System’s
PLB is a slave device. In the case of the NIC-Wrapper the following optional services are activated
in its PLB-IPIF:

The interrupt controller service is enabled to gather the NIC-Wrapper’s interrupts and pro-
vide them to the Base-System’s interrupt vector controller. However, the optionally available
interrupt priority encoder and device Interrupt Service Controller (ISC) are omitted. These ser-
vices have to be emulated in software. The purpose of the priority encoder in conjunction with
the ISC are intended to reduce the administrative interrupt dependent traffic on IP-Cores. Be-
cause there are only two interrupt sources provided by the NIC-Wrapper, these modules are not
necessary. This module is used by the GPNIF solely.

Moreover, both FIFO services, read and write, are utilised by the IP-Core. On the one hand,
the Read-FIFO is used to store Ethernet frames which do not contain any RTP packets associated
with an ongoing VOIP session. On the other hand the Write-FIFO stores the Ethernet frames
to be sent. In the case of the Read-FIFO, a special Packet-Mode provided by the FIFO is used.
Every time an Ethernet frame is received by the Filter (see Section 3.5) it is written to the Read-
FIFO of the GPNIF and to the receiver module of the RTP-Engine. When the Filter decides
that the frame contains a VOIP session associated RTP-packet, it is discarded from the Read-
FIFO. This happens in the following way: Before a new frame is started to be written to the
Read-FIFO, the current write pointer position of the FIFO is saved to a register. This step is
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called MARK and performed by issuing the MARK signal. It also sets a Packet-Mode enabled
FIFO into Packet-Mode. The Read-FIFO can be reset to Normal-Mode by issuing the Release
signal. Now the frame can be written in the usual way. However, if a frame shall be discarded
and the Read-FIFO is set to Packet-Mode, the signal Restore must be issued. Each of these three
commands take two clock cycles to become effective. The Restore command loads the stored
location of the FIFO’s write pointer, thus deleting the so far written frame. Accordingly, the
FIFO’s fill indicators are set appropriately. The fill indicators show how many words can be
written into the FIFO.

Although, the specification of the Read-FIFO shows that it is possible to assert MARK two cycles
before the first word of a frame is written to the FIFO, and thus activating the Packet-Mode, this
results in a failure of the FIFO’s Packet-Mode operation. The MARK command succeeds, but
the Restore command of the FIFO to discard a frame does not. However, if MARK is asserted
right from the reset state of the whole system, thus saving the write-pointer in every cycle the
FIFO is not demanded to store a new frame, the faulty behavior is cleared out and the FIFO
operates as expected. Nevertheless, MARK must be asserted again after a frame has been written
to, or discarded from the Read-FIFO to let it operate correctly. This is shown in Figure 4.4(a)
and Figure 4.4(b).

STATE_NXT DUMMY WAIT1 WAIT2 DATA WSIZE DUMMY

STATE DUMMY WAIT1 WAIT2 DATA WSIZE DUMMY

MARK

SOF_N

EOF_N

(a) MARK assertion according to specification

STATE_NXT DUMMY WAIT1 WAIT2 DATA WSIZE DUMMY

STATE DUMMY WAIT1 WAIT2 DATA WSIZE DUMMY

MARK

SOF_N

EOF_N

(b) MARK assertion required to obtain specified behavior

Figure 4.4: MARK assertions of Read-FIFO supporting packet-mode

In Figure 4.4(a) the signal assertion which should lead to the behavior as described in the speci-
fication of the Read-FIFO in packet mode can be seen. However, as mentioned above, the restore
process of the FIFO’s write pointer does not succeed if the FIFO is controlled that way. In Fig-
ure 4.4(b) the appropriate assertion of MARK leading to the correct behavior is shown. This is
obviously a bug in the FIFO implementation. Moreover, the following signals which can be seen
in both figures, are necessary to be explained:

SOF N/EOF N These signals origin from the Local Link Interface described in Section 3.6.2.
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They are used to indicate the beginning and the end of a frame write sequence.

STATE/STATE NXT The signals STATE and STATE NXT indicate the actual state and
the next state to be taken in the Read-FIFO controlling state-machine. The state machine
consists of the states DUMMY, SOF S, WAIT1, WAIT2, DATA, and WSIZE. The dummy
state waits until the signal SOF N is set to low, thus starting a frame write cycle. The two
wait states postpone the write operation of the first word written to the FIFO by two cycles
to let the write pointer save operation take effect. The data state copies the remaining
words of the frame. Eventually, the WSIZE state stores the amount of written octets in a
FIFO containing only the size information of received frames.

Moreover, the Register service is used by the NIC-Wrapper. This service provides an efficient
way to directly implement PLB-IPIF accessible configuration and data registers to an IP-Core.
The ISE design tool generates an example which shows how the byte-wise addressable 32-bit
registers can be accessed. In the case of the NIC-Wrapper the register service belongs to the RTP-
Engine. It consists of 17 32-bit wide registers providing a configuration and feedback interface
to the RTP-Engine. However, the first register is dedicated to the GPNIF as well. It serves as a
common IP-Core configuration and status register, thus being the third part of the NIC-Wrapper’s
interface. The second register concerns the GPNIF only. For a more detailed description see
Appendix A.

The implementation of the RTP-Engine’s interface results in a total cost of 16 ∗ 4 = 64 octets.
In comparison to the estimated costs of 53 octets presented in Section 3.6.1. The reason for the
cost increase of about 20% is that:

• Three octets are unused, due to word alignment at the beginning of the IP-header section
of the RTP-Engine interface.

• Another four octets are used by the SSRC RX register to store the Filter’s configuration
data.

• The remaining four octets are occupied by the common configuration register.

Furthermore, another four octets are occupied by the register RTPE RX SZR, which is associated
with the GPNIF.

So far the single components of the NIC-Wrapper’s interface have been described. In Figure 4.5
the architecture of the NIC-Wrapper is shown.

The boxes drawn in a striped shape are implemented from scratch, where the white ones were
provided by either Xilinx or Brunmayr [BHS09]. There exist light gray surroundings of certain
components, showing that they belong to the GPNIF-transmitter, or receiver side of the MAC
hard-core. The abbreviations RD-FIFO and WR-FIFO symbolize the Read- and Write-FIFOs
provided by the IPIF. Moreover, the RD-FIFO is operated in packet-mode, as described above.
It is shown that the Local Link Interface is deployed between the MAC hard macro, the Filter,
the Arbiter, Local Link Interface (LLI) to FIFO interfaces, and the RTP-Engine.

Considering the LLI between the Filter, the LLI to FIFO interface, and the RTP-Engine it must
be noted that the interconnection differs significantly from the one described in Section 3.5.2.
Usually, a source-ready-out signal of a sender is connected to a source-ready-in signal of a receiver.
The same is true for destination-ready signals. However, in the case of the interconnection of
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Figure 4.5: NIC-Wrapper IP-Core

Filter, the LLI to FIFO interface, and the RTP-Engine the following interconnection is done to
guarantee a correct operation of the LLI. This is needed because the MAC hard macro feeds the
Filter and the LLI to FIFO interface simultaneously. In the case the Filter detects a RTP-packet
associated with an ongoing session it sends a discard signal to the LLI to FIFO interface. This
causes the frame to be deleted from the Read-FIFO. Therefore, the following adaption to the
interconnection is required:

A disjunction is performed by the destination-ready-out from the LLI to FIFO interface and
destination-ready-out from the RTP-Engine. The results of this equation is fed into the source-
ready-in port of the MAC hard macro interface. Moreover, the result is used in a disjunction with
the source-ready-in signal of the LLI to FIFO interface. This equation’s result is connected to
the source-ready-in signal of the RTP-Engine. The remaining signals are connected in the same
way as described in Section 3.5.2.

4.2.2 Software Interface Implementation

This section will show, how the software related interface is implemented. Since Linux is used
as an operating system kernel, a corresponding kernel module has to be written to interface
with the IP-Core. A kernel module consists of a number of functions possibly interfacing with
another module, or a user space program through system calls. To make the development of a
kernel module more convenient several types of subsystems exist in the kernel, where a module
can be associated with. These subsystems provide interfaces to several system calls, like open(),
close(), read(), socket(), ioctl(), or write(). Some of them, like socket() are dedicated to a special
subsystem, others, like open(), can be used more generally. [JC05, p.3ff].

However, a kernel module is developed for a specific hardware component, the question of the
suitable subsystem arises. In the case of the NIC-Wrapper it may be possible to divide the
module into two distinct modules featuring two subsystems, because of the two distinct interfaces
subsumed by the IP-Core. On the one hand, it is quite clear that the networking subsystem will
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be used to implement the GPNIF interface driver, because it directly interfaces with the Ethernet
MAC hard macro. On the other hand, there are two possibilities to implement the RTP-Engine
interfacing modules, namely a Character Device Driver, or a network driver related Input/Output
Control (IOCTL) implementation.

A kernel module associated with the network subsystem uses the socket interface to communicate
with upper layers of the Linux network stack. In the case of the Base-System the interface
communicating with the NIC-Wrapper is bound to the PLB bus. In order to interact with the
peripheral, the functions out be() and in be() are used. in be() reads a 32-bit wide word from
a peripheral, and out be() writes it to the IP-Core, respectively. These functions are actually
implemented as macros and are provided by the Xilinx patched kernel.

The transmission of an Ethernet-frame using the NIC-Wrapper works in the following way,
assuming that the device driver is already loaded and associated with the device: First it is checked
whether the MAC hard-core is ready to transmit a new frame by reading the RTPE CONFR
register. If the MAC is not ready, the transmission of the frame is postponed by telling the kernel
that the device is busy. If the MAC is ready to send, the next frame is written to the Write-FIFO
in a word aligned way, thus respecting the 32-bit word boundary. Finally, the amount of octets to
be sent is stored to the high half-word of the RTPE CONFR register, thus triggering the GPNIF
that the frame can be sent.

Considering the reception of a received Ethernet-frame the driver has to perform the following
steps: When a frame is received by the MAC and is completely written to the Read-FIFO
including its size information an, interrupt is raised. The interrupt service routine reads the
amount of received octets in a 32-bit word aligned way and stores the actually retrieved amount
of octets in a socket buffer. The size information is read from the register RTPE RX SZR. The
interrupt is triggered by the instant that the RTPE RX SZR register is not empty. Furthermore,
the socket buffer is checked for holding an RTP-packet with a not known SSRC. If this is the
case the Synchronisation Source (SSRC) is extracted and written to the RTPE RTP SSRC RX
register to configure the Filter appropriately. If the received packet is not an Real-time Transport
Protocol (RTP) packet is sent upstream to the Linux kernel, thus concluding the reception of a
packet.

Considering the kernel driver of the RTP-Engine configuration interface, two possible solutions
may be implemented as mentioned above. On the one hand, a character device driver providing
a byte-wise accessible interface to a device may be used to implement the interface. On the other
hand, the IOCTL system call utilising the socket interface may be used to perform the required
actions. The advantage of implementing the RTP-Engine’s interface as a character device driver
is that the RTP-Engine can be controlled bypassing the GPNIF kernel module. This can be useful
when debugging the RTP-Engine without utilising the GPNIF. However, a major disadvantage is
that two device drivers would try to access a single peripheral device, thus the need to synchronize
two kernel modules competing for one resource arises.

This rather complex and not efficient solution can be avoided if the IOCTL is used to let user
space applications interface with the RTP-Engine interface. IOCTL provides a generic interface
to bypass the regular Input/Output (IO) functions of a driver. It does so by using the drivers
subsystem. Therefore, an IOCTL request on a character device driver uses the character device
driver subs-system interface and a IOCTL request on a network device uses the socket interface.
In the case of the RTP-Engine interface, the socket interface is used. However, in order to let
a module identify an IOCTL request four command types have been defined. A command type
must be unique throughout the kernel, therefore it has to be registered at the kernel maintainer’s
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side [JC05, p.535ff]. However, in order to let driver developers test new IOCTL commands there
exist 16 user specific command types called SIOCDEVPRIVATE + 0x0 to SIOCDEVPRIVATE
+ 0xf. In each driver implementing the IOCTL system call a central multiplexing function exists.
In this function, the appropriate commands are filtered and the required actions are taken. The
data exchanged by the kernel module and the user space application can be exchanged by a C
structure. Upon each request data can be written to the driver and read back. The NIC-Wrapper
driver provides four commands with the following functionality:

SIOCRTPSETCFG This command writes a new RTP session configuration to the RTP-Engine
interface. The supplied configuration vector consists of the complete Ethernet, IP, UPD,
RTP header. The header information is generated at the user space application. Further-
more, a flag provided by the structure handed over to the module indicates whether the
RTP-Engine shall be started or stopped. No data is read back by SIOCRTPSETCFG.

SIOCRTPGETDAT The purpose of this command is to retrieve statistic and status informa-
tion from the RTP-Engine. The gained data are the last sequence number of the sender,
the last received sequence number of a remote peer, the actual jitter value, as well as the
amount of octets sent so far by this RTP session.

SIOCRTPIDENT The only purpose of this command is to indicate whether the IOCTL is
working correctly with the NIC-Wrapper kernel driver or not.

SIOCRTPSSRC This command configures the SSRC register of the Filter.

The device driver’s architecture can be seen in Figure 4.6.

Figure 4.6: NIC-Wrapper Device Driver Architecture

It is split into two parts. The IOCTL related functions controlling the RTP-Engine and the
network socket interface related functions controlling the GPNIF. However, both function blocks
access the common configuration register, thus the need for synchronization arises. This is done
with spinlocks. A spinlock is similar to a semaphore, except that it cannot suspend a process
explicitly. Moreover, it performs busy-waiting until the lock is released. Thus, it should only be
used if the amount of time spent in the spinlock has a tight upper-bound [JC05, p.116ff].
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4.3 Softphone Implementation

This Section introduces the user space application controlling the RTP-Engine, thus being re-
sponsible for setting up, executing, and tearing down a Voice over Internet Protocol (VOIP) call.
This application is represented by a softphone. A softphone subsumes all components necessary
to operate a VOIP call. In this case, the softphone has to provide the following components:

• A user interface transforming a users request into a call establishment, or call tear down.

• A signaling protocol stack responsible for setting up a call.

• A call quality feedback protocol stack providing feedback on the health state of a VOIP
session.

This section consists of four parts. In the first Subsection 4.3.1, several available signaling protocol
stacks are evaluated. Subsequently, the softphone’s architecture is described in Subsection 4.3.2.
Afterwards, the implementation of the signaling protocol related software component is described
in Subsection 4.3.3. Finally, the realisation of the call quality feedback protocol Real-time Control
Protocol (RTCP) is introduced in Subsection 4.3.4.

4.3.1 Choosing a Signaling Protocol Stack

In order to implement the softphone an appropriate signaling protocol to process call adminis-
tration has to be chosen. Therefore, the following open source stacks shown in the Table 4.1 and
Table 4.2 have been evaluated based on the criteria presented subsequently:

• Availability of several open source softphones serving as test peers for the prototype imple-
mentation.

• The stack’s build system should have cross-compilation targets, in order to integrate it into
Buildroot’s build system.

• The stack’s build system should feature Autotools [46, 45], thus avoiding complex adaptions
of its build system to integrate it into Buildroot. Autotools is a software package providing
mechanisms to create makefiles and configure scripts automatically using a configuraton
file. It is well suited for software projects intended to run on several platforms.

The field Architectures in Table 4.1 and 4.2 indicate the target architectures for which the
stack is available. The field Autotools shows if the stack’s build system supports Autoconf and
Automake, or just exists as plain Makefile project. Finally, the field Description lists additional
information about this stack implementation.

The first open source signaling stacks are associated with the H.323 protocol stack, presented
in Table 4.1. Both implementations are available to x86 compatible processor only. Moreover,
only ooH323c [66] supports the Autotools software package. The project H.323plus [58] offers
also a media stack. The open source softphone solutions Ekiga [51], Gnomemeeting [57], and
FreeSwitch [56] support H.323.
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Table 4.1: H.323 Opensource Stacks

Project Name Architecture Autotools Description

ooH323c x86 No Written in a objective style of C. Implements
the signaling part of a H.323 stack only.

H.323plus x86 Yes Written in C++. Implements a complete media
stack, including RTP/RTCP and several voice
codecs.

The second variety of protocol stacks presented, implement the Session Initiation Protocol (SIP)
protocol. Both SIP stack implementations are available for the used target platform. Moreover,
the following softphones implement the SIP as a signaling protocol: Ekiga [51], Kphone [59],
Xlite [81], and Linphone [62]. Furthermore, the eXosip [60] project supports the Autotools
package in contrast to PJLIB [69] providing support for Autoconf only.

Table 4.2: SIP Opensource Stacks

Project Name Architecture Autotools Description

eXosip x86,arm,ppc32 Yes Written in C. Is a wrapper extension to the
osip library, also available from http://www.

antisip.com/as/. Provides a SIP stack only.

PJSIP x86,arm,ppc32 Partially Written in C, with a focus on embedded devices.
Provides a complete media stack including RT-
P/RTCP and several voice codecs.

Considering the signaling protocol Jingle, only one library implementing Jingle is considered here.
The project is called libjingle [61] and provides the signaling protocol stack only. Furthermore it is
written in C++ and available to x86 compatible platforms only. However, it is not licensed under
the GPL, but it’s source code may be used free of charge for commercial and non-commercial
projects.

Based on the set up decision criteria for choosing a signaling protocol implementation, the SIP
stack library eXosip is used. It fulfills all requirements and implements a signaling protocol stack
only, thus nothing must be changed in the build system of the project, or the project itself to
use the needed parts of the library. However, eXosip is implemented as a wrapper of the osip2
project, hiding several implementation issues. Nevertheless, osip2 is fulfilling the requirements
as well.

4.3.2 Softphone Architecture and Functional Description

The softphone itself is implemented in plain C. It is built using the Autotools package. It consists
of the Autoconf and the Automake package. These two software components provide functions
to generate configure, and build scripts automatically. Since Buildroot features a corresponding
hook in its build system, using Autotools was the first choice to build the softphone.
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Basically, the softphone consists of two parts. One is responsible to interact with the user, and
the other one communicates with the VOIP stack. Two implementation strategies have been eval-
uated. On the one hand, the two parts of the softphone have been realised in two distinct threads
using the pthread library provided by most Linux distributions, including Busybox. Pthread is
the Portable Operating System Interface (for Unix) (POSIX) threading library. It is added to
Linux, because the kernel has initially no notion about user-level threads [DPB05, p.72ff]. The
two threads were meant to communicate over a shared memory synchronized by spinlocks. This
synchronization technique was chosen over semaphores because the only information exchanged
by the threads would be command and status codes, as well as strings of short length. Moreover,
the user input/output thread would only need to access to the critical section rarely and short.
Thus, spinlocks would be the synchronization method of choice, because of their lower adminis-
trative overhead for the operating system. On the other hand, both parts were implemented in
a single threaded application. Eventually, the single threaded implementation is adopted in the
final release of the softphone prototype because of the following reasons:

• The Linux kernel version running on the Power-PC processor supports only an old imple-
mentation of the pthread library. Nevertheless, it is compatible with the new one used on
the personal computer were the softphone prototype was implemented first.

• The applications response time rose significantly when running the softphone on the target
platform.

• The eXosip library lost events when using the two threaded implementation.

The whole application is written in a non-blocking way, thus avoiding any busy-waiting state-
ments. The softphone has the following structure as shown in Figure 4.7.

Figure 4.7: Softphone component interaction

It is presenting the components described in Section 4.3.2 and 4.3.3 interact with each other,
thus omitting the RTCP stack. It can be seen that a common data structure storing messages
and strings which are exchanged by the user IO and the stack IO functions is checked for new
input from the user IO functions first. In the next step new user IO requests are parsed and
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stored in the common structure. Subsequently, messages generated by the stack IO components
are retrieved from the common data structure and are presented to the user. Afterwards, new
stack events are read from the eXosip stack. These events are processed in a case statement
controlling the further operations of the SIP stack, like setting up, executing and tearing down
calls, and the generation of messages for the user.

Upon application start an initial configuration vector supplied by a command line argument
consisting of the following elements is handed to a worker function implementing the softphone’s
features:

• An IPv4 address the application is listening on. It will be used as a configuration parameter
of the RTP-Engine’s source address register. Moreover, it will be used to retrieve the
appropriate MAC address associated with this IPv4 address.

• The Universal Datagram Protocol (UDP) port number the SIP stack shall listen on.

• The UDP port number the RTP-Engine’s Filter will be configured to listen on.

• A string representing the name of the softphone sent to a callee via SIP.

After this information is handed over to the worker function, the following tasks are performed
to prepare the phone for a VOIP call: First of all, the SIP stack is initialized and a corresponding
socket is opened to listen on the appropriate port provided by the configuration vector. If this
does not succeed, the program terminates with an error message. If it does, the standard gate-
way’s IPv4 address is extracted from the Base-System’s routing table if available. Furthermore,
the gateway’s MAC address is retrieved from the Address Resolution Protocol (ARP) table, if
available. Subsequently, the local MAC address of the first Ethernet device is retrieved from the
ARP table.

The information just gained is needed to configure the RTP-Engine appropriately, because of the
following three cases:

Case 1: Two communication partners are located within the same subnet and no registrar is
used. This is the simplest case, thus only the local and the remote MAC address are needed
to configure the RTP-Engine. The necessary remote MAC address can be read from the
ARP table after a call has been established by the SIP stack (see Figuref 4.8).

Figure 4.8: Call partner/SIP Proxy constellation: Case 1
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Case 2: The two communication partners may use a SIP-proxy, but are located in distinct sub-
nets. Therefore, the MAC address from the standard gateway is needed as a destination
MAC address for the RTP-Engine’s configuration vector. The peers appropriate IPv4 ad-
dress can be taken from the messages exchanged by the SIP stack (see Figuref 4.9).

Figure 4.9: Call partner/SIP Proxy constellation: Case 2

Case 3: In this scenario, two communication partners set up a call using a SIP-proxy, but are
located in the same subnet. Furthermore, it is assumed that the two peers do not know
about each other in the ARP table. Therefore, the last SIP ACK message exchanged
during a call establishment has to be awaited until the call partner’s MAC addressed can
be retrieved from the ARP table. The last ACK message is needed because it is the first
packet exchanged peer-to-peer when using a SIP-proxy to establish a call (see Figuref 4.10).
See Chapter 2.1.

Figure 4.10: Call partner/SIP Proxy constellation: Case 3

Afterwards, the main loop is entered and the user inputs are processed. This is done in a non-
blocking way using the select()9 system call watching the STDIN file pointer. Subsequently,
the user input is fed into the SIP stack. If a new call has been established, the RTP-Engine
configuration vector is assembled. Therefore, the following information is provided to a structure
handed over to the RTP-Engine with the ioctl() system call:

• A complete MAC header containing the source and destination MAC addresses from the
ARP table.

9Select provides a mechanism to watch a file-pointer and perform certain tasks if its ”ready”, thus has new data
available [DPB05, p.427ff].
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• A complete IPv4 header containing the source and destination IPv4 addresses from the
Session Description Protocol (SDP) message and the softphone’s configuration vector from
the command-line.

• A complete UDP header containing the source and destination address of the RTP session
gained from the SDP message and the softphone’s configuration vector from the command
line. It is sufficient to use its own applications RTP-listen port as source port according to
[87].

• A complete RTP header containing a random generated SSRC, initial time stamp, and
sequence number offset, taken from /dev/urandom10, which is used to generate random
numbers.

If the user issues a call tear down, the RTP-Engine is stopped via the ioctl() system call again.
Furthermore, if the softphone is to be shut down, the SIP stack is closed down again and the
main loop is left terminating the program. If a softphone termination is requested although a
call is still active it is closed first, the RTP-Engine is stopped, and the program is closed cleanly
after stopping the SIP stack.

4.3.3 SIP Implementation

The implementation of the SIP stack related part of the softphone bases on the eXosip library. It
provides a front-end to the osip2 SIP stack library. The front-end exports the incidences inside
the SIP stack in the form of events. Each event provides access to the data associated with
it. This may be a whole SDP packet. Furthermore, several utility functions exist to access the
content of an event in a convenient way.

The retrieval of events is done by a single function, get event wait(), operating in a non-blocking
way, thus utilising the select() system call. However, the implementation of eXosip requires that
a function calling get event wait() has to wait at least a microsecond for a newly arriving event,
thus introducing a small delay in the application. If the parameter responsible for the time-out
is set to zero, the stack does not work correctly anymore. Each event received is processed by
a switch/case statement. Every case in this statement represents a SIP message code, thus an
appropriate reaction to a call partner’s response is possible.

Moreover, several utility functions are used to generate and adapt SDP messages. They provide
functions to access the contents of an SDP message by addressing the Identifier (ID) of a corre-
sponding eXosip event. Furthermore, the functions send invite, accept invite, and get call param
are written to encapsulate these utility functions.

The SIP stack and the user function communicate with each other by exchanging messages over
a common structure. The structure consists of the following fields:

uac cmd The uac cmd is a character sent from the user input to a function interpreting it as a
command to the SIP stack. This can be a call establishment, acceptance or decline com-
mand. Moreover, the command can also be interpreted as a softphone shut-down command.

10Unfortunately, dev/urandom generates pseudo random numbers only [DPB05, p.427ff]. However, the ML405
lacks a true random number generator device.
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caller id This is the caller-ID received from the SIP stack sent to the user IO function to display
to the user.

address This is the SIP-URI sent from the user IO function to the SIP stack to establish a call.

uas event This event is used to exchange softphone event codes and commands between the
user function and the SIP stack. This includes command codes sent from the user function
to the SIP stack, as well as status codes, indicating that this action is not possible because
there is no call currently taking place.

4.3.4 RTCP Implementation

This section presents the implementation of the RTCP stack. Although there exist several open
source media stack implementations, none of them was suitable to be adapted to the special needs
of the implementation of a VOIP stack in an FPGA. The main reason is that most available stacks
implement RTP and RTCP in a very tight way, so that a detachment of both is hard to achieve.
This is the case considering the ccRTP [49] stack, written in C++, as well as the oRTP [68] stack.
An example implementing the RTP and RTCP somewhat separately, therefore making their
separation more comfortable is the PJMEDIA stack. However, it does only support Autoconf,
and comes with a two layer design. The lower layer is designed to be hardware dependent, thus
providing a generic wrapper to the upper one, implementing the RTP/RTCP stack. However,
this layer makes it necessary to either adapt the RTP/RTCP stack significantly, or to uncouple
the RTCP/RTP layer from the hardware dependent one.

Evaluating several RTP/RTCP implementations showed that both approaches require severe and
error prone changes to the software package. Thus, the RTCP stack is implemented from scratch
using RFC-3550. Usually, an RTCP stack retrieves all data necessary to build reports and to
dimension the jitter buffer by accessing certain data structures in software, provided by the RTP
stack. Since the RTP stack is implemented in hardware by the RTP-Engine, an appropriate
configuration interface has been proposed in Section 3.7. The interface design concluded that
an implementation of certain RTCP specific functions, like jitter calculation, amount of received,
amount of transmitted packages and the amount of sent octets, would be best suited to be realized
in hardware. This leads to the need of an appropriately implemented interface providing access
to the RTP-Engines configuration register. The remainder of this Section gives an overview on
the most important functions implementing the key features of the RTCP stack.

The RTCP implementation is split up into two parts. One part realises certain utility functions,
like providing wrappers for the socket interface, time conversion functions, software timer con-
figuration functions, and IOCTL interfacing functions. The other part implements the actual
functionality of the RTCP stack. The interface of the stack consists of three functions:

start rtcp() This function is called when the call parameters are exchanged by the SIP stack
and the RTP-Engine has been started. It takes all necessary parameters including sampling
clock frequency, RTP packet payload size, and the initial RTCP bandwidth value. The
passed destination and source ports should be the RTP related destination and source
ports increased by one.

process rtcp packet() The process RTCP packet function must be located in the main loop
of a program using the stack. It processes all RTCP related tasks including reception and
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transmission of RTCP packets as well as rescheduling timeouts. The function is implemented
in a non-blocking way, using the pselect() system call where necessary. The pselect() system
call works similar to the select() system call, except that it takes care of the fact that a
watched function my be interrupted by a signal handler routine [DPB05, p.318ff].

stop rtcp() This function must be called if it is decided that an ongoing VOIP call has to be
terminated. It frees any resources and closes the RTCP related socket connections.

Considering the RTCP functional implementation all basic algorithms provided by Schulzrinne
et al.[87] have been used. They include algorithms to calculate the next transmission interval
of an RTCP packet as well as parsing and mangling received RTCP packets. Nevertheless, the
structure of the stack had to be designed from the ground up resulting in the following behavior
of the stack. After the function start rtcp() has been called, the next occurrence of the software
timer interrupt is scheduled in start rtcp(). However, the timer is not yet started, because the
following initialisations have to be made:

• Initialising the sessions SSRC table, where all known SSRCs of an RTP session are listed
until they time out.

• Initialising the session structure with the parameters retrieved upon the call of start rtcp().

• Setting up the socket interfaces to send and receive RTCP packets. Furthermore, a socket
to receive RTP packets not detected by the Filter is opened for testing purpose.

After this has been done, the software timer is started. However, the signal handler function
called upon a signal11 raised does only set a flag, indicating that the timer is expired. The real
calculation process is performed by the process rtcp packet() function.

When process rtcp packet() is entered it is checked if the RTCP has already been started by
checking a state variable. If the stack is already operating the flag set by the software interrupt
service routine is tested. If it is set, the function OnExpire() is called after the current time
stamp has been retrieved from the monotonic clock. OnExpire() determines if a RTCP report
shall be sent, or if it has to be rescheduled. This function is taken from the RTCP reference
implementation from RFC-3550. However, the functions called inside OnExpire() to assemble
and send RTCP reports are written from scratch.

After reports have been sent or postponed, the timeouts of SSRCs in the SSRC-table are cal-
culated. Furthermore, it is checked if a new RTP packet has arrived, for debugging reasons.
Afterwards, a newly received RTCP packet is parsed and its statistic information are retrieved
for further processing by the function onReceive(). The reception of RTP and RTCP packets is
done in a non-blocking way. Eventually, the function is left returning 0 if no error occurred and
−1 if an error occurred. Errors are defined by an unsuccessful return of the packet reception
functions, although pselect() issued that there was new data available. This includes a detailed
description of functions implementing the building and transmission of report packets, which is
a central implementation detail since it requires that the RTCP stack accesses the RTP-Engine’s
configuration interface. The implementation of the report generation procedure is shown in Fig-
ure 4.11.

11Signals are sometimes called software interrupts [DPB05, p.318ff].
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Figure 4.11: Generate RTCP reports by interfacing the RTP-Engine

Considering the function build report() called within send report() in the function OnExpire(),
it must be noted that it realises the interface to the RTP-Engine via the IOCTL interface. The
retrieval of the RTCP report relevant data is retrieved in the function get stats(). Inside get stats()
ioctl() is called retrieving the needed data using a structure containing the following fields:

last seq tx An unsigned 16-bit wide integer variable containing the sequence number sent in
the last RTP-packet.

last seq rx An unsigned 16-bit wide integer variable containing the last received RTP sequence
number.

jitter The jitter value calculated by the RTP-Engine is stored in an unsigned 32-bit wide integer
variable.

last ssrc This field represents the last SSRC used to configure the RTP-Engine’s Filter.

sent octets Reflects the amount of sent octets by the current RTP session. it is stored in an
unsigned 32-bit integer variable.

The retrieved statistic data is used to calculate the remaining information needed for a RTCP
report by build report. After this function returns, the report is sent.

When an RTP session is closed, an RTCP bye packet has to be sent. This request is made
by calling stop rtcp(). This function sets a flag which is evaluated in process rtcp packet(), thus
calling send bye() and afterward teardown rtcp() to stop the timer and release the socket interface
resources. send bye() transmits a bye packet letting a callee know that the session is over,
immediately.
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4.4 Implementation Summary

First, the Base-System implementation consisting of a System on Chip (SOC) and the corre-
sponding software has been described. The used components were chosen evaluating several
hardware and software options leading to a SOC utilising a Power-PC 405 hard-core and an
embedded Linux distribution as operating system. Furthermore, the NIC-Wrapper interface has
been described from a hardware and software point of view. Two versions of implementing the
kernel device driver have been evaluated, where the IOCTL based solution was chosen over the
character-device driver implementation. Finally, the realization of the softphone has been de-
scribed. First, the process of choosing an appropriate library implementing the signaling protocol
stack, leading to the use of eXosip was documented. Then an overview on the RTCP stack
implementation, with respect to the functions responsible for building reports was given.
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The last Chapters introduced how to design and implement a VOIP stack in an FPGA, utilis-
ing a pre-existing softcore performing the signal-process related tasks of a VOIP session. The
purpose of this Chapter is to present the results provided by the prototype implementation. In
Section 5.1 the synthesis and partition place and route results are presented amongst a few steps
to reduce the design size further. The subsequent two sections 5.2 and 5.3 present commented
simulation results regarding the Read-First In First Out (FIFO) in packet-mode and the RTP-
Engine/GPNIF arbitration. Section 5.4 gives an overview on the setup used to verify Voice over
Internet Protocol (VOIP) stack implementation on the Virtex4 FPGA. Afterwards, Section 5.5
shows an explained trace of a SIP- and a RTP/RTCP-session. Eventually, the results are summed
up in Section 5.6.

5.1 Synthesis Results

As mentioned in Section 4.1.1, the ISE design suite together with Embedded Development
Kit (EDK) from Xilinx was used to design and build the Base-System including the NIC-Wrapper.
This section shows several implementation results using ISE and EDK in version 10.1. An
overview on the final build results can be seen in Table 5.1. It shows the FPGAs logic utili-
sation level when building the Base-System including the NIC-Wrapper. As it can be seen the
design occupies almost the whole Virtex4 Field Programmable Gate Array (FPGA) considering
logic slices and more than a half of the available Block-RAM. Nevertheless, compared to the used
logic slices only 73% of the available 4-Input LUTs are used. However, this already includes the
following optimizations:

Write-FIFO The packet-mode support of the Write-FIFO as well as its vacancy calculation
support were abandoned. The Write-FIFO does not need the packet-mode which can be
used to retransmit a frame if the Ethernet Media Access Control (MAC) encounters an
already used bus when trying to send, resulting in a back-off. However, the FIFOs included
in the Ethernet MAC interface take care of these issues. Therefore, the packet-mode can be
omitted. The vacancy calculation of the Write-FIFO exports a counter to the IPIF, showing
the amount of words able to be written to the FIFO. It can be abandoned as well because
the NIC-Wrapper design allows only one frame written to the Write-FIFO at a time.

Read-FIFO In the case of the Read-FIFO the vacancy calculation is omitted because the amount
of octets written to the Read-FIFO is provided by a FIFO in the GPNIF. This FIFO is
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used in favor of the vacancy calculation because vacancy reflects the amount of stored words
only.

Burst Support Burst support is only suitable if all devices on the bus support it. However,
the UART, the Interrupt controller, the Electrically Erasable Programmable Read-Only
Memory (EEPROM) interface as well as the CF-Disk controller do not support this features,
thus it can be omitted [102].

Memory Controller This device provides read and write buffers to increase its performance.
Initially, these buffers were configured to be implemented as LUT-RAM. However, because
of the amount of allocated resources the configuration was switched to a BRAM based
implementation.

Table 5.1: Overview on the Synthesis Results of the Base-System including the NIC-Wrapper

Logic Utilisation Used Available Utilization in %

Registers in Slices 9.309 17.088 54

Occupied Slices 8.542 8.544 99

Used 4 Input LUTs 12.518 17.088 73

Used Block-RAM 43 68 63

Used PPC405 1 1 100

Used JTAGPPCs 1 1 100

Used EMACs 1 2 50

Used IDELAYCTRLs 2 12 16

Table 5.2: Module specific Resource Allocation: Base-System & NIC-Wrapper

Entity Name Slices LUTs Registers LUT/BRAM

Base-System Total 10.6012 12.518 9.303 423/43

DDRAM Controller 2.178 1.923 2.491 156/7

EEPROM Controller 446 518 373 18/0

UART Controller 407 562 356 19/0

CF-Disk Controller 166 136 199 0/0

PPC405 Wrapper 396 382 370 0/0

PLB-Controller 250 317 91 0/0

NIC-Wrapper 5.322 8.014 4.970 219/18

Interrupt Controller 134 129 139 0/0

Beside the obligatory use of the EMAC and the PPC405 processor, a JTAG controller for de-
bugging purposes (see Section 3.3) and about 16% of the available IDELAYCTRL elements are
used. The IDELAYCTRL elements are required to delay the data line in comparison to the clock
signal of the EMAC core when receiving an Ethernet frame from the physical, in order to assure
certain timing constraints in this case [110].

In order to get a better overview on the resource usage per module, Table 5.2 and Table 5.3 show
the resource allocations of a set of selected modules included in the Base-System and the NIC-
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Wrapper. Moreover, the modules IPIF, GPNIF and RTP-Engine interface subsume the following
sub-modules resulting in the resource allocations seen in Table 5.3.

GPNIF The GPNIF includes the Read and Write FIFO, Serialiser, Deserialiser, FIFO-to-LL
interface, LL-to-FIFO interface, the common configuration and status register, and the
FIFO responsible for storing the size of a received frame.

RTP-Engine Interface The RTP-Engine consists of the RTP-Engine interface, the Arbiter,
the Filter, and the RTP-Engine

IPIF The IPIF subsumes the PLB-to-IPIF bridge, the Interrupt Source Controller, and the
address decoder unit including a byte steering block to support byte-addressable 32-bit
registers [102].

In order to meet the timing constraint of operating the system with 100 MHz the following
modules had to be removed.

IPv6 Filter The IPv6 filter was a part of the Filter module. It has been removed to save FPGA
resources, because already 99% of the slices were occupied by the design. Moreover, IPv6
is not supported by the RTP-Engine configuration interface and the softphone.

Clock Recovery The clock recovery module is located inside the RTP-Engine. It is used to
reduce network induced jitter, which is introduced by a source and a receiver clock not
being fully synchronous [RNH99]. If this module is added to the system, the design will
still fit inside the FPGA. However, the timing constraint of operating the system at at least
100 MHz can not be fulfilled anymore. Thus, this module is omitted.

Jitter Calculation The jitter calculation module is responsible for calculating the jitter value
in hardware. If this module is added to the system the design will still fit inside the FPGA.
However, the timing constraint of operating the system at least 100 MHz can not be fulfilled
anymore. Thus, this module is also omitted.

Although the modules responsible for jitter calculation and clock recovery are vital for productive
use of a VOIP stack, they can be omitted for the purpose of verifying the interface and the correct
behavior of the VOIP stack implementation in general.

The removed clock recovery module uses 151 slices, 218 LUTs ,105 registers and no BRAM or
LUT-RAM of the available FPGA resources. The omitted jitter calculation module uses 464
slices, 808 LUTs ,361 registers and no BRAM or LUT-RAM. In order to fit these modules in the
design 151 + 464 = 715 slices, 218 + 808 = 1.026 LUTs, and 105 + 361 = 466 registers would be
needed additionally. As mentioned above the whole design including all these components would
fit inside the Virtex4 FPGA. This will utilize 99% of the slices and > 80% of the available LUTs.
However, the timing requirement of operating the whole system at 100 MHz would not be fulfilled
because of partition place and route issues. It would be necessary to free at least 1.026 LUTs
and 466 register to integrate both components successfully. This could be achieved by removing
the EEPROM-controller and redesigning the RTP-Engine interface.

According to Table 5.2, removing the EEPROM-controller would free 518 LUTs and 373 registers.
As a consequence, the bootloader configuration data stored in the EEPROM would have to
be entered manually every time the development platform should start the Embedded Linux
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distribution. Thus, the removal of the EEPROM controller cannot be considered, as entering the
bootloader configuration manually is a tedious and error prone task. For further information on
the bootloader configuration, see Appendix B.

The RTP-Engine interface occupies 959 LUTs and 547 registers. Since the RTP-Engine interface
is completely implemented in registers, it can be redesigned to BRAM instead. Nevertheless,
the redesigned RTP-Engine interface would also require some registers and LUTs to implement
the BRAM based interface, thus resulting in a resource reduction of less than the required 1.026
LUTs. Therefore, the redesign of the RTP-Engine interface in the presented way would not be a
feasible approach, since the current RTP-Engine interface occupies 959 LUTs only.

Another approach to achieve the timing constraint would be the reduction of the required bus
clock frequency from 100 MHz to 66.6 MHz. A frequency of 66.6 MHz is the next valid bus
clock frequency, according to [109]. Moreover, a reduction of the processor clock frequency from
300 MHz to 200 MHz would be required. This results from the fact that the PowerPCs clock
frequency must have a 1 : 1, 2 : 1, 3 : 1 to 16 : 1 ratio compared to the bus clock frequency [109].
Thus, the next valid processor clock and bus clock frequency configuration would be 200 MHz for
the processor clock and 66.6 MHz for the bus clock respectively. This will result in the required
3 : 1 ratio. However, this will lead to the following problem as the RTP-Engine is statically
configured to send one RTP every 1.25 ms. In order to generate one RTP packet consisting of
10 octets every 1.25 ms, where each octet is sampled at a frequency of 8000 Hz, the RTP-Engine
is required to run at 100 MHz. Thus, the recalibration of the bus and processor clock frequency
cannot be considered. Therefore, an alternative would be to switch to a bigger FPGA providing
more resources.

Table 5.3: Module specific Resource Allocation: NIC-Wrapper

Entity Name Slices LUTs Registers LUT-RAM/BRAM

NIC-Wrapper 5.322 8.014 4.970 219/18

PLB-IPIF 261 942 272 32/0

ISC 16 20 8 0/0

PLB-Slave 245 922 264 32/0

General Purpose Network Interface (GPNIF) 531 517 326 64/8

FIFO-to-LLI 17 28 18 0/0

LLI-to-FIFO 41 58 20 0/0

32-8 Serialiser 2 3 2 0/0

8-32 Deserialiser 45 79 36 0/0

Write-FIFO 138 88 88 0/4

Read-FIFO 206 150 105 0/4

RX-Size FIFO 82 111 57 64/0

RTP-Engine Interface 497 959 547 0/0

Arbiter 26 43 2 0/0

RTP-Engine 3614 3.405 5.796 112/6

Ethernet MAC-Interface 323 345 418 11/4
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5.2 Read-FIFO Packet-Mode Simulation

This section presents the simulation results of a functional key-feature of the GPNIF. Since the
Read-FIFO module provided by Xilinx does not follow its own specification, and is therefore
considered erroneous it is examined here. All simulation related screen-shots were taken from the
tool QuestaSim 6.5 e1 offered by Mentor Graphics [71]. In order to be printed nicely the coloured
screen-shots were inverted, gray-scaled and lightened up. It consists of two parts split up into
two simulations each. Figure 5.3 shows the signal conditions necessary to start the reception
of an Ethernet frame. Moreover, Figure 5.4 reflects the signal conditions required to finish its
reception. The signals seen have the following meaning:

bus clk Processor Local Bus (PLB) bus clock running at 100 MHz. It provides the main clock to
the NIC-Wrapper. All clocks used inside Intellectual Property Core (IP-Core) are derived
from it.

ll din An 8-bit wide bus transporting the data-octets of a received frame.

state r This signal refers to the output of a register and indicates the actual inner state of the
LL-to-FIFO interface as described in Section 4.2.1.

sof n, eof n These two signals are representing the low-active start and end of frame indicators
of the LL-Interface. If this signal is low, it indicates the start of a frame, or the end of a
frame, respectively.

trans state Reflects a register holding the actual inner state of the Read-FIFO. Its possible
states are normal op, mark, update, restore, release, and packet op.

mark If this signal is set to high, the actual position of the Read-FIFO’s write pointer is saved
in a register. The trans state advances from normal op or packet op to mark and update
and finally to packet op state.

mark address Mark address is the register storing the address issued on a mark request.

restore Upon assertion of the restore signal the write pointer address stored in mark address
register is written back to the write address register. This takes two cycles as well.

release If this signal is issued, the Read-FIFO is put back into normal op again.

wrreq Upon assertion of this signal a word is requested to be written to the Read-FIFO.

write address It is reflecting the actual address the next word is written to.

wr addr This signals has the same meaning as write address.

As it can be seen, the mark signal (1) (see Figure 5.3) is asserted until sof n (2) indicates the
beginning of a new frame. Now the last position of the write pointer is saved (3). After the eof n
signal (1) (see Figure 5.4) indicates the end of frame, the frame remains in the Read-FIFO. Thus,
the restore signal (2) is not issued. This corresponds to the implemented behavior introduced in
Section 4.2.1. Considering the reception of an Ethernet frame containing a Real-time Transport
Protocol (RTP) packet it can be seen in Figure 5.1 that the behavior is exactly the same as in
Figure 5.3 showing the beginning reception of an Ethernet frame. However, considering the end
of an Ethernet encapsulated RTP packet reception Figure 5.2 shows that the restore signal (2)
is asserted after a complete reception indicated by the eof n signal (1) being low. Thus, the
received frame is discarded from the Read-FIFO by setting the write pointer back (3).
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5.3 RTP-Engine/GPNIF Arbitration Simulation

This section shows the correct behavior of the Arbiter as designed in Section 3.6.2. The simulation
of the Arbiter showing two test-cases can be seen in Figure 5.5. The signals seen have the following
meaning:

clk, reset The Arbiter is clocked with a 100 MHz clock from the NIC-Wrapper interface. The
reset signal is high-active.

cpu, rtp ll sender src ready n These signals indicate the wish of a source to gain access to
the MAC transmitter interface.

state r This component is implemented as a register reflecting the inner state of the arbiter as
designed in Section 3.6.2.

The first test case is the sole attempt of the GPNIF to grant access to the MAC transmitter
interface. Because the RTP-Engine does not have issued the same request, the GPNIF wins
the arbitration and can send its frame. In the second case, GPNIF and RTP-Engine issue their
resource request at the same time, thus, resulting in the RTP-Engine getting accessing the MAC
core interface. The next section presents the setup of the experiment showing the correct behavior
of the VOIP stack implementation.

Figure 5.5: Simulation Result: Arbitration between GPNIF and RTP-Engine

5.4 Experimental Setup

The former sections showed the correct behavior of key-elements of the NIC-Wrapper implemen-
tation by presenting simulation traces. In order to demonstrate the correctness of the whole
approach a VOIP session is monitored in Section 5.5. Therefore, this section introduces the
experimental setup used to perform the functional test on the ML405 development board. The
test-setup can be seen in Figure 5.6.
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Figure 5.6: Experimental Setup

It consists of a personal computer running a Debian Linux distribution version. The Ekiga VOIP
application being the test-peer for the softphone running on the ML405 development board. In
addition, the packet tracing software Wireshark is monitoring a USB Ethernet device connected to
the PC. The USB Ethernet device is connected to the ML405 via a patch cable using an network
switch. Moreover, a USB-to-serial converter dongle is attached to the PC. It is connected to the
RS232 serial port of the target-platform and used as a Standard Input Outpu (STDIO) console.
The console is interfaced by GtkTerm1 running on the host PC. In order to offer an appropriate
IPv4 address to the ML405, the udhcp2 Dynamic Host Configuration Protocol (DHCP) server is
operated on the PC. Moreover, the retrieval of an IPv4 address by the target-board is used as a
test-case for the implemented kernel driver and the GPNIF, showing its correct operation.

5.5 Wireshark Trace of a VOIP session

This section presents a SIP-Session trace to demonstrate the correct usage of the eXosip2 library
in the implementation of the softphone. All screen-shots were taken from the Wireshark packet
sniffer and analyzer in the version 1.0.2 [77]. In order to be printed nicely the pictures were
gray-scaled. The adjacent screen-shots show different aspects of a SIP-session. The retrieval of
an initial Internet Protocol (IP) address by the ML405 development board in conjunction with a
MAC/IP address association exchange can be seen in Figure 5.7.

1GtkTerm is serial terminal featuring a GTK-base GUI. See http://gtkterm.feige.net/. - Visited on
25/02/2011

2A small resource conserving implementation of the DHC-Protocol. http://freshmeat.net/projects/udhcp/.
- Visited on 25/02/2011
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Figure 5.7: Packet Trace: ARP handshake and IP Address configuration via DHCP

The Ethernet frame seen in detail is the ARP request sent by Busybox to receive a MAC-address
to IP-address association from the host computer.

Request Call An initial INVITE sent from the prototyping board to Ekiga is presented in
Figure 5.8. As it can be seen, the softphone’s id is sip ua and it is using the eXosip library.
Moreover, Wireshark is able to decode the packet correctly, therefore it is transmitted in a
valid way showing that the kernel driver, as well as the GPNIF is working correctly. Because
the Session Description Protocol (SDP) payload of the Session Initiation Protocol (SIP)
INVITE message cannot be seen in Figure 5.8, Figure 5.9 provides a detailed view on the
initial SDP payload indicating the use of the Pulse Code Modulation A-Law (PCMA) codec
with a sampling rate of 8000 Hz. This corresponds to the media type’s definition found in
[86]. Furthermore, the RTP-session’s intended audio port (8000) is transmitted.

81



Results

Figure 5.8: Packet Trace: Softphone sends SIP INVITE

Figure 5.9: Packet Trace: SIP’s INVITE SDP message

Remote Peer Accepts Eventually, Ekiga running on the PC answers with a 200 OK SIP mes-
sage, indicating that the requested codec in the initial INVITE is supported and be used
in the VOIP session. This can be seen in Figure 5.10. Moreover, it can be seen that this
message also includes the RTP listening port on Ekiga used to configure the RTP-Engine.
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Figure 5.10: Packet Trace: Ekiga answers with SIP 200 OK

RTP/RTCP Packet Exchange By now, all required call parameters are exchanged. There-
fore, voice communication related packets can be exchanged. The RTP-packet presented
in Figure 5.11 is sent from the ML405 development board. It shows that each RTP-packet
contains 10 samples one octet long of PCMA encoded voice. Moreover, its complete header
including SSRC, timestamp, and sequence number can be seen. The packet is obviously
assembled correctly since wireshark recognized the packet and its fields. A correspond-
ing RTCP-packet is presented in Figure 5.12. A Sender-report sent by the RTP-Engine is
shown. As it can be seen, there have been 9.072 packets sent by the RTP-Engine at the
report creation time. This number seems quite large, however, only 10 samples are com-
pound in a RTP-packet, thus requiring a high packet transfer rate. Furthermore, the packet
length is approved by wireshark showing a correct packet assembly by the RTCP-stack.

Figure 5.11: Packet Trace: An RTP Packet sent by the Softphone
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Figure 5.12: Packet Trace: An RTCP Packet sent by the Softphone

Cease Call At the end of the VOIP session the ML405 sends a BYE packet seen in Figure 5.13,
which is answered with an ACK message by Ekiga, thus ceasing the connection.

Figure 5.13: Packet Trace: Softphone issues a SIP BYE packet

5.6 Result Summary

This Chapter presented the results achieved by designing and implementing a VOIP stack for
high packet rates in a Virtex4 FPGA. First of all, the synthesis results have been shown. Since
the whole system consisting of the Base-System, the RTP-Engine and the RTP-Engine interface
could not meet its timing requirements, occupies 99% of the FPGAs slices and > 80% of the
available LUTs the following components have been removed.

• The IPv6 Filter component has been removed from the RTP-Engine since IPv6 packets are
not supported by the RTP-Engine interface anyway.
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• The clock recovery module has been omitted because it is not a vital component for the
verification of the RTP-Engine interface.

• Although, the jitter calculation module is a vital submodule is is not integrated in the RTP-
Engine since it occupies more reconfigurable FPGA resource than the two components
named above. Thus omitting the precedingly named components, but keeping the jitter
calculation module did not result in a successful implementation of the system inside the
FPGA.

• Finally, the reduction of the bus clock frequency from currently 100 MHz to 66.6 MHz
was considered. This would reduce the PowerPC core clock from 300 MHz to 200 MHz to
respect the specified CPU to bus clock frequency ratio of 1 : 1 to 1 : 16. However, this
measurement would lead to an incorrect clock frequency for the RTP-Engine which requires
a frequency of 100 MHz.

In order to fit the design inside the FPGA obeying all constraints the move to a bigger FPGA
was desired.

The subsequent sections introduced the test environment setup on the one hand. On the other
hand, the correct behavior of the arbiter was shown by simulation. Moreover, a complete VOIP
session has been recorded and presented as a proof of concept.
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6 Conclusion and Outlook

In this thesis, the design and implementation of a VOIP stack in a Xilinx Virtex4 FPGA oper-
ated on a ML405 development board is presented. The starting point was a hardware-module
performing all computations necessary to basically exchange voice packets between a source and a
sink. This IP-Core is called RTP-Engine. It’s capabilities are to retrieve a series of voice samples
from a microphone, encode and pack them to a RTP-packet and transmit these packets over an
Ethernet MAC interface. Moreover, it is able to receive RTP-packets, extract the voice sample,
put them into a jitter buffer to regain isochronous behavior, and play the voice samples back via
speaker. However, in order to perform a complete VOIP call including a signaling protocol stack,
an interface to the RTP-Engine, a media transport protocol stack, and a call-quality feedback
protocol stack operating on a SOC have been developed. Where the SOC is terminologically
divided into the RTP-Engine, its interface and the Base-System.

The SOC uses a Power-PC 405 core incorporating instruction and data caches to improve the
system’s reaction time. Moreover, it comprises 128 MB main memory, a persistent storage con-
troller and IO components. As an operating system, Busybox, an Embedded Linux distribution
was chosen.

Furthermore, an appropriate hardware/software partitioning of the interface between the Base-
System and the RTP-Engine has been realised. This interface implements an interconnection
between the RTCP stack and the SIP stack of a softphone. The examination of various design
possibilities revealed the following partitioning schema:

• The hardware modules responsible for transceiving the VOIP related RTP comprising Eth-
ernet frames (RTP-Engine) and the other Ethernet frames (GPNIF) are subsumed by a
single module called NIC-Wrapper. The NIC-Wrapper offers a unified interface to the
Linux kernel.

• The Linux kernel offers a device driver located in the network-subsystem to interact with
the GPNIF. Considering the configuration of the RTP-Engine a IOCTL based approach has
been favored over the implementation of a distinct character device driver to interact with
the RTP-Engine. Moreover, the automatic reconfiguration of the Filter of the RTP-Engine
is done by the kernel module, rather than at the user space application.

• Considering the part of the RTP-Engine configuration interface realised in hardware it can
be said that it’s octet costs, resulting in the usage of FPGA resources could be reduced sig-
nificantly by carefully examining the RTP-Engine’s requirements to achieve an operational
prototype.
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• Moreover, the design decision to implement the module responsible to calculate a running
jitter value as a hardware component reduced the pressure imposed to the kernel driver.
This is done by reducing it’s interrupt frequency from one interrupt at most every 1.25 ms
to one interrupt at most every 5 seconds, where 5 seconds is the smallest intervall to send
RTCP packets.

Nevertheless, in order to complete the VOIP stack in an FPGA implementation a SIP stack used
for signaling, as well as a RTCP stack have been used to realize a softphone. The softphone uses
the RTCP stack to interface with the Linux kernel driver controlling the RTP-Engine through
the RTP-Engine interface.

Unfortunately, the timing requirements of the whole design could not be met first. However, in
order to solve this issue, three RTP-Engine related components were removed from the design,
namely, the IPv6 Filter, the jitter calculation module, and the clock recovery component. The
only component actively reducing the functionality of the whole system is the jitter calculation
module. Nevertheless, the clock recovery component is vital for a productive use of the VOIP
stack, as it reduces network induced jitter. Thereore, it can be omitted for the RTP-Engine
interface’s functional verification.

Due to the fact that the jitter calculation module is omitted, the need for an alternative inclusion
of the jitter calculation functions is required. One possibility is to redesign the RTP-Engine in
such a way that each RTP packet normally discarded from the Read-FIFO is handed to the
operating system for jitter calculation purposes. However, this would lead to a higher pressure
on the utilized operating system and the CPU, if each of them would have to handle an interrupt
every 1.25 ms at the current configuration setting of the RTP-Engine. Thus, making the current
RTP/RTCP partitioning useless, because the RTP-Engine interface is designed to unload the
Base-System with RTP related communication tasks as much as possible.

Another option would be to implement a small buffer memory holding an amount of timestamps
from arrived RTP packets. This memory must only store the transit time of a RTP packet, since
the jitter value can be calculated from it. The transit time can be calculated by subtracting the
current local time maintained in the RTP-Engine from the timestamp in the received RTP packet.
Thus, deploying the buffer memory could result in reducing the pressure of issuing interrupts in
a high frequency from the RTP-Engine. The interrupt interval regarding the jitter calculation
could be reduced from at most 1.25 ms to at most (1.024/4) ∗ 1.25 = 320 ms. This reduction of
the jitter calculation associated interrupt interval can be achieved if the smallest available BRAM
size of 1 kByte is used for the buffer memory, since a timestamp is 32 Bits wide. By enlarging
the buffer memory the interrupt interval times can be increased further. Deploying the 1 kByte
larger buffer would result in the need of an operating system change due to the introduction of
firmer real-time constraints caused by the formerly mentioned change of the jitter calculation
module. Therefore, the Embedded Linux operating system should be exchanged by a real time
operating system like Xilkernel. However, this would lead to a thorough redesign of the software
components of the VOIP stack in an FPGA.

In addition to the change possibilities just described of the implemented functions, the following
possibilities for enhancements exist:

• Add domain-name resolution to the softphone capabilities.

• Add support for SIP registrars to the softphone.
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• Add conference call support to the softphone as well as to the RTP-Engine

• The RTP-Engine configuration interface may be changed from a register model to a Block-
RAM using design. However, the resource retrenchments would be too low to use this
solution.

Where the first two enhancements are straight-forward to implement in general, the last enhance-
ment possibility requires a more thoughtfully design. First of all, the appropriate administrative
data structure must be implemented when using the eXosip library. Moreover, the RTCP stack
has to be patched to support more than one concurrently taking place VOIP calls. Furthermore,
the RTP-Engine must be extended by some sort of scheduling mechanism in order to serve each
VOIP session taking place in the conference call equally. Nevertheless, the extension of the RTP-
Engine to support conference-calls may require a migration of the whole system to a larger FPGA,
since by now already more than two-third of the chip’s resources are occupied. The possibility to
change the configuration interface of the RTP-Engine might provide the FPGA resource needed
to implement at least a conference-call support for three participants. However, the whole design
must be ported to a development platform housing a bigger FPGA, as mentioned in Chapter 5.

Although there is still room to enhance the presented solutions, it is shown how an appropriate
hardware/software interface-design for a hardware-module performing the isochronous related
tasks of a VOIP stack can be done. Moreover, it is shown that most available RTCP stacks can
hardly be adapted to be used with a dedicated IP-core.
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A NIC-Wrapper Specification

Overview & Features

The NIC-Wrapper is a soft-core implementing an interface to the RTP-Engine and an Ethernet
MAC hard-core. The part of the NIC-Wrapper realising the Ethernet MAC interface is called
GPNIF. The part realising the RTP-Engine interface is called RTP-Engine Interface. However,
both interfaces can be accessed over a unique interface provided by the (Intellectual Property
Inter-Face) IPIF. The IPIF is dedicated to the (On-chip Peripheral Bus) OPB/(Processor Local
Bus) PLB on chip buses developed by IBM and provided by Xilinx to run inside its (Field
Programmable Gate Arrays) FPGAs and development platforms. Thus the implementation of
the NIC-Wrapper is bound to FPGAs of this vendor by now. The purpose of this manual is to
show how to operate the NIC-Wrapper. It contains the following sections:

• Section A introduces the NIC-Wrapper’s external interface.

• Section A gives an overview on the available registers grouped in functional blocks. More-
over, their memory offsets from a base address is given.

The IP-Core provides the following features:

• 100Mbit Ethernet controller interface with receiver-ready and transmitter-empty interrupt
support

• Polling mode

• Separate sender and receiver FIFOs, where receiver FIFO is capable of dismissing received
frames upon request from the RTP-Engine

• Fully configurable sender and filter for RTP-packets

• All registers expect big-endian formatted data.

• Ethernet network controller and RTP-Engine can be controlled separately

• Hardware Jitter-calculation

• Hardware controlled arbitration between GPNIF and RTP-Engine
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• Configurable RTP packet header (from Ethernet to RTP protocol header)

• Supports SSRC change during an ongoing RTP-session while operating

• Xilinx Virtex4 Power-PC compliant PLB IP-Core interface

Interface

This section describes the top-level interface of the NIC-Wrapper Core which is needed to connect
the IP-Core to a given Host-System. The hardware interface between the NIC-Wrapper Core and
the CPU is realized as a PLB-IPIF slave device where the following features are configured.

• 32 bit bus width

• Interrupt source controller

• 2 KByte 32 bit write data FIFO

• 2 KByte 32 bit read data FIFO with packet-mode support

• 17 User accessible 32bit big-endian expecting registers (Used as device configuration and
status registers)

As a consequence of this configuration the following output signals and their description are
available and can be seen in Table A.1. The corresponding input signals are listed in Table A.2.
Moreover, the ethernet controllers physical interface, a MII interface is implemented with a con-
stant speed of 100Mbit supporting full duplex mode only. Table A.3 shows its IO signals.

Table A.1: PLB-Slave Output Signals

Signal name Direction Description

Sl addrAck O Slave address acknowledge

Sl SSize O Slave data bus size

Sl wait O Slave wait indicator

Sl rearbitrate O Slave re-arbitrate bus indicator

Sl wrDAck O Slave write data acknowledge

Sl wrComp O Slave write transfer complete indicator

Sl wrBTerm O Slave terminate write burst transfer

Sl rdDBus O Slave read data bus

Sl rdWdAddr O Slave read word address

Sl rdDAck O Slave read data acknowledge

Sl rdComp O Slave read transfer complete indicator

Sl rdBTerm O Slave terminate read burst transfer

Sl MBusy O Slave busy indicator

Sl MWrErr O Slave write error indicator

Sl MRdErr O Slave read error indicator

Sl MIRQ O Slave interrupt indicator

IP2INTC Irpt O Interrupt output to processor
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Table A.2: PLB-Slave Input Signals

Signal name Direction Description

SPLB Clk I PLB main bus clock

SPLB Rst I PLB main bus reset

PLB ABus I PLB address bus

PLB UABus I PLB upper address bus

PLB PAValid I PLB primary address valid indicator

PLB SAValid I PLB secondary address valid indicator

PLB rdPrim I PLB secondary to primary read request indicator

PLB wrPrim I PLB secondary to primary write request indicator

PLB masterID I PLB current master identifier

PLB abort I PLB abort request indicator

PLB busLock I PLB bus lock

PLB RNW I PLB read/not write

PLB BE I PLB byte enables

PLB MSize I PLB master data bus size

PLB size I PLB transfer size

PLB type I PLB transfer type

PLB lockErr I PLB lock error indicator

PLB wrDBus I PLB write data bus

PLB wrBurst I PLB burst write transfer indicator

PLB rdBurst I PLB burst read transfer indicator

PLB wrPendReq I PLB write pending bus request indicator

PLB rdPendReq I PLB read pending bus request indicator

PLB wrPendPri I PLB write pending request priority

PLB rdPendPri I PLB read pending request priority

PLB reqPri I PLB current request priority

PLB TAttribute I PLB transfer attribute

Table A.3: MII IO Signals

Signal name Direction Description

MII COL 0 I Collision detection

MII CRS 0 I Clear sender indicator

MII TXD 0 O Transmitter data pin

MII TX EN 0 O Transmitter enable indicator

MII TX ER 0 O Transmission error

MII TX CLK 0 O Transmitter clock

MII RXD 0 I Receiver data pin

MII RX DV 0 I Data valid indicator

MII RX ER 0 I Receiver error indicator

MII RX CLK 0 I Receiver clock

PHY RESET N O Physical reset
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Register Description

The NIC-Wrapper Core consists of 17 configuration and status registers, controlling both the
RTP-Engine and the GPNIF. Furthermore, there are 4 configuration and data registers for each
of the two data FIFOs and 3 interrupt source controller registers. Every register is 32 bit wide
and synchronous to the PLB clock. Moreover, the registers expect big-endian formatted data.
The IP-Core wide base address is called BASE ADDRESS. It is used by the IPIF to attach the
IP-Core to a system’s memory map.

Read Data FIFO Registers

The Read Data FIFO is associated with the GPNIF. The base address of the registers used to
control the Read Data FIFO is BASE ADDRESS + 0x200. However, this does not apply for the
Read-FIFO Data Port. In the tables A.4 and A.6 the Read Data FIFO Register are described.

Table A.4: Read Data FIFO Registers

Name Address offset Read/Write

RDFIFO Reset register 0x00 W

RDFIFO Module Identification register 0x00 R

RDFIFO Status register 0x04 RW

Write Data FIFO Registers

The Write Data FIFO is associated with the GPNIF. The base address of the registers used to
control the Write Data FIFO is BASE ADDRESS + 0x400. However, this does not apply for the
WRFIFO Data Port. In the tables A.5 and A.6 the Write Data FIFO Registers are defined.

Table A.5: Write Data FIFO Registers

Name Address offset Read/Write

WRFIFO Reset register 0x00 W

WRFIFO Module Identification register 0x00 R

WRFIFO Status register 0x04 RW

Table A.6: Read FIFO and Write FIFO Data Port

Name Address Read/Write

RDFIFO Data Port BASE ADDRESS + 0x300 R

WRFIFO Data Port BASE ADDRESS + 0x500 W
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NIC-Wrapper Configuration/Status Registers

The base address of the registers used to control the NIC-Wrapper Configuration/Status registers
is BASE ADDRESS. Table A.7 gives an overview of the NIC-Wrapper Configuration/Status
registers. However, all registers except the RTPE CONFR register are associated with the RTP-
Engine Interface.

Table A.7: NIC-Wrapper Configuration/Status Registers

Name Address offset Read/Write

RTPE CONFR Configuration register 0x00 RW

RTPE RX SZR Received frame size regis-
ter

0x04 RW

RTPE ETHDST 0x08 RW

RTPE ETHDST SRC 0x0c RW

RTPE ETHSRC 0x10 RW

RTPE ETHTYPE 0x14 RW

RTPE IPIHL TO TOTLEN 0x18 RW

RTPE IPID FRAGOFF 0x1c RW

RTPE IPTTL TO CHECK 0x20 RW

RTPE IPSADDR 0x24 RW

RTPE IPDADDR 0x28 RW

RTPE UDPSRC DST PORT 0x2c RW

RTPE UDPLEN CHECK 0x30 RW

RTPE RTPVER TO SEQ 0x34 RW

RTPE RTP TIMESTAMP 0x38 RW

RTPE RTP SSRC TX 0x3c RW

RTPE RTP SSRC RX 0x40 RW

Interrupt Source Registers

The interrupt source registers are associated with the GPNIF, since the RTP-Engine does not raise
any interrupts. The base address of the registers used to control the Interrupt source controller
is BASE ADDRESS + 0x100. In table A.8 the Interrupt Source registers are subsumed.

Table A.8: Interrupt Source Registers

Name Address offset Read/Write

RTPE INTR GIER Device enable inter-
rupt register

0x1C RW

RTPE INTR IPSR User IP interrupt sta-
tus register

0x20 RW

RTPE INTR IPIER User IP interrupt en-
able register

0x28 RW
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Detailed register description

This section offers a detailed register description describing the meaning of each bit used in
the available registers. The NIC-Wrapper Core consists of 17 configuration and status registers
controlling both the RTP-Engine and the GPNIF. All registers expect big-endian formatted data.
Furthermore, there are 4 configuration and data registers for each of the two data FIFOs and 3
interrupt source controller registers. Every register is 32 bit wide and synchronous to the PLB
clock. The IP-Core wide base address is called BASE ADDRESS.

Read Data FIFO Registers

The Read Data FIFO(RDFIFO) is used to store incoming and accepted ethernet frames. The
tables A.9, A.10, A.11 and A.12 specify the registers of the RDFIFO.

RDFIFO Reset Register

Table A.9: RDFIFO Reset Register

Bit(s) Name Read/Write Reset Value Description

0-31 Reset Data Key W n/a Write 0x0000000A to the reg-
ister to reset the RDFIFO. All
other values have no effect.

RDFIFO Module Identification Register

Table A.10: RDFIFO Module Identification Register

Bit(s) Name Read/Write Reset Value Description

0-3 Major Version Number R n/a Module Major Version Num-
ber

4-10 Minor Version Number R n/a Module Minor Version Num-
ber

11-15 Minor Version Letter R n/a Module Minor Version Let-
ter. Letters a-z are encoded
as 00000 - 11001

16-23 Block ID R n/a Module Block ID

24-31 Block Type R n/a Module Block Type
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RDFIFO Status Register

Table A.11: RDFIFO Status Register

Bit(s) Name Read/Write Reset Value Description

7-31 Occupancy R 0 RdFIFO Occupancy This is
an unsigned value reflecting a
current snapshot of the num-
ber of locations available for
data retrieval from the Rd-
FIFO memory core.

4-6 Width R 0x00 Encoded FIFO Data Port
Width. This field reflects the
parameterized width of the
FIFO data port. In this im-
plementation the FIFO is 32
bits wide. So the value is 000

1-3 Unused R 0 Unused

0 Empty R 0 ’0’ = FIFO is not empty.
’1’ = FIFO is empty.

RDFIFO Data Port Register and WRFIFO Data Port Register

Table A.12: Read Data FIFO Data Port

Bit(s) Name Read/Write Reset Value Description

0-31 RdFIFO Data R n/a RdFIFO Data
0-31 Data W n/a WRFIFO Data

Write Data FIFO Registers

The Write Data FIFO(WRFIFO) is used to store to be sent ethernet frames. The tables A.9,
A.14, A.15 and A.12 specify the registers of the RDFIFO.

WRFIFO Reset Register

Table A.13: WRFIFO Reset Register

Bit(s) Name Read/Write Reset Value Description

0-31 Reset Key W n/a Write 0x0000000A to the reg-
ister to reset the WRFIFO.
All other values have no effect.
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WRFIFO Module Identification Register

Table A.14: WRFIFO Module Identification Register

Bit(s) Name Read/Write Reset Value Description

0-3 Major Version Number R n/a Module Major Version Num-
ber

4-10 Minor Version Number R n/a Module Minor Version Num-
ber

11-15 Minor Version Letter R n/a Module Minor Version Let-
ter. Letters a-z are encoded
as 00000 - 11001

16-23 Block ID R n/a Module Block ID

24-31 Block Type R n/a Module Block Type

WRFIFO Status Register

Table A.15: WRFIFO Status Register

Bit(s) Name Read/Write Reset Value Description

8-31 Occupancy R 512 WRFIFO Occupancy This is
an unsigned value reflecting a
current snapshot of the num-
ber of locations available for
data to be written to the WR-
FIFO memory core.

7 Unused R 0 Unused

4-6 Width R 0 Encoded FIFO Data Port
Width. This field reflects the
parameterized width of the
FIFO data port. In this im-
plementation the FIFO is 32
bits wide. So the value is 000

3 Unused R 0 Unused

2 DL R 0 ’0’ = FIFO is not in Dead-
Lock. ’1’ = FIFO is
in DeadLock (Simultaneously
Full and Empty due to Packet
Mode Operations).

1 Unused R 0 Unused

0 Empty R 0 ’0’ = FIFO is not full.
’1’ = FIFO is full.
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NIC-Wrapper Configuration/Status Registers

A detailed description of the NIC-Wrapper Configuration/Status registers is presented in the
tables Table A.16 -Table A.36.

RTPE CONFR Configuration register

Table A.16: RTPE CONFR Part A

Bit(s) Name Read/Write Reset Value Description

25-31 Unused RW n/a Unused

24 RTPE TX Busy R 0 ’1’ = RTP Engine transmit-
ter is busy sending a frame.
’0’ = RTP Engine transmit-
ter is silent, new configuration
data can be added. However,
be sure to disable the sender
while doing so.

23 RTPE RX Busy R 0 ’1’ = RTP Engine filter is
checking a frame. ’0’ = RTP
Engine filter can be reconfig-
ured. However, be sure to dis-
able the sender while doing so.
If a new SSRC is to be written
to the Filter configuration this
can also be done without dis-
abling the receiver since the
new SSRC will only be valid
after the filter has finished its
checking on the frame.

22 RTPE TX Enable RW 0 ’1’ = RTP Engine sender is
enabled. ’0’ = RTP Engine
sender is disabled. The RTP
Engine sender is NOT reset
upon this bit is set to ’0’. A
reset of the configuration reg-
isters must be done in soft-
ware.

21 RTPE RX Enable RW 0 ’1’ = RTP Engine receiver is
enabled. ’0’ = RTP Engine re-
ceiver is disabled. The RTP
Engine receiver is NOT reset
upon this bit is set to ’0’. A
reset of the configuration reg-
isters must be done in soft-
ware.
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Table A.17: RTPE CONFR Part B

Bit(s) Name Read/Write Reset Value Description

20 RTPE SSRC changed R 0 ’1’ = SSRC in the received
packet is different from the
others so far received in the
stream. ’0’ = SSRC did not
change.

19 TX Enable RW 0 ’1’ = MAC Transmitter unit is
activated. ’0’ = MAC Trans-
mitter unit is deactivated, no
frames can be sent.

18 RX Enable RW 0 ’1’ = MAC Receiver unit is ac-
tivated. ’0’ = MAC Receiver
unit is deactivated, no frames
can be received.

17 TX Frame Done R 0 ’1’ = If the WRFIFO is empty.
’0’ = Otherwise. Writes take
no effect.

16 RX Frame Ready R 0 ’1’ = If there is a whole new
accepted frame in the RD-
FIFO. ’0’ = No new frame has
been received. Writes take no
effect

0-15 TX Frame size RW 0 The size of the next to
be transmitted frame. The
transmission starts if the TX
enable bits are set and the reg-
ister is written at the bits 8-15
of this half word.

RTPE RX SZR Received frame size register

Table A.18: RTPE RX SZR

Bit(s) Name Read/Write Reset Value Description

0-15 RX Frame Size R n/a Returns the size of a com-
pletely received frame from
the RDFIFO. The register is
coupled to a FIFO which is
storing the frame sizes accord-
ing to their appearance in the
RDFIFO.

16-31 Unused RW n/a Unused
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RTPE ETHDST Register

Table A.19: RTPE ETHDST

Bit(s) Name Read/Write Reset Value Description

0-31 DSTADDR RW 0 Stores the first 4 bytes of an
ethernet frame destination ad-
dress.

RTPE ETHDST SRC Register

Table A.20: RTPE ETHDST SRC

Bit(s) Name Read/Write Reset Value Description

0-31 DSTSRCADDR RW 0 Stores the last 2 bytes of an
ethernet frame destination ad-
dress and the first two bytes
of ethernet frame source ad-
dress.

RTPE ETHSRC Register

Table A.21: RTPE ETHSRC

Bit(s) Name Read/Write Reset Value Description

0-31 SRCADDR W 0 Stores the last 4 bytes of
an ethernet frame source ad-
dress.

0-31 JITTER R 0 Returns the actual jitter value
at the time of register access.

RTPE ETHTYPE Register

Table A.22: RTPE ETHTYPE

Bit(s) Name Read/Write Reset Value Description

0-15 ETHTYPE W 0 Stores the ethernet frame
type.

0-15 RXSEQ R 0 Returns the last received se-
quential number from an RTP
packet.

16-31 Unused WW 0 Unused
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RTPE IPIHL TO TOTLEN Register

Table A.23: RTPE IPIHL TO TOTLEN

Bit(s) Name Read/Write Reset Value Description

0-3 Version RW 0 IP header field ’Version’

4-7 IHL RW 0 IP header field ’Internet
header length’

8-15 TOS RW 0 IP header field ’Type of ser-
vice’

16-31 TOTLEN RW 0 IP header field ’Total length’

RTPE IPID FRAGOFF Register

Table A.24: RTPE IPID FRAGOFF

Bit(s) Name Read/Write Reset Value Description

0-15 Identification RW 0 IP header field ’Fragment
identification’

16-18 Flags RW 0 IP header field ’Fragmenta-
tion flags’

18-32 Offset RW 0 IP header field ’Fragmenta-
tion offset’

RTPE IPTTL TO CHECK Register

Table A.25: RTPE IPTTL TO CHECK

Bit(s) Name Read/Write Reset Value Description

0-7 TTL RW 0 IP header field ’Time to live’

8-15 Protocol RW 0 IP header field ’Protocol type
of ascending layer’

16-32 Checksum RW 0 IP header field ’IP header
checksum’

RTPE IPSADDR Register

This register configures the source address of the RTP-Encoder an the destination address of the
RTP-Filter.
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Table A.26: RTPE IPSADDR

Bit(s) Name Read/Write Reset Value Description

0-31 SADDR RW 0 IP header field ’Source ad-
dress’

RTPE IPDADDR Register

This register configures the destination address of the RTP-Encoder an the source address of the
RTP-Filter.

Table A.27: RTPE IPDADDR

Bit(s) Name Read/Write Reset Value Description

0-31 DADDR RW 0 IP header field ’Destination
address’.

RTPE UDPSRC DST PORT Register

This register configures the module RTP-Encoder and the module RTP-Filter. In the case of
the RTP-Encoder the bit-field SRCPORT points to the SRCPPORT of the RTP-Encoder and
the bit-field DSTPORT to the DSTPORT of the RTP-Encoder. In the case of the RTP-Filter
SRCPORT points to DSTPORT and vice versa. So only one register is needed to configure both
RTP-Encoder and RTP-Filter.

Table A.28: RTPE UDPSRC DST PORT

Bit(s) Name Read/Write Reset Value Description

0-15 SRCPORT RW 0 UDP header field ’Source
port’

16-31 DSTPORT RW 0 UDP header field ’Destination
port’

103



NIC-Wrapper Specification

RTPE UDPLEN CHECK Register

Table A.29: RTPE UDPLEN CHECK

Bit(s) Name Read/Write Reset Value Description

0-15 Length RW 0 UDP header field ’Payload
and Header length’

16-31 Checksum RW 0 UDP header field ’Checksum
over the whole packet (IP-
header, UDP-header, pay-
load)’

RTPE RTPVER TO SEQ Register

The field SEQ in this register is written by the RTP-Engine as well.

Table A.30: RTPE RTPVER TO SEQ

Bit(s) Name Read/Write Reset Value Description

0-1 Version RW 0 RTP header field ’Version’

2 P RW 0 RTP header field ’Padding’

3 X RW 0 RTP header field ’Xtension’

4-7 CC RW 0 RTP header field ’Contribut-
ing sources’

8 M RW 0 RTP header field ’Marker’

9-15 PT RW 0 RTP header field ’Payload
Type’

16-31 SEQ RW 0 RTP header field ’Sequence
Number’

RTPE RTP TIMESTAMP Register

This register is written by the RTP-Engine as well.

Table A.31: RTPE RTP TIMESTAMP

Bit(s) Name Read/Write Reset Value Description

0-31 Timestamp RW 0 RTP header field ’Times-
tamp’.
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RTPE RTP SSRC TX Register

Table A.32: RTPE RTP SSRC TX

Bit(s) Name Read/Write Reset Value Description

0-31 SSRCTX RW 0 RTP header field ’Synchro-
nization Source’ configuration
for the RTP-Sender

RTPE RTP SSRC RX Register

Table A.33: RTPE RTP SSRC RX

Bit(s) Name Read/Write Reset Value Description

0-31 SSRCRX RW 0 RTP header field ’Synchro-
nization Source’ configuration
for the RTP-Filter

NIC-Wrapper Interrupt Source Registers

In the tables A.34, A.35 and A.36 the NIC-Wrapper Interrupt Source registers are illustrated.

RTPE INTR GIER Register

Table A.34: RTPE INTR GIER

Bit(s) Name Read/Write Reset Value Description

0 GIE RW 0 Global Interrupt Enable.
’0’ = Interrupts disabled
’1’ = Device Interrupt en-
abled.

1-31 Unused R 0 Unused

RTPE INTR IPSR Register

The interrupt status register has a toggle on write behavior. That means if ’1’ is written to bit
position where a ’1’ is already stored the bit inside the register at the corresponding bit position
will be toggled to a ’0’.
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Table A.35: RTPE INTR IPSR

Bit(s) Name Read/Write Reset Value Description

0-29 Unused RW 0 Unused

30 TXDONE RW 0 Transmission FIFO empty in-
terrupt. ’1’ = active, ’0’ = not
active

31 RXDONE RW 0 At least one completely re-
ceived ethernet frame is in the
receiver FIFO. ’1’ = active,
’0’ = not active

RTPE INTR IPIER Register

The interrupt enable register has a toggle on write behavior. That means if ’1’ is written to bit
position where a ’1’ is already stored the bit inside the register at the corresponding bit position
will be toggled to a ’0’.

Table A.36: RTPE INTR IPIER

Bit(s) Name Read/Write Reset Value Description

0-29 Unused RW 0 Unused

30 TXDONE RW 0 Trigger an interrupt if the
transmission FIFO is empty.
’1’ = enable, ’0’ = disable

31 RXDONE RW 0 Trigger an interrupt if at least
one completely received eth-
ernet frame is in the reciter
FIFO. ’1’ = enable, ’0’ = dis-
able

Architecture

This section describes the architecture as well as the internal interfaces of the NIC-Wrapper Core.
Figure A.1 shows a data-flow oriented picture of the NIC-Wrapper. Figure A.2 shows the general
architecture and the sub-module interconnection of the IP-Core. The IP-Core consists of the
GPNIF subsuming Write-FIFO,Read-FIFO, serialiser,de-serialiser, Local-Link to FIFO Interface
and a FIFO to Local Link Interface (LLI). The LLI is a handshaking protocol for inter-module
communication. It is capable of postponing ongoing transmissions if either sender or receiver side
cannot cope with the peers data-rate. The RTP-Engine’s configuration interface, the Common
Configuration and Status Register as well as the GPNIF are interfaced through the Intellectual
Property Interface (IPIF). Moreover, Filter, Arbiter, and MAC-Interface communicate through
the LLI as well.
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Figure A.1: Interface and data flow description NIC-Wrapper Core

Figure A.2: Architectural description NIC-Wrapper Core
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Modes of operation

There are two modes operation available to the NIC-Wrapper Core. Polling and Interrupt-
mode. However, apart from these two modes subsection A describes how the RTP-Engine can be
operated.

Polling Mode

In Polling-mode all interrupts are deactivated so the bits 30 and 31 in register RTPE INTR IPIER
must be set to 0. Moreover, bit 0 in the RTPE INTR GIER register has to be 0 as well. To
check whether the transmitter is ready to get a new frame written to its transmission FIFO, or
the receiver has received a new frame the bits 17 (TX Frame Done) and 16 (RX Ready) have to
read.

Interrupt Mode

To activate the receiver or the transmitter interrupt of the MAC module of the NIC-Wrapper
Core the following procedure must be adhered:

• Set the corresponding bit in the RTPE INTR IPIER register to enable a specific interrupt.

• Set bit 0 in the RTPE INTR GIER to activate the device interrupt controller.

To acknowledge any occurred interrupt read the RTPE INTR IPSR register. Mask out the bit
of the triggering interrupt and write the word back to the RTPE INTR IPSR register. Due to
the toggle on write behavior of the RTPE INTR IPSR the interrupt will be acknowledged. To
deactivate an interrupt simply apply the interrupt activation procedure in reverse order. By now
the RTP-Engine does not generate any interrupts since its time of sampling is determined by the
RTCP protocol.

Running the RTP-Engine

Initially the RTP-Engine Configuration registers are set to zero and the RTP-Engine enable bit
in the RTPE CONFR(Table A.16 and Table A.17) register is set to zero as well. The RTP-
Engine can be configure by writing a corresponding configuration vector into the configuration
registers. After an initial configuration, set bits RTPE TX Enable and RTPE RX Enable in the
RTPE CONFR register (see Table A.16 and Table A.17). This has to be done when the RTP-
Engine is not operating, to prevent it from undefined behavior. However, if a new SSRC has to
be written to the Filter configuration, which is the case upon the reception of a first RTP packet
associated with a VOIP-session, the SSRC can also be written when the RTP-Engine is currently
operating. Nevertheless, on has to wait until bit RTPE RX Busy in the RTPE CONFR register
(see Table A.16 and Table A.17) is low, to prevent undefined behavior. To stop the RTP-Engine
simple wait until both RTPE RX Busy and RTPE TX Busy are low and unset the bits RTPE TX
Enable and RTPE RX Enable in the RTPE CONFR register (see Table A.16 and Table A.17).
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This appendix represents a small guide on how to build and run the VOIP-stack prototype
implementation on the ML405 development board. It mainly focusses on the build steps of the
software components and how to prepare the Buildroot environment to generate appropriate
binaries for the target platform.

How-to build a Base System

This small how-to is arranged into 4 sections.

• Section 1 explains a few details which should be concerned when generating a new base
system with the Base System Builder Wizard in Xilinx EDK 10.3.

• Section 2 shows how the used software can be built

• Section 3 talks about how to integrate the generated files into the SystemACE disk layout

• Section 4 shows how to set up an U-Boot boot environment to boot automatically into
Busybox

If a line starts with ”#” its command is to be typed at a shell prompt.

Generate Hardware

Generate new hardware with the BSB wizard (Base System Builder). Include the EEPROM
Ip-Core to store the U-Boot environment on it. In the project tab, file: system.ucf change

Net f p g a 0 c l k 1 s y s c l k p i n LOC=AB12 | IOSTANDARD = LVCMOS33;
to
Net f p g a 0 c l k 1 s y s c l k p i n LOC=AB14 | IOSTANDARD = LVCMOS33;

AB12 is the user clock pin. AB14 is the system clock pin. In EDK Version 11.3 this assignment
was faulty. Set the boot-loop to be initialized in BRAM.
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Generate Board support package

Generate a device tree with the Xilinx provided device-tree generator 1. After that export the
hardware design and generate a Linux 2.6 compatible board support package with the SDK.
Following parameters are needed:

• Memory size: 0x8000000 -¿ 128MB RAM

• Console: RS232 Uart must be the name of the Uart IP-Core instance

• Additional boot arguments: console=ttyS0,9600 ip=off root=/dev/xsa2 rw

• Finally, add the hardware peripherals to the BSP by clicking ”ok” on each item in the view

The last step is to copy the xparamters.h file and the device-tree sources to their corresponding
locations Copy Board support file.

#cp −v <ROOT DIR OF EDK PROJECT>/ppc405 0 / l i b s r c / l i n u x 2 6 v 1 0 2 a /
l i n u x / arch /ppc/ p l a t f o r m s /4 xx / xparameters / xparameters ml40x . h <
ROOT DIR KERNEL SRC>/arch /powerpc/ p l a t f o r m s /40 x/ xparameters ml405 . h

Copy Board support file for U-Boot.

#cp −v <ROOT DIR OF EDK PROJECT>/ppc405 0 / l i b s r c / l i n u x 2 6 v 1 0 2 a /
l i n u x / arch /ppc/ p l a t f o r m s /4 xx / xparameters / xparameters ml40x . h <
ROOT DIR UBOOT>/board / x i l i n x /ml405/ xparameters . h

Copy device tree sources to kernel directory.

#cp −v <ROOT DIR OF EDK PROJECT>/ppc405 0 / l i b s r c / dev ice−t r e e v 0 0 0 x /
x i l i n x . d t s <ROOT DIR KERNEL SRC>/arch /powerpc / boot / d t s / v i r t e x 4 0 5−
ml405 . d t s

Build the software

Call

#make ml405 conf i g
#make

to build u-boot in u-boot source root directory

Call

#make uImage

to build u-boot favored kernel image in kernel source directory

Call

1This tool can be found under http://git.xilinx.com/cgi-bin/gitweb.cgi
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#s c r i p t s / d tc / d tc −b 0 −V 17 −R 4 −S 0x3000 −I d t s −O dtb −o ml405 . d tb
−f arch /powerpc/ boot / d t s / v i r t e x 4 0 5−ml405 . d t s

in kernel source root directory to build device tree blob

After configuring the tool-chain with

#make menuconfig

configuring uclibc with

#make u c l i b c−menuconfig

and configuring Busybox with

#make Busybox−menuconfig

alter device-table.txt in the Buildroot directory and call

#make

in Buildroot root directory to build Busybox

Generate SystemACE disk

Copy the following files to the FAT partition of the systemACE disk

Linux kernel

Copy linux/arch/powerpc/boot/uImage to ml405/linux

Device-tree blob

Copy linux/ml405.dtb to ml405/dtb

Generate system ace file

Call from base system root directory

#xmd − t c l genace . t c l −j p r o g −t a r g e t ppc hw −board ml405 −hw sys tem top
. b i t −e l f . . / . . / . . / sw/u−boot−x l n x . g i t /u−boot −ace uboot . ace −
s t a r t a d d r e s s 0 x02002100

Copy base system/uboot.ace to ml405/myace
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Setup root partition

Copy the following file to the second systemACE partition

#sudo dd i f=b u i l d r o o t 2 0 0 9 .08/ b i n a r i e s / b u i l d p c 4 0 5 / r o o t f s . powerpc nofpu
. ex t2 o f=/dev / sd [ abcd ] 2

Finish root file-system partition

#sudo / s b i n / e 2 f s c k −f / dev / sdc2
#sudo / s b i n / r e s i z e 2 f s / dev / sdc2

Configure the U-Boot environment

When U-Boot started into interactive mode one can see its prompt ”=¿”. Execute the following
commands:

setenv dtb ml405/dtb/ml405 . dtb
setenv getdtb f a t l o a d ace 0 0x1000000 ml405/dtb/ml405 . dtb
setenv l i nux ml405/ l i nux /uimage
setenv g e t l i n u x f a t l o a d ace 0 0x400000 ml405/ l i nux /uimage
setenv prepboot run getdtb g e t l i n u x
setenv myboot bootm 0x400000 − 0x1000000
setenv bootcmd run prepboot myboot
savenv

Now the environment is written to the EEPROM. Upon power-up U-Boot is started, retrieves
the device-tree blob, loads the kernel and the system is started automatically. The standard
login-mane is ”root”. No password is required.
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