
Mitigating the Bias of Retrieval
Systems by Corpus Splitting

An Evaluation in the Patent Retrieval Domain

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Information & Knowledge Management

eingereicht von

Elisabeth Weigl
Matrikelnummer 0305104

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber

Wien, 22.09.2011
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Elisabeth Weigl
Leystraße 115-117/4/21, 1200 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die
Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen
Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf
jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Acknowledgements

A lot of people helped and supported me in making this thesis. First of all I would like to
thank my advisor ao.Univ.Prof. Dr.techn. Andreas Rauber for his professional support
and guidance during this work, even though I often had questions when he was boarding
a plane. I also thank the people at the IRF because without them I would not have
been able to do most of this work. Special thanks goes to Florina Piroi and Mihai Lupu
for helping me in engineering and evaluation diffuculties. And to Linda Andersson: You
helped me to improve my English through talking and presenting, assisted me during
the making and gave critical suggestions and you always could make me laugh about
something even though the thesis did not get along. Thank you! I also like to thank
Shariq Bashir for his data on the low and high split because without it this work would
be lacking important content.

Während der langen Zeit, die diese Arbeit für mich in Anspruch genommen hat, haben
mich viele Freunde moralisch unterstützt und mir geholfen, bei klarem Kopf zu bleiben.
Euch allen Danke dafür! Ein spezieller Dank geht an Claudia, mir der ich mich in unzähli-
gen Gesprächen über die Diplomarbeit auslassen konnte, an Karin&Matthias, die mich
mit englischen Büchern versorgt haben, an Babsi, die mir näher gebracht hat, dass kurze
Erklärungen wichtig für das Verständnis sein können, an Carina, die mir dabei geholfen
hat, meine physische Gesundheit beizubehalten, an Jiradet, der mir den nützlichen Tipp
gegeben hat, schriftliche Aufzeichnungen meiner Experimente zu machen, und natürlich
Luki, ohne den ich niemals auf die Idee gekommen wäre ein technisches Studium anz-
ufangen, das mich dazu befähigt die für mich interessantesten Themen der Welt zu
behandeln.

Meiner Familie danke ich für die vielfältige Unterstützung und Hilfe während all der
Ausbildungsjahre. Ohne euch wäre nichts von alledem möglich gewesen!

Und ohne Nav, der mich während der Arbeit in guten Zeiten ausgehalten genauso wie
er mir in schlechten Zeiten beigestanden und mich aufgemuntert hat, der dabei bestimmt
genausoviel Arbeit mit mir hatte wie ich mit der Diplomarbeit, hätte ich diese Arbeit
nicht fertig gebracht. Danke dir für deine Liebe, deine moralische Unterstützung und
deine Ermutigung während all dieser Monate!

ii

Abstract

Typical information retrieval systems retrieve a low number of documents that are prefer-
ably close to the query. In contrast to that stands the patent domain as a recall oriented
field where missing one single document in the patentability process can lead to costly
law suits afterwards if a granted patent is invalidated. However, research showed that
retrieval engines cannot find certain documents because they show a bias towards other
document characteristics. Thus the goal of this work is to look further into one approach
that deals with retrievability of documents and splits a single corpus in two corpora, one
containing high, the other low findable documents. For this, the experimental setup has
to be provided and the split done again. Afterwards merging strategies that combine
the low and high result sets in different ways are tested with the presumption that low
retrievable documents are now higher ranked and thus improve recall. This is tested
with several models of three different retrieval engines, namely Terrier, Lemur and Solr.
Evaluation shows that in most cases the models do not seem to be suitable for this merg-
ing, regarding recall and MAP values. Only precision at high rank seems to improve
in general. The few models that perform better and which attributes make them more
suitable are explained.

Zusammenfassung

Üblicherweise suchen Information Retrieval Systeme eine kleine Anzahl an Dokumen-
ten, die möglichst genau der Suche entsprechen. Die Patentdomäne hingegen ist auf
hohen Recall angewiesen und darf kein einziges relevantes Dokument im Prozess der
Patentanmeldung übersehen, da die Folge teure Gerichtsverfahren sein können wenn die
Bewilligung für ein Patent später ungültig wird. Es hat sich jedoch herausgestellt, dass
einige Dokumente von Retrievalsystemen, die eine Präferenz zu bestimmten Dokumen-
ten aufweisen, gar nicht gefunden werden können. Das Ziel dieser Arbeit ist daher, die
Herangehensweise einer anderen Publikation, die sich mit der Auffindbarkeit (retrieva-
bility) von Dokumenten beschäftigt, weiterzuentwickeln. Die Basis dafür ist das Teilen
eines einzigen Dokumentenkorpus in zwei Korpora, wobei einer davon ausschließlich gut
auffindbare, der andere hingegen ausschließlich schlecht auffindbare Dokumente enthält.
Dazu muss zunächst sowohl der Versuchsaufbau als auch die Korpusteilung neu gemacht
werden. Danach werden verschiedene Kombinierungsstrategien, die die Resultate der
schlecht und gut auffindbaren Korpora verbinden, unter der Annahme getestet, dass
die vormals schlecht auffindbaren Dokumente nun einen besseren Rang erhalten und
dadurch den Recall verbessern. Dieses wird mit mehreren Retrievalmodellen dreier Re-
trievalsysteme (Terrier, Lemur, Solr) getestet. Das Ergebnis zeigt, dass sich die meisten
Retrievalmodelle nicht gut für diese Kombinierung eigenen, vor allem bezogen auf MAP
und Recall Werte. Nur die Precision auf hohen Rängen verbessert sich bei fast allen
Retrievalmodellen. Einige der Modelle allerdings liefern bessere Ergebnisse als andere,
weshalb die Eigenschaften, die sie geeigneter dafür machen, aufgezeigt und diskutiert
werden.

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Goal of work . 1
1.3. Outline . 2

2. Fundamentals 4
2.1. Intellectual property and patents . 4

2.1.1. Intellectual Property . 4
2.1.2. Patents . 5
2.1.3. European patents . 10
2.1.4. US patents . 12

2.2. Information retrieval . 15
2.2.1. Establishing an index . 16
2.2.2. Scoring and term weighting . 18
2.2.3. Retrieval models . 19
2.2.4. Query expansion . 22
2.2.5. Evaluation . 22

2.3. Patent search . 26
2.3.1. Types of patent searches . 26
2.3.2. Techniques . 28

2.4. Toolkits . 29
2.4.1. Lemur . 30
2.4.2. Terrier . 31
2.4.3. Solr . 34

2.5. Corpora split and result set merging . 37
2.5.1. Improving retrievability by corpus partitioning 37
2.5.2. Result set merging including different retrieval engines 40

3. Related work 43
3.1. Categorization of methods . 43

3.1.1. Accessibility, findability, retrievability 43
3.1.2. Prior art search . 46
3.1.3. Retrievability and precision . 47

3.2. Assessment of methods . 47

v

4. Methods 49
4.1. System set-up . 49

4.1.1. Hardware and software versions . 49
4.1.2. Creation of the test collection . 50
4.1.3. Terrier . 55
4.1.4. Lemur . 57
4.1.5. Solr . 59
4.1.6. Baseline . 61

4.2. Corpora split . 63
4.3. Analysis of split corpora . 64
4.4. Result set merging . 69

4.4.1. CombineTrecResults . 69
4.4.2. Methods of CombineTrecResults 71

5. Experimental results 74
5.1. Overview . 74
5.2. Normalization . 75
5.3. equalSize method . 76
5.4. highestSimilarity method . 76
5.5. partitionSize method and optimalMap . 77

5.5.1. Comparison to baseline and different splits 77
5.5.2. Comparison to eqS and highSim 81

6. Conclusions 83
6.1. Discussion and interpretation of results . 83
6.2. Future prospects . 88

A. Listings 89

B. Tables 95

vi

1. Introduction

1.1. Motivation

Patents are a way to keep possession of an idea. There are almost no limitations to what
kind of idea the protection is expaned, however the industries with major interests can
be found in life science technologies and engineering. The vast amount of patents gives
them enormous economic value: Over 50 million patents exist worldwide [40] and every
year the number increases. From 2007 to 2008 1.91 million (2.8%) more patents were
filed [55]. From a technological point of view this huge amount of data is a challenge
of its own. For every newly filed patent the patentability process starts over, including
different kinds of patent search. These searches have to be done efficently and effectively
which includes not missing one single relevant document that could invalidate a granted
patent afterwards because this usually leads to costly law suits. Thus, information
retrieval that commonly tries to reduce the amount of results and therefore sometimes
intentionally sorts out relevant data, is required to look at this problem from another
point of view and provide different approaches.

With its very particular demands concerning relevant documents, the patent domain
was found to be recall oriented, which means that in contrast to a common internet
search engine that sometimes sorts out relevant data in order to provide the best results
within the first few hits, the number of relevant documents within the result set is more
important than having a compressed result set. Of course it is also necessary that the
relevant results are not the last documents in the ranking but a patent searcher is thought
to be more willing to proceed further down the result list than a usual internet surfer. To
not loose sight of the position in the result set, other measures like the average precision
are also common for information retrieval in the patent domain.

1.2. Goal of work

The goal of this work is to look further into a very specific field within the patent retrieval.
It was found out that retrieval engines showed a bias towards particular documents
because of certain document features. The affected systems tend to return documents
with these attributes more often than other documents.

Based on that, an approach was made by Bashir and Rauber [11] that divided a
document collection in low and high retrievable documents, which were classified low
and high based on a retrievability measure proposed by Azzopardi [5], and afterwards
merge it again with the presumption that poor findable documents are now ranked higher
and thus lead to a lower bias. In [11] this merge was made with a single index and two

1

methods, one combining the low and high results in an equal ratio, the other combining
them in the ratio of their distribution in the original collection. This approach leaves
open a lot of other combining strategies and deals only with the bias of IR systems, not
with the recall or MAP values.

Another approach dealing with different retrieval engines in the patent domain is the
work of Zenz et. al [59]. There, topics and relevance assessments were made from
scratch and the result sets of particular retrieval models of different retrieval engines,
that worked with independently created indexes, were combined to improve recall and
MAP values.

The exact goal of this work lies on one hand in combining the two approaches de-
scribed, which includes working with independently indexed low and high corpora in
contrast to Bashir and Rauber. On the other hand different merging strategies will be
developed and compared to the methods proposed in [11].

1.3. Outline

The work at hand provides background information on the topic in chapter 2. The
first part of this is separated in three logical sections. First, an overview of intellec-
tual property and patents, including European and US patents and information about
the patentability process, can be found in section 2.1. The next section 2.2 contains
information retrieval theory necessary for the experiments made, including information
about the retrieval models used and evaluation measures such as recall and MAP. Then
follows the consequence from the patent and IR section, patent search in section 2.3,
which gives an overview of different search types. Afterwards, in section 2.4, the retrieval
engines used are introduced. Section 2.5 presents the contents of the main papers this
work builds on.

Chapter 3 contains the basic content of other scientific work that is related to this
topic. This includes section 3.1, giving an overview of methods in other work that were
used here also and concludes in section 3.2 that briefly explaines which part of the
methods will be used afterwards.

In chapter 4 the methods used are explained in detail. This includes information on
work that had to be done previous to the experiments. How the experimental setup
was built can be found in section 4.1. Next, section 4.2 provides information on the
split in low and high corpora. Afterwards, the split corpora are analyzed regarding their
relevant document distribution in section 4.3. Finally the result set merging section 4.4
combines them again and describes the different merging strategies.

Chapter 5 contains detailed descriptions on the results of different merging strategies.
This includes an overview of the methods and models used in section 5.1. Section 5.2
briefly shows the best performing normalization method, which is then used in the merg-
ing methods. The first merging method described in 5.3 is equalSize, which combines
an equal number of low and high results. Next, in section 5.4 the results of the highest-
Similarity method, that takes the best performing 1000 results, is explained. Finally the
values of the partitionSize method, that combines a selectable number of results from

2

each split, are discussed and compared to the other methods in section 5.5.
Eventually the results of the previous chapter are discussed in chapter 6. Details on

certain methods and models are examined in section 6.1 and section 6.2 argues what can
be concluded of this result and which methods could be further looked into.

3

2. Fundamentals

The following chapter is dedicated to provide an overview of the fields that are necessary
to improve retrievability of patent documents. Therefore it is divided in several sections
that together build the background of this work’s topic. First, section 2.1 and 2.2 provide
the most fundamental insight into the patent domain and respectively IR. The former
describes the broad field of intellectual property and narrows down on one sub-area,
patents. European and US patents are emphasized especially because these are used in
the practical chapter. The latter section explains basics of IR like Boolean Retrieval,
term weighting and evaluation in this field as well as certain IR methods like query
expansion and language models or the BM25 model for they will be used later on. The
patent search section 2.3 summarizes the two preceding parts from the patent domain’s
view by describing the kind of patent searches, when they are used and how they are
issued. In section 2.4 the retrieval systems that will be used in the work are presented
and described. The last section 2.5 summarizes the works on which this thesis is built.

2.1. Intellectual property and patents

If nature has made any one thing less susceptible than all others of exclu-
sive property, it is the action of the thinking power called an idea, which an
individual may exclusively possess as long as he keeps it to himself; but the
moment it is divulged, it forces itself into the possession of every one, and
the receiver cannot dispossess himself of it.

Thomas Jefferson

2.1.1. Intellectual Property

A way of keeping possession of an idea taxed the brain of a lot of people a long time
ago. Thomas Jefferson was instrumental in crafting patent laws that made it possible
for creative people to maintain their intellectual ownership. Nowadays, uniqueness and
idiosyncratic prospect to own an idea are still the foundations of intellectual property
(sometimes abbreviated as IP). The WIPO (World Intellectual Property Organization)
defines intellectual property as “the legal rights which result from intellectual activity in
the industrial, scientific, literary and artistic fields”[53]. These legal rights make patents
marketable good for they can be sold, mortgaged or willed to another. This potential
high value can lead to contention and discussions, like it happened with the controversy
about software patents in the 2000s. The law around intellectual property helps creators
and producers of intellectual goods and services. It gives them the opportunity to make

4

up for their effort, like research, development or marketing, by giving them exclusive
control for a certain time period.

Intellectual property can be divided into different branches. The WIPO [53] distin-
guishes two parts, industrial property and copyright. They include certain areas:

• Industrial property :

– inventions in all fields of human endeavor

– industrial designs

– trademarks, service marks and commercial names and designations

– protection against unfair competition

• Copyright:

– literary, artistic and scientific works

– performances of performing artists, phonograms, broadcasts (related to copy-
right)

The last area of industrial property, protection against unfair competition, can be
considered of belonging to that branch because the Paris Convention (see section 2.1.2)
included a similar concept. When summarizing the areas, industrial property can be seen
as new solutions to technical problems (inventions), aesthetic creations determining the
appearance of industrial products (industrial designs) and transmitting information to
consumers (trademarks, commercial names), where the main focus is on protecting signs
that are likely to mislead a consumer. [53]

The last area, scientific discoveries, are not represented in these branches for they are
by definition no inventions, they are “the recognition of phenomena, properties or laws of
the material universe not hitherto recognized and capable of verification” [53]. Because
inventions build on said properties or laws that are - maybe - already recognized, the
two concepts are not the same.

2.1.2. Patents

A patent has to describe the solution to a problem within a technological field and
can therefore provide the owner of the patent the authorization to exploitation, like
manufacturing, usage or selling. It does not give the proprietor a right to make, use or
sell anything, it only grants that no other person in the country that granted the patent
exploits the invention. This is done to compensate for the owner’s development costs
and to enable him to achieve profits without the risk of competitors. In order to obtain a
granted patent, its patentability has to be given which means that certain requirements
have to be fulfilled.

Patentability

According to [54], patentability of an invention is given if it conforms to four consecutive
parts:

5

• Patentable Subject Matter: In general every invention in the technological
scope is a patentable subject matter, unless it falls into certain fields, like discov-
ering materials or substances that already exist in nature, scientific theories and
mathematical methods or methods of treatment for humans or animals (except for
products used in these methods, this could be patentable) amongst others. TRIPS
(see section 2.1.2) also excluded patents if their commercial exploitation would
conflict public order or morality.

• Industrial Applicability (Utility): A patentable invention has to have a prac-
tical purpose, it must not be purely theoretical. This intention is also emphasized
by industrial applicability, which reflects that it has to be possible to make and
manufacture as well as carry out and use the invention in practice. There are
countries where utility and not industrial applicability is required.

• Novelty: A solution to a problem is new as long as nobody else had the idea
first. Though, this fundamental element of patentability can never be proved, only
its absence can be shown. An important term here is prior art, which refers to
all knowledge that exists until a certain date. This knowledge can be a published
writing or other publication, it can be an oral disclosure like publicly spoken words,
or it can be a disclosure by use, which means the publicly usage of the invention.
It is important that only disclosure that is explicitly contained in the publication
destroys the novelty of an invention.

• Inventive Step (Non-Obviousness): This part confirms that the invention
“would [not] have been obvious to a person having ordinary skill in the art”[54], the
obviousness referring to a part of the prior art which a non-expert on the field could
have concluded. This part, as distinguished from novelty which searches for any
difference between invention and prior art, asks for an inventive step that depends
on novelty in the first place. The inventive step is denied if the combination and
the choice of combined elements is obvious.

• Disclosure of the Invention: In the patent application the invention must be
disclosed in a way that it can be carried out by a person skilled in the art. In order
to give others the chance of filing oppositions, the content of the application has
to be made publicly available (in a journal or gazette).

Filing and examination of a patent application

The process of filing a patent begins on the applicant’s side, by drafting a patent applica-
tion. This starts by identifying the intended invention, which involves deciding whether
the patentability requirements are met. It is also essential to determine critical features
for the future claims and to see if theses features can be altered or substituted and still
lead to the same result.

After this the content of the application has to be determined. This content has to be
filled in mainly three sections (see also sections 2.1.3 and 2.1.4 for details on European
and US patents):

6

• an abstract,

• a description and

• claims.

The abstract should not be too long and is used for a short summary of the other two
components. In general an application typically relates to one invention, which has to be
sufficiently disclosed in the description. This element usually also contains explanations
to included drawings. The claims part is the most important section of every application
because claims are relevant for the scope of the protection the patent eventually has to
provide.

Usually three kinds of examination are performed before a patent can be granted. The
exact execution of them is left to the patent office, but to provide that a patent fulfills
certain requirements three steps are done:

• examination as to form: ascertain that the above mentioned sections (and/or other
sections) are included in the application

• search: the search for prior art in the invention’s specific field is conducted

• examination as to substance: ascertain that the conditions of patentability are
fulfilled

If the examination processes find that the application fulfills all necessary requirements,
the corresponding Patent Office will grant a patent on the application. This includes that
details, which do not include technical information, of the granted patent are entered
into a Patent Register. In countries that require fee payments, details about paid fees
are also recorded in the Register. In an Official Gazette a reference to the grant of the
patent is published and the applicant receives a Certificate of Grant that establishes his
ownership of the patent. [54]

International Patent Classification - IPC

With the Strasbourg Agreement 1971, the first edition of the International Patent Classi-
fication or IPC was established. Until today it provides a hierarchical system of language
independent symbols to classify patents as well as utility models into different technolog-
ical areas. The major objective is to obtain an internationally uniform patent document
classification in order to establish an effective search tool for patent document retrieval.
This directly relates to the search for patentability (cf. section 2.1.2), where novelty,
the inventive step and non-obviousness can be discovered more easily. At the topmost
level of hierarchy the IPC divides technology into eight sections, each of it designated
by a capital letter (A-H), with e.g. human necessities being A or electricity being H.
There can also be subsections to these sections. The next level, class, is denoted with a
two-digit number and a title, e.g. H01 Basic electronic elements. Every class has on its
subsequent level one or more subclasses. This adds another capital letter to the code, e.g.

7

H01S Devices using stimulated emission. The subclasses are broken into subdivisions,
groups, that can be main groups or subgroups. Main groups add a sequence like 3/00
and subgroups determine the digits behind the slash. Both also add titles, which ends in
a construct as in listing 2.1, in which the title of 3/14 is read as Lasers characterised by
the material used as the active medium. An overview over the IPC hierarchy is provided
in figure 2.1. [57]

Listing 2.1: IPC example

H01S 3/00 Lasers
H01S 3/14 ∗ c h a r a c t e r i s e d by the mate r i a l used as the a c t i v e medium

Figure 2.1.: IPC hierarchy [57]

An extension to the IPC is provided with the ECLA (European Classification System),
which is used by the EPO (see section 2.1.3). It uses more than twice as much subclasses
as the IPC (140,000 compared to 70,000). ECLA follows the rule of the IPC and in most
cases they are identical to the IPC subgroups. From there it extends the classification
by another capital letter that can also have another digit as successor, e.g. A61C1/05B1,
which can again have another capital letter as successor. [17]

The USPTO also developed an intern classification system, the USPC (United States
Patent Classification), which is only used for classifying US patents. It is no extension
of the IPC and follows another format, which makes it important to lead one format
into another. When converting between IPC and USPC there exists concordance ta-
bles, which however sometimes lack accuracy and completeness. The USPC uses about
163,000 subclasses. [22]

The problem of locally different patent classification systems has lead to a trilateral
harmonization project enforced by the three biggest patent organizations worldwide:
EPO, USPTO and Japan Patent Office (JPO). It was set up in 1983 and continues to
find a way to standardize the patent classification.1

Patent harmonization

In general a patent is only enforceable within the jurisdiction of the state it was filed
in. In order to provide more internationality to this localization different arrangements
were made between certain countries. The most important are as follows [24]:

1www.trilateral.net

8

www.trilateral.net

• The Paris Convention, which was held and signed in 1883 [51], has since been
adopted by every industrialized nation (173 countries) except for Taiwan [50]. It
provides an inventor from any signatory country the possibility to file an appli-
cation first in his home country and subsequently within one year to file a corre-
sponding application in any other signatory country. The filing date of the foreign
country is the same as in the home country, which is a benefit regarding prior art
issues.

• The Patent Cooperation Treaty PCT was signed in 1970 and is adopted
by 142 countries as of 1 December 2010 [56]. It enables an inventor to file an
international patent application with which he seeks patent protection for his
invention in each signatory country simultaneously. The application can be filed
by any national or resident of the contracting country. The patent prosecution
is subsequently carried out as an international search which checks all available
published documents of the contracting countries. Eventually, if the international
application is not withdrawn the application gets published by the International
Bureau. [52]

• The Trade-Related Intellectual Property Rights (TRIPS) was signed in
Morocco on 15 April 1994 and is administered by the World Trade Organization
(WTO). Until this agreement the US patent term was 17 years from the date of its
issuance, which got extended to 20 years from the priority date. TRIPS focuses on
not building boundaries for legal trading as well as to ensure reasonable protection
of intellectual property at the same time [58].

• The American Inventors Protection Act of 1999 (AIPA) most important
content states that, in general, any application that is filed since December 2000
has to be published and publicly available 18 months after the filing.

Patent family

According to [29] there are four different definitions of what a patent family refers to.
Three of them take into account the priority dates of their databases when building fam-
ilies. They build families out of equivalent patents, links between two patents (extended
families) or base the relationship on the first filing. The fourth definition defines families
that are validated by experts. The problem with narrowing down a precise terminology
is that patent database providers define what a patent family is in their own database.

The EPO [18] speaks of a patent family if there is more than one application or
publication of one invention with the same priority date in another country. This group
of patents is related to each other by common priority numbers. In view of kind codes (cf.
section 2.1.3), patent relation is formed by documents with the same numerical identifier
but a different kind code (A or B) [21]. The USPTO defines a patent family similar to
the EPO: the same invention, patented in more than one country.

9

2.1.3. European patents

In 1973, 20 states met at a diplomatic conference in Munich in order to develop a
patent grant procedure for European patents. 16 of the participants signed the resulting
European Patent Convention (EPC) which came into force four years later. The first
patent applications were filed a year later, on 1 June 1978. With this the European Patent
Organization (EPOrg) fulfilled its intention as a public international organization and
later succeeded an EPO (European Patent Office) branch in The Hague as well as sub-
offices in Berlin, Vienna and Brussels. Though it has no legal boundaries to the European
Union as of today, additionally to the 27 EU member states eleven other states (in total
38) belong to the EPOrg, amongst others Liechtenstein, Switzerland or Turkey. [16]

The EPC establishes a system of law for the grant of patents for invention, which
are called European patents. These shall be handled at the same conditions as a patent
granted in the national scope of a signatory country, unless the EP provides otherwise.
It is therefore possible to request the grant for one or more States ([19], Art. 1,2,3).

According to the EPC, the EPOrg shall have administrative and financial autonomy.
The Organization’s organs are divided into:

• the European Patent Office (EPO) and

• the Administrative Council.

The organization’s task is to grant European patents (see figure 2.2 for an example),
which shall be carried out by the EPO with the supervision of the Administrative Council
([19], Art. 4).

The EPO accepts applications in one of the three official languages (English, French,
German) or in another language if it is translated into one of the three. The EPC
provides for several sections and divisions for processing an application or patent ([19],
Art. 15 ff.).

The EPC also defines patentable inventions, which follow the rules of patentability
as in section 2.1.2. Regarding the first point, patentable subject matter, it additionally
clearly excludes - to the extent that the application relates to such subject-matter or
activities as such - aesthetic creations, programs for computers and presentation of infor-
mation ([19], Art 52). Also inventions that risk the ordre public or morality are excluded.
As far as the other patentability requirements are concerned, the EPC goes along with
the WIPO publication.

A European patent application can be filed at the EPO or, if possible by law, in the
central industrial property office of a State (Art. 75), by a natural or legal person as well
as anybody equivalent to that. It is also possible to apply with multiple applicants ([19],
Art. 58, 59). The right to a patent usually belongs to the inventor, but if the inventor is
an employee this right is determined according to the law of the State of the employee’s
employment. If more than one person made the same invention independently of each
other, the right to the patent belongs to the person with the earliest filing date (cf.
section 2.1.4 for first-to-invent principle). ([19], Art. 60)

10

Figure 2.2.: Example of a European patent

According to Art. 63 of the EPC the term of a European patent is 20 years beginning
at the filing date of the application. This period can be extended by a Contracting State
under certain circumstances, like there has been a state of war in that State for a while
or if there has to be some administrative authorization procedure before marketing the
invention. Art. 64 states that a European patent shall provide the same rights as a
national patent in the States that it was granted for. An infringement of such a patent
has to be dealt with by national law. Art. 69 declares that a European patent’s scope
of protection is determined by the claims. Description and drawings in the application
are used for their interpretation.

Regarding the requirements of a proper European patent application, it shall contain
(Art. 78):

• a request for the grant of a European patent

• a description of the invention

11

• at least one claim (which has to be supported by the description (Art. 84); claims
will be used in the experiments, see section 4.1.2)

• drawings to which the description or claims refer to

• an abstract (only for technical information, not for scope of protection)

This article also states that, if the filing or search fees are not paid in time, the
application will deemed to be withdrawn. This also happens if the annual renewal fees
are not paid.

Kind codes

When a patent application is in the patenting process it changes its status several times.
Each time it will be published again under another patent id in order to make its status
clear. The patent applications get a numerical identifier followed by an extension, the
kind code, that refers to the status. A documents are applications, published 18 months
after filing with the EPO or 18 months after priority date; B documents are patent
specifications. There are codes that are used more often than others, which are (listed
by frequency [21]):

A1 application published with search report

B1 patent specification (granted patent)

A3 publication of search report

A2 application without search report

B2 patent specification with amendments

There are also corrected A documents A8 and A9, which can be the correction of the
title page or a complete reprint and according to that corrected B documents B8 and
B9, as well as the supplementary correction codes W1 and W2, which indicate the first
and respectively the second corrected version of a patent document. [15]

2.1.4. US patents

The US patent system goes back to the government of George Washington, when in 1790
the first patent laws were enacted. Even then the problem of exclusive property over an
idea was known and so the United States patent system was established. In 1952, due to
various changes, the Congress amended a new patent act. Based upon this amendment,
which also included the requirement of an invention not being suggested itself by state
of the art [30], until today the Copyright and Patent Clause empowers Congress “To
promote the Progress of Science and useful Arts, by securing for limited Times to Authors
and Inventors the exclusive Right to their respective Writings and Discoveries”2. In order

2The Constitution of the United States, Article 1, Section 8, Clause 8.

12

to use this right, the inventor has to provide a significant description, which describes the
way to make and use his invention, to the USPTO (United States Patent and Trademark
Office). In return a granted patent gives the inventor or patent owner exclusive rights
for a limited time.

In case of colliding filings of patents, if the same invention gets filed twice in a short
time, the US patent system has an inference procedure in which it has to be determined
who the first inventor was (cf. section 2.1.3). This is directly associated with the first-to-
invent system used by the US patent system [7]. On the contrary to most other countries,
who use a first-to-file system where the first person who files the patent application gets
the right to the grant, the right to the grant goes to the person who invented it in the
first place3. Usually the patent applicant, who is often referred to as the assignee in the
process of filing a patent, is the same as the inventor of the patent, who is the owner
by right [24]. Though it happens that the invention was done by an employee in his
working time, in which case the rights of the patent go over to the employer.

According to Title 35 of the United States Code (35 U.S.C.) §154(a)(2), the term of
a US patent is usually 20 years from the priority date (the earliest filing date), provided
that the maintenance fees are paid on time. This can be extended, e.g. if there are delays
in the issuing of the patent (Adjustment of Patent Term, Extension of Patent Term), by
at most five years [24]. The priority date also plays a vital role regarding patentability.
When doing a prior art search during the patenting process, every publication before
this date counts as prior art.

Sections of a patent

According to section 2.1.2, a granted US patent consists of several sections, of which the
most important are:

• Front page: The front page contains the bibliographic data of the patent. It
includes the patent title, filing and grant date, name of inventor, patent owner,
priority data and the numbers and filing dates of related patent applications. It
also contains classes and subclasses that the patent office assigned to the document
as well as the (sub)classes the examiner searched in. Also other patents and non-
patent literature that was cited as prior art is printed. An example of the front
page can be found in figure 2.3.

• Abstract: Summarizes the invention briefly.

• Specification: A long description of the invention. Here it is described how a person
of ordinary skill in the art is able to make and use the invention without undue
burden.

• Claims: The most important part of the document (used in the experiments later,
see section 4.1.2) because it defines the scope of protection provided by the patent.

3In January 2011 a Patent Reform Act was presented in the US Senate that proposes to use the
first-to-file principle in the US patent system, too [47].

13

Figure 2.3.: Example of a US patent’s front page

In a granted patent only claims allowed by the examiner are provided, other (filed)
claims can be found in the official patent file history. An examiner does not always
allow all claims because “although the claims are interpreted in the light of the
specification, limitations from the specification are not read into the claims” [24].
An example of the claims section of a patent can be found in figure 2.4.

• Drawings: The drawings section provides illustrations for more details of the
claimed invention.

• List of Cited References: The applicant as well as the examiner cite other patents
or nonpatent documents. An examiner’s citations are marked with an asterisk *
on the granted patent. The most important references can not be found on the
patent. These are the citations considered by the examiner and they only show up
in the official patent file history.

14

Figure 2.4.: Example of US patent’s claims

2.2. Information retrieval

But do you know that, although I have kept the diary [on a phonograph] for
months past, it never once struck me how I was going to find any particular
part of it in case I wanted to look it up?

Dr Seward, Bram Stoker’s Dracula, 1897

The context in which information retrieval is used over time has changed with the rapid
development of computer networks. A definition given in an introductory book seems
to only refer to professional searchers: “Information retrieval (IR) is finding material
(usually documents) of an unstructured nature (usually text) that satisfies an informa-
tion need from within large collections (usually stored on computers)”[28]. Today, many
people who use an electronic device often engage in the task of searching for information

15

and getting it by a web search engine or simply their email program’s inherent search
routine when looking for a specific mail. Professionals like patent searcher use search
tools for instance to obtain information on prior art. Therefore IR can be found and is
developed in many areas.

2.2.1. Establishing an index

For a machine with enough computing power it is easy to execute a query for a keyword
by grepping through text. This linear scan though is only appropriate for a certain
amount of information. Once this threshold is exceeded other methods have to be
considered. One way to do so is to index the text prior to searching. The result is a set
of indexed terms. In order to store the terms efficiently they are saved in an inverted
index, which is composed of a dictionary that holds all terms of the text and the postings.
Single postings cite the documents the term appeares in and are stored in a postings
lists, which taken together are referred to as the postings. Figure 2.5 illustrates this
circumstance.

Figure 2.5.: Inverted index represented by its dictionary and postings [28]

To get an inverted index, four steps have to be done:

1. All documents that have to be indexed are collected.

2. Each document is broken down into tokens.

3. All tokens from the last step are normalized, the results are the indexing terms.

4. The documents each term occurs in are indexed. The result is an inverted index.

Tokens and token normalization

The second step involves chopped up pieces of a sentence, tokens. A token is defined as
“an instance of a sequence of characters in some particular document that are grouped
together as a useful semantic unit for processing”[28]. Every token that contains the
same character sequence is of the same type. Terms are types that are included in the
IR system’s dictionary. When doing the tokenization step there can be various problems

16

an IR system has to face. A language identification is one of the basic sub-steps in
order to provide the right tokenization. Certain domains also require specific attention:
The text in an IT magazine might contain tokens like C++ or person@domain.com
which have to be recognized correctly. Hyphens are a special challenge as well. They
are handled as a classification problem or by heuristic rules. In languages like German
compound nouns are written without a space between the words, so a compound splitter
has to be implemented as well. Major East Asian Languages require a pre-processing
that performs a word segmentation before indexing.

A sub-step of the tokenization can be seen when selecting which words are worth
adding to the vocabulary and which are not. Extremely common words like to or
and are denoted as stop words. In general these words are determined by sorting all
terms by their collection frequency, adding the most frequent terms to a stop list and
when indexing, excluding all words of the list from indexing. This significantly helps to
decrease the number of postings to store for a system, but it also increases the lack of
results when doing a phrasal search. The mentioned stopword and for instance can be
important when issuing the query divide and conquer. By stopping out this word, the
meaning of the algorithm design paradigm is lost. Because modern IR systems often do
not have storage or processing time problems, frequently stop lists are not used.

In the third step, the token normalization, differences in a token’s character sequence
are analyzed in order to assign the token to other tokens with the same meaning. Usually,
equivalent classes are created for this, which hold all tokens that are similar to each other.
This can help the user of the IR system when issuing a query for a term that e.g. has
different dictions, like nonpatent or non-patent. Also words with accents can be assigned
to the same words without the accents, or case-folding can turn all capitalized words
into their equivalent lower case variants.

In this term finding step there also exists the process of stemming and lemmatization.
Both of them are used to deal with different forms of the same words, for instance if a
verb is conjugated or different words with similar meanings are used, like democratic or
democracy. In cases like these stemming simply chops off the ends of words to produce
a term for the indexer. This can increase the recall during retrieval, but it will also
harm precision. Lemmatization on the other hand removes the inflectional endings and
returns the base or dictionary form of the word, which is called the lemma. Neverthe-
less stemming can impair terms, it is commonly used because the Natural Language
Processing lemmatizer tools often do not increase retrieval performance notably.

Problems with phrasal search were mentioned above. In order to be able to deal with
phrasal queries, an IR system has to look for phrases as soon as it indexes the text. One
approach is to see every pair of consecutive terms as a phrase, which is called a biword
index. This method can also be extended to more words than only two and called phrase
index if the number of words is variable. A more commonly used technique is a positional
index, which stores for every token a document id together with the position numbers
of the specific token in the document. Some IR systems also combine the strategies of
biword and positional indexes. [28]

17

Indexing

The indexing itself, step four, is usually done by the indexer of the IR system at hand.
It builds the index, respectively the inverted index, by storing all terms in an applicable
way so that it can later be accessed by the retrieval system more or less efficiently.

When the indexing is done, the system can provide relevant documents for a certain
information need of the user. This need can be expressed by a query that gets issued
to the retrieval system. If dealing with a boolean retrieval system, a query can be made
out of terms combined with the boolean operators AND, OR and NOT. To measure the
effectiveness or quality of a retrieval system, two key statistics are used in IR: Recall
and Precision (see section 2.2.5). [28]

2.2.2. Scoring and term weighting

An indexable document can contain more information than only its text. Digital writings
include metadata, which has fields like document format or date of creation. These
individual fields can also be indexed separately in parametric indexes. Doing this can
extend a query by e.g. searching for certain words in a document with specific properties.
A more wider approach would be to index zones, which are user-defined text areas, in
independent inverted indexes. With this and (weighted) zone scoring, which is sometimes
called ranked Boolean retrieval, retrieval can be done by giving certain zones scores from
zero to one (if they do not include the query terms or do so).

Continuative from zone scoring, a text can include zones that mention a term more
often than others. These zones are more important when querying for the term, so
the terms get a weight for every zone or document they appear in. When the number
of occurrences is equal to the weight of a term, this weighting scheme is called term
frequency. It is denoted as tft,d and stands for the score between a query term t and
a document d. With this, the set of weights of all terms of a document gets more into
focus and the ordering of the words is less important. This view of a document is called
bag of words model and only a term’s weight, not the ordering of terms, is important.
A much broader approach to term frequency would be the collection frequency which is
the total number of occurrences of a term in the collection. This can be useful because a
collection about a particular subject-matter is likely to contain many topic-specific words
in each document. If that happens, the term weight tf could be reduced according to
the frequency of that term in the collection.

A more common approach is to use the document frequency dft that denotes the
number of documents in the collection the term t appears in. But the more often a term
is included, the less its weighting should be. For this the inverse document frequency
was defined as:

idft = log
N

dft
(2.1)

with N being the total number of documents in a collection. By combining the methods
of term and document frequency, a weighting scheme is produced that assigns

• high values to terms that occur often in a small number of documents,

18

• lower values to terms that occur fewer times in one document or occur in many
documents

• low values to terms that occur in almost all documents.

This weighting scheme, tf-idf, is denoted as

tf -idft,d = tft,d × idft (2.2)

2.2.3. Retrieval models

Boolean Retrieval

The Boolean retrieval model is the oldest and most widely used approach in IR. Queries
are formed out of tokens that are combined with boolean expressions (AND, OR, NOT).
Each document on which this query is issued is seen as a set of words, so the result mainly
depens on occurences of the query terms in the document. The importance of each word
is not measured, so a word is either in the text (1) or not (0).

Vector Space Model

Opposed to the Boolean retrieval paradigm the Vector Space Model (VSM) represents
documents as vectors in a common vector space. This document vector can have several
dimensions, each of which corresponds to one term t of the dictionary. Each coefficient
is a value representing the term importance or presence by e.g. a simple binary code
(0,1) or a term weight wij (the weight for term i in document j) like tf-idf, which is the
most common representation. The set of documents of a collection can then be viewed
as a set of vectors in a vector space. Comparing them with each other may be used
when implementing a more like this function that finds other documents like the found
one (see section 2.5.2 for an example usage). Along the lines of this, a query can also
be seen as a vector in the same vector space. A document d or query q is expressed as
t-dimensional vectors, an example is given in equation 2.3.

dj = (w1j , w2j , . . . , wtj) (2.3)

The VSM makes it possible to represent a collection of N documents and M terms in a
N ×M term-document matrix. An entry in the matrix corresponds to the weight of a
term in the specific document, e.g. 0 stands for no significance or non-existence.

With the documents and query lying in the same vector space, their similarity can be
calculated by the angle between them, as in figure 2.6 illustrated. The most common
similarity measure for this is the cosine similarity :

score(q, d) =
q · d
|q| · |d|

(2.4)

The denominator has the effect of normalizing the length of different documents so that
a longer document cannot have a better result than a shorter just because it contains
more terms.

19

Figure 2.6.: Query q is more similar to ~d1 than to ~d2 [38]

The result of this calculation can further be used as a score for the relevance of this
document for the specific query. Usually a setting for a retrieval includes the document
collection represented by vectors, a free text query represented by a vector and addi-
tionally a number K that is equal to the number of results with the highest scores that
are sought.

The VSM contains a drawback when it comes to combining Boolean queries with
vector space queries. A VSM can be used for issued Boolean queries because the system
just has to make sure the weight of the query terms is not zero in the document. On the
other side, a Boolean index can not be used to answer queries for a VSM because it does
not store a term weight information. This could be solved mathematically but there
exists no system that uses this approach. Regarding wildcard queries, the two methods
would basically need different indexes. Only on the lowest level it works to issue a query
to a VSM, where multiple terms are generated and issued as a vector space query. The
scoring would depend on the weights of the generated terms. Phrase queries are even
more difficult. In a VSM the ordering of the terms is lost and cannot be regained to
help finding consecutive terms. [28]

Okapi BM25

The Okapi system first implemented a non-binary IR model, the BM25 weighting scheme
or often called after the system Okapi weighting. This model will be used by two retrieval
engines in the experiments, see section 4.1.6. It was developed to provide a probabilistic
model considering term frequency and document length, as addition to the Binary In-
dependence Model. It builds upon the sum of the inverse document frequency for query
terms:

RSVd =
∑
t∈q

log
N

dft
(2.5)

20

RSV is the Retrieval Status Value, the quantity used for ranking, q are the query terms.
There are several equations used for the BM25, one of the most common is:

RSVd =
∑
t∈q

log

[
N

dft

]
· (k1 + 1) · tftd
k1 · (1− b+ b× (Ld

Lave
)) + tftd

(2.6)

where Ld is the document length and Lave the average document length of the collection,
k1 is a tuning parameter for the document term frequency scaling (k1 = 0 denotes
a binary model, k1 > 0 denotes raw term frequency usage), b is a tuning parameter
determining the scaling by document length (0 ≤ b ≤ 1; b = 1 denotes fully scaling the
term weight by document length, b = 0 denotes no length normalization). [28]

Language models

Usually a user thinks of fitting words that describe his information need as a query. When
issuing this query, the terms of it are compared to document terms and the documents
with the highest count are marked as more important. Language models, which are also
common in other language technologies like speech recognition or machine translation,
have the opposite approach to this task: Each document and its terms are described
by a document model which has a probability of generating a query. A document then
matches an issued query if this document model’s query is similar to it. For this, the
language modeling approach ranks documents based on the probability of the model Md

generating the query: P (q|Md). In order to do this, probabilities of the words of the
language have to be determined. The language model is therefore a function that puts
a probability measure over strings from a specific vocabulary. For a language model M
over an alphabet Σ the accumulated probabilities of the vocabulary are 1:∑

s∈Σ∗

P (s) = 1 (2.7)

The probabilities of the terms are calculated by different methods. The simplest
method for this is the probability chain rule, that takes into account the probabilities of
earlier events. More common forms for language models in IR are the unigram language
model :

Puni(t1t2t3t4) = P (t1)P (t2)P (t3)P (t4) (2.8)

which does not consider other conditions, or the more complex bigram language model,
that takes into account only the previous term:

Pbi(t1t2t3t4) = P (t1)P (t2|t1)P (t3|t2)P (t4|t3) (2.9)

These models are often sufficient for IR tasks, opposed to other fields like speech recog-
nition for instance, because the structure of sentences are not that important to analyze.
For this reason these methods are also called bag of words models.

Language models can be realized in various ways. The most prominent method is the
query likelihood model. This model constructs for each document d a model Md with

21

the goal to rank the document by P (d|q) (cf. equation 2.10) and the probability of each
document is interpreted as the likelihood of it to be relevant for the query.

P (d|q) =
P (q|d)P (d)

P (q)
(2.10)

Because P (q) is the same for all documents and P (d) is treated as uniform for all
documents, they can be ignored, which sets P (d|q) = P (q|d). A query would be observed
as a random sample from the respective document model, and documents are ranked
according to this probability. For doing this, the multinomial unigram language model
is used:

P (q|Md) = Kq

∏
t∈V

P (t|Md)
tft,d (2.11)

with Kq = Ld!
tft1,d!tft2,d!...tftM ,d! as the multinomial coefficient for query q, which can be

ignored because it is a constant depending on the query. Certain retrieval models run
in the experiments of this work also implement the language model function, see section
4.1.6. [28]

2.2.4. Query expansion

Synonyms of words pose a problem for most IR systems when it comes to recall of the
returned documents. Often user vary the queries themselves to cope with this issue, but
there are also a number of methods that can be done by the system to help refine the
query. A local method would be relevance feedback that actively involves the user in
the retrieval process by telling the system what is relevant or not, which subsequently
lets this information alter the final result set. A global method like query expansion
(QE) acts independently of the query or the results when expanding or reformulating
the query terms. It focuses on new queries that produce semantically similar terms in
the result set. So users can give input on specific query words or phrases, not on a
result. A common approach for this is using some form of thesaurus. The thesaurus can
suggest synonyms for the user to select or automatically be used to expand the query
with synonyms and related words for each term t in the query. This method can also be
used with term weighting, where an additional term has less weight than the original one.
The thesaurus could be manually composed by human editors or automatically derived
by word co-occurrences or grammatical relations. The advantages of using a thesaurus
are that it does not require user input and that it increases recall. The downside is that
in a scientific area a good thesaurus is costly to produce and update, because it has to be
domain specific. It also decreases the precision especially when it comes to ambiguous
terms. [28]

2.2.5. Evaluation

To evaluate a retrieval system is a very important part of IR because it helps research to
continue its work. Nevertheless it is also a very tough subject because it involves having
standards to compare to and these standards have to be created first. What builds the

22

basis for the evaluation is how satisfied a user is with the results the system provides.
Important factors for this user happiness are:

• speed of response of the system,

• size of the index and

• relevance of results.

The latter one definitely is the most important factor for most users of a system. There-
fore IR systems are tested with standard test collections which include three items used
to evaluate it:

• A document collection,

• predefined queries for information needs and

• a set of relevance judgments, that determine which document is (non)relevant for
which information need.

This last point, relevance judgments, is a binary classification referred to as the gold
standard or ground truth judgment of relevance. These judgments do not refer to a query,
but to the information need that stands behind a query. This circumstance reflects that
a relevant document is not one that happens to contain all words of a query, but one
that conforms to an information need. In order to fulfill the first two requirements there
exist standard test collections. The most common collections are:

• The Cranfield collection: As the first collection of this kind, it was collected
in the UK in the late 1950s. It contains 1398 abstracts about aerodynamics, 225
queries and exhaustive relevance judgments.

• Text Retrieval Conference (TREC): TREC was started in 1992 by the Na-
tional Institute of Standards and Technology (NIST) and U.S. Department of De-
fense as a workshop. It is divided in different tracks, which are dedicated to different
research areas like the TREC-CHEM organized by the IRF4. It was developed to
provide evaluation for large-scale text retrieval issues. To receive an evaluation,
NIST provides a test set consisting of documents and questions with which the
TREC participants run their IR systems. The retrieved top-ranked documents
are returned as a list to NIST, who then evaluates the result. For the retrieval
research community it is also possible to obtain the evaluation software to do their
own checks of relevance judgment to information needs (which are called topics in
TREC) mappings. Because the collection is much too large to provide exhaustive
relevance judgments, the judgments are only available for documents among the
top k results that were returned by a system the evaluation was developed for. [36]

4http://www.ir-facility.org/trec-chem

23

http://www.ir-facility.org/trec-chem

• GOV2: Evaluations of the GOV2 web page collection were done by NIST as well,
although the size of this collection is much larger. Nevertheless it is still smaller
than the amount of documents indexed by large web search companies.

• NTCIR and CLEF: The NII Test Collections for IR Systems and the Cross Lan-
guage Evaluation Forum were designed for cross-language information retrieval,
whereas the first one focuses on East Asian languages and the latter one on Euro-
pean languages.

Unranked retrieval sets

When an IR system returns a set of unranked documents for a query, precision and recall
of this result set is usually interesting to the researcher. These can be derived building
on the basic relations from the following table:

relevant nonrelevant

retrieved true positives (tp) false positives (fp)

not retrieved false negatives (fn) true negatives (tn)

Recall is the fraction of relevant documents in the collection that the system returned,
whereas Precision is the fraction of returned results that are relevant to the information
need (see equations 2.12 and 2.13).

Recall =
tp

tp+ fn
(2.12)

Precision =
tp

tp+ fp
(2.13)

Another measure that stands for the correct classification of a system is accuracy that
only evaluates the true positives and negatives: A = tp+tn

tp+fp+fn+tn . A reason why this
measure is usually not used within the IR domain is given by the fact that the maximum
accuracy can be obtained by labeling all documents as nonrelevant and because usually
there is only a very small fraction of documents that are relevant to a query, the accuracy
of the system would shoot up. However, a user is generally more interested in getting
back documents, which maybe includes receiving some false positives, than getting back
none at all. The values for recall and precision can also help to improve the results.
High precision may be needed in the web domain, where a user wants to have relevant
results on the first result page. In the patent domain, however, a high recall is much
more important because missing one relevant document can lead to costly law suits.
The two measures trade off against one another, because a recall of 1 can be achieved by
returning all documents of the collection with the downside of having a low precision.
High precision on the other side includes leaving out some relevant documents as well.
To cope with this problem, the F measure is used to combine the two quantities by
calculating the weighted harmonic mean of precision and recall:

Fβ =
(β2 + 1) · P ·R
β2 · P +R

(2.14)

24

Generally, the balanced F measure (F1 or Fβ=1) is used, in which precision and recall
are equally weighted. If β < 1, precision is emphasized, if it is greater than 1 recall is
enlarged.

Ranked retrieval sets

Nowadays, the standard of search engines is using ranked retrieval results. A naturally
given example of this result set can be found in the top k retrieved documents. A very
common measure among the TREC community is the Mean Average Precision (MAP),
which calculates a measure of quality over all recall levels. For this, the average preci-
sion of each query is computed by calculating the precision for each retrieved relevant
document, then averaged with the previous calculations and repeated until all relevant
documents are retrieved. The mean of these averages is then computed for each system,
which results in the MAP:

MAP (Q) =
1

|Q|

|Q|∑
j=1

1

mj

mj∑
k=1

P (Rjk) (2.15)

qj ∈ Q are information needs, {d1, . . . , dmj} is the set of relevant documents for the
information need and Rjk is the set of ranked retrieval results from the top result before
getting to document dk. Using the MAP measure with the same information needs in
different systems makes more sense than using it with different information needs in only
one system. Then the system can be evaluated in contrast to others, while the MAP score
tends to vary widely when used in one system with various information needs. Another
measure commonly used calculates precision at certain levels of retrieved results. This
precision at k (sometimes also precision@k) called measure is used when it is important
to know how well the system works at the first k results, like the first few pages of a
web search result. Its downside is that it is the least stable commonly used evaluation
measure and that it cannot take into account the total number of relevant documents
when calculating the precision. The R-precision soothes this problem by calculating the
precision at position R, which is the number of relevant documents for the information
need. It is identical to the break-even point measure and empirical experiments showed
its high correlation with MAP.

Similar to precision at k is the recall at k measure, which will be used together with
precision at k in the comparison of the results in chapter 4. It calculates the recall values
at a specific threshold and is used to give an overview of the progression of the recall
values.

Relevance assessment

As said above, the proper evaluation of an IR system is done by using relevance judg-
ments of specific information needs and see how the system at hand performs compared
to others. For small test collections these judgments are provided exhaustively, but for
large modern collections usually relevance is only assessed for a subset. One approach

25

that uses this method is pooling, where the top k results of some IR systems are evaluated
for relevance. Sometimes the result documents of Boolean keyword searches or expert
assessments are also added to the subset. A relevance judgment is done by humans who
are deciding if a document is relevant for an information need or not. Because humans
tend to be not as reliable when it comes to consistent decisions as a computer would do,
there are different approaches to this problem. One could be using many judgments for
each information need, which can involve very high expenses. The kappa statistic offers
a mathematical procedure for calculating the agreement between two (or more) judges.
It is copied from the social sciences and is a measure considering agreement by chance:

κ =
P (A)− P (E)

1− P (E)
(2.16)

P (A) stands for the probability of agreement, P (E) denotes the probability the judges
agree by chance (in a relevant/nonrelevant classification it would be 0.5, but can also
be calculated using marginal statistics). The κ value for a total agreement will be 1, for
random agreement 0 and a κ < 0 stands for worse than random. So a realistic κ > 0.8
stands for good agreement, whereas κ < 0.67 indicates that the data is problematic for
evaluation. [28]

2.3. Patent search

Patent searching is a very broad term, it includes various domains. Two distinct domains
can be discerned here. One domain are the reasons why a patent search is conducted
in the first place. There are different types of patent searches that are distinguished by
reasons for the search or the searcher that executes the search. The second domain are
the techniques with which a searcher looks for patent documents.

2.3.1. Types of patent searches

The patent domain has various use cases for conducting a search. Not only searches a
patent examiner for other patents or literature during the patentability process, there
are also other reasons for conducting a patent search. The reason for a search can come
up during the development of a product or after a patent has been granted.

Patentability search

Patentability means that a patent application has to fulfill certain requirements in order
to conclude as a granted patent (cf. section 2.1.2). Thus a patentability search shall help
a patent attorney or agent prior to filing a patent to determine if the invention can be
patented and which other documents, be it other patents or non-patent literature, may
be relevant for the evaluation. The search also helps the editor of the application to
construct claims. Any document, written or otherwise published, patent or not, prior to
the filing date of an application can be relevant to the search. Therefore this search is one
of the most time consuming searches because the searcher himself has to determine when

26

to end it. If only locale patents are searched, the patent owner may have legal issues
to deal with later, but because of the limitlessness of possible important documents the
searcher will not be able to evaluate all documents. [24]

Validity search

(In-)Validity searches are used to determine the novelty at the time of an invention.
It is comparable to a patentability search except that it is conducted after a patent
application’s publication. Common reasons for an invalidity search can be found when a
company is sued for patent infringement. If the company conducts this search and finds
evidence that important references were not considered in the patenting process, the
patent in question might be invalid and therefore unenforceable. This is also important
regarding licensing issues. If a patent is invalid, a licensee might have already paid for
a license that another company can freely use because of the invalidity. Also the patent
owner might be interested in a validity search to assure the enforceability of his own
patent, if he registers a patent infringement. Such a search includes the search of the
claims or drawings as well as any patent and non-patent literature prior to the earliest
claimed priority date of the patent. [24]

Infringement search

An infringement or freedom to operate search is used to determine if there exists a patent
that includes patent claims that would be violated by producing something of commercial
interest [24, 20]. An example of usage would be a company that wants to assure their
right of making, using and selling a new product with respect to a potential patent
infringement. The searcher needs to search only unexpired and therefore enforceable
patents. Compared with other searches (cf. figure 2.7) it is crucial to not oversee only
one patent claim, therefore the expected recall in this search is 1 [20]. A common use
case of infringement searches in the US, where the first-to-invent concept is used, is
applied by companies that monitor the patent filing of their competitors closely and file
a similar patent with exactly the same claims, confident that they were the first to come
up with the invention in question.

A clearance search can be seen as a subpart of the infringement search. It is used
to determine if a party has clearance to make, use and sell the product of a patented
invention. The objective is to find out what inventions exist in the public domain and
are free to use. This search will be conducted when a patent has not been infringed or
expired. It can be seen as the freedom to operate part of infringement search. [24]

State-of-the-Art search

A state-of-the-art search is a comprehensive search of patent and non-patent publica-
tions, nevertheless if it is expired. It is usually conducted by people who want to get
an overview of the current development in a certain field. Also patent attorneys use
them to help with patentability questions. A more comprehensive search in this area is

27

Figure 2.7.: Different patent searches and their required (P,R)[20]

the patent landscape search. It extends the state-of-the-art search by categorizing fun-
damental discoveries and incremental improvements or gathering information about the
history of a technology. This search is usually conducted to analyze if making business
in a research area is beneficial. [24]

2.3.2. Techniques

When patent documents were not digitized, a patent search was the same as a patent
classification search where only patents from one class were examined. However, a com-
mon problem was the misclassification of various patents which resulted in not findable
patents. With the digital era, searching for certain documents got a lot easier for patent
examiners. It was possible to conduct text searches with certain keywords and even cita-
tion searching was feasible. Today the recommendation for conducting a proper search
is to combine text and classification searching.

Classification search

The classification search was developed out of what was already there: a patent classifi-
cation system (see 2.1.2 for the IPC classification). This search can be divided into two
subsections. The first one, the core classification search, leads to the core features of the
invention. The search area for this examination (core class area) is represented by the
classes and subclasses that are most closely related to the invention’s subject matter.
The subclasses of this area contain the most relevant patent documents and have to be
searched exhaustively. The second section, the peripheral classification search, includes
areas that deal with sub-features or sub-functions of the invention at hand. This section
is not as important as the first one, it can be searched depending on time and budget of
the patent examiner. [24]

28

Full-text search

In general, text search is done by entering keywords into a search engine to conduct a
search. Though, there should be more to do this to result in a satisfactory output. As
keyword searching is always a way of broadening and narrowing different strategies have
been developed. A patent examiner could start with the generic structure/function and
then narrow down the problem by combining text queries gradually. This can also be
done the other way round, by first starting with the problem and narrowing down the
structure/function. The third common option is to start tightly with problem, structure
and function combined and then subtract keywords to broaden the output. [24]

Citation search

Citation searching is a search that includes previous searches by the patent applicant
or the examiner. It therefore can help to understand the interpretation of the examiner
and which other documents were relevant at that time. In turn this can assist with
finding new perspectives on an invention. There exist two different types of citations.
The first one, backward citations, were issued during the patent examination process and
are citations to already granted patent documents and publications in the scope of the
invention. Forward citations, the second type, are their counterparts: They are patent
documents and publications that are subsequently cited by other granted patents (see
figure 2.8 for a more descriptive explanation). [24]

Patent
A

1999

Patent
B

2009

cites

Figure 2.8.: Patent A is a backward citation of patent B, B is a forward citation of A.

2.4. Toolkits

For this project three different indexing tools were used. The first one, Lemur, empha-
sizes on the construction of an efficient index which comes with the demand for a large
disk storage. The second one on the contrary, Terrier, does only need a fraction of disk
space and focuses on cross-linguistic indexing. Solr is the third of them and concen-
trates on high scalability, providing a search server with distributed search and index
replication.

29

2.4.1. Lemur

The Lemur project is well known for the development of the Lemur Toolkit and the
Indri Search Engine among other components. The former is an open source software
framework made for support of research in language modeling and information retrieval.
The latter one is a subset of the Lemur Toolkit, although it is often addressed as a stand-
alone tool. This can be explained due to the fact that Indri was developed autonomic
and later got included into the toolkit5.

The main advantages of the Lemur Toolkit are therefore its sophisticated structured
query languages and the support of XML/HTML documents. As far as indexing is
concerned it can handle text in English, Chinese and Arabic, it supports word stemming
(Krovetz and Porter), stop words and recognition of acronyms among other features.
When doing retrieval a researcher can work with Indri, KL-divergence, vector space,
tf.idf, Okapi and InQuery as well as relevance- and pseudo-relevance feedback, passage
and XML element retrieval and other components6.

Indri, if seen apart from the toolkit in a detailed view, is a search engine that provides
state-of-the-art text search. With its index file structure it can handle much larger
text collections - up to 50 million documents on a single machine or 500 million with a
distributed search - and it is responsible for the support of XML/HTML documents. It
also integrates the Indri query language which is used to build complex queries about
document structure. [44]

When Indri was developed, it was designed to address four goals [39]:

1. complex queries should be supported by the query language

2. superior effectiveness from the retrieval model

3. support retrieval at different levels of granularity

4. support of very large/multiple databases, fast indexing, concurrent indexing, . . .

The retrieval model of Indri was designed as an improved version of a model described
in [33], which was a combination of language modeling and inference network approaches
to information retrieval [39]. In the inference network it is assumed that “a query is
composed of a series of concepts, where these concepts may be terms, phrases, or more
complex entities”[39] and that a document is relevant for a user if it contains concepts
that occur in the query.

The query language of Indri was inherited by its predecessor, the Inquery structured
query language7. Therefore operators like #combine and #weight have similar usage
as #sum and #wsum in Inquery, whereas the #filreq (filter-require) and #filrej (filter-
reject) operators are the same. Indri also supports a field operator with which fields,
that are tagged information of a document, can be included or excluded in the search for
a term. These fields can also be used as regions for scoring, meaning that scoring and

5For more information on this topic see www.lemurproject.org/docs/index.php/Lemur and Indri
6Some of these features were not present in the version used in this work.
7For more information see for instance [13]

30

file:/www.lemurproject.org
http://www.lemurproject.org/docs/index.php/Lemur_and_Indri

ranking within a document (for instance in its paragraphs or sentences, depending on the
field) is possible. Indri is also capable of recognizing numeric quantities and comparing
them.

The Indri system architecture provides different parsers for documents formatted with
e.g. XML, HTML or in TREC-style. With these parsers every document gets translated
into a ParsedDocument, that can be stored by the indexer directly. With this, a list
of terms of the document, their position as well as field information get saved. This
ParsedDocument can get transformed into another one by Transformation objects, which
are e.g. stemmers or a stopword removal. Theses Transformation objects can also be
concatenated. As far as indexing is concerned, Indri builds compressed inverted lists for
each term and field in memory and writes it to disk. This data is self-contained, which
means that all information that is necessary to perform a query is contained. Indri’s
retrieval feature includes the evaluation of queries against many indexes simultaneously
while these indexes can be on different machines. The query evaluation consists of
two steps: first, the number of times a term and phrase occur in the collection are
calculated, and second, the results of step one are used to evaluate the query against the
collection. Indri also supports multi threaded operations, which allows for query runs
during document indexing and index writing.

2.4.2. Terrier

Terrier is an open source information retrieval platform, written in Java and developed
at the School of Computing Science at the University of Glasgow. The UK Engineering
and Physical Sciences Research Council supported and funded a project whose result is
the Terrier framework [59]. The platform’s main goal is to provide a flexible, efficient
and effective search engine for large-scale collections of documents. It supports research
using standard TREC and CLEF test collections.

Besides this assistance, Terrier also provides many document weighting models such
as DFR (Divergence from Randomness) models, Okapi BM25, language modeling and
TF-IDF. The platform can also index common document formats like HTML, PDF,
Microsoft Word and others and can be easily extended by creating new Document plu-
gins. It is also capable of indexing field and position information and supports various
stemming techniques including the Snowball stemmer for European languages. As far as
retrieval is concerned it comes with an easy to use command-line querying interface to
allow for quick testing and it also provides Query Expansion among other features.[46]

The indexing algorithms of Terrier are based on a new DFR framework for deriving
parameter-free probabilistic models for information retrieval [1]. To offer flexibility in
usage, the system is built in a modular way and provides convenient configuration op-
tions, e.g. the parameter setting of Terrier is done in one terrier.properties file. Indexing
in general is a four stage process which can be altered at any step by adding plugins.
An overview of this indexing architecture is given in figure 2.9.

The indexer plugin manages the whole indexing process. In order to do so the corpus of
documents gets processed by a Collection plugin which generates a stream of Document
objects. Then the indexer iterates through all these documents of the collection and

31

Figure 2.9.: Terrier indexing architecture [46]

sends the terms it finds through one or multiple TermPipeline components where the
terms can be transformed or removed if they should not be indexed. The implementation
of stemmers and stopword removal can be found here.

The terms extracted from a document by Terrier include the textual representation
of it, the position in the document and the fields in which it occurs in the document,
which is usually a HTML tag but can also be defined by the Document plugin. It also
provides a Block Indexer which allows to save positional information with each term. A
block’s size is 1 by default, so the exact position gets stored when indexing. If the size
is greater than that (blocksize = N) the block id is incremented after every N terms.
This can be useful for working with semantic entities to allow structured retrieval.

After the TermPipeline processing, the terms get aggregated, the indexer writes them
do disk and creates a data structure including

• Lexicon,

• Inverted Index,

• Document Index and

• Direct Index.

The Lexicon saves the term and the corresponding term id, global term frequency and
document frequency as well as the offsets of the postings list in the Inverted Index.
This Inverted Index is responsible for the postings lists of a term. For each term the
document id of the matching document and the term frequency in that document get

32

stored. The Document Index stores document number and id, as well as the length of
each document and the offset of it in the Direct Index. This Direct Index stores terms
and term frequencies and is used for query expansion. [46][37]

Figure 2.10 shows an outline of the retrieval architecture used in the Terrier framework.
A search application (e.g. Desktop Terrier) sends a query to the Terrier framework. In

Figure 2.10.: Terrier retrieval architecture [46]

order to deliver a result this query first has to be parsed and the outcome gets handed
to the Manager component, where it gets applied to the configured TermPipeline as a
pre-processing step. Then the query gets handed to the Matching component at which
point document scores are calculated using the combination of weighting model and
score modifiers. As said before Terrier provides a wide range of document weighting
models of which the Divergence From Randomness models are the noticeable. Terrier’s
version 3.0 includes 126 DFR models. Afterwards, in the Post-processing the result set
can be altered, for instance by invoking query expansion, whereas in the Post-filtering
step documents can be included or excluded regarding specific restrictions taken by the
user. Eventually, in the last step the derived result set gets returned to the executing
application.

As said before Terrier includes automatic pseudo-relevance feedback in form of query
expansion. For this the top most informative terms from the top-ranked documents in
the query are added into the a new query which gets re-weighted and re-run. To tune the
inherent parameters of the query expansion the Terrier developers include parameter-
free query expansion mechanisms, the Bo1 (Bose-Einstein 1), Bo2 (Bose-Einstein 2) and
KL (Kullback-Leibler) term weighting models.

33

Regarding evaluation, Terrier supports the main evaluation functionalities found in
the trec eval tool, for instance calculation of Mean Average Precision (MAP), precision
at rank N , interpolated precision or R-precision amongst others. [46][37]

2.4.3. Solr

Solr is an open source enterprise search platform supported by the Apache Lucene project
and written in Java. Its APIs cover REST-like HTTP/XML and JSON with which the
platform can be used from other programming languages. It uses the Lucene search
library for full-text indexing and searching and features hit highlighting, faceted search,
dynamic clustering, database integration, handling of various document types for index-
ing and geospatial search. [43]

As Solr builds on Lucene, technical details of the search engine apply to it as well.
Figure 2.11 shows typical components of a search application. The darker green shapes
highlight the components Lucene handles. As Lucene only provides the core search
library, acquisition of content has to be done by Solr, which involves the three lowest
shapes. For this, raw content has to be gathered and subsequently translated into
documents which eventually can be processed by Lucene.

Figure 2.11.: Components of a search application with highlight on Lucene’s compo-
nent[31]

Basically, Lucene generates an index by extracting text, analyze it and add it to
the index. In order to extract text from a document, this unit has to fulfill certain
requirements. For Lucene a document is a container holding fields which in turn consist
of the real content. This content is divided in fields which consist of a name, a text or
binary value and detailed options that describe what has to be done with this field when
adding a document to the index. Figure 2.12 illustrates this circumstance by giving a
Solr example of fields from the Solr schema.xml and a sample document. The fields are
used in the retrieval process because Lucene searches the values of fields that the user
wants to be searched in. This can be useful for instance if only titles are wanted in the
result set.

The next step after receiving the content is to analyze it. For this, Lucene provides

34

Document

Field1

Field2

 …

Field1

● name (identifier)
● text or binary value
● detailed options

<add>
<doc>
 <field name="id">SOLR1000</field>
 <field name="name">Solr, the Enterprise Search Server</field>
 <field name="manu">Apache Software Foundation</field>
…
</doc>
</add>

<schema name="example" version="1.3">
...
<fields>
<field name="id" type="string" indexed="true" stored="true" required="true" />
<field name="name" type="textgen" indexed="true" stored="true"/>
<field name="manu" type="textgen" indexed="true" stored="true" omitNorms="true"/>
...
</fields>
</schema>

schema.xml

doc.xml

Figure 2.12.: Lucene’s content modeling with a Solr example

various analyzers that convert field text into terms by tokenizing and performing dif-
ferent operations on it. This includes normalization, stemming, stopword removal or
lemmatization amongst many others. It is also possible to create own analyzers in case
the right one is not provided. The stream of tokens the analysis process provides are
subsequently written into the files contained in the index. Traditionally Lucene stores
input in an inverted index. The index directory consists of segments which are created
when a writer flushes buffered added documents and pending deletions into the direc-
tory. When a query is issued the results of separately traversed segments are combined.
Regarding index functionality, Lucene implements indexing, deleting and, compared to
Terrier and Lemur, direct update of documents. [31]

For the retrieval part, the first step is to create a query object. For this Lucene’s
QueryParser uses analyzers to translate a user’s textual expression into a user-defined
complex query with which the searching process can be issued. Lucene combines the
commonly used pure boolean model with the vector space model (see section 2.2.3) to
process an information need. A user can also choose which method is used for each
single search.

Regarding scoring, Lucene uses a similarity scoring formula to measure the similarity
between a query matching document and the query itself. The formula is shown in
equation 2.17 and calculates the score for each document d matching term t in query q.

35

The result of this equation is the raw score, a floating-point number ≥ 0.0.

∑
t in q

(tf(t in d) · idf(t)2 · boost(t.field in d) · lengthNorm(t.field in d))·

·coord(q, d) · queryNorm(q)

(2.17)

The factors of the formula are as follows:

• tf(t in d): term frequency for term t in document d

• idf(t): inverse document frequency of term t

• boost(t.field in d): boost factor affect a query or field’s influence on the score; set
during indexing

• lengthNorm(t.field in d): field’s normalization value, given the number of terms
within the field; computed during indexing; this factor boosts fields with fewer
tokens

• coord(q,d): coordination factor; based on number of a document’s query terms;
gives an AND-like boost to documents containing more search terms than others

• queryNorm(q): query normalization value; based on sum of squared weights of all
query terms

Based on this far-reaching formula, Lucene is able to provide an explanation for the
ranking of its results. This explanation can be generated for each document (identified
by a document-id) and contains the final score for the document as well as the values
for tf, idf and fieldNorm, which is equal to the aforementioned lengthNorm.

Regarding the implementation of Lucene in Solr, figure 2.13 illustrates the internal
architecture of Solr. Its core is shown as multiple layers because the system supports
multiple configurations and indexes with one single instance. The most important parts
of Solr that were not mentioned above are:

• schema.xml [41]: It contains the fields of the documents and how the indexing
or searching should deal with the field, e.g. if it should be retrievable or if it is
required (see also figure 2.12). Generally, the file is structured in three parts:

– Data types: This part contains all kinds of types a field can be. Each
fieldType has a name and a class, for instance DateField or TextField,
that reference a Solr class that is used for that type. It may also define the
default options for fields with that type.

– Fields: This section contains all fields that are used in a document. Each field
has a name and a (data) type and may have field options, like indexed=true

or stored=true.

36

Content
Feeder

(e.g. SolrJ)

Content
Connectors

(AMCF)

Content
Sources

Index
(Lucene)

Solr Web App

schema

solr
config

U
pdateC

hain

Analysis

Search Request
Handler Query

Query
Parser

UpdateRequest
Handlers

Update
Parsing

Java App Server

SearchC
om

p.
Core

Admin

Solr Core

Admin
Stats

Zoo
Keeper

Resp.
Writer

Original diagram by
www.cominvent.com

Apache Solr
Conceptual
Architecture

Admin

User

Figure 2.13.: Solr’s internal architecture [14]

– Miscellaneous settings: These contain settings like the unique key field, which
defines which field is an identifier of the document, the default search field,
which sets the search field if none is provided, the default query parser oper-
ator, which is OR by default and can be changed to AND.

• solrconfig.xml [42]: This file contains parameters for configuring Solr itself. This
includes the path for plugins, the path to the index data, settings for merging index
segments, settings about how an update is handled, query settings like caching
parameters or event listeners that fire certain code when querying, settings for
HTTP requests, registering request handlers, settings for processing documents
before indexing, settings for the administration web page and others.

2.5. Corpora split and result set merging

2.5.1. Improving retrievability by corpus partitioning

Bashir and Rauber often focused on the completeness of the returned result set provided
by the retrieval system (cf. section 3.1.1). They found out that retrieval systems tend to

37

be biased towards certain document features, be it document length or rare, respectively
common, words so that the systems return these documents more often than other
documents. The problem arises if it is crucial to not miss any document in the result
set, like it is in the patent domain where recall is of higher importance than precision.
To approach this issue the retrievability of a retrieval system provides a measure to
calculate “how much each and every document d ∈ D is retrievable in top-n rank results
of all queries” [8].

Their approach in [11], which is also subject to the experiments made later (see section
4.2 and following sections) to increase the retrievability of documents, is to basically
divide the entire document collection into documents that are high or low retrievable.
After this split query processing is done on each part separately and after that the
two result sets are combined again. Eventually this increases the possibility to have
documents with low retrievability in the result set, additionally to the already found,
high retrievable ones.

To evaluate retrievability Bashir and Rauber calculate the retrievability of documents
with a cumulative score which counts the number of times a document can be retrieved
within the first c results (cut-off factor c) when invoked over a certain query set. In a
formal description, retrievability is:

r(d) =
∑
q∈Q

f(kdq, c) (2.18)

f(kdq, c) denotes a utility/cost function, kdq is the rank of the document d in the result
set of query q, whereas c is the aforementioned cut-off factor, which denotes up to
which rank a user will proceed the result list. This function returns 1 if kdq ≤ c and
0 otherwise, so r(d) gets increased every time the document d is listed amongst the
top c results. However, longer documents with more vocabulary will potentially have a
higher r(d) than shorter documents. To cope with this circumstance the authors suggest
to normalize the score by the number of queries that can retrieve d, regardless of any
cut-off factor. This set of queries is Q̂ in equation 2.19.

r(d) =

∑
q∈Q f(kdq, c)

|Q̂|
(2.19)

In order to further investigate retrievability and its inequality in collections the Lorenz
Curve can be used. The Lorenz Curve plots statistical distributions and illustrates the
disparity within the distribution [49]. It is often used to visualize the income distribution
of a country. When using it for displaying the system bias, the documents are sorted in
ascending order according to their retrievability score. If a system is not biased at all
the curve will be linear, otherwise the skew is proportional to the amount of inequality.
To summarize this amount the Gini Coefficient G is used. Mathematically this is “the
area between the line of perfect equality and the observed Lorenz curve, as a percentage
of the area between the line of perfect equality and the line of perfect inequality”[48].
In figure 2.14 this is the area named A. The Gini Coefficient is calculated as follows:

38

Cumulative share of people from lowest to highest incomes
100%

C
u
m

u
la

ti
ve

 s
h
ar

e
o
f

in
co

m
e

ea
rn

ed
1
0
0
%

Lin
e
of
 E
qu

al
ity

 (4
5

Deg
re

e) A

Lo
re

nz
 C

ur
ve

B

Figure 2.14.: Example of a Lorenz Curve [48]

G =

∑n
i=1(2 · i− n− 1) · r(di)
(n− 1)

∑n
j=1 r(dj)

with n = |D| (2.20)

n is the number of documents in the collection that are sorted by their r(d) value. G will
be a value between 0 and 1, so the higher G is the more biased the underlying retrieval
system is. This is also proportional to the area above the Lorenz Curve in figure 2.14
(area A).

To proof that the splitting of the corpus in low and high retrievable documents im-
proves recall, several experiments are done. The first test is done over the complete
corpus using all queries (single term and 2-term queries) in order to sort the documents
according to their retrievability. Three prominent retrieval models are evaluated:

• TFIDF - term frequency-inverse document frequency (cf. section 2.2.2)

• BM25 - the OKAPI retrieval function (cf. section 2.2.3)

• LM - a Language Modeling approach based on Dirichlet Smoothing (cf. section
2.2.3)

The test shows that TFIDF is missing a few thousand and BM25 does not find a few hun-
dred documents whereas LM does not have any unretrievable document and is therefore
the least biased retrieval system. In the second experiment it is tested if longer queries
still lead to low retrievability by 20 documents that have the highest respectively low-
est average term frequencies. If is shown that the retrievability score ranking is almost
identical.

The third test builds on the results of the former and checks if this behavior also occurs
for a random 5% subset of the corpus and not only for extrema. For this experiment the
corpus gets split into three subsets: Documents with high, medium and low retrievability

39

get divided into particular subsets. In order to do so, the retrievability of each document
has to be calculated. Since this would be a way too extensive task for the corpus
used, Bashir and Rauber apply another approach: They apply a simple set of document
features, similar to the approach in [9] (compare section 3.1.1). As said before the corpus
gets divided into three subsets afterwards. These subsets, respectively the high and low
retrievable set, build the training instances for the model training. This is done using
a 10-fold cross-validation training a Näıve Bayes classifier to determine an optimal split
of the corpus. For each of the three retrieval models a particular top and bottom split is
calculated in order to get three areas. On the resulting partitions queries are processed
independently and afterwards the result sets get merged to one single result set, in order
to ensure that eventually also poorly retrievable documents will occur in this very set.
Regarding merging principles, the authors use

• equal size - from each result subset (low/high retrievable) an equal number of
documents gets selected for the final result set

• partition size - from each result subset the number of documents selected is relative
to the size of the subset

As expected, the retrieval inequality decreases for all three retrieval models when the
corpus gets split before processing queries. It is also shown that the Gini Coefficient
decreases as the rank cut-off factor increases. So if the user is willing to proceed further
down the list, the system bias is less obvious.

In the fourth and last experiment it is evaluated if higher retrievability also improves
accuracy. As said the retrievability is much higher when using a spit corpus, whereas
regarding accuracy it merely indicates that the accuracy improves.

2.5.2. Result set merging including different retrieval engines

The main goal of the work of Zenz et al. [59] is to analyze the effects of different indexing
technologies and retrieval models on the ranking of the result sets. For this purpose three
open source search engines - Solr, Lemur and Terrier, which are also used in this work for
indexing and retrieval (see also sections 2.4.3, 2.4.1 and 2.4.2) - are investigated in regard
to their indexing and retrieval functionality. Because the focus is only on full-text parts,
metadata of the documents like the International Patent Classification (IPC) codes are
ignored. Furthermore only English parts of the patent documents are indexed and the
first claim of a patent document is used as topic because claims provide a representative
set of terms for finding documents relevant to the invention. The same approach is used
in this work, see section 4.1.2. The researchers used the ASPIRE patent collection, which
is a subset of MAREC and counts 400,000 documents. This is a comparable amount of
documents used in this very project.

For the indexing part there is no stemming or stopword removal used and before
processing the XML markup is entirely removed for all frameworks. Also term length
limitation is disabled. Regarding some other options (for instance “omit tokens with
more than 4 digits”) not all three frameworks are indexing with the same adjustments.

40

The result of the indexing part is interesting as far as the unique number of terms is
concerned: Due to different tokenization mechanisms, Solr has more than twice as much
terms as Terrier (about 4 Million compared to about 2 Million), Lemur on the other
hand can be found almost exactly between the two (about 3 Million). The reason for
the poor performance of Terrier can be found in its special treatment of numbers. Terms
with more than four consecutive digits are discarded which causes a massive reduction
of terms in the patent corpus which has a high amount of numbers in its text.

For the test collection corpus the documents of the ASPIRE data set are ordered
by priority date and then split by the targeted number of topics and the size of the
corpus into two parts: the document collection, which are documents with priority date
before January 2003, and potential topic documents with a later priority date. These
topics are selected regarding certain criteria. Only patent applications are used which
have English claims because the topics are formed out of the first English claim. This
claim is used because it represents the content of the patent document to the most
extend. Furthermore all World Intellectual Property Organization (WIPO) documents
are excluded from the topic documents because of erroneous XML markup. From the
remaining documents those with at least three relevance judgments are selected. All of
these constraints were also used in the experiments done in this thesis, see section 4.1.2.

Eventually there are 15 experimental runs with the three retrieval frameworks se-
lected. These have rather low MAP values due to the setup of the procedure (using the
first claim as query and the average number of relevant documents per topic is about
4). The other results, which can be compared by the recall value at 10, 100 or 1000
results, show that the results of all runs are very similar for one exception. So all three
frameworks perform much the same with respect to Solr which has the best results using
its MoreLikeThis feature. In contrast to its normal ranking results, the MoreLikeThis
functionality “computes a tf-idf score for all terms in the original query [and] the 25
terms with highest scores are taken as a query submitted to the index” [59]. Then the
individual terms are connected using the Boolean OR operator.

For the result set merging different merging algorithms are tested, but none showes
an all-over superior result compared to the other. Nevertheless the desired outcome,
to increase the recall by merging the results, can be proved. With Solr and the More-
LikeThis feature run combined with the Lemur and KL-divergence run a higher number
of relevant documents can be found among the first 1000 results.

Summary

The goal of this chapter was to provide an overview of this work’s background. It
was defined what intellectual property means and how patents can help to maintain
the right on an idea. Different ways to this, like the first-to-file and first-to-invent
approaches result in different methods to obtain a patent. The part about IR provided a
description of how a retrieval system works. For this, concepts like tokens or postings –
steps that lead to an index – were explored. Then it was described how a retrieval system
determines which terms are more important than others with models like tfidf and the

41

VSM. The most important retrieval system comparison approaches like precision/recall
or MAP were explained. Because this work makes use of it, the Okapi BM25 model
as well as the concept of language models were emphasized as well. The patent search
section provided information on different search types and when they are used as well as
it described how to do a classification, a full-text or a citation search. The chapter also
focused on the three different IR systems that were used: Lemur, Terrier and Solr. Each
system’s advantages and disadvantages as well as their functionality were described. The
last section presented the work of Bashir and Rauber about corpus partitioning in low
and high retrievable documents and the resulting bias decrease as well as the work of
Zenz et al. about result set merging of different result sets provided by three retrieval
engines.

42

3. Related work

The retrievability of single documents occurs as a new way of looking at the broad area
of patent searching. During the patenting process it is crucial for patent examiners
to find each and every patent document related to the application in order to proof
its patentability. However, patent retrieval researchers found out that some patent
documents are hard to find, some even cannot be found by any retrieval system at all.
In order to get a handle on this important problem they developed certain mechanisms
to cope with this issue, one of them picked up from the transportation planning domain,
others come from the information retrieval domain itself. The following section 3.1
provides an overview of work that is related to the topic of this thesis. This includes
publications on retrievability and how it was derived from accessibility in section 3.1.1,
work on prior art search in 3.1.2 as well as retrievability and precision in section 3.1.3.
Section 3.2 summarizes how these publications are related to this thesis’ topic and where
they will find application in the experiments later.

3.1. Categorization of methods

3.1.1. Accessibility, findability, retrievability

The concept of accessibility is a main component in the work of Azzopardi and Vinay
[4]. They focus on accessibility of documents in a collection of IR systems. To do so they
draw parallels between the land use and transportation planning domain and information
retrieval. The former uses the term accessibility as “a measure of potential opportunities
for interaction with resources like employment, schooling, shopping, dining, etc.”[4].
Information retrieval can be compared to a certain extent to this domain. The physical
space of the transportation systems can be seen as an analogy to the information space or
document collection, and the transportation system is similar to an Information Access
System (like a browsing mechanism). So accessibility, which was previously a way of
how to get from one space to another within the physical space via a transportation
system, is now a way of how to receive information from a document within a collection.
Or, if precisely compared to the definition of accessibility, “the opportunities are the
documents in the information space, and we wish to capture the potential of documents
for retrieval”[4]. So the measures of accessibility become measures for the retrievability
potential of documents.

In the transportation domain two different measures are used to calculate accessibility:

• Cumulative Opportunity Measures count how many opportunities can be reached
within a certain time of travelling.

43

• Gravity Based Measures implement a widely used, general method for calculating
accessibility and differ from the former measure by including a cost function within
the calculation.

For measuring the accessibility of a document instead of a certain location, the authors
propose two measurements adapted from the equations used in the transportation plan-
ning domain. As an adaption of the Cumulative Opportunity Measure they suggest:

A(d) =
∑
q∈Q

oq · f(cdq, θ) (3.1)

oq is the probability of expressing query q from all queries that are in Q. The function
f(cdq, θ) denotes a generalized utility/cost function where cdq denotes the rank of d in
the result set of query q, θ is a (set of) parameter(s) denoting the type of measure.
This function returns the value 1 if cdq ≤ θ, otherwise 0. For a Gravity Based Measure
they adapt a function where a document’s accessibility is inversely proportional to a
document’s rank:

f(cdq, β) =
1

(cd,q)β
(3.2)

Accessibility of documents in a collection can be examined from the system side, in
which case it is denoted as retrievability, and from the user side, the findability [3].
So high or low retrievability depends on the underlying retrieval system of the search
process. Usually this retrievability imbalance occurs when the retrieval system prefers
some documents in the retrieval part. The term bias is often used in such processes and
refers to situations when a group of documents is favored over others.

For further investigation on that issue, Azzopardi and Vinay [5] adapt the equation
mentioned above:

r(d) =
∑
q∈Q

oq · f(kdq, c) (3.3)

where c is now the maximum rank a user will look down the ranked list. This equation
is the basis for Bashir and Rauber in e.g. [8] (also compare section 2.5.1), except for oq
which is a weight and indicates how likely it is that a user will issue this query to the
information retrieval system.

The authors also find out in [5] that the effectiveness of the retrieval system is not
affected by removing less retrievable documents from the collection due to the fact
that the probability that they are retrieved is very low. Even when using queries that
are especially designed to retrieve documents with low r(d), these documents are more
difficult to find or cannot be found at all.

Working with the retrievability measurement adapted from the transportation plan-
ning domain, Bashir and Rauber first consider the approach of dealing with sets of
relevant and irrelevant queries processed for each document in [8], which can be com-
pared to the way recall oriented users create queries during their search process. The
authors state that all retrieval systems have a certain bias towards certain document
features and that the effects of this retrieval system bias have to be analyzed before
using a retrieval system, especially when working in a recall oriented domain. So they

44

analyze the retrievability of all documents in the collection and if each document d ∈ D
has about the same retrievability score, the corresponding retrieval system is called best
retrieval. They make experiments calculating the retrievability considering all queries
or only relevant or irrelevant queries, respectively. For the query generation they use
ideas from invalidity search, like combining for each document single frequent terms into
two- and three-term combinations. Relevant and irrelevant query sets for documents are
determined whether the query terms originated from the respective document or not. It
is found out that even though relevant queries seem to be the most important queries for
the accessibility of each document, these documents are not highly retrievable through
their relevant query set but through all types of queries (irrelevant and relevant).

In [10] the same authors approach another problem that makes findability difficult:
wrongly captured and interpreted context of short queries. A remedy for this can be
document selection based on clustering for pseudo-relevance feedback. This can help to
increase the findability as well as to decrease the bias of the retrieval system. In order to
do that the strengths of different query expansion approaches are analyzed. Therefore
they use an improved clustering based resampling method for pseudo-relevance feedback
selection: Based on the intra-cluster similarity, clusters are accepted or rejected for
pseudo-relevance feedback. With this selecting procedure, their approach tops other
systems because individual documents are better findable. They also state that as the
rank cut-off parameter increases, the Gini coefficient slowly decreases, so if users only
have a look at the top ranked documents, the degree of retrieval bias is greater and
decreases with their willingness to search deeper down in the ranking.

Bashir and Rauber further investigate the problem of findability/retrievability in [9]
where they use various content-based features to classify the documents of a corpus into
low and high retrievable ones. This can be used to automatically divide the corpus in
low and high retrievable documents. The content-based features they use are:

• rare terms ratio (RTR),

• average terms frequencies (ATF),

• frequent terms count (FTC),

• average terms probabilities in related patents (ATPrd),

• average terms probabilities in whole set (ATP) and

• patent length (PL).

Other features are also investigated but do not bring useful results. For their experiments
they use different retrieval models, of which TFIDF and JM show the least retrievability
inequality, except for the RTR feature where they perform worst, which leads to the
assumption that this feature can be used to identify low findable documents when work-
ing with these retrieval models. Usually the document’s length is considered to be the
reason for low retrievability of the document. However, regarding these experiments the
authors find out that the low retrievability in a particular retrieval system can also have

45

other reasons and that retrieval systems can still be useful for particular retrieval tasks,
for instance for finding patents with frequently used rare terms (if the retrieval system
is biased towards this feature). Eventually, it can be shown that content-based features
can be used to automatically classify and separate - with reasonable accuracy - low and
high retrievable patents.

3.1.2. Prior art search

Prior art search is the task of finding all information that can be relevant to proof a
patent’s novelty, therefore it is one of the main search tasks in patent retrieval. Identi-
fying prior art is part of the patentability (or novelty) search and is the most commonly
used search type. It has an important part in the (in-)validity searches as well.

In [12] Bashir and Rauber deal with improved retrievability in prior art search by
expanding prior art search queries that were generated from query patents by using
query expansion with pseudo-relevance feedback. This approach is used to help finding
patents where the writers of the patent application developed their own terminology in
order to pass the patent examination process, which is a common problem. Interestingly,
in the summary and abstract fields the performance results are much better than in the
other fields, because there the patent writers stick to a certain language and try to
keep it short. Bashir and Rauber use the presented method to cope with the problem
that prior art queries sometimes do not extract all relevant terms from query patents,
so these terms can then be extracted from the newly found pseudo-relevance feedback
documents. In order to do so they develop an approach for finding more relevant patents
for pseudo-relevance feedback: The documents “are identified based on their similarity
with query patents via specific terms“[12], these specific terms are also called subset of
terms. It can be shown that their novel approach eventually increases the retrievability
of single patent documents.

Another methodology to work with in prior art search, that is also used in the paper
of Zenz et al. (cf. section 2.5.2), is proposed by Graf and Azzopardi in [21]. The authors
propose a method for creating topics for prior art search. Their goal is to develop a
methodology for all kinds of patent sources, also for different languages. According to
the authors the basic steps for creating topics for prior art search are as follows:

1. Define a certain set of documents that form the corpus.

2. Define the potential information needs that are a pool of documents that do not
have the same time period as the corpus documents.

3. From this pool one patent document gets selected.

4. Then the patent document’s references to prior art are extracted.

5. The references within the pool are identified.

6. The documents of existing references get a relevant flag.

7. A topic gets defined by using

46

• the patent application without references or a subset of its text as a
query,

• the extracted references as relevance assessments and

• the relevant prior art definition as information need.

8. Repeat steps 3-7 for each document in the pool from step 2.

In order to justify this kind of reverse engineering relevance assessment from the ref-
erences, certain requirements have to be fulfilled: the examiner at the patent office has
to be qualified for subject and legal expertise with respect to the prior art search or
examination manuals have to provide additional guidance for the interpretation of refer-
ences. The authors argue that with a low number of relevant documents per topic, which
is the case for many patent documents, the results of the method may be inaccurate.
Another problem may be the different formats in which patent documents are provided.
These are an obstacle concerning structure and bibliographic data as well as the valid
evaluation measures.

3.1.3. Retrievability and precision

As said before, in recall oriented domains the precision of the result set does not need
to be high in order to have a good retrieval system. As long as the recall improves,
the precision value can be disregarded. Nevertheless, in some experiments the precision
measurement is also investigated. Azzopardi and Bache look at that matter more closely
in [3] to see if accessibility, represented by the Gini measurement, and effectiveness,
represented by the precision measurement, are compatible. The findings of the authors
suggest that there appears to be a relationship between these two measurements. It turns
out that if parameters are selected that maximize the access, the retrieval performance
is still acceptably good. This also leads to the suggestion that the configuration of a
system with missing relevance information can also be done reasonably by providing the
user easily accessible documents.

In the work of Bashir and Rauber [11] (see section 2.5.1 for more details) there is also
one experiment to evaluate if improving retrievability leads to higher or lower accuracy
on prior art search task patents. Though the accuracy rates of their experiment cannot
be compared to other retrieval engines because the experiments were designed for high
recall and high retrievability, they indicate that the splitting of documents in high and
low retrievable classes improves not only the retrievability of the patent documents but
also the accuracy of the result set. The authors argue that the improvement of accuracy
depends on the retrieval model as well as on the used query generation process.

3.2. Assessment of methods

The presented methods provide reasonable results in specific tasks. For this work par-
ticular attention will be paid on one hand on the retrievability measurement, on the
other hand on prior art search. The former will be useful when calculating low and high

47

retrievability of documents in order to split the corpora in two classes (see section 2.5.1).
For that content-based features like in [9] of the documents will be used to quickly pro-
vide the partitioning. The latter, prior art search, is used in the work of Zenz et al. (see
[59] or section 2.5.2 for more details). The authors use the method presented by Graf
and Azzopardi in [21] in order to create the test collection.

Summary

This chapter provided an overview over existing research topics in the patent retriev-
ability field, respectively in the retrievability domain. Adapting calculations from the
land use and transportation planning domain, the terms accessibility, findability and
retrievability were examined. It was also explained how to see retrievability, the term
most authors agreed on, as the bias of some retrieval systems towards certain documents.
Later on different approaches towards improved retrievability were shown. There were
approaches like document selection based on clustering for pseudo-relevance feedback
or automatic document categorization with content-based document features. Another
field, the prior art search, was also investigated. The most prominent work was a re-
verse engineering relevance assessment from references. The last section investigated the
compatibility of retrievability and effectiveness, respectively precision. Finally a short
assessment of the presented methods was made.

48

4. Methods

A theory is something nobody believes, except the person who made it. An
experiment is something everybody believes, except the person who made it.

Albert Einstein

The previous chapters explained methods or approaches to improve crucial measures of
the patent search domain, namely the split of a corpus or the merge of result sets. These
are now going to be the conceptual framework for the subsequent experiments. At first, a
system set-up in section 4.1 has to be done to provide a basic structure for experimenting.
It describes hardware and software used, the data collection and preprocessing steps that
were necessary for working with three different retrieval engines, how topics and relevance
assessments were created as well as which parameters the single retrieval engines used
for indexing and retrieval steps. Eventually, the baseline results generated with these
configurations are discussed. Section 4.2 describes how the corpus split was prepared
and executed and provides information on the high/low retrievable distribution. An
analysis of the split corpora is shown in 4.3, which also includes first information about
the subsequent merging. Finally, the result set merging section 4.4 contains information
on the implementation done for combining a high and low result set file, which methods
were realized, which difficulties were met and which additional features were brought in.

4.1. System set-up

This section is assigned to describe the preliminary work that was done prior to doing
experiments regarding the topic of this work. First of all a short overview is given of
the hardware on which the retrieval engines were run. Then the data collection used,
the parser, which processed the raw data and produced a usable text form, as well as
how topics and relevance judgments were obtained are described. The last part of this
chapter contains an overview of the individual indexing and retrieval steps that were
done by each of the three used retrieval engines in order to receive the baseline retrieval
values with which the values of the experiments will be compared to.

4.1.1. Hardware and software versions

Two hardware setups were used during the indexing and retrieval process, the software
used was similar:

• Supercomputer mdc1: provided by the IRF; includes two IBM x3950M2 server,

1as of May 2011, it is not available anymore

49

32 Cores (four quad core Intel Xeon 2.93GHz per node), 256 GB main memory;
a production cluster for Java and serial code; Linux operating system using Java
1.6.0 07

• PC: AMD Phenom II X4, 4 GB main memory; Ubuntu 10.04 LTS using Java
1.6.0 24

On both machines the same versions of the three retrieval engines were used:

• Lemur: Lemur version 4.12, respectively Indri version 2.12

• Terrier: version 3.0

• Solr: version 3.1 with Lucene 3.1

Only Lemur had to be installed on the systems by compiling the source code, the two
others ran out of the box.

4.1.2. Creation of the test collection

In order to obtain an index, the documents of the data collection had to be pre-processed
and transformed into a format which the retrieval engines could index. Then the doc-
uments of the data collection had to be divided into the corpus, which was indexed,
and the potential topics. From the latter ones the documents complying to specific re-
quirements (cf. section 2.5.2) were sorted out and used as topics. Details on the data
collection, the parser and how corpus, topics and relevance judgments were obtained,
follows.

Data collection

The data collection used in this work is named MAREC-400k, which is a random subset
of 400,000 documents of the MAREC collection. MAREC again is a subset of a larger
repository, Alexandria, and includes patents from the four main patent offices - EPO
(subsequently referred to as EP), WIPO (WO), USPTO (US) and JPO (JP) (see also
2.1.2). It consists of over 19 million patent documents, which include text in English,
French and German and which are formatted in a highly structured XML format. The
XML fields include dates, countries, languages, references, person names, companies as
well as IPC codes. The US, EP and WO documents include applications and granted
patents, the JP patents are only applications. The distribution of documents of each
patent office in the collection can be seen in figure 4.1. The MAREC-400k contains
100,000 documents of each patent office. [25]

For the experiments in sections 4.2 and 4.4 as well as for the baseline created prior to
that not all documents of the MAREC-400k were used. According to [59] and because
they do not contain any description, JP patents were excluded as well as all non-English
documents. The language was checked in each XML file in the patent-document tag’s
attribute lang. In [59] it is stated that the XML markup of WO documents had erroneous

50

Figure 4.1.: Distribution among MAREC documents on abstract and description [26].

claim numbers. This could be verified, for the patents included all claims in the tag that
refers to the first claim and therefore could not be parsed properly. Thus, WO patents
were indexed but were excluded from the list of topics.

Parser

The first parser used was part of a project done prior to this work. It uses StAX
(Streaming API for XML) which is an API used for reading and writing XML documents
in Java. StAX belongs to the event-based XML APIs like SAX that read in the document
in pieces and if a certain element is encountered an event gets triggered. APIs like these
are also called push-API. StAX on the contrary is a pull-API where the next part of the
document gets requested actively. It provides an iterator and cursor processing model,
of which the former one was chosen to parse the files because it is more flexible. [32]

The parser takes MAREC-style files, parses them, and writes out a TREC-style file in
which the <TEXT> tag contains contents from the MAREC files. An example TREC-
style file can be found in listing 4.1.

For using the parser in this work, the section about writing out the path and id of
images had to be removed in order to work with the second parser more easily. The first
parser provides one file which includes many sections like bibliographic data or drawings

51

Listing 4.1: Example TREC file

<DOC>
<DOCNO>US−20050205757−A1</DOCNO>
<TEXT>
Patent document text
</TEXT>
</DOC>

that do not have to be indexed for this work. Because the generated file has to be parsed
again, working with one file is faster. It is also useful to write only one file in the end
because Lemur works better with fewer files to index.

The second parser takes the result of the first step and only keeps the following sections
that build the default basis of a common index:

• title

• abstract

• description

• claims

The output is written into two files. The first one still contains TREC-style markup
and tags related to the sections mentioned above and is used by Terrier and Lemur. An
example is given in listing 4.2. The different markups were not indexed into fields but

Listing 4.2: Example markup for Terrier and Lemur

<DOC>
<DOCNO>US−5141493−A</DOCNO>
<TEXT>
<t i t l e >P e r i t o n e a l d i a l y s i s system</ t i t l e >
<abst ract> A p e r i t o n e a l d i a l y s i s system i s d i s c l o s e d f o r . . . </abst ract>
<d e s c r i p t i o n> BACKGROUND OF THE INVENTION This invent i on r e l a t e s to . . .

</d e s c r i p t i o n>
<c la ims> I c la im : 1 . A p e r i t o n e a l d i a l y s i s system f o r admin i s t e r ing . . .

</cla ims>
</TEXT>
</DOC>

<DOC>
<DOCNO>US−5141409−A</DOCNO>
. . .

created in case they are needed for experiments later on. The second output is used for
indexing with Solr and is similar to the example given in listing 4.3. For Solr, all text
is put into one field to index like it is done for the other engines. Additionally, because

52

Listing 4.3: Example markup for Solr

<add>
<doc>
< f i e l d name=”id”>US−5141493−A</ f i e l d >
< f i e l d name=”toIndex”> P e r i t o n e a l d i a l y s i s system

A p e r i t o n e a l d i a l y s i s system i s d i s c l o s e d f o r . . .
BACKGROUND OF THE INVENTION This invent i on r e l a t e s to . . .
I c la im : 1 . A p e r i t o n e a l d i a l y s i s system f o r admin i s t e r ing . . .

</ f i e l d >
</doc>

<doc>
< f i e l d name=”id”>US−5141409−A</ f i e l d >
. . .

Solr needs valid xml text to index, certain special characters (&, <, >, \, ′) had to be
changed (e.g. replacing & with &).

Topics and relevance assessments

As mentioned above, only a subset of the MAREC-400k corpus was used. Patents from
the JP subset and documents with no lang=“EN” attribute in their patent-document
tag were excluded. This leads to 219,379 documents that build the corpus of potential
topics and collection on which the topics are issued in the retrieval step, according to
[59].

For generating the topics, the methodology presented in [21] and used in [59] was
applied. This included:

• ordering all documents in the collection by priority date

• splitting the collection at January 2003 (as in [59])

• documents with a date prior to the split date form the corpus for the experiments,
documents with a date after the split build the pool of potential topics

From this pool of potential topics only patents that fulfill certain requirements were
chosen. The requirements were:

• only applications (document kind “A”, see section 2.1.3)

• only patents that have English claims

• only patents that have at least three relevance judgments

In order to check the requirements and split the data a metadata file, which contained
information about document kind, publication date, has English description, has English
abstract and has English claims for each patent was generated by the IRF and kindly

53

Table 4.1.: Test collection summary

Test collection description # empty

Corpus priority date before Jan. 20003 122.690 90

Topics priority date after Jan. 2003; only
US,EP; only applications; at least 3 rel-
evance judgments from SEA, EXA

255 222

Relevance judgments direct and extended citations 254.924 -

provided for this work. After generating the relevance judgments (see below), the patents
with at least three relevance judgments were selected and their first claim was extracted
as topic. For this, three files were generated to evaluate the result sets with TREC
evaluation tools:

• qrels file: The Relevance Judgments File List, a file containing information about
which topic is relevant for which document number. The columns of the file are
TOPIC, ITERATION, DOCUMENT NUMBER and RELEVANCY, where the lat-
ter is always 1 because only relevant documents are calculated out of the citations.
[35]

• topicNumberUcid file: A simple file that maps the topic number to the patent ucid
where the topic came from. For troubleshooting purposes.

• topics file: Contains the topic number (also in both other files) and the topic text
in a suitable markup for Terrier and Lemur (see also sections 4.1.3 and 4.1.4). For
Solr, the Terrier topics file was used to extract the topics (see section 4.1.5).

For the relevance judgments all necessary direct and extended citations from the
collection were created by the IRF. Extended citations were obtained by expanding the
citations along simple patent families. This huge amount of about 44 million citations
also returned citations that were not contained in the collection so it had to be checked
for suitable documents. From the remaining citations only the patents that fulfilled the
requirements mentioned above and that were assigned by the search report (SEA) or
the examiner (EXA) were chosen for topic extraction. The last attribute is the only one
not mentioned in [59], but because the search report and examiner have higher relevance
than an applicant when selecting a citation this decision was made.

Finally (see also table 4.1), the number of documents in the collection that were
indexed by each retrieval system is 122,690, including 90 empty documents (according
to Terrier). There were 277 topics extracted of which only 255 were chosen because the
others did not contain any text in their first claim and can be regarded as empty. In
general, empty documents contain only bibliographic data and appear to happen when

219 were automatically sorted out because they had erroneous markup in the first claim; 3 were manually
sorted out because they only contained the word “Canceled”

54

for instance a patent is found that has two versions (e.g. B1 and A3) and one of them
is empty (e.g. A3, which is the publication of a search report). Because the number of
empty documents in the corpus was insignificant, they were not sorted out.

4.1.3. Terrier

The downloadable file of Terrier was uncompressed and used with small modifications
of the properties files in the ./etc/ folder.

Indexing

The indexing was done according to the parameters selected in the work of Zenz et al.
[59]. Therefore no stemming and stopword removal was done. As mentioned in section
4.1.2 no field indexing was done. Terrier has a maximum term length limit of 20 which
was set to 2000 to allow indexing longer words on one hand as well as to prevent indexing
strings that may occur because of parsing shortcomings and that are not likely to be
present more often, on the other hand.

For the indexing part, only the terrier.properties file had to be modified. The selected
properties3 were:

• terrier.home - path to the topmost terrier directory

• terrier.index.path - path to the index directory; per default inside the terrier home
directory

• collection.spec - path to a file that contains the files to be indexed; this file is
generated by the parser and contains only one entry

• trec.collection.class - which collection object to use to index

• max.term.length - set to 2000 as mentioned above

• TrecDocTags.doctag/idtag - the name of the tag that sets the start of a document,
respectively sets the document id

Example parameters of the terrier.properties file for the indexing part are shown in
listing 4.4. Indexing was done by simply invoking ./bin/trec terrier.sh -i without
additional arguments.

Retrieval

For retrieval, the terrier.properties file also needs:

• trec.topics - path to the file which contains all topics for the run (cf. section 4.1.2);
for Terrier a tagging as shown in listing 4.5 was used

3More information on terrier properties: http://terrier.org/docs/v3.0/properties.html

55

http://terrier.org/docs/v3.0/properties.html

• TrecQueryTags.doctag - name of the tag that sets the start of a query (by this
Terrier can discriminate different queries in one file)

• TrecQueryTags.process - list of tags to process

• TrecQueryTags.idtag - name of the tag that sets the query id

• ignore.low.idf.terms - set to false for some retrieval models (labeled with * in
section 4.1.6)

Terrier writes out 1000 results per default, so no property had to be set for that.

Listing 4.4: terrier.properties file

1 # f o r index ing :
2 t e r r i e r . home=/path/ to / t e r r i e r −3.0
3 t e r r i e r . index . path=/path/ to / t e r r i e r −3.0/ index
4 c o l l e c t i o n . spec=/path/ to / par s e r /temp/ i n d e x l i s t . txt
5 t r e c . c o l l e c t i o n . c l a s s=TRECCollection
6 max . term . l ength =2000
7 TrecDocTags . doctag=DOC
8 TrecDocTags . id tag=DOCNO
9

10 # f o r r e t r i e v a l :
11 t r e c . t o p i c s=/path/ to / t e r r i e r −3.0/ t o p i c s / t o p i c s . txt
12 TrecQueryTags . doctag=query
13 TrecQueryTags . p roce s s=query , number , t ex t
14 TrecQueryTags . id tag=number
15 i gno re . low . i d f . terms=f a l s e # f o r some r e t r i e v a l models

Listing 4.5: Terrier example query

<query>
<number>294</number>
<t ex t>
1 A system f o r prov id ing automated t r a n s l a t i o n s o f documents
[. . .]
</ text>
</ query>

<query>
. . .
</ query>

Terrier may need additionally to the above mentioned properties file:

• ./etc/trec.qrels - file containing the query relevance assessments file (cf. section
4.1.2, the qrels file), if evaluation should be done with Terrier

56

• ./etc/trec.models - file containing the retrieval models to use; can also be put into
terrier.properties

The retrieval was invoked by calling ./bin/trec terrier.sh -r without additional
arguments.

Because Lemur (cf. section 4.1.4) was not able to work with queries using symbols like
point(.), comma(,), semicolon(;), Terrier was tested with two different types of topics:
one containing symbols, one without symbols, where the latter was generated out of the
former by replacing symbols with whitespace.

4.1.4. Lemur

In contrast to the other two toolkits Lemur had to be installed before using it. Therefore
the properties files could be saved in a folder of choice.

Indexing

The same basic properties as in Terrier were used for indexing. Thus no stemming and
stopword removal was done, all text was indexed into one field. Lemur does not seem
to have a term length limit so no parameters were set for this. Only one file had to be
provided for the indexing step which is shown in listing 4.6. The used properties are4:

• index - path to the folder where the index will be created or files will be added to
an existing index

• memory - how much memory will be used to index

• indexType - the type of index, can be key (KeyfileIncIndex) or indri (LemurIndri-
Index)

• corpus - parameters related to the corpus

• corpus/path - path to the file that has to be indexed

• corpus/class - the file type of the file(s) of the previous line

• field - element specifying the fields to index as data

• field/parserName - contains the name of the parser to use; WebParser handles
documents with html markup; used if any markup is left from parsing shortcomings

Lemur was started by invoking IndriBuildIndex parameter file.

4More information on Lemur properties:
http://sourceforge.net/apps/trac/lemur/wiki/IndriBuildIndex Parameters

57

http://sourceforge.net/apps/trac/lemur/wiki/IndriBuildIndex%20Parameters

Listing 4.6: Lemur properties for indexing

1 <parameters>
2 <index>/path/ to / lemur/ index</index>
3 <memory>1G</memory>
4 <indexType>i nd r i </indexType>
5 <corpus>
6 <path>/path/ to / par s e r /temp/ o n e f i l e e s s e n t i a l s . t rec </path>
7 <c l a s s >t r e c t ex t </c l a s s >
8 </corpus>
9 < f i e l d >

10 <parserName>WebParser</parserName>
11 </ f i e l d >
12 </parameters>

Retrieval

Lemur did not need any parameter settings regarding retrieval, only a properly formatted
topics file. An example tagging can be found in listing 4.7.

Listing 4.7: Lemur example query

<parameters>
<query>
<number>294</number>
<t ex t>
#combine (1 A system f o r prov id ing automated t r a n s l a t i o n s o f
documents [. . .])
</ text>
</ query>

<query>
. . .
</ query>
</ parameters>

The #combine statement, which was only used for Indri runs (see section 4.1.6), defines
a simple query in which terms are equally weighted and get OR combined. For other
Lemur runs the queries looked similar to Terrier queries (see listing 4.5). Because Lemur
did not understand queries that had any symbols, like point(.), comma(,), semicolon(;),
all of them were removed before the run.

Retrieval was invoked by calling

IndriRunQuery t o p i c s . txt −count=1000 −index=index / −trecFormat=true >
r e s u l t s / r e s u l t s . r e s

where the count-argument denotes that Lemur should write out 1000 results per query,
the index-argument denotes the path to the index to use and the trecFormat-argument
denotes to write out the results in a specific format usable for evaluating TREC-style
results. The output then has the format shown in listing 4.8. For tfidf and okapi retrieval
the additional argument -baseline=tfidf respectively -baseline=okapi was used.

58

Listing 4.8: TREC formatting

<queryID> Q0 <DocID> <rank> <s c o r e> <runID>

4.1.5. Solr

Solr could be used by simply uncompressing the downloaded file and using the exam-
ples provided, including the Java Servlet Container Jetty and the existing ./example/

exampledocs/post.sh file for adding files to the index. Other files in ./example/ could
also be used with only small modifications.

Indexing

For indexing the valid xml file generated by the parser (cf. section 4.1.2), a schema.xml
file has to be provided because the xml file has to comply to the schema. The schema file
used can be found in listing A.15. Only two data types are used, namely string and text.
The former is only used for the id, which will be the ucid of each patent. The latter is used
for the text to index and the queries and hence includes two analyzers, which pre-process
text during indexing or searching. Both analyzers use the solr.StandardTokenizerFactory
that strips irrelevant characters and sets token types. The solr.LowerCaseFilterFactory
lowercases all letters and strips everything that is not a letter. The fields section of the
schema includes two fields: one for the id (ucid) and one for the text to index. Both fields
are indexed, because only then can they be searched too, and stored to make the field
value retrievable. From the toIndex field the term vectors are stored additionally because
this helps the MoreLikeThis functionality of Solr regarding efficiency. A uniqueKey tells
Solr that the ucid of each patent is unique and if a document with the same id is added,
the old document is deleted. The defaultSearchField mentions the field to do retrieval
on if no specific field is used in the query.

Additionally to the schema.xml, the Solr server listening port had to be changed
to not interfere with other Solr instances when working on the mdc. For this, in
file ./etc/jetty.xml the line <Set name="port"><SystemProperty name="jetty.port"

default="8983"/></Set> was changed to port 8980. Also file ./example/exampledoc-
s/post.sh had to be adapted accordingly.

The Solr server was started by calling the ./example/start.jar file, the files were
added by calling ./example/exampledocs/post.sh fileToAdd.xml.

Retrieval

Retrieval with Solr is more complex compared to the other two retrieval engines. First
of all a client that sends the queries to the Solr server has to be implemented. For this
there are already implemented clients6 or one can implement a simple HTTP request.
The latter method was used in this work because with this it was possible to write the
results in a TREC-style format which could then be used for the evaluation. The code

5More information on the parameters: http://wiki.apache.org/solr/SchemaXml
6See http://solrclient.com/ for more information.

59

http://wiki.apache.org/solr/SchemaXml
http://solrclient.com/

fragment in listing A.2 shows the HTTP request for standard queries, whereas listing A.3
demonstrates the request for mlt queries. The client reads in a topic file that is similar
to the one Terrier uses (cf. listing 4.5) and reads out the query number and text. The
text is then encoded in a URL compliant string and sent to the Solr server. The server
returns a result set for the query which is then brought into a TREC-style format and
written out to the final result set. Two components of the client have to be discussed in
more detail:

• standard and mlt queries: A standard query request for a query includes
select/. By sending the line with this statement, Solr invokes the standard re-
quest handler from solrconfig.xml, which can be found in listing 4.9 together with
an example standard query for the word “schema“7. To get 1000 results back, the
number of rows has to be changed accordingly. For the mlt functionality, the query
request contains mlt/, which invokes the Solr MoreLikeThisHandler, which is not
included by default in solrconfig.xml and can be found in listing 4.10 together with
an example mlt query. The mlt handler operates on the first result for the initial
query by default and searches for more documents that are similar to this one.
The rows attribute is set to 999 because the returned result set includes the first
result of the initial query too.

• usage of xslt file: In order to receive a TREC-style formatted output (cf. listing
4.8), an xslt file had to be used, which was kindly provided by the IRF. The content
of this file is shown in listing A.4. Including this style sheet in the HTTP request
is done by adding stylesheet= and tr=SOLR2TREC.xsl to the url.

Listing 4.9: Solr standard query and request handler

1 http :// l o c a l h o s t :8980/ s o l r / s e l e c t /? s t y l e s h e e t=&q=schema&f l=sco r e&wt=x s l t&t r
=SOLR2TREC. x s l

2

3 <requestHandler name=”standard ” c l a s s =” s o l r . SearchHandler ” d e f a u l t=”true”>
4 < l s t name=”d e f a u l t s”>
5 <s t r name=”echoParams”> e x p l i c i t </st r>
6 < i n t name=”rows”>1000</ int>
7 </ l s t >
8 </requestHandler>

Additionally to the client a few changes had to be done to cope with the length of some
queries or other problems:

• in ./example/etc/jetty.xml :

– Line <Set name="headerBufferSize">65535</Set> was added to //Call

name="addConnector"/Arg/New because Jetty had problems working with
long queries.

7More about SolrRequestHandlers can be found in the wiki

60

http://wiki.apache.org/solr/SolrRequestHandler

Listing 4.10: Solr MoreLikeThis handler

1 http :// l o c a l h o s t :8980/ s o l r /mlt /? s t y l e s h e e t=&q=schema&mlt . f l=toIndex&f l=
sco r e&wt=x s l t&t r=SOLR2TREC. x s l

2

3 <requestHandler name=”/mlt” c l a s s=” s o l r . MoreLikeThisHandler”>
4 < l s t name=”d e f a u l t s”>
5 < i n t name=”rows”>999</ int>
6 </ l s t >
7 </requestHandler>

• in solrconfig.xml :

– The file contains a bug8 that also sometimes disturbs Solr retrieval, so the
request handler name search was changed to standard.

– maxBooleanClauses were doubled (set to 2048) to deal with longer queries.

– Within the XSLTResponseWriter the value of xsltCacheLifetimeSeconds

was changed to 1000 to improve performance.

As with Terrier, Solr used two different topic sets for retrieval: one using symbols, one
without symbols. Additionally, the retrieval with each topic set was done one time with
the standard request handler, one time with the mlt request handler, both without any
attributes as seen above in listings 4.9 and 4.10.

4.1.6. Baseline

The baseline consists of the values to which the results of further experiments will be
compared to. Thus it includes manifold runs with each retrieval system to allow for
a wide range of comparable values. These values are calculated with trec eval 8.1 9,
which is the standard evaluation tool for the TREC community that computes common
measures like MAP or recall@X by reading in the results file (in a standardized format)
and a relevance judgments file.

Each retrieval engine was tested with its standard and most common weighting models.
These were:

• Terrier (t.< model >)[45] (* labels models with parameter ignore.low.idf.terms=
false):

– BB2: Bose-Einstein model for randomness, the ratio of two Bernoulli’s pro-
cesses for first normalization, and normalization 2 for term frequency normal-
ization

– BM25*: BM25 probabilistic model

8see http://whomwah.com/2011/04/05/fixing-the-400-bad-request-problem-with-solr-3-1-0-and-ruby-
solr/

9http://trec.nist.gov/trec eval/trec eval.8.1.tar.gz

61

http://whomwah.com/2011/04/05/fixing-the-400-bad-request-problem-with-solr-3-1-0-and-ruby-solr/
http://whomwah.com/2011/04/05/fixing-the-400-bad-request-problem-with-solr-3-1-0-and-ruby-solr/
http://trec.nist.gov/trec_eval/trec_eval.8.1.tar.gz

– DFR BM25*: DFR version of BM25

– DLH: DLH hyper-geometric DFR model

– DLH13*: improved version of DLH

– Hiemstra LM*: Hiemstra’s language model

– IFB2: Inverse Term Frequency model for randomness, the ratio of two
Bernoulli’s processes for first normalization, and normalization 2 for term
frequency normalization

– In expB2*: Inverse expected document frequency model for randomness, the
ratio of two Bernoulli’s processes for first normalization, and normalization 2
for term frequency normalization

– In expC2*: Inverse expected document frequency model for randomness, the
ratio of two Bernoulli’s processes for first normalization, and normalization 2
for term frequency normalization with natural logarithm

– InL2*: Inverse document frequency model for randomness, Laplace succes-
sion for first normalization, and normalization 2 for term frequency normal-
ization

– LemurTF IDF*: Lemur’s version of the tfidf weighting function

– PL2: Poisson estimation for randomness, Laplace succession for first normal-
ization, and normalization 2 for term frequency normalization

– TF IDF*: tfidf weighting function, where tf is given by Robertson’s tf and
idf is given by the standard Sparck Jones’ idf

• Lemur (l.< model >)10:

– indri: standard weighting model; needs formatting: #compare(query)

– TFIDF: tfidf weighting; no formatting; invoked by adding the baseline argu-
ment -baseline=tfidf which has default values k1 = 1.2, b = 0.75

– okapi/BM25: BM25 probabilistic model; no formatting; invoked by adding
the argument -baseline=okapi which has default values k1 = 1.2, b = 0.75,
k3 = 7

• Solr (s.< model >):

– standard: using the select/ statement in the HTTP request

– mlt : using the mlt/ statement in the HTTP request

To give an overview of the performance of each run, the following measures were
chosen: MAP, recall@10, recall@100, recall@1000, precision@10, precision@20, preci-
sion@30, precision@100, precision@1000 and the number of relevant-retrieved documents
(RR). The close precision values were chosen to show the difference in the top k results

10Note: other models (e.g. run in [59]) were deprecated in the version used.

62

compared to the merged results, which will be the subject of discussion in chapter 5.
Table B.2 with Topics I, the topic set that does not include symbols, and table B.3 with
Topics II, the topics set with symbols, show the values for the baseline runs.

Terrier returned in both topic sets almost everytime the same number of documents.
Where it was not exactly the same, the numbers did not differ much. The MAP value was
slightly better for the Topics I on average, so were the recall@k values. The precision@k
value tended to be better for Topics I, but only with small k. Regarding the topics
without special characters, Lemur performed better according to the MAP value (with
tfidf and indri), but the recall values of the Terrier.Hiemstra model were slightly higher.
Lemur’s okapi model did not perform that well, especially when it comes to precision
values. Section 4.3 also discusses the Lemur.okapi model and its relevant documents
curiosity. Compared to other Terrier models, Solr’s values were higher. But when
looking at the different topic sets, Solr retrieved a different number of documents which
is also reflected in MAP and recall values with higher difference compared to the Terrier
results. Regarding its precision values there was not much difference between Topics I
and Topics II.

Because the topic sets did not differ much for Terrier and Solr, the subsequent exper-
iments were done with Topics I only.

4.2. Corpora split

For further experiments the indexed corpus of the MAREC-400k collection was split in a
low and a high corpus based on the retrievability findings. For this, existing retrievability
values generated for the high/low split research by Bashir (cf. section 2.5.1 and [11])
were used. The patents of the dataset were divided up into six different partitions, which
gradually assign a document to a low or high findable partition. The grades were almost
equally distributed:

bm25 tfidf

total11 219,379 219,379
0 36,569 36,569
1 36,562 36,562
2 36,562 36,562
3 36,562 36,562
4 36,562 36,562
5 36,562 36,562

For the experiments in this work only low or high findability was considered, so the
six grades were reduced to two, each containing three former grades. An example of
the original parameter file is given in listing 4.11. Retrievability was calculated for two
retrieval models, the standard TFIDF model and the BM25 model (see also sections

11The low/high partitioning was only done for documents used from the MAREC-400k collection that
build the main collection of this work, see section 4.1.2.

63

Listing 4.11: Example findability file

MAREC 400000\ re f 100000 US \US\000000\00\H3\10\US−H310−H. xml 0
MAREC 400000\ re f 100000 US \US\000000\00\H3\40\US−H340−H. xml 1
MAREC 400000\ re f 100000 US \US\000000\00\H4\27\US−H427−H. xml 5

2.2.2 and 2.2.3)12. Only indexed documents were considered for the split. This led to
four document lists, a low and high list for each classifier (bm25/tfidf). With these, four
different indexes for each retrieval engine were obtained with the same parameters used
as in section 4.1. These indexes contained a different number of documents (with the
number of empty files in brackets):

low (empty) high (empty)

tfidf 58,222 (11) 64,468 (79)
bm25 57,181 (10) 65,509 (80)

The ratio of low to high documents was very close, nevertheless did the low indexes take
up about twice as much disk space. This could be due to having much more text in
them. More information on the retrievability classification can be found in [11].

4.3. Analysis of split corpora

For each retrieval engine, retrieval runs were done on the four indexes with the same
retrieval models as described in section 4.1. Because the differences between Topics I
and Topics II in section 4.1.6 were insignificant the runs were only done with Topics
I. An analysis of the result sets showed that all retrieval engines in almost all models
gave high retrievable documents in the new, split result set a higher score compared
to the baseline result sets. The low retrievable documents on the contrary received in
almost all cases a lower score compared to the baseline results. This was tested for both
relevant and non-relevant documents, where each document in the low respectively high
result set got compared to the adequate result set line in the baseline result set. Only
the following retrieval models ranked more low documents higher than they ranked high
documents lower in both (bm25 and tfidf) new result sets:

• terrier.Hiemstra LM

• terrier.DLH13

This might be an indication to which model is more applicable to the corpora split
and merging (see chapter 5 for results and 6.1 for discussion). Interestingly, Hiemstra
implements a language model function, which was mentioned in [11] (see section 2.5.1)
to be least biased compared to other models.

12For a better differentiation between split and models, the bm25/tfidf split will be lowercased whereas
the BM25/TFIDF models will be uppercased in this thesis.

64

Another analysis dealt with the distribution of relevant documents within the low and
high result sets. For this purpose the number of relevant documents on each rank was
counted throughout the result sets for all queries of each retrieval model and additionally
over all low or high result sets. As an example, which is representative for both splitting
methods and for almost all retrieval models of each retrieval engine, the distribution of
relevant documents in Terrier models with the tfidf split is given in figure 4.2 for the low
result sets and in figure 4.3 for the high result sets. The comparison shows that the

3
2

1
3

9
5

7
7

5
9

3
1

1
1

1
2

9
1

4
7

1
6

5
1

8
3

2
0

1
2

1
9

2
3

7
2

5
5

2
7

3
2

9
1

3
0

9
3

2
7

3
4

5
3

6
3

3
8

1
3

9
9

4
1

7
4

3
5

4
5

3
4

7
1

4
8

9
5

0
7

5
2

5
5

4
3

5
6

1
5

7
9

5
9

7
6

1
5

6
3

3
6

5
1

6
6

9
6

8
7

7
0

5
7

2
3

7
4

1
7

5
9

7
7

7
7

9
5

8
1

3
8

3
1

8
4

9
8

6
7

8
8

5
9

0
3

9
2

1
9

3
9

9
5

7
9

7
5

9
9

3

0

50

100

150

200

250

300

350

400

Rank

N
u

m
b

e
r

o
f r

e
le

va
n

t d
o

cu
m

e
n

ts

Figure 4.2.: Frequencies of relevant documents in result sets of Terrier.tfidf.low

low results contain on average more relevant documents on the first ranks. Figure 4.4
plots the sum of relevant documents up to a certain rank, from which can be seen that
the low results only perform better in the first 50 ranks. From rank 59 up the sum of
relevant documents in the high results is higher than in the low results. The frequency
figures show that from there on the number of relevant documents in both result sets
remain static, though the high results contain on average more relevant documents per
rank than the low results.

From these findings, the following two assumptions were made:

1. Because of the mismatch of scores (documents get higher scores in high result
sets and lower scores in low result sets), low and high result set scores have to be
normalized before the merging step to compensate this fact.

65

3
2

1
3

9
5

7
7

5
9

3
1

1
1

1
2

9
1

4
7

1
6

5
1

8
3

2
0

1
2

1
9

2
3

7
2

5
5

2
7

3
2

9
1

3
0

9
3

2
7

3
4

5
3

6
3

3
8

1
3

9
9

4
1

7
4

3
5

4
5

3
4

7
1

4
8

9
5

0
7

5
2

5
5

4
3

5
6

1
5

7
9

5
9

7
6

1
5

6
3

3
6

5
1

6
6

9
6

8
7

7
0

5
7

2
3

7
4

1
7

5
9

7
7

7
7

9
5

8
1

3
8

3
1

8
4

9
8

6
7

8
8

5
9

0
3

9
2

1
9

3
9

9
5

7
9

7
5

9
9

3

0

50

100

150

200

250

300

350

400

Rank

N
u

m
b

e
r

o
f r

e
le

va
n

t d
o

cu
m

e
n

ts

Figure 4.3.: Frequencies of relevant documents in result sets of Terrier.tfidf.high

2. The relevant documents are not equally distributed. Compared to [12] (see also
section 2.5.1) where the amount of low and high results taken was relative to the
overall ratio of low/high documents, it could make a difference to see for each
retrieval model up to which rank most relevant documents show up:

a) Only a small amount of result lines from the low result set will be merged
with the high result lines, again up to 1000 results.

b) This small amount has to contain more relevant documents than the high
result lines that are cut off in the merging:

#(relDocshighBottom)� #(relDocslowTop)

To comply with point 2 of the assumptions, the low result sets were analyzed regarding
their peak in relevant documents. One idea of working with an average score - average
for a model or for a query - were not further investigated because the average rank for
an average score was always close to position 400 and for a few cases higher. The two
most interesting methods were:

• Median: The median of relevant documents in the low corpus was calculated using
the relevant document distribution described above. Because relevant documents

66

2
3

0
5

8
8

6
1

1
4

1
4

2
1

7
0

1
9

8
2

2
6

2
5

4
2

8
2

3
1

0
3

3
8

3
6

6
3

9
4

4
2

2
4

5
0

4
7

8
5

0
6

5
3

4
5

6
2

5
9

0
6

1
8

6
4

6
6

7
4

7
0

2
7

3
0

7
5

8
7

8
6

8
1

4
8

4
2

8
7

0
8

9
8

9
2

6
9

5
4

9
8

2

0

2000

4000

6000

8000

10000

12000

14000

low
high

Rank

T
o

ta
l o

f r
e

le
va

n
t d

o
cu

m
e

n
ts

1 6
1

1
1

6
21 26 31 36 41 46 51 56 61 6

6
71

0

500

1000

1500

2000

2500

3000

low
high

Rank

T
o

ta
l o

f r
e

le
va

n
t d

o
cu

m
e

n
ts

Figure 4.4.: Total of relevant documents per rank for Terrier.tfidf low and high - overview
and detail

67

in the low distribution tend to be high in the beginning and stagnate with higher
rank, the median provides on average a suitable point in the top ranks up to which
many relevant documents occur.

• Maximum relevant retrieved (maxRR): To fulfill the requirement stated in
point 2.b above, experiments were made that calculated the position in the low
result list on which a merging will produce a maximum amount of relevant docu-
ments retrieved.

The found cut-off ranks of these two methods are illustrated in table B.1. The median
can be determined for a single position, whereas the maximum of relevant retrieved
documents can be found on multiple positions in the result set. These values were used
in the experiments with the method described in section 4.4.

It is worth mentioning that most of the maxRR values were close to the median values
except for a few outliers. Amongst those were also the Terrier models that had to be
run with ignore.low.idf.terms=true, namely PL2, IFB2, DLH, BB2. However, median
and maxRR rank positions of some other retrieval models also diverged widely. Only
for Lemur.BM25 an answer for this behavior could be found: The relevant document
distribution in both splittings was unusual, as can be seen in figure 4.5. Virtually
no relevant documents were found on positions 1 to 66 (bm25), respectively 1 to 44
(tfidf), which stands in contrast to a small set of ranks on which the relevant documents
accumulated. These findings might be of interest for further research.

3
4

5
8

7
1

2
9

1
7

1
2

1
3

2
5

5
2

9
7

3
3

9
3

8
1

4
2

3
4

6
5

5
0

7
5

4
9

5
9

1
6

3
3

6
7

5
7

1
7

7
5

9
8

0
1

8
4

3
8

8
5

9
2

7
9

6
9

0

0.5

1

1.5

2

2.5

3

3.5

bm25

Position

N
u

m
b

e
r

o
f r

e
le

va
n

t d
o

cu
m

e
n

ts

3
4

2
8

1
1

2
0

1
5

9
1

9
8

2
3

7
2

7
6

3
1

5
3

5
4

3
9

3
4

3
2

4
7

1
5

1
0

5
4

9
5

8
8

6
2

7
6

6
6

7
0

5
7

4
4

7
8

3
8

2
2

8
6

1
9

0
0

9
3

9
9

7
8

0

0.5

1

1.5

2

2.5

3

3.5

tfidf

Position

N
u

m
b

e
r

o
f r

e
le

va
n

t d
o

cu
m

e
n

ts

Figure 4.5.: Relevant document distribution of Lemur’s BM25 model for both splits

68

4.4. Result set merging

The result set merging started off by implementing an equal size and partition size merg-
ing algorithm similar to the methods used in [11] (see also section 2.5.1). In [11] the par-
tition size method used the size of the low/high distribution for its partitions. Because
in this work the number of low/high documents is almost the same for both splittings
(see above, section 4.2), this approach is not much different from the equal size method.
Therefore a simple equal size merging method (eqS) was implemented along with a par-
tition size similar approach (parS) that combines the result sets in a ratio specified by
the user. Both approaches merge on a rank based approach; eqS is a kind of Round
Robin Merging.

Additionally to these methods, the program implemented for this work contains other
optional features. Below the main features and the program’s layout are described.
Listings with code fragments shall provide information about the basic algorithms used
for the program features. They include Java syntax because the program was written in
Java, but the functionality is not bound to any programming language.

4.4.1. CombineTrecResults

The main program part is called CombineTrecResults. A state diagram describing the
application flow is shown in figure 4.6.

Options

The program implemented can be called by using the following arguments, which should
partly also be used with another program implemented for the same purpose:

-eqS Combine with equalSize - Takes 500 result lines of the low and high result file from
each query. If a query does not contain that much result lines the missing lines are
filled up by the other result file.

-parS Combine with partitionSize - Needs the -high N and -low M arguments provided.
It takes N result lines from the high result list and M result lines from the low
result list of each query.

-all Combine with equalSize and partitionSize

-highSim Combine with highestSimilarity method

-normalization Normalize scores before sorting

-opMap Use optimalMap feature

-high N N is the number of lines taken from the high result file

-low M M is the number of lines taken from the low result file

69

Program

feature

selected

read in

arguments:

-eqS

-parS

-highSim

-opMap

-high N

-low M

-highFile hFile

-lowFile lFile

high/low result

sets stored in

data structure

normalized scores

stored

opMap

feature

eqS

method

parS

method

highSim

method

optimalMap()

combineWith

EqualSize()

readInFiles() normalize()

combineWith

PartitionSize

combineWith

HighestSimilarity()

merged

results

merged

results

merged

results

merge()adapted

attributes

No

merge()

merge()

merged

results

adapted

attributes

No

merge()

merge()

combine x low

result lines with

1000-x high

result lines

sorted, merged

result set

sort()

combined

topic Y

printToFile()

combine

topic Y

selectTopic()

combine

topic Y

selectTopic()

combine

topic Y

selectTopic()

combined

x low and

y high lines

sort(), print()

for all topics

x<999

No

Yes

enough topics?
enough topics?

all combined?

Yes

No

Figure 4.6.: CombineTrecResults application flow

70

-highFile highFile highFile is the path to the result set file that was generated from the
high corpus

-lowFile lowFile lowFile is the path to the result set file that was generated from the
low corpus

4.4.2. Methods of CombineTrecResults

Equal size method (eqS)

A constant, that is set to 500, determines how many result lines have to be taken from
each result set. Because some queries returned less than 500 queries or none at all,
certain validations were implemented:

• If a low or high result set does not contain any queries, this query is sorted out
and a corresponding message is printed.

• If one file list contains less than 500 entries, the missing lines are taken from the
other one.

• However, if both file lists contain less than 500 entries, the query is sorted out.

The code in listing A.5 shows the merging and fill-up (equivalent to the second point
above) part. For merging, a for-loop puts an equal number of ResultLine elements from a
low and high result set in a list. If the fill-up part gets invoked, meaning if one result list
does not contain enough elements, the already partly merged list gets further elements
by specifying at which position the first loop stopped and from which element list the
missing result lines are taken.

After merging regarding these requirements, the result set gets sorted by its scores,
because for the evaluation with trec eval the scores have to be in order. The new result
set is written to an output file.

Partition size method (parS)

For each query N result lines of the high result set and M lines of the low set are
combined. Again, to cope with queries that return less than N respectively M results,
the missing lines are taken from the other file. If both result sets contain less than the
required number of result lines, the query is sorted out. This also happens if one result
set does not contain any result line at all. Sorting out can be avoided by taking less
result lines, because the parS method does not necessarily return 1000 (merged) result
lines. This was implemented on purpose to provide a method that only returns e.g. 100
result lines, which are more realistic to be searched through by a human person than
1000.

In contrast to the eqS method, the parS method checks first if enough results from
high/low are available and adapts the amount of result lines taken from each list accord-
ingly. The lines for the merging are shown in listing A.6. After the merging the result
set also gets sorted by its scores and the new result set is written to an output file as
well.

71

Highest similarity method (highSim)

The highestSimilarity method combines all results of the high and low lists, then sorts
these results by score in descending order. Afterwards it cuts off at 1000 results and
outputs these to a new result set. With this, only the documents with the highest scores
are put into the final result set, regardless how many are high and low. This method was
implemented to maximize the number of documents that score very well. The source
code for this method can be found in listing A.7.

Optimal MAP feature (opMap)

The optimalMap method combines the low and high result set with every combination
possible, starting with 999 high results and 1 low result up to 1 high result and 999 low
results. For each combination it calls trec eval and reads out MAP, r@10, r@100, r@1000,
p@10, p@100, p@1000 and RR values, which are written into an output file. A code
fragment for this containing the main algorithm can be found in listing A.8. The output
text file is not further formatted, so its columns are according to the value enumeration
and its lines correspond to the number of low result lines (e.g. line 58 is the evaluation
of a merge with 58 low and 942 high result lines). With this feature it is possible to
follow the progress of specific values throughout different merging combinations.

Normalization methods

Experiments were made with several score normalization methods. There are two basic
normalization methods with which experiments were made, both of which are applied
to either the entire model or each query, which makes four normalization possibilities:

• Standard normalization: As in [34] this normalization distributes the scores be-
tween 0 and 1, which is done according to [6] by the formula: s′ = s−min

max−min with
s being the original score, s′ the new, normalized score, and max/min the maxi-
mal/minimal score throughout the model or query. This was used in methods:

– normalizeScoresPerModel - Normalization is done for the entire model, mean-
ing over all topics of a run, as suggested in [6].

– normalizeScoresPerQuery - Normalization is done for one query only, meaning
that the scores of each query are then distributed between 0 and 1.

Because the worst performing document scores are cut off, entries with score 0.0
are not in the final result set.

• Sum normalization: As in [34] this normalization produces a minimum score of 0
and all other scores sum up to 1. For this the list of all scores is summed up and
the normalized score is calculated with score′ = (1

sum)∗score, with sum being the
sum of the original scores. This was used in methods:

– normalizeScoresSumPerModel - Normalization is done for the entire model,
meaning over all topics of a run, as suggested in [6].

72

– normalizeScoresSumPerQuery - Normalization is done for one query only.

Again the worst performing document scores are cut off, so entries with score 0.0
are not in the final result set.

An example code fragment for the score normalization per query of high result set lines
can be found in listing A.9.

Summary

This chapter provided information on the methods applied for the goal of this work.
For this it described the MAREC-400k data collection and how topics and relevance
assessments out of direct and extended citations were generated. Furthermore, the
parsers used to produce text files that could easily be indexed by all three retrieval
engines were explained. The parameter files that were used for Terrier, Lemur and Solr
were discussed and it was shown which arguments were used for indexing and that for
retrieval the TREC format was crucial. Afterwards the results of many retrieval models
produced by applying these parameters were provided, to give a baseline to compare
to later on. Then the focus was on how to split a corpus with different split models
and what characteristics the resulting low and high indexes, respectively result sets, had
in order to work with them later on in the merging step. This merging, along with
the implemented program parts that were used, was also discussed and highlighted the
obstacles and versatile methods implemented to retrieve a better result set than with
normal merging.

73

5. Experimental results

The experimental results provide the aggregation of all previous work, including the
splitting of the corpus, the merging and the evaluation with previously generated judg-
ments to create a final assessment to compare to baseline results. For all this, the first
step in section 5.1 is to provide a short recap of the methods used and to give an overview
of the models used in the experiments. Preceding the actual experiments, tests with dif-
ferent normalization methods will be reported on in section 5.2. Then the equalSize and
highestSimilarity result sets will be discussed in sections 5.3 and 5.4. Eventually section
5.5 contains the most comprehensive experiments that were made with the partitionSize
feature, including a comparison with the baseline as well as with the eqS and highSim
feature.

5.1. Overview

Experiments for result set merging were performed using the methods described in sec-
tion 4.4.2, namely:

• eqS - equalSize method

• parS - partitionSize method, with median and/or maximum relevant retrieved
(maxRR) positions (cf. section 4.3), depending on model

• highSim - highestSimilarity method

• norm - normalization methods combined with the above mentioned methods

• opMap - optimalMap feature; was used to give an overview of all merging possi-
bilities if the progress of certain values was interesting

Because not all methods could be tested with all retrieval models of the three retrieval
engines, especially not with four different normalization methods that could be applied
to each of them, a few models were picked and will be referred to as the standard (test)
set :

• bm25.BM25 - bm25 split and BM25 model; because a split in high/low was espe-
cially done for this model, this combination should provide good results; can be
done with Terrier and Lemur, but was dropped for Lemur most of the time (see
below for more information)

• tfidf.TFIDF - tfidf split and TFIDF model; again, a split in high/low was done for
this model so good results are expected; can be done with both Terrier and Lemur

74

• terrier.Hiemstra LM - one of the models that ranked low results higher, see also
section 4.3; the tfidf split provided better results in pre-tests, so the bm25 split
will not be taken into account

• terrier.DLH13 - the second model that ranked low results higher; the tfidf split
provided better results in pre-tests, so the bm25 split will not be taken into account

• Solr.standard - the standard Solr model, because it performed better than the mlt
functionality in pre-tests

In general these models were used to provide an overview of the result set merge for
each method. Additional models will be used in the parS method. Although Lemur’s
BM25 model did not seem to be working correctly (see section 4.3), it was also used
in the parS method because the results were interesting to compare. In contrast to the
baseline results, where two different topic sets were used, the experiments were only
done with one topic set (Topics I).

5.2. Normalization

The normalization with different methods is demonstrated at first to give a basis for
choosing the best performing normalization method. During development several exper-
iments using different merging strategies were already done with the four normalization
methods. NormalizeScoresPerQuery performed best most of the time. To test this
proposition the standard set was used to give an overview of the normalization meth-
ods. The experiments were performed for each model with the eqS method to avoid the
problem of choosing a specific position as it is necessary in parS. Table B.41 contains the
results for several runs, each named in format retrievalEngine.split.model.normalization,
where normalization can be (cf. section 4.4.2):

• normM - normalizeScoresPerModel

• normQ - normalizeScoresPerQuery

• normSumM - normalizeScoresSumPerModel

• normSumQ - normalizeScoresSumPerQuery

On average the normQ normalization achieved the best results again. Single values were
sometimes better in other normalizations but overall it could score better than the other
methods or its values were not far away from the better performing ones. Additionally
to the results of the preceding tests, normQ seems to be the optimal choice in most cases
and will therefore be the method of choice for further experiments.

1The column relevant retrieved is not listed because only the order of the documents differ for each
normalization, not the number of retrieved documents.

75

5.3. equalSize method

As described in section 4.4.2 the eqS method combines 500 low and 500 high result
lines of each query to an output result set. Table B.5 contains the result values of the
standard set combined with this method. The format of each model’s name is again set
to retrievalEngine.split.model<.normalization>.

Emphasized values in table B.5 highlight better results compared to the baseline results
in table B.2. Only two models, t.Hiemstra and t.DLH13 which stood out from the other
models regarding their low and high scoring, showed better MAP values. Hiemstra
also achieved better results with low precision/recall@k values, but on the other side it
found less relevant documents compared to the baseline, which is the only model in this
comparison. All other models found more relevant documents in total, nevertheless their
r@1000 value is lower compared to the baseline. This characteristic can be found if only
a few queries score much better whereas many others perform worse. The r@k value is
calculated per topic and averaged over all topics, so only a few good performances will
not distort the result. This problem is inherent in the RR value which seems to be much
better than in the baseline results but has to be contrasted with r@1000 in this case. A
discussion on this behavior can be found in section 6.1. On average the p@1000 values
were lower in the baseline, although the MAP values did not perform that well. p@100
also did not achieve better results in the merged result set. This implies that between
rank 100 and 1000, or for the tfidf models between 30 and 1000, the precision increased
but not to an extent that could affect the MAP value.

5.4. highestSimilarity method

Details to the highestSimilarity method can be found in section 4.4.2. It basically com-
bines all low and high result lines, sorts them and returns the best thousand entries. In
table B.6 the results of the standard set with highSim combination can be found. As
before, emphasized values highlight better results compared to the baseline.

Again as in the results of eqS, DLH13 and Hiemstra stand out having a better average
precision (MAP) in the non-normalized run. Hiemstra can once again score better results
in lower precision/recall@k fields, but the number of relevant documents that were found
is lower. With higher p@1000 and RR values on average the highestSimilarity method is
similar to the equalSize method’s performance. Again it is important to look at the RR
values in contrast to r@1000, because a high number of found documents in total does
not imply a high average recall. In section 6.1 this behavior is discussed further. As
seen in the eqS results in section 5.3 the p@1000 values of almost all models are higher
compared to the baseline results. Again this implies that the precision above rank 100
is higher on average.

76

5.5. partitionSize method and optimalMap

The partitionSize method parS combines a predefined number of low and high result
lines (cf. section 4.4.2). Because of the analysis of the split corpora in section 4.3,
the two methods median and maximum relevant retrieved (maxRR) were found to be
the basis for the ratio of a low/high merge. Values for merging are always related to
the number of low documents, as seen in table B.1. The number of high documents is
calculated by subtracting the number of low documents from 1000, so that the common
result set for a query is 1000 again.

Tests were made with both methods together with the optimalMap feature to follow
the progress of specific values, mainly MAP and r@1000. As expected the feature showed
that ratio values that are close together (e.g. low/high: 100/900 and 150/850) do not
perform much different from each other and the values are roughly the same or equal.
Therefore three constraints were made:

1. If a model has more than one maxRR position, then the position with the highest
distance to the median is used.

2. Median and maxRR positions that are close together will not both be listed in
the resulting table unless the values are remarkably. Only the better performing
method is listed.

3. If the difference of median and maxRR positions is high but the resulting values
are almost equal, only the (slightly) better performing is listed.

Because the parS method is the most comprehensive feature and provides many merg-
ing possibilities all models from the three retrieval engines are listed, for each split
(bm25/tfidf), with the original score (referred to as raw score) and one normalized score
(normQ).

The result tables use the format model.[med/max].position<.normalization>, which
indicates if the method used is median or maxRR, at which position the low result set
was cut off (cf. table B.1) and if the run was done with normalization. Emphasized cells
denote higher values compared to the baseline runs.

5.5.1. Comparison to baseline and different splits

The results of the different retrieval models can vary widely, as for normalization, split
and median/maxRR method. Therefore a generalizing evaluation of the results per
retrieval engine is substituted by a detailed explanation of each model’s performance.

Terrier models

The results of all Terrier models can be found in table B.7 for the bm25 split and table
B.8 for the tfidf split. Below are descriptions of the results for each model.

77

DLH13 Only the median position of DLH13 was used because the maxRR position was
too close for the bm25 split, respectively the values were not much different for the tfidf
split. It is the only model, respectively one of two models, that could achieve a better
MAP value compared to the baseline results and also one of the two models suggested
to be more promising than the others. In both splits the normQ feature is inferior to
the raw score. According to the MAP and RR values the tfidf split seems more suitable
for this model, but when including other measures a preference for one split cannot be
made.

DLH Both median and maxRR positions showed interesting results for DLH. The bm25
split’s most interesting values can be found in high p@k measures and RR. Nevertheless,
r@1000 is not higher than the baseline value, which implies the existence of only a few,
maybe exceptionally, better performing queries. The tfidf split on the other hand can
score much better with p@k for low k values, although interestingly p@20 makes an
exception for all runs. Deciding if bm25 or tfidf is the better split cannot be made by
looking at the MAP and RR values or other precision/recall values because these are
too diverse. The differences between normalization and raw score are also not significant
enough to recommend normQ.

Hiemstra Hiemstra was suggested to be promising compared to other models because
of its outstanding low/high scores in the split corpora (cf. section 4.3). Looking at the
tfidf result table the difference to the others can be seen. It is one of only two models
achieving a higher MAP value compared to the baseline results, but only for one split
(DLH13 achieved higher MAP values in both splits). The tfidf split seems to be more
preferable because there r@10 as well as p@20 or p@30 are higher than in the baseline.
Also most of the other values are slightly higher than in the bm25 split. Regarding
normalization, the raw score seems to work better with this model.

BB2 The values of BB2 for median and maxRR positions were almost identical, so
only median was used. In both splits normQ is superior to the raw score method and
the normalization also helps to increase the values of p@k for k ≥ 30 compared to the
baseline results. The tfidf split seems to be performing slightly better than the bm25
split, especially when comparing MAP and RR values.

BM25 The bm25 split was actually done for this model, so it was expected to perform
really good in this split and poor in the tfidf split. Interestingly though, the values
of almost all measures are higher in the tfidf split, even the number of RR. Regarding
normalization, normQ is superior to the raw score method in both splits. Altogether the
model does not perform well compared to the baseline, only p@1000 and RR are higher
which is a constant for all Terrier models.

DFR BM25 The Divergence from Randomness for BM25, as the pure BM25 model,
was also expected to have better results in the bm25 split. Because the median and

78

maxRR positions were calculated per split and the position values as well as the values
of all measures for this model were close together, only the maxRR position for the
bm25 split and the median position for tfidf were put into the result list. Both splits
do not exceed the values of the baseline, except for the usual p@1000 and RR measure.
Interestingly, almost all values of the tfidf split are again higher than in the bm25 split.
In both splits normQ is superior to the raw score method.

IFB2 The IFB2 model’s values are diverse regarding the bm25 split and the median
respectively maxRR positions. The median position results in better r@1000 values,
whereas the maxRR position has better RR values as expected. Both splits have in
common superior precision values for low k for the normalization method compared to
the baseline. Regarding a preference for one split, the differences are too diverse to
recommend one of it.

InL2 The InL2 model was merged at the median position in split bm25 and at one
maxRR position for the tfidf split. The normalization normQ is the superior method
used here, resulting in higher values for low p/r@k measures and equal values in higher
measures. The tfidf split seems to perform slightly better than bm25 for this model.
Other values than the usual p@1000 and RR values are not higher compared to the
baseline result.

In expB2 This model was also run with different position methods: split bm25 with
maxRR position, split tfidf with median position. Comparison of both splits shows
that except for measure r@1000 the tfidf split seems to be preferable for this model. It
also includes two measures that performed better in the merging than in the baseline
results. However, the values do not differ much. Regarding normalization, normQ can
be recommended for this model.

In expC2 This model does not exceed the baseline result values by merging low and
high result sets, except for the usual p@1000 and RR measures. The tfidf split performs
on average slightly better than bm25. Normalization with normQ can be recommended
for this model because it outperforms the raw score method.

LemurTF IDF As this model implements Lemur’s TFIDF model it was expected to
perform much better with the tfidf split. MAP and low r@k values can support this
theory, however the precision values are equal between bm25 and tfidf or only slightly
different in favor of tfidf. Both splits include better results compared to the baseline
for r@100 and p@100, p@1000 and RR are higher in the merged result set as usual.
Normalization can be recommended for the model, especially for low p/r@k measures.

PL2 For PL2 only the median positions were used because the results of the maxRR
positions were not much different. Comparison of both splits shows tfidf is superior
to bm25 for this model. Especially r@100 is higher than in the baseline results. On

79

the other hand, normalization cannot be recommended in general. For higher precision
measures the raw score method performs slightly better, in both splits.

TF IDF As counterpart to the BM25 model, this model was expected to perform much
better in the tfidf than in the bm25 split. This is true for MAP and RR values, but when
looking at the recall values, it only performs slightly better. Low precision measures are
even inferior in the tfidf split. Nevertheless, this split achieves one better result (p@100)
compared to the baseline. Other values are not remarkable. Regarding normalization
normQ can be recommended for this model because it increases p@k and r@k for low k.

Lemur models

The results of all Lemur models can be found in table B.9 for the bm25 split and table
B.10 for the tfidf split. Below are descriptions of the results for each model.

BM25 As mentioned in section 4.3 the distribution of relevant documents in both split-
tings was unusual for Lemur’s okapi model. Because of this a similar and extraordinary
performance was expected. The model’s median and maxRR positions, which are much
higher compared to other models, can be explained by its unusual behavior. Neverthe-
less, BM25 showed an impressive increase of the recall value. r@1000 in the baseline is
only 0.1687, in the merged result set 0.3031 for the tfidf split. However, the baseline
value is very low compared to all other models and engines, so this suggests that the
okapi model did not work well in the baseline already. Both splits also show that almost
all precision values are higher than in the baseline. Again, this could be due to problems
with the model itself. The model’s performance is slightly better in the tfidf split and on
average the raw score performes better than the normalization method. However, this
information does not have much significance due to the distribution problems of relevant
documents.

Indri Indri performed very well in the baseline results, especially regarding its high RR
value, which is a multiple compared to most Terrier models. As unusual as that, its
median and maxRR positions are also very peculiar: For the maxRR method only 5,
respectively 3 documents (bm25/tfidf) from the low result list are taken, the rest are
high results. With this ratio the RR value exceeds all Terrier and Solr results and the
tfidf split, which returns 4176 relevant documents compared to 2501 in the baseline,
achieves a plus of 67% relevant documents. Nevertheless, as seen before a high RR does
not necessarily imply a high recall value. Except for the p@100 and p@1000 values the
baseline can not be topped. Regarding all other measures, the median value seems to be
better for this model. For many measures the normalization performs better, but when
looking at the MAP values the raw score is definitely a better recommendation.

TFIDF TFIDF was as usual expected to perform better for the correspondent split.
For most of the measures this is the case but for higher k in r@k and p@k it turned:

80

r@1000 is higher in the bm25 split, p@1000 is equal. The MAP value on the other side is
higher in the tfidf split, especially when comparing raw score values. In both splits the
p@100 value is higher compared to the baseline, other values are not superior. Regarding
normalization, TFIDF performs slightly better or equal when using normQ.

Solr models

The results of all Solr models can be found in table B.11 for the bm25 split and table
B.12 for the tfidf split. Below are descriptions of the results for each model.

Standard Solr’s standard retrieval model performes averaged compared to most other
retrieval models. The usual measures, p@1000 and RR, are higher as in the baseline, all
others do not top the baseline results. Comparing both splits the model achieves similar
values, so a recommendation for one split cannot be given. Regarding normalization it
seems that the higher k in p@k and r@k gets, the more preferable normQ gets. MAP
values are almost equal between normQ and raw score.

Mlt In [59] the mlt model outperformed all other models tested there. In the baseline
results its performance was quite average, with exception of the RR measure which was
second best after Lemur’s indri model. In the merged result set on the other hand it
is the only model with not a single higher value compared to the baseline. Tables B.11
and B.12 show that between standard and mlt model there is not much difference, the
poor result only comes from a much better baseline. The tfidf split seems to produce
slightly better results, but for higher k in p@k and r@k the differences get smaller.
Normalization is only superior when looking at the MAP value, all other values are too
diverse to give a recommendation.

5.5.2. Comparison to eqS and highSim

To compare the implemented methods among each other, only their merged results were
taken into account albeit they may not be better than the baseline. Normalization will
not be a subject because the discussion in section 5.5.1 above showed that this can only
be considered for each model separately. Comparison is made with table B.5 for the
equalSize method and table B.6 for the highestSimilarity method.

Interestingly both methods compared to the parS method show similar behavior. The
lemur.tfidf.TFIDF model’s values do not show much difference between eqS/highSim
and parS results, only r@1000 is higher for eqS/highSim whereas p@1000 and RR are
superior in the parS method. A similar picture can be found for all other models as well:
In solr.tfidf.standard, terrier.bm25.BM25 and terrier.tfidf.TFIDF r@1000 is higher in
eqS/highSim, p@1000 and RR are higher in parS. The two outstanding models ter-
rier.tfidf.DLH13 and terrier.tfidf.Hiemstra show the same behavior and additionally in
all methods the MAP values are higher as in the baseline.

81

Summary

This chapter included the most important information of this work. First a short
overview of the methods tested was presented as well as a standard test set was intro-
duced. Because the normalization methods did not perform that different, the decision
on one method, normQ, was made by comparing this method to the other ones in a
few example runs. Afterwards the method eqS was tested with the standard set and
compared to the baseline results. As second method highSim was also tested with the
standard set and compared to the baseline. Both methods performed similar. Eventu-
ally the parS method was tested with all available models and with different low/high
ratios for the merging, either with the median or maximum-relevant-retrieved position.
For each model its performance in both bm25 and tfidf splits as well as compared to the
baseline was discussed. Recommendations whether to use normalization or not were sub-
ject too and were not always determinable. The last comparison was made between the
different methods, eqS, highSim and parS with the interesting result that both highSim
and eqS performed very similar in comparison to parS.

82

6. Conclusions

The main part of this work was to provide merging strategies to combine the result sets of
previously split corpora to a new result set. One distinctive feature that distinguishes this
merge from common data fusion or collection fusion approaches is that the documents
were first divided in low and high retrievable documents. Afterwards they got indexed
separately and also retrieval was done individually. This produced non-overlapping result
sets that had to be combined in a way that leads to having more relevant documents
retrieved at lower ranks compared to the normal, non-merged results.

To come to this final result sets several preliminary steps were necessary first. The
setup for the experiments was made based on another, similar work (cf. section 2.5.2)
which worked with different retrieval engines and no relevance judgments and topics
available initially. Relevance assessments and topics were generated out of the data
collection to obtain a completely functional test collection to work with. After some ad-
justments and formatting of the data collection, indexes were made with three different
retrieval engines, namely Terrier, Lemur and Solr. With these a baseline was built for
comparison after the actual experiments. The single corpus was then split based on a
retrievability evaluation of its documents in a low and a high corpus. After analyzing
the split corpora regarding its relevant document distribution, several combining meth-
ods were presented with which experiments were made afterwards. One method named
partitionSize, which combines low and high result sets in a predefined ratio, was tested
more precisely because it could merge the documents in a ratio that was discussed to per-
form better than other methods in the analysis section. Though this method performed
on average similar to the other methods presented, some models with particular fea-
tures could achieve slightly better results compared to the non-merged result set. This
behavior shows a tendency for certain models, which will be explained and discussed
below.

6.1. Discussion and interpretation of results

It is difficult to look at the results as a whole because of the diversity of the outcomes. A
detailed description of each retrieval model with regard to the partitionSize method can
be found in section 5.5.1. The following deals mainly with the results of the partitionSize
method in general.

r@1000 and RR

In the partitionSize results, two circumstances occur in almost every model: measures
p@1000 and RR (relevant retrieved) are higher and r@1000 is lower than in the baseline

83

results. A higher p@1000 means that between rank 100 and 1000 (for most of the models,
some also have higher values in p@100 or lower) the precision is higher on average than
in the baseline. For models like Terrier.DLH in the tfidf split all p@k values, except for
p@20, are higher than in the baseline, so merging low and high split documents seems
to increase at least the precision values for this model. However, for a recall-oriented
domain like the patent domain high recall values are much more important. So the RR
values combined with the r@k values are more important to be higher. In the result
sets that were generated by the merging methods this behavior only occurs infrequently.
Usually the RR values are higher or much higher than in the result set whereas all or
most of the r@k values are lower. For this two explanations have been found.

First, the distribution of relevant documents in the merged result sets was analyzed.
Figure 6.2 shows the distributions for the Terrier Hiemstra model in the tfidf split,
without normalization. The equalSize and partitionSize method have more relevant
documents on the first rank, highestSimilarity performs worse compared to all others.
On average the partitionSize method has more relevant documents per rank, for it also
contains the most relevant documents compared to the other methods and the baseline.
For the first approximately 200 ranks it is equal to the other methods regarding the
total number of relevant documents per rank. Then this number increases more for the
partitionSize method than for the others; equalSize and highestSimilarity are even equal
for about 800 ranks. A figure plotting this development can be found in diagram 6.1.

2
2

6
5

0
7

4
9

8
1

2
2

1
4

6
1

7
0

1
9

4
2

1
8

2
4

2
2

6
6

2
9

0
3

1
4

3
3

8
3

6
2

3
8

6
4

1
0

4
3

4
4

5
8

4
8

2
5

0
6

5
3

0
5

5
4

5
7

8
6

0
2

6
2

6
6

5
0

6
7

4
6

9
8

7
2

2
7

4
6

7
7

0
7

9
4

8
1

8
8

4
2

8
6

6
8

9
0

9
1

4
9

3
8

9
6

2
9

8
6

0

200

400

600

800

1000

1200

1400

1600

1800

Baseline
parS
eqS
highSim

Rank

T
o

ta
l o

f r
e

le
va

n
t d

o
cu

m
e

n
ts

Figure 6.1.: Terrier.tfidf.Hiemstra - Total number of relevant documents per rank

In contrast to this progression of total relevant documents per rank, the median of rel-
evant documents can also be examined. For the baseline of Terrier.Hiemstra the median
was found on rank 238, so above and below the same number of relevant documents can
be found. For the partitionSize method the median could be found further down on rank

84

3
33
63
93

123
153
183
213
243
273
303
333
363
393
423
453
483
513
543
573
603
633
663
693
723
753
783
813
843
873
903
933
963
993

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

H
ie

m
st

ra
 B

as
el

in
e

R
an

k

Number of relevant documents

3
30
57
84

111
138
165
192
219
246
273
300
327
354
381
408
435
462
489
516
543
570
597
624
651
678
705
732
759
786
813
840
867
894
921
948
975

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

H
ie

m
st

ra
 p

ar
S

R
an

k

Number of relevant documents

3
30
57
84

111
138
165
192
219
246
273
300
327
354
381
408
435
462
489
516
543
570
597
624
651
678
705
732
759
786
813
840
867
894
921
948
975

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

H
ie

m
st

ra
 e

qS

R
an

k

Number of relevant documents

2
30
58
86

114
142
170
198
226
254
282
310
338
366
394
422
450
478
506
534
562
590
618
646
674
702
730
758
786
814
842
870
898
926
954
982

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

H
ie

m
st

ra
 h

ig
hS

im

R
an

k
Number of relevant documents

Figure 6.2.: Terrier.tfidf.Hiemstra - Overview of relevant documents distribution for
baseline and different merging methods

85

346. So the relevant documents are spread across a wider area. The equalSize method
performed better with the median being found on rank 251, whereas the highestSimi-
larity method could even top the baseline and had its median on rank 202. In the latter
methods Hiemstra could achieve better MAP and recall values compared to the other
merging methods, whereas only RR and p@1000 values were better in the partitionSize
method.

As second explanation for the low r@1000 and high RR values a few, very good
performing queries and many poor performing ones were found to increase one measure
while leaving the other low. To test this theory, trec eval was run with the option to
print detailed values for each topic. Again, the tested model was Terrier.tfidf.Hiemstra
without normalization. The MAP values of the baseline was 0.0753, the r@1000 value
0.4700. The following table shows how many topics score better or worse than the
baseline MAP/r@1000 value, respectively how many topics had a MAP/r@1000 of 1 or
0 in Hiemstra results:

Merge Baseline

MAP

< 0.0753 173 172
≥ 0.0753 59 60
= 1 0 0
= 0 41 39

r@1000

< 0.47 131 107
≥ 0.47 101 125
= 1 34 50
= 0 17 11

Regarding the MAP value and number of topics there is not much difference between
merging and baseline. However, the r@1000 distribution shows that less topics in the
baseline scored below the average 0.47, whereas more topics scored better. The merging
distribution shows quite the contrary. The baseline contains about five times more topics
with r@1000 = 1 than r@1000 = 0. In the merging on the other side there are only
twice as many topics that retrieved all relevant topics after 1000 ranks than there are
topics that retrieved none.

Normalization

Regarding normalization, different normalization methods were tested and one was found
to be performing slightly better than the others. Apart from the poor result of norm-
SumQ and normSumM in Lemur.tfidf.indri the different methods performed similar.
Although normalization was thought to be the superior method for merging, because
most of the documents in low result sets were scoring lower compared to the baseline
whereas documents in the high result set scored higher, it cannot be named the method
of choice for all models. It seems to depend on the model and certainly its attributes,
but this was not further examined and might be subject to further work. Only Hiem-
stra and DLH13 were expected to work better when using the original score because
both models assigned lower scores to high retrievable documents and higher scores to

86

low retrievable documents, compared to the baseline. And also for these two normQ
sometimes achieved better results, e.g. for the r@1000 measure in highSim.

maxRR and median

For the partitionSize method two positions were found to be interesting as cut off for
the low result set: the median of relevant documents in the low corpus and the position
in the low result list on which a merging will produce a maximum amount of relevant
retrieved documents. During testing it was found out that two positions that are close
together did not produce very different merged result sets. Because many maxRR and
median positions are close together only one of them was put into the final result set
because the values of different measures were very close or equal. Terrier’s DLH model
shows this consistency. Thus using the one method over the other cannot be supported,
both performed similar or equal.

Promising models

Two types of promising models were found: First of all the TFIDF and BM25 models
for which the splits were done originally. On the other hand Terrier’s Hiemstra and
DLH13 models were the only ones showing the expected scoring for low respectively
high classified documents.

The first group did not perform well compared to other models. BM25 models achieved
better results in tfidf splits and although for many other models the tfidf split was
superior, for TFIDF the split was inferior for some measures. Maybe the method used
for the split should get more analysis to learn more about it. Lemur’s BM25 model can
not be evaluated here because there seem to be some problems with it (cf. section 4.3).

The second group, Hiemstra and DLH13, performed much better compared to the
first group. At least in one split both could increase the MAP and r@10 value albeit
not much. However their achievement in highSim and eqS merging was considerably
better: MAP, r@10 and r@1000 could be improved in some cases. An explanation for
Hiemstra’s performance might be the usage of language models. Bashir and Rauber
also mentioned in [11] that a language modelling approach used there is the least biased
retrieval system.

Summary of highSim, eqS and parS

None of the merging methods provided could improve the measures important for a
recall-oriented domain more than the other. In general, the methods could only provide
slightly better results for certain models regarding recall values. Some were able to
increase precision values, mainly p@1000 achieved way better results. The problem is
that although working with 1000 results is common in information retrieval experiments,
humans who have to productively work with this result set might not be looking at
results after rank 100. Nevertheless, the total number of relevant retrieved documents
was higher for almost all models. So one important task is to get these documents in
the top ranks. Ideas on how this might be achieved are subject in the next section.

87

6.2. Future prospects

As mentioned before, the merging method partitionSize probably can outperform the
others if the relevant documents that are listed on low ranks can be brought to the
top 100. To do so, the potential of several concepts should be further examined. First
the method used for dividing high and low documents in separate corpora should be
further analyzed. In this work is was only used as a black box without much insight
into its operation methods. The six different grades of low and high that were provided
might also be considered as basis to future work. The top and bottom 30% of high
and low retrievable documents could contain more potential to divide a corpus. Because
the baseline results were on average quite good, a possible experiment could be based
on using the most distant low/high documents merged with the baseline. This would
include having to combine documents with a data fusion technique like COMB*, as
described by Zenz et al. in [59].

Another field that can be considered problematic, that forms the basis of all the exper-
iments made, is prior-art search. A newly presented publication shows that extracting
the first claim as topic, as done in this paper, might not be the best choice. Mahdabi et
al. experimented in [27] with different fields of patent documents as queries and reasoned
that using the description of a patent is best for extracting query terms.

A last field that can be especially problematic with a setup using smaller collections,
like the low/high corpora in this work, are issues with the very specific vocabulary used
in patents. As stated by Harris et al. in [23] there are several problems that come with
keyword search, like words that have different meanings in other fields (homonyms), as
well as synonyms on the opposite side. In a small collection, coming across this problem
once can decrease important values exceptionally. As seen in section 6.1 the number
of topics for which not a single relevant document was found increased in the merged,
smaller result set compared to the larger baseline, whereas the number of topics for
which all relevant documents were found decreased.

The sometimes uncommon usage of vocabulary in the very special domain of patent
information and its consequences are difficult to evaluate. However they should always
be considered to influence experiments made within this field. As Atkinson mentioned in
[2] the algorithms used in retrieval tools, like Terrier, Lemur or Solr, were not primarily
made for the special domain of patent information. Therefore one cannot assume they
will deal with patents in patentese correctly, simply because “patentese is the language
used in patents that may appear to be English” [2].

88

A. Listings

Listing A.1: Solr schema.xml

1 <?xml v e r s i o n=” 1 .0 ” encoding=”UTF−8” ?>
2

3 <schema name=” so l rForSp l i tCorpo ra ” ve r s i on=” 1 .3 ”>
4

5 <types>
6

7 <f i e ldType name=” s t r i n g ” c l a s s=” s o l r . S t r F i e l d ” so r tMi s s ingLas t=” true ”
omitNorms=” true ”/>

8 <f i e ldType name=” text ” c l a s s=” s o l r . TextFie ld ” posit ionIncrementGap=”100”>
9

10 <ana lyze r type=” index ”>
11 <t o k e n i z e r c l a s s=” s o l r . StandardTokenizerFactory ”/>
12 < f i l t e r c l a s s=” s o l r . LowerCaseFi l terFactory ”/>
13 </ ana lyze r>
14

15 <ana lyze r type=” query ”>
16 <t o k e n i z e r c l a s s=” s o l r . StandardTokenizerFactory ”/>
17 < f i l t e r c l a s s=” s o l r . LowerCaseFi l terFactory ”/>
18 </ ana lyze r>
19 </ f i e ldType>
20 </ types>
21

22 < f i e l d s>
23 < f i e l d name=” id ” type=” s t r i n g ” indexed=” true ” s to r ed=” true ” r equ i r ed=”

true ”/>
24 < f i e l d name=” toIndex ” type=” text ” indexed=” true ” s to r ed=” true ”

termVectors=” true ”/>
25 </ f i e l d s>
26

27 <uniqueKey>id</uniqueKey>
28

29 <d e f a u l t S e a r c h F i e l d>toIndex</ d e f a u l t S e a r c h F i e l d>
30

31 </schema>

Listing A.2: Solr client - standard http request

1 // f o r standard q u e r i e s :
2 // e . g . http :// l o c a l h o s t :8980/ s o l r / s e l e c t /? s t y l e s h e e t=&q=schema&f l=sco r e&wt

=x s l t&t r=SOLR2TREC. x s l
3 URI preUrl = new URI("http" , nu l l , "localhost" , 8980 , "/solr/select/" ,
4 "stylesheet=&q=" + URLEncoder . encode (query , "UTF -8") +
5 "&fl=score" +

89

6 "&wt=xslt&tr=" + x s l F i l e ,
7 n u l l) ;
8

9 URL u r l = preUrl . toURL () ;
10 urlStream = u r l . openStream () ;
11 urlReader = new BufferedReader (new InputStreamReader (urlStream)) ;

Listing A.3: Solr client - mlt http request

1 // f o r more l i k e t h i s f u n c t i o n a l i t y :
2 // e . g . http :// l o c a l h o s t :8980/ s o l r /mlt /? s t y l e s h e e t=&q=schema&mlt . f l=toIndex

&f l=sco r e&wt=x s l t&t r=SOLR2TREC. x s l
3 URI preUrl = new URI("http" , nu l l , "localhost" , 8980 , "/solr/mlt/" ,
4 "stylesheet=&q=" + URLEncoder . encode (query , "UTF -8") +
5 "&mlt.fl=toIndex" +
6 "&fl=score" +
7 "&wt=xslt&tr=" + x s l F i l e ,
8

9 URL u r l = preUrl . toURL () ;
10 urlStream = u r l . openStream () ;
11 urlReader = new BufferedReader (new InputStreamReader (urlStream)) ;

Listing A.4: Solr to TREC xslt file

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <xsl :stylesheet xmlns :x s l=” h t tp : //www. w3 . org /1999/XSL/Transform” version=”

1 .0 ”>
3 <xsl:output method=” text ” indent=”no” />
4 <xsl:template match=”/”>
5 <xsl :variable name=” t o p i c ” s e l e c t=”/ response / l s t [@name=’ responseHeader

’] / l s t [@name=’params ’] / s t r [@name=’ top ic ’] ”/>
6 <xsl :variable name=”run” s e l e c t=”/ response / l s t [@name=’ responseHeader ’] /

l s t [@name=’params ’] / s t r [@name=’run ’] ”/>
7 <xsl:for−each s e l e c t=” response / r e s u l t /doc”>
8 <xsl:value−of s e l e c t=”$ t op i c ”/><xsl :text> Q0 </xsl :text>
9 <xsl:value−of s e l e c t=” s t r [@name=’ id ’] ”/><xsl :text> </xsl :text>

10 <xsl:value−of s e l e c t=” p o s i t i o n () ”/><xsl :text> </xsl :text>
11 <xsl:value−of s e l e c t=” f l o a t [@name=’ score ’] ”/><xsl :text> </xsl :text>
12 <xsl:value−of s e l e c t=”$run”/><xsl:call−template name=” Newline ”></

xsl:call−template>
13 </xsl:for−each>
14 </xsl:template>
15

16 <xsl:template name=” Newline ”>
17 <xsl :text>
</xsl :text>
18 </xsl:template>
19 </xsl :stylesheet>

Listing A.5: equalSize - merging and fillup

1 ArrayList<ResultLine> mergedList = new ArrayList<ResultLine >(1000) ;

90

2

3 f o r (i n t n = 0 ; n < high eq ; n++)
4 {
5 ResultL ine resLine H = f i l e H i g h L i s t . get (n) ;
6 ResultL ine re sL ine L = f i l e L o w L i s t . get (n) ;
7

8 mergedList . add (resLine H) ;
9 mergedList . add (re sL ine L) ;

10 }
11

12 // second part o f f i l l u p
13 i f (f i l l u p)
14 {
15 ArrayList<ResultLine> f i l e L i s t = n u l l ;
16

17 i f (f i l e H i g h L i s t . s i z e () < CONST EQ SIZE)
18 {
19 // f i l l u p from f i l e L o w L i s t
20 f i l e L i s t = f i l e L o w L i s t ;
21 }
22 e l s e i f (f i l e L o w L i s t . s i z e () < CONST EQ SIZE)
23 {
24 // f i l l u p from f i l e H i g h L i s t
25 f i l e L i s t = f i l e H i g h L i s t ;
26 }
27

28 i n t f i l l = 1000 − 2∗ high eq ;
29

30 f o r (i n t m = high eq ; m < f i l l ; m++)
31 {
32 ResultL ine r e sL ine = f i l e L i s t . get (m) ;
33 mergedList . add (r e sL ine) ;
34 }
35 }

Listing A.6: partitionSize - merging

1 ArrayList<ResultLine> mergedList = new ArrayList<ResultLine >() ;
2

3 f o r (i n t n = 0 ; n < high par ; n++)
4 {
5 ResultL ine resLine H = f i l e H i g h L i s t . get (n) ;
6

7 mergedList . add (resLine H) ;
8 }
9

10 f o r (i n t n = 0 ; n < low par ; n++)
11 {
12 ResultL ine re sL ine L = f i l e L o w L i s t . get (n) ;
13

14 mergedList . add (re sL ine L) ;
15 }

91

Listing A.7: highestSimilarity

1 /∗
2 ∗ f o r each topicNumber/ query in the high r e s u l t s e t data s t r u c t u r e :
3 ∗/
4 f o r (I n t e g e r i : resultMapHigh . keySet ())
5 {
6 // combine a l l high + low l i s t s
7 // then s o r t them a f t e r t h e i r normal ized s co r e
8 // cut o f f at 1000 r e s u l t s => output r e s u l t s e t
9

10 ArrayList<ResultLine> f i l eLowL i s t , f i l e H i g h L i s t ;
11

12 f i l e H i g h L i s t = resultMapHigh . get (i) ;
13 f i l e L o w L i s t = resultMapLow . get (i) ;
14

15 /∗
16 ∗ merge toge the r both r e s u l t l i n e s
17 ∗/
18 ArrayList<ResultLine> mergedList = new ArrayList<ResultLine >() ;
19

20 f o r (Resu l tL ine r l : f i l e H i g h L i s t)
21 mergedList . add (r l) ;
22

23 f o r (Resu l tL ine r l : f i l e L o w L i s t)
24 mergedList . add (r l) ;
25

26 /∗
27 ∗ s o r t the r e s u l t s
28 ∗/
29

30 // s o r t in r e v e r s e order , because we want the h i ghe s t s co r e on top
31 Comparator<ResultLine> comparator = C o l l e c t i o n s . r ever seOrder () ;
32 C o l l e c t i o n s . s o r t (mergedList , comparator) ;
33

34 ArrayList<ResultLine> r e s u l t L i s t = new ArrayList<ResultLine >() ;
35

36 f o r (i n t n = 0 ; n < 1000 ; n++)
37 {
38 r e s u l t L i s t . add (mergedList . get (n)) ;
39 }
40

41 f o r (Resu l tL ine r s : r e s u l t L i s t)
42 {
43 out . wr i t e (r s . topicNr + " Q0 " + rs . uc id + " " + rs . rank + " " + rs . s co r e

+ " " + rs . run + "\n") ;
44 }
45

46 out In fo . wr i t e ("Sucessfully combined topic " + i + "\n") ;
47 }

Listing A.8: Loop for optimal MAP feature

1 i n t h = 999 ;
2 f o r (i n t l = 1 ; l < 1000 ; l++)

92

3 {
4 Fi l eWr i t e r w r i t e r = new Fi l eWr i t e r ("tempResSet") ;
5 Buf feredWriter out = new Buf feredWriter (w r i t e r) ;
6

7 f o r (I n t e g e r i : resultMapHigh . keySet ())
8 {
9 ArrayList<ResultLine> h i g h l i s t = resultMapHigh . get (i) ;

10 ArrayList<ResultLine> l o w l i s t = resultMapLow . get (i) ;
11

12 ArrayList<ResultLine> mergedList = new ArrayList<ResultLine >() ;
13

14 f o r (i n t n = 0 ; n < h ; n++)
15 {
16 i f (h i g h l i s t . s i z e () <= n)
17 break ;
18

19 mergedList . add (h i g h l i s t . get (n)) ;
20 }
21

22 f o r (i n t n = 0 ; n < l ; n++)
23 {
24 i f (l o w l i s t . s i z e () <= n)
25 break ;
26

27 mergedList . add (l o w l i s t . get (n)) ;
28 }
29

30 Comparator<ResultLine> comparator = C o l l e c t i o n s . r ever seOrder () ;
31 C o l l e c t i o n s . s o r t (mergedList , comparator) ;
32

33 f o r (Resu l tL ine r s : mergedList)
34 {
35 out . wr i t e (r s . topicNr + " Q0 " + rs . uc id + " " + rs . rank + " " + rs .

s c o r e + " " + rs . run + "\n") ;
36 }
37 }
38 out . c l o s e () ;
39

40 [. . .]
41 // c a l l t r e c e v a l f o r temporary f i l e
42 // read + wr i t e out map, r@X, p@X, r r va lue s
43 [. . .]
44

45 h−−;
46 }

Listing A.9: Example normalization per query

1 f o r (I n t e g e r topicNr : resultMapHigh . keySet ())
2 {
3 // f o r each query determine max and low s c o r e s and normal ize with them a l l

s c o r e s o f that query
4 ArrayList<ResultLine> a l l T o p i c R e s u l t s = resultMapHigh . get (topicNr) ;
5 ArrayList<Double> s co reHe lpe r = new ArrayList<Double>() ;

93

6

7 f o r (Resu l tL ine r l : a l l T o p i c R e s u l t s)
8 s co reHe lpe r . add (r l . s c o r e) ;
9

10 maxHighScore = C o l l e c t i o n s . max(sco reHe lpe r) ;
11 minHighScore = C o l l e c t i o n s . min (sco reHe lpe r) ;
12

13 f o r (Resu l tL ine r l : a l l T o p i c R e s u l t s)
14 {
15 r l . normScore = (r l . s c o r e − minHighScore) / (maxHighScore −

minHighScore) ;
16 }
17 }

94

B. Tables

Table B.1.: Position in low result set for median and maximum of relevant retrieved

Split Model
low position

low position of maxRR
of median

Terrier bm25

TFIDF 71 84, 85, 88, 89
PL2 133 45, 48, 52, 57
Lemur TFIDF 77 43
InL2 73 76, 77, 84
InExpC2 75 65, 66, 67
InExpB2 77 94, 95, 96, 111, 112, 113
IFB2 120 58, 60
Hiemstra 79 67
DLH13 83 72
DLH 114 65
DFR BM25 73 101
BM25 76 79, 91
BB2 98 58, 59, 60, 61, 62

Terrier tfidf

TFIDF 78 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93
PL2 133 47
Lemur TFIDF 81 59, 60
InL2 76 82, 90, 92, 93, 94, 128
InExpC2 80 56, 57, 58, 60, 67, 68, 69
InExpB2 77 58
IFB2 118 61, 62
Hiemstra 79 51, 52, 60, 61, 63
DLH13 78 44
DLH 111 47, 48, 49
DFR BM25 71 75
BM25 73 78, 81, 82
BB2 107 69, 71, 72

Lemur bm25
BM25 526 443, 444, 445, 446
indri 86 5, 7
TFIDF 92 108, 109, 110, 112, 113, 115, 116

Lemur tfidf
BM25 482 566, 599, 600, 607, 608, 609
indri 95 3
TFIDF 98 100, 109, 112

Solr bm25
standard 74 99
mlt 117 102, 103

Solr tfidf
standard 76 60, 61, 62
mlt 124 72, 85, 87, 89

95

T
ab

le
B

.2
.:

B
as

el
in

e
ru

n
s

-
T

op
ic

s
I

ru
n

M
A

P
r@

1
0

r@
10

0
r@

10
00

p
@

10
p

@
20

p
@

30
p

@
10

0
p

@
10

00
R

R

t.
B

B
2

0
.0

53
3

0.
07

95
0.

21
80

0.
38

03
0.

04
29

0.
02

98
0.

02
39

0.
01

22
0.

00
36

83
2

t.
B

M
25

0
.0

74
1

0.
10

64
0.

24
54

0.
41

47
0.

05
54

0.
03

71
0.

02
95

0.
01

38
0.

00
33

77
4

t.
D

F
R

B
M

2
5

0
.0

73
9

0.
10

55
0.

24
63

0.
41

25
0.

05
45

0.
03

69
0.

02
95

0.
01

38
0.

00
33

75
9

t.
D

L
H

0
.0

57
5

0.
08

94
0.

22
01

0.
37

11
0.

04
76

0.
03

37
0.

02
63

0.
01

40
0.

00
51

11
91

t.
D

L
H

1
3

0
.0

70
6

0.
10

64
0.

24
13

0.
39

30
0.

05
54

0.
03

95
0.

03
12

0.
01

41
0.

00
39

90
5

t.
H

ie
m

st
ra

L
M

0
.0

75
3

0.
11

84
0.

29
49

0.
47

00
0.

06
05

0.
03

86
0.

03
06

0.
01

65
0.

00
51

11
79

t.
IF

B
2

0
.0

50
3

0.
08

59
0.

21
93

0.
37

99
0.

04
64

0.
02

98
0.

02
42

0.
01

30
0.

00
37

87
2

t.
In

ex
p

B
2

0
.0

66
3

0.
09

85
0.

24
76

0.
43

04
0.

05
36

0.
03

73
0.

02
93

0.
01

42
0.

00
37

86
4

t.
In

ex
p

C
2

0
.0

67
2

0.
09

72
0.

25
36

0.
42

62
0.

05
36

0.
03

86
0.

02
99

0.
01

49
0.

00
37

87
2

t.
In

L
2

0
.0

68
8

0.
10

64
0.

24
21

0.
39

73
0.

05
45

0.
03

58
0.

02
88

0.
01

28
0.

00
31

72
7

t.
L

em
u

rT
F

ID
F

0
.0

65
3

0.
09

74
0.

25
03

0.
42

65
0.

05
49

0.
03

88
0.

02
99

0.
01

41
0.

00
35

81
7

t.
P

L
2

0
.0

55
2

0.
08

60
0.

21
59

0.
37

24
0.

04
46

0.
03

20
0.

02
52

0.
01

24
0.

00
35

81
2

t.
T

F
ID

F
0
.0

69
8

0.
10

68
0.

23
13

0.
39

31
0.

05
45

0.
03

65
0.

02
83

0.
01

24
0.

00
31

71
2

l.
in

d
ri

0
.0

70
1

0.
10

18
0.

22
78

0.
37

54
0.

05
67

0.
03

80
0.

03
00

0.
01

48
0.

01
07

25
01

l.
T

F
ID

F
0
.0

76
2

0.
11

17
0.

24
64

0.
41

58
0.

05
97

0.
03

97
0.

03
05

0.
01

34
0.

00
34

79
5

l.
B

M
2
5

0
.0

40
3

0.
06

31
0.

11
58

0.
16

87
0.

03
00

0.
01

82
0.

01
39

0.
00

60
0.

00
11

26
3

s.
st

an
d

a
rd

0
.0

67
1

0.
10

04
0.

23
75

0.
39

33
0.

05
15

0.
03

54
0.

02
80

0.
01

35
0.

00
33

76
8

s.
m

lt
0
.0

62
3

0.
09

12
0.

21
83

0.
38

17
0.

04
72

0.
03

43
0.

02
70

0.
01

53
0.

00
73

17
00

96

T
ab

le
B

.3
.:

B
as

el
in

e
ru

n
s

-
T

op
ic

s
II

ru
n

M
A

P
r@

1
0

r@
10

0
r@

10
00

p
@

10
p

@
20

p
@

30
p

@
10

0
p

@
10

00
R

R

t.
B

B
2

0
.0

53
1

0.
07

85
0.

21
80

0.
37

93
0.

04
25

0.
02

98
0.

02
39

0.
01

22
0.

00
36

83
1

t.
B

M
25

0
.0

73
9

0.
10

53
0.

24
54

0.
41

47
0.

05
49

0.
03

73
0.

02
95

0.
01

38
0.

00
33

77
4

t.
D

F
R

B
M

2
5

0
.0

73
8

0.
10

45
0.

24
63

0.
41

25
0.

05
41

0.
03

71
0.

02
95

0.
01

38
0.

00
33

75
9

t.
D

L
H

0
.0

57
1

0.
08

84
0.

22
01

0.
37

11
0.

04
72

0.
03

35
0.

02
62

0.
01

40
0.

00
51

11
91

t.
D

L
H

1
3

0
.0

70
6

0.
10

74
0.

24
13

0.
39

30
0.

05
58

0.
03

93
0.

03
12

0.
01

41
0.

00
39

90
5

t.
H

ie
m

st
ra

L
M

0
.0

75
1

0.
11

73
0.

29
49

0.
47

00
0.

06
01

0.
03

84
0.

03
06

0.
01

65
0.

00
51

11
79

t.
IF

B
2

0
.0

50
0

0.
08

59
0.

21
93

0.
37

88
0.

04
64

0.
02

98
0.

02
42

0.
01

30
0.

00
37

87
1

t.
In

ex
p

B
2

0
.0

66
0

0.
09

85
0.

24
76

0.
42

94
0.

05
36

0.
03

73
0.

02
93

0.
01

42
0.

00
37

86
3

t.
In

ex
p

C
2

0
.0

67
0

0.
09

72
0.

25
36

0.
42

51
0.

05
36

0.
03

86
0.

02
99

0.
01

49
0.

00
37

87
1

t.
In

L
2

0
.0

69
2

0.
10

53
0.

24
21

0.
39

73
0.

05
41

0.
03

58
0.

02
89

0.
01

28
0.

00
31

72
7

t.
L

em
u

rT
F

ID
F

0
.0

64
6

0.
09

63
0.

25
03

0.
42

65
0.

05
45

0.
03

91
0.

02
99

0.
01

41
0.

00
35

81
7

t.
P

L
2

0
.0

55
0

0.
08

49
0.

21
59

0.
37

24
0.

04
42

0.
03

18
0.

02
50

0.
01

24
0.

00
35

81
2

t.
T

F
ID

F
0
.0

70
2

0.
10

57
0.

23
13

0.
39

31
0.

05
41

0.
03

65
0.

02
85

0.
01

24
0.

00
31

71
2

s.
st

an
d

a
rd

0
.0

62
2

0.
09

99
0.

23
46

0.
38

56
0.

05
11

0.
03

39
0.

02
70

0.
01

30
0.

00
32

75
3

s.
m

lt
0
.0

52
5

0.
07

50
0.

18
87

0.
33

49
0.

04
16

0.
03

00
0.

02
55

0.
01

52
0.

00
74

17
35

97

T
a
b

le
B

.4
.:

N
or

m
al

iz
at

io
n

re
su

lt
s

fo
r

se
v
er

al
ru

n
s

ru
n

M
A

P
r@

10
r@

10
0

r@
10

00
p

@
10

p
@

20
p

@
30

p
@

10
0

p
@

10
00

l.
tfi

d
f.

in
d

ri
.n

o
rm

M
0
.0

68
4

0.
09

97
0.

22
15

0.
37

77
0.

05
24

0.
03

52
0.

02
79

0.
01

47
0.

00
83

l.
tfi

d
f.

in
d

ri
.n

o
rm

Q
0
.0

57
7

0.
10

05
0.

22
75

0.
37

77
0.

05
32

0.
03

73
0.

02
80

0.
01

44
0.

00
83

l.
tfi

d
f.

in
d

ri
.n

o
rm

S
u
m

M
0
.0

01
2

0.
00

00
0.

00
96

0.
37

77
0.

00
52

0.
00

39
0.

00
37

0.
00

45
0.

00
83

l.
tfi

d
f.

in
d

ri
.n

o
rm

S
u
m

Q
0
.0

01
2

0.
00

00
0.

00
81

0.
37

77
0.

00
39

0.
00

34
0.

00
34

0.
00

43
0.

00
83

s.
b

m
2
5.

st
an

d
a
rd

.n
or

m
M

0
.0

63
4

0.
09

08
0.

22
57

0.
39

83
0.

05
02

0.
03

52
0.

02
70

0.
01

34
0.

00
34

s.
b

m
2
5.

st
an

d
a
rd

.n
or

m
Q

0
.0

55
6

0.
08

89
0.

22
83

0.
39

83
0.

04
76

0.
03

45
0.

02
79

0.
01

33
0.

00
34

s.
b

m
2
5.

st
an

d
a
rd

.n
or

m
S

u
m

M
0
.0

65
3

0.
09

76
0.

22
90

0.
39

83
0.

05
15

0.
03

52
0.

02
78

0.
01

33
0.

00
34

s.
b

m
2
5.

st
an

d
a
rd

.n
or

m
S

u
m

Q
0
.0

65
2

0.
09

76
0.

22
90

0.
39

83
0.

05
11

0.
03

50
0.

02
76

0.
01

33
0.

00
34

t.
b

m
2
5.

B
M

25
.n

o
rm

M
0
.0

39
8

0.
06

48
0.

16
92

0.
40

01
0.

03
73

0.
02

70
0.

02
17

0.
01

10
0.

00
35

t.
b

m
2
5.

B
M

25
.n

o
rm

Q
0
.0

56
6

0.
09

12
0.

22
61

0.
40

01
0.

04
85

0.
03

30
0.

02
72

0.
01

32
0.

00
35

t.
b

m
2
5.

B
M

25
.n

o
rm

S
u

m
M

0
.0

56
7

0.
08

71
0.

20
69

0.
40

01
0.

04
21

0.
02

94
0.

02
36

0.
01

20
0.

00
35

t.
b

m
2
5.

B
M

25
.n

o
rm

S
u

m
Q

0
.0

58
0

0.
08

73
0.

20
48

0.
40

01
0.

04
21

0.
02

92
0.

02
30

0.
01

18
0.

00
35

t.
tfi

d
f.

T
F

ID
F

.n
or

m
M

0
.0

43
0

0.
06

51
0.

19
42

0.
38

86
0.

03
65

0.
02

62
0.

02
09

0.
01

14
0.

00
33

t.
tfi

d
f.

T
F

ID
F

.n
or

m
Q

0
.0

59
0

0.
09

74
0.

22
60

0.
38

86
0.

05
11

0.
03

41
0.

02
68

0.
01

26
0.

00
33

t.
tfi

d
f.

T
F

ID
F

.n
or

m
S

u
m

M
0
.0

55
7

0.
08

73
0.

22
08

0.
38

86
0.

04
72

0.
03

28
0.

02
63

0.
01

23
0.

00
33

t.
tfi

d
f.

T
F

ID
F

.n
or

m
S

u
m

Q
0
.0

55
8

0.
08

80
0.

22
08

0.
38

86
0.

04
76

0.
03

30
0.

02
63

0.
01

23
0.

00
33

t.
tfi

d
f.

H
ie

m
st

ra
.n

or
m

M
0
.0

55
0

0.
09

04
0.

24
92

0.
46

39
0.

05
02

0.
03

61
0.

03
00

0.
01

64
0.

00
50

t.
tfi

d
f.

H
ie

m
st

ra
.n

or
m

Q
0
.0

61
4

0.
10

41
0.

28
76

0.
46

39
0.

05
49

0.
03

80
0.

03
09

0.
01

67
0.

00
50

t.
tfi

d
f.

H
ie

m
st

ra
.n

or
m

S
u

m
M

0
.0

73
4

0.
11

16
0.

28
97

0.
46

39
0.

05
84

0.
04

08
0.

03
19

0.
01

70
0.

00
50

t.
tfi

d
f.

H
ie

m
st

ra
.n

or
m

S
u

m
Q

0
.0

73
4

0.
11

11
0.

28
86

0.
46

39
0.

05
84

0.
04

06
0.

03
22

0.
01

69
0.

00
50

98

T
ab

le
B

.5
.:

eq
S

re
su

lt
s

fo
r

th
e

st
a
n

d
ar

d
se

t

ru
n

M
A

P
r@

10
r@

10
0

r@
10

00
p

@
10

p
@

20
p

@
30

p
@

10
0

p
@

10
00

R
R

l.
tfi

d
f.

T
F

ID
F

0
.0

51
3

0.
08

52
0.

21
39

0.
41

21
0.

04
81

0.
03

11
0.

02
56

0.
01

32
0
.0

0
3
6

8
3
4

l.
tfi

d
f.

T
F

ID
F

.n
o
rm

Q
0
.0

60
4

0.
10

38
0.

24
01

0.
41

21
0.

05
54

0.
03

82
0.

02
89

0
.0

1
3
8

0
.0

0
3
6

8
3
4

s.
tfi

d
f.

st
an

d
a
rd

0
.0

57
6

0.
09

58
0.

21
36

0
.3

9
9
9

0.
05

11
0.

03
26

0.
02

62
0.

01
28

0
.0

0
3
4

7
9
8

s.
tfi

d
f.

st
an

d
a
rd

.n
or

m
Q

0
.0

56
8

0.
09

50
0.

22
83

0
.3

9
9
9

0.
04

98
0.

03
45

0.
02

73
0.

01
32

0
.0

0
3
4

7
9
8

t.
b

m
2
5.

B
M

25
0
.0

35
2

0.
05

74
0.

14
24

0.
40

01
0.

03
18

0.
02

34
0.

01
86

0.
01

00
0
.0

0
3
5

8
1
3

t.
b

m
2
5.

B
M

25
.n

o
rm

Q
0
.0

56
6

0.
09

12
0.

22
61

0.
40

01
0.

04
85

0.
03

30
0.

02
72

0.
01

32
0
.0

0
3
5

8
1
3

t.
tfi

d
f.

D
L

H
1
3

0
.0

7
1
8

0.
10

41
0.

23
91

0.
39

18
0.

05
54

0.
03

84
0.

03
09

0.
01

39
0
.0

0
4
1

9
4
9

t.
tfi

d
f.

D
L

H
1
3.

n
or

m
Q

0
.0

62
0

0.
09

27
0.

23
49

0.
39

18
0.

05
02

0.
03

73
0.

02
93

0.
01

39
0
.0

0
4
1

9
4
9

t.
tfi

d
f.

H
ie

m
st

ra
0
.0

7
6
0

0
.1

1
8
9

0.
29

05
0.

46
39

0
.0

6
0
9

0.
03

86
0.

03
06

0.
01

65
0.

00
50

11
67

t.
tfi

d
if

.H
ie

m
st

ra
.n

o
rm

Q
0
.0

61
4

0.
10

41
0.

28
76

0.
46

39
0.

05
49

0.
03

80
0
.0

3
0
9

0
.0

1
6
7

0.
00

50
11

67
t.

tfi
d

f.
T

F
ID

F
0
.0

50
2

0.
07

65
0.

21
33

0.
38

86
0.

04
16

0.
02

92
0.

02
45

0.
01

21
0
.0

0
3
3

7
7
6

t.
tfi

d
f.

T
F

ID
F

.n
or

m
Q

0
.0

59
0

0.
09

74
0.

22
60

0.
38

86
0.

05
11

0.
03

41
0.

02
68

0
.0

1
2
6

0
.0

0
3
3

7
7
6

T
a
b

le
B

.6
.:

h
ig

h
S

im
re

su
lt

s
fo

r
th

e
st

an
d

ar
d

se
t

ru
n

M
A

P
r@

10
r@

10
0

r@
10

00
p

@
10

p
@

20
p

@
30

p
@

10
0

p
@

10
00

R
R

l.
tfi

d
f.

T
F

ID
F

0.
05

12
0
.0

85
2

0.
21

39
0.

37
87

0.
04

81
0.

03
11

0.
02

56
0.

01
32

0
.0

0
4
0

9
2
7

l.
tfi

d
f.

T
F

ID
F

.n
o
rm

Q
0.

06
04

0
.1

03
8

0.
24

01
0.

41
38

0.
05

54
0.

03
82

0.
02

89
0
.0

1
3
8

0
.0

0
3
6

8
3
3

s.
tfi

d
f.

st
an

d
a
rd

0.
05

75
0
.0

95
8

0.
21

36
0.

37
86

0.
05

11
0.

03
26

0.
02

62
0.

01
28

0
.0

0
3
8

8
8
8

s.
tfi

d
f.

st
an

d
a
rd

.n
or

m
Q

0.
05

68
0
.0

95
0

0.
22

83
0
.3

9
7
2

0.
04

98
0.

03
45

0.
02

73
0.

01
32

0
.0

0
3
4

8
0
0

t.
b

m
2
5.

B
M

25
0.

03
46

0
.0

57
4

0.
14

24
0.

26
09

0.
03

18
0.

02
34

0.
01

86
0.

01
00

0
.0

0
3
8

8
7
6

t.
b

m
2
5.

B
M

25
.n

o
rm

Q
0.

05
65

0
.0

91
2

0.
22

61
0.

39
56

0.
04

85
0.

03
30

0.
02

72
0.

01
32

0
.0

0
3
5

8
2
3

t.
tfi

d
f.

D
L

H
1
3

0
.0

7
1
8

0
.1

04
1

0.
23

91
0
.3

9
4
7

0.
05

54
0.

03
84

0.
03

09
0.

01
39

0.
00

38
87

6
t.

tfi
d

f.
D

L
H

1
3.

n
or

m
Q

0.
06

20
0
.0

92
7

0.
23

49
0.

39
13

0.
05

02
0.

03
73

0.
02

93
0.

01
39

0
.0

0
4
1

9
5
2

t.
tfi

d
f.

H
ie

m
st

ra
0
.0

7
6
0

0
.1

1
8
9

0.
29

05
0.

46
38

0
.0

6
0
9

0.
03

86
0.

03
06

0.
01

65
0.

00
46

10
68

t.
tfi

d
f.

H
ie

m
st

ra
.n

or
m

Q
0.

06
14

0
.1

04
1

0.
28

76
0.

46
63

0.
05

49
0.

03
80

0.
03

09
0
.0

1
6
7

0.
00

50
11

72
t.

tfi
d

f.
T

F
ID

F
0.

05
01

0
.0

76
5

0.
21

33
0.

37
93

0.
04

16
0.

02
92

0.
02

45
0.

01
21

0
.0

0
3
4

7
9
9

t.
tfi

d
f.

T
F

ID
F

.n
or

m
Q

0.
05

89
0
.0

97
4

0.
22

60
0.

38
57

0.
05

11
0.

03
41

0.
02

68
0
.0

1
2
6

0
.0

0
3
3

7
7
5

99

T
ab

le
B

.7
.:

T
er

ri
er

b
m

25
sp

li
t

re
su

lt
s

ru
n

M
A

P
r@

1
0

r@
1
0
0

r@
1
0
0
0

p
@

1
0

p
@

2
0

p
@

3
0

p
@

1
0
0

p
@

1
0
0
0

R
R

D
L

H
13

.m
ed

.8
3

0
.0

7
0
7

0
.1

0
4
6

0
.2

4
0
8

0
.3

4
5
1

0
.0

5
6
7

0
.0

3
8
6

0
.0

3
0
6

0
.0

1
4
0

0
.0

0
5
1

1
1
8
6

D
L

H
13

.m
ed

.8
3.

n
or

m
Q

0.
05

98
0
.0

9
1
1

0
.2

3
1
6

0
.3

4
5
1

0
.0

5
1
5

0
.0

3
7
3

0
.0

2
8
9

0
.0

1
3
9

0
.0

0
5
1

1
1
8
6

D
L

H
.m

ax
.6

5
0.

05
00

0
.0

7
8
6

0
.2

0
4
1

0
.3

0
4
9

0
.0

4
5
3

0
.0

3
1
5

0
.0

2
5
1

0
.0

1
4
4

0
.0

0
6
6

1
5
2
2

D
L

H
.m

ax
.6

5.
n

or
m

Q
0.

04
72

0
.0

8
0
6

0
.2

0
1
5

0
.3

0
4
9

0
.0

4
5
3

0
.0

3
0
8

0
.0

2
5
4

0
.0

1
3
2

0
.0

0
6
6

1
5
2
2

D
L

H
.m

ed
.1

14
0.

05
01

0
.0

7
8
6

0
.2

0
4
1

0
.3

1
8
9

0
.0

4
5
3

0
.0

3
1
5

0
.0

2
5
1

0
.0

1
4
4

0
.0

0
6
4

1
4
9
4

D
L

H
.m

ed
.1

14
.n

or
m

Q
0.

04
73

0
.0

8
0
6

0
.1

9
9
8

0
.3

1
8
9

0
.0

4
5
3

0
.0

3
0
8

0
.0

2
5
4

0
.0

1
3
0

0
.0

0
6
4

1
4
9
4

H
ie

m
st

ra
.m

ed
.7

9
0.

07
41

0
.1

1
7
7

0
.2

9
2
6

0
.3

9
9
8

0
.0

6
0
1

0
.0

3
8
4

0
.0

3
0
5

0
.0

1
6
5

0
.0

0
6
5

1
5
1
3

H
ie

m
st

ra
.m

ed
.7

9.
n

or
m

Q
0.

06
17

0
.1

0
5
6

0
.2

8
3
5

0
.3

9
9
8

0
.0

5
4
9

0
.0

3
7
1

0
.0

3
0
5

0
.0

1
6
4

0
.0

0
6
5

1
5
1
3

B
B

2.
m

ed
.9

8
0.

03
06

0
.0

5
0
3

0
.1

6
2
8

0
.3

2
2
5

0
.0

2
9
7

0
.0

2
2
4

0
.0

1
9
8

0
.0

1
1
9

0
.0

0
4
5

1
0
4
3

B
B

2.
m

ed
.9

8.
n

or
m

Q
0.

03
72

0
.0

6
9
1

0
.2

0
9
8

0
.3

2
2
5

0
.0

3
8
4

0
.0

2
8
7

0
.0

2
4
9

0
.0

1
2
9

0
.0

0
4
5

1
0
4
3

B
M

25
.m

ed
.7

6
0.

03
48

0
.0

5
7
4

0
.1

4
2
4

0
.3

3
0
6

0
.0

3
1
8

0
.0

2
3
4

0
.0

1
8
6

0
.0

1
0
0

0
.0

0
4
0

9
3
9

B
M

25
.m

ed
.7

6.
n

or
m

Q
0.

05
62

0
.0

9
1
2

0
.2

2
6
1

0
.3

3
0
6

0
.0

4
8
5

0
.0

3
3
0

0
.0

2
7
2

0
.0

1
3
2

0
.0

0
4
0

9
3
9

D
F

R
B

M
25

.m
ax

.1
01

0.
03

36
0
.0

5
6
3

0
.1

4
0
2

0
.3

4
1
6

0
.0

3
1
8

0
.0

2
3
0

0
.0

1
8
3

0
.0

0
9
9

0
.0

0
4
0

9
4
1

D
F

R
B

M
25

.m
ax

.1
01

.n
or

m
Q

0.
05

58
0
.0

9
1
5

0
.2

2
3
1

0
.3

4
1
6

0
.0

4
8
1

0
.0

3
2
4

0
.0

2
7
0

0
.0

1
3
1

0
.0

0
4
0

9
4
1

IF
B

2.
m

ax
.5

8
0.

03
25

0
.0

5
2
1

0
.1

6
9
8

0
.3

1
4
8

0
.0

3
3
2

0
.0

2
4
6

0
.0

2
0
0

0
.0

1
2
7

0
.0

0
5
0

1
1
5
1

IF
B

2.
m

ax
.5

8.
n

or
m

Q
0.

04
05

0
.0

7
5
8

0
.2

1
4
1

0
.3

1
4
8

0
.0

4
1
8

0
.0

3
1
0

0
.0

2
4
3

0
.0

1
3
6

0
.0

0
5
0

1
1
5
1

IF
B

2.
m

ed
.1

20
0.

03
25

0
.0

5
2
1

0
.1

6
9
8

0
.3

2
9
9

0
.0

3
3
2

0
.0

2
4
6

0
.0

2
0
0

0
.0

1
2
7

0
.0

0
4
8

1
1
0
8

IF
B

2.
m

ed
.1

20
.n

or
m

Q
0.

04
05

0
.0

7
5
8

0
.2

1
2
6

0
.3

2
9
9

0
.0

4
1
8

0
.0

3
1
0

0
.0

2
4
3

0
.0

1
3
4

0
.0

0
4
8

1
1
0
8

In
L

2.
m

ed
.7

3
0.

03
97

0
.0

6
5
0

0
.1

8
1
4

0
.3

2
6
6

0
.0

3
7
8

0
.0

2
5
8

0
.0

2
1
2

0
.0

1
0
9

0
.0

0
3
9

8
9
9

In
L

2.
m

ed
.7

3.
n

or
m

Q
0.

05
64

0
.0

9
8
1

0
.2

2
7
6

0
.3

2
6
6

0
.0

5
0
6

0
.0

3
3
7

0
.0

2
6
9

0
.0

1
2
7

0
.0

0
3
9

8
9
9

In
ex

p
B

2.
m

ax
.1

13
0.

03
59

0
.0

6
4
1

0
.1

7
6
9

0
.3

6
8
4

0
.0

3
7
8

0
.0

2
3
8

0
.0

1
9
5

0
.0

1
2
7

0
.0

0
4
7

1
1
0
3

In
ex

p
B

2.
m

ax
.1

13
.n

or
m

Q
0.

05
47

0
.0

9
2
2

0
.2

4
4
3

0
.3

6
8
4

0
.0

5
1
1

0
.0

3
4
8

0
.0

2
7
6

0
.0

1
4
5

0
.0

0
4
7

1
1
0
3

In
ex

p
C

2.
m

ed
.7

5
0.

03
74

0
.0

6
3
7

0
.1

7
9
6

0
.3

5
7
4

0
.0

3
8
6

0
.0

2
5
3

0
.0

2
0
3

0
.0

1
2
9

0
.0

0
4
8

1
1
2
1

In
ex

p
C

2.
m

ed
.7

5.
n

or
m

Q
0.

05
55

0
.0

9
3
5

0
.2

4
6
0

0
.3

5
7
4

0
.0

5
3
2

0
.0

3
5
2

0
.0

2
8
5

0
.0

1
4
5

0
.0

0
4
8

1
1
2
1

L
em

u
rT

F
ID

F
.m

ed
.7

7
0.

03
90

0
.0

6
6
4

0
.1

9
2
8

0
.3

5
3
9

0
.0

3
9
9

0
.0

2
6
2

0
.0

2
2
2

0
.0

1
2
8

0
.0

0
4
4

1
0
3
3

L
em

u
rT

F
ID

F
.m

ed
.7

7.
n

or
m

Q
0.

05
37

0
.0

9
5
0

0
.2

5
2
2

0
.3

5
3
9

0
.0

5
4
1

0
.0

3
5
8

0
.0

2
7
9

0
.0

1
4
8

0
.0

0
4
4

1
0
3
3

P
L

2.
m

ed
.1

33
0.

04
55

0
.0

7
3
1

0
.1

9
4
1

0
.3

1
7
2

0
.0

4
0
9

0
.0

2
8
0

0
.0

2
3
3

0
.0

1
2
3

0
.0

0
4
7

1
0
8
9

P
L

2.
m

ed
.1

33
.n

or
m

Q
0.

04
69

0
.0

7
3
2

0
.1

9
8
0

0
.3

1
7
2

0
.0

4
1
4

0
.0

2
8
0

0
.0

2
3
1

0
.0

1
2
0

0
.0

0
4
7

1
0
8
9

T
F

ID
F

.m
ed

.7
1

0.
04

60
0
.0

7
6
6

0
.2

0
9
9

0
.3

2
3
3

0
.0

4
2
1

0
.0

2
8
8

0
.0

2
4
5

0
.0

1
1
8

0
.0

0
3
8

8
8
1

T
F

ID
F

.m
ed

.7
1.

n
or

m
Q

0.
05

73
0
.0

9
7
6

0
.2

2
0
8

0
.3

2
3
3

0
.0

5
1
1

0
.0

3
4
1

0
.0

2
6
0

0
.0

1
2
4

0
.0

0
3
8

8
8
1

100

T
ab

le
B

.8
.:

T
er

ri
er

tfi
d

f
sp

li
t

re
su

lt
s

ru
n

M
A

P
r@

1
0

r@
1
0
0

r@
1
0
0
0

p
@

1
0

p
@

2
0

p
@

3
0

p
@

1
0
0

p
@

1
0
0
0

R
R

D
L

H
13

.m
ed

.7
8

0
.0

7
1
5

0
.1

0
4
1

0
.2

3
9
1

0
.3

4
5
1

0
.0

5
5
4

0
.0

3
8
4

0
.0

3
0
9

0
.0

1
3
9

0
.0

0
5
2

1
2
0
6

D
L

H
13

.m
ed

.7
8.

n
or

m
Q

0.
0
61

8
0
.0

9
2
7

0
.2

3
5
4

0
.3

4
5
1

0
.0

5
0
2

0
.0

3
7
3

0
.0

2
9
3

0
.0

1
3
9

0
.0

0
5
2

1
2
0
6

D
L

H
.m

ax
.4

7
0.

0
51

8
0
.0

8
1
8

0
.2

0
5
6

0
.3

0
0
8

0
.0

4
8
3

0
.0

3
3
2

0
.0

2
6
7

0
.0

1
5
3

0
.0

0
6
8

1
5
7
2

D
L

H
.m

ax
.4

7.
n

or
m

Q
0.

0
48

3
0
.0

7
9
5

0
.2

0
9
1

0
.3

0
0
8

0
.0

4
8
3

0
.0

3
2
5

0
.0

2
6
9

0
.0

1
4
4

0
.0

0
6
8

1
5
7
2

D
L

H
.m

ed
.1

11
0.

0
52

1
0
.0

8
1
8

0
.2

0
5
9

0
.3

2
1
6

0
.0

4
8
3

0
.0

3
3
2

0
.0

2
6
7

0
.0

1
5
3

0
.0

0
6
6

1
5
3
0

D
L

H
.m

ed
.1

11
.n

or
m

Q
0.

0
48

4
0
.0

7
9
5

0
.2

0
5
6

0
.3

2
1
6

0
.0

4
8
3

0
.0

3
2
5

0
.0

2
6
9

0
.0

1
3
7

0
.0

0
6
6

1
5
3
0

H
ie

m
st

ra
.m

ed
.7

9
0
.0

7
5
5

0
.1

1
8
9

0
.2

9
1
2

0
.4

0
2
8

0
.0

6
0
9

0
.0

3
8
6

0
.0

3
0
6

0
.0

1
6
6

0
.0

0
6
6

1
5
4
8

H
ie

m
st

ra
.m

ed
.7

9.
n

or
m

Q
0.

0
61

0
0
.1

0
4
1

0
.2

8
7
1

0
.4

0
2
8

0
.0

5
4
9

0
.0

3
8
0

0
.0

3
0
9

0
.0

1
6
7

0
.0

0
6
6

1
5
4
8

B
B

2.
m

ed
.1

07
0.

0
36

7
0
.0

6
0
1

0
.1

6
1
3

0
.3

2
8
1

0
.0

3
4
1

0
.0

2
4
1

0
.0

2
0
3

0
.0

1
1
9

0
.0

0
4
6

1
0
6
5

B
B

2.
m

ed
.1

07
.n

or
m

Q
0.

0
40

2
0
.0

7
2
1

0
.2

0
9
7

0
.3

2
8
1

0
.0

3
9
7

0
.0

2
9
5

0
.0

2
4
7

0
.0

1
2
7

0
.0

0
4
6

1
0
6
5

B
M

25
.m

ed
.7

3
0.

0
37

5
0
.0

6
2
7

0
.1

5
1
4

0
.3

3
2
9

0
.0

3
3
9

0
.0

2
4
7

0
.0

1
9
3

0
.0

1
0
3

0
.0

0
4
1

9
5
8

B
M

25
.m

ed
.7

3.
n

or
m

Q
0.

0
58

7
0
.0

9
2
9

0
.2

2
8
7

0
.3

3
2
9

0
.0

4
8
9

0
.0

3
2
8

0
.0

2
6
9

0
.0

1
3
3

0
.0

0
4
1

9
5
8

D
F

R
B

M
25

.m
ed

.7
1

0.
0
36

4
0
.0

6
1
3

0
.1

4
9
4

0
.3

3
0
2

0
.0

3
3
5

0
.0

2
4
2

0
.0

1
8
7

0
.0

1
0
2

0
.0

0
4
1

9
5
4

D
F

R
B

M
25

.m
ed

.7
1.

n
or

m
Q

0.
0
57

8
0
.0

9
0
1

0
.2

2
5
3

0
.3

3
0
2

0
.0

4
6
8

0
.0

3
3
0

0
.0

2
6
8

0
.0

1
3
2

0
.0

0
4
1

9
5
4

IF
B

2.
m

ed
.1

18
0.

0
37

7
0
.0

6
3
4

0
.1

7
1
8

0
.3

3
7
8

0
.0

3
7
5

0
.0

2
5
4

0
.0

2
1
0

0
.0

1
2
9

0
.0

0
4
9

1
1
4
3

IF
B

2.
m

ed
.1

18
.n

or
m

Q
0.

0
42

9
0
.0

7
5
7

0
.2

1
0
1

0
.3

3
7
8

0
.0

4
2
2

0
.0

3
1
3

0
.0

2
4
0

0
.0

1
3
2

0
.0

0
4
9

1
1
4
3

In
L

2.
m

ax
.1

28
0.

0
44

6
0
.0

6
7
7

0
.1

8
6
7

0
.3

4
8
5

0
.0

3
7
8

0
.0

2
5
5

0
.0

2
1
5

0
.0

1
1
2

0
.0

0
3
9

9
1
0

In
L

2.
m

ax
.1

28
.n

or
m

Q
0.

0
57

8
0
.1

0
0
5

0
.2

2
8
6

0
.3

4
8
5

0
.0

5
1
1

0
.0

3
3
3

0
.0

2
7
2

0
.0

1
2
6

0
.0

0
3
9

9
1
0

In
ex

p
B

2.
m

ed
.7

7
0.

0
40

0
0
.0

6
8
9

0
.1

7
9
7

0
.3

5
6
6

0
.0

3
9
5

0
.0

2
6
2

0
.0

2
0
2

0
.0

1
2
7

0
.0

0
4
7

1
1
0
5

In
ex

p
B

2.
m

ed
.7

7.
n

or
m

Q
0.

0
55

4
0
.0

8
9
5

0
.2

4
8
0

0
.3

5
6
6

0
.0

5
0
6

0
.0

3
5
0

0
.0

2
7
9

0
.0

1
4
8

0
.0

0
4
7

1
1
0
5

In
ex

p
C

2.
m

ed
.8

0
0.

0
40

6
0
.0

7
0
1

0
.1

8
1
1

0
.3

6
4
5

0
.0

4
0
3

0
.0

2
6
0

0
.0

2
1
0

0
.0

1
2
7

0
.0

0
4
8

1
1
2
5

In
ex

p
C

2.
m

ed
.8

0.
n

or
m

Q
0.

0
54

7
0
.0

8
9
0

0
.2

5
0
8

0
.3

6
4
5

0
.0

5
0
2

0
.0

3
5
2

0
.0

2
8
6

0
.0

1
4
6

0
.0

0
4
8

1
1
2
5

L
em

u
rT

F
ID

F
.m

ed
.8

1
0.

0
41

7
0
.0

7
0
2

0
.1

9
9
0

0
.3

6
0
0

0
.0

4
1
6

0
.0

2
7
3

0
.0

2
2
2

0
.0

1
3
2

0
.0

0
4
5

1
0
4
5

L
em

u
rT

F
ID

F
.m

ed
81

.n
or

m
Q

0.
0
53

3
0
.0

9
3
9

0
.2

5
3
5

0
.3

6
0
0

0
.0

5
3
2

0
.0

3
5
4

0
.0

2
8
2

0
.0

1
4
8

0
.0

0
4
5

1
0
4
5

P
L

2.
m

ed
.1

33
0.

0
49

8
0
.0

7
3
3

0
.2

0
1
5

0
.3

2
3
6

0
.0

4
2
7

0
.0

3
0
2

0
.0

2
4
9

0
.0

1
3
0

0
.0

0
4
9

1
1
2
6

P
L

2.
m

ed
.1

33
.n

or
m

Q
0.

0
47

2
0
.0

7
7
5

0
.2

0
8
6

0
.3

2
3
6

0
.0

4
4
0

0
.0

3
1
5

0
.0

2
4
6

0
.0

1
2
7

0
.0

0
4
9

1
1
2
6

T
F

ID
F

.m
ed

.7
8

0.
0
49

9
0
.0

7
6
5

0
.2

1
3
3

0
.3

2
5
9

0
.0

4
1
6

0
.0

2
9
2

0
.0

2
4
5

0
.0

1
2
1

0
.0

0
3
8

8
9
1

T
F

ID
F

.m
ed

.7
8.

n
or

m
Q

0.
0
58

5
0
.0

9
7
4

0
.2

2
6
0

0
.3

2
5
9

0
.0

5
1
1

0
.0

3
4
1

0
.0

2
6
8

0
.0

1
2
6

0
.0

0
3
8

8
9
1

101

T
a
b

le
B

.9
.:

L
em

u
r

b
m

2
5

sp
li

t
re

su
lt

s

ru
n

M
A

P
r@

10
r@

10
0

r@
10

00
p

@
10

p
@

20
p

@
30

p
@

10
0

p
@

10
00

R
R

B
M

2
5.

m
ed

.5
26

0.
03

29
0
.0

49
0

0.
11

00
0
.2

5
0
4

0.
02

79
0
.0

1
9
1

0
.0

1
6
0

0
.0

0
6
8

0
.0

0
1
9

4
4
6

B
M

2
5.

m
ed

.5
26

.n
o
rm

Q
0.

01
80

0
.0

20
2

0.
05

80
0
.2

5
0
4

0.
01

16
0.

00
62

0.
00

43
0.

00
32

0
.0

0
1
9

4
4
6

in
d

ri
.m

ax
.5

0.
06

47
0
.0

95
8

0.
17

17
0.

24
68

0.
05

19
0.

03
54

0.
02

66
0
.0

1
5
4

0
.0

1
7
5

4
0
7
2

in
d

ri
.m

ax
.5

.n
or

m
Q

0.
05

52
0
.1

00
6

0.
17

17
0.

24
68

0.
05

45
0.

03
56

0.
02

69
0
.0

1
5
4

0
.0

1
7
5

4
0
7
2

in
d

ri
.m

ed
.8

6
0.

06
90

0
.0

98
6

0.
22

52
0.

33
96

0.
05

11
0.

03
52

0.
02

79
0.

01
45

0
.0

1
6
0

3
7
2
7

in
d

ri
.m

ed
.8

6
.n

o
rm

Q
0.

05
79

0
.0

97
1

0.
22

18
0.

33
96

0.
05

28
0.

03
67

0.
02

79
0.

01
41

0
.0

1
6
0

3
7
2
7

T
F

ID
F

.m
ax

.1
1
6

0.
04

81
0
.0

78
0

0.
21

12
0.

36
42

0.
04

59
0.

03
03

0.
02

40
0.

01
30

0
.0

0
4
1

9
5
1

T
F

ID
F

.m
ax

.1
1
6.

n
or

m
Q

0.
06

00
0
.0

98
5

0.
23

82
0.

36
42

0.
05

54
0.

03
76

0.
02

85
0
.0

1
3
6

0
.0

0
4
1

9
5
1

T
ab

le
B

.1
0.

:
L

em
u

r
tfi

d
f

sp
li

t
re

su
lt

s

ru
n

M
A

P
r@

10
r@

10
0

r@
10

00
p

@
10

p
@

20
p

@
30

p
@

10
0

p
@

10
00

R
R

B
M

2
5.

m
a
x
.6

09
0.

03
56

0
.0

54
8

0
.1

2
2
8

0
.3

0
3
1

0
.0

3
1
3

0
.0

2
1
5

0
.0

1
7
6

0
.0

0
7
5

0
.0

0
2
1

4
8
7

B
M

2
5.

m
a
x
.6

09
.n

o
rm

Q
0.

01
89

0
.0

20
2

0.
08

75
0
.3

0
3
1

0.
01

24
0.

00
69

0.
00

54
0.

00
49

0
.0

0
2
1

4
8
7

in
d

ri
.m

ax
.3

0.
06

43
0
.0

95
7

0.
16

79
0.

24
97

0.
05

28
0.

03
43

0.
02

59
0
.0

1
5
8

0
.0

1
7
9

4
1
7
6

in
d

ri
.m

ax
.3

.n
or

m
Q

0.
05

38
0
.0

97
1

0.
16

79
0.

24
97

0.
05

32
0.

03
43

0.
02

59
0
.0

1
5
8

0
.0

1
7
9

4
1
7
6

in
d

ri
.m

ed
.9

5
0.

06
89

0
.0

99
2

0.
22

16
0.

35
05

0.
05

28
0.

03
50

0.
02

82
0.

01
45

0
.0

1
6
2

3
7
8
5

in
d

ri
.m

ed
.9

5
.n

o
rm

Q
0.

05
79

0
.1

00
5

0.
22

75
0.

35
05

0.
05

32
0.

03
73

0.
02

80
0.

01
44

0
.0

1
6
2

3
7
8
5

T
F

ID
F

.m
ed

.9
8

0.
05

11
0
.0

85
2

0.
21

39
0.

36
09

0.
04

81
0.

03
11

0.
02

56
0.

01
32

0
.0

0
4
1

9
6
1

T
F

ID
F

.m
ed

.9
8
.n

o
rm

Q
0.

06
01

0
.1

03
8

0.
24

01
0.

36
09

0.
05

54
0.

03
82

0.
02

89
0
.0

1
3
8

0
.0

0
4
1

9
6
1

102

T
a
b

le
B

.1
1
.:

S
o
lr

b
m

25
sp

li
t

re
su

lt
s

ru
n

M
A

P
r@

1
0

r@
10

0
r@

10
00

p
@

10
p

@
20

p
@

30
p

@
10

0
p

@
10

00
R

R

st
a
n

d
ar

d
.m

ax
.9

9
0
.0

55
9

0
.0

91
7

0.
20

46
0.

35
15

0.
05

02
0.

03
37

0.
02

59
0.

01
26

0
.0

0
4
0

9
2
6

st
a
n

d
ar

d
.m

ax
.9

9
.n

o
rm

Q
0
.0

55
4

0
.0

88
9

0.
22

83
0.

35
15

0.
04

76
0.

03
45

0.
02

79
0.

01
33

0
.0

0
4
0

9
2
6

m
lt

.m
ed

.1
17

0
.0

50
2

0
.0

75
7

0.
17

81
0.

29
27

0.
03

78
0.

02
58

0.
02

05
0.

01
03

0.
00

40
93

6
m

lt
.m

ed
.1

17
.n

o
rm

Q
0
.0

46
6

0
.0

77
4

0.
18

22
0.

29
27

0.
03

86
0.

02
66

0.
02

19
0.

01
03

0.
00

40
93

6

T
ab

le
B

.1
2.

:
S

ol
r

tfi
d

f
sp

li
t

re
su

lt
s

ru
n

M
A

P
r@

1
0

r@
10

0
r@

10
00

p
@

10
p

@
20

p
@

30
p

@
10

0
p

@
10

00
R

R

st
a
n

d
ar

d
.m

ed
.7

6
0
.0

57
3

0.
09

58
0.

21
36

0.
34

17
0.

05
11

0.
03

26
0.

02
62

0.
01

28
0
.0

0
4
0

9
2
9

st
a
n

d
ar

d
.m

ed
.7

6
.n

o
rm

Q
0
.0

56
4

0.
09

50
0.

22
87

0.
34

17
0.

04
98

0.
03

45
0.

02
73

0.
01

32
0
.0

0
4
0

9
2
9

m
lt

.m
a
x
.7

2
0
.0

54
5

0.
08

34
0.

19
09

0.
29

36
0.

04
12

0.
02

90
0.

02
20

0.
01

10
0.

00
41

95
5

m
lt

.m
a
x
.7

2.
n

or
m

Q
0
.0

48
2

0.
08

29
0.

20
18

0.
29

36
0.

03
99

0.
02

88
0.

02
37

0.
01

11
0.

00
41

95
5

103

Bibliography

[1] Amati, G. Probability Models for Information Retrieval based on Divergence from
Randomness. PhD thesis, Department of Computing Science University of Glasgow,
2003.

[2] Atkinson, K. H. Toward a more rational patent search paradigm. In Proceeding
of the 1st ACM Workshop on Patent Information Retrieval (New York, NY, USA,
2008), PaIR ’08, ACM, pp. 37–40.

[3] Azzopardi, L., and Bache, R. On the relationship between effectiveness and
accessibility. In Proceeding of the 33rd International ACM SIGIR Conference on
Research and Development in Information Retrieval (New York, NY, USA, 2010),
SIGIR ’10, ACM, pp. 889–890.

[4] Azzopardi, L., and Vinay, V. Accessibility in information retrieval. In Pro-
ceedings of the IR Research, 30th European Conference on Advances in Information
Retrieval, ECIR’08. Springer-Verlag, Berlin, Heidelberg, 2008, pp. 482–489.

[5] Azzopardi, L., and Vinay, V. Retrievability: an evaluation measure for higher
order information access tasks. In Proceeding of the 17th ACM Conference on
Information and Knowledge Management (New York, NY, USA, 2008), CIKM ’08,
ACM, pp. 561–570.

[6] Balog, K., and de Rijke, M. The University of Amsterdam at WebCLEF
2006. In Working Notes CLEF 2006 (September 2006), A. Nardi, C. Peters, and
J. Vicedo.

[7] Barrett, M. Emanuel Law Outlines: Intellectual Property. Aspen Publishers
Inc., 2008.

[8] Bashir, S., and Rauber, A. Analyzing document retrievability in patent retrieval
settings. In Proceedings of the 20th International Conference on Database and Ex-
pert Systems Applications (Berlin, Heidelberg, 2009), DEXA ’09, Springer-Verlag,
pp. 753–760.

[9] Bashir, S., and Rauber, A. Identification of low/high retrievable patents using
content-based features. In Proceeding of the 2nd International Workshop on Patent
Information Retrieval (New York, NY, USA, 2009), PaIR ’09, ACM, pp. 9–16.

[10] Bashir, S., and Rauber, A. Improving retrievability of patents with cluster-
based pseudo-relevance feedback documents selection. In Proceedings of the 18th

104

ACM Conference on Information and Knowledge Management (New York, NY,
USA, 2009), CIKM ’09, ACM, pp. 1863–1866.

[11] Bashir, S., and Rauber, A. Improving retrievability and recall by automatic
corpus partitioning. In Transactions on Large-Scale Data- and Knowledge-Centered
Systems II, A. Hameurlain, J. Küng, R. Wagner, T. Bach Pedersen, and A. Tjoa,
Eds., vol. 6380 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Hei-
delberg, 2010, pp. 122–140.

[12] Bashir, S., and Rauber, A. Improving retrievability of patents in prior-art
search. In Advances in Information Retrieval, C. Gurrin, Y. He, G. Kazai, U. Kr-
uschwitz, S. Little, T. Roelleke, S. Rüger, and K. van Rijsbergen, Eds., vol. 5993
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, 2010,
pp. 457–470.

[13] Broglio, J., Callan, J. P., and Croft, W. B. Inquery system overview. In
Proceedings of a Workshop held at Fredericksburg, Virginia: September 19-23, 1993
(Morristown, NJ, USA, 1993), Association for Computational Linguistics, pp. 47–
67.

[14] Cominvent AS. Solr architecture diagram. http://www.cominvent.com/2011/

04/04/solr-architecture-diagram/. [Online; accessed 23-April-2011].

[15] European Patent Office. EPO - Basic definitions. http://www.

epo.org/patents/patent-information/european-patent-documents/

basic-definitions.html. [Online; accessed 24-January-2011].

[16] European Patent Office. EPO - History. http://www.epo.org/about-us/

office/history.html. [Online; accessed 24-January-2011].

[17] European Patent Office. Europäische Klassifikation (ECLA). http://ep.

espacenet.com/help?topic=ecla&method=handleHelpTopic&locale=de_ep.
[Online; accessed 24-January-2011].

[18] European Patent Office. Patent families. http://www.epo.org/patents/

patent-information/about/families.html. [Online; accessed 26-January-2011].

[19] European Patent Office. European Patent Convention.
http://documents.epo.org/projects/babylon/eponet.nsf/0/

7bacb229e032863dc12577ec004ada98/$FILE/EPC_14th_edition.pdf, August
2010. [Online; accessed 24-January-2011].

[20] Foglia, P. Patentability search strategies and the reformed IPC: A patent office
perspective. World Patent Information 29, 1 (2007), 33 – 53.

[21] Graf, E., and Azzopardi, L. A methodology for building a patent test collec-
tion for prior art search. In Proceedings of the Second International Workshop on
Evaluating Information Access (EIVA) (2008), pp. 60–71.

105

http://www.cominvent.com/2011/04/04/solr-architecture-diagram/
http://www.cominvent.com/2011/04/04/solr-architecture-diagram/
http://www.epo.org/patents/patent-information/european-patent-documents/basic-definitions.html
http://www.epo.org/patents/patent-information/european-patent-documents/basic-definitions.html
http://www.epo.org/patents/patent-information/european-patent-documents/basic-definitions.html
http://www.epo.org/about-us/office/history.html
http://www.epo.org/about-us/office/history.html
http://ep.espacenet.com/help?topic=ecla&method=handleHelpTopic&locale=de_ep
http://ep.espacenet.com/help?topic=ecla&method=handleHelpTopic&locale=de_ep
http://www.epo.org/patents/patent-information/about/families.html
http://www.epo.org/patents/patent-information/about/families.html
http://documents.epo.org/projects/babylon/eponet.nsf/0/7bacb229e032863dc12577ec004ada98/$FILE/EPC_14th_edition.pdf
http://documents.epo.org/projects/babylon/eponet.nsf/0/7bacb229e032863dc12577ec004ada98/$FILE/EPC_14th_edition.pdf

[22] Harris, C. G., Arens, R., and Srinivasan, P. Comparison of IPC and USPC
classification systems in patent prior art searches. In Proceedings of the 3rd Inter-
national Workshop on Patent Information Retrieval (New York, NY, USA, 2010),
PaIR ’10, ACM, pp. 27–32.

[23] Harris, C. G., Arens, R., and Srinivasan, P. Using classification code hier-
archies for patent prior art searches. In Current Challenges in Patent Information
Retrieval, M. Lupu, K. Mayer, J. Tait, A. J. Trippe, and W. B. Croft, Eds., vol. 29 of
The Kluwer International Series on Information Retrieval. Springer-Verlag, Berlin,
Heidelberg, 2011, pp. 287–304.

[24] Hunt, D., Nguyen, L., and Rodgers, M. Patent searching: Tools & Techniques.
John Wiley & Sons, Inc., Hoboken, New Jersey, 2007.

[25] Information Retrieval Facility. MAREC - Overview. http://www.

ir-facility.org/prototypes/marec. [Online; accessed 20-May-2011].

[26] Information Retrieval Facility. MAREC - Statistics. http://www.

ir-facility.org/prototypes/marec/statistics. [Online; accessed 20-May-
2011].

[27] Mahdabi, P., Keikha, M., Gerani, S., Landoni, M., and Crestani, F.
Building queries for prior-art search. In Multidisciplinary Information Retrieval,
A. Hanbury, A. Rauber, and A. de Vries, Eds., vol. 6653 of Lecture Notes in Com-
puter Science. Springer-Verlag, Berlin, Heidelberg, 2011, pp. 3–15.

[28] Manning, C. D., Raghavan, P., and Schütze, H. An Introduction to Infor-
mation Retrieval. Cambridge University Press, April 2009. http://nlp.stanford.
edu/IR-book/pdf/irbookonlinereading.pdf.

[29] Martnez, C. Patent families: When do different definitions really matter? Scien-
tometrics 86 (2011), 39–63.

[30] Mayer, R., and Avery, C. Das US-Patent: Erwirkung und Durchsetzung unter
besonderer Berücksichtigung der Rechtsprechung. Carl Heymanns Verlag KG, 2003.

[31] McCandless, M., Hatcher, E., and Gospodnetic, O. Lucene in Action,
Second Edition: Covers Apache Lucene 3.0. Manning Publications Co., Greenwich,
CT, USA, 2010.

[32] McLaughlin, B., and Edelson, J. Java & XML, third ed. O’Reilly Media, Inc.,
2006.

[33] Metzler, D., Lavrenko, V., and Croft, W. B. Formal multiple-bernoulli
models for language modeling. In Proceedings of the 27th annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(New York, NY, USA, 2004), SIGIR ’04, ACM, pp. 540–541.

106

http://www.ir-facility.org/prototypes/marec
http://www.ir-facility.org/prototypes/marec
http://www.ir-facility.org/prototypes/marec/statistics
http://www.ir-facility.org/prototypes/marec/statistics
http://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
http://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf

[34] Montague, M., and Aslam, J. A. Relevance score normalization for metasearch.
In Proceedings of the tenth International Conference on Information and Knowledge
Management (New York, NY, USA, 2001), CIKM ’01, ACM, pp. 427–433.

[35] National Institute of Standards and Technology (NIST). Relevance
Judgements File List. http://trec.nist.gov/data/qrels_eng/index.html. [On-
line; accessed 22-May-2011].

[36] National Institute of Standards and Technology (NIST). Text Retrieval
Conference (TREC) Overview. http://trec.nist.gov/overview.html. [Online;
accessed 11-February-2011].

[37] Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., and Lioma,
C. Terrier: A high performance and scalable information retrieval platform. In
Proceedings of ACM SIGIR’06 Workshop on Open Source Information Retrieval
(OSIR 2006) (2006).

[38] Riclas. Vector space model. http://en.wikipedia.org/wiki/File:Vector_

space_model.jpg, 2011. [Online; accessed 7-February-2011].

[39] Strohman, T., Metzler, D., Turtle, H., and Croft, W. B. Indri: a
language-model based search engine for complex queries. In Proceedings of the
International Conference on Intelligent Analysis (2005).

[40] Tait, J., Lupu, M., Berger, H., Roda, G., Dittenbach, M., Pesenhofer,
A., Graf, E., and van Rijsbergen, K. Patent Search: An important new test
bed for IR. In Proceedings of the 9th Dutch-Belgian Information Retrieval Workshop
(DIR 2009) (Enschede, The Netherlands, February 2–3 2009), pp. 56–63.

[41] The Apache Software Foundation. SchemaXml - Solr Wiki. http://wiki.

apache.org/solr/SchemaXml. [Online; accessed 23-April-2011].

[42] The Apache Software Foundation. SolrConfigXml - Solr Wiki. http://wiki.
apache.org/solr/SolrConfigXml. [Online; accessed 23-April-2011].

[43] The Apache Software Foundation. What is Solr? http://lucene.apache.

org/solr/index.html. [Online; accessed 18-April-2011].

[44] The Lemur Project. The lemur project homepage. http://www.lemurproject.
org. [Online; accessed 22-November-2010].

[45] The Terrier Project. Configuring retrieval in Terrier. http://terrier.org/

docs/v3.0/configure_retrieval.html. [Online; accessed 26-May-2011].

[46] The Terrier Project. The terrier project homepage. http://terrier.org/,
2010. [Online; accessed 24-November-2010].

107

http://trec.nist.gov/data/qrels_eng/index.html
http://trec.nist.gov/overview.html
http://en.wikipedia.org/wiki/File:Vector_space_model.jpg
http://en.wikipedia.org/wiki/File:Vector_space_model.jpg
http://wiki.apache.org/solr/SchemaXml
http://wiki.apache.org/solr/SchemaXml
http://wiki.apache.org/solr/SolrConfigXml
http://wiki.apache.org/solr/SolrConfigXml
http://lucene.apache.org/solr/index.html
http://lucene.apache.org/solr/index.html
http://www.lemurproject.org
http://www.lemurproject.org
http://terrier.org/docs/v3.0/configure_retrieval.html
http://terrier.org/docs/v3.0/configure_retrieval.html
http://terrier.org/

[47] United States Senate - Committee on the Judiciary. A BILL. To amend
title 35, United States Code, to provide for patent reform. http://judiciary.

senate.gov/legislation/upload/BillText-PatentReformAct.pdf. [Online; ac-
cessed 4-February-2011].

[48] Wikipedia. Lorenz curve — Wikipedia, The Free Encyclopedia. http://

en.wikipedia.org/w/index.php?title=Lorenz_curve&oldid=399320448, 2010.
[Online; accessed 18-December-2010].

[49] Wikipedia. Lorenz-Kurve — Wikipedia, Die freie Enzyklopädie. http://de.

wikipedia.org/w/index.php?title=Lorenz-Kurve&oldid=81411412, 2010. [On-
line; accessed 17-December-2010].

[50] World Intellectual Property Organization. Contracting Parties:
Paris Convention. http://www.wipo.int/treaties/en/ShowResults.jsp?lang=

en&treaty_id=2. [Online; accessed 17-January-2011].

[51] World Intellectual Property Organization. Paris Convention for the
protection of industrial property. http://www.wipo.int/treaties/en/ip/paris/
trtdocs_wo020.html. [Online; accessed 07-April-2011].

[52] World Intellectual Property Organization. Patent Cooperation Treaty
PCT (1970). http://www.wipo.int/pct/en/treaty/about.html. [Online; ac-
cessed 17-January-2011].

[53] World Intellectual Property Organization. WIPO Intellectual Property
Handbook: Policy, Law and Use - Chapter 1. http://www.wipo.int/export/

sites/www/about-ip/en/iprm/pdf/ch1.pdf. [Online; accessed 20-January-2011].

[54] World Intellectual Property Organization. WIPO Intellectual Property
Handbook: Policy, Law and Use - Chapter 2. http://www.wipo.int/export/

sites/www/about-ip/en/iprm/pdf/ch2.pdf. [Online; accessed 20-January-2011].

[55] World Intellectual Property Organization. World Intellectual Prop-
erty Indicators 2010. http://www.wipo.int/export/sites/www/shared/images/
icon/new/pdf.gif. [Online; accessed 31-August-2011].

[56] World Intellectual Property Organization. List of PCT contracting states
and map (July 2010). http://www.wipo.int/pct/en/list_states.pdf, 2010.
[Online; accessed 17-January-2011].

[57] World Intellectual Property Organization. Guide to the IPC
(2011). http://www.wipo.int/export/sites/www/classifications/ipc/en/

guide/guide_ipc.pdf, 2011. [Online; accessed 24-January-2011].

[58] World Trade Organization. TRIPS: Agreement on trade-related aspects of
intellectual property rights - Preamble. http://www.wto.org/english/tratop_e/
trips_e/t_agm1_e.htm. [Online; accessed 07-April-2011].

108

http://judiciary.senate.gov/legislation/upload/BillText-PatentReformAct.pdf
http://judiciary.senate.gov/legislation/upload/BillText-PatentReformAct.pdf
http://en.wikipedia.org/w/index.php?title=Lorenz_curve&oldid=399320448
http://en.wikipedia.org/w/index.php?title=Lorenz_curve&oldid=399320448
http://de.wikipedia.org/w/index.php?title=Lorenz-Kurve&oldid=81411412
http://de.wikipedia.org/w/index.php?title=Lorenz-Kurve&oldid=81411412
http://www.wipo.int/treaties/en/ShowResults.jsp?lang=en&treaty_id=2
http://www.wipo.int/treaties/en/ShowResults.jsp?lang=en&treaty_id=2
http://www.wipo.int/treaties/en/ip/paris/trtdocs_wo020.html
http://www.wipo.int/treaties/en/ip/paris/trtdocs_wo020.html
http://www.wipo.int/pct/en/treaty/about.html
http://www.wipo.int/export/sites/www/about-ip/en/iprm/pdf/ch1.pdf
http://www.wipo.int/export/sites/www/about-ip/en/iprm/pdf/ch1.pdf
http://www.wipo.int/export/sites/www/about-ip/en/iprm/pdf/ch2.pdf
http://www.wipo.int/export/sites/www/about-ip/en/iprm/pdf/ch2.pdf
http://www.wipo.int/export/sites/www/shared/images/icon/new/pdf.gif
http://www.wipo.int/export/sites/www/shared/images/icon/new/pdf.gif
http://www.wipo.int/pct/en/list_states.pdf
http://www.wipo.int/export/sites/www/classifications/ipc/en/guide/guide_ipc.pdf
http://www.wipo.int/export/sites/www/classifications/ipc/en/guide/guide_ipc.pdf
http://www.wto.org/english/tratop_e/trips_e/t_agm1_e.htm
http://www.wto.org/english/tratop_e/trips_e/t_agm1_e.htm

[59] Zenz, V., Wurzer, S., Dittenbach, M., and Ambrosi, E. On the effects of
indexing and retrieval models in patent search and the potential of result set merg-
ing. In 1st International Workshop on Advances in Patent Information Retrieval
(2010), AsPIRe’10.

109

	Introduction
	Motivation
	Goal of work
	Outline

	Fundamentals
	Intellectual property and patents
	Intellectual Property
	Patents
	European patents
	US patents

	Information retrieval
	Establishing an index
	Scoring and term weighting
	Retrieval models
	Query expansion
	Evaluation

	Patent search
	Types of patent searches
	Techniques

	Toolkits
	Lemur
	Terrier
	Solr

	Corpora split and result set merging
	Improving retrievability by corpus partitioning
	Result set merging including different retrieval engines

	Related work
	Categorization of methods
	Accessibility, findability, retrievability
	Prior art search
	Retrievability and precision

	Assessment of methods

	Methods
	System set-up
	Hardware and software versions
	Creation of the test collection
	Terrier
	Lemur
	Solr
	Baseline

	Corpora split
	Analysis of split corpora
	Result set merging
	CombineTrecResults
	Methods of CombineTrecResults

	Experimental results
	Overview
	Normalization
	equalSize method
	highestSimilarity method
	partitionSize method and optimalMap
	Comparison to baseline and different splits
	Comparison to eqS and highSim

	Conclusions
	Discussion and interpretation of results
	Future prospects

	Listings
	Tables

