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Kurzfassung

In dieser Dissertation werden einige wesentliche Aufgaben im Reglerentwurfsprozess für inte-
grierte Flugregelungen von großen, flexiblen Flugzeugen beleuchtet und in den folgenden vier
Kernbereichen erweitert: Zuerst werden mehrere Beiträge zur Methodik des konvexen Regler-
entwurfs erbracht, darunter die Entwicklung eines leistungsfähigen Optimierungswerkzeuges und
Lösungsansätze zur Synthese stabiler und stabilisierender Regler. Danach wird ein allgemeiner
Ansatz zur Optimierung von Entwurfsparametern in komplexen Reglerentwurfsabläufen mithilfe
genetischer Algorithmen formuliert, implementiert und getestet. Schließlich wird das Problem
der Ordnungsreduktion von Reglern behandelt und zwei Formulierungen im Rahmen der fre-
quenzgewichteten balancierten Reduktion vorgestellt, die die Beibehaltung der Regelleistung
ermöglichen. Letztendlich wird die Parametrierung von Reglern, genauer die darin auftreten-
de Interpolation lineardynamischer Systeme auf Stabilität untersucht. Ein neuer Ansatz zur
modalen Interpolation mit Methoden der Geometrischen Algebra wird vorgestellt, der vielver-
sprechende erste Resultate liefert.

Mehrere komplexe Fallstudien stellen die Leistung der entwickelten Methoden dar. Dazu
zählen vor allem die erfolgreichen, komplexen Reglerentwürfe für die Lateralregelung eines
großen, flexiblen Nurflügel-Flugzeugs mit hohen Anforderungen an die Regelleistung und Ro-
bustheit.

Die Arbeit beginnt mit einer umfassenden Einführung in die nötigen Grundlagen und den
Stand der Technik bei modernen optimalen und robusten Entwurfsmethoden für Regler und
dynamische Vorsteuerungen, gefolgt von einer kurzen Darstellung der Flugzeugmodelle, die als
Basis für die späteren Fallstudien dienen. Die genannten neuen Beiträge samt der Entwurfs-
Fallstudien bilden den Kern der Arbeit, dem eine Zusammenfassung und Ausblick folgen. Die
Arbeit endet mit einem ausführlichen Anhang, der zusätzliches Material als direkte Referenz
bereitstellt.

Die hier entwickelten Methoden zum Entwurf, zur Reduktion und zur Interpolation von Reg-
lern ermöglichen die Beherrschung hochkomplexer Entwurfsaufgaben in der Flugregelung großer,
flexibler Flugzeuge. Eindrucksvolle Ergebnisse konnten dabei in den vorgestellten Entwürfen der
Lateralregelung für ein derartiges Nurflügel-Flugzeug erzielt werden.
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Abstract

In this thesis, several essential tasks in the control design process for integrated flight control
of large, flexible aircraft are investigated and extended in the following four core areas: First,
several extensions to the convex control design methodology are proposed, including the develop-
ment of an efficient numeric optimization tool and solution onsets to generate stable stabilizing
controllers. Second, a general onset for design parameter optimization in complex control de-
sign flows by genetic algorithms is formulated, implemented, and tested. Third, the controller
order reduction problem is considered and two frequency-weighted balanced reduction onsets to
preserve control performance are proposed. Finally, the scheduling of control laws, specifically
the task of interpolating linear system dynamics, is investigated for stability. A novel modal
interpolation onset utilizing Geometric Algebra concepts is proposed which yields promising first
results.

Numerous complex case studies demonstrate the performance of the developed methods.
Specifically, the complex control designs for the lateral control of a large flexible blended wing
body aircraft with high demands on control performance and robustness can be carried out
successfully.

The elaboration starts with a comprehensive introduction into the fundamental concepts and
into the state of the art of modern optimal and robust control design methods for feedback and
feed-forward control. The aircraft models used in the subsequent case studies are introduced,
followed by the core chapters which present the novel contributions as well as the associated
case studies and examples. A summary and outlook on future research as well as an extensive
appendix with additional material for quick reference conclude the work.

The methods and tools developed herein for control design, order reduction, and controller
interpolation enable the engineer to master highly complex design tasks in the flight control
design of large flexible aircraft. Impressive results could be obtained in the presented case
studies on lateral flight control design for a flexible blended wing body aircraft.
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0 zero matrix –

adj(·) adjoint of the matrix argument –
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Chapter 1

Introduction

1.1 Overview and Motivation

Robust and optimal control are widely applied disciplines with strong results and powerful
numeric tools to meet the demands of challenging applications. This work is oriented particularly
towards modern flight control designs for flexible aircraft. This field of applications requires
a long, carefully built toolchain to support all involved tasks. These main tasks are dynamic
system modeling, model manipulation and transformation, pre-processing for control design and
the control design itself, followed by post-processing tasks such as validation, order-reduction
and controller interpolation.

The demands for modern complex flight control design include not only the shaping of rigid-
body flight dynamics, but also require the consideration of low-damped flexible vibration modes
of the elastic lightweight aircraft structure. The control system should provide specified handling
qualities for the pilot, but also reduce vibrations, maneuver-induced structural loads as well as
those loads caused by wind gusts or turbulence. The control systems need to operate safely and
effectively over a large range of the system’s physical parameters, such as airspeed, altitude,
or the aircraft’s fuel or payload masses, which significantly influence its dynamic behavior.
Finally, the physical modeling of aircraft dynamics is highly complex and differences between
the design models and validation models or actual aircraft dynamics always exist, which results
in challenging robustness requirements for the control laws.

Today, numerous reliable reference solutions and specific numeric tools exist to address most
of these tasks. In view of their broad spectrum, their combined simultaneous treatment, however,
unveils several vital gaps in the toolchain which need to be closed to fulfill the control system
demands. In this work, some of these principal missing tools are therefore developed:

• For the convex control design (convex synthesis) methodology, an efficient and flexible,
high-level optimization framework is developed and implemented. It serves as highly au-
tomated tool for the control engineer to formulate and solve the related optimization
problems including their validation. The framework is extended to provide solutions to
the challenging strong stabilization problem in feedback control design as well as to obtain
robust scheduled feed-forward controllers via a multi-model design.

• A design parameter optimization framework is developed which enables efficient parameter
search for complex control design problems. This way, the advantages of well-known design
methods can be exploited and additional functionality such as validation results from
nonlinear time-domain simulation can be directly integrated in the optimization process.

• Highly effective order reduction procedures for controllers are proposed which preserve
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closed-loop nominal or robust performance. These are based on frequency-weighted bal-
anced state reduction.

• System interpolation methods, relevant for modeling or controller scheduling, based on
various canonical state-space representations are analyzed in terms of interpolation sta-
bility. Moreover, a novel state-space interpolation technique is sketched which exploits
Geometric Algebra concepts and provides certain stability guarantees.

The effectiveness of these contributions is illustrated at numerous examples which range
from specific academic problem settings to complex, large-scale flight control design problems.
In particular, control designs for a large, flexible blended wing body (BWB) aircraft originating
from the EU FP7 research project “ACFA 2020” (“Active Control for a Flexible 2020 Aircraft”)
[1] are considered. They introduce additional challenges to conventional flight control design,
for example due to open-loop instability and stringent performance requirements.

The main motivation for the underlying research is rooted both in theory and application:
from a theoretical perspective, it is of interest to extend the scope of existing state-of-the-
art methods and to address known problems in a novel, beneficial way. From an application
point of view, it is advantageous to extend the applicability of existing methods and to remove
or relax some of their limitations which otherwise may inhibit their use in a given relevant
problem setting. Moreover, reliable algorithms, both conceptually and numerically, are needed
to successfully and efficiently address challenging engineering problems.

This thesis provides some corresponding solutions which effectively support and integrate
key tasks in the control design process for large, complex flexible structure systems, particularly
for large flexible aircraft.

An overview on the most relevant literature related to the thesis’ topics is given in the
following. Subsequently, the core contributions and the structure of the thesis are outlined in
Sec. 1.3.

1.2 Literature Review, State of the Art

The control of multivariate systems is an extensive field of research. References to some im-
portant works are collected in the following to give a coarse overview on the topics treated in
this thesis, but naturally this account cannot be complete. It should, however, point out the
main sources that enable one to treat and develop the concepts that are elaborated herein.
More detailed literature references are introduced throughout the text in each chapter or where
appropriate to extend this picture.

1.2.1 Linear Algebra

Linear algebra forms the mathematical foundation of linear system and control theory. Of
the many textbooks in the field, consider the following few references as a starting point: For
a well-readable undergraduate text with a novel perspective, covering both standard linear
algebra and geometric algebra fundamentals in a unified approach, refer to [92]. It concentrates
on the conceptual understanding but, in turn, does not address numeric algorithms. On the
contrary, the book [44] focuses entirely on the numeric aspects and algorithms arising in numeric
linear algebra and is a well-known reference work in this regard. On the graduate level, the
textbook [120] includes a thorough treatment of various linear algebra topics but requires a
solid background in basic linear algebra.
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1.2.2 Robust and Optimal Control

Well-known reference textbooks treating robust and optimal control topics have been written
by Zhou et al. [174], Skogestad and Postlethwaite [143], and Glad and Ljung [41].

The excellent books [41] and [143] offer a well-readable treatment of multivariate linear (and
some nonlinear) control theory as well as their practical application. Fundamental limitations in
control are discussed extensively, modern optimal and robust control design methods are given
([143] now includes Linear Matrix Inequality (LMI) formulations of selected control problems)
and illustrated via many academic and industrial examples. The target audience are graduate
students, but also ambitious undergraduate students and control engineers and practitioners.
In [174], special focus is laid on optimal and robust control methods in a more rigorous math-
ematical setting. It includes detailed material on control theory in high depth and is targeted
at the graduate and post-graduate level from control engineering and/or applied mathematics
background.

The Linear-Quadratic Gaussian (LQG) controller, a fairly old, central result in optimal
control theory, is composed of a Kalman state estimator [45] and an optimal state vector feedback
gain. While optimal in the nominal case, robustness could not directly be tuned or guaranteed.
This paved the ground for H∞-optimal control which provides suitable guarantees. Reference
solutions to the H2 and H∞ control problems are given in [42] and [24].

The notion of robustness against a bounded and structured, but otherwise unknown set of
perturbed plants is connected to H∞ control via the small gain theorem [21] and the quantity
known as structured singular value µ [107]. By now, many tools to obtain numeric bounds on
µ have been developed, but a direct and tractable computation of µ itself does not exist in the
general cases. Hence the problem of finding a robust controller which obtains optimality in terms
of a minimal µ, the so-called µ synthesis, is not solved. However, well-known approximations
such as the DK-/DGK-iteration [6], [172] or the Q − µ−synthesis [18] are available and can
lead to good results in practice. A textbook treating robust control design and analysis from an
aerospace perspective is [7].

Optimization in Control

Some important problems in control or system analysis are unfortunately non-convex and some-
times non-smooth. Metaheuristic methods such as genetic algorithms are frequently employed
in these cases (see [35]). However, also specific gradient-based search methods are often utilized
such as in the H∞ fixed-order design toolbox HIFOO [50].

Luckily, many important control problems are in fact equivalent to convex optimization
problems and thus can typically be solved efficiently. In the last decades, the convex LMI
optimization problems rose to major importance because of their flexibility and because efficient
solvers became available. The textbook [11] is directed towards control engineers and collects
many LMI formulations of control design and analysis problems. A reference textbook on
convex optimization with a more general perspective is [12] which gives a detailed account on
properties and solution methods of convex optimization problems. One example of the versatile
application areas of LMIs is the approximation of non-convex problems: a recent survey on LMI
approximations to solve polynomial control problems is given in [16].

Convex control design (convex synthesis) onsets are shown in [11] and extended in [18] and
[118] to obtain flight controllers for flexible aircraft. Thereby, frequency-domain (H∞, H2)
and time-domain constraint and objectives can be formulated and optimized for. The related
feasibility problem, given a set of defined constraints, is discussed in [31]. In convex feedback
control design, the closed loop is represented in Youla-parametrized form [171] which renders
closed-loop transfer paths accessible to a convex problem formulation.
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Scheduling of Control Laws

If the plant’s dynamics is strongly parameter-dependent, which is the case in aircraft control, it is
beneficial and sometimes inevitable to also parametrize the controller using online knowledge of
these parameters, so that stability and performance demands can be met. Various forms of this
“gain-scheduling” exist and can be categorized into linearization-based and quasi-LPV onsets
as seen in the survey paper [122]. Linear Fractional Transformations (LFTs) can be utilized
to express rational or polynomial parameter dependency and are also widely utilized in robust
control design. One scheduling onset which utilizes a Linear Fractional Representation (LFR)
of the plant model is found when representing the controller in an observer-based realization [3].
In [151], such scheduling is demonstrated for a flight controller designed for a flexible aircraft.

1.2.3 Flexible Structure Control

For flexible structure systems, active control concepts play an increasingly important role. With
the rising demand for lightweight components and assemblies in many industrial areas active
control concepts can help to meet the newly encountered challenges. These structures exhibit
specific properties such as low-damped oscillatory modes and large compliance to loads which
can be troublesome in typical operation cases, for example in terms of fatigue loads, large
deformations, or comfort deterioration. The textbooks of Gawronski [39] and Preumont [117]
treat control design specifically from the perspective of lightweight elastic structures and develop
efficient methods that enable the treatment of large-scale problems.

At the beginning of the control design process for flexible structure systems, it is often
possible to position or select the actuators or sensors that will be utilized for control. This
choice significantly affects achievable control performance: a bad choice may impose severe
fundamental limitations for the designed controller, whereas a good choice could circumvent
these and thus enable significantly improved performance. A survey on the optimization in the
input/output selection process is given in [152].

1.2.4 Flight Control Design

Fundamentals on classic control design for aircraft are given in the textbooks [13] (in German)
and [145]. Recently, besides mastering the flight dynamics of rigid-body aircraft, a strong interest
in the control of flexible aircraft is seen. The related, new challenges typically require modern
control design methods, such as robust and/or scheduled multivariable designs. Control designs
addressing both flight dynamics and aeroelasticity for flexible conventional aircraft have been
studied in [79], [80], [140], [53], and [78]. More recently, an adaptive feed-forward controller for
gust loads alleviation has been developed in [164] and combined with feedback approaches in
[165].

In the strive for higher fuel efficiency and reduced emissions, novel concepts, particularly
the transition to BWB aircraft configurations bear further potential [96]. However, these large
light-weight flexible structures exhibit low-frequency elastic vibration modes, and coupling of
those with the flight mechanic modes may occur. Moreover, the aircraft dynamics is significantly
dependent on the flight parameters. Hence the task of developing robust and well-performing
flight control laws faces significant challenges.

1.2.5 Further Research of the Author & Related Work

The author started working on robust control topics for flexible structure systems in 2007. An
active vibration control concept for light-weight metro railcar bodies has been investigated and
analyzed thoroughly [75], [125], [8], [132]. The work thereby focused on co-simulation stud-
ies for nonlinear control validation [126], [128], [127] which also included actuator positioning
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optimization (input selection), as well as on control issues regarding the nonlinearities of the
utilized piezo stack actuators [130] and their supporting structures [131]. Experimental valida-
tion of vibration control concepts at a scaled laboratory model of a metro railcar body has been
performed in [114], [115].

The work group’s research activity in the field of flight control for flexible aircraft started
out with control designs for conventional flexible aircraft: The team designed a controller via
DK-iteration for the hybrid control system presented in [165]; a 2DOF controller was designed
by DK-iteration in [162] and optimized via design parameter optimization in [133] (see Sec. 6.5).
Subsequently, BWB aircraft models became available within the ACFA2020 research project and
methods for actuator and sensor positioning (often referred to as input / output selection) have
been studied intensively, see [59]. An LQG-based closed-loop selection criterion is proposed in
[60], energy-based selection criteria are proposed, applied, and compared to standard methods
in [136], [158], and compared to information-based approaches in [161]. Recently, an efficient
frequency-domain criterion has been formulated and successfully applied to BWB aircraft models
in [61] and [62].

Initial LQ-based control designs for the flexible BWB aircraft model have been carried out
in [134], see Chap.C. In [135], a DK-iteration controller for the same aircraft is designed
and optimized via design parameter optimization, see Sec. 6.4. Convex lateral feedback and
scheduled feedforward designs have been carried out in [138] (see Sec. 5.3) and [137] (see Sec. 5.5),
respectively.

After a resizing of the BWB aircraft configuration, an integrated LPV control design [159]
and a full-information H∞ scheduled feed-forward design [160] have been carried out on the new
aircraft model, see the related doctorate thesis [157] which treats these control designs in great
detail. A further study utilizing these models in a parametrized LFR form is given in [139] which
reports on the encountered difficulties and found solutions with respect to DK-/DGK-iteration
control design.

Finally, and most recently, the interpolation of systems are being studied and novel interpo-
lation onsets are being investigated [129], see Chap. 8.

1.3 Contributions of this Work

This work documents the author’s research results focused on developing, assessing, and ex-
tending various state-of-the-art and new methodologies for feedback and feed-forward control
designs related to flight control. The core contributions close some important gaps in the com-
plex toolchain of modeling, control design, and validation. An overview of these contributions,
together with the relevant publications by the author is given in the following:

Extensions to Convex Control Design (Chap. 5): A novel, high-level optimization frame-
work to formulate and carry out convex control design is developed and implemented in
MATLABR© by the author. Time- and frequency-domain objectives and constraints as
well as tools for both feedback and feed-forward control designs are implemented. Effec-
tive algorithms for an efficient, adaptive formulation of large-scale problems are developed.
Utilizing this framework, several onsets are developed to obtain a strongly stabilizing (that
is, stable and stabilizing) controller in the context of convex optimization. The method is
successfully tested and applied to a feedback control design case study in which a lateral
control design for a large flexible blended wing body aircraft is performed. These results
are published in [138]. Moreover, an onset to perform robust scheduled feed-forward con-
trol design with multiple models is investigated and successfully applied in a subsequent
case study to the same BWB aircraft model [137]. This application particularly bene-
fits from the efficient problem formulation which retains the size of the actually solved
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optimization problems sufficiently small for current solvers.

Design Parameter Optimization (Chap. 6): A design parameter optimization framework
is developed, again in MATLABR©. Its goal is to freely combine well-defined, parametrized
control design tasks and their validation with a suitable formulation of an optimization
problem over these parameters. Two case studies demonstrate the effectiveness of this ap-
proach: the optimization of a longitudinal 2DOF control design for a flexible conventional
aircraft (taken from [162]) is performed in [133], and the optimization of a lateral design
for a flexible BWB aircraft model is shown in [135].

Extensions to Controller Order Reduction (Chap. 7): Frequency-weighted balanced state
reduction forms the basis for two novel methods for controller order reduction. Firstly, a
formulation is found which preserves nominal performance in the standard robust control
feedback interconnection architecture. Secondly, a recent result for robust controller re-
duction is extended to the frequency-weighted case. Both novel methods show significantly
improved reduction performance over the unweighted case at a flight control case study
and at an example taken from literature.

Gain Scheduling & System Interpolation: A Novel Onset (Chap. 8): Several methods
for the interpolation of linear dynamic systems, which are relevant for modeling as well
as gain-scheduling, are reviewed with respect to their system stability properties. These
significantly differ for the considered canonical system representations. Moreover, a novel
state-space interpolation method is sketched which exploits Geometric Algebra concepts
to consistently treat geometric relations in the interpolation onset. Moreover, it provides
important local stability guarantees. This part is published by the author in [129].

This work should, besides transporting the main contributions, also serve as a reasonably
self-contained guide through the control design process for the interested reader. Its limited
length does not allow for a complete textbook-style treatment, but this thesis should represent a
helpful starting point and succeed in explaining the main lines of research in robust and optimal
control (LPV design methods are not treated, however).

1.4 Structure of this Work

The thesis is organized as follows: an extensive chapter on Fundamentals is given (Chap. 2),
including basics on system formulation and processing (linearization, state-space definitions,
balanced reduction), robust control fundamentals (robust stability and performance, µ calculus,
uncertainty modeling) and an overview on some optimization problems and related tools. The
key aspects of the modeling of flexible structures for control, as well as the related task of input
(actuator) / output (sensor) selection is provided. The author’s research focus is tied to this type
of control problems as can be seen by the chosen case studies and examples. Moreover, state-of-
the-art optimal and robust control design methods are summarized in Chap. 3, including H∞-,
H2- and LQG-control formulations and their relationships, and recent convex control design
methods and their formulation are provided.

The flexible aircraft models utilized in most case studies — a flexible conventional transport
aircraft as well as a flexible BWB aircraft model — are introduced with a short characterization
of their main properties in Chap. 4.

The main contributions are given in Chapters 5 (extensions to convex control design), 6
(design parameter optimization), 7 (controller order reduction), and 8 (interpolation studies).

A discussion, conclusions, and an outlook on further studies is given in Chap. 9. Finally,
additional supplementary material is included in the appendices: Fundamentals of linear algebra
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and linear system theory are summarized in a compact form as a quick reference in Chap.A.
Moreover, a summary of observers and the observer-based realization of compensators is given
from according literature in Chap.B. LQ-based control designs for the introduced BWB aircraft
model are given in Chap.C. A listing of all classes of the developed convex control design
framework implementation with their properties and methods is provided in Chap.D.



Chapter 2

Fundamentals

This chapter gives an overview on major, fundamental concepts in linear control design: the
state space representation, the robust control design problem and its basic terminology, as well
as uncertainty modeling and basics in optimization. A quick reference of relevant topics from
linear algebra are collected in the Appendix of this work.

The exposition is oriented at main results from standard textbooks in linear control design
(such as [143] and [174]) and optimization in control, see [12]. Specific references are given in
the text.

2.1 State Space Representation

2.1.1 General State Space Systems & Linearizations

The dynamics of many general nonlinear dynamic systems can be written as

ẋ(t) = F (x(t),u(t),θ(t)) x(t) . . . (n× 1) state vector

y(t) = G (x(t),u(t)) u(t) . . . (nu × 1) input vector

y(t) . . . (ny × 1) output vector

θ(t) . . . (nρ × 1) parameter vector. (2.1)

The functions F : Rn×nu×nρ 7→ Rn and G : R(n×nu) 7→ Rnys are generally non-linear and in
this work assumed to be continuously differentiable. This enables one to apply Taylor / Jacobian
linearization at any fixed (stationary) equilibrium point (x0,u0,θ0) where

ẋ|0 = F (x0,u0,θ0) = 0. (2.2)

The chosen tuple of system state x0, input u0, and parameter values θ0 fulfilling (2.2) is fre-
quently called operating point (used in the following), linearization point, stationary point, or
equilibrium point.

Remarks:

• It is also possible to perform off-equilibrium linearizations about a trajectory (x̃(t), ũ(t), θ̃(t))

in which ˙̃x = F
(
x̃(t), ũ(t), θ̃(t)

)
6= 0. Then, the linearized dynamics can be interpreted

as error dynamics for small perturbations of the system off this trajectory. Time-invariant
and time-dependent linearizations along system trajectories are investigated in [14]. How-
ever, only linearizations at stationary operating points will be considered in this work.

• A formal condition based on Lie algebra for the existence of a locally valid linearization
of non-linear systems is given in [77].

9
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The linearized state-space system can be formulated by expanding (2.1) into its first-order
Taylor approximation about the operating point:

ẋ(t)
.
= F (x0,u0,θ0)︸ ︷︷ ︸

ẋ0=0

+
∂F

∂x

∣∣∣∣
0

(x(t)− x0) +
∂F

∂u

∣∣∣∣
0

(u(t)− u0) +
∂F

∂θ

∣∣∣∣
0

(θ(t)− θ0) (2.3)

y(t)
.
= G (x0,u0)︸ ︷︷ ︸

y0

+
∂G

∂x

∣∣∣∣
0

(x(t)− x0) +
∂G

∂u

∣∣∣∣
0

(u(t)− u0) (2.4)

Note that the partial derivative values are constant for a fixed operating point, so they can be
represented as constant matrices:

A =
∂F

∂x

∣∣∣∣
0

=




∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fn
∂x1

. . . ∂fn
∂xn




∣∣∣∣∣∣∣
0

B =




∂f1
∂u1

. . . ∂f1
∂unu

...
...

∂fn
∂u1

. . . ∂fn
∂unu




∣∣∣∣∣∣∣∣
0

(2.5)

C =




∂g1
∂x1

. . . ∂g1
∂xn

...
...

∂gny

∂x1
. . .

∂gny

∂xn




∣∣∣∣∣∣∣∣
0

D =




∂g1
∂u1

. . . ∂g1
∂unu

...
...

∂gny

∂u1
. . .

∂gny

∂unu




∣∣∣∣∣∣∣∣
0

, (2.6)

where fi, gi are the ith scalar functions in F , G, respectively, and A is the Jacobian of the
system. Its eigenvalues λ and eigenvectors Φ describe the homogenous eigendynamics of the
system close to the operating point (x0,u0,θ0). This local dynamics can be stable, corresponding
to a stable operating point of the non-linear system, or it can be unstable, which implies that
the operating point is locally unstable. Especially in the latter case one has to bear in mind
that the linearization is generally only valid in a small neighborhood of the operating point.

The partial derivative with respect to the parameter vector ∂F
∂θ

is usually either omitted
(by assuming operation at the parameter values used for linearization, i.e. θ = θ0) or seen as
additional system states or inputs and therefore merged into A or B, respectively [168].

The linearized system and output equations can be stated concisely as

∆ẋ(t) = A∆x(t) +B∆u(t)

∆y(t) = C∆x(t) +D∆u(t), (2.7)

where ∆x(t) = x(t)−x0, ∆u(t) = u(t)−u0, and ∆ẋ(t) = ẋ(t)− ẋ0 are the deviation variables.

2.1.2 Transfer Function Representation, Proper Systems

When applying the Laplace transform to (2.7) one obtains the input/output-equivalent multi-
input multi-output (MIMO) transfer function matrix

G(s) = C (sI−A)−1 B +D, ∆y(s) = G(s)∆u(s). (2.8)

For each pair of input j and output k, a single-input single-output (SISO) transfer function is
defined as

Gkj = [ck1, . . . , ckn] (sI−A)−1



b1j
...
bnj


+ dkj =

B(s)

A(s)
, (2.9)

where B(s) and A(s) are the numerator and the denominator polynomials of order m and n,
respectively. While transfer functions can also be defined for m > n, causal systems and in
particular state-space systems always yield m ≤ n.
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Definition 2.1.1: Proper and bi-proper systems, SISO case

• A system G(s) is strictly proper if G(jω)→ 0 as ω →∞. It can be represented as
state-space system and has no feedthrough term.

• A system G(s) is bi-proper or semi-proper if G(jω)→ d, d ∈ R\{−∞, 0,∞} as ω →
∞. It can be represented as state-space system with finite, nonzero feedthrough
term d.

• A system G(s) which is strictly proper or bi-proper is proper.

• A system G(s) is improper if G(jω)→∞ as ω →∞. Improper systems cannot be
represented as state-space systems.

Def. 2.1.1 directly extends to MIMO systems. State space systems are always proper. If D 6= 0,
they are bi-proper, otherwise they are strictly proper.

Example 2.1.1: Interpretation of non-zero feedthrough matrix D

Given a flexible mechanical structure, its dynamics from force excitation to displacement or veloc-
ities of structure points can be modeled [39]. If the outputs are linear combinations of the states only
(i.e. displacements or velocities), and all degrees of freedom of the system are modeled (or unmodeled
dynamics is truncated), the resulting state-space system has no feed-through term D = 0. However,
if accelerations are formulated as output signals, feedthrough terms appear that essentially capture
the instantaneous collocation feedthrough of force inputs to the collocated acceleration measurements.
Also, non-zero D-entries arise when the system dynamics is reduced and the DC reduction errors are
compensated (residualization, see Sec. 2.2 and [143]).
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2.1.3 Gramians

Definition 2.1.2: Gramians of state-space systems [97]

Consider a set of continous, real-valued functions

{fi, i = 1, . . . , n} (2.10)

which are defined on an interval [t0, tf ]. With the standard inner product of functions,
the Gramian W = [Wij] of (2.10) is defined as

Wij =

∫ tf

t0

fi(τ)fj(τ)dτ , (2.11)

which is a symmetric, positive-semidefinite matrix.
For a stable state-space system with matrices A,B,C,D, the Controllability Gramian
W c is defined as

W c =

∫ ∞

0
eAtBBTeA

Ttdt (2.12)

and is simultaneously the unique symmetric positive-semidefinite solution to the Lya-
punov equation

AW c +W cA
T +BBT = 0. (2.13)

Analogously, the Observability Gramian W o is defined as

W o =

∫ ∞

0
eA

TtCTCeAtdt (2.14)

and is the unique symmetric positive-semidefinite solution to the Lyapunov equation

ATW o +W oA+CTC = 0. (2.15)

The eigenstructure of these Gramians quantify state controllability and observability,
respectively, as illustrated in [143].

2.2 Balanced Reduction

One widely applied standard method for system order reduction of linear time-invariant (LTI)
state-space systems is the balanced state reduction (truncation or residualization, see [143],
[174]) which is closely connected to principal component analysis [97]. An error bound for the
unweighted case and an extension by frequency-domain weightings has been developed in [26].
Later, a error bounds for the one- and two-sided weighted cases have been found [173],[73], [144],
and an extension ensuring stability in the case of two-sided frequency weightings is proposed in
[155].

The basic onset for balanced reduction is as follows: The system is first transformed (by
a state transformation) into the so-called balanced realization in which the Controllability and
the Observability Gramians W c and W o (see Def. 2.1.2) are equal and diagonal. Their diagonal
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entries are the so-called Hankel singular values (HSVs) σi (i = 1, . . . , n) which directly reflect
the importance of the corresponding new state variables in the system input-output behavior:

W c = W o = diag(σi), σ1 ≥ σ2 ≥ . . . σn ≥ 0. (2.16)

Then, a state partitioning of these balanced states,

xb1 =



xb,1
...

xb,k


 ,xb2 =



xb,k+1

...
xb,n


 (2.17)

is chosen and all state-space matrices of the balanced realization Gbal =

[
Ab Bb

Cb Db

]
with

D = Db) are partitioned accordingly:

[
ẋb1

ẋb2

]
=

[
Ab11 Ab12

Ab21 Ab22

] [
xb1

xb2

]
+

[
Bb1

Bb2

]
u (2.18)

y =
[
Cb1 Cb2

] [ xb1

xb2

]
+Dbu (2.19)

Those partitions corresponding to xb1 are preserved while those corresponding to xb2 are re-
moved. Depending on how this removal is performed, two main variants are distinguished:

Balanced Truncation: Merely disregarding the blocks associated to xb2 is called balanced
truncation and yields the reduced system

Gtrunc =

[
Ab11 Bb1

Cb1 Db

]
(2.20)

with the following properties:

• The DC gains of G and Gtrunc differ in general.

• The high-frequency behavior in terms of the limit for infinite frequency is the same:

lim
ω→∞

G(jω) = lim
ω→∞

Gtrunc(jω) (2.21)

Balanced Residualization: Another reduction variant is called balanced residualization in
which the static solution for xb2 is assumed to hold. By setting ẋb2 = 0, these solutions can
be obtained algebraically if Ab22 is nonsingular as xb2,static = −A−1

b22Ab21xb1 −A−1
b22Bb2u and

inserted into the system equation (2.18) for ẋb1 and into the output equation (2.19). The
residualized reduced system matrices are thus

Gresid =

[
Ab11 −Ab12A

−1
b22Ab21 Bb1 −Ab12A

−1
b22Bb2

Cb1 −Cb2A
−1
b22Ab21 Db −Cb2A

−1
b22Bb2

]
, (2.22)

and the system shows these properties:

• The DC gains of G and Gresid are equal.

• The high-frequency behavior of G and Gresid are different, particularly, Gresid is generally
bi-proper.
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This procedure is motivated by the fact that the H∞ error between the original system

G =

[
A B

C D

]
and the reduced system Gred (for either variant, Gtrunc or Gresid),

‖G−Gred‖∞ (2.23)

should be kept small.
In fact, in this unweighted case, an analytic reduction error bound for both, truncation and

residualization, is known [26], [143]:

‖G−Gred‖∞ ≤ 2

n∑

j=k+1

σj (2.24)

where G is the original system, Gred is the reduced system, and σj is the jth HSV of G.

Remark: To preserve the global system dynamics characteristics, oscillatory pole pairs must
not be split by the reduction partitioning. This is eased by using well-scaled systems, because
then the two balanced states that correspond to a low-damped pole pair also typically have
closely lying HSVs (compare the discussion on the almost-balanced form in [39]).

2.2.1 Frequency-Weighted Balanced Reduction (FWBR)

The (unweighted) balanced reduction is suitable to keep the related unweighted H∞ reduction
error (2.24) small. A generalization is provided in [26] by the so-called frequency-weighted
balanced reduction (FWBR) based on a frequency-weighted error measure

ε := ‖W out(G−Gred)W in‖∞. (2.25)

Thereby, W out and W in are frequency-weighting functions which have to be

• stable and

• stably invertible (which implies that they have to be square, minimum-phase, and bi-proper
with full-rank feedthrough matrix).

Although these restrictions do limit the choice of weightings, the FWBR approach is a
powerful tool in practice if the error measure of interest requires shaping in the frequency domain.
Novel derivations of FWBR weightings preserve various closed-loop performance measures when
performing order reduction of a feedback controller are derived and demonstrated in Chap. 7.

The obtained solution is not necessarily optimal in the sense of a minimal weighted error
ε, and unfortunately no analytic error bounds as in the unweighted case are known. However,
improved reduction performance (in terms of small weighted actual reduction error) is observed
in many well-conditioned problems.

The FWBR algorithm utilizes frequency-weighted Gramians and has been described in [26]
and later improved in accuracy by the authors of [153]. Today, the MATLABR© command
balancmr (or, alternatively, reduce) provides FWBR functionality via the Weights parameter.

2.3 Robust Control Fundamentals

Robust control can conceptually be split into robustness analysis and robust controller synthesis.
However, the synthesis procedures utilize robustness analysis tools and properties throughout.
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Robustness analysis studies the consequences of system perturbations on the dynamic charac-
teristics (stability and performance measures). Robust controller synthesis procedures aim to
generate control laws that achieve favorable system properties (again, in terms of stability and
performance) despite the presence of bounded system perturbations. Exploiting structural in-
formation on these perturbations is the key to designing well-performing robust controllers. The
relevant robust control terminology is summarized in the following and covers the basic uncer-
tain system representation and robustness quantities, For a detailed treatment, refer to [143]
or [174].

2.3.1 Robustness Analysis

This section collects the main results on robustness analysis, that is, the analysis of systems
that are subject to bounded and specifically structured perturbations. The reader should pay
special attention to the quantities defined in the following. Corresponding comments point
at important details, for example illustrating the relation of system quantities and quantities
related to (complex) matrices.

Small Gain Theorem

The small gain theorem in the following two formulations (based on [143]) is a very general sta-
bility condition for feedback loops of linear systems. It is a fundamental building block in robust
control theory and forms the basis for the definitions of robust stability, robust performance,
and the structured singular value µ (see the following sections). A more general version of the
small gain theorem is given in [21] which is applicable to the interconnection of nonlinear and/or
distributed systems.

Definition 2.3.1: Spectral radius stability condition

Given a stable open-loop transfer function L(s), the closed-loop system is stable if

ρ (L(jω)) < 1 ∀ω, (2.26)

where ρ is the spectral radius as defined in Def. A.4.5.

The following formulation utilizes the fact that the spectral radius is a lower bound for all
matrix norms (see (A.14)).

Definition 2.3.2: Small gain theorem

Given a stable open-loop transfer function L(s), the closed-loop system is stable if

‖L(jω)‖ < 1 ∀ω, (2.27)

where ‖ · ‖ is any matrix norm (see Def. A.4.3).

Remarks:

• Note that the small gain theorem (2.27) is generally more conservative than the spectral
radius condition (2.26). Both do not consider phase information, thus they are independent
on the sign of L(s).
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M = Fl(P ,K) N = Fu(M ,∆)

Figure 2.1: The P −K −∆− form and LFTs

• Due to the validity of the multiplicative property (A.10), the small gain theorem can also
be extended to loop transfer functions composed of several blocks: If L = L1L2 is stable,
then the closed-loop is stable if ‖L1‖‖L2‖ < 1 ∀ω. This important property is utilized to
derive the robust stability condition in the following.

LFTs and the P −K −∆− Form

A standard formulation of a system interconnection structure in robust control theory is the
normalized P−K−∆−form as in Fig. 2.1(a). A dynamic MIMO system P takes the input vector
signals δu, w (exogenous or disturbance inputs), and u (control inputs) and generates the output
vector signals δy, z (exogenous or performance outputs), and y (measured outputs). Closing the
lower feedback loop with the controller K yields the nominal closed loopM . The upper feedback
loop models system perturbation: The artificial outputs δy and inputs δu connect the uncertainty
matrix ∆ with the plant, whereas ∆ is only known in terms of its qualitative structure (block-
diagonal, complex- or real-valued LTI dynamics) and its norm bound ‖∆‖∞ ≤ 1.

∆ ∈∆B ⇔ ‖∆‖∞ ≤ 1,∆ structured. (2.28)

The feedback interconnections are formalized via lower and upper Linear Fractional Transfor-
mations (LFTs) Fl and Fu, respectively [143]:

M = Fl (P ,K) = P 11 + P 12K(I− P 22K)−1P 21, (2.29)

N = Fu(M ,∆) = M22 +M21∆(I−M11∆)−1M12. (2.30)

The term performance path is frequently used for the transfer function from w to z.

The Structured Singular Value µ

The structured singular value µ is a generalization of the maximum singular value σ̄, see [107].
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Definition 2.3.3: Structured Singular Value µ

Consider the system interconnection in Fig. 2.1 where system M11 is the partitioning of
M with inputs δu and outputs δy. Evaluating M11 at s = jω, the structured singular
value µ of the complex-valued matrix M 11(jω) is the nonnegative real scalar

µ∆(M 11(jω)) =
1

min∆∈∆B
{km : det(I− kmM11(jω)∆) = 0} , (2.31)

where∆ ∈∆B is structured in a known block-diagonal real or complex form and satisfies
the norm bound σ(∆) ≤ 1. [143, 174].

Note that the structured singular value µ is a quantity formulated upon the complex transfer
matrix of the system at a particular complex frequency. Sometimes it may be of interest to
evaluate µ at other complex frequencies, e.g. at the unit circle (discrete-time case), or at more
restrictive stability regions (relative or absolute stability).

Nominal Stability (NS) & Nominal Performance (NP)

The internal stability of the nominal closed-loop system M in Fig. 2.1 is a central requirement.
In the context of robust control this property is called Nominal Stability (NS):

Definition 2.3.4: Nominal Stability (NS)

Consider a system M as in Fig. 2.1. It is nominally stable (NS) if it is internally stable,
that is, if none of its components contain unstable hidden poles and if the injection
of bounded input signals at any place in the system result in bounded output signals
measured anywhere in the system. [143]

Utilizing the standardized P−K−∆−form, a canonical way to formulate the desired system
response in terms of the (closed-loop) transfer function from exogenous inputs (disturbances) to
exogenous outputs is as follows1:

Definition 2.3.5: Nominal performance (NP)

Consider an LTI system as in Fig. 2.1 and the case ∆ = 0. The system is said to achieve
nominal performance if it is nominally stable (NS) and if

σ̄ (M22(jω)) < 1 ∀ω (2.32)

holds. Equivalently, the system achieves Nominal Performance (NP) if it is Nominal
Stability, Internal Stability (NS) and

‖M 22‖∞ < 1 (2.33)

holds.

1Other formulations exist in robust control design which define performance upon specific transfer functions,
for example weighted sensitivity or complementary sensitivity functions. The NP formulation presented here is
hinged on the performance path of the system and thus can depict a wide range of closed-loop transfer functions
by appropriate structure of the augmented design plant P .
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Note that performance formulations as in Def. 2.3.5 can be obtained for any frequency-
domain specification of the form

σ̄ (G(jω)) < σ̄ (W (jω)) ∀ω (2.34)

for stable transfer functions G(s) and W (s) where W (s) is invertible and the product GW−1

exists. At each fixed ω, (2.34) is an inequality of two spectral matrix norms:

‖G(jω)‖i2 < ‖W (jω)‖i2 (2.35)

⇔ ‖G(jω)‖i2
1

‖W (jω)‖i2
< 1 (2.36)

⇔ ‖G(jω)‖i2
∥∥W−1(jω)

∥∥
i2
< 1. (2.37)

Using the multiplicative property a statement can be made on the norm of the composed system
(with some conservativeness):

∥∥G(jω)W−1(jω)
∥∥
i2
≤ ‖G(jω)‖i2

∥∥W−1(jω)
∥∥
i2
< 1. (2.38)

Because (2.38) is valid for all values of ω, the equivalent system norm expression can be given
the H∞ interpretation

‖GW−1‖∞ < 1. (2.39)

Summing up, the frequency-domain requirement (2.34), which means that the singular value
magnitude of G is bounded above by the singular values magnitude of W , is fulfilled if (2.39),
the corresponding nominal performance formulation, is fulfilled.

Robust Stability (RS) and Robust Performance (RP)

In the presence of plant uncertainty ∆ 6= 0, the stability and performance specifications need
to be fulfilled for all possible perturbations. These properties are called Robust Stability (RS)
and Robust Performance (RP) of the uncertain system, respectively.

Definition 2.3.6: Robust Stability (RS)

Consider the uncertain closed-loop system N = Fu(M ,∆) as in Fig. 2.1 where M is
the nominal closed loop and ∆ ∈∆B is a stable, structured, uncertain matrix with unit
norm bound ‖∆‖∞ ≤ 1.
Then, Robust Stability (RS) is obtained if

M is NS and N is stable ∀∆ ∈∆B (2.40)

⇔M is NS and µ∆ (M11(jω)) < 1 ∀ω. (2.41)

Note that NS is a prerequisite and must be verified separately because the frequency-wise
evaluation of µ does not contain this information.
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Definition 2.3.7: Robust Performance (RP)

Given an uncertain closed-loop systemN as above, Robust Performance (RP) is obtained
if

M is NS and ‖N‖∞ < 1 ∀∆ ∈∆B (2.42)

⇔M is NS and µ∆̂ (M(jω)) < 1 ∀ω, (2.43)

where ∆̂ = diag (∆,∆perf), and ∆perf is a full complex block compatible with the di-
mensions of w and z fulfilling ‖∆perf‖∞ < 1. Note that the block-diagonal extension of
the uncertainty block by a full-complex “performance block” renders the problem of eval-
uating RP structurally equivalent to that of evaluating RS, thus the same computational
tools can be used. Still, NS has to be verified separately.

These conditions, and with that the fulfilment of RS or RP, are proven or negated via a µ-
analysis (and the verification of NS). Note that the RP condition effectively formulates whether
the closed-loop transfer function from w to z is less than 1 in magnitude for all frequencies and
∆. Thus it reflects the robust fulfillment of appropriately scaled control performance objectives.
Careful formulation of these objectives is a crucial part of the design.

Worst-Case Gain & Skew µ Value

One should be careful in the interpretation of the RP µ value. It does not, as one might expect,
state the worst-case gain of the uncertain closed-loop system N in Fig. 2.1 in the presence of the
uncertainty ∆. Instead, reconsidering the definition of µ it follows that the RP µ value considers
that both uncertainty blocks, ∆ and ∆perf , are scaled by the common factor km = 1

µ
∆̂
(M(jω)) .

First, consider the case µRP(N ) := supω µ∆̂ (M(jω)) < 1 and NS, so that RP is fulfilled.

Then, km > 1 and a critical frequency ωcrit and a critical perturbation km∆̂crit, ‖∆̂crit‖∞ exists
at which the system is at the stability boundary (det(I − kmM11(jωcrit)∆̂crit) = 0). If the
uncertainty ∆, however, is left unscaled (‖∆‖∞ ≤ 1), the worst-case gain can be less or equal
to µRP.

Inversely, if NS is fulfilled, but RP is not, i.e., if µRP(N ) := supω µ∆̂ (M(jω)) > 1, then
the situation is reversed: µ is computed assuming that both ∆, ∆perf are scaled down by a
common factor km < 1. If, however, ∆ remained unscaled at full norm, the worst case gain can
be greater or equal to µRP.

As a solution, the skew-µ value has been introduced [143]:

Definition 2.3.8: Skew-µ value

The skew-µ value of a complex transfer matrix M(jω) is defined as

µs
∆̂
(M (jω)) =

1

min∆̂∈∆̂B
{km : det(I−KmM(jω)∆̂) = 0}

, (2.44)

where ∆̂ =

[
∆

∆perf

]
, Km =

[
I

kmI

]
is partitioned compatibly to ∆̂, so only

∆perf is scaled. It turns out that µ
s is always further from 1 than µ and can be interpreted

as the worst-case gain. In MATLABR©, this quantity is one of the outputs computed
by the command wcgain, but also a skew-µ toolbox exists for more general robustness
analysis [30].
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Figure 2.2: Additive uncertainty model (uncertainty W a2∆aW a1)

2.3.2 Uncertainty Representation and Modeling

Suitable uncertainty modeling is imperative to achieving robust stability and performance. Typ-
ical uncertainty models are additive uncertainty (commonly used to model neglected dynamics),
multiplicative input or output uncertainty (modeling actuator or sensor magnitude or phase
uncertainty), coprime-factor uncertainty (used to directly address pole uncertainty, also across
the stability bound), and parametric uncertainties [174].

Unstructured Additive Uncertainty

Fig. 2.2 shows the standard model of an additive uncertainty. The nominal (s× r) plant G0 has
an (r × 1) input vector u and an (s × 1) output vector y. The parallel uncertain transfer path
W a2∆aW a1 must be of size (s× r) to be compatible to G0. The shown interconnection realizes
an overall uncertain transfer y = (G0 +W a2∆aW a1)u.

The uncertain block ∆a is considered as an LTI system with the following properties:

• it is stable,

• linear time-invariant,

• norm-bounded by ‖∆a‖∞ ≤ 1, and

• otherwise unknown, i.e. any coupling from its inputs to its outputs are possible, and phase
relations are unknown.

Due to the last property, this uncertainty block is often called an unstructured complex
uncertainty or a full complex uncertainty block, because any concrete realization of ∆a yields a
full complex-valued transfer matrix for any fixed frequency ω.

The weighting functions W a1 and W a2, however, are assumed known and characterize the
maximum possible magnitude of the uncertain paths over frequency. Due to the lack of structure
in ∆a it is typically sufficient to choose W a1 and W a2 square and diagonal, populated with sim-
ple transfer functions. Often, only one weighting is utilized. A sensible choice of these functions
is not straightforward [174]. However, simple quantitative bounds on expected magnitudes of
deviations over frequency, modeled by low-complexity weighting functions, typically suffice to
obtain good analysis and design results.

The additive uncertainty model is typically utilized to depict neglected or unknown system
dynamics in a simplified manner. This is relevant for example when the plant model utilized for
control design is trusted only within a specific, limited frequency range. Robust control design
with an appropriate additive uncertainty yields a controller which stabilizes and performs also
with the actual plant which exhibits additional dynamics.
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Figure 2.3: Multiplicative uncertainty model (multiplicative input uncertainty Wmi2∆miWmi1,
multiplicative output uncertainty Wmo2∆moWmo1)

Multiplicative Uncertainty

Fig. 2.3 depicts two important variants of multiplicative (relative) uncertainty, one located at
the plant inputs and one at the plant outputs. The nominal (s × r) plant G0 has an (r × 1)
input vector u and an (s× 1) output vector y. Both multiplicative uncertain paths are square,
and the overall transfer function reads

Gp = (I+Wmo2∆moWmo1)G0(I+Wmi2∆miWmi1). (2.45)

The configuration as shown here, utilizing two-sided weights, is rarely used – instead, it is often
sufficient to choose one diagonal, square weight per ∆ block. Contrary to additive uncertainty
modeling, the uncertain blocks typically possess structure:

• They are assumed stable,

• linear time-invariant,

• norm-bounded by ‖∆mi‖∞ ≤ 1, ‖∆mo‖∞ ≤ 1,

• complex-valued (phase relations are unknown), and

• diagonally structured, i.e. no coupling between different input channels (or output chan-
nels, respectively) is assumed.

Consequently, this uncertainty is often called structured complex uncertainty or complex-
diagonal uncertainty.

The multiplicative uncertainty model is widely used to model the following types of be-
haviour:

• Actuator uncertainty in gain and phase over frequency (multiplicative input uncertainty)

• Sensor / measurement uncertainty covering bounded drifts / gain / phase variations (mul-
tiplicative output uncertainty)

• Uncertain pole locii (time constants) and zero locii in the SISO case and uncertain delays
in single channels, see [143].

As reasoned in [143], actuator and sensor uncertainty is always present in real plants and for
control laws to work in practice, they always have to be robust against this type of uncertainty.
Therefore, these uncertainties ought to be included in any robust design and validation. Note,
however, that in case other uncertainty models are more important, it can be a better choice not
to add this additional complexity in favor of a simpler design plant to facilitate control design
and to reduce sources of design conservativeness.
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Overview on Parametric Uncertainty Modeling

Consider a parametrized family of linearized plants P (ρ) as in Sec. 2.1.1, where the exact value
of the parameter vector is unknown. Instead, only the bounds of the (real) parameter values are
known.

Parametric uncertainties model the system variations due to changes in these plant param-
eters, whereby the parameters enter the system equations often non-linearly. Contrary to the
types of uncertainty mentioned earlier, parametric uncertainties are modeled by a structured
(diagonal) and real-valued uncertain block. Its diagonal elements are the normalized parameter
values and possibly occur repetitively. Generic methods exist to transform many important
classes of system parametrizations into a parametrized uncertain set in LFT form as long as the
dependency of the state-space matrices on the parameters is at least polynomial or rational.

Tools to accomplish these transformations are subject of active research [7], [56] because of
several reasons:

• Systems parametrized in LFT form are useful in robust control design, but also in the
design and implementation of scheduled control laws (LFT scheduling, observer-based
realization with an observer under LFT form) and in modeling and control design for
Linear Parameter-Varying (LPV) systems.

• In all of these applications, the resulting high system complexity is the major obstacle.
Efficiently modeling the system to the required accuracy with minimal complexity (that
is, few parameter repetitions in ∆) is thus a key issue.

The book [7] lists several methods to generate a linear-fractional representation (LFR) from
a given system parametrization. Morton’s method [98], [99] can efficiently transform affine
parametrizations. Extensions of this method can be applied to polynomial parametrization,
but the size of the resulting ∆-block quickly increases and is generally not minimal. Symbolic
preprocessing and simplification is proposed in [57] to reduce the parametrization complexity. A
recent approach covering optimal parametrization by approximation and effective simplification
steps are documented in [56], [111], and [112]. A MATLABR© toolbox for LFT modeling is
available [58].

Parametric Uncertainty: Pole locii of flexible modes

Parametric uncertainties for structural modes with low damping (uncertain in their frequency
and damping in known intervals) can be modeled directly using LFTs (see [174]). The pertur-
bation of one uncertain mode is modeled as:

ωp(δ1) = ω (1 +W1δ1) (2.46)

ζp(δ2) = ζ (1 +W2δ2) , (2.47)

where the index p indicates perturbed quantities, omega and ζ are the angular frequency and the
damping coefficient of the oscillatory mode, respectively, andW1 andW2 are uncertainty scaling
factors. The real-valued uncertain parameters are δ1 and δ2 (δ1, δ2 ∈ R, |δ1| ≤ 1, |δ2| ≤ 1). The
uncertainty scaling can be defined from the interval boundsW1 = 2· ωU−ωL

ωU+ωL
(analogously forW2).

A specifically derived Linear Fractional Representation of these uncertainties for systems
in modal form follows. Complex flexible structure systems can be transformed to modal form
as outlined in [39] and [158]. Their nominal and the perturbed mode’s (2 × 2) system matrix

block on the main diagonal of A reads Am =

(
0 ω
−ω −2ζω

)
, respectively Am,p(δ1, δ2) =
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Figure 2.4: Parametric state space uncertainty

(
0 ωp(δ1)

−ωp(δ1) −2ζp(δ2)ωp(δ1)

)
where the polynomials ωp and ζp in δ1 and δ2 can be realized by

LFTs of the system in Fig. 2.4 with

(
Am Bp

Cp Dp

)
=




0 ω ωW1 0 0 0
−ω −2ζω 0 −ωW1 1 1

0 1 0 0 0 0
1 0 0 0 0 0
0 −2ζωW1 0 0 0 W1

0 −2ζωW2 0 0 0 0




(2.48)

and with the diagonal real-valued uncertainty block

∆p =




δ1
δ1

δ1
δ2


 . (2.49)

Note that the parameter δ1, associated with the angular frequency ω, is repeated three times in
the ∆p-block because it enters the A matrix at three positions. In contrast, the parameter δ2
(modeling the variation of the damping ζ) occurs only once as its influence on A is only linear
in a single matrix element. This highlights the importance of LFR construction algorithms that
can find and exploit common dependencies of matrix elements on the same parameter.
The perturbed state space description matrix Γp is computed from the LFT Fl(Gp,∆p).

Example 2.3.1: Second-order system with an uncertain oscillatory mode

Consider the SISO state space system

ẋ =

[
0 ω
−ω −2ζω

]
x+

[
0
1

]
u (2.50)

y =
[
1 0

]
x (2.51)

with x =
[
q q̇

ω

]
T and uncertain but interval-bounded ω ∈ [10, 20], ζ ∈ [0.1, 0.2]. These parameters

can be written as functions of unit-norm-bounded uncertainties δ1, δ2 (|δ1| ≤ 1, |δ2| ≤ 1):

ω = 15 (1 + 5δ1) (2.52)

ζ = 0.15 (1 + 0.05δ2) (2.53)

The parametric uncertainty description for independent ω and ζ is thus

(
Am Bp

Cp Dp

)
=




0 15 75 0 0 0
−15 −4.5 0 −75 1 1
0 1 0 0 0 0
1 0 0 0 0 0
0 −22.5 0 0 0 5
0 −0.225 0 0 0 0



. (2.54)
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The system interconnection structure to realize this parametrization is shown in Fig. 2.4. Formally,
the parametrized system can be written as

G = Fl






Am B Bp

C D 0
Cp 0 Dp


 ,∆p


 (2.55)

2.3.3 Robust Control Design Problem Statement

For a set P of linearized dynamic systems (validation set), the task is to design a controller K
which obtains for each validation system P ∈ P stable closed-loop dynamics that fulfills prede-
fined performance objectives (quantified by signal or system norms). Commonly the controller
K is designed on a simplified design plant P̃ (extracted from P) and validated thereafter. Two
validation cases are distinguished.

Continuous Set of Plants Let a continuous set P of perturbed linear dynamic systems
around a nominal system P 0 and a structured complex uncertainty matrix ∆, ‖∆‖∞ < 1 (com-
pare Fig. 2.1) such that P = Fu (P 0,∆). The control objectives are fulfilled if RS and a suitable
formulation of RP are fulfilled for the closed loop for all possible perturbations ∆ (verified by µ
analysis). This validation strategy can lead to direct results using state-of-the-art robust control
design and analysis tools, but it requires an exact a priori known uncertainty description which
is hard to obtain in practice.

Discrete Set of Plants Let a discrete set P = {P i : i = 1, . . . ,m} of m linear (or non-
linear) dynamic systems at different fixed system parameter values. The control objectives are
fulfilled if stability and suitable performance requirements are met for each closed loop system
M i = Fl (P i,K). This approach is relevant in practice as it allows to consider non-linear
aspects in validation. The uncertainties have to be modeled and tuned for design by the control
engineer to cover the arising system parameter variations.

2.4 Optimization Fundamentals

2.4.1 Generic Optimization Problem

The standard formulation of a finite-dimensional (static) optimization problem is

minimize f = f(x) (2.56)

subject to constraints of the form

gi(x) = 0, i = 1, . . . , p, (2.57)

hi(x) ≤ 0, i = 1, . . . , q (2.58)

Thereby, x ∈ X is the vector of decision variables (or free variables), f : X 7→ R is called the
objective function and formulates costs of each possible decision, g = [g1, . . . , gp]

T : X 7→ Rp are
the equality constraints, and h = [h1, . . . , hq]

T : X 7→ Rq are the inequality constraints.
For simplicity of exposition, the decision variable vector is taken from the real vector space

Rn, and the feasible set X ⊆ Rn is defined as the set of all x which fulfill the constraints:

X := {x : g(x) = 0,h(x) ≤ 0} (2.59)
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2.4.2 Convexity

Optimization problems can be characterized based on the classes of considered functions for f ,
g, and h. In particular, if f is convex and if the set X is a convex set, then the optimization
problem is convex [12].

Definition 2.4.1: Convex set

A set X ⊆ Rn is a convex set if the line segment between any two points x,y ∈ X lies
in X . Formally X is convex if ∀x,y ∈ X , α ∈ [0; 1] all point z = αx+ (1− α)y are also
in the set, z ∈ X . [12]

Definition 2.4.2: Convex function

A function f : Rn 7→ R is convex if its domain domf is a convex set and if for all
x,y ∈ domf, α ∈ [0; 1] the relation

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) (2.60)

holds. [12]

If an optimization problem is convex, then it has an extremely important property: If it is
feasible and if a locally optimal solution could be found, then the solution is globally optimal.
For this reason, knowing or proving that a given problem is convex is an important task. Many
important classes of optimization problems are convex and efficient, polynomial-time solution
algorithms are available. These problems include the widely known linear programming (LP)
problems, quadratic programming problems with a convex quadratic form, and LMI problems
which are detailed below.

2.4.3 Linear Programming

A linear program (LP) is an optimization problem

inf
x

cTx (2.61)

subject to

ai
Tx ≤ bi, i = 1, . . . , k (2.62)

aeq,j
Tx ≤ beq,j, j = 1, . . . , keq. (2.63)

Thereby, x ∈ Rn are the free decision variables and c ∈ Rn is the cost vector. For correctness,
the infimum (inf) is used instead of the minimum (min) here because the minimum might not
be actually reached in an unbounded feasible set. The coefficient vectors ai ∈ Rn and the
associated right-hand sides bi define k inequality constraints. Similarly, the coefficient vectors
aeq,j ∈ Rn and the associated right-hand sides beq,j define keq equality constraints. Often, these
constraints are denoted in the compact form as

Ax ≤ b (2.64)

Aeqx = beq (2.65)
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with A =
[
a1 . . . ak

]
T and Aeq =

[
aeq,1 . . . aeq,keq

]
T. Note, however, that this

notation indicates row-wise scalar inequalities and equalities. Note also that linearly independent
equality constraints reduce the number of free variables to n−keq, so some standard LP notations
do not include explicit equality constraints.

A wide variety of problems can be cast into or approximated by an LP formulation. The
reference algorithm to efficiently solve LPs is the well-known Simplex algorithm, developed by
George Dantzig in the year 1947 [17]. Later in history, efficient Interior-Point (IP) methods
have been developed [71]. The main advantage in the use of LPs lies in their efficient solution
— problems with millions of variables and constraints can be solved today. Since this problem
type is a convex problem a locally optimal solution is also globally optimal.

2.4.4 Quadratic Programming

A quadratic program (QP) is an optimization problem with a quadratic objective function and
linear inequality (and/or equality) constraints:

min
x
f(x) =

1

2
xTQx+ cTx (2.66)

subject to

Ax ≤ b, (2.67)

Aeqx = beq. (2.68)

Thereby, (2.67)–(2.68) define inequality and equality constraints as in (2.62)–(2.63). If Q ≥ 0
holds (that is, Q is positive semi-definite), the optimization problem is convex and efficiently solv-
able. Common algorithms are interior point-, active set- or Simplex-based methods. However,
if Q is indefinite, no general computationally tractable algorithm is known. Linear programs
are special cases of quadratic programs with Q = 0.

2.4.5 Linear Matrix Inequalities (LMIs)

A LMI is an affine matrix constraint of the form:

F (x) = F 0 +
n∑

i=1

xiF i � 0. (2.69)

The matrices F i = F i
T ∈ Rn×n are symmetric and fixed, and x = [x1, . . . , xn]

T are the free
decision variables. The constraint F (x) � 0 means that the matrix F (x) is required to be
positive-semidefinite, that is, that it possesses only non-negative eigenvalues.

In mathematical programming, the term Semidefinite Program (SDP) is used to denote an
optimization problem of the form

min
x

cTx (2.70)

subject to

Ax = B, (2.71)

x ∈K, (2.72)

where the linear objective function shall be minimized. The first set of constraints are linear
equality constraints, the set of inequality constraints is represented implicitly where K is a cone
(see Def. 2.4.3 below). This problem formulation is called the primal SDP form.
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Definition 2.4.3: Cone

A (pointed) cone K is the subset of a vector space V ⊂ Rn that is closed under positive
scaling:

x ∈K ⇔ λx ∈K ∀λ ≥ 0. (2.73)

Important cones are the positive orthant (LP cone) KLP = {x ∈ Rn : x ≥ 0}, the
quadratic (second-order) Lorentz cone (which arises in quadratic programming), and
the positive semidefinite cone (SDP cone) defined for example by an LMI constraint.

Remark: In mathematical programming, an SDP primal problem is defined as in (2.70)–
(2.72), while in the control community the “primal LMI problem” is usually favored:

inf
x

cLMI
Tx (2.74)

subject to

F (x) = F 0 +

n∑

i=1

xiF i � 0. (2.75)

The primal LMI problem is in dual form to an semidefinite program/ programming (SDP)
problem. Forming the dual to (2.74)–(2.75), a primal SDP problem is obtained:

sup
x

trace(F 0z) (2.76)

subject to

trace(F iz) = ci i = 1, . . . , n (2.77)

z ≥ 0 (2.78)

In this work, the term LMI problem is used for problems stated as in (2.74)–(2.75). The
concept of duality in optimization problems is not detailed here, for reference see [11] or [103].

Today, numerous solvers and numerical tools exist to efficiently solve LMI problems, for
example MATLABR©’s LMILAB (see [38], [6]) as well as open-source alternatives such as Se-
DuMi (see [149]). Also, auxiliary programs, such as YALMIP is a modeling tool and provides
interfacing between MATLABR© and many solvers, see [86] and the website [169] which also lists
supported solvers. The tool GlptiPoly [64] implements an automated approximate solving of
higher-order problems by LMI approximations, also refer to the survey [16].

Feasibility Problem and Cost-Optimization Problem

The obtained LMI problem can be solved in various ways: Firstly it may be of interest whether
the problem is feasible at all (“feasibility problem”). Secondly, if it is feasible, an optimal
solution should be obtained (“cost minimization problem”). Both tasks can be performed by
today’s LMI solvers.

Control Applications

The book [11] gives a detailed account on the use of LMI formalisms in control problems. Some
specific formulations are given in the following that are used in later chapters of this work.
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Quadratic Stability Test: Given a set of k vertex system matrices Ai ∈ Rn×n, i = 1, . . . , k,
the problem is to decide whether all systems in the polytope spanned by the vertex systems

A(λ) =

k∑

i=1

λiAi (2.79)

k∑

i=1

λi = 1 (2.80)

λi ≥ 0 (2.81)

are stable.
It can be shown that if a common, fixed, symmetric positive-definite (n × n) matrix P =

PT > 0 (called Lyapunov matrix) is found that fulfills the following LMI constraints,

Ai
TP + PAi ≺ 0 i = 1, . . . , k (2.82)

P ≻ 0, (2.83)

then all plants in the polytope are stable. Thereby, the matrix variable P has n(n+1)
2 independent

entries. Criterion (2.82)–(2.83) is called quadratic (Lyapunov) stability and is sufficient, but
usually not necessary: if no corresponding matrix P can be found (that is, if the LMI constraints
render the problem infeasible), the polytope may still be stable everywhere.

Parameter-Varying Lyapunov Stability: For the polytope of systems as above (equations
(2.79)–(2.81)), a less conservative LMI formulation can be given using a parameter-dependent
Lyapunov matrix P = P (λ). For a set of constant state space system matrices, the LMI
feasibility constraint becomes [63]:

[
Ai

TFT + FAi P i +Ai
TGT − F

symm. −G−GT

]
≺ 0 i = 1, . . . , k (2.84)

P i ≻ 0 i = 1, . . . , k, (2.85)

whereG, F are additional free (n×n) matrices. Note that the variable count is strongly increased

as compared to quadratic stability: NP = kn(n−1)
2 , NF = n2, NG = n2 where NP , NF , NG are

the number of free variables in P , F , and G, respectively. However, this stability test shows
much less conservativeness than the quadratic stability test.

2.4.6 Genetic Algorithms

A genetic algorithm is an evolutionary, population-based, global search and optimization method
(see also [35]) that attempts to find a cost-minimal solution x(p),

fcost(x(p))→ min, (2.86)

encoded by a valued set of m decision variables p : P 7→ Rm. These free parameters constitute
the ,,genome” which encodes a solution. Numerous solutions are collected in the solution pop-
ulation and are subject to evolution over generations using genetic operators, such as crossover
(creating offspring solutions from parent solutions) and random mutation.

Particular advantages of genetic algorithms are the fact that they do neither require gradient
information of the objective function nor smoothness of the problem landscape. However, genetic
algorithms themselves cannot guarantee the convergence to a global or even local optima. If
structure information on the problem is available, hybrid schemes of a genetic algorithm with
local solution improvement through local, structured optimization is often utilized. This variant
is often called memetic algorithm [76].

The main steps of a genetic algorithm are summarized in Tab. 2.1.
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Table 2.1: Genetic Algorithm pseudo code

initialize population, evaluate

while termination criterion not fulfilled

select solutions for reproduction

create offspring via crossover

mutate solutions randomly

evaluate fitness of new population members

store overall best solution

end

2.4.7 Evaluation Methodology “Goal Attainment”

One possible method to validate a resulting control law and to evaluate its performance on a set
of validation plants Sval is the Goal Attainment evaluation method (see [47]). It yields a global,
aggregated scalar cost value for a set of k goals, defined by:

• [x1, x2, . . . , xk]: Actual cost values of each goal of the closed-loop system

• [t1, t2, . . . , tk]: Target values (as upper bound for acceptable goal cost), for example rise
time, overshoot, or other quantifications of control performance or stability

The global value is defined as:

cost function f = max
j∈{1,..,k}

gj , gj =
xj
tj
, j = 1, . . . ,m (2.87)

which yields the worst-case goal attainment ratio as global cost. Only if all goals are fulfilled,
the cost function value is less or equal to 1. Additionally, due to the max operator in (2.87), the
search is directed towards improving the least fulfilled goal.

The max function in the evaluation methodology above only conveys information on the
least-fulfilled goal to the solver algorithm. Moreover, the objective function is not continuously
differentiable at points where two or more goals are of the same maximum value. To avoid
related convergence or singularity problems in the solution process, a different variant of the op-
timization problem can be formulated. Thereby, the max function is replaced by a continuously
differentiable exponential expression (“soft max”) with similar properties:

cost function f = log


 ∑

j∈{1,..,k}
exp(gj)


 , gj =

xj
tj
, j = 1, . . . ,m. (2.88)

This function is dominated by the least-fulfilled goals and additionally conveys information on
all other goals. It is well-defined everywhere (except at 0) and thus can improve solver efficiency.
However, no fixed value guarantees the fulfillment of all goals (as was the case before), so this
simple interpretability is lost and additional post-processing and solution analysis is necessary.
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2.5 Flexible-Structure Modeling

Fundamental properties of MIMO control systems and state space system calculus are presented
in [143]. When working with flexible-structure systems with low-damped oscillatory modes,
these can be transformed into a decoupled form with so-called modal coordinates which enables
efficient computations. The textbook [39] gives detailed account on the related techniques
in modeling, system analysis, and control design. A concise summary of modal state-space
representations based on [39] is given in the following.

Assume the dynamics of a flexible structure is described by n linear (or linearized) equations
of motion. The commonly used mathematical model can be represented by a set of n second-
order linear ordinary differential equations (ODEs), whereby a crucial design decision is the
choice of their coordinates. In the textbook of Gawronski [39], model representations of flexible
structures are discussed in detail.

2.5.1 Nodal Models

So-called nodal models can be retrieved in nodal coordinates (displacements and velocities) for
example by FE modeling. The linear equations of motion are commonly written in the following
second-order nodal form:

Mq̈n(t) +Dq̇n(t) +Kqn(t) = Bu(t)

y = Coqqn(t) +Covq̇n(t), (2.89)

where M ≻ 0, D � 0, and K � 0 are the (n × n) mass-, damping-, and stiffness matrices of
the system with n degrees of freedom. The (n × 1) nodal coordinate vector qn(t) and its time
derivatives contain the nodal displacements, velocities, and accelerations, respectively. The
(n × s) nodal input matrix B maps the action of the s (generalized force) inputs u on the
system. Likewise, the (r×n) output matrices Coq and Cov define the r outputs ((r× 1) output
vector y) as linear combination of the nodal displacements and velocities. In the following, the
notion of explicit time dependence is omitted to improve readability.

This system of n coupled ODEs of order 2 can be rewritten into a system of 2n first-order
ODEs in state space form by defining the state space vector as a combination of the structural
displacements qn and velocities q̇n:

xn =

[
qn

q̇n

]
(2.90)

The state equation reads:

ẋn =

[
0[n×n] I[n×n]

−M−1C −M−1K

]
xn +

[
0[n×r]

M−1B

]
u (2.91)

with 0 and I as zero and unity matrices with the indicated dimensions. The system output can
be written as:

y =
[
Coq Cov

]
xn (2.92)

Thus, the common state space form is obtained:

ẋn = Anxn +Bnu

y = Cnxn (2.93)
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2.5.2 Modal Form

A different choice of coordinates, especially advantageous for flexible mechanical structures, leads
to so-called modal models of structures. They are described in modal coordinates and exhibit
favorable properties. By applying the similarity transformation T = Φ with the eigenvector
matrix Φ = [φ1 . . .φn] (eigenvectors listed column-wise) of the undamped eigenvector/eigenvalue
problem Kφi = ω2

iMφi to (2.89), the second-order system of ODEs is diagonalized as follows:

Mmq̈m +Dmq̇m +Kmqm = ΦTBou

y = CoqΦqm +CovΦq̇m (2.94)

where Mm = ΦTMΦ, Dm = ΦTDΦ, and Km = ΦTKΦ are the modal mass-, damping-, and
stiffness matrices. Due to the similarity transformation, Mm and Km are diagonal, and also
the modal damping matrix Dm becomes diagonal in the commonly assumed case of Rayleigh-
damping (D = α1M + α2K with α1, α2 ≥ 0), see [39]. This formulation is obtained by the
coordinate transformation qn = Φqm, where qm are the modal displacements or coordinates.

For systems with well-separated oscillatory eigenmodes with low damping, the representation
in modal coordinates exhibits advantageous properties for dynamics analysis and system iden-
tification, since they can be written in mode-wise decoupled form. This representation is thus
well-suited to treat typical flexible structures in lightweight engineering. Numerous tools, for
example state-of-the-art actuator/sensor placement procedures [39], [62], [60], [61], [82], [136],
[158], exploit the distinct features of modal models.

As for the nodal model formulation, the system of second-order ODEs (2.94) can be written
into a state-space system of first order. The following choice of the modal state vector is
numerically well-conditioned:

xm =




xm1
...

xmi

...
xmn




xmi =

[
ωiqmi

q̇mi

]
(2.95)

With this choice of states, the modal state space model can be written as:

ẋm = Amxm +Bmu (2.96)

y = Cmxm (2.97)

with the following (2× 2) block-diagonal structure for the modes i = 1, . . . , n (usually sorted by
their natural frequency ωi):

Ami =

[
0 ωi

−ωi −2ζiωi

]
Bmi =

[
0

bTmi

]

Cmi =
[ 1

ωi
cmqi 0

]
(2.98)

Am = diag (Ami) Bm =




Bm1

Bm2
...

Bmn




Cm =
[
Cm1 Cm2 . . . Cmn

]
(2.99)
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One of the main reasons to use the modal state space representation is that in case of high
order nodal models (as obtained via FE modeling), the order can easily be reduced in the modal
representation by truncating higher modes without significantly changing system behavior. Also,
the obtained set of modes is orthogonal (in the weakly damped case), which allows to break down
the complexity of operations and system treatment considerably.

The modal state space representation (2.96)–(2.99) can also be determined by transformation
of a system model given in an arbitrary state space representation. This is required for example
for models established by system identification or reduced order models from a balanced model
reduction where no physical interpretation of the state vector exists. This is accomplished
through four consecutive transformation steps that are presented in detail in [158]:

• Diagonalization by similarity transformation: The system is transformed to its complex-
diagonal form by state transformation with the eigenvector matrix.

• Transformation to modal form: By subsequent transformation steps, the system matrix
can be brought to modal form (2.98).

• Create correct input and output matrix structure: Further transformation is necessary to
obtain the necessary zero entries in the input and output matrices.

• Perform gain shift between input and output matrix: Finally the correct gain distribu-
tion is computed by matching the gains of (nearly-)collocated input and output channels
(observing the factor ωi in (2.98)).

2.5.3 Acceleration Sensors

Acceleration quantities are often important outputs of a structural control system, for example
as to estimate passenger ride comfort. However, as evident in (2.96), acceleration outputs in the
form of

ÿ = Cmaq̈m, (2.100)

are not directly available as linear combination of the states. Using the lower half of (2.96), the
vector of modal accelerations can be formulated.

Given the displacement outputs for mode i

y =
[ cmqi

ωi
0
] [ ωiqmi

q̇mi

]
= cmqiqmi, (2.101)

it is possible to formulate the corresponding acceleration outputs by eliminating q̈mi via equa-
tion (2.96):

ÿ = cmqiq̈mi (2.102)

=
[
−cmqi −2ζiωicmqi

] [ ωiqmi

q̇mi

]
+ cmqib

T
miu. (2.103)

2.6 Input / Output Selection

In control design, the choice of inputs (actuator signals) and outputs (measurements) that are
accessible by a controller has a significant impact on the properties and the faced limitations
of the control system. As discussed in [143], fundamental qualitative limitations can be faced
in control design for a certain input/output (I/O) choice which restrict achievable stability,
performance, and robustness. Moreover, note that in practice actuation capabilities are limited,
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measurements are corrupted by noise, and design models differ from reality. Thus the I/O-
selection task must also consider I/O efficiency and the sensitivity of I/O-choices to model
perturbations which all affects attainable control performance quantitatively. For these reasons
it is vital to make this choice in an optimized manner before carrying out the actual controller
design. Many corresponding criteria for control system input/output evaluation and selection
exist nowadays, and an excellent survey is given by [152].

Three important groups of I/O selection criteria are

energy-based methods which aim to find I/Os which maximize controllability/observability-
related quantities (see [39], [51], [82] and the recently proposed criterion in [158]),

information-based methods which aim to maximize information/observation independence
in sensor selection, and

closed-loop criteria which directly evaluate attainable closed-loop performance for each I/O-
candidate (see [60] for a recently proposed LQG criterion).

To select suitable candidates from a large set of potential I/O-combinations for robust control
design, a new computationally efficient selection method has been proposed in [61] and [62]. The
doctorate thesis [59] addresses these developments in detail and studies their application at a
flexible BWB aircraft model. A comparison of the criteria from [39], [158], and [60] is carried
out in [136] at the flexible BWB aircraft model which is also utilized in this work. I/O-selection
results for various other applications are presented in [8] and [127] (piezo actuator positioning
for flexible structure control of a railcar body), [27] and [82] (piezo actuators/sensors on flexible
structures).

Considering the effort required by the I/O-selection task and on the degree and quality of
available information, the following advantages and limitations arise (see also [136]):

Advantages of energy- and information-based onsets over closed-loop criteria are that

• they provide qualitative statements over a wide range of control system architectures,

• their evaluation is typically less computationally demanding, and

• physical interpretation is possible in the case of structure mechanics.

Their limitations are that

• quantitative statements are often dependent on artificial weighting factors, thus results
cannot be easily verified beforehand,

• robustness with respect to parameter variations is not addressed explicitly, and that

• accuracy of the results depends on the ability of introducing relevant expert knowledge
(for example, weighting to reflect control design specifications).

In turn, if the actual control design process can be predicted well, if the design model is of
sufficient accuracy, and if the final control specifications are known, closed-loop I/O-selection
criteria could be carried out such that they actually mimic the later control design and provide
accurate, specialized results.

However, the following limitations are evident:

• This approach requires high computational and modeling effort.

• Verification is difficult or not feasible until the final design has been carried out.
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As a consequence, in an early design phase of the control system, having no or only uncertain
information about the entire control design process, the latter approach is not expected to yield
results superior to more general approaches, such as energy-based criteria. For this reason it is
of interest to have generic methods which can be augmented by simple weighting functions to
incorporate existing or derived expert knowledge on typical control system characteristics, in
order to improve the reliability and quality of the decision basis for I/O-selection.

Remarks on robustness: Especially for systems which are operated in a wide range of
physical parameters (such as aircraft), an I/O-selection which yields good control performance
for all occurring perturbations is vital. However, most I/O-selection methods do not assess
robustness directly. Two possibilities to obtain robust I/O choices with respect to plant model
perturbation are to evaluate each member of a sufficiently fine-gridded multi-model of the system
by the I/O-selection methods and to aggregate the resulting selection indicators suitably [136],
[62], or — for closed-loop criteria — to resort to true robust control design and robust analysis
for performance evaluation (however at drastically increased effort needed in the I/O-selection
task).

2.6.1 Information-based Criteria

Most information-based selection criteria — typically for sensor selection — are based on prop-
erties of the so-called Fisher Information matrix [33] which expresses the innovation introduced
by a particular sensor (in terms of the relevance and independence of its information compared
to the information provided by the remaining sensors) [124]. A constructive method to extract
a set of relevant sensors is the Effective Independence (EFI) method, see [116], [95], [85].

In [54], the EFI method is modified to additionally avoid spillover with respect to undesired
system modes. Comparisons of information-based approaches to other onsets are given in [85]
and [161] and show the close relationship of various actuator / sensor selection approaches.

Sensor selection or placement based on information approaches has been carried out for
various applications such as engine health monitoring [10], bridge structures [95], [85], space
structures [170], and aircraft structures [55].

2.6.2 Energy Criteria

Three existing energy-based actuator and sensor positioning criteria are detailed in the following:
one is proposed by Gawronski [39], the second is given by Hac & Liu [52], and the third is a
combination and extension to the criteria in [39], [52], and [82] and is proposed in [158] and
[136].

Gawronski’s criteria [39]

A mode-based aggregate index that quantifies total energy transfer into or out of the structure
has been proposed in the textbook [39]. For a system in modal form (2.96)–(2.97) and the jth
actuator, the actuator index σact,j is defined as

σact,j =

√√√√
n∑

i=1

σij2, σij = wij

‖Gij‖2
‖G‖2

(2.104)

where

‖Gij(jω)‖2=̃
‖Bmij‖2‖Cmi‖2

2
√
ζiωi

, (2.105)
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is the H2 norm of the ith mode and jth actuator, ‖G‖2 is the H2 norm of the system according
to Def. A.4.7, ζi and ωi are the modal damping and frequency of mode i, and wij is a weighting
factor for mode and actuator weighting.

Analogously, sensor placement indices are defined by using the quantities related to the kth
sensor:

σsens,k =

√√√√
n∑

i=1

σik2, σik = wik

‖Gik‖2
‖G‖2

(2.106)

where

‖Gik(jω)‖2=̃
‖Bmi‖2‖Cmik‖2

2
√
ζiωi

. (2.107)

Note that the criterion seeks to maximize the total energy throughput, but does not prevent
the placement of actuators at nodes of higher-order modes due to its aggregating onset.

Criterion of Hac / Liu [52]

The performance index ρ for the jth actuator as defined in [52] is given by

ρj =

(
2n∑

i=1

λi

)
2n

√√√√
2n∏

i=1

(λi), (2.108)

where λi is the ith eigenvalue of the controllability Gramian of the pair (A, bj) (see [39]) and bj
is the column vector of B corresponding to the jth actuator.

This criterion incorporates the geometric mean of the Gramian eigenvalues which acts as a
penalty term to ensure controllability of all considered modes, however, the performance index
value is dependent on the representation (state choice) and the gain distribution between input
and output matrices which cannot be reconstructed uniquely if no input/output collocation
exists.

Combined criterion as proposed in [136] and [158]

An extended positioning criterion has been proposed by the authors in [158] that combines
features of criteria proposed in [39], [52], and [82]. It adds the requirement that a set of modes
be controllable or observable to result in a non-zero criterion value. For actuator placement the
newly proposed performance index is defined as

πact,j =

√√√√
n∑

i=1

(‖Bmij‖2‖Cmi‖2
2
√
ζiωi

)2

· 2n

√
det (W cj), (2.109)

with Bmij as the input matrix for the jth actuator under study, Cmi as the performance output
matrix, and n as the number of modeled modes. The controllability Gramian W cj is computed
for the system with single input j and the set of modes that are required to be controllable.
Note that this requirement prevents placement in and near modal nodes which improves robust-
ness against small changes of the modal node locations. Those actuator positions with highest
placement index are best suitable both in terms of actuation efficiency and from a robust point
of view (all modes best controllable).

For sensor placement the performance index is defined as

πsens,k =

√√√√
n∑

i=1

(‖Bmi‖2‖Cmik‖2
2
√
ζiωi

)2

· 2n
√

det (W ok), (2.110)
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with Bmi as the disturbance input matrix, Cmik as the output matrix for the kth sensor under
study, and Wok as the observability Gramian of the system with single output k and the modes
required to be observable. Those sensor positions with highest placement index are best suitable
both in terms of sensor efficiency and from a robust point of view (all modes best observable).

2.6.3 Incorporation of Design Constraints by System Weighting

A general, yet simple solution to incorporate design constraints and conditions into system
analysis is to apply a physically motivated input/output weighting to the system model before
the actual system evaluation. Modal system representations allow simplified consideration of
mode-wise weights if the weighting functions fulfil mild regularity conditions (see [39]).

Let (Am,Bm,Cm) be a modal MIMO state-space system description (2.96)–(2.97), such as a
model of the elastic modes of a flexible structure. Consider a sufficiently smooth scalar transfer
function Wo(jω) describing a frequency weighting that should be applied at one considered sys-
tem output, such as a dynamic performance weighting of an exogenous system output (compare
[39]). The output-weighted system (Am,Bm,Cm,w) is obtained by mode-wise output scaling by
the values |Wo(jωi)|, where ωi is the ith mode’s frequency:

Cm,w =
[
|Wo(jω1)|Cm1 . . . |Wo(jωn)|Cmn

]
(2.111)

Analogously, frequency input weighting translates to mode-wise scaling of the input matrix
with weighting function Wi(jω), for example to incorporate a known excitation spectrum at
performance inputs:

Bm,w =




Bm1|Wi(jω1)|
Bm2|Wi(jω2)|

...
Bmn|Wi(jωn)|


 (2.112)

Finally, weightings on actuators or sensors are usually applied by diagonal scaling matrices
in series connection to the plant. The I/O-weighted system (Am,Bm,w,Cm,w) has the same
modal properties as the original system (natural frequencies, damping); only the mode gains are
affected by the weighting process.

Remark: In system design and related analysis and evaluation tasks it is crucial to correctly
formulate and incorporate relevant design constraints or conditions. These can be for example
the expected excitation spectra for vibration control design, performance quantity weighting
(weighted accelerations are used to estimate passenger ride comfort), or an actuator efficiency
quantity.



Chapter 3

Optimal & Robust Control Design
Methods

In this chapter, state-of-the-art feedback control design methods from optimal and robust control
are collected and reviewed. This compact exposition of the state of the art should serve as a
basis for the novel developments later in this thesis.

The chapter is structured as follows: The standard problem formulations for H2 and H∞
(sub-)optimal feedback control designs are given first. A short overview on design plant for-
mulation, modeling, and weighting follows which shows the variety of covered problems and
points out important aspects in the control engineering process. Then, the core state-of-the-art
algorithms to design the sought (sub-)optimal feedback controllers are summarized from the
literature. The exposition concentrates on the basic underlying solution structure and the sim-
ilarity between H∞ and H2 optimization approaches, based on the reference papers [42] and
[24], as well as on the exposition in the book [143]. Subsequently, some well-known LQ-based
optimal control formulations (LQG, output-weighted LQG, and Linear-Quadratic Integral (LQI)
designs) are outlined and embedded in the H2 framework developed before. Finally, two flavors
of µ synthesis algorithms for robust controller design, the DK-iteration and the DGK-iteration,
are outlined and discussed.

3.1 Standard problem formulation for H2 and H∞ feedback con-

trol design

The goal is to design an internally stabilizing LTI dynamic feedback controller K(s) for a given
design plant P (s) that minimizes theH2 or theH∞ norm of the closed-loop performance transfer
function T zw (see Fig. 3.1):

T zw = Fl(P ,K) = P 11 + P 12K(I − P 22K)−1P 21 (3.1)

The general solutions of the H2 and of the H∞ design problems in state-space form are given
in [24]. Basic assumptions on P and some important results are summarized in the following
from [24], [143].

3.1.1 H∞ weighting, stacking, and H∞ problem classes in standard form

The textbooks [143] and [174] treat many design problems and their formulations in various
optimal and robust control frameworks in detail. This chapter names a few of the important
problems that typically arise and provides an exemplary formulation of a design plant in standard
form for H∞ feedback controller design as shown in Fig. 3.1.

37
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Figure 3.1: Standard form of the feedback control design problem

Weighting function choice

Some fundamental considerations are noted with respect to the design of frequency-domain
weighting functions for H∞ control design. Given a scalar stable transfer function (weighting
function) W (s) and a stable MIMO or SISO transfer function G(s), note that at each frequency
s = jω the multiplicative property (A.10) of the spectral matrix norm is fulfilled with equality
because the product is a scalar product:

σ(W (jω)G(jω)) = σ(W (jω))σ(G(jω)) = |W (jω)|σ(G(jω)) ∀ω. (3.2)

Consider that as a result of a control design, some weighted (closed-loop) transfer function
WG fulfills

‖WG‖∞ < 1⇔ |W (jω)|σ(G(jω)) < 1 ∀ω. (3.3)

Then, this is equivalent to

σ(G(jω)) <
1

|W (jω)| =
∣∣W−1(jω)

∣∣ ∀ω, (3.4)

so the inverse weight magnitude is a valid upper bound for the singular values of G at all
frequencies. This sketches the following weight selection procedure:

• Define the desired upper bounds on σ(G(jω)) ∀ω.

• Shape a suitable scalar, minimum-phase, stable, invertible, and bi-proper transfer function
V (s) as an approximation from above to these upper bounds.

• Obtain the design weighting function by inversion: W (s) = V −1(s).

• Perform the corresponding controller design and try to achieve ‖WG‖∞ < 1. If successful,
it is guaranteed that the desired upper bounds are fulfilled.

The most common weighting function shapes are stable, minimum-phase, bi-proper high-
and low-pass functions given by

V (s) = K

(
s
ω1

+ 1
s
ω2

+ 1

)n

(3.5)

with DC gain K, order n, and corner frequencies ω1, ω2. If ω1 < ω2 holds, then V (s) is a
high-pass filter, whereas for ω1 > ω2 it is of low-pass behavior. The asymptotic magnitudes at
low and high frequencies, respectively, are:

lim
ω→0

V (jω) = K, (3.6)

lim
ω→∞

V (jω) = K

(
ω2

ω1

)n

. (3.7)
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Caution: Note that these relations only hold if the weighting function is scalar, because only
then the multiplicative property is fulfilled with equality. If W (s) is MIMO, even if it is only
chosen diagonally with different entries along the diagonal, the above considerations do not hold
in general and the inverse weight cannot be interpreted as an upper bound on σ(G(jω)) any
more!

Restrictions on weighting functions: To formulate and solve standard H2 and H∞ design
problems, a set of prerequisites or assumptions on the augmented design plant has to be fulfilled,
see Sec. 3.1.2. This implies that the weights must be strictly stable, otherwise the design plant
becomes non-stabilizable. This disqualifies pure integrators as weights which are usually replaced
by “quasi-integrators” with a slightly stable, slow real pole and high DC gain. Analogously, the
weights have to be proper, so ideal differentiators need to be approximated accordingly. The use
of unstable and non-proper weights inH∞ design problems, related solutions and approximations
are discussed in [94].

Stacking H∞ expressions

The following property is of central importance in H∞ control and allows to stack several
objectives expressed as H∞ norm quantities (see [143, eq. (A.46)]):

max {σ(A), σ(B)} ≤ σ
([

A

B

])
≤
√
2max {σ(A), σ(B)} . (3.8)

Now, given two stable transfer functions G1(s), G2(s) with the same number of inputs (so
that the transfer functions can be stacked), the fulfillment of

∥∥∥∥
[
G1

G2

]∥∥∥∥
∞
< 1 (3.9)

implies (via (3.8) for each frequency s = jω) that

‖G1‖∞ < 1 and ‖G2‖∞ < 1 (3.10)

both hold.
This fact allows one to formulate multiple H∞ objectives, to stack them, solve the stacked

problem, and recover guarantees on the individual objectives again.
Note that the converse implication, however, is not true, but from (3.8) it is evident that

the conservativeness is at most
√
2:

‖G1‖∞ < 1 and ‖G2‖∞ < 1⇒
∥∥∥∥
[
G1

G2

]∥∥∥∥
∞
<
√
2. (3.11)

Mixed-sensitivity H∞ control

Disturbance rejection and tracking requirements give rise to so-called mixed-sensitivity designs.
Two such problem classes are the S/KS and the S/T mixed-sensitivity designs. Thereby, S
refers to the closed-loop sensitivity function S = (I +GK)−1 and T refers to the closed-loop
complementary sensitivity function T = I− S, see [143] for detailed interpretations.

Consider the three problems in Fig. 3.2: A regulation problem (a), a tracking problem
(b), and a combined problem (c), in which both tracking and disturbance rejection are ad-
dressed. Formulating these problems with frequency-domain considerations leads to correspond-
ing stacked H∞ formulations. These are solvable in the standard framework ofH∞-(sub-)optimal
control design.
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Figure 3.2: Mixed-sensitivity problems in standard form [143]: (a) regulation problem (S/KS-
problem), (b) tracking problem (S/KS-problem), and (c) combined problem (S/T -problem)

The architecture in case (a) is obtained for a regulation (disturbance rejection) problem in
which typically low-frequency disturbances w = d should be rejected, that is, the magnitude of
S should be small in that frequency range. This is obtained by a low-pass filter W 1 (typically
chosen scalar or diagonal). Another typical constraint is limited actuation or control energy,
which can be modeled in the design via limiting the weighted KS path, that is, the weighted
transfer from w = d to u. A high-pass W 2 penalizes large high-frequency magnitudes in u while
allowing low-frequency control action. The augmented plant P in standard form is obtained
from the block diagram as




z1

z2

e


 =




W 1 W 1G

0 −W 2

−I −G




︸ ︷︷ ︸
P

[
w

u

]
, (3.12)

and the closed-loop performance transfer is

[
z1

z2

]
=

[
W 1S

W 2KS

]

︸ ︷︷ ︸
T zw

w. (3.13)

The latter form shows that in fact a stacked H∞ criterion should be minimized:

min
K
‖T zw‖∞ = min

K

∥∥∥∥
[

W 1S

W 2KS

]∥∥∥∥
∞
. (3.14)

When formulating a tracking problem as in case (b), the following requirements can be
outlined: Firstly, the magnitude of the tracking error e = r − y should be small (or zero)
at low frequencies. This is accomplished by assigning a large weight at low frequencies (W 1

low-pass). Secondly, the control signal magnitude (especially at high frequencies, outside the
tracking bandwidth) must be limited to small values. In the present approach, this is obtained
by assigning a high-pass weight W 2. With the augmented plant structured as




z1

z2

e


 =




W 1 −W 1G

0 W 2

I −G




︸ ︷︷ ︸
P

[
w

u

]
, (3.15)
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the same closed-loop performance transfer function T zw as in (3.13) and the same stacked H∞
criterion as in (3.14) is obtained.

The combined problem in case (c) is posed such that both, disturbance rejection (weighted
sensitivity W 1S) and tracking (weighted complementary sensitivity W 2T ) are considered si-
multaneously. As in (a), W 1 is typically low-pass to reduce disturbance sensitivity at low
frequencies, while W 2 is typically high-pass to obtain good tracking and high-frequency noise
attenuation: note that T is the closed-loop transfer y = Tr, so a high-pass weight W 2 avoids
high-frequency tracking of noise, that is, performs noise attenuation. For tracking, T should be
close to I at low frequencies, which is also obtained by making S small there, because T = I−S

holds. The augmented plant is




z1

z2

e


 =




W 1 −W 1G

0 W 2G

I −G




︸ ︷︷ ︸
P

[
w

u

]
, (3.16)

and the stacked H∞ criterion becomes

min
K
‖T zw‖∞ = min

K

∥∥∥∥
[

W 1S

W 2T

]∥∥∥∥
∞
. (3.17)

Sometimes, a combination of all three weighted terms S (disturbance rejection), T (track-
ing / noise attenuation), and KS (control input magnitude limitation) is formulated in the same
fashion, see [143].

The H∞ objectives also have clear interpretations in terms of robust stability:

• Small σ(K(jω)S(jω)) corresponds to a large robustness margin against additive uncer-
tainty at ω, and

• small σ(T (jω)) corresponds to a large robustness margin against (full complex) multiplica-
tive output uncertainty.

Signal-based H∞ control, µ synthesis

The signal-based H∞ approach is a general onset suitable if several simultaneous H∞ MIMO
objectives need to be accounted for, possibly including uncertain components. The expected
frequency content of the exogenous input signals is modeled via weighting functions (shaping
filters). Likewise, the exogenous output signals are defined as weighted error signals. These
typically include frequency-weighted plant output signals, control input signals, and possibly
tracking errors with respect to a reference model response. Moreover, unstructured or structured
uncertainty models can be incorporated in the interconnection structure. Fig. 3.3 shows an
exemplary interconnection structure taken from [143]. The minimization of the performance
path H∞ norm for all uncertainties ‖∆‖∞ ≤ 1 leads to a robust performance problem: A
controller K is sought so that

µ∆̂p
(M(jω)) < 1 ∀ω (3.18)

holds. The corresponding control design approach is called µ synthesis which attempts to find
among all nominally internally stabilizing controller K that which minimizes µ:

K∗ := argmin
K

sup
ω
µ∆̂p

(M (jω)), M = Fl(P ,K) (3.19)
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This optimization can generally not be solved in closed form (that is, for a general uncertainty
structure), but some heuristic approaches are widely recognized in practice. The most well-
known algorithm is probably the DK-iteration or its extension, DGK-iteration which is detailed
below in Sec. 3.5. Another approach, the so-called Q− µ−synthesis (see Sec. 3.6.6) utilizes the
Youla parametrization of the closed loop and additionally enables the use of nominal time-
domain and H2 constraints simultaneously. Additionally, various LMI approaches have also
been formulated to address specific uncertainty structures (see [11]).
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Figure 3.3: Typical augmented plant interconnection to design a two-degree-of-freedom con-
troller for tracking under input constraints, noise, and uncertainties based on [143]. The dashed
lines indicate the cuts necessary to reshape the interconnection into P −K −∆− form.

3.1.2 Prerequisites for standard H2 and H∞ design

The central prerequisites to apply the standard methods for H2 and H∞ (sub-)optimal control
design are outlined in the following. Note that current implementations of the algorithms as for
example in the MATLABR© Robust Control Toolbox contain yet more general algorithms than
those reviewed in the next sections to obtain sensible result when some of the posed assumptions
are violated. These extensions are not covered here, the interested reader is referred to the
MATLABR© documentation, the tools’ source code and literature references therein for more
details.
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Definition 3.1.1: Assumptions for H2 and H∞ standard design problems

The following set of assumptions is posed on the standard feedback design problem
statement for H2 and H∞ optimization, see [143]. Of these, A1-A4 are required and
A5-A8 can (partially) be relaxed (in exchange for more complex solutions which are
available in [24] but which are omitted here).

Assumption Comment
A1.: (A,B2,C2) is stabilizable and

detectable
required for the existence of a stabilizing K

A2.: D12 and D21 have full rank sufficient to ensure that K is proper (i.e., re-
alizable)

A3.:

[
A− jωI B2

C1 D12

]
has full col-

umn rank for all ω

ensure that K does not try to
cancel poles or zeros on the
imaginary axis which would render
the closed loop unstableA4.:

[
A− jωI B1

C2 D21

]
has full row

rank for all ω
A5.: D11 = 0, D22 = 0 necessary forH2 case (strictly proper plants),

simplifying the solution in the H∞ case (if
not fulfilled, an equivalent problem in which
A5 holds can be stated, see [143], [123])

A6.: D12 =

[
0
I

]
, D21 =

[
0 I

]
simplifying the solution, by scaling of u and
y and a unitary transformation of w and z,
this can always be obtained

A7.: D12
TC1 = 0 and B1D21

T = 0 common for LQG control (no cross-coupling)
A8.: (A,B1) is stabilizable and

(A,C1) is detectable
If A7 is true, A8 replaces A3 and A4.

3.2 H∞ suboptimal controller design

The standard solution for the H∞ suboptimal controller design problem is given in the follow-
ing. This includes the central controller and the parametrization of all stabilizing suboptimal
controllers and is summarized from the sources [24], [42], and [143].

Given a design plant P (s) configuration as in Fig. 3.1 which satisfies assumptions A1-A8 in
Def. 3.1.1, all stabilizing controllers K(s) that satisfy

‖Fl(P ,K)‖∞ < γ (3.20)

for a suboptimal bound γ > γmin are sought.
They are obtained as follows [24, 42]:

1. Let X∞ = X∞T ≥ 0 be a positive-semidefinite solution of the algebraic Riccati equation
(ARE)

ATX∞ +X∞A+C1
TC1 +X∞(γ−2B1B1

T −B2B2
T)X∞ = 0 (3.21)

such that ℜ
{
λi
[
A+ (γ−2B1B1

T −B2B2
T)X∞

]}
< 0 ∀i (called “stabilizing solution”

of (3.21));
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2. let Y ∞ = Y ∞T ≥ 0 be a positive-semidefinite solution of the ARE

AY ∞ + Y ∞AT +B1B1
T + Y ∞(γ−2C1

TC1 −C2
TC2)Y ∞ = 0 (3.22)

such that ℜ
{
λi
[
A+ Y ∞(γ−2C1

TC1 −C2
TC2)

]}
< 0 ∀i (stabilizing solution of (3.22);

and

3. let ρ(X∞Y ∞) < γ2 be fulfilled.

All controllers K(s) are given by K = Fl(Kcent,Q) where the “central controller” Kcent is
of the same order as P and is given by

Kcent(s) =




A∞ −Z∞L∞ Z∞B2

F∞ 0 I
−C2 I 0


 , (3.23)

A∞ = A+ γ−2B1B1
TX∞ +B2F∞ +Z∞L∞C2 (3.24)

Z∞ = (I− γ−2Y ∞X∞)−1 (3.25)

L∞ = −Y ∞C2
T (3.26)

F∞ = −B2
TX∞ (3.27)

and Q(s) is any stable proper transfer function such that ‖Q‖∞ < γ holds.
If the stated conditions on the Riccati equations listed above (items 1–3) are not fulfilled,

the tested value of γ is too small and hence infeasible. This is utilized to formulate a bisection
algorithm, called γ-iteration, to search for a feasible value γ ≥ γmin close to the optimum to
within a tolerance ε such that γ − γmin < ε holds.

The MATLABR© Robust Control Toolbox algorithm hinfsyn implements this procedure
(γ-iteration and the solution to the suboptimal H∞ design problem with relaxed conditions).
Therein, several methods to compute the solutions X∞,Y ∞ are implemented. Also, assumption
A2 in Def. 3.1.1 may be violated and a realizable controller for slightly perturbed entries in D

is computed in this case.

Remark: Note that the parametrization of all H∞-suboptimal stabilizing controllers with
Q(s) is in fact a Youla-parametrization of the closed-loop transfer function T zw(s) which is
affine in Q(s).

3.3 H2 optimal and suboptimal controller design

This section presents the standard solution for the H2-optimal controller design problem from
[24]. The optimal controller can also be viewed as central controller to a parametrization of a
set of suboptimal controllers, analogous to the H∞ case.

Given a design plant P (s) configuration as in Fig. 3.1 which satisfies assumptions A1-A8 in
Def. 3.1.1, the H2-optimal controller K(s) is sought that leads to minimization of the H2 norm

γ2,min := min
K
‖T zw‖2 = min

K
‖Fl(P ,K)‖2. (3.28)

A unique optimal solution to this problem can directly be computed by solving two AREs,
contrary to the H∞ controller design case.

Analogous to the H∞ design case, the suboptimal H2 design problem is defined as: Find all
internally stabilizing controllers that achieve

‖T zw‖2 = ‖Fl(P ,K)‖2 < γ (3.29)
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where γ > γ2,min.
It turns out that the solution to the optimal H2 design problem (3.28) can be utilized to

formulate a central controller to parameterize all stabilizing controllers that fulfill (3.29) for a
suboptimal γ, see [24].

The unique optimal controller is obtained as follows:

1. Let X2 = X2
T ≥ 0 be a positive-semidefinite solution of the ARE

ATX2 +X2A+C1
TC1 −X2B2B2

TX2 = 0 (3.30)

such that ℜ
{
λi
[
A−B2B2

TX2

]}
< 0 ∀i (stabilizing solution);

2. let Y 2 = Y 2
T ≥ 0 be a positive-semidefinite solution of the ARE

AY 2 + Y 2A
T +B1B1

T − Y 2C2
TC2Y 2 = 0 (3.31)

such that ℜ
{
λi
[
A− Y 2C2

TC2

]}
< 0 ∀i (stabilizing solution).

Then, with

F 2 = −B2
TX2 (3.32)

L2 = −Y 2C2
T, and (3.33)

Â2 = A+B2F 2 +L2C2, (3.34)

the central controller is

K2cent(s) =




Â2 −L2 B2

F 2 0 I
−C2 I 0


 , (3.35)

and the family of all stabilizing controllers such that ‖T zw‖2 ≤ γ holds is obtained by

K2(s) = Fl (K2cent,Q) (3.36)

where Q(s) is stable, strictly proper, and fulfills ‖Q‖22 < γ2 − γ22,min. The optimal controller is
obtained from (3.36) by setting Q(s) = 0.

The MATLABR© Robust Control Toolbox algorithm h2syn implements the optimalH2 design
procedure. It also treats non-strictly-proper plants (with D11 6= 0) by ignoring this direct
feedthrough term and returning the resulting optimal controller. The AREs are solved via
MATLABR©’s care and dare commands for the continuous-time and for the discrete-time cases,
respectively.

Remark: Note the similarities between the H∞ and the H2 suboptimal control design pro-
cedures, in particular the AREs which are equivalent except for the γ−2-term in the H∞-case.
This indicates that if relaxing the γ-bound in H∞ design to γ →∞, the design becomes an H2-
optimal design (if all assumptions are fulfilled and an H2 design is feasible). Loosely speaking,
an H∞ design with a γ-bound which is not close to γmin can be interpreted as a mixture of H∞
and H2 optimality. The MATLABR© Robust Control Toolbox provides the algorithm h2hinfsyn

which synthesizes a controller for specified H2, H∞, and pole region constraints (although with
a different approach via an LMI formulation).
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3.4 LQ-based Optimal Control

3.4.1 Linear Quadratic Gaussian (LQG) Control

Linear Quadratic Gaussian (LQG) control became popular in the 1960s, especially for aerospace
applications, and was one of the main drivers of the rise of optimal control [143, pp. 344–352],
[40], [84]. Let a linear dynamic plant be given with stochastic noise excitation of known statistical
properties,

ẋ = Ax+Bu+Ew (3.37)

y = Cx+Du+ v, (3.38)

where the noise signals w,v are in its basic formulation assumed to be uncorrelated zero-mean
Gaussian stochastic processes with constant power spectral density matrices W and V , respec-
tively. For compactness and for direct interpretation of the LQG design in terms of H2-optimal
design, only the strictly-proper case D = 0 is considered, however LQG control is also applicable
to bi-proper plants with D 6= 0.

LQG stands for (the derivation of) a control law that is optimal in the following sense:

Theorem 3.4.1: LQG control problem statement

Given the system in (3.37)–(3.38), find the optimal control u(t) which minimizes

J = E

{
lim
T→∞

1

T

∫ T

0

[
xT(t)Qx(t) + uT(t)Ru(t)

]
dt

}
, (3.39)

where E{·} is the expected value operator, Q and R are constant real matrices (design
parameters) where Q = QT ≥ 0 (Q symmetric and positive semi-definite) and R =
RT > 0 (R symmetric and positive definite) hold. The signals’ time dependency is
denoted explicitly here for a correct formulation, but dropped in the following in favor
of a clear exposition.

It turns out that the optimal solution decomposes into finding a constant state vector feed-
back gain Kc via the associated deterministic LQR problem and computing a dynamic Kalman
state estimator (observer) of plant order n, see Fig. 3.4 where Kest is the Kalman estimator. Its
state estimate x̂ is utilized in place of the real (non-measurable) state vector x. [143]

w v

u y

Kc Kest

G

Figure 3.4: LQG architecture
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LQR Problem and Solution

The LQR (Linear Quadratic Regulator) problem is to find the input signal u = u(t) to minimize
the following objective function in u and x = x(t):

JLQR =

∫ ∞

0

[
xT(t)Qx(t) + uT(t)Ru(t)

]
dt. (3.40)

The optimal solution for any initial state x(0) is

u(t) = −Kcx(t) (3.41)

Kc = R−1BTX, (3.42)

where X = XT ≥ 0 is the unique symmetric and positive semi-definite solution of the controller
algebraic Riccati equation (CARE)

ATX +XA−XBR−1BTX +Q = 0. (3.43)

Kalman Filter

The Kalman filter or estimator Kest, also called Kalman-Bucy filter, has the same structure as
an ordinary Luenberger observer (see Sec. B.1) with the dynamics

˙̂x = Ax̂+Bu+L (y −Cx̂) , (3.44)

where the optimal filter gain

L = Y CTV −1 (3.45)

minimizes the expected observation error covariance E
{
[x− x̂] T [x− x̂]

}
, see [45]. The matrix

Y = Y T ≥ 0 in (3.45) is the unique symmetric and positive semi-definite solution of the
associated filter algebraic Riccati equation (FARE):

Y AT +AY − Y CTV −1CY +EWET = 0. (3.46)

Existence and Computation

The solutions to the CARE (3.43) and FARE (3.46) and thus the LQG controller exist if the

state-space systems
(
A,B,Q

1
2

)
and

(
A,W

1
2 ,C

)
are stabilizable and detectable.

Note that in obtaining the LQR feedback gain Kc and the Kalman filter gain L the algorithm
is equivalent, and only the inserted quantities differ. The MATLABR© command1 care can be
utilized to design Kc and L in the following way:

[X, lambda, Kc] = care(A, B, Q, R)

[Y_t, lambda, L_t] = care(A’, C’, W’, V’)

L = L_t’

1Note that the MATLABR© command care abbreviates continuous-time algebraic Riccati equation versus the
command dare for the discrete-time case.
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Relation to H2-optimal control design

The LQG problem with a strictly proper system (3.37)–(3.38) withD = 0 and objective function
(3.39) is a special case of the H2-optimal control design problem. Consider for simplicity that
E = I holds. Then, the exogenous output signal

z =

[
Q

1
2 0

0 R
1
2

] [
x

u

]
(3.47)

is defined. An ((n + ny)× 1) exogenous input vector w̃ is considered, which is a unit intensity
white noise process (ny is the number of outputs). Then the LQG problem’s noise variables are:

[
w

v

]
=

[
W

1
2 0

0 V
1
2

]
w̃. (3.48)

With these transformations, the expected value of zTz is equal to the LQG cost function and at
the same time the squared H2-norm of the closed-loop system. Thus the (unique, optimal) LQG
controller is equal to the unique H2-optimal controller of the associated H2 design problem. For
the structure of the augmented plant in this case see [143].

3.4.2 Output-weighted LQG Control Design

The output-weighted LQG design variant minimizes an integral quadratic function of the output
and the control input variables (instead of states and control inputs) of the form

J = E

{
lim
T→∞

1

T

∫ T

0

[
yT(t)Q̃y(t) + uT(t)R̃u(t)

]
dt

}
, (3.49)

which again decomposes into the state-feedback and the Kalman state estimation problems.
While the Kalman estimator is unchanged because it only depends on the noise properties, the
LQR gain Kc has to minimize

JLQR,y =

∫ ∞

0

(
yT(t)Q̃y(t) + uT(t)R̃u(t)

)
dt. (3.50)

The solution can be found by eliminating y(t) in (3.50) with the deterministic output equa-
tion (3.38) (without noise). Then, the following relations,

Q = CTQ̃C, (3.51)

R = DTQ̃D + R̃, (3.52)

hold for the equivalent formulation of (3.40) and the standard LQR solution procedure can be
used.

3.4.3 LQI Tracking Control Design

The LQG control design can be extended by zero position error properties when using the
LQI architecture as shown in Fig. 3.5. The design plant is thereby augmented by states which
integrate the control error(s) r − y, where r is the reference signal that should be tracked:

x̃ =

[
x

xi

]
, (3.53)

with ẋi = r − y. This formulation yields asymptotic tracking of all outputs y. If only a subset
of the output signals should be tracked, the architecture has to be adapted accordingly.
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Figure 3.5: LQI architecture

3.5 µ-Synthesis: DK-Iteration and DGK-Iteration Design

As outlined in Sec. 3.1.1, the problem of µ synthesis is to design a feedback controller K that,
interconnected to an uncertain augmented plant P , attains a an minimal, or at least a small
value of a specified µ condition.

For general uncertainty structures, no computationally tractable direct method is known
to obtain a µ-optimal controller. However, often good results are obtained by splitting the
µ synthesis problems into µ analysis and controller synthesis subproblems which are solved
in an alternating, iterative fashion. For complex perturbations, the DK-iteration algorithm
[6] produces good results. Its extension, named DGK-iteration (also referred to as mixed-µ
synthesis) addresses problems with mixed (i.e., real and complex) structured perturbations.
The basic structure of these algorithms is outlined below and consists of alternate steps of µ
analysis, problem scaling, and H∞ (sub-)optimal controller design of the scaled problem.

3.5.1 Complex perturbations & DK-Iteration

For complex perturbations, an upper bound on µ is

µ(N (jω)) ≤ min
D(jω)∈D

σ
(
D(jω)N (jω)D−1(jω)

)
, (3.54)

where D = {D : D∆ = ∆D} is the set of all matrices that commute with the uncertainty block
∆.

This gives rise to the basic idea of DK-iteration, namely to find the controller K that
minimizes the peak of this upper bound over all frequencies by alternately optimizing over the
set of stabilizing H∞ sub-optimal controllers K(s) and over the set of (approximated dynamic)
scalings D(s), expressed as:

min
K

min
D(s)∈D(s)

∥∥DND−1
∥∥
∞. (3.55)

The algorithm iterates as follows:

1. Initialize D(s), typically with I (provided that the problem is reasonably scaled)

2. K-step: Design an internally stabilizing controller K(s) for the scaled plant by solving the
H∞ (sub-)optimal controller design problem minK ‖DN(K)D−1‖∞.
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3. D-step: Find D̂(jω) that minimizes σ
(
D̂(jω)N (jω)D̂

−1
(jω)

)
for each frequency in a

predefined frequency gridding, where N = Fl(P ,K) is kept fixed. If µ-based termination
criterion is fulfilled, stop.

4. Approximate the magnitude of each element in D̂(jω) by a stable and minimum-phase
transfer function to obtain the dynamic scaling transfer function D(s). Go to step 2.

While this algorithm has the potential to solve the important µ synthesis problem in practice
well enough, it exhibits some limitations and disadvantages that should be noted. One funda-
mental problem is that the combined optimization problem (K-step and D-step) is not convex
although the individual steps are. This results in two issues: Firstly, the combined problem does
not necessarily have a unique global optimum but may have several local optima. Secondly, con-
vergence is not guaranteed, so an actual increase in the µ value from one iteration to the next
can occur. Another issue is the (high) dynamic order of the resulting controller. Because the
H∞ controller is designed upon the dynamically scaled plant, its order is nK = nP +2nD where
nP is the order of the augmented plant (that is, the order of the plant and the order of all
dynamic weightings in the augmented plant interconnection) and nD is the total dynamic order
of the scaling transfer function D(s). Thus, the controller order can quickly inflate to the order
of hundreds which poses problems both numerically in the design as well as in controller imple-
mentation. Wise, low-order modeling of the relevant plant characteristics is therefore necessary
to obtain a well-posed design problem and to obtain a reasonably-sized controller. Usually,
controller order reduction methods are applied a posteriori to vastly reduce its complexity, see
Chap. 7.

Despite these drawbacks, DK-iteration is usually a well-performing algorithm if the problem
is carefully formulated and well-scaled.

3.5.2 Real and complex perturbations & DGK-Iteration

The DGK-iteration aims to solve the µ synthesis problem in presence of mixed real and complex
perturbations. It utilizes a generalized upper bound [143, 172] for mixed µ, formulated as
follows: Let M and D be the complex transfer matrices of M(s) and D(s) at frequency s = jω,
respectively. If there exist a real scalar β > 0 and complex D and real G matrices of specific
block-diagonal structure (see below), so that

σ

((
I+G2

)− 1
4

(
1

β
DMD−1 − jG

)(
I+G2

)− 1
4

)
≤ 1 (3.56)

is fulfilled, then

µ(M ) ≤ β (3.57)

holds. Thereby, D are scalings exploiting the complex uncertainty structure (as with the DK-
iteration), and G are real-valued diagonal scaling matrices which exploit real perturbations with
real nonzero entries at the locations of the real parameters in the uncertain block ∆.

The DGK-iteration algorithm (presented in [172]) contains the same basic steps as the DK-
iteration, albeit extended by evaluating the mixed µ bound above and approximating additional
dynamic scalings G(s) in the scaling step. The algorithm is by now available as part of the
MATLABR© Robust Control Toolbox and can in cases with significant real structure in the
uncertainties obtain superior results. However, note that the increased number of degrees of
freedom in scaling further inflates the controller size which aggravates numeric issues.
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3.6 Convex Controller Synthesis

This section introduces the concept of convex controller synthesis for feedback and feed-forward
control configurations. The feedback case is addressed by the Youla parametrization which
represents the closed loop affine in the designed Youla parameter, while the feed-forward case
is directly affine in the controller transfer. The affine representation enables the formulation
and efficient solution of convex optimization problems to directly optimize and constrain the
controlled system’s time- and frequency-domain responses.

After an overview, motivation and critical discussion of the onset, a detailed account on the
literature and state of the art in convex control design methods is given. This is organized in the
common sequence of design tasks in the feedback and, subsequently, the feed-forward control
design cases:

• First, strategies and relevant considerations in the design on initially stabilizing controllers
are discussed.

• Second, the Youla parametrization of the closed loop is explained.

• Next, the formulation of the most commonly used H∞, H2, and time-domain objectives
and constraints is shown, leading to a convex optimization problem.

• Finally, some remarks on available numeric solvers, on the choice of basis functions, and
on extensions to robust control design are given.

3.6.1 Motivation & Overview

The central challenge for a control engineer is to translate the given specifications efficiently
into design parameters for the utilized synthesis methods (usually from the optimal or robust
control domains). Typically, these constraints are either stated as weighting functions in the
frequency domain (H∞ / H2 control, DK-iterations) or as objective function weightings (as in
LQ control). It turns out that many important time- and frequency-domain requirements can
be formulated as (quasi-)convex constraints or objectives of an optimization problem [11].

The term Convex Synthesis spans techniques to synthesize control laws (feed-forward and / or
feedback) in which the problem is cast into and solved as convex optimization problem over a
finite set of design parameters. This typically leads to a computationally tractable design algo-
rithm, and many such design problems yield linear program, linear programming (LP), quadratic
program, quadratic programming (QP), or LMI problems which can be solved efficiently with
available tools.

Convex design for the control of conventional flexible aircraft has been studied, among others,
in the PhD thesis [18] as well as in [118] (with subsequent controller order reduction) and in
[151] (a self-scheduling approach). The authors of ref. [32] consider robust convex feed-forward
design when an analytic uncertainty description is available.

To efficiently solve control design problems it is often of great help if these can be formulated
as convex optimization problems. Firstly, this ensures the existence of one global optimum, and
secondly, highly efficient algorithms are often available to solve even large problems quickly.
As stated in Sec. 2.4.2, a convex optimization problem is comprised of convex objective and
constraint functions as well as a convex admissible set. One class of convex functions are affine
functions2. These often arise in the modeling of control design problems: Consider, for example,
a feed-forward control design problem where the controller is generated as the weighted sum of
dynamic basis functions. These weights constitute the decision variables of the design problem.

2Affine functions are of the form f(x) = a+ bx. In contrast, linear functions in optimization literature do not
contain the affine term a: f(x) = bx.
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The controlled system transfer function, its step responses, and even some system norms are
affine functions of these weights. A versatile multi-model approach to feed-forward control design
is presented in Sec. 5.4.

For feedback control design, such direct parametrization of the controller unfortunately does
not yield affine closed-loop expressions. Many results in control theory address this central
difficulty brought about by the closure of the feedback loop: the H∞ suboptimal design in
Sec. 3.2, for example, utilizes a different representation (the parametrization of all internally
stabilizing controllers) which allows to express the suboptimal H∞ design problem as convex
problem. Here, the closely-related so-called Youla parametrization is utilized to obtain an affine,
convex representation of the closed-loop transfer paths, see Sec. 3.6.3.

In robust control applications, robust stability of the closed-loop, which means internal sta-
bility in the presence of the modeled, bounded uncertainties, is usually the most fundamental
requirement. However, one additional, important requirement for reliable control is the stability
of the controller itself (referred to as strong stabilization, see for example [69] and [154]), which
is not guaranteed by standard optimal and robust design methods. This is however imperative
in the case of potential actuator or sensor faults and in cases when the actuators saturate. Some
solutions to strong stabilization control design are available in the literature, but to the author’s
knowledge no approach exists that preserves affinity of the closed loop in the problem represen-
tation. This, however, is necessary to incorporate time- and frequency-domain constraints and
thus highly beneficial for the control design task. A non-convex strong stabilization constraint
is presented in Sec. 5.2, along with a convex embedding approximation method. Numeric results
are given and discussed.

Comparison to standard H∞ suboptimal control design

When comparing convex control design to the H∞ suboptimal control design approach, some
notable differences arise. In the following, a listing of main advantages and disadvantages of
convex synthesis methods over standard H∞ methods, as listed in [20], is given from the control
engineer’s perspective. The advantages are:

• The optimization problem is convex and can thus be solved efficiently also for large prob-
lems (however the robust feedback control law synthesis is non-convex, just as DK-iteration
is not). The number of free variables of the optimization problem is typically not depen-
dent on the order of the plant, but on the chosen number of free parameters or basis
functions of the designed controller.

• Frequency- and time-domain specifications can directly be incorporated into the design.
However, this strongly impacts the number of optimization problem constraints, see below.

• These specifications can be given in terms of non-parametric time-domain or frequency-
domain templates (no weighting functions need to be found, and thus no dynamic per-
formance weightings need to be included in the augmented plant). Consequently, the
controller order is independent of the type and shape of the defined constraints and ob-
jectives.

• The objectives and constraints can be defined individually per I/O-channel, whereas for
H∞ design only the entire (weighted) closed-loop transfer norm from exogenous inputs to
exogenous outputs can be bounded. This eliminates one source of conservativeness.

• If a solution is found, it is a global optimizer in the utilized search space (i.e. over the
span of the chosen filter basis).

However, disadvantages and caveats of the convex synthesis methods also arise:
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• The presented approach evaluates time- and frequency-domain objectives and constraints
on a (finite) frequency gridding. Each instance of each constraint or objective at a consid-
ered gridpoint yields a constraint in the optimization problem which produces a conflict
between optimization problem constraint count and time-/frequency resolution of the ac-
tual constraints and objectives. An efficient solution followed here, starting at a relaxed
formulation with few defined optimization problem constraints, is to adaptively add nec-
essary constraints and re-solve the problem until the solution fulfills all constraints and
objectives sufficiently well on fine validation grids. This is realized as a core feature of the
convex optimization framework developed in Sec. 5.1.

• When utilizing a large set of basis functions, the resulting controller order can be very
large. It is, however, fixed and known a priori, in contrast to controllers obtained by
DK-iteration with dynamic scalings.

• The achievable performance depends strongly on the choice of the Youla parameter filter
basis. The finite-dimensional subset of proper stable transfer functions, parametrized by
the design parameters, is an inherent limitation or constraint to the algorithm. Methods
to choose suitable basis functions are discussed in Sec. 3.6.5.

3.6.2 Initial controller design

Before convex control design can be applied, the plant must be stabilized and, in many cases,
its dynamics must be pre-shaped by a suitable initial controller because of two reasons: First,
the the poles of the initial closed loop (that is, the plant interconnected with an initial feedback
controller) cannot be shifted by the convex control design any more. This necessitates initial
internal stabilization. Second, correct pole placement by the initial controller is efficient and
thus important. Convex control design cannot shift the poles, resulting in a large effort in terms
of controller complexity and authority to obtain similar effects in the closed-loop response by
convex design alone.

Suitable initial controllers can be designed by any method, such as pole placement respec-
tively eigenstructure assignment or other types of feedback designs (LQ-based, H∞-or H2-
designs, for example). Two general concepts of designing an initial controller are of particular
interest with respect to convex control design:

1. One can design a low-order controller which robustly shapes the relevant dynamics and
absorb it into the plant. Then, this pre-shaped plant is considered as open-loop stable
system and the Youla parametrization can directly be constructed. This approach is
possible for all internally stabilizing controllers, but the controller resulting of the convex
control design may be of high order.

2. If, in turn, a high-order initial controller (of full or augmented order, that is, of at least the
order of the design plant) can be obtained and transformed to an observer-based realization
(see Sec. B.3), an efficient Youla parametrization can be built.

Remark: Convex control design has its clear advantages in the incorporation of time-domain
constraints and can be utilized to improve or extend a given control law. In a robust design,
however, convex control design can also address robust stability because only the nominal plant
poles are immobile; this is not true for perturbed plants. One such methodology, realizing a µ
synthesis approach in the convex control design approach is the Q−µ−synthesis, see Sec. 3.6.6.
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Robust Partial Eigenstructure Assignment

One particularly suitable way of designing a robust low-order initial controller for robust control
design is by performing robust partial eigenstructure assignment. Static and low-order dynamic
output feedback laws can be designed by using the techniques and tools given in [93]. This
type of control design shows the following advantages with respect to subsequent convex control
design:

• The complementary task to convex control design, namely eigenstructure (pole and eigen-
vector) assignment, is directly addressed.

• The resulting control laws are typically of low dynamic order (if only few poles need to be
shifted) and have a well-defined structure (typically consisting of a static feedback gain,
elementary/modal observers, and low-order I/O-filters).

• The design produces robustified (more exact: insensitive) eigenstructure assignment with
good results in many applications, see [93].

However, note also the following points of caution:

• Internal stability or robust stability is not guaranteed by the design. This requires repeti-
tive design and validation cycles, some tuning, as well as some amount of trial-and-error.

• Observer design and optimization as carried out in the toolbox is randomized. This can
yield unreliable or non-reproducible design results for sensitive plants (which has been
observed in the works of [157]).

The basic eigenstructure assignment approach works as follows, refer to [93] for details and
various extensions: Consider a state-space system P of order n with ny outputs in state space
representation,

ẋ = Ax+Bu (3.58)

y = Cx+Du.

The goal is to assign q triplets (λi,vi,wi) (eigenvalue, input-, and output direction, respectively)
in closed loop, where q ≤ ny. Denote V = [v1, . . . ,vq], W = [w1, . . . ,wq] and X = CV +DW .

Then, the partial eigenstructure assignment is performed by the static output feedback law

u = Ky (3.59)

with

K = WX† (3.60)

where X† denotes the Moore-Penrose matrix pseudo-inverse (X† =
(
XTX

)−1
XT) which is

equivalent to the matrix inverse for the case q = ny. The choice of the Moore-Penrose matrix
pseudo-inverse is taken to obtain the minimum-norm gain K, but other choices are possible,
see [93].

3.6.3 Youla parametrization

Consider a plant P and a stabilizing controller K in standard form as in Fig. 2.1, such that

T = Fl (P ,K) = P 11 + P 12K (I− P 22K)−1 P 21 (3.61)
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Figure 3.6: Standard feedback interconnection (left), Youla parametrization (right) for a stable
plant P and, formally, a zero feedback K0 = 0

with all terms P 11, P 12, K, P 21, and (I− P 22K)−1 stable.
The Youla parametrization adds auxiliary controller inputs v and outputs e (yielding an

augmented controller Kaug), such that the closed-loop transfer T ev is zero. Connecting an arbi-
trary stable and compatible transfer function Q(s) (Youla parameter) with free order between
e and v parameterizes all internally stabilizing controllers K affinely in Q(s). In the case of
an initially stable plant (or a stabilized plant with an absorbed initial controller), one possible
extension with these properties is depicted in Fig. 3.6 (right), see [11]. Equation (3.61) becomes:

T = T 1 + T 2QT 3, (3.62)

T 1 = P 11, T 2 = P 12, T 3 = P 21, (3.63)

Q = K(I − P 22K)−1, (3.64)

K = (I+QP 22)
−1Q. (3.65)

In implementations Q(s) has to be restricted to a finite, weighted sum of n basis functions.
A parameter-affine state-space realization

Q =

nQ∑

i=1

Qi(s)θi Qi =

[
AQi BQi

CQi DQi

]
θ = [θ1, . . . , θnQ

]T (3.66)

can be formed with input- or output-parametrization:

Qi(s)θi =

[
AQi BQiθi
CQi DQiθi

]
or

[
AQi BQi

θiCQi θiDQi

]
. (3.67)

With P 22 (strictly proper, which ensures the existence of a proper controller K) and Q

(both stable) in state space representation,

P 22 =

[
AP BP

CP 0

]
, Q =

[
AQ BQ

CQ DQ

]
, (3.68)
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the state space representation of K is:

xK =

[
xP

xQ

]

ẋK =

[
AP −BPDQCP BPCQ

−BQCP AQ

]

︸ ︷︷ ︸
AK

xK +

[
BPDQ

BQ

]
y

u =
[
−DQCP CQ

]
xK +DQy. (3.69)

Remarks:

• The same convex optimization (reported in the following) can directly be employed for a
feed-forward design which is already affine in the parameters.

• Various choices of basis functions Qi(s) in (3.66) have been reviewed in [18]. Essentially,
large bases are beneficial for determining feasibility of given specifications, while a low-
dimensional basis of low dynamic order is advantageous for controller implementation.

Closed Loop with Observer-based Realization of the Compensator

If a stabilizing initial controller can be transformed into a state observer – feedback gain form
(observer-based representation (OBR), see Chap.B), the closed-loop transfer can be efficiently
represented in a Youla-parametrized form. Note the following theorem which is based on [174,
Theorem 12.16 on p. 323]:

Theorem 3.6.2: Closed-Loop Transfer Matrix with OBR Compensator

Consider the OBR of a compensator K with state feedback gain Kc, observer gain K f ,
the partitioned plant model

P =

[
P 11 P 12

P 21 P 22

]
=




A
[
B1 B2

]
[
C1

C2

] [
D11 D12

D21 D22

]

 (3.70)

as in Sec. 2.3.1 and the stable Youla parameter Q0 such that I+D22Q0(∞) is invertible
and A+B2Kc and A+K fC2 are stable.
Then the set of all closed-loop transfer matrices from w to z achievable by an internally
stabilizing proper controller is equal to

Fl(T ,Q) = {T 11 + T 12QT 21 : Q ∈ RH∞, I+D22Q(∞) invertible} (3.71)

where Q is of free order and T is given by

T =

[
T 11 T 12

T 21 T 22

]
=




A+B2Kc −B2Kc B1 B2

0 A+KfC2 B1 +K fD21 0

C1 +D12Kc −D12Kc D11 D12

0 C2 D21 0


 . (3.72)

Particularly, the closed-loop with the original K is obtained by setting Q = Q0.
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3.6.4 Convex formulation of control design constraints and objectives

With a plant parametrized in an affine form as in (3.62), important time- and frequency-domain
requirements can be stated as LP, QP, or LMI constraints (convex in the parameters θ), see
[18]. Similarly, by bounding a constraint by an additional free variable instead of a constant,
any such constraint can be turned into an objective.

For the following formulations, let nQ be the number of basis functions Qi (or, the number
of parameters θi). The constraints are formulated as non-strict inequalities for practical reasons
because then the admissible set of the optimization problem is closed. If strict inequalities are
required, it will be explicitly noted in the text.

Time-domain l∞ bounds

A central benefit of convex synthesis methods is the direct incorporation of time-domain con-
straints and objectives, which enables template-based step-response shaping. Closed-loop time-
domain responses are affine in θ. This can be seen by linearity of the Laplace transform L{·}.
Let w(t) and W (s) = L{w(t)} be a known, fixed exogenous input signal in time- and frequency-
domain, respectively. Then, the closed-loop response z(t) = L−1{Z(s)} is obtained as

Z(s) = T (s)W (s) = T 1(s)W (s) + T 2(s)

( nQ∑

i=1

Qi(s)θi

)
T 3(s)W (s) (3.73)

z(t) = L−1{T 1(s)W (s)}︸ ︷︷ ︸
z0(t)

+

nQ∑

i=1

L−1{T 2(s)Qi(s)T 3(s)W (s)}︸ ︷︷ ︸
zi(t)

θi. (3.74)

This relationship is valid both for SISO and MIMO cases, however the exposition is continued
in the SISO case because these occur frequently in practice. To constrain a SISO response

z(t) = z0(t) +

nQ∑

i=1

zi(t)θi (3.75)

by lower and upper bounds (templates) defined on a finite time grid,

zL(tk) ≤ z(tk) ≤ zU (tk), tk ∈ {t1, . . . , tnt}, (3.76)

these inequalities are expanded by (3.75), yielding two LP-type constraints for each time instant
tk:

[
−z1(tk) . . . −znQ

(tk)
]
θ ≤ z0(tk)− zL(tk), (3.77)

[
z1(tk) . . . znQ

(tk)
]
θ ≤ zU (tk)− z0(tk). (3.78)

Note that (3.77)–(3.78) also represent two (scalar) LMI constraints and can directly be plugged
into an LMI problem.

Frequency-domain: MIMO H∞ bound

The constraint ‖G‖∞ ≤ γ can be discretized for a stable G(jω) at a frequency grid ωk ∈
{ω1, . . . , ωnω} via nω constraints σ(G(jωk)) ≤ γ. These can be translated into (real-valued)
LMI constraints:




γI ℜ(G) 0 ℑ(G)
γI ℑ(GH) 0

γI ℜ(G)
⋆ γI




∣∣∣∣∣∣∣∣
jωk

� 0, (3.79)
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where ⋆ denotes the terms induced by symmetry, ℜ(·), ℑ(·), and (·)H indicate the real part,
imaginary part, and the Hermitian (complex-conjugate) transpose, respectively. This LMI is
affine in the parameters (the expansion is omitted here for brevity, see [18]). Note that γ = γ(ωk)
can be utilized to realize a point-wise template for the maximum singular value over the frequency
gridding. No parametric representation (in form of a transfer function γ(s)) is necessary, as it
is in the case of weighting functions in H∞ design.

Frequency-domain: MIMO H2 bound

As given in Def. A.4.7, the H2 norm of a stable, strictly proper linear dynamic system G(jω) is

‖G‖2 = h =

√
1

2π

∫ ∞

−∞
trace[(G(jω))H (G(jω))]dω. (3.80)

For a sufficiently fine and broad finite frequency gridding {ω1, . . . , ωk, . . . , ωnω+1}, (3.80) can be
approximated by the Riemann sum

h ∼= h̃ =

√√√√√
1

π

nω∑

k=1

trace[(G(jωk))H (G(jωk))] (ωk+1 − ωk)︸ ︷︷ ︸
∆ωk

. (3.81)

This H2 norm approximation can be expanded to a (convex) quadratic form for G affine in θ

with coefficients β, γ, and Γ (real scalar β ∈ R, real vector γ = [γ1, . . . , γnQ
]T ∈ RnQ , and real

matrix Γ = [Γij ] ∈ RnQ×nQ):

G(jωk) =: kG = kG0 +

nQ∑

i=1

(kGi) θi, (3.82)

h̃2 =
1

π

(
β + γTθ + θTΓθ

)
, (3.83)

β =

nω∑

k=1

trace
[
(kG0)

H(kG0)
]
∆ωk, γi =

nω∑

k=1

2 trace
[
(kG0)

H(kGi)
]
∆ωk,

Γij =

nω∑

k=1

trace
[
(kGi)

H(kGj)
]
∆ωk.

Note that only real terms remain due to the properties of the trace and the Hermitian transpose.
If the matrix Γ is strictly positive definite, making the function h̃2(θ) strictly convex, it can be
decomposed into its Cholesky factors Γ = LTL.

Then the approximated H2 constraint

‖G‖22 ∼= h̃2 ≤ δ2 (3.84)

with δ2 ∈ R+ is equivalent to the LMI constraint

[
InQ

Lθ

θTLT δ2 − β − γTθ

]
� 0. (3.85)

This LMI form is obtained from (3.83) and (3.84) using the Schur complement [143, pp. 481–482],
see also [142].

Remarks:
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• If Γ is only positive semi-definite, some parameters θi typically do not affect the considered
H2 norm. Then the Cholesky factorization cannot be computed. However, it can be
approximated by considering a perturbed Γ + εI (ε ≪ ‖Γ ‖). Another onset is to reduce
the set of considered parameters θi in the formulation of the constraint to those which do
have relevant impact on the closed-loop H2 norm.

• Note that this constraint is of size ((nQ + 1) × (nQ + 1)), so it is not affected by the
frequency grid size nω which allows to use high approximation precision by a fine grid in
the precalculation of β, γ, and Γ without enlarging the optimization problem size.

3.6.5 Selection of the filter basis

The selection of basis functions Qi(s) in (3.66) is no trivial problem and various types of bases
and their characteristics have been reviewed in [18]. It is usually of benefit to introduce ex-
pert knowledge (known or expected system dynamics, pole locations) into the design of basis
functions. The intended use and context further determine which properties are important:

• For feedback and feed-forward control design it is relevant to keep the dynamic order of
the individual basis functions Qi low to limit the resulting controller order. To design
MIMO Youla parameters, a first design could be carried out with static gains Qi only.
Also, ad-hoc bases of first- and second-order dynamics within the bandwidth of the closed
loop often yield good performance at limited controller order.

• To test the feasibility of defined design constraints, a maximally spanning basis is impor-
tant. Contrary to the design case, the dynamic order of Qi does not matter. In turn, it
may be beneficial to utilize orthonormal bases. These can improve numeric conditioning of
the problem and help convergence which helps in problems with many parameters. Various
types of orthonormal bases have been proposed:

– The Laguerre basis is defined and constructed with respect to one real and dominant
pole.

– The Kautz basis is defined and constructed with respect to one complex-conjugate
dominant pole pair.

– Ninness & Gustafsson [105] proposed an orthonormal basis construction which con-
siders an arbitrary number of real and complex poles. The Laguerre and Kautz bases
are special cases of this construction.

Considering the discrete-time case, orthonormality of two basis functions Bn(z), Bm(z) is
thereby understood with respect to the standard inner product on H2(C) (see [105]), where C
is the unit circle (C = {z : |z| = 1}):

〈Bn(z),Bm(z)〉 = 1

2π

∫
π

−π

Bn
(
ejω
)
Bm (ejω)dω. (3.86)

3.6.6 Q− µ−Synthesis for Robust Control Design

An extension to address the µ synthesis task with the convex control design approach is developed
in the PhD thesis [18] and is called Q − µ−synthesis. Similar to the DK- or DGK-iteration,
the Q− µ−synthesis consists of an alternating sequence of controller synthesis and µ analysis.
The D- and G-scalings of the mixed µ analysis step are utilized to directly formulate a singular
value objective for subsequent control design iterations.
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Following the exposition in [18], the algorithm carries out the following steps. Consider the
P −K −∆− form as in Sec. 2.3.1 where

M = M(s,θ) = T 1(s) +

nQ∑

i=1

T 2(s)Qi(s)T 3(s)θi. (3.87)

1. First, a nominal control design is carried out and an optimal controller is obtained for the
nominal plant. It is assumed that nominal performance is attained. The resulting optimal
parameters θ∗ are fixed.

2. For each frequency ωk in a given frequency grid, the mixed-µ upper bound analysis is
carried out for M = M(jωk,θ

∗) and the scalings D = D(jωk) and G = G(jωk) are
obtained, see Sec. 2.3.1 and Sec. 3.5.2. If the condition

σ
((

I+G2
)− 1

4
(
DMD−1 − jG

) (
I+G2

)− 1
4

)
< 1 (3.88)

is fulfilled for all ωk,

µ(M ) < 1 (3.89)

holds, robust performance is obtained, and the Q−µ−synthesis stops. From the obtained
final parameter vector θ∗ the Youla parameter Q∗ = Q(θ∗) and, consequently, the final
controller K∗ = K(P 22,Q

∗) is computed.

3. If (3.89) is not fulfilled, the optimal scalings G(jωk), D(jωk) are fixed (denoted Ĝ(jωk),
D̂(jωk), respectively). Then, a new convex control design problem in θ is solved with the
objective to minimize γ under the constraints

σ

((
I+ Ĝ

2

k

)− 1
4
(
D̂kM(jωk,θ)D̂

−1

k − jĜk

)(
I+ Ĝ

2

k

)− 1
4

)
≤ γ (3.90)

at each ωk with Ĝk = Ĝ(jωk), D̂k = D̂(jωk). If an optimal value γ < 1 is obtained, robust
performance is obtained and the algorithm stops. If not, the optimal parameters θ∗ are
fixed and the algorithm goes to step 2.



Chapter 4

Flexible Aircraft Models

To demonstrate the tools and methodologies developed in the next part, several aspects in flight
control design for large flexible aircraft will be considered. A large flexible BWB aircraft model
as well as a large flexible conventional aircraft model will be utilized in these case studies. After
a short introduction to some fundamental considerations and challenges in flight control design,
these aircraft models are introduced in Sec. 4.2 and Sec. 4.3.

4.1 Introduction: Flight Dynamics and Control Design

The control of flexible aircraft has become a research topic of high interest over the last decade
[53], [70], [78], [162], [164] due to the potential reduction in structural weight. Large lightweight
aircraft structures and novel concepts, such as BWB aircraft configurations, can lead to higher
fuel efficiency and reduced emissions [96]. These large, light-weight flexible structures exhibit
low-frequency elastic vibration modes, and coupling of those with the flight mechanic modes
may occur. Moreover, the aircraft dynamics is significantly dependent on the flight parameters.
Hence the task of developing robust and well-performing flight control laws faces significant
challenges.

Traditional methods for flight control design typically use nested SISO control loops and
strongly structured control architectures [145]. These methods are based on detailed aircraft
system analysis and exploit paths with weak coupling to obtain good results for conventional
flight control design. However, multivariate methods, such as optimal control and particularly
robust control design methods are state of the art for more complex flight control tasks under
coupled and/or uncertain system dynamics. The two large groups of control design method-
ologies, optimal as well as robust control designs (see Chap. 3 and [7] for an aerospace-specific
overview) are widely applied in the aerospace domain. For conventional aircraft, LQ-based con-
trol designs have been employed for longitudinal flight control design [79], [80], as well as for
lateral flight control design [141], [23], often combined with partial eigenstructure assignment
and optimization techniques.

Two models of flexible aircraft are introduced here which are utilized in specific control
design examples in the following chapters. These models are:

• an integrated lateral dynamic model of a large, flexible BWB transport aircraft in the
predesign stage (see Sec. 4.2), and

• an integrated longitudinal dynamic model of a large, flexible conventional transport aircraft
(see Sec. 4.3).

In both aircraft models, flight mechanics coupled with aeroservoelastic effects for varying flight
conditions and a grid of fuel mass and payload cases are considered. The BWB aircraft model
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represents one of the considered aircraft configurations in the ACFA 2020 EU FP7 project [1]
(and were partially also based on earlier research projects).

4.2 Lateral Blended Wing Body (BWB) Aircraft Model

Longitudinal and lateral flight mechanics and aeroelastic effects of a large BWB aircraft pre-
design and their coupling were modeled in an integrated fashion by the authors’ project partners
[147], [148]. These models have been utilized in the related publications [135], [138], and [137].

In this work, the lateral dynamics as well as the flexible structure modes and aerodynamic lag
states are considered to design and validate lateral control laws. A set of k = 18 linearized state
space systems for various parameter values of fuel and payload mass (at fixed cruise altitude
and airspeed) is available (i = 1, . . . , k):

ẋ = Aix+Biu (4.1)

y = Cix+Diu, (4.2)

where the state vector x is composed of 4 flight-mechanic states (side slip angle β, roll rate p,
yaw rate r, roll angle φ), 24 elastic states (12 structural modes), as well as 10 aerodynamic lag
states. The integrator states ψ (yaw angle) and y (horizontal displacement) are neglected in
this work. This system is augmented as shown in Fig. 4.1 by actuator and sensor dynamics.

Gact Gsens

P

P̃

w

u y

z

Figure 4.1: Aircraft system model with actuator and sensor dynamics

Utilized inputs u for control design are:

• Symmetric rudder deflection and rate uRU, u̇RU

• One collected antisymmetric aileron deflection and rate: outer, middle, and inner ailerons
are deflected equally and antisymmetrically (uAIL, u̇AIL), see also Fig. 4.2.

The actuator dynamics Gact are modeled via second-order low-pass filters.
Measured outputs y available for control design are:

1. Roll angle φ

2. Side-slip angle β (near the CG position)

3. Roll rate p

4. Yaw rate r

5. (optional) Lateral acceleration NyCG (near the CG position)

6. (optional) Antisymmetric wing bending modal sensor Nzlat.law
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where signals 1–5 are subject to a time delay of 160ms (to model signal processing latency, mod-
eled via a second-order Padé approximations) and additionally low-pass filtered via Butterworth
filters of second order. Signal 6 is delayed by 60ms (without Butterworth-filter). The sensor
filters are collected in Gsens in Fig. 4.1. The augmented system P̃ with only outputs 1–4 (and
thus only their sensor dynamics) is of order 58.

Additional exogenous input and output signals for validation are considered — a wind gust
disturbance input (lateral wind speed w = vlat) as well as two structure loads outputs Mxwing

and Mxfin (inner moments about the x-axis at the wing root and at the fin root) and the lateral
acceleration NyCG (near the CG position).

AIL

AIL
RU

NyCG

βx
y

z

Figure 4.2: BWB aircraft schematics (RU: Rudder, AIL: Ailerons)

4.2.1 Open-Loop Analysis

The lateral aircraft dynamics is open-loop stable for all considered mass cases at cruise condition.
The Bode magnitude plot of the rudder – yaw rate transfer in Fig. 4.3 shows a prominent, low-
damped Dutch Roll mode (DR mode) between 0.5 and 0.75 rad/s with a damping between 0.1 and
0.25. Step responses for rudder – yaw rate and vertical gust – roll rate are given in Fig. 4.4 and
Fig. 4.5. At higher frequencies, the structural modes are visible. For this study, they are only
of interest for validation as they are sufficiently well separated from the lateral flight mechanic
modes.

Inspection of those SISO transfer functions commonly used for lateral control design shows a
fundamental limitation for SISO control schemes here — a very slow right half plane (RHP) zero
is present in the transfer functions rudder→ yaw rate, rudder→NyCG, and rudder→ β (smallest
RHP zero around +10−3 rad/s). This poses fundamental limitations conflicting with the control
goals defined in Sec. 4.2.2. However, the respective transfer functions from the aileron input to
these outputs show much faster RHP zeros, also all MIMO RHP zeros are faster (around 1 rad/s
or above). This indicates that a SISO approach will encounter significant limitations, whereas
a MIMO approach will not.

Moreover, as shown in Fig. 4.6, a number of low-damped poles affect the disturbance (lateral
wind) – lateral acceleration path strongly, which is relevant for passenger comfort and possibly
fatigue. The damping of the most critical mode around 20 rad/s should thus be increased robustly.
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Figure 4.3: Open-loop Bode magnitude: Rudder → yaw rate transfer
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Figure 4.4: Open-loop: yaw rate response to a rudder step
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Figure 4.5: Open-loop: roll rate response to a wind disturbance step
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Figure 4.6: Bode magnitude plot of lateral wind vlat – lateral acceleration NyCG for all mass
cases
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4.2.2 Control Goals

The major control goals addressed in the related case studies in this work are to robustly
shape the lateral reference and disturbance responses, with special emphasis on maneuver loads
alleviation and disturbance rejection. Tab. 4.1 shows the set of relevant control specifications
and whether they are exclusively related to feedback (FB) or feed-forward (FF) control design,
or considered in both design cases.

Table 4.1: Lateral control goals for large flexible BWB aircraft

Specification Design
FB FF

General and tracking specifications
DR mode ζDR ≥ 0.7, ωDR unchanged •
Decoupling Generate inputs with high coupling to roll and side slip

angles and low cross-coupling
• •

Roll φ static gain (DC gain) similar for all mass cases, rise time
to 90% in trise ≤ 7 s, max. 5% overshoot

• •

Side slip β DC gain similar for all mass cases, trise ≤ 5 s • •
Robustness Stable controller, Robust Performance for all mass cases • •

Disturbance rejection specifications
Minimize the influence of lateral gust on roll, side slip, and lat-
eral acceleration, while obeying the tracking specifications above.
Moreover, the loads must not be increased.

•

Maneuver loads alleviation specifications
Robustly minimize Mxwing and Mxfin loads induced by roll- and
side-slip step responses

•

4.3 Longitudinal Flexible Conventional Aircraft Model

The longitudinal motion of a large, flexible conventional airliner has been modeled and utilized
for control design and validation, see [162] and [165]. The aircraft models (taken from these
sources) are linearized state-space models and include the flight mechanic and aeroelastic aircraft
behavior at several mass cases. For this study one design mass case (low fuel) and four validation
mass cases (low to full fuel with two different center of gravity (CG) positions: A2, B1, C2, D1)
are used. The state-space models include 42 states, 1 wind input, 5 control surface inputs and
numerous sensor outputs (vertical accelerations, angles and angular rates at various positions
in the aircraft). The models are augmented by second-order low-pass actuator dynamics for
the used control surfaces and time-delays in sensor measurement channels to account for signal
processing delays. Corresponding to the formal definition in Sec. 2.3.3, the problem is given with
a discrete set of 4 validation plants.

4.3.1 Definition of Control Goals and Architecture

As detailed in [162] and [165], the control goals and constraints are simultaneously to:

• ensure robust stability (robustness with respect to the 4 validation plants),

• shape the flight dynamic modes such that time-domain specifications (overshoot, rise time)
in the pilot command – pitch rate response are robustly fulfilled,
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• robustly attenuate structural vibrations in the first wing bending and first hull bending
modes, and

• fulfill other constraints (robustly attenuate other modes and performance position signal
RMS values), see the denoted references.

In [162] a two-degree-of-freedom feedback and pilot command shaping control architecture
has been developed. This work used the design parameter optimization framework developed in
Chap. 6 already.

The controller inputs are reference and measurement signals of the vertical acceleration NzCG

and pitch rate qCG and a modal vertical acceleration sensor signal Nzlaw capturing the first wing
bending mode. Its outputs are the control surface commands for elevator, inner aileron and 3
direct-lift-control flaps: 



δEL
δIA
δDLC1

δDLC2

δDLC3



= K




NzCG,ref

qCG,ref

NzCG,meas

qCG,meas

Nzlaw




(4.3)

The following results highlight two important aspects of the methodology: system scaling
and design parameter optimization of the referenced 2-degree-of-freedom design.

4.3.2 Scaling and Balanced Reduction

Figure 4.7 shows the importance of appropriate scaling before performing a balanced system
reduction. The aircraft inputs and outputs can be grouped into the wind input and the control
surface inputs as well as the angular rate outputs (e.g. pitch rate), vertical acceleration outputs,
and load outputs (e.g. wing root bending moments). Here, the load output paths have about
100 dB higher magnitude than the other outputs. When reducing the full-order system from
order 56 to order 12 without scaling, the high-gain paths are well-preserved over the reduction
while the other paths’ relevant states are eliminated, leading to unacceptable relative errors
there. Performing the reduction after applying appropriate I/O-scaling to shift all relevant
transfer paths to similar magnitudes yields an equally good system description in all transfer
paths.
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Figure 4.7: Benefit of system scaling for balanced system reduction (top: large magnitude load
output path; bottom: small magnitude pitch rate output path)
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Chapter 5

Extensions to the Convex Control
Design Methodology

This chapter presents novel contributions made for the convex control design onset introduced
in Sec. 3.6. To efficiently formulate, solve, and validate convex control design problems, suitable
supporting tools have to be developed. In Sec. 5.1, such tool in form of a novel, efficient, and
powerful framework methodology to formulate and solve highly complex and high-dimensional
convex control design problems is developed and presented. A general optimization framework
is established, and effective heuristic methods to adaptively refine problem objectives and con-
straints are presented. The framework’s performance is demonstrated at several large-scale
examples later in this chapter. Sec. 5.2 discusses methods and presents novel formulations to
achieve strong stabilization (that is, internal stability of the closed loop with a stable controller)
in the context of convex control design. A non-convex strong stabilization constraint is for-
mulated and several convex approximation methods are provided and illustrated at academic
examples and at a large-scale industrial application — the lateral feedback control design for a
large flexible BWB aircraft. Finally, Sec. 5.4 presents an efficient and highly flexible multi-model
scheduled feed-forward control design approach via convex optimization. In this formulation,
both multi-model robustness and partial scheduling can be freely formulated and directly in-
tegrated into the optimization. The BWB aircraft example is used to demonstrate scheduled
robust feed-forward design and to assess the attainable performance gain.

5.1 Convex control design framework methodology

To ease the complex design process in convex control design, including the formulation of the
control architecture, Youla parametrization and the definition of its basis functions, constraints,
and objectives, a flexible implementation of an optimization framework has been carried out.
Besides supporting the engineer in problem formulation, concepts that reduce optimization
problem size and integrate performance validation are realized, so that large-scale problems
can be solved with high efficiency. Therefore, an adaptive constraint refinement procedure for
problem size reduction is introduced. Then, the framework implementation is outlined in more
detail; an overview on the implemented objects and methods is given in the Appendix, Chap.D.
This framework serves as the basis for the further developments in this chapter.

5.1.1 Adaptive constraint refinement

The optimization problem size is primarily determined by the number of independent variables
in θ, by the number of constraints, and by the number of grid points at which the constraints
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(or objectives) are defined. An adaptive grid refinement procedure has thus been implemented
for high computational efficiency:

1. Start with coarse design grids.

2. Formulate & solve the resulting LMI optimization problem (see Sec. 3.6.4).

3. Validate solution on fine validation grids.

4. Pick, per violated objective/constraint, at most nadd points that are most violated (and
mutually sufficiently spaced) and add them to the design grids.

5. If no violations: done. Else: return to step (2).

For the computations, this algorithm has been implemented via an object-oriented approach in
MATLABR©. The overall efficiency could be significantly increased by using data preprocessing,
caching methods, and efficient updates of the LMI definitions.

5.1.2 Object-Oriented Implementation of Framework

The framework has been developed and implemented in MATLABR©, and an outline and de-
scription of its main structural components is given in the following.

Main Requirements

The following list of main requirements already outlines the basic functionality seen in the
framework and builds the basis of its development:

• A simple, logical, and lean syntax for problem statement, optimization, and evaluation
should be provided to the MATLABR© user. For this main use case, the necessary com-
mands should fit in a short m-file of 50− 100 lines.

• All presented functionality should be covered and supported. A shortlist of core function-
ality requirements:

– Management of Youla parametrization, basis function generation, system definition

– Template-based definition of the time- and frequency-domain constraints and objec-
tives from Sec. 3.6.4

– Embedded LMI formulation and solution with MATLABR©’s LMILAB

– Adaptive constraint refinement procedure as shown in Sec. 5.1.1

– Solution evaluation, plotting, exporting

– Streamlining of the design process: saving/loading of problems, grid definitions,
caching of precalculations

• Maintainability, didactic value (code readability, logical structure), and simple extensibil-
ity for future functionality (for example, new constraint/objective definitions, additional
interfacing of different solvers, and new problem configurations) should be enabled and
facilitated by according framework design decisions and by the way of implementation.

• The framework should, for practical reasons, be embedded in the established standard
MATLABR© environment, in particular its object-oriented functionality, syntax, and the
LMILAB solver provided by the Robust Control Toolbox [6].
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ConvexOptimizer

ConvexOpt_SingleModel ConvexOpt_MultiModel

ConvexOpt_FB_OLConvexOpt_FB_initK ConvexOpt_FF

Figure 5.1: Class hierarchy of ConvexOptimizer and its subclasses

Object-Oriented Programming

To address the main requirements, an object-oriented onset to design and implement the frame-
work is chosen. Object-oriented programming (OOP) provides many benefits that address the
maintainability and extensibility requirements listed above. A short overview on main charac-
teristics of OOP is given in the following, see [163] and the references therein for a more extensive
discussion.

From one of many views on the subject, object-oriented programming considers a world
(collection) of virtual objects which interact with each other. Each concrete object (also called
instance or class instance) is derived from one or more classes. A class defines the structure of
objects, much like a blueprint of the concrete object. This structure consists of properties (which
can be thought of variables, memory, attributes, or data which is associated to one particular
object) and so-called methods (which are functions or programmed behavior that act on the
object and its properties). This very general and abstract concept is moreover hinged on some
fundamental aspects:

• Information hiding, encapsulation, decoupling: Only well-defined interfaces of an object
are exposed to the outside. Within one object, the functional relations and interactions
are dense, whereas they are sparse between different objects. This decoupling facilitates
code re-use and maintainability.

• Class inheritance: One class can inherit properties and methods of one or more other
classes. This reduces redundancy in the code base, enables more logical structuring, and
again facilitates code maintainability and extensibility.

Class Structure of the Convex Control Design Framework

The framework is organized into groups of classes with hierarchical structure where appropriate.
A short description of the main structures are listed and some key aspects of the framework
structure are explained. In the Appendix Chap.D, an outline of each class with short comments
and their relevant properties and methods is given.

ConvexOptimizer hierarchy: This set of classes realizes the top-level problem solving tasks
for the considered convex control design problems. The implementation allows to cast the various
control design formulations (feedback and feed-forward design, zero or OBR initial controllers)
into LMI form, solve them, and evaluate the results. The structure is depicted in Fig. 5.1.
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Figure 5.3: Auxiliary classes

Constraint/objective class hierarchy: This set of classes implements constraint and ob-
jective definitions and their behavior. They provide common interfacing for LMI formulation,
design and validation grid handling, adaptive refinement procedures, and result plotting. The
class hierarchy is depicted in Fig. 5.2 and short class descriptions are given in the following.

Auxiliary classes: Six auxiliary classes are realized which perform auxiliary tasks: three
classes, CTemplate, CTemplParametric, and CTemplNonParametric implement parametric and
non-parametric templates of signals over a time- or frequency-gridding. Youla parameter com-
putations, basis function generation (see Sec. 3.6.5), and response caching is implemented in the
class CYoulaModel. The class H2Handler realizes computation and caching of the precomputable
quantities β, γ, Γ , and L when modeling H2 constraints and objectives (see Sec. 3.6.4). Other
helper functions are collected in the class CTools. These classes are depicted in Fig. 5.3.

5.2 Strong Stabilization

A strongly stabilizing controller is a stable and internally stabilizing controller for a given plant
[154]. Note that this is not guaranteed by usual optimal and robust control design methods:
they yield internal stability, but the controller transfer function may be unstable [69].
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5.2.1 Motivation & Introduction

Strong stabilization is relevant in control design if control input signal saturation occurs. Then
stability of the controller is required to retain bounded internal signals. The feedback path is
effectively opened in this situation and the internal signals’ behavior is characterized by the
plant’s and controller’s open-loop transfer functions. The marginal case of integrating behavior
in the controller transfer function leads to the well-known integral wind-up phenomenon [143]. If
the controller transfer function is unstable, the internal signals can grow exponentially fast, thus
violating the practical requirement of bounded internal signals. Moreover, strong stabilization is
closely connected to simultaneous stabilization, that is, the problem of stabilizing several plants
with the same controller [154].

Additionally, two observations were made in many practical control design problems by the
author:

1. The robustness against (unmodeled) plant model perturbations tends to be significantly
worse when the controller itself is unstable than when it is stable.

2. Whether or not a resulting optimal controller is unstable strongly depends on the design
weightings and the plant characteristics. Often, if plant transfer functions which contain
RHP zeros are being shaped by control, a high performance requirement (formulated by the
weighting functions) will enforce an unstable controller (see also [69] and [83]). If, however,
the controller is given less authority with weaker performance demands, the same design
can result in a stable controller.

These observations suggest that improved robustness of stable controllers in observation 1
could be caused by lower control authority. This is immediately plausible for the case of an
initially stable (perturbed) plant. Even though strong stabilization may result in inferior closed-
loop performance, means to enforce controller stability are relevant for the stated reasons.

The set of plants that can be stabilized by a stable controller (called the set of strongly
stabilizable plants) is a subset of all stabilizable plants. The decisive property thereby is the
so-called parity interlacing property which was firstly formulated in [171]. A parametrization
of all strongly stabilizing controllers is found in [154]. Several solutions to strong stabilization
control design are available, notably a (suboptimal) weighted sensitivity minimization with stable
controllers [69].

An ad-hoc method to avoid the generation of unstable controllers is to introduce sufficient
plant uncertainty and to synthesize a robustly stable and performing controller. However, this
does not guarantee controller stability either, and sometimes it is difficult to tune these auxiliary
uncertainties to obtain the desired effect.

However, to the best knowledge of the author, no approach exists that preserves affinity
of the closed loop in the problem representation which is necessary to incorporate time- and
frequency-domain constraints as shown in Sec. 3.6.4 and thus highly beneficial for the control
design task. Such strong stabilization constraint is formulated in the following, but it turns
out to be non-convex in the design parameters. Illustrative examples for this fact are given
next, followed by two onsets to approximate the strong stabilization constraint for inclusion
in an LMI problem: a Lyapunov-iteration approach suitable for small problems, and a convex
embedding approach targeted at high-dimensional control design tasks. Numeric results are
given and discussed.

5.2.2 Illustrating Examples

Two academic examples are given in this section to illustrate the non-convexity of the strong
stabilization constraint in the Youla parameter weights θi. A polynomial approach will be
followed for these examples.
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Consider the Youla parameter based on the zero-feedback parametrization of an initially
stable plant P as in Sec. 3.6.3. With

T zw(s) = P 11(s) + P 12(s)K (I− P 22(s)K(s))−1

︸ ︷︷ ︸
Q(s)

P 21(s) (5.1)

= T 1(s) + T 2(s)Q(s)T 3(s), (5.2)

the relations between Q(s) and K(s) are:

Q(s) = K(s) (I− P 22(s)K(s))−1 (5.3)

K(s) = (I+Q(s)P 22(s))
−1Q(s). (5.4)

It can be seen that with a stableQ(s), the controller can become unstable if (I+Q(s)P 22(s))
−1

is unstable. Note that it is however guaranteed that the closed loop is internally stable!

The SISO case

Given a stable (or stabilized) SISO plant P (s) = BP (s)
AP (s) and a stable SISO Youla parameter

Q(s) =
BQ(s)
AQ(s) (where A,B are the denominator/numerator polynomials in s, respectively), the

controller is given as

K(s) = (1 +Q(s)P (s))−1Q(s) (5.5)

=
1

1 +
BQ

AQ

BP

AP

BQ

AQ
(5.6)

=
AQAP

AQAP +BQBP

BQ

AQ
. (5.7)

While AP and AQ are stable (their roots are all in the left half plane (LHP)), the denominator
part AQAP +BQBP can have roots in the RHP. This can be tested, for example, via the Hurwitz
stability test on the characteristic polynomial

p(s) = AQAP +BQBP = ans
n + . . .+ a1s+ a0. (5.8)

The Hurwitz conditions for stability (all roots of P (s) in the LHP) are:

ak > 0, k = 1, . . . , n (5.9)

H =




an−1 an−3 an−5 . . .
an−0 an−2 an−4 . . .
0 an−1 an−3 . . .
. . . . . . . . . . . .


 ≻ 0, (5.10)

where H is the (n × n) Hurwitz matrix of p(s). This matrix is required to be positive definite
(which is commonly tested via the positive-definiteness of its principal minors).

Example 5.2.1: Strong stabilization constraint for SISO feedback design

Given the stable, proper, non-minimum-phase SISO plant

P (s) =
s− 1

s+ 2
(5.11)
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and the Youla parameter

Q(s) =
3

s+ 1
θ, θ ∈ R, (5.12)

formulate the constraint corresponding to a stable controller K(s), where

K(s) =
Q(s)

1 + P (s)Q(s)
=

AQAPBQ

(AQAP +BQBP )AQ

=
APBQ

AQAP +BQBP

. (5.13)

The characteristic polynomial of the controller transfer function thus is

pK(s) = AQAP +BQBP = (s+ 1)(s+ 2) + 3θ(s− 1) = s2 + (3 + 3θ)s+ (2 − 3θ). (5.14)

The corresponding Hurwitz conditions for stability are

s1 : 3 + 3θ > 0 (5.15)

s0 : 2− 3θ > 0 (5.16)

det (H) =

∣∣∣∣
[

3 + 3θ 0
1 2− 3θ

]∣∣∣∣ > 0. (5.17)

For this simple example, the equations are fulfilled for the interval −1 < θ < 2
3 (and the positive

definiteness of H follows from the positivity of the coefficients).

The MIMO case: a polynomial formulation

For the MIMO case, the constraint takes the form

(I+Q(s)P 22(s))
−1 stable. (5.18)

The inverse of a regular square matrix X can be written as

X−1 =
1

det(X)
adj(X). (5.19)

For a minimal realization of a linear dynamic MIMO system X(s), i.e. a rational transfer matrix
in s, the numerator of det(X) represents the characteristic polynomial whose roots are the poles
of the individual SISO transfer functions in X(s). This can be verified by observing that the
adjoint of X,

adj(X) = (x̃ji) (5.20)

x̃ji = (−1)i+j det(M ij), (5.21)

does not introduce new denominator factors (they are all contained in the denominator of det(X)
and thus eliminated when forming the product in (5.19)).

This leads to the idea that the stability test can be carried out on the numerator of the
determinant of (I+QP 22) to enforce strong stabilization. With the (r× s) Youla parameter Q
and the (s × r) plant P 22 of the form

Q =
1

AQ




∑k
i=1B

Q
11,iθ11,i . . .

∑k
i=1B

Q
1s,iθ1s,i

...
. . .

...∑k
i=1B

Q
r1,iθr1,i . . .

∑k
i=1B

Q
rs,iθrs,i


 , (5.22)

P 22 =
1

AP



BP

11 . . . BP
1r

...
. . .

...
BP

s1 . . . BP
sr


 , (5.23)
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one can write

I+QP 22 =
1

AQAP



AQAP + β11 . . . β1r

...
. . .

...
βr1 . . . AQAP + βrr


 (5.24)

with

βjk =

s∑

m=1

BP
mk

k∑

i=1

BQ
jm,iθjm,i. (5.25)

Example 5.2.2: Strong stabilization constraint for MIMO feedback design

Given the stable, proper, non-minimum-phase MIMO plant

P (s) =

[
s−1
s+2 0

1 s−2
s+3

]
(5.26)

and the Youla parameter

Q(s) =

[ 3
s+1θ11

3
s+1θ12

3
s+1θ21

3
s+1θ22

]
, (5.27)

formulate the constraint corresponding to a stable controller K(s), where

K(s) = (I+ P (s)Q(s))
−1

Q(s). (5.28)

Since Q(s) has stable poles (at −1 with multiplicity 2 in a minimal realization), only the transfer

(I+ P (s)Q(s))
−1

needs to be tested for stability. With

AP (s) = (s+ 2)(s+ 3), (5.29)

BP (s) =

[
BP

11 BP
12

BP
21 BP

22

]
=

[
(s− 1)(s+ 3) 0
(s+ 2)(s+ 3) (s− 2)(s+ 2)

]
, (5.30)

AQ(s) = (s+ 1), (5.31)

BQ(s) =

[
BQ

11 BQ
12

BQ
21 BQ

22

]
=

[
3θ11 3θ12
3θ21 3θ22

]
, (5.32)

the controller K(s) is stable iff the numerator polynomial p(s) of

det

(
I+

1

AQ(s)AP (s)
BQ(s)BP (s)

)
=

(
1

AQ(s)AP (s)

)2

det (AQ(s)AP (s)I+BQ(s)BP (s)) (5.33)

=

(
1

AQ(s)AP (s)

)2

p(s) (5.34)

is Hurwitz (i.e. has all its roots in the LHP). Evaluating the polynomial p(s) yields:

p(s) =

∣∣∣∣
AQ(s)AP (s) + β11(s) β12(s)

β21(s) AQ(s)AP (s) + β22(s)

∣∣∣∣ (5.35)

= (AQ(s)AP (s) + β11(s))(AQ(s)AP (s) + β22(s))− β12(s)β21(s) (5.36)
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with

AQAP = (s+ 1)(s+ 2)(s+ 3) (5.37)

β11(s) =
2∑

m=1

BQ
1mB

P
m1 = BQ

11B
P
11 + BQ

12B
P
21 (5.38)

= 3θ11(s− 1)(s+ 3) + 3θ12(s+ 2)(s+ 3) (5.39)

= 3(θ11 + θ12)s
2 + 3(2θ11 + 5θ12)s+ 3(−3θ11 + 6θ12) (5.40)

β12(s) =

2∑

m=1

BQ
1mB

P
m2 = BQ

11B
P
12 + BQ

12B
P
22 (5.41)

= 3θ12s
2 − 12θ12 (5.42)

β21(s) =

2∑

m=1

BQ
2mB

P
m1 = BQ

21B
P
11 + BQ

22B
P
21 (5.43)

= 3(θ21 + θ22)s
2 + 3(2θ21 + 5θ22)s+ 3(−3θ21 + 6θ22) (5.44)

β22(s) =

2∑

m=1

BQ
2mB

P
m2 = BQ

21B
P
12 + BQ

22B
P
22 (5.45)

= 3θ22s
22− 12θ22. (5.46)

This leads to the following multivariate polynomial in s, θjk (j, k = 1, 2):

p(s) =s6 + 3(θ11 + θ12 + θ22 + 4)s5 (5.47)

+ (24θ11 + 33θ12 + 18θ22 + 9θ11θ22 − 9θ12θ21 + 58)s4 (5.48)

+ (60θ11 + 141θ12 + 21θ22 + 18θ11θ22 − 18θ12θ21 + 144)s3 (5.49)

+ (30θ11 + 291θ12 − 54θ22 − 63θ11θ22 + 63θ12θ21 + 193)s2 (5.50)

+ (288θ12 − 63θ11 − 132θ22 − 72θ11θ22 + 72θ12θ21 + 132)s (5.51)

+ (108θ12 − 54θ11 − 72θ22 + 108θ11θ22 − 108θ12θ21 + 36). (5.52)

It can be seen that this polynomial contains second-order mixed monomials of θjk which makes
the corresponding Hurwitz matrix definiteness constraint a Bi-Linear Matrix Inequality (BMI) or,
generally, a Polynomial Matrix Inequality (PMI) constraint in θjk.

BMIs or PMIs are generally non-convex and thus cannot directly be solved using LMI methods;
however LMI relaxations (approximations) are possible and, using additional lifting variables and
constraints, a solution to a PMI problem can be approached asymptotically (with increasing lifting
order, i.e. problem inflation) [106]. Tools such as GloptiPoly 3 [64] can tackle such problems via
successively higher approximation precision until either a certified optimal solution is found or other
termination criteria are fulfilled. Also, BMI solvers start becoming available, see for example the PhD
thesis of Stingl [146] and the PENBMI solver’s manual [74].

Note that it is not possible any more to explicitly state the admissible region in the parameter
(θjk) space that fulfill this constraint.

For illustration, Fig. 5.4 depicts the stability region in the θ11 − θ22-plane with θ12 = θ21 =
0, Fig. 5.5 and Fig. 5.6 depict the stability region in the θ12 − θ21-plane with fixed θ11 = θ22 = 0
respectively θ11 = −1, θ22 = −0.5. The latter two are clearly non-convex admissible sets in the
parameter space.

As evident from Example 5.2.2, this formulation of the strong stabilization constraint is
exact, but computationally not tractable with growing system order.
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Figure 5.4: Stability region slice (white) for fixed θ12 = θ21 = 0
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Figure 5.6: Stability region slice (white) for
fixed θ11 = −1, θ22 = −0.5
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5.2.3 Strong Stabilization Constraint Formulation

Consider the Youla parametrization of a stable plant P and the feedback controller K (which
is to be designed) as in Sec. 3.6.3.

Note that the controller system matrix AK in (3.69) is affine in θ which is seen by ex-
panding (3.69) by either affine parametrization onset of Q in (3.67). Exemplarily, with input
parametrization, one obtains:

AK =

[
AP −

∑nQ

i=1BPDQiCP θi BPCQ

−∑nQ

i=1BQiCP θi AQ

]
=

[
AP BPCQ

0 AQ

]

︸ ︷︷ ︸
AK0

+

nQ∑

i=1

[
BPDQiCP 0
BQiCP 0

]

︸ ︷︷ ︸
AKi

θi.

(5.53)

To obtain a stable controller with the convex design outlined above, a constraint to ensure
stability of AK in (3.69) is necessary. Formally, the set of parameters that yield a stable
controller is introduced:

Θsstab =

{
θ : max

i
[ℜ (λi(AK(θ)))] ≤ 0

}
(5.54)

Note that by requiring an initially stable plant, the strong stabilizability is fulfilled per
definition. The zero feedback, obtained by θ = 0 ∈ Θsstab, is strongly stabilizing.

5.2.4 Lyapunov Strong Stability Formulation

To test the stability of the controller, the Lyapunov stability criterion can be utilized. Its
LMI-style formulation (with P = PT ≻ 0),

PAK +AK
TP ≺ 0 (5.55)

is however, although sufficient, not affine in the free LMI parameters (the free variables in
AK = AK(θ) and P arise in products) and is thus not applicable for synthesis. Moreover, a
high (design) order nK of AK yields a large problem as there are 1

2(nK
2 − nK) free variables

only in P .
However, in the spirit analogous to the DK-iteration, the problem could be addressed itera-

tively:

1. Initialize M > 0, k = 1, θ1 := 0

2. Solve the LMI problem

(P k, γk) := argmin
P ,γ

γ (5.56)

s.t. PAK(θk) +AK
T(θk)P ≤ γI, (5.57)

‖P ‖ ≤M. (5.58)

The optimal value objective γk is strictly negative if AK(θk) is stable. Note that the type
of norm constraint on P is arbitrary but necessary to bound the solution. Typically, LMI
solvers can be parametrized to limit the decision variables in a ball which also could be
utilized.

3. Formulate and compute the control design optimization problem

(θk+1,αk+1) := argmin
θ,α

cTα (5.59)
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with the constraints of the control design problem and with the additional constraint

P kAK(θ) +AK
T(θ)P k + (−γk)εI � 0, (5.60)

where ε ∈ (0; 1) is a parameter to tune the allowed controller stability loss in optimizing
θ.

4. If performance is satisfactory or no improvement is obtained any more, stop. Otherwise
increase k by 1 and goto step 2.

Unfortunately, this most simple Lyapunov condition allows only for very small changes in θ

per iteration, so a high number of iterations are required to approach the stability limit. More-
over, the problem size quickly grows with the size of AK which renders the method impractical
already for medium-order controllers, also restricting the dimension of the Youla parameter base
and thus attainable performance.

One remedy is to approximate the feasible region by convex regions and formulate corre-
sponding constraints. In the following, an algorithm that embeds such constraints is proposed
in several variants.

5.2.5 Heuristic Embedded Convex Region Constraint

Hypercube Embedding: Box Constraint

This section reports on a novel heuristic method to obtain strong stabilization in high-dimensional
control design by a convex region embedding procedure to formulate a corresponding convex con-
straint. The proposed algorithm approximately embeds a convex region in the non-convex strong
stabilization feasibility set Θsstab as in (5.54). It is assumed here that the feasible set Θsstab

features a particular structure:

1. 0 ∈ Θsstab: The origin is always feasible (which is fulfilled for the case of an open-loop
stable plant; the respective controller (for zero θ entries) is the (stable) zero transfer.

2. θ ∈ Θsstab ⇒ λθ ∈ Θsstab∀λ ∈ [0, 1]: The ray from the origin to each feasible θ lies entirely
in the feasible set. This property is a technical assumption to ease polytope embedding,
but it has been observed that it holds in practice.

A simple and beneficial choice of the convex region shape that is embedded in Θsstab is a
scaled hypercube, see Fig. 5.7. Other convex region shapes are discussed below. Exploiting the
noted properties of Θsstab, the algorithm is given as follows:

1. Find 2n simplex polytope corners (l = 1, . . . , n, el = [0, . . . , 0, 1, 0, . . . , 0]T is the lth unit
vector)

θ+
l = αel : α =

α>0
supα : αel ∈ Θsstab (5.61)

θ−
l = αel : α = inf

α<0
α : αel ∈ Θsstab. (5.62)

2. Construct a hypercube Ξ = (θ−
1 + . . .+ θ−

n ≤ θ ≤ θ+
1 + . . . + θ+

n ).

3. Maximize a scalar 0 < δ ≤ 1 such that a given numberM ≫ 1 of randomly sampled points
θ ∈ δ ·Ξ pass the actual stability test maxi (ℜ (λi (AK (θ)))) < 0.

From property 2, an extremal vertex for a given direction ei ∈ Rn, |ei| = 1 can be found by a
bisection algorithm using recursive binary search within a ray segment λei, λ ∈ [λ, λ]. With the
stability testing function isstable(θ) and a given tolerance ε > 0, the algorithm can be stated
as:
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• Initialize ei, λ← 0, λ←M ∈ R, large

• If isstable(λei), terminate.

• While ∆λ = λ− λ > ε
M

– λ = 1
2 (λ− λ)

– If isstable(λei): λ← λ

– Else: λ← λ

The number of bisection iterations needed to obtain a fixed relative accuracy 1≫ ε
M
≥ λ−λ

M
> 0

is

k =

⌈
log2

M

ε

⌉
, (5.63)

which takes the values 10, 20, and 30 for relative accuracies ε
M

of 10−3, 10−6, and 10−9.
This construction is computationally efficient (the initial polytope has only 2n vertices, the

hypercube has only 2n facets, and the line search over δ can be efficiently done via binary
search). In some test scenarios and in the aircraft control design case, this algorithm yields
better performing stable controllers as compared to merely downscaling the Youla parameter
of an unstable controller. Finally, the inherent conservativeness can be reduced by alternately
applying this algorithm and the actual LMI optimization, with the optimizer θ∗ as new starting
point (origin) for the hypercube construction.

Figure 5.7 illustrates the hypercube constraint in two parameter directions. The initial
hypercube limits are found along the parameter axes and typically yield a too large parameter
region Ξ. However, basic parameter scaling information with respect to controller stability
is incorporated. Down-scaling by a suitable factor α embeds the contracted hypercube αΞ
sufficiently well in the non-convex actual parameter set Θsstab in which strong stabilization is
attained. However, as can be seen, conservativeness of this approach can be large. In turn, this
formulation is efficient in the number of half-spaces and yields a closed set, so the optimization
problem is guaranteed to be bounded.

Θsstab 0

θ1

θ2
Ξ

αΞ

Figure 5.7: Hypercube constraint θ ∈ αΞsstab with downscaling factor α.
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Extension: Polytope embedding

The shape of a hypercube as embedded region simplifies the constraints to parameter box con-
straints. However, any other polytopic region can be utilized. In the following, first some basic
properties of polytopic / polyhedral sets are given. Then, strong stabilization LP constraints
are formulated for given search directions in which the bounding hyperplanes are either orthog-
onal to the search directions or tangential to the boundary of the strongly stabilizing parameter
set Ξsstab.

First, some facts on convex polytopes are considered from [46]. These can typically be
defined as the intersection of half-spaces (half-space representation) or as the convex hull (and
its interior) of a set of points (vertex representation). In the half-space representation, all linear
inequalities defining the polytope’s facets can be combined to the constraint

Ax ≤ b (5.64)

which is an efficient representation for LP (or LMI) optimization problems if the number of
facets (rows in A) is low.

Note that the equation

aTθ = aTb (5.65)

defines all points θ in a hyperplane which is orthogonal to the vector a and goes through
point b. Furthermore, let k be the fixed, chosen number of facets of a polyhedron to construct
(not necessarily bounded) and let θj , j = 1, . . . , k be an associated set of sampling directions.
These could be randomly sampled and/or chosen based on preferred directions towards an
unconstrained optimal solution.

Variant 1: Orthogonal hyperplanes. A set of admissible half-spaces, each orthogonal to
the associated search direction, is constructed analogously to the hypercube case as follows:

1. For each j ∈ {1, . . . , k}

(a) Obtain the critical scaling βj = argmaxβ βθj ∈ Θsstab that yields marginal strong
stability in search direction θj by binary search.

(b) The halfspace delimited by a hyperplane orthogonal to θj through the point βjθj and
including the origin is defined by

θj
Tθ ≤ βjθj

Tθj. (5.66)

This onset does not utilize local information on the shape of the boundary of Θsstab, so it is
suitable where gradient information is not available. Note that the hypercube constraint is
obtained for k = 2nQ and θj ∈ {±e1, . . . ,±enQ

}. Figure 5.8 shows the orthogonal hyperplane
constraint formulation with respect to three sampling directions.

Variant 2: Tangential hyperplanes. Let βj be the critical scaling as above. Assume that
the tangent space of the boundary of Θsstab at βjθj exists and is well-defined. This is the case
if the function

f(θ) = max
i
ℜ{λi(AK(θ))} = max

i
ℜ



λi(AK0 +

nQ∑

j=1

AKjθj)



 (5.67)
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Figure 5.8: Polytope embedding, variant 1: Orthogonal hyperplanes

is continuously differentiable at βjθj, which, in turn, is fulfilled if the maximum is attained
uniquely (or by just one complex-conjugate eigenvalue pair). Thereby, λi(·) is the ith eigenvalue
of the argument. Then the gradient of f ,

∇f(θ) =
[

∂f
∂θ1

. . . ∂f
∂θnQ

]
(5.68)

exists and is orthogonal to the tangential hyperplane

(∇f(βjθj))
Tθ = (∇f(βjθj))

Tβjθj. (5.69)

Under the uniqueness conditions above, the gradient can be expressed analytically from the
eigenvalue equation. Assume i is the critical eigenvalue index, λi, vi

T, and ui are the eigenvalue
and its right and left eigenvectors normalized such that vi

Tui = 1 holds. With X = AK(βjθj)
and

Xui = λiui, vi
TX = λivi

T, (5.70)

the perturbed eigenvalue equation (X +dX)(ui+dui) = (λi+dλi)(ui+dui) can be simplified
to

vi
TdXui + vi

T(X + dX)dui = dλi + (λi + dλi)vi
Tdui. (5.71)

To obtain a first-order approximation the eigenvector perturbation dui is neglected (which is
admissible for small perturbations and well-separated eigenvalues [25]), arriving at

vi
TdXui

∼= dλi. (5.72)

To formulate the gradient, note that dX =
∑

j AKjdθj, so

∂λi
∂θj

= vi
TAKjui (5.73)

holds.
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The constraint definition for the half-space which is delimited by the hyperplane tangential
to Θsstab at βjθj and which includes the origin 0 is given by

(∇f(βjθj))θ ≤ (∇f(βjθj))βjθj if (∇f(βjθj))βjθj > 0 (5.74)

−(∇f(βjθj))θ ≤ −(∇f(βjθj))βjθj if (∇f(βjθj))βjθj < 0 (5.75)

where (∇f(βjθj)) =
[
vi

TAK1ui . . . vi
TAKnQ

ui

]
.

Figure 5.9 shows the tangential hyperplane constraints defined at three sampling directions.
The local shape of the edge of Θsstab is approximated, so this constraint formulation is ex-
pected to give good results if the sampling directions are sufficiently close and cover the optimal
parameter direction.

Θsstab

θ∗

0

θ1

θ2

θ1

θ3

αΞ

Figure 5.9: Polytope embedding, variant 2: Tangential hyperplanes

Remark on the curse of dimensionality: The reason for choosing half-space constraints
as above, instead of formulating a convex-hull polytope of a set of critical vertices, lies in the
dimensionality of the representation: note that the polytope which represents the convex hull
and its interior of k vertices typically has an exponential number of facets (exponential in nQ
and k) [37] which renders the constraint (and the LMI problem) numerically non-tractable. The
edge theorem [156] could be used to reduce the required stability tests to all one-dimensional
bounding edges, but their number also grows exponentially with the dimension of the parameter
space.

5.2.6 Test results using a high-order model

A high-order model is used to demonstrate the effect of the hypercube strong stabilization
constraint in the following. A lateral BWB aircraft model is utilized, see Sec. 4.2. It is of order
42 with 8 outputs (4 performance channels, 4 measurement signals) and 3 inputs (1 exogenous
disturbance input, 2 control signals). A static output feedback gain has been connected in closed
loop for basic robust response shaping. The feedback Youla parametrization for this conditioned,
open-loop stable plant is formed, using a basis of Q(s) of total dynamic order 56 and nQ = 40
basis functions are utilized.
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Table 5.1: Strong stabilization test results: l∞ objective, 41 LMI variables.
Constr. K states f(θ∗), stability objective CPU time in s constr. iter.

- 56 4.69 (4 poles unstable) 0.0093 252 137 10
C100 55 0.120 (2 p. unstable) 0.0591 12 134 4
C300 54 0.334 (1 p. unstable) 0.0947 32 143 6
C1000 54 0.091 (1 p. unstable) 0.3283 6 116 5
C10000 51 < 0 (stable) 0.4379 4 113 4

As described in Sec. 5.2.5, a hypercube (box) constraint is embedded in the strong stabiliza-
tion parameter set Θsstab such that a large number of random samples within the hypercube all
yield a stable controller. These hypercubes are constructed using various choices of the maximal
parameter magnitudeM = {100, 300, 1000, 10000} (which influences conservativeness due to the
downscaling step) and are called C100, C300, C1000, and C10000 in the following.

Table 5.1 shows the design results for the studied set of hypercube constraints obtained at
a 3GHz intel Pentium 4 workstation. Without strong stabilization constraint, the resulting
controller is unstable and yields very good performance. For the hypercube constraints C100,
C300, and C1000, the controller is still unstable. This is an indication that even by using intensive
search in the interior of the tested parameter space region, the critical regions are not reached
easily. Finally, the hypercube C10000 constraint yields a stable controller. It is evident that the
achieved performance is significantly lower than the non-strongly-stabilizing solutions.
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5.3 Case Study 1: Strongly Stabilizing Lateral Feedback Con-

troller for Flexible BWB Aircraft

This section presents convex feedback control design for the lateral dynamics of the considered
BWB aircraft (see Sec. 4.2). A multitude of stringent constraints and goals are given in the
time and frequency domain. An initial controller is designed using robust modal control design
as in Sec. 3.6.2 (compare [93]) to achieve some of the goals most closely related to eigenstruc-
ture assignment. Based on the preshaped plant, a convex synthesis approach using the Youla
parametrization and an LMI formulation is taken, optimizing directly for time- and frequency-
domain goals. Moreover, a heuristic algorithm to achieve strong stabilization (i.e., a stable
controller) in such high-dimensional problem is proposed. A stable feedback law is obtained
that is validated successfully on all considered mass cases. High performance in loads alleviation
and vibration reduction are achieved, and particularly the time-domain response specifications
are obeyed, easing the task of subsequent command shaping (feed-forward design), see Sec. 5.5.

Previous, closely related studies include a general integrated methodology for multi-objective
robust control design [133], LQ-based lateral control designs of the considered BWB aircraft
[134], followed by the application of a genetic algorithm for parameter optimization of a mul-
tiobjective H∞ DK-iteration design [135]. The feedback controller designed in this section is
incorporated in the subsequent feed-forward control design in [137]. Longitudinal BWB control
using LPV control concepts are studied in [157].

This section presents the second step in a state-of-the-art flight control design for a novel ap-
plication: feed-forward control design for the lateral dynamics of a large, flexible BWB transport
aircraft predesign model. It is based on the feedback-controlled aircraft (the feedback design
has been carried out by the authors in [138]). For given roll and side slip maneuvers, a sched-
uled feed-forward controller is designed by a convex multimodel approach. A set of stringent
constraints and goals both in time and frequency domain are directly taken into account. Val-
idation on various mass cases shows a significant, robust reduction in maneuver-induced loads
and lateral accelerations while particularly the time-domain response specifications are obeyed
and coupling is suppressed.

5.3.1 Initial Feedback Control Design

To achieve most of the general and tracking specifications in Tab. 4.1, an initial controller is
designed by robust partial eigenstructure assignment (utilizing the MATLABR© Robust Modal
Control Toolbox supplied with the book [93]). This is done in two steps:

1. Assign low-frequency (rigid-body) dynamics using low-pass output feedback,

2. Increase the damping of high-frequency flexible modes via a bandpass-filtered output feed-
back through eigenvector projection.

For step 1, a rigid-body model (consisting only of the states β, p (roll rate), r (yaw rate), φ
(roll angle) and the rudder- and aileron second-order dynamics) was extracted from the full-
order system by state truncation at a chosen mass case. It is augmented by two SISO third-
order Butterworth low-pass filters with ωc = 3 rad/s at the actuator inputs (the dynamic order
and corner frequency have been chosen to obtain sufficiently low spill-over in the validation).
The relevant plant open-loop poles lie close to the respective poles of the full-order model
at prig,1 = −0.84 · 10−3 (spiral mode), prig,2,3 = −0.09 ± 0.56i (DR mode), prig,4 = −1.24
(roll resilience). The desired DR pole location is at prig,des,2,3 =

|prig,2|√
2

(−1± i) = −0.4 ± 0.4i.

The DR damping requirement and the decoupling specifications (and partially the performance
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specifications) are cast into eigenstructure constraints, see [93]:

prig,des,1 = −0.6 V 1 = [∗, 0, ∗, 0, 0, 0, ∗, ∗]T

prig,des,2,3 = −0.4± 0.4i V 2,3 = [0, ∗, 0, ∗, ∗, ∗, 0, 0]T

prig,des,4 = −1.24 V 4 = [0, ∗, 0, ∗, ∗, ∗, 0, 0]T ,

where the remaining eigenvector elements are unconstrained. The computed feedback gain
robustly assigns a high DR mode damping, and the Butterworth low-pass filters are absorbed,
yielding a preliminary controller Kprelim of order 6.

Design step 2 aims to increase damping of a flexible mode at pflex,1,2 = −0.1 ± 19.6i that
was found critical in earlier control designs. The previously neglected sensor delays must be
considered now (and are absorbed into the full-order plant model). This full-order design plant
is compensated with Kprelim and augmented by two SISO second-order Butterworth band-
pass filters with pass band 14 . . . 25 rad/s at the actuator inputs. The desired pole position
pflex,des,1,2 = −0.3 ± 19.6i is assigned, together with fixing another close flexible mode at its
location pflex,3,4 = pflex,des,3,4 = −0.6 ± 20.2i using eigenvector projection. The final controller
K init is composed of Kprelim and the band-pass filtered static output feedback gain resulting
from step 2 with total dynamic order 10.

A comparison of open- and closed-loop validation step responses for selected, extremal mass
cases is depicted in Fig. 5.10. It is evident that the controller yields mainly satisfactory results,
however, the decoupling specifications are not entirely fulfilled (see roll reference (scaled aileron)
to side slip). The initial control law K init is absorbed into the plants, and these preconditioned
plants are used for convex dynamic feedback control design.
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Figure 5.10: Step responses of selected, extremal mass cases without controller (open-loop), with
initial controller, and with the convex optimized controller
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Table 5.2: Objectives (O) and constraints (C) for feedback control optimization
O/C Type & Path Comment

O1 min. H∞ norm (vlat → NyCG)
O2 min. H2 norm (vlat → NyCG)
O3 min. l∞ norm (AIL→ NyCG)

C1 |θi| bounds stable controller
C2 l∞ bounds (AIL→ roll) retain response
C3 l∞ bounds (RU→ side slip) retain response
C4 l∞ bounds (AIL→ side slip) decoupling
C5 l∞ bounds (RU→ roll) decoupling
C6 l∞ bounds (AIL→Mxfin) avoid worsening

5.3.2 Convex Feedback Controller Optimization

The Youla parametrization is generated for a precompensated design plant (as outlined in
Sec. 3.6.3), using an ad-hoc basis of Q(s) of total order 56. The basis functions are simple
first- and second order SISO dynamics with their poles and zeros chosen within the expected
control bandwidth, for each I/O-channel. A total of 40 scalar Youla parameters (4 inputs, 2
outputs, 5 SISO basis functions each) are utilized.

The convex optimization problem is formulated with specific constraints and objectives to
retain the (satisfactory) tracking performance, while improving decoupling, disturbance rejec-
tion, and alleviating loads (see Tab. 5.2). The cost function is the sum of an H∞, an H2, and
a time-weighted l∞ objective, each normalized to 1 for the initial, precompensated plant. Con-
straint C1 restricts the parameters to the hypercube found to be strongly stabilizing (compare
Sec. 5.2.5). The other constraints are l∞-bounds to retain the tracking performance and to avoid
worsening of the peak values with respect to the precompensated plant.

The problem is solved to optimality and the constraint design grids are adaptively refined
until all constraints are fulfilled on finely-spaced validation grids. Constraint C6 was found
necessary in validation to limit fin loads in the roll maneuver, so it was added and the problem
re-solved.

As an example, the AIL → NyCG step response in Fig. 5.11 (right) illustrates objective O3
with its bounds and the adapted definition grid. This, together with constraint C4 (whose
effect is seen in Fig. 5.10), has the important consequence of achieving a coordinated turn and
reasonably low lateral accelerations. All other responses are at least as good as those of the
precompensated plant, with a number of notable improvements after optimization:

• Decoupling and coordinated turning is realized robustly (see Fig. 5.10).

• Disturbance attenuation is improved, particularly in the vlat → NyCG (see Fig. 5.11 (left))
and vlat → β paths.

• Wing and fin root loads are decreased in the RU and AIL step responses, both in terms
of peak value as well as in DC gain.

5.3.3 Results, Robustness & Discussion

As evident from Fig. 5.10, the final controller is robustly stable and obtains good tracking and
decoupling properties for all considered mass cases (low to full fuel, low to high payload) at cruise
conditions. Detailed analysis of the entire validation set shows shortcomings of the control in
low-fuel mass cases for the vlat → Mxwing and vlat → NyCG transfers. High-frequency flexible
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Figure 5.11: Optimization results: vlat → NyCG is reduced via frequency-domain objectives
O1,O2 (left); AIL→ NyCG is reduced via a time-weighted l∞ objective O3 (right)

modes are excited in those mass cases, which requires further assessment. Potential solutions are
a robust multimodel eigenstructure assignment (see [93]), utilizing a robustly performing initial
controller (e.g. computed by DK-iterations), modeling of structured or unstructured uncertainty
(and applying Q-µ-iterations in the convex synthesis framework, see [18]), or the synthesis of a
scheduled control law (if the fuel level is available online for control) as in [151].

However, a high degree of disturbance rejection is achieved for vlat →Mxfin, β, φ in all cases
and in vlat →Mxwing, NyCG at medium and high fuel cases with typical reductions by 1 . . . 4 dB
in H2-norm and 5 . . . 8 dB in H∞-norm.

The final feedback controller is of dynamic order 84, which is clearly too high for imple-
mentation. For this, various robust controller order reduction methods (as discussed in [93], for
example) are available.

Finally, the loads induced by the roll and side slip maneuvers are decreased as compared
to the initial control design. In [137], the subsequent dynamic feed-forward design focuses on
maneuver loads alleviation specifically.

5.3.4 Conclusions

A state-of-the-art flight control design for the lateral dynamics of a large, flexible BWB transport
aircraft predesign model has been performed. A multitude of partially conflicting goals and
constraints in the time, frequency, and eigenstructure domains have been directly considered.
An initial controller has been designed using robust partial eigenstructure assignment via the
Robust Modal Control MATLABR© Toolbox [93]. Then, a convex synthesis has been performed,
optimizing the closed-loop for the remaining frequency- and time-domain objectives under time-
domain and strong stabilization constraints. The resulting controller is validated at a set of
aircraft mass cases with various fuel and payload levels at cruise conditions and performs well
in the entire domain in terms of tracking, decoupling, and disturbance rejection. Problematic
mass cases have been identified and discussed.

5.4 Convex design of a multi-model scheduled feed-forward con-

trol law

A convex formulation of the feed-forward control design problem is formulated in the following.
The fact that the feed-forward-controlled plant transfer is directly affine in the control law allows
to utilize a multi-model onset in the design. Furthermore, a method to parameterize (schedule)
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Figure 5.12: Two interconnection architectures of a (possibly scheduled) feed-forward controller
Q with feedback-controlled plant P

the controller a priori is presented. These extensions enable a flexible design method to directly
design robust and scheduled feed-forward controllers.

5.4.1 Problem statement

As introduced in Sec. 2.3.3, a discrete set of LTI validation plants P = {P j : j = 1, . . . ,m} is
given in state-space form,

ẋj = Ajxj +Bjuj

yj = Cjxj +Djuj , (5.76)

describing a (possibly non-linear) parameter-dependent system at fixed parameter values. Let
λ ∈ Ra,η ∈ Rb be system parameters that are known and unknown (but bounded) during
operation, respectively. Then, each LTI plant in P can be written as P j(s) = P (s,λj,ηj).

The task is to design a feed-forward control law that provides optimal performance under
given constraints and objective formulations for all (stable or stabilized) validation plants in P.
The plant is controlled by a robust LTI feedback compensator K(s). Two possible intercon-
nection architectures of the plant P , the feedback compensator K, and a parameter-dependent
(scheduled) feed-forward controller Q are depicted in Fig. 5.12. Thereby, r are reference signals,
u are the actual control inputs to the plant, z are the exogenous output signals, and y are the
plant measurement signals used for feedback control. Noise inputs are not considered here as
they are not relevant for feed-forward design.

For fixed parameters λj ,ηj the LTI plant P j(s) = P (s,λj ,ηj) is obtained, and the feed-
forward-controlled closed-loop transfer function T zr,j(s) from r to z is

T zr = P j,1 (I−KP j,2)
−1

︸ ︷︷ ︸
P̃ j,cl

Qj , (5.77)

for the architecture in Fig. 5.12, left, and

T zr = P j,1 (I−KP j,2)
−1 [I | −K]︸ ︷︷ ︸

P̃ j,cl

[
Qj,1

Qj,2

]
, (5.78)

for the architecture in Fig. 5.12, right, respectively. The plant is appropriately partitioned:

[
z

y

]
=

[
P j,1(s)
P j,2(s)

]
u. (5.79)
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For the second architecture, the feed-forward controller is partitioned as well:

Qj(s) = Q(s,λj) =

[
Qj,1(s)

Qj,2(s)

]
. (5.80)

Note that T zr is affine in Q, so all objectives and constraints that are convex in T are also
convex in Q.

For implementations Q(s) must be restricted to a finite, weighted sum of n basis functions.
For an LTI controller, the following parameter-affine form is commonly chosen:

Q(s) =

n∑

i=1

Qi(s)θi θ = [θ1, . . . , θn]
T (5.81)

This can be extended to a scheduled parameter-affine control law by choosing h interpolation
functions Ψl(λ) (l = 1, . . . , h) and use these as weighting functions. For linear interpolation and
a scalar parameter λ ∈ [0, 1], the form

Q(s, λ) = (1− λ)︸ ︷︷ ︸
Ψ1(λ)

n∑

i=1

Q(1),i(s)θ(1),i

+ λ︸︷︷︸
Ψ2(λ)

n∑

i=1

Q(2),i(s)θ(2),i (5.82)

can be chosen. This form is convenient because the extremal cases only depend on Q(1),i or
Q(2),i, respectively, which can be exploited to reduce the size of the subsequent optimization
problem.

However, other choices of interpolation are directly possible (for example, a polynomial in
λ, λ2, etc.) and provide a means to introduce expert knowledge about the nature of the plant’s
parameter dependency.

For the considered set of design or validation plants, the scheduling law relates each plant
with a fixed value λ = λk, so that the weighted multi-model design remains affine in the stacked
parameter vector θ =

[
θ(1)

T, θ(2)
T
]
T.

Note that the exposition is restricted to quasistatic parameters; if the rate of parameter
variation is non-negligible with respect to the system dynamics, LPV approaches are appropriate
(see [159]).

5.4.2 Robustifying design algorithm

The design of a feed-forward control law which is scheduled on the known parameter λ and
performs robustly with respect to changes in the unknown parameter η ∈∆ can be realized in
the following fashion for a set of validation plants P = {P j, j = 1, . . . , k}:

1. Choose an initial set of design plants

P̃ =
{
P̃ (s,λ1,η1), . . . , P̃ (s,λk,ηk)

}
of (possibly reduced) plant descriptions P̃ .

2. Formulate the objectives and constraints with respect to all plants in P̃ via the LMI
formulation given in Sec. 3.6.4.

3. Solve the optimization problem.

4. Validate the objectives and constraints on all plants in the validation set P .

5. If the results are not yet satisfactory, add the worst-case plant P̃ j to P̃ and goto step (2).

This way, the design is made robust against the unknown parameter values ηj arising in the
validation plant set.
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5.5 Case Study 2: Robust Scheduled Lateral Feed-Forward Con-

troller for Flexible BWB Aircraft

This paper follows on a series of related papers in which various studies on the same BWB
aircraft models have been done: in [133], a general integrated methodology for multi-objective
robust control design has been presented. LQ-based lateral control designs for the BWB aircraft
have been studied in [134], and a longitudinal BWB control law using an LPV approach has
been designed in [157]. These works were followed by the application of a genetic algorithm for
parameter optimization of a multiobjective H∞ DK-iteration design [135]. The direct prede-
cessor of this work is a robust convex feedback control design of a lateral feedback control law
[138], which provides the shaped closed-loop plants for the present work.

5.5.1 Feed-Forward Control Goals and Control Architecture

A control law to robustly optimize the dynamic and static loads in predefined test maneuvers
should be designed. The relevant control specifications are given in Tab. 4.1.

5.5.2 Scheduling Concepts: Feed-Forward Multi-Model Control Design

From the two plant parameters fuel and payload, the fuel level affects the plant dynamics much
stronger than payload (in their respective bounds) does. This motivates the investigation of the
benefit of using fuel as scheduling parameter.

The following control configurations will thus be considered:

1. a (2× 2) feed-forward controller Qu acting only on u as in Fig. 5.12 (a), and

2. a (6 × 2) feed-forward controller Qu,y = [Qu
T, Qy

T]T which is also given access to the
feedback controller inputs (measurements) y as in Fig. 5.12 (b).

Additionally, for these two configurations, a fixed (LTI) controller will be compared to a linearly
scheduled controller (as in (5.82)).

For the purpose of this study, a common basis of Q(1)(s) = Q(2)(s) of 8 different first- and
second-order transfer functions, spread over all controller inputs and outputs ((2× 2) or (6× 2),
respectively) is utilized. Its poles are chosen ad-hoc within the expected dynamic range (real
and low-damped oscillatory). This yields the following numbers n of free parameters, depending
on the controller configuration: 32 ((2 × 2) LTI), 64 ((2 × 2 scheduled), 96 ((6 × 2) LTI), and
192 ((6× 2) scheduled).

Four extremal plants (lowest and highest fuel filling, with lowest and highest payload) and a
central plant are chosen for design. Tab. 5.3 lists all objectives and constraints that are defined
on these plants. The objectives are scaled to 1 for the unity feed-forward to the plant input
signals u (and zero to the feedback controller inputs). No further weighting has been performed
and all objective variables α enter the cost function with unit weight (compare (2.70)):

f(x) = cTx =
[
0T 1T

] [ θ

α

]
. (5.83)

Objective O1 is a MIMO H2 minimization objective for the transfer from {φref , βref} to
{Mxwing,Mxfin, NyCG} with the aim to achieve broadband attenuation. Furthermore, O2−O7
explicitly reduce the peak loads Mxwing,Mxfin and lateral accelerations NyCG in the maneu-
vers as being l∞ minimization objectives. The defined constraints ensure the required tracking
performance (l∞-templates of roll and side slip responses in C1−C2), decoupling (l∞-bounds
C3−C4) and the observation of the control surface deflection and rate limits (C5−C12).
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Table 5.3: Objectives (O) and constraints (C) for feed-forward control optimization
O/C Type & Path Comment

O1 min. H2 norm (r → {Mxwing,Mxfin, NyCG})
O2−7 min. l∞ norms (r → {Mxwing,Mxfin, NyCG})
C1 l∞ bounds (φref → φ) retain response
C2 l∞ bounds (βref → β) retain response
C3 l∞ bounds (φref → β) decoupling
C4 l∞ bounds (βref → roll) decoupling

C5−12 l∞ bounds (r → {u, u̇}) input mag./rate limits

5.5.3 Scheduling Results, Robustness & Discussion

Optimization Results

The problem is formulated as an LMI problem and solved using MATLABR©’s LMILAB solver
and the object-oriented environment developed in Sec. 5.1. After typically 5 to 10 iterations
of adaptive constraint refinement (as in Sec. 5.1.1) the objectives and constraints are fulfilled
everywhere on the validation grids. The preprocessing and computation times are some minutes
to hours (for fairly large problems) on a Core i7 workstation.

Using the same basis for Q and the same objective and constraint definitions, a scheduled
and LTI controllers are designed. However, it turns out that only the scheduled control laws can
satisfy the most stringent set of constraints, while the problem is infeasible for the LTI design
cases. Thus, to enable controller comparison, these templates are relaxed (to allow 5% DC gain
variation in βref → β and more cross-coupling) which leads to a feasible design for both LTI and
scheduled controllers.

Performance of LTI and Scheduled Controllers

Fig. 5.13 shows the reference step responses for the (2 × 2) LTI and scheduled controllers, for
all design cases and the defined (relaxed) time-domain template bounds. As an example, the
responses φref →Mxfin (objective O5) and φref → NyCG (objective O7) are depicted in Fig. 5.14
and Fig. 5.15, respectively, for the design mass cases, compared to an unfiltered step response.
Strong reductions are evident especially for the scheduled controller, an observation which holds
for all considered mass cases. Moreover, the high-frequency content is not excited in the ma-
neuvers. Finally, the scheduled controller can exploit the optimization potential given by the
reserve in rise time (so it decelerates the response as long as the template allows it), while at
the same time obeying the low overshoot bound. The LTI control law clearly cannot utilize this
potential.

Tab. 5.4 shows the relative cumulative cost values of the uncontrolled plant set and the cases
of fixed and scheduled controllers, both for the (2 × 2) and the (6 × 2) configurations. While
the simplest (2 × 2) LTI configuration only achieves moderate loads alleviation and vibration
reduction, the additional degrees of freedom by accessing the feedback compensator inputs (the
(6 × 2) LTI case) yield considerable objective function improvement. Finally, the scheduled
controllers clearly dominate in terms of performance – the use of scheduling is thus a strong
benefit for overall control performance in the studied application. This also demonstrates that
already a simple linear interpolation onset can introduce vital information into the controller.

Robustness, Discussion, and Concluding Remarks

An analysis of the step response shapes and assessment of the other plants in the validation set
shows a generally benign behaviour of the feed-forward controller. However, to strictly fulfill the
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Table 5.4: Cumulative cost values on the design plant set, relaxed constraints
Controller Relative cost
none (Q = I) 1.00

Qu(s) ((2 × 2) LTI) 0.52
Qu,y(s) ((6 × 2) LTI) 0.38

Qu(s, λ) ((2× 2) sched.) 0.37
Qu,y(s, λ) ((6× 2) sched.) 0.34
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Figure 5.13: Step responses of design mass cases without (dashed), with fixed optimal (thin,
blue), and scheduled optimal (bold, red line) feed-forward controllers
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and scheduled optimal (bold, red line) feed-forward controllers

N
y C

G
(n
or
m
.)

time in s

0

0 5 10 15

sched. Q

LTI Q

unfiltered

Figure 5.15: Shaped response φref → NyCG without (dashed), with fixed optimal (thin, blue),
and scheduled optimal (bold, red line) feed-forward controllers
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response templates for all mass cases, more plants have to be added to the design set (following
the procedure proposed in Sec. 5.4.2). Although this further increases the size of the optimization
problem, the solver runtime is expected to increase only moderately due to the simple nature
of the constraints. Tests show that H∞ objectives (of which a convex formulation is given in
[138]), on the other hand, have a high impact on runtime: no precalculations as in the case of
H2 objectives are possible and the problem size quickly increases with refined gridding.

Minimal realizations of the final feed-forward controllers are of dynamic orders 22 to 26 which
could further be reduced for implementation. One appropriate reduction method is stability
preserving weighted balanced reduction (see [26]). Note that the choice of a common basis
for each SISO channel in Q reduces effectively the degrees of freedom. Reliable algorithms
to obtain optimally chosen, well-conditioned, and low-order bases are thus highly relevant for
convex control design.

Finally, the loads as well as the lateral acceleration peak values induced by the roll and side
slip maneuvers are decreased significantly by installing the feed-forward controller. The linear
scheduling shows further significant reduction, and tighter reference response templates can be
obeyed.

A robust convex multi-model design of a scheduled feed-forward controller for a large, flex-
ible BWB transport aircraft predesign model has been performed. A multitude of time- and
frequency-domain constraints and objectives have been considered and optimal controllers of
various architectures have been synthesized. Their evaluation unveils a significantly higher per-
formance when the control law is scheduled with respect to fuel filling level, which strongly
affects the system dynamics. As a result, strong reductions in maneuver-induced loads and
lateral accelerations could be achieved robustly, while obeying reference response requirements.



Chapter 6

A Design Parameter Optimization
Methodology for Control Design and
Validation

6.1 Introduction

Today’s robust control analysis and design tools enable the control engineers to analyze the
effects of system perturbations or uncertainties and to design control laws which are robust with
respect to these perturbations. Robust control design for complex flexible structures represents
a difficult class of control problems. Challenging issues therein are strongly coupled or highly-
damped dynamics and parameter-dependent or uncertain dynamics, often calling for robust
scheduled controllers.

In this work, an integrated control design, validation, and optimization framework method-
ology is proposed that aims to improve closed-loop performance by appropriate adaption of
frequency design weights for a pre-defined design architecture. It allows to incorporate expert
knowledge in a clearly structured way at various levels of the design process while at the same
time error-prone repetitive standard tasks are automated. This way the process of controller
tuning, which represents the main effort in the synthesis procedure and which is often only
insufficiently addressed, is essentially simplified and shortened for the engineer.

At a higher design abstraction level, approaches to control parameter optimization exist:
a survey on evolutionary optimization of control design parameters is given in [34], a recent
study using a combination of a genetic algorithm-based parameter search with fuzzy control
performance evaluation is found in [119], and a formulation of the control design parameter
optimization as a goal-attainment problem is done in [47].

The main contribution of this chapter is a methodology in form of a DPO framework which
is suitable to consider the control design and validation problem in its full detail, encapsulated
and viewed as a high-level optimization problem. The standard optimal and robust control
design and analysis tools as in Chap. 2 and Chap. 3 are utilized in an automated way wherever
beneficial. Essential control design tasks, such as system scaling, order reduction, uncertainty
modeling, weighting, the µ calculus, design and analysis tools, and control architecture selection,
are eased by this partially automated and modular support. In two case studies, this onset is
applied to optimize control designs for the BWB aircraft in Sec. 6.4 as well as for a conventional
flexible aircraft (based on the controller designed in [162]) in Sec. 6.5. The proposed methodology
enables the engineer to efficiently test numerous design variants and it enables him or her to
address specifications which otherwise cannot directly be accounted for in the utilized design
methods, for example time-domain specifications in H∞-based control design.

97
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6.1.1 Motivation for an Integrated Methodology

Robust control of complex multivariate flexible structure systems is challenging. Main issues
are robust controllability/observability and coupled system dynamics. Moreover, these systems
often depend non-linearly on global system parameters. This can lead to mode-flipping in the
linearized systems or to the loss of stability or non-minimum-phase behavior. These challenges
and demanding control goals motivate a structured approach to translate the physical problem
into the normalized P −K −∆− form, design the controller and validate it. Automating this
process enables design tuning and optimization and leads to vital advantages:

• Efficient control design and tuning is possible by varying the design parameters.

• The modeling redundancy is reduced and design errors due to inconsistencies are avoided.

• The design can be clearly understood, maintained, and debugged.

• Well-posedness of the design problem is ensured by consistently using normalized systems.

One crucial requirement for such approach is to effectively incorporate the control engineer’s
expert knowledge — to formulate the objectives and to choose the control architecture and
design weights.

6.2 Methodology

6.2.1 Basic Idea

The proposed control design, validation, and optimization methodology integrates model pre-
processing, robust control designs, and automated validation and performance evaluation of the
closed loop. A flow chart of this process is depicted in Fig. 6.1. This section details the essential
design tasks a control engineer has to carry out for control design. A clean parameter-based
implementation and automation of this design allows its reuse inside a design parameter opti-
mization problem. The presented methodology and optimization scheme has been implemented
in MATLABR© and successfully applied in practice.

6.2.2 Generating the Design Plant

Input/Output-Reduction & Additional Dynamics

To reduce computation demands and increase numeric stability, it is advisable to reduce the
system I/Os to those necessary for the design or for the validation task. Also, I/O-weights and
dynamics are incorporated into the model:

• Actuator dynamics, typically of low-pass behavior

• Excitation spectra to model stochastic disturbance (for example, wind turbulence in air-
craft or track irregularities in rail vehicle systems)

• Sensor dynamics and delays (modeled for example via Padé approximations)

System Scaling

System scaling is critical in robust control design for various reasons:

• System reduction requires scaling to depict the reduction error correctly (compare [143]).
As reduction indices often correlate with the I/O-magnitudes of the system, I/O-magnitude
normalization is required to avoid reduction bias.
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Figure 6.1: Automated control design, validation, and optimization: process and data flow

• Correct definition of the control goals with robust control analysis and design methods
requires appropriate scaling and weighting (compare RS and RP in Sec. 2.3.1).

Static I/O-scaling (as used here) is defined using the diagonal scaling matrices Sin and Sout:

Gscaled(s) = SoutG(s)S in. (6.1)

The scaling factors can be obtained by

1. expert knowledge of signal amplitudes;

2. observing system norms of I/O-groups of the system; or

3. formally optimizing for quantities of numeric conditioning.

Balanced State Reduction

To obtain controllers of limited dynamic order, it is typically necessary to reduce the design
plant order before control design. One widely applied method is the balanced state reduction
method which is detailed in Chap. 2.2.

Uncertainty Modeling

Relevant uncertainties for robust control design are incorporated into the design plant by un-
certainty modeling techniques, see Sec. 2.3.2.

6.2.3 Generalized Design Plant Interconnection

Having prepared the design plant G, the control engineer needs to implement the control archi-
tecture by interconnecting the design plant, the weighting functions, and the uncertainty model
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to the normalized and generalized plant P such that the minimization of ‖N‖∞ (where N is
the perturbed closed-loop transfer function, see Fig. 2.1 on page 16) results in the fulfillment of
the desired robust performance specifications. The parameters of the chosen weighting functions
represent tuning knobs and are thus suitable as optimization variables.

6.2.4 Controller Synthesis

The normalized and generalized design plant and the uncertainty description are used to design
a robust controller. Any design method using the standard P −K−∆− form can be utilized in
the present methodology. In particular, state-of-the-art robust controller synthesis tools, such as
the DK-iteration algorithm (see Sec. 3.5), Convex Synthesis techniques (see Sec. 3.6), or robust
fixed-order design tools (such as HIFOO [50]) can be chosen.

These methods can yield high-order controllers that have to be order-reduced before practical
implementation, which is not a trivial task since robustness has to be maintained (see Chap. 7).
Fixed-order control design methods circumvent this disadvantage by directly synthesizing a
low-order controller, but computational effort can be too high.

6.2.5 Controller Validation and Performance Evaluation

The controller’s closed-loop performance is validated with accurate plant models in the frequency-
domain and often in detailed, non-linear time-domain simulations. To quantify the obtained
control performance suitable for the optimization, the goal attainment procedure as in Sec. 2.4.7
can be utilized.

To enable efficient validation, it is necessary to structure the task into the following steps:

• define the architecture for validation (compatible to the controller),

• define the validation model set (for example an LTI model set associated to multiple
physical plant parameter values, see below),

• construct the closed loop for a given plant and perform its evaluation, and

• evaluate control performance for each closed-loop system (that is, for each validation case).

Linear System Validation

The validation plants typically have to be prepared in a similar way as the design plant. After
verifying the internal stability of the considered closed-loop systems, their performance is eval-
uated and compared to the open-loop systems’ performance. Common closed-loop quantities of
interest are:

• Achieved reduction in selected SISO transfer peak magnitudes at frequency ranges of
relevant modes

• DC gain difference in selected SISO transfer functions

Moreover, an empirical marginal stability analysis can be performed. The MIMO gain margin is
sought by closing the feedback path with cK, where c ∈ R+ and finding c using a binary search
algorithm such that the system is brought to the stability limit.
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Non-Linear System Validation

If non-linear validation is required, time-domain simulations with a series of validation plants
P i are performed (see Sec. 2.3.3). This way, control input non-linearities such as saturation,
rate limits, or hysteresis behavior and their effects on the closed-loop system can be examined.
In contrast to linear validation usually no algebraic manipulations to obtain the closed-loop
behavior exist.

The system behavior is typically examined in the time domain, simply because no direct
frequency response representation (as in the linear case via the transfer function formulation)
exists. Nevertheless, spectral analysis of concrete signals is possible via (Fast) Fourier transfor-
mation and power spectral density analysis tools.

6.3 Formulating and Solving the Optimization Problem

The presented design methodology involves a number of design parameters that define the
weighting functions, uncertainty magnitudes, and performance formulations. For design opti-
mization, these can be seen as free variables p. Collecting the entire design and validation
methodology above into one single functional block f(·) with the design parameters p as in-
puts and the achieved validation performance f(p) as fitness output to maximize, the generally
non-convex and even non-smooth design optimization problem can be stated formally as:

min
p∈P

f(p), (6.2)

with the design parameter vector p = [p1, . . . , pm]T ∈ P ⊆ Rm and a suitable cost function
f : P → R which

• designs a controller K from the given parameter values p,

• constructs the closed loop systems with a series of validation systems Si ∈ Sval,

• evaluates predefined criteria on these closed loop systems, and

• computes an aggregated cost value.

As this poses a difficult optimization problem, an optimal solution can only be approximated,
for example using meta-heuristic optimization methods. However, local optimization in a limited
parameter space can also already lead to practically well-performing results.

Focusing on one design parameter at a time, a gridding of its values over a chosen interval of
interest is defined. The design methodology is carried out for each grid point and the achieved
performance is evaluated in an automated fashion. Despite its simplicity, this approach pro-
duces quick remedies to performance problems and also conveys properties of the investigated
parameter space to the engineer’s understanding, such as smoothness or parameter sensitivity.

6.3.1 Using Genetic Algorithms for Design Parameter Optimization

The difficulty of the design process typically stems from the complexity of the considered system
dynamics and the multitude of conflicting control goals. Formally defined design procedures
enable a structured approach and make the task accessible to automation and optimization
[133].

A survey on the use of evolutionary algorithms in the context of control design and optimiza-
tion is given in [35], and the use of genetic algorithms in control is discussed in [34]. Specific use
of genetic algorithms for multi-objective control problems has been studied in [36], a minimax
approach to robustness in a multi-model, multi-objective control design setting has been taken
in [113].
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6.3.2 Implementation

The low-level control design methods, elementary system analysis tools, and the genetic algo-
rithm are directly available in MATLABR©. The parametrization of the optimization problem,
the control design problem setup, preprocessing, postprocessing, and the goal-attainment evalu-
ation methodology have been implemented via object-oriented techniques in MATLABR©. This
facilitates the design process and increases its flexibility and reliability because once the func-
tionality is implemented it can directly be reused, see also the related discussion in Sec. 5.1.2.
The class structure of the implementation can be seen in Fig. 6.2. The package DesignPar con-
tains classes to realize a flexible parametrization of the design, while the package GoalAttain

implements the Goal Attainment logics.

GoalAttain

ParDesign

ValidationTask

DesignTask

AttainmentGoal

DesignParam

GoalSet

DesignParamSet

GoalOvershoot

ElementaryGoal

ElemParam

GoalRisetime GoalSaturation

ElemParamLinear ElemParamLog10

...

Figure 6.2: Class structure of the implementation

6.4 Case Study 3: DPO of Lateral Control of Flexible BWB
Aircraft

The lateral control design case for the flexible BWB aircraft introduced in Sec. 4.2 is revisited.
In this case study, a structured design onset for an integrated design of a two-degree-of-freedom
controller is chosen with the aim to address all given control goals in one design.

Initial studies showed that augmenting the plant by integrators or quasi-integrators for
asymptotic tracking renders it ill-conditioned for standard H∞-based control design, despite
taking common countermeasures (scaling, balancing, and relocating the integrator in the loop,
compare [94] and [157]). For this reason, the chosen architecture consists of an inner-loop con-
troller obtained by DK-iteration (see Sec. 3.5) which is a posteriori augmented by two PI SISO
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feedback loops to obtain asymptotic tracking of the roll angle φ and the side slip angle β.
Supported by the established DPO framework, an initial design for the lateral motion of the

aircraft is carried out and design parameters and their value ranges for optimization are defined.
The specifications, given in both the time and in the frequency domain, are evaluated by the
goal attainment approach shown in Sec. 2.4.7. The combined design and evaluation process is
implemented as an objective function in the free design parameters and is thus accessible to
formal parameter optimization which is addressed in this work by a genetic algorithm.

Related onsets have been investigated, for example in [23] where a hybrid optimization via
ant systems and LQR design is carried out to obtain robust eigenstructure assignment for a
conventional aircraft. The present work, however, utilizes frequency-domain µ synthesis and
optimizes for loads and time-domain response characteristics for a BWB aircraft configuration.

6.4.1 Lateral Feedback Control Architecture and Initial Design

To address the control goals given in Sec. 4.2.2 are realized by a two-stage control concept con-
sisting of a simple outer loop (autopilot) to ensure asymptotic tracking and an inner robust
control law for basic response shaping, DR mode damping and loads alleviation. In this study
the inner-loop controller is generated by DK-iteration design and the autopilot loops are real-
ized afterwards by two SISO PI controllers for the roll angle φ and the sideslip angle β. The
augmented design plant interconnection for the inner-loop control design is shown in Fig. 6.3.
Thereby, G denotes the order-reduced lateral aircraft model, Gref defines reference dynamics for
desired roll and sideslip responses, W u weighs the control input magnitude over frequency, W ref

shapes the admissible control errors, W p enables further shaping of the closed-loop dynamics
by weighting exogenous outputs such as wing and fin root loads, and W a shapes an additive
uncertainty ∆a to account for differences between design and validation plant dynamics.

-
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Figure 6.3: Two-degree-of-freedom (2DOF) control architecture
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Weighting Basis Functions

For the underlying DK-iteration design method only stable, minimum-phase, and proper weight-
ing functions are considered. Thus, to realize quasi-high- or quasi-low-pass filters, a parametrized
PD/PT-structure is used:

WPTPD(s, k0, ωz, ωp) = k0

1
ωz
s+ 1

1
ωp
s+ 1

. (6.3)

A quasi-low-pass is obtained with ωz > ωp, and ωz can be chosen sufficiently fast (outside the
control bandwidth) and fixed, thus reducing the function description to two free parameters.

In turn, a quasi-high-pass characteristics is obtained with ωz < ωp, for which ωp can be fixed
at a sufficiently low value. Here, the magnitude at infinite frequency k∞ is of higher interest
than the DC gain k0. These gains are related by k∞ =

ωp

ωz
k0.

Chosen Design Parameters

For an initial design, these weightings were selected by a step-by-step assembly of the design
plant and recurring designs to test each added component. The following design weightings have
been utilized:

• Performance weights for roll attitude and side slip angle errorWe,pφ,We,pβ (quasi-low-pass,
ωz = 100 rad/s = const.)

• Control input magnitude weights for rudder and ailerons (quasi-high-pass, ωp = 100 rad/s =
const.)

• Performance weightings for wing root bending moment and fin root bending moment
Wz,Mx,wing,Wz,Mx,fin, chosen of low-pass shape after validation of a preliminary design
without these outputs.

Wp,φ(s, ke,pφ, ωe,pφ) = ke,pφ

1
100s+ 1
1

ωe,pφ
s+ 1

(6.4)

Wp,β(s, ke,pβ , ωe,pβ) = ke,pβ

1
100s+ 1
1

ωe,pβ
s+ 1

(6.5)

6.4.2 DPO Formulation

Attainment Goal Set

For this study the control goals listed in Tab. 6.1 have been formulated. The target values were
chosen from the given requirements and from an analysis of manual, initial designs. The goal
set is evaluated at each of six given validation mass cases (fuel filling level from empty to full)
of the BWB aircraft’s lateral dynamics.

Control Design

Firstly, the control architecture, the control design process, and the free parameters as well as
their ranges and their encoding in terms of the design parameters have to be defined. After
analyzing the open-loop plant dynamics and relating it to the requirements, a manual initial
design is carried out to collect information on the impact of the chosen design parameters on
the closed-loop system dynamics.
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Table 6.1: BWB lateral control goals
No. Goal category Quantity

1 DR damping Bode magnitude vlat.gust → β

2 Loads Bode mag. φref →Mx,wing

3 Loads Bode mag. φref →Mx,fin

4 Roll Overshoot φref → φ
5 Roll Undershoot φref → φ
6 Roll Rise time φref → φ
7 Roll Time-weighted control error φref → φ
8 Roll Saturation limit φref → δRU,cmd

9 Roll Saturation limit φref → δAIL,cmd

10 Side slip Overshoot βref → β
11 Side slip Rise time βref → β
12 Side slip Time-weighted control error βref → β

13 Gust Time-weighted control error vlat.gust → β
14 Gust Max. peak vlat.gust → β
15 Gust Time-weighted control error vlat.gust → φ
16 Gust Max. peak vlat.gust → φ

The augmented design plant interconnection for DK-iteration is built according to the given
parameters:

P = P (pDK) , (6.6)

where pDK contains the necessary design parameters to construct P . These are gains and pole-
/zero-locations of frequency-domain weighting functions (see Sec. 3.1.1) and physical parameters
to select the utilized design model.

The controller KDK = KDK (P ) is computed via DK-iteration. The two SISO PI controllers
are parametrized by

pPI =
[
kPI,1 zPI,1 kPI,2 zPI,2

]
T (6.7)

where kPI,i and zPI,i are the PI controllers’ gains and zero locations, respectively:

KPI,i(s) = kPI,i
s+ zPI,i

s
, i = 1, 2 (6.8)

The entire control law design is thus defined by the union of all subtask parameter sets
p =

[
pDK

T,pPI
T
]
T.

Note that it is possible to mix design parameters of different types and subtasks arbitrarily.
The initial values and admissible ranges of the design parameters are chosen based on the initial
control design.

The validation and performance evaluation of the obtained controller is carried out as de-
scribed in Sec. 6.2.5.

6.4.3 DPO Results

Initial Control Law Characteristics

The initial controller has been found by a step-by-step enlargement of the design architecture
until all goals could be influenced by the introduced design parameters. The DK-iteration
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controller is manually tuned to some extent to yield reasonable results, and the SISO PI reference
tracking loops have been optimized via MATLABR©’s SISOTOOL and its response optimization
functionality. A minimal realization of the initial controller is of order 43, which has to be
reduced for implementation. Controller order reduction is treated in Chap. 7.
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Figure 6.4: Goal attainment achieved by the initial controller

Fig. 6.4 shows the goal attainment ratios gj for each goal in Tab. 6.1 as obtained by the initial
controller. Note that the given multitude of goals define a complex and challenging design task
for the given set of validation cases. It can be seen that the goals related to DR mode damping,
maneuver loads, and the side slip reference response are not fulfilled. Moreover, the overshoot
of the roll response is far too high. However, this design fulfills the remaining specifications on
the roll response and on disturbance attenuation.

Optimized Control Law Performance

The genetic algorithm is seeded with the solution corresponding to the initial controller. The
population size was set to 10 of which the 2 best solutions were taken into the next generation
without crossover. Arithmetic crossover was utilized.

Fig. 6.5 shows the results obtained with the given control architecture in terms of the goal
attainment ratios after optimization by the genetic algorithm (compare Tab. 6.1). It can be
seen that the least fulfilled goal in the initial design has been considerably improved, but not
all goals are yet fulfilled. The optimization lasted 50 generations at a total runtime of 16 h on
an iPentium 4 HT desktop PC. Note that some goals have deteriorated as they do not influence
the global cost function value.

Roll and Side-Slip Reference Step Responses

The closed-loop roll reference step responses of all validation mass cases is shown in Fig. 6.6 for
both controllers. It is evident that the overshoot is strongly reduced by the design parameter
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Figure 6.5: Goal attainment achieved by the optimized controller

optimization, at the cost of the rise time requirement. However, the rise time attainment ratio
is still only 1.3.
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Figure 6.6: Roll reference step response for all mass cases

Fig. 6.7 shows the corresponding side slip reference step responses, and here strong improve-
ments in tracking performance can be seen. Although the rise time requirement is still not
fulfilled (and represents the least-fulfilled goal in the entire design with an attainment ratio
of 2.7), the overshoot and the damping is considerably improved compared to the initial control
law.

Wing and Fin Root Loads

Fig. 6.8 depicts the improvement in the wing root loads output from the initial to the optimized
control law. Likewise, Fig. 6.9 shows the improvement in the fin root loads. Since the wing
and fin root loads are heavily dependent on the roll reference tracking dynamics, the loads
alleviation has to be attributed partly to the slower roll response. This indicates an inherent
trade-off between tracking performance and induced loads.
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Figure 6.7: Side-slip reference step response for all mass cases
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Figure 6.8: Bode magnitude plot for closed-loop roll reference to wing root load output

Concluding Remarks

The results of this case study clearly show the trade-off between the conflicting goals, especially
rise time versus loads alleviation. Moreover, the design is in this formulation bound to a specific
predefined control design architecture which on the one hand enables highly structured control
design, but on the other hand can limit control performance.

The optimized design could not yet fulfill all goals to satisfaction, that is, the maximum goal
attainment ratio maxj=1,..,m gj > 1 holds. Further optimization may yield a design that fulfills
all goals. One approach to aid the optimization can be an iterative design in which the goals
are relaxed so that an attainment ratio less than 1 is attained for all goals, after which the goals
can be iteratively tightened.

6.5 Case Study 4: DPO of Longitudinal Control of Flexible
Conventional Aircraft

In [162] the controller was obtained by DK-iteration (see Sec. 3.5), which is also applied in the
following. The physical plant was reduced to 39 states, the augmented plant as well as the
resulting controller are of order 83 with a (16× 16) ∆-block (2 triple-repeated and 2 single real
parameters, full-complex blocks of (3 × 3) and (5 × 5)). The validation results (see Fig. 6.11,
taken from [162]) are based on simulated time-responses of the controlled aircraft (at 4 mass
cases) to
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Figure 6.9: Bode magnitude plot for closed-loop roll reference to fin root load output

1. a vertical 1− cos gust with 100m integral scale length and maximum vertical gust velocity
of 25m/s,

2. a pitch rate reference step, and

3. vertical turbulent wind following a von-Kármán turbulence spectrum[67].

The performance indices are computed as ratio of the closed-loop and the open-loop MxHTP

(horizontal tail plane bending moment), MxWR (wing root bending moment), as well as NzCG

and Nzf (vertical accelerations at positions near the center of gravity as well as in the front
near the cockpit), both in terms of RMS and time-domain peak values (L∞-norms). These
indices (see Fig. 6.11) show that all but one of the control goals have been met: only the vertical
accelerations in the cabin front Nzf were excited in two mass cases.

This controller has been optimized using the presented methodology to show the benefits of
an integrated investigation and optimization. Analyzing the reason for the unmet performance
index revealed that modes between 22 and 25 rad/s are excited by the controller. If the uncer-
tainties of these modes are sufficiently well modeled, it may be possible to enforce damping by
weighting these modes stronger for the controller design. To obtain this, a performance variable
in which this mode is well observable has to be chosen. Introducing a performance weight that
emphasizes those modes’ frequency range leads to success. Note that if the mode variation is
not described suitably by the plant uncertainty description, this solution has the opposite effect
- it will improve the nominal case, but inevitably excite or destabilize other, critical validation
cases. In such case, it is better to avoid control action by assigning a high uncertainty weight at
that mode’s frequency. The methodology was used within a one-dimensional parameter search,
where the free parameter was the weight peak frequency. Figure 6.10 shows the change of the
bode magnitude peak height of the critical structural mode in this frequency range of the Nzf
signal (which has been determined by the design parameter optimization procedure outlined
above). It can be seen that a minimum is obtained near ωpeak = 24 rad/s. Moreover, it is evident
that the obtained performance is smooth (continuous) around this minimum, which is an impor-
tant feature of the found solution. The optimized controller also provides equivalent or better
performance in all other performance quantities as seen in the performance chart in Fig. 6.12.
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Figure 6.11: Control performance (controller taken from [162])

6.6 Discussion & Conclusions

A comprehensive methodology for robust control design, validation, and goal attainment eval-
uation for complex flexible-structure control has been presented. It allows quick optimization
of design parameters to achieve the given control objectives. A genetic algorithm is employed
to optimize the design (encoded by freely chosen control design parameters), aiming to fulfill
all defined goals. These goals are arbitrary in nature, for example frequency- or time-domain
quantities of the closed loop. It is shown that a consistent, comprehensive implementation of
such framework methodology creates strong design advantages, while relieving the control en-
gineer from time-consuming standard design tasks. The uncertainty description can be tuned
to fit a set of validation plants to obtain robust high-performance controllers. Already simple
optimization procedures lead to remarkable results.

The methodology has been implemented in MATLABR© in an object-oriented fashion and
has been demonstrated at a difficult lateral control design task of a loads alleviation and tracking
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Figure 6.12: Control performance of optimized controller

control system for a large BWB passenger aircraft configuration. First results show an improve-
ment in the posed goals, although not all goals are yet fulfilled. Moreover, the conflicting nature
of various goals became evident, namely rise time and structural loads.

Benefits of the proposed approach include the efficient testing of design ideas, full validation
and arbitrary goals, as well as exploiting powerful optimization tools in a systematic way for a
highly complex process.

Possible extensions to this methodology include robust controller order reduction (while
preserving robust performance, see [19]) and the use of comprehensive design parameter opti-
mization using metaheuristics (see [119] and the MATLABR© Evolutionary Design Toolbox by
these authors). An interesting future functionality is to freely construct weighting functions and
interconnection structures through optimization.



Chapter 7

Extensions to Robust Controller
Order Reduction

The problem of order reduction of linear dynamic controllers is addressed in this chapter. For
two cases — related to nominal performance and to robust performance, respectively — suitable
frequency-domain weightings are derived so that FWBR (see Sec. 2.2) can be applied to the
controller in a feedback loop. Two corresponding examples in which the obtained reduction
procedure is compared against classic unweighted balanced reduction show the performance of
the proposed formulations.

7.1 Introduction

The fundamental challenge in system modeling is to provide a model that describes the rele-
vant behavior of a considered system sufficiently well while at the same time reducing model
complexity to a minimum. This requirement is also present in control design: on one hand,
the analysis of systems and the design of controllers is easier with a simplified problem setup.
On the other hand, simple low-order control laws are much easier and cheaper to implement in
real-time systems and in safety-critical environments. This generates a need for suitable order
reduction methods, because many modern control design algorithms, such as those discussed in
Chap. 3, produce complex control laws whose dynamical order depends on the dynamical order
of the plant system model and is often undesirably high.

Thus, methods and tools to reduce the dynamical order of systems to the relevant behavior
are vital and highly relevant to obtain design plants in control design. Likewise, suitable methods
are needed to reduce the complexity of dynamic control laws without or with only minimal
adverse effects on closed-loop stability and performance.

One of the most commonly applied reduction methods for LTI dynamic systems is the so-
called balanced reduction in various forms (see Sec. 2.2). The standard setting of the unweighted
balanced reduction, has been extended in [26] to the one- and two-sided weighted case (FWBR)
which broadens the method’s applicability. FWBR can be utilized to perform controller order
reduction and allows to preserve closed-loop stability or performance quantities. An overview
on the treatment of controller order reduction in literature is given in the following.

7.1.1 Literature Review of Controller Order Reduction Methods

In [49], system order reduction methods are surveyed and also the controller order reduction case
is discussed. One of the investigated groups of methods is balanced reduction (called Lyapunov
balancing there due to the arising Lyapunov equations in the balancing step).

112
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In [4], the authors give formulations of one- and two-sided FWBR weightings for stability
and performance preservation in standard feedback architectures. However, an exogenous per-
formance path is not considered explicitly as in the P −K − Form. Comparative results at
various problems and with various reduction methods are given.

In [43], Goddard & Doyle propose a formulation of frequency weightings to preserve H∞
nominal and robust performance based on the parametrization of all internally stabilizing H∞-
suboptimal controllers (see Sec. 3.2) and consider the reduction of the central controller. The
proposed solution requires finding a rational approximation of complex matrix factorizations
which may lead to a large order of the resulting frequency weights. Moreover it is noted that this
formulation essentially bounds the admissible controller perturbations in a weighted L∞-norm
sense which may result in a conservative result. However, this limitation is present also in other
methods which rely on the FWBR approach. Also in [100] and [101], the authors derive nominal
performance weightings for reduction of the central controller using the parametrization of all
internally stabilizing H∞-suboptimal controllers, however without the need of building rational
approximations.

A direct closed-loop balanced reduction approach for both, plant and controller, is given in
[167]. The approach also allows to reduce unstable plants or controllers as long as the closed
loop is stable. However, no stability guarantees are given in this work. A similar closed-loop
controller reduction approach is taken in [175] which gives guarantees on closed-loop stability
and bounds performance degradation.

The controller reduction problem in the robust control domain using the structured singular
value µ (see Sec. 2.3.1) has been tackled recently in [19], where an admissible error bound for
the unweighted H∞ controller reduction error has been derived to guarantee Robust Perfor-
mance (RP), provided that RP is achieved by the original full-order controller. However, only
unweighted balanced reduction has been utilized, thus the controller reduction itself does not
exploit the extracted frequency-domain information.

This chapter provides two main contributions:

• Firstly, two-sided weightings are derived to use FWBR techniques for controller reduction
for nominal performance preservation in the P −K − form. A simple variational onset
is used to obtain the weightings and it is not necessary to obtain an H∞-suboptimal
parametrization of controllers for which the given controller is central (as in [43, 100, 101]).

• Secondly, extending the findings in [19], an algorithm is proposed to exploit the extracted
robustness information by fitting suitable weightings for FWBR to perform controller
reduction for RP preservation. Although the a priori RP preservation guarantee of the
unweighted reduction in [19] is lost, a significantly improved reduction performance is seen
in numeric validation.

The performance of the developed methods is demonstrated at two examples — an aircraft
controller reduction case study and a 2× 2 distillation column process from literature [143].

7.2 Nominal Performance Frequency Weighting Derivation in
P −K − Form

Consider a plant P which is internally stabilized by a controller K and interconnected in the
P −K − form as in Sec. 2.3.1. The goal is to derive two-sided weightings suitable for FWBR of
the controller so that the frequency-weighted error measure

ε := ‖W out (K −Kred)W in‖∞ (7.1)
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Figure 7.1: The Nominal Performance-preserving controller order reduction as model matching
problem: Find Kred of fixed order nred to minimize ‖T − T red‖∞

reflects the H∞ error in the closed-loop performance transfer path w → z which is given by

εP = ‖T − T red‖∞ = ‖F l (P ,K)−F l (P ,Kred)‖∞ , (7.2)

which can be interpreted as a model matching problem as seen in Fig. 7.1.
Note that, different to a control design problem, the goal is not to reduce the gain of the

performance path, but instead to approximate the performance transfer with low error.
Having found these weighting functions W out and W in, a FWBR is conducted to obtain

the reduced controller Kred of specified order, and the resulting controller is validated in closed
loop.

To derive the frequency weightings, (7.2) is first expressed (approximately) as function of
the controller reduction error

∆K := K −Kred. (7.3)

Therefore, the LFTs in (7.2) are expanded,

T = P 11 + P 12KSP 21 (7.4)

T red = P 11 + P 12KredSredP 21, (7.5)

where

S = (I− P 22K)−1 , (7.6)

Sred = (I− P 22Kred)
−1 (7.7)

hold.
By help of the Woodbury identity [166] for a square nonsingular matrix A and compatible

matrices B and C,

(A−BC)−1 = A−1 +A−1B
(
I−CA−1B

)−1
CA−1, (7.8)

equation (7.7) can be expanded into the following form:

Sred = S − SP 22 (I+ (∆K)SP 22)
−1

︸ ︷︷ ︸
≈I

(∆K)S, (7.9)

Sred ≈ S − SP 22(∆K)S (7.10)
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where the approximation is justified if ‖(∆K)SP 22‖ ≪ ‖I‖ holds which is fulfilled for sufficiently
small ‖∆K‖.

The performance path perturbation can thus be expressed as

∆T = T − T red = P 12 [KS −KredSred]P 21 (7.11)

≈ P 12 [KS − (K −∆K)(S − SP 22(∆K)S)]P 21 (7.12)

≈ P 12


I+KSP 22 − (∆K)SP 22︸ ︷︷ ︸

≈0


 (∆K)SP 21 (7.13)

≈ P 12 [I+KSP 22]︸ ︷︷ ︸
W̃ out

(∆K)SP 21︸ ︷︷ ︸
W̃ in

, (7.14)

where the second approximation is done (justified if ‖(∆K)SP 22‖ ≪ ‖I+KSP 22‖ holds, which
again is valid for sufficiently small ‖∆K‖).

From the assumed internal stability of the original closed loop it follows that P 11, P 12, P 21,
S as well as KSP 22 (and thus also W̃ out and W̃ in) are all stable.

Note moreover that W̃ out describes the closed-loop transfer from a disturbance injected at
u to z, whereas W̃ in is the closed-loop transfer from w to y, which can be directly verified by
formulating these from the block diagram in Fig. 7.1.

For FWBR, the weightings however must also be stably invertible, so they need to be
minimum-phase, square, and bi-proper (with full-rank feedthrough matrix). Generally, none
of these requirements are fulfilled for the derived weightings from the outset. Heuristic methods
to obtain admissible FWBR weighting functions are proposed in the following, considering that
only their magnitude is relevant for FWBR.

Proposed steps to obtain admissible FWBR weightings: Starting out with the derived
functions W̃ out and W̃ in, the goal is to generate two FWBR weighting functions W out and W in

which fulfill all listed requirements.

Square weights The derived weights W̃ out and W̃ in are in general non-square (of I/O-dimen-
sions (nz × nu) respectively (ny × nw)), but W out and W in need to be square ((nu × nu)
respectively (ny × ny), or scalar). The simplest possible choice is to utilize scalar FWBR
weights which are fitted to the maximum singular value of the respective non-square weight.
However, more structure can be exploited in the MIMO case when considering the SVD
(see Sec. A.3). Utilizing suitable subsets of the singular vectors and corresponding singular
values to also retain the directional information could be beneficial for FWBR. This issue
is, however, not investigated here in more detail and a potential subject of future research.

Bi-properness with full-rank feedthrough matrix If P 12 or P 21 are strictly proper, so
is W̃ out respectively W̃ in. However, the inverse of a strictly proper transfer function is
improper and thus cannot be realized in state-space representation. To obtain realizable
inverses, the feedthrough matrix moreover must be square and of full rank. To obtain this
property for a system W , a small perturbation in form of a diagonal matrix α‖W ‖∞I
with 0 < α≪ 1 can be added to the D-matrix. Note that α should be chosen sufficiently
large (compared to computation accuracy) to avoid bad numeric conditioning but small
enough not to distort the relevant weighting function shape; a value of 10−3 has been
found suitable for the studied problems.

Minimum-phase fitting As last step, if the weighting functions exhibit RHP transmission
zeros, the weighting function magnitudes need to be fitted by minimum-phase transfer
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functions (or state-space realizations) to ensure that all zeros lie in the LHP so that stable
inversion is possible. Note that this step is required after the other steps (obtaining square
weights and feedthrough full-rank-perturbation) because these can affect the zero loca-
tions. Various algorithms for minimum-phase fitting exist, notable Cepstrum algorithms
or the log-Chebychev method implemented in the MATLABR© Robust Control Toolbox
(for example, via the command fitmagfrd) [6].

If the controller K is not stable, one proposed solution is to separate K into a stable part
Ks and an unstable part Kns where

K = Ks +Kns (7.15)

holds. This is a factorization problem and readily implemented in MATLABR© via the command
stabsep. Then, the interconnection can be rewritten into

P̃ = Fl (P ,Kns) (7.16)

and

T = Fl (P ,K) = Fl

(
P̃ ,Ks

)
(7.17)

holds true. Now, the FWBR procedure can be applied as before with P̃ and Ks instead of P
and K, respectively.

7.3 Case Study: NP-Preserving Controller Order Reduction

The reduction performance of NP-preserving weightings is demonstrated in the following at
a controller order reduction problem for a high-order H∞ controller for rigid-body dynamics
shaping of a flexible aircraft model. The utilized model is that of the BWB aircraft model
referred to in Sec. 4.2, however focusing on longitudinal control. The utilized high-order plant
is of order 54 in minimal realization, the signals are w = uEL (disturbance on elevator), u =
[uEL, uAIL3, uMINIFL]

T (symmetric deflections of elevator and of two outer flaps), z = NzCG

(vertical acceleration), and y = [NzCG, qCG, Nzlaw, Nzpax]
T are the vertical acceleration at CG,

the pitch rate, as well as vertical acceleration signals derived in terms of a symmetric modal
wing bending sensor law (Nzlaw) and at a comfort-relevant position in the cabin (Nzpax).

This particular controller is of low authority and of low-pass behavior with total dynamic
order 61. This complexity seems, especially when considering the low control authority, unnec-
essarily high and undesirable for implementation.

Figure 7.2 shows the results of a truncation-type reduction to order 2 by the unweighted
balanced reduction (BR), yielding KBR, as well as by FWBR with NP-preserving weightings
as derived in the previous section, yielding KFWBR, in terms of the maximum singular value.
In the upper left plot, the controller singular values are plotted. The difference between the
full-order controller and the reduced controllers are plotted in the lower left plot. Note that,
as expected, the unweighted balanced reduction yields smaller maximum singular values of this
unweighted reduction error. However, observing the closed-loop performance paths in the plots
on the right reveals that the NP-FWBR approach yields far smaller weighted reduction errors
than the unweighted BR.

In Fig. 7.3, the results of unweighted balanced reduction as well as the proposed NP-FWBR
onset are shown for reduced controller orders from 21 down to a static gain. Thereby, both
reduction variants, truncation and residualization, are computed for each reduction order and
the lowest relative H∞ error

‖T zw − T zw,red‖∞
‖T zw‖∞

(7.18)
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is plotted. For all evaluated reduced controller orders it is clearly evident that the NP-preserving
FWBR is far superior in efficiency. Unweighted balanced reduction requires controller order 7
to retain this error quantity below 5%, but the FWBR method produces even a controller of
order 2 for this performance level (which is the one shown in Fig. 7.2).

As a concluding remark, it should be noted that this controller is, compared to its actually
effective dynamics, of very high order and in this sense more efficient designs (with reduced-
order design models, for example) would be possible. However, this case demonstrates that the
specific FWBR formulation derived here is able to extract the relevant dynamics, tailored for
a given nominal performance formulation. Note that simple tuning of these FWBR weights is
possible to further shape the reduction process.

7.4 Robust Performance Frequency Weighting Derivation: An
Extension

The previous section addresses nominal performance only, but robustness issues are not ac-
counted for in the controller reduction method. In this section, an FWBR procedure aiming to
retain robust performance (RP) in terms of the RP µ value in the reduction process. This work
extends a recently published formulation of controller perturbation bounds [19] in the robust
control framework by utilizing these obtained bounds to generate FWBR weightings. Remark-
able results in controller order reduction can be achieved at a challenging RP problem from
literature.

7.4.1 Previous Results

Consider a P −K −∆− interconnection structure (see Sec. 2.3.1) composed of an augmented
plant P , a feedback controller K of order nK , and an uncertainty block ∆ so that robust
performance (RP) is fulfilled, that is,

µ
∆̂
(M(jω)) < 1, ∀ωi ∈ Ω (7.19)

holds where ∆̂ is the uncertainty block used for RP evaluation on the frequency grid Ω =
{ω1, . . . , ωnω}, see Sec. 2.3.1.

The idea followed in [19] is to capture the reduction error of K in terms of an associated
uncertainty ∆K and an appropriate weighting WK . Given that the full-order controller obtains
robust performance, a conservative scalar bound (template) A (ωi)σ (K (jωi)) for the admissible
reduction error is derived. This involves the solution of a µ fitting problem (a skew-µ problem, see
Sec. 2.3.1) at each ωi (refer to [19] for details). Finally, the authors of [19] apply the unweighted
balanced reduction to the controller to find the reduced controller Kred of lowest order nred for
which

‖K −Kred‖∞ ≤ 2

nK∑

j=nred+1

σj < min
ωi∈Ω

A (ωi)σ (K (jωi)) (7.20)

holds, thus guaranteeing RP for the reduced controller in the considered P−K−∆−interconnection
structure.

7.4.2 Extension into an RP-preserving FWBR method

The procedure outlined above is an unweighted balanced reduction of the controller itself, which,
as shown in Sec. 7.3, yields low reduction performance for the controller order reduction problem.
It could be argued that, in a practical control design setting, the a priori guaranteed error bounds
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(which requires the knowledge of the HSVs) are of minor importance because they are typically
not tight and often very conservative, and detailed analysis and validation of reduced controllers
has to be carried out in any case. These reasons justify the investigation of reduction methods
such as FWBR formulations also if they cannot provide guaranteed error bounds.

In the following, the controller perturbation bound A (ωi)σ (K (jωi)) > 0 ∀ωi ∈ Ω from [19]
will be utilized to obtain one- and two-sided scalar weighting functions for RP-preserving FWBR
as follows:

• Written frequency-wise, the perturbation bound guaranteeing RP (evaluated with respect
to the sufficiently fine frequency gridding Ω) reads

σ (K(jωi)−Kred(jωi)) < A (ωi)σ (K (jωi)) ∀ωi ∈ Ω. (7.21)

• By dividing at each ωi by the right-hand side of the inequality one obtains

1

A (ωi) σ (K (jωi))︸ ︷︷ ︸
ŵ(ωi)

σ (K(jωi)−Kred(jωi)) < 1 ∀ωi ∈ Ω, (7.22)

where the constant right-hand side is equal to 1 for each ωi.

• A scalar stable, minimum-phase, and bi-proper frequency-domain weighting functionW (s)
is fitted to ŵ(ωi). Under the condition that σ (W (jω))σ (K(jω)−Kred(jω)) < 1 for all
ω ∈ R, the frequency-weighted H∞ norm condition

‖W (K −Kred)‖∞ < 1 (7.23)

follows which allows to identify the one-sided FWBR weight as W (s) by inspection. Since
the weight is scalar, no difference arises whether it is used as input or output weighting.

Remark: It is also possible to obtain two-sided weightings by fitting Wout(s) = Win(s) to√
ŵ(ωi), but numeric studies (see Sec. 7.5) show that the FWBR problem does not produce

better results and numeric conditioning may be worse than in the one-sided case.

7.5 Case Study: RP-Preserving Controller Order Reduction

To test the robust controller reduction performance, the publicly available control design example
from the textbook [143, pp. 330–335], a DK-iteration design for a (2 × 2) distillation plant
model, is utilized. Although automatic DK-iterations do not achieve RP, a manually optimized
controller with D-scalings was found in [91] (see [143] for its design parameters) which just
attains RP with an RP µ value of µ∗RP = 0.974. The values of µ are flat and close to the
maximum value across a large region of the considered frequency range. The augmented plant
order is 6, the controller is of order nK = 16. Although this controller complexity is reasonably
low for actual implementation, this well-known example provides a challenging RP problem and
is thus believed to be well-suited to demonstrate the effectiveness of the RP-preserving controller
order reduction procedure.

Frequency weightings for both, the NP-preserving (disregarding the modeled uncertainty)
and the RP-preserving FWBR methods are derived. For the µ analysis steps in the RP-
preserving FWBR weight computation, the same frequency gridding as in the textbook control
design is utilized (61 logarithmically-spaced points from 10−3 to 103 rad/s). The minimum-phase
weighting functions were found by a fitting procedure known as log-Chebychev magnitude design
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(MATLABR© command fitmagfrd, see [12]), yielding a one-sided weighting function of order
17 and, for comparison, two-sided weighting functions of order 19 each.

Robust performance preservation is evaluated for all dynamic orders nred = 1, . . . , nK of the
reduced controller by a RP µ analysis. For each reduction method, both, the truncation and
the residualization variants are tested. Additionally, the RP-preserving FWBR method is tested
both with one-sided and two-sided weightings. At each nred and for each reduction method, the
lowest value of µRP is plotted in Fig. 7.4. While no noticeable differences occur for controller
orders down to 10 (particularly no deterioration of µRP), further reduction shows differences:
The lowest controller orders which fulfill RP are 10 for the unweighted balanced reduction, 8 for
the NP-preserving FWBR, and 7 for the RP-preserving FWBR. With a controller order as low
as 6, the RP- and NP-FWBR methods yield controllers which slightly violate RP (µRP = 1.02
respectively 1.05), whereas the unweighted balanced reduction yields a significantly larger value
of µRP = 1.39.

Further analysis shows no clear advantages of the two- or the one-sided weighted cases of
the RP-preserving FWBR; the same applies to choice between truncation and residualization.
Testing all combinations to obtain optimal results is thus advisable. Note that, having obtained
the error bound it is computationally usually less expensive to carry out weight fitting and
the FWBR procedure itself than to perform the subsequent high validations which involve a µ
analysis for each produced controller.



Chapter 8

Gain Scheduling & Linear System
Interpolation Studies

Gain scheduling concepts are defined in various ways [122]. The main task, however, is to find
and realize a nonlinear control law which exploits system parameter information for a nonlinear
system if a single (robust) linear controller cannot provide satisfactory stability or performance
at the nonlinear plant. Gain scheduling allows to use linear control design tools to obtain finally
a parametrized nonlinear control law with the aim to provide superior stability and performance
over large system operation ranges.

One central task in many gain-scheduling design methods is the interpolation of linear
parameter-dependent system dynamics to obtain the final controller realization. This can be
eased by exploiting structure wherever possible. One such case is LFR-based scheduling of
compensators in an observer-based representation (see Appendix Chap.B). However, typically
this is only possible for a part of the system dynamics. The remaining dynamics must be in-
terpolated by generic methods such that closed-loop stability (and performance) is maintained.
Various onsets for the interpolation of specific linear system representations have been studied
in the literature, but these most often cannot guarantee stability or performance of the closed
loop. It is thus of interest to study interpolation methods and their properties for unstructured
dynamics which is addressed herein.

This chapter is structured as follows: In Sec. 8.1 an overview of gain-scheduling onsets and
interpolation methods for linear systems is given. Section 8.2 presents the LFR-based scheduling
of controllers in observer-based representations and demonstrates the need of stability-preserving
system interpolation methods. In Sec. 8.3, two well-known interpolation methods which are
based on specific canonical state-space representations are analyzed in their stability properties,
and stability results are established. Section 8.4 presents first results on a novel interpolation
method, based on Geometric Algebra concepts and modal interpolation. This method preserves
stability and exploits the system structure in a clear geometric fashion. An academic example is
given in Sec. 8.5 in which the novel approach produces surprisingly good results. Finally, Sec. 8.6
discusses and compares the studied interpolation methods and gives an outlook.

8.1 Overview

8.1.1 Gain Scheduling

Gain scheduling of control laws has a long history in control engineering. Comprehensive sur-
veys are given in [122] and [81]. Today, two important groups of methods are the so-called
linearization-based scheduling and the LPV (linear parameter-varying) system approaches. The
first treats the system

121
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ẋ = F (x,u,θ) (8.1)

y = G (x,u)

via families of equilibrium or off-equilibrium linearizations. For these model families, con-
trollers are designed and/or defined via interpolation, and the controller corresponding to the
value of the scheduling parameter signal θ(t) is utilized.

In contrast, LPV approaches use a more implicit representation of the system’s parameter
dependency. LPV-based control design directly yields a parametrized controller (which is also an
LPV system). While these approaches have strong analytical results with respect to performance
and stability, the existing onsets (involving large LMI problems) do not scale well with the design
plant order. This can render direct LPV design computationally infeasible as the number of
relevant states grows, for example in structure control problems with many modes. Applications
of LPV structure / flight control can be found in [168] and most recently in [157].

One common representation of an LPV system parametrization, if the dependency of the
state-space matrices on the parameters is polynomial or rational, is obtained as a Linear Frac-
tional Representation (LFR). This structure is equivalent to a parametric uncertainty descrip-
tion (see Sec. 2.3.2) in which the ∆-block is real-valued and diagonal and contains the (typically
repeated) normalized system parameters.

If a plant parametrization is available as LFR during operation, the so-called LFR-based
scheduling onset can be utilized for gain-scheduled control of controllers in observer-based real-
ization (see Sec. B.3). In [151], this scheduling onset is realized for the scheduled control of a
flexible aircraft. The design of such controllers can coarsely be categorized into four steps:

• First, a parametrized design model must be obtained as LFR.

• Then, controllers are designed at numerous design points, and these controllers are trans-
formed to a mutually compatible OBR.

• The scheduled controller is implemented by utilizing the parametrized plant matrices to
construct the observer part and interpolation of the observer gain, the state feedback gain,
and the Youla parameter, see Sec. B.3.

• Stability of the scheduled controller is tested in high-fidelity validation simulations.

The key issue lies in the last two steps: If stability cannot be achieved, it is not immediately
clear how to repair the design. To prevent this, it is of interest to perform the scheduling such
that closed-loop stability is preserved. Thereby, stability is assumed in the design grid points as
direct result of the control designs.

8.1.2 Linear System Interpolation

Local linear models are a versatile structure to model non-linear / parameter-varying systems.
However, a meaningful interpolation between the individual models is not a trivial task. Given
a set of LTI state space models (“grid models”) at known parameter grid points, linear system
interpolation aims to generate systems with meaningful dynamics at parameter values between
these parameter values.

The need for interpolation of linear system dynamics is also relevant in data-based modeling
of non-linear parametric systems. Local linear models are a natural onset for black-box models
of non-linear processes. Suitable interpolation laws attempt to obtain a parametrized global
model with a large validity region. Local linear model networks (LLMNs), Takagi-Sugeno fuzzy
models, or radial basis function networks are well-known implementations of this idea, see [102]
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for details. In control, interpolation (system parametrization) arises in two major control dis-
ciplines: robust control and gain-scheduled control. Typically, the plant parametrization is put
under a Linear Fractional Representation (LFR) [143]. Efficient LFR modeling from LTI grid
models or from complex analytic relations is thus relevant for control design and validation, see
[111] and [29]. Scheduled control laws aim to utilize online parameter information to improve
control performance. The works [81] and [122] are two well-known surveys on gain scheduling
technology. Recently, various approaches to linear systems interpolation, often in the context
of linear parameter-varying (LPV)/LFR modeling and identification, have been published: [15]
surveys analytic and data-based modeling approaches of LPV/LFR system architectures and
proposes to exploit their synergies. Application-oriented works utilize specific system interpo-
lation approaches: the modal form is utilized in [121], a re-scaled companion form is utilized in
[29].

Other interpolation approaches are given in [104] (interpolating the zero-pole-gain form which
can be seen as a modal interpolation onset); [72] (interpolation in balanced representation) and
[87] (a balanced subspace approach); a framework for parametric order reduction of large-scale
systems is provided in [108]. Hence, many contributions on system interpolation report on meth-
ods which are either based on ad-hoc principles or specifically tailored to certain applications.

8.2 LFR-based Scheduling of Compensators in Observer-based

Representation

The observer-based state-space representation (OBR) of compensators is detailed in Sec. B.3 and
useful both in convex control design (see Sec. 3.6.3) and in obtaining a gain-scheduled controller.
Given such compensator in OBR as well as a plant model parametrized in LFR form, a widely-
applied scheduling variant can be constructed as shown in the following. For results of a flight
control design and this form of controller scheduling, see [151].

8.2.1 Interpolation of Full- and Augmented-Order Compensators

For a number of k design points (plant operating points or parameter cases) indexed by j ∈
{1, . . . , k}, let a full- or augmented-order compensator Kj for each j (each of the same order
nK ≥ n) be given in OBR. Each Kj is realized by the observer part which itself consists of
the observer gain K f,j and the plant state space matrices Aj ,Bj ,Cj,Dj, as well as the state

feedback gain Kc,j and a Youla parameter Qj =

[
AQ,j BQ,j

CQ,j DQ,j

]
of order nK − n.

Now assume that a sufficiently accurate LFR parametrization P LFR = Fu (P ,∆) exists with
P as the nominal plant and∆ as a real diagonal matrix whose entries are the (possibly repeated)
physical parameters of the plant, such that for each parameter matrix∆j corresponding to design
point j, the design plants are (approximately) obtained:

P LFR|∆j
= Fu (P ,∆j) ∼= P j. (8.2)

Then, a scheduled compensator can be realized in OBR by utilizing the parametrized plant
model matrices ALFR(∆),BLFR(∆),CLFR(∆),DLFR(∆) in the observer part. The observer
gain Kf := K f(∆) and the state feedback gain Kc := Kc(∆) are typically obtained by linear
or polynomial matrix interpolation in the parameter space. The same applies to obtaining a
static interpolated Youla parameter Q = Q(∆) in the full-order case (n = nK). However, in
the augmented-order case, the Youla parameter is dynamic and its system dynamics must be
suitably interpolated.
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Remarks on Stability

The interpolation procedure above does not guarantee closed-loop stability between the design
points. As seen from Theorem 3.6.2 in Sec. 3.6.3 and from the separation principle in Sec. B.2.1,
for the interpolation of full- and augmented-order compensators, the set of closed-loop poles
(the spectrum of the closed-loop system matrix) is the union of the spectrum of the matrices
A − B2Kc, A −K fC2, and AQ. They all need to be stable to ensure closed-loop stability.
In the interpolated case, for fixed parameter values ∆, it must thus be ensured that A(∆) −
B2(∆)Kc(∆), A(∆)−Kf(∆)C2(∆), and AQ(∆) are all stable, given that this is fulfilled by
design at ∆ = ∆j , j ∈ {1, . . . , k}. In this work the stability conditions for the first two matrix
expressions are not studied in more depth, but it is evident that also the interpolation of the
Youla parameter must be stable. This justifies the study of the stability properties of generic
interpolation methods in the following.

The case of reduced-order compensators in OBR cannot be represented in the form above.
Instead, the observer dynamics must itself be considered a dynamic system which must be
interpolated under the constraint of providing sufficient closed-loop stability and performance
properties.

8.3 Stability Properties of Classic System Interpolation Meth-

ods

While low-order control laws can often be satisfactorily scheduled in a heuristical ad-hoc manner,
this does not extend to complex controllers of high dynamic order. Then, structured approaches
such as the observer-based representation of full- and augmented-plant order controllers can
be utilized. However, while the latter approach allows to exploit a known or modeled plant
parametrization, the remaining dynamics, in particular if dynamic Youla parameters are present,
still need to be interpolated without further structure.

8.3.1 Problem statement

Let a general, non-linear, parameter-dependent state space system be given as:

ẋNL = f(xNL,ρNL,uNL), yNL = g(xNL,ρNL,uNL). (8.3)

The system has n states (xNL ∈ Rn), m parameters (ρNL ∈ Rm), r inputs (uNL ∈ Rr), and p
outputs (yNL ∈ Rp). The vector functions f : Rn×m×r → Rn and g : Rn×m×r → Rp are both
assumed continuously differentiable.

Furthermore, let a set of k equilibria tuples (xNL,j,ρNL,j ,uNL,j) be stationary points of (8.3).
Linearization of (8.3) at these points for ρNL = ρNL,j = const. yields a set of k LTI systems

ẋj = Ajxj +Bjuj , yj = Cjxj +Djuj, (8.4)

where x, u, and y are the deviation variables associated to their non-linear counterparts. The
matrices Aj , Bj , Cj , and Dj are of compatible dimensions (system-, input-, output-, feed-
through matrices, respectively).

The interpolation problem can be stated as follows: Given a known set of grid models (8.4)
and their parameter values ρNL,j, an interpolated system is sought for a given parameter value
ρNL ∈ Conv

{
ρNL,j

}
(Conv {·} indicates the convex hull of the argument vectors) which is,

ideally speaking, as close as possible to the local linearization of (8.3) at ρNL. However, due
to the lack of structural knowledge on (8.3), this formulation is too general and it is necessary
to resort to generic properties based on eigendynamics or signal- and system-norms on error
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signals. This work focuses on the local stability of the interpolated systems. The grid models
(8.4) actually differ not only in their matrices, but also in their stationary values. This affine
term can affect global stability; however for local stability analysis it can be neglected. Details
in the context of fuzzy systems are given in [28] and references therein. A general matrix
interpolation onset for x = x1 = . . . = xk, u = u1 = . . . = uk, and y = y1 = . . . = yk is given
as:

ẋ =
k∑

j=1

ϕj(ρ)Ajx+
k∑

j=1

ϕj(ρ)Bju, y =
k∑

j=1

ϕj(ρ)Cjx+
k∑

j=1

ϕj(ρ)Dju, (8.5)

where ϕj(ρ) are interpolation weighting functions (activation functions) that satisfy
∑k

j=1 ϕj(ρ) =
1 ∀ρ, 0 ≤ ϕj(ρ) ≤ 1 ∀j,ρ.

For simplicity and clarity, only the case k = 2 with a scalar parameter ρ ∈ [0; 1] is considered
in the following. Linear interpolation of the system dynamics for a given parameter value ρ
results in:

ẋ = ((1 − ρ)A1 + ρA2)x+ ((1− ρ)B1 + ρB2)u, (8.6)

y = ((1 − ρ)C1 + ρC2)x+ ((1− ρ)D1 + ρD2)u. (8.7)

8.3.2 Companion form interpolation

In a recent paper [29], the authors generate a parametrized LFR of a flexible aircraft model
by interpolating a given model grid. They choose to transform all grid models, obtained after
order reduction of FE-based models, to a rescaled companion form and obtain satisfactory and
reasonable results for the given application. The author of [29] points out that no need for mode
assignment (as in modal form interpolation, see below) arises. The (unscaled) companion form
of a fully controllable LTI system is:

ẋ =




0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
. . .

...
0 0 . . . 0 1
−a0 −a1 . . . −an−2 −an−1



x+Bu. (8.8)

The last row in the system matrix contains the coefficients of the monic characteristic polynomial.
Linearly interpolating these state space representations element-wise thus corresponds to linearly
interpolating the coefficients of their characteristic polynomials.

However, even if all grid models are stable, the interpolated plant is not necessarily stable.
A suitable stability test is Bialas’ Theorem [9] as formulated in [2]:
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Figure 8.1: Root locus plots of the interpolated 3rd-order systems (8.12)–(8.13) with companion
form interpolation (left) and modal form interpolation (right ; blue: matching pole structure -
stability guaranteed, red dashed: pole structure mismatch).

Theorem 8.3.1: Bialas [9]

Let H1, H2 be the Hurwitz matrices of

p1(s) = a0 + a1s+ a2s
2 + . . . + ans

n, an > 0, (8.9)

p2(s) = b0 + b1s+ b2s
2 + . . .+ bns

n, bn > 0, (8.10)

respectively. The polynomial family

P (s, ρ) = {(1− ρ)p1(s) + ρp2(s)|ρ ∈ [0; 1]} (8.11)

is stable if and only if:

1. p1(s) is stable, and

2. the matrix (H1)
−1H2 has no non-positive real eigenvalues.

Proofs of this theorem are given in [9] and [2].

Already the interpolation of stable systems of order 3 can lead to unstable results. When
choosing, for example, the two stable polynomials

p1(s) = 18000 + 1000s + 20s2 + s3, (8.12)

p2(s) = 100 + 20s + 10s2 + s3, (8.13)

condition 2 in Theorem 8.3.1 is violated ((H1)
−1H2 has 2 non-positive real eigenvalues) and the

interpolation leads to unstable systems for ρ ∈ [0.207; 0.987], see the root locus plot in Fig. 8.1
(left).
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8.3.3 Modal form interpolation

Let a grid model (index j) be given in the real block-diagonal modal form [39]

ẋ =




diag(λj,r,1...nr) 0

0

Aj,m,1 0 . . . 0
0 Aj,m,2 . . . 0
...

. . .
...

0 . . . 0 Aj,m,nc



x+Bju (8.14)

with nr real eigenvalues and nc complex-conjugate eigenvalue pairs. The (2 × 2)-blocks Aj,m,i

for each complex-conjugate mode i = 1, . . . , nc are:

Aj,m,i =

[
ℜ{λj,i} ℑ{λj,i}
−ℑ{λj,i} ℜ{λj,i}

]
. (8.15)

This form can be established if a full-rank basis of eigenvectors can be obtained, which is fulfilled
for systems with only distinct eigenvalues. The system matrix is first diagonalized via a similarity
transformation with this eigenvector matrix and subsequently transformed to the form (8.14).

Under the prerequisite that all grid models are compatible in the structure of their eigen-
modes, i.e., that all have the same number of real and complex-conjugate poles, the element-wise
linear interpolation (8.6) within a set of grid models in the modal form (8.14) thus leads to linear
interpolation of their eigenvalue locii in the complex plane, see Fig. 8.1 (right).

Theorem 8.3.2: Pole locations in structure-matched modal interpolation

Given a set of systems in real block-diagonal form with system matrices Aj , j = 1, . . . , k
partitioned as in (8.14). Let P = Conv{λj,r,ir, λj,c,ic , λj,c,ic} (j = 1, . . . , k, ir = 1, . . . , nr,
ic = 1, . . . , nc) be the convex hull over all real and complex eigenvalues of the model grid
in the complex plane. Then, all interpolated system matrices resulting from (8.5) have
eigenvalues inside P.

Proof: The preserved structure across all plants allows to view the interpolation task mode-
wise. Due to the structure ofAj,m,i as in (8.15) and the constraints on ϕj in (8.5), the eigenvalues

of the convex combination
∑k

j=1 ϕj(ρ)Aj,m,i always lie within the convex hull Pi of the eigen-
values of Aj,m,i, j = 1, . . . , k. The convex hull P by definition spans all regions Pi, i = 1, . . . , nc.
The same argument holds for real modes by replacingAj,m,i by the real scalar λj,r,i, i = 1, . . . , nr.

Corollary 1 (Stability preservation). Let (the convex hull of) all poles P of a system set in The-
orem 8.3.2 lie in the left half plane. Then the structure-matched mode-wise modal interpolation
yields a stable LTI system.

Remark 1. Analogous results to 1 hold for convex restricted stability regions and for discrete-
time plants.

Mode assignment

The central prerequisite of the modal interpolation onset is mode structure compatibility: The
number of real and complex-conjugate poles must be the same for all parameter cases to apply
Theorem 8.3.2. Multiple poles and the transition from real poles to complex-conjugate pairs or
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vice versa requires special treatment and is subject of further studies. Moreover, pole-matching
must be carried out explicitly through sorting. This is in fact an increased design freedom, and
one particular choice is given by the companion form interpolation. Mode correspondence can
be obtained by pole tracking algorithms [109] or by similarity measures of eigenvectors, input-,
or output-directions [93].

8.4 Geometric Algebra Interpolation

In order to introduce structural properties into the system description and to exploit them for
interpolation, one can resort to formal mathematical methods. Choosing to apply generalized
ideas of geometry, using Geometric Algebra, introduces strong structural properties into the
problem and may be advantageous for interpolation. Geometric Algebra (GA) is closely related
to Clifford algebra [65] and is widely applied in (astro-)physics, quantum mechanics, computer
graphics and robotics. It enables to handle geometry relations in a coordinate-free way.

8.4.1 Basic Idea

The basic idea is to view a linear dynamic state-space system (more exact: its eigendynamics) as
a linear mapping f : Rn 7→ Rn. The associated state space Z ⊂ Rn is a linear space over which a
geometric algebra can be defined. For example, for each complex-conjugate pair of eigenvalues,
their eigenvectors can be seen as basis that spans a two-dimensional subspace Z2 ⊂ Z, and one
interpretation is that they thereby span an oscillating plane for the associated eigendynamics.

Given two systems S1, S2 (between which to interpolate), each with a complex-conjugate
pair of eigenvalues λ1+ = a + bj, λ1− = a − bj, λ2+ = c + dj, λ2− = c − dj and their associated
eigenvectors v1+,v1−,v2+,v2−, a modal interpolation strategy is to smoothly parameterize the
posture and orientation of the oscillatory plane. Usual subspace computations do not include
information about orientation (since any eigenvector is defined up to a scalar real nonzero factor).
However, using formal geometric algebra representations, this information – being intrinsic to
the algebra itself – is available and can be exploited.

8.4.2 Interpolation of the System Matrix

Given grid models in their original state space representations (8.4), an interpolated system for
a given parameter ρ is computed as follows [150]:

1. Establish the modal form of the grid models, perform pole matching. Let Aj = T jΛjT
−1
j

be a pole-matched eigendecomposition where T j ∈ Cn×n is the complex, full-rank, column-
wise eigenvector matrix of Aj and Λj the associated diagonal matrix of eigenvalues.

2. Formulate each mode’s eigenvectors as GA objects (vectors, bivectors [150]): Specifically,
the eigenvector pair tj,c,i = uj ± jvj (columns of T j) of the ith complex-conjugate mode
λj,c,i, λj,c,i has the real-valued representation uj,vj. These vectors span the mode’s oscil-
lation plane which is represented in GA as a bivector uj ∧ vj (constructed by the outer
product ∧ of both vectors).

3. Perform geometric interpolation by scaling and rotation operations: the attitude, orienta-
tion, and magnitudes of the GA objects are interpolated. For two systems j ∈ {1, 2} and
the interpolation parameter ρ ∈ [0; 1], the interpolated eigenvector of each real mode is
obtained by linear interpolation: tint,r,i = (1−ρ)t1,r,i+ρt2,r,i. For each complex-conjugate
mode, the interpolated oscillation plane (bivector) is obtained by

Bint(ρ) = (1− ρ)u1 ∧ v1 + ρu2 ∧ v2. (8.16)
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The attitude of the concrete interpolated vector uint(ρ) is obtained by asserting that it
lies both on the interpolated oscillatory plane Bint(ρ) and on the plane spanned by u1,u2.
This can be expressed in various ways:

uint(ρ) = α meet(u1 ∧ u2, Bint(ρ)) (8.17)

via the meet operator which intersects the argument subspaces and a real scalar α. If u1

and u2 are not co-linear, the following outer product expressions both hold:

uint(ρ) ∧ (u1 ∧ u2) = 0 and uint(ρ) ∧Bint(ρ) = 0. (8.18)

Alternatively, uint(ρ) can be expressed via a scaled rotation which provides the advantage
of preserved orientation:

uint(ρ) = ruint
R

u1

|u1|
R−1, R = exp

(
− u1 ∧ u2

|u1 ∧ u2|
θuρ

2

)
, cos θu =

u1 · u2

|u1||u2|
. (8.19)

The interpolated vector’s length ruint
is chosen to be interpolated between the lengths of

u1 and u2:
ruint

= |uint| = (1− ρ)|u1|+ ρ|u2|. (8.20)

The vector vint is computed analogously.

4. Construct the interpolated eigenvalue matrix T int(ρ) mode-wise. The complex-conjugate
pairs of eigenvectors are

[tint,c,i,1, tint,c,i,2] (ρ) = [uint + jvint,uint − jvint] (ρ). (8.21)

5. Define the interpolated eigenvalue matrix Λint(ρ) via linear interpolation:

Λint(ρ) = (1− ρ)Λ1 + ρΛ2 (8.22)

6. Generate the interpolated system matrix in original coordinates:

Aint(ρ) = T int(ρ)Λint(ρ) (T int(ρ))
−1 . (8.23)

This algorithm can directly be implemented for systems up to order 3 via the MATLABR© Gable
toolbox [22]. Fig. 8.2 illustrates the interpolation of an oscillatory eigenplane (eigenbivector).
Note that the orientation of the rotation is preserved as an inherent feature of the GA represen-
tation. Numeric tools to tackle arbitrary-order systems and multi-parameter interpolation are
subject of future research. Also, the task of obtaining optimal, possibly constrained realizations
of an interpolation of system input and output matrices B and C require further studies.

8.4.3 An onset for the interpolation of the B and C matrices

Several sensible onsets to interpolate the B and C-matrices seem possible:

• One could argue that element-wise matrix interpolation is sensible because the proposed
system matrix interpolation onset yields the system in coordinates that may be interpreted
as original, physical coordinates.

• Alternatively, also along the lines of the original coordinates - argument, one can attempt
to obtain interpolated B and C matrices in the modal coordinates and utilize the trans-
formation obtained by the algorithm at the interpolation parameter value to transform
the resulting matrices back to the coordinates of the final interpolated system.
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B2

Figure 8.2: Geometric Algebra concepts help to interpolate oscillatory modes of systems mean-
ingfully; the orientation information is inherently considered (taken from [150]).

• Other onsets could view the system as a stable coprime factorization and treat its numer-
ator and denominator dynamics both by the interpolation onset presented above for the
system matrix.

The second onset will be detailed in the following. Let the state-space matrices Aj , Bj , Cj,
Dj of system j = 1 corresponding to ρ = 0 and system j = 2 (ρ = 1) and the transformation
matrices to modal form T j be given, such that

Aj,m = T−1
j AjT j (8.24)

Bj,m = T−1
j Bj (8.25)

Cj,m = CjT j (8.26)

Dj,m = Dj (8.27)

yields the modal (or complex-diagonal) forms of the systems. Then, with the matrix T int(ρ)
obtained by the Geometric-Algebra-based system interpolation onset above, the interpolated
input and output matrices according to this interpolation onset are given by

Bint(ρ) = T int(ρ) [(1− ρ)B1,m + ρB2,m] (8.28)

= T int(ρ)
[
(1− ρ)T−1

1 B1 + ρT−1
2 B2

]
(8.29)

Cint(ρ) = [(1− ρ)C1,m + ρC2,m]T
−1
int(ρ) (8.30)

= [(1− ρ)C1T 1 + ρC2T 2]T
−1
int(ρ). (8.31)

8.5 Example

This section gives an academic example to illustrate the effectiveness of modal interpolation.
Consider the two 4th order LTI SISO state-space systemsGa andGb, associated to the parameter
values ρ = 0 and ρ = 1, respectively:
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Ga =




26.7526 6.4234 18.3248 −0.4283 0.6478
−38.5609 −15.1009 −17.0941 1.3578 −0.3176
−32.9193 −4.7152 −26.2832 −0.5044 1.7690
10.2865 1.5569 10.5580 −3.3685 1.5106

0.6737 −0.6691 −0.4003 −0.6718 0.0



, (8.32)

Gb =




78.4360 49.3806 36.1644 −25.4122 0.1640
−66.8822 −45.0610 −22.4980 18.9232 −0.2828
−57.5637 −26.9409 −37.0469 12.7819 1.1522
36.5198 24.4588 20.4721 −19.1281 −1.1465
0.5756 −0.7781 −1.0636 0.5530 0.0



. (8.33)

These plants have poles at the following locations:

λa
T = {−10,−2,−3 + 4j,−3− 4j} , (8.34)

λb
T = {−15,−2.4,−2.7 + 12j,−2.7 − 12j} . (8.35)

The following four interpolation onsets will be compared:

1. direct, element-wise interpolation of the original state-space matrices,

2. controllability-companion-form interpolation,

3. modal interpolation (mode order as in (8.34)–(8.35)) with the Geometric Algebra-based
algorithm and element-wise interpolation of the B and C-matrices, and

4. modal interpolation with the Geometric Algebra-based algorithm and the second onset in
Sec. 8.4.3.

The controllability companion forms of the systems are

Ga,ccf =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
−500 −420 −117 −18 1

3517.5 1090.1 58.317 −1.0741 0



, (8.36)

Gb,ccf =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

−5446.4 −2826.8 −281.25 −22.80 1

16429 3241.2 128.15 −1.545 0



. (8.37)

Figure 8.3 shows the pole paths during the interpolation. The onsets based on element-wise
interpolation and especially the one based on companion-form interpolation show significant
deviations from the linear pole interpolation obtained by the modal onset. Figure 8.4 shows the
resulting DC gains over the interpolation parameter. It can be seen that the modal interpo-
lation approaches, particularly onset 4, yield a DC gain which depends almost linearly on the
interpolation parameter. In contrast, the other approaches deviate significantly. Thereby it is
notable that the companion-form interpolation remains within the DC gain limits of the vertex
plants, whereas the element-wise interpolation leaves this regime quickly and shows strongly
altered behavior.
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Figure 8.3: Interpolation pole paths of 4th order systems in Sec. 8.5
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Figure 8.5: Interpolation step and Bode plots of 4th order systems in Sec. 8.5

Finally, the step and Bode response plots in Fig. 8.5, evaluated for 3 intermediate models
only, illustrate these observations further. It is evident that the step responses of the vertex
plants differ significantly in dominant behavior and DC gain, and a significant phase shift is
seen in the frequency response. The element-wise interpolation (onset 1) yields highly distorted
characteristics both in the time-domain as well as in the frequency domain, especially in terms
of DC gain and phase which is problematic from a control design perspective. Onsets 2 and
3 may be considered acceptable, depending on the application. Their responses almost always
lie within the bounds given by the vertex systems in terms of DC gain, magnitude, and phase.
However, only onset 4 lies within these bounds and interpolates these properties almost linearly
which can be considered beneficial. Finally note that these observations are based on plausibility
in this example. An evaluation (and the related optimization) of an interpolation onset always
depends on the definition of the desired structural properties. Methodologically, this gives rise
to an optimization problem to minimize the deviations of the interpolation results from these
properties, for example from a perfectly linear variation of the DC gain. These considerations
potentially are subject of future research in the area.

8.6 Discussion

Summarizing, many gain scheduling methods need system interpolation to realize the parametrized
control laws. In the case of an LFR-based interpolation of controllers in OBR, the parametrized
plant matrices can be utilized in the observer realization, however, remaining interpolation tasks
are those of the gain matrices and of the Youla parameter. They all need to provide stable in-
terpolated systems or system matrices, so it is of interest to study the stability properties of
system interpolation onsets.

The companion form interpolation procedure (element-wise interpolation of system matrices
in controllability companion form) merely requires the systems to be fully state controllable and
of the same dynamic order. High-order systems suffer from bad numeric conditioning of the
standard companion form, which can be alleviated by a rescaled variant [29]. In the unscaled
case, the companion form interpolation is equivalent to interpolating the characteristic polyno-
mial coefficients. Stability cannot be guaranteed in general and a suitable stability criterion is
given in Sec. 8.3.2. Its main relative advantage over the modal interpolation approach is im-
plicit handling of multiple poles. Finally, note that the user cannot influence the parametrized
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paths of the eigenmodes that are realized by the interpolation. Instead, one particular mode
correspondence results from the formulation which may be unsuitable if interpolation stability
fails.

The modal form interpolation operates in a mode-wise fashion. This requires the systems
to be diagonalizable which is fulfilled if only distinct poles are present. The case of multiple
poles becomes more involved and is not covered here. An additional requirement, besides the
same dynamic order of all grid models, is mode compatibility: the same number of real- and of
complex-conjugate poles are required for all grid models here. The transition across break-in
or break-away points requires additional assumptions and case distinctions, which is a limita-
tion of the modal approach. On the other hand, due to direct control on pole locations, the
modal interpolation procedure provides stability guarantees that other approaches cannot, see
Theorem 8.3.2. The correspondence of poles between grid models must be established explicitly
through eigenvalue ordering. Contrary to the view in [29] it can be argued that this provides
increased flexibility in the design of the interpolation.

Finally, the presented Geometric Algebra (GA)-based interpolation approach can be viewed
as an extension to the modal interpolation approach. Thus it faces the same requirements and
limitations, but also the advantages, in particular the stability property, of the modal approach.
Additionally, the GA-based interpolation retains the original system coordinates and operates
on its eigenstructure through geometric formalisms. This approach is subject of current and
future research; first results on low-order systems are encouraging [150] and show the potential
to optimally exploit geometric information in the grid models.

In conclusion, the interpolation of linear-dynamic grid models is generally not unique and var-
ious approaches exist. Here, three such approaches have been reviewed, discussed, and assessed,
specifically in terms of stability of the interpolated system: The companion form interpolation
corresponds to characteristic polynomial coefficient interpolation. The modal form interpolation
interpolates the grid models mode-wise and provides interesting stability guarantees. Geometric
Algebra interpolation is a novel extension to modal interpolation. The latter provides meaning-
ful interpolation of the systems in its original coordinates using geometric relations. First results
are promising, however, numeric tools and theoretical aspects are subject of future research.



Chapter 9

Summary and Outlook

9.1 Summary of the Results and Contributions

This work presents some central challenges of modern complex multivariable control designs in
the field of flight control design for large flexible passenger aircraft. Novel contributions are
developed in four key areas: convex control design, design parameter optimization, controller
order reduction, and system interpolation. These are preceded by a comprehensive introduction
of fundamental modeling, optimization, and robust control concepts as well as the state of the
art in optimal and robust control design methods (Chapters 1–3).

The novel formulations are applied in numerous case studies which mainly address design
tasks in the lateral control design of integrated flight control laws for a large, flexible BWB
passenger aircraft. The corresponding aircraft models are introduced in Chap. 4, followed by the
core chapters which detail the novel findings:

9.1.1 Extensions to Convex Control Design

Chapter 5 reports on the development of a novel, high-level optimization framework to formu-
late and carry out convex control design tasks in MATLABR©. Time- and frequency-domain
objectives and constraints as well as tools for both feedback and feed-forward control design are
implemented. Effective heuristic algorithms for an efficient, adaptive formulation of large-scale
problems are developed. The framework’s object-oriented structure is discussed and detailed in
Appendix Chap.D.

The problem of strong stabilization, that is to obtain a stable and stabilizing feedback con-
troller, is reviewed in the present context of convex control design. Suitable convex constraints
which approximate the originally non-convex strong stabilization constraint are discussed and
formulated. Finally, a convex feedback control design of the integrated lateral flight control for
the considered BWB aircraft is carried out successfully.

Next, an onset to perform robust scheduled feed-forward control design with multiple models
is investigated. A second case study shows the maneuver load alleviation potential of such design
for the BWB aircraft. The successful completion of these demanding, high-dimensional case
studies clearly demonstrates the efficiency and performance of the developed methods and the
optimization framework as a design tool.

9.1.2 Design Parameter Optimization

In a more general context, a design parameter optimization framework is designed and imple-
mented in Chap. 6. The idea is to automate the tedious parameter tuning of complex control
design tasks based on the fulfillment of control goals in validation results. A genetic algorithm
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is utilized to perform the actual optimization, whereas the evaluation of its fitness function
includes the automated control design, validation, and goal attainment evaluation steps.

In two case studies, this onset is applied to optimize control designs for the BWB aircraft as
well as for a conventional flexible aircraft (which is taken from [162]). The proposed methodology
enables the engineer to efficiently test numerous design variants. Also, it becomes possible to
address specifications which otherwise cannot directly be incorporated in the utilized design
methods, for example time-domain specifications in H∞-based control design.

9.1.3 Controller Order Reduction

The important task of reducing control law complexity is addressed in Chap. 7. Frequency-
weighted balanced state reduction forms the basis for two novel formulations for controller order
reduction. Firstly, a formulation is found which preserves nominal performance in the standard
robust control feedback interconnection architecture by a variational derivation. Secondly, a
recent result for robust controller order reduction is extended to the frequency-weighted case.
Both novel methods show significantly improved reduction performance over the unweighted
balanced reduction method at a flight control case study and at a publicly available robust
control example taken from literature.

9.1.4 A Novel System Interpolation Onset

Chapter 8 focuses on control law scheduling, specifically on the interpolation of linear-dynamic
systems. Motivated by LFR-based scheduling onsets, several methods for the interpolation of
linear dynamic systems are reviewed with respect to their stability-preserving properties. Sta-
bility results for interpolation of systems in controllability companion form as well as in modal
form are established. Moreover, a novel modal state-space interpolation method is sketched
which exploits Geometric Algebra concepts to consistently treat geometric relations in the in-
terpolation onset. A nontrivial academic example shows promising results for the latter onset,
however further investigations and developments are necessary to explore its potential.

9.1.5 Results: Lateral Control for Large Flexible BWB Aircraft

In this thesis, various control design onsets for lateral control have been investigated at the
considered model of a large flexible BWB passenger aircraft. An integrated BWB aircraft
model including its rigid-body flight mechanics and flexible dynamics as well as their aeroelastic
coupling formed the starting point for these investigations.

Based on the aircraft model preconditioned by a low-order initial controller which performs
partial eigenstructure assignment, Sec. 5.3 shows the design of an optimized feedback controller
by convex control design. Time-domain and frequency-domain constraints and objectives are
considered and a stable controller could be obtained via the proposed technique to approximate
this non-convex constraint by a convex one. The design results in a stable controller which pre-
serves favorable properties of the initial control law (decoupling, rigid-body dynamics response
shaping) while improving disturbance rejection and decoupling properties.

Building on these results, a robust, scheduled feed-forward reference command shaper is de-
signed with the same convex control methodology in Sec. 5.5. Again, time-domain and frequency-
domain constraints and objectives have directly been considered, thus ensuring that the aircraft
response satisfies tight time-domain specifications in all considered parameter cases. The op-
timization’s main objective, however, was the minimization of structural loads in the aircraft
due to reference roll maneuvers. Two feed-forward architectures, both in a non-scheduled and
in a scheduled setting (on the fuel filling parameter) have been compared. Compared to static
decoupling with feedback control only, the loads reduction is significant for all considered design
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variants. Moreover, the benefit of scheduling for the fuel filling parameter turned out to be
significant.

In Sec. 6.4, the developed design parameter optimization framework is utilized to optimize
a different lateral feedback control law design onset for the BWB aircraft. The control law is
constructed following a multi-loop control architecture from a robust inner loop and PI SISO
control loops. The design parameters to be optimized include both parameters of the weighting
functions in the robust design task as well as the PI controller parameters. Although not all
of the stringent control specifications can be fulfilled eventually in the followed one-degree-of-
freedom setting, the case study shows significant improvement in difficult time-domain goals
compared to a reasonably-tuned manual design.

9.2 An Outlook on Potential Future Research

The development of the listed contributions unveiled several issues and ideas which, from the
author’s point of view, deserve attention in future research:

Multi-model Youla parametrization The Youla parametrization (see Sec. 3.6.3) is formu-
lated with respect to a nominal plant which prevents the use of direct multi-model onsets in
convex feedback design. However, if perturbations of the plant or of the controller from an
initial point are small, first-order approximations are valid and can robustify and optimize
the convex design while retaining all its advantages. Tests of a robustified optimization of
time-domain objectives has shown to work well for moderate plant perturbations.

Strong Stabilization Problem as BMI problem An alternative to approximate the strong
stabilization constraint is to solve the resulting BMI problem directly using recent dedi-
cated BMI solvers (see the related discussion in Sec. 5.2.2). However, an efficient formula-
tion and the numeric properties and complexity of this onset needs to be investigated.

Q− µ−synthesis with Adaptive Constraint Refinement The Q−µ−synthesis algorithm
in Sec. 3.6.6 (and variants of it) can directly be implemented in the developed control
design framework. Moreover, the adaptive constraint refinement procedure bears high
potential to efficiently solve this robust control design problem.

FWBR with SVD-based direction exploitation in weighting preparation The utiliza-
tion of multivariable frequency weightings in FWBR is expected to further improve reduc-
tion performance, see Sec. 7.2. Moreover, the performance of the FWBR approach should
be compared to that of other frequency-weighted reduction approaches, such as frequency-
weighted Hankel approximation [49].

Optimal Geometric Algebra-interpolation of B and C matrices As denoted in Sec. 8.4.3,
optimality criteria need to be defined to investigate and optimize interpolation laws with
respect to these criteria.

Mode Matching / Tracking in Modal Interpolation Methods The tasks of mode match-
ing between different plant linearizations and, ultimately, that of relating physically corre-
sponding modes across parameter variation, require physical insight. However, supporting
tools for semi-automated mode tracking are needed to perform this matching efficiently.
For one onset which tracks the pole motion from open to closed loop in an element-wise
matrix interpolation by a continuation-based method, see [109].

Closed-loop Interpolation Stability Criteria As outlined in Sec. 8.2.1 in the case of an
LFR-based interpolation of compensators in OBR, for a stable interpolated closed loop
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the interpolated Youla parameter and two additional matrix interpolation expressions need
to be stable. If their stability can be guaranteed a priori, scheduling laws of this type can
guarantee closed-loop stability.



Part III

Appendices
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Appendix A

Selected Linear Algebra Concepts
and Tools

A.1 Vector and Function Spaces

Vector and matrix calculus are fundamental requirements in systems theory and, in particular,
in control theory. In the following several formal definitions of useful terms are given. The
reader is referred to graduate textbooks such as [120] for a thorough treatment of various linear
algebra topics. For a well-readable undergraduate text with a novel perspective, covering both
standard linear algebra and geometric algebra fundamentals, refer to [92].

Definition A.1.1: Field

A field F is a set F , together with an addition + and a multiplication · operation,
such that F := 〈F ,+, ·〉 is a commutative group and the following axioms hold for all
a, b, c ∈ F:

F1.: a+ b ∈ F, a · b ∈ F Closure
F2.: a+(b+c) = (a+b)+c, a·(b·c) = (a·b)·c Associativity
F3.: a+ b = b+ a, a · b = b · a Commutativity
F4.1: ∃0 ∈ F : 0 + a = a Additive identity (0 is called the

null element)
F4.2: ∃1 ∈ F : 1 · a = a Multiplicative identity (1 is

called the one element)
F5.1: ∃(−a) : a+ (−a) = 0 Additive inverse
F5.2: ∀a ∈ F\{0} : ∃

(
a−1
)
: a ·

(
a−1
)
= 1 Multiplicative inverse

F6.: a · (b+ c) = a · b+ a · c Distributivity of multiplication
over addition
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Example A.1.1: Common fields

Commonly used fields are the field of real numbers, denoted R, and the field of complex numbers
C with their usual addition and multiplication definitions. All axiomatic properties given above are
satisfied as one can directly verify. Also, the set of rational numbers Q with usual addition and
multiplication is a field.

Definition A.1.2: Vector space

A vector space V is a set or collection of objects called vectors (based on Def. 2.1
in [92]). Two fundamental operations are defined on V : the scalar multiplication av
and the vector addition v +w. There exist a zero vector denoted by 0 ∈ V (additive
identity) and a scalar multiplicative identity denoted by 1. The following defining
axioms must hold for all vectors u,v,w ∈ V and all scalars a, b ∈ F (here, mainly real
and complex vector spaces are considered, F = R or F = C, respectively):

V1.: av ∈ V ,v +w ∈ V Closedness under scalar multiplication
and vector addition

V2.: v +w = w + v Vector addition is commutative
V3.: (u+ v) +w = u+ (v +w) Vector addition is associative
V4.: v + 0 = v 0 is the additive identity
V5.: 0v = 0
V6.: 1v = v 1 is the multiplicative identity
V7.: a(bv) = (ab)v
V8.: a(v +w) = av + aw Scalar multiplication distributes over vec-

tor addition
V9.: (a+ b)v = av + bv

Example A.1.2: Common vector spaces

Commonly used vector spaces are the n-vector space over the real numbers, Rn =
{x : xi ∈ R, i = 1, . . . , n} or over the complex numbers Cn. Also the set of polynomial functions
f(x) = r0 + r1x + . . . + rnx

n with r0, . . . , rn ∈ F, also called the polynomial ring F [x] can be inter-
preted as a vector space over Fn whose elements are the parameter vectors r ∈ Fn. There also exist
infinite-dimensional vector spaces which arise particularly in the form of topological vector spaces
such as Banach or Hilbert spaces (see [174] for some of their properties and their linkage to signal and
system norms).

Definition A.1.3: Subspace

Let U be a set of vectors in a vector space V . If U , together with the same scalar
multiplication and vector addition operations as V , is a vector space itself (that is, if all
axioms V1-V9 in Def. A.1.2 hold for U ), then U is a subspace of V .[92]
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A.2 Some Matrix Properties

Definition A.2.1: Range, Null Space & Rank

The Range range(A) of an (m× n)-matrix A is defined by

range(A) = {y ∈ Rm : y = Ax for some x ∈ Rn} , (A.1)

the Null space null(A) of a matrix A is defined by

null(A) = {x ∈ Rn : Ax = 0} . (A.2)

For the column partitioning A = [a1, . . . ,an],

range(A) = span {a1, . . . ,an} (A.3)

holds. The rank of A is defined by

rank(A) = dim(range(A)). (A.4)

Important properties are rank(A) = rank(AT) and dim(null(A)) + rank(A) = n.[44]

Definition A.2.2: Orthogonal matrices

A real matrix Q ∈ R(n×n) is called an orthogonal matrix if it fulfills QTQ = QQT = In,
where (·)T denotes the matrix transpose.

Definition A.2.3: Unitary matrices

A complex matrix Q ∈ C(n×n) is called a unitary matrix if it fulfills QHQ = QQH = In,
where (·)H denotes the Hermitian (complex-conjugate) matrix transpose.

Unitary matrices over the complex field correspond to orthogonal matrices over the real
field. Moreover, a transformation by an orthogonal or unitary matrix preserves the 2-norm (see
Def. A.4.2 and (A.12)).
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A.3 Singular Value Decomposition (SVD)

The singular value decomposition (SVD) of a real or complex matrix is one of the most important
matrix factorizations [44]:

Definition A.3.1: Singular Value Decomposition (SVD)

The SVD of an (m× n) real or complex matrix A is

A = UΣV H (A.5)

Σ =





[
Σ1 0

]
if m > n

Σ1 if m = n[
Σ1

0

]
if m < n

, Σ1 =




σ1 0 . . . 0

0 σ2
. . .

...
...

. . .
. . . 0

0 . . . 0 σp



, p = min (m,n)

(A.6)

Thereby, U and V are (m × m) and (n × n) unitary matrices, respectively, and Σ1

is a (p × p) diagonal matrix whose diagonal entries σ1 ≥ . . . ≥ σp ≥ 0 are called the
singular values. The (m× n) matrix Σ is of the same dimensions as A and is obtained
by appropriate stacking of Σ1 with a zero matrix. The corresponding column vectors ui

of U and row vectors vi
H of V H are called (left respectively right) singular vectors.

The SVD is an extremely useful tool in numerical linear algebra because the singular values
σi and the associated singular vectors ui, vi

H condense vital structure information on the matrix.
Some examples and interpretations are given in the following.

Example A.3.1: Lower-rank approximations via SVD

A 2-norm optimal approximation of A of reduced rank k < p can be constructed by truncating
the last p− k singular values and the associated columns in U and rows in V H, respectively [44]. The
reduced-rank matrix Ak (rank(Ak) = k) is obtained by1

Ak = U( : , 1 : k)Σ(1 : k, 1 : k)(V ( : , 1 : k))H, (A.7)

and this matrix fulfills

min
rank(B)=k

‖A−B‖2 = ‖A−Ak‖2 = σk+1 (A.8)

where B is a rank-k matrix.

In the context of linear dynamic systems, a related methodology is the well-known balanced
system reduction to perform order reduction (see Sec. 2.2). The singular values can also be
utilized to define a system’sH∞ norm (see Sec. A.4), and singular value plots (see [143]) represent
a generalization of SISO Bode magnitude plots to the multivariate case.

1The MATLABR© notation for row/column selection of a matrix is utilized: X(1 : 2, 3 : 5) selects rows 1 to 2
and columns 3 to 5 of a matrix X , a single colon : selects the entire corresponding dimension.
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A.4 Norms

Norms are utilized in order to measure the size of an algebraic object. These objects can be
scalars, vectors, matrices, signals in the time- or frequency domains, or linear operators such
as transfer functions. Their norms all have common properties – the defining properties of a
norm. However, a norm’s interpretation varies with the context of the considered object, and
the notation used in literature strongly varies. In this work, the common conventions of [143]
are utilized. For a detailed discussion on norms in system theory, the reader is referred to [143],
[174], and [44]. The following definitions are collected and summarized from these sources.

Definition A.4.1: Norm

A norm of x (where x is an element of a vector space V over a field F) is a real number,
denoted ‖x‖, that satisfies the following properties:
N1.: ‖x‖ ≥ 0 Non-negativity
N2.: ‖x‖ = 0⇔ x = 0 Positivity (For semi-norms, only x = 0⇒

‖x‖ = 0 is true.)
N3.: ‖αx‖ = |α|‖x‖ for all scalars α ∈ F Homogenousity
N4.: ‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖ Triangle inequality

A.4.1 Vector- and Matrix Norms

If x in Def. A.4.1 is a constant vector or matrix, the associated norms are called spatial norms.
Finite-dimensional vectors and matrices have finite-dimensional norms. Details on these norms
are given in [44] and [68]; the following formulations are taken from [143].

Definition A.4.2: Vector p-norm

For a vector x = [x1, . . . , xm] T ∈ Fm with m elements, the vector p-norm is defined as:

‖x‖p =
(

m∑

i=1

|xi|p
) 1

p

, p ≥ 1. (A.9)

A shortlist of common vector norms is given in the following:
Vector 1-norm (sum norm): p = 1 ‖x‖1 =

∑m
i=1 |xi|

Vector 2-norm (Euclidian norm): p = 2 ‖x‖2 =
√∑m

i=1 |xi|
2 =

√
xTx, where x

denotes the conjugate if F = C (thus,
xT = xH is the Hermitian transpose of
x).

Vector ∞-norm (max norm): p =∞ ‖x‖∞ = maxmi=1 |xi|
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Definition A.4.3: Matrix norm, Generalized matrix norm

A norm of a constant (m×n)-matrix A ∈ Fm×n is called a matrix norm if it fulfills the
four axioms N1–N4 in Def. A.4.1 and additionally the multiplicative property :

‖AB‖ ≤ ‖A‖‖B‖ (A.10)

for all A, B for which the product AB exists (i.e., which are of compatible inner
dimensions). If only the four axioms N1–N4 in Def. A.4.1 are fulfilled, the norm is called
generalized matrix norm and has weaker properties.

A shortlist of common matrix norms is given in the following for a matrix A = [aij ] ∈ Cl×k:

Sum matrix norm: ‖A‖sum =
∑

i,j |aij |
Frobenius matrix norm (Euclid-
ian norm):

‖A‖F =
√∑

i,j |aij |2 =
√

trace (AHA)

where (·)H denotes the Hermitian trans-
pose.

Induced norms of linear operators, particularly of matrices, are of special interest:

Definition A.4.4: Induced norm

Given a constant matrix A and the linear mapping z = Aw for compatible vectors z,
w, the induced p-norm ‖ · ‖ip is defined as:

‖A‖ip = max
w 6=0

‖z‖p
‖w‖p

= max
w 6=0

‖Aw‖p
‖w‖p

. (A.11)

The induced norm is a matrix norm and thus satisfies the multiplicative property (A.10).

For the case p = 2, the singular value norm or spectral norm is obtained:

‖A‖i2 = σ̄ (A) =
√
ρ (AHA), (A.12)

where σ̄(·) is the largest singular value (see Sec. A.3) and ρ(·) is the spectral radius:

Definition A.4.5: Spectral radius

The spectral radius ρ(A) of a matrix A is the maximum of the eigenvalue magnitudes:

ρ(A) = max
i
|λi(A)|. (A.13)

The spectral radius is not a norm, but represents an important lower bound on any
matrix norm [143]:

ρ(A) ≤ ‖A‖ (A.14)
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A.4.2 Signal norms

The following description is based on the exposition given in [143]. Signal norms, also called
temporal norms, are formulated for time-varying (or frequency-varying) signals e(t). They are
considered infinite-dimensional as they operate on infinite-dimensional function spaces. While
different spatial norms on the same vector or matrix always yield similar results (they can only
differ by at most a constant finite factor), choosing different temporal norms, on the contrary,
can fundamentally change the norm value – for example, the same signal can have a well-defined,
finite 2-norm, while its ∞-norm is infinite, or vice-versa.

Signal norms are defined in two steps: firstly, evaluating a spatial norm at a given fixed time
(or frequency), and secondly, summing up these spatial norms over all times (or frequencies).
Typically, the same p-norms in both steps are utilized.

Definition A.4.6: Temporal p-norm, lp-norm

Given a time-varying vector signal z(t) = [z1(t), . . . , zn(t)], its temporal p-norm or
lp-norm ‖z(t)‖p is defined by

‖z(t)‖p =

(∫ ∞

−∞

n∑

i=1

|zi(τ)|p dτ
) 1

p

(A.15)

A shortlist of common temporal norms of signals is given in the following:
1-norm in time (integral absolute
error, IAE):

p = 1 ‖z(t)‖1 =
∫∞
−∞

∑n
i=1 |zi(τ)| dτ

2-norm in time (quadratic norm,
integral square error, ISE, energy of
the signal):

p = 2 ‖z(t)‖2 =
√∫∞

−∞
∑n

i=1 |zi(τ)|
2 dτ

∞-norm in time (peak value in
time):

p =∞ ‖z(t)‖∞ = maxτ (maxni=1 |zi(τ)|)

Note that the commonly used signal RMS (root mean square) norm, also called power norm,
is only a semi-norm (compare Def. A.4.1, N2 is not fulfilled – a nonzero signal may very well
have an RMS value of zero):

‖z(t)‖pow = ‖z(t)‖RMS = lim
T→∞

√√√√ 1

2T

∫ T

−T

n∑

i=1

|zi(τ)|2 dτ (A.16)

A.4.3 System norms

The concept of system norms is distinct from that of temporal norms. Given a linear dynamic
system G, system norms are typically defined as the worst-case temporal p-norm of the output
signal of G which is excited by an input signal of a specific class u ∈ U .

Consequently, many different system norms result from the potential combinations of input
signal class and output signal temporal norm. In the following, the two most widely used system
norms in control, the H2 and the H∞ system norms, are defined and their specific features are
stated from a control perspective. A thorough discussion on system norms is given in [143]
and [174].
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Definition A.4.7: H2 system norm

Given a causal, stable, strictly proper linear system G(s) as in (2.8) with D = 0, its H2

norm for s = jω, ω ∈ R is defined by the following equivalent definitions [143]:

‖G‖2 = max
w(t) unit impulses

‖z(t)‖2 = ‖g(t)‖2 =

√√√√
∑

i,j

∫ ∞

0
|gij(τ)|2 dτ (A.17)

where the input w(t) is composed of unit impulses at each scalar channel, one at a time,
and with an (ideally infinite) settling time to the next impulse so that the system output
can settle to zero after each impulse. The alternative formulation utilizes the impulse
response matrix g(t) = [gij(t)] which can be directly interpreted as temporal norm over
the matrix signal g(t) (note that g(t) = 0 for t < 0 in causal systems).
If G is unstable or not strictly proper, its H2 norm is infinite.
By Parseval’s theorem,

∫ ∞

−∞
|x(t)|2 dt = 1

2π

∫ ∞

−∞
|X(ω)|2 dω, (A.18)

which relates the integrals of the time-domain signal x(t) and its spectral representation
X(ω), the H2 system norm can also be formulated as:

‖G‖2 =
√

1

2π

∫ ∞

−∞
trace (G(jω)HG(jω)) dω, (A.19)

where the integrand is the squared Frobenius norm of G(jω).
For norm computation, given a state space representation G(s) = C (sI−A)−1B (see
Sec. 2.1.1), the following forms are beneficial:

‖G‖2 =
√

trace (BTW oB) =
√

trace (CW cCT), (A.20)

where W o and W c are the observability and the controllability Gramians, respectively
[143]; and

‖G‖2 =
√

1

2π

∫ ∞

−∞

∑

i

σ2i (G(jω))dω, (A.21)

where σi(·) is the ith singular value of the (k × l) matrix argument with i ∈
{1, . . . ,min(k, l)}, see Sec. A.3.

Remarks & Interpretation:

• TheH2 norm is not an induced norm and thus it does not fulfill the multiplicative property:

‖A(s)B(s)‖2 � ‖A(s)‖2‖B(s)‖2 (A.22)

• Common interpretations of the H2 norm are:

average gain over all frequencies: the energy gain that the system produces for white
noise input signals,
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deterministic – impulse response norm: the output signal 2-norm resulting from se-
quentially applying unit impulses to each input, letting the output settle to zero after
each impulse (see (A.17)),

stochastic: the expected RMS (root mean square) value of the output in response to
white noise excitation, and

singular value interpretation: sum of squared singular values over all frequencies (“av-
erage direction, average frequency” [143], see also the conceptual illustration in Fig. A.1
(left))

• The H2 norm of a system which is not stable or not strictly proper is infinite. This is in
accordance with the interpretations above, because the response of an unstable system to
an arbitrary nonzero input signal is unbounded. If a system is stable but bi-proper, its
impulse response is infinite at t = 0 and the 2-norm of the impulse response is infinite as
well.2

Definition A.4.8: H∞ system norm

Given a proper, stable linear system G(s) as in (2.8), its H∞ system norm is defined as

‖G‖∞ = max
w(t)6=0

‖z(t)‖2
‖w(t)‖2

= max
‖w(t)‖2=1

‖z(t)‖2. (A.23)

It is evident from Def. A.4.4 that the H∞ system norm is an induced norm which is
crucial for many applications. The multiplicative property (A.10) is central to H∞-
based system analysis and control design techniques.
For stable, proper G(s), another definition of ‖G‖∞ based on the singular values (see
Sec. A.3) of G(s) is:

‖G‖∞ = sup
ω∈R

σ̄(G(jω)). (A.24)

Thus the H∞ norm is the peak of the maximum singular value magnitude over all
frequencies.
For the numeric computation of the H∞ norm of a given system, an iterative bi-section
procedure is typically used to approximate the H∞ norm up to a demanded precision.
The following norm definition involves a Hamiltonian matrix H formed from the system
state space matrices. Assuming G(s) stable, then

‖G‖∞ = inf
γ>0

γ : H(γ) has no imaginary eigenvalues (A.25)

holds, where H(γ) =

[
AH(γ) BR−1(γ)BT

−CT
(
I+DR−1(γ)DT

)−1
C −AH(γ)

]
with AH(γ) =

A+BR−1(γ)DTC, and R(γ) = γ2I−DTD.
If G is not stable, its H∞ norm is infinite.

2Note that the MATLABR© command impulse computes the impulse response of a given strictly proper LTI
system. If the given system is bi-proper, however, the value at t = 0 is not infinite and thus differs from the true
impulse response.
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Figure A.1: Illustrations of H2 (left, conceptual only) and H∞ (right) system norms. Note,
however, that the H2 norm is the integrated sum of all squared singular values σi over all
frequencies (see (A.21)).

Remarks & Interpretations:

• One key property of the H∞ system norm is that it is an induced norm and thus fulfills the
multiplicative property (A.10). This enables effective system manipulation by weighting
functions which can be designed by exploiting this property, see Sec. 2.3.1.

• Common interpretations of the H∞ system norm are:

worst-case gain over all frequencies: the maximum steady-state energy gain that the
system produces for the sinusodial inputs at any frequency over all possible input
directions,

stochastic: it is equal to the induced power (RMS) norm and enables statements on the
expected values of stochastic signals, and

singular value interpretation: peak of the largest singular value over all frequencies
(“worst direction, worst frequency” [143], see Fig. A.1 (right))

• Note that the H∞ norm of a system which is not stable is infinite. In contrast, the singular
values of such system may very well be finite for all frequencies. This is a point of caution
for interpreting singular value plots. Moreover, this fact poses limitations to numeric
control design approaches (see the according discussion on Strong Stabilization, Sec. 5.2).

A.5 Eigenvalues and Eigenvectors

The standard eigenvalue problem associated to a real or complex square matrix A ∈ Rn×n or
A ∈ Cn×n can be stated as:

Aui = uiλi, i = 1, . . . , n (A.26)

where ui ∈ Cn, λi ∈ C are the ith right eigenvector and the associated eigenvalue, respectively.
Eigenvalue/eigenvector problems arise in a wide range of mathematical problems, and elab-

orate algorithms are available to solve them (QR factorization, for example, see [44]).
Each eigenvector defines a one-dimensional invariant subspace for A, which means that the

result of its pre-multiplication by A is still within the same subspace. The result is scaled by
the corresponding eigenvalue λi.

More generally, a subspace S ⊆ C is invariant for A iff

x ∈ S ⇒ Ax ∈ S. (A.27)
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A.5.1 Characteristic Polynomial

The characteristic polynomial of a square matrix A reads

p(t) := det (tI−A) =

n∑

i=0

ait
i. (A.28)

Its n roots {λi : p(λi) = 0) are just the eigenvalues of A.

A.5.2 Theorem of Cayley-Hamilton

A square matrix A ∈ R(n×n) or A ∈ C(n×n) satisfies its own characteristic equation. That
is to say, utilizing the characteristic polynomial’s coefficients ai, i = 1, . . . , n from (A.28), the
theorem states that

p(A) :=

n∑

i=1

aiA
i = 0. (A.29)

Various proofs of this theorem can be found in literature, notably a compact and elegant proof
can be done via Geometric Algebra [66].

A.5.3 Multiple Eigenvalues/-vectors and their Computation

Rearranging (A.26) to (λI−A)ui = 0 for a known λi casts the problem of finding the associated
eigenvectors of A into the problem of finding the eigenvectors corresponding to the matrix
(λI−A) and its zero eigenvalue(s). This is equivalent with finding a basis for its null space (see
Def. A.2.1).

Given an eigenvalue λ with algebraic multiplicity r = 2, a solution onset can be chosen as:

x = c1ue
λt + c2vte

λt. (A.30)

Differentiating this equation yields

ẋ = λc1ue
λt + c2

(
veλt + λvteλt

)
. (A.31)

This is still a linear system, so this system can be written as

ẋ = Ax = A
(
c1ue

λt + c2vte
λt
)
. (A.32)

Comparing the coefficients in eλt and in teλt, one can identify the associated eigenvalue
equations:

eλt : λc1u+ c2v = c1Au (A.33)

teλt : c2λv = c2Av. (A.34)

From (A.34) the relation
Av = λv ⇒ (A− λI)v = 0 (A.35)

is directly obtained, while from (A.33) it can be stated that

c1 (A− λI)u = c2v (A.36)

holds. Pre-multiplying this with (A− λI) yields
c1 (A− λI)2 u = c2 (A− λI) v = 0. (A.37)

As a result, it is evident that for any eigenvalue λ with algebraic multiplicity m a com-

plete (m-dimensional) basis of generalized eigenvectors can be found as null
(
(λI−A)m−1

)
, see

also [5]. The lower powers of (λI−A) can have lower-dimensional nullspaces, which reflects
information on the geometric multiplicities of λ that add up to its algebraic multiplicity m.



Appendix B

Observers & Observer-based
Structures

This chapter presents the Luenberger state observer, utilized to reconstruct the states of a
dynamic plant first. The Luenberger observer structure, equations, and properties are detailed,
and its important use in the design of control systems, consisting of a state vector feedback
gain and a state observer, is outlined. The separation principle allows to separate both design
tasks and carry them out independently. Furthermore, the concept of the OBR of feedback
compensators is presented. In OBR, a compensator consists of a state observer of the plant
states, a static state feedback gain, and a remainder term which can be interpreted as Youla
parameter. Given an arbitrary feedback compensator, transformation procedures to obtain an
equivalent OBR are summarized and main properties and applications of this representation are
sketched.

The chapter is structured as follows: Sec. B.1 summarizes the Luenberger observer, Sec. B.2
presents the state vector feedback gain / observer combination and the separation principle, and
Sec. B.3 discusses the observer-based representation (OBR) of feedback compensators.

B.1 Luenberger observer

A state observer1 is a dynamic system which reconstructs the states of a system, based on
information on its inputs and outputs as well as on a (sufficiently good) model of its system
dynamics. Back in 1964, Luenberger firstly formulated the concept of a state observer [90]. He
later extended the formulation to multivariable systems in [88]. An introductory overview on
observers and their properties is given in [89].

Figure B.1 shows a block diagram of a linear state observer Kobs connected to a strictly-

proper2 linear dynamic system in state space representation G =

[
A B

C 0

]
. The estimated

states are denoted by x̂ and the static observer gain is Kf .
The basic observer equations are derived as follows, based on [143] and [132]. Let the state

estimation error ε be defined by
ε := x− x̂. (B.1)

Choosing the linear relation
˙̂x = F x̂+Gu+K fy, (B.2)

1The term observer is used in a deterministic context, whereas the term estimator is used for the related
concept in a stochastic problem setting. However, this distinction is not sharply done in literature and in a
specific problem setting it is up to the control engineer which aspects are focused on.

2The observer can also be extended to the bi-proper case (D 6= 0), see [174, pp. 63–65].
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Figure B.1: Luenberger observer

for state estimation, the following error dynamics is obtained:

ε̇ = Fε+ (A−KfC − F )x+ (B −G)u. (B.3)

If F = A −K fC and G = B hold, and if the real parts of the eigenvalues of F are negative,
the error dynamics is stable, x̂ converges to the plant state vector x, and the observer equation

˙̂x = Ax̂+Bu+K f(y −Cx̂) (B.4)

is obtained. This equation is realized in Fig. B.1. The design of an observer with this structure
is methodologically equivalent (often also called dual) to state vector feedback control design
for the plant.

One basic requirement for the observer as a dynamic system is stability. Moreover, certain
dynamic requirements on the dynamics of the estimation error ε should be fulfilled. These are
the same typical requirements as addressed in state vector feedback control design, and the
problem structure (designing a static feedback gain) is the same. Thus, the same methods as
for state vector feedback control design can be applied to design an observer.

The observer presented above is sometimes called full, full-state, or full-order observer be-
cause it reconstructs the entire state vector. It is itself a dynamic system Kobs of order n – the
same order as the plant (where the system matrix A is (n×n)). Many other variants of observers
are available in the literature which specialize on specific system properties, some well-known
variants are:

Reduced-order observer, minimum-order observer: When a subset of the states is avail-
able as measurements, the dynamic complexity of the observer can be reduced, see [89].

Unknown-input observer If one or more inputs of the system are unknown to the observer,
they, too, can be reconstructed if certain existence conditions are fulfilled, see for example
[48] and references therein.
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B.2 State vector feedback control using a state observer

In many important control problem formulations, state vector feedback control laws of the form

u = −Kcx (B.5)

are chosen. Well-known design problems following this onset include for example pole placement
designs (eigenstructure assignment, see Sec. 3.6.2) or optimal control designs such as LQR design
(see Sec. 3.4).

In actual physical systems, a commonly encountered property is that not all system states
are available as measured signals. In such cases, one possibility to apply state vector feedback
methods is to substitute the unknown state vector x in (B.5) by its estimate which is obtained
by a state observer.

The corresponding block diagram is shown in Fig. B.2.

G

K f

−Kc

∫
(·) dt

A

B C

u y

x̂

x̂ ŷ

+

+
+

+−

Kobs

Figure B.2: Interconnection architecture: observer and static state vector feedback

B.2.1 Separation principle

In a state vector feedback loop with full state observer as in Fig. B.2, the so-called separation
principle is an important property [143].

Definition B.2.1: Separation principle

Given a closed-loop system interconnection as in Fig. B.2 of a system with a state observer
and a state vector feedback gain, the set of poles of the closed-loop system is the union
of the poles of the state-feedback regulator dynamics A − BKc and the poles of the
state observer dynamics A−KfC.

This can be seen by formulating the closed-loop dynamics in terms of the plant states and
the observation error. First note that the plant and observer system equations, the plant output
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equation, and the control law are

ẋ = Ax+Bu, (B.6)

˙̂x = Ax̂+Bu+K f (y −Cx̂) , (B.7)

y = Cx, (B.8)

u = −Kcx̂. (B.9)

Eliminating u,y, and substituting x− ε for x̂ yields
[
ẋ

ε̇

]
=

[
A−BKc BKc

0 A−KfC

]

︸ ︷︷ ︸
Acl

[
x

ε

]
. (B.10)

Now consider the fact that the determinant of a partitioned matrix X can be expressed as

det

([
X11 X12

X21 X22

])
= det (X11) · det

(
X22 −X21X

−1
11 X12

)
(B.11)

whenever X11 is invertible, see [110, Sec. 9.1.2]. Note in particular that if X21 = 0 or X12 = 0
holds, this simplifies to det (X) = det (X11) · det (X22).

Applying this fact to Acl in (B.10) it is evident that

det (Acl) = det (A−BKc) · det (A−KfC) (B.12)

holds. The product of the eigenvalues of a matrix are just their determinant, so that the
separation principle is proven if A−BKc and A−K fC have distinct eigenvalues and at least
one of them is invertible.

One important consequence of the separation principle is that the regulator design task
(that is, the computation of the feedback gain matrix Kc) and the observer design task (the
computation of Kf) are independent of each other and can be carried out separately. Note that
this holds true only if the model utilized in the observer is exact.

B.3 Observer-based Representation (OBR) of a feedback com-
pensator

Consider an LTI state space plant model of order n and a dynamic LTI compensator, that is, a
dynamic LTI feedback control law, of order nK in closed-loop interconnection with this plant.
The compensator is called

• full-order if nK = n holds,

• augmented-order if nK > n holds, and

• reduced-order nK < n holds.

A central result shown in [3] is that any full- or augmented-order feedback compensator K
can be transformed into an OBR, consisting of a full-order state observer, a state vector feedback
gain matrix, and a so-called Youla parameter Q (which is an LTI dynamic system of dynamic
order nK − n or a static gain if nK = n), see Fig. B.3.

One major advantage of this representation is that if a (trusted) plant model (A,B,C) is
available during operation, the observer part of the controller can directly exploit this informa-
tion by utilizing these A, B, and C matrices in its realization. This often provides good results
in scheduled control laws for slowly parameter-varying systems (see Sec. 8.2).
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Figure B.3: Compensator in observer-based representation with observer Kobs, feedback gain
Kc and Youla parameter Q(s)

For reduced-order compensators, a form based on a reduced- or minimum order observer can
be obtained if some existence conditions are met. However, in the latter case the reduced-order
OBR cannot be realized with the plant matrices A, B, C, so the plant structure cannot be
exploited as in the full- or augmented-order cases. As one possible solution, these structural
properties can be recovered with reduced-order plant model matrices.

B.3.1 Transformation of Arbitrary Compensators to an OBR

The main results of [3] state the transformation steps of arbitrary compensators into observer-
based representations and are summarized in the following. It is assumed throughout that the
compensator yields a stable closed loop, that is, it is assumed internally stabilizing.

Transformation of Full-Order Compensators

Consider the plant and compensator state space representations,

ẋ = Ax+Bu (B.13)

y = Cx, (B.14)

and

η̇ = AKη +BKy (B.15)

u = CKη +DKy, (B.16)

respectively. First, a transformation T is sought such that the compensator is a Luenberger
observer of the variables z = Tx, or equivalently, that the compensator states η = ẑ are
estimates of z = Tx.

As in Sec. B.1, this problem is equivalent to finding T , F , and G such that for the system

˙̂z = F ẑ +Gy + TBu (B.17)
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the observation error z − ẑ vanishes as t goes to infinity. This is fulfilled when the constraint

TA− FT = GC (B.18)

is fulfilled [89] and if F is stable.
The compensator equations become

˙̂z = (F + TBCK) ẑ + (G+ TBDK)y (B.19)

u = CK ẑ +DKy, (B.20)

and the F and G can be identified as

F = AK − TBCK , (B.21)

G = BK − TBDK . (B.22)

These matrices have to fulfill the constraints posed by Luenberger, so inserting (B.21)–(B.22)
into (B.18) yields a generalized non-symmetric and rectangular Riccati equation in the unknown
matrix variable T :

AKT − T (A+BDKC)− TBCKT +BKC = 0, (B.23)

which can be rewritten as

[
−T I

] [ A+BDKC BCK

BKC AK

]

︸ ︷︷ ︸
Acl

[
T

I

]
= 0. (B.24)

A solution T (whose existence conditions are discussed in [3]) is obtained by the following steps:

• A basis U of an n-dimensional invariant subspace of the associated eigenvalue problem

AclU = UΛ (B.25)

is computed via eigenvalue decomposition or Schur factorizations, see [3], [44]. This sub-
space is defined by the choice of eigenvalues of Acl that are included in Λ. It turns out
that these correspond to the poles of A−BKc in the resulting OBR.

• The transformation T is obtained by T = U 2U
−1
1 where U =

[
U1

U2

]
is partitioned such

that U1 is (n× n) which is compatible to Acl.

Then the OBR of the compensator is obtained as in Fig. B.3 with the matrices

K f = T−1BK −BDK (B.26)

Kc = −CKT −DKC (B.27)

Q(s) = DQ = DK . (B.28)

Note that the choice of poles in Λ when obtaining T is not unique, but instead is taken
from a finite number of combinatorial choices, and determines the realization of the OBR. Some
constraints can be derived from existence conditions on T , for example, the uncontrollable poles
of (A,B) must be in Λ, whereas the unobservable poles of (A,C) must not be contained in Λ
for T to exist. Moreover, some heuristic constraints can be of help (“assign those poles of Acl

which are (in some sense) close to the open-loop plant poles of A to A − BKc, i.e., include
them in Λ”). These are discussed in [3], but no rigorous analysis of the choices, for example in
terms of implications on robustness of the chosen OBR against various types of uncertainty is
available.
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Remarks: Transformations of Augmented-Order and Reduced-Order Compensators

A detailed derivation of the OBR of an augmented-order compensator as well as of a reduced-
order compensator is given in [3] and will not be reproduced here. However, some basic facts
are pointed out in the following.

For the augmented-order case, the transformation matrix T (now a (nK × n) matrix) and
the matrices F and G are obtained as in the full-order case. Then, via a Schur decomposition
of F , the dynamic Youla parameter (of order nK −n) and the observer dynamics of order n are
separated which involves an additional eigenvalue selection task. A heuristic approach mentioned
in [3] is to include the fastest poles in Q(s) so that it acts approximately as feedthrough term
as in the case of a static Youla parameter.

The reduced-order case does not lead to a structure as in Fig. B.3 because no full-order
observer utilizing the plant matrices A, B, and C can be constructed. However, the scheme of
a reduced-order observer can be followed if nK + ny ≥ n holds (where the number of available
measurements y is ny), see [89]. Then, the state estimate is constructed via

x̂ = H1ẑ +H2y (B.29)

where H1 and H2 have to fulfill H1T + H2C = I, see [3] for more details. If nK + ny < n
holds, these results (particularly the separation principle) do not hold for the original plant
model. One might, however, construct a valid reduced-/full-/augmeted-order OBR for an order-
reduced plant model.



Appendix C

LQ-based Lateral Control Designs
for BWB Aircraft

As a first step in lateral control law design, this section presents two LQ-based MIMO controllers
for the BWB aircraft’s lateral motion. First, an LQG controller is designed to fulfill damping
and maneuver response requirements. Then, an LQI architecture is used to provide asymptotic
tracking and disturbance rejection. The control laws are successfully validated at varying fuel
and payload mass cases for the cruise flight condition of the considered BWB configuration.

C.1 Lateral LQG Control Design

C.1.1 LQG Architecture and Design Parameters

Traditionally, to increase the damping of the DR mode and to improve disturbance rejection
in β or NyCG, the yaw rate and NyCG are fed back to the rudder in two SISO loops, respec-
tively. Additionally, the required roll response would naturally be shaped via a roll angle to
(antisymmetric) aileron feedback.

However, since SISO control of the DR mode and β or NyCG faces said limitations, a MIMO
architecture with control input commands for rudder RU and combined aileron deflections AIL
and the following subset of measured outputs (compare Sec. 4.2) are used:

• Yaw rate y1 = r

• Roll angle y2 = φ

• Lateral acceleration y3 = NyCG

It turned out that the roll rate is not needed as feedback signal to achieve the requirements,
although it is common in lateral / roll attitude control to do so. In order to incorporate reference
tracking specifications into LQG design, a roll reference input rφ is added and the roll angle
output is replaced by the roll tracking error output φr − φ. This way, an output-weighted LQG
design can directly shape the reference step response.

The control design plant was chosen at parameter values in the middle of the considered fuel
and passenger mass parameter intervals. This choice leads to acceptable performance at the
extremal parameter values and best performance at the design plant configuration.

The noisy plant configuration as in (3.37)–(3.38) (see Sec. 3.4.1) is considered and an output-
weighted LQG design (see Sec. 3.4.2) is carried out.

158
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For the LQR design, the design parameters

Q̃ = 103 · diag (1 10 1) , (C.1)

R̃ = 20 · I[2×2], (C.2)

corresponding to the output-weighted objective (3.50) was carried out. This emphasizes the roll
tracking error in the design and leads to a well-performing controller for all mass cases of the
aircraft model.

The Kalman estimator was designed with process noise modeled as if it was acting via the
control input channels. This corresponds to the case E = B in (3.37)–(3.38) (see Sec. 3.4.1),
and D = 0 holds. The process noise covariance was chosen high to improve convergence (in the
sense of so-called Q-stabilization, compare [40]).

The chosen process noise parameters for Kalman-Bucy filter design (see Sec. 3.4.1) are:

W = 252 · I[2×2], (C.3)

V = 10−3 · I[3×3]. (C.4)

C.1.2 LQG Validation Results

The resulting (nominal) closed loop performance can be seen in Fig. C.1 (roll reference step
response) and Fig. C.2 (response due to a step in the vertical wind disturbance). It is evident
that the DR mode damping is increased and that the reference roll response largely fulfills the
given requirement. Also disturbance rejection is effective (in open loop, the system drifts away),
but this controller yields a non-zero position error.

However, the limited effect of the roll demand and the disturbance on β and NyCG are an
important step towards a coordinated turn control.
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Figure C.1: LQG closed-loop results: Responses to a roll reference step (roll angle φ, sideslip
angle β, lateral acceleration NyCG)
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Figure C.2: LQG closed-loop results: Responses to a wind disturbance step (roll angle φ, sideslip
angle β, lateral acceleration NyCG, all normalized with respect to their final values)

C.2 Lateral LQI Control Design

C.2.1 Motivation

While the LQG controller in Sec.C.1 performs well in terms of roll response shaping and DR
mode damping, it cannot reject low-frequency exogenous disturbances. To achieve this, an
integrator is added in the inner loop control loop, arriving at a two-degree-of-freedom LQI
architecture as shown in Fig. 3.5, see Sec. 3.4.3.

This architecture is expected to yield zero position error with respect to step references in
roll and step disturbances. While it is usually not the objective of inner loop control to provide
asymptotic setpoint tracking, asymptotic disturbance rejection is a feature which can reason
an integral control law at this stage. However, adding integrators can conflict with robustness,
bandwidth-, or phase/gain margin requirements.

C.2.2 Design Parameters

As presented in Sec.C.1 the control design plant was again chosen at central fuel and payload
parameter values. The following design weights were chosen for the LQI control design:

Q =




103I[3×3]

0
0.1

1
0.1



, (C.5)

R = 10−2I[2×2], (C.6)

where the state weighting matrix Q focuses the control action on the rigid body modes of
the aircraft, leaves the flexible modes largely untouched, and also emphasizes asymptotic roll
reference tracking in the design. The input weighting R was chosen under the trade off of control
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law sensitivity with respect to the mass variation (requires low control input magnitudes, i.e.
high R values) versus (nominal) performance requirements.

The Kalman estimator was designed using the non-augmented design plant identically as in
Sec. C.1.

C.2.3 LQI Results: Performance

Roll Reference Tracking Results are shown in Fig. C.3 via the step response of a large
reference step of the roll angle. It can be seen that the overshoot is minimal and that the rise
time is around 7 s. Moreover, the control surface deflections for a −30◦ to 30◦ roll reference step
stay well within saturation and rate limits.

Another feature of this control law is evident, namely the realization of a coordinated turn:
after the roll maneuver is completed, the side slip β and the lateral acceleration NyCG both
approach zero.

Disturbance Rejection Results are demonstrated in the following. Figure C.4 shows the
Bode magnitude plot of the rudder disturbance→ yaw rate transfer function of the closed loop.
It shows (quasi-) globally derivative behavior, while the open loop shows quasi-global integral
behavior (compare Fig. 4.3). Also, the strongly increased damping of the DR mode is evident.
The disturbance step response illustrates this particularly, see Fig. C.5.

The disturbance rejection properties of the LQI controller are highly favorable and pose the
major reason to consider such architecture in the inner flight control loop.

Finally, the rejection of the wind disturbance is also evident in the roll angle φ, β, and NyCG

as depicted in Fig. C.6.

C.2.4 LQI Results: Validation at various Mass Cases

In order to validate the LQI control law, it is applied to a validation set that includes 6 plant
models at several mass cases (including the minimum and maximum fuel and payload cases).
The design process was tuned (by selecting the best-suited design plant mass case and adjusting
the control input weighting matrices R) to obtain robustly performing controllers. Note that
this robustness is validated only with respect to the used discrete validation set.

All closed-loop systems were stable, and Fig. C.7 depicts the roll reference step response of
each validation plant. The small differences prove that, albeit significant mass variation, the
dominant low-frequency dynamics is robustly shaped. Figure C.8 shows the Bode magnitude
plot from wind disturbance to yaw rate, both for open loop (OL) and closed loop (CL). From this
transfer function it is evident that the DR mode is strongly dependent on the mass variations.
However, the LQI controller attenuates it robustly.

The LQG validation details are omitted for brevity but show analogous results.

C.3 Discussion

The lateral dynamics of the investigated BWB aircraft shows slow RHP zeros in important SISO
transfer functions which represent fundamental limitations for traditional SISO lateral control
design.

The proposed Linear-Quadratic (LQ)-based MIMO controllers (an LQG architecture without
and an LQI architecture with asymptotic reference tracking and disturbance rejection) can
circumvent these limitations and meet the principal control goals. However, the additional
control goals are yet to be tackled: loads alleviation and comfort improvement.



APPENDIX C. LQ-BASED LATERAL CONTROL DESIGNS FOR BWB AIRCRAFT 162

ro
ll
an

gl
e
φ

u
A
IL

u
R
U

β
N
y C

G

0

0

0

0

0

0

1

5 10 15 20 25

Time in s

Figure C.3: LQI closed-loop results: Responses to a roll reference step
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Figure C.4: LQI closed-loop results: Bode magnitude of rudder → yaw rate transfer
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Figure C.5: LQI closed-loop results: Response of yaw rate r to a wind disturbance step
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Figure C.6: LQI closed-loop results: Responses to a wind disturbance step (roll angle φ, sideslip
angle β, lateral accel. NyCG, all normalized using the final values of the LQG disturbance case
(compare Fig. C.2))
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Figure C.7: LQI closed-loop results: Roll response to step command for all mass cases



APPENDIX C. LQ-BASED LATERAL CONTROL DESIGNS FOR BWB AIRCRAFT 165

open loop

closed loop
ya
w

ra
te
r

Frequency in rad/s

-2 -1 0 1 2
1010101010

Figure C.8: LQI closed-loop results: Bode magnitude of wind disturbance → yaw rate transfer
for all mass cases

Applying robust control design methods on this aircraft’s lateral dynamics is the next logi-
cal step and is subject of ongoing research by the authors and their project partners. From the
first studies and the results obtained here, the low-frequency dynamics are likely to be unprob-
lematic with respect to robustness. However, the structural modes’ variations over mass might
significantly limit achievable robust performance in that frequency range.

Further studies will include different design methodologies to fulfill all control goals robustly
with maximized robust performance, for example using DK iteration, Q-µ iterations (based on
the Youla parametrization) and fixed-structure H∞ optimization.

The investigated LQG controller is directly synthesized in an observer-based form and thus
amendable to be used as starting point for convex synthesis methods based on the Youla
parametrization [18].

At the same time, the longitudinal dynamics is under study by the authors [162], showing
significant coupling between rigid-body and flexible modes. As evident from the results above,
this is less severe for the lateral motion in the present BWB configuration with the given re-
quirements. The longitudinal - lateral coupling has yet to be investigated and its consequences
on control design will be of high research interest.

C.4 Conclusions

Two LQ-based MIMO controllers (LQG and LQI) are presented for the lateral aircraft dynam-
ics. The main control goals (Dutch roll damping, coordinated turn control, and roll reference
tracking) are successfully reached. While the LQG controller only partially fulfills the posed
requirements, the designed LQI controller yields good performance with respect to all require-
ments: it asymptotically rejects disturbances and performs well in roll tracking. The control
performance has been validated at a set of validation plants with varying fuel and payload
mass. Ongoing and future studies include robust control design for the lateral and longitudinal
dynamics of the BWB aircraft.



Appendix D

Classes of the Object-Oriented
Framework for Convex Control
Design

A listing of each class of the optimization framework for convex control design follows. The
framework structure is described in Sec. 5.1, and the following information is intended as quick
reference for future development work on and with the framework.

Each class is given a name and a short description of its role in the framework. The properties
of the class (local variables for the created objects of this class) and its methods (functions acting
on objects of the class) are listed without further comment. However, care has been taken to give
sensible names to the classes, properties, and methods to be largely self-explanatory. Abstract
properties or methods are those which have to be defined (in a non-abstract, i.e., concrete way)
by subclasses so that actual objects can be created.

D.1 Classes in the ConvexOptimizer Hierarchy

Class name: ConvexOptimizer

Description: implements top-level functionality to formulate and solve
convex control design problems via an LMI formulation

Superclass: none
Properties: Sys_OL, Sys_CL_Q, Alphas, Thetas, History, Q, . . .
Abstract properties: K

Methods: generateQBase, addObjective, addConstraint,
solveLMI, iterateLMI, . . .

Abstract methods: refineLMIs, refineGrids, plot

Class name: ConvexOpt_SingleModel

Description: specializes ConvexOptimizer to problems with a single plant
model

Superclass: ConvexOptimizer

Properties: P11, P12, P21, P22, A, B1, B2, C1, C2, D11, . . . , D22
Methods: refineLMIs, refineGrids,plot
Abstract methods: getCL
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Class name: ConvexOpt_MultiModel

Description: specializes ConvexOptimizer to problems with multiple
plant models

Superclass: ConvexOptimizer

Properties: none
Methods: refineLMIs, refineGrids, plot
Abstract methods: getCLs

Class name: ConvexOpt_FB_OL

Description: realizes convex feedback control design problem with zero
initial controller

Superclass: ConvexOpt_SingleModel

Properties: K

Methods: generateAffineCL, getCL

Class name: ConvexOpt_FB_OL

Description: realizes convex feedback control design problem with OBR
initial controller

Superclass: ConvexOpt_SingleModel

Properties: Sys_CL_initK, F, L, Q0, K
Methods: generateOBRCL, getCL

D.2 Classes in the Constraint/Objective Hierarchy

Class name: ConstrDef

Description: general class for constraint and objective definitions which
implements basic design/validation grid handling, common
data structures and method interfaces

Superclass: none
Properties: Name, Sys, SysID, GroupID, PlotID, SubplotID, InChannel,

OutChannel, Template, . . .
Constant properties: REFINE_GRID_MAX_ADD

Methods: addToDesignGrid, preparePlot, importGrids,
exportGrids

Abstract methods: defLMI, plot, refineDesignGrid
Static methods: getLocalMaxima
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Class name: ObjDef

Description: specializes ConstrDef to objectives by adding free bounding
variables “alpha”

Superclass: ConstrDef

Properties: AlphaID, AlphaScaling
Abstract methods: assignAlphaScalingByRefSys, refineLMIdef

Class name: ConstrH2

Description: implements H2 constraint ‖T (θ)‖2 ≤Target, Target const.
Superclass: ConstrDef

Properties: Target, ObjH2H
Methods: defLMI, plot, refineDesignGrid, cleanupDesignGrid,

refineLMIdef, resetCache, saveCache, loadCache

Class name: ConstrHInf

Description: implements H∞ constraint σ(T (jωk,θ)) ≤ γk where γk is
defined via a Template object

Superclass: ConstrDef

Properties: none
Methods: defLMI, plot, refineDesignGrid, cleanupDesignGrid,

refineLMIdef

Class name: ConstrLInfLB

Description: implements time-domain lower bound l∞ constraint
zL(tk) ≤ z(tk)− zref(tk) of the response to a given InSignal

where zref(tk) is defined via a Template object
Superclass: ConstrDef

Properties: InSignal

Methods: defLMI, plot, refineDesignGrid, cleanupDesignGrid,
refineLMIdef

Class name: ConstrLInfUB

Description: implements time-domain upper bound l∞ constraint z(tk)−
zref(tk) ≥ zU(tk) of the response to a given InSignal where
zref(tk) is defined via a Template object

Superclass: ConstrDef

Properties: InSignal

Methods: defLMI, plot, refineDesignGrid, refineLMIdef,
cleanupDesignGrid
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Class name: ConstrLin

Description: implements linear (LP) constraint aTθ ≤ c
Superclass: ConstrDef

Properties: a, c
Methods: defLMI, plot, refineDesignGrid, cleanupDesignGrid

Class name: ConstrLyap

Description: implements iterative Lyapunov strong stabilization con-
straint P lyapAK(θ) +AK(θ)TP lyap ≺ 0 with fixed P lyap =
P lyap

T ≻ 0 or solves for P lyap with fixed AK

Superclass: ConstrDef

Properties: P_lyap,P22, c
Methods: calcLyap, defLMI, plot, refineDesignGrid,

cleanupDesignGrid

Static methods: constructAk

Class name: ConstrRSmu

Description: implements a singular value constraint of mixed-µ bounds
analogous to Q− µ-synthesis

Superclass: ConstrDef

Properties: Dleft,Dright, GLeft, GMiddle, GRight
Methods: updateRSMuScalings, defLMI, plot, refineDesignGrid,

cleanupDesignGrid

Class name: ConstrHypCube

Description: implements parameter hypercube constraint θ− ≤ θ ≤ θ+

for strong stabilization heuristics
Superclass: ConstrDef

Properties: p_min,p_max, ObjCvOpt
Methods: defLMI, plot, refineDesignGrid, cleanupDesignGrid

Class name: ObjH2

Description: implements H2 objective ‖T (θ)‖2 ≤ α with LMI variable α
Superclass: ObjDef

Properties: Target, ObjH2H
Methods: defLMI, plot, refineDesignGrid, cleanupDesignGrid,

refineLMIdef, resetCache, saveCache, loadCache,
assignAlphaScalingByRefSys, refineLMIdef
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Class name: ObjHInf

Description: implements H∞ objective σ(T (jωk,θ)) ≤ αγk where γk is
defined via a Template object and α is an LMI variable

Superclass: ObjDef

Properties: none
Methods: defLMI, plot, refineDesignGrid, cleanupDesignGrid,

refineLMIdef, assignAlphaScalingByRefSys

Class name: ObjLInfLB

Description: implements a time-weighted, one-sided time-domain lower
bound l∞ objective (−α)zL(tk) ≤ z(tk) − zref(tk) of the re-
sponse to a given InSignal where α is an LMI variable and
zref(tk) is defined via a Template object

Superclass: ObjDef

Properties: InSignal, TimeWeightingExp, TimeWeightConst
Methods: defLMI, plot, refineDesignGrid, cleanupDesignGrid,

refineLMIdef, calcAlphaScalingByRefSys,
assignAlphaScalingByRefSys

Class name: ObjLInfUB

Description: implements time-domain upper bound l∞ objective z(tk)−
zref(tk) ≥ αzU(tk) of the response to a given InSignal where
α is an LMI variable and zref(tk) is defined via a Template

object
Superclass: ObjDef

Properties: InSignal, TimeWeightingExp, TimeWeightConst
Methods: defLMI, plot, refineDesignGrid, cleanupDesignGrid,

refineLMIdef, calcAlphaScalingByRefSys,
assignAlphaScalingByRefSys

Class name: ObjLInf

Description: implements a time-weighted, two-sided time-domain lower
and upper bound l∞ objective (−α)zL(tk) ≤ z(tk) −
zref(tk) ≥ αzU(tk) of the response to a given InSignal where
α is an LMI variable and zref(tk) is defined via a Template

object
Superclass: ObjDef

Properties: InSignal, TimeWeightingExp, TimeWeightConst, ObjLB,
ObjUB

Methods: defLMI, plot, refineDesignGrid, refineLMIdef,
importGrids, exportGrids, calcAlphaScalingByRefSys,
assignAlphaScalingByRefSys
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D.3 Auxiliary Classes

Class name: CTemplate

Description: defines a common interface to parametric and non-
parametric templates

Superclass: none
Properties: none
Methods: plot

Abstract methods: eval

Class name: CTemplParametric

Description: implements a parametric template defined by the time-
domain step response, bode magnitude, or complex transfer
values at given time respectively frequency values of an LTI
system Sys

Superclass: CTemplate

Properties: Sys, Grid, Response
Methods: eval

Class name: CTemplNonParametric

Description: implements a non-parametric template defined by a set of
(xi, yi) points where the yis constitute Data and the xis are
stored in Grid. Various types of interpolation can be used
when evaluating the template’s value at x.

Superclass: CTemplate

Properties: InterpolationMethod, ExtrapolationMethod, Data, Grid
Methods: eval

Class name: CYoulaModel

Description: implements the affine parametrization of transfer functions
in the form T 1+T 2QT 3 where Q is affine in the parameters
θ including basis construction, response computation, and
transparent response data caching

Superclass: none
Properties: SysID, T1, T2, T3, QBase, Sched_Factor, ncont, nmeas,

nThetaTotal, nThetaLocal, . . .
Methods: generateQBase, queryStepCache, addStepCache,

getStepResp, getFreqResp
Static methods: computeCacheKey
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Class name: H2Handler

Description: implements the computation and caching of the precom-
puted scalar, vector, and matrix data that define the dis-
cretized H2 norm

Superclass: none
Properties: ObjConstr, beta, gamma, Q (corresponds to Γ ), L, filename
Methods: resetCache, buildCache, calcH2norm, saveCache,

loadCache, validateCache

Class name: CTools

Description: collects miscellaneous helper functions
Superclass: none
Properties: none
Static methods: processPVpairs, getQBaseOrtho, getStepUneven,

solveAdaptiveLMIs
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de l’Espace (SUPAERO), France, 1999. (Title (engl.): Development of methodologies for
control law synthesis for a flexible transport aircraft).

[19] V. R. Dehkordi and B. Boulet. Robust controller order reduction. In Proc. American
Control Conf., pages 3083–3088, USA, 2009.

[20] F. Demourant. Interactions identification-commande robuste: méthodes et applications à
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[51] A. Hać. Distribution of actuators in vibration control of adaptive structures. In Proceedings
of the American Control Conference, pages 4295–4299, Seattle, Washington USA, 1995.
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