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Abstract

Research on the mechanical properties of bone tissue has been done since the first half of the 20th century.
In recent years, the interest in the micromechanical properties of bone has increased due to the development
of depth-sensing nanoindentation. Modern preventive and therapeutic methods for diseases like osteoporosis
rely on the results of the research on micromechanics of bone and its influence on cell-mediated adaption
processes. Osteoporosis is a severe disease affecting the strength of the skeleton. According to Statistik
Austria, one out of four women above the age of 60 suffers from osteoporosis. Nanoindentation offers the
possibility to inspect elastic and post-yield properties of bone tissue. The main aim of this study is to
determine the influence of the material behavior of the tested specimen on the accuracy of the experimental
results. A finite element (FE) model of a conical and a Berkovich indentation were developed and validated.
Different material models were defined and subsequently indented by a rigid indenter. The elastic properties
were extracted from the indentation curves, allowing to quantify the systematic error made when using
the method of Oliver and Pharr [OP92] assuming intact unloading elasticity. Also, the influence of the
accumulation of microdamage was assessed by using an elasto-plastic material model with damage [Zys94]
for bone. A user subroutine defining the constitutive behavior was implemented in Fortran. Time and
rate dependent effects such as viscosity were neglected in the course of this study. Detailed and extensive
verification showed that the developed FE models are able to simulate indentations in a wide range of
different material models with sufficient accuracy.

The results of this study indicate that the indentation modulus is insensitive to indentation depth for

elastic materials. The method of Oliver and Pharr does not account for finite tip radii. However, this

effect diminishes with increasing indentation depth. There is a stiffening effect based on the Poisson ratio

reported by Poon [PRR08b]. He implemented an empirical formula that coincides with the data of this

study. This effect is also described by Hay et al [HBP99]. According to Hay, there is a systematic error due

to radial displacements of the surface points inside the contact area not accounted for in the data analysis.

For materials featuring plasticity there is clear indication in the data that the indentation depth has an

effect on the measured indentation modulus. For elastic ideal plastic materials the initial unloading phase

is purely elastic [PRR08b]. However, there is a serious overestimation of the indentation modulus due to

material pile-up. Bolshakov et al reported similar results [BP98] for materials with a ratio hf/hmax larger

than 0.7. In this study, hf/hmax was larger than 0.7 for all elasto-plastic bone models. Poon was able to

show that the error of the measured modulus is smaller and a function of the Poisson ratio if the contact area

is known. This suggests that the remaining error is due to residual stresses in the plastic imprint [PRR08b]

and radial displacements of the surface points in the contact area [HBP99]. A model of the 3D geometry of

the Berkovich indenter was developed. It was shown that while the conical indenter is an excellent model

for the Berkovich indenter in the far stress field and the structural response, the near stress and strain fields

differ significantly. Also, damage accumulation was considered in an anisotropic elasto-plastic bone model.

The shape of the indentation curves were qualitatively similar to experimental results of indentations on

bone. However, the measured indentation modulus was considerably smaller than expected (45 to 51% in

modulus depending on the indentation direction and hardening function). The cumulated damage ranged

from 25% to 99%. The ratio hf/hmax was smaller than 0.7 for all simulations. Bolshakov et al. [BP98]

reported that the method of Oliver and Pharr works accurately for isotropic elastic ideal plastic materials

if the ratio hf/hmax is smaller than 0.7. This is not the case in the presence of damage. The assumption

of intact unloading elasticity is not justified as the results of this study showed large damaged areas with a

cumulated damage D of 0.32 to 0.99. The shape of the stress and damage fields were qualitatively similar

to the results reported by Zheng et al [ZMKO10] for an isotropic elasto-plastic continuum damage model of

bone. However, time- and rate dependent effects were not accounted for, therefore the indentation curves

did not show creep behavior as reported for bone [ZEGEH+99]. Further investigations featuring rate-

dependent material models and tuning of the continuum damage models for bone are needed to get a better

correlation to experimental results for bone tissue and a better understanding of the decisive processes.



Zusammenfassung

Seit der ersten Hälfte des 20. Jahrhunderts beschäftigt sich die Forschung mit den mechanischen Eigen-
schaften von Knochen. In den letzten Jahren hat das Interesse an der Erforschung der mikromechanis-
chen Eigenschaften von Knochen aufgrund der Entwicklung der instrumentierten Nanoindentation stark
zugenommen. Moderne Methoden zur Prävention und Therapie von Krankheiten wie Osteoporose basieren
auf Kenntnissen über das mikromechanische Verhalten von Knochen und seinen Einfluss auf zellgesteuerte
Adaptionsprozesse. Osteoporose ist eine schwere Krankheit, von der jede vierte Frau über 60 betroffen
ist. Das Ziel dieser Studie besteht in der Bestimmung des Einflusses des Materialverhaltens der Probe auf
die Genauigkeit der Messergebnisse bei der Nanoindentation. Finite Elemente (FE) Modelle eines konis-
chen sowie eines Berkovich Indenters wurden erstellt und validiert. Verschiedene Materialmodelle wurden
definiert. Die elastischen Eigenschaften wurden mit Hilfe der Indentationskurven auf Basis der Methode
von Oliver und Pharr [OP92] bestimmt. Die FE Methode erlaubte so die Quantifizierung des Messfehlers
aufgrund der Annahme einer intakten Elastizität in der Entlastungsphase. Durch Verwendung eines elasto-
plastischen Materialmodells mit Schädigung für Knochen [Zys94] wurde der Einfluss dieses Phänomens
bestimmt. Eine Subroutine wurde in Fortran implementiert. Zeit- und ratenabhängige Effekte wurden in
dieser Studie vernachlässigt. Ausführliche und detailierte Verifizierung des Modells zeigte, dass das Finite
Elemente Modell Indentationen für eine Reihe von Materialien ausreichend genau zu simulieren.

Die Ergebnisse dieser Studie zeigen, dass der Indentationsmodul für elastische Materialien unabhängig

von der Indentationstiefe ist. Die Methode von Oliver und Pharr vernachlässigt den Einfluss von endlichen

Spitzenradien. Dieser Effekt verschwindet jedoch mit zunehmender Indentationstiefe. Weiters scheint eine

Versteifung aufgrund eines Effektes der Poissonkonstante aufzutreten, der von Poon [PRR08b] in einer em-

pirischen Formel implementiert wurde. Diese stimmt mit den Daten dieser Studie überein. Dieser Effekt

wurde auch von Hay et al. beschrieben [HBP99]. Laut Hay gibt es einen systematischen Messfehler auf-

grund der Vernachlässigung von radialen Verschiebungen der Punkte der Kontaktfläche zwischen Indenter

und Material in der Datenanalyse. Für elasto-plastische Knochenmodelle gibt es klare Anzeichen, dass

die Indentationstiefe auf den gemessenen Indentationsmodul Einfluss hat. Für elasto-plastische Materi-

alien ist die Entlastungsphase laut Poon elastisch [PRR08b]. Allerdings tritt eine starke Überschätzung

des Indentationsmoduls aufgrund von Materialanhäufungen auf. Bolshakov et al [BP98] machten ähnliche

Beobachtungen für Materialien mit einem Verhältnis hf/hmax grösser als 0.7. In dieser Studie lag das

Verhältnis hf/hmax sowohl im isotropen als auch im anisotropen Fall deutlich über 0.7. Poon zeigte, dass

der Messfehler deutlich kleiner und eine Funktion der Poissonkonstante ist, wenn die Kontaktfläche bekannt

ist. Das zeigt, dass die Materialanhäufungen ein wichtiger Faktor für die Überschätzung des Indentation-

smoduls sind. Der verbleibende Fehler ist vermutlich durch Eigenspannungen im Abdruck [PRR08b] und

radiale Verschiebungen der Punkte der Kontaktfläche [HBP99] zu erklären. Im Laufe dieser Studie wurde

ein dreidimensionales Modell der Berkovichspitze entwickelt. Es konnte gezeigt werden, dass der konische

Indenter eine sehr gute Annäherung der strukturellen Antwort liefert. Weiters wurde Schadensakkumulation

in einem anisotropen elasto-plastischen Knochenmodell berücksichtigt. Der gemessene Indentationsmodul

war deutlich geringer als erwartet. Die Unterschätzung lag bei 45% bis 51% je nach Indentationsrichtung

und Verfestigungsfunktion. Der kumulierte Schaden lag zwischen 25% und 99%. Das Verhältnis hf/hmax

war deutlich kleiner als 0.7 in allen Simulationen. Bolshakov et al [BP98] berichteten, dass die Methode von

Oliver und Pharr für isotrope elastische ideal plastische Materialien mit grosser Genauigkeit funktioniert,

wenn hf/hmax kleiner als 0.7 ist. Dies ist bei Schädigung des Materials nicht der Fall, wie die Ergeb-

nisse dieser Studie zeigen. Die Annahme einer intakten Elastizität bei der Entlastung ist bei der Präsenz

von starker Schädigung unter der Spitze nicht haltbar. Diese lag in dieser Studie bei bis zu 99% direkt

unter der Spitze. Die Form des Spannungs- und Schädigungsfeldes war qualitativ vergleichbar mit den

Ergebnissen von Zheng et al [ZMKO10] für ein isotropes elasto-plastisches Schadensmodell für Knochen.

Zeit- und ratenabhängige Effekte wurden in dieser Studie vernachlässigt, weshalb die Indentationskur-

ven kein viskoses Verhalten zeigten, das für Knochen charakteristisch ist [ZEGEH+99]. Weitere Studien

unter Berücksichtigung von zeitabhängigen Materialgesetzen und Identifikation von Materialparametern

für die Schädigungsmodelle sind notwendig, um eine bessere Korrelation zu experimentellen Ergebnissen an

Knochen und ein tieferes Verständnis der ablaufenden Vorgänge zu erreichen.
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Chapter 1

Introduction

1.1 Motivation

Research on the mechanical properties of bone tissue has been done since the first half of the 20th
century, as modern medicine started to demand a more scientific approach on skeletal mechanics.
Since that time, the research yielded some essential results. The mineralization and orientation of
the collagen fibres influence the anisotropic tissue hardness in the bone structural unit. Also, the
tissue hardness is not changed due to effects of aging or osteoporosis [ZEGEH+99]. In recent years,
the interest in the micromechanical properties of bone was regained. This is due to the develop-
ment of depth-sensing nanoindentation, which allows a systematic investigation of micromechanical
properties at the lamellar and the bone structural unit level. The macroscopic mechanical proper-
ties of the bone tissue are influenced by composition, structure, microstructure and nanostructure
[ZEGEH+99]. Modern preventive and therapeutic methods for skeletal diseases like osteoporosis
rely highly on the results of the research on the micromechanics of bone and its influence on cell-
mediated adaption processes [Zys09]. Osteoporosis is a severe disease affecting the strength of the
skeleton. People affected by it have a highly elevated fracture risk. According to Statistik Austria,
one out of four women above the age of 60 suffers from osteoporosis. Therefore a lot of effort is made
to find therapies for this disease. There are other experimental methods to study the micromechan-
ics of bone tissue, e.g. ultrasound microscopy. It has a considerably higher data throughput than
nanoindentation. However, unlike ultrasound microscopy, nanoindentation offers the possibility to
inspect not only elastic, but also post-yield properties of the bone tissue ([DCVV+01],[ZNO08]).
This is a big advantage of this method in comparison to other methods. Therefore this field of
research has been growing rapidly in the last two decades.

1.2 Nanoindentation

Nanoindentation is an important experimental technique to determine the micromechanical proper-
ties of surfaces, thin films and materials. It has also become increasingly popular in the examination
of biological materials [Zys09]. In traditional mechanical testing, macroscopic specimens are fixed to
a device and tested. The size of the tested volume and its characteristic lengths are very similar to
the specimen size. On the other hand, in nanoindentation a diamond tip is pushed into the surface
of the material. The tip displacement and the force response are measured simultaneously by the
testing device. The sample volume is usually multiple scales larger than the tested volume. This
makes the determination of local mechanical properties possible in contrast to homogenizing over a
large sample volume. This is especially important, as the mechanical properties of biological mate-
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rials may vary widely depending on the scale of the experiment (macro, meso, micro or even nano)
due to hierarchical structures and inhomogeneities. A typical nanoindentation machine has four
main components: A xyz-table with a sample holder that allows exact positioning of the sample, a
microscope to examine the specimen, choose appropriate indentation spots and postexperimental
examination, a transducer and the indenter tip. Fig. 1.1 shows a typical testing setup of the CSM
Nanohardness Tester (CSM Instruments SA, Peseux, Switzerland) with a specimen mounted on the
nanoindentation machine.

Figure 1.1: Typical testing setup of a nanoindentation experiment on the CSM Nanohardness Tester

In order to make accurate measurements, the exact position of the specimen in space has to be
determined before the test. The indentation head is lowered to the surface of the specimen. It acts
as a frame of reference during the experiment. Fig. 1.2 shows a scheme of the indenter head.

Figure 1.2: Scheme of the indenter head of the CSM Nanohardness Tester

When the tip comes into contact with the surface and performs the indentation, the material
underneath deforms. Depending on the material properties, different indentation shapes will form.
Therefore distinct measures are introduced that help to uniquely identify the shape of the inden-
tation site. Fig. 1.3 shows a scheme of the deformation of the surface during the indentation
experiment and the measures defining the indentation shape.
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Figure 1.3: Scheme of an indentation

For the indentation of an axisymmetric body of arbitrary shape into an isotropic linearly elastic
halfspace, an analytical solution was found by Sneddon [Sne48]. It can be used directly to obtain
the elastic modulus if the material’s Poisson‘s ratio is known a priori. Sneddon found that there
is a quadratic relationship between the reaction force and the indentation depth. Many materials
cannot be modeled as purely linear elastic solids, though. Therefore experimental techniques had
to be developed in order to extract elastic properties from indentation experiments. For bone, the
testing protocol usually involves a linear loading phase in load control, a hold phase with constant
loading in order to minimize viscous effects on the measurements [Zys09] and a linear unloading
phase. Fig. 1.4 shows a typical load-displacement curve of a nanoindentation experiment on bone.

Figure 1.4: Typical load-displacement curve of an indentation experiment

One can see clearly the response of the material in the three phases of the experiment. There
is a nonlinear response during the loading phase followed by creep deformation during the hold
phase. This is a viscous effect that is common for bone. The unloading phase is nonlinear again.
The shape of a load-displacement curve of an indentation experiment can be described by a set of

9



shape factors as described by Mullins et al [MBM09]. The combination of four shape factors, e.g.
maximum force, maximum indentation depth, dissipated energy and the gradient dP/dh at hmax

is usually enough to uniquely identify one indentation curve. It is however very difficult to extract
unique nonlinear postelastic mechanical properties from one indentation curve, as the indentation in
multiple materials with significantly different properties might result in very similar experimental
indentation curves. This effect was described by Chen et al [COZC07], who speaks of mystical
materials, as unique nonlinear properties cannot be extracted. Therefore, the following method
aims at finding the elastic properties of the tested material without considering any nonlinear
effects.

For elasto-plastic materials, plastic deformation takes place during the loading phase. The
extent of the plastic deformation depends on the indenter shape. For sharp indenters like conical
or Berkovich indenters, the onset of plasticity is immediate. Therefore there is a superposition of
local elastic and plastic material behaviour under the indenter tip. It is very hard to distinguish
the two effects in the load-displacement curve. However, it is believed that the beginning of the
unloading curve is purely elastic (as stated by Oliver and Pharr [OP92]). Therefore it is possible to
extract unique elastic properties from this part of the indentation curve. The equations required to
extract the elastic modulus are presented in the following chapter describing the existing analytical
solutions of the Boussinesq problem.

1.3 Rigid punch on an elastic halfspace

1.3.1 Isotropic material

The analytical solution to a penetration of an elastic halfspace by a rigid punch whose profile is
described by the function f(x) was found by Sneddon [Sne48]. The total force needed to penetrate
to a depth of he is given by the equation

P =
4Ga

1− ν

∫ he

0

x2f ′(x)dx√
1− x2

(1.1)

In the special case of a conical indenter this equation becomes

P =
2E tanα

π(1− ν2)
h2

e (1.2)

The method used by Oliver and Pharr [OP92] to extract the isotropic elastic modulus of a material
with known Poisson ratio is based on this analytical solution. Differentiating this relationship, we
get

dP

dhe
=

4E tanα

π(1− ν2)
he (1.3)

The indentation depth hmax consists of two parts hc and hs as defined in Fig. 1.3:

hmax = hc + hs (1.4)

The deflection at the contact perimeter hs can be calculated by using Sneddon’s expression for the
deformed surface outside the area of contact [Sne48]:

hs =
π − 2

π
(h− hf ) (1.5)

Sneddon’s solution only applies to purely elastic problems, therefore (h−hf ) has to be used rather
than h. From Sneddon’s force-displacement relation, the following expression can be derived:

h− hf = 2
P

dP/dh
(1.6)
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Substituting eq. (1.6) in eq. (1.5), the following relationship for hs is obtained:

hs =
2(π − 2)

π

P

dP/dh
= χ

P

dP/dh
(1.7)

The contact depth of the indenter as defined in Fig. 1.3 can therefore be calculated by the following
relationship:

hc = hmax − χ
P |hmax

dP/dhe|hmax

(1.8)

with χ = 0.72 for a conical indenter. According to Oliver and Pharr [OP92], the projected contact
area therefore becomes

A = π tan2 αh2
c = 24.5h2

c (1.9)

Assuming linear elastic material behaviour, the elastic modulus for an isotropic material can be
calculated from an indentation curve by the relationship

E =
1
2β

dP

dhe

√
π√
A

(1− ν2) (1.10)

In this case, β is an empirical correction factor that depends on the tip geometry. It is 1.0 for a
conical indenter and 1.034 for a Berkovich indenter. Following the suggestions of Oliver and Pharr
[OP92], the elastic modulus is extracted with the help of the gradient of the unloading curve dP/dh
at the maximum indentation depth hmax. A curve is fitted to the experimental data in order to
obtain a smooth function. Then the gradient is computed at the maximum indentation depth. Thus
a good approximation of the isotropic elastic modulus may be found if the Poisson ratio is known
a priori. The indentation modulus can be extracted with this technique as well using the formula

Eind =
1
2β

dP

dhe

√
π√
A

(1.11)

If the indenter is not completely rigid, the measured modulus is equal to the reduced modulus Er.
It is defined by the combination of the indenter and the specimen stiffness:

1
Er

=
1− ν2

specimen

Especimen
+

1− ν2
indenter

Eindenter
(1.12)

The elastic modulus of the specimen can be computed, if the mechanical properties of the indenter
are known. In this study, the indenter will be modeled as rigid and the reduced modulus Er is
therefore equal to the modulus of the specimen Espec. The shape of the indentation is given by
the following expression in a cylindrical coordinate system for the analytical solution of Sneddon
[Sne48] as a function of z [HBP99]:

r(z) = z tanφ +
1− 2ν

4− 4ν
z(ln

z tanφ/a

1 +
√

1− (z tanφ)2/a2
−

1−
√

1− (z tanφ)2/a2

(z tanφ)2/a2
(1.13)

with a being the radius of the circle of contact. It is related to the contact depth hc by

a = hc tanφ (1.14)

It should be noted that this shape potentially differs from the shape of an indentation of a rigid
cone into an elastic half-space as stated by Hay et al [HBP99] depending on the indenter angle φ
and the Poisson ratio of the indented material.
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1.3.2 Anisotropic material

Biological tissues are mostly not isotropic continuous media, but highly hierarchical structures with
anisotropic material properties. Therefore the assumption of isotropy needed for equation (1.6) to
yield proper results can provide a first approximation of the elastic properties only. In order to be
able to extract elastic properties from indentation experiments on anisotropic materials, Swadener
and Pharr [SP01] developed a new mathematical framework that allows the use of the Oliver and
Pharr method [OP92].

When indenting an anisotropic material, the contact perimeter around the indenter has differ-
ent depths depending on the orientation of the elastic tensor. Fig. 1.5 shows the scheme of an
indentation of a conical tip into an anisotropic material.

Figure 1.5: Scheme of the indentation into an anisotropic material, from Franzoso et al. [FZ09]

Therefore, according to Swadener and Pharr [SP01], for an anisotropic material the shape of
the contact area is assumed to be elliptical. The area is defined as:

A = πa1a2. (1.15)

In order for the conical indentation to be self-similar, it must be proportional to h2
e. Therefore,

the contact stiffness S is linear in respect to the indentation depth in linear elasticity and the total
force needed to penetrate to a depth of he is

P =
M

π1/2
heA

1/2 (1.16)

In the anisotropic case, the following relationship is true:

he =
π

2
(a1a2)1/2 cot α (1.17)

Therefore the following relationship holds true:

A1/2 = (πa1a2)1/2 =
2he√
π cot α

(1.18)

The total force needed to penetrate the halfspace to a depth of he becomes

P =
2
π

M tanαh2
e (1.19)
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Again, there is a quadratic relationship between the reaction force and the indentation depth. M
is the indentation modulus. It is defined as:

M =
4π∫ 2π

0
(a3iB

−1
ij (γ)a3j/((a1/a2) cos2 γ + (a1/a2) sin2 γ)1/2)dγ

(1.20)

where a3i is the indentation vector containing the direction cosines with the normal to the surface.
Bij is a Barnett-Lothe tensor defined by

B(t) =
1
2π

∫ 2π

0

((mn)ik(nn)−1
kl (nm)lj − (mm)ij)dφ (1.21)

according to Swadener and Pharr [SP01]. The vectors m,n and t form a right-hand orthogonal
coordinate system. While m and n need to be unit vectors, this is not necessary for t according to
Franzoso et al. [FZ09]. The second order tensors (ab)ij are defined as

(ab)jk = aiSijklbl

where Sijkl are the components of the stiffness tensor S. Instead of using equation (1.6) to extract
the isotropic elastic modulus, in the anisotropic case the indentation modulus Eind is extracted
using equation (1.7). Depending on the material symmetry there will be different indentation
moduli for each direction. For anisotropic materials, there is an infinite number of moduli. In the
case of transverse isotropy, the maximum of the modulus distribution will be in axial direction. In
the isotropic transverse plane, the indentation modulus will be constant.

1.4 Nanoindentation in bone

Bone is a natural composite of living cells surrounded by non-living extra cellular matrix (ECM)
with a hierarchical structure. It is designed to provide mechanical support, protect vital organs,
store bone marrow and metabolize calcium. It features at least 6 levels of organisation making up
the global mechanical response of the skeleton [Zys09]. The different levels are:

- Mineralized collagen fibrils (MCF)
- Lamellae
- Bone Structural Unit (BSU)
- Cortical shell and trabeculae
- Trabecular bone
- Organ

The characteristic length scale of the different levels varies widely from about 200nm for the MCF
to multiple cm for the whole organ. While biomechanical testing of bone has been performed on
the macroscale for more than a century, there are still many challenges due to spatial, inter-subject
and age variation of mechanical properties. Micromechanical analysis of bone as a hierarchical
composite is a new and rapidly developing field in biomechanics. Very little is known about the
exact mechanisms dominating the micro-scale mechanical behaviour of bone at the moment. Fig.
1.6 shows the structure of compact bone as described by Kristic [Kri91].
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Figure 1.6: Structure of trabecular and compact bone, from Kristic [Kri91]

Nanoindentation in bone aims at characterizing the mechanical properties on the lamellar or
BSU level. The characteristic length scale of this structure is about 2-7µm on the lamellar and
60µm on the BSU level. It is therefore an excellent choice in order to determine local distributions
of micromechanical properties. The instrumentation needs to be extremely precise in order to yield
reasonable results due to the extremely small forces and displacements involved.

The method originates in the hardness testing of materials which was developed in the 19th
century. On the macroscopic and microscopic level, indenters were pressed into the specimens
and the force was measured. The contact area was then estimated by optical measurement of
the remaining plastic imprint after unloading. The main disadvantages of this method are that
the indentation depth could not be measured and that the residual imprint might be considerably
smaller than the contact area during indentation due to elastic recovery of the material.

Now, with the development of depth-sensing nanoindentation, this experimental technique has
become more and more important in determining the mechanical properties of bone tissue on the
lamellar and BSU level [ZEGEH+99]. Measuring the indentation depth at a high accuracy gives the
possibility to approximate the actual contact area at a given depth with the help of the indenter
shape function. This method is potentially much more precise than the optical measurement of
the imprint. A calibration of the system determining the shape function and system compliance is
done by indenting fused silica specimens. A resolution of 1nm in depth measurement and 0.01mN
in force measurement are realistic at this point. The work done by of Sneddon [Sne48], Oliver and
Pharr [OP92] and Swadener and Pharr [SP01] allows us now not only to determine the hardness
but also to extract elastic properties of the tissue on the lamellar and BSU level depending on the
indentation depth [HGZG05].

Recent studies seem to indicate that the assumption of a purely elastic-plastic deformation of the
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bone tissue under the indenter is erroneous. The high stress concentration leads to the formation
of micro-cracks. This can be described with the help of damage mechanics. The assumptions
of an unloading phase with intact elasticity and the insensitivity of the extracted modulus to
the indentation depth seem not to hold true for the testing of bone tissue. Due to the complex
mechanical problem arising in the context of nanoindentation featuring both nonlinear material
behaviour and geometric nonlinearities in a combination with contact mechanics, many recent
studies rely on numerical simulations and discretization of the mechanical problem instead of using
analytical solutions for a simplified system (see Zhang et al. [ZNO08] and [ZMKO10], Mullins et
al. [MBM09], Chen et al. [COZC07]). Attempts have been made to explain the shape of the
indentation experiments by using constitutive models accounting for elasto-plasticity and damage
accumulation. Thorough studies in this field have been done by Zhang et al. [ZMKO10] using
the finite element method in order to show the influence of damaged bone on the shape of the
indentation curve. However, the material definition was isotropic in the case of Zhang et al.

1.5 Aims of this study

The main aim of this study is to determine the influence of the material constitutive behaviour
in the tested specimen on the accuracy of the experimental results. A finite element model of a
conical and a Berkovich indentation will be developed and validated. Different material models will
be defined and subsequently indented by a rigid indenter. The elastic properties will be extracted
from the indentation curves, thus enabling us to quantify the systematic error made when using
the methods of Oliver and Pharr [OP92] for isotropic or Swadener and Pharr [SP01] for anisotropic
materials. The Finite Element (FE) method especially allows us to quantify the measurement error
made due to the assumption of an unloading phase with intact elasticity and the independence of the
measured modulus from indentation depth. Also, the influence of the accumulation of microdamage
will be assessed by using an elasto-plastic material model with damage. As this material model is
not included in the Abaqus library, a user subroutine UMAT defining the constitutive mechanical
behaviour will be implemented in Fortran. Potentially, the error made might be rather large, as
the theory used to extract the elastic constants does not account for damage accumulation in the
vicinity of the indenter tip and assumes an elasto-plastic material with intact unloading elasticity.
Time and rate dependent effects such as viscosity will be neglected in the course of this study.
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Chapter 2

Model

The finite element (FE) simulations were performed using the commercial FE solver Abaqus/Standard.
The preprocessing was done in Abaqus/CAE, the postprocessing in Abaqus Viewer. Two finite ele-
ment models were developed. The first model features a conical indenter, the second one a Berkovich
indenter.

2.1 Geometry

2.1.1 Conical indenter

The conical indenter was modeled as an analytical rigid body of revolution. The semivertical angle
was chosen to be 70,3°. The conical indenter with this particular semivertical angle was found
to have the same projected area as a Berkovich indenter, which makes this a good model of an
actual indentation experiment. The tip of the cone was rounded with a radius of 100nm. This
coincides with a realistic tip geometry of common indenters. The elastic halfspace was modeled by
a sufficiently large hexahedron with the dimensions 2rs×2rs×hs. As stated by Poon [PRR08b], the
stiffness of the mechanical response of the system is a function of the size of the modeled region. To
be more precise, the following conditions have to be fulfilled in order to get a converged mechanical
system response:

rs ≥ hs (2.1)

and

hs/hmax ≥ 100 (2.2)

In this case, hmax is the maximum indentation depth. Only one quarter of the bone region of
interest was modeled and symmetry boundary conditions were applied in x and y direction in order
to save computation time. Following the suggestions of Poon [PRR08b], a cube with a side length
of 100µm was used to simulate the elastic halfspace.

2.1.2 Berkovich indenter

The Berkovich Indenter was modeled as a discrete rigid body in Abaqus CAE. The finite tip radius
was set to 100nm, which coincides with usual tip geometries. As stated in the last section, the
stiffness of the mechanical response of the halfspace is a function of the size of the modeled region.
A hexahedron with the dimensions 200µm × 100µm × 100µm was modeled. The model fulfills
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the convergence criteria formulated by Poon [PRR08b]. Only one half of the halfspace had to be
modeled due to material and geometric symmetries.

2.2 Mesh

2.2.1 Conical indenter

Linear hexahedral elements with reduced integration and enhanced hourglass control (C3D8R)
were used to mesh the halfspace. This choice of elements was made following the suggestions in the
Abaqus manual for simulations involving contact and large deformations. The reduced integration
makes the problem computationally less expensive as well. In order to allow nonlinear analysis
of large deformations, NLGEOM was activated. The full Newton algorithm was used to solve
the nonlinear equation system. In order to avoid numerical problems due to element distortion,
arbitrary Lagrangian Eulerian (ALE) remeshing was activated. In this technique, the displacement
is mapped in the Lagrangian, the eulerian and the ALE domain. The displacement increments
take place in the Lagrangian configuration. In order to avoid excessive mesh distortion, the nodes
are allowed to move with respect to the material during mesh sweeps. An advection step is then
performed in the eulerian domain to map the solution from the old to the new mesh. This technique
is computationally more expensive than a purely Lagrangian problem. However, the mesh sweeps
can be performed automatically and at high frequencies, which keeps the number of equilibrium
iterations low and the accuracy of the solution at a high level. Enhanced hourglass control is
required by the ALE algorithm. Therefore it was used in this model. The undeformed mesh of the
whole model may be seen in Fig. 2.1.

Figure 2.1: Side view of the undeformed mesh of the whole FE model

The model contains 216000 elements. The modeled region is very big compared to the region of
interest in order to fulfill the convergence criteria by Poon. Also, the gradients of the field variables
are comparatively large near the tip and very small at some distance to the indentation. Therefore
the edges of the cube were seeded with a clear bias towards the site of the indentation. This allowed
to have a fine mesh with a characteristic element length of about 150nm near the indenter tip while
maintaining a relatively small number of elements.
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Figure 2.2: Side view of the undeformed mesh at the region of interest near the conical tip

As can be seen in Fig. 2.2, even though the mesh is relatively fine near the tip, it is too coarse
to show the exact deformation at the rounded tip. However, the influence of the finite tip radius
diminishes with increasing indentation depth. Therefore the chosen level of discretization seemed
to be a good compromise between exactness of the solution and computational cost.

2.2.2 Berkovich indenter

Linear hexahedral elements with full integration (C3D8) were used to mesh the halfspace. This
choice of elements was made, as hourglassing problems were encountered when using reduced in-
tegration elements as suggested in the Abaqus manual for simulations involving contact and large
deformations. Fully integrated elements are more sensible to element distortion and have a higher
computational cost than reduced integrated elements which were used for the conical indenter. In
order to allow nonlinear analysis of large deformations, NLGEOM was activated. The full Newton
method was used to solve the nonlinear equation system. In order to avoid numerical problems
due to element distortion, arbitrary Lagrangian eulerian (ALE) remeshing was activated. The
Berkovich indenter was modeled as a discrete rigid body and its surface meshed with rigid tri-node
shell elements. The undeformed mesh of the whole model may be seen in Fig. 2.3.

Figure 2.3: Side and top view of the undeformed mesh of the whole FE model

The model contains 147000 deformable elements. The model was partitioned at an angle of
60°at the indentation site in order to align the element edges with the projection of the edge of the
Berkovich tip. The modeled region is big compared to the region of interest in order to fulfill the
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convergence criteria by Poon. Also, the gradients of the field variables are comparatively large near
the tip and very small at some distance to the indentation. Therefore the edges of the cube were
seeded with a strong bias towards the site of the indentation. This allowed for a fine mesh with a
characteristic element length of about 100nm near the indenter tip while maintaining a relatively
small number of elements.

Figure 2.4: Side view of the undeformed mesh at the region of interest near the Berkovich tip

As can be seen in Fig. 2.4, even though the mesh is relatively fine near the tip, it is too coarse
to show the exact deformation at the rounded tip. However, the influence of the finite tip radius
diminishes with increasing indentation depth. Therefore the chosen level of discretization seemed
to be again a good compromise between exactness of the solution and computational cost.

2.3 Boundary conditions

2.3.1 Conical indenter

Only one quarter of the tested specimen is discretized. Symmetry boundary conditions in x-direction
constrain the body in the y-z-plane. Furthermore, in y-direction there are symmetry boundary
conditions constraining the in the x-z plane. This makes sure that the specimen deforms naturally,
even though the body was cut to a quarter of its original size to reduce the computational cost of
the numerical model. The specimen is further constrained on the bottom of the specimen in axial
direction, in which the specimen is tested. The conical indenter is modeled as an analytical rigid
body and has a reference point defined at its tip. The degrees of freedom (DOFs) 1, 2 and 4 to 6 are
locked for the indenter tip. Contact is defined between the conical tip and the surface of the tested
bone specimen. The rigid tip acts as master surface, the bone surface as slave. In direction normal
to the surfaces, hard contact is defined. There is no friction in tangential direction. The DOF 3 of
the conical tip is used to perform the indentation experiment. The numerical experiments are run
in displacement control.
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2.3.2 Berkovich indenter

Only one half of the tested specimen is modeled. Symmetry boundary conditions in x-direction
constrain the body in the y-z-plane. The nodes at the middle of the modeled halfspace are locked
in y-direction in order to constrain rigid body motion in this direction. This makes sure that
the specimen deforms naturally, even though the body was cut in half in order to reduce the
computational cost of the numerical model. The specimen is further constrained on the bottom of
the specimen in axial direction, in which the specimen is tested. The Berkovich indenter is modeled
as a discrete rigid body and has a reference point defined at its tip. The DOFs 1, 2, 4, 5 and 6
are locked for the indenter tip. Contact is defined between the Berkovich tip and the surface of the
tested bone specimen. The rigid tip acts as the master surface, the bone surface as the slave. In
direction normal to the surfaces, hard contact is defined. There is no friction in tangential direction.
The DOF 3 of the Berkovich tip is used to perform the indentation experiment. The numerical
experiments are run in displacement control.

2.4 Materials

2.4.1 Isotropic linear elasticity

The most simple material model used in this study is isotropic linear elasticity. This type of
elasticity shows a linear relationship between stress and strain and leaves no residual strains after a
loading cycle. Isotropy means that the material behaviour is independent of the loading direction.
The elasticity tensor can therefore be represented by a sphere. Fig. 2.4.1 shows the stress-strain
relationship of a linear elastic material.
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Figure 2.5: Stress vs. strain for linear elasticity

Three different linear elastic materials were defined for this study. Material ILE A represents
an isotropic approximation of linear elasticity of bone. The material ILE B has a very low Poisson
ratio, ILE C is almost incompressible. Table 2.4.1 shows the parameters of the different materials
and the corresponding indentation moduli.
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Material E ν Eind

ILE A 20 0.30 21.98

ILE B 20 0.01 20.00

ILE C 20 0.49 26.32

Table 2.1: Elastic material constants and indentation modulus [GPa]

2.4.2 Transversely isotropic linear elasticity

Due to its inherent structure, bone shows an anisotropic mechanical behaviour. Anisotropy in this
case is the dependency of the mechanical response of the material on the loading direction. A
linear elastic transversely isotropic material was defined for this study. Transverse isotropy is a
special type of anisotropy. In this case, there is a plane normal to the axial direction in which the
material behaviour is isotropic. It is called the transverse plane. However, the elastic constants in
axial direction are different than the in-plane properties. Instead of a sphere, the elastic tensor has
the form of an ellipsoid. The fabric model by Zysset and Curnier [ZC95] was used to model the
transverse isotropic behaviour. Table 2.4.2 shows the parameters used for the fabric model in order
to model bone tissue.

EO νO GO ρ k m1 m2 m3 l

12.95 0.3 4.982 1.0 1.0 0.879 0.879 1.243 1.0

Table 2.2: Fabric elasticity parameters for transverse isotropy of bone tissue

The fabric model connects fabric tensors describing microstructures to the fourth-order elasticity
tensor. The following relationships hold true for the fabric model:

Eii = E0 · ρk ·m2l
i (2.3)

νij = ν0 · ρk · ml
i

ml
j

(2.4)

Gij = G0 · ρk · ml
im

l
j (2.5)

where mi are the eigenvalues of the fabric tensor. For more information see Zysset and Curnier
[ZC95]. These relationships were used to compute the engineering constants defining the transverse
isotropy for this material model of bone. Table 2.4.2 shows the material constants used in the
simulation.
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E11 E22 E33 ν12 ν13 ν23 G12 G13 G23

10.0 10.0 20.0 0.3 0.212 0.212 3.846 5.439 5.439

Table 2.3: Engineering constants for transverse isotropy of bone tissue

A three-dimensional representation of the elasticity tensor, in this case the distribution of
Young‘s modulus as a function of direction, built with these parameters can be seen in Fig. 2.6.

Figure 2.6: 3D representation of the Young’s modulus distribution for transverse isotropy of bone

The indentation modulus was computed using the method of Swadener and Pharr [SP01] in axial
and transverse direction. It is 18.48GPa in axial direction and 11.99GPa in transverse direction.

2.4.3 Isotropic elasto-plasticity

An isotropic elastic ideal plastic material (IEP) model was implemented using the Mises yield
surface. In ideal plasticity, there is no hardening of the material after the yield point is reached.
Plastic deformation leads to residual strains after a loading cycle. A scheme of the stress-strain
behaviour of ideal elasto-plasticity is shown in Fig. 2.4.3.
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Figure 2.7: Stress vs. strain for ideal elasto-plasticity

A Mises yield surface was chosen. The yield strength in tension σ+
y and compression σ−y were

assumed to be identical in this case. Two different materials were defined. Material IEP A will
be used to compare the results to a study by Poon [PRR08b], IEP B is a isotropic elasto-plastic
approximation of the mechanical properties of bone. The material constants used for the two
materials are shown in Table 2.4.3.

Material E ν σy

IEP A 50 0.3 1.0

IEP B 20 0.3 0.175

Table 2.4: Elastic material constants

Both the elastic properties and the post-yield behaviour are isotropic for these two material
models. The elastic tensor can be represented by a sphere.

2.4.4 Anisotropic elasto-plasticity

An anisotropic elasto-plastic material (AEP) featuring transversely isotropic ideal Hill plasticity
was implemented using the fabric model of Zysset and Curnier [ZC95]. The Hill yield criterion is a
simple extension of the isotropic Mises criterion [Hil98]. The Hill criterion models the anisotropic
yield behaviour on the basis of a reference yield stress σ0 with the help of yield stress ratios Rij .
Hill‘s yield function can be expressed in terms of cartesian stress components as

f(σ) =
√

F (σ22 − σ33)2 + G(σ33 − σ11)2 + H(σ11 − σ22)2 + 2Lσ2
23 + 2Mσ2

31 + 2Nσ2
12 (2.6)
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F, G, H, L, M and N are material constants based on the anisotropic material behaviour. They are
defined with the help of the yield stress ratios Rij .

F =
1
2
(

1
R2

22

+
1

R2
33

− 1
R2

11

)

G =
1
2
(

1
R2

33

+
1

R2
11

− 1
R2

22

)

H =
1
2
(

1
R2

11

+
1

R2
22

− 1
R2

33

)

L =
3

2R2
23

M =
3

2R2
13

N =
3

2R2
12

(2.7)

The yield stress ratios Rij are defined as

Rij =
{ σij

σ0
= ρkm2l

i if i = j,
τij

τ0
= ρkml

im
l
j if i 6= j.

Table 2.4.4 shows the elastic constants of the fabric elasticity model defining the transverse isotropic
elasticity used in this study in order to approximate the mechanical behaviour of compact bone.

EO νO GO ρ k m1 m2 m3 l

12.2 0.366 4.465 1.0 1.0 0.956 0.956 1.088 1.0

Table 2.5: Fabric elasticity parameters modeling bone

Table 2.4.4 shows the engineering constants derived from the fabric model.

E11 E22 E33 ν12 ν13 ν23 G12 G13 G23

11.15 11.15 14.44 0.366 0.313 0.313 4.081 4.644 4.644

Table 2.6: Engineering constants for transversely isotropic elastic model of compact bone

Fig. 2.8 shows the graphic representation of the elasticity tensor, in this case the distribution
of Young‘s modulus as a function of direction, of the material AEP in 3D.
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Figure 2.8: 3D Young’s modulus distribution for anisotropic elasto-plastic bone model

The user defined reference yield stress was chosen to be σ0 = 0.138 GPa. The reference yield
shear stress is defined as

τ0 =
σ0√

3
(2.8)

for Hill plasticity in the Abaqus user‘s manual. Table 2.4.4 shows the yield stress ratios used to
implement the Hill plasticity model for bone in ABAQUS/Standard.

R11 R22 R33 R12 R13 R23

0.914 0.914 1.184 0.914 1.040 1.040

Table 2.7: Yield stress ratios for ideal Hill plasticity model of compact bone

Fig. 2.9 shows a cut through the yield surface in the S11 - S22 plane.

Figure 2.9: Yield surface in the S11 - S22 plane for Hill plasticity
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Fig. 2.10 illustrates a cut through the yield surface in the S11-S33 plane in the case of an axial
symmetric stress state.

Figure 2.10: Yield surface in the S11-S33 plane in the case of an axial symmetric stress state for
Hill plasticity

2.4.5 Anisotropic elasto-plasticity and damage

A material AEPD featuring orthotropic elasto-plasticity with isotropic linear hardening and damage
was implemented as well. Damage and plastic deformation are simultaneously accumulated when
the yield criterion is fulfilled in this model. It is assumed that the damage constitutes itself in
microcracks in the material. It decreases the effective stiffness of the specimen. Fig. 2.4.5 shows
the scheme of a typical stress-strain relationship for elasto-plasticity and damage.
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Figure 2.11: Stress vs. strain for ideal elasto-plasticity and damage

For the orthotropic elasticity model of compact bone, the parameters measured by Ashman et
al. [ACBR84] were used. They can be seen in Table 2.4.5.
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E11 E22 E33 G12 G13 G23 ν12 ν13 ν23 ν21 ν31 ν32

12.0 13.4 20.0 4.53 5.61 6.23 0.376 0.222 0.235 0.422 0.371 0.350

Table 2.8: Engineering constants by Ashman et al. for orthotropic elasticity

Model

The constitutive relationship used was developed by Zysset [Zys94]. It is not included in the
Abaqus material library. Therefore a user subroutine defining the mechanical behaviour of the
material (UMAT) was implemented in Fortran. It was assumed that compact bone does not yield
under a simultaneous homogeneous deformation in all three main material directions. Therefore
the symmetric orthotropic stiffness matrix used for this model is decomposed into two parts:

S = S̄ + S′

It consists of a constant part that represents a special eigentensorial state and a damageable part. In
order to find the constant part of the decomposition of the stiffness matrix, an eigensystem analysis
needs to be performed. The stiffness matrix is of rank 6, which means that is has six eigenvalues
λS,i and six corresponding eigenvectors eλi . The constant part of the decomposition representing
a special eigentensorial state is constructed by multiplying the biggest eigenvalue with the dyadic
product of the corresponding eigenvector with itself.

S̄ = λS,max(eλS,max
⊗ eλS,max

)

The damageable part of the stiffness matrix is the difference of the total stiffness matrix and the
constant part of the decomposition.

S′ = S− S̄

The compliance tensor E is also decomposed into a constant part Ē and a damageable part E′. An
eigensystem analysis of the compliance tensor is done and the constant part of the decomposition
is computed by multiplying its smallest eigenvalue with the dyadic product of the corresponding
eigenvector with itself.

Ē = λE,min(eλE,min
⊗ eλE,min

)

The damageable part of the compliance matrix is the difference of the total compliance matrix and
the constant part of the decomposition.

E′ = E− Ē

It should be noted that the eigentensors of the stiffness matrix and the compliance matrix are
equivalent. The eigenvalues of the stiffness matrix are the inverse of the eigenvalues of the compli-
ance matrix. For more information on the structure of the stiffness and compliance matrices see
Appendix B. The total stress is also decomposed into two parts: The first part results from the
the constant part of the decomposition of the stiffness matrix S̄. The second part results from the
damaged stiffness matrix S′. It will be called ”deviatoric” from now on for the sake of brevity.

S = S̄ + S′ = S̄(E −EP ) + f(α)S′(E −EP )

In general, the material stress of the model and its conjugate variable are given by the expressions:

S = S̄(E −EP ) + f(α)S′(E −EP )
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Sα = −1
2
f ′(α)(E −EP ) : S′(E −EP )

The damage variable α is a measure of the cumulated plastic strain with respect to the damageable
part of the decomposition of the stiffness tensor:

α(t) =
∫ t

0

√
ĖpS′Ėpdτ

Three-dimensional algorithm

The following pages will show the implemented three-dimensional algorithm. A purely elastic trial
stress is calculated using the initial state plastic strain and damage:

ST = S̄(E −EP
0 ) + f(α0)S′(E −EP

0 )

Sα
T = −1

2
f ′(α0)(E −EP

0 ) : S′(E −EP
0 )

with the ”deviatoric” trial stress S′
T

S′
T = f(α0)S′(E −EP

0 )

The yield criterion y(S;α) is defined as

y(S;α) =
√

S : E′S − g(α)

The damage function f(α) is
f(α) = e

− α
αf

The cumulated damage is defined as
D = 1− f(α)

In the undamaged state, D is equal to 0, in the case of complete failure D equals 1. The hardening
function g(α) is

g(α) = yσ

for ideal plasticity (Material AEPDI) and

g(α) = gmax(1− e
− α

αg ) + yσ

in the case of exponential hardening (Material AEPDE). The material parameters αf , gmax, αg

and yσ were identified by Zysset [Zys94]. They are shown in Table 2.4.5.

αf gmax αg yσ

0.09898 0.01075 0.02625 0.02277

Table 2.9: Material parameters in
√

GPa

If the yield criterion is
y(ST ;α0) ≤ 0
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then

{EP , α} = {EP
0 , α0}

S = ST

Sα = Sα
T

In the rate independent case, the plastic stress is equal to the total stress:

S = SE = SEp

The tangent stiffness operator in the elastic case is:

Su = ∇ESE = S̄ + f(α0)S′

If the yield criterion is
y(ST ;α0) > 0

then the implicit projection algorithm is performed. It uses the following set of equations:

S = S̄(E −EP ) + f(α)S′(E −EP )

Sα = −1
2
f ′(α)(E −EP ) : S′(E −EP )

Ep −Ep
0 = λαN

α− α0 = λα

y(S;α) = 0

with

N =
E′S√

S : E′S

This system of five equations can be reduced to the following scalar equation using the right sub-
stitutions:

hi(λi) = (
√

S′
T E′S′

T − λif(α0))f(α0 + λi)− f(α0)g(α0 + λi)

The linearization of these formulas has the following form:

hi+1 = hi + (
dh

dλ
)i(λi+1 − λi)

with
dh

dλ
= (

√
S′

T E′S′
T − λif(α0))f ′(α0 + λi)− f(α0)f(α0 + λ)− f(α0)g(α0 + λi)

The recurrence formula of the Newton scheme becomes:

λi+1 − λi = − hi

(dh
dλ )i

After convergence of the Newton algorithm, the final updated internal variables are

α = α0 + λ

S′ = S′
T

f(α0 + λ)g(α0 + λ)
f(α0)(g(α0 + λ) + λf(α0 + λ))
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EP = EP
0 +

λ

g(α0 + λ)
E′S′

The final total updated stress becomes:

S = S̄(E −EP ) + f(α)S′(E −EP )

According to Zysset [Zys94], the continuum tanget stiffness operator is provided by the consistency
condition

ẏ(S;α) = 0

It is defined as
Su = ∇ES

The continuum tangent stiffness operator takes the form of:

Su = S− S(E′S ⊗ E′S)S
E′S : SE′S + c(α)g′(α)

√
S : E′S

where

c(α) =
f2(α)

f2(α)− f ′(α)

The consistent tangent stiffness operator represents the linearization of the incremental backpro-
jection algorithm instead of the continuum rate law. It is defined as

Su
a = ∇Ei+1Si+1

It takes the form of:

Su
a = Si

a −
Si

a(E′Si ⊗ E′Si)Si
a

E′Si : Si
aE′Si + cig′(α0 + λi

α)
√

Si : E′Si

where

Si
a = Ē +

E′

f(α0 + λi
α)

+ λi
α

E′(Si : E′Si)− E′Si ⊗ E′Si

(Si : E′Si)
3
2

It should be noted that the tangent operator for this particular material law is symmetric. For
more information on the elasto-plastic material law with damage, see the work of Zysset [Zys94].
The Fortran implementation of this algorithm may be seen in Appendix A.

30



Chapter 3

Verification

3.1 Isotropic linear elasticity

In order to validate the model and verify the results of the simulations, the indentation of a conical
indenter into an elastic halfspace was modeled in Abaqus/Standard and the results were compared
to the analytical solution by Sneddon. Linear elastic material behaviour with an elastic modulus
of 20 GPa was chosen. The simulations were compared to the analytical solution for a range of
Poisson ratios from 0.01 to 0.49. The indentation depth of the simulated experiments was 1µm.
The numerical results were compared to the analytical solution by Sneddon as well as an empirical
formula found by Poon [PRR08a] that takes into account the finite tip radius and stiffening effects
due to radial displacements on the contact surface as described by Hay et al. [HBP99].

3.1.1 ILE A

First, a simulation of an indentation of a conical indenter was performed for ILE A, which is
an isotropic linear elastic material with an elastic modulus of 20GPa and a Poisson ratio of 0.3.
According to the analytical solution for a conical punch into an elastic halfspace, the reaction force
on the tip should be proportional to the square of the indentation depth. Poon [PRR08a] found
out that the finite radius of the tip changes the mechanical response of the system compared to the
solution by Sneddon. Also, he found that there is a stiffening effect with respect to the solution
of Sneddon [Sne48] that is a function of the Poisson ratio. This effect was explained by Hay et
al [HBP99] with the presence of radial displacements of the surface points inside the contact area
in the problem modeled by Sneddon that are not accounted for in the analysis. The size of these
radial displacements is dependent on the Poisson ratio and diminishes for incompressible materials.
This effect will be addressed further in section 5.1. Fig. 3.1 shows the comparison of the numerical
simulation to the analytical solution of Sneddon and the empirical formula by Poon.
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Figure 3.1: Force [mN] vs. displacement [µm] for the conical indenter, the analytical solution of
Sneddon [Sne48] and the empirical formula by Poon [PRR08b] for ν = 0.3

As can be seen in Fig. 3.1, the mechanical response of the system follows a quadratic relationship
between indentation depth and reaction force. This is the expected result and coincides with the
form of the analytical solution for this particular problem. The indentation modulus is slightly
higher than the one of the analytical solution for the conical punch. Poon found out in a study
conducted in 2008 [PRR08a] that there is a considerable stiffening effect due to finite tip radii
and radial displacements of the surface points inside the contact area, which are a function of the
material’s Poisson ratio. He developed an empirical law based on the analytical solution of the
Boussinesq problem by Sneddon that has the form of

P = (a1ν
2 + a2ν + a3)

2E tanα

π(1− ν2)
h(h + c1ρ

2 + c2ρ) (3.1)

with a1 = −0.062, a2 = −0.156, a3 = 1.12, c1 = 1.5 × 10−2µm−1 and c2 = 0.117. The numerical
data of this study correlates very well with the empirical constitutive equation found by Poon. Fig.
3.2 shows the relative error of the reaction force made when comparing the numerical results to the
solutions by Sneddon and Poon.
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Figure 3.2: Relative error of force response [ ] vs. displacement [µm] with respect to the analytical
solution of Sneddon [Sne48] and the empirical formula by Poon [PRR08b] for ν = 0.3

Fig. 3.2 indicates that the error of the numerical solution compared to the analytical solution
by Sneddon is small for small deformations and increases to a constant value of about 8% for
indentation depths larger than 0.2µm. The relative error with respect to the empirical formula of
Poon that corrects the analytical solution for stiffening effects of the finite tip radius and radial
displacements which are a function of the Poisson ratio is high in the beginning. The FE analysis
and the empirical solution of Poon 2008 [PRR08a] converge with increasing indentation depth.

The indentation modulus was evaluated at every increment in order to verify that the measured
modulus is independent of the indentation depth for indentations of isotropic linear elastic materials.
Fig. 3.3 shows the elastic moduli measured at different indentation depths.

Figure 3.3: Measured indentation modulus [GPa] vs. displacement [µm] for ν = 0.3

Fig. 3.3 clearly indicates that the measured indentation modulus is indeed independent of the
indentation depth. This can be seen as the measurements lead approximately to the same modulus
for indentation depths larger than 100nm. For very small indentation depths the error is larger, as
the mesh is too coarse to properly compute the exact mechanical response. For indentation depths
larger than 100nm, the mesh used in these simulations gives us proper results. Fig. 3.4 shows the
relative error of the measured indentation moduli as a function of indentation depth.
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Figure 3.4: Relative measurement error of the indentation modulus [ ] vs. displacement [µm] for
ν = 0.3

Another simulation was performed using the Berkovich tip geometry with a finite tip radius
of 100nm. The results were compared to the force-displacement data of the conical indenter.
Theoretically the curves should be exactly the same, as the projected area of the conical indenter
is equal to the one of the Berkovich indenter. The comparison was made in order to verify this
assumption. Fig. 3.5 shows the two force-displacement curves.

Figure 3.5: Force [mN] vs. displacement [µm] for ν = 0.3 using the Berkovich indenter (red) and
the conical indenter (blue)

Fig. 3.6 shows the relative error of the simulation using the conical indenter vs. the Berkovich
indenter as a function of indentation depth as well as a comparison to the analytical solution of
Sneddon [Sne48] and the empirical solution of Poon [PRR08b].
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Figure 3.6: Relative error of force response [ ] vs. displacement [µm] for the Berkovich indenter
with respect to the conical indenter, the analytical solution of Sneddon [Sne48] and the empirical
formula by Poon [PRR08b] for ν = 0.3

As can be seen in Fig. 3.6, there is a constant error with respect to the simulation of the conical
indentation of about 6% for indentation depths larger than 200µm. The indentation modulus was
evaluated at every increment once more. Fig. 3.7 shows the elastic moduli measured at different
indentation depths.

Figure 3.7: Measured indentation modulus [GPa] vs. displacement [µm] for ν = 0.3 using the
Berkovich indenter

Fig. 3.7 indicates that the measured elastic modulus is independent of the indentation depth
for the Berkovich indenter. This can be seen as the measurements lead to the same moduli for
indentation depths larger than 100nm. For very small indentation depths the error is larger, as
the mesh is too coarse to properly compute the exact mechanical response. For indentation depths
larger than 100nm, the mesh used in these simulations gives us proper results. Fig. 3.8 shows the
relative error of the measured elastic moduli as a function of indentation depth.
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Figure 3.8: Relative error of the measured indentation modulus [ ] vs. displacement [µm] for ν = 0.3
using the Berkovich indenter

The relative error of the measured indentation modulus was high with about 9% compared to
the measurements using a conical indenter geometry even though the empirical correction factor of
1.034 [PRR08a] was used in the calculation. Fig. 3.9 shows a contour plot of the von Mises stress
distribution around the indentation site for a Berkovich indenter and the material ILE A.

Figure 3.9: Contour plot of von Mises stress [GPa] on the deformed shape at maximum indentation
depth (side and top view, Max: 18.2GPa, Min: 1.5GPa)

The maximum von Mises stress under the indenter tip was 18.2GPa. This extraordinarily
high value can be explained with the extreme stress concentration under the indenter tip and at
the indenter edges in a purely elastic material. The stress at a depth of about 4µm and at a
distance of about 3µm to the indentation center was still 1.5GPa. The assumption that the conical
indenter is a feasible substitute for the Berkovich geometry in the case of an isotropic linearly elastic
material seems to be valid. The relative error of about 6% with respect to the conical indenter is
most probably due to the extremely (and theoretically infinitely) high stress concentrations at the
indenter tip and edges that are not correctly accounted for by the coarse mesh, which might influence
the accuracy of the simulation.

Also, a convergence study was performed with the material ILE A by refining the mesh of the
conical indenter by a factor of two. 432000 elements were used instead of 216000. The relative error
in the maximum force was 1.02% when compared to the empirical formula of Poon at an indentation
depth of 0.6 µm. Therefore there is no significant increase in solution accuracy with decreased
element size. The computation time and memory consumption however increased significantly.
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Therefore the mesh refinement may be considered reasonable for the given problem.

3.1.2 ILE B

Then, another simulation of an indentation of a conical indenter was performed for ILE B, an
isotropic linear elastic material with an elastic modulus of 20GPa and a very low Poisson ratio of
0.01.

Figure 3.10: Force [mN] vs. displacement [um] for the conical indenter, the analytical solution of
Sneddon [Sne48] and the empirical formula by Poon [PRR08b] for ν = 0.01

The force response shows the expected behaviour. The relative error between the FE analysis
and the analytical solution by Sneddon is larger than before, as Figure 3.11 shows.

Figure 3.11: Relative error of force response [ ] vs. displacement [µm] with respect to the analytical
solution of Sneddon [Sne48] and the empirical formula by Poon [PRR08b] for ν = 0.01
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Fig. 3.11 indicates that the error of the numerical solution compared to the analytical solution of
Sneddon is approximately constant at 13% for indentation depths larger than 200nm. The relative
error towards the empirical formula of Poon that corrects the analytical solution for stiffening
effects of the finite tip radius and radial displacements due to the Poisson ratio is about 15% in the
beginning. The FE analysis and the empirical solution of Poon [PRR08a] converge with increasing
indentation depth to a constant error of 2%.

The isotropic indentation modulus was again evaluated at every increment to verify that the
measured modulus is independent of the indentation depth. Fig. 3.12 shows the indentation moduli
as a function of indentation depth.

Figure 3.12: Measured indentation modulus [GPa] vs. displacement [µm] for ν = 0.01

Fig. 3.12 again shows that the measured indentation modulus is independent of the indentation
depth. For very small indentation depths the error is larger, as the mesh is too coarse to properly
compute the exact mechanical response. For indentation depths larger than 100nm, the mesh
used in these simulations gives us proper results. On Fig. 3.13 the relative error of the measured
indentation moduli is shown as a function of indentation depth.

Figure 3.13: Relative measurement error of the indentation modulus [ ] vs. displacement [µm] for
ν = 0.01
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3.1.3 ILE C

In order to show that the model is able to simulate the indentations for a wide range of Poisson
ratios, another simulation using the conical indenter was performed for ILE C, which has a Poisson
ratio of 0.49.

Figure 3.14: Force [mN] vs. displacement [µm] for the conical indenter, the analytical solution of
Sneddon [Sne48] and the empirical formula by Poon [PRR08b] for ν = 0.49

The force response shows the expected behaviour. The relative error between the FE analysis
and the analytical solution by Sneddon is very small. The accuracy of the simulations is much higher
for nearly incompressible materials than for smaller Poisson ratios. This effect was explained by
Hay et al [HBP99] with vanishing radial displacements of the surface points inside the contact
area for incompressible materials and will be addressed further in section 5.1. Fig. 3.15 shows the
relative error of the force response with respect to the analytical solution of Sneddon [Sne48] and
the empirical formula of Poon [PRR08a] as a function of indentation depth.

Figure 3.15: Relative error of force response [ ] vs. displacement [µm] with respect to the analytical
solution of Sneddon [Sne48] and the empirical formula by Poon [PRR08b] for ν = 0.49
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Fig. 3.15 indicates that the error of the numerical solution compared to the analytical solution
is very small at all indentation depths. The relative error towards the empirical formula of Poon
is higher in the beginning. The FE analysis and the empirical solution of Poon [PRR08a] converge
with increasing indentation depth.

The indentation modulus was evaluated at every increment one more time to verify that the
measured modulus is independent of the indentation depth for this set of material parameters. Fig.
3.16 shows the measured values of the indentation modulus as a function of indentation depth.

Figure 3.16: Measured indentation modulus [GPa] vs. displacement [µm] for ν = 0.49

Fig. 3.12 shows no dependency of the measured indentation modulus on the indentation depth
for this set of material parameters. Fig. 3.17 shows the relative error of the measured elastic moduli
vs. indentation depth.

Figure 3.17: Relative measurement error of indentation modulus [ ] vs. displacement [µm] for
ν = 0.49

Fig. 3.17 shows no dependency of the relative error of the measured indentation modulus on
the indentation depth for this set of material parameters. There is a trend in the data of increasing
accuracy of the simulations with respect to the analytical solution by Sneddon [Sne48]. Fig. 3.18
shows a 3D plot of the relative error of the reaction force with respect to the analytical solution by
Sneddon as a function of Poisson ratio and indentation depth.
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Figure 3.18: Relative error of the reaction force [ ] with respect to the analytical solution by Sneddon
as a function of Poisson ratio and indentation depth

Fig. 3.18 suggests that there is a negative relationship between the relative error of the reaction
force with respect to Sneddon and the Poisson ratio for all indentation depths larger than 0.2µm.
The error is minimal for a Poisson ratio of 0.49. It is constant for all indentation depths larger than
0.2µm. Fig. 3.19 shows a 3D plot of the relative error of the measured indentation modulus as a
function of Poisson ratio and indentation depth.

Figure 3.19: Relative error of the indentation modulus [ ] as a function of Poisson ratio and inden-
tation depth

Fig. 3.19 suggests that there is a negative relationship between the relative error of the measured
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indentation modulus and the Poisson ratio for all indentation depths larger than 0.2µm. The error
is minimal for a Poisson ratio of 0.49. It is constant for all indentation depths larger than 0.2µm.
This part of the verification showed that the mesh can simulate the mechanical response of an
isotropic linearly elastic material with sufficient accuracy at indentation depths larger than 0.2µm.

3.2 Transversely isotropic linear elasticity

As the goal of this study was to use an anisotropic bone model, the mesh was validated for the
anisotropic case as well. An indentation of a transverse isotropic elastic halfspace was simulated.
The results were compared to the analytical solution by Swadener and Pharr [SP01].

Fig. 3.20 compares the force vs. indentation depth curves of FE simulations of indentations in
axial (2) and transverse (�) direction to the analytical solution by Swadener and Pharr [SP01].

Figure 3.20: Force [mN] vs. indentation depth [µm] in axial (2) and transverse (�) direction

Figure 3.21 shows the relative error of the FE analysis in comparison to the analytical solution
by Swadener and Pharr [SP01] in axial (2) and transverse (�) direction.
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Figure 3.21: Relative error of force response [ ] vs. displacement [µm] in axial (2) and transverse
(�) direction

The relative error in the force response of the system is considerably smaller in transverse than
it is in axial direction. The indentation moduli in the axial and transverse direction were extracted
using the method of Oliver and Pharr [OP92]. Fig. 3.22 shows the extracted indentation modulus
in axial (2) and transverse (�) direction as a function of indentation depth.

Figure 3.22: Indentation modulus [GPa] vs. indentation depth [µm] in axial (2) and transverse (�)
direction

Fig. 3.22 shows no dependency of the indentation modulus on the indentation depth for this set
of material parameters. The theoretical indentation moduli for this material in axial and transverse
direction were computed using the mathematical framework of Swadener and Pharr [SP01]. It is
18.48GPa in axial direction and 11.99GPa in transverse direction. As can be seen in Fig. 3.22,
there is a slight overestimation of the modulus in both axial and transverse direction. The relative
error was quantified as a function of indentation depth. Fig. 3.23 shows the relative error of the
measurement of the indentation modulus in axial (2) and transverse (�) direction as a function of
indentation depth.
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Figure 3.23: Relative error of indentation modulus [ ] vs. indentation depth [µm] in axial (2) and
transverse (�) direction

Fig. 3.23 shows no dependency of the relative error of the measured indentation modulus on the
indentation depth for this set of material parameters. The relative error in the extracted indentation
modulus is considerably smaller in transverse than it is in axial direction. The mesh used in these
simulations can simulate the mechanical response of the system properly at all indentation depths.

3.3 Isotropic elasto-plasticity

The mesh was validated for an isotropic elastic ideal plastic material law as well by comparing it
to the results of a numerical study conducted by Poon [PRR08b]. The material IEP A was used,
which features an elastic modulus of 50GPa, a Poisson ratio of 0.3 and ideal Mises (J2) plasticity
with a yield stress of 1GPa. The finite tip radius was changed to 30nm for this experiment. The
indentation depth was 600nm. This coincides with the parameters used by Poon [PRR08b] for a
numerical experiment in 2008. Fig.3.24 shows the indentation curve of the simulation with 216000
elements (�) and the convergence study with 432000 elements (×).

Figure 3.24: Force [mN] vs. displacement [µm] of the simulation (�) and the convergence study (×)
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The elastic modulus was extracted at the beginning of the unloading phase using the method
proposed by Oliver and Pharr 1992 [OP92] assuming a Poisson’s ratio of 0.3. It was compared to
the original value of 50GPa used for the material definition in Abaqus. The extracted modulus
was 57.48GPa at a depth of 600nm. This corresponds to a relative error of 14.96%. The extracted
modulus reported by Poon [PRR08b] was 56.7GPa, which corresponds to a relative error of 13.3%.
The relative error in the extraction of the modulus of the simulations performed in this study to
the reported values of Poon was 1.377%. A convergence study was done by refining the mesh by
a factor of two. 432000 elements were used instead of 216000. Table 3.3 compares the results of
this study and those obtained by Poon [PRR08b] with the original modulus of the material. The
results of the convergence study can be seen as well.

hmax E [GPa] Rel. error

Orig. 50.0

Poon 0.6 56.7 +13.3

IEP A 0.6 57.5 +14.96

Conv. St. 0.6 57.1 +14.23

Table 3.1: Extracted elastic moduli [GPa] and relative error of moduli reported by Poon [PRR08b],
for IEP A and the convergence study

The results of the simulations using the material IEP A were very similar to those obtained by
Poon. The convergence study showed only minor differences in the indentation curves. The relative
error in the maximum force was 1.13% in the convergence study. The relative difference in the
extracted modulus was 0.6% between the simulations with 216000 and 432000 elements. Therefore
there is no significant increase in solution accuracy with decreased element size. The computation
time and memory consumption however increased significantly. Therefore it was concluded that the
mesh is able to simulate indentations on isotropic elasto-plastic material with a sufficient accuracy.

3.4 Anisotropic elasto-plasticity and damage

As material laws for the materials AEPDI and AEPDE are not included in the Abaqus material,
a new user subroutine (UMAT) had to be implemented in FORTRAN for each of them. In order
to verify the correct function of the algorithm, single element tests in ABAQUS were compared to
results for homogeneous strain fields obtained in Mathematica (Wolfram Research, Champaign, IL,
USA). Periodic boundary conditions were used in order to achieve a homogeneous strain state inside
the element for the Abaqus single element tests. For the Mathematica calculations, the strain state
was assumed to be homogeneous. For more information on the Mathematica code, see Appendix
B. Fig. 3.25 shows the stress strain curve for a uniaxial compression cycle on the material AEPDI.

45



Figure 3.25: Stress [GPa] vs. strain [ ] for an uniaxial compression cycle

As can be seen in Fig. 3.25, the material shows considerable hardening in uniaxial compression.
This result was expected, as the constant part of the stiffness matrix has non-zero elements only
in the first quadrant of the 6x6 stiffness matrix. The shape of the stress-strain curve was verified
in Mathematica. As the shear components of the stiffness matrix can be fully damaged, a simple
shear test was performed next in order to visualize the elasto-plastic behaviour with damage. Fig.
3.26 shows the stress strain curve for a simple shear cycle on the material AEPDI.

Figure 3.26: Stress [GPa] vs. strain [ ] for a simple shear cycle with ideal plasticity
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As can be seen in Fig. 3.26, there is a residual strain showing the influence of the plasticity.
As expected for ideal plasticity, no hardening occurs. The stiffness decreases in the course of the
loading cycle showing the influence of damage accumulation. The shape of the stress-strain curve
was verified in Mathematica. In order to show that a subsequent loading path will follow the
preceding unloading path in the elastic case, multiple simple shear cycles were performed. Fig. 3.27
shows the stress strain curve for multiple simple shear cycles on the material AEPDE.

Figure 3.27: Stress [GPa] vs. strain [ ] for multiple simple shear cycles with exponential hardening

As can be seen in Fig. 3.27, a residual strain remains after unloading showing the influence
of plasticity. The exponential form hardening curve is very clear. The stiffness decreases in the
course of the loading cycles showing the influence of damage accumulation. The subsequent loading
path followed the preceding unloading path until the yield criterion was reached. The shape of the
stress-strain curve was verified in Mathematica. Fig. 3.28 shows the linear elastic response of the
material AEPDE to the eigentensorial state as described in section 2.4.5.
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Figure 3.28: Stress [GPa] vs. strain [ ] for eigentensorial state

The mechanical response to the eigentensorial state was strictly linearly elastic, as expected from
this particular material model. Multiple more tests were performed and compared quantitatively
to the results computed in Mathematica in order to verify the implementation of the algorithm.
The results were identical. The convergence rate of the material was tested in another simulation.
A cubic sample with 125 elements was tested under unconfined compression. The residual force
reported in the msg file decreased by a minimum factor of 102 per increment. The convergence
rate was quadratic. This result was expected for the full Newton algorithm. Therefore the im-
plementation of the tangent stiffness operator seems to work properly. These tests showed that
the implementation of the material law in FORTRAN is working with sufficient accuracy and at a
proper convergence rate.
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Chapter 4

Results

4.1 Isotropic elasto-plasticity

First, cortical bone was modeled as an isotropic elastic ideal plastic material. The material IEP
B was used for this part of the study. It features an elastic modulus of 20GPa, a Poisson ratio of
0.3 and a yield stress of 175MPa in tension and compression. Simulations with different indenter
shapes were performed and the results were compared to each other.

4.1.1 Conical indenter

For the conical indenter, simulations of indentations to depths of 600nm and 1µm were performed
in order to show the influence of indentation depth on the extracted elastic properties. The elastic
modulus was extracted at the beginning of the unloading phase using the method of Oliver and
Pharr [OP92] assuming a Poisson’s ratio of 0.3. The elastic modulus was chosen in this case in
order to be able to compare the results to the study by Poon. Fig.4.1 shows the indentation curves
for the indentations to depths of 600nm and 1µm.

Figure 4.1: Force [mN] vs. Displacement [µm]

The extracted elastic modulus at a depth of 600nm was 24.986GPa. This corresponds to a
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relative error of 24.93%. At a depth of 1µm, the extracted modulus was 26.11GPa. This corresponds
to a relative error of 30.54%. Table 4.1.1 shows the results of the study.

hmax hf/hmax hc E Rel. error

0.6 0.840 0.563 24.986 +24.93%

1.0 0.871 0.940 26.11 +30.54%

Table 4.1: Extracted elastic moduli as a function of indentation depth for IEP B (E/σy = 114.28)

The relative error of the extracted moduli were significantly higher for the Material IEP B than
for IEP A. For an indentation depth of 0.6µm, 14.96% were reported for IEP A and 24.93% for
IEP B. This is a significant increase in measurement error. Similar findings were reported by Poon
[PRR08b]. Poon reported a dependency of the measurement error on the ratio of the elastic modulus
and the yield strength E

σy
. This ratio was 50 for IEP A and 114.28 for IEP B. This coincides very

well with data by Poon [PRR08b], who reported a measurement error of 13.3% for E
σy

= 50 and
22.5% for E

σy
= 100 for materials with a Poisson ratio of 0.3 at an indentation depth of 0.6µm.

Bolshakov et al reported similar results [BP98]. For materials with a ratio of hf/hmax larger than
0.7, as it is the case in this study, Bolshakov et al reported considerable overestimation of the elastic
modulus due to the increased contact area because of material pile-up. Table 4.1.1 compares the
results reported in this study to those of Poon.

E/σy Rel. error

IEP A 50 14.96%

Poon A 50 13.3%

IEP B 114.28 24.93%

Poon B 100 22.5%

Table 4.2: Measurement error of elastic moduli and E
σy

of this study and reported by Poon [PRR08b]

Contour plots of the von Mises stress and the plastic equivalent strain on the deformed shape
at a depth of 1µm were plotted. Fig.4.2 shows the contour plot of the von Mises stresses on the
deformed mesh.
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Figure 4.2: Von Mises stress [GPa] on deformed shape (Max: 175MPa, Min: 14.5MPa)

The maximum stress under the indenter is 175MPa. This result was expected, as IEP B features
perfect plasticity with a yield stress of 175MPa. The stress at a depth of 19µm and at 14µm distance
from the indentation center is still 14.5MPa. The plastic zone stretches further than the contact
zone of the indenter resulting in a considerable amount of pile-up. This coincides very well with the
results of Bolshakov et al [BP98]. The stress field is axisymmetric and about 30% longer in axial
direction than in radial direction. Fig.4.3 shows the contour plot of the plastic equivalent strains
on the deformed mesh.

Figure 4.3: Plastic equivalent strain on deformed shape (Max: 0.944, Min: 0.079)

The maximum equivalent plastic strain under the indenter tip is 0.944. The equivalent plastic
strain at a depth of 3µm and at 4µm distance from the indentation center is still 0.079. The plastic
strain field is axisymmetric and about 25% shorter in axial direction than in radial direction. There
is a considerable amount of material pile-up around the indenter. This effect was also reported
by Poon [PRR08b] and Mullins et al. [MBM09]. The height of the pile-up is constant around the
perimeter. It should be noted that the Material IEP B used in this simulation features perfect
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plasticity, which might play a decisive role for the amount of pile-up around the indentation as
reported by Bolshakov et al [BP98]. Also, contour plots of the residual von Mises stress and the
plastic equivalent strain after retraction of the indenter were plotted. Fig.4.4 shows the contour
plot of the residual von Mises stresses on the deformed mesh.

Figure 4.4: Residual von Mises stress [GPa] (Max: 175MPa, Min: 14.5MPa)

The maximum residual von Mises stress is 175MPa. This is equivalent to the yield stress of the
material IEP B. The yield stress is reached under the indenter tip as well as at about 5µm distance
from the indentation center right next to the remaining pile-up at the vicinity of the plastic imprint.
The stress at a depth of 9µm and at 16µm distance from the indentation center is still 14.5MPa.
The stress field is axisymmetric and about half as long in axial direction as in radial direction. The
shape of the stress field changed significantly during unloading. Fig.4.5 shows the contour plot of
the plastic equivalent strains on the deformed mesh.

Figure 4.5: Residual plastic equivalent strain (Max: 0.972, Min: 0.081)

The maximum residual equivalent plastic strain under the indenter tip is 0.972. The residual
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equivalent plastic strain at a depth of 3µm and at 4µm distance from the indentation center is still
0.081. The plastic strain field is axisymmetric and about 25% shorter in axial direction than in
radial direction. It should be noted that the residual equivalent plastic strain increased by about
3% during unloading. This result was not expected, as the unloading curve is supposed to be
purely elastic according to Oliver and Pharr [OP92]. The shape of the plastic strain field remained
approximately the same. It should be noted that even though Fig. 4.4 suggests that the yield stress
is reached in the area at about 5µm distance from the indentation center right next to the pile-up
at the vicinity of the residual plastic imprint, there is no significant residual plastic strain reported
in this area.

4.1.2 Berkovich indenter

For the Berkovich indenter, a simulation to a depth of 600nm was performed and compared to the
solution of the conical indenter. This was done to assess whether the conical indenter with equal
projected area is an appropriate substitute in simulations for the Berkovich indenter. The elastic
modulus was extracted at the beginning of the unloading phase using the method of Oliver and
Pharr [OP92] assuming a Poisson’s ratio of 0.3. Fig.4.6 compares the indentation curves for the
indentations of the Berkovich indenter (�) and of the conical indenter (4) to a depth of 600nm.

Figure 4.6: Force [mN] vs. displacement [µm] of the Berkovich indenter (�) and of the conical
indenter (4)

As you can see in Fig.4.6, the force-displacement curves coincide very well for the two indenter
shapes. The elastic modulus was extracted using the method of Oliver and Pharr. Table 4.1.2
compares important measurements of the indentations for the conical and the Berkovich indenter.
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Ind.shape hmax hf/hmax hc E Rel. error

Conical 0.6 0.840 0.563 24.986 +24.93%

Berkovich 0.6 0.870 0.564 24.812 +24.06%

Table 4.3: Comparison of indentations on IEP B (E/σy = 114.28) with a conical and a Berkovich
indenter

The extracted moduli are almost identical for both indenters, if the empirical correction factor
β [PRR08b] is used. The depth of the residual plastic imprint hf is very similar for both indenters.
Note that the ratio hf/hmax is larger than 0.7 for both indenters. The contact depth hc at hmax is
almost equal for the Berkovich and the conical indenter. This suggests that the assumption of the
conical indenter with equivalent projected area being a good substitute to the Berkovich indenter
in simulations was reasonable. The local stress distribution in close proximity of the indenter tip is
very different for the Berkovich indenter. However, at a short distance from the indenter the stress
state is axisymmetric. This will be presented on the following pages. Fig.4.7 shows the contour
plot of the von Mises stress on the deformed mesh at an indentation depth of 0.6µm.

Figure 4.7: Contour plot of the von Mises stress [GPa] on the deformed shape (side and top view,
Max: 228.4MPa, Min: 19.0MPa)

The maximum von Mises stress under the indenter tip is 228.4MPa. The von Mises stress at a
depth of 13µm and at 9µm distance from the indentation center is still 19MPa. The far stress field
is approximately axisymmetric and about 25% longer in axial direction than in radial direction. It
should be noted that the pile-up around the Berkovich indenter has a considerably different shape
than around the conical indenter. There is considerable pile-up in the middle of each side of the
indenter. This is similar to the results of the conical indenter. However, the pile-up decreases
dramatically from the middle of the sides towards the edges. Right at the edges, slight sink-in
could be seen. Fig.4.8 shows the contour plot of the plastic equivalent strain on the deformed mesh
at an indentation depth of 0.6µm.
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Figure 4.8: Contour plot of the plastic equivalent strain [ ] on the deformed shape (Max: 2.75, Min:
0.23)

The maximum equivalent plastic strain under the indenter tip is 2.75. The equivalent plastic
strain at a depth of about 1µm and at 4µm distance from the indentation center is still 0.23. Fig.4.9
shows the contour plot of the residual von Mises stress on the deformed mesh after unloading.

Figure 4.9: Contour plot of the residual von Mises stress [GPa] on the deformed shape (side and
top view, Max: 281.1MPa, Min: 23.4MPa)

The maximum residual von Mises stress under the indenter tip is 281.1MPa. The residual von
Mises stress at a depth of 8µm and at 12µm distance from the indentation center is still 23.4MPa.
The far stress field is approximately axisymmetric and about 50% shorter in axial direction than
in radial direction. The indentation curves of the two indenters are practically identical. The error
in the measured modulus is negligible. This shows that the assumption of the conical indenter
with equivalent projected area being a good substitute to the Berkovich indenter in simulations is
reasonable, at least for isotropic elasto-plasticity.
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4.2 Anisotropic elasto-plasticity

Two simulations of indentations in axial and transverse direction were performed for the anisotropic
elastic ideal plastic material AEP. Fig. 4.10 shows the reaction force vs. indentation depth of the
axial tests to an indentation depth of 0.6µm and 1.0µm, respectively.

Figure 4.10: Force [mN] vs. displacement [µm] of axial indentation

The indentation moduli in axial direction were extracted from these curves using the method of
Oliver and Pharr [OP92]. Using the original stiffness matrix from the Abaqus material definition
and the theoretical framework of Swadener and Pharr [SP01], theoretical indentation moduli were
calculated for the axial and transverse direction. The experimental results were then compared to
the theoretical values. Table 4.2 shows the extracted indentation modulus in axial direction and
the relative error with respect to the theoretical modulus as a function of indentation depth.

hmax hf/hmax hc Ei Rel. Error

Orig. 15.49

0.6 0.788 0.556 18.51 +19.51%

1.0 0.841 0.929 19.09 +23.26%

Table 4.4: Extracted axial indentation modulus and relative error for AEP (E0/σy,0 = 88.5)

The relative error in the measurement of the indentation moduli is smaller for the material
AEP in axial direction than in the isotropic case. The ratio hf/hmax is larger than 0.7 for both
indentation depths in axial direction. However, the ratio is smaller than in the isotropic case. This
correlates well with studies performed by Bolshakov er al [BP98] with isotropic materials, who
predict an increase of the relative measurement error of the indentation modulus with increasing
hf/hmax. Fig. 4.11 shows the von Mises stress distribution and the deformed shape in the 1-3 and
the 2-3 plane in axial direction to an indentation depth of 1µm.
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Figure 4.11: Contour plot of von Mises stress distribution [GPa] for an indentation in axial direction
on deformed shape in the 1-3 (left) and 2-3 (right) plane (Max: 163.4MPa, Min: 13.6MPa)

The figure clearly shows that the shape of the contact area of the indentation is axisymmetric.
The contact depth is constant. The maximum von Mises stress under the indenter tip is 163.4MPa.
The von Mises stress at a depth of 13.3µm and at 1.4µm distance from the indentation center is still
13.6MPa. The stress field is axisymmetric. There is some pile-up visible around the indenter. The
amount of pile-up is considerably smaller than in the isotropic case. This correlates very well with
findings of Bolshakov er al [BP98], who predict an decrease of pile-up with decreasing hf/hmax.
The height of the pile-up is constant around the perimeter, as the indentation direction is normal
to the plane of isotropy. It should be noted that the Material AEP used in this simulation features
ideal plasticity, which might play a decisive role for the amount of pile-up around the indentation
as reported for isotropic elasto-plasticity by Bolshakov et al [BP98].

Fig. 4.12 shows the reaction force vs. indentation depth of the tests in transverse direction until
a indentation depths of 0.6µm and 1.0µm.
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Figure 4.12: Force [mN] vs. Displacement [µm] of transverse indentation

The indentation moduli were extracted in transverse direction as well using the method of Oliver
and Pharr [OP92]. Using the original stiffness matrix from the Abaqus material definition and the
mathematical framework of Swadener and Pharr [SP01], indentation moduli were calculated for the
transverse direction once again. The experimental results were then compared to the theoretical
values. Table 4.2 shows the extracted indentation modulus in transverse direction and the relative
error with respect to the theoretical modulus as a function of indentation depth.

hmax hf/hmax hc Ei Rel. Error

Orig. 13.21

0.6 0.808 0.556 16.73 +26.68%

1.0 0.817 0.925 16.77 +26.99%

Table 4.5: Extracted transverse indentation modulus and relative error for AEP (E0/σy,0 = 88.5)

The relative error in the measurement of the indentation moduli was about the same for the
material AEP in transverse direction as in the isotropic case. The ratio hf/hmax is larger than 0.7
for both indentation depths in transverse direction. The relative error of the extracted indentation
moduli is in the range of 19 to 27%. There is a significant increase in the overestimation of the
indentation modulus with increasing indentation depth in axial direction. There is no remarkable
trend in the transverse direction. The relative error was considerably larger in transverse direction
than in axial direction. Fig. 4.13 shows the von Mises stress distribution and the deformed shape in
the 1-2 (right) and the 2-3 plane (left) for the indentation in transverse direction to an indentation
depth of 1µm.
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Figure 4.13: Contour plot of von Mises stress distribution [GPa] for an indentation in transverse
direction on deformed shape in the 1-2 (left) and 2-3 (right) plane (Max: 161.8MPa, Min: 13.5MPa)

The figure clearly shows that the shape of the contact area of the indentation is not axisymmetric.
The contact depth is varying over the perimeter. The highest stress is not centered under the
indenter tip, but displaced by about 4µm in the material’s 3 direction. This is most probably an
effect of the anisotropy of the material. The pile-up at the edges of the indentation is considerably
larger in the plane of isotropy (1-2 plane) than in the 2-3 plane. There is a stress concentration
visible in the 2-3 plane at a distance of about 4µm that stretches from the surface to a depth of
about 5µm. The maximum von Mises stress under the indenter tip is 134.8MPa. The maximum
von Mises stress at the stress concentration in the 2-3 plane is 161.8MPa. The von Mises stress at
a depth of about 14µm and at 10.2µm distance from the indentation center in the 2-3 plane and
11.3µm distance from the indentation center in the 1-2 plane is still 13.5 MPa. The stress field is
not axisymmetric.

The contact shape of the indenter is approximately an ellipse in the indentation of a conical
indenter into an anisotropic half space as predicted in theory by Swadener and Pharr [SP01]. The
contact depth varies around the perimeter. In the case of the axial indentation on an transversely
isotropic half-space the contact shape is circular and the contact depth is constant. In transverse
direction the pile-up at the edges of the is considerably larger in the directions with smaller elastic
modulus.

4.3 Anisotropic elasto-plasticity and damage

Indentations were performed on two different materials using the conical indenter model. First, the
material AEPDI featuring ideal plasticity was indented in axial (3) and transverse (1) direction.
Then, exponential hardening was introduced.

4.3.1 Perfect plasticity

Two simulations of conical indentations in axial and one transverse direction were performed for the
anisotropic elasto-plastic material with damage accumulation AEPDI to an indentation depth of
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0.6µm. Fig. 4.14 shows the reaction force vs. indentation depth of the axial test to an indentation
depth of 0.6µm.

Figure 4.14: Reaction Force [mN] vs. Displacement [µm] for axial indentation of a conical indenter

This indentation curve looks qualitatively much more similar to experimental indentation curves
on bone than Fig. 4.10. The indentation moduli were extracted as well. Using the original stiffness
matrix from the Abaqus material definition and the mathematical framework of Swadener and
Pharr [SP01], exact indentation moduli were calculated for the Material AEPDI. The results of the
simulation were then compared to the theoretical value. Table 4.3.1 shows the extracted indentation
modulus in axial direction and the relative error with respect to the theoretical modulus.

hmax hf/hmax hc Ei Rel. Error

Orig. 19.50

0.6 0.207 0.528 9.40 -51.81%

Table 4.6: Extracted axial indentation modulus and relative error for ideal plasticity

The extracted indentation modulus is heavily underestimated in axial direction. The ratio
hf/hmax is considerably smaller than 0.7 in axial direction. The ratio is also much smaller than
for the simulations featuring anisotropic elasto-plasticity. Fig. 4.15 shows the reaction force vs.
indentation depth of the test in transverse (1) direction to an indentation depth of 0.6µm.
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Figure 4.15: Reaction Force [mN] vs. Displacement [µm] for transverse indentation with perfect
plasticity

Table 4.3.1 shows the extracted indentation modulus in transverse (1) direction and the relative
error with respect to the theoretical modulus for the elastic ideal plastic material AEPDI with
damage.

hmax hf/hmax hc Ei Rel. Error

Orig. 14.37

0.6 0.375 0.528 6.98 -51.40%

Table 4.7: Extracted transverse indentation modulus and relative error for ideal plasticity

The extracted modulus is also heavily underestimated in transverse direction. The ratio hf/hmax

is considerably smaller than 0.7 in transverse direction. The ratio is much smaller than for the results
of this study for materials featuring anisotropic elasto-plasticity.

The extracted indentation moduli underestimated the stiffness of the material by approximately
50% for the elastic ideal plastic material AEPDI featuring damage. There was no significant differ-
ence in relative error of the extracted indentation modulus between the axial (3) and the transverse
(1) direction.

4.3.2 Exponential hardening

Two simulations of conical indentations in axial (3) and transverse (1) direction were performed
for the anisotropic elasto-plastic material with damage accumulation AEPDE. Fig. 4.14 shows the
reaction force vs. indentation depth of the axial tests (in direction 3) until an indentation depth of
0.6µm.
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Figure 4.16: Reaction Force [mN] vs. Displacement [µm] for axial indentation of a conical indenter

This indentation curve looks qualitatively very similar to experimental indentation curves on
bone. The indentation moduli were extracted as well using the method of Oliver and Pharr [OP92].
Using the original stiffness matrix from the Abaqus material definition and the theoretical framework
of Swadener and Pharr [SP01], mathematically exact indentation moduli were calculated. The
results of the simulation were then compared to the theoretical values. Table 4.3.2 shows the
extracted indentation modulus in axial (3) direction and the relative error with respect to the
theoretical modulus.

hmax hf/hmax hc Ei Rel. Error

Orig. 19.50

0.6 0.488 0.505 9.83 -49.61%

Table 4.8: Extracted axial indentation modulus and relative error for exponential hardening

The extracted modulus is again heavily underestimated in axial direction. The ratio hf/hmax is
considerably smaller than 0.7 in axial direction. The ratio is also much smaller than for anisotropic
elasto-plasticity. Fig. 4.17 shows a contour plot of the von Mises stress distribution in [GPa] for
an indentation in axial direction on the deformed shape.
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Figure 4.17: Contour plot of the von Mises stress distribution in [GPa] for an indentation in axial
direction at 0.6µm indentation depth (Max: 254.8MPa, Min: 21.2MPa)

The maximum von Mises stress is 254.8MPa. The stress at a depth of 9.8µm and at 6.5µm
distance from the indentation center is still 21.2MPa. The stress field is axisymmetric and about
30% longer in axial direction than in radial direction. Fig. 4.18 shows a contour plot of the
cumulated damage D = 1 − f(α) for an indentation in axial direction on the deformed shape. In
the undamaged state, D is equal to 0, in the case of complete failure D equals 1.

Figure 4.18: Contour plot of the cumulated damage D on the deformed shape for an indentation in
axial direction at 0.6µm indentation depth (Max: 0.99, Min: 0.32)

The maximum damage is 0.99. This means almost complete failure of the material. The damage
at a depth of 3.6µm and at 3.1µm distance from the indentation center is still 0.32. The damage
field is axisymmetric and about 20% longer in axial direction than in radial direction. The shape
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of the stress field changed significantly during unloading. Fig. 4.19 shows a contour plot of the
residual von Mises stress distribution in [GPa] for an indentation in axial direction on the deformed
shape after unloading.

Figure 4.19: Contour plot of the residual von Mises stress distribution [GPa] for an indentation in
axial direction (Max: 69.1MPa, Min: 5.75MPa)

The maximum residual von Mises stress is 69.1MPa. The stress at a depth of 7.1µm and at
6.8µm distance from the indentation center is still 14.5MPa. The stress field is axisymmetric and
about 5% longer in axial direction than in radial direction. The shape of the stress field changed
significantly during unloading. Fig. 4.20 shows the reaction force vs. indentation depth of the
transverse tests (in direction 1) to an indentation depth of 0.6µm.

Figure 4.20: Reaction Force [mN] vs. Displacement [µm] for transverse indentation with exponential
hardening

Table 4.3.2 shows the extracted indentation modulus in transverse direction and the relative
error with respect to the theoretical modulus.
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hmax hf/hmax hc Ei Rel. Error

Orig. 14.37

0.6 0.375 0.517 7.86 -45.28%

Table 4.9: Extracted transverse indentation modulus and relative error for exponential hardening

The measured indentation modulus is also heavily underestimated in transverse direction. The
ratio hf/hmax is considerably smaller than 0.7 in transverse direction. The ratio is also much smaller
than the simulations for anisotropic elasto-plasticity. Bolshakov et al. [BP98] found out that the
method of Oliver and Pharr [OP92] works very accurately for isotropic elasto-plastic materials, if
the ratio hf/hmax is smaller than 0.7. This is not the case in the presence of damage in the material,
as the results of this study show.

The extracted indentation moduli underestimated the stiffness of the material by approximately
45% to 49% for the elasto-plastic material AEPDE featuring exponential hardening and damage.
There was only a small difference in relative error of the extracted indentation modulus between
the axial (3) and the transverse (1) direction. Fig. 4.21 shows a contour plot of the von Mises stress
distribution in [GPa] for an indentation in transverse direction on the deformed shape in the 1-3
and 1-2 plane, respectively. There was no significant change in the depth of the remaining imprint
when introducing exponential hardening.

Figure 4.21: Contour plot of the von Mises stress distribution [GPa] for an indentation in transverse
direction on the deformed shape in the 1-3 (left) and 1-2 (right) plane at 0.6µm indentation depth
(Max: 177.7MPa, Min: 14.8MPa)

The figure clearly shows that the shape of the contact area of the indentation is not axisymmetric.
The contact depth is varying slightly over the perimeter. The highest stress is not centered under
the indenter tip, but displaced by about 2µm in the material’s 3 direction. This is most probably an
effect of the anisotropy of the material. There is very little pile-up at the edges of the indentation in
the 1-2 plane. There is slight sink-in in the 1-3 plane. There is a stress concentration visible in the
1-3 plane at a distance of about 2µm that stretches from the surface to a depth of about 3µm. The

65



maximum von Mises stress under the indenter tip is 103.6MPa. The maximum von Mises stress at
the stress concentration in the 1-3 plane is 177.7MPa. The von Mises stress at a depth of about
7.6µm and at 7.6µm distance from the indentation center in the 1-3 plane and 6.4µm distance from
the indentation center in the 1-2 plane is still 14.8 MPa. The stress field is not axisymmetric. Fig.
4.22 shows a contour plot of the cumulated damage D = 1− f(α) for an indentation in transverse
direction on the deformed shape. In the undamaged state, D is equal to 0, in the case of complete
failure D equals 1.

Figure 4.22: Contour plot of the cumulated damage D on the deformed shape for an indentation in
transverse direction at 0.6µm indentation depth (Max: 0.975, Min: 0.265)

The maximum damage is 0.975. This means almost complete failure of the material. The
damage at a depth of 3µm and at 2.5µm distance from the indentation center is still 0.265. The
damage field is approximately axisymmetric and about 20% longer in axial direction than in radial
direction. Fig. 4.23 shows a contour plot of the residual von Mises stress distribution in [GPa] for
an indentation in transverse direction on the deformed shape in the 1-3 and 1-2 plane.

Figure 4.23: Contour plot of the residual von Mises stress distribution [GPa] for an indentation in
transverse direction on deformed shape in the 1-3 (left) and 1-2 (right) plane (Max: 58.3MPa, Min:
4.86MPa)
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The maximum residual von Mises stress under the indenter tip is 38.9MPa. The maximum von
Mises stress at the stress concentrations near the edges of the imprint is 58.3MPa. The von Mises
stress at a depth of about 6µm and at 8.5µm distance from the indentation center in the 1-3 plane
and 6.9µm distance from the indentation center in the 1-2 plane is still 4.86MPa. The stress field
is not axisymmetric.

The extracted indentation moduli underestimated the stiffness of the material by approximately
45% to 51% depending on the type of hardening implemented in the material model. The error was
slightly smaller for exponential hardening than for ideal plasticity. There was only small difference
in relative error of the extracted indentation modulus between the axial (3) and the transverse (1)
direction for exponential hardening and no significant difference for ideal plasticity. The damage
ranged from 25% in transverse and 32% in axial direction at the vicinity of the indentation to 97%
in transverse and 99% in axial direction at the indenter tip. While there was some minimal circular
pile-up visible at the vicinity of the indentation in axial direction, there was almost no pile-up in
transverse direction for exponential hardening. Also, the contact depth varied over the perimeter
of the indentation in transverse direction. The slope of the unloading curve and the depth of the
remaining imprint was considerably smaller for the damage model than for the purely elasto-plastic
materials.
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Chapter 5

Discussion

Detailed and extensive verification showed that the developed finite element mesh is able to simu-
late indentations in a wide range of different material models with sufficient accuracy. The mesh
was tested for isotropic linear elasticity, anisotropic linear elasticity and isotropic ideal Mises plas-
ticity. An anisotropic elasto-plastic material damage with damage was implemented in Fortran.
Subsequently, single element tests were performed in order to verify the accuracy and convergence
of the material models AEPDI and AEPDE. Based on this knowledge, multiple simulations were
performed featuring different material models often used to model bone properties. First, isotropic
elasto-plasticity with a Mises yield surface was simulated, then anisotropic elasto-plasticity based
on a Hill yield surface. The final simulations were done featuring an elastic ideal plastic constitu-
tive model with incorporated damage accumulation. Finally, exponential hardening was introduced
into this model as well. The verification of the mesh showed some interesting results, especially for
isotropic linear elasticity and anisotropic linear elasticity. Therefore the results of the verification
will be discussed shortly as well.

5.1 Isotropic linear elasticity

The verification of the mesh showed that the model can simulate indentations on isotropic elastic
halfspaces with great accuracy. A range of Poisson ratios from 0.01 to 0.49 was tested. The accuracy
of the model with respect to the analytical solution by Sneddon [Sne48] increased with increasing
Poisson ratio. For a Poisson ratio of 0.01, a considerable overestimation of the reaction force as
well as the indentation modulus was reported (about 12% for both reaction force and modulus at
all indentation depths larger than 200nm). For a Poisson ratio of 0.49, there was only an average
error of 3% for the reaction force and 2% for the indentation modulus at an indentation depth of
more than 200nm. When comparing the force-displacement curve to the empirical formula by Poon
[PRR08a], the relative error was constant for indentation depths larger than 200nm and smaller
than 1% for every tested Poisson ratio. The formula by Poon takes into account the finite tip
radius as well as a stiffening effect based on the Poisson ratio. This effect is also described by Hay
et al [HBP99]. According to Hay et al., in the solution of Sneddon of the Bousinnesq problem, the
surface points inside the circle of contact are displaced radially during the indentation. This may
be seen in eq. (1.8) describing the shape of the indentation for the solution of Sneddon. The radial
displacements are always negative, which means that they point toward the center of the conical tip.
They only vanish for a Poisson ratio of 0.5 or a indenter angle of 90°. Therefore in most practical
cases, the shape of the deformed surface inside the contact area is not exactly conical for the problem
modeled by Sneddon [Sne48], but cusp-shaped. This leads to an inaccuracy of the solution when
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comparing it to a simulation of an indentation of a rigid cone. A higher load is needed for the
indentation of a truly rigid cone with repect to the solution by Sneddon because the curved contact
surface has to be pushed outside from the cusp-shaped profile in order to conform with the conical
indenter according to Hay et al [HBP99]. This effect vanishes for incompressible materials, which
explains the higher accuracy of the simulations with respect to the analytical solution by Sneddon
when using the material ILE C featuring a Poisson ratio of 0.49 compared to lower Poisson ratios.
The relative error of the reaction force and the indentation modulus was constant for indentation
depths larger than 0.2 µm. This result was expected, as for linear elastic solids the indentation
modulus should be insensitive to indentation depth according to Sneddon [Sne48].

5.2 Anisotropic linear elasticity

The verification of the mesh showed that the model can simulate indentations on anisotropic elastic
half-spaces with reasonable accuracy. There was a certain overestimation of reaction force and
indentation modulus of the model with respect to the analytical solution by Swadener and Pharr
[SP01] in both axial and transverse direction. In axial direction, a considerable overestimation of
the reaction force as well as the indentation modulus was reported (about 10% for both reaction
force and modulus at indentation depths greater than 200nm). In transverse direction, the reported
relative error was much smaller. There was only an average error of 5% for the reaction force and
2% for the indentation modulus at all indentation depths larger than 200nm. The large error
with respect to the analytical solution might suggest that there is a similar effect based on radial
displacements of the surface points inside the contact area as reported by Hay et al for isotropic
elastic materials [HBP99]. No mention of this problem was found in the literature for anisotropic
materials, though. The relative error of the reaction force and the indentation modulus was nearly
constant for indentation depths larger than 200nm. This result was expected, as for linear elastic
solids the indentation modulus should be insensitive to indentation depth according to Sneddon
[Sne48].

5.3 Isotropic elasto-plasticity

First, cortical bone was modeled as an isotropic elastic ideal plastic material. For the conical
indenter, simulations of indentations to depths of 600nm and 1µm were performed in order to show
the influence of indentation depth on the extracted elastic properties. The indentation modulus was
extracted at the beginning of the unloading phase using the method of Oliver and Pharr [OP92].
The same procedure was performed for an indentation using a Berkovich tip.

The reported relative error in the extracted elastic properties increased significantly with in-
creasing indentation depth. This result was not expected, as theoretically the indentation modulus
should be insensible to the indentation depth, as it is extracted during the purely elastic unloading
phase. Recent numerical studies by Poon [PRR08b] showed that the unloading phase is indeed
purely elastic for isotropic Mises plasticity. When reloading the specimen, the reloading path fol-
lowed exactly the unloading path until the preceding maximum force was reached. Poon also showed
in his study that the measurement error of the elastic modulus during a nanoindentation exper-
iment is a function of the Poisson ratio ν of the material as well as the ratio of elastic modulus
and yield strength E

σy
. According to Poon, the Poisson ratio is an important factor for the amount

of residual stresses at the indentation site. When ν approaches 0.5, the residual stresses are sig-
nificantly smaller at the indentation site [PRR08b]. Poon interprets this as a decrease of residual
elastic stresses in the plastic imprint with increasing Poisson ratio. This might partly explain the
overestimation of the elastic modulus for IEP B with a Poisson ratio of 0.3. It should be noted that
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an overestimation of the indentation modulus of about 10% was reported for a linearly elastic solid
featuring the same elastic properties as IEP B. Therefore the overestimation is most probably only
partly due to the plasticity in the material model. Bolshakov et al [BP98] and Hay et al [HBP99]
give a more detailed analysis of the problem than Poon. According to Hay and Bolshakov, there is
also a systematic error due to radial displacements of the surface points inside the contact area in
Sneddon’s solution that are not accounted for in the data analysis. It vanishes when ν approaches
0.5. This phenomenon is described in more detail in section 5.1. The direct use of the solution of
Sneddon [Sne48] without correcting for this error leads to an overestimation of the elastic prop-
erties. However, the reported relative error of the extracted moduli were significantly higher for
the Material IEP B than for IEP A, even though the Poisson ratio is 0.3 in both materials. For
an indentation depth of 0.6µm, 14.96% were reported for IEP A and 24.93% for IEP B. This is
a significant increase in measurement error. This may be explained by the difference in the ratio
E/σy. This ratio was 50 for IEP A and 114.28 for IEP B. This coincides very well with data by
Poon [PRR08b], who reported a measurement error of 13.3% for a ratio E/σy = 50 and 22.5% for
E/σy = 100 for materials with a Poisson ratio of 0.3. According to Poon, as E/σy is a measure of
the influence of plasticity. An increase of the ratio E/σy leads to an increase of material pile-up
around the indenter. Therefore, the contact area is underestimated when using the Oliver and Pharr
method and the elastic modulus is significantly overestimated. Bolshakov et al reported similar re-
sults [BP98] and gave some more insight into the problem. For elastic ideal plastic materials with
a ratio of of the depth of the residual imprint to the maximum indentation depth hf/hmax larger
than 0.7, the influence of material pile-up was significant in the measurement of the elastic modulus.
An underestimation of the contact area of up to 60% was reported for ideal plasticity leading to
significant overestimation of the elastic modulus. In this study, the ratio hf/hmax was larger than
0.7 for both isotropic elastic ideal plastic materials IEP A and IEP B. For this case, Bolshakov et al
reported considerable overestimation of the elastic modulus due to the increased contact area due to
material pile-up. The results of this study also showed that the analytical estimation of hc severly
underestimated the contact area. Poon [PRR08b] was also able to show that the measurement
error of the elastic modulus is considerably smaller and a function of the Poisson ratio for isotropic
elasto-plastic materials if the contact area is exactly known during the measurement, which further
proves the point that material pile-up is a decisive factor in the estimation of the elastic modulus
of elastic ideal plastic materials. This suggests that the remaining error is due to residual stresses
in the plastic imprint of the indenter reported by Poon [PRR08b] and the radial displacements
reported by Hay et al [HBP99]. When considering bone as an elasto-plastic material, the influence
of damage accumulation due to microcracking is not taken into account. This effect might lead to
a local decrease in stiffness which would reduce the overestimation of the extracted modulus.

When comparing the force-displacement curves for the conical indentation and the Berkovich
indentation, no significant difference occurred. The measured elastic moduli did not differ signifi-
cantly. The depth of the residual imprint was very similar. The contact depth was almost equal for
both indenters. The contour plots of the stress and plastic strain distributions look qualitatively
similar at some distance of the indenter tip. However, the distributions are not exactly the same.
This can be explained with the principle of St. Venant: The structural response is equivalent for
the conical indenter and the Berkovich indenter, as the projected area and therefore the integral
over the surface stress distribution is equivalent. However, the stress distribution in close vicinity
of the indentation is very different. The contour plots showed that the far-field stresses remained
axisymmetric even for the non-axisymmetric Berkovich indenter. The shape of the indentation
curve, the measured modulus and the depth of the remaining plastic imprint were very similar for
both indenters. The conical model therefore yields very accurate results in the far stress field and
the structural response when compared to the Berkovich indenter, at least for isotropic materials.
The local fields however may differ significantly for the two indenters. Because of the additional
computational cost and numerical instabilities of the Berkovich model, it was therefore not used
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in further simulations. The problems encountered most probably occurred due to numerical insta-
bilities at the sharp edges of the Berkovich indenter, as Abaqus provided corresponding warning
messages throughout the simulations.

The data suggests that the method by Oliver and Pharr leads to a considerable overestimation
of the elastic properties when analyzing indentation experiments of homogeneous isotropic elasto-
plastic materials mainly due to material pile-up that is not accounted for in the data analysis and
an inaccuracy of Sneddons solution of the Boussinesq problem. The study showed that the conical
indenter is an appropriate substitute for the Berkovich indenter for simulations of nanoindentations.
Compact bone is not a homogeneous material due to its osteonal structure and different levels of
mineralization inside the tissue. However, the assumption of homogeneity seems to be reasonable
considering that the size of the bone structural unit (BSU) is considered to be approximately 60µm,
which is considerably larger than the indentation depth. The assumption of isotropy is not very
reasonable for bone due to its osteonal and lamellar structure which leads to an anisotropy with
distinct material directions.

In nanoindentation experiments on bone tissue, no considerable pile-up of material at the edges
has been reported according to Mullins et al. [MBM09]. This is contrary to the results of this
study when indenting a material model using ideal Mises plasticity with a conical indenter. There
was considerable pile-up around the edges of the indentation. It should also be noted that the
Material IEP B used in this simulation features perfect plasticity, which plays a decisive role for
the amount of pile-up around the indentation as reported by Bolshakov et al [BP98]. According to
Bolshakov, the introduction of a hardening function will reduce the pile-up around the indentation
and therefore the overestimation of the elastic properties. As there is no significant pile-up reported
for indentations in bone, according to Mullins et al. [MBM09] we can conclude that isotropic Mises
plasticity with perfect plasticity is not an appropriate material model for the mechanical behaviour
of bone on the lamellar level, as it cannot model the local deformation around the conical indenter
accurately. It should be noted that the pile-up around the Berkovich indenter has a considerably
different shape than around the conical indenter. There is some pile-up in the middle of each side
of the indenter. The pile-up decreases from the middle of the sides towards the indenter edges.
Right at the edges, slight sink-in could be seen. This shows that the deformations around the
conical indenter should be interpreted very carefully, as they are not equivalent to the deformations
around the Berkovich indenter according to the principle of St. Vernant. Further examination
of indentations of isotropic elasto-plastic materials featuring different hardening functions with a
Berkovich indenter would be very interesting.

5.4 Anisotropic elasto-plasticity

Then, cortical bone was modeled as a transversely isotropic elastic ideal plastic material. With the
conical indenter, simulations of indentations to depths of 600nm and 1µm were performed in order
to show the influence of indentation depth on the extracted elastic properties. The indentation
modulus was extracted at the beginning of the unloading phase using the method of Swadener and
Pharr [SP01].

The relative error of the extracted indentation moduli is in the range of 19.5 to 27%. There is
a significant increase in the overestimation of the indentation modulus with increasing indentation
depth in axial direction. There is no remarkable trend in the transverse direction. The relative
error was considerably larger in transverse direction than in axial direction. The relative error in
the measurement of the indentation moduli was smaller for the material AEP in axial direction than
in the isotropic case, in transverse direction it was about the same. The ratio of the depth of the
residual imprint to the maximum indentation depth hf/hmax is larger than 0.7 for both indentation
depths in axial and transverse direction. Bolshakov et al reported a severe overestimation of the
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indentation modulus [BP98] for isotropic elastic ideal plastic materials with a ratio of of the depth
of the residual imprint to the maximum indentation depth hf/hmax larger than 0.7. In this study,
the ratio hf/hmax was larger than 0.7 for both indentation directions. For this case, Bolshakov et
al reported considerable overestimation of the indentation modulus due to the increased contact
area due to material pile-up when using the standard method of Oliver and Pharr [OP92]. The
data of this study seems to suggests that this problem exists in the anisotropic case as well. The
analytical estimation of hc lead to a severe underestimation of the actual contact area. Poon also
reported that the amount of pile-up is a function of the ratio E/σy for isotropic materials. The
ratio E0/σy,0 was 88.5 for AEP, the measurement error at 0.6µm was 19.5% in axial direction. This
coincides very well with data by Poon [PRR08b], who reported a measurement error of 22.5% for
E/σy = 100 at an indentation depth of 0.6µm for isotropic materials. This suggests that there is
a similar phenomenon in the anisotropic case. The contact shape of the indenter is approximately
an ellipse in the indentation of a conical indenter into an anisotropic half space as predicted in
theory by Swadener and Pharr [SP01]. The contact depth varies around the perimeter. In the case
of the axial indentation on an transversely isotropic half-space the contact shape is circular and
the contact depth is constant. In transverse direction the pile-up at the edges of the indentation
is considerably larger in the directions with smaller elastic modulus. There is an off-center stress
concentration in the 2-3 plane visible at the contact edge in the contour plots. For the indentation of
a conical indenter in transverse direction, an axisymmetric deformation is forced on an anisotropic
material with a stiff distinct axial direction. Therefore the stresses in the 2-3 plane are higher than
in the isotropic transverse plane. Fig. 5.4 explains this phenomenon graphically.

Figure 5.1: Explanation of the off-center stress concentration at the edge of the indentation for a
transverse indentation in an anisotropic material

Under the indenter there is high pressure. Plastic flow occurs mainly in the indentation (2) direc-
tion, which has a lower yield stress than the 3 direction. There is an off-center stress concentration
with a maximum Mises stress at the vicinity of the indentation. At this position, there is only low
pressure. Plastic flow takes place mainly in the 3 direction with a high stiffness and a higher yield
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strength. Therefore the Mises stress is higher at this position than in the surrounding area where
plastic flow in 1 and 2 directions with lower yield strengths dominate. There is some pile-up visible
around the indenter. The amount of pile-up is considerably smaller than in the isotropic case. This
correlates very well with findings of Bolshakov er al [BP98], who predict an decrease of pile-up and
relative error of the measured indentation modulus with decreasing hf/hmax for isotropic materials.
The results of this study suggest that there is a similar trend between the measurement error of the
indentation modulus and the ratio hf/hmax for anisotropic elastic ideal plastic materials as well.

The data suggests that the method by Oliver and Pharr [OP92] leads to a considerable overes-
timation of the elastic properties when analyzing indentation experiments of homogeneous trans-
versely isotropic materials featuring ideal Hill plasticity. The assumption of transverse isotropy
seems reasonable for compact bone due to its osteonal structure leading to anisotropy with a dis-
tinct axial direction and isotropy in the transverse plane. Compact bone is not a homogeneous
material due to its osteonal structure and different levels of mineralization inside the tissue. How-
ever, this assumption seems to be reasonable considering that the size of the bone structural unit
(BSU) is considered to be approximately 60µm, which is considerably larger than the maximum in-
dentation depth in the numerical experiments. It should be noted that there was an overestimation
of the indentation modulus of about 10% in axial direction and about 2% in transverse direction
for a linear elastic solid featuring the same elastic properties as AEP. Therefore the overestima-
tion of the indentation modulus might only partly be due to the plastic pile-up. There is some
indication in the data that there might also be a systematic error due to radial displacements in
Sneddon’s solution that are not accounted for in the anisotropic case similar to the results reported
by Bolshakov et al [BP98] and Hay et al [HBP99] for isotropic materials. No explicit mention of
this problem in anisotropic materials was found in the literature, though. When considering bone
as an elasto-plastic material, the influence of damage accumulation due to micro-cracking is not
taken into account. This effect might lead to a local decrease in stiffness which would reduce the
overestimation of the extracted modulus.

When indenting bone tissue, no considerable pile-up of material at the edges has been reported.
The pile-up found when using the anisotropic Hill plasticity model was not constant around the
perimeter of the indentation. The pile-up was smaller in directions with a higher elastic modulus
than in the transverse direction. The material model used in this study featured ideal plasticity.
According to Bolshakov et al [BP98], for isotropic elastic ideal plastic materials, the introduction of
a hardening function will reduce the pile-up around the indentation and therefore the overestimation
of the elastic properties. The overall amount of pile-up seemed to be smaller than in the isotropic
case. The Hill plasticity model therefore seems to be able to give a significantly better explanation
of the mechanical behaviour of bone on the lamellar and BSU level than isotropic Mises plasticity. It
should be noted that the pile-up around the Berkovich indenter might have a considerably different
shape than around the conical indenter. Therefore the deformations around the conical indenter
should be interpreted very carefully, as they are not equivalent to the deformations around the
Berkovich indenter according to the principle of St. Vernant. Further examination of indentations of
anisotropic elasto-plastic materials featuring different hardening functions with a Berkovich indenter
would be very interesting.

5.5 Anisotropic elasto-plasticity and damage

5.5.1 Perfect plasticity

Then, cortical bone was modeled as an orthotropic elastic ideal plastic material with damage. With
the conical indenter, simulations of indentations to depths of 600nm were performed in axial (3) and
transverse (1) direction. The indentation modulus was extracted at the beginning of the unloading
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phase using the method of Oliver and Pharr [OP92] and compared to theoretical values computed in
the mathematical framework developed by Swadener and Pharr [SP01]. Originally, it was planned to
include simulations of indentations to 1µm as well in order to assess the influence of the indentation
depth on the extracted indentation modulus. However, severe convergence problems of the model
were encountered at indentation depths larger than 600nm. Therefore only results of simulations
to 0.6µm were included in this study.

The extracted indentation moduli underestimated the stiffness of the material by approximately
51%. This was a very interesting finding, as the results of this study showed that both the purely
elastic material models and the elasto-plastic models tended to overestimate the indentation mod-
ulus. There was no difference in relative error of the extracted indentation modulus between the
axial (3) and the transverse (1) direction for ideal plasticity. The slope of the unloading curve and
the depth of the remaining imprint was considerably smaller for the damage model than for the
purely elasto-plastic materials. The measured indentation modulus was heavily underestimated in
both axial and transverse direction. The ratio of the depth of the plastic imprint to the maximum
hf/hmax was considerably smaller than 0.7 for all simulations using the continuum damage model.
The ratio was also much smaller than for the simulations featuring ideal anisotropic elasto-plasticity.
Bolshakov et al. [BP98] reported that the method of Oliver and Pharr [OP92] yields very accurate
results for isotropic elasto-plastic materials if the ratio hf/hmax is smaller than 0.7. This is not the
case in the presence of damage in the material, as the results of this study show. The assumption
of intact unloading elasticity is not justified in the presence of damage under the indenter tip as the
results of this study showed large damaged areas with a cumulated damage D of 0.25 to 0.97. A
cumulated damage D 0f 0.97 corresponds to an almost complete loss of cohesion in the material. In
reality, in the corresponding areas the high concentration of the microcracks would most probably
lead to disintegration of the material. The stress and damage fields were qualitatively similar to the
results reported by Zheng et al [ZMKO10] for an isotropic elasto-plastic continuum damage model.

The data suggests that the local damage accumulation under the indenter leads to a significant
underestimation of the global undamaged mechanical properties. There was an underestimation
of about 51% in both tested indentation directions. There is a somehow unrealistic deformation
pattern in the center of the indentation when compared to actual indentations. This is the area
of the highest damage with almost complete failure of the material. The influence of this effect
seems to be negligible, as the affected area is very small compared to the indentation site. Also,
the extremely high level of damage present in this area (about 97%) leading to almost complete
failure suggests that continuum mechanics might not yield accurate results in the affected elements
anymore. The problem might diminish with finer discretization of the material, as the mesh is too
coarse to model the exact deformations and stresses right under the indenter tip.

5.5.2 Exponential hardening

Last, cortical bone was modeled as an orthotropic elastic plastic material with exponential hardening
and damage. This type of plasticity is able to describe the macroscopic mechanical behaviour of bone
very well as shown in previous studies [Zys94]. With the conical indenter, simulations of indentations
to depths of 600nm in axial (3) and transverse (1) direction were performed. The indentation
modulus was extracted at the beginning of the unloading phase using the method of Oliver and Pharr
[OP92] and compared to theoretical values computed in the mathematical framework developed by
Swadener and Pharr [SP01]. Originally, it was planned to include simulations of indentations to
1µm as well in order to assess the influence of the indentation depth on the extracted indentation
modulus. However, severe convergence problems of the model were encountered at indentation
depths larger than 600nm. Therefore only results of simulations to 0.6µm were included in this
study.

The extracted indentation moduli underestimated the stiffness of the material by approximately
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45% to 51% with respect to the theoretical values depending on the type of hardening implemented
in the material model. This was a most interesting result, as earlier results of this study showed
that both the purely elastic material models and the elasto-plastic models tended to overestimate
the indentation modulus. The error was slightly smaller for exponential hardening than for ideal
plasticity. There was only small difference in relative error of the extracted indentation modulus
between the axial (3) and the transverse (1) direction for exponential hardening and no significant
difference for ideal plasticity. The damage ranged from 25% in transverse and 32% in axial direction
at the vicinity of the indentation to 97% in transverse and 99% in axial direction at the indenter
tip. While there was some minimal circular pile-up visible at the vicinity of the indentation at
maximum indentation depth in axial direction, there was almost no pile-up in transverse direction
for exponential hardening. Also, the contact depth varied over the perimeter of the indentation in
transverse direction. There is an off-center stress concentration in the 2-3 plane visible at the contact
edge in the contour plots. For the indentation of a conical indenter in 1 direction, an axisymmetric
deformation is forced on an anisotropic material with a three distinct material direction. Therefore
the stresses in the 1-3 plane are higher than in the 1-2 transverse plane. Under the indenter there
is high pressure. Plastic flow occurs mainly in the indentation (1) direction, which has the lowest
elastic modulus of the three main material directions. There is an off-center stress concentration
with a maximum Mises stress at the vicinity of the indentation in the 1-3 plane. At this position,
there is only low pressure. Plastic flow takes place mainly in the 3 direction with a high stiffness
and strength. Therefore the Mises stress is higher at this position than in the surrounding area
where plastic flow in 1 and 2 directions with lower yield strengths dominate. There is also a slightly
elevated stess state in the 1-2 plane. As the stiffness and strength is greater in 2 direction than
in 1 direction, the same reasoning can be used to explain this phenomenon. The slope of the
unloading curve and the depth of the remaining imprint was considerably smaller for the damage
model than for the purely elasto-plastic materials. The measured indentation modulus was heavily
underestimated in both axial and transverse direction. The analytical estimation of hc seemed to
be reasonable in all cases. The ratio hf/hmax was considerably smaller than 0.7 for all simulations.
The ratio was also much smaller than for the simulations featuring anisotropic elasto-plasticity.
Bolshakov et al. [BP98] reported that the method of Oliver and Pharr [OP92] works accurately
for isotropic elastic ideal plastic materials if the ratio hf/hmax is smaller than 0.7. This is not
the case in the presence of damage in the material, as the results of this study clearly show. The
assumption of intact unloading elasticity is not justified as the results of this study showed large
damaged areas with a cumulated damage D of 0.32 to 0.99 under the indenter tip. A cumulated
damage D of 0.99 corresponds to an almost complete loss of cohesion in the material. In reality, in
the corresponding areas the high concentration of the microcracks would most probably lead to a
complete disintegration of the material. The shape of the stress and damage fields were qualitatively
similar to the results reported by Zheng et al [ZMKO10] for an isotropic elasto-plastic continuum
damage model.

The data obtained in the course of this study shows that the local damage accumulation under
the indenter leads to a significant underestimation of the global undamaged mechanical properties.
There was an underestimation of about 45 to 51% in depending on the indentation direction.
The type of hardening implemented in the material model seems to be an important factor for
the determination of the measured indentation modulus. The underestimation of the indentation
modulus was slightly smaller in both indentation directions for exponential hardening than for
perfect plasticity (about 2-6%), probably because less damage accumulates during the course of
the experiment due to hardening of the material. Therefore the remaining stiffness in the material
under the indenter tip is higher than for perfect plasticity. Only the deviatoric part of the stiffness
matrix is affected by damage accumulation. There is a somehow unrealistic deformation pattern
visible in the center of the indentation when compared to actual indentations. This is the area of
the maximum damage with almost complete failure of the material. The influence of this effect
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seems to be negligible, as the affected area is very small compared to the indentation site. Also,
the high amount of damage present in this area (about 97 to 99%) leading to almost complete
failure suggests that continuum mechanics might not yield accurate results in the affected elements
anymore. The problem might diminish with finer discretization of the material, as the mesh is too
coarse to model the exact deformations and stresses right at the indenter tip.

5.6 Conclusion

This study was conducted in order to be able to quantify the error made when analyzing nanoinden-
tation experiments on bone tissue depending on different parameters including indenter geometry,
indentation depth and constitutive mechanical behaviour of the indented half-space.

The results of this study indicate clearly that the indentation modulus is insensible to indentation
depth for purely elastic materials. The analytical solution by Sneddon does not account for finite
tip radii. However, the effect of the radius diminishes with growing indentation depth. Also, there
is a stiffening effect based on the Poisson ratio for elastic materials reported by Poon [PRR08b].
Poon implemented an empirical formula that coincides with the data obtained during the course of
this study very well. This effect is also described by Hay et al [HBP99]. According to Hay, there is
also a systematic error due to radial displacements of the surface points inside the contact area in
Sneddon’s solution that are not accounted for in the data analysis. It vanishes only for a Poisson
ratio of 0.5 or a indenter angle of 90°. Therefore in most practical cases, a higher load is needed for
the indentation of a truly rigid cone with respect to the solution by Sneddon because the curved
contact surface has to be pushed outside from the cusp-shaped profile in order to conform with the
conical indenter [HBP99].

For materials featuring nonlinear effects like plasticity or even damage there is clear indication
in the data that the indentation depth has indeed an effect on the measured indentation modulus.
For elastic ideal plastic materials the initial unloading phase is purely elastic [PRR08b]. However,
there is a serious overestimation of the indentation modulus due to material pile-up. Bolshakov et
al reported similar results [BP98]. For elastic ideal plastic materials with a ratio of of the depth of
the residual imprint to the maximum indentation depth hf/hmax larger than 0.7, the influence of
material pile-up was significant in the measurement of the elastic modulus. In this study, the ratio
hf/hmax was larger than 0.7 for both isotropic elastic ideal plastic materials IEP A and IEP B.
For this case, Bolshakov et al reported considerable overestimation of the elastic modulus due to
the increased contact area due to material pile-up. Poon [PRR08b] was also able to show that the
measurement error of the elastic modulus is considerably smaller and a function of the Poisson ratio
for isotropic elasto-plastic materials if the contact area is exactly known during the measurement.
This suggests that the remaining error is due to residual stresses in the plastic imprint of the indenter
reported by Poon [PRR08b] and the radial displacements of the surface points in the contact area
reported by Hay et al [HBP99]. Mullins et al [MBM09] performed simulations of indentations
using an axisymmetric model. The goal was to find a material model that could describe the
shape parameters of the indentation curve as well as the indentation geometry such as pile-up and
elastic recovery. According to Mullins, no considerable pile-up was reported for nanoindentations on
bone [MBM09]. This seems to be a promising technique. However, it only works for experiments
using conical or spheroconical tips, as the pile-up around the Berkovich indenter might have a
considerably different shape than around the conical indenter in the anisotropic case. The shape of
the pile-up differed significantly between the two indenters for isotropic elasto-plasticity. Therefore
the deformations around the conical indenter should be interpreted very carefully, as they might
not be equivalent to the deformations around the Berkovich indenter according to the principle of
St. Vernant. In the course of this study, a first attempt was made to model the 3D geometry of
the actual Berkovich indenter. It was shown that while the conical indenter is an excellent model
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for the Berkovich indenter in the far stress field and the structural response, the local stress and
strain state in close vicinity to the indenter differs significantly. This result is in accordance with
the principle of St. Venant stating that the reaction to a statically equivalent load at a sufficient
distance will be the same independent of the exact load distribution.

In the case of anisotropic elastic ideal plastic materials, the data suggests that the method
by Oliver and Pharr [OP92] leads to a considerable overestimation of the elastic properties when
analyzing indentation experiments. The reported error of the extracted indentation moduli was in
the range of 19 to 27%. There is a significant increase in the overestimation of the indentation
modulus with increasing indentation depth in axial direction. There is no remarkable trend in
the transverse direction. The relative error was considerably larger in transverse direction than
in axial direction. The relative error in the measurement of the indentation moduli was smaller
for the material AEP in axial direction than in the isotropic case, in transverse direction it was
about the same. The ratio of the depth of the residual imprint to the maximum indentation depth
hf/hmax is larger than 0.7 for both indentation depths in axial and transverse direction. Bolshakov
et al reported a severe overestimation of the indentation modulus [BP98] for isotropic elastic ideal
plastic materials with a ratio of of the depth of the residual imprint to the maximum indentation
depth hf/hmax larger than 0.7. In this study, the ratio hf/hmax was larger than 0.7 for both
indentation directions. For this case, Bolshakov et al reported considerable overestimation of the
indentation modulus due to material pile-up when using the standard method of Oliver and Pharr
[OP92]. The data of this study seems to suggests that this problem exists in the anisotropic case as
well. The contact shape of the indenter is approximately an ellipse in the indentation of a conical
indenter into an anisotropic half space as predicted in theory by Swadener and Pharr [SP01]. The
contact depth varies around the perimeter. In the case of the axial indentation on an transversely
isotropic half-space the contact shape is circular and the contact depth is constant. In transverse
direction the pile-up at the edges of the indentation is considerably larger in the directions with
smaller elastic modulus. There is an off-center stress concentration visible in the 2-3 plane because
of the forced axisymmetric deformation of the anisotropic material. There is some pile-up visible
around the indenter. The amount of pile-up is considerably smaller than in the isotropic case. This
correlates very well with findings of Bolshakov er al [BP98], who predict an decrease of pile-up and
relative error of the measured indentation modulus with decreasing hf/hmax for isotropic materials.
The data of this study also correlated well with results by Poon, who reported that the amount of
pile-up is a function of the ratio E/σy for isotropic materials. This suggests that there is a similar
phenomenon in the anisotropic case. The results of this study suggest that there might be a similar
trend between the measurement error of the indentation modulus and the ratio hf/hmax as well as
the ratio E0/σy,0 for anisotopic elastic ideal plastic materials.

When damage accumulation is considered in an elasto-plastic material, the shape of the indenta-
tion curve was qualitatively very similar to experimental results for nanoindentation experiments on
bone tissue. However, the measured indentation modulus was considerably smaller than expected.
There was an underestimation of about 45 to 51% in modulus depending on the indentation direc-
tion. The type of hardening implemented in the material model seems to be an important factor for
the determination of the measured indentation modulus. The underestimation was slightly smaller
in both indentation directions for exponential hardening than for perfect plasticity, as less damage
accumulates due to hardening of the material. Therefore the remaining stiffness in the material un-
der the indenter tip is higher than for perfect plasticity. The damage ranged from 25% in transverse
and 32% in axial direction at the vicinity of the indentation to 97% in transverse and 99% in axial
direction at the indenter tip. While there was some minimal circular pile-up visible at the vicinity
of the indentation at maximum indentation depth in axial direction, there was almost no pile-up in
transverse direction for exponential hardening. Also, the contact depth varied over the perimeter
of the indentation in transverse direction. The slope of the unloading curve and the depth of the
remaining imprint was considerably smaller for the damage model than for the purely elasto-plastic
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materials. The measured indentation modulus was heavily underestimated in both axial and trans-
verse direction. The ratio hf/hmax was considerably smaller than 0.7 for all simulations. The ratio
was also much smaller than for the simulations featuring anisotropic elasto-plasticity. Bolshakov et
al. [BP98] reported that the method of Oliver and Pharr [OP92] works very accurately for isotropic
elastic ideal plastic materials if the ratio hf/hmax is smaller than 0.7. This is not the case in the
presence of damage in the material, as the results of this study show. The assumption of intact
unloading elasticity is not justified, as the results of this study showed large damaged areas with a
cumulated damage D of 0.32 to 0.99. A cumulated damage D of 0.99 corresponds to an almost com-
plete loss of cohesion in the material. In reality, in the corresponding areas the high concentration
of the microcracks would most probably lead to disintegration of the material. This suggests that
continuum mechanics might not yield accurate results in the affected areas of extremely high dam-
age. The shape of the stress and damage fields were qualitatively similar to the results reported by
Zheng et al [ZMKO10] for an isotropic elasto-plastic continuum damage model. The data obtained
in the course of this study shows that the local damage accumulation under the indenter leads to
a significant underestimation of the global undamaged mechanical properties. There is a somehow
unrealistic deformation pattern visible in the center of the indentation when compared to actual
indentations. This is the area of the maximum damage with almost complete failure of the material.
The influence of this effect seems to be negligible, as the affected area is very small compared to the
indentation site. Also, the high amount of damage present in this area (about 97 to 99%) leading to
almost complete failure suggests that continuum mechanics might not yield accurate results in the
affected elements anymore. The problem might diminish with finer discretization of the material,
as the mesh is too coarse to model the exact deformations and stresses right at the indenter tip.

In the course of this study only simulations to an indentation depth of 0.6µm were performed
using the continuum damage model. In order to verify that there is a sensibility of the measured
modulus to the indentation depth in the damage model as well, more simulations would need to be
performed. Unfortunately, there was not enough time to perform these simulations, as problems
with element distortion and non-convergence of the model occurred at indentation depths deeper
than 0.6µm. Also, no time- or rate-dependent effects were accounted for in the course of this study.
Only rate-independent material models were used. As bone shows visco-elastic behavior such as
creep and relaxation, the behavior of bone could not be modeled to a full degree. As a next step,
the introduction of time-dependent effects into the different material models would give a better
correlation to experimental data and more insight into the behavior of bone during nanoindentation
experiments.
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Appendix A

Implementation in Fortran

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,
1 RPL,DDSDDT,DRPLDE,DRPLDT,STRAN,DSTRAN,
2 TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,MATERL,NDI,NSHR,NTENS,
3 NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,CELENT,
4 DFGRD0,DFGRD1,NOEL,NPT,KSLAY,KSPT,KSTEP,KINC)

C
INCLUDE ’ABA_PARAM.INC’

C
CHARACTER*80 CMNAME
DIMENSION STRESS(NTENS),STATEV(NSTATV),
1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),
2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),
3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3)
PARAMETER (ONE=1.0D0,TWO=2.0D0,THREE=3.0D0,SIX=6.0D0)
DATA NEWTON,TOLER,TOLERH/30,1.D-08,1.D-08/
DOUBLE PRECISION MM1,MM2,MM3,RHO,ALPHAF,GMAX,YSIG
DOUBLE PRECISION EEEE(NTENS,NTENS),SSSS(NTENS,NTENS)
DOUBLE PRECISION EEEC(NTENS,NTENS),EEED(NTENS,NTENS)
DOUBLE PRECISION SSSC(NTENS,NTENS),SSSD(NTENS,NTENS)
DOUBLE PRECISION ETOT0(NTENS),ETOT1(NTENS),EELAS0(NTENS)
DOUBLE PRECISION EPLAS0(NTENS),ALPHAG
DOUBLE PRECISION TEMP1(NTENS),TEMP2,TEMP3(NTENS,NTENS)
DOUBLE PRECISION ALPHA0,FA0,GA0,STR(NTENS)
DOUBLE PRECISION STRD(NTENS),DFA1,DGA1,DFA0,DGA0,GA1,FA1
INTEGER ITER
DOUBLE PRECISION YSTR,LAM,DLAM,FACTOR,SSD(NTENS)
DOUBLE PRECISION DSYY0(NTENS,NTENS),DSYY0I(NTENS,NTENS)
DOUBLE PRECISION TEMP4(NTENS,NTENS),TEMP5(NTENS,NTENS)
DOUBLE PRECISION EPLAS1(NTENS),EELAS1(NTENS)
DOUBLE PRECISION ALPHA1,SS1(NTENS)
DOUBLE PRECISION TEMP6(NTENS),TEMP7,TANM(NTENS,NTENS)

C
C __________________________________________________________________
C
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C
C PARAMETERS FROM INPUT FILE
C

RHO=PROPS(1)
MM1=PROPS(2)
MM2=PROPS(3)
MM3=PROPS(4)

C __________________________________________________________________
C
C TENSOR INITIALISATION
C

DO 20 K1=1,NTENS
DO 10 K2=1,NTENS

DDSDDE(K1,K2)=0.0D0
EEEE(K1,K2)=0.0D0
EEEC(K1,K2)=0.0D0
EEED(K1,K2)=0.0D0
SSSS(K1,K2)=0.0D0
SSSC(K1,K2)=0.0D0
SSSD(K1,K2)=0.0D0
TEMP3(K1,K2)=0.0D0
TEMP4(K1,K2)=0.0D0
TEMP5(K1,K2)=0.0D0
DSYY0(K1,K2)=0.0D0
DSYY0I(K1,K2)=0.0D0
TANM(K1,K2)=0.0D0

10 CONTINUE
20 CONTINUE
C
C VECTOR INITIALISATION
C

DO K1=1,NTENS
TEMP1(K1)=0.0D0

TEMP6(K1)=0.0D0
ETOT0(K1)=0.0D0
ETOT1(K1)=0.0D0
EELAS0(K1)=0.0D0
EPLAS0(K1)=0.0D0
STR(K1)=0.0D0
STRD(K1)=0.0D0
EPLAS1(K1)=0.0D0
EELAS1(K1)=0.0D0
SS1(K1)=0.0D0

ENDDO
C
C SCALAR INITIALISATION
C

ALPHAF=0.0D0
YSIG=0.0D0
GMAX=0.0D0
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ALPHAG=0.0D0
FA0=1.0D0
DFA0=0.0D0
GA0=0.0D0
DGA0=0.0D0
TEMP2=0.0D0
YSTR=0.0D0
LAM=0.0D0
DLAM=0.0D0
FA1=1.0D0
DFA1=0.0D0
GA1=0.0D0
DGA1=0.0D0
ALPHA1=0.0D0
ALPHA0=0.0D0
TEMP7=0.0D0
FACTOR=0.0D0

C __________________________________________________________________
C
C MATERIAL PROPERTIES
C

ALPHAF=0.098979291D0
YSIG=0.022768399D0
GMAX=0.010751744D0
ALPHAG=0.026246905D0

C __________________________________________________________________
C
C ORTHOTROPIC SYMMETRIC COMPLIANCE TENSOR EEEE
C

EEEE(1,1)=0.0833333D0
EEEE(2,2)=0.0746269D0
EEEE(3,3)=0.05D0
EEEE(4,4)=0.110375D0
EEEE(5,5)=0.0891266D0
EEEE(6,6)=0.0802568D0
EEEE(2,1)=-0.0314129D0
EEEE(3,1)=-0.018525D0
EEEE(3,2)=-0.0175187D0
EEEE(1,2)=EEEE(2,1)
EEEE(1,3)=EEEE(3,1)
EEEE(2,3)=EEEE(3,2)

C
C CONSTANT PART OF DECOMPOSITION OF EEEE
C

EEEC(1,1)=0.0055887D0
EEEC(2,2)=0.00661628D0
EEEC(3,3)=0.0109815D0
EEEC(2,1)=0.00608082D0
EEEC(3,1)=0.00783406D0
EEEC(3,2)=0.0085239D0
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EEEC(1,2)=EEEC(2,1)
EEEC(1,3)=EEEC(3,1)
EEEC(2,3)=EEEC(3,2)

C
C DAMAGEABLE PART OF DECOMPOSITION OF EEEE
C

EEED(1,1)=0.0777446D0
EEED(2,2)=0.0680106D0
EEED(3,3)=0.0390185D0
EEED(4,4)=0.110375D0
EEED(5,5)=0.0891266D0
EEED(6,6)=0.0802568D0
EEED(2,1)=-0.0374938D0
EEED(3,1)=-0.0263591D0
EEED(3,2)=-0.0260426D0
EEED(1,2)=EEED(2,1)
EEED(1,3)=EEED(3,1)
EEED(2,3)=EEED(3,2)

C __________________________________________________________________
C
C ORTHOTROPIC SYMMETRIC STIFFNESS TENSOR SSSS
C

SSSS(1,1)=18.0203D0
SSSS(2,2)=20.1202D0
SSSS(3,3)=27.5329D0
SSSS(4,4)=9.06D0
SSSS(5,5)=11.22D0
SSSS(6,6)=12.46D0
SSSS(2,1)=9.97294D0
SSSS(3,1)=10.1708D0
SSSS(3,2)=10.7446D0
SSSS(1,2)=SSSS(2,1)
SSSS(1,3)=SSSS(3,1)
SSSS(2,3)=SSSS(3,2)

C
C CONSTANT PART OF DECOMPOSITION OF SSSS
C

SSSC(1,1)=10.3954D0
SSSC(2,2)=12.3067D0
SSSC(3,3)=20.4264D0
SSSC(2,1)=11.3107D0
SSSC(3,1)=14.5719D0
SSSC(3,2)=15.855D0
SSSC(1,2)=SSSC(2,1)
SSSC(1,3)=SSSC(3,1)
SSSC(2,3)=SSSC(3,2)

C
C DAMAGEABLE PART OF DECOMPOSITION OF SSSS
C

SSSD(1,1)=7.62495D0
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SSSD(2,2)=7.81349D0
SSSD(3,3)=7.10646D0
SSSD(4,4)=9.06D0
SSSD(5,5)=11.22D0
SSSD(6,6)=12.46D0
SSSD(2,1)=-1.33781D0
SSSD(3,1)=-4.40111D0
SSSD(3,2)=-5.11049D0
SSSD(1,2)=SSSD(2,1)
SSSD(1,3)=SSSD(3,1)
SSSD(2,3)=SSSD(3,2)

C
C __________________________________________________________________
C
C RECOVER TOTAL, ELASTIC AND PLASTIC STRAINS, DAMAGE VARIABLE ALPHA0
C

DO 30 K1=1,NTENS
EELAS0(K1)=STATEV(K1)
EPLAS0(K1)=STATEV(K1+NTENS)
ETOT0(K1)=STRAN(K1)
ETOT1(K1)=STRAN(K1)+DSTRAN(K1)

30 CONTINUE
C

ALPHA0=STATEV(13)
C _________________________________________________________________
C
C CONVERT INITIAL STRAIN MEASURES TO VOITH-MANDL NOTATION
C

DO K1=4,6
EELAS0(K1)=EELAS0(K1)/SQRT(2.0D0)
EPLAS0(K1)=EPLAS0(K1)/SQRT(2.0D0)
ETOT0(K1)=ETOT0(K1)/SQRT(2.0D0)
ETOT1(K1)=ETOT1(K1)/SQRT(2.0D0)

ENDDO
C ________________________________________________________________
C
C INITIAL STATE OF HARDENING AND DAMAGE
C

FA0=EXP(-ALPHA0/ALPHAF)
DFA0=-1.0D0/ALPHAF*EXP(-ALPHA0/ALPHAF)
GA0=GMAX*(1-EXP(-ALPHA0/ALPHAG))+YSIG
DGA0=GMAX/ALPHAG*EXP(-ALPHA0/ALPHAG)

C __________________________________________________________________
C
C TRIAL ELASTIC STRESS
C

DO 50 K1=1,NTENS
FACTOR=0.0D0
DO 40 K2=1,NTENS

FACTOR=FACTOR+SSSC(K1,K2)*(ETOT1(K2)-EPLAS0(K2))+FA0
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1 *SSSD(K1,K2)*(ETOT1(K2)-EPLAS0(K2))
40 CONTINUE

STR(K1)=FACTOR
50 CONTINUE

C
C TRIAL ELASTIC STRESS PRIME
C

DO 51 K1=1,NTENS
FACTOR=0.0D0
DO 41 K2=1,NTENS

FACTOR=FACTOR+FA0*SSSD(K1,K2)*(ETOT1(K2)-EPLAS0(K2))
41 CONTINUE

STRD(K1)=FACTOR
51 CONTINUE
C __________________________________________________________________
C
C YIELD CRITERION FOR TRIAL ELASTIC STRESS
C

TEMP2=0.0D0
C SUBROUTINE FOR TEMP1(NTENS)=E’S

CALL MATVEC(EEED,STR,TEMP1,NTENS)
C SUBROUTINE FOR TEMP2=S:E’SC

CALL SCALPROD(STR,TEMP1,TEMP2,NTENS)
C

YSTR=SQRT(ABS(TEMP2))-GA0
C __________________________________________________________________
C
C %ELASTIC CASE%
C __________________________________________________________________
C

IF (YSTR.LE.0.0D0) THEN
C
C UPDATE STATE VARIABLES
C

DO K1=1,NTENS
EPLAS1(K1)=EPLAS0(K1)
EELAS1(K1)=ETOT1(K1)-EPLAS0(K1)

ENDDO
C

ALPHA1=ALPHA0
C
C ELASTIC STRESS UPDATE
C

DO K1=1,NTENS
SS1(K1)=STR(K1)

ENDDO
C
C ELASTIC JACOBIAN
C

DO 70 K1=1,NTENS
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DO 60 K2=1,NTENS
TANM(K1,K2)=SSSC(K1,K2)+FA0*SSSD(K1,K2)

60 CONTINUE
70 CONTINUE

C
ENDIF

C __________________________________________________________________
C
C %INELASTIC CASE%
C __________________________________________________________________
C
C TEMP1(NTENS)=E’STR’
C TEMP2=STR’:E’STR’
C TEMP3(NTENS,NTENS)=E’S ox E’S
C TEMP5=DSYY0I*(E’S ox E’S)*DSYY0I
C TEMP7=E’S:DSYY0I*E’S
C

IF (YSTR.GT.0.0D0) THEN
C

ITER=0
LAM=0.0D0
DLAM=0.001D0

C
C SOUBROUTINE FOR TEMP1(NTENS)=E’STR’

CALL MATVEC(EEED,STRD,TEMP1,NTENS)
C
C SUBROUTINE FOR TEMP2=STR’:E’STR’

TEMP2=0.0D0
CALL SCALPROD(STRD,TEMP1,TEMP2,NTENS)

C
ALPHA1=ALPHA0

C
FA1=EXP(-ALPHA1/ALPHAF)
DFA1=-1.0D0/ALPHAF*EXP(-ALPHA1/ALPHAF)
GA1=GMAX*(1-EXP(-ALPHA1/ALPHAG))+YSIG
DGA1=GMAX/ALPHAG*EXP(-ALPHA1/ALPHAG)

C
C IMPLICIT ITERATIVE BACKPROJECTION ON YIELD SURFACE
C

DO WHILE (ABS(DLAM).GT.TOLER.AND.ITER.LE.NEWTON)
C

ITER=ITER+1
C
C h(lambda)
C

H=(SQRT(ABS(TEMP2))-LAM*FA0)*FA1-FA0*GA1
C
C dh/dlambda
C

DHDL=(SQRT(ABS(TEMP2))-LAM*FA0)*DFA1-FA0*FA1-FA0*DGA1
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C
C RECURRENCE FORMULA LAMBDA(I+1)-LAMBDA(I)
C

DLAM=-H/DHDL
C __________________________________________________________________
C
C UPDATE LAMBDA
C

LAM=LAM+DLAM
C __________________________________________________________________
C

IF (ITER.GE.NEWTON) THEN
WRITE(*,11)

11 FORMAT(//,30X,’WARNING: ALGORITHM DID NOT CONVERGE’)
ENDIF

C
IF (LAM.LT.0.OR.LAM.GT.1) THEN
WRITE(*,*)" Damage exceeded 0..1"
WRITE(*,*)" LAM: ",LAM
WRITE(*,*)" Old Value: ",ALPHA0
WRITE(*,*)" Element: ",NOEL
WRITE(*,*)" Int. Point:",NPT
WRITE(*,*)" Increment: ",KINC
WRITE(*,*)" Iteration: ",ITER

ENDIF
C __________________________________________________________________
C
C UPDATE DAMAGE VARIABLE
C

ALPHA1=ALPHA0+LAM
C __________________________________________________________________
C
C UPDATE DAMAGE AND HARDENING FUNCTION
C

FA1=EXP(-ALPHA1/ALPHAF)
DFA1=-1.0D0/ALPHAF*EXP(-ALPHA1/ALPHAF)
GA1=GMAX*(1-EXP(-ALPHA1/ALPHAG))+YSIG
DGA1=GMAX/ALPHAG*EXP(-ALPHA1/ALPHAG)

C
ENDDO

C __________________________________________________________________
C
C UPDATE DAMAGE VARIABLE
C

ALPHA1=ALPHA0+LAM
C __________________________________________________________________
C
C UPDATE DAMAGE AND HARDENING FUNCTION
C

FA1=EXP(-ALPHA1/ALPHAF)
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DFA1=-1.0D0/ALPHAF*EXP(-ALPHA1/ALPHAF)
GA1=GMAX*(1-EXP(-ALPHA1/ALPHAG))+YSIG
DGA1=GMAX/ALPHAG*EXP(-ALPHA1/ALPHAG)

C __________________________________________________________________
C
C FINAL STRESS PRIME SSD
C

DO 160 K1=1,NTENS
SSD(K1)=STRD(K1)*FA1*GA1/(FA0*(GA1+LAM*FA1))

160 CONTINUE
C __________________________________________________________________
C
C UPDATE PLASTIC STRAIN
C
C SUBROUTINE FOR TEMP1(NTENS)=E’S’

CALL MATVEC(EEED,SSD,TEMP1,NTENS)
C

DO 161 K1=1,NTENS
EPLAS1(K1)=EPLAS0(K1)+LAM*TEMP1(K1)/GA1

161 CONTINUE
C __________________________________________________________________
C
C UPDATE ELASTIC STRAIN
C

DO 170 K1=1,NTENS
EELAS1(K1)=ETOT1(K1)-EPLAS1(K1)

170 CONTINUE
C __________________________________________________________________
C
C UPDATE TOTAL STRESS
C

DO 190 K1=1,NTENS
FACTOR=0.0D0
DO 180 K2=1,NTENS
FACTOR=FACTOR+SSSC(K1,K2)*(ETOT1(K2)-EPLAS1(K2))

1 +FA1*SSSD(K1,K2)*(ETOT1(K2)-EPLAS1(K2))
180 CONTINUE

SS1(K1)=FACTOR
190 CONTINUE

C __________________________________________________________________
C
C CONSISTENT TANGENT STIFFNESS OPERATOR MATRIX DDSDDE
C

TEMP2=0.0D0
C SUBROUTINE FOR TEMP1(NTENS)=E’S

CALL MATVEC(EEED,SS1,TEMP1,NTENS)
C SUBROUTINE FOR TEMP2=S:E’SC

CALL SCALPROD(SS1,TEMP1,TEMP2,NTENS)
C SUBROUTINE FOR DYADIC PRODUCT TEMP3=E’S ox E’S

CALL VECDYAD(TEMP1,TEMP1,TEMP3,NTENS)
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C
C GRADIENT dYi/dS
C

DO 90 K1=1,NTENS
DO 80 K2=1,NTENS
DSYY0(K1,K2)=EEEC(K1,K2)+EEED(K1,K2)/FA1+LAM

1 *(EEED(K1,K2)*ABS(TEMP2)-TEMP3(K1,K2))
2 /(SQRT(ABS(TEMP2*TEMP2*TEMP2)))

80 CONTINUE
90 CONTINUE

C
C SUBROUTINE FOR DSYYOI=INVERSE(DSYY0)

CALL MIGS(DSYY0,NTENS,DSYY0I)
C
C SUBROUTINES FOR TEMP5=DSYY0I*(E’S ox E’S)*DSYY0I

CALL MULTAB(TEMP3,DSYY0I,TEMP4,NTENS)
CALL MULTAB(DSYY0I,TEMP4,TEMP5,NTENS)

C
C SUBROUTINES FOR TEMP7=E’S:DSYY0I*E’S

TEMP7=0.0D0
CALL MATVEC(DSYY0I,TEMP1,TEMP6,NTENS)
CALL SCALPROD(TEMP1,TEMP6,TEMP7,NTENS)

C
DO 210 K1=1,NTENS
DO 200 K2=1,NTENS
TANM(K1,K2)=DSYY0I(K1,K2)-TEMP5(K1,K2)/(TEMP7+

1 (FA1*FA1)/(FA1*FA1-DFA1)*GA1
2 *SQRT(ABS(TEMP2)))

200 CONTINUE
210 CONTINUE

C
ENDIF

C __________________________________________________________________
C
C CONVERT TANGENT STIFFNESS OPERATOR MATRIX TO ABAQUS CONVENTION
C

DO K1=4,6
DO K2=4,6
TANM(K1,K2)=TANM(K1,K2)/2.0D0
TANM(K1-3,K2)=TANM(K1-3,K2)/SQRT(2.0D0)
TANM(K1,K2-3)=TANM(K1,K2-3)/SQRT(2.0D0)

ENDDO
ENDDO

C __________________________________________________________________
C
C CONVERT STRESSES AND STRAINS TO ABAQUS CONVENTION
C

DO K1=4,6
EELAS1(K1)=EELAS1(K1)*SQRT(2.0D0)
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EPLAS1(K1)=EPLAS1(K1)*SQRT(2.0D0)
SS1(K1)=SS1(K1)/SQRT(2.0D0)

ENDDO
C __________________________________________________________________
C
C UPDATE OF FIELD VARIABLES
C

DO K1=1,NTENS
STRESS(K1)=SS1(K1)
STATEV(K1)=EELAS1(K1)

STATEV(K1+NTENS)=EPLAS1(K1)
ENDDO

C
DO 230 K1=1,NTENS
DO 220 K2=1,NTENS

DDSDDE(K1,K2)=TANM(K1,K2)
220 CONTINUE
230 CONTINUE
C

STATEV(13)=ALPHA1
C

RETURN
END

C __________________________________________________________________
C
C SUBROUTINES FOR MATRIX CALCULATION
C __________________________________________________________________
C

SUBROUTINE MULTAB(A,B,X,N)
C MULTIPLIES A AND B WITH DIMENSION N*N

INCLUDE ’ABA_PARAM.INC’
DIMENSION A(N,N),B(N,N),X(N,N)
DO I=1,N

DO J=1,N
RCSUM=0.0D0
DO K=1,N

RCSUM=RCSUM+A(I,K)*B(K,J)
END DO
X(I,J)=RCSUM

END DO
END DO
RETURN
END

C
C __________________________________________________________________
C

SUBROUTINE MATVEC(A,C,X,N)
C PRODUCT OF VECTOR C AND MATRIX A WITH DIMENSION N*N

INCLUDE ’ABA_PARAM.INC’
DIMENSION A(N,N),X(N),C(N)
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DO I=1,N
RCSUM=0.0D0
DO J=1,N

RCSUM=RCSUM+A(I,J)*C(J)
END DO
X(I)=RCSUM

END DO
RETURN
END

C
C __________________________________________________________________
C

SUBROUTINE VECDYAD(A,B,X,N)
C DYADIC PRODUCT AB’ OF VECTORS A AND B WITH DIMENSION N*1

INCLUDE ’ABA_PARAM.INC’
DIMENSION A(N),B(N),X(N,N)
DO I=1,N

DO J=1,N
X(I,J)=A(I)*B(J)

END DO
END DO
RETURN
END

C
C __________________________________________________________________
C

SUBROUTINE SCALPROD(A,B,X,N)
C SCALAR PRODUCT OF 2 VECORS A AND B WITH DIMENSION N

INCLUDE ’ABA_PARAM.INC’
DIMENSION B(N)
DOUBLE PRECISION X,A(N)

C
X=0.0
DO 240 I=1,N
X=X+A(I)*B(I)

240 CONTINUE
RETURN
END

C
C __________________________________________________________________
C
C *****************************************************************
C

SUBROUTINE MIGS(A,N,X)
C
C Subroutine to invert matrix A(N,N) with the inverse stored
C in X(N,N) in the output. A is stored in STOA and is resituted
C as outpout
C

INCLUDE ’ABA_PARAM.INC’
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DOUBLE PRECISION A(N,N),STOA(N,N),B(N,N),X(N,N)
INTEGER INDX(N)

C
DO 140 I=1,N
DO 130 J=1,N
STOA(I,J)=A(I,J)
B(I,J)=0.0D0

130 CONTINUE
140 CONTINUE

DO 150 I=1,N
B(I,I)=1.0D0

150 CONTINUE
C

CALL ELGS(A,N,INDX)
C

DO 180 I=1,N-1
DO 170 J=I+1,N
DO 160 K=1,N
B(INDX(J),K)=B(INDX(J),K)

1 -A(INDX(J),I)*B(INDX(I),K)
160 CONTINUE
170 CONTINUE
180 CONTINUE

C
DO 210 I=1,N
X(N,I)=B(INDX(N),I)/A(INDX(N),N)
DO 200 J=N-1,1,-1
X(J,I)=B(INDX(J),I)
DO 190 K=J+1,N
X(J,I)=X(J,I)-A(INDX(J),K)*X(K,I)

190 CONTINUE
X(J,I)= X(J,I)/A(INDX(J),J)

200 CONTINUE
210 CONTINUE

C
C Restitution of A

DO 230 I=1,N
DO 220 J=1,N
A(I,J)=STOA(I,J)

220 CONTINUE
230 CONTINUE

C
RETURN
END

C
C *****************************************************************
C

SUBROUTINE ELGS(A,N,INDX)
C
C Subroutine to perform the partial-pivoting Gaussian elimination.
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C A(N,N) is the original matrix in the input and transformed
C matrix plus the pivoting element ratios below the diagonal in
C the output. INDX(N) records the pivoting order.
C

INCLUDE ’ABA_PARAM.INC’
DOUBLE PRECISION A(N,N),C(N)
INTEGER INDX(N)
DOUBLE PRECISION C1,PI1,PI,PJ
INTEGER K,ITMP

C
C Initialize the index
C

DO 240 I=1,N
INDX(I)=I

240 CONTINUE
C
C Find the rescaling factors, one from each row
C

DO 260 I=1,N
C1=0.0D0
DO 250 J=1,N
C1=DMAX1(C1,ABS(A(I,J)))

250 CONTINUE
C(I)=C1

260 CONTINUE
C
C Search the pivoting (largest) element from each column
C

DO 300 J=1,N-1
PI1=0.0D0
DO 270 I=J,N
PI=ABS(A(INDX(I),J))/C(INDX(I))
IF (PI.GT.PI1) THEN
PI1=PI
K=I

ELSE
ENDIF

270 CONTINUE
C
C Interchange the rows via INDX(N) to record pivoting order
C

ITMP=INDX(J)
INDX(J)=INDX(K)
INDX(K)=ITMP
DO 290 I=J+1,N
PJ=A(INDX(I),J)/A(INDX(J),J)

C
C Record pivoting ratios below the diagonal
C

A(INDX(I),J)=PJ
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C
C Modify other elements accordingly
C

DO 280 K=J+1,N
A(INDX(I),K)=A(INDX(I),K)-PJ*A(INDX(J),K)

280 CONTINUE
290 CONTINUE
300 CONTINUE

C
RETURN
END

C
C *********************************************************************
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Appendix B

Implementation in Mathematica

(*UMAT*)

(*Input of F*)

FF = {{1, 0, 0}, {0, 1, 0.12}, {0, 0, 1}}

{{1, 0, 0}, {0, 1, 0.12}, {0, 0, 1}}

MatrixForm[FF]

(*Compliance matrix*)

(*Ashman elastic constants*)

E1 = 12.0

E2 = 13.4

E3 = 20.0

G12 = 4.53

G13 = 5.61

G23 = 6.23

nu12 = 0.376

nu13 = 0.222

nu23 = 0.235

nu21 = 0.422

nu31 = 0.371
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nu32 = 0.350

(*Construction of the Compliance Matrix*)

EEEE = ConstantArray[0, {6, 6}]

EEEE[[1, 1]] = 1/E1

EEEE[[2, 2]] = 1/E2

EEEE[[3, 3]] = 1/E3

EEEE[[2, 1]] = -nu21/E2

EEEE[[1, 2]] = -nu12/E1

EEEE[[3, 1]] = -nu31/E3

EEEE[[1, 3]] = -nu13/E1

EEEE[[3, 2]] = -nu32/E3

EEEE[[2, 3]] = -nu23/E2

EEEE[[4, 4]] = 1/(2*G12)

EEEE[[5, 5]] = 1/(2*G13)

EEEE[[6, 6]] = 1/(2*G23)

MatrixForm[EEEE]

(*Symmetrization of the Compliance Matrix*)

EEEEsym = 0.5*(EEEE + Transpose[EEEE])

{{0.0833333, -0.0314129, -0.018525, 0, 0, 0}, {-0.0314129,
0.0746269, -0.0175187, 0, 0, 0}, {-0.018525, -0.0175187, 0.05, 0, 0, 0}, {0,
0, 0, 0.110375, 0, 0}, {0, 0, 0, 0, 0.0891266, 0}, {0, 0, 0, 0, 0,
0.0802568}}

MatrixForm[EEEEsym]

(*Eigenvalue and Eigenvector analysis of the Compliance Matrix*)

Eigenvalues[EEEEsym]

Eigenvectors[EEEEsym]
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{valsE, vecsE} = Eigensystem[EEEEsym]

{{0.110813, 0.110375, 0.0891266, 0.0802568, 0.0739607,
0.0231865}, {{0.76578, -0.641269, -0.0485406, 0., 0., 0.}, {0., 0., 0., 1.,
0., 0.}, {0., 0., 0., 0., 1., 0.}, {0., 0., 0., 0., 0.,
1.}, {-0.415391, -0.550839, 0.723897, 0., 0., 0.}, {0.49095, 0.534182,
0.688199, 0., 0., 0.}}}

(*Decomposition of the Compliance Matrix*)

(*Constant Part*)

EEEC = valsE[[6]]*dyad[vecsE[[6]], vecsE[[6]]]

{{0.0055887, 0.00608082, 0.00783406, 0., 0., 0.}, {0.00608082,
0.00661628, 0.0085239, 0., 0., 0.}, {0.00783406, 0.0085239,
0.0109815, 0., 0., 0.}, {0., 0., 0., 0., 0., 0.}, {0., 0., 0., 0.,
0., 0.}, {0., 0., 0., 0., 0., 0.}}

MatrixForm[EEEC]

(*Damageable Part*)

EEED = EEEEsym - EEEC

{{0.0777446, -0.0374938, -0.0263591, 0., 0., 0.}, {-0.0374938,
0.0680106, -0.0260426, 0., 0., 0.}, {-0.0263591, -0.0260426,
0.0390185, 0., 0., 0.}, {0., 0., 0., 0.110375, 0., 0.}, {0., 0., 0.,
0., 0.0891266, 0.}, {0., 0., 0., 0., 0., 0.0802568}}

MatrixForm[EEED]

(*Stiffness matrix*)

SSSSsym = Inverse[EEEEsym]

{{18.0203, 9.97294, 10.1708, 0., 0., 0.}, {9.97294, 20.1202, 10.7446,
0., 0., 0.}, {10.1708, 10.7446, 27.5329, 0., 0., 0.}, {0., 0., 0.,
9.06, 0., 0.}, {0., 0., 0., 0., 11.22, 0.}, {0., 0., 0., 0., 0.,
12.46}}

MatrixForm[SSSSsym]

(*Eigenvector and Eigenvalue analysis of the Stiffness Matrix*)

Eigenvectors[SSSSsym]

Eigenvalues[SSSSsym]

{valsS, vecsS} = Eigensystem[SSSSsym]
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{{43.1285, 13.5207, 12.46, 11.22, 9.06,
9.02421}, {{-0.49095, -0.534182, -0.688199, 0., 0.,
0.}, {-0.415391, -0.550839, 0.723897, 0., 0., 0.}, {0., 0., 0., 0., 0.,
1.}, {0., 0., 0., 0., 1., 0.}, {0., 0., 0., 1., 0.,
0.}, {0.76578, -0.641269, -0.0485406, 0., 0., 0.}}}

(*Decomposition of the Stiffness Matrix*)

(*Constant Part*)

SSSC = valsS[[1]]*dyad[vecsS[[1]], vecsS[[1]]]

{{10.3954, 11.3107, 14.5719, 0., 0., 0.}, {11.3107, 12.3067, 15.855,
0., 0., 0.}, {14.5719, 15.855, 20.4264, 0., 0., 0.}, {0., 0., 0.,
0., 0., 0.}, {0., 0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0., 0.}}

MatrixForm[SSSC]

(*Damageable Part*)

SSSD = SSSSsym - SSSC

{{7.62495, -1.33781, -4.40111, 0., 0., 0.}, {-1.33781,
7.81349, -5.11049, 0., 0., 0.}, {-4.40111, -5.11049, 7.10646, 0.,
0., 0.}, {0., 0., 0., 9.06, 0., 0.}, {0., 0., 0., 0., 11.22,
0.}, {0., 0., 0., 0., 0., 12.46}}

MatrixForm[SSSD]

(*DEFINITIONS UMAT*)

(*Computation YSIG*)

SSmax = {0.0, 0.0, 0.115265, 0.0, 0.0, 0.0}

{0., 0., 0.115265, 0., 0., 0.}

TEMP1 = EEED.SSmax

{-0.00303828, -0.0030018, 0.00449746, 0., 0., 0.}

TEMP2 = SSmax.TEMP1

0.0005184

YSIG = Sqrt[TEMP2]

0.0227684
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(*Material Parameters*)

ALPHAF = 0.098979291

0.0989793

GMAX = 0.010751744

0.0107517

ALPHAG = 0.026246905

0.0262469

(*Definition of damage and plastic hardening function*)

FA[alpha_] = Exp[-alpha/ALPHAF]

E^(-10.1031 alpha)

FA’[alpha]

-10.1031 E^(-10.1031 alpha)

GA[alpha_] = YSIG + GMAX*(1 - Exp[-alpha/ALPHAG])

0.0227684 + 0.0107517 (1 - E^(-38.0997 alpha))

GAid[alpha_] = YSIG

0.0227684

GAlin[alpha_] = YSIG + 0.1*alpha

0.0227684 + 0.1 alpha

GA’[alpha]

0.409639 E^(-38.0997 alpha)

(*Definition yield criterion*)

y0[alpha_, SS_] = Sqrt[SS.(EEED.SS)] - GA[alpha]

(*Computation of Strain*)

GG = FF - IdentityMatrix[3]

{{0, 0, 0}, {0, 0, 0.12}, {0, 0, 0}}
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NINC = 200

GGINC = 4*GG/NINC

{{0, 0, 0}, {0, 0, 0.0024}, {0, 0, 0}}

(*Table initialization*)

EPLAS1 = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}

ALPHA = 0.0

SS11 = ConstantArray[0, NINC]

LE11 = ConstantArray[0, NINC]

SS22 = ConstantArray[0, NINC]

LE22 = ConstantArray[0, NINC]

SS33 = ConstantArray[0, NINC]

LE33 = ConstantArray[0, NINC]

SS12 = ConstantArray[0, NINC]

LE12 = ConstantArray[0, NINC]

SS13 = ConstantArray[0, NINC]

LE13 = ConstantArray[0, NINC]

SS23 = ConstantArray[0, NINC]

LE23 = ConstantArray[0, NINC]

AL = ConstantArray[0, NINC]

DAM = ConstantArray[0, NINC]

yi = ConstantArray[0, NINC]

(*SINGLE ELEMENT TEST*)

For[i = 1, i < NINC, i++,
If[i <= NINC/2, j = i, j = NINC - i];
FF1 = IdentityMatrix[3] + GGINC*j;
CC1 = Transpose[FF1].FF1;
{valsC1, vecsC1} = Eigensystem[CC1];
lnU1 = Sum[Log[Sqrt[valsC1[[i]]]]*dyad[vecsC1[[i]], vecsC1[[i]]], {i, 1, 3}];
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ETOT1 = {lnU1[[1, 1]], lnU1[[2, 2]], lnU1[[3, 3]], Sqrt[2.0]*lnU1[[1, 2]],
Sqrt[2.0]*lnU1[[1, 3]], Sqrt[2.0]*lnU1[[2, 3]]};

FF0 = IdentityMatrix[3] + GGINC*(i - 1);
CC0 = Transpose[FF0].FF0;
{valsC0, vecsC0} = Eigensystem[CC0];
lnU0 = Sum[Log[Sqrt[valsC0[[i]]]]*dyad[vecsC0[[i]], vecsC0[[i]]], {i, 1, 3}];
ETOT0 = {lnU0[[1, 1]], lnU0[[2, 2]], lnU0[[3, 3]], Sqrt[2.0]*lnU0[[1, 2]],
Sqrt[2.0]*lnU0[[1, 3]], Sqrt[2.0]*lnU0[[2, 3]]};

EPLAS0 = EPLAS1;
ALPHA0 = ALPHA;
SSIN = SSSC.(ETOT0 - EPLAS0) + FA[ALPHA0]*SSSD.(ETOT0 - EPLAS0);
STR = SSSC.(ETOT1 - EPLAS0) + FA[ALPHA0]*SSSD.(ETOT1 - EPLAS0);
STRD = FA[ALPHA0]*SSSD.(ETOT1 - EPLAS0);
ystr = y0[ALPHA0, STR];
If[ystr <= 0.0,
SS1 = STR; EPLAS1 = EPLAS0; ALPHA = ALPHA0,
LAM = 0.0;
DLAM = 0.01;
While[DLAM > 0.000000000001,
h0 = (Sqrt[STRD.(EEED.STRD)] - LAM*FA[ALPHA0])*FA[ALPHA0 + LAM] -
FA[ALPHA0]*GA[ALPHA0 + LAM];

dh0 = (Sqrt[STRD.(EEED.STRD)] - LAM*FA[ALPHA0])*FA’[ALPHA0 + LAM] -
FA[ALPHA0]*FA[ALPHA0 + LAM] - FA[ALPHA0]*GA’[ALPHA0 + LAM];

DLAM = -h0/dh0;
LAM = LAM + DLAM;
];
ALPHA = ALPHA0 + LAM;
SSD = STRD*(GA[ALPHA]*FA[ALPHA])/(FA[ALPHA0]*(GA[ALPHA] + LAM*FA[ALPHA]));
EPLAS1 = EPLAS0 + LAM/GA[ALPHA]*(EEED.SSD);
SS1 = SSSC.(ETOT1 - EPLAS1) + FA[ALPHA]*SSSD.(ETOT1 - EPLAS1);
];

SS11[[i]] = SS1[[1]];
LE11[[i]] = ETOT1[[1]];
SS22[[i]] = SS1[[2]];
LE22[[i]] = ETOT1[[2]];
SS33[[i]] = SS1[[3]];
LE33[[i]] = ETOT1[[3]];
SS12[[i]] = SS1[[4]]/Sqrt[2.0];
LE12[[i]] = ETOT1[[4]]/Sqrt[2.0];
SS13[[i]] = SS1[[5]]/Sqrt[2.0];
LE13[[i]] = ETOT1[[5]]/Sqrt[2.0];
SS23[[i]] = SS1[[6]]/Sqrt[2.0];
LE23[[i]] = ETOT1[[6]]/Sqrt[2.0];
DAM[[i]] = FA[ALPHA];
AL[[i]] = ALPHA;
yi[[i]] = y0[ALPHA, SS1]
]
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