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Abstract 

 
In various markets customers behave loyal to specific sellers. The purpose of this thesis is to 

replicate an agent-based model that explains the emergence of loyalty between buyers and 

sellers, where buyers learn to become loyal and sellers learn to offer advantages to loyal 

buyers. Both, sellers and buyers, use reinforcement learning to adapt their behaviour towards 

an optimal one for them. Furthermore, different network structures as well as mechanisms for 

modelling endogenous interactions are described and an overview of agent-based modelling is 

provided. Finally, this thesis examines how information spread between buyers affects the 

formation of loyalty. First, the agent-based model about loyalty was implemented in NetLogo 

to verify its results with the findings of the original model. Afterwards, the model was 

extended by allowing the buyers to spread and receive information about sellers, which 

influenced the seller-choosing process of the buyers. Therefore buyers were endowed with 

‘temporal spatial’ social networks, which were formed by their actual neighbours of the 

sellers queue. Furthermore, buyers had the possibility to learn the importance of received 

information to incorporate them accordingly into their sellers-choosing process. The 

replicated model successfully reproduced the outcomes about loyalty. The results of the 

extended model showed that positive information about other sellers reduced the loyalty, 

whereas negative information about other sellers had no effects on the emerged level of 

loyalty. Moreover, buyers learned to put high attention to received positive information. 

 



Kurzfassung 

 
In den unterschiedlichsten Märkten ist loyales Kundenverhalten gegenüber Verkäufern 

anzutreffen. Das erste Ziel dieser Diplomarbeit ist es ein agenten-basiertes Modell zu 

replizieren, welches die Entstehung der Loyalität von Käufern gegenüber Verkäufern erklärt. 

Mit Hilfe von Reinforcement Learning lernen einerseits sich Käufer loyal zu verhalten und 

andererseits Verkäufer loyale Kunden bevorzugt zu behandeln. Des Weiteren werden 

unterschiedlichen Netzwerkstrukturen, sowie Mechanismen zur Modellierung endogener 

Interaktionen beschrieben und eine Übersicht über agenten-basierte Modellierung gebeben. 

Als zweites Ziel dieser Arbeit wird anschließend untersucht, wie sich Informationsaustausch 

zwischen den Käufern auf die Entstehung von Loyalität auswirkt. Zuerst wurde das agenten-

basierte Modell über Loyalität in NetLogo implementiert, um die Ergebnisse mit jenen des 

originalen Modells zu verifizieren. Danach wurde das Modell dahingehend erweitert, dass 

Käufer nun die Möglichkeit hatten, Information über andere Verkäufer zu verbreiten. Diese 

Informationen beeinflussen den Prozess der Verkäufer-Auswahl der Käufer. Für die 

Informationsverbreitung wurden ‚temporäre räumliche’ soziale Netzwerke eingeführt, welche 

von den Nachbarn des Käufers innerhalb einer Verkäufer-Warteschlange gebildet werden. 

Außerdem haben Käufer die Möglichkeit die Wichtigkeit der erhaltenen Informationen zu 

lernen und entsprechend in ihrem Prozess der Verkäufer-Auswahl zu berücksichtigen. Die 

Ergebnisse des originalen Modells bezüglich Loyalität konnten erfolgreich repliziert werden. 

Des Weiteren zeigen die Ergebnisse der Modellerweiterung, dass positive Informationen über 

andere Verkäufer sich negativ auf die Kundenloyalität auswirken, während negative 

Informationen keinen Einfluss auf diese haben. Zudem lernten Käufer, dass erhaltene positive 

Informationen sehr wichtig für den Prozess der Verkäufer-Auswahl sind.  
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Overview 
 
This thesis replicates an agent-based model about loyalty and price dispersion of Kirman and 

Vriend (2001) and analyses the effects on the emergence of loyalty by introducing 

information spread as an extension of the original model. 

 In chapter 1 I give an overview of the different networks structures, explain the 

concept of simulation in social science and elucidate the main features of agent-based 

modelling. Furthermore, I review frequently used simulation tools by social scientists and 

point out the importance of model replication. At the end of chapter 1 I summarize models 

with endogenous interactions to explain mechanisms that are used to model endogenous 

interactions, since the key issue of the replicated model of this thesis is about loyalty that 

emerges as a result of endogenous interactions. 

In the second chapter I explain the model of Kirman and Vriend (2001) and describe 

the implementation of my model replication. Moreover, I give an overview of the concept of 

reinforcement learning, since it is used by the agents in the model. At the end of this chapter I 

present the results of the replicated model. 

In chapter 3 I give an overview of current agent-based models about loyalty, diffusion 

processes and I mention causes for the formation of rumours to incorporate these concepts 

afterwards in the extension of the model from Kirman and Vriend (2001). Then I explain the 

extension of the original model where I introduce information spread which affects the seller 

choosing process of the buyers. Finally, I present the simulation results of the extended 

model. 
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1. Dynamic Networks & Agent-based Modelling 
 

1.1 Network Structures 
A network consists of nodes (vertices) and connections between them, called links or 

edges and can be represented as a graph G = (V, E). V represents the set of nodes and E the 

set of edges. The node is referred by its index i in the set V. The set E contains pairs of nodes 

( i, j) of V (González, 2006). 

A network is undirected, if (i,j) є G   (j,i) є G. It is called simple, if no edge 

connects a node itself and only one edge connects any linked pair. A network is called 

connected if any node can be reached by any other node. Edges are unweighted, if all edges 

have the same intrinsic value (e.g. length) (Tesfatsion and Kenneth, 2006). 

There exists various types of networks, each type of them has special characteristics 

and a specific structure. 

1.1.1 Types of Networks 
The following section about network – types together with its figures is mainly based 

on the book  from Tesfatsion and Kenneth (2006, chap. 20). 

 
Complete 

A complete network is characterized by having a link from each node to each other node:  

EjijiEVG  ),(:),,(  

There exit only few examples of this type of network in nature (e.g. telephone system). 

Because of its redundantly wired structure, reliability concerns (the probability that a piece of 

information send over the network, will reach its destination) often lead to this kind of 

network. 

 
Figure 1: Complete Network. 

 

Star 

There exists one (randomly) selected node that is connected to each other node: 

EjsjsjsEVG  ),(:,),,(  
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Network decay (information degrades when travelling over more links) often leads to this 

efficient and minimal network structure.  

It is an often used network topology in computer networks: The central node represent a hub 

or switch and the surrounding nodes the clients that are connected to the hub. Another 

application of this network is a mainframe system where the middle node represents the host 

and the other nodes are the terminals. 

 
Figure 2: Star Network. 

Ring 

The nodes are organized in form of a ring. Each node i is connected with k neighbours. k/2 

are located on the left side and k/2 to its right side. 
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Every node of the network is only linked to a fraction of the whole node population. 

 
Figure 3: Ring Network. 

One application is Token Ring: It is a computer network where each node is only connected 

to 2 neighbours. A token is passed through the network and only the node which possesses the 

token is allowed to send data to other nodes. 

 

Grid 

It has the structure of a chessboard. In each square a node is placed and connected with its 

surrounding neighbours nodes on the chessboard. The nodes that are located on the edges are 

additionally connected to the nodes which are located on the opposite (antipode) edges of the 

chessboard.  

Sample applications are the layout of city blocks or rooms on the floor of a building. 
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Figure 4: Grid Network. 

Tree 

In this kind of network, each node branches off to b other nodes. A field of application is the 

representation of hierarchical social systems. 

 
Figure 5: Tree Network. 

 

Small-world network 

The main characteristics of a small-world network is a high clustering (a high tendency of 

nodes to clump together1) and short path-length (average number of edges needed to be 

traversed to reach from a node any other node). 

 One way to construct these networks is to start with a k-ring network. Then a rewiring 

of the edges occurs with a probability p: A randomly selected edge (i,j) gets removed from the 

node j and rewired to a random selected other node b. So a new edge (i,b) is created. For the 

probability of p=0 the k-ring network stays unchanged. If p=1 every nodes gets randomly 

rewired. But only for small probabilities, small-world networks begin to emerge. 

Two examples of applications are the distribution of co-authors in journals and electric 

power grids. 

 
Figure 6: Small-world Network. 

 

                                                 
1 When two nodes i and j are connected to node k, then in a cluster node i and node j are also connected 
together. 
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Figure 6 was originally a k-ring network with k = 4. Then randomly rewiring of the edges 

occurred. As a result of the randomly rewiring the edges are rewired to randomly selected 

other nodes (in this case to nodes that are relatively “far” away). So suddenly some nodes are 

able to reach other far-away nodes directly. 

 

Power network 

Each node in a network has a certain degree (number of edges to other nodes). Therefore a 

degree distribution is the probability distribution of these degrees over the whole network. In 

other words this means the degree distribution P(k) gives the probability that a node of the 

network has k edges. (Réka and Barabási, 2002) 

According to (Tesfatsion and Kenneth, 2006) the degree distribution in power networks 

follows a power law: kkP ~)(  

Only a few nodes have a high degree (also called “hubs”) and many nodes have only a very 

low degree.  

These networks are created by starting with a simple network and adding each time a new 

node that creates k edges to other already existing nodes according to a preferential weighing: 

d

d

n

j
iGjiP  )|),(( . G represents the network, (i,j) is one of the k edges that are created by 

the new added node i, jd is the number of edges reaching node j and nd is the total number of 

edges in the network.  

An example for this type of network is the world wide web, making it very resistant 

against random attacks (randomly selecting nodes that get disabled / attacked) and vulnerable 

to direct attacks (explicitly choosing the node to be attacked, e.g. a hub which would decrease 

the performance of the web dramatically). 

 
Figure 7: Power Network. 

 
Figure 7 represents a power network. The nodes with many connections are hubs. It can be 

seen that only few hubs exist (3 big hubs with more then 2 connections) and many single 

connected nodes (13 nodes). 
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Summing up the above mentioned network types it can be seen that there exist two main 

categories of networks:  

The first category are artificial networks. These kind of networks are created man-

made to achieve a certain explicit goal like building redundancies in computer networks 

(complete network) or to implement a clear distribution of competencies (trees) being able to 

react highly efficient as needed in sectors like defence or emergency management. This 

category includes the complete, star, ring, grid and tree network. 

The second category of networks are naturally grown networks. Small-world and 

power networks belong to this network category and are summarized under the term ‘scale – 

free networks’. For example social networks and the World Wide Web belong to this kind of 

networks. 

 

Social Networks 

In contrast to the above mentioned networks types, a social network is one instance of such an 

abstract network. Wasserman and Faust (1994, p. 20) define a social network as a network 

that  

 
“…consists of a finite set or sets of actors and the relation or relations defined on them. The 

presence of relational information is a critical and defining feature of a social network.” 

 
According to Knoke and Yang (2008), actors may be single persons, groups, 

organisations or states. Relations defined on them influence their decisions, actions, 

perceptions and beliefs. A relation occurs always as a joint property between two actors and 

exists as long as both actors maintain this relation. There has to be made a distinction between 

directed and non-directed relations. A directed relation consists of a sender (e.g. teacher) 

which initiates the relation and a receiver (e.g. student). In a non-directed relation, each 

sender is also a receiver, meaning mutuality occurs (e.g. a conversation, discussion). 

 

 

 
Figure 8: Directed and non-directed relation. 
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The first picture of figure 8 shows a directed relation where actor 1 is the initiator, actor 2 is 

the receiver and the red arrow represents the directed relation (e.g. actor 1 <<trusts>> actor 2 

or actor 1 <<advices>> actor 2) between them. Similarly the second picture shows a non-

directed relation with the two differences that now actor 1 and actor 2 are both initiators and 

receivers and the relation has no arrow to represent the mutuality between the two actors (e.g. 

for the non-directed relations like <<work together>> or <<fight with>>). 

The relations are not just present or inexistent between actors, moreover they also 

could be valued to represent their strenght or intensity. Such valueted relations could be for 

example the dollar amount of trade between nations or the frequency of interaction between 

people (Wasserman and Faust, 1994). 

 A social network consists of the same type (e.g. only <<work together>> relations ) of 

relations among the actors. So if there are multiple relation types, even among the same subset 

of actors, each relation type represents a social network of its own (Knoke and Yang, 2008). 

A method that measures, represents, explains why these relations occur and even their 

consequences is called social network analysis (SNA). SNA is based on the  assumptions that 

the relations between the actors can describe their behaviour better than their attributes, like 

age or gender, do. It is also assumed that these relations affect the actor’s perceptions, beliefs 

and actions. For example direct contacts between actors give them the possibility to 

influence/being influenced stronger the other one/by the other one. Relations also could 

support and constrain rumour, gossip or the diffusion of knowledge through the whole 

network. The third assumption is that a social network is a dynamic construct. It underlies 

dynamic processes because for example actors influence / are influenced by others and have 

the possibility to learn, which changes the pattern of interaction over time. Therefore it can be 

seen as a dynamic network, having their edges (relations) continuously altering (Knoke and 

Yang, 2008). 

It is important to point out that on the one hand the actors within the social network 

are influenced by the network structure and on the other hand they influence the structure of 

the network by their actions, beliefs and perceptions. 

 

1.2 Agent-based Modelling 
In the following, I describe the logic of simulation, the main characteristics of agent-based 

modelling and I give an overview of some frequently used simulation tools by social 

scientists. 
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1.2.1 Simulation in Social Science 
Computer simulations have a wide field of applications. They are used in various branches of 

science like social sciences, natural sciences or engineering sciences. In social sciences 

simulations help us to get important insights of complex social systems. 

A simulation has inputs, which are the attributes of the model to make it suitable for a 

desired social setting, and outputs which are the behaviours of the model through time 

(Gilbert and Troitzsch, 2005). 

 
Figure 9: The logic of simulation (Gilbert and Troitzsch, 2005). 

 

Figure 9 represents the logic of simulation: First a model is developed in form of a 

computer program which is an abstraction of the presumed social processes in the target (the 

real world phenomenon). Once this is done the simulation is executed (run) and its behaviour 

is recorded. This recorded behaviour is called ‘Simulated data’ and once it is generated, it can 

be compared with the collected data from the target system to check whether the outcomes of 

the initially presumed social processes are similar to the real social processes of the target  

(Gilbert and Troitzsch, 2005). The target represents a social phenomenon like unemployment 

or loyalty. 

So the purpose of a simulation is to put accuracy either in the understanding of a social 

phenomena (called explanatory model) or on the predictability. In fact, independently from 

the desired emphasis of the modeller, each simulation model is both an explanatory model (to 

some degree)  and a model that is usable (to a certain degree) for predictions (Gilbert and 

Troitzsch, 2005). 

1.2.2 Introduction to Agent-based Modelling 
Agent-based modelling (ABM) is a computational method. The main components are 

agents. Agents interact within a given environment. The environment is a virtual space where 
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the interaction takes place. It could be neutral (has no influence to the agents) or has influence 

on the behaviour of the agents (e.g. as geographical space, knowledge space or linkage of 

agents to build a social network).  

Agents are computer programs (or parts of a program) and could represent social 

actors like firms and individuals or bodies like states. They react to their environment and are 

able to interact with other agents by exchanging information messages. These messages can 

be direct by an information flow (e.g. spoken dialogue)  or indirect by perceiving the actions 

of other agents (Gilbert, 2007). 

The main characteristics of agents are autonomy, the ability to learn, react, 

communicate, cooperate and to perceive their environment, the degree of rationality and 

mobility. This characteristics can exist in various combinations and degrees, representing the 

different classes of agents and therefore heterogeneity among them (Gilbert, 2007). 

ABM is used for analysing the individual behaviour that leads to aggregated behaviour 

(e.g. emergent phenomena) and to study how changes in the system-level influences the 

individual behaviour of the agents (Gilbert and Terna, 2000). 

With ABM it is possible to capture emergent phenomena from the bottom up which 

result from the interactions of the individual agents. Another advantage is to be able to 

observe how small changes in the configuration can lead to unexpected outcomes. ABM is 

flexible because it is easy to add more agents to the model, to tune the complexity of the 

agents and to change the levels of aggregations of agents (subgroups of agents) (Bonabeau, 

2002). Due to the fact that ABM is a computational method the modeller is forced to be 

precise and exact by specifying a computer program to be able to run it instead of using a 

natural language (Gilbert, 2007). 

As mentioned above agents are able to interact with other agents with the consequence 

that networks, underlying their interaction, can emerge or are already exogenously given by 

the modeller. Therefore special notice on networks should be taken. (see chapter ‘Network 

Structures’) 

 

1.2.3 Simulation Tools 
Due to the fact that ABM had become more and more popular in many different disciplines 

during the last years, also a lot of different toolkits and frameworks had been developed to 

create and being able to run agent-based models. Each of them has its strengths and 

weaknesses. Nikolai and Madey (2009) examine the available toolkits by characterizing them 

according to the programming language, the required operating system, the primary domain 
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for which the toolkit is intended, the available support for the users of these toolkits and the 

type of licence (free available, proprietary, …). They categorized 53 toolkits where most of 

them are freely  available (76%). 

 I will now focus on some frequently used toolkits / frameworks by social scientists. In 

fact there exists a huge variety of toolkits and frameworks. The choice which toolkit is the 

best one for a certain project depends not only on its characteristics, moreover it depends on 

the own past experiences in using them and the publicity of the toolkit (Nikolai and Madey, 

2009). And of course it is important that there exists an active, perhaps big, community to 

gain specific and fast support for particular questions when having an ABM project. 

Some common used toolkits are SWARM, MASON, Repast and NetLogo. SWARM and 

Mason are general purpose toolkits and Repast was designed for social sciences. Only 

NetLogo was designed for educational purposes (Nikolai and Madey, 2009). All of them are 

available for free and, except NetLogo whose source code is not released, are published under 

an open source license. 

SWARM2 was developed at the Santa Fe Institute in 1999 and is available for free. It 

consists of a set of code libraries to create agent-based models and is available on many 

operating system platforms (Windows, Linux and MacOS X). The used programming 

languages are Objective-C and Java. 

MASON 3stands for ‘Multi-Agent Simulator Of Neighbourhoods (or Networks)’ and 

was developed from the George Mason University. The main focus of this Java library is to 

have a fast execution speed and to be very small. Every model created with MASON is 

completely decoupled from its visualizations. So each model can be attached to an optional 

visualization toolkit. A simulation can also be serialized to disk (in MASON a checkpoint is 

created) and perhaps moved to a different workstation / operating system where it can be 

continued to run. 

 There exist three implementations of Repast4. One for Java (called Repast J), one for 

.NET (Repast .NET) and one for Python Scripting (Repast Py). Apart from these three 

implementations of Repast, also a java-based modelling system, called Repast Symphony, for 

the most common operating systems exists. It supports Java, ReLogo and Groovy as 

programming languages (which also can be interleaved) and the import of NetLogo models. 

Repast was originally developed at the University of Chicago and stands for ‘Recursive 

Porous Agent Simulation Toolkit’. 

                                                 
2 http://www.swarm.org 
3 http://cs.gmu.edu/~eclab/projects/mason 
4 http://repast.sourceforge.net 
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NetLogo5 was designed at the Tufts University, moved later to Northwestern 

University and has a Logo-like syntax. It is implemented in Java and its programming 

language is a procedural language meaning there exists no object-oriented programming 

possibility. NetLogo is not just a programming library, moreover it is a whole modelling 

environment that provides a programming interface with code highlighting and an interface 

for visualizations. In contrast to MASON and Co it also supports the visually creation of 

System Dynamics models. 

 NetLogo is used as simulation tool in this master thesis. Therefore the 

characteristics of this toolkit are described more in detail in table 1: 

 

positive aspects negative  aspects 

easy to learn, intuitive syntax not object-oriented 
fast developing (powerful commands, easy 
creation of diagrams) 

bad IDE  
(only syntax checking, syntax highlighting) 

many existing sample models slow execution speed  interpreted language 
platform independent (Java) one simulation couldn’t take advantage of 

multiple processors 
building agent-based models, System 
Dynamics models 

 

Table 1: Characteristics of NetLogo. 

 

1.2.4 Model Replication 
Although there exist many ABM models about endogenous networks in the literature, not 

every one provides a description in detail about its concrete model architecture. So in many 

cases it becomes hard to replicate a given model. 

But model replication is an important part in science: Replication needs to be done to 

ensure that the published description of the model is detailed enough and independent on any 

local conditions from the scientist who originally performed the experiment (Wilensky and 

Rand, 2007). 

Only when someone is able to reproduce a model from scratch, the derived results of a 

simulation are reliable. This confirmation step ensures that results are not just a consequence 

of programming errors. It also eliminates misinterpretations of the output, errors in analysing 

or reporting the results (Axelrod, 2003). 

Wilensky and Rand (2007) recommend to post certain important information when 

doing model replication. This should ensure that the reader is able to get an overview of the 

replication approach: 

                                                 
5 http://ccl.northwestern.edu/netlogo 
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Details about the model replication 

Categories of Replication Standards [Numerical Identity, Relational Alignment, 

Distributional Equivalence] 

Focal Measures measures used to meet the goal 

Level of Communication [none, rich discussion, personal meetings, brief 

email contact] 

Familiarity with Language / Toolkit  [none, surface understanding, have built other 

models in this language] 

Examination of Source Code [none, studied in depth, referred to for particular 

questions] 

Exposure to Original Implemented Model [none, run, re-ran original experiments, ran 

experiments other than original ones] 

Exploration of Parameter Space [only examined results from original paper, 

examined other areas of the parameter space] 

Table 2: Important information to be included when doing model replication. 

 

The replication standard is the criteria for valuing the output from the replicated model as a 

successful or an unsuccessful replication. The options are: ‘numerical identity’ where the 

exact same numerical results are needed to be reproduced, ‘relational alignment’ means that 

the results of the original and replicated model show similar relationships between the input 

and output variables and ‘distributional equivalence’ where the produced results are 

statistically similar to the ones of the original model. 

 The focal measures are these kind of measures that are compared ( as specified under 

‘Categories of Replication Standards’; for example in form of relational alignment) with the 

measures from the original model. Whereas the level of communication shows to what extend 

communication between the model replicator and the model developer occurred. This can 

give a hint if the published information about the original model is detailed enough to 

preserve the results for the future. 

 The familiarity with the language / toolkit should indicate how experienced the 

replicator is with the language / toolkit in which the original model was implemented. A 

higher familiarity of the language also helps to understand the original model better. 

 The examination of the source code can eliminate differences between the replication 

and the original model when the written description is not sufficient enough. Wilensky and 

Rand (2007) note that if comparison between the replicated code and the original code occurs 
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in an too early phase this may result in groupthink and thus the replication becomes too 

depended on the original model developer. 

 The exposure to the original implemented model specifies if the replicator has 

executed the original implementation (by executing the original source code) of the model to 

re-run the original experiments to get a certain feeling about how the simulation looks like or 

perhaps to explore the parameter space by running experiments other than the original ones. 

 The last mentioned point in table 2 is the exploration of the parameter space. There the 

replicator notes whether he has validated only the described results of parameter space of the 

original published model or even other areas of the parameter space. 

 

1.3 Endogenous Networks 
According to Tesfatsion and Kenneth (2006, chap. 21), endogenous networks in agent-based 

computational economics (ACE; ABM applied to an economic domain) models are reflected 

in endogenously determined relationships. There agents do not just play a specific game, they 

also decide with whom they want to play the game.  

Social interactions in reality are characterized by being endogenous. And so it is 

important to turn the attention to the study of agent-based models with endogenous 

interactions to analyse the way how connections/relationships are formed (e.g. by being a 

neighbour or sending some communication signals) and the way how connections are 

evaluated and established (e.g. by taking into account some learning process) by the single 

agents. 

Therefore it is fundamental to know the different already existing mechanism that are 

used to model endogenous interactions:  

- residential pattern 

- resource gradient 

- predictors 

- advertising / patronage 

- threshold / expected payoff 

- arbitrary tags 

- trust 

- expected payoff / familiarity 

- past success rate 

- directed random search 

On the following pages I will shortly explain these different kinds of mechanisms. 
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In all these mechanisms, the agents decide if they want to establish, maintain or close a 

connection with some other agent(s). These decisions are normally based on the perceived 

success of their interactions. 

It is important to know that random interactions where agents are interacting only 

randomly, and local interactions, for example where agents interact with their nearest 

neighbours, are not endogenous! These interactions are determined by an exogenous process 

like exogenously determining the locations of the agents. 

The following section, which gives an overview of the different mechanisms for 

modelling endogenous interactions and their applications in specific models, is based on 

Tesfatsion and Kenneth (2006, chap. 21): 

 

1.3.1 Residential pattern 
The segregation model of Schelling (1971) uses the residential pattern: Two different kind of 

agents are placed randomly on a lattice structure (like a chessboard). So each agent has a 

neighbourhood (Moore-neighbourhood where 8 neighbours surrounding one agent; see figure 

10) and faces a certain ratio of unwanted agents (that are agents of the other type).  

 
Figure 10: Moore neighbourhood. 

 
Furthermore every agent is endowed with a specific desired ratio of unwanted agents. If this 

ratio is exceeded, by having to many neighbours of the different agent-type in the 

neighbourhood (= unwanted residential pattern), the agent becomes unsatisfied and wants to 

change his residence. 

At each iteration of the model, all unsatisfied agents move to the nearest free satisfactory 

position. This process continues until all agents are satisfied and the usual outcome of this 

process is a segregated state. 
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Figure 11: Segregation6. 

The left picture of figure 11 shows the initial state where 2000 agents are placed randomly on 

the chessboard. Whereas the right picture shows the emerged segregation state at the end of 

the simulation. The desired ratio of unwanted agents was set to 50% and the two agent-types 

are represented by the green and red colours. 

An endogenous interaction occurs due to two different externalities that are created when 

an unsatisfied agent changes his residence: 

1. If an agent leaves his old “home”, this has an impact on the ratio of his old neighbours. 

2. Likewise the move to a new position has an impact on the ratio of the new neighbours. 

1.3.2 Resource gradient 
Epstein and Axtell (1996) use the resource gradient in the so-called ‘sugarscape’, which is a 

space with a lattice structure that is formed to a torus. At each cell sugar can grow at a 

specific rate. The amount of sugar an agent needs to survive in one period, is specified as a 

given metabolic rate (=consumption rate of the agent). Each agent also has a maximum age, a 

vision to find free sites, a neighbourhood consisting of max. 4 neighbours in form of the von 

Neumann neighbourhood and optional a utility function. 

 
Figure 12: von Neumann neighbourhood. 

 

                                                 
6 http://ccl.northwestern.edu/netlogo/models/Segregation 
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Figure 12 shows the von Neumann neighbourhood. The black field represents an agent and 

the grey fields are the places the agent is able to see. Another often used neighbourhood is the 

Moore neighbourhood as mentioned in the residential pattern model. 

 At the beginning sugar grows up to an upper limit at each cell. Then each agent 

determines the best site he can see (according to his vision), moves to it and recognizes his 

new neighbours there. After doing so, agents start to collect the sugar and therefore increasing 

their wealth. The metabolic rate decreases their wealth and agents with a negative wealth or  a 

reached maximum age die. In another variant of the model, the agents are also able to trade 

sugar for spice and vice versa with their neighbours. 

 

 

              
Figure 13: Agents on the sugarscape7.  

 

In figure 13 the left picture shows the agents on the sugarscape landscape at the beginning of 

the simulation and the picture to the right shows the agents after 30 time-steps. The different 

graduations of the yellow colour indicate the amount of sugar available at the specific 

positions. White areas are without any sugar. The red points represent the agents. It can be 

seen that the agents move to the richest endowed locations to survive and increase their 

welfare. 

 Endogenous (indirect) interactions occur due to the fact that all interactions depend on 

the choices made by the agents where to move. And these location choices are controlled by 

the availability of resources (resource gradients) on the ‘sugarscape’. But when agents move 

through the space to collect sugar, they also manipulate the pattern of resource availability in 

the landscape. 

                                                 
7 http://ccl.northwestern.edu/netlogo/models/Sugarscape2ConstantGrowback 
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1.3.3 Predictors 
Arthur (1994) uses predictors in the ‘EL Farol’ bar problem: Agents like to spend time 

together in the bar if there are fewer than 60 % of them present in the bar. If  more than 60 % 

are present, an agent does not want to go to the bar and instead stays at home. 

 Each agent has a specific set of predictors (e.g. the average number of attendances of 

the last month, the same number of attendances as last week, …) that determine the expected 

number of agents in the bar, based on the attendance figures of the last weeks. The agents also 

trace the accuracy of each predictor by comparing the made prediction with the real actual 

attendance figure. 

 At the beginning each agent is initialised with a specific set of predictors. In each 

period, each agent selects the predictor with the highest accuracy and uses the made 

prediction of this predictor to decide if he will stay at home or will go to the bar. At the end of 

the period, agents update the accuracy of their predictors by comparing the realized 

attendance figure with the made predictions. 

 
Figure 14: Attendance figures of the last 100 weeks (Arthur, 1994). 

 

Figure 14 shows the number of persons attending the bar for the last 100 weeks. It can be seen 

that this number fluctuates around the 60% level. 

 Endogenous interactions exist because the single interaction decision of an agent (to 

go to the bar or to stay at home) depends on the past pattern of interactions of all agents. 

These single interaction decisions lead to an evolution of  the pattern of interactions itself by 

becoming a part of the pattern of interactions on which future interaction will rely on. 
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1.3.4 Advertising / Patronage 
Vriend (1995) used advertising and patronage in his model to implement endogenous 

interactions: In his model firms and customers exist. Each firm produces goods in advance 

without knowing the demand in the current period. They attract customers by sending 

information signals randomly to the customer population. The production and the information 

signals are costly  for them. 

  Customers buy products by shopping around randomly, being loyal to the previous 

firm (=patronage) or following one received information signal.  

Each firm has a set of alternative rules:  A rule specifies a specific production and advertising 

level. The fitness of a rule depends on the received payoff by using this rule. Rules with a 

higher fitness are more likely to be selected by the firm. This behaviour is called 

reinforcement learning. After 50 periods a genetic algorithm (elimination and reproduction 

with mutation) is applied to the rules based on the fitness of these rules. 

A genetic algorithm is based upon the biological evolution: It has the ability to adapt (find the 

best solution) to a given or even to a changing environment. At the beginning a start-

population has to be created (e.g. the initial rules from a firm). The first step of these kind of 

algorithms is to calculate with a given fitness-function the fitness for each possible individual 

/ solution (in the case of the firm the fitness of each rule would be calculated). Second, 

selection occurs by selecting the fittest individuals. Next, crossover starts by building couples 

out of the selected individuals and crossing them. Each individual can be represented as a 

binary string  and new individuals are created by combining the sub strings of their parents. 

The last step is called mutation and is done by inverting single bits from the new individuals 

at specific rates (Gerdes et al., 2004). 

  Each customer has 15 condition based rules („if <<condition>> then <<action>>“ 

rules). The condition takes into account the shopping experience (being satisfied, did not find 

any products, ...) of the previous day and the information state (received any information 

signal or not). Possible actions are patronization, visiting the corresponding firm of a received 

information signal or choosing a firm at random. The fitness of a rule depends on the 

generated payoff and the higher the fitness of a rule the higher is the possibility of selecting 

this rule again (=reinforcement learning). 
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Figure 15: Patronage rate of informed customers (Vriend, 1995). 

 

In figure 15 the different developed patronage levels of informed customers (customers which 

received an information signal) can be seen. Due to the fact that rules containing a “did not 

find any products” in their condition-block and a “patronage”-action in their action-block 

generate a lower payoff than other rules, their fitness decreases and as a consequence also 

their reapplication. 

  Endogenous interactions occur due to the following fact: On the one hand firms 

decide the desired number of interactions by sending advertising signals and selecting the 

output level. The output level determines how many of these desired interactions are 

successful (by being able to satisfy the demand of the attracted potential customer). These 

decisions (production level and number of advertising signals) are influenced by their 

profitability. But the profitability depends on the decisions (condition based rules) made by 

the customers. The customers decisions depend on the success of the previous period and 

whether having received an advertising signal or not. On the other hand these two variables 

(success and advertising signal received) are affected by the made decisions by the firms and 

other customers. 

1.3.5 Threshold / Expected Payoff 
Ashlock et al. (1996) uses a two person iterated Prisoner’s Dilemma game with the following 

payoffs: (cooperation, cooperation)=(3,3); (defection, defection)=(1,1), (defection, 

cooperation)=(5,0) and (cooperation, defection)=(0,5).  

Each agent is represented by a binary string, consisting of two parts. The first part 

specifies the dynamic game strategy and the second part represents with whom the agent 

wants to play the game (and therefore the endogenous interactions of the agent). The model 

consists of 2000 generations, each generation has 150 rounds where in each round (some of) 

the agents play a Prisoner’s Dilemma game. In each round each agent specifies one opponent 
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with whom he wants to play the PD game by choosing the agent with the highest expected 

payoff. An agent keeps in mind the weighted (by putting more importance on the last received 

payoffs) average received payoff of each other agent and accepts all offers that are above his 

personal payoff threshold. Then each accepted pair of agents plays a PD game. In another step 

all agents update their expected payoff from their opponent and take part in a genetic 

algorithm with elimination, reproduction with crossover and mutation of the agents. The 

fitness of an agent is represented by the average received payoffs from all played games.  

Endogenous interactions exists because agents are able to make a proposal to the 

“best” agent from their point of view by memorizing the payoffs realized with each other 

agent. Another important aspect is that agents are able to refuse received proposals to protect 

themselves from defectors. This refusal leads to an endogenous exclusion of defectors and 

therefore occurs to all agents that have no expected payoff above the agents threshold. The 

threshold itself is part of the agents binary string and evolves through the genetic algorithm. 

1.3.6 Arbitrary Tags 
Riolo (1997) uses arbitrary tags as a partner-matching mechanism in an iterative Prisoner's 

Dilemma. In his model, the being of an agent is given by a 5-tuple: The first three parameters 

of the tuple specify the dynamic game strategy and the last two ones the endogenous 

interactions.  The arbitrary tag i  [0,1] from agent i is an external label to the other agents. 

The idea of arbitrary tags is that agents choose more likely agents with similar tags. 

  Each agent has to find an opponent 10-times.  For each opponent-search there exist 

search costs. Once a pair of players has successfully matched, they play a four-round iterative 

Prisoner's Dilemma. After this step all existing agents evolve via a genetic algorithm that 

considers the realized payoff as the fitness of each agent. The above mentioned steps are 

repeated for 5000 times. 
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Figure 16: Average pickiness-parameter b (Riolo, 1997). 

 

Figure 16 shows the evolution of the pickiness parameter b with different simulation settings:  

If the population starts with attaching importance on the distance between both tags (b0=0.01) 

and there exists no search costs (D=0) then the population remains in the attitude to see the 

distance between both tags as important (see ‘—’ line). But if there are search costs 

introduced into the model (D=0.02), then the population becomes indifferent with respect to 

tags (see ‘o’ line). Whereas there is no clear picture if b0=2 (meaning that the population is 

not very picky) and there are no search costs (D=0). In one run the pickiness-parameter 

remains at its starting level (see ‘’ line) and in a second run b moves to zero (see ‘’ line) 

implying the population cares about tags.  

  The interactions are endogenous when an agent tries to find an opponent: First an 

agent selects an opponent randomly and then he compares the similarities of their tags. The 

probability that agent i chooses / agrees to an agent j is 1-| i  – j |b(i). | i  – j | represents the 

similarity of both tags and b(i)[0,100] represents the 'pickiness' of an agent. A low b(i) 

means that agent i puts special importance on the distance between both tags and therefore is 

very picky. A high b(i) implies that the agent is not very picky and the distance does not 

matter. Both agents have to carry out this evaluation and play together only when both agree 

with their opponent.  and b are the last two parameters of the 5-tupel of an agent and 

therefore evolve in the genetic algorithm. 
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1.3.7 Trust 
Hanaki et al. (2004) used trust as a method to model endogenously determined interactions in 

an repeatedly played one-shot Prisoner's Dilemma game. 

 At the beginning, all agents are endowed with a game strategy and a trust level (which 

is the subjective probability of an agent that a new partner will cooperate) at random. 

In each period each agent plays one Prisoner's Dilemma with all his partners. Then with 

exogenously given probabilities some agents can update their game strategy (to cooperate or 

to defect) and some agents can update their connections by either creating one new link or 

choosing an already existing link again to a game partner. When an agent updates his game 

strategy he chooses the most successful game strategy from his connected partners (he also 

considers his own most recent game strategy). The success is measured by the sum of all 

received payoffs from the last period. 

 Endogenous interactions occur between the agents when creating a new link: 

 An agent has two possibilities for choosing a new partner (creating a new link).  In both cases 

he only chooses the new partner if the net benefit seems to be positive. The first one is to 

choose a new partner from the partners of his already existing partners (friend of friend). In 

this case the partner informs the agent about the recent played game strategy of this potential 

new partner. The second one is to choose a new partner at random out of the whole 

population. In this case the expected payoff depends on the trust level. This level is calculated 

as a weighted average of the already experienced amount of cooperation of partners with 

whom they have already interacted, putting more weight on more recent experiences. 

  So the endogeneity of the interactions is modelled as a level of trust (subjective 

probability of facing cooperation from the opponent) which evolves over time. 

1.3.8 Expected Payoff / Familiarity 
 Kirman and Vriend (2001) modelled the wholesale fish market of Marseille by using the 

loyalty (=familiarity) of customers and the expected payoff as methods to implement 

endogenous interactions. 

  Before the fish market opens, the sellers determine the amount of fish they want to 

supply for the day without knowing the demand. Then the market opens and each buyer 

chooses a queue of a seller depending on the average realized payoff. Every buyer wants to 

buy one unit of fish each day. Next the sellers handle their queues by serving sequentially the 

buyers in any order they want. In doing so the sellers could offer each buyer an individual 

price on basis of the familiarity of their faces in their queue (=loyalty). 
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After having handled all sellers queues, the market closes and reopens as a market in 

the afternoon. There all unsatisfied buyers choose a queue of a seller, the sellers handle their 

queues and finally all unsold fishes perish. 

  Then reinforcement learning starts: Each seller has to make four decisions meaning 

there exist four classifier systems (decision boxes). A decision box is a set of alternative rules. 

There is one decision box for one of the following decisions to make: The quantity to supply, 

how to handle the queue and the function for determining the different prices for the single 

buyers in the morning and in the afternoon. Fitter rules, which return a higher realized payoff, 

are more likely to be used again. In contrast to the seller, the buyer’s alternative rules specify 

the price level for accepting an offer and the choice of a seller (depending on the average 

realized payoff with him) once for the morning and once for the afternoon. So the buyer also 

has four decisions to make implying there exist four classifier systems for each buyer. 

 
Figure 17: Average prices asked / accepted during the morning sessions (Kirman and Vriend, 2001). 

 
Figure 17 shows the average asked and accepted prices during the first 5000 morning 

sessions. At the beginning of the simulation the asked and accepted prices diverge (the asked 

prices increase whereas the accepted prices decrease). After some time the asked prices are 

dragged down by the accepted prices. Both prices are stable at a price level of 10.3 after 

around 2000 ticks. 
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Figure 18: Average loyalty during morning sessions (Kirman and Vriend, 2001). 

 
Figure 18 shows that loyalty emerges despite the buyers do not even know for what loyalty 

stands for. At first loyalty emerges only slowly but at some point it starts to grow fast up to an 

average level of ~0.8. The variance among the buyers is represented with the 5 - percentile 

and the 95 - percentile measure of loyalty over all buyers. With increasing loyalty also the 

variance increases. 

  The interactions are endogenous because a buyer chooses a seller’s queue by 

considering the expected payoff (=average realized payoff with the seller). Therefore the 

higher the expected payoff the higher the possibility of selecting the specific seller. Likewise 

sellers can favour some buyers over other buyers by considering the familiarity of the faces of 

the buyers, meaning they prefer loyal buyers. Also the individual price asked from a buyer 

depends on the familiarity. The familiarity is a weighted average of the past presence of a 

buyer in a seller’s queue. It is important to point out that the sellers have to learn whether to 

give advantage (e.g. when handling their queues, determining the individual price) or 

disadvantage to loyal buyers. At the beginning of the simulation they are absolutely 

indifferent to this decision. 

1.3.9 Past success rate 
Chang and Harrington (2005) use the past success rate  (modelled as weights) as a method to 

influence the decision process of agents whether to interact or to stay alone: 

  In their model all agents have to solve the same exogenously given number of tasks. 

The method to solve a single task is described as a binary string. At the same time there exists 

a target vector, describing the optimal way to solve all tasks. This vector can change over 
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time. An agent only adopts a new method if this method is better for solving the task than the 

already used one by comparing the amount of different bits (Hamming distance)8 from this 

method with the target vector.  

Furthermore an agent has to decide whether to innovate (randomly choosing a binary string) 

or to imitate another agent by copying his method. 

 
Figure 19: Probability of agent i to imitate agent j (Chang and Harrington, 2005). 

 

Chang and Harrington (2005) formed four groups, each group consisting of five agents. 

Group one consists of agent 1 to agent 5, group 2 consists of agent 6 to agent 10 and so on. 

The target vector of each group follows a separate stochastic process (the vector changes over 

time). Hence, the target vectors of the groups differ over time. But the agents do not know this 

fact. Figure 19 shows the endogenous emerged probabilities of agent i imitating agent j. The 

lighter the areas the higher is the probability that agent i imitates agent j. It can be seen that 

the agents have learned to imitate more with agents within their group. This can be seen by 

the four lighter 5x5 boxes. 

  The interactions are endogenous because interaction (in their model addressed as 

imitating) depends on the past success of choosing to imitate. The decision process of an 

agent is a probabilistic one, only influenced by weights depending on the past success of the 

according chosen option (imitation / innovation). So the first decision step determines whether 

to interact at all. If an agent has chosen to interact (to imitate) then the question arises with 

                                                 
8 Hamming (1950) 
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whom he should interact (from whom he should copy the method). In this case another 

decision step occurs, where the probability of choosing an agent increases (his weighting gets 

increased) if the past imitation of this agent was successful. If an agent is not chosen in one 

period, then his weight decreases automatically. 

Reinforcement learning (by considering the past success rate) is used at each decision step to 

ensure to choose the optimal decisions. 

1.3.10 Directed random search 
In the model of Jackson and Rogers (2004) at each time step one agent is added to a network. 

Before he is added to the network he chooses an uniform randomly sample out of all  existing 

agents within the network. Then he chooses an uniform randomly second sample of agents 

that are directly linked to the chosen agents of the first sample. After doing so an agent  

creates out of the first and second sample of chosen agents myopically links with those agents 

that generate a positive net utility for him. In the simplest version of the model the net utility 

of a link is independently and identically distributed across all pairs of agents. The sizes of 

these two samples are exogenously given. 

 
Figure 20: Distribution of node degrees (Jackson and Rogers, 2004). 

 

Figure 20 represents the results from a simulation with 10 000 periods in a diagram with log-

scaled axes. In this simulation the two samples had both a size of two agents and each agent in 

the sample had a positive net utility implying that all sampled agents had been linked. The 

upper tail of the graph is linear which indicates that there is a scale-free distribution 

(distribution of the degrees of the nodes follows a power law). But the lower tail is not linear, 

meaning no scale-free distribution exists there. 

  Forming links is endogenous because the second sample chosen by an agent depends 

on the network structure. If a new agent creates links, he automatically influences the 
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structure of the network and therefore he also influences the second samples chosen by new 

agents in the future. 

 

Finally there is to say that most endogenous interactions follow a certain schema: 

 

1. Interactions between agents are guided by a certain variable x 

This means that the agents put attention to this variable x. x could be for example the 

average expected payoff, the loyalty of an agent or the residential pattern which an 

agent faces. Of course agents could consider multiple variables and not just one. (e.g. 

by extending the model of  Kirman and Vriend (2001) by letting the buyer considering 

not just the expected payoff with a seller, but also the length of the queue or the 

familiarity of the seller.) 

 

2. Variable x evolves as a consequent of the interactions between the agents. 

E.g. In the ‘El Farol’ – bar problem the predicted attendance value by a certain 

predictor changes as a consequent of the single made decision of all agents to move to 

the bar or to stay at home. Another example is the expected payoff where the expected 

payoff changes due to the last made interactions (to join a sellers queue and got served 

well/badly or not). 

 

3. The importance of variable x for a single agent may evolves by a learning process. 

In most models there exists multiple instances of the variable x (e.g. there exist 

multiple predictors in the ‘El Farol’ – bar problem like the average number of 

attendances of the last month, the same number of attendances as last week, …) that 

could be considered. Before an agent decides to interact (or with whom to interact) or 

not, he first has to decide which instance he should take to make this decision. 

Therefore he must evaluate the fitness of each instance (which can be calculated by 

experiences of past made interactions). Many models use a classifier system to 

implement this learning process. 
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2. Implementation of the model of Kirman and Vriend (2001) 

2.1 Motivation 
Kirman and Vriend (2001) analysed the Marseille fish market and found two stylised facts 

about this market: The first one is the existence of a high loyalty of buyers to sellers and the 

second one is the presence of price dispersion. Due to the fact that these two phenomena 

(stylised facts) are existent in other markets too, the derived insights about them, from studies 

made on the Marseille fish market, might be transferable to other markets as well.  

Their reason for analysing this fish market is that there exists a rich data set about the 

single transactions that had taken place in this market over some years. At the same time this 

market is simple and well-structured, which makes an analysis easier. Both reasons support 

the construction of a suitable model. 

To understand how loyalty and price dispersion could emerge they created an agent-

based model to provide a mechanism that could explain these phenomena from its lowest 

level: the interaction between buyers and sellers. 

2.2 The Model 
The following sections describe, the model set-up of Kirman and Vriend (2001). 

2.2.1 The Market 
The real fish market in Marseille consists of a fixed population of 40 sellers and around 400 

buyers. Before the market opens sellers buy their supply of fish outside the market. The 

buyers are either retailers, implying they get some specific price for reselling the bought fish 

afterward outside the market,  or restaurants. During the opening hours from 2 a.m. to 6 a.m., 

buyers visit sellers to buy fish. Once a buyer has selected a seller, they stand face to face and 

the buyer tells the seller the type and quantity of fish he wants to have. Then the seller decides 

the individual price, which is not posted to the other buyers. The individuality of the price is 

characterized by the possibilities of the seller to decide his own price and to offer different 

buyers different prices. Another feature of the individual price setting is that a seller may ask 

a different price for the same buyer who wants to have the same type and quantity of fish at 

different times. The asked price are ultimate prices meaning there exists no bargaining 

between buyers and sellers. If the market closes, unsold fish perish and get disposed. Some 

types of fishes can be sold the next day but with quality losses which can be recognized by the 

buyers (Kirman and Vriend, 2001). 
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Kirman and Vriend (2001) model an abstract version of the fish market in Marseille with 10 

identical sellers and 100 identical buyers, both with adaptive behaviour by using classifier 

systems. Additionally, the authors introduced a  morning session and a afternoon session, 

which means that the market opens and closes two times a day. The structure of the 

simulation can be seen in figure 21: 

 
Figure 21: Overview of the simulation of Kirman and Vriend (2001)9. 

 

In the morning session, all sellers buy their stock of fish for an exogenously given price pin = 

9 for each unit of fish. Then the market opens and each buyer chooses a seller because every 

buyer wants to have one unit of fish per day. Therefore a buyer adds himself to the queue of 

his desired seller. Next all sellers handle their queues by serving the buyers in any order they 

want until either the stock of fish is empty or there are not any further buyers in the queue. 

When the seller serves a buyer, he chooses an individual price for the specific buyer. Then the 

buyer ether accepts his offer or rejects it. Once this is done the market reopens in the 

afternoon (afternoon session). There all unsatisfied buyers that haven’t got any fish in the 

morning, ether they had rejected the asked price or the sellers stock was empty when it was 

their turn, choose again a seller that has open (implying that the seller still has any fish) and 

add themselves to the desired sellers queues. Then, like in the morning session, the sellers 

                                                 
9 Tesfatsion & Kenneth (2006, chap. 21) 



 - 30 - 

handle their queues. If all queues are handled, all unsold fish perish. The buyers resell their 

fish for a fixed given price of pout = 15 outside the market.. 

 Once this is done, reinforcement learning starts to optimise their decision behaviour: 

During the day, each agent (whether being a buyer or a seller) made some decisions. Each 

buyer had to make the following four decisions: 

1. the choice  of seller in the morning and 

2. the choice of seller in the afternoon he wants to visit. 

3. prices to accept or reject in the morning 

4. prices to accept or reject in the afternoon 

Whereas each seller had to decide upon: 

1. the quantity of fish he wants to supply 

2. how to handle his queue 

3. prices to ask in the morning 

4. prices to ask in the afternoon 

The whole procedure is repeated 5000 times, starting in the morning session with the buying 

of the sellers stock and ends after the afternoon session with the reinforcement learning of all 

agents. 

 

2.2.2 Reinforcement Learning 
Kirman and Vriend (2001) endowed in their model buyers and sellers with an adaptive 

behaviour. This means both agent types are able to learn to optimise their decision making by 

adaptively adjusting their behaviour to the actual situation. Therefore they used in their model 

classifier systems,  which are a special form of reinforcement learning. 

Kaelbling et al. (1996) describe reinforcement learning as the problem of an agent to 

learn its behaviour through trial and error interactions with a dynamic environment. When an 

agent interacts with his environment, first he perceives his environment (as an input) to know 

the current state s є S of it, where S specifies the space of possible states. Then the agent 

generates an output by choosing an action a є A that changes the actual state of the 

environment. A, the action space, represents all possible actions of the agent. In another step 

the value of this transition from the old state to the new state is communicated to the agent as 

a so called reinforcement signal. The goal of each agent is to find a behaviour B that 

maximizes the sum of values of the reinforcement signals over time. (see figure 22) 
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Figure 22: Standard reinforcement learning model. 

 

A very simple version of a classifier system, which uses reinforcement learning, is used by 

Kirman and Vriend (2001) to implement the adaptive behaviour of the agents. A classifier 

system CS (see table 3) consists of a set of condition based rules (IF <<condition>> THEN 

<<action>>), each rule is a classifier, and the according strength si(t) for each rule.  

 

condition (IF) action (THEN) strength 

… … … 

   

… … … 

Table 3: Classifier system. 

 

Each time t the classifier system chooses the active rules (whose condition block is fulfilled / 

true)  and calculates for each active rule i according to 

bi(t) = si(t) +   ,  ~ N(0, ) 

a bid bi(t). The rule with the highest bid is the winner and gets selected by the CS. The error 

term  ensures that other rules get the chance to get selected even if they are not the strongest 

currently. Once the action of the active rule i has been executed, the CS updates the strength 

of this rule by taking into account the reinforcement signal (reward ) received from the 

environment by: 

si(t+1) = si(t) – c*si(t) + c*(t)  ∆si(t+1) = c* ( (t) – si(t) ) , 0 < c < 1 

This implies, that the strength of the rule will increase as long as the received reinforcement 

signal  is greater than si(t) (the actual strength of the activated rule i) (Kirman and Vriend, 

2001). 

 

classifier 1

classifier n
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2.2.3 Agents & Behavioural Rules 
There exists two classes of agents, buyers and sellers. As mentioned before, each agent has to 

make four decisions. Kirman and Vriend (2001) modelled each decision problem as a single 

classifier system. If there exists 10 sellers and 100 buyers as in the initial setup of their model, 

they had to model 440 classifier systems. 

A seller first has to decide the quantity of fish he wants to supply for the day. In this 

case the single rules have no condition part and just consist of an action and strength part: 

action strength
supply 0 units …
… … 
supply 30 units …

Table 4: CS for the quantity of fish to supply. 

The strength is calculated by using the achieved net profit. 

Second, the seller has to decide how he wants to handle his queue. This decision is 

influenced by the familiarity of the face of the single buyer. So the seller is able to 

differentiate between the single buyers. He looks in his queue, sees a crowd of buyers and 

associates the different faces to different degrees of familiarity. This degree of familiarity of 

buyer i to seller j on day t is calculated as:  







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Where rij(t-x) =  indicates that buyer i visited seller j on day x and rij(t-x) = 0, if buyer i did 

not visit seller j on day x.  is an exogenous given parameter between 0 and 1. Lij is just a 

weighted average of the past attendances of the buyer in the sellers queue, putting more 

weight to the last visits. If Lij = 0, the buyer is not loyal and if Lij = 1, he is perfect loyal. Once 

the sellers knows the familiarity of a buyer, he has to decide whether to put advantage, 

disadvantage or being indifferent to a familiar face. Therefore Kirman and Vriend (2001) 

introduced a roulette wheel, where each buyer of the queue gets a slot of a specific size (1 + 

Lij)
b. If b = 0, the slot size for all buyers is equal and therefore the seller is indifferent in 

setting the serving order whether he should prefer loyal or occasional buyers. If b > 0, the 

seller puts advantage in serving loyal customers, because their slot size in the roulette wheel 

increases and therefore their probability of getting selected increases as well. Otherwise, if b < 

0, a familiar buyer gets disadvantaged because his slot size gets decreased. 

action strength 
b = -25 …
… …
b = 25 … 

Table 5: CS for queue handling. 
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The strength of the classifiers are daily updated by calculating the payoff as: 

fishofplydayofpriceachievedhighest

dayofrevenuegross
payoff

sup*
  

 
Once more, it is important to point out that the seller first has to learn if it is more profitable 

for him to put advantages or disadvantages to loyal buyers! 

The third and the fourth decision a seller has to make is about the price to ask, once 

for the morning and once for the afternoon. The CS for the morning session and the afternoon 

session look both equal (see table 6). The condition part of the rules consists of two variables: 

The first one is the loyalty class, which is calculated by categorizing the loyalty Lij into three 

classes (IF Lij <= 0.2 THEN loyaltyClass =’low’; IF Lij <= 0.80 THEN loyaltyClass = 

‘middle’ and otherwise loyaltyClass = ‘high’). The second variable of the condition part is 

called ratio and is calculated by categorizing the ratio of the remaining stock of fish and the 

remaining length of the queue of buyers into three classes, ranging from low to high (IF 

stockQueueRatio <= 0.75 THEN ratio = ‘low’; IF stockQueueRatio <= 1.75 THEN ratio = 

‘middle’; otherwise ratio = ‘high’). The possible prices to ask in the action block ranging from 

0 to 20. By building the combination of all these three variables (3 classes of loyalty * 3 ratio 

classes * 21 prices to ask = 189 rules) 189 rules can be derived. Table 6 shows the CS for the 

prices to ask. It should be noted, that two CS are need, one for the morning session and one 

for the afternoon session. One reason therefore is that it could be more profitable to ask higher 

prices in the afternoon than in the morning. 

condition action strength 
loyaltyClass = ‘low’ & ratio  = ‘low’ priceask = 0 … 
… … … 
loyaltyClass = ‘high’ & ratio = ‘high’ priceask = 20 … 

Table 6: CS for prices to ask in morning / afternoon. 

The strengths of the rules are updated daily by using the payoff:  
 

askedpricerulethisactivatedtimes

askedpricebuyerfromrulethisacceptedtimes
payoff

*

*
  

 
A buyer has to decide which seller he wants to choose in the morning / afternoon. 

If a transaction takes place or the price is rejected by the buyer, the actual realized payoff is 

calculated as the max{pout – pfound, 0}. Otherwise, the payoff is 0. pout is the price at which the 

buyers can resell the fish outside the market and pfound is the price the buyer has to pay to buy 

one unit of fish from the seller. He records the weighted average realized payoff with every 

seller, by calculating 0.95 * old average payoff + 0.05 * actual payoff and uses this payoff for 

the strength of the rule. Table 7 shows how the CS for the choice of seller looks like. A 
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second CS exists for the afternoon session, because choosing a specific seller could not be 

profitable in the morning but profitable in the afternoon. 

action strength
choose seller 1 …
… … 
choose seller 10 …

Table 7: CS for choosing a seller in the morning. 

 
The third and fourth decision a buyer has to make is the price to accept or reject in the 

morning and in the afternoon. There are 21 possible price the sellers are able to ask for, 

reaching from 0 to 20. The buyer has the choice to accept or reject an asked price. Therefore 

42 classifiers exist (21 possible prices to ask for * 2 {accept, reject}). The strength are 

updated daily. pmorning is the price accepted in the morning session and pafternoon is the price 

accepted in the afternoon session. In the case of the morning session, if the price is accepted 

the payoff = pout – pmorning is used as strength. Otherwise, if the price in the morning is not 

accepted but a transaction occurred in the afternoon, the payoff = max{pout – pafternoon, 0} is 

used. The payoff is zero, if neither a transaction occurred in the morning session nor in the 

afternoon session. 

 The strength for the CS for the afternoon session is updated by using the payoff  = pout 

– pafternoon if a transaction occurred in the afternoon. Otherwise the payoff is zero. Table 8 

shows the structure of the classifier system for the price to accept or reject in the morning / 

afternoon session. 

condition action strength 
priceasked = 0 reject … 
priceasked = 0 accept  
… … … 
priceasked = 20 reject … 

Table 8: CS for price to accept in the morning / afternoon. 

2.2.4 Loyalty Index 
Kirman and Vriend (2001) introduce a loyalty index to measure the loyalty of a buyer i at time 

t: 
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the buyer is not loyal to all sellers meaning he visits periodically all sellers. The total number 
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of sellers the market consist of is called ‘number of sellers’. Lij is the degree of familiarity 

(see chapter 2.2.3 Agents & Behavioural Rules). 

The average loyalty level among all n seller is simply calculated by: 





n

i
i t

n
levelloyaltyavg
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1   

 

2.3 Implementation 
The model about evolving market structures of Kirman and Vriend (2001) represents how an 

endogenous network arises by using the mechanisms of expected payoff and familiarity to 

model endogenous interactions. 

 On the following pages I try to reproduce this model by implementing it as a NetLogo-

program. Furthermore I focused on the most important findings of Kirman and Vriend (2001) 

about loyalty which are: 

- emergence of loyalty  

- increase of loyalty with rising pout (price for reselling the fish outside the market) 

 

2.3.1 Details About The Model Replication 
As mentioned in chapter 1.2.4 Model Replication, Wilensky and Rand (2007) 

recommend to post certain important information when doing model replication: 

 

Details about the model replication 

Categories of Replication Standards relational alignment 

Focal Measures loyalty measure, price accepted, price asked 

Level of Communication none 

Familiarity with Language / Toolkit  unknown 

Examination of Source Code none,  

used pseudo-code for reinforcement learning step 

Exposure to Original Implemented Model none 

Exploration of Parameter Space only examined results from original paper 

Table 9: Details about the model replication. 

 

The chosen replication standard is ‘relational alignment’. This means that the results of the 

original and replicated model show similar relationships between the input and output 
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variables. For example if the type of buyer increases (buyer 15  buyer 18) then also the 

loyalty increases. 

 Loyalty measure, price accepted and price asked, chosen as focal measures, are these 

kind of measures that are compared (see relational alignment) with the measures from the 

original model. No communication between the original model developer and the replicator 

has taken place. 

 Because of not having the original source code of the model and also not knowing the 

used simulation language / toolkit, I can not specify whether I am familiar with the language 

or not. 

 Due to not having the source code the examination of the source code was not 

possible. But the pseudo-code was available and so it was possible to compare my source 

code to a certain extend with the pseudo-code (especially for the reinforcement learning part 

and the configuration of the normal distribution for certain error terms). 
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2.3.2 Activity diagram 

 
Figure 23: Activity Diagram of the model. 

 

Figure 23 represents the activity diagram of the reproduced model. 

On the basis of the description of the model and the given pseudo code of Kirman and Vriend 

(2001), it was possible to derive a semantic equal activity diagram of the model. 

The three main parameters for the simulation are the number of sellers, the number of 

buyers and the type of buyers. The last parameter defines whether all buyers receive the same 

price for reselling the fish outside the market (pout is the same for all buyers) or if there exist 

three types of buyers, each type receiving another pout.  

At the beginning of the simulation the whole system is set into the morning session. 

The setup – activity  initialises the buyers and sellers by setting the fitness (=strengths) for all 
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rules of all classifier systems to 1. Then each seller decrease the loyalty for all buyers, 

chooses a supply level of fish for the whole day and the treatment parameter b that defines the 

degree of giving advantage or disadvantage to loyal buyers. These three activities can 

theoretically be parallelized due to not being conditioned among each other. The two decision 

steps (choose supply level & choose treatment parameter) are done by determining  the fittest 

rule for each decision. 

Then each buyer chooses a seller by taking into account the fitness of each seller of the 

specific time session (considering whether it is morning or afternoon). After doing so the 

sellers start to handle their queues: First they determine the next buyer to serve out of their 

queues by calculating for each buyer in their queues a weight (1 + Lij)
b (by using the loyalty 

of the specific buyer and the treatment parameter b; see also chapter 2.2.3 Agents & 

Behavioural Rules). Next they compute the price to ask by using the fittest suitable price rule. 

Once the buyer has accepted / rejected the price, the buyer is removed from the queue, the fish 

stock is decreased by one (if he has accepted the price) and the same procedure starts again 

until the fish stock is zero or all buyers are served. 

After the queue handling – activity follows an increase in the loyalty of all buyers 

having been in the queue. If the system is in the morning state then it is set to the afternoon 

state. Otherwise it is already in the afternoon state which implies that reinforcement learning 

for all classifier systems starts by adapting the fitness of the single rules. The new fitness of a 

rule is calculated by adding accordingly to the specific rule a weighted utility value (e.g. ratio 

of profit to revenue) to the old fitness value. Next the system is set to the morning state. 

 

2.3.3 Assumptions 
I found two errors in the paper that lead to conflicts when I tried to reproduce the model: 

First, I was only able to reproduce similar results as Kirman and Vriend (2001) by setting the 

random error term ε ~ N(0, 0.01). When using a standard deviation of 0.1 as used in their 

paper, I was not able to reproduce their findings of the model. So it is very likely to interpret 

this high standard deviation (0.1) of the normal distribution as a typo. 

 Second, their pseudo-code is not consistent with their verbal description of the model. 

According to page 470, the buyer makes reinforcement of rules only once a day. In their 

described main procedure of the pseudo-code, the buyers do reinforcement both in the 

morning and in the afternoon session.  
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According to these two found errors, I assumed that the standard deviation of the normal 

distribution of the random error term ε is 0.01 and that reinforcement learning of the buyers 

occurs only at the end of the day. 

 Furthermore I did not implement the case that every valid rule (a rule whose condition 

block is fulfilled) in every decision step of an agent (e.g. choice of seller in the morning, 

which price to ask in the afternoon, … ) is ignored with the probability of 0.025. 

 

2.3.4 Agents 
Although NetLogo is not an object-oriented programming language, it provides a rich set of 

functions to query and manipulate subsets of agents out of the agents population. Unlike to an 

object-oriented programming language, NetLogo does not allow to encapsulate the data 

(attributes) and the functions (methods) to one class. It only offers the possibility to represent 

agents in form of structs like in the programming language C. At the lowest level this just 

means that different data types can be subsumed to one complex data type, called breed in 

NetLogo. So the data an agent consists of, is subsumed to one breed and the programmed 

functions of the program represent the behaviour of an agent. 

The model consists of  two types of agents. As mentioned before, an agent type can be 

represented as a ‘breed’. To represent the two types of agents, two breeds, called buyers and 

sellers, are created. If an agent of the type buyer / seller is created, he belongs to the breed 

‘buyers’ / ‘sellers’. 

BUYER 
 id; 

satisfied; 
 p_out; 

fitness-sellerMorning []; 
fitness-sellerAfternoon []; 
fitness-priceRulesBuyerMorning []; 
fitness-priceRulesBuyerAfternoon []; 

 
SELLER 

id; 
fishStock; 
queue list; 
loyalties []; 
fitness-quantities []; 
fitness-treatmentParameters []; 
fitness-priceRuleSellerMorning []; 
fitness-priceRuleSellerAfternoon []; 
 

Pseudo Code 1: The two agent types. 
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Both agent types have in common that they are able to identify one another by their id. The 

buyers have additionally the variables p_out (pout), the price for reselling the fish outside the 

market, a status variable satisfied indicating if they have received any fish and four fitness 

arrays, which store the strengths of the single rules of the four classifier systems for the 

decision making. A variable followed by brackets [] indicates that this variable represents an 

array. 

Apart from the four fitness arrays for storing the strengths for the single CS, sellers 

have the variables fishStock, which represents the daily stock of fish, a list called queue to 

represent the queue of buyers wanting to buy some fish from the seller and an array named 

loyalties, to store the degree of loyalty about every single buyer. 

The fitness arrays are initialised before the simulation starts with the value one at 

every position, indicating that all rules are equal good. 

 

2.3.5 Rules 
The simulation consists of two classes of classifier systems CS: The first class is a CS that 

consists only of rules with no condition-part (e.g. choice of seller, quantity of fish to supply, 

how to handle the queue), contrary to the second class of CS (e.g. price to ask, price to 

accept). 

 Rules of a CS with no condition part are represented as an array. Each position of the 

array contains one action block. The according strength of the rule is saved on the same 

position in the particular fitness-array (see chapter 2.3.4 Agents). Figure 24 shows how a CS 

for the choice of seller in the morning is modelled. The array rules-seller-choice contains the 

ids of the available sellers in the market. 

 

rules-seller-choice: 

1 2 3 4 5 6 7 8 9 10 

fitness-seller-morning:  

1 0.6 0 0.5 0.5 1 08. 0.2 0.3 0.4 

Figure 24: Implementation of a CS with no condition-part (CS for choosing a seller in the morning). 

 

Whereas CS whose rules contain a condition-part are modelled as an extra agent type in 

NetLogo. This made it very convenient to query the actual valid rules because NetLogo 

provides the appropriate commands for querying agents / subset of agents according to their 

internal variables (e.g. id, loyaltyClass, stockQueueRatioClass,…). In fact I modelled two 
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pseudo agent types to represent the rules for two CS: One type is modelled for the prices to 

ask in the morning / afternoon (see PRICERULE seller) and one type for the prices to accept 

in the morning / afternoon (PRICERULE Buyer). Both price-rule types consist of an id. 

Again, the according strength of each rule is saved in the particular fitness-array and gets 

associated by the value of the id variable of the rule. Pseudo Code 2 shows the two rule types 

of the classifier systems for prices to ask in the morning / afternoon and for the prices to 

accept / reject in the morning / afternoon. 

 

   PRICERULE Seller 
 id; 
 loyaltyClass; 

stockQueueRatioClass; 
priceToAsk;    // action-block 

 
PRICERULE Buyer 
 id; 
 price; 
 accept;     // action-block 
 

Pseudo Code 2: Implementation of CS with a condition part. 

 

As mentioned before, the NetLogo-language facilitates to query easily subsets of agents. For 

example, if a seller wants to calculate the specific price to ask in the morning for a specific 

buyer, this can be implemented in the NetLogo-Syntax as: 

 
ask pricerulesSeller with  

[loyaltyClass = BuyersLoyaltyClass AND stockQueueRatioClass = actualStockQueueRatio] 

 
According to chapter ‘2.2.2 Reinforcement Learning’ a rule gets selected by 

calculating a bid for each valid rule (whose condition-part is fulfilled) and then choosing the 

rule with the highest bid. A bid for rule i is calculated by bi(t) = si(t) + , whereas the error 

term  is normal distributed as  ~ N(0, 0.01). 

 

 

2.3.6 Reinforcement Learning 
The reinforcement learning part could be easily reproduced in NetLogo by making use of the 

provided pseudo code of Kirman and Vriend (2001, Appendix). Reinforcement learning is 

executed at the end of each day. Sellers have to update their strength of the activated supply 
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level rule, the strength of the chosen treatment parameter b and the strengths of all morning-

price and afternoon-price rules. Buyers have to distinguish between seven possible scenarios: 

1. transaction occurred in the morning 

2. offer was rejected (by the buyer) in the morning and transaction occurred in the 

afternoon 

3. offer was rejected in the morning and in the afternoon 

4. offer was rejected in the morning and buyer was late (did not get any offer) in the 

afternoon 

5. buyer was late in the morning and transaction occurred in the afternoon 

6. buyer was late in the morning and offer was rejected in afternoon 

7. buyer was late in the morning and in the afternoon 

Depending on the entered scenario, different classifier systems are involved in the 

reinforcement step. For example, if a buyer faces the second scenario, then he has to update 

the strength of the seller-choice in the morning, the morning buyer-pricerule, the seller-choice 

in the afternoon and the afternoon buyer-pricerule (for details see Appendix). 

 

2.4 Results 
In the following, I present the results of the simulations, once for the one buyer-type (all 

buyer receive the same price (pout) for reselling the fish outside the market) and once for the 

three buyer-type (three classes of buyers, each of them receive a different pout) with focus on 

the average emerged loyalty and the average prices asked / accepted. 

2.4.1 One Buyer-Type 
 
Configuration of the simulation 

The simulation consists of 10 sellers and 100 buyers (number-sellers = 10, number-buyers = 

100). All buyers receive the same pout = 15 (buyer-types = 1). Each simulation runs for 4000 

time units (ticks). To generate sufficient data for further analysis I have made 40 simulations. 

 

Results 

With the reproduction of the model I tried to reproduce the main findings about the 

emergence of loyalty:  

In the first version of the simulation I tried to come to the same results about the 

appearance of loyalty in the morning session as Kirman and Vriend (2001) did. 
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Furthermore I tried to reproduce the fact, that when having three types of buyers (pout 

= 12, pout = 15, pout = 18) the loyalty increases with the increase of pout. 

 

 
Figure 25: Average prices asked / accepted during the morning session. 

 
Figure 25 represents the average price asked and the average price accepted during the 

morning session. At first, the two prices start to diverge to the same extend like in the 

simulation of Kirman and Vriend (2001). Also after the same time (~1250 ticks) the asked 

and accepted prices have converged. 

 But two main differences between my simulation and the simulation of Kirman and 

Vriend (2001) remain:  First, the two prices never come so close together like in their figure 

(Kirman and Vriend, 2001, fig. 3). There is always a difference between the asked and 

accepted price in the later phases of around 0.2. Second, in the long run a price level of 8 is 

reached, whereas they reach a price level of 10. 

 

 
Figure 26: Average loyalty. 



 - 44 - 

 

Figure 26 shows the average, the 5 - percentile and the 95 - percentile measure of loyalty  

over all buyers. In the last 1000 days the average loyalty was 0.75, the 5 – percentile was 0.63 

and the 95 – percentile was 0.86. The diagram also shows that there would be a small further 

increase in the loyalty if the simulation would run for a longer time. 

 A comparison of the results from my simulation with the findings of Kirman and 

Vriend (2001) shows that the speed of the emergence of loyalty occurred nearly to the same 

extent. The average loyalty level with 0.75 in the last days equals the results from their model. 

Only the variance of the loyalty among the buyers is much lower. In my simulation the 5 – 

percentile is at each point of time at a higher level. At the end of the simulation run it reaches 

a level of 0.63 instead of 0.45. Contrary to the 5 – percentile, the 95 – percentile is always at a 

lower level of 0.86 instead of 1. 

 

 
Figure 27: Average prices asked / accepted during the afternoon session. 

 

Figure 27 shows the average asked and accepted prices during the afternoon session. It can be 

seen that the asked price is lower than the accepted price and remains for the last 2000 time 

units at a price level slightly above 8. However the accepted price is much more fluctuating 

and is located at a higher price level (for the last 2000 time units at a price level of 9.45).  

 Comparing the afternoon session with the morning session the picture is inverted: In 

the morning session after some time the average price asked lies only slightly above the 

average price accepted and both prices do not fluctuate very much. Whereas in the afternoon 

session the average price accepted lies above the average price asked and fluctuates heavily. 

 Kirman and Vriend (2001) argue that the reason for the strong fluctuation of the prices 

is the smaller number of meetings in the afternoon session. This implies that each individual 
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price has a bigger influence on the average price series and also a slower learning process 

occurs. 

 But three main differences between the findings of Kirman and Vriend (2001) and my 

results remain for the afternoon session: First, both price series are located at a lower price 

level in my simulation. Second, the average asked price lies below the average accepted price, 

whereas in their simulation it is the reverse case. And third, the average asked price does not 

fluctuate heavily in my simulation. 

A possible explanation for the stable average price asked series could be that the 

number of sellers (10) faces a higher number of buyers (100) and therefore they have a faster 

learning process than the buyers. But in the simulation of  Kirman and Vriend (2001) where 

they also used the same number of buyers and sellers, they did not produced such a stable 

average asked price series in the afternoon session. 

 
Figure 28: Price distribution during the last 2000 periods. 

 
Figure 28 shows the relative frequency distribution of the paid prices during the last 2000 

periods. The most common paid price is 10 (28.6%), the second and third common one is 11 

(16%) and 9 (9.6%). Prices paid above a level of 12 and at the level 0 are paid with a 

frequency below 1%. The median of the paid prices is 8.5 and the average paid price is 8.19. 

 In contrast to the results of Kirman and Vriend (2001) the modal paid price is one 

level lower (10 instead of 11) and occurs less frequent (28.6% vs. 49.4%). Prices between 1 

and 8 occur with a frequency between 2 and 8 percent in contrast to their findings, where the 

frequencies are below zero. Looking at prices reaching from 12 to 15 similarities are obtained: 
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Likewise in the results of Kirman and Vriend (2001), where these prices occur with a 

frequency of 3.7%, these prices are paid in 3.4% of the transactions in my simulation.  

Furthermore it is interesting to point out that also prices above 15 are paid with a 

frequency of 0.4%, where the buyers achieve a loss (the pout price is 15). 

 

2.4.2 Three Buyer-Types 
 
Configuration of the simulation 

The simulation consists of 10 sellers and 100 buyers (number-sellers = 10, number-buyers = 

100). There exist three types of buyers: Buyer-type one receives pout = 12, buyer-type two pout 

= 15 and buyer-type three gets pout = 18. Each simulation runs for 4000 time units (ticks). I 

have made 40 simulations. 

 

Results 

 
 type of buyer 

12 15 18 
price accepted 5.59 7.8 ( + 39.6%) 9.19 ( + 64.5%) 
price asked 5.91 8.03 ( + 35.9%) 9.04 ( + 52.9%) 

Table 10: Prices accepted and received during morning sessions. 

 
Table 10 represents the average accepted and received prices for the three types of buyers 

from the last 2000 morning sessions. It can be seen that the prices are at different levels 

depending on the type of buyer: The higher the pout, the higher the accepted / asked price. The 

values in parentheses represent the percentage change to the buyer-type with a pout = 12. 

 
 
 type of buyer 

12 15 18 
avg. loyalty 0.66 0.75 ( + 13.8%) 0.83 ( + 25.8%) 

Table 11: Average loyalty during morning sessions. 

 
Table 11 shows the average loyalty during the last 2000 morning sessions for all three buyer-

types. The higher the pout, the higher the loyalty. Values in parentheses again represent the 

percentage change to the buyer-type with pout = 12. 

 Comparing my results with the results of Kirman and Vriend (2001) it can be seen that 

the core findings are the same: The higher the pout  of a buyer, the higher the accepted / asked 

price and loyalty. 
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The results only differ in their levels: 

 

 type of buyer 
12 15 18 

price accepted    
my results 5.59 7.8 ( + 39.6%) 9.19 ( + 64.5%) 

results of Kirman and Vriend (2001) 9.34 9.61 ( + 2.9%) 9.78 ( + 4.8%) 
price asked    

my results 5.91 8.03 ( + 35.9%) 9.04 ( + 52.9%) 
results from (Kirman and Vriend, 2001 9.41 9.64 ( + 2.5%) 9.82 ( + 4.3%) 

avg. loyalty    
my results 0.66 0.75 ( + 13.8%) 0.83 ( + 25.8%) 

results of Kirman and Vriend (2001) 0.75 0.82 0.83 
Table 12: Differences in the results. 

 
Table 12 summarizes my results and the results of Kirman and Vriend (2001). Comparing 

both results it is observable that the higher the pout , the lower the differences in the results. In 

the case of the average loyalty the results coincide at a pout – level of 18. 

 

3. Extension: Information Exchange Influencing Loyalty 

3.1 Introduction 
This introduction is used to give an overview of the different topics used in the extension of 

the model of Kirman and Vriend (2001) (see chapter 3.2 The Extension). 

There exist many models about loyalty and even more models that describe diffusion 

processes. In the following, I give an overview of current agent-based models about loyalty 

(with exception of one analytical approach) and diffusion processes. Furthermore, I explain 

the term rumour and provide some reasons for the formation of rumours.  

3.1.1 Models About Loyalty 
There exists a wide set of models that addresses loyalty. In most cases agents have learned to 

be loyal or to put more importance on loyalty, to be able to increase their own utility. 

Zhang and Tanniru (2005) build an agent-based model about virtual learning 

communities (VLC). They define VLC as a group of people who interactively learn and share 

about a specific topic among themselves with the help of networking technologies. Agents 

can ask questions, answer questions, express opinions and comment on opinions about a 

topic. Each agent consists of an expertise level that is increased if he gets enough satisfactory 

answers for the question he asked. They use loyalty to determine whether an agent will leave 

or remain as a member of the VLC. Loyalty is increased if an agent gets high quality answers 
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for an asked question (=improvement in expertise about the topic, referred to as ‘intellectual 

gain’ ) or if he receives many replies for his posted opinion (=number of replying messages, 

referred to as ‘social gain’). Thus, loyalty of an agent is endogenously determined through the 

behaviour of the community. 

 Klos and Nooteboom (1997) created an agent-based model in which relations between 

buyers and supplier are formed on an intermediate-good market. The greater the product 

differentiation of the created end-product of the buyer, the more profit can be generated by the 

buyer when reselling the product to his customers. Likewise the suppliers can increase profit 

by increasing the efficiency of their production process for creating the needed inputs for their 

buyers. The generated profit of such a buyer – supplier relation is split evenly between the 

two agents. An agent has to decide with whom he wants to form a relation by calculating for 

each potential partner the expected profit (expectedProfit = potentialProfita * loyaltyb). 

Loyalty is used to calculate the expected profit by serving as the probability that the potential 

profit will be realized. The authors implemented adaptive agents to give them the possibility 

to learn (with a classifier system) how important loyalty is, by letting them adapt  the value 

for a ( b = 1 – a) to increase profit. The simulation results show that the agents decrease the 

weight of profitability and increase the weight of loyalty in their partner selection phase, 

meaning the agents have learned that loyalty is more important to gain high profits than just 

only considering the potential profitability. 

 Chang et al. (2008) present an agent-based model with adaptive agents (using 

classifier systems) about the Taiwanese lumber (wood) market to analyse relationships 

between customer value (e.g. price, quality of the good), loyalty and profits, especially to 

explore how customer value changes loyalty and profits. They observed positive correlations 

among customer value, loyalty and profits. Moreover, simulation results show that higher 

long-term profits are linked to higher loyalty. Furthermore, they found out that customer value 

is enough to explain the emergence of loyalty.  

 Nooteboom (2006) define loyalty as one basis for trustworthiness and likewise he says 

that trust can be expressed  in terms of loyalty. Klose and Nooteboom (2001) created an 

agent-based model to check if trust in terms of loyalty is viable in markets (more specifically 

in transaction cost economics, where agents organizes to reduce transaction cost). In their 

model suppliers and buyers match on the basis of trust, which is based on observed loyalty of 

the partner, and potential profitability. Agents can act adaptively by putting more or less 

weight to trust instead of to profitability. This model shows, that trust / loyalty and 

opportunistic behaviour can be profitable. A further important finding is that trust-relations 
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are a barrier to the evolution of the market towards its optimal configuration (in their model 

markets are efficient if economics of scale are fully exploited). Also in their model, loyalty 

emerges endogenously through the behaviour of the agent population by not selecting other 

partners. 

 De Francesco (2005) made a classical analytical approach to create a model of 

matching buyers and sellers: There exist m buyers with imperfect information about previous 

made choices by the other buyers, each of them want to have one unit of a homogenous good 

at each stage. Each of the n sellers supplies the same amount of good at an exogenously given 

price. De Francesco wanted to check if an efficient allocation will be reached (meaning each 

sellers has m/n buyers as customers) without any coordination. This could only be the case if 

a norm arises among the buyers, which instructs to remain loyal if a buyer was previously 

served by the seller and to switch to another seller if he did not get any good. He proves for 

the two sellers case that the m buyers created such a norm of conditional loyalty. 

 Vilà (2005) analysis the Bertrand duopoly model by creating an agent-based model 

that allows also the buyer to have a strategic behaviour when they have to decide from which 

of the two sellers they want to buy a good. There exists two competing firms, both offering 

the same homogenous good with the same cost function, and m buyers, which have to decide 

from which seller they will buy their good. There exists multiple periods, each period consists 

of R rounds, and for each period the sellers decide the strategy for the price setting. The 

Bertrand model has two important assumptions, namely,  consumers choose the seller with the 

lowest price and there exists no switching cost. The classical Bertrand model also states that 

in equilibrium both firms will set their prices to earn zero profit (equal to marginal cost) 

therewith to gain market share. In his model he gives sellers and buyers the possibility to learn 

(implemented by a genetic algorithm) their best strategy. One important finding of this 

simulation is that if both sellers set the same price, a buyer stays loyal by selecting the 

previous seller again. Another one is that buyers are generally better off when developing a 

loyalty-strategy because in this case sellers set lower prices. 

3.1.2 Agent Based Models About Diffusion Processes 
The main characteristic of diffusion process models is that (social) networks act as the facility 

that allows spreading of entities like information, innovations or diseases. Further, diffusion 

process models are often agent-based models because ABM offers the possibility to explicitly 

model the behaviour of the agents and thus also their interaction. 

 On the one hand research has been conducted to study different kinds of diffusion 

processes like the diffusion of innovation or the diffusion of knowledge. On the other hand, 
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various studies exist that aim to get to optain insights about the effects of different social 

networks structures on the diffusion processes. 

 Švarcová and Švarc (2009) created a model about the diffusion of innovation. In their 

model agents adapt innovations if the innovation offers them a certain minimum utility. The 

utility is calculated by a weighted sum of the willingness to use the new product (individual 

preference) and the social influence (agents neighbours that adopted the innovation). The 

social influence is determined by the structure of the social network. Furthermore, they 

analysed how different network structures (random, lattice, ring, small world and scale free 

network) influence the market penetration and the innovation diffusion process. Among other 

things they found out that random and scale-free social networks push faster innovation 

diffusion than other network structures. 

 Afshar and Asadpour (2010) made an agent-based model about the diffusion of 

opinions. More precisely, they extended the bounded confidence model from (Deffuant et al., 

2001) by introducing informed agents. There exist two agent types. The first category are 

informed agents who pretend to have an opinion that is similar to the other agents with whom 

they interact. This should ensure the informed agents being able to influence others. Informed 

agents look like every other agent so they couldn’t be distinguished from other agents, but act 

coordinated, meaning they try to change gradually the opinion of their neighbours towards a 

global desired opinion each time they interact with them. The second agent type are the 

majority. Their opinion is formed by their neighbours (social force) and a force towards their 

own opinion (self force). Furthermore, the authors analysed the effects of the structure 

(random, scale-free and small-world structure) of the social network, which defines the 

neighbourhood of all agents and thus their interaction possibilities. Their results show that an 

increasing of the inter-connectivity of the agents (increasing the average degree; increasing 

the average amount of neighbours) decreases the consensus time to establish a desired opinion 

in the population with the help of informed agents. But in small-world social networks, 

informed agents failed to establish a desired opinion. 

 Hui et al. (2010) modelled a general ABM about the diffusion of information 

(diffusion of warning messages for the evacuations of households) in dynamic networks. The 

social network is dynamic in terms of removing of agents from the network and thus also 

changing the degrees (their amount of neighbours) of the other agents during the diffusion 

process. Agents who believe a warning will evacuate and as a consequence leave the network. 

Moreover, Hui et al. analysed different network structures and introduced trust levels as 

weights on the edges between agents to form groups of agents. They also analysed different 



 - 51 - 

seeding strategies (assigning a warning message randomly to agents or selecting the nodes 

with the highest degrees as seeds for the message). Their results show that the proportion of 

evacuated agents is highest in scale-free networks and lowest in grid networks. Furthermore, 

the warning diffusion is increased by different trust levels based on social groups (population 

inhomogeneity). 

 Perez and Dragicevic (2009) created an ABM for the spread of diseases in an urban 

space by using geospatial data. Agents can have the health status susceptible, exposed, 

infected or immune to a certain disease. The model uses spatial information about the 

municipality Burnaby of Vancouver in Canada to represent urban space where the contact 

between the agents takes place. At beginning, agents are endowed with a certain home 

location. Each day, agents commute to work or study buildings (depending on whether they 

are workers or students). After work or university, some agents start to move to the nearest 

shopping wall for shopping. All agents uses the public transport to move from one location to 

another one. Furthermore, infected agents can only spread the disease at work, university or 

the shopping wall, meaning only at this places interactions between the agents occur. Of 

course in reality the public transport system is an important and quite effective disease 

spreading facility when just thinking at the flu season, but this fact is not considered in their 

model. Infected agents have a certain radius for spreading the disease to some of them when 

settled at a location like the university. The higher the population density of a certain area 

(university, shopping wall, …), the higher the probability of becoming infected if an 

susceptible agent is within the radius of an infected agent. Thus, this model uses demographic 

data (population density), the network of the public transport and the land use (location of the 

buildings). Results show that these dynamic spatial interaction between agents (at work, 

university or shopping wall) lead to a high exposure of healthy agents and thus ill agents are 

concentrated at places like schools and universities. 

3.1.3 Definition Of Rumour 
According to Merten (2009) there exists no common standardized definition of rumour in the 

literature but a wide set of different definitions. All of them have one part in common: the 

validity of the information content of a rumour is not trustworthy. Allport and Postman (1947, 

page ix) define a rumour as: 

“A specific (or topical) proposition for belief, passed along from person to person, usually by 

word of mouth, without secure standards for evidence present.” 
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Furthermore, in their studies of message diffusion they found out that around 70% of the 

message content are lost if the message is transmitted six times from one person to another 

one (when reaching the sixth person in the transmission chain). 

3.1.4 Origin Of Rumours 
Psychological oriented research about rumours sees rumours as answers to individual or 

collective issues. Whereas the sociological explanation for the formation of rumours is that 

rumours act as ‘improvised news’ to substitute missing information (e.g. due to census) from 

conventional information channels like newspapers (Merten, 2009). Allport and Postman 

(1947) see the emergence of rumours as a collective stress relaxation to clarify an uncertain 

situation. 

 Merten (2009) states that the causes for the spreading of rumours are not yet been 

sufficient clarified. He lists two motives why people spread rumours: First, the possession of 

actual information increases the social status of a person. The second motive of a person is its 

‘inner’ urge to communicate information to others. 

3.2 The Extension  
This extension is to some degree a combination of an opinion formation model (like Afshar 

and Asadpour (2010) but without informed agents) and a spatial epidemic spread model: The 

buyers opinions about sellers (whether a seller is ‘good’ or ‘bad’) are formed by their 

neighbours in the sellers queue and their own opinions. The spatial aspect of the extension is 

represented by looking at the location of the buyers in the sellers queue. 

Dynamic ‘spatial’ networks are used as the medium to spread information. Each buyer 

has a dynamic spatial social network. His social network is dynamic, because each time he 

joins a sellers queue, different buyers are located within this queue which form his social 

network. Depending on the position of the buyer in the sellers queue and the position in the 

sellers queue of the buyer who spreads information about a seller, the buyer is more or less 

strongly influenced (he is strongly influenced, if he is a direct neighbour and he is decreasing 

strongly influences the greater the distance is to the buyer who spreads information).  

The core concept of this extension is, that buyers located in the queue of a seller can 

spread information about other sellers (telling which one is good or bad in terms of being able 

to satisfy the needs of the buyer). Each member of a sellers queue can be both, an informant 

who spreads information and a receiver who receives information from informants of the 

current queue. The received information about a seller of the previous period influences the 

seller choosing process of the buyer who received information about sellers, in the actual 
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period. Therefore the model of Kirman and Vriend (2001) is extended by the following 

points:  

Now, buyers have the ability to spread positive and negative information about a 

seller. Therefore, each buyer is endowed by an exogenously given ‘probability to talk’ pT, 

which specifies the probability of the buyer that he will spread information about a seller. A 

buyer also consists of a ‘probability to receive’ pR. This value represents the receptivity of a 

buyer (i.e. how much attention he puts on a received information). Actually, pR is a weight 

between 0 and 1. If pR = 0, the buyer ignores the received information and if pR = 1, he takes 

the received information serious. Once a buyer has received information about sellers, he 

takes them into account the next time when he will have to select a seller. Due to having the 

possibility to receive positive and negative information about a seller, he might want to put 

different attentions to these two types of information (positive, negative information). 

Therefore two types of pR are introduced: pR+ shows how big the receptivity for positive 

information is and pR- for negative information, respectively.   

 When a buyer spreads negative information about a seller, he (called ‘informant’) 

looks at his classifier system for choosing sellers and selects the seller with the lowest fitness 

and spreads negative information (represented by the value -1) about him. To spread positive 

information about a seller, the informant determines his second best (fittest) seller and spreads 

positive information (represented by the value +1) about him. Because it is obvious for every 

buyer in the actual sellers’ queue that this actual seller is the ‘best’ one, information about an 

alternative to the current one might be useful for the other members of the queue. 

 Buyers also have the ability to learn the importance to listen to received information. 

If the received information in the previous period t-1 was useful (in terms of predicting 

correctly the shopping experience) and the buyer visited in period t the seller of whom the 

received information is about, then the according pR is increased , otherwise pR is decreased. 

The shopping experience specifies whether the buyer was satisfied by having received a good 

at an acceptable price or not: 

 

IF received information about him in t-1 & visited seller in t THEN 

{ 

IF positive information & positive experience THEN 

 increase pR+ 

ELSE IF negative information & positive experience THEN 

 decrease pR- 

ELSE IF positive information & negative experience THEN 
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 decrease pR+ 

ELSE IF negative information & negative experience THEN 

 increase pR- 

} 

Pseudo Code 3: Learning the importance to listen to information. 

The spreading and receiving of information occurs within a sellers queue. Once a buyer of the 

queue has received a information about a seller from another buyer, this received information 

influences the buyers’ seller-choosing process the next period: The information changes the 

calculated bid for the according seller i when the buyer chooses the best seller from his point 

of view: 
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The fitness si of seller i is stored in the classifier system for choosing a seller in the 

morning/afternoon of the buyer (the receiver of the information). pR+ / pR- represents how 

much importance the receiver puts on a received positive / negative information. A spread 

information has ether a value of 1, if it is a positive information about a seller, or a value of –1  

if it is a negative information. The received information is the discounted (by the information 

strength w) original spread information. w(p1,p2) is the information strength and depends on 

the spatial proximity of the receiver to the informant in the queue: 
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w(p1,p2) presents the circumstance that if a buyer starts talking he talks to his direct 

neighbours within the sellers queue. Other members, which are no direct neighbours of the 

informant also can listen to him but only catch parts of the told information. The more far 

queue from seller i 

  strength of information   
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away a buyer is in the queue to the informant, the less information he can ‘hear’. Therefore, 

w(p1,p2) is a decreasing function of the strength of information ( w(pos1,pos2) ]1,0[ ): 
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Pos1 is the position of the informant and pos2 the position of the receiver within the sellers 

queue. The threshold ( threshold  [2,] ) is exogenously given and determines the minimum 

strength of information which can be recognized by a buyer. E.g. if a receiver is located in the 

queue ten positions prior to or after the informant, then he will hardly understand any 

information of the informant. Once the information strength is too small 

(|positionOfInformant - positionOfReceiver| > threshold) the information couldn’t be heard by 

the receiver. 

 The above mentioned spreading of information just considers the case that a buyer can 

only receive one information about a seller per period. This is done to give a simplified view 

on the mode of operation of the spreading of information. In fact, the extension also allows 

the buyers to receive multiple information messages about the same seller in one period: If 

multiple information of the same information-type (only positive or only negative information 

messages) about the same seller is received multiple times, the buyer uses just the information 

with the highest information strength. If positive and negative information is received about 

the same seller in one period, then the single received information are summed up. Formally 

this can be expressed by the equations below.   is the evaluation function, which acts 

according the above mentioned verbal description of receiving multiple information messages 

about the same seller: 
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j is the index for the single received information messags and ranges from 1 to 

N. ),( 1, NNiN foreceivedIn  of equation (1) has all received information evaluated and is 

called rumor. The term 
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1 . If a buyer receives a positive 

message then +1, otherwise –1, is chosen. 

 The extension also takes into account of a morning and an afternoon session. To give 

the buyers the possibility to learn the importance of the two types of rumour (positive, 

negative rumour) once for the morning and once for the afternoon session, for each session a 

pR+ and a pR- variable exists. So there exist four variables that represent the different 

attentions a receiver puts on received rumour types, two for each session (called pR+morning, 

pR-morning, pR+afternoon, pR-afternoon). The received information about a seller are 

evaluated to create one rumour for the according seller for one session. The single rumours 

are stored in an array. The position i of the array contains the rumour for the seller i. Each 

buyer consist of two arrays, one that contains the rumours for the sellers in the morning and 

one for the afternoon session (rumours-morning, rumours-afternoon). Furthermore, if the 

buyers have chosen a seller, all rumours of the previous period are discarded. 

In my extension of the model, rumours are only able to survive (or at least have the 

possibility to survive), if they turn out to be true: A buyer incorporates a rumour into the 

rating of a seller. If it turns out that a received rumour belongs to a seller who is either a seller 

with the lowest fitness among all sellers or the second fittest one, the next time he has to 

choose a seller, this rumour is spread again when the buyer is selected to spread positive or 

negative information (being a informant). 

3.3 Results 
In this chapter I analyse how information spread influences the loyalty of the buyers by 

comparing the simulation results of the extension with the original model. 
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3.3.1 Configuration of the simulations 
Every simulation consists of 10 sellers and 100 buyers (number-sellers = 10, number-buyers = 

100). All buyers receive the same pout = 15 (buyer-types = 1). The configuration of the 

extension is summarized in table 13: 

 

Parameter Value 

pT 0.1 

pR+, pR- 0.1 

threshold 5 
Table 13: Default-Configuration of the simulation. 

Each simulation runs for 4000 time units (ticks). To generate sufficient data for further 

analysis I have made 40 simulations. 

3.3.2 Only Positive Information Spread 
In this simulation, buyers are only allowed to spread positive information about sellers. The 

results of the  simulation are compared to the one of the original model. 

  
Results 

 
Figure 29: Comparison of the loyalties from the original model and the extended model.  

 

Figure 29 shows the results of this simulation compared with the simulation results of the 

original model. Despite having set only a relative low probability to talk (pT=10%), 

differences in the loyalty can be seen: At first, the speed of the emergence of loyalty is the 

same compared to the original model. But after 600 periods, the loyalty levels begin to 

diverge. Then, while the loyalty of the original model further increases, the loyalty of the 

extension turns into a loyalty-level between 0.4 and 0.5. In the last 1000 periods an average 
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loyalty of 0.41 is reached, which is nearly the half of the reached loyalty level of the original 

model (0.78). 

Based on these observations, the effect of allowing positive information spread within 

the model, is a reduction of the loyalty. The reason therefore is, that buyers get alternative 

satisfying sellers recommended. And if for example looking at the case where a buyer has two 

sellers, one of them just being only slightly ‘fitter’ than the other one, a received 

recommendation of the less fit seller leads to a selection of him in the next period. This 

behaviour of course reduces the loyalty and never let establish a high loyalty level. 

 

 
Figure 30: Average learned importance for received positive information. 

 
Figure 30 shows how much attention buyers put on received positive information, in the 

morning session and in the afternoon session. Looking at the morning session (pR+Morning), 

it can be seen that in the first 400 periods a reduction of the importance of receiving positive 

information occurs. Then, pR+Morning increases up to a level of 0.86. In the afternoon 

session pR+Afternoon faces only a slight decrease in the first 600 periods, followed by an 

increased up to 0.72. The picture shows that buyers learn faster the importance of listen to 

positive information for the morning session. 

 

3.3.3 Only Negative Information Spread 
In this simulation, buyers are only allowed to spread negative information about sellers. The 

results of the simulation are compared to the ones of the original model. 
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Results 

 
Figure 31: Comparison of the loyalties from the original model and the extended model. 

 

Figure 31 shows the results of the simulation of the extended model compared with the 

simulation results of the original model. The results of both models coincides, which implies 

that the effect of negative information spread is zero. Allowing negative information spread 

neither changes the average loyalty of the buyers nor the speed of the emergence of loyalty.  

Furthermore, figure 32 shows that buyers hardly change their attention to negative 

information, neither in the morning session nor in the afternoon session. The reason therefore 

is, that buyers only update their attention-level (pR-Morning, pR-Afternoon) if they visit the 

according seller (about whom the buyer has received a negative rumour) the next period. In 

doing so, they gain experience about the seller and can check the accuracy of the received 

negative rumour. But this happens (being able to verify a negative rumour by visiting the 

according seller the next period) within one example simulation run, less than 800 times 

among all buyers. Looking more closely at figure 32, it can be seen that buyers put slightly 

more importance on negative rumours in the morning and decrease the importance of received 

negative rumours in the afternoon (0.1036 vs. 0.095 in the last periods) (see figure 33). 
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Figure 32: Average learned importance for received negative information. 

 

 
Figure 33: Average learned importance for received negative information. 

 

3.3.4 Positive and Negative Information Spread 
In the previous two chapters, I have analysed the single effect of spreading only positive 

information and the effect of spreading only negative information, respectively. In this 

chapter both types of information spreading are allowed and their overall effects are analysed. 

Again the probability for spreading information pT is set to 0.1, which means that each buyer 

has a probability of 10% to spread positive information and also has a probability of 10% to 

spread negative information.  
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Results 

 
Figure 34: Comparison of the loyalties from the original model and the extended model. 

 

Figure 34 shows the results with regard to the emerged loyalty of the simulation of the 

extended model, where each buyer has the possibility to spread positive and negative 

information and compares them with the simulation results of the original model. Allowing 

both types of information spread yields the same results as in the case where the buyers are 

allowed to spread only positive information (see chapter 3.3.2). 

 

 
Figure 35: Average learned importance for received negative / positive information. 

 
Figure 35 shows that buyers have increased the importance of listening to positive 

information with the same speed as in the case where only positive information spread is 

allowed. Small differences occur when looking at the reached level of pR at the end of the 

simulation. Values followed in brackets represent the according level of pR reached in the 

according simulation setup of the previous two chapters (only negative / only positive 
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information spread): In the actual model setup, pR+Morning is 0.89 (0.86) and pR+Afternoon 

is 0.68 (0.72). Furthermore, pR-Morning is 0.06 (0.1036) and pR-Afternoon is 0.089 (0.095). 

This results show that the gap between the importance of positive rumour in the morning and 

afternoon as well as the gap between negative rumour in the morning and afternoon, has 

increased. Finally, I have to emphasis that there is no effect of the negative information spread 

on the emerged level of loyalty. The only factor influencing the loyalty-level are positive 

information spreads. 

 

4. Conclusion 
 
This thesis replicates an agent-based model about price dispersion and loyalty. In this model 

of Kirman  and  Vriend  (2001), loyalty emerges as an endogenous social network, based on 

the single interactions between buyers and sellers. It shows that the loyal behaviour of the 

buyers is a result of a learning process. Furthermore, sellers learn to treat loyal buyers 

preferentially. Both, buyers and sellers, adapt their behaviour in such a way that establishes a 

high level of loyalty because they get a higher utility in doing so. 

The  published  information  about  this  model  was detailed enough to replicate the 

model. Especially the published pseudo code turned out to be very useful when it comes to 

detailed questions about the concrete implementation of the model in NetLogo. Furthermore, 

two errors were found in their paper: A wrong specified random error term and an 

inconsistent description of how often reinforcement learning occurs per day when comparing 

their verbal description of the model with their pseudo code. Comparing my  obtained  results  

with  the  results  of  Kirman  and  Vriend  (2001) ‘relational  alignment’  occurred  in most 

cases: Looking at the one-buyer case, the emergence of the loyalty occurred to the same 

extend like in their model. The average asked and accepted prices in the  morning session 

hold relational alignments to the results of the original model. Only the prices asked and 

accepted during the afternoon session are different, because in my simulation the average 

asked price is lower than the average accepted price, whereas it is the reverse case in the  

simulation of Kirman and Vriend (2001). The three-buyers case shows similar relations of the 

accepted prices, the asked prices and the average loyalty as the results from Kirman and 

Vriend (2001): The higher the price for reselling the fish outside the market (pout), the higher 

the accepted / asked prices and loyalty. 

 As an extension of the original model, information exchange between buyers has been 

introduced. Now, buyers have the possibility to spread positive and negative rumours about 
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other sellers and are able to learn how important it is for them to listen to these rumours when 

incorporating them into their sellers choosing process. Simulation results show that the 

spreading of positive information about other sellers reduces the emerged level of loyalty 

dramatically, whereas negative information seems to have no effect. Furthermore, buyers put 

more importance to positive information. The importance of negative information remains 

nearly unchanged. 

 For further researches it would be interesting to study the effects on loyalty of 

different structures of social networks (e.g. small world, grid) which are used by the buyers as 

a medium for spreading rumours about sellers. Another interesting extension of the model 

could be to allow endogenous friendships between sellers. If for example a seller has not 

enough fish because he has too many buyers in his queue, he could recommend not served 

buyers to join the queue of a friend. Friendships could arise or become stronger the more 

utility is offered by this friendship-relation in terms of having buyers in the queue, whom are 

told from the friend of the seller to move to him. 

 

Appendix 
 
Reinforcement learning of buyers and sellers. 

procedure: reinforcement-sellers { 
for all sellers do 
{ 
 scaledRevenue = revenueOfDay / (max_received_price_of_day * sold_supply) 
 netProfit of the day = revenueOfDay – (sold_supply * p_in) 

normalizedNetProfit = normalize netProfit with last netProfits of 200 days to [0,1] 
  
 // updating strength (=fitness) of activated supply level rule. 
 activated supply level rule  fitness = 0.95*fitness + 0.05* normalizedNetProfit 

// updating strength of treatment parameter b. 
activated treatment parameter rule  fitness = 0.95*fitness + 0.05*scaledRevenue 

 
for all morning seller-pricerules do 
{ 

// updating fitness of morning price rules. 
reward = (timesAccepted * priceToAsk) / (timesActive * 

max_received_price_of_day) 
fitness = fitness*0.95 + 0.05*reward 

} 
for all afternoon seller-pricerules do 
{ 

// updating fitness of afternoon price rules. 
reward = (timesAccepted * priceToAsk) / (timesActive * 

max_received_price_of_day) 
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fitness = fitness*0.95 + 0.05*reward 
} 

}} 
 
procedure: reinforcement-buyers { 
IF transaction occurred in morning THEN 
{ 
 utility = (p_out – priceReceived) / p_out 
 reward = max(0, utility) 
 // updating fitness of seller-choice in morning. 

fitness of visited seller in morning= 0.95*fitness + 0.05*reward 
// updating fitness of morning buyer pricerule. 
fitness of activated buyer-pricerule for morning = 0.95*fitness + 0.05*utility 

} 
IF rejected in morning & transaction occurred in afternoon THEN 
{ 
 utility = (p_out – pricePaidAfternoon) / p_out 
 utilityOffered = (p_out – priceReceivedMorning ) / p_out 
 reward = max(0, utilityOffered) 
 // updating fitness of seller-choice in morning. 
 fitness of visited seller in morning = 0.95*fitness + 0.05*reward 
 // updating fitness of morning buyer pricerule. 
 reward = max(0, utility) 
 fitness of activated buyer-pricerule for morning = 0.95*fitness + 0.05*reward 
 // updating fitness of seller-choice in afternoon. 
 fitness of visited seller in afternoon = 0.95*fitness + 0.05*reward 
 // updating fitness of afternoon buyer pricerule 
 fitness of activated buyer-pricerule for afternoon = 0.95*fitness + 0.05*utility 
} 
IF rejected in morning & rejected in afternoon THEN 
{ 
 utilityOffered = (p_out – priceReceivedMorning ) / p_out 
 reward = max(0, utilityOffered) 
 // updating fitness of seller-choice in morning. 
 fitness of visited seller in morning = 0.95*fitness + 0.05*reward 
 // updating fitness of morning buyer pricerule. 
 fitness of activated buyer-pricerule for morning = 0.95*fitness 
 // updating fitness of seller-choice in afternoon. 
 fitness of visited seller in afternoon = 0.95*fitness 

// updating fitness of afternoon buyer pricerule. 
 fitness of activated buyer-pricerule for afternoon = 0.95*fitness 
} 
IF rejected in morning & late in afternoon THEN 
{ 
 utilityOffered = (p_out – priceReceivedMorning) / p_out 
 reward = max(0, utilityOffered) 
 // updating fitness of seller-choice in morning. 
 fitness of visited seller in morning = 0.95*fitness + 0.05*reward 
 // updating fitness of morning buyer pricerule. 
 fitness of activated buyer-pricerule for morning = 0.95*fitness 
 // updating fitness of seller-choice in afternoon. 



 - 65 - 

 fitness of visited seller in afternoon = 0.95*fitness 
} 
IF late in morning & transaction occurred in afternoon THEN 
{ 
 utility = (p_out – priceReceivedAfternoon) / p_out 
 reward = max(0, utility) 
 // updating fitness of seller-choice in morning. 
 fitness of visited seller in morning = 0.95*fitness 
 // updating fitness of seller-choice in afternoon. 
 fitness of visited seller in afternoon = 0.95*fitness + 0.05*reward 

// updating fitness of afternoon buyer pricerule. 
 fitness of activated buyer-pricerule for afternoon = 0.95*fitness + 0.05*utility 
} 
IF late in morning & rejected in afternoon THEN 
{ 
 utilityOffered = (p_out – priceReceivedAfternoon) / p_out 
 reward = max(0, utilityOffered) 
 // updating fitness of seller-choice in morning. 
 fitness of visited seller in morning = 0.95*fitness 
 // updating fitness of seller-choice in afternoon. 
 fitness of visited seller in afternoon = 0.95*fitness + 0.05*reward 

// updating fitness of afternoon buyer pricerule. 
 fitness of activated buyer-pricerule for afternoon = 0.95*fitness 
} 
IF late in morning & late in afternoon THEN 
{ 
 // updating fitness of seller-choice in morning. 
 fitness of visited seller in morning = 0.95*fitness 
 // updating fitness of seller-choice in afternoon. 
 fitness of visited seller in afternoon = 0.95*fitness 
}} 
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