
 1 

 

 
 
 

 
 

  DIPLOMARBEIT 
Master Thesis 

 
 
Impact Problems of Elastic Structures Discretized as Multi-Degree-

of-Freedom Systems 
 
 

ausgeführt zum Zwecke der Erlangung des akademischen Grades  
eines Diplom-Ingenieurs/ einer Diplom-Ingenieurin 

 
unter der Leitung von 

 
 
 

Ao. Univ. Prof. Dipl.-Ing. Dr.techn. Rudolf Heuer 
 

E206-3 
 

Institut für Hochbau und Technologie 
Forschungsbereich für Baumechanik und Baudynamik 

 
 

eingereicht an der Technischen Universität Wien 
Fakultät für Bauingenieurwesen 

 
 

von 
 

Arash Tootoonchi 
 

Matrikelnummer: 0627531 
 

Wehlistrasse 35-43/7/613 
1200 Wien 

 
 
 
 
 
 
 
Wien, am       ------------------------------------ 
 

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



 2 

 

Abstract 

 

One of the main influence, which in the modeling and calculation of a structure must 
be taken into account, is an extraordinary loading case. This work deals with 
exceptional excitation of the following events 

- Impact of road vehicles 

- Impact of fork lift trucks 

- Impact of rail equipments 

- Impact of ships 

- Hard landing by helicopters on (roof-) structures 

In high-buildings the impact in following cases should be recognized: 

- Multi-storey car parks 

- Structures with approved transport of vehicles or fork lift trucks and 

- Structures, which be placed at the side of rail transport. 

 

This thesis is dedicated to the Impact Problems of Elastic Structures Discretized as 
Multi-Degree-of-Freedom Systems. Here we derive numerical models and algorithms 
to analyze the response of the system to impact and also two different types of 
excitation. 
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Kurzfassung 

 

Eine der wichtigsten Parameter, die bei der Modellierung und Berechnung einer 
Struktur berücksichtigt werden muss, ist die sogenannte außergewöhnliche 
Einwirkung. Diese Arbeit behandelt außergewöhnliche Lastfälle für folgende 
Ereignisse: 

-  Anprall von Straßenfahrzeugen 

- Anprall von Gabelstaplern 

- Anprall von Eisenbahnfahrzeugen 

- Anprall von Schiffen 

- Harte Landung von Helikoptern auf (Dach-) Konstruktionen 

Im Hochbau sind Anpralllasten in folgenden Fällen anzusetzen: 

- Parkhäuser 

- Bauwerke mit zugelassenem Verkehr von Fahrzeugen oder Gabelstaplern und 

- Bauwerke, die an Straßenverkehr oder Schienenverkehr angrenzen. 

 

Die vorliegende Arbeit widmet sich den Anprall-Problemen von elastischen 
Strukturen, diskretisiert als Mehrfreiheitsgradsysteme. Numerischer Modelle und 
Algorithmen werden entwickelt, um die Systemantwort zufolge Anprall zu 
analysieren. Dabei werden zwei verschiedene Arten der Stoßmodellierung 
betrachtet. 
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 INTRODUCTION 

 

In mechanics, an impact is a high force or shock applied over a short time period 
when two or more bodies collide. Such a force or acceleration usually has a greater 
effect than a lower force applied over a proportionally longer period of time. The 
effect depends critically on the relative velocity between the bodies under 
consideration.  

In the first part of this thesis the velocity of colliding object depending on the position 
of collision is calculated and also the response of 2DOF damped and undamped 
systems to the collision are determined. 

 

As well known, in many practical situations, the dynamic excitation is neither 
harmonic nor periodic. Thus we are interested in studying the dynamic response of 
2DOF systems to impact-like excitation. In the second part of this thesis, a general 
procedure is developed to analyze the response of the 2DOF system to the two types 
of excitation, which are rectangular and half cycle sine pulse force. Also the 
maximum response to each of these forces is graphically presented.  
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SYSTEM 2 

2 Modeling 

 

 

 

 

 

 

Figure 2.1 Mechanical model to describe the collision 

 

2.1 Collision object 

M Mass of system 1 

S Impulse 

� Velocity of the object before impact 

� ′ Velocity of the object after impact 

 

2.2 System with 2DOF 

�� Mass of body 1 

�� Mass of body 2 

�� Stiffness of body 1 

�� Stiffness of body 2 

�� Damping of body 1 

�� Damping of body 2 

�� Velocity of body 2 before impact 

��′  Velocity of body 2 after impact 

SYSTEM 1 

M1 M2 M

K1

C1

K2

C2

X1 X2 V

S�� �� 
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3 Impact 

3.1 Introduction 

Impact is a process of momentum exchange between two colliding bodies within a 
short time of contact. With respect to a single impacted body or structure, the loading 
in such a process acts with high intensity during this short period of time.  As a result, 
the initial velocity distribution is rapidly changed (even pressure wave loadings, eg 
following an explosion, are events of that category).In this following calculation, the 
reaction of the structure after impact with consideration of two extreme cases is 
analyzed. 

An elastic collision is an encounter between two bodies in which the total kinetic 
energy of the two bodies after the encounter is equal to their total kinetic energy 
before the encounter. Elastic collisions occur only if there is no net conversion of 
kinetic energy into other forms. 

 

� = � ′  ∆
 = 0    (3.1) 

 

An inelastic collision is a collision in which the kinetic energy is not conserved. 

 

� = ��′   � − � ′ = ���∆
�   (3.2) 

 

 

3.1.1 Coefficient of restitution 

The coefficient of restitution (COR), or bounciness of an object, is a fractional value 
representing the ratio of velocities after and before an impact. An object with a COR 
of 1 collides elastically, while an object with a COR ≡ β< 1 collides inelastically. For 
the limiting case COR ≡ β = 0, the object effectively "stops" at the surface of collision. 

��� − �� = ��� − ���                                                  (3.3) 

The energie dissipation is given by the difference of the kinetic energies before and 
after the impact  

∆� = � − � ′                                                            (3.4) 
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3.2 The idealized elastic collision of an undamped 2DOF system 

 

 

 

 

 

 

Figure 3.1 Impacting of two masses. 

 

No mechanical energy is dissipated in this case and the conservation of mechanical 
energy of the two colliding bodies, Eq. (3.5), holds during impact [1],[2],[3]. 

� = � ′                                                                    �3.5�                                                   

 

The kinetic energy of the system in general form is written as 

���� = �
� ∑ �������                                                               (3.6) 

 

The kinetic energy of system 1 and system 2 before impact 

� = 1
2 ��� + 1

2 ����                                                        �3.7� 

 

The kinetic energy of system 1 and system 2 after impact 

� ′ = 1
2 �� ′� + 1

2 ���′�                                                      �3.8� 

 

Initial condition of the system in case of an elastic collision 

� = 1,   �� = 0                                                               �3.9� 

M1 M2 M
K1 K2

X1 X2 V

S

SYSTEM 1 SYSTEM 2 

�� �� 



 10 

 

Velocity of �� immediately after impact is defined as 

��� = ����� = 0� =  ���#                                                �3.10� 

As shown in Fig. 3.1, the free body diagram at impact is considered with impulse –S 

and S acting on the mass M and ��, respectively. The momentum relation is applied 
to each system to render 

���� + ����′ = $                                                        �3.11� 

 �� ′ − �� = −$                                                          �3.12� 

For the case �� = 0, elimination of $ gives 

�� − �� ′ = ����′                                                         �3.13� 

The conservation of energy of the gross system renders 

� = 1
2 ��� = � ′ = 1

2 �� ′� + 1
2 ���′�                                         �3.14� 

 

Expansion of the difference of squares gives 

��&��′'&��′' + �&� ′ + �'&� ′ − �' = 0                                    �3.15� 

 

and by substituting of Eqs. (3.11) and (3.12), the impulse becomes a common factor, 
S≠0, and cancels 

&−��′'�$� + &� ′ + �'�−$� = 0                                              �3.16� 

 

A linear equation results and replaces the nonlinear energy relation 

� ′ = ��′ − �                                                                  �3.17� 

 

Substituting Eq. (3.13) into (3.17) gives the velocity of body 2 after impact 

��′ =  ���# = 2�
)1 + ��� ��′*                                                   �3.18� 
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3.3 The collision with general β of an undamped 2DOF system [4] 

As in section 3.1.1 descried, for a general collision, which is between elastic and 
inelastic collision, the coefficient of restitution is given by  

� = ��′ − � ′
� − ��                                                                �3.19� 

in which 

0 ≤ � ≤ 1.0                                                               �3.20� 

Initial condition of the system 

�� = 0                                                                     �3.21� 

together with Eq. (3.19) becomes 

���� − ��� = ��                                                          �3.22�                                              

 

As shown in Fig. 3.1, the free body diagram at impact is considered with impulse –S 

and S acting on the mass M and ��, respectively. Again the momentum relation is 
applied and leads to 

���� + ����′ = $                                                    �3.23� 

 �� ′ − �� = −$                                                      �3.24� 

 

Elimination of $ results in 

�� − �� ′ = ����′                                                     �3.25� 

 

Substituting Eq. (3.22) into (3.25) gives the velocity of body 2 after impact 

��′ =  ���# = �1 + ���
1 + ���

                                                 �3.26� 

 

 

 

 



 12 

 

3.4 The Lagrange equation [1] 

 

The kinetic energy T when expressed in a set of generalized coordinates ,��- =
1,2, … , /� is, in general, a function of the generalized displacement ,�  as well as 

generalized velocities ,��. 

� = ��,��, ,��, . . , ,�0; ,�, ,�, … , ,0�                                  �3.27� 

It follows that 

 

2� = 3�
3,�� 2,�� + 3�

3,�� 2,�� + ⋯ + 3�
3,�0 2,�0 

+ 3�
3,� 2,� + 3�

3,� 2,� + ⋯ + 3�
3,0 2,0                             �3.28� 

 

Or, in more concise form 

2� = 5�
0

�6�
3�
3,�0 2,�0 + 3�

3,0 2,0�                                       �3.29� 

The generalized forces may be obtained from the forces 7� by the principle of virtual 

work. 

5 8�2,�
0

�6�
= 5 7�2��

0

�6�
                                                 �3.30� 

We recall that 7�, - = 1,2, … , / represent all forces acting on the rigid masses and, 

hence, may include internal, as well as external, forces. 8� represent the 

generalized forces. Each side of Eq. (3.30) represents the virtual work 29 done by 

forces 8� or 7� on virtual displacements 2,� or 2��, respectively, 

29 = 5 8�2,�
�

                                                       �3.31� 

Now, we proceed with the development of Lagrange’s equations in generalized 
coordinates, starting with Hamilton’s principle: 
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: �2� + 29�;�<=

<>
= : 5� 3�

3,���

<=

<>
2,�� + 3�

3,�� 2,� + 8�2,��;�                �3.32� 

in which 2� and 29 are substituted from Eqs.(3.29) and (3.31), respectively. 
Consider the first term in Eq. (3.32) 

: 5 3�
3,���

<=

<>
2,��;� = 5 : 3�

3,�� 2,�;�<=

<>�
 

 

= − : 5 ;
;��

<=

<>
? 3�

3,��@ 2,�;�                                            �3.33� 

Remembering that 

3�
3,�� 2,�|<>

<= = 0      ,   - = 1,2, … , /                                   �3.34� 

Using the identity (3.33) in Eq. (3.32) we obtain 

: 5{− ;
;��

<=

<>
? 3�

3,��@ + 3�
2,� + 8�}2,�;� = 0                         �3.35� 

 

Since the ,� stand for the generalized coordinates, 2,� are arbitrary except at � = �� 

and � = ��, at which instants they are set equal to zero. Consequently, the 
expression in the brackets of Eq. (3.33) must vanish. 

;
;� ? 3�

3,��@ − 3�
3,�� = 8�                                                  �3.36� 

 

There are / of these equations �- = 1,2, … , /�, the Lagrange equations expressed in 
generalized coordinates. 

The generalized force 8� is generally considered to be composed of three parts 

8� = 8D� + 8E� + 8F�                                                �3.37� 

 

where  
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8D� … external force 

8E� … internal elastic force 

8F� … damping force; may be internally or externally acting. 

Considering the elastic force components 8E�, with potential G (strain energy), 

Castigliano theorem gives 

8E� = − 3G
3,�                                                               �3.38� 

 

Using relations (3.37) and (3.38), the Lagrange Equation may be written in a modified 

;
;� ? 3�

3,��@ − 3�
3,�� + 3G

3,�� = 8D� + 8F�                                      �3.39� 

 

3.4.1 Damping forces 

The term of 8F� represents the j-th generalized damping force. The expression for 

8F� in terms of damping force 7F� in the constrained �� coordinate system can be 

derived from the principle of virtual work. The virtual work 29F done by damping 

forces 7F� along virtual displacements 2�� in the � coordinate system is given by 

29F = 5 7F�2��
�

                                                    �3.40� 

We now apply a coordinate transformation 

�� = ���,�, ,�, … ,0�                                                 �3.41� 

- = 1,2, … , / 

in order to project the coordinates �� to generalized coordinates ,�. Then 

2�� = 5 3��3,�

0

�6�
 2,�                                                      �3.41� 

and Eq.�3.40� becomes 

39F = 7F� 5 3��3,��
39F2,�                                             �3.42� 
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Interchanging the order of summation and rearranging, we write 

39F = 5 2,� 5 7F�
3H�3,I��

                                              �3.43� 

The virtual work 29F can also be expressed as the sum of the work done by the 

generalized damping forces 8F� along their corresponding virtual displacements 2,� 

29F = 5 8F�
�

2,�                                                          �3.44� 

Comparing Eqs. �3.43� and �3.44� we write 

8F� = 5 7F�
�

3��3,�                                                            �3.45� 

- = 1,2, … , / 

 

Proceeding in a similar manner, the j-th generalized applied force 8D� on the right –

hand side of Eq. (3.39) can be expressed in the form  

 

8D� = 5 7D�
�

3��3,�                                                            �3.46� 

 

In which 7D��- = 1,2, … , /� are the applied forces in the constrained ���- = 1,2, … , /� 

coordinate system. 
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3.5 2DOF damped system after impact at JK 

M1 M2 M

K1

C1

K2

C2

X1 X2 V

 

Figure 3.2 A damped system after impact 

 

The Lagrange equation in generalized coordinate is given by 

;
;� ? 3�

3,��@ − 3�
3,�� + 3G

3,�� = 8D� + 8F�                                �3.47� 

 

The kinetic energy of system 2 in � coordinates is written as 

� = 1
2 ������ + 1

2 ������                                                 �3.48� 

 

And further 

3�
3��� = 1

2 ���L�                                                         �3.49� 

 

and  

3�
3��� = 1

2 ���L�                                                         �3.50� 

 

 

 

�� �� 
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The strain energy of system 2 becomes 

� = 1
2 ����� + 1

2 ����� − ���� = 1
2 ����� + 1

2 ������ − 2���� + ����        �3.51� 

 

and 

3�
3�� = ���� + 1

2 ���−2�� + 2���                                     �3.52� 

3�
3�� = 1

2 ���2�� − 2���                                              �3.53� 

 

The damping forces of body 1 and body 2 are 

7F� = −����� − ������ − ���� = −����� − ����� + �����                      �3.54� 
7F� = −������ − ���� = −����� + �����                                    �3.55� 

 

Finally, the Lagrange equation is of the form 

���L� + ���� + ���� − ���� + ����� + ����� − ����� = 0                 �3.56� 
and 

���L� + ���� − ���� + ����� − ����� = 0                                �3.57� 
 

Reformulation gives 

5 �MI
0

I6�
�LI + 5 �MI

0

I6�
��I + 5 �MI�I

0

I6�
= 0                                 �3.58� 

and in matrix form 

  

N�� 00 ��O N�L��L�O + P�� + �� −��−c� �� R N������O + N�� + �� −��−�� �� O P����R = P00R       �3.59�  

 

             �S                 TU    VS 
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3.5.1 Modal Analysis [4],[5],[6] 

The eigenvalues and eigenvectors are required for various different analyses. They 
are used to covert the equations of motion to / independent equations of motion 
which are exactly the same form as the single degree of freedom (SDOF) equation of 
motion. The multi degree of freedom equations of motion are transformed to the 
modal coordinate system. The solution of these uncoupled equations and 
superposing the modal contribution are referred to as the modal superposition 
method. 

 

The initial condition of system 2  

�W�� = 0�   and    ��W�� = 0�                                              �3.60� 

prescribed in vector form 

�W�� = 0� = P00R         ��W�� = 0� = N 0���#O                               �3.61� 

 

The natural frequencies [�, [�of the system are determined from the condition 

\]�[VS − [��S] = 0                                                       �3.62� 

 

The natural mode shapes ∅�aaaaW, ∅�aaaaW of the system result from 

[VS − [��S]∅baaaaW = 0aW                                                      �3.63� 

Frequently they are normalized as  

∅�aaaaW = N 1c�O       , ∅�aaaaW = N 1c�O                                               �3.64� 

In this part the coupled equations of motion are transformed into a set of uncoupled 
equations, each uncoupled equation is analogous to the equation of motion for a 
SDOF system, and can be solved in the same way. The response of the system is 
expanded as: 

�W��� = 5 ∅baaaaW
�

b6�
,b���                                                    �3.65� 

,b��� is the generalized coordinate representing the variation of the response in 

mode � with time.  
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For 2DOF system in matrix form 

N�����
�����O = N 1 1c� c�O N,����

,����O                                         �3.66� 

 

the equation of motion for body 1 becomes 

,L���� + 2d�∗[�,����� + [��,� = 0                                     �3.67� 
 

and for body 2  

,L���� + 2d�∗[�,����� + [��,� = 0                                    �3.68� 
 

Due to the orthogonality of the modes, the generalized masses and stiffnesses can 
be computed from the following relations: 

 

Generalized masses 

��∗ = ∅�aaaaWf�S ∅�aaaaW                                                        �3.69� 

��∗ = ∅�aaaaWf�S ∅�aaaaW                                                       �3.70� 

 

Generalized stiffness 

��∗ = ∅�aaaaWfVS ∅�aaaaW                                                          �3.71� 

��∗ = ∅�aaaaWfVS ∅�aaaaW                                                          �3.72� 

 

A common type of damping used in the nonlinear incremental analysis of structures 
is to assume that the damping matrix is proportional to the mass and stiffness 
matrices, 

TU = g �S + 2 VS                                                         �3.73� 

This type of damping is normally referred to as Rayleigh damping. In mode 
superposition analysis the damping matrix must have the following properties in order 
for the modal equations to be uncoupled: 
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 2[0d0 �0∗ = ∅0f  Th ∅0                                                       �3.74�                                             

Due to the orthogonality properties of the mass and stiffness matrices, this equation 
can be rewritten as 

 2[0d0 = g + 2 [0�                                                    �3.75� 

 

It is apparent that modal damping can be specified exactly at only two frequencies in 

order to solve for η and δ in the above equation. 

 

Generalized damping 

��∗ = ∅�aaaaWfTU ∅�aaaaW                                                             �3.76� 

��∗ = ∅�aaaaWfTU ∅�aaaaW                                                             �3.77� 

Damping ratios 

d�∗ = ��∗
2j��∗��∗

                                                           �3.78� 

d�∗ = ��∗
2j��∗��∗

                                                           �3.79� 
 

The response of the damped system, becomes 

,b = ]klm∗ nm<�obTpq[Fb� + rb$s/[Fb��                                    �3.80� 

with 

[Fb = [bt1 − du∗�                                                   �3.81� 

Substituting Eq. �3.80� in �3.65� gives 

�W��� = 5 ∅baaaaW
�

b6�
�]klm∗ nm<�obTpq[Fb� + rb$s/[Fb��                         �3.82� 
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where ob and rb are 2v constants of integration. These can be expressed in terms 
of initial conditions 

ob = ,b�0�                                                            �3.83� 

rb = ,�b�0� + db∗[b,b�0�
[Fb                                                   �3.84� 

 

Calculation the velocity of the system in generalized coordinates  

 

��#aaaaW = ∅S ,�#aaaaW                                                               �3.85� 

 

in matrix form 

N 0���#O = N 1 1c� c�O N,��#,��#O                                            �3.86�                                   

 

and 

   N,��#,��#O = N 1 1c� c�Ok� N 0���#O                                            �3.87� 

 

finally 

= 1
c�kc�

N c� −1−c� 1 O N 0���#O = ���#c�kc�
P−11 R                          �3.88� 

 

With respect to the initial conditions the displacement of the system is written as 

 

�W��� = 5 ∅baaaaW
�

b6�
,b��� = 5 ∅baaaaW,�b#

]klm∗ nm<
[b $s/[b� 

�

b6�
                     �3.89� 
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as in matrix form 

�W��� = N 1 1c� c�O
wx
xx
y,��#

]kl>∗ n><
[� $s/[��

,��#
]kl=∗ n=<

[� $s/[��z{
{{
|
                                       �3.90� 

 

Substituting Eq. �3.88� in Eq. �3.90�, 

= ���#c�kc�
N 1 1c� c�O

wx
xx
y− ]kl>∗ n><

[� $s/[��
]kl=∗ n=<

[� $s/[�� z{
{{
|
                                       �3.91� 

finally the displacement of the system becomes in matrix form 

 

�W��� = ���#c�kc�
wx
xx
y − ]kl>∗ n><

[� $s/[�� + ]kl=∗ n=<
[� $s/[��

−c�
]kl>∗ n><

[� $s/[�� + c�
]kl=∗ n=<

[� $s/[��z{
{{
|
                      �3.92� 
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3.6 2DOF undamped system after impact at JK 

Figure 3.3 An undamped system after impact 

 

The equation of motion, Eq.(3.59), for an undamped system in matrix form reads 

 

N�� 00 ��O N�L��L�O + N�� + �� −��−�� �� O P����R = P00R                             �3.93� 

 

       �S         VS 

From Eq.(3.82) the displacement of the system is written as  

�W��� = 5 ∅baaaaW
�

b6�
[,b�0�Tpq[b� + ,�b�0�

[b $s/[b�]                         �3.94� 

 

In case of a 2DOF system 

N�����
�����O = N 1 1c� c�O N,����

,����O                                            �3.95� 

 

the initial condition of system 2  

�W�� = 0�   and    ��W�� = 0�                                              �3.96� 

 

M1 M2 M
K1 K2

X1 X2 V

�� �� 
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in vector form are 

�W�� = 0� = P00R         ��W�� = 0� = N 0���#O                               �3.97� 

 

With respect to initial conditions the displacement of the system is rewritten as 

�W��� = 5 ∅baaaaW
�

b6�
,b��� = 5 ∅baaaaW ,�b#[b $s/[b�

�

b6�
                               �3.98� 

 

as in matrix form 

�W��� = N 1 1c� c�O
wx
xy
,��#[� $s/[��
,��#[� $s/[��z{

{|                                       �3.99� 

Substituting Eq. �3.88� in Eq. �3.99�, 

= ���#c�kc�
N 1 1c� c�O

wx
xy− $s/[��

[�$s/[��
[� z{

{|                                        �3.100� 

 

Finally the displacement of the system in matrix form is written as 

 

�W��� = ���#c�kc� wx
xy

$s/[��
[� − $s/[��

[�
c�

$s/[��
[� − c�

$s/[��
[� z{

{|                                        �3.101� 

 

 

 

 

 

 



 25 

 

3.7 2DOF damped system after impact at J} 

System 2 

Figure 3.4 A damped system after impact 

 

3.7.1 Collision with general β 

� = ��′ − � ′
� − ��                                                              �3.102� 

where 

0 ≤ � ≤ 1.0                                                             �3.103� 

and the initial condition of the system 

�� = 0                                                                   �3.104� 

Thus Eq. (3.102) becomes 

���� − ��� = ��                                                        �3.105�                                              

 

As shown in Fig. 3.4  the free body diagram at impact is considered with impulse –S 

and S acting on the mass M and ��, respectively. The momentum relation is applied 
to render 

���� + ����′ = $                                                    �3.106� 

 �� ′ − �� = −$                                                     �3.107� 

 

M

V

S

M1 M2

K1

C1

K2

C2

X1 X2

System 1 

�� �� 



 26 

 

Elimination of $ results in 

�� − �� ′ = ����′                                                     �3.108� 

 

Substituting Eq. (3.105) into (3.108) gives the velocity of body 1 after impact 

��′ =  ���# = �1 + ���
1 + ���

                                                    �3.109� 

 

The Lagrange equation in matrix form is written as  

  

N�� 00 ��O N�L��L�O + P�� + �� −��−c� �� R N������O + N�� + �� −��−�� �� O P����R = P00R      �3.110� 

 

             �S                 TU    VS 

 

After calculating the natural frequencies and eigenvectors of the system by means of 
modal analysis then we can write the equation of motion in generalized coordinates, 
and declared, the general solution of Eq. (3.110) is given by superposition of 
response in individual modes. Thus 

�W��� = 5 ∅baaaaW
�

b6�
,b���                                                  �3.111� 

 

as in matrix form 

N�����
�����O = N 1 1c� c�O N,����

,����O                                         �3.112� 

 

The initial conditions of system 2 are 

�W�� = 0� = P00R         ��W�� = 0� = P���#0 R                               �3.113� 
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Calculation the velocity of system in generalized coordinate  

��#aaaaW = ∅S ,�#aaaaW                                                               �3.114� 

 

as 

P�� 100 R = N 1 1c� c�O N,��#,��#O                                              �3.115�                                      

 

and 

 

   N,��#,��#O = N 1 1c� c�Ok� P�� 100 R                                          �3.116� 

Finally 

  

= 1
c�kc�

N c� −1−c� 1 O P�� 100 R = �� 10c�kc�
P c�−c�R                                �3.117� 

 

From Eq.(3.82) displacement of the system is written as 

 

�W��� = 5 ∅baaaaW
�

b6�
,b��� = 5 ∅baaaaW,�b#

]klm∗ nm<
[b $s/[b� 

�

b6�
                         �3.118� 

 
In matrix form 

�W��� = N 1 1c� c�O
wx
xx
y,��#

]kl>∗ n><
[� $s/[��

,��#
]kl=∗ n=<

[� $s/[��z{
{{
|
                                       �3.119� 
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Substituting Eq. �3.117� in Eq. �3.119�, 

= ���#c�kc�
N 1 1c� c�O

wx
xx
y c�

]kl>∗ n><
[� $s/[��

−c�
]kl=∗ n=<

[� $s/[��z{
{{
|
                                      �3.120� 

 

Finally the displacement of the system in matrix form is written as 

 

�W��� = ���#c�kc�
wx
xx
y c�

]kl>∗ n><
[� $s/[��−c�

]kl=∗ n=<
[� $s/[��

c�c�
]kl>∗ n><

[� $s/[��−c�c�c�
]kl=∗ n=<

[� $s/[��z{
{{
|
                      �3.121� 
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3.8 2DOF undamped system after impact at J} 

 

 

 

 

 

 

 

 

 

System 2 

Figure 3.5 An undamped system after impact 

 

As in section 3.5 the Lagrange equation in matrix form is written as  

 

N�� 00 ��O N�L��L�O + N�� + �� −��−�� �� O P����R = P00R                          �3.122� 

 

       �S         VS 

After calculating the natural frequencies and modes of the system with help of modal 
analysis now we can write the equation of motion in generalized coordinate, as we 
declared the general solution of Eq. (3.122) is given by a superposition of response 
in individual modes. Thus 

�W��� = 5 ∅baaaaW
�

b6�
,b���                                                  �3.123� 

 

From Eq.(3.82) displacement of the system is written as 

M

V

S

M2M1
K1 K2

X1 X2

System 1 

�� �� 
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�W��� = 5 ∅baaaaW
�

b6�
,b��� = 5 ∅baaaaW ,�b#[b $s/[b�

�

b6�
                                �3.124� 

In matrix form 

�W��� = N 1 1c� c�O
wx
xy
,��#[� $s/[��
,��#[� $s/[��z{

{|                                       �3.125� 

 

Substituting Eq. �3.117� in Eq. �3.125�, 

= �� 10c�kc�
N 1 1c� c�O

wx
xy c�

$s/[��
[�

−c�
$s/[��

[� z{
{|                                        �3.126� 

 

Finally the displacement of the system in matrix form is written as 

 

�W��� = �� 10c�kc� wx
xy c�

$s/[��
[� −c�

$s/[��
[�

c�c�
$s/[��

[� −c�c�
$s/[��

[� z{
{|                           �3.127� 
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4. Numerical examples 

4.1 2DOF damped system after impact at JK 

M1 M2 M

K1

C1

K2

C2

X1 X2 V

Figure 4.1 A damped system after impact 

 

�� = 20000  [�~]         V� = 7000000  [v/�] T� = 200    [vq/�] 
 
�� = 15000  [�~]         V� = 6000000  [v/�] T� = 3000  [vq/�] 

 
� = 5000  [�~]        � = 17  [�/q]                            � = 0.6 

 

The Lagrange equation for system in term of coordinate � is 

 

P20000 00 15000R N�L��L�O + P 3200 −3000−3000 3000 R N������O + P 1.3 × 10� −6 × 10�
−6 × 10� 6 × 10� R P����R = P00R    

     
           �S                                              TU                                                  VS                                      �4.1� 

 

4.1.1 Modal analysis 

Natural frequencies: 

[� =  12.5191    PM��
� R  [� =  29.8877    PM��

� R                    �4.2� 

 

�� �� 
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Eigevectors: 

∅�aaaaW = P 11.644R                                ∅�aaaaW = P 1−0.8109R                           �4.3� 
 

Generalized mass matrix: 

�� ∗ = P60553 00 29863.6R     [�~]                                 �4.4 � 

 

Generalized stiffness matrix: 

�h ∗ = P9.4903 × 10� 00 2.66764 × 10�R      Nv
�O                     �4.5� 

    
Generalized damping matrix: 

�̃∗ =  P1445.15 00 10038.2R     Nvq
� O                                �4.6� 

Damping ratio: 

    d�∗ = �>∗
�jb>∗�>∗  = 0.000953179  

    d�∗ = �=∗
�jb=∗�=∗  = 0.00562329                            �4.7� 

 

Velocity of body 2 after impact: 

��′ =  ���# = �1 + ���
1 + ���

            =           6.80          P�
q R                     �4.8� 

 

The equation of motion for body 1 and body 2 in generalized coordinates: 

 

,L���� + 2d�∗[�,����� + [��,� = 0 

,L���� + 2d�∗[�,����� + [��,� = 0                                       �4.9� 
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Figure 4.2 Deflection of body 1 after impact     0 ≤ � ≤ 5.0 [q] 
 

 

 

  

 

 

 

 

 

 

 

Figure 4.3 Deflection of body 2 after impact     0 ≤ � ≤ 5.0 [q] 
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Displacement of the system 

 

�W��� = 5 ∅baaaaW
�

b6�
,b��� = 5 ∅baaaaW,�b#

]klm∗ nm<
[b $s/[b� 

�

b6�
                       �4.10� 

 

 

 

 

 

 

 

 

 

Figure 4.4 Displacement of the system, �� 

 

 

 

 

 

 

 

 

 

Figure 4.5 Displacement of the system, �� 
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4.2 2DOF undamped system after impact at JK 

Figure 4.6 An undamped system after impact 

 

�� = 20000  [�~]    V� = 7000000  [v/�] 
 
�� = 15000  [�~]             V� = 6000000  [v/�] 

 
� = 5000  [�~]  � = 17  P�

� R                              � = 0.6 

 

The Lagrange equation for system in term of coordinate � is 

 

P20000 00 15000R N�L��L�O + P 1.3 × 10� −6 × 10�
−6 × 10� 6 × 10� R P����R = P00R          �4.11� 

 

            �S                       VS 

4.2.1 Modal analysis 

 

Natural frequencies: 

[� =  12.5191    PM��
� R  [� =  29.8877    PM��

� R               �4.12� 

 

M1 M2 M
K1 K2

X1 X2 V

�� �� 
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Eigevectors: 

∅�aaaaW = P 11.644R                                ∅�aaaaW = P 1−0.8109R                          �4.13� 
 

Generalized mass matrix: 

�� ∗ = P60553 00 29863.6R        [�~]                       �4.14� 

 

Generalized stiffness matrix: 

�h ∗ = P9.4903 × 10� 00 2.66764 × 10�R      Nv
�O                      �4.15� 

    
Velocity of body2 after impact: 

��′ =  ���# = �1 + ���
1 + ���

        =        6.80         P�
q R                             �4.16� 

   
The equation of motion for body 1 and body 2 in generalized coordinates: 

��∗,L� + ��∗,� = 0 

��∗,L� + ��∗,� = 0                                                   �4.17� 

 

 

  

 

 

 

 

 

Figure 4.7 Deflection of body 1 after impact     0 ≤ � ≤ 5.0 [q] 
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Figure 4.8 Deflection of body 2 after impact     0 ≤ � ≤ 5.0 [q] 
 

 

 

 

 

 

 

 

Figure 4.9 Displacement of the system, �� 

 

 

 

 

 

 

 

 

Figure 4.10 Displacement of the system, �� 

1 2 3 4 5

-0.05

0.05

1 2 3 4 5

-0.3

-0.2

-0.1

0.1

0.2

0.3

1 2 3 4 5

-0.4

-0.2

0.2

0.4

,� 

t 

t 

�� 

�� 

t 



 38 

 

4.3 2DOF damped system after impact at J} 

Figure 4.11 A damped system after impact 

 

�� = 20000  [�~]         V� = 7000000  [v/�] T� = 200    [vq/�] 
 
�� = 15000  [�~]         V� = 6000000  [v/�] T� = 3000  [vq/�] 

 
� = 5000  [�~]        � = 17  [�/q]                            � = 0.6 

 

The Lagrange equation for system in term of coordinate � is 

 

P20000 00 15000R N�L��L�O + P 3200 −3000−3000 3000 R N������O + P 1.3 × 10� −6 × 10�
−6 × 10� 6 × 10� R P����R = P00R    

     
           �S                                              TU                                                  VS                                    �4.18� 

 

4.3.1 Modal analysis 

 

Natural frequencies: 

[� =  12.5191    PM��
� R  [� =  29.8877    PM��

� R                 �4.19� 

M

M1 M2
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�� �� 
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Eigevectors: 

∅�aaaaW = P 11.644R                                ∅�aaaaW = P 1−0.8109R                          �4.20� 
 

Generalized mass matrix: 

�� ∗ = P60553 00 29863.6R     [�~]                                  �4.21� 

 

Generalized stiffness matrix: 

�h ∗ = P9.4903 × 10� 00 2.66764 × 10�R Nv
�O                       �4.22� 

    
Generalized damping matrix: 

�̃∗ =  P1445.15 00 10038.2R     Nvq
� O                                 �4.23� 

Damping ratio: 

    d�∗ = �>∗
�jb>∗�>∗  = 0.000953179  

    d�∗ = �=∗
�jb=∗�=∗  = 0.00562329                          �4.24� 

 

Velocity of body1 after impact: 

��′ =  ���# = �1 + ���
1 + ���

            =           5.44          P�
q R                  �4.25� 

 

The equation of motion for body 1 and body 2 in generalized coordinates: 

 

,L���� + 2d�∗[�,����� + [��,� = 0 

,L���� + 2d�∗[�,����� + [��,� = 0                                    �4.26� 
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Figure 4.12 Deflection of body 1 after impact     0 ≤ � ≤ 5.0 [q] 
 

 

  

 

 

 

 

 

 

 

Figure 4.13 Deflection of body 2 after impact     0 ≤ � ≤ 5.0 [q] 
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Displacement of the system 

 

�W��� = 5 ∅baaaaW
�

b6�
,b��� = 5 ∅baaaaW,�b#

]klm∗ nm<
[b $s/[b� 

�

b6�
                       �4.27� 

 

 

 

 

 

 

 

 

 

Figure 4.14 Displacement of the system, �� 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Displacement of the system, �� 
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4.4 2DOF undamped system after impact at J} 

Figure 4.16 An undamped system after impact 

 

�� = 20000  [�~]    V� = 7000000  [v/�] 
 
�� = 15000  [�~]             V� = 6000000  [v/�] 

 
� = 5000  [�~]  � = 17  P�

� R                              � = 0.6 

 

The Lagrange equation for system in term of coordinate � is 

 

P20000 00 15000R N�L��L�O + P 1.3 × 10� −6 × 10�
−6 × 10� 6 × 10� R P����R = P00R          �4.28� 

 

            �S                       VS 

4.4.1 Modal analysis 

 

Natural frequencies: 

[� =  12.5191    PM��
� R  [� =  29.8877    PM��

� R               �4.29� 
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Eigevectors: 

∅�aaaaW = P 11.644R                                ∅�aaaaW = P 1−0.8109R                          �4.30� 
 

Generalized mass matrix: 

�� ∗ = P60553 00 29863.6R     [�~]                                 �4.31� 

 

Generalized stiffness matrix: 

�h ∗ = P9.4903 × 10� 00 2.66764 × 10�R      [v/�]                   �4.32� 

    
Velocity of body1 after impact: 

��′ =  ���# = �1 + ���
1 + ���

        =        5.44         P�
q R                            �4.33� 

   
The equation of motion for body 1 and body 2 in generalized coordinates: 

��∗,L� + ��∗,� = 0 

��∗,L� + ��∗,� = 0                                                   �4.34� 

 

 

  

 

 

 

 

 

Figure 4.17 Deflection of body 1 after impact     0 ≤ � ≤ 5.0 [q] 
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Figure 4.18 Deflection of body 2 after impact     0 ≤ � ≤ 5.0 [q] 
 

 

 

 

 

 

 

 

Figure 4.19 Displacement of the system, �� 

 

 

 

 

 

 

 

 

Figure 4.20 Displacement of the system, �� 
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5. Response to Pulse Excitation [5] 

In many practical situations the dynamic excitation is neither harmonic nor periodic. 
Thus we are interested in considering the dynamic response of 2DOF systems to 
excitations that consist of essentially a single pulse. Air pressures generated on a 
structure due to aboveground blasts or explosions are essentially a single pulse and 
can usually be idealized by simple shapes such as those shown in Fig. (5.1). 

 

 

 

 

  

Figure 5.1 Pulse excitation 

 

The response of the system to pulse excitations, in general, does not reach steady-
state condition; the effect of initial conditions must be considered. The response of 
the system to such pulse excitation can be determined by one of several analytical 
methods: (1) the classical method for solving differential equations, (2) evaluating 
Duhamel’s integral and (3) expressing the pulse as the superposition of two or more 
simpler functions for which response solutions are already available or easier to 
determine. 

We prefer to use Duhamel’s integral in evaluating the response of MDOF systems to 
pulse forces because it’s closely tied to the dynamic of the system. Using Duhamel’s 
integral the response to pulse forces will be determined in two phases. The first is the 
force vibration phase that covers the duration of the excitation. The second is the free 
vibration phase, which follows the end of the pulse force. 

 

The Duhamel’s integral in terms of coordinate � reads: 

 

���� = ]k�n�< )�#Tpq[F� + �������n�
n� $s/[F�* + �

�n� � ����]k�n��<k��$s/<
# [F�� − ��;�

            (5.1) 

����...stands for the external forcing function 
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5.1 Response of undamped 2DOF system to rectangular impulse 
force 

 

 

 

 

 

Figure 5.2 (a) 2DOF system;   (b) Rectangular pulse force 

   

�� = 20000  [�~]    V� = 7000000  [v/�] 
 
�� = 15000  [�~]   V� = 6000000  [v/�] 
 

       P0      0 ≤ t ≤ t� 

P(t)  = 

         0                �� ≤ � 

P0  = 1000    [v] 
��   =  5.0        [q] 
 

The Lagrange equation for a system in terms of coordinate � is 

 

P20000 00 15000R N�L��L�O + P 1.3 × 10� −6 × 10�
−6 × 10� 6 × 10� R P����R = N 0P�t�O            �5.2� 

 

         �S                        VS        7W 

 

 

 

M 2M 1
K 1 K 2

X 1 X 2

P (t)

() (�) 

�� �� 
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5.1.1 Modal analysis 

Natural frequencies: 

[� =  12.5191    PM��
� R  [� =  29.8877    PM��

� R                  �5.3� 

 

Eigenvectors: 

∅�aaaaW = P 11.644R                                 ∅�aaaaW = P 1−0.8109R                       �5.4� 

 

Generalized mass matrix: 

�� ∗ = P60553 00 29863.6R     [�~]                                     �5.5� 

Generalized stiffness matrix: 

�h ∗ = P9.4903 × 10� 00 2.66764 × 10�R   [v/�]                       �5.6� 

Generalized forces: 

��∗ = ∅�aaaaWf7W = 1644.24 [v] 
��∗ = ∅�aaaaWf7W  = -810.91   [v]                                   �5.7� 

 

The equation of motion for body 1 and body 2 in generalized coordinates 

��∗,L� + ��∗,� = 0 

��∗,L� + ��∗,� = 0                                                     �5.8� 

 

With at-rest initial conditions 

��� = 0� = ���� = 0� = 0                                           �5.9� 

The analysis is organized in two phases; 

1. Forced vibration phase. During this phase, the system is subjected to a step 
force. The response of system is calculated as follows  
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���� = 1
�[F
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#
[F�� − ��;�                               �5.10� 

The Duhamel’s integral for body 1in terms of coordinate ,�,I 

,�,���� = 1
�1∗ [1

: �1∗$s/
�;

0
[1��; − ��                                 �5.11� 

 

 

 

 

 

 

 

 

Figure 5.3 Deflection of body 1 after impact     0 ≤ � ≤ 5.0 [q] 
 

2. Free vibration phase. After the force ends at td ,the system undergoes free 
vibration,  

,�,���� = ,�,<�Tpq[�� + ,��,<�[� $s/[��                              �5.12� 

 

 

 

 

 

 

 

 

Figure 5.4 Deflection of body 1 after impact     5.0 ≤ � ≤ 10.0 [q] 
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1. Phase 

,�,���� = �
�=∗ n= � ��∗$s/<�# [���� − ��;�                               �5.13� 

 

 

 

 

 

 

 

 

Figure 5.5 Deflection of body 2 after impact     0 ≤ � ≤ 5.0 [q] 
 

2. Phase 

,�,���� = ,�,<�Tpq[�� + ,��,<� <�[� $s/[��                               �5.14� 

 

 

 

 

 

 

 

 

 

Figure 5.6 Deflection of body 2 after impact     5.0 ≤ � ≤ 10.0 [q] 
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Displacement of the system 

�W��� = 5 ∅baaaaW
�

b6�
,b���                                                   �5.15� 

1. Phase 

 

 

 

 

 

 

 

 

Figure 5.7 Displacement of the system, ��,�    0 ≤ � ≤ 5.0 [q] 
 

 

 

 

 

 

 

 
 
 
 

Figure 5.8 Displacement of the system, ��,�     0 ≤ � ≤ 5.0 [q] 
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Figure 5.9 Displacement of the system, ��,�    5.0 ≤ � ≤ 10.0 [q] 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Displacement of the system, ��,�    5.0 ≤ � ≤ 10.0 [q] 
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5.2 Response of undamped 2DOF system to half cycle Sine pulse 
force 

The next pulse under consideration is a half sinusoidal force-distribution. The 
response analysis procedure for this pulse is the same as developed in section. 5.1 
for a rectangular pulse. In this part we study the responses of the system by 
changing the duration of the pulse. 

 

 

 

 

Figure 5.11 (a) 2DOF system;   (b) Half cycle sine pulse force 

 

5.2.1  Case 1:  ��   =  5.0 [q] 
 

P0  = 1000    [v]     P0.Sin(��/���    0 ≤ � ≤ �� 

     P(t)  = 

��   =  5.0        [q]     0                        �� ≤ � 
             

Initial conditions 

��� = 0� = ���� = 0� = 0                                               �5.16� 
 

1. Forced vibration phase (body 1) 

The Duhamel’s integral for body 1in terms of coordinate ,�,I 
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[���� − ��;�                                      �5.17� 
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Figure 5.12 Deflection of body 1 after impact     0 ≤ � ≤ 5.0 [q] 
 

2. Free vibration phase. After the force ends at td, the system undergoes free 
vibration,  

,�,���� = ,�,<�Tpq[�� + ,��,<�[� $s/[��                                  �5.18� 

 

 

 

 

 

 

 

 

 

Figure 5.13 Deflection of body 1 after impact     5.0 ≤ � ≤ 10.0 [q] 
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Figure 5.14 Deflection of body 2 after impact     0 ≤ � ≤ 5.0 [q] 
 

2. Phase 

,�,���� = ,�,<�Tpq[�� + ,��,<� <�[� $s/[��                                  �5.20� 

 

 

 

 

 

 

 

 

Figure 5.15 Deflection of body 2 after impact     5.0 ≤ � ≤ 10.0 [q] 
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Figure 5.16 Displacement of the system, ��,�    0 ≤ � ≤ 5.0 [q] 
 
 
 
 
 
 
 
 
 

Figure 5.17 Displacement of the system, ��,�    0 ≤ � ≤ 5.0 [q] 
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Figure 5.18 Displacement of the system, ��,�    5.0 ≤ � ≤ 10.0 [q] 
 

 

 

 

 

 

 

 

 

 

Figure 5.19 Displacement of the system, ��,�    5.0 ≤ � ≤ 10.0 [q] 
 

5.2.2  Case 2:  ��   =  0.5 [q] 
 

P0  = 1000    [v]    ��   =  0.5        [q] 
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Figure 5.20 Deflection of body 1 after impact     0 ≤ � ≤ 0.5 [q] 

 

2. Free vibration phase. After the force ends at td, the system undergoes free 
vibration,  

,�,���� = ,�,<�Tpq[�� + ,��,<�[� $s/[��                                  �5.23� 

 

 

 

 

 

 

 

 

 

Figure 5.21 Deflection of body 1 after impact     0.5 ≤ � ≤ 1.0 [q] 
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Figure 5.22 Deflection of body 2 after impact     0 ≤ � ≤ 0.5 [q] 
 

2. Phase 
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Figure 5.23 Deflection of body 2 after impact     0.5 ≤ � ≤ 1.0 [q] 
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Figure 5.24 Displacement of the system, ��,�    0 ≤ � ≤ 0.5 [q] 
 
 
 
 
 
 
 
 
 
 

Figure 5.25 Displacement of the system, ��,�    0 ≤ � ≤ 0.5 [q] 
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2. Phase 

 
 
 
 
 

 

 

 

 

Figure 5.26 Displacement of the system, ��,�    0.5 ≤ � ≤ 1.0 [q] 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.27 Displacement of the system, ��,�    0.5 ≤ � ≤ 1.0 [q] 
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5.3 Response of damped 2DOF system to Half cycle Sine pulse 
force 

 

 

 

 

 

Figure 5.28 (a) 2DOF damped system;   (b) Half cycle Sine pulse force 

 

In this section we want to compute the response of damped system with three 
different values of damping ratio to half cycle Sine pulse force. 

   

�� = 20000  [�~]    V� = 7000000  [v/�] 
 
�� = 15000  [�~]   V� = 6000000  [v/�] 
 

       P0.Sin(��/���      0 ≤ t ≤ t� 

P(t)  = 

         0                            �� ≤ � 

P0  = 1000    [v]    

��   =  0.50      [q] 
 

A� ξ  =  0.2          B� ξ   =  0.5           C� ξ   =  0.8 

 

5.3.1 Modal analysis 

Natural frequencies: 
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ω� = ωj1 − ξ 
(A) PM��

� R    (B) PM��
� R    (C) PM��

� R 
  

[�� =   12.2661   [�� =   12.2661   [�� =   12.2661 

[�� =   29.2838   [�� =   29.2838   [�� =   29.2838 

�5.28� 

Eigenvectors: 

∅�aaaaW = P 11.644R                                 ∅�aaaaW = P 1−0.8109R                       �5.29� 

 

Generalized mass matrix: 

�� ∗ = P60553 00 29863.6R    [�~]                                    �5.30� 

 

Generalized stiffness matrix: 

�h ∗ = P9.4903 × 10� 00 2.66764 × 10�R     [v/�]                     �5.31� 

 

Generalized forces: 

��∗ = ∅�aaaaWf7W = 1644.24 [v] 
��∗ = ∅�aaaaWf7W  = -810.91   [v]                                �5.32� 
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Figure 5.29 Deflection of body 1 after impact     0 ≤ � ≤ 0.5 [q] 
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Figure 5.30 Deflection of body 1 after impact     0.5 ≤ � ≤ 1.0 [q] 
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Figure 5.31 Deflection of body 2 after impact     0 ≤ � ≤ 0.5 [q] 
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Figure 5.32 Deflection of body 2 after impact     0.5 ≤ � ≤ 1.0 [q] 
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Figure 5.33 Displacement of the system,  ��,�   0 ≤ � ≤ 0.5 [q] 
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Figure 5.34 Displacement of the system,  ��,�   0 ≤ � ≤ 0.5 [q] 
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Figure 5.35 Displacement of the system,  ��,�   0.5 ≤ � ≤ 1.0 [q] 
 

 

 

 

 

 

 

 

 

 

0.6 0.7 0.8 0.9 1.0

-8. µ 10-7

-6. µ 10-7

-4. µ 10-7

-2. µ 10-7

��,�

� 

 

��,�

� 

 

� 

��,� 

d = 0.8 

d = 0.2 d = 0.5 



 70 

 

0.6 0.7 0.8 0.9 1.0

-0.00004

-0.00002

0.00002

0.00004

0.6 0.7 0.8 0.9 1.0

2. µ10-6

4. µ10-6

6. µ10-6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.36 Displacement of the system,  ��,�   0.5 ≤ � ≤ 1.0 [q] 
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Final Remarks 

 

The goal of this study was to simulate and calculate the deflection of an undamped 
as well as a damped system with 2DOF caused by elastic collision and by general 
collision. The response of the system according to two different collision positions 
was calculated. 

In the second part of this thesis, a general procedure was developed to analyze the 
response of the 2DOF system to two types of excitation, rectangular and half cycle 
sine pulse force. Additionally the time variation of the response to half cycle sine 
pulse force is studied, and graphically shows that the maximum response is as a 
function of ��/�0, the ratio of pulse duration to natural vibration period. In the 
last part is the effect of damping on the response to a single pulse excitation 
demonstrated. 
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