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Preface

In my thesis I give an introduction to the theory of de Branges’ Hilbert spaces of entire functions.

My approach was to use Hardy space theory as background. Unfortunately, it would have gone

beyond the scope of this work to give an introduction to Hardy space theory in all details. Therefore,

the first part of my work contains only the definitions and theorems that I will need later on. For

the interested reader I recommend the book [5] by M. Rosenblum and J. Rovnyak which I used as

reference.

The first main result of my work is Theorem 1.2.2 which characterises Hilbert spaces of entire

functions in a Hardy space setting. It is the most general equivalence I could think of, and, partic-

ularly, the functions are not required to be entire. Another result of this kind, which characterises

Hilbert spaces of entire functions as special subspaces of Hardy spaces, is obtained after this one

quite easy. Furthermore, the first chapter contains basic results de Branges’ already showed or

mentioned in his book [3], although I tried to give easier proofs which often make use of Hardy

space theory.

In the second chapter I introduce functions associated with a Hilbert space of entire functions.

The first section is again a collection of already known facts in a new context. In the second

section I introduce a linear relation MS which has a strong tie to associated functions. Although

M. Kaltenbäck and H. Woracek referred to this relation in [6] in an abstract way, it was, as far as

I know, never before stated in this explicit way. I introduce the definition of strongly associated

functions and give many equivalences for a function to be strongly associated. Some of these

equivalent conditions were already mentioned by de Branges, but without any connection to the

linear relation MS and never this clearly arranged.

From the beginning, the final result I wanted to show, was the ordering theorem for Hilbert

spaces of entire functions. When I thought, that everything that remains for me to do, is to

understand and formulate de Branges’ proof of this theorem, I encountered an error in his work.

I’m glad that my supervisor Prof. Michael Kaltenbäck found a workaround, and I could prove the

result I longed for. However a minor flaw remained, because I wasn’t able to prove it in all cases.

I hope that I managed to formulate and prove everything in a way anyone with basic knowl-
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edge about complex analysis understands and that the work serves as a good introduction to this

interesting theory.

Finally, I want to thank Michael Kaltenbäck for his patience and advice.
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Chapter 1

The Space H(E)

In this chapter the Hilbert space of entire functions associated with a function E is defined and

useful properties from Hardy space theory are cited.

1.1 Preliminary Results

Starting with the definition and basic properties of harmonic and subharmonic functions, the space

N(C+) is defined. This space of so called functions of bounded type and the factorisation of these

functions will be useful throughout this work. The chapter is based on [5] and more details about

Hardy spaces and functions of bounded type can be found there.

Definition 1.1.1. A complex valued function f(x + iy) defined on an open set Ω ⊆ C is called

harmonic on Ω if f ∈ C2(Ω) and the Laplacian ∆f vanishes, i.e. it is twice partial differentiable

with respect to x and y and

∆f =
∂2f

∂x2
+
∂2f

∂y2
= 0.

Definition 1.1.2. Let Ω ⊆ C be open. A function f : Ω → [−∞,∞) is called subharmonic on Ω if

(i) f is upper semicontinuous, i.e. if {x ∈ Ω : f(x) < a} is open for all a ∈ R.

(ii) For every open set A with compact closure A ⊆ Ω and every continuous function h : A → R

whose restriction to A is harmonic, if f ≤ h on ∂A, then f ≤ h on A.

Some useful properties of subharmonic and harmonic functions are collected in the following

theorem.

Theorem 1.1.3. Let Ω ⊆ C be an open subset.
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1.1. PRELIMINARY RESULTS

(i) A continuous function f : Ω → R is harmonic if and only if for any closed disk {z + reiϕ :

ϕ ∈ (0, 2π], r ∈ [0, R]} with center z and radius R contained in Ω

f(z) =
1

2π

2π∫

0

f(z +Reiϕ) dϕ.

(ii) An upper semicontinuous function f : Ω → R is subharmonic if and only if for any closed

disk {z + reiϕ : ϕ ∈ (0, 2π], r ∈ [0, R]} with center z and radius R contained in Ω

f(z) ≤ 1

2π

2π∫

0

f(z +Reiϕ) dϕ.

In this case

0 ≤ 1

2π

2π∫

0

f(z + reiϕ) dt ≤ 1

2π

2π∫

0

f(z +Reiϕ) dϕ

holds for all r < R.

(iii) A function f : Ω → R in C2(Ω) is subharmonic if and only if ∆u ≥ 0.

(iv) Let f be an analytic function on a region Ω. Then f, f ,Re f, Im f are harmonic and

log+ |f(z)| = max{log |f(z)|, 0}

is subharmonic on Ω.

Definition 1.1.4. A harmonic function h on a region Ω is called a harmonic majorant of a sub-

harmonic function f 6≡ −∞, if h ≥ f on Ω.

Theorem 1.1.5. Let Ω be a simply connected region of C and f be an analytic function on Ω.

Then the following assertions are equivalent.

(i) There exist analytic and bounded functions g and h on Ω such that f = g
h
.

(ii) log+ |f(z)| has a harmonic majorant on Ω.

Definition 1.1.6. A function f defined and analytic on a simply connected region Ω is said to be

of bounded type in Ω, if it satisfies the equivalent conditions in Theorem 1.1.5. The space of all

functions of bounded type on Ω is denoted N(Ω).

Theorem 1.1.7. Let f 6≡ 0 be in N(C+). Then

f̂(x) = lim
y→0+

f(x+ iy)

exists almost everywhere on R. This formula defines the boundary function f̂ of f .
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1.1. PRELIMINARY RESULTS

Definition 1.1.8. An analytic function f on C+ := {z ∈ C : Im z > 0} is called inner if |f(z)| < 1

for all z ∈ C+ and the nontangential boundary function satisfies |f(x)| = 1 almost everywhere.

It is called outer if

f(z) = α exp


 1

πi

∫

R

(
1

t− z
− t

1 + t2

)
logK(t) dt




where |α| = 1, K(t) > 0 and ∫

R

|logK(t)|
1 + t2

dt <∞.

A special kind of inner function is called a Blaschke product:

f(z) = α

(
z − i

z + i

)n∏

j∈J

∣∣∣z2j + 1
∣∣∣

z2j + 1

z − zj
z − zj

where |α| = 1, n ∈ N0, zj ∈ C+\{i} for all j ∈ J and J ⊆ N. An empty product is defined as 1. If

the product is infinite the zj have to satisfy (zj = xj + iyj with xj , yj ∈ R)

∑

j∈J

yj
x2j + (yj + 1)2

<∞.

Theorem 1.1.9. Let f 6≡ 0 be in N(C+). Then there exist functions B Blaschke product, G outer

and a real number τ such that

f(z) = e−iτzB(z)G(z)
S+(z)

S−(z)

where the functions S± have the form

S± = exp


− 1

πi

∫

R

(
1

t− z
− t

1 + t2

)
dµ±(t)


 ,

where µ± are singular and mutually singular non-negative Borel measures on the real line satisfying

∫

R

1

1 + t2
dµ±(t) <∞.

The functions S± are inner and e−iτz is inner for τ nonpositive.

If f has an analytic continuation across some interval I of the real line, then µ±|I = 0. If f is

an inner function the factors G(z) and S−(z) are constants of modulus one and τ is nonpositive.

Definition 1.1.10. The number τ in Theorem 1.1.9 is called the mean type of f .
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1.1. PRELIMINARY RESULTS

Theorem 1.1.11. The mean type τ of f ∈ N(C+)\{0} satisfies

τ = lim
R→∞

2

πR

π∫

0

log
∣∣f(Reiϕ)

∣∣ sinϕdϕ

and

τ = lim sup
y→∞

1

y
log |f(iy)| .

If τ ≥ 0, then

τ = lim
R→∞

2

πR

π∫

0

log+
∣∣f(Reiϕ)

∣∣ sinϕdϕ.

Example 1.1.12. The mean type of any polynomial f(z) = anz
n + . . .+ a0 is zero, because

∣∣∣∣lim sup
y→∞

log |f(iy)|
y

∣∣∣∣ =
∣∣∣∣lim sup
y→∞

log |an(iy)n + . . .+ a0|
y

∣∣∣∣ ≤
∣∣∣∣lim sup
y→∞

log (|an|yn + . . .+ |a0|)
y

∣∣∣∣ = 0.

A useful method to calculate mean types for products or sums of functions in N(C+) is the

following lemma.

Lemma 1.1.13. Let f, g ∈ N(C+) and let τf and τg be the mean types of these functions. Then

the mean type of the product f · g is

τfg = τf + τg

and the mean type of the sum f + g satisfies

τf+g ≤ max{τf , τg}.

Definition 1.1.14. A function f defined and analytic on C+ is said to belong to the class N+(C+)

if

f =
g

h
,

where g and h are analytic, bounded by 1 and h is outer.

Theorem 1.1.15. A function f in N(C+) belongs to N+(C+) if and only if dµ− = 0 in the

factorication in Theorem 1.1.9 and it has nonpositive mean type. In particular, for f ∈ N+(C+)

this yields the factorisation f(z) = A(z)G(z) where A is inner and G is outer.

Lemma 1.1.16.

(i) Polynomials, inner functions and outer functions belong to N+(C+).

4



1.1. PRELIMINARY RESULTS

(ii) Every polynomial with no zeros in C+ is outer.

(iii) An analytic function satisfying Re f(z) ≥ 0 in C+ is outer.

(iv) Products and quotients of outer functions are outer.

(v) If f, g ∈ N+(C+) then f + g, fg ∈ N+(C+). If f
g
is analytic in C+ then f

g
∈ N(C+).

Remark 1.1.17. Lemma 1.1.16 and the factorisation result, Theorem 1.1.15, especially yield that

N+(C+) is the smallest algebra containing all inner and outer functions.

Lemma 1.1.18. Let f ∈ N+(C+). Further, let w ∈ C+ with f(w) = 0. Then the function f(z)
z−w

belongs to N+(C+).

Proof. Because the zeros of a function in N+(C+) are the zeros of its Blaschke product B, it must

have a factor z−w
z−w . Hence, the function f(z)(z−w)

z−w ∈ N+(C+) because only the Blaschke product

and a multiplicative constant change. In this case (z − w) is an outer function by Lemma 1.1.16.

The quotient of a function in N+(C+) and an outer function just changes the outer part. Hence,

it belongs to N+(C+) which yields f(z)
z−w ∈ N+(C+).

It is possible to define the space N+(Ω) for any region Ω, but this is not necessary in what

follows. Just one special property of functions in N+(D), where D is the open unit circle, is needed.

Therefore, only this space has to be defined.

Definition 1.1.19. An analytic function on the unit circle D belongs to N+(D) if f
(
z−i
z+i

)
belongs

to N+(C+).

Lemma 1.1.20. Let f ba an analytic function on the open unit circle D. If f has an analytic

continuation to some open set containing the closed unit circle, then f belongs to N+(D).

Theorem 1.1.21. Let f be an analytic function. Then f belongs to N+(D) if and only if

log |f(z)| ≤ 1

2π

2π∫

0

1− |z|2
|eiϕ − z|2 log |f(e

iϕ)| dϕ,

for all z ∈ C+.

With the done preliminary work the Hardy space H2(C+) can be defined.

Definition 1.1.22. The space H2(C+) is the space of all functions f ∈ N+(C+), such that the

boundary function f̂ from Theorem 1.1.7 satisfies
∫

R

|f̂(t)|2 dt <∞.
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1.1. PRELIMINARY RESULTS

Theorem 1.1.23 (Cauchy Representation). Let f ∈ H2(C+) and z ∈ C+. Then the boundary

function f̂(t) belongs to L2(R) and

f(z) =
1

2πi

∫

R

f̂(t)

t− z
dt

and

0 =
1

2πi

∫

R

f̂(t)

t− z
dt.

Conversely, if g ∈ L2(R) such that

0 =
1

2πi

∫

R

g(t)

t− z
dt

holds for all z ∈ C+, then the function f defined on C+ by

f(z) :=
1

2πi

∫

R

g(t)

t− z
dt

belongs to H2(C+) and g = f̂ almost everywhere.

Definition 1.1.24. The space H2(R) is the space of all boundary functions of H2(C+).

Remark 1.1.25. The Theorems 1.1.23 and 1.1.7 show, that there exists a bijective correspondence

between the spaces H2(C+) and H2(R).

Theorem 1.1.26. For every function f ∈ L2(R) there exist functions f1, f2 ∈ L2(R) with f1, f2 ∈
H2(R) such that f(t) = f1(t) + f2(t) for all t ∈ R. The spaces H2(R) and {f : f ∈ H2(R)} are

orthogonal with respect to the inner product on L2(R), i.e.

L2(R) = H2(R)⊕ {f : f ∈ H2(R)}.

Theorem 1.1.27. H2(C+) is a Hilbert space with respect to the inner product

〈f, g〉H2(C+) =

∫

R

f̂(t)ĝ(t) dt.

Definition 1.1.28. An entire function f is called of exponential type if

τf = lim sup
r→∞

max
ϕ∈(0,2π]

log |f(reiϕ)|
r

<∞

where τf is called the exact type of f . It is called of exponential type τ if τf ≤ τ .

6



1.1. PRELIMINARY RESULTS

Remark 1.1.29. By Liouville’s Theorem a function f 6≡ 0 of exponential type must have nonneg-

ative exact type. Otherwise for some ε > 0

log |f(reiϕ)| ≤ −εr.

Therefore, f would be a constant with nonnegative exact type. This shows that log in the definition

of τf can be exchanged with log+ for any function f 6≡ 0. Hence,

τf = lim sup
r→∞

max
ϕ∈(0,2π]

log+ |f(reiϕ)|
r

.

Theorem 1.1.30 (Kreins Theorem). Let f be an entire function. Then the following assertions

are equivalent:

(i) f is of exponential type with exact type τf and

∫

R

log+ |f(t)|
1 + t2

dt <∞.

(ii) f and f# are in N(C+) with mean types τ+ and τ−.

In this case

τ+ + τ− ≥ 0

and

max{τ+, τ−} = τf .

The following lemma is a basic result in measure theory and can be found e.g. in [4], p.148

Theorem 5.8.

Lemma 1.1.31. Let (Ω,A, µ) be a measure space, G ⊆ C an open set and f : G × Ω → C a

function satisfying:

(i) For all z ∈ G the function t 7→ f(z, t) is integrable.

(ii) For all t ∈ Ω\N with a zero set N ∈ A the function z 7→ f(z, t) is analytic.

(iii) If K ⊆ G is compact, then there exists an integrable function gK : Ω 7→ R, satisfying |f(z, t)| ≤
gK(t) for all z ∈ K and t ∈ Ω\N .

Then the function F (z) :=
∫
Ω f(z, t) dµ(t) is analytic in G.

7



1.1. PRELIMINARY RESULTS

Lemma 1.1.32. Let µ be a Borel measure on R and h : R → C be a Borel measureable function.

Assume further that |h(t)|
|t|+1 belongs to L1(R). Define a function f on the upper halfplane by

f(z) =

∫

R

h(t)

t− z
dµ(t).

Then f ∈ N+(C+).

Proof. By Lemma 1.1.16 every analytic function on the upper halfplane with nonnegative real part

belongs to N+(C+). Therefore, it is sufficient to show that f is a linear combination of such

functions. The function h(t) can be seperated into h(t) = (Reh(t))+ + i(Imh(t))+ − (Reh(t))− −
i(Imh(t))−. Here f+(t) := max{f(t), 0} defines the positive part and f−(t) := max{−f(t), 0} the

negative part of a function f . Hence, the integral is the same as

f(z) =

∫

R

(Reh(t))+ + i(Imh(t))+ − (Reh(t))− − i(Imh(t))−

t− z
dµ(t).

The imaginary part of 1
t−z satisfies

Im
1

t− z
= Im

t− x+ iy

(t− x)2 + y2
=

y

(t− x)2 + y2
> 0.

Therefore, all the integrals in

f(z) =

∫

R

(Reh(t))+

t− z
dµ(t) + i

∫

R

(Imh(t))+

t− z
dµ(t)−

∫

R

(Reh(t))−

t− z
dµ(t)− i

∫

R

(Imh(t))−

t− z
dµ(t)

have nonnegative imaginary part and, hence, f is the linear combination of functions with nonnega-

tive real part. By Lemma 1.1.16 such functions are outer if they are analytic on the upper halfplane.

Hence, it remains to show that these integrals converge and are analytic on C+. Lemma 1.1.31 is

used to show this. The first condition of this lemma is, that the function has to be integrable in

t for any z. Because the modulus of h is always greater than or equal to the positive or negative

part of the imaginary or real part of h it is sufficient to show

|h(t)|
|t− z| ≤ C̃

|h(t)|
|t|+ 1

.

Because |t|+1
|t−z| converges to 1 for |t| → ∞ there exists a C > 0 such that

|t|+ 1

|t− z| < 2 (1.1)

for |t| > C. Because z ∈ C+, the imaginary part of z is greater than zero. Hence,

|t− z| > δ

8



1.1. PRELIMINARY RESULTS

for all t ∈ R. Hence, for |t| ≤ C one gets

|t|+ 1 ≤ C + 1 = δ
C + 1

δ
< |t− z|C + 1

δ
.

With (1.1) this yields
|t|+ 1

|t− z| < max

{
2,
C + 1

δ

}

and further
|h(t)|
|t− z| ≤ max

{
2,
C + 1

δ

} |h(t)|
|t|+ 1

.

The second condition of Lemma 1.1.31 is, that the function has to be analytic in z ∈ C+ for any

fixed t, which is obvious. The last condition is, that for any compact subset K ⊂ C+ the function

must have a nonnegative, integrable majorant gK(t) independent of z ∈ K. As above it is sufficient

to show
|h(t)|
|t− z| ≤ CK

|h(t)|
|t|+ 1

for all z ∈ K with some CK ∈ R, because the modulus of h is always greater than or equal to the

positive or negative part of the imaginary or real part of h. The imaginary parts of the numbers z

in the compact set K satisfy Im z > δ for some δ > 0. Therefore, for any C > 0

|t− z| > δ

for all t ∈ R. Hence, for |t| ≤ C and all z ∈ K

|t|+ 1 ≤ C + 1 = δ
C + 1

δ
< |t− z|C + 1

δ
.

It remains to show that there exists a C > 0 such that

|t|+ 1

|t− z| < 2

for all z ∈ K and all |t| > C. Let z := maxz∈K Re z + iδ and z := minz∈K Re z + iδ. Then for

t > maxz∈K Re z

|t− z| =
√
(t− x)2 + y2 ≥

√
(t−max

z∈K
Re z)2 + δ2 = |t− z|

and for t < minz∈K Re z

|t− z| =
√
(t− x)2 + y2 ≥

√
(t−min

z∈K
Re z)2 + δ2 = |t− z|.

For z and z there exist C and C such that

|t|+ 1

|t− z| < 2

9



1.1. PRELIMINARY RESULTS

for |t| > C and
|t|+ 1

|t− z| < 2

for |t| > C. Hence, for |t| > max{C,C,maxz∈K Re z,minz∈K Re z} one gets

|t|+ 1

|t− z| < 2

for all z ∈ K.

The following theorem is a special kind of the Phragmen Lindelöf Principle. It can be found

e.g. in [1], Theorem 5.

Theorem 1.1.33. Let f be an analytic function on the closed right halfplane. Define

m(r) :=

π
2∫

−π
2

log+ |f(reiϕ)| cosϕdϕ.

If |f(iy)| ≤ 1 for all y ∈ R, then m(r)
r

is a nondecreasing function.

The next lemma is a reversed version of Fatou’s Lemma.

Lemma 1.1.34. Let µ be a Borel measure on R and (fn)n∈N be a sequence of Borel measureable

functions. Further, let g be a Borel measureable function satisfying
∫
R
g dµ <∞. If fn ≤ g µ-almost

everywhere for all n ∈ N, then

lim sup
n→∞

∫

R

fn dµ ≤
∫

R

lim sup
n→∞

fn dµ.

Proof. The functions g − fn are nonnegative. Hence, by Fatou’s Lemma
∫

R

lim inf
n→∞

(g − fn) dµ ≤ lim inf
n→∞

∫

R

(g − fn) dµ.

Because
∫
g dµ <∞ subtracting this value and changing signs gives

∫

R

lim sup
n→∞

fn dµ ≥ lim sup
n→∞

∫

R

fn dµ.

Lemma 1.1.35. Let f be an entire function of exponential type 0. If f is bounded on the imaginary

axis, then f is a constant.

10



1.2. DEFINITION AND BASIC PROPERTIES OF H(E)

Proof. Without loss of generality assume that f is bounded on the imaginary axis by 1. In the

general case |f(z)| < c for all z ∈ iR consider the function f̃ := f
c
. By assumption the exact type

of f has to be less than or equal to 0, i.e.

τf = lim sup
r→∞

max
ϕ∈(0,2π]

log |f(reiϕ)|
r

≤ 0. (1.2)

Let rn be any increasing sequence of radii converging to infinity. Define m(r) as in Theorem 1.1.33.

Then m(r)
r

is a nondecreasing function. Hence, for any fixed r ∈ R+

m(r)

r
≤ lim sup

n→∞

π
2∫

−π
2

log+ |f(rneiϕ)|
rn

cosϕdϕ.

Because the functions log+ |f(rneiϕ)|
rn

cosϕ are bounded by (1.2), the reversed version of Fatous Lemma

1.1.34 gives

lim sup
n→∞

π
2∫

−π
2

log+ |f(rneiϕ)|
rn

cosϕdϕ ≤

π
2∫

−π
2

lim sup
n→∞

log+ |f(rneiϕ)|
rn

cosϕdϕ ≤

π
2∫

−π
2

τf cosϕdϕ ≤ 0.

This yieldsm(r) ≡ 0 and, hence, f is bounded on the right halfplane. The same argument for f(−z)
shows that f is bounded everywhere and by Liouville’s Theorem f reduces to a constant.

Lemma 1.1.36. Let f be an entire function such that f, f# ∈ N(C+), where f#(z) := f(z). If f

is bounded on the imaginary axis, then f is a constant.

Proof. With Lemma 1.1.35 it is sufficient to show that f is of exponential type 0. By Kreins The-

orem 1.1.30 the function f is of exponential type and the exact type is smaller than the maximum

of the mean types of f and f#. Hence, it remains to show that these mean types are nonpositive.

One of the formulas for mean type in Theorem 1.1.11 is

τ = lim sup
y→∞

1

y
log |f(iy)| .

Because f is bounded on the imaginary axis, the mean type is less than or equal to 0. The same

holds for f# and, hence, f is of exponential type 0 and reduces to a constant.

1.2 Definition and basic properties of H(E)

The space H(E) is a special Hilbert space of entire functions. It is associated with an entire

function E. Starting with the original definition of de Branges, a new characterisation of these

11
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spaces through Hardy spaces is proved. Further, the functions K(w, z) satisfying

〈f,K(w, .)〉 = f(w)

for all f ∈ H(E) are defined, where 〈., .〉 is the inner product in H(E). At the end of the chapter

a characterisation of the spaces H(E) in all Hilbert spaces of entire functions is given.

Definition 1.2.1. For an entire function E with |E(z)| > |E(z)| for all z ∈ C+, H(E) is the space

of all entire functions f such that

‖f‖2E :=

∫

R

∣∣∣∣
f(t)

E(t)

∣∣∣∣
2

dt <∞

and such that f
E
, f

#

E
both belong to N(C+) and have nonpositive mean type. These spaces will be

referred to as de Branges spaces. An inner product is definded by

〈f, g〉E :=

∫

R

f(t)g(t)

|E(t)|2 dt.

The definition above is the original definition by de Branges in [3]. In the context of Hardy

spaces the following theorem gives an easier characterisation.

Theorem 1.2.2. Let H(E) be a de Branges space. Further let f be a complex valued function

defined on C\R. Then f has a continuation to C which belongs to H(E) if and only if f
E
, f

#

E
∈

H2(C+) and the boundary functions f̂
E
, f̂

#

E
∈ H2(R) satisfy f̂

E
(t) E(t)

E#(t)
= f̂#

E
(t).

For the proof the following lemmas are useful.

Lemma 1.2.3. Let µ be a Borel measure on R satisfying

∫

R

1

t2 + 1
dµ(t) <∞. (1.3)

Let ϕ ∈ L2(µ) and ψ be a function which is analytic on some open set G ⊆ C with R ⊆ G satisfying

∫

R

|ψ(t)|2
t2 + 1

dµ(t) <∞. (1.4)

Then the function ∫

R

ϕ(t)
ψ(t)− ψ(z)

t− z
dµ(t)

is analytic in G.

12



1.2. DEFINITION AND BASIC PROPERTIES OF H(E)

Proof. The proof makes use of Lemma 1.1.31 with f(z, t) = ϕ(t)ψ(t)−ψ(z)
t−z and Ω = R. The first

condition of this lemma is that f(z, t) has to be integrable for any fixed z ∈ G. Because t 7→ ψ(t)−ψ(z)
t−z

is an analytic and, hence, continuous function in G, it is bounded on every compact subset of R ⊆ G.

Because |t− z|2 and 1
2(t

2 +1) are both second order polynomials in t and the leading coefficient of

|t− z|2 is greater, there exists a C > 0 such that

|t− z|2 > 1

2
(t2 + 1)

for |t| > C. Further,

∫

R

∣∣∣∣ϕ(t)
ψ(t)− ψ(z)

t− z

∣∣∣∣ dµ(t) =
∫

[−C,C]

∣∣∣∣ϕ(t)
ψ(t)− ψ(z)

t− z

∣∣∣∣ dµ(t) +
∫

R\[−C,C]

∣∣∣∣ϕ(t)
ψ(t)− ψ(z)

t− z

∣∣∣∣ dµ(t)

where the first integral on the right side is finite by the Cauchy-Schwarz inequality. It remains to

show that the second integral is finite:
∫

R\[−C,C]

∣∣∣∣ϕ(t)
ψ(t)− ψ(z)

t− z

∣∣∣∣ dµ(t) ≤
∫

R\[−C,C]

∣∣∣∣ϕ(t)
ψ(t)

t− z

∣∣∣∣ dµ(t) +
∫

R\[−C,C]

∣∣∣∣ϕ(t)
ψ(z)

t− z

∣∣∣∣ dµ(t)

≤
∫

R\[−C,C]

∣∣∣∣∣∣
ϕ(t)

ψ(t)√
1
2(t

2 + 1)

∣∣∣∣∣∣
dµ(t)

+

∫

R\[−C,C]

∣∣∣∣∣∣
ϕ(t)

ψ(z)√
1
2(t

2 + 1)

∣∣∣∣∣∣
dµ(t)

≤
∫

R

|ϕ(t)| |ψ(t)|√
1
2(t

2 + 1)
dµ(t) +

∫

R

|ϕ(t)| |ψ(z)|√
1
2(t

2 + 1)
dµ(t)

≤ ‖ϕ‖L2(µ,R) ·

∥∥∥∥∥∥
ψ(t)√

1
2(t

2 + 1)

∥∥∥∥∥∥
L2(µ,R)

+ ‖ϕ‖L2(µ,R) · |ψ(z)|

∥∥∥∥∥∥
1√

1
2(t

2 + 1)

∥∥∥∥∥∥
L2(µ,R)

.

The norms are finite because of (1.3) and (1.4).

Condition (ii) in Lemma 1.1.31 is that z 7→ ψ(t)−ψ(z)
t−z ϕ(t) has to be analytic in G for any t ∈ R.

This is true by assumption.

It remains to show (iii). Let K ⊆ G be a compact set. Because K is bounded there exist C1,

such that |w| < C1. Hence, for |t| > C1

|t− w|2 ≥ (|t| − |w|)2 > (|t| − C1)
2.

13
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Therefore, there exists a C > 0, such that for any t with |t| ≥ C

|t− w|2 > (|t| − C1)
2 >

1

2
(t2 + 1).

Hence, for these t and w ∈ K

∣∣∣∣ϕ(t)
ψ(t)− ψ(w)

t− w

∣∣∣∣ ≤

∣∣∣∣∣∣
ϕ(t)

ψ(t)− ψ(w)√
1
2(t

2 + 1)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
ϕ(t)

ψ(t)√
1
2(t

2 + 1)

∣∣∣∣∣∣
+sup
w∈K

|ψ(w)|

∣∣∣∣∣∣
ϕ(t)

1√
1
2(t

2 + 1)

∣∣∣∣∣∣
. (1.5)

Because ψ is analytic, it is locally Lipschitz continuous in G. Thus, there exists an LK > 0 such

that

|ψ(t)− ψ(w)| ≤ LK |t− w|

and, hence,
|ψ(t)− ψ(w)|

|t− w| ≤ LK

for t and w in the compact set K ∪ [−C,C] ⊆ G. This leads to
∣∣∣∣ϕ(t)

ψ(t)− ψ(w)

t− w

∣∣∣∣ ≤ LK |ϕ(t)| (1.6)

for t ∈ (−C,C) and w ∈ K. Let gK be defined as

gK :=





LK |ϕ(t)| , t ∈ (−C,C)∣∣∣∣∣ϕ(t)
ψ(t)

√

1
2
(t2+1)

∣∣∣∣∣+ supw∈K |ψ(w)|
∣∣∣∣∣ϕ(t)

1
√

1
2
(t2+1)

∣∣∣∣∣ , t ∈ R\(−C,C).

The equations (1.5) and (1.6) show that |f(z, t)| ≤ gK(t) for all z ∈ K. The condition ϕ ∈ L2(µ,R)

implies ϕ ∈ L2(µ, (−C,C)) ⊆ L1(µ, (−C,C)) and the Cauchy-Schwarz inequality shows that the

remaining integrals in
∫
R
gK(t) dµ(t) converge:

∫

R

gK(t) dµ(t) =

∫

(−C,C)

LK |ϕ(t)| dµ(t)

+

∫

R\(−C,C)

∣∣∣∣∣∣
ϕ(t)

ψ(t)√
1
2(t

2 + 1)

∣∣∣∣∣∣
+ sup
w∈K

|ψ(w)|

∣∣∣∣∣∣
ϕ(t)

1√
1
2(t

2 + 1)

∣∣∣∣∣∣
dµ(t)

≤ LK‖ϕ(t)‖L1(µ,(−C,C)) + ‖ϕ‖L2(µ,R)

∥∥∥∥∥∥
ψ(t)√

1
2(t

2 + 1)

∥∥∥∥∥∥
L2(µ,R)

+ sup
w∈K

|ψ(w)|


‖ϕ‖L2(µ,R)

∥∥∥∥∥∥
1√

1
2(t

2 + 1)

∥∥∥∥∥∥
L2(µ,R)


 .

This shows (iii) of Lemma 1.1.31 and, therefore,
∫
R
ϕ(t)ψ(t)−ψ(z)

t−z dµ(t) is analytic in G.

14
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Lemma 1.2.4. Let H(E) be a de Branges space and f ∈ H(E). If E has a zero at some t0 ∈ R of

multiplicity mE, then f has a zero at t0 of multiplicity mf ≥ mE.

Proof. Argue by contradiction. Assume that the function f
E
has a pole of order m at t0. Then there

exists an entire function G with f(z)
E(z) = G(z)

(z−t0)m and G(t0) 6= 0. By continuity there are positive δ

and ε such that G(t) > ε for all t ∈ (t0 − δ, t0 + δ). Hence,

∫

R

∣∣∣∣
f(t)

E(t)

∣∣∣∣
2

dt ≥
∫

(t0−δ,t0+δ)

∣∣∣∣
f(t)

E(t)

∣∣∣∣
2

dt

=

∫

(t0−δ,t0+δ)

∣∣∣∣
G(t)

(t− t0)m

∣∣∣∣
2

dt

≥ ε

∫

(t0−δ,t0+δ)

1

(t− s)2m
dt

= ∞.

This is a contradiction to the integral condition

∫

R

∣∣∣∣
f(t)

E(t)

∣∣∣∣
2

dt <∞

in Definition 1.2.1.

Proof of Theorem 1.2.2. Assume first, that f
E
, f

#

E
belong to H2(C+). Because of H2(C+) ⊆

N+(C+) ⊆ N(C+) the functions are of bounded type and have nonpositive mean type by Theorem

1.1.15. The definition of H2(C+) yields the integral condition

∫

R

∣∣∣∣
f(t)

E(t)

∣∣∣∣
2

dt <∞.

It remains to show that f is entire. By the Cauchy representation 1.1.23 the following holds:

f(w)

E(w)
=

1

2πi

∫

R

f̂
E
(t)

t− w
dt 0 =

1

2πi

∫

R

f̂
E
(t)

t− w
dt w ∈ C

+

f#(w)

E(w)
=

1

2πi

∫

R

f̂#

E
(t)

t− w
dt 0 =

1

2πi

∫

R

f̂#

E
(t)

t− w
dt w ∈ C

−.

15
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Taking the conjugate of the equations for w ∈ C− yields

f(w) =
1

2πi

∫

R

f̂
E
(t)E(w)

t− w
dt 0 =

1

2πi

∫

R

f̂
E
(t)E(w)

t− w
dt w ∈ C

+

f(w) = − 1

2πi

∫

R

f̂#

E
(t)E(w)

t− w
dt 0 = − 1

2πi

∫

R

f̂#

E
(t)E(w)

t− w
dt w ∈ C

−.

Hence, for any w ∈ C\R

f(w) =
1

2πi

∫

R

f̂
E
(t)E(w)

t− w
−

f̂#

E
(t)E(w)

t− w
dt.

Then by the assumption made for the boundary functions

f(w) =
1

2πi

∫

R

f̂
E
(t)E(w)

t− w
−

f̂#

E
(t)E(w)

t− w
dt (1.7)

=
1

2πi

∫

R

f̂
E
(t)E(w)

t− w
−

f̂
E
(t) E(t)

E#(t)
E(w)

t− w
dt

=
1

2πi

∫

R

f̂

E
(t)E#(w)

E(w)
E#(w)

− E(t)
E#(t)

t− w
dt.

Now Lemma 1.2.3 with ψ(z) = E(z)
E#(z)

, ϕ(t) = f̂
E
(t) and µ = λ will show that f(w)

E#(w)
is an analytic

function on any set G, on which ψ is analytic. The assumptions of this lemma are, that
∫

R

1

1 + t2
dµ(t) <∞ (1.8)

that ψ is meromorphic and satisfies

∫

R

|ψ(t)|2
1 + t2

dµ(t) <∞

and, finally, that the function ϕ belongs to L2(µ). The condition (1.8) is a well known fact for

µ = λ. The integral condition for ψ(t) is true because of
∣∣∣ E(t)
E#(t)

∣∣∣ = 1 for all t ∈ R. Finally

f̂
E
(t) belongs to L2(R) by Theorem 1.1.23. The set G, on which E(z)

E#(z)
is analytic, contains the

closed lower halfplane, because |E(w)| > |E(w)| for w ∈ C+ and so
∣∣∣ E(t)
E#(t)

∣∣∣ = 1. Hence, f has

an analytic continuation to the closed lower halfplane. Because f
E

∈ H2(C+) it is analytic on the

upper halfplane too. Thus, it is entire.
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For the other implication let f belong to H(E). To show that the functions f
E

and f#

E
belong

to H2(C+) the integral condition of Definition 1.1.22

∫

R

∣∣∣∣∣
f̂

E
(t)

∣∣∣∣∣

2

dt <∞.

has to be satisfied and the functions have to belong to N+(C+). The integral condition is satisfied

by the Definition 1.2.1 of the space H(E). To show that the functions belong to N+(C+) Theorem

1.1.15 is used. That the functions have nonpositive mean type and are of bounded type is again

true by the Defintion 1.2.1 of the space H(E). It remains to show that dµ− = 0 in the factorisation

in 1.1.9. By Theorem 1.1.9 this is the case, if for every real interval (a, b) the functions f
E
, f

#

E
have

an analytic continuation across (a, b). Because f, f# and E are analytic the only problem could be

real zeros of E. At these zeros the function f must have a zero of higher multiplicity by Lemma

1.2.4. Hence, the functions are analytic on the closed upper halfplane and dµ− = 0.

Equation (1.7) in the proof also shows an interesting property of the function E(w)E(t)−E(t)E(w)
2πi|E(t)|2(t−w)

as is stated in the following Corollary.

Corollary 1.2.5. Let H(E) be a de Branges space. For any function f ∈ H(E)

f(w) =

∫

R

f(t)
1

2πi

E(w)E(t)− E(t)E(w)

|E(t)|2(t− w)
dt

for all w ∈ C.

Proof. Because f and E are entire functions, the boundary functions f̂
E
(t) and f̂#

E
(t) are the

restrictions of the functions to the real line. Hence, with (1.7)

f(w) =
1

2πi

∫

R

f̂
E
(t)E(w)

t− w
−

f̂#

E
(t)E(w)

t− w
dt

=
1

2πi

∫

R

f(t)
E(t)E(w)

t− w
−

f(t)
E#(t)

E#(w)

t− w
dt

=
1

2πi

∫

R

f(t)E(w)

E(t)(t− w)
− f(t)E#(w)

E#(t)(t− w)
dt

=
1

2πi

∫

R

f(t)
E#(t)E(w)− E(t)E#(w)

|E(t)|2(t− w)
dt

follows.
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Another characterisation of H(E) makes use of orthogonal complements.

Theorem 1.2.6. Let H(E) be a de Branges space. A complex valued function f , defined on R,

satisfying f
E
∈ L2(R) has a representative with a continuation f̃ ∈ H(E) if and only if there exists

a function g ∈
(
H2(C+)⊖ E#

E
H2(C+)

)
such that the boundary function ĝ(t) satisfies

ĝ(t) =
f(t)

E(t)
.

Here
(
H2(C+)⊖ E#

E
H2(C+)

)
is the orthogonal complement of the space

{
E#

E
f : f ∈ H2(C+)

}
in

H2(C+).

In this context the map g 7→ f̃ is an isometric isomorphism.

Proof. Let f̃ ∈ H(E) be a continuation of f . By Theorem 1.2.2 the functions f̃
E

and f̃#

E
belong to

H2(C+). By Theorem 1.1.26, H2(R) is orthogonal to {f : f ∈ H2(R)} in L2(R). Hence, for any

h ∈ H2(C+)

∫

R

f̃(t)

E(t)

E#(t)

E(t)
h(t) dt =

∫

R

f̃(t)

E#(t)
h(t) dt =

∫

R

(
f̃#(t)

E(t)

)
h(t) dt = 0.

Setting g = f̃
E

proves the first direction.

For the other implication let g ∈
(
H2(C+)⊖ E#

E
H2(C+)

)
with ĝ(t) = f(t)

E(t) . Define f̃(z) =

g(z)E(z) for z ∈ C+. Obviously, f
#(t)
E(t) ∈ L2(R). For h ∈ H2(R)

∫

R

f#(t)

E(t)
h(t) dt =

∫

R

f#(t)

E#(t)

E#(t)

E(t)
h(t) dt =

∫

R

(
f(t)

E(t)

)
E#(t)

E(t)
h(t) dt = 0.

This shows that f#(t)
E(t) is orthogonal to {f : f ∈ H2(R)} and, by Theorem 1.1.26, f#(t)

E(t) ∈ H2(R).

Hence, by Definition 1.1.24 there exists a function g2 ∈ H2(C+) such that the boundary function

satisfies ĝ2(t) =
f#(t)
E(t) . Define f̃(z) = g#2 (z)E#(z) for z ∈ C−. Now f̃ is an analytic function defined

on C\R such that f̃
E
, f̃

#

E
∈ H2(C+). The boundary functions satisfy

̂̃
f

E

E(t)

E#(t)
= ĝ(t)

E(t)

E#(t)
=
f(t)

E(t)

E(t)

E#(t)
=

f(t)

E#(t)
= ĝ2(t) =

̂̃
f#

E
(t).

Hence, by Theorem 1.2.2 the function f̃ belongs to H(E) and is obviously a continuation of f .

To show that the map g 7→ f̃ is an isometric isomorphism let g1, g2 ∈
(
H2(C+)⊖ E#

E
H2(C+)

)

and λ, µ ∈ C. As shown above the images f̃1, f̃2 of g1 and g2 satisfy ĝj(t) =
f̃j(t)
E(t) for almost every
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t ∈ R. The image f̃ of λg1 + µg2 satisfies ̂λg1 + µg2(t) =
f̃(t)
E(t) for almost every t ∈ R. Hence,

λf̃1(t) + µf̃2(t)

E(t)
= λĝ1(t) + µĝ2(t)

= λ lim
y→0+

g1(t+ iy) + µ lim
y→0+

g2(t+ iy)

= lim
y→0+

(λg1(t+ iy) + µg2(t+ iy))

= ̂λg1 + µg2(t)

=
f̃(t)

E(t)

almost everywhere on R. Because f̃j and f̃ are analytic

f̃ = λf̃1 + µf̃2

follows. Isometry is shown by

‖g‖H2(C+) =

∫

R

|ĝ(t)|2 dt =
∫

R

∣∣∣∣∣
f̃(t)

E(t)

∣∣∣∣∣

2

dt = ‖f̃‖H(E).

Corollary 1.2.7. Let H(E) be a de Branges space. Then H(E) is a Hilbert space.

Proof. By Theorem 1.2.6 the space H(E) is isometrically isomorphic to
(
H2(C+)⊖ E#

E
H2(C+)

)
.

This is a closed subspace of the Hilbert space H2(C+) and, hence, a Hilbert space.

A useful property of the function E is given in the following Lemma.

Lemma 1.2.8. Let H(E) be a de Branges space. Then the function E#(z)
E(z) is inner and has a

factorisation

E#(z)

E(z)
= e−iτzB(z)

where τ is nonpositive and B is a Blaschke product.

Proof. By definition |E(z)| > |E#(z)| on C+ and, hence,
∣∣∣E

#(z)
E(z)

∣∣∣ < 1. Obviously |E(t)|
|E(t)| = 1 and,

hence, the function is inner. The factorisation now follows from Theorem 1.1.9 with the fact that
E#(z)
E(z) is analytic on the closed upper halfplane.
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Theorem 1.2.9. Let H(E) be a de Branges space. Define functions A and B by

A(z) :=
E(z) + E#(z)

2

and

B(z) :=
E(z)− E#(z)

2
i.

Then E(z) = A(z) − iB(z). The functions A and B are real for real z and satisfy A(w) = A(w),

B(w) = B(w).

For any w ∈ C define the function

K(w, z) :=
B(z)A(w)−A(z)B(w)

π(z − w)
.

Then K(w, z) ∈ H(E) as a function of z and it can also be written as

K(w, z) =
E(z)E(w)− E#(z)E(w)

2π(z − w)
i.

In particular, H(E) always contains nonzero functions.

Proof. To show the properties of A and B calculate

A(z)− iB(z) =
E(z) + E#(z)

2
+
E(z)− E#(z)

2
= E(z)

and

A(w) =
E(w) + E(w)

2
=
E(w) + E(w)

2
= A(w)

B(w) =
E(w)− E(w)

2
i =

E(w)− E(w)

2
i = B(w).

Because B(z)A(w) − A(z)B(w) is entire and has a zero at w the function K(w, z) is entire.

K(w, z) can be rewritten as

K(w, z) =
B(z)A(w)−A(z)B(w)

π(z − w)

=
(E(z)− E#(z))(E(w) + E#(w))− (E(z) + E#(z))(−E(w) + E#(w))

4π(z − w)
i

=
2E(z)E(w)− 2E#(z)E#(w)

4π(z − w)
i

=
E(z)E(w)− E#(z)E(w)

2π(z − w)
i.
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In particular,
K(w, z)2π(z − w)

E(z)i
= E(w)− E(z)

E(z)
E(w).

The function E(z)
E(z) is inner by Lemma 1.2.8. By Lemma 1.1.16 constants belong to N+(C+) and

sums and products of these functions are again in N+(C+). Hence, K(w,z)(z−w)
E(z) ∈ N+(C+). Let

w ∈ C+. By Lemma 1.1.18 the function K(w,z)
E(z) belongs to N+(C+). If w /∈ C+ then (z − w) is

outer by Lemma 1.1.16 and again K(w,z)
E(z) ∈ N+(C+). The same holds for K#(w,z)

E(z) because

K#(w, z) = K(w, z) =
B(z)A(w)−A(z)B(w)

π(z − w)
=
B(z)A(w)−A(z)B(w)

π(z − w)
= K(w, z).

It remains to show, that K(w, t) satisfies the integral condition

∫

R

∣∣∣∣
K(w, t)

E(t)

∣∣∣∣
2

dt <∞.

Firstly,

K(w, t)

E(t)
=

−E(w) + E(t)
E(t)E(w)

2πi(t− w)

is a continuous function of t ∈ R because −E(w) + E(t)
E(t)E(w) is continuous and has a zero at w.

Therefore, the integral over bounded subsets of R is finite and, hence,
∫

R

∣∣∣∣
K(w, t)

E(t)

∣∣∣∣
2

dt ≤ C +

∫

{t∈R:|t−w|>1}

∣∣∣∣
K(w, t)

E(t)

∣∣∣∣
2

dt

≤ C +

∫

{t∈R:|t−w|>1}

∣∣∣∣∣∣
−E(w) + E(t)

E(t)E(w)

2π(t− w)

∣∣∣∣∣∣

2

dt

≤ C +

∫

{t∈R:|t−w|>1}

(|E(w)|+ |E(w)|)2
4π2|t− w|2 dt

≤ C +
(|E(w)|+ |E(w)|)2

4π2

∫

{t∈R:|t−w|>1}

1

|t− w|2 dt

<∞.

To show that H(E) contains nonzero functions let w, z ∈ C+, w 6= z. Then

|K(w, z)| =
∣∣∣∣∣
E(z)E(w)− E#(z)E(w)

2π(z − w)

∣∣∣∣∣ ≥
∣∣|E(z)||E(w)| − |E(z)||E(w)|

∣∣
2π|z − w| > 0

because |E(z)| > |E(z)| for all z ∈ C+. Hence, K(w, .) belongs to H(E) and is not identically

zero.
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The functions K(w, z) have a very important property.

Theorem 1.2.10. Let H(E) be a de Branges space and for w ∈ C let K(w, z) be the function

defined in Theorem 1.2.9. Then for any f ∈ H(E)

〈f,K(w, .)〉E = f(w).

Spaces with this property are called reproducing kernel Hilbert spaces. The functions K(., .) are

called kernel functions.

Proof. The property is just an easy application of Corollary 1.2.5 and the representation of K in

Theorem 1.2.9:

〈f,K(w, .)〉E =

∫

R

f(t)
E(t)E(w)− E(t)E(w)

2π(t− w)|E(t)|2 (−i) dt

=

∫

R

f(t)
1

2πi

E(t)E(w)− E(t)E(w)

|E(t)|2(t− w)
dt

= f(w).

Theorem 1.2.11. Let H be a reproducing kernel Hilbert space, consisting of functions defined and

analytic on some open set G ⊆ C with kernel functions K(., .). Then

K(w, v) = K(v, w).

Furthermore, ifM ⊆ G is a set with accumulation point in G, then the span of all functions K(w, z)

with w ∈M is dense in H.

Proof. The first property is shown by

K(w, v) = 〈K(w, z),K(v, z)〉 = 〈K(v, z),K(w, z)〉 = K(v, w).

It remains to prove that the linear span is dense. Let f be a function in the orthogonal

complement of this span. Then

f(w) = 〈f,K(w, .)〉 = 0

for all w ∈M and, hence, f ≡ 0.

The following theorem gives a characterisation of de Branges spaces among all Hilbert spaces

of entire functions.
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Theorem 1.2.12. A Hilbert space H 6= {0} consisting of entire functions such that the sum (scalar

multiplication) is just the pointwise sum (scalar multiplication) coincides with a de Branges space

H(E) if and only if it satisfies:

(i) For f ∈ H, w ∈ C\R with f(w) = 0 the function f(z)(z−w)
z−w belongs to H and has the same

norm as f .

(ii) For w ∈ C\R the functional Φw : f 7→ f(w) is continuous.

(iii) For any f, g ∈ H the functions f#, g# belong to H and the inner product satisfies 〈f, g〉 =〈
g#, f#

〉
.

Proof. Let H(E) be a de Branges space. Then (ii) is satisfied because

〈f(t),K(w, t)〉E = f(w).

To show (i) first note that f(z)(z−w)
z−w is entire. The functions f

E
and f#

E
are in N+(C+). Assume

that w ∈ C+. By Lemma 1.1.18 the function f(z)
E(z)(z−w) belongs to N+(C+) and by Lemma 1.1.16

the polynomial (z − w) is outer. Hence, f(z)(z−w)
E(z)(z−w) ∈ N+(C+) by Lemma 1.1.16. Further, division

by (z−w) just changes the outer part and (z−w) belongs to N+(C+). Hence, z−w
z−w ∈ N+(C+) and

f#(z)(z−w)
E(z)(z−w) ∈ N+(C+) follows. If w ∈ C− then f(z)(z−w)

E(z)(z−w) ∈ N+(C+) because division by (z − w)

just changes the outer part and (z − w) ∈ N+(C+). The function f#

E
has a zero at w ∈ C+ and

by Lemma 1.1.18 f#(z)
E(z)(z−w) ∈ N+(C+). Hence, f

#(z)(z−w)
E(z)(z−w) ∈ N+(C+). In both cases the functions

f#(z)(z−w)
E(z)(z−w) and f(z)(z−w)

E(z)(z−w) belong to N+(C+). The integral condition is trivial because
∣∣∣ t−wt−w

∣∣∣ = 1 for

t ∈ R. Therefore, in any case f(z)(z−w)
z−w belongs to H.

Because (f#)#

E
= f

E
and f#

E
are in N+(C+) and |f#(t)| = |f(t)|, the function f# belongs to

H(E). Further,

〈f, g〉 =
∫

R

f(t)g(t)

|E(t)|2 dt =

∫

R

f#(t)g#(t)

|E(t)|2 dt =
〈
g#, f#

〉
.

Hence, (iii) holds.

Thus, every de Branges space has the properties (i), (ii) and (iii). Now let H 6= {0} be any

Hilbert space of entire functions satisfying these conditions. By property (ii) and the Riesz–Fischer

representation theorem there exist functions z 7→ K(w, z), w ∈ C\R, such that

〈f,K(w, .)〉 = f(w)

for all f ∈ H. By this property

0 ≤ ‖K(α, .)‖2 = 〈K(α, .),K(α, .)〉 = K(α, α)
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follows. Assume that K(α, α) = 0 for some α ∈ C\R. Then K(α, .) = 0 and, hence,

0 = 〈f,K(α, .)〉 = f(α)

for all f ∈ H. By property (i) the function f(z)(z−α)
z−α belongs to H for all f . Therefore,

f(z)(z − α)

z − α
− f(z) =

f(z)(z − α)− f(z)(z − α)

z − α

=
f(z)z − f(z)α− f(z)z + f(z)α

z − α
(1.9)

= (α− α)
f(z)

z − α

shows that f(z)
z−α ∈ H. The same argument gives f(z)

(z−α)n ∈ H for any n ∈ N. This can only be the

case if f ≡ 0, which contradicts H 6= {0}. Thus, K(α, α) > 0 for all α ∈ C\R. Other properties of

K are

K(α,w) = 〈K(α, .),K(w, .)〉 = 〈K(w, .),K(α, .)〉 = K(w,α)

and because of K#(α, z) ∈ H by property (iii)

K(α,w) =
〈
K#(α, .),K(w, .)

〉

= 〈K(α, .),K#(w, .)〉

=
〈
K#(w, .),K(α, .)

〉
(1.10)

= K(w,α)

= K(α,w).

To construct a de Branges space which is isometrically equal to H, define for some fixed α ∈ C+

the function E : C → C by

E(z) = − 2πi(α− z)K(α, z)√
2πi(α− α)K(α, α)

where i(α− α) ∈ R+ because α ∈ C+ and K(α, α) ∈ R+ by the calculations above. The aim is to

show that this function E produces a de Branges space with kernel K.

By property (i) the map f(z) 7→ f(z)(z−w)
z−w is an isometry on the set of all functions with a zero

at w. Because (K(w, z) − K(α,z)K(w,α)
K(α,α) ) belongs to H and has a zero at α, for any f ∈ H with

f(α) = 0 the following equations hold by properties (i) and (ii) (here z is the independent variable
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in the inner product)

〈
f(z),

(
K(w, z)− K(α, z)K(w,α)

K(α, α)

)
z − α

z − α

〉
=

〈
f(z)

z − α

z − α
,K(w, z)− K(α, z)K(w,α)

K(α, α)

〉

=

〈
f(z)

z − α

z − α
,K(w, z)

〉

−
(
K(w,α)

K(α, α)

)〈
f(z)

z − α

z − α
,K(α, z)

〉

= f(w)
w − α

w − α

=

(
〈f(z),K(w, z)〉 − K(w,α)

K(α, α)
〈f(z),K(α, z)〉

)
w − α

w − α

=

〈
f(z),

(
K(w, z)− K(α, z)K(w,α)

K(α, α)

)
w − α

w − α

〉
.

Therefore,

(
K(w, z)− K(α, z)K(w,α)

K(α, α)

)
z − α

z − α
−
(
K(w, z)− K(α, z)K(w,α)

K(α, α)

)
w − α

w − α
∈ {f ∈ H : f(α) = 0}⊥.

Due to (1.10) this function also belongs to {f ∈ H : f(α) = 0}. Hence,
(
K(w, z)− K(α, z)K(w,α)

K(α, α)

)
z − α

z − α
=

(
K(w, z)− K(α, z)K(w,α)

K(α, α)

)
w − α

w − α
.

Therefore,

(w − α)(z − α)K(α, α)K(w, z)− (w − α)(z − α)K(α, z)K(w,α) =

= (w − α)(z − α)K(α, α)K(w, z)− (w − α)(z − α)K(α, z)K(w,α)

and, further,

(
(w − α)(z − α)− (w − α)(z − α)

)
K(α, α)K(w, z) =

= (w − α)(z − α)K(α, z)K(w,α)− (w − α)(z − α)K(α, z)K(w,α).

Thus,

(wz − wα− αz + αα− wz + wα+ αz − αα)K(α, α)K(w, z) =

= (w − α)(z − α)K(α, z)K(w,α)− (w − α)(z − α)K(α, z)K(w,α).

Hence,

K(w, z) =
(w − α)(z − α)K(α, z)K(w,α)− (w − α)(z − α)K(α, z)K(w,α)

(−wα− αz + wα+ αz)K(α, α)
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and, finally,

K(w, z) =
(w − α)(z − α)K(α, z)K(w,α)− (w − α)(z − α)K(α, z)K(w,α)

(z − w)(α− α)K(α, α)
.

Hence,

E(z)E(w)− E#(z)E(w)

2π(z − w)
i =

2πi(α−z)K(α,z)(2πi(α−w)K(α,w))
2πi(α−α)K(α,α) − (2πi(α−z)K(α,z))2πi(α−w)K(α,w)

2πi(α−α)K(α,α)

2π(z − w)
i

=
(α− z)K(α, z)(α− w)K(w,α)− (α− z)K(α, z)(α− w)K(w,α)

(z − w)(α− α)K(α, α)

= K(w, z).

To show |E(z)| > |E(z)| for z ∈ C+ set w = z in the equation above. Then

0 < K(z, z) =
E(z)E(z)− E#(z)E(z)

2π(z − z)
i,

where i
z−z ∈ R+ and, hence,

0 < E(z)E(z)− E(z)E(z) = |E(z)|2 − |E(z)|2.

Thus, there exists a Hilbert space H(E) with the same kernel as H.

Let f be any function in H. To prove that f is also in H(E) consider the set M := {K(w, .) :

w ∈ C\R}. The linear span of this set is contained in H(E) and in H. Moreover, all functions

in spanM have the same norm in both spaces. Because no nonzero function can be orthogonal to

this subspace by Theorem 1.2.11 the closure has to be the whole space in both cases. Hence, there

exists a sequence fn(z) ∈ span(M) with limn→∞ fn = f in H. This sequence is a Cauchy sequence

in H and the norm of these functions is the same in H(E). Hence, it is a Cauchy sequence in H(E).

By completeness it has to converge in H(E) to some g ∈ H(E). For any w ∈ C

f(w) = 〈f(.),K(w, .)〉 = lim
n→∞

〈fn(.),K(w, .)〉 = lim
n→∞

〈fn(.),K(w, .)〉E = 〈g(.),K(w, .)〉E = g(w).

Therefore, f = g ∈ H(E). The same argument shows that any g ∈ H(E) is contained in H. Hence,

the spaces are equal.
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Chapter 2

Functions associated with H(E)

Some entire functions that do not necessarily belong to H(E) are of great interest in the theory of

de Branges spaces. These so called associated functions will be introduced in this chapter. Further,

some equivalences and other sufficient conditions for a function to be associated will be proved.

2.1 Associated functions

Definition 2.1.1. Let H(E) be a de Branges space and S be an entire function. Then S is called

associated with H(E) if for every f ∈ H(E) and every α ∈ C the function f(z)S(α)−f(α)S(z)
z−α belongs

to H(E).

A useful characterisation of functions associated with H(E) is the following.

Theorem 2.1.2. Let H(E) be a de Branges space and S be an entire function. Then the following

assertions are equivalent:

(i) S is associated with H(E).

(ii) For some α ∈ C and some f ∈ H(E) with f(α) 6= 0 the function f(z)S(α)−f(α)S(z)
z−α belongs to

H(E).

(iii) S
E
, S

#

E
are in N+(C+) and satisfy

∫

R

|S(t)|2
|E(t)|2(1 + t)2

dt <∞.

Proof. (iii) ⇒ (i): To show that S is associated the function g(z) := f(z)S(α)−f(α)S(z)
z−α has to belong

to H(E) for any f ∈ H(E) and α ∈ C. As S
E
, f
E

belong to N+(C+) the function f(z)S(α)−f(α)S(z)
E(z)
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belongs to N+(C+). Assume that α ∈ C+. Then f(z)S(α)−f(α)S(z)
E(z) has a zero at α because E has

no zeros on the upper halfplane. Therefore, by Lemma 1.1.18 the function g(z)
E(z) =

f(z)S(α)−f(α)S(z)
E(z)(z−α)

belongs to N+(C+). If α ∈ C−, the polynomial (z − α) is outer by Lemma 1.1.16. Hence, the

function g(z)
E(z) =

f(z)S(α)−f(α)S(z)
E(z)(z−α) belongs to N+(C+) in this case, too. As S#

E
, f

#

E
belong to N+(C+)

similar arguments show that g#(z)
E(z) = f#(z)S(α)−f(α)S#(z)

E(z)(z−α) belongs to N+(C+). To show that g(z)

belongs to H(E), it remains to show the integral condition. Because g(z) = f(z)S(α)−f(α)S(z)
z−α is

continuous, it is bounded on the compact set {t ∈ R : 2|t− α|2 ≤ t2 + 1}. Hence,
∫

R

∣∣∣∣
f(t)S(α)− f(α)S(t)

E(t)(t− α)

∣∣∣∣
2

dt ≤ C1 + 2

∫

{t∈R:2|t−α|2>t2+1}

∣∣∣∣
f(t)S(α)− f(α)S(t)

E(t)

∣∣∣∣
2 1

t2 + 1
dt

≤ C1 + 2C2

∫

R

( |f(t)|2
|E(t)|2(t2 + 1)

+
|S(t)|2

|E(t)|2(t2 + 1)

)
dt (2.1)

<∞.

This proves the implication.

(i) ⇒ (ii) is trivial by the definition of associated functions.

To prove (ii) ⇒ (iii) let α ∈ C and f belong to H(E) with f(α) 6= 0 such that f(z)S(α)−f(α)S(z)
E(z)(z−α)

belongs to H(E). Then f(z)S(α)−f(α)S(z)
E(z)(z−α) ∈ N+(C+) and f#(z)S(α)−f(α)S#(z)

E(z)(z−α) belong to N+(C+).

By Lemma 1.1.16 polynomials belong to N+(C+) and products of functions in N+(C+) belong to

N+(C+). Hence, f(z)S(α)−f(α)S(z)
E(z) and f#(z)S(α)−f(α)S#(z)

E(z) belong to N+(C+). Because f ∈ H(E),

the functions S(α)f(z)
E(z) and S(α)f#(z)

E(z) belong to N+(C+) and with this f(α)S(z)
E(z) , f(α)S

#(z)
E(z) ∈ N+(C+).

By assumption f(α) 6= 0. Hence, S(z)
E(z) ,

S#(z)
E(z) belong to N+(C+). Further,

∫

R

∣∣∣∣
f(t)S(α)− f(α)S(t)

E(t)(t− α)

∣∣∣∣
2

dt <∞.

This and the fact that
∣∣∣ t−αt−i

∣∣∣ is bounded on R lead to

∫

R

∣∣∣∣
|f(t)S(α)| − |f(α)S(t)|

E(t)

∣∣∣∣
2 1

(1 + t2)
dt ≤

∫

R

∣∣∣∣
f(t)S(α)− f(α)S(t)

E(t)

∣∣∣∣
2 1

(1 + t2)
dt

=

∫

R

∣∣∣∣
f(t)S(α)− f(α)S(t)

E(t)(t− i)

∣∣∣∣
2

dt

< C

∫

R

∣∣∣∣
f(t)S(α)− f(α)S(t)

E(t)(t− α)

∣∣∣∣
2

dt

<∞.
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Because
∫
R

∣∣∣ f(t)E(t)

∣∣∣
2
dt <∞ the relation

∫

R

∣∣∣∣
S(t)

E(t)

∣∣∣∣
2 1

(1 + t2)
dt <∞

follows.

Corollary 2.1.3. Let H(E) be a de Branges space. An entire function S is associated with H(E)

if and only if there exist ϕ, ψ ∈ H(E) such that

S(z) = ϕ(z) + zψ(z).

Proof. Let S be associated. Then there exists an α ∈ C and an f ∈ H(E) with f(α) 6= 0 such that

g(z) := f(z)S(α)−f(α)S(z)
z−α belongs to H(E). It is easy to see that

S(z) =
f(z)S(α)− g(z)(z − α)

f(α)
.

With ϕ(z) := f(z)S(α)+g(z)α
f(α) and ψ(z) := −g(z)

f(α) one gets

S(z) = ϕ(z) + zψ(z).

For the other implication let S(z) = ϕ(z) + zψ(z). For any α ∈ C with S(α) 6= 0 define

f ∈ H(E) by

f(z) :=
ϕ(z) + αψ(z)

S(α)
.

Then, obviously, f(α) = 1. Hence,

f(z)S(α)− f(α)S(z)

z − α
=

ϕ(z)+αψ(z)
S(α) S(α)− (ϕ(z) + zψ(z))

z − α

=
ϕ(z) + αψ(z)− ϕ(z)− zψ(z)

z − α

=
(α− z)ψ(z)

z − α

= −ψ(z).

This function belongs to H(E) and, by Theorem 2.1.2, S is associated.

This gives an immediate result for the real zeros of S.

Corollary 2.1.4. Let H(E) be a de Branges space and S be associated with H(E). If E has a zero

at some t0 ∈ R of multiplicity mE, then S has a zero at t0 of multiplicity mS ≥ mE.
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Proof. By Lemma 1.2.4 the same property holds for f ∈ H(E) in place of S. Corollary 2.1.3 shows

that zeros of all functions in H(E) are zeros of S.

Now some examples of functions associated with H(E) can be given.

Example 2.1.5.

• Linear combinations of associated functions are again associated by Corollary 2.1.3.

• E and E# are associated by Theorem 2.1.2, because E#

E
is inner and, hence, belongs to

N+(C+) and the integral
∫
R

1
(1+t2)

dt is finite.

• The functions A and B satisfying E(z) = A(z) − iB(z) as defined in Theorem 1.2.9 are

associated, because they are linear combinations of E and E#.

Corollary 2.1.6. Let H(E) be a de Branges space. For all α ∈ C with E(α) 6= 0 there exists some

f ∈ H(E) such that

f(α) 6= 0.

Proof. Argue by contradiction. Assume that there exists an α ∈ C with E(α) 6= 0 such that f(α)

vanishes for all f ∈ H(E). Because E is associated and E(α) 6= 0 the function

f(z)E(α)− f(α)E(z)

z − α
=
f(z)E(α)

z − α

belongs to H(E). Therefore, f(z)
z−α belongs to H(E) for all f ∈ H(E). Hence, all f(z)

(z−α)n for all

n ∈ N belong to H(E). This can only be true for f ≡ 0, which is a contradiction to H(E) 6= {0}
in Theorem 1.2.9.

Corollary 2.1.7. Let H(E) be a de Branges space. For all α ∈ C with E(α) 6= 0 the function

K(α, z) does not vanish at α.

Proof. By Theorem 1.2.10

K(α, α) = 〈K(α, z),K(α, z)〉 = ‖K(α, z)‖2.

By Corollary 2.1.6 there has to exist a function f ∈ H(E) with f(α) 6= 0. Hence,

〈f(z),K(α, z)〉 = f(α) 6= 0

follows. Therefore K(α, z) is not identically zero and

‖K(α, z)‖ 6= 0.
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Lemma 2.1.8. Let H(E) be a de Branges space and S,R be entire functions. Let R be associated

with H(E). Assume further, that there exists an α ∈ C with R(α) 6= 0 such that

R(z)S(α)−R(α)S(z)

z − α
∈ H(E).

Then S is associated with H(E).

Proof. With

h(z) :=
R(z)S(α)− S(z)R(α)

z − α

one gets

S(z) =
1

R(α)
(R(z)S(α)− (z − α)h(z)) .

Applying Corollary 2.1.3 to R(z) yields that the function S(z) satisfies

S(z) =
1

R(α)

(
(ϕ(z) + zψ(z))S(α)− (z − α)h(z)

)

=
1

R(α)

(
S(α)ϕ(z) + αh(z) + z(S(α)ψ(z)− h(z))

)
.

Therefore, again by Corollary 2.1.3 S(z) is associated with H(E).

Another useful sufficient condition for a function to be associated, is obtained by an estimate

on the imaginary axis:

Theorem 2.1.9. Let H(E) be a de Branges space and let S be an entire function with S(z)
E(z) and

S#(z)
E(z) ∈ N(C+) and such that S(z)

E(z) has no real singularities. Let µ be a Borel measure on R such

that H(E) is isometrically contained in L2(µ), i.e. every function f ∈ H(E) restricted to the real

line belongs to L2(µ) and ∥∥f
∥∥
H(E)

=
∥∥f
∣∣
R

∥∥
L2(µ)

.

Assume that there exists no nonzero entire function Q which is associated with H(E) and is zero

µ-almost everywhere. If ∫

R

|S(t)|2
1 + t2

dµ(t) <∞,

lim sup
y→∞

∣∣∣∣
S(iy)

E(iy)

∣∣∣∣ <∞,

and

lim sup
y→∞

∣∣∣∣
S(−iy)
E(iy)

∣∣∣∣ <∞,

then S is associated with H(E).
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Proof. The idea is to show that for each function f ∈ H(E) the function f(z)S(w)−S(z)f(w)
z−w is

orthogonal to L2(µ)⊖H(E). Therefore, let h be any function in L2(µ)⊖H(E). Define a function

L(z) for z ∈ C, such that S(z)
E(z) is analytic at z, by

E(z)L(z) =

∫

R

E(t)S(z)− S(t)E(z)

t− z
h(t) dµ(t). (2.2)

With dν := |E(t)|2dµ this yields

L(z) =

∫

R

E(t) S(z)
E(z) − S(t)

t− z
h(t) dµ(t) =

∫

R

S(z)
E(z) −

S(t)
E(t)

t− z
E(t)h(t) dµ(t) =

∫

R

S(z)
E(z) −

S(t)
E(t)

t− z

h(t)

E(t)
dν(t).

In a similar way a function L̃(z) for z ∈ C, such that S(z)
E#(z)

is analytic at z, can be defined using

E#(z) in place of E(z):

E#(z)L̃(z) =

∫

R

E#(t)S(z)− S(t)E#(z)

t− z
h(t) dµ(t)

and

L̃(z) =

∫

R

S(z)
E#(z)

− S(t)
E#(t)

t− z

h(t)

E(t)
dν(t).

To prove that L is analytic Lemma 1.2.3 is used with dµ = dν, ψ(z) = S(z)
E(z) and ϕ = h(t)

E(t)
. The first

condition in the lemma is ∫

R

1

1 + t2
dν(t) <∞.

By definition this is the same as ∫

R

|E(t)|2
1 + t2

dµ(t) <∞. (2.3)

The function K(i, z) belongs to H(E) and, hence, by assumption to L2(µ), i.e. ‖K(i, z)‖L2(µ) <

∞. By the characterisation of K(w, z) in terms of E and E# in Theorem 1.2.9 and the triangle

inequality

∞ >

∫

R

|K(i, z)|2 dµ(t) =
∫

R

∣∣∣∣∣
E(t)E(i)− E(t)E(−i)

2π(t+ i)
i

∣∣∣∣∣

2

dµ(t)

≥
∫

R

∣∣|E(t)||E(i)| − |E(t)||E(−i)|
∣∣2

4π2(t2 + 1)
dµ(t)

=

∫

R

|E(t)|2
4π2(t2 + 1)

∣∣|E(i)| − |E(−i)|
∣∣2 dµ(t)
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and, because |E(i)| > |E(−i)|, condition (2.3) is verified. The other condition is

∫

R

∣∣∣ S(t)E(t)

∣∣∣
2

1 + t2
dν(t) <∞.

By the definition of dν this is equivalent to

∫

R

|S(t)|2
1 + t2

dµ(t) <∞,

which is true by assumption. It remains to show that h(t)

E(t)
∈ L2(ν). This is true by the definition

of dν and because of h(t) ∈ L2(µ). Now Lemma 1.2.3 states that L(z) is analytic where S(z)
E(z) is

analytic. This includes the upper halfplane and the real line. A similar proof shows the same

property for L̃(z) on the closed lower halfplane. To show that these two functions are continuations

of each other let f be any function in H(E). Then

f(w)
E(z)S(w)− S(z)E(w)

z − w
= E(w)

f(z)S(w)− S(z)f(w)

z − w
+ S(w)

E(z)f(w)− f(z)E(w)

z − w
(2.4)

where the left hand side belongs to L2(µ) because (similar as in (2.1))

∫

R

∣∣∣∣
E(t)S(w)− S(t)E(w)

t− w

∣∣∣∣
2

dµ(t) ≤ C1 + C2

∫

R

( |E(t)|2
t2 + 1

+
|S(t)|2
t2 + 1

)
dµ(t) <∞.

The last term on the right hand side of (2.4) belongs to H(E), because E is an associated function.

Because of h(t) ∈ L2(µ)⊖H(E) and the definition of L(w) in (2.2),

f(w)E(w)L(w) =

∫

R

f(w)
E(t)S(w)− S(t)E(w)

t− w
h(t) dµ(t) =

∫

R

E(w)
f(t)S(w)− S(t)f(w)

t− w
h(t) dµ(t)

for any w ∈ C+, E(w) 6= 0 and, hence,

f(w)L(w) =

∫

R

f(t)S(w)− S(t)f(w)

t− w
h(t) dµ(t).

In the same way

f(w)L̃(w) =

∫

R

f(t)S(w)− S(t)f(w)

t− w
h(t) dµ(t)

for any w ∈ C−, E#(w) 6= 0. By Corollary 2.1.6 there has to be a function f ∈ H(E) with f(w) 6= 0

for all w ∈ C with E(w) 6= 0. Hence, L(w) = L̃(w) for all w ∈ R with E(w) 6= 0. Because both
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functions are analytic on a neighbourhood of R, they have to coincide there and continue each other

to an entire function. On the imaginary axis for y > 1 the identity

L(iy) =
S(iy)

E(iy)

∫

R

E(t)h(t)

t− iy
dµ(t)−

∫

R

S(t)h(t)

t− iy
dµ(t)

holds true. By the Cauchy-Schwarz inequality,

∣∣∣∣∣∣

∫

R

E(t)h(t)

t− iy
dµ(t)

∣∣∣∣∣∣

2

≤



∫

R

|E(t)|2
t2 + y2

dµ(t)





∫

R

|h(t)|2 dµ(t)




where the function in the first integral on the right hand side can be dominated by |E(t)|2
t2+1

. By

Lebesgues Theorem it approaches zero as y → ∞. Hence, the left hand side converges to zero. The

same argument shows that
∫
R

S(t)h(t)
t−iy dµ(t) approaches zero as y tends to infinity. By assumption

lim sup
y→∞

∣∣∣∣
S(iy)

E(iy)

∣∣∣∣ <∞

and, hence,

lim
y→∞

|L(iy)| = 0.

A similar argument using L̃(z) and for y < −1 the identity

L#(iy) =
S#(iy)

E(iy)

∫

R

E(t)h(t)

t− iy
dµ(t)−

∫

R

S#(t)h(t)

t− iy
dµ(t)

and the assumption

lim sup
y→∞

∣∣∣∣
S(−iy)
E(iy)

∣∣∣∣ <∞

lead to

lim
y→∞

|L(−iy)| = 0.

To show that L(z) and L#(z) belong to N(C+), Lemma 1.1.32 is used. The function L satisfies

L(z) =
S(z)

E(z)

∫

R

E(t)h(t)

t− z
dµ(t)−

∫

R

S(t)h(t)

t− z
dµ(t)

on the upper halfplane. Because h(t) ∈ L2(µ) and
∫
R

|E(t)|2
1+t2

dµ(t) < ∞ and
∫
R

|S(t)|2
1+t2

dµ(t) < ∞
the functions |E(t)h(t)|

|t|+1 and |S(t)h(t)|
|t|+1 belong to L1(µ) by the Cauchy-Schwarz inequality and because

1 + t2 ≤ (1 + |t|)2. Hence, the assumptions of the lemma are satisfied. As S(z)
E(z) ∈ N(C+) and

34



2.2. STRONGLY ASSOCIATED FUNCTIONS

because products of functions of bounded type are of bounded type again, L(z) belongs to N(C+).

The function L#(z) satisfies

L#(z) =
S#(z)

E(z)

∫

R

E(t)h(t)

t− z
dµ(t)−

∫

R

S#(t)h(t)

t− z
dµ(t)

on the upper halfplane and again with Lemma 1.1.32 the function belongs to N(C+). The results

above show that L is bounded on the imaginary axis and by Lemma 1.1.36 it reduces to a constant.

Because the limit on the imaginary axis is zero, L has to vanish identically.

By the definition of L(w) this yields

0 =

∫

R

E(t)S(w)− S(t)E(w)

t− w
h(t) dµ(t)

for all w ∈ C. Since h(t) was any function in L2(µ) ⊖ H(E) for some fixed w0 ∈ C, the function
E(z)S(w0)−S(z)E(w0)

z−w0
has to coincide with a function T (z) ∈ H(E) considered as an element of L2(µ).

For w0 ∈ C with E(w0) 6= 0 define the entire function

S̃(z) :=
−T (z)(z − w0) + S(w0)E(z)

E(w0)
.

Obviously S̃(w0) = S(w0), S̃ and S are µ-equivalent and

T (z) =
S̃(w0)E(z)− S̃(z)E(w0)

z − w0
.

By Lemma 2.1.8, S̃(z) is associated with H(E) and, hence, S̃(w)E(z)−S̃(z)E(w)
z−w ∈ H(E) for any

w ∈ C. The function P (z) := S(z) − S̃(z) is now zero µ-almost everywhere and for a fixed, but

arbitrary w ∈ C the function E(z)P (w)−P (z)E(w)
z−w has to coincide with some Rw(z) ∈ H(E) considered

as an element of L2(µ). As above for w ∈ C with E(w) 6= 0 the function

P̃w(z) :=
−Rw(z)(z − w) + P (w)E(z)

E(w)

satisfies P (w) = P̃w(w), is µ-equivalent to P (z) and, hence, is zero µ-almost everywhere. It fulfils
E(z)P̃w(w)−P̃w(z)E(w)

z−w = Rw(z) ∈ H(E) and, thus, is associated. By assumption the function P̃w(z)

has to vanish everywhere, because it is an associated µ-almost everywhere vanishing entire function.

Especially P (w) = P̃w(w) = 0. By the arbitrariness of the w with E(w) 6= 0, the function P vanishes

identically and, hence, S(z) = S̃(z).

2.2 Strongly associated functions

To study in some kind stronger associated functions the following linear relation is defined:

35



2.2. STRONGLY ASSOCIATED FUNCTIONS

Definition 2.2.1. Let H(E) be a de Branges space and S be an entire function. Then a linear

relation MS is defined as

MS := {(f ; g) ∈ H(E)2 : ∃c ∈ C : g(z) = zf(z) + cS(z)}.

Elements of MS will often be written as (f ; zf + cS).

Lemma 2.2.2. Let H(E) be a de Branges space and S be an entire function. Then MS is a linear

relation.

Proof. Let (f ; zf + c1S), (g; zg + c2S) ∈MS and λ ∈ C then

(f + λg; zf + c1S + λ(zg + c2S)) = (f + λg; z(f + λg) + (c1 + λc2)S)

Because H(E) is a linear space, this pair belongs to MS .

Lemma 2.2.3. Let H(E) be a de Branges space, S be an entire function and α ∈ C. If S(α) 6= 0

then ker(MS − α) = {0}. In particular, (MS − α)−1 : ran(MS − α) → H(E) is an operator.

Proof. The linear relation (MS − α) is

(MS − α) = {(g(z); zg(z) + cS(z)− αg(z)) ∈ H(E)2 : c ∈ C}

Hence, g ∈ ker(MS − α) if g ∈ H(E) and there exists a c ∈ C such that

zg(z) + cS(z)− αg(z) = 0.

This is the equivalent to

g(z) = −cS(z)
z − α

.

Because g belongs to H(E) and, thus, is entire, the function cS(z) must have a zero at α. But

S(α) 6= 0 and, therefore, the constant c has to vanish. Hence,

g(z) = −cS(z)
z − α

≡ 0.

Lemma 2.2.4. Let H(E) be a de Branges space, S be an entire function and α ∈ C such that

S(α) 6= 0. Then S is associated with H(E) if and only if ran(MS − α) = H(E). In this case

(MS − α)−1 is the operator satisfying

(MS − α)−1(f)(z) =
f(z)− f(α)

S(α)S(z)

z − α

for all f ∈ H(E).
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Proof. Assume that S is associated. The linear relation (MS − α) is

(MS − α) =
{(
g(z); zg(z) + cS(z)− αg(z)

)
∈ H(E)2 : c ∈ C

}
.

For any f ∈ H(E) the function g(z) := f(z)S(α)−f(α)S(z)
z−α belongs to H(E) by the definition of

associated functions. Therefore,

zg(z)− αg(z) + f(α)S(z) = g(z)(z − α) + f(α)S(z)

=
f(z)S(α)− f(α)S(z)

z − α
(z − α) + f(α)S(z)

= f(z)S(α)− f(α)S(z) + f(α)S(z)

= f(z)S(α).

Hence, zg(z)− αg(z) + f(α)S(z) ∈ H(E) and
(
g(z); zg(z)− αg(z) + f(α)S(z)

)
=
(
g(z); f(z)S(α)

)
∈ (MS − α).

Because ran(MS − α) is a linear space and S(α) 6= 0 the function f(z) belongs to ran(MS − α).

Therefore, ran(MS − α) = H(E).

For the other implication let ran(MS − α) = H(E). Let f be any nonzero function in H(E) =

ran(MS − α). Then there exists a function g ∈ H(E) such that (g; f) ∈ (MS − α). Hence,

f(z) = zg(z) + cS(z)− αg(z).

In particular, f(α) = cS(α). Because S(α) 6= 0, g(z) satisfies

g(z) =
f(z)− f(α)

S(α)S(z)

z − α
, (2.5)

and, hence, the function f(z)S(α)−f(α)S(z)
z−α belongs to H(E). By Corollary 2.1.4 E(α) cannot vanish

and by Corollary 2.1.6 there exists an f ∈ H(E) such that f(α) 6= 0. Therefore, S is associated

with H(E) by Theorem 2.1.2.

Equation (2.5) shows the desired property for the operator (MS − α)−1.

Theorem 2.2.5. For a nonzero entire function S and a de Branges space H(E) with E(z) =

A(z)− iB(z) as in Theorem 1.2.9 the following assertions are equivalent:

(i) S(z) = uA(z) + vB(z) with uv = uv.

(ii) S is associated with H(E) and the following equation holds for f, g ∈ H(E) and α, β ∈ C\R
with S(α), S(β) 6= 0:

0 =

〈
f(t)S(α),

g(t)S(β)− S(t)g(β)

t− β

〉
−
〈
f(t)S(α)− S(t)f(α)

t− α
, g(t)S(β)

〉

+ (α− β)

〈
f(t)S(α)− S(t)f(α)

t− α
,
g(t)S(β)− S(t)g(β)

t− β

〉 (2.6)
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(iii) For some w ∈ C\R and z ∈ C

K(w, z)S(w)−K(w,w)S(z)

z − w
=
K(w, z)S(w)−K(w,w)S(z)

z − w

and |S(w)|2 = |S(w)|2.

(iv) MS is selfadjoint.

Proof. (i)⇔(iv): Assume that MS is selfadjoint. Then

(
(MS − w)−1

)∗
= (MS − w)−1

and, hence,

〈
(MS − w)−1(K(w, z)),K(β, z)

〉
=
〈
K(w, z), (MS − w)−1(K(β, z))

〉

holds true for β,w ∈ C, S(w) 6= 0 and S(w) 6= 0. By Lemma 2.2.4 this is equivalent to

〈
K(w, z)− K(w,w)

S(w) S(z)

z − w
,K(β, z)

〉
=

〈
K(w, z),

K(β, z)− K(β,w)
S(w) S(z)

z − w

〉

Hence, by Theorem 1.2.10,

K(w, β)− K(w,w)
S(w) S(β)

β − w
=
K(w, β)− K(w,β)

S(w)
S(w)

w − w
.

The definition of K(w, z) in Theorem 1.2.9,

K(w, z) =
B(z)A(w)−A(z)B(w)

π(z − w)
,

leads to

B(β)A(w)−A(β)B(w)
π(β−w) −

B(w)A(w)−A(w)B(w)
π(w−w)

S(w) S(β)

β − w
=

B(β)A(w)−A(β)B(w)
π(β−w) −

B(β)A(w)−A(β)B(w)
π(β−w)

S(w)
S(w)

w − w
.

Multiplication with π(β − w)(w − w)(β − w)S(w)S(w) yields

S(w)S(w)(w − w)(B(β)A(w)−A(β)B(w))− S(w)(β − w)(B(w)A(w)−A(w)B(w))S(β) =

= −S(w)S(w)(β − w)(B(β)A(w)−A(β)B(w)) + S(w)(β − w)(B(β)A(w)−A(β)B(w))S(w).

This is equivalent to

S(w)S(w)(β − w)(B(β)A(w)−A(β)B(w))− S(w)(β − w)(B(w)A(w)−A(w)B(w))S(β) =

= S(w)(β − w)(B(β)A(w)−A(β)B(w))S(w).
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For β 6= w

S(w)S(w)(B(β)A(w)−A(β)B(w))− S(w)(B(w)A(w)−A(w)B(w))S(β) =

= S(w)(B(β)A(w)−A(β)B(w))S(w)

follows. Hence, for w ∈ C with (B(w)A(w)−A(w)B(w)) 6= 0 and S(w) 6= 0

S(β) =
S(w)S(w)(B(β)A(w)−A(β)B(w))− S(w)(B(β)A(w)−A(β)B(w))S(w)

S(w)(B(w)A(w)−A(w)B(w))
. (2.7)

Because for all w ∈ C\R the value K(w,w) 6= 0 by Corollary 2.1.7 and the definition of K(w, z)

(B(w)A(w)−A(w)B(w)) 6= 0

for w ∈ C\R. If S does not vanish identically, there has to be a w ∈ C\R satisfying S(w) 6= 0.

Hence, there exists a w ∈ C such that (2.7) holds for all β ∈ C\{w}. Because both sides are entire

functions the equation holds throughout C. The right hand side is a linear combination of A and

B. Therefore, S(z) = uA(z) + vB(z) for some u, v ∈ C.

It remains to show that with S(z) = uA(z) + vB(z) the linear relation MS is selfadjoint if and

only if uv ∈ R.

The linear relationMS is selfadjoint if and only if
(
(MS − w)−1

)∗
= (MS−w)−1 for some w ∈ C

with S(w), S(w) 6= 0. Because the linear span of all functions K(w, z) is dense in H(E), this is

equivalent to

〈
(MS − w)−1(K(α, z)),K(β, z)

〉
=
〈
K(α, z), (MS − w)−1(K(β, z))

〉
(2.8)

for all α, β ∈ C. By Example 2.1.5 the function S is associated. Hence, the characterisation for

(MS − w)−1 in Lemma 2.2.4 can be used. Therefore, (2.8) is equivalent to

〈
K(α, z)− K(α,w)

S(w) S(z)

z − w
,K(β, z)

〉
=

〈
K(α, z),

K(β, z)− K(β,w)
S(w) S(z)

z − w

〉
.

By the property of K(w, z) in Theorem 1.2.10 this equation holds if and only if

K(α, β)− K(α,w)
S(w) S(β)

β − w
=
K(α, β)− K(w,β)

S(w)
S(α)

α− w

and, further, if and only if

(α− β)K(α, β)− (α− w)K(α,w)

S(w)
S(β) = −(β − w)K(w, β)

S(w)
S(α).
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With S(z) = uA(z) + vB(z) and K(w, z) = B(z)A(w)−A(z)B(w)
π(z−w) this is equivalent to

(−B(β)A(α) +A(β)B(α))− −B(w)A(α) +A(w)B(α)

uA(w) + vB(w)
(uA(β) + vB(β)) =

=
−B(β)A(w) +A(β)B(w)

uA(w) + vB(w)
(uA(α) + vB(α)).

This can be rewritten as

(−B(β)A(α) +A(β)B(α))(uA(w) + vB(w)) + (B(w)A(α)−A(w)B(α))(uA(β) + vB(β))

uA(w) + vB(w)
=

=
(−B(β)A(w) +A(β)B(w))(uA(α) + vB(α))

uA(w) + vB(w)
.

Computing the left hand side leads to

−B(β)A(α)uA(w) +A(β)B(α)vB(w) +B(w)A(α)uA(β)−A(w)B(α)vB(β)

uA(w) + vB(w)
=

=
(−B(β)A(w) +A(β)B(w))(uA(α) + vB(α))

uA(w) + vB(w)
.

This is obviously equivalent to

(A(α)u+B(α)v)(−B(β)A(w) +B(w)A(β))

uA(w) + vB(w)
=

(−B(β)A(w) +A(β)B(w))(uA(α) + vB(α))

uA(w) + vB(w)
.

For (−B(β)A(w) +B(w)A(β)) 6= 0 this is the same as

(A(α)u+B(α)v)

uA(w) + vB(w)
=

(uA(α) + vB(α))

uA(w) + vB(w)
. (2.9)

Because S(w), S(w) 6= 0 this is equivalent to

B(α)vuA(w) +A(α)uvB(w) = = vB(α)uA(w) + uA(α)vB(w),

and, finally, to

(uv − vu)(A(α)B(w)−B(α)A(w)) = 0.

Hence, S(z) = uA(z) + vB(z) is selfadjoint if and only if uv ∈ R.

(iv) and (i) ⇒(iii): With S(z) = uA(z)+vB(z) equation (2.9) follows. Choosing α = w it reads

(A(w)u+B(w)v)

uA(w) + vB(w)
=

(uA(w) + vB(w))

uA(w) + vB(w)
.

The definition of S leads to
S(w)

S(w)
=
S(w)

S(w)
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and, further, to
S(w)

S(w)
=
S(w)

S(w)
.

With this one gets

S(w)

S(w)

f(w)S(w)− f(w)S(w)

w − w
=
S(w)

S(w)

f(w)S(w)− f(w)S(w)

w − w
, f ∈ H(E).

Hence,

S(w)
f(w)− f(w)

S(w)S(w)

w − w
= S(w)

f(w)− f(w)
S(w)S(w)

w − w
, f ∈ H(E).

Because (MS − w)−1 has to be bijective by assumption, Lemma 2.2.4 leads to

S(w)
(
(MS − w)−1

)
(f)(w) = S(w)

(
(MS − w)−1

)
(f)(w), f ∈ H(E).

By the property of K(w, z) in Theorem 1.2.10 this is the same as

S(w)
〈(
(MS − w)−1

)
(f)(z),K(w, z)

〉
= S(w)

〈(
(MS − w)−1

)
(f)(z),K(w, z)

〉
, f ∈ H(E).

(2.10)

By (iv) the linear relation MS is selfadjoint. Therefore,

(
(MS − w)−1

)∗
=
(
(M∗

S − w)−1
)
=
(
(MS − w)−1

)
.

Hence, (2.10) is equivalent to

〈
f(z), S(w)

(
(MS − w)−1

)
(K(w, .))(z)

〉
=
〈
f(z), S(w)

(
(MS − w)−1

)
(K(w, .))(z)

〉
∀f ∈ H(E).

This yields

S(w)
(
(MS − w)−1

)
(K(w, .))(z) = S(w)

(
(MS − w)−1

)
(K(w, .))(z)

and again with Lemma 2.2.4 the desired equation

K(w, z)S(w)−K(w,w)S(z)

z − w
=
K(w, z)S(w)−K(w,w)S(z)

z − w
.

(iii)⇒(i): Let w be as in the assumption. By definition in 1.2.9

K(w, z) :=
B(z)A(w)−A(z)B(w)

π(z − w)

Hence, assumption (iii) is equivalent to

(B(z)A(w)−A(z)B(w))S(w)

π(z − w)(z − w)
− (B(w)A(w)−A(w)B(w))S(z)

π(w − w)(z − w)
=

=
(B(z)A(w)−A(z)B(w))S(w)

π(z − w)(z − w)
− (B(w)A(w)−A(w)B(w))S(z)

π(w − w)(z − w)
.

41



2.2. STRONGLY ASSOCIATED FUNCTIONS

This can be rewritten as

S(z)
A(w)B(w)−B(w)A(w)

π(w − w)

(
1

z − w
− 1

z − w

)
=

=
A(w)B(z)S(w)−A(z)B(w)S(w)−A(w)B(z)S(w) +A(z)B(w)S(w)

π(z − w)(z − w)

and, further,

S(z)
A(w)B(w)−B(w)A(w)

π(w − w)(z − w)(z − w)
(z − w − z + w) =

=
A(w)B(z)S(w)−A(z)B(w)S(w)−A(w)B(z)S(w) +A(z)B(w)S(w)

π(z − w)(z − w)
.

Multiplying with π(z − w)(z − w) yields that this is equivalent to

S(z)
(
A(w)B(w)−B(w)A(w)

)
=

= A(w)B(z)S(w)−A(z)B(w)S(w)−A(w)B(z)S(w) +A(z)B(w)S(w).

Hence, S(z) calculates as

S(z) =
A(w)B(z)S(w)−A(z)B(w)S(w)−A(w)B(z)S(w) +A(z)B(w)S(w)

A(w)B(w)−B(w)A(w)

or, equivalently,

S(z) = A(z)
−B(w)S(w) +B(w)S(w)

A(w)B(w)−B(w)A(w)
+B(z)

A(w)S(w)−A(w)S(w)

A(w)B(w)−B(w)A(w)
.

It remains to show that uv = uv with

u =
−B(w)S(w) +B(w)S(w)

A(w)B(w)−B(w)A(w)

and

v =
A(w)S(w)−A(w)S(w)

A(w)B(w)−B(w)A(w)
.

Because A(w) = A(w), B(w) = B(w) and S(w)S(w) = S(w)S(w)

uv =
−B(w)S(w) +B(w)S(w)

A(w)B(w)−B(w)A(w)
· A(w)S(w)−A(w)S(w)

A(w)B(w)−B(w)A(w)

=
B(w)S(w)A(w)S(w)−B(w)S(w)A(w)S(w)−B(w)S(w)A(w)S(w) +B(w)S(w)A(w)S(w)

(A(w)B(w)−B(w)A(w))2

=
B(w)S(w)A(w)S(w)−B(w)S(w)A(w)S(w)−B(w)S(w)A(w)S(w) +B(w)S(w)A(w)S(w)

(A(w)B(w)−B(w)A(w))2

=
−B(w)S(w) +B(w)S(w)

A(w)B(w)−B(w)A(w)
· A(w)S(w)−A(w)S(w)

A(w)B(w)−B(w)A(w)

= uv.
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(ii)⇒(iv): Due to Lemma 2.2.4 for S(α), S(β) 6= 0 equation (2.6) reads as

0 =
〈
f(t)S(α),

(
(MS − β)−1

)
(g)(t)S(β)

〉
−
〈(
(MS − α)−1

)
(f)(t)S(α), g(t)S(β)

〉

+ (α− β)
〈(
(MS − α)−1

)
(f)(t)S(α),

(
(MS − β)−1

)
(g)(t)S(β)

〉
.

With f̃(t) := f(t)S(α) and g̃(t) := g(t)S(β) this yields

0 =
〈
f̃(t),

(
(MS − β)−1

)
(g̃)(t)

〉
−
〈(

(MS − α)−1
)
(f̃)(t), g̃(t)

〉

+ (α− β)
〈(

(MS − α)−1
)
(f̃)(t),

(
(MS − β)−1

)
(g̃)(t)

〉
.

For α = β one gets

0 =
〈
f̃(t),

(
(MS − β)−1

)
(g̃)(t)

〉
−
〈(

(MS − β)−1
)
(f̃)(t), g̃(t)

〉
.

This is true for all f̃ , g̃ ∈ H(E). Because (MS − β)−1 is an operator by Lemma 2.2.4

(MS − β)−1 = ((MS − β)−1)∗.

This yields

(MS − β)−1 = (M∗
S − β)−1

and, finally,

MS =M∗
S .

(iv) and (i) ⇒ (ii): By Example 2.1.5 S(z) = uA(z) + vB(z) is associated. It remains to show

the equality

0 =

〈
f(t)S(α),

g(t)S(β)− S(t)g(β)

t− β

〉
−
〈
f(t)S(α)− S(t)f(α)

t− α
, g(t)S(β)

〉

+ (α− β)

〈
f(t)S(α)− S(t)f(α)

t− α
,
g(t)S(β)− S(t)g(β)

t− β

〉
.

Since S(α), S(β) 6= 0, this is equivalent to

0 =

〈
f(t),

g(t)− g(β)
S(β)S(t)

t− β

〉
−
〈
f(t)− f(α)

S(α)S(t)

t− α
, g(t)

〉

+ (α− β)

〈
f(t)− f(α)

S(α)S(t)

t− α
,
g(t)− g(β)

S(β)S(t)

t− β

〉
.

By the characterisation of the operator (MS − w)−1 in Lemma 2.2.4 this can be rewritten as

0 =
〈
f(t), (MS − β)−1(g)(t)

〉
−
〈
(MS − α)−1(f)(t), g(t)

〉

+ (α− β)
〈
(MS − α)−1(f)(t), (MS − β)−1(g)(t)

〉
.
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Using adjoint operators this is equivalent to

0 =
〈
f(t), (MS − β)−1(g)(t)

〉
−
〈
f(t),

(
(MS − α)−1

)∗
(g)(t)

〉

+ (α− β)
〈
f(t),

(
(MS − α)−1

)∗
(MS − β)−1(g)(t)

〉
.

Since this equation has to hold for all f, g belonging to H(E), it is equivalent to the operator

equation

(MS − β)−1 −
(
(MS − α)−1

)∗
+ (α− β)

(
(MS − α)−1

)∗
(MS − β)−1 = 0.

Because MS is selfadjoint this operator is equal to

(MS − β)−1 − (MS − α)−1 + (α− β)(MS − α)−1(MS − β)−1.

Thus, it vanishes by the resolvent identity.

Definition 2.2.6. Let H(E) be a de Branges space and S be an entire function. S is called strongly

associated with H(E) if it satisfies the equivalent conditions in Theorem 2.2.5.

Theorem 2.2.7. Let H(E) be a de Branges space and let Q be associated with H(E). Further, let

µ be a Borel measure on R with Q = 0 µ-almost everywhere and such that H(E) is isometrically

contained in L2(µ). Then Q is strongly associated, H(E) fills L2(µ), µ((a, b)) = 0 if Q has no zeros

in (a, b) and µ({t}) = 1
K(t,t) if Q(t) = 0.

Proof. By Theorem 2.2.5 the function Q is strongly associated if

0 =

〈
f(t)Q(α),

g(t)Q(β)−Q(t)g(β)

t− β

〉

H(E)

−
〈
f(t)Q(α)−Q(t)f(α)

t− α
, g(t)Q(β)

〉

H(E)

+ (α− β)

〈
f(t)Q(α)−Q(t)f(α)

t− α
,
g(t)Q(β)−Q(t)g(β)

t− β

〉

H(E)

.

Because H(E) is isometrically contained in L2(µ) this is equivalent to

0 =

〈
f(t)Q(α),

g(t)Q(β)−Q(t)g(β)

t− β

〉

L2(µ)

−
〈
f(t)Q(α)−Q(t)f(α)

t− α
, g(t)Q(β)

〉

L2(µ)

+ (α− β)

〈
f(t)Q(α)−Q(t)f(α)

t− α
,
g(t)Q(β)−Q(t)g(β)

t− β

〉

L2(µ)

.
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As Q = 0 µ-almost everywhere the right hand side calculates as

〈
f(t)Q(α),

g(t)Q(β)

t− β

〉

L2(µ)

−
〈
f(t)Q(α)

t− α
, g(t)Q(β)

〉

L2(µ)

+ (α− β)

〈
f(t)Q(α)

t− α
,
g(t)Q(β)

t− β

〉

L2(µ)

=

∫

R

f(t)Q(α)g(t)Q(β)

t− β
dµ(t)−

∫

R

f(t)Q(α)g(t)Q(β)

t− α
dµ(t) + (α− β)

∫

R

f(t)Q(α)g(t)Q(β)

(t− α)(t− β)
dµ(t)

=

∫

R

(t− α)f(t)Q(α)g(t)Q(β)− (t− β)f(t)Q(α)g(t)Q(β) + (α− β)f(t)Q(α)g(t)Q(β)

(t− α)(t− β)
dµ(t)

= 0.

Hence, Q is strongly associated. The property that µ((a, b)) = 0 if Q has no zeros on (a, b) is

obviously true since Q = 0 µ-almost everywhere. Let (tn)
N
n=1 with N ∈ N ∪ {∞} be the set of real

zeros of Q(z). Then

K(tj , tj) = 〈K(tj , .),K(tj , .)〉H(E) = 〈K(tj , .),K(tj , .)〉L2(µ) =
N∑

i=1

µ({ti}) |K(tj , ti)|2. (2.11)

Because Q is strongly associated, Q(z) = uA(z) + vB(z) with uv = uv. Hence, the zeros ti of Q

satisfy A(ti) = − v
u
B(ti). With the representation K(w, z) = B(z)A(w)−A(z)B(w)

π(z−w) and the fact that

A(z) and B(z) are real for real z one gets

(tj − ti)πK(ti, tj) = B(tj)A(ti)−A(tj)B(ti) = −B(tj)
v

u
B(ti) +

v

u
B(tj)B(ti) = 0

for any i 6= j. Hence, in (2.11)

K(tj , tj) = µ({tj}) |K(tj , tj)|2.

This yields the desired identity µ({tj}) = 1
K(tj ,tj)

. It remains to show thatH(E) fills L2(µ). Assume

that f ∈ L2(µ)⊖H(E). Then

0 = 〈f,K(tj , .)〉L2(µ) =

∫

R

f(t)K(tj , t) dµ(t) =

=

N∑

i=1

f(ti)K(tj , ti)µ({ti}) = f(tj)K(tj , tj)
1

K(tj , tj)
= f(tj).

Hence, f = 0 µ-almost everywhere. This means f = 0 in L2(µ).

Theorem 2.2.8. Let H(E) be a de Branges space. A function S ∈ H(E) is strongly associated if

and only if it is orthogonal to the domain of multiplication by the independent variable z.
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Proof. Let S be strongly associated and let f be in the domain of multiplication by z. Because

(z − w)f(z) ∈ H(E) with a zero at w one gets for any w ∈ C\R

〈(t− w)f(t), S(t)〉K(w,w) = 〈(t− w)f(t), S(t)K(w,w)〉 − 〈(t− w)f(t),K(w, t)S(w)〉
= 〈(t− w)f(t), S(t)K(w,w)−K(w, t)S(w)〉 .

With property (iii) in Theorem 2.2.5

S(z)K(w,w)−K(w, z)S(w)

z − w
=
S(z)K(w,w)−K(w, z)S(w)

z − w

and, hence,

〈(t− w)f(t), S(t)〉K(w,w) = 〈(t− w)f(t), S(t)K(w,w)−K(w, t)S(w)〉

=

〈
(t− w)f(t), (S(t)K(w,w)−K(w, t)S(w))

t− w

t− w

〉

Because multiplication with t−w
t−w is an isometry

〈(t− w)f(t), S(t)〉K(w,w) = 〈(t− w)f(t), S(t)K(w,w)−K(w, t)S(w)〉
= 〈(t− w)f(t), S(t)〉K(w,w).

Since K(w,w) = K(w,w) 6= 0,

〈wf(t), S(t)〉 = 〈wf(t), S(t)〉 .

This is only possible if S is orthogonal to f .

For the other direction let S be orthogonal to the domain of multiplication. Obviously, any

function in H(E) is associated with H(E). To show that S is strongly associated it remains to

prove the equality

0 =

〈
f(t)S(α),

g(t)S(β)− S(t)g(β)

t− β

〉
−
〈
f(t)S(α)− S(t)f(α)

t− α
, g(t)S(β)

〉

+ (α− β)

〈
f(t)S(α)− S(t)f(α)

t− α
,
g(t)S(β)− S(t)g(β)

t− β

〉

for any f, g ∈ H(E) and α, β ∈ C. Because with S and g the linear combination g(z)S(β)−S(z)g(β)
belongs to H(E), the ratio g(z)S(β)−S(z)g(β)

z−β belongs to the domain of multiplication by z − β and,
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hence, to the domain of multiplication by z. The same applies for f(z)S(α)−S(z)f(α)
z−α . Hence,

〈
f(t)S(α),

g(t)S(β)− S(t)g(β)

t− β

〉
−
〈
f(t)S(α)− S(t)f(α)

t− α
, g(t)S(β)

〉

+ (α− β)

〈
f(t)S(α)− S(t)f(α)

t− α
,
g(t)S(β)− S(t)g(β)

t− β

〉

=

〈
f(t)S(α)− S(t)f(α),

g(t)S(β)− S(t)g(β)

t− β

〉
−
〈
f(t)S(α)− S(t)f(α)

t− α
, g(t)S(β)− S(t)g(β)

〉

+ (α− β)

〈
f(t)S(α)− S(t)f(α)

t− α
,
g(t)S(β)− S(t)g(β)

t− β

〉

= −
〈
f(t)S(α)− S(t)f(α)

t− α
, g(t)S(β)− S(t)g(β)

〉

+

〈
(t− α)(f(t)S(α)− S(t)f(α)) + (α− β)(f(t)S(α)− S(t)f(α))

t− α
,
g(t)S(β)− S(t)g(β)

t− β

〉

= −
〈
f(t)S(α)− S(t)f(α)

t− α
, g(t)S(β)− S(t)g(β)

〉

+

〈
(t− β)(f(t)S(α)− S(t)f(α))

t− α
,
g(t)S(β)− S(t)g(β)

t− β

〉

= −
〈
f(t)S(α)− S(t)f(α)

t− α
,
(t− β)(g(t)S(β)− S(t)g(β)) + β(g(t)S(β)− S(t)g(β))

t− β

〉

+

〈
t(f(t)S(α)− S(t)f(α))

t− α
,
g(t)S(β)− S(t)g(β)

t− β

〉

= −
〈
f(t)S(α)− S(t)f(α)

t− α
,
t(g(t)S(β)− S(t)g(β))

t− β

〉

+

〈
t(f(t)S(α)− S(t)f(α))

t− α
,
g(t)S(β)− S(t)g(β)

t− β

〉

= −
∫

R

f(t)S(α)− S(t)f(α)

t− α

t(g(t)S(β)− S(t)g(β))

t− β

1

|E(t)|2 dt

+

∫

R

t(f(t)S(α)− S(t)f(α))

t− α

g(t)S(β)− S(t)g(β)

t− β

1

|E(t)|2 dt

= 0.

47



2.2. STRONGLY ASSOCIATED FUNCTIONS

48



Chapter 3

Ordering Theorem

The main result of this chapter is an Ordering Theorem for de Branges spaces: Under some minor

assumptions all de Branges spaces contained in some space L2(µ) are totally ordered with respect

to inclusion. The first part of this chapter contains preliminary results that are needed for the

proof. In the second part the Ordering Theorem is stated and proved.

3.1 Preliminary results

Lemma 3.1.1. Let g(t) ∈ L2(a, b) where (a, b) ⊂ R is a finite interval. If

b∫

a

g(t) dt = 0

and

G(t) =

t∫

a

g(s) ds,

then

π2
b∫

a

|G(t)|2 dt ≤ (b− a)2
b∫

a

|g(t)|2 dt.

Proof. Firstly, consider the case a = 0, b = 2π. It is well known that the functions sin(nt), cos(nt),

n ∈ Z are a complete orthogonal set of L2(0, 2π). With this it is easy to see that the functions
1√
2π
eit(n+

1
2
) are a complete orthonormal set of L2(0, 2π). Integration by parts yields

2π∫

0

g(t)
1√
2π
eit(n+

1
2
) dt = −

2π∫

0

G(t)i

(
n+

1

2

)
1√
2π
eit(n+

1
2
) dt.
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The norm of G can be calculated in terms of inner products. Hence,

‖G‖2L2(0,2π) =
∑

n∈Z

∣∣∣∣∣∣

2π∫

0

G(t)
1√
2π
eit(n+

1
2
) dt

∣∣∣∣∣∣

2

=
∑

n∈Z

∣∣∣∣∣∣
i

n+ 1
2

2π∫

0

g(t)
1√
2π
eit(n+

1
2
) dt

∣∣∣∣∣∣

2

≤ 4‖g‖2L2(0,2π).

This proves the special case. A simple substitution leads to the general case a, b ∈ R.

Lemma 3.1.2. Let f(z) be a continuous, nonnegative, subharmonic function on C which is periodic

of period 2πi. Then there exist nonnegative, subharmonic functions fn, such that

(i) fn
n→∞−→ f converges uniformly on every compact set.

(ii) fn(x+ iy) has continuous partial second derivatives with respect to x and y.

(iii) fn(u+ iv) = 0 if and only if f vanishes almost everywhere in the square

u− 2

n
≤ x ≤ u+

2

n
, v − 2

n
≤ y ≤ v +

2

n
.

Proof. For any subharmonic, continuous, nonnegative, function g on C which is periodic of period

2πi the following functions can be defined

gn(z) := n2

1
n∫

− 1
n

g(z + t)|t| dt.

Obviously, these functions are continuous, nonnegative, of period 2πi and are zero at u+ iv if and

only if g(x+ iv) vanishes almost everywhere for u− 1
n
≤ x ≤ u+ 1

n
, because g is nonnegative. To

show that they are subharmonic, let {w+aeit : t ∈ (0, 2π]} be any circle in the complex plane with

center w ∈ C and radius a ∈ R+. With Theorem 1.1.3 and Fubini’s Theorem

1

2π

2π∫

0

gn(w + aeis) ds =
1

2π

2π∫

0

n2

1
n∫

− 1
n

g(w + aeis + t)|t| dt ds

=

1
n∫

− 1
n

n2|t| 1
2π

2π∫

0

g(w + aeis + t) ds dt

≥

1
n∫

− 1
n

n2|t|g(w + t) dt

= gn(w).
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All conditions except differentiability have been proved. Generally, these functions will not be

differentiable twice in both variables. Because the integral in the definition of gn is taken over a

compact set, differentiation and integration can be interchanged if g is differentiable. Hence, if
∂k+mg
∂xk∂ym

exists for some k,m ∈ N so does ∂k+mgn
∂xk∂ym

. The derivative is then given by

∂k+mgn
∂xk∂ym

(z) = n2

1
n∫

− 1
n

∂k+mg

∂xk∂ym
(z + t)|t| dt.

Furthermore,

n2

1
n∫

− 1
n

∂k+mg

∂xk∂ym
(x+ iy + t)|t| dt = n2

x+ 1
n∫

x− 1
n

∂k+mg

∂xk∂ym
(iy + s)|s− x| ds

= n2
x∫

x− 1
n

∂k+mg

∂xk∂ym
(iy + s)(−s+ x) ds

+ n2

x+ 1
n∫

x

∂k+mg

∂xk∂ym
(iy + s)(s− x) ds

= n2
x∫

x− 1
n

∂k+mg

∂xk∂ym
(iy + s)(−s) ds+ xn2

x∫

x− 1
n

∂k+mg

∂xk∂ym
(iy + s) ds

+ n2

x+ 1
n∫

x

∂k+mg

∂xk∂ym
(iy + s)s ds− xn2

x+ 1
n∫

x

∂k+mg

∂xk∂ym
(iy + s) ds,

where the right hand side is differentiable with respect to x. Hence, gn is in fact (k + 1) times

differentiable with respect to x.

In a similar way functions g̃n can be constructed using

g̃n(z) := n2

1
n∫

− 1
n

g(z + it)|t| dt.

As above one can show that they are (m+ 1) times differentiable with respect to y if g is m times

differentiable with respect to y, and are zero at u+ iv if g(u+ iy) vanishes for v − 1
n
≤ y ≤ v + 1

n
.

They are continuous, nonnegative, of period 2πi and subharmonic. To get the functions fn just
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repeat the process above and define

fn(z) := n2

1
n∫

− 1
n

n2

1
n∫

− 1
n

n2

1
n∫

− 1
n

n2

1
n∫

− 1
n

f(z + it1 + it2 + t3 + t4)|t1| dt1|t2| dt2|t3| dt3|t4| dt4.

It remains to show that these functions converge uniformly to f on compact sets. Using

n2

1
n∫

− 1
n

|t| dt = 1

one shows

|f(z)− fn(z)| =

∣∣∣∣∣∣∣
f(z)n2

1
n∫

− 1
n

n2

1
n∫

− 1
n

n2

1
n∫

− 1
n

n2

1
n∫

− 1
n

|t1| dt1|t2| dt2|t3| dt3|t4| dt4

− n2

1
n∫

− 1
n

n2

1
n∫

− 1
n

n2

1
n∫

− 1
n

n2

1
n∫

− 1
n

f(z + it1 + it2 + t3 + t4)|t1| dt1|t2| dt2|t3| dt3|t4| dt4

∣∣∣∣∣∣∣

≤ n8

1
n∫

− 1
n

1
n∫

− 1
n

1
n∫

− 1
n

1
n∫

− 1
n

|f(z)− f(z + it1 + it2 + t3 + t4)| |t1| dt1|t2| dt2|t3| dt3|t4| dt4

≤ sup
u∈[x− 2

n
,x+ 2

n
], v∈[y− 2

n
,y+ 2

n
]

|f(x+ iy)− f(u+ iv)|.

Because f is continuous and, hence, uniformly continuous on compact sets, this yields locally

uniform convergence.

Lemma 3.1.3. Let f be a nonnegative, continuous, convex function on a halfline [a,∞). If

lim inf
x→∞

f(x)

x
= 0,

then f is bounded by f(a).

Proof. Because f is nonnegative, it is sufficient to show that f(x) ≤ f(a). Assume that there exists

b > a such that f(a) < f(b). By convexity for any x > b the following holds

f(b) ≤ b− a

x− a
f(x) +

x− b

x− a
f(a).

Hence,

f(x) ≥ x− a

b− a
f(b)− x− b

b− a
f(a) ≥ (x− b)

f(b)− f(a)

b− a
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and, further,
f(x)

x
≥ f(b)− f(a)

b− a
− b

x

f(b)− f(a)

b− a

where the second summand on the right hand side goes to zero for x → ∞ and, hence, the limit

inferior of the left hand side is nonzero.

Lemma 3.1.4. Let f(z) be an entire function. Assume further that there exists a real number

r0 > 0 such that for any r ≥ r0 the set {ϕ ∈ (0, 2π] : |f(reiϕ)| < 1} is not empty. Define a function

Q by

2πQ(r)2 =

2π∫

0

(
log+ |f(reiϕ)|

)2
dϕ.

Let 2πP (r) := λ({ϕ ∈ (0, 2π] : |f(reiϕ)| ≥ 1}), and define a function β : [r,+∞) → R by

β(x) :=

x∫

r

exp

(
s∫
r

1
tP (t) dt

)

s
ds.

If r0 < r < t and if Q(r) > 0, then the function Q(β−1(ξ)) is convex on [β(r), β(t)].

Proof. Define a function g(z) := log+ |f(exp(z))|. By Theorem 1.1.3 this function is subharmonic.

Obviously, it is nonnegative, continuous and of period 2πi. Hence, a sequence gn converging

uniformly to g on compact sets of nonnegative, subharmonic, 2πi periodic and twice differentiable

functions exists by Lemma 3.1.2. For any x ∈ [log r, log t] there exists a yx such that |f(exp(x +

iyx))| < 1 by the assumptions made for f . Because f is continuous, there has to be some εx such

that |f(exp(z))| < 1 for all z ∈ Mx := {u + iv : u ∈ (x − 2εx, x + 2εx), v ∈ (yx − 2εx, yx + 2εx)}.
Further, ⋃

x∈[log r,log t]
(x− εx, x+ εx) ⊇

⋃

x∈[log r,log t]
{x} ⊇ [log r, log t].

Because [log r, log t] is compact, there has to be an N ∈ N and x1, x2, . . . , xN ∈ [log r, log t] such

that
N⋃

k=1

(xk − εxk , xk + εxk) ⊇ [log r, log t].

Define

δ := min{εxk : k = 1, . . . , N}.

Any x ∈ [log r, log t] belongs to some (xk−εxk , xk+εxk). The square {u+ iv : u ∈ (x− δ, x+ δ), v ∈
(yxk −δ, yxk +δ)} is contained inMxk and f(exp(u+iv)) is bounded by 1 there. Hence, the function

g vanishes there. By Lemma 3.1.2 the functions gn are zero at x + yxk(x) if 2
n
< δ. Thus, for all

sufficiently large n the functions gn have a zero at some (x+ iy) for all x ∈ [log r, log t].
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Define functions qn by

2πqn(x)
2 =

2π∫

0

gn(x+ iy)2 dy. (3.1)

Define 2πpn(x) := λ({y ∈ (0, 2π] : gn(x+ iy) > 0}). Differentiating (3.1) leads to

4πqn(x)q
′
n(x) =

2π∫

0

2gn(x+ iy)
∂gn
∂x

(x+ iy) dy (3.2)

where differentiation and integration can be interchanged because [0, 2π] is a compact set and gn

has a continous partial derivative with respect to x. By the Cauchy-Schwarz inequality

qn(x)
2q′n(x)

2 ≤ 1

4π2




2π∫

0

gn(x+ iy)2 dy






2π∫

0

∂gn
∂x

(x+ iy)2 dy


 =

1

2π
qn(x)

2

2π∫

0

∂gn
∂x

(x+ iy)2 dy.

Hence, for qn(x) 6= 0

q′n(x)
2 ≤ 1

2π

2π∫

0

∂gn
∂x

(x+ iy)2 dy. (3.3)

Differentiating (3.2) again yields

2π(q′n(x)
2 + qn(x)q

′′
n(x)) =

2π∫

0

(
∂gn
∂x

(x+ iy)2 + gn(x+ iy)
∂2gn
∂x2

(x+ iy)

)
dy.

Thus, for qn(x) 6= 0 with (3.3)

qn(x)q
′′
n(x) ≥

1

2π

2π∫

0

gn(x+ iy)
∂2gn
∂x2

(x+ iy) dy

follows. Because gn is subharmonic,

∂2gn
∂x2

(x+ iy) +
∂2gn
∂y2

(x+ iy) ≥ 0

by Theorem 1.1.3. Therefore,

qn(x)q
′′
n(x) ≥ − 1

2π

2π∫

0

gn(x+ iy)
∂2gn
∂y2

(x+ iy) dy.

Because gn is of period 2πi, integration by parts leads to

qn(x)q
′′
n(x) ≥

1

2π

2π∫

0

∂gn
∂y

(x+ iy)2 dy.
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Using Lemma 3.1.1 with g(t) = ∂gn
∂y

(x + it) for any interval y ∈ (s1, s2) where gn(x + iy) 6= 0 and

gn(x+ is1) = gn(x+ is2) = 0 yields

s2∫

s1

∂gn
∂y

(x+ iy)2 dy ≥ π2

(s2 − s1)2

s2∫

s1

(gn(x+ iy)− gn(x+ is1))
2 dy ≥ 1

4pn(x)2

s2∫

s1

gn(x+ iy)2 dy

Because there is some s with gn(x+ is) = 0 thanks to

2π∫

0

∂gn
∂y

(x+ iy)2 dy =

2π+s∫

s

∂gn
∂y

(x+ iy)2 dy

one can start integrating at this s. Summation over all integrals as above yields

2π∫

0

∂gn
∂y

(x+ iy)2 dy ≥ 1

4pn(x)2

2π∫

0

gn(x+ iy)2 dy =
πqn(x)

2

2pn(x)2
.

This and the inequality of arithmetic and geometric means show that

[
qn(x)q

′
n(x)

]′
= q′n(x)

2 + qn(x)q
′′
n(x) ≥ q′n(x)

2 +
qn(x)

2

4pn(x)2
≥ 2qn(x)

q′n(x)
2pn(x)

=
qn(x)q

′
n(x)

pn(x)
.

Because of

[
qn(x)q

′
n(x)

exp(
∫ x
log r

1
pn(t)

dt)

]′
=

[qn(x)q
′
n(x)]

′ exp(
∫ x
log r

1
pn(t)

dt)− qn(x)q
′
n(x) exp(

∫ x
log r

1
pn(t)

dt) 1
pn(x)

exp(2
∫ x
log r

1
pn(t)

dt)

=
[qn(x)q

′
n(x)]

′ − qn(x)q
′
n(x)

1
pn(x)

exp(
∫ x
log r

1
pn(t)

dt)

≥ 0,

the function qn(x)q′n(x)

exp(
∫ x
log r

1
pn(t)

dt)
is monotonically increasing for x ∈ [log r, log t]. Define a function αn

as

αn(x) :=

x∫

log r

exp

(∫ s

log r

1

pn(t)
dt

)
ds.

Due to

α′
n(x) = exp

(∫ x

log r

1

pn(t)
dt

)
> 0

αn(x) is strictly increasing. Hence, the inverse function exists and satisfies (ξ = αn(x))

(α−1
n )′(ξ) =

1

exp(
∫ α−1

n (ξ)
log r

1
pn(t)

dt)
.
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Now the following holds

d

dξ

[
q2n
(
α−1
n (ξ)

)

2

]
= qn

(
α−1
n (ξ)

)
q′n
(
α−1
n (ξ)

) 1

exp(
∫ α−1

n (ξ)
log r

1
pn(t)

dt)

= qn(x)q
′
n(x)

1

exp(
∫ x
log r

1
pn(t)

dt)
.

The right hand side is an increasing function. Hence, the function
q2n

(
α−1
n (ξ)

)
2 is convex for ξ ∈

[αn(log r), αn(log t)]. For any αn(log r) ≤ ξ1 < ξ2 < ξ3 ≤ αn(log t) this yields

q2n
(
α−1
n (ξ2)

)
(ξ3 − ξ1) ≤ q2n

(
α−1
n (ξ1)

)
(ξ3 − ξ2) + q2n

(
α−1
n (ξ3)

)
(ξ2 − ξ1).

Therefore, for any log r ≤ x1 < x2 < x3 ≤ log t one gets

q2n(x2)(αn(x3)− αn(x1)) ≤ q2n(x1)(αn(x3)− αn(x2)) + q2n(x3)(αn(x2)− αn(x1)). (3.4)

In order to show convergence for n→ ∞ define some functions.

2πq(x)2 :=

2π∫

0

g(x+ iy)2 dy.

Further, set 2πp(x) := λ({y ∈ (0, 2π] : gk(x+ iy) > 0 ∀k ∈ N}) and

α(x) :=

x∫

log r

exp

(∫ s

log r

1

p(t)
dt

)
ds.

Because the limit gn → g is uniform on compact sets, qn(x)
2 converges to q(x)2. By definition the

function 2πpn(x) is the measure of the set {y ∈ (0, 2π] : gn(x+ iy) > 0}. The function gn(u+ iv) is

zero if and only if g(x+ iy) vanishes almost everywhere in the square u− 2
n
≤ x ≤ u+ 2

n
, v − 2

n
≤

y ≤ v + 2
n
. Hence, if gn vanishes at some point u+ iv ∈ C, then all gm have to vanish at u+ iv for

m > n. Therefore,

{y ∈ (0, 2π] : gm(x+ iy) > 0} ⊆ {y ∈ (0, 2π] : gn(x+ iy) > 0} (3.5)

for m > n. Because these sets are of finite measure and the Lebesgue measure is continuous from

above

2πp(x) = λ({y ∈ (0, 2π] : gn(x+ iy) > 0 ∀n ∈ N})

= λ

(⋂

n∈N
{y ∈ (0, 2π] : gn(x+ iy) > 0}

)

= lim
n→∞

λ({y ∈ (0, 2π] : gn(x+ iy) > 0})

= lim
n→∞

2πpn(x).
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Equation (3.5) shows that the functions pn decrease in n. With this the functions 1
pn

are increasing.

By the monotone convergence theorem the inner integral in the definition of αn and the limit can

be interchanged:

x∫

log r

exp

(∫ s

log r
lim
n→∞

1

pn(t)
dt

)
ds =

x∫

log r

exp

(
lim
n→∞

∫ s

log r

1

pn(t)
dt

)
ds

Because exp is continuous and the functions

exp

(∫ x

log r

1

pn(t)
dt

)

are again monotonically increasing, the monotone convergence theorem can be used once more to

show that

α(x) =

x∫

log r

exp

(∫ s

log r

1

p(t)
dt

)
ds

=

x∫

log r

exp

(∫ s

log r
lim
n→∞

1

pn(t)
dt

)
ds

= lim
n→∞

x∫

log r

exp

(∫ s

log r

1

pn(t)
dt

)
ds

= lim
n→∞

αn(x).

Hence, the limit in equation (3.4) leads to

q2(x2)(α(x3)− α(x1)) ≤ q2(x1)(α(x3)− α(x2)) + q2(x3)(α(x2)− α(x1)),

which shows that q2
(
α−1(ξ)

)
is convex for ξ ∈ [α(log r), α(log t)]. By their definitions Q and q

satisfy

2πq(x)2 =

2π∫

0

g(x+ iy)2 dy

=

2π∫

0

(
log+ |f(exp(x+ iy))|

)2
dy

=

2π∫

0

(
log+ |f(exp(x) exp(iy))|

)2
dy

= 2πQ(exp(x))2.
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Hence, the function Q2
(
exp(α−1(ξ))

)
is convex for ξ ∈ [α(log r), α(log t)]. To show a similar

connection between p and P consider the sets in their definitions

2πp(x) = λ({y ∈ (0, 2π] : gn(x+ iy) > 0 ∀n ∈ N})

and

2πP (r) = λ({ϕ ∈ (0, 2π] : |f(reiϕ)| ≥ 1}).

The functions gn(u + iv) vanish if and only if g(x + iy) = log+ |f(exp(x + iy))| vanishes almost

everywhere in the square

u− 2

n
≤ x ≤ u+

2

n
, v − 2

n
≤ y ≤ v +

2

n
.

Hence, |f(exp(x+ iy))| has to be less than or equal to 1 almost everywhere on this square. Because

f is analytic, it cannot attain its maximum inside the square without reducing to a constant.

Therefore, f has to be of modulus less than 1 particularly for exp(u+ iv). Hence,

{ϕ ∈ (0, 2π] : |f(reiϕ)| ≥ 1} ⊆ {y ∈ (0, 2π] : gn(x+ iy) > 0 ∀n ∈ N}.

For the other inclusion assume that |f(exp(u + iv))| < 1. Then by continuity f(exp(x + iy)) has

to be of modulus less than 1 on some square

u− 2

k
≤ x ≤ u+

2

k
, v − 2

k
≤ y ≤ v +

2

k
.

Hence, gn vanishes for n ≥ k and one gets

{ϕ ∈ (0, 2π] : |f(reiϕ)| ≥ 1} ⊇ {y ∈ (0, 2π] : gn(x+ iy) > 0 ∀n ∈ N}.

Obviously, p(x) = P (exp(x)) follows. Now the function α can be considered. Simple substitutions

yield

α(x) =

x∫

log r

exp

(∫ s

log r

1

p(t)
dt

)
ds

=

x∫

log r

exp

(∫ s

log r

1

P (exp(t))
dt

)
ds

=

x∫

log r

exp

(∫ exp s

r

1

P (t̃)t̃
dt̃

)
ds

=

expx∫

r

exp

(∫ s̃

r

1

P (t̃)t̃
dt̃

)
1

s̃
ds̃.

The function β now satisfies β(exp(x)) = α(x) and, hence, Q2
(
β−1(ξ)

)
is convex for ξ ∈ [β(r), β(t)].
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Lemma 3.1.5. Let f1, f2 be entire functions of exponential type 0. If

min
{
|f1(x+ iy)|, |f2(x+ iy)|

}
≤ 1

|y| ,

then at least one of the functions f1 or f2 vanishes identically.

Proof. Two cases have to be discussed. First let the assumptions of Lemma 3.1.4 be satisfied

for both functions fj . Define Pj(r) and Qj(r) as in Lemma 3.1.4 for the functions fj . With

z = x+ iy = reiϕ the hypotheses reads as

min{|f1(reiϕ)|, |f2(reiϕ)|} ≤ 1

r| sinϕ| .

For | sinϕ| > 1
r
this yields

min{|f1(reiϕ)|, |f2(reiϕ)|} < 1.

Hence, only for ϕ ∈ (0, arcsin 1
r
) ∪ (π − arcsin 1

r
, π + arcsin 1

r
) ∪ (2π − arcsin 1

r
, 2π] both functions

can be greater than or equal to 1. For the functions Pj this leads to

P1(r) + P2(r) ≤ 1 +
4 arcsin 1

r

2π

By the Taylor series expansion of arcsin

arcsin(x) =
∞∑

k=0

(
2k

k

)
x2k+1

4k(2k + 1)
, (3.6)

it satisfies

arcsin
1

r
≤ π

2

1

r

for sufficiently large r. Hence,

P1(r) + P2(r) ≤ 1 +
1

r
.

With the inequality of geometric and arithmetic means

(P1(r) + P2(r))

(
1 +

1

r

)
≥ (P1(r) + P2(r))

2 ≥ 4P1(r)P2(r)

holds true. Hence,
1

P1(r)
+

1

P2(r)
=
P1(r) + P2(r)

P1(r)P2(r)
≥ 4

1 + 1
r

=
4r

r + 1
(3.7)

follows. Assume that both Qj are unbounded. By Lemma 3.1.4 the functions Q2
j (β

−1
j (ξ)) are

convex. Hence, by Lemma 3.1.3

lim inf
ξ→∞

Q2
j (β

−1
j (ξ))

ξ
= 2cj > 0.
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Set c := min{c1, c2}. With ξ = βj(x)

Q2
j (x) ≥ cβj(x)

follows for sufficiently large x. The definition of βj , inequality (3.7) and the convexity of the

exponential function lead to

Q2
1(x) +Q2

2(x)

2
≥ c




x∫

r

exp
(∫ s

r
1

tP1(t)
dt
)

2s
ds+

x∫

r

exp
(∫ s

r
1

tP2(t)
dt
)

2s
ds




≥ c

x∫

r

exp
(∫ s

r
1
2t

(
1

P1(t)
+ 1

P2(t)

)
dt
)

s
ds

≥ c

x∫

r

exp
(∫ s

r
2
t+1 dt

)

s
ds

= c

x∫

r

(s+ 1)2

(r + 1)2s
ds

≥ c

x∫

r

s

(r + 1)2
ds

=
c

2

x2

(r + 1)2
− c

2

r2

(r + 1)2
. (3.8)

Because f1 and f2 are of exponential type 0

τfj = lim sup
x→∞

max
t∈(0,2π]

log+ |fj(xeit)|
x

= 0.

By the reversed version of Fatou’s lemma 1.1.34 for any monotone increasing sequence of radii xn

converging to infinity

lim sup
n→∞

2πQ2
j (xn)

x2n
= lim sup

n→∞

2π∫

0

(
log+ |fj(xneiϕ)|

xn

)2

dϕ

≤
2π∫

0

lim sup
n→∞

(
log+ |fj(xneiϕ)|

xn

)2

dϕ

= 0.

This contradicts (3.8) and, hence, the assumption that both Qj are unbounded is false. Without

loss of generality assume that Q1 is bounded. Then with the Cauchy-Schwarz inequality

2π∫

0

log+ |f1(xeiϕ)| dϕ ≤
√
2π

√∫ 2π

0

(
log+ |f1(xeiϕ)|

)2
dϕ ≤ c
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follows for some c > 0. For any fixed R ∈ (0,+∞) the function f1(Rz) is an analytic function on

the unit circle with analytic continuation to the whole complex plane. Hence, by Lemma 1.1.20

f1(Rz) belongs to N
+(D). By Theorem 1.1.21

log |f1(Rz)| ≤
1

2π

2π∫

0

1− |z|2
|eiϕ − z|2 log |f1(Re

iϕ)| dϕ

follows for any z ∈ D. With w = Rz this leads to

log |f1(w)| ≤
1

2π

2π∫

0

R2 − |w|2
|Reiϕ − w|2 log |f1(Re

iϕ)| dϕ

≤ 1

2π

2π∫

0

R2 − |w|2
|R− |w||2 log |f1(Re

iϕ)| dϕ

=
1

2π

2π∫

0

R+ |w|
R− |w| log |f1(Re

iϕ)| dϕ

≤ 1

2π

R+ |w|
R− |w|c

where the second inequality holds by the reversed triangle inequality. For R → ∞ this shows

that f1 is bounded. By Liouville’s theorem f = C for some constant C. If it is not zero, then

|f2(±iy)| < 1
|y| for |y| >

1
C
. By Lemma 1.1.35 the function f2 reduces to a constant. This constant

has to be zero by the inequality just mentioned.

It remains to prove the case where at least one fj does not satisfy the assumptions of Lemma

3.1.4. Without loss of generality let f1 be this function. This gives a series of radii rn tending to

infinity with

min
ϕ∈[0,2π)

|f1(rneiϕ)| ≥ 1.

By the assumption for the minimum of f1 and f2 the function f2 has to satisfy

|f2(x+ iy)| ≤ 1

2

for |y| ≥ 2 and x2 + y2 = r2n. Hence, log+ |f2(x + iy)| has to vanish at these points. Because of

y = rn sinϕ the condition |y| ≥ 2 is equivalent to

| sinϕ| ≥ 2

rn
.

Therefore, the set {ϕ ∈ (0, 2π] : log+|f2(rneiϕ)| 6= 0} must be contained in (0, arcsin 2
rn
) ∪ (π −

arcsin 2
rn
, π + arcsin 2

rn
) ∪ (2π − arcsin 2

rn
, 2π]. Thus,

λ
(
{ϕ ∈ (0, 2π] : log+ |f2(rneiϕ)| 6= 0}

)
≤ 4 arcsin

2

rn
.
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The Taylor series expansion of arcsin (3.6) shows that arcsin 2
rn

can be dominated by π
rn

for suffi-

ciently large rn. Hence,

λ
(
{ϕ ∈ (0, 2π] : log+ |f2(rneiϕ)| 6= 0}

)
≤ 4

π

rn
.

Let ε > 0 be given. Because f2 is of exponential type 0 the maximum on the radii satisfies

max
ϕ∈[0,2π)

log+ |f2(rneiϕ)| ≤ εrn

for sufficiently large n. By Theorem 1.1.21

log |f2(w)| ≤
1

2π

2π∫

0

r2n − |w|2
|rneiϕ − w|2 log |f2(rne

iϕ)| dϕ

≤ 1

2π

2π∫

0

r2n − |w|2
|rn − |w||2 log |f2(rne

iϕ)| dϕ

≤ 1

2π

∫

{ϕ∈(0,2π]:log+ |f2(rneiϕ)|6=0}

rn + |w|
rn − |w| log

+ |f2(rneiϕ)| dϕ

≤ 1

2π

∫

{ϕ∈(0,2π]:log+ |f2(rneiϕ)|6=0}

rn + |w|
rn − |w|εrn dϕ

≤ 1

2π

4π

rn

rn + |w|
rn − |w|εrn

= 2
rn + |w|
rn − |w|ε

follows. For sufficiently large n this shows that f2 is bounded and, hence, a constant. As above

this yields that either f1 or f2 has to vanish and the lemma is proved.

3.2 Proof of the Ordering Theorem

Theorem 3.2.1. Let H(E1) and H(E2) be de Branges spaces which are isometrically contained

in a space L2(µ), where µ is a Borel measure on R. Assume for H(E1) and H(E2) that their

associated functions do not vanish µ-almost everywhere. If E1(z)
E2(z)

is of bounded type in the upper

halfplane and has no real zeros or singularities, then H(E1) is contained in H(E2) or H(E2) is

contained in H(E1).

Proof. Assume first that the mean type of E2(z)
E1(z)

is not zero. Without loss of generality assume

that it is negative. Otherwise, change the roles of E1 and E2: Because E1(z)
E2(z)

has no zeros in the
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upper halfplane, E2(z)
E1(z)

is of bounded type and the mean type of the product E1(z)
E2(z)

E2(z)
E1(z)

= 1 is zero.

Therefore, by Lemma 1.1.13 the mean type of these functions must have different signs.

The aim is, to show with Theorem 2.1.9 that all functions f ∈ H(E2) and the function E2 are

associated with the space H(E1). To use this theorem the functions f(z)
E1(z)

, f
#(z)
E1(z)

, E2(z)
E1(z)

and
E

#
2 (z)
E1(z)

have to be of bounded type and satisfy

lim sup
y→∞

∣∣∣∣
f(±iy)
E1(iy)

∣∣∣∣ <∞

and

lim sup
y→∞

∣∣∣∣
E2(±iy)
E1(iy)

∣∣∣∣ <∞,

respectively. Further, there must not be any function Q1 which is zero µ-almost everywhere and

associated with H(E1), and the integrals
∫
R

|f(t)|2
t2+1

dµ(t) and
∫
R

|E2(t)|2
t2+1

dµ(t) have to be finite. f(z)
E1(z)

and f#(z)
E1(z)

are of bounded type, because E2(z)
E1(z)

, f(z)
E2(z)

and f#(z)
E2(z)

are of bounded type.
E

#
2 (z)
E1(z)

is of

bounded type because of |E#
2 (z)| < |E2(z)| for all z ∈ C. The non–existence of a function Q1 is

another assumption. The estimates on the imaginary axis are obtained by a formula for mean type

from Theorem 1.1.11

τ = lim sup
y→∞

1

y
log

∣∣∣∣
f(iy)

E1(iy)

∣∣∣∣ . (3.9)

By the assumption that the mean type of E2(z)
E1(z)

is negative and because f(z)
E2(z)

has nonpositive mean

type, the mean type of f(z)
E1(z)

has to be negative by Lemma 1.1.13. Hence, with (3.9) the relations

lim sup
y→∞

∣∣∣∣
f(iy)

E1(iy)

∣∣∣∣ = 0

and

lim sup
y→∞

∣∣∣∣
E2(iy)

E1(iy)

∣∣∣∣ = 0

follow. The same convergence for f(−iy) follows with f# in place of f . The convergence for

E2(−iy) follows with |E2(−iy)| < |E2(iy)| for y > 0. The integral condition follows from
∫

R

|f(t)|2
t2 + 1

dµ(t) ≤
∫

R

|f(t)|2 dµ(t) = ‖f‖2L2(µ) = ‖f‖2H(E2)
<∞

for f and from

∞ >

∫

R

|K2(i, z)|2 dµ(t) =
∫

R

∣∣∣∣∣
E2(t)E2(i)− E2(t)E2(−i)

2π(t+ i)
i

∣∣∣∣∣

2

dµ(t)

≥
∫

R

∣∣|E2(t)||E2(i)| − |E2(t)||E2(−i)|
∣∣2

2π(t2 + 1)
dµ(t) (3.10)

=

∫

R

|E2(t)|2
2π(t2 + 1)

∣∣|E2(i)| − |E2(−i)|
∣∣2 dµ(t)
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for E2. Hence, E2(z) and f ∈ H(E2) are associated withH(E1). Therefore, also E
#
2 (z) is associated

with H(E1) by Corollary 2.1.3. Thus, for any g ∈ H(E1) and w ∈ C with g(w) 6= 0 the linear

combination

E#
2 (w)

g(w)

E2(z)g(w)− g(z)E2(w)

z − w
− E2(w)

g(w)

E#
2 (z)g(w)− g(z)E#

2 (w)

z − w
=
E#

2 (w)E2(z)− E2(w)E
#
2 (z)

z − w

belongs to H(E1). This is up to a factor K2(w, z). Let f be any function belonging to H(E2).

Because the span of the functions K2(w, z) is dense in H(E2) by Theorem 1.2.11, there exists a

sequence fn in span{K2(w, z) : w ∈ C\R} ⊆ H(E1) ∩H(E2) converging to f in H(E2). Hence, it

is in particular a Cauchy sequence with respect to the H(E2) norm. Because both spaces H(Ek)

are contained isometrically in L2(µ), the L2(µ) norm and the H(Ek) norm coincide on H(Ek).

Therefore,

‖fn − fm‖H(E2) = ‖fn − fm‖L2(µ) = ‖fn − fm‖H(E1).

This yields that fn is also a Cauchy sequence with respect to the H(E1) norm and converges to

some f̃ ∈ H(E1). By the isometric inclusion

‖f − f̃‖L2(µ) ≤ lim
n→∞

(‖f − fn‖L2(µ) + ‖fn − f̃‖L2(µ)) = lim
n→∞

(‖f − fn‖H(E2) + ‖fn − f̃‖H(E1)) = 0.

Hence, f − f̃ is zero µ-almost everywhere. Because f is associated with H(E1) by the calculations

above and f̃ is associated, too, the function f − f̃ is an associated µ-almost everywhere vanishing

function. Therefore, it has to vanish identically by assumption.

Assume now that the mean type of E1(z)
E2(z)

is zero. Let R(z) be a function in L2(µ)⊖H(E2) with

norm 1. Let further be f ∈ H(E1). Define a function Lf (z) for z ∈ C such that f(z)
E2(z)

is analytic by

Lf (z) :=

∫

R

f(t)
E2(t)

− f(z)
E2(z)

t− z
R(t)E2(t) dµ(t) =

∫

R

f(t)
E2(t)

− f(z)
E2(z)

t− z

R(t)

E2(t)
dν2(t)

with dν2 = |E2(t)|2dµ and a function L̃f (z) for z ∈ C such that f(z)

E
#
2 (z)

is analytic by

L̃f (z) :=

∫

R

f(t)

E
#
2 (t)

− f(z)

E
#
2 (z)

t− w

R(t)

E2(t)
dν2(t).

To show that these functions are analytic Lemma 1.2.3 is used. The condition
∫
R

1
t2+1

dν2(t) < ∞
is equivalent to

∫
R

|E2(t)|2
t2+1

dµ(t) < ∞ which is proved as (3.10). Again by the definition of dν2 and

because f ∈ L2(µ),

∫

R

∣∣∣ f(t)E2(t)

∣∣∣
2

t2 + 1
dν2(t) =

∫

R

|f(t)|2
t2 + 1

dµ(t) <∞.
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Finally R(t)

E2(t)
∈ L2(ν2) because R(t) ∈ L2(µ). Therefore, Lf (z) is analytic for E2(z) 6= 0. In the

same way the analyticity of L̃f (z) for E
#
2 (z) 6= 0 is proved. Let g be any function in H(E2) then

g(w)
f(z)E2(w)− f(w)E2(z)

z − w
= f(w)

g(z)E2(w)− g(w)E2(z)

z − w
−E2(w)

g(z)f(w)− g(w)f(z)

z − w
(3.11)

where the left hand side belongs to L2(µ) by (similar as in (2.1))

∫

R

∣∣∣∣
f(t)E2(w)− f(w)E2(t)

t− w

∣∣∣∣
2

dµ(t) ≤ C1 + C2

∫

R

(
f(t)

t2 + 1
+
E2(t)

t2 + 1

)
dµ(t) <∞.

The first summand on the right hand side of (3.11) belongs to H(E2) because E2 is associated with

H(E2). With R(z) ∈ L2(µ)⊖H(E2) this yields

g(w)E2(w)Lf (w) = g(w)

∫

R

f(t)E2(w)− E2(t)f(w)

t− w
R(t) dµ(t)

= E2(w)

∫

R

g(w)f(t)− g(t)f(w)

t− w
R(t) dµ(t)

and further

g(w)Lf (w) =

∫

R

g(w)f(t)− g(t)f(w)

t− w
R(t) dµ(t). (3.12)

A similar equation for E#
2 leads to

g(w)L̃f (w) =

∫

R

g(w)f(t)− g(t)f(w)

t− w
R(t) dµ(t) = g(w)Lf (w).

With this L̃f (w) = Lf (w) except on the zeros of E and E#. By analyticity they are equal

everywhere. Hence, they continue each other to an entire function. In the upper halfplane

Lf (z) =

∫

R

f(t)R(t)

t− z
dµ(t)− f(z)

E2(z)

∫

R

E2(t)R(t)

t− z
dµ(t)

where the integrals are in N+(C+) by Lemma 1.1.32 and by the fact that f(z)
E2(z)

= f(z)
E1(z)

E1(z)
E2(z)

is the

product of two functions with nonpositive meantype. Thus Lf (z) has nonpositive mean type. A

similar argument shows that L#
f (z) has nonpositive mean type. By Kreins Theorem 1.1.30, Lf (z)

is of exponential type with exact type 0.

The same procedure with P ∈ L2(µ) ⊖ H(E1), ‖P‖L2(µ) = 1 and g ∈ H(E2) gives an entire

function Lg(z) which is of bounded type, exponential type zero and fulfils

f(w)Lg(w) =

∫

R

f(w)g(t)− f(t)g(w)

t− w
P (t) dµ(t) (3.13)
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for any f ∈ H(E1). The equations (3.12), (3.13) and the Cauchy-Schwarz inequality lead to

(z = x+ iy)

|g(z)Lf (z)| ≤
|g(z)| ‖f(t)‖+ ‖g(t)‖ |f(z)|

|y|
and

|f(z)Lg(z)| ≤
|f(z)| ‖g(t)‖+ ‖f(t)‖ |g(z)|

|y| .

This yields

|y| |g(z)Lf (z)| ≤ |g(z)| ‖f(t)‖+ ‖g(t)‖ |f(z)| ≤ 2max{|g(z)| ‖f(t)‖, ‖g(t)‖ |f(z)|}

and

|y| |f(z)Lg(z)| ≤ |f(z)| ‖g(t)‖+ ‖f(t)‖ |g(z)| ≤ 2max{|g(z)| ‖f(t)‖, ‖g(t)‖ |f(z)|}.

If the maximum attains |g(z)| ‖f(t)‖, then |y| ≤ 2 ‖f(t)‖
|Lf (z)| otherwise |y| ≤ 2 ‖g(t)‖

|Lg(z)| . In both cases

min

{ |Lf (z)|
2‖f(t)‖ ,

|Lg(z)|
2‖g(t)‖

}
≤ 1

|y| .

By Lemma 3.1.5 either Lf (z) ≡ 0 or Lg(z) ≡ 0. If Lf (z) does not vanish for one f ∈ H(E1) and one

R ∈ L2(µ) ⊖H(E2) with norm 1, then Lg(z) ≡ 0 for all g ∈ H(E2) and P ∈ L2(µ) ⊖H(E1) with

norm 1. Otherwise, Lf (z) ≡ 0 for all f ∈ H(E1) and R ∈ L2(µ) ⊖H(E2) with norm 1. Without

loss of generality assume Lg(z) ≡ 0 and, hence,

0 =

∫

R

E1(w)g(t)− E1(t)g(w)

t− w
P (t) dµ(t)

for any g ∈ H(E2) and P ∈ L2(µ) ⊖ H(E1) of norm 1. By (3.13), f(w)g(t)−f(t)g(w)
t−w is orthogonal

to L2(µ) ⊖ H(E1). With this the function has to coincide with a function of H(E1) µ-almost

everywhere. The equality

f(w)
g(z)E1(w)− g(w)E1(z)

z − w
= g(w)

f(z)E1(w)− f(w)E1(z)

z − w
− E1(w)

f(z)g(w)− f(w)g(z)

z − w

yields that also g(z)E1(w)−g(w)E1(z)
z−w has to coincide with a function T (z) ∈ H(E1) in L

2(µ). Define

the entire function

g̃(z) :=
−T (z)(z − w0) + g(w0)E1(z)

E1(w0)
.

Obviously g̃(w0) = g(w0), g̃ and g are µ-equivalent and

T (z) =
g̃(w0)E1(z)− g̃(z)E1(w0)

z − w0
.
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Hence, the function g̃(z) is associated with H(E1) by Lemma 2.1.8. Therefore, g̃(w)E1(z)−g̃(z)E1(w)
z−w ∈

H(E1) for any w ∈ C\R. The function P (z) := g(z) − g̃(z) is now zero µ-almost everywhere and
E1(z)P (w)−P (z)E1(w)

z−w has to coincide with a function Rw(z) ∈ H(E1) in L
2(µ). As above the function

P̃w(z) :=
−Rw(z)(z − w) + P (w)E1(z)

E1(w)

fulfils P (w) = P̃w(w), is µ-equivalent to P (z) and, hence, is zero µ-almost everywhere. It satisfies
E1(z)P̃w(w)−P̃w(z)E1(w)

z−w = Rw(z) ∈ H(E1) and, hence, is associated by Lemma 2.1.8. By assumption

this function has to vanish. Especially P (w) = P̃w(w) = 0. By the arbitrariness of w the function

P vanishes and, hence, g(z) = g̃(z). Therefore, all functions g(z) ∈ H(E2) are associated with

H(E1).

If H(E2) is contained in H(E1) as subsets of L2(µ), any function f ∈ H(E2) coincides with

a function f̃ ∈ H(E1) µ-almost everywhere. As shown above f is associated with H(E1) and so

is f̃ . Therefore, f − f̃ is a µ-almost everywhere vanishing associated function and has to vanish

identically by assumption. If H(E2) is not contained in H(E1) as subsets of L2(µ), there has to

be a function D(z) ∈ H(E2) that does not coincide with a function belonging to H(E1) in L
2(µ).

Then there exists a P (z) ∈ L2(µ)⊖H(E1) of norm 1 satisfying 〈D,P 〉L2(µ) > 0. With the equality

zD(z)E1(w)− E1(z)wD(w)

z − w
= D(z)E1(w) + w

D(z)E1(w)− E1(z)D(w)

z − w
,

where the right summand on the right hand side belongs to H(E1),

∫

R

tD(t)E1(w)− E1(t)wD(w)

t− w
P (t) dµ(t) =

∫

R

D(t)E1(w)P (t) dµ(t)

follows. Choose w = iy with y > 0. Then

0 <

∫

R

D(t)P (t) dµ(t)

=

∫

R

tD(t)P (t)

t− iy
− E1(t)iyD(iy)P (t)

E1(iy)(t− iy)
dµ(t) (3.14)

=

∫

R

tD(t)P (t)

t− iy
dµ(t)−

√
yD(iy)

E2(iy)

i
√
yE2(iy)

E1(iy)

∫

R

E1(t)P (t)

t− iy
dµ(t).

With the Cauchy-Schwarz inequality

∣∣∣∣∣∣

∫

R

tD(t)P (t)

t− iy
dµ(t)

∣∣∣∣∣∣

2

≤
∫

R

t2|D(t)|2
t2 + y2

dµ(t)
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and ∣∣∣∣∣∣

∫

R

E1(t)P (t)

t− iy
dµ(t)

∣∣∣∣∣∣
≤
∫

R

|E1(t)|2
t2 + y2

dµ(t).

By the Lebesgue dominated convergence theorem this yields

lim
y→∞

∫

R

tD(t)P (t)

t− iy
dµ(t) = 0, (3.15)

and

lim
y→∞

∫

R

E1(t)P (t)

t− iy
dµ(t) = 0. (3.16)

To show that
√
y|D(iy)|
|E2(iy)| cannot approach infinity as y → ∞ calculate

|D(iy)|2 = | 〈K2(iy, .), D〉H(E2)
|2

≤ ‖K2(iy, .)‖2H(E2)
‖D‖2H(E2)

= 〈K2(iy, .),K2(iy, .)〉H(E2)
‖D‖2H(E2)

= K2(iy, iy) ‖D‖2H(E2)
(3.17)

=
E2(iy)E2(iy)− E2(−iy)E2(−iy)

2π
(
iy − (−iy)

) i ‖D‖2H(E2)

=
|E2(iy)|2 − |E2(−iy)|2

4πy
‖D‖2H(E2)

.

Hence,
y|D(iy)|2
|E2(iy)|2

≤ 4πy|D(iy)|2
|E2(iy)|2 − |E2(−iy)|2

≤ ‖D‖2H(E2)
(3.18)

follows because |E2(iy)| > |E2(−iy)|. By (3.15) and (3.14)

0 < − lim
y→∞

√
yD(iy)

E2(iy)

i
√
yE2(iy)

E1(iy)

∫

R

E1(t)P (t)

t− iy
dµ(t)

Because by (3.16) the integral goes to zero and by (3.18)
∣∣∣
√
yD(iy)
E2(iy)

∣∣∣ is bounded, the factor
∣∣∣
√
yE2(iy)
E1(iy)

∣∣∣
has to approach infinity:

lim
y→∞

√
y|E2(iy)|
|E1(iy)|

= ∞.

The calculation (3.17) for any f ∈ H(E1) in place of D and E1 in place of E2 yields

lim sup
y→∞

√
y|f(iy)|
|E1(iy)|

<∞.
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Hence,

lim
y→∞

f(iy)

E2(iy)
= 0.

The same applies to f#. To use Theorem 2.1.9 the functions f(z)
E2(z)

and f#(z)
E2(z)

have to belong to

N(C+). Because f, f# ∈ H(E1) the functions f(z)
E1(z)

and f#(z)
E1(z)

are in N(C+). By assumption

E1(z)
E2(z)

∈ N(C+) and because products are again in N(C+), the functions f(z)
E2(z)

and f#(z)
E2(z)

belong

to N(C+). Hence, by Theorem 2.1.9 all functions f ∈ H(E1) are associated with H(E2). But

it was also shown above that all functions f(w)g(z)−f(z)g(w)
z−w with f ∈ H(E1) and g ∈ H(E2) are

in H(E1). By the assumption that H(E2) is not contained in H(E1) there has to be a nonzero

function Q ∈ H(E2) which is orthogonal to all these functions f(w)g(z)−f(z)g(w)
z−w with f ∈ H(E1)

and g ∈ H(E2). Let g be any function in H(E2) which belongs to the domain of multiplication by

the independent variable in this space. Then (z − w)g(z) ∈ H(E2) and, hence, for any function

f ∈ H(E1) and any w satisfying f(w) 6= 0

0 =

〈
Q(z),

f(w)(z − w)g(z)− f(z)(w − w)g(w)

z − w

〉

H(E2)

= 〈Q(z), f(w)g(z)〉H(E2)
.

Because there has to be a function f ∈ H(E1) with f(w) 6= 0 by Corrolary 2.1.6 for all w ∈ C\R,
the function Q(z) is orthogonal to domain of multiplication by z in H(E2). Theorem 2.2.8 yields

that Q(z) is strongly associated and, hence, Q(z) = uA(z) + vB(z) with uv = uv. This shows

that the orthogonal complement of all functions f(w)g(z)−f(z)g(w)
z−w with f ∈ H(E1) and g ∈ H(E2)

in H(E2) contains only the linear span of Q. On the other hand the orthogonal comlement of

Q in H(E2) is the closed linear span of all functions f(w)g(z)−f(z)g(w)
z−w and, hence, is contained in

H(E1). By the assumption that H(E2) is not contained in H(E1) the function Q cannot belong to

H(E1). Assume that P is a function in H(E1) which is orthogonal to all functions f(w)g(z)−f(z)g(w)
z−w .

Especially P and Q are orthogonal to P (w)Q(z)−P (z)Q(w)
z−w within L2(µ). Hence,

(w − w)

∥∥∥∥
P (w)Q(z)− P (z)Q(w)

z − w

∥∥∥∥
2

L2(µ)

=

=

∫

R

(w − w)
P (w)Q(t)− P (t)Q(w)

t− w

P (w)Q(t)− P (t)Q(w)

t− w
dµ(t)

=

∫

R

(
(P (w)Q(t)− P (t)Q(w))(w − t)

t− w

P (w)Q(t)− P (t)Q(w)

t− w

− P (w)Q(t)− P (t)Q(w)

t− w

(P (w)Q(t)− P (t)Q(w))(w − t))

t− w

)
dµ(t)

=

∫

R

(
− (P (w)Q(t)− P (t)Q(w))

P (w)Q(t)− P (t)Q(w)

t− w
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+
P (w)Q(t)− P (t)Q(w)

t− w
(P (w)Q(t)− P (t)Q(w))

)
dµ(t)

= 0

holds for any w ∈ C\R. Hence, the function P (z) belongs to the linear span of Q(z) but does

belong to H(E1). Because Q(z) is not in the space H(E1) the function P has to vanish. Therefore,

the orthogonal complement of all functions f(w)g(z)−f(z)g(w)
z−w in the space H(E1) is {0} and, hence,

the closed linear span of these functions is the whole space. Because these functions belong to

H(E2), the space H(E1) is isometrically contained in H(E2).

The Theorem remains true without the assumption of the nonexistence of an associated µ-

almost everywhere vanishing function. At first glance this case seems quite easy to prove, because

by Theorem 2.2.7 the existance of such a function Q2 associated with H(E2) implies that H(E2)

has to fill L2(µ). Because H(E1) is isometrically contained in L2(µ), for each function f ∈ H(E1)

there must exist a function f̃ ∈ H(E2) that is µ-almost everywhere equal to f . But it is hard to

prove that these functions coincide on the whole complex plane. Actually, to prove this case some

information about subspaces of de Brange spaces is needed that would go beyond the scope of this

work.
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