

Technische Universität Wien

A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Ressourcen zur Unterstützung beim Erlernen
von “Unity” zur Entwicklung von

3D-Anwendungen

MAGISTERARBEIT

zur Erlangung des akademischen Grades

Magister der Sozial- und Wirtschaftswissenschaften

im Rahmen des Studiums

Informatikmanagement

eingereicht von

Alexander Wagner
Matrikelnummer 0227425

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Ass.Prof. Dipl.-Ing. Dr.techn. Monika Di Angelo

Mitwirkung
Ass.Prof. Dipl.-Ing. Dr.techn. Peter Ferschin

Wien, 31.08.2011

 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Technische Universität Wien

A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Resources to support students in learning the
3D-application development tool “Unity”

MAGISTERARBEIT

zur Erlangung des akademischen Grades

Magister der Sozial- und Wirtschaftswissenschaften

im Rahmen des Studiums

Informatikmanagement

eingereicht von

Alexander Wagner
Matrikelnummer 0227425

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Ass.Prof. Dipl.-Ing. Dr.techn. Monika Di Angelo

Mitwirkung
Ass.Prof. Dipl.-Ing. Dr.techn. Peter Ferschin

Wien, 31.08.2011

I

Erklärung zur Verfassung der Arbeit

Alexander Wagner

Guttmannstraße 14

A-2540 Bad Vöslau

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten

Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit –

einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im

Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als

Entlehnung kenntlich gemacht habe.

Bad Vöslau, 31.08.2011

II

Acknowledgments

I want to thank Professor Monika Di Angelo and Professor Peter Ferschin for guiding me

through my master thesis and allowing me to do research in their university courses.

I also thank the students from these courses who provided me with feedback and insights in

the challenges one has to face when beginning to learn a new tool.

Last but not least, I want to gratefully thank my parents for supporting me in my studies.

III

Abstract

Interactive 3D-applications are software programs that can react immediately to input from its

user and display the results of these inputs with three-dimensional graphics in real time.

Typical application areas for 3D-programs are multimedia-games, software for visualizing

architecture or interactive learning software. The development of interactive 3D-applications

is a very challenging area of software development, because it requires a high level of

knowledge and implies lots of complexities.

These complexities can significantly be reduced through the usage of appropriate tools. Such

a tool for developing interactive 3D-applications is "Unity". It supports to create 3D-

applications by providing a graphical user interface and a built-in 3D-engine that hides the

mathematical complexities of computer graphics from the user. Because of its great usability

and the enormous speed one can produce results, it is a great tool to use for teaching the

basics of 3D-application development to beginners. But despite these simplifications the

development of interactive 3D-applications with Unity is still not a trivial task.

The aim of this work was to create useful resources that facilitate to learn the usage of Unity

for beginners. The target audience consisted primarily of students in computer science

(focused on game development) and architecture (focused on architectural applications). The

analysis of the special requirements of these groups was conducted through qualitative

research in two different university courses.

With this background instructions and tutorials have been created that describe the various

aspects of working with Unity that are important for beginners. In addition to descriptions of

the tool itself and how to use it, aspects of collaboration and team work in a development

project within university context are discussed.

All resources should be made easy available through a central repository. An evaluation was

conducted to determine the best way in which this repository should be realized.

IV

Abstract (German)

Interaktive 3D-Anwendungen sind Programme, die unmittelbar auf die Eingaben ihres

Benutzers reagieren und die Ergebnisse dieser Eingaben mittels dreidimensionaler Grafiken in

Echtzeit darstellen können. Typische Anwendungsgebiete von 3D-Programmen sind

multimediale Spielsoftware, Software zur Erkundung architektureller Entwürfe oder

interaktive Lernsoftware. Die Entwicklung von interaktiven 3D-Anwendungen ist ein

besonders anspruchsvolles Gebiet der Softwareentwicklung, da es ein hohes Maß an

Vorwissen benötigt.

Dieses notwendige Vorwissen kann durch den Einsatz geeigneter Tools deutlich reduziert

werden. Ein solches Tool zur Entwicklung interaktiver 3D-Anwendungen ist „Unity“. Es

erlaubt die einfache Erstellung eines 3D-Projekts mittels graphischem Interface und enthält

eine integrierte 3D-Engine, die die mathematischen Komplexitäten der Computergraphik vor

dem Nutzer verbirgt. Aufgrund seiner leichten Zugänglichkeit und der enormen

Geschwindigkeit, mit der man sichtbare Ergebnisse erzielen kann, eignet es sich

hervorragend, um die Grundlagen von 3D-Anwendungs- und Spieleentwicklung zu lehren.

Doch trotz dieser Vereinfachungen bleibt die Entwicklung von interaktiven 3D-Anwendungen

auch mit Unity ein sehr komplexes Gebiet.

Ziel dieser Arbeit war, sinnvolle Ressourcen zu erstellen, die Anfängern den Einstieg in den

Umgang mit Unity erleichtern und diesen beschleunigen sollen. Die betreffende Zielgruppe

bestand primär aus StudentInnen der Informatik (mit Fokus auf Spieleentwicklung) und der

Architektur (mit Fokus auf architekturelle 3D-Anwendungen). Die Erhebung der besonderen

Ansprüche dieser Zielgruppen erfolgte mittels qualitativer Untersuchungen bei zwei

universitären Lehrveranstaltungen.

Auf dieser Basis wurden Anleitungen bzw. Tutorials erstellt, die die verschiedenen Aspekte

der Arbeit mit Unity beschreiben, die für Anfänger besonders wichtig sind. Neben

Beschreibungen des Tools an sich und des Umgangs mit diesem werden darin auch Aspekte

der Zusammenarbeit im Team bei einem Entwicklungsprojekt im Universitätskontext erörtert.

Alle erstellten und gesammelten Ressourcen sollten durch eine zentrale Sammelstelle schnell

und einfach verfügbar gemacht werden. Eine Evaluierung wurde durchgeführt, um die

günstigste Art und Weise zu bestimmen, auf die diese Sammelstelle umgesetzt werden soll.

Table of Contents

1 Introduction ... 1

1.1 Interactive 3D-applications .. 2

1.2 Development of interactive 3D-applications .. 7

1.3 Problems for students who learn to develop interactive 3D-applications 11

2 Approach to facilitate the learning process ... 18

2.1 Unity introduction tutorials .. 18

2.2 Guidelines for team collaboration in Unity projects .. 20

2.3 Repository for resources ... 20

2.3.1 Trac ... 23

2.3.2 MediaWiki .. 24

2.3.3 WordPress .. 25

2.3.4 Kohive .. 27

2.3.5 ResourceSpace ... 28

2.3.6 Razuna .. 30

2.3.7 Result of evaluation .. 31

3 Tutorials for students learning Unity .. 33

3.1 Overview .. 33

3.2 MODULE 01: Basic principles of 3D-applications ... 34

3.3 MODULE 02: Overview of the fundamental concepts in Unity 39

3.4 MODULE 03: The interface of Unity .. 41

3.5 MODULE 04: Modeling the environment ... 45

3.5.1 MODULE 04.01: Modeling the terrain .. 45

3.5.2 MODULE 04.02: Creating Game Objects ... 48

3.5.3 MODULE 04.03: Materials, Textures & Shaders .. 53

3.5.4 MODULE 04.04: Light sources ... 56

3.5.5 MODULE 04.05: Skyboxes ... 57

3.5.6 MODULE 04.06: Particle systems ... 58

3.6 MODULE 05: Unity prefabs .. 63

3.7 MODULE 06: Script programming ... 69

3.7.1 MODULE 06.01: Basic concepts of programming .. 69

3.7.2 MODULE 06.02: Programming scripts for Unity ... 78

3.8 MODULE 07: Physics and interaction between objects 83

3.9 MODULE 08: Cameras .. 92

3.10 MODULE 09: Animations ... 94

3.11 MODULE 10: Sounds .. 98

3.12 MODULE 11: GUI objects .. 102

3.13 MODULE 12: Publishing the application .. 105

3.14 MODULE 13: Extending Unity ... 107

4 Development of applications with Unity in a team ... 109

4.1 Structuring and synchronizing artifacts in a team .. 110

4.2 Development process ... 115

5 Conclusion & Further Work .. 119

Figures ... 120

References ... 122

1

1 Introduction

Technology in the field of 3D-software has evolved in a way that allows the rendering of

countless objects in real-time, while still being able to perform background processes. The

software can react to user input in a split second, creating the impression of real interactivity.

Because of these advances interactive 3D-applications today are being used as a medium in

plenty of different areas such as:

• Interactive 3D-software can be used to educate children in a fun and exciting way.

• It can serve as an interface to ease the control of a complex device, for example a drill

machine or a surgical instrument.

• Interactive 3D-applications can provide help when planning the construction of a

building.

• They can also suit pure entertainment purposes by simulating an interactive gaming

scenario for the player.

These are just some examples that shall help to get a picture of the countless possibilities

interactive 3D-applications can be used for.

Nevertheless, the development of such a software program is anything but trivial. To achieve

the illusion of three dimensions on a two-dimensional display, a mathematical model that

represents the current scene has to be projected onto the screen. The colors and textures are

influenced by light sources, gravity and physics may have to be applied. The changes in the

scene from the current frame to the next frame need to be calculated, user input processed.

And all changes have to be applied machine-independent (meaning that an object must not

cover more distance in the same amount of time on a faster machine).

Implementing a framework that handles all these issues (a so-called “3D-engine”) is a task

that can only be performed by experts in the field of computer graphics. However there are

lots of other stakeholders who might be interested in the development of 3D-applications, but

do not provide this high level of expertise in computer graphics: Game designers, persons

specialized in building science, or just in another area of computer science, teachers,…

2

Luckily there are prefabricated tools that can handle many (but not all!) of the tasks one

would have to fulfill by himself when developing a 3D-application from scratch. This makes

the development much easier and accessible to a wider range of people.

But even though such tools can hide many of the complexities that need to be conquered

when dealing with 3D computer graphics, it is still quite a challenging task to develop 3D-

software using these instruments.

This master thesis deals with a popular tool used to develop 3D-applications named “Unity”

[Unity]. The problems beginners have when learning Unity are analyzed and resources for

teaching it to students are provided.

1.1 Interactive 3D-applications

In this context, an interactive 3D-application is defined as a piece of computer software that is

able to render three-dimensional objects in real-time onto a screen, recognize some kind of

user input (though this is not always the case), and process it to apply changes to the objects

in the scene.

To create the illusion of motion, this rendering process has to happen multiple times per

second, usually at above 16 to 18 times [Wikipedia, “Bewegte Bilder”]. The number of times

the screen is rendered is called the “frame rate”, or the “frames per second”. A smooth

impression of motion can be experienced at a frame rate of 25, even better at 60 frames per

second.

A preliminary question everyone who plans to develop a 3D-application should think about

are the advantages that come with the 3D-effect for his specific purpose. These advantages are

being exchanged for a probably more complex development process and the need for higher

system requirements at the end user’s machine. So if three dimensions are not absolutely

necessary for an application to fulfill its purpose, one should consider developing a 2D-

application instead.

But of course there are certain advantages when it comes to 3D:

• In the majority of cases, 3D-applications are able to resemble real objects in a more

natural way than it can be done with 2D-visualizations, also allowing the realistic

simulation of physical behavior.

3

• 3D-applications easily allow the viewing of objects from different perspectives.

• Compared to two dimensions, a three-dimensional environment adds “depth”,

therefore providing the developer (and consequently the user) with more degrees of

freedom and opportunities. This can also provide a more realistic and intense

experience.

By making clever usage of these advantages, one can produce software of high quality. The

following examples show what can be done with interactive 3D-applications:

AquaMOOSE 3D is an environment that was investigated by Elliott, Adams and Bruckman

[Elliot et. al., 2002]. It was designed to support the teaching of 3D-mathematics, a topic which

is very well suited by nature for real-time 3D-visualizations. Elliott et. al. write:

“AquaMOOSE 3D is a graphical environment designed to support free exploration of three-

dimensional math concepts. Motion in AquaMOOSE can be specified mathematically, using

parametric equations. For example, swimming in a sine wave in x and a cosine in y creates a

spiral.” [Elliot et. al., 2002]

Figure 1: The AquaMOOSE 3D environment (figure from [Elliot et. al., 2002])

4

They also write about a game they provided for the environment, where the student (or the

“player”) must define a mathematical function that passes through a certain set of rings:

Figure 2: AquaMOOSE 3D - ring game (figure from [Elliot et. al., 2002])

Though Elliott et. al. could not observe that the visual learning method had a significant

impact onto the students’ test results, they show what can be done with interactive 3D-

applications in the area of education.

Another example that shows the advantages of three dimensions is presented by Tong Lu et.

al. [Lu et. al., 2005]: They present a method to reconstruct 3D-models from 2D-drawings of

architectural buildings. They argue that in the field of architecture, many designs are being

done via 2D-plans, because of the complexities of editing models in 3D-space. But 3D-

models may prove helpful for certain purposes: “However, for various construction

applications, such as quantity surveying, inventory, construction, and visualization, it is

necessary to convert the widely used 2D architectural drawings to accurate 3D models.” [Lu

et. al., 2005]

5

Figure 3: Reconstructing a 3D-model from 2D-plans (figures from [Lu et. al., 2005])

After conversion, such a 3D-model could be used to allow an interactive walkthrough in the

building that is planned, allowing a more realistic experience than just by studying a “flat”

plan.

Of course one of the most popular applications for interactive 3D-software are computer

games (also: “video games”). Some products of the modern gaming industry generate higher

revenues than blockbuster movies. The constantly increasing hardware performance of

computers can be owed to a large extent to the steep rise of requirements for games.

Modern video games have reached a level of realism that has never been seen before. Though

currently there is a trend to simpler games that can be played “on the go” (caused especially

by the spread of smartphones and the acquisition of new customer groups), realistic games

would not be possible without 3D-technology.

6

There are countless different types of games available. The genres vary from action-oriented

games to strategy and puzzle games. But the genre that was primarily responsible for evolving

the usage of three dimensions in games and making it popular are “first person shooters”

(commonly also called: “ego-shooters”). The name comes from the fact that the player plays

the game from the point of view of the virtual character he is controlling. So, analog to the

real world, the player just sees the hands of the character (and items they are carrying) – at

least when there is no mirror in his view. This causes the player to better identify himself with

the character and can intensify the gaming experience. The term “shooter” refers to the fact

that in many of those (often violent) games the player’s goal is to shoot enemies with different

kinds of weapons – though there are games from first person perspective with other goals as

well.

One of the first big cornerstones in the history of first person shooters was “Doom” from

1993, in which the player took on the role of a soldier on a space station and had to fight

hordes of evil aliens. Another important example is “Half-Life” from 1998, which added to

the standard first-person action a movie-like storyline. Its sequel from 2004 furthermore

improved the experience and was one of the first big games to make usage of a physics engine

to simulate the realistic behavior of objects. The following screenshots give an impression of

the rapid evolution of computer games:

Figure 4: Screenshot of the game "Doom" from 1993 (image from [PC Games, 2010])

7

Figure 5: Screenshot of the game “Half-Life 2” from 2004 (image from [golem.de, 2004])

The given examples demonstrate three ways of using interactive 3D-applications for different

purposes. Of course there are countless other possibilities that cannot be mentioned here as

well.

1.2 Development of interactive 3D-applications

Developing a high-quality interactive 3D-application requires expert knowledge, the suitable

set of tools and proficient collaboration within a team. To realize such a 3D-application

project in a professional way, it is necessary to implement a structured development process

like it is commonly done in any other software project.

Regarding the tools, there are lots of different software programs available that help in

developing a 3D-application and can take over many tasks:

Of course all the objects in a 3D-application have to be defined. The computer must know

exactly how they look like, their shape viewed from all angles and what’s their surface like.

8

Luckily it is not necessary to calculate these objects using mathematical equations, it can be

done much easier using 3D-modeling software. With these tools one can design 3D-objects

with a graphical user interface, and instantly preview the created results. Professional

software does not only allow to design the shape of objects, but also includes functionality for

animation, rendering and texturing. One of the most popular 3D-modeling tools is “Blender”.

Due to the fact that it is free open source software, it is very popular among students and 3D-

modeling hobbyists.

Figure 6: Screenshot from "Blender" (figure from [W ikipedia, “Blender”])

Another important asset when developing 3D-software are so-called “engines”:

A “graphics engine” is computer software (though it can also be implemented in hardware)

that is able to render given objects to the screen. For video game development one can also

make use of “game engines”, which do not only render 3D-objects, but can also handle

sound, game logic, menus and other things. There are lots of different engines ready to be

used, which can greatly improve quality and reduce development time compared to starting a

project from scratch.

Also there are tools available which combine a whole game engine with a so-called

“authoring tool”. This means that there is not only a raw programming framework for usage

in one’s own code, but also a graphical user interface integrated in a software package that

can be used to define the environment and place the objects in it. They often also graphically

9

support the user with built-in functions for designing animation, sound and scripting the game

logic. It is a whole software package that helps the user with several important tasks.

One of these software tools is called “Unity” [Unity]:

Figure 7: Screenshot from "Unity" (figure from [Uni ty, “What’s New in Unity 2.5”])

Unity provides its own game engine and allows to utilize it via a graphical user interface. The

intuitive tool allows to produce first results very quickly and therefore is very well suited for

beginners in the area of interactive 3D-application development. Due to the fact that there is a

free version available for download (which can be upgraded to the “Pro” version with

additional features for charge), it has recently become very popular among hobbyists and

students. But also professional studios increasingly make use of it.

Unity can be used for the development of 3D- and also 2D-applications. In the industry the

main purpose it is being used for is the development of video games, though any other kind of

application can be developed as well.

Another important advantage of Unity is that it allows true “multiplatform development”.

This means that the developer has to implement his application only once, and Unity is able to

publish it (at least within the range of its facilities) for different platforms. This feature has

10

become very important especially due to the increase in mobile phone hardware performance,

which allows to play high quality games on the go.

Unity supports the following platforms for publishing of applications:

• PC & Mac

• Internet Browser (needs a plug-in on the client-side)

• iOS (Apple’s operating system for mobile devices like the “iPhone”)

• Android (Google’s operating system for mobile devices)

• Nintendo Wii

• Xbox 360 and Playstation 3

More details on Unity follow later in this master thesis. Unity is the main topic of this thesis,

which provides methods and resources to teach the software tool to students.

Another important aspect when it comes to developing applications that are greatly influenced

by visuals like 3D-applications is the interdependence between design and development.

The designers are responsible for defining the whole concept of the application. For example

what’s the scenario of the game, how the player can interact with the application or who are

the characters he will meet. The design can also include visual concepts for the application,

e.g. what it shall look like. Graphical 3D-artists are responsible for realizing the design into

3D-models.

These design tasks are separated from the implementation tasks done by the developers. The

developers need the design to exactly know how to do the programming and bring all

different resources together into one application.

Of course in small teams it is possible that designers also do development and vice versa. In a

single-person team one has to carry out all development and design tasks by oneself.

In a large team with lots of different responsibilities, a process that defines the workflow

between designers and developers is absolutely necessary to produce high quality results.

Unity provides several functionalities that support this workflow.

11

1.3 Problems for students who learn to develop inte ractive 3D-applications

Due to the complexities of 3D-application development, it is not trivial to teach students in

this area. Therefore the typical problems that occur while learning and the requirements for

teaching need to be analyzed.

This master thesis focuses on university students trying to learn Unity. The students studied

for this thesis consist of two different groups:

• Students of computer science. This group primarily focuses on applications in the

area of video games or other programs that are interactive to a high degree. Often their

strengths are development and programming.

• Students of architecture and building science. This group is mainly interested in

applications that visualize buildings and interior with less user interaction. Frequently

their strengths are design and modeling.

Due to the fact that there were not enough students to conduct an empirical study, the chosen

method for research was qualitative studying. This provided a deep insight into the

individual problems of each student.

For this master thesis the students of two university courses were surveyed:

The first course was a 48 hours game development contest. It was conducted for students of

computer science or architecture and was split up into two parts: In the first part the students

attended five workshops were they learned the basics of Unity and game development in

general. They were introduced into technical topics as well as into issues regarding the

development process. These workshops were necessary because the course did not presume

any previous knowledge in game development from its participants.

The second part of the course was the contest itself. To provide an appropriate atmosphere for

game development, it was conducted at castle “Waldenfels” in Upper Austria [Waldenfels].

The students were divided into groups of 2-3 persons and had to accomplish the task of

developing a functional game within 48 hours. The only requirements for the game were that

it shall embed the 3D-model of castle Waldenfels into the game (which was provided by the

professors) and be innovative in some way. The tight schedule furthermore intensified the

experience of working on a project with a close deadline.

12

Figure 8: Screenshot of the 3D-model from castle "Waldenfels" that was provided for the 48 hours game

development contest

Several measures were taken regarding the course to gain insights for this master thesis:

First and foremost I attended the course by myself and joined a group in developing a game.

This way I could not only be very close to the other students of the course, but also get my

own insights into the problems beginners have when they start to work on a Unity project on

their own. Secondly, I had contact with the students of the other groups and the professors as

well during the whole course. Furthermore each student had to fill out a feedback form at the

end of the course, in which they explained the problems they had and what could be done any

better. This made sure the opinion of each individual student could be obtained.

The end presentations of the different groups were concluded with a review of each student

(including the rating of several aspects), which also was an additional source for knowledge.

The gained insights follow at the end of this chapter in more detail.

The second course used to gain knowledge for this master thesis was called “Dynamic

Simulation and Visualization”. This course was conducted primarily for students of

architecture and building science. They were split up into small groups of 2-3 persons. Each

group had to accomplish one of two tasks: One of those tasks focused on the 3D-modeling of

a Balinese village, the other (again) on castle “Waldenfels”. Each group was assigned one

special part of these models, so for example one group had to model a Balinese temple, while

another one modeled a traditional Balinese house. The idea was that the students can share the

13

models they created with each other, so each group could build an entire village (or the whole

castle) using all the parts.

But because the course was about dynamic visualization, it was not enough to just do the

modeling. Each group furthermore had to present a concept of an interactive application they

had to implement using the 3D-models. These concepts were limited only by their creativity,

and included for example obstacle courses or mysterious adventures.

The concepts had to be realized by importing the created 3D-models into Unity, where

everything was put together and all application logic had to be defined. Most students had no

previous knowledge about Unity, so they were introduced into the software in several

tutorials. The professor demonstrated how he accomplished different tasks using Unity, and

the students had to reproduce these results on their own computers. They were given the

opportunity to ask questions and get help with their problems anytime.

To gain insights for this master thesis, I also attended this course in the role of an assistant and

directly supported the students in their work with Unity. This way I could learn about the

individual challenges the students had to face and see the most common mistakes they make.

Furthermore the way how the professors taught the students was analyzed to gain insights on

how to (and how not to) design learning resources for beginners. The direct work with the

individual students was a very valuable source of knowledge for this thesis.

The following insights on students’ problems and the teaching process were the most

important ones that could be gained during the qualitative studies. They were considered

when creating the learning resources for beginners with Unity:

• One of the biggest problems during the game contest was synchronization of work

results. Different persons were working on the same project with the same files.

Although the groups arranged work in a way that everyone focused on different parts

of the project, it could not be avoided that these parts crossed each other at some point.

This is a typical problem: A large project with many different files and lots of

dependencies between them has to be manipulated by several persons at the same

time. In addition many of the artifacts created during the game development contest

were quite large in file size, which further complicated the usage of automatic

synchronization tools, because the synchronization process could take very long.

The method that was finally preferred by the groups was to manually interchange the

necessary data by using an USB flash drive. This method of course was very

14

cumbersome and easily caused inconsistent project states. Furthermore it did not

support any kind of version management.

• Proper teamwork and collaboration in general was a big issue: How shall the project

folder be organized? How can work be split up into different parts? How can these

parts be merged? What kind of process shall be used during development?

• Another issue that caused many problems during the game contest was the

complicated usage of so-called “prefabs”. These are special artifacts in Unity which

can be defined once and then reused at several places. The important part is that when

modifying the original source prefab, changes will be applied to all “clones”, but this

does not happen when just editing a clone. Furthermore there are some steps one has

to perform correctly for this to work. It caused much confusion when changes were

not applied to any object or sometimes to all objects.

• Though many students in the game contest already were experienced with

programming, the scripting in Unity works a bit different than other development

systems. So it was not only difficult to write a functional script, but also to structure it

in a way that allows easy modifications and reuse. Furthermore there are often many

possibilities to implement a functionality: When a trigger shall be activated with the

collision of two objects, one could either attach a script to object one and call the

trigger on the colliding object or vice versa. Though both possibilities may work, it

makes sense to be aware of both of them and consistently just use one of them during

a project.

An important concept regarding the functions of scripts in Unity that must be taught to

students is the navigation through objects and components in the whole hierarchy.

This is necessary to be able to manipulate a different object from within another

object, which is often required to accomplish certain tasks.

• Some games developed in the game contest could have been improved a lot if it would

have been shown how to accomplish some tasks that are often needed by using

already existing solutions. One group for example tried to develop a pathfinding

system on its own (“pathfinding” is the logic behind objects that directs them from a

starting point to an arbitrary destination by automatically avoiding obstacles). The

15

pathfinding system did not only take up large amounts of time, it also did not work

well. If the students would have known how to use a free pathfinding system that’s

available online, they would have saved large amounts of efforts. But the time

schedule was too tight to learn how to use the system instantly. Other examples are the

usage of an animation library or a framework for explosions.

• In the course “Dynamic Simulation and Visualization” many students had problems

with the importing of their 3D-models into Unity. This was probably caused by the

fact that the students were using several modeling tools in different versions. Here it is

probably important to tell students in advance which tools are supported in which

versions and can therefore be used.

• Because Unity was all new to the students of the course, they also had problems with

the basics: It was difficult for them to navigate in 3D-space and position the objects

correctly. This hindered their work tremendously.

This problem also relates to issues with scaling: Many students encountered

difficulties in defining the right proportions for the dimensions of the different objects

and the player. This caused problems like objects that could not be seen because they

were too far away or actions that were not triggered because the player-character was

too small. It furthermore complicated the testing process because of very large

distances that had to be passed and the slow navigation through a gigantic 3D-space. It

could be observed that many students had environments that were far too large. It is

probably a good idea to start with a small environment on purpose and increase its

dimensions step by step when necessary.

• Another big issue for the students was the process of publishing the project that was

developed to make it playable on other machines. To accomplish this, one has to

define exactly what parts of the projects shall be published and the target system’s

type (like PC, Mac, Android,…).

The second step also caused some problems: When Unity generated all necessary

artifacts in the publishing process, it is important to migrate all parts of the project that

are needed to the other machine. It often happened that students migrated the

executable *.exe file, but not the artifacts it depends on. The result was that the project

could not be played on the other machine.

16

• Many students had difficulties in applying one of the most fundamental functions for

an interactive 3D-application: The controls for the user (in Unity the related

component is called “character controller”). In many student projects, the character

played by the user fell through the ground, passed through walls or other objects he

should not walk through, or simply moved either too slow or too fast.

Though the standard character controller in Unity is able to walk and look in all

directions, and even jump to a defined height, many students could have needed a

controller that is able to fly through the scene, to be able to easily view the

environment from all angles. Such a character controller was implemented for this

master thesis.

• Regarding the lessons on script programming: It was observed that it was very

important for beginners to be introduced into scripting only with very short examples

of code. These examples shall only include the concepts that shall be taught at the very

moment. When writing a piece of code to accomplish a certain task it is often the case

that other functions that are necessary indirectly have to be included as well. These

“side-functions” shall be reduced as far as possible in examples for beginners.

Another important aspect noted was the necessity of presenting the code examples for

a long period of time to the students.

Many of them follow this pattern: At first, they try to analyze the code when it is

shown on the screen and listen to the professor’s explanations. Afterwards they try to

transcript the code onto their own machine (or onto paper). Doing the transcription

while listening hinders the understanding of the explanations. So it is probably better

to do any transcription afterwards, but teachers should be aware of that and show the

scripts for a long period of time.

Another option is to prepare the scripts ready for usage and deliver them to the

students directly. But this method has a significant drawback: There is a learning

effect in the process of writing the scripts by oneself, even if it is just a direct

transcription. In addition, because in programming one has to define every single

symbol correctly (which is a new experience for some beginners), many students make

mistakes in this process and so get the chance to learn from them.

Also it is not only important to show them examples they can adopt, but show the

students how to help themselves: So the professor very often used the “Scripting

17

Reference”, an online documentation that describes all programming functions. This

way the students were demonstrated directly how to find definitions they don’t know

instantly.

• A challenge all beginners with Unity have to face is the difference between

“collisions” and “triggers” . Both can cause certain actions when two objects clash

with each other, but while collisions initiate physical interactions, triggers shall only

activate developer-defined events. Also there are some subtle differences in the

configuration of both of them. So it is often the case that beginners define a collision

but expect a trigger to happen and vice versa.

• It was also noted that the professors often used the concept of animations to

demonstrate example actions that could happen. This has the advantage of better

visibility than only printing a “Hello World!” message to the output console.

Furthermore the students are better introduced into the definition of animations. But

the drawback is that this method makes demonstrative examples more complicated.

• Furthermore one issue was observed that probably could be improved when teaching

Unity: Occasionally when the professor created examples to demonstrate certain

functions of Unity, these examples seemed a bit “random”. For instance instead of

designing an object that resembles a door he made a cube and told the students this

cube should represent a “door” for now.

Of course it makes no sense to model every detail of the whole environment correctly

if one just wants to demonstrate how to open a door. But it makes sense to model it to

an extent that makes it easier to relate it to the finished concepts. This way students

won’t get confused through an additional abstraction layer and can focus on the ideas

that shall be taught at the moment. Although this might not always be possible when

teaching several independent units that deal with completely different topics.

18

2 Approach to facilitate the learning process

This chapter shall give an overview of the approach that was chosen to support students in

learning Unity. This approach is based on three pillars:

• Help regarding the technical aspects of using Unity.

• Help related to the collaborative aspects of working with Unity in a team.

• A location that centrally provides all help resources.

The approach of how to realize these three aspects is now explained in more detail. The actual

outcomes can be found in successive chapters.

2.1 Unity introduction tutorials

One of the most important things for beginners of Unity or any other new technology are

resources they can work through to gain the necessary knowledge. These resources are called

“tutorials”.

In the majority of cases they consist of text combined with images, but also tutorials that can

be watched as a video in motion are common in the internet era. Generally they can address

beginners as well as intermediate and advanced students of the topic they deal with. Tutorials

for example can contain theoretical information, step-by-step instructions to reproduce or

exercises the student must solve.

It is important to know what can and what cannot be achieved with tutorials: The usage of

tutorials is a very-well suited way to gain the basic knowledge on a topic that is new to the

student. This basic knowledge is essential to be able to start working with a tool. Without this,

work can only be done following the principle of trial and error, which is incredibly

ineffective.

But the constraints of what can be learned through tutorials shall also be mentioned here: A

solid knowledge that can be used to solve complex problems in real-life project settings can

only be achieved through exercise and experience with such problems. Tutorials can be the

19

starting point for further learning processes, but they will not provide a high degree of deep

understanding.

In the context of this master thesis, several tutorials for Unity have been created for the target

audience described in chapter 1.3. The tutorials were created with consideration of certain

aspects:

• Due to the audience consisting of students with different levels of knowledge, it was

not possible to assume any previous knowledge. For example it cannot be expected

that all students already possessed basic programming skills.

Therefore the whole body of knowledge that shall be taught to the students was split

up into several “modules”. Each module shall contain a unit of knowledge that can be

worked through. Furthermore the modules are labeled with some kind of metadata,

like “goals”, “prerequisites” and “difficulty”. This way students can easily identify if a

module is appropriate for their current level.

It is important that each module can be used as a resource on its own (at least when

the reader meets the defined prerequisites), so students don’t have to work through

other resources when they just need information about one certain topic. This intended

independence between different modules has a consequence: It does not allow the

usage of incremental examples. That means that there must not be a module based on

resources created in another module, because a student who just wants to take the

latter one would be missing something.

Despite this independence of different modules it should also be possible for students

to work through them in a linear fashion. Fanny Klett states that “The flexible access

to hypermedia information in various depth always holds a disorientation problem.”

[Klett, 2001]. Hence she emphasizes the importance of structuring the existing

information. Therefore the modules created for this master thesis are provided with a

recommended structure of how to work them through.

• The tutorials include a high degree of practice. Best results can be achieved if

students who work through the modules reproduce the instructions on their own. The

tutorials are designed in a way that this can be done in small incremental steps, so

students do not lose the thread. The examples themselves are tangible and focused on

20

the current topic, without too much side information. The practical examples are

always provided with the necessary theoretical background.

• The tutorials mainly consist of text (including source code listings), but are

intertwined with demonstrative images related to the current situation. Videos could

not be produced due to the necessary efforts, though they could provide a valuable

resource and may be added in future work.

2.2 Guidelines for team collaboration in Unity proj ects

Due to the complexities and efforts necessary to develop interactive 3D-applications, many

projects are performed within a team rather than by single persons. Of course this also adds

new challenges that need to be handled: In a team it is not only important that every member

has the technical skills needed in the development process. It is also necessary that the

collaboration itself is organized in an effective way. Work has to be clearly divided among the

team members, development goals must be scheduled, work results have to be handed over to

other persons depending on them in time, the whole project must be synchronized and of

course there have to be ways of providing a steady communication flow between the different

members of the team.

To ease this collaboration process for beginners learning Unity, this master thesis contains

guidelines that provide possible solutions of how to deal with certain aspects of team work in

chapter 4. These guidelines contain:

• Approaches for structuring a Unity project

• Approaches for synchronizing work results with other team members

• A recommended development process for a small team of beginners

• Considerations regarding quality assurance

2.3 Repository for resources

Another goal of this master thesis was to set up a centrally provided repository that can

contain all resources produced in this context and also is a place that can be used to save

resources created in future work. It shall ease the access for students to the tutorials,

guidelines and other assets that were created to help them.

21

The acceptance among students to make use of the created resources greatly depended on the

usability of the technology utilized for the repository. Hence an evaluation was performed in

which different tools and technologies were compared regarding their applicability for the

given purpose. Of course the chosen set could not be exhaustive, but it contained the most

important technologies with significant representatives.

The tools were analyzed regarding the following aspects:

• Possibilities for structuring and finding resources

A repository that probably will contain a large number of resources must allow to

structure them in a meaningful way that eases their maintenance and also the search for

desired resources. Possible ways of structuring content are: Hierarchical structures,

marking content with tags or keywords, categorization of content or chronological

structures. Another important option for finding resources is the possibility for doing a

full-text search.

• Visual design and usability

Because the repository shall be accessible to a large group of people, it must be easy to

use without having to spend much time to get familiar with the system itself. This would

dramatically reduce the acceptance of the repository among students.

The best interface for this purpose uses elements that are well-established in the web-

context and so can be used without lots of instructions. Furthermore the technology that

shall be used must be modifiable in its visual design, so the interface can be related to the

university context.

• Efforts for maintenance, installation and administration

Not only the usability of the technology for the frontend-user is an important aspect, but

also for the backend-users who need to install the tools correctly, insert new content and

perform administrative tasks. Because in the university context probably no one can

concentrate only on these activities, it is important that they can be performed easily with

low efforts.

22

• Possibilities for (pre-)viewing content

When searching through the repository it is important for the user to preview the contents

in the repository before obtaining them. It is not feasible for the students to download each

3D-model only to be able to see it. There must be some kind of preview possible that

allows to get a first glimpse of the resources before deciding what to download.

For other resources like tutorials there must be a variety of options to write text in

different formats and combine it with other media like images or weblinks.

• User management and permission system

Because possibly a larger group of people – students in courses, their colleagues,

anonymous access over the web – will have access to the repository, it is important to be

able to precisely define the permissions for different groups. In general it can be said that

the contents shall be readable for many users, but modifiable only for a few users.

Administrative tasks of course have to be performed by a separate group.

• Possibilities for collaboration

Though it shall not be the primary purpose for the repository, it might be useful to provide

some means for collaboration among students. Examples for that could be issue tracking

for open tasks, scheduling of goals to achieve or tools for communication like messaging

or forums. These tools could help students in organizing their projects for Unity, but they

are not as important as other aspects when evaluating technologies for usage as repository.

• Version history of content

A feature that is not absolutely necessary but useful in certain situations is the ability of

automatically saving the contents in each new version. This provides the option to be able

to undo changes that have been done by accident, or compare different versions of the

same resource to be able to analyze the differences.

Now follows a list of tools and technologies with the evaluation results regarding the different

aspects mentioned.

23

2.3.1 Trac

Trac [Trac] is an open source configuration and project management system. It is web-based

with the main features of a wiki (a software system that allows the collaborative editing of

document pages), issue tracking and tight integration with the version control system

Subversion. Trac is mainly used for software development projects, but due to the wiki and

the version control system it could be used for other purposes as well. It was chosen as

representative for tools focusing on collaboration aspects.

Possibilities for structuring and finding resources:

Trac’s wiki allows hierarchical structures, a plug-in makes it also possible to mark resources

with tags. A browser allows to easily search the file-repository. A “timeline” shows recent

changes in a chronological view. Full-text search is another option for finding resources.

Visual design and usability:

The graphical interface is unspectacular. It is a standard design adequate for project

management, but not very suitable for game development. However the interface can be

modified through the usage of themes.

The usage of Trac for the end-user should not cause any bigger problems.

Efforts for maintenance, installation and administration:

The usage of the wiki, which is a very stiff structure, could cause high efforts for the authors.

It is not easy to construct a useful hierarchy in the wiki, and it cannot be changed in a facile

way afterwards. This probably hinders the creation of content a lot.

Installation is also quite complex due to the need to install several necessary software

packages. The webserver needs to be configured correctly with Subversion support and the

software needs a database connection. For general administration background knowledge is

absolutely required to solve certain tasks.

Possibilities for (pre-)viewing content:

Due to the fully-functional wiki that is provided with Trac, there are lots of options of how to

create content. It can embed text in many formats combined with images and other resources.

However any preview for content must be added manually.

User management and permission system:

Due to its usage in the context of project management, Trac has a very flexible and elaborate

system for permissions and user management.

24

Possibilities for collaboration:

Collaboration is the main case Trac is used for, so it clearly is its greatest strength. Trac has a

sophisticated system for issue tracking, the wiki can be edited in a collaborative way and

Subversion allows professional distributed work on files.

Version history of content:

Trac automatically saves each version of wiki pages that have been edited, and Subversion

allows professional version control for file hierarchies.

Miscellaneous

One of Trac’s main features is a very tight cross-linking of all resources: For example wiki

pages can be related to issues or to files in Subversion. Furthermore Trac can be extended

with plug-ins.

2.3.2 MediaWiki

MediaWiki [MediaWiki] is one of the most popular tools that can be used as a wiki-system.

The popular online encyclopedia “Wikipedia” uses MediaWiki as underlying engine.

The focus of a wiki-system lies in textual descriptions, but other media like images, videos or

sounds can be integrated as well. Also all kinds of files can be attached to pages. This

flexibility was the reason why also a pure wiki system was chosen for evaluation.

Possibilities for structuring and finding resources:

Hierarchical structuring of content is possible through the usage of categories. However the

main method of finding resources in a wiki is probably through full-text search. A

chronological view shows the recent changes.

Visual design and usability:

An advantage of MediaWiki is the look and feel that is familiar to most people because of

Wikipedia’s popularity. It is a functional interface that can be customized to individual needs.

Efforts for maintenance, installation and administration:

MediaWiki has similar disadvantages as Trac when it comes to creation of content: A wiki

system causes high efforts because everything has to be stored within pages. Therefore

changes in the structure also cause lots of changes in the documents. Modifications that have

to be applied can become very tedious.

25

Possibilities for (pre-)viewing content:

Due to the flexible creation of pages content can be designed in all combinations of text and

other media. However it has to be done manually.

User management and permission system:

Can be configured through the usage of predefined user groups.

Possibilities for collaboration:

Collaboration is limited to the collaborative editing of wiki-pages. This is useful for the

distributed work on documentation and other textual resources, but not for other purposes.

Version history of content:

Wiki-pages and uploaded files are being versioned.

2.3.3 WordPress

WordPress [WordPress] is the most popular software that is being used for so-called “blogs”.

A blog is a website that focuses on chronological publication of content. So-called “bloggers”

maintain such a blog and periodically fill it with new stories, pictures, videos or other media.

Most blogs are supervised only by a few or even one person. Examples for bloggers are

persons writing about traveling experiences, reviewing new technologies or publishing their

progress on a project.

WordPress was chosen as a candidate for the asset repository because it can be used very

flexibly for all kinds of purposes.

Possibilities for structuring and finding resources:

WordPress offers the whole range of possibilities for structuring resources: Besides the

chronological structure of content which is essential in every blog and can show the most

recent entries as well as the entries for a specific month, it also provides support for

categories. It furthermore differentiates categories, which can be structured hierarchically,

from tags. So every resource can be assigned to one or more categories and be marked with

several tags as well. The existing tags can be viewed in a “tag-cloud”, that visually shows the

most popular tags. Full-text search is another option.

Visual design and usability:

WordPress offers a standard design which can be modified completely through the usage of

templates. The community also offers lots of predefined layouts. Due to the popularity of

26

blogging the general interface of the system should be familiar to most web-savvy persons. In

general it is very easy to handle.

Efforts for maintenance, installation and administration:

Due to the fact that WordPress is quite an advanced technology, the system can also be used

by authors very well. WordPress is intended to be utilized by everyone and not only by

experts. Thanks to this fact the whole administration and creation of content can be done very

conveniently. Installation also is a very straightforward process.

Changes to the content or its structure can be performed without problems, even afterwards.

This is a consequence of the fact that each unit of content (each “post”) has its own identifier.

When referencing this identifier it does not matter in which category the post is located. So

hyperlinks to this identifier remain stable after changes.

Possibilities for (pre-)viewing content:

WordPress offers all possibilities for creation of content: Text, images and other media in

interleaved combinations. Posts can be previewed by the end-users, but this preview only

shows the first lines of text. Other forms of preview would have to be done manually for

every post, an automated preview is not possible in standard WordPress for files like 3D-

models. Though this maybe could be added with a plug-in.

User management and permission system:

WordPress offers an easy to use permission system, where predefined roles like

“administrator”, “author” or “subscriber” can be assigned to certain users. In general it is

possible to define the permissions for certain posts or even the whole blog. It is not a highly

sophisticated permission system, but provides the most important functionalities.

Possibilities for collaboration:

Collaboration probably is a weak point in WordPress. It is limited to users who are registered

and therefore can modify the content in a distributed way. However a wiki offers more

options for the collaborative modification of document pages.

WordPress in the standard package does not provide any features like issue tracking or other

support for project management.

Version history of content:

WordPress is able to save each version of a post separately. It also offers a way to compare

the different revisions of a content page.

A notable detail: WordPress regularly performs an autosave while content is being modified

to provide a backup when problems occur.

27

Miscellaneous

The system can be extended through the use of plug-ins. Due to the popularity of WordPress

there is a large community which already provides thousands of plug-ins for countless use-

cases that are not covered in the standard package.

2.3.4 Kohive

Kohive [Kohive] can be called a “shared-desktop” platform. The cloud-based service can be

accessed with a web-browser after free registration. It provides a virtual workspace

resembling the desktop of an operating system, called a “hive”. Every user can create multiple

hives and also invite other users into their own hives. This allows to work on resources in a

collaborative way.

Though it might seem exotic to use Kohive for an asset repository, it was decided to

investigate its suitability in more detail. At the evaluation time the system was in “beta” stage.

Possibilities for structuring and finding resources:

Even though Kohive allows to upload any kind of file to a hive, it revealed the great drawback

of not being able to hierarchically structure them.

Files can be marked with tags and provided with descriptions. A certain area shows the most

recent changes in the hive, but without any options for filtering. Full-text search can also be

applied.

Visual design and usability:

Because of the well-known desktop metaphor usage works quite fine. However possible

adaptations to the design are limited to changing the background of the desktop.

Efforts for maintenance, installation and administration:

Files can be added quite easily, but this is a consequence of the fact that there are almost no

options for structuring them. The system shows all files in a simple list.

Installation is not necessary, because the system resides on an external server. Administration

is easy but only offers very few options.

Possibilities for (pre-)viewing content:

There are no possibilities for previewing files, which is a major drawback. Also Kohive does

not allow to combine images with text and other media in arbitrary combinations. This is only

possible indirectly through the upload of files that contain the intended content.

28

User management and permission system:

Apparently Kohive does not allow the configuration of permissions for other users. Therefore

the system is not appropriate for giving access to a large number of people.

Possibilities for collaboration:

Kohive offers some features for collaboration: It provides a task management feature,

possibilities for chatting and sharing content. However these features are basic and not highly

sophisticated.

Version history of content:

No possibilities for versioning of content could be found.

Miscellaneous

Due to the beta stage the system does not work completely stable, several errors were

encountered. Furthermore the fact that Kohive is a service offered by another company bears

some consequences: Though it eases installation and administration, it creates dependency. If

the company cannot maintain reliability, the whole service might be offline. Or even worse:

The company stops business and does not offer the service anymore at all.

Another consequence is that all data resides on an external server. This certainly can be a

breeding ground for legal issues and loss of data.

2.3.5 ResourceSpace

ResourceSpace [ResourceSpace] is open source software and was chosen as representative

among the group of “digital asset management” systems. This kind of software has the main

purpose of maintaining a large number of digital resources in a structured form and providing

them to end-users. For example these systems are perfectly suitable for implementing a large

database of photographs for a company in the context of journalism. So it seems that digital

asset management is an important option to investigate for this evaluation.

Possibilities for structuring and finding resources:

ResourceSpace is quite complex when it comes to structuring digital resources. Even though

the system offers the possibility to assign assets into a hierarchical tree of categories, this

option is quite cumbersome and not very handy. The guide says that the developers wanted to

avoid a search through a large tree, so this has been done on purpose.

29

Instead, ResourceSpace offers a pretty comprehensive system for assigning metadata to

assets. The allowed and obligatory metadata can be configured very exactly for each kind of

resource. This system’s possibilities go far beyond simple tagging.

A full-text search is able to search through all metadata. ResourceSpace is even able to

automatically show related assets to certain resources. A “recent” area also displays the

newest assets.

ResourceSpace also offers the possibility to group certain assets to so-called “collections”.

They subsume a defined set of assets under a specific name. These collections can be

predefined and made publicly available to all users, or made private and only be available to

the user who defined the collection.

Visual design and usability:

ResourceSpace has a very modern look and feel that appears very professional. The system

generally is usable very well for the end-user, though it requires some work to get familiar

with the many functions it offers.

Efforts for maintenance, installation and administration:

Installation requires some tricky adjustments in the server configuration, but it is feasible. In

the beginning there are lots of efforts necessary to set up the complex metadata system, which

should be done very carefully because it affects the overall value of the further work with the

system.

ResourceSpace offers lots of support functions to ease the maintenance and the import of new

content. However the extensive metadata system could probably cause high efforts when it

needs to be changed after some time.

Possibilities for (pre-)viewing content:

One of the most useful functions ResourceSpace offers is the ability to automatically create

preview thumbnails for lots of supported file formats. On the other hand, the system is not

that flexible when it comes to freely combine text with other media. This could cause

problems when trying to add tutorials or other text-based resources.

User management and permission system:

The definition of permissions works a bit cumbersome, but generally it offers a large number

of options for configuration.

Possibilities for collaboration:

Collaboration is limited to the distributed import and editing of assets. Thanks to the metadata

system, the results of this process can be controlled very well. But in general there are no

additional features for project management.

30

Version history of content:

No functionalities regarding version control could be found.

Miscellaneous

ResourceSpace also offers lots of features concerning the generation of statistics and creation

of reports.

2.3.6 Razuna

Razuna [Razuna] is another open source representative in the group of digital asset

management software. Due to ResourceSpace’s unusual system of structuring resources, it

was decided to also add a more traditional candidate for evaluation.

Possibilities for structuring and finding resources:

Resources can be structured hierarchically very easy by using folders. Keywords can be added

to every asset. There is no “news” section, but the assets can be sorted by date.

A full-text search that can be parameterized comprehensively is also available. However

during tests the search seemed to “miss” some of the keywords defined in the assets and did

not show them in the results.

Visual design and usability:

The interface is unspectacular, but generally fine to use. However many bugs in the GUI were

encountered that complicated the usage of the system.

Efforts for maintenance, installation and administration:

Installation can be performed very easily when using a ready-to-use package provided from

the website. If this package cannot be used, setting up the system becomes quite more difficult

and requires a Tomcat server with several additional packages to be installed.

In general adding content and maintaining it should be working quite fine with Razuna. But

during local tests many errors and unexpected behaviors of the system were encountered. It is

very probable that this causes high efforts for administration.

Possibilities for (pre-)viewing content:

Just like other digital asset management systems, Razuna is able to automatically create

preview thumbnails for uploaded assets. All assets can be described with text or other

definitions. However it is not possible to flexibly intertwine text with images or other media,

which would be necessary for tutorials.

31

User management and permission system:

Razuna does not offer a sophisticated permission system. Users can be added to defined

groups, and these groups can be granted read or read / write access to specific asset folders.

This system should solve the most common use-cases, but probably is insufficient in more

complex situations.

Possibilities for collaboration:

Collaboration is limited to distributed work on assets. There are no other features like issue

tracking or web-based communication.

Version history of content:

Assets are being versioned, so older versions still can be accessed when uploading a new

version.

Miscellaneous

After testing, the impression was that Razuna is not a technically mature product yet. An

extraordinary number of errors and unexpected system behaviors were encountered.

Furthermore the wiki that should be the documentation for Razuna is very incomplete, which

additionally complicates usage.

2.3.7 Result of evaluation

Several discussions based on the evaluation insights were held to choose the appropriate tool

for an asset repository. In the end it was decided to use WordPress. The other candidates

were discarded due to the following reasons:

• The evaluation showed that a wiki would probably cause high efforts for maintaining

the contents, especially when changes need to be made. This dropped out Trac and

MediaWiki.

• Kohive is not able to provide contents in an appropriate form. Its permission system

makes it inadequate to be used in a broad university context. Furthermore due to the

“beta” stadium and the external service it could be very unreliable in the future.

• Razuna was a promising candidate, but could not live up to high quality standards.

ResourceSpace was the second best system after WordPress. Finally it was not chosen

because of its lacking capabilities to intertwine text with other media and the high

efforts to set it up correctly.

32

The following arguments support the use of WordPress:

• It is easy to install, administer and to be utilized by the end-user.

• It offers all important possibilities for structuring and finding resources.

• Changes in the structure do not cause high efforts.

• Content can be defined very flexible which is important when mixing textual and other

media-based resources.

• Most other features that are important for the purpose like a permission system,

version control and a customizable interface are also provided. There is a high chance

that features that are not provided within the standard package can be implemented

with plug-ins.

• A large community is behind the system which makes it a very reliable tool for the

future and ensures documentation and support.

33

3 Tutorials for students learning Unity

This section of the master thesis contains the resources that were created to teach Unity to

beginners. The knowledge has been split up into separate modules. Each module contains

information to a certain topic. This allows to work through a specific unit without the need to

read the preceding modules (except it is necessary due to missing knowledge).

The modules have been provided with descriptive data like goal, prerequisites and difficulty.

Furthermore they have been arranged into an order that resembles the recommended order of

working through the modules. The section starts with an overview of the tutorials and their

relationships.

3.1 Overview

Though each module can be used by itself, altogether they form a course that can be used to

get the basic knowledge in how to work with Unity. They have been structured like illustrated

in the following diagram:

34

Figure 9: Overview of the different modules about Unity

3.2 MODULE 01: Basic principles of 3D-applications

Goal: Understanding the most fundamental concepts regarding 3D-applications in general

Difficulty : Beginner

Prerequisites: None

3D-applications are able to create the illusion of three dimensions on a computer. But how is

this possible with a screen that is flat and does not provide any depths?

The secret lies in the concept of projection. In general a projection is the process of mapping

something onto another surface. In a cinema the information of the movie that shall be shown

is projected onto the big screen. Similarly the information the computer calculates for the

current scene of the 3D-application is projected onto the flat computer screen.

35

To perform this projection, the computer needs to convert all information it stores in three

dimensions into a two-dimensional system. The following figure gives an idea about the

concept of projection:

Figure 10: Projecting a three-dimensional object onto a two-dimensional screen

There are different ways of how to perform the projection, some are more complicated (and

therefore often have a more realistic result) than others. But luckily, when working with Unity

you do not have to care about projection, this is already handled by the Unity game engine.

However it is useful knowledge that helps in understanding other concepts.

Another topic that is fundamental when working with 3D-applications is the coordinate

system. Coordinates are being used to define the positions of objects or other points of

interest. While in a standard two-dimensional coordinate system there is an x-axis to describe

the horizontal position and an y-axis for the vertical location, in a 3D-application there also is

a z-axis that adds depths. Coordinates are defined in numeric value pairs (for two dimensions)

or triples (for three dimensions). The following diagram shows two objects in two different

coordinate planes:

36

Figure 11: Coordinate systems with different dimensions

The first coordinate system only knows two dimensions. Coordinates are stated as “(x,y)”

pairs, so the first object has the x-value of 5 and the y-value of 3. The blue object has the

coordinates (6,8).

The second coordinate system adds depths by using the z-axis. The object positions now are

defined with triples: Values for x and y remain the same, but now the orange object also has a

z-value of 2 and the blue object of 10. This means, that the blue object is not only positioned

above the other, but also behind it.

It is a common practice to state positions as “(x,y,z)” coordinates (in this order!). Furthermore

many 3D-applications add colors to mark the different axes: Red for x, green for y and blue

for z.

The bottom left corner, the point where the coordinate system “starts” is called the origin. It

always has the coordinates (0,0) or (0,0,0). It’s also possible to locate objects to the left or

below the origin, which causes the coordinate values to become negative.

Another important concept are vectors: While a point simply is the representation of a

specific position in the coordinate plane, a vector contains information about length and

direction. Confusing might be the fact that vectors are also defined by using numeric values

for x, y and z, so they look quite similar to positions. But they are used in different contexts:

For example you have to use vectors when calculating the distance between two objects, or to

define the direction the player moves to. In Unity there are lots of operations that need a

vector as input, so it is important in many circumstances. Fortunately Unity provides lot of

supporting functions that help us in dealing with vectors.

37

When working with coordinate systems it is necessary to mention that 3D-applications use a

specific technique to simplify some issues: The conversion of world space into local space.

World space (or also called “global space”) just means the same like mentioned before: There

is one coordinate plane that is the reference for the definition of the coordinates of all other

objects.

When using local space, the objects can be equipped with their “own” coordinate systems,

which usually originate in the center of these objects. This way it is much easier to state

relative positions like “5 units below this object”, which would be a simple statement like “(0,

-5, 0)”. In world space one would have to calculate the position with absolute values referring

the origin. Unity provides functions to automatically convert between local and global space.

The following diagram illustrates the concept. It shows a cube first in global coordinates, and

then within its own local space (in which the object itself of course has the position “(0,0,0)”):

Figure 12: Global and local space

In 3D-applications all three-dimensional objects are made up using two-dimensional

polygons. A polygon is a defined geometric plane, like for example a triangle, rectangle or

arbitrary other structures. Though this might seem simple, it is possible to create highly

detailed objects by combining lots of polygons. But the more polygons an object consists of,

the more work has to be done by the machine to render it correctly. So the number of

polygons is an important aspect one should keep in mind when developing applications with

Unity.

However polygons all by themselves could not make up a detailed object, they furthermore

need to be provided with realistic surfaces. A car that just has one color cannot resemble a

38

real car, it needs surfaces in different color tones, reflections and transparent parts. To achieve

this, object surfaces can be equipped with 2D-images, so-called “textures” .

These textures can make an object look quite realistic, but do not provide any effects. For

example the reflection from a surface changes with the point of view, which cannot be

achieved with a graphic that is static. Therefore exist so-called “shaders”.

Shaders are written in a special language which makes them look quite similar to

programming code. Using shaders a developer can create various effects like reflections,

transparency or color effects. Unity provides a lot of built-in shaders that can be used for the

most common use-cases. Shaders and textures can be combined and parameterized in so-

called “materials” .

The final topic that shall be mentioned here regarding the basics of 3D-applications is the

manipulation of objects. In most 3D-applications there are three fundamental attributes that

are defined for every object: Position, rotation and scale.

• The position of an object is its location in the environment. By changing the position

an object can be moved forward, downward or in other directions (thus around all

axes). The operation of manipulating the position of an object is also called

“translation”.

• The rotation of an object is its angle relative to the environment. Changing the rotation

means to turn it around the x, y or z-axis. This way the direction a character is looking

can be changed, or an item turned upside down. The operation is simply called

“rotation”. Values are given mostly in degrees.

• The scale of an object are its proportions in size relative to its original size. A scale

factor of 1 means no change in dimensions, a scale factor of 2 that the object’s size has

doubled. The scale also can be changed around all axes separately. By not changing

the scale proportional around all axes equally an object will be stretched. The

operation is called “scaling”.

The following figure illustrates the different operations:

39

Figure 13: The basic operations translation, rotation and scaling

3.3 MODULE 02: Overview of the fundamental concepts in Unity

Goal: Get an insight into the basic concepts of Unity and what they can be used for, without

any detailed knowledge yet

Difficulty : Beginner

Prerequisites: None

While there are certain concepts that are similar in all 3D-applications, some are special when

working with Unity. This module shall give an overview of those concepts to catch a first

glimpse without getting into any details. They are handled in all its particulars in later

modules.

• “Asset” is a term that is used very broadly in Unity. An asset can be anything that is

being used for a Unity project, for example textures, 3D-models, programming scripts

or background images. In general all files that are located within the current project

folder and can be used in the application are called assets.

• “GameObjects” are objects that are actually used in the current environment. They

can be positioned, rotated, scaled and manipulated in many other ways. The difference

to an asset is as follows: An asset could be a 3D-model file of a monster that resides

40

within the folder of the project on the computer’s file system. When using this 3D-

model in the dungeon that is currently designed, the asset becomes a game object.

When manipulating this game object, the original file is not changed. Furthermore the

one single file could be used to create a whole horde of monsters.

There are some predefined game objects in Unity that can be used right from the start

without any asset, for example geometric bodies like cubes, spheres or cylinders. Also

there are special objects that provide extra functionalities, like for example cameras,

light sources or menu objects.

• Any game object can consist of one or more “components”. A component is part of a

game object and describes either attributes or provides functionalities for this object.

For example every game object has the component “transform”, which can be used to

manipulate the position, rotation and scale of an object. Another example is the

“RigidBody” component that adds realistic physical behavior to an object.

• A “scene” in Unity subsumes the current environment with all contents in it that are

being designed for an application. This includes all game objects with their current

positions and attributes. An application created with Unity can consist of one or more

scenes. The developer can exactly define in which situation the player will jump to

another scene. So a scene suits very well to be used as a “level” in a game.

• “Scripts” are files that contain programming code. They need to be used to define the

whole logic of the application. This means to handle issues like for example: What

happens when the player character touches the enemy? How can the character be

controlled by the user? Where are the highscores being saved?

Scripts need to be written in a programming language and must strictly meet certain

formal constraints. Unity supports usage of three different languages: “JavaScript”,

“C#” (“C-Sharp”) or “Boo” (a variant of the “Python” programming language). The

different languages cannot be mixed in a single file, but different files can use

different languages in the same project.

• So-called “Prefabs” are one of the most important concepts in Unity at all. You have

already seen the difference between assets and game objects. An asset is a file that can

be used many times in different situations of the project. Utilization in a scene turns

them into a game object.

But what if modifications are made to the game object (not to the asset-file!), which

could make sense to be reused later?

41

For example: The 3D-model file of a character is imported into the current scene.

There it becomes a game object, and the developer equips the character with a weapon

and applies different textures to him to make him fit into the current level. If the

developer now wants to reuse this whole character with weapon and textures in a

different scene, he would have to redo all the steps mentioned before. But by using

prefabs, he can save the textured character with his weapon in its current state. The

developer can save the whole package as a prefab (with a significant name like “armed

hero”), and use this prefab in multiple locations (by creating so-called “instances”).

What further reduces efforts is the possibility that changes to the prefab (for example

the developer decides to give the character another type of weapon) can automatically

be applied to all instances of the prefab in all scenes. But it is also possible to make

single instances differ from the others (for example there could be a level where the

character has no weapon at all). It is very important when working with Unity to

understand the concept of prefabs and apply it in a meaningful way.

3.4 MODULE 03: The interface of Unity

Goal: Get an overview of the basic elements in the interface of Unity and learn to navigate

through 3D-space

Difficulty : Beginner

Prerequisites: None

When opening a new project (it does not matter for the moment which assets had been

imported), the application looks similar to this (without the numbers):

42

Figure 14: The interface of Unity

It is important to know that one can freely customize the layout’s interface. To get a GUI that

resembles the screen shown above you have to choose “Window” � “Layouts” � “2 by 3” in

the menu. There are other layout configurations possible too, but this one keeps everything

important on the screen at once.

The numbers in the screenshot mark the following important areas of the interface:

1. The scene view: This is the “building site” of your application. Here all current objects

of the scene can be seen and directly modified.

2. The game view: This is a direct preview of what will be shown when starting the

current scene. It has the point of view of the main camera, just like the user has when

starting the application. It furthermore is used to preview the game in action after

pressing the “Play” button on top of the interface.

3. The hierarchy: Here all game objects of the current scene are listed. In this list all

objects can easily be selected, even if they cannot be found in the scene view. In a new

project there is only the main camera in the hierarchy, but every other new object will

be listed here as well.

4. The project folder: Here all assets that have been imported into the current project are

shown. This view resembles the files that lie within the folder of the current project.

These assets can be used in all scenes of the application to develop. In fact even the

43

scenes themselves are files in this folder. At the moment this view is empty (at least if

you have not chosen to import assets when creating the project), but will be filled with

assets in later modules.

5. Inspector: The inspector gives information and allows modification of the currently

selected game object or asset (it is used for both types). Currently the inspector is

empty, but if you click on the main camera in the hierarchy view, it will be filled with

lots of information. These contents can be very different and depend on the selected

object. In the inspector one can analyze and modify the different components of the

selected game object. The different components are separated with horizontal rules.

Navigation

One of the most important faculties when working with Unity is to be able to navigate in 3D-

space efficiently. This is absolutely necessary when designing an environment with objects in

the scene view.

Because it has no demonstrative effect to navigate through an empty space, you need to fill it

with a sample object. To do so, please click in the menu on top on “GameObject” � “Create

Other” � “Cube”. What happens is that a grey cube will appear in the scene view (and also in

the hierarchy). You will now try to navigate around the cube by using different types of

movements. Please make sure to start these movements with the mouse cursor within the

scene view, otherwise you might encounter undesired effects.

If you lose sight of the cube during these experiments and do not find it again, you can click

onto the name “Cube” in the hierarchy, move the mouse cursor over the scene view

(important!), and press the key “F”. Then the cube will be centered again.

• By holding the right mouse button and moving the cursor around, the scene view

rotates around its own axis. It might happen that you lose sight of the cube and you

must find it again by properly moving the mouse.

• By holding the middle mouse button the view of the scene can be moved left, right or

up- and downwards. If you have no middle mouse button, you can also achieve this by

activating the hand-symbol in the topleft corner and holding the left mouse button over

the scene view.

• You can zoom in and out by simply scrolling the mouse wheel. This can also be

achieved by holding “Alt”, then the right mouse button and moving the mouse. The

44

latter method has the advantage that you can additionally hold “Shift” to accelerate the

zooming speed (which can be useful in large scenes).

• Now hold “Alt”, then hold the left mouse button and move the mouse: This has the

effect that the view is rotated again, but this time not around its own axis, but around

the axes of the world it shows. This technique can be used to view objects from all

angles. Try to see all sides of the cube by using this method.

Please try out all these techniques and learn to know them. To have more objects to see when

moving around you can add other game objects in the menu “GameObject” � “Create

Other”, like for example a plane, cylinder or sphere.

Another helpful tool to mention is the so-called “scene gizmo”. It is the small object in the

upper right corner of the scene view:

Figure 15: The "scene gizmo"

Visual objects that are part of the interface are called “gizmos” in Unity. The scene gizmo can

be used to view the current scene from certain points of view. If you click one of the handles

of the scene gizmo (for example the red x-handle), the view changes and shows the scene

from a certain side. This can be very useful when trying to accurately position objects.

Please also note that activating one of the handles changes the perspective to “isometric”

mode, which causes all objects to remain their size relative to other objects, no matter how far

away they are (normally objects that are farther away seem smaller).

To switch back to normal view just click the center (formed like a cube) of the gizmo.

45

3.5 MODULE 04: Modeling the environment

Goal: Learn how to design the environment of the application, including terrain and objects

Difficulty : Beginner

Prerequisites: Ability to navigate in the scene view, Unity’s interface (module 03), basic

concepts of 3D-applications (module 01)

This module is separated into several submodules. Each submodule can be worked through on

its own.

3.5.1 MODULE 04.01: Modeling the terrain

Most applications need some ground the user’s character can walk on or fly over. The

simplest way to create a floor for the character is to create a plane. To do so, simply click in

the menu “GameObject” � “Create Other” � “Plane”. This creates a large, flat object that

can serve as provisional ground. You can use this method when experimenting with Unity or

building a prototype where you don’t need any detailed terrain. Please note that a plane only

has one side, so it is invisible when trying to view it from the bottom.

In other circumstances you probably want a more realistic landscape that can be explored by

the user. Unity provides a terrain editor that helps in creating such an environment. But before

you get into terrain modeling you should import Unity’s terrain assets package (if you have

not done this already). To do so, please click “Assets” � “Import Package” � “Terrain

Assets” in the menu. Make sure all boxes are checked in the following dialog and click

“Import”. When the process has finished, the project view has been filled with several files

and folders that can be used for modeling the environment.

First you need to create a terrain. You can do so by clicking “Terrain” � “Create Terrain” in

the menu. This creates a large, flat plane without any details yet.

An important dialog can be shown by clicking “Terrain” � “Set Resolution”. Here the

options “Terrain Width” and “Terrain Length” are mainly of interest for us. They state the

dimensions of the terrain and are both set to 2000 at the moment. You can decrease these

values a bit because 2000 is very large for the beginning. Also interesting might be the option

46

“Terrain Height”, which states the maximum height the terrain can have (important for

example when modeling mountains). The other options can be ignored for now.

Now select the “Terrain” in the hierarchy. This will cause the inspector view to display

certain attributes and tools that can be used. Primarily of interest for us is the component titled

“Terrain (Script)”:

Figure 16: The terrain editor

Before designing the terrain, you might want to change the layout by selecting “Window” �

“Layouts” � “Tall” in the menu. This way there is more space for the scene view which is

most important when designing the environment.

The modeling of terrain in Unity works similar to drawing a picture in painting applications.

But instead of plotting colors onto the screen, you can “paint” mountains, valleys or trees.

This can be done by clicking the different icons. The first three tools are used for defining the

structure of the terrain:

• By activating the -icon, your mouse cursor becomes a “brush”. Try moving the

cursor over the terrain while holding the left mouse button. You will notice that many

small mountain peaks will appear. The more you move the mouse around, the higher

the mountains will become. You can choose various shapes for your “mountain-brush”

47

to achieve different results. Furthermore it is possible to specify the size of the brush

and configure its opacity (which is the strength of the brush). By default this tool

raises the height of the terrain. But by holding the “Shift”-key while using it, the

terrain can be lowered again.

• The -symbol works similar to the tool mentioned before, but it additionally lets

you configure the maximum height to which the terrain shall be raised. It has the

effect that mountains you create will be flattened exactly at the defined height. By

holding shift and left-clicking into an area, the current height of that area will be set as

the current maximum height. This tool is especially useful when modeling plateaus.

• The -icon activates a brush that smoothes the height of the terrain. This means

that it turns rough height transitions like sharp peaks and chasms into smooth

formations.

With the mentioned tools it is possible to shape the terrain as desired, but to make it realistic it

furthermore has to be provided with details. To achieve this, the following tools need to be

used:

• The selection of the -icon allows to paint textures onto the terrain’s surface.

Textures that are used for terrain are called “splats” in Unity.

Now you can make usage of the “Terrain Assets” package imported previously. To do

so, you must click the “Edit Textures…” button. In the following dialog, there is a line

called “Splat”, with the value “None (Texture 2D)”. This means that no texture has

been selected to serve as “splat”. To the right there is a small circle symbol. By

clicking it, you will see the available textures of the current project folder. Select the

“Grass (Hill)” texture by double-clicking it and click the “Add” button. This has the

effect that the “Grass (Hill)” texture appears in the terrain editor, and also is painted

onto the whole terrain that exists until now. But this is done only for the first texture

that is being added to the palette (so be careful which texture to add first!). Now repeat

this process and add the “Grass&Rock” and the “Cliff (Layered Rock)” textures.

You should now have three different textures in the palette. Select the “Cliff (Layered

Rock)” texture and paint it onto the mountains of your terrain by pointing at them and

holding the left mouse button. Again you can configure brush size and opacity. By

modifying the target strength you can furthermore set the transparency level of a

texture to mix it with other textures.

48

If you encounter the effect that your textures look very much like repeating patterns,

choose the regarding texture by double clicking it and increase the values of “Tile Size

X” and “Tile Size Y”. Make sure both have the same value (for now). A texture is

being painted on a surface by repeating small image-“tiles” a lot of times. By

increasing the tile size, these tiles become larger and therefore are not repeated as

much as before (with the drawback that they are not as detailed at close range).

• The -symbol allows to place trees onto the terrain. The same way as before for

textures, you first need to add trees to your palette. Choose the “Palm” and any other

trees you might like to add. When now “painting” the terrain you will see that the

palm trees will appear on the ground. There are several options to configure this

process: “Tree Density” states the number of trees placed per click. “Color Variation”

makes the trees look slightly different by changing their colors. “Tree Width” and

“Tree Height” change the dimensions of the trees (with respect to the original asset’s

size) and can be provided with a random factor to make it more realistic.

To delete trees you have painted, simply hold the “Shift”-key when dragging the

mouse over the trees.

• The -icon allows to paint ground details like for example stones, flowers or

other plants. For instance you can add grass to your terrain by clicking “Edit

Details…” � “Add Grass Texture” and then choose the “Grass2” image. Painting

details onto the surface works similar to the “Place Trees” tool.

• By activating the last icon in the row several settings for the terrain can be configured.

These affect the level of detail the terrain is rendered, but they are not important for

the moment.

3.5.2 MODULE 04.02: Creating Game Objects

When you have created a terrain (it does not matter if it is a detailed environment or just a flat

plane for this tutorial), you can get on to the next step: Placing game objects.

A game object can be any object in the environment: A building to explore, a monster that

needs to be fought or a vehicle the player can ride. In fact even the terrain itself and the user’s

character are game objects.

There are different types of game objects: There are standard objects provided with Unity, and

imported game objects modeled with another application. Furthermore there are game objects

49

that have special functionalities like for example light sources. These will be covered in later

modules in more detail.

Now create some of the standard game objects that represent the most basic geometric bodies.

They can be found in the menu at “GameObject” � “Create Other”. Please create at least one

for each of the following objects: Cube, Sphere, Capsule, Cylinder and Plane.

Figure 17: The basic game objects

You can now manipulate the objects you created by selecting one of the icons on the topleft

corner:

Figure 18: The basic tools for object manipulation

By activating these three icons it is possible to do the basic operations described in module

01: Translation, rotation and scaling.

Activate the first icon and click on one of the objects you created, for example the cube. You

will see that the cube will be highlighted and three arrows originate from the object in three

different colors: Red, green and blue. This is another “gizmo” that helps in manipulating the

object. There are several methods of how to translate (move) the cube now:

• In the center of the object (at the origin of the three arrows) you see a small square.

You can left-click the square and drag the object around in the scene view. This

method of translating an object is quite simple, but on the other side very imprecise.

The reason is that movements of the mouse on flat ground have to be converted into

three-dimensional positions. This is not possible without guessing at least one value of

the three coordinate axes. To improve this behavior, it is better to choose one side as

50

point of view from the scene gizmo. After that, the cube can be dragged around along

two axes precisely.

• Another option that works very well is to click on one of the three arrows, hold the left

mouse button and move the cursor. This way the object is only moved along the axis

that is represented by the arrow. This method is very useful for precise positioning, but

can be a bit tedious when moving the object diagonally (where positions along two or

three axes need to be manipulated). By holding the “Ctrl”-key while moving the

object, it will be moved in single units.

• Finally the position of an object can also be stated with exact numeric values by using

the “Transform” component in the inspector. Use this method when moving the object

with the mouse is not precise enough for your purpose:

Figure 19: The "Transform" component

The top row of the component is titled “Position” and shows the exact values of the

position at x, y and z axis. You can manipulate the values by just typing a new one

into the box. Furthermore it is possible to move the cursor over the “X”, “Y” or “Z”

letter, click the left mouse button, hold it and move the mouse. The cursor changes its

shape and the values can be modified with movements. This way of modifying a box

with a numeric value is generally very common in the interface of Unity.

By activating the second icon you can see that the gizmo changes to different circles that

contain the game object. In general there are three different gizmos for the basic manipulation

operations:

51

Figure 20: Different "gizmos" for manipulation of o bjects

The second icon activates “rotation mode”. It works pretty similar to translation but instead of

moving the cube around it will be rotated along different axes. Each colored circle will rotate

the cube around a specific axis. Furthermore there exists an additional outer area (made up of

two grey circles). Rotation along this area is done in relation to the current point of view of

the scene.

As with the translation, rotation can also be manipulated using the transform component in the

inspector. Values are stated in degrees, so note that a value of zero will show the same

rotation as values of 360, 720,… et cetera. It makes sense to let those values not become

unnecessary big.

The third icon allows to scale an object. Again this works similar to the other manipulation

operations. Note that modifying just one of the axes will either stretch or narrow the cube. To

proportionally scale an object click on the center of the gizmo (which is formed like a cube)

and then drag the object to the intended size.

You might want to give an appropriate name to an object. To do so, click the object twice

with some time in between (like a very slow double-click) and type in the name. It is also

possible to select the object and press the “F2”-key.

An important concept when working with game objects is called “parenting” . To see this

concept in action, create two game objects, like for example two cubes. Now drag one of

those cubes in the hierarchy view (not in the scene view!) onto the other.

You will notice that one of the cubes will disappear in the hierarchy view and a grey triangle

can be seen. Clicking this triangle will bring back the second cube, but its name is indented

now. This indicates that it is now the “child” of the other object, which itself is called the

“parent”. Furthermore you might have noticed that the position values of the child cube have

changed in the inspector. The reason is that child objects do not have an absolute position

referencing the origin of the whole environment, but their position is now relative to their

52

parent’s. So a position like for example (5,0,0) means that the child cube is five units to the

right of its parent, no matter where the parent currently is located. When moving the parent

both objects are moved, but the child remains its position relative to the parent. The same

goes for rotation and scaling, both attributes are now given in relation to the parent. So a scale

value of two means double the parent’s size. If you want to remove the child from its parent,

simply drag the child into the grey area of the hierarchy, where there are no other game

objects.

This technique is often used to group objects that relate to each other, for example a character

and the weapon he is holding.

But sometimes you want related game objects to be grouped, but remain on the same

hierarchy level. To achieve this, empty game objects can be used.

Please click “GameObject” � “Create Empty” in the menu. A line called “GameObject” will

appear in the hierarchy. But you won’t be able to see any new object in the scene view. This is

because the new game object is “empty”, and therefore cannot be seen. But you can still use it

as a parent for other objects. To do so, drag two other game objects (that have no parent yet)

onto the empty “GameObject”. Both will become children now and remain their position,

rotation and scale relative to their parent. Be aware of the fact that although the empty game

object cannot be seen in the scene view, its transform component still has values for the

different attributes. These are the base for the children’s attributes.

Importing 3D-models

Until now you just used predefined game objects in the scene. But of course it is difficult to

design detailed objects like humans, cars or buildings using the simple shapes of cubes,

spheres or cylinders. Unity might be a great tool, but in fact there are applications that are

much better suited for performing the detailed modeling of objects. Luckily Unity can import

the results of other applications. The following 3D-modeling applications are supported by

Unity:

• Cinema 4D

• Blender

• Maya

• 3D Studio Max

• Carara

• Cheetah 3D

53

• Lightwave

• XSI

Usage of modeling software won’t be covered in any details here, in fact it is a course on its

own. But in general these applications can export the models and everything packaged with it

(like meshes, textures and animations) into the so-called “fbx” file format, which can be used

in Unity.

Unity even automatically identifies changes made to the file in other applications, so you can

use your favorite 3D-modeler at the same time as working with Unity. You just need to save

all exported results into Unity’s project folder. A full list of compatible applications can be

found at http://unity3d.com/unity/features/asset-importing.

To see an “fbx”-file in action you can import the terrain assets. If they are not already in the

project folder, click on “Assets” � “Import Package” � “Terrain Assets”. If all boxes are

checked in the following dialog, click “Import”.

When finished, expand the folders “Standard Assets” / “Terrain Assets” / “Trees Ambient-

Occlusion” / “Palm” in the project view. In this folder there is an asset called “Palm” with a

cube and small document symbol beside. This is a “fbx”-file that defines the model of a palm

tree. By clicking it, the inspector shows all relevant information of the imported file, like

information to materials or animations. An important option to configure is the “Scale Factor”

from the “(FBXImporter)” component. This setting defines how much the model shall be

scaled within Unity in relation to its original size in the modeling application. If you happen

to import an object which is gigantic or too small you can tweak this setting.

But for now just drag the palm asset from the project folder into the scene view. You will see

that a detailed tree will appear in the scene. Now you can manipulate the palm just like any

other object and modify its position, rotation or scale. In general advanced 3D-applications

make lots of usage of 3D-models that were designed with professional modeling software.

3.5.3 MODULE 04.03: Materials, Textures & Shaders

You might have noticed that imported 3D-models are often highly detailed, while standard

game objects created from within Unity like cubes or spheres all appear just grey. The reason

is that 3D-models from other applications are usually already provided with materials, while

54

there are none defined by default for game objects created within Unity. But it is possible to

apply materials, textures and also shaders to objects within Unity.

To repeat the difference between materials, shaders and textures:

• Textures are graphics that can be placed onto object surfaces. But because they are

only static images, they do not provide any dynamic effects.

• Shaders are definitions of how to render the surfaces of objects (with possible textures

on them). In fact they are small programs and are able to create effects like reflections,

color toning or transparency.

• Materials unite the different concepts into a single assets. A material can be provided

with textures, shaders or other necessary assets. Furthermore different parameters can

be configured for the material. Which parameters are available depends on the shader

that has been chosen for the material.

You will now see these concepts in action: Create a plane object by clicking “GameObject”

� “Create Other” � “Plane”. Now create a new material asset that can be added onto the

surface of the plane. Assets are listed in the project folder view, so you need to click onto the

“Create” button on top of the asset view (beside the search field). Choose “Create” �

“Material”.

An asset will appear in the list called “New Material”. You now have a material, but it is not

assigned to any object yet. To do this, you just need to drag the “New Material” asset onto the

“Plane” object in the hierarchy. Clicking the “Plane” object now shows the “New Material” in

the inspector view. The material itself can now be edited either by selecting the “Plane” object

or by selecting the “New Material” asset in the project view, both methods work.

The “New Material” does not show much information yet. The shader is “Diffuse”, which is a

built-in default shader. A diffuse shader spreads reflected light very much, in contrary to

specular reflection which creates a glossy effect. The following figure illustrates the

difference. While the diffuse surface reflects the light evenly, the specular surface highlights

the light rays in the direct emerging angle:

55

Figure 21: Diffuse and specular light reflection on surfaces

The first obvious thing that can be changed in the “New Material” is the “Main Color”. By

default this is white, but by changing it you will see that it is simple to equip the object with a

different base color tone. Any changes made to the material can instantly be seen on the

object in the scene view.

Now apply a texture to the plane. To do so, you have to click on the “Select” button inside the

grey square with caption “None (Texture2D)”. Select the “Cliff (Layered Rock)” texture by

double-clicking it (you need to import the “Terrain Assets” for that texture, please do so if not

done already). You will see that the plane is now covered with the cliff texture. You may also

want to change the “Tiling X” and “Tiling Y” values, which state the number of times the

texture image (called “tile”) is repeated on the surface. A value that’s too small might give a

washed-out look to the texture at close-range, while a value that’s too high will give the

impression of repeating images. A value like “3x3” is probably okay for this purpose.

There are other built-in shaders as well that can be used: Switch the shader of the material

from “Diffuse” to “Specular” and have a look at the plane from different angles. You will see

that it now seems to be a bit glossy. You can also modify the color of the reflection effect

with the option “Specular Color”. The “Shininess” modifies the range of the effect.

Other interesting shaders are the “Bumped” (either diffuse or specular) shaders. These shaders

are able to make a texture (that is actually flat) seem to have raised or lowered parts. This

effect makes a surface look very realistic because it appears to be three-dimensional.

In order to use bumped shaders effectively it is necessary to provide them with a so-called

“Normalmap”. A normalmap is a grayscale image that defines the way the shader shall render

the bump effects on the texture. It has to be defined by the developer, but can be done in

parallel to creating a texture. “Bumpiness” is an advanced technique and not easy to get done

in a realistic way.

56

There are lots of other built-in shaders that can be used by the developers and cannot be

covered here anymore.

Please see the website at http://unity3d.com/support/documentation/Manual/Materials.html

for an overview of the different types of materials and shaders.

3.5.4 MODULE 04.04: Light sources

Every scene in a 3D-application usually needs objects that emanate light to make the

environment visible to the player. These objects are called “light sources”. They can be

created with the menu “GameObject” � “Create Other”. There are three different types of

light sources:

• Directional Lights are objects that shine on everything in the scene, within infinite

range. In fact although directional lights have a position in their transform component,

it does not matter at all where to place these light sources. The only relevant transform

attributes are the rotational values, that define the angle of the light incidence.

Directional lights are most often used as the main source of light in a scene. They

simulate the sunlight, so the majority of outdoor scenes that take place during daytime

need a directional light. One of these light sources is often enough, but you might want

your objects to be equally lit from all sides, then it can make sense to add multiple

directional lights with different angles.

• Point Lights are light sources that emanate from a single point into all directions. For

these types of light the position is very important, because it becomes the center of

light emission. But because light is equally emitted into all directions, the rotation

does not matter for point lights. Their inspector shows another attribute that is of

importance: The range. It defines the distance the light is being emitted, and is

illustrated with the yellow circles around the object in the scene view when selecting

it. These types of light sources suit very well to realistically simulate light bulbs,

lamps or fires.

• Spotlights are the last type of light source. As the name already suggests, they shine

from a specific point into a particular direction (like real spotlights on stage do). So it

is important to define both the position and the direction as intended. For spotlights it

is possible to define the distance it shines with the option “Range”. Furthermore the

option “Radius” makes it possible to configure the angle the light is emitted: It allows

57

to model a small ray of light, or a broad emission that covers lot of ground. Spotlights

are ideally well suited to simulate objects that work like flashlights.

All three types of light sources have two other configuration options that are of interest here:

They let the developer define the color of the light and its intensity. The default color is white,

but you maybe want a fire for example to emit a yellowish colored light. By modifying the

intensity it is possible to make the light of the source brighter.

Try out all different types of light sources. You will notice that after creating the first light

source, the scene view will disable its “standard” lightening, that helped in making the first

objects and terrain.

Lightening helps to make scenes more atmospheric, but it is not an easy task. Start with a

directional light source so the majority of the scene is well-lit. Try to highlight points of

interest with additional light sources. Of course you need further light emitters for indoor

environments and objects like lamps, fires or car headlights. Preview your results from

different angles and often see what they look like when trying out the game.

3.5.5 MODULE 04.05: Skyboxes

When starting a project from scratch you might have noticed that the background in the game

view (or the preview of the game that starts when pressing the “Play” button on top) is just

blue, without any other details. In an actual application you probably want something like

blue sky with clouds, a sunset or starry sky.

This can be achieved in Unity through the usage of a so-called “skybox”. A skybox is made

with a “cubemap”, which means that six textures are put together in the form of a cube. The

whole environment then is put into this “cube”. By using seamless textures the player cannot

see that he is inside a cube but perceives the textures at the horizon. Similar to reality, the

skybox is something that can be seen but the player can never actually get to it.

To apply a skybox to your project you might first want to import the standard set of skyboxes

delivered with Unity. To do so, please click “Assets” � “Import Package” � “Skyboxes”.

When all boxes are checked in the following dialog, click “Import”.

It is very easy to define a skybox for the current scene. In the top menu you need to click on

“Edit” � “Render Settings”. No dialog does appear now, instead the inspector shows

different configuration options. There you need to click on the small circle beside the option

58

called “Skybox Material”. Choose one of the skybox materials (for example one of the

“Sunny Skyboxes”) by double-clicking it. You will notice that your scene view immediately

becomes provided with a beautiful sky.

The standard assets contain different skyboxes for different types of weather and also for

nightskies, so you may want to try them out and see what they look like. If you do not want to

see the skybox while working on your scene you can deactivate it by clicking the

 -icon on top of the scene view (note that this will not deactivate the skybox in your

final application, but only when working on it).

If the standard assets do not provide an appropriate skybox for your purpose, it is also

possible to make one on your own. To achieve this, you have to perform 5 steps:

1. You need 6 images that represent the sky you want to display. Each one of those

images should correspond to one of the sides of the cube. Make sure that adjacent

images intertwine seamlessly. Then import those textures into your project’s asset

folder (you might want to put them into a new folder to group them together).

2. The next step is to select each one of the textures and change the option “Wrap Mode”

from “Repeat” to “Clamp”. This is necessary to display them correctly in the skybox.

3. Now you need to create a new material. Click the “Create” button on top of the project

folder view and choose “Material”.

4. Select the material you just created and change the shader in the inspector view:

Choose “RenderFX” � “Skybox”.

5. The inspector now shows 6 different slots, one for each side of the cube: “Front (+Z)”;

“Back (-Z)”, “Left (+X)”, “Right (-X)”, “Up (+Y)” a nd “Down (-Y)”. Click through

the different “Select” buttons of each side and choose the corresponding textures you

imported before.

You might want to assign the material a significant name. Then you can apply it as skybox to

your scene in the same way that was described before.

3.5.6 MODULE 04.06: Particle systems

Unity has a built-in type of game object that can make the environment of an application

much more realistic and dynamic: Particle systems.

59

These are special objects that are able to emit lots of small 2D images, called particles. There

are plenty of configuration options for them, so particle systems can be used for several

different purposes like for example explosions, fire, smoke, waterfalls or magic effects.

Figure 22: Simulating fire with a particle system

You might want to have a look at the different particle systems that come with Unity’s

standard assets. To import them, just click “Assets” � “Import Package” � “Particles”,

check all boxes in the following dialog and click on “Import”. You can now see different

objects in the folder “Standard Assets” / “Particles” (in corresponding subfolders). To add one

of those particles to your current scene, you just need to drag the object (like for example

“Fire1” or “Flame”) into the scene view. You will notice that the particle effect is being

animated right away in the scene view. But this is only the case if the particle system is the

currently selected object. If you unselect it, the animation stops.

Take a look at the different particle systems that come with Unity to get an impression of

what’s possible with these objects before you will build your own particle system.

It is important to know that a particle system consists of three different components:

• The Particle Emitter is responsible for creating the particles. It is possible for

example to configure the area where they are generated, their size and the number of

particles. There are two types of particle emitters: Ellipsoid and mesh particle emitters.

The type defines the outer bounds of the area where the particles are being emitted.

• The Particle Animator is the component that changes particles over time, therefore

“animates” them. The most important options are different colors that can be applied

to make the particles change their color tones, or also rotation effects.

60

• The Particle Renderer defines the details of how each particle will be drawn onto the

screen. It can apply materials to particles that make it possible to use textures and

shaders for the particles.

Each of these components has several options that can be configured in the inspector. Not all

of them are analyzed here, but the most important ones. You might want to create a particle

system by yourself and see the effects of changes in these options in action:

Ellipsoid Particle Emitter

• Emit: If not activated, no particles will be generated by the object.

• Min / Max Size: Defines the size the generated particles will have. By defining

different values for min and max particles will have a random size in between the

values. Small particles could be used for dust or smoke, large ones for simulating

clouds or fog.

• Min / Max Energy: Defines the min / max time span a particle will be shown until it

disappears. It has to be defined in seconds.

• Min / Max Emission: This option states the min / max number of particles that will be

created every second.

• World / Local / Rnd Velocity: These options can be used to configure the speed of

the particles in the directions along x, y and z. Negative values are possible. The

differences between the world and local options are the coordinate system in which the

values are given – for the first option in world coordinates and for the second option in

coordinates relative to the emitters local system. The “Rnd” option allows to apply a

random velocity – that is between the value defined and its negative magnitude – in

each direction to the particles.

• Tangent Velocity: Allows to define the speed of the particles along different axes

across the outer bounds of the emitter.

• Angular / Rnd Angular Velocity: Allows to generate the particles with a “spinning”

speed, making them rotate around their own axis. The “Rnd” option allows a spin in a

random direction.

• Rnd Rotation: If this option is enabled, particles are already created in a random

angle.

• Simulate in Worldspace: If enabled, the generated particles will not move with any

translation applied to the emitter itself. You can easily try this out in the scene view:

61

Activate this option and move the particle system game object. You will notice that

the particles already generated won’t be moved as well, although fresh particles will

appear at the emitter’s new position. Now try the same with the option deactivated:

You’ll notice that all particles “stick” with the particle emitter now.

• One Shot: If “One Shot” is activated, all particles appear at once (and also disappear

at once). This might be useful for effects like explosions, splashes or shots, but

probably not for things like smoke, dust or snow.

• Ellipsoid: Defines the size of the area where the particles are being generated.

• MinEmitterRange: Defines an area in the center of the particle system where no

particles are being created.

An alternative to the “Ellipsoid Particle Emitter” is the “Mesh Particle Emitter”. Here the area

where the particles are being generated can be defined freely with a given mesh.

Particle Animator

• Color: Probably the most important option for the “Particle Animator” component is

the ability to animate the particles with different colors. There are five different slots

for colors in the inspector. By clicking onto the color box you can change each one.

Furthermore it is possible to modify the transparency level by changing the value of

“A” (which stands for “Alpha”), 255 means “no transparency”. If the checkbox “Does

Animate Color?” is activated, each particle will change their colors along the 5 given

colors. It is very important to choose suitable colors when creating particle effects.

• World / Local Rotation Axis: Allows to define an axis the particles will rotate around

while moving. This axis can be defined in local or in global space. Please note that this

effect will only take effect if velocity (or force) was applied to them.

• Size Grow: As the name already suggests, it makes particles grow in size over time.

• Force / Rnd Force: Force can be applied along all axes to the particles. “Rnd Force”

allows to state a random factor. Force makes the particles move in the defined

directions. The difference to velocity: Force also accelerates the particles, while

velocity defines a constant speed.

• Autodestruct: Allows to automatically destroy the particle system game object when

it stopped emitting. This is useful to save processing time, because particle systems

can require lots of hardware resources.

62

Particle Renderer

• Materials: The Particle Renderer can define one or more materials that will be

displayed as particles. If more than one material is defined, they will be combined.

• Stretch Articles: Defines the way of how to render the particles. The standard value is

“Billboard”, which means that the particles will always face the user of the

application, no matter from which point of view he looks at them. There are other

values possible too that cause different orientations and behavior.

Example: “Starting” a fire

To see how particle systems can be used in applications you will now try to model a small fire

(like in Figure 22) by using one of these game objects. So first create a standard particle

system by clicking onto “GameObject” � “Create Other” � “Particle System”.

First of all the particles need to be larger in size. So change the value of “Min” and “Max

Size” to 0.5. The energy defines the lifespan of the particles, and therefore will determine the

height of the fire. Set both values to 2 for now. Because you want a dense fire set “Min” and

“Max Emission” to 80.

It makes a fire appear more realistic if it seems to burn upwards. So you’ll make the particles

move along the y-axis: Set the “Local Velocity” of “Y” to 0.6. Furthermore the “fire” burns in

a very wide area until now, so change the “Ellipsoid”: Set x, y and z to (0.5, 0.3, 0.5).

The general shape of the fire seems to be okay, but next comes one of the most important

things to configure: The colors. Now it is only white, but a fire needs color tones with yellow

and orange. Try to set the colors to similar values as shown in the following screenshot:

Figure 23: Animating the colors of the particles

When you have finished animating the colors, your particle system should resemble a small

fire. Of course there are always many ways of how to simulate an effect. You can tweak the

63

current fire to get different effects: Try to make it wider to burn on a larger area. You could

also change the velocity values to simulate the effect of blowing wind. Finally it is a good

idea to make a second particle system above the fire that simulates smoke.

3.6 MODULE 05: Unity prefabs

Goal: Learn to know and use the concept of Unity prefabs. Furthermore make use of the

“First Person Controller” and preview the application.

Difficulty : Intermediate

Prerequisites: Basic concepts of Unity (module 02), ability to navigate in the scene view

(module 03), ability to model a simple environment, parenting, game objects (module 04.02)

So-called “Prefabs” are one of the fundamental concepts in Unity. Prefabs allow to make

game objects reusable, which otherwise would only be possible for assets. In fact prefabs are

game objects converted into a special type of asset.

When working with prefabs one must differentiate between original source prefabs and

prefab instances. A source prefab is an asset in the project folder view. It is not present in

any scene of the application. To use the prefab in the application, you need to create an

“instance” of the source prefab, which is just a kind of copy. Multiple instances can be created

from the same source prefab, and they can be used in one or several different scenes. Very

important is the fact that all instances are linked to the source prefab. This means that

modifications only need to be applied exactly once instead of once for every instance.

These issues will be dealt with later in more detail. First try to instantiate a prefab that’s

already provided with Unity. To do so, please click on “Assets” � “Import Package” �

“Character Controller”. Make sure all boxes are checked in the following dialog and click the

button “Import”.

When the process is finished a new folder called “Standard Assets” / “Character Controllers”

has been created. It contains different assets, especially interesting for now is the “First

Person Controller”.

In general “Character Controllers” are game objects in Unity that represent the user of an

application and can be controlled by him using his keyboard, mouse or other forms of input.

The “First Person Controller” is a Unity built-in type of prefab that can be controlled by the

player, and shows the environment through a first-person perspective (meaning that the player

64

does not see the character that represents him, he directly “sees through his eyes”). Click on

the small grey arrow beside the “First Person Controller” and you will see some more objects:

Figure 24: The "First Person Controller" prefab in the project folder view

The cube icon beside an asset signifies that it is a prefab (not to be confused with 3D-model

assets which have a similar icon!). Every prefab can consist of one or more game objects. You

can see that this prefab consists of three objects: An empty game object called “First Person

Controller” that is the parent of two other objects: “Graphics” and “Main Camera”.

Now “instantiate” (which means “creating an instance”) the first person controller. Make a

small scene with an object that can be used as ground, for example by creating a plane.

It is very easy to get the prefab into the current scene: Just drag it from the assets view into

the scene view over the plane you created.

Important : Drag the “First Person Controller”, and not the “Graphics” or the “Main Camera”

object into the scene view, otherwise the objects will be disassembled!

Now you will see an object like shown in the following figure:

Figure 25: The "First Person Controller" prefab in the scene view

65

The empty parent object groups two different child objects together:

• The “Graphics” is an capsule object that represents the bounds of the player

character. It does not have to be any more detailed than it is, because the player can’t

see the capsule when playing the game.

• The “Main Camera” is attached on top of the capsule and are the “eyes” of the user

in the application. The application will show exactly what the camera sees. In the

scene view the area that is covered by the camera’s field of vision is marked by grey

lines forming a trapezoid.

The objects of the prefab also contain all necessary script components that are necessary to

react to user input and move the object accordingly. This means that the prefab is ready for

usage. Make sure the graphics object of the first person controller is slightly above solid

ground (e.g. the plane). If it is not, it can fall through.

In Unity it is always possible to preview the current application in action without the need to

start the whole building process (which would take longer). To do so, you just need to click

the -button in the upper area of the interface. You can now control the character in the

game view. Move it using the arrow keys on the keyboard, turn it and change the direction it

is looking by moving the mouse. By clicking the -button you can pause the current

preview. By clicking the -button again you can stop the current preview. The third

button will not be used for now.

Note that it is possible to modify your objects in the inspector or the scene view during

preview mode, for example to change the position of an object. But any changes applied

during preview mode will be lost when exiting preview!

It is very important to bear this in mind, because it often happens that changes are made in

preview mode by mistake and are lost afterwards.

After you have used a prefab provided by Unity, you will now try to create your own and see

the particularities when working with prefabs. To do so, you will create a simple pillar and

convert it into a prefab so it can be reused.

First create an empty game object and rename it to “Pillar”. Then create a cylinder and a

sphere game object. Put both of them as children of the empty pillar object. Set the position of

66

the cylinder to (0, -0.5, 0) and the position of the sphere to (0, 1, 0) – remember that these

positions are not absolute, but in relation to the empty parent object.

You now have built a primitive object that could be used as a kind of pillar (with some

imagination). If you need another pillar object, you would have to redo this process to build

another one.

But luckily you can take advantage of Unity’s prefab mechanism: To do so, click in the menu

“Assets” � “Create” � “Prefab”. A new asset called “New Prefab” will appear in the project

folder view. The grey cube signifies that it is empty yet, but can be filled with an object.

Rename the “New Prefab” to “Pillar”, and then drag the “Pillar” from the hierarchy view onto

the empty prefab you created. Make sure to drag the parent object (and not the child sphere or

cylinder!) onto the prefab. The grey cube icon will become blue now, which means that the

prefab is no longer empty. Furthermore you might notice that the pillar in the hierarchy view

is now written in blue. This indicates that the instance is “connected” to the source prefab.

If you would delete the pillar object in the scene view now, you could easily rebuild it with

the prefab, which has all necessary information stored. Now build a scene that contains 4

pillars in a row. You can add a new pillar by just dragging the prefab into the scene view (like

done with the “First Person Controller”).

Next select the “Sphere” object under the “Pillar” prefab in the asset view (not in the

hierarchy or scene view!). If you want pillars with higher peaks, you would have to change

the scale factor. Change the scale factor of Y to 2. You will see that all four pillars in the

scene view instantly become higher. The reason is that all instances are connected to the

source prefab. All changes applied to the source are automatically applied to all instances.

After that change the scale back to the value 1 (after clicking on the sphere asset).

What if you just want one of the pillars to be higher than the others? Select one of the pillar-

spheres in the hierarchy view, and set its y-scale factor to 2. You will see that this time, only

one of the four objects changed. It is possible to modify the attributes of one of the instances

without affecting the source (and the other instances).

Now the three buttons on top of the selected instance become interesting: “Select”, “Revert”

and “Apply”. By clicking the “Select” button the source prefab of an instance is selected in

the asset view. This is a handy feature, but you don’t need it for now.

By clicking the “Revert” button all changes made to the current instance are undone, and its

state becomes the state of the source prefab. Make sure the sphere that is higher than the

67

others is still selected, and click the “Revert” button. You will see that it becomes the normal

size just like the others.

Change the y-scale of one of the spheres back to 2. Now click the “Apply” button: All other

spheres will have become the same size now too. The reason is that by clicking “Apply”, all

changes made to the current object are copied to the source prefab. And because all changes

to the source are automatically applied to all instances, all other pillars in the scene increase

their height as well.

Be aware of the fact that these modifications are always processed per object. This means

that changes made to the child sphere won’t be applied to the source when selecting the parent

or the cylinder object and clicking on “Apply”. It is necessary to select the sphere itself.

It is also possible to modify other attributes than the scale of the transform. Select a sphere

and click the “Is Trigger” checkbox of the “Sphere Collider” component (its use will be dealt

with in later modules). You will see that the “Is Trigger” font now becomes bold. This

indicates that the value is different from the original source prefab. You can click the

“Revert” button, or right-click onto “Is Trigger” and select “Revert Value to Prefab” to restore

the original values. The latter method allows to restore single attributes without affecting

others.

All changes done until now to the instances retain the connection to the source prefab. Only if

they are connected they can automatically adapt changes made to the source. There are two

types of modifications that cause objects to lose connection to their source prefab:

• Adding or removing a component to one of the objects of a prefab.

• Adding or removing a whole child object.

If the user tries to perform one of these actions, Unity displays a warning message: “This

action will lose the prefab connection.” The user then has to confirm his decision, which

makes sure the connection is not getting lost by accident.

But even if the connection was lost, it can be restored. Right-click on one of the pillar-spheres

in the hierarchy and choose “Delete”. Choose “Continue” in the following dialog. One of the

pillars will now have lost its sphere. It furthermore is no longer blue in the hierarchy view.

But the inspector now shows different buttons: “Select”, “Reconnect” and “Apply”. If you

click “Reconnect”, the sphere will appear again and the object will become blue in the

hierarchy. If you delete the sphere again and press “Apply”, all spheres will disappear.

68

“Apply” restores the connection by applying all changes (in this case the removal of an

object) to the source. So all other instances lose the sphere as well. Note that this cannot be

undone with “Edit” ���� “Undo” , because it directly changed the asset file!

The following diagrams illustrate the different states of source prefabs and their instances:

apply

connected

instantiation

connected

Source Prefab

State X

Instance 1

State X

Source Prefab

State Y

Instance 1

State Y

revert

modify attributes

Figure 26: Modifying, reverting and applying the attributes of a prefab instance

Figure 27: Losing and restoring the connection between an instance and its source prefab

Though prefabs are one of the most important and useful concepts offered by Unity, they are

also a very common error source. The dependencies between the source prefabs and their

instances can easily cause confusion.

69

Make sure to be very careful when modifying prefabs:

• Usually it’s best to modify the source prefab and not an instance, unless you

deliberately want to have an instance to be different than the others!

• Only use the apply, revert and reconnect buttons when you really know the effect it

will have! Do not click them thoughtlessly!

3.7 MODULE 06: Script programming

Goal: Learn the basics of script programming in general and specifically for Unity

Difficulty : Intermediate / Advanced

Prerequisites: Basic knowledge about game objects (module 04.02)

Writing script-programs for Unity (also called “scripting”) is certainly one of the most

important tasks when developing 3D-applications. Only through scripting it is possible to

precisely define the logic of an application, e.g. what happens under what circumstances.

This module is separated into two parts: The first one is about programming concepts in

general that do not apply to Unity in particular. The second part describes scripting with Unity

and brings examples of how to achieve different tasks. You can skip the first part if you are

already familiar with programming in general, but make sure to read the second part.

3.7.1 MODULE 06.01: Basic concepts of programming

Unity is a tool that combines new ideas with traditional concepts that have proven of value

over a long period of time. When it comes to programming, Unity allows to use well-known

concepts, but tweaks them in a way to make them fit to the rest of the tool. This way persons

who have already done some scripting can utilize their knowledge and still take advantage of

Unity’s benefits.

But first of all: Why do you need programming? Why is it necessary to write complex scripts

at all? The reason is simple: It is an absolute must to exactly tell the computer how to handle

different situations. The software does not know that pressing the forward key should move

the player character forward 5 meters by your intention. A priori it is not clear that contact

between the player character and the enemy should reduce the health bar by 10%. Such

actions are part of the so-called “application logic”. Though Unity helps in many ways, most

of the application logic’s details have to be defined by programming scripts.

70

Like with other technologies as well, in Unity script files have to be written by using a

programming language. This language exactly defines the formal constraints that have to be

met for files to be valid. These constraints include the names and characters that can be used,

and the whole structure a script has to follow. Unity provides support for three different

programming languages: JavaScript, C# and Boo. They cannot be mixed within a single file,

but multiple files can use different languages in the same project. Because it is the language

most commonly used, you will only see JavaScript in these modules.

Programming in Unity works pretty much the same as programming with other tools. Every

script can make use of the following concepts:

Commands or instructions are lines in the script that tell the computer to perform a certain

action. In JavaScript they always have to be ended with a semicolon “;” character. For

example a command can set a value of something using the “=” character. The following

(example) command sets the “speed” to the value of 50:

speed = 50;

Of course it is also possible to execute multiple commands successively. They are executed

one after another within split seconds by the machine. The following lines of code set the

value of something that damages the character to 10. Then the “health” of the character is set

to its current value minus the damage it took. Finally a command is called that updates the

“healthBar” which shows the current health to the player. Be aware of the fact that the code

lines shown in this module are only examples and probably won’t work in your own project

one-to-one:

damage = 10;

health = health – damage;

healthBar.update();

Any programming language furthermore supports the usage of comments. Comments are text

and sentences in the programming file that are ignored by the computer. They only have

meaning to persons who read the program. They are very useful to document the code (which

71

can become quite complex after time) and make it easier to understand. It is a very

recommendable practice to add lots of comments to a program.

A comment that only goes over a single line has to be marked with double-slashes “//” at the

start. A comment that goes over multiple lines has to start with “/*” and end with “*/”. Take a

look at the comments in the following example:

// at first we initialize the highscore

var highScore = 0;

var currentScore = 30; // the current score is 30

var scoreMultiplier = 2; // multiplier is 2

/* We have all necessary parameters.

So we set the new highscore now. */

highScore = currentScore * scoreMultiplier;

It is also very easy to do basic arithmetic operations in JavaScript: You just have to use the

correct character for the operations of addition, subtraction, multiplication and division.

JavaScript also allows to easily add or subtract 1 from a value by using the “increment” or

“decrement” operators, marked by double plus or double minus characters:

result1 = 5 + 10; // result1 is 15

result2 = 5 – 10; // result2 is -5

result3 = 5 * 10; // result3 is 50

result4 = 5 / 10; // result4 is 0.5

result1++; // result1 is now 16

result1--; // result1 is now 15 again

In the preceding examples a programming concept was used that is essential in almost any

scripting program: Variables. A variable is some kind of container that can store data for later

usage. A variable has a name and its value can be set with the “=” operator. There can also be

lines that simply “declare” a variable (tell the computer that it exists) without setting its value.

Then it is necessary to use the “var” keyword. The following lines demonstrate the usage and

declaration of variables:

72

var totalScore;

scorePerEnemy = 50;

enemiesDestroyed = 22;

totalScore = scorePerEnemy * enemiesDestroyed;

Until now just numeric values were saved in the variables. But it is also possible to save other

so-called “datatypes” in variables. The most important datatypes in Unity are:

• String: Saves text. It can consist of characters, numbers and punctuation marks. If you

define text in programming code it has to be declared within “double quotes”.

• Integer: Stores an integer number, hence a number without any decimal places.

• Float: Contains a floating point number that can have decimal places.

• Double: The same as “Float”, but is able to store even more decimal places and can be

more precise if necessary. But “Double” variables also take up more memory of the

machine.

• Boolean: A logical datatype that can only have one of two values: “true” or “false”.

It is optional to declare the datatype for a variable. But generally it is good practice because it

can prevent some problems. To declare a datatype, the “:” character has to be used. The

following lines of code show the declaration and instant setting of different datatypes:

var sentence : String = "Hello Player!";

var integerNumber : int = 5;

var floatingPointNumber : float = 3.1415;

var preciseFloatingPointNumber : double = 3.1415926 5358;

var logicalValue1 : boolean = true;

var logicalValue2 : boolean = false;

It is furthermore possible to set the so-called “visibility” for variables. The visibility defines

whether or not a variable can (programmatically) be accessed from other scripts or by the user

through Unity’s interface. The latter issue will be a topic of the next module.

There are two different types of visibility: “Public” and “Private”. The first means “accessible

from anywhere”, the second “only accessible within the script”. If you define no visibility for

a variable, it automatically becomes “public”.

73

For beginners it is not fundamental to care about visibility. When using a variable, ask the

following questions: Is it only used within this script? Do other scripts need access to the

variable? Is it important to tweak the variable’s initial value often? This might help to choose

the right visibility. The following lines of code show how to set the visibility:

var highScore = 0; // automatically "public"

public var currentScore = 100; // declared as "public"

private var scoreMultiplier = 2; // declared as "private"

Another important concept that exists in most programming languages are conditional

statements. These are commands that will only be executed if a logical condition (a condition

that can be evaluated to be “true” or “false”) is “true”. Such a condition is marked with the

keyword “if”, the condition itself has to be placed inside parentheses. It can contain

comparison operators like “<” (smaller), “>” (greater), “<=” (smaller or equals), “>=” (greater

or equals) or “==” (equals) and “!=” (not equals). Be aware of the difference between “=” and

“==”. The first one is used to set the value of variables, while the second one checks for

equality of two values.

It can also contain variables of type “boolean”. The code that shall be executed when the

condition is true must be inside “{…}“-parentheses. The following example sets the

highscore to the current score’s value if it is greater than the highscore was before:

if(currentScore > highScore){

 // this part is only executed if the condition is true:

 highScore = currentScore;

}

// what comes here is executed in any case afterwar ds

It is also possible to provide an alternative that will only be executed if the condition is false.

This means that only either the first code or the alternative will be performed. An alternative

has to be marked with the “else” keyword:

74

if(currentScore > highScore){

 message = "Congratulations! New Highscore!";

}

else{

 // this part will only be executed if the condition is false

 message = "Try again!";

}

There is also the opportunity to provide the “else” part with a condition. Then it is necessary

to write “else if”, together with the condition. It is possible to state an arbitrary number of

“else if” conditions. But be aware that they will be checked from top to bottom, and if one

evaluates to “true”, all others won’t be checked anymore!

// only one of the following 3 instructions will be executed

if(currentScore > highScore){

 message = "Congratulations! New Highscore!";

}

else if(currentScore == highScore){

 message = "You tied the Highscore!";

}

else{

 message = "Try again!";

}

In general condition blocks have the following structure:

• They always start with an “if” statement including a condition.

• Then optionally follow an arbitrary number of “else if” statements with conditions.

• Finally there can be an optional “else” statement (without condition).

Of course it is also possible to use several complete condition blocks consecutively.

Conditions can furthermore be assembled with several smaller conditions. Therefore the

logical operations “&&” (called “AND”) and “||” (called “OR”) can be applied. They allow to

state conditions like “if condition1 AND condition2 are true”. The following example sets the

“message” to “Game Over!” if the user has no more health AND no more lives left. The

75

message is set to “Level solved!” if there are EITHER no more enemies OR the key to the

exit was found:

if(currentHealth == 0 && currentLives == 0){

 message = "Game Over!";

}

if(numberOfEnemies == 0 || exitKeyFound == true){

 message = "Level solved!";

}

By using the exclamation mark “!” (called “NOT”) a condition can be negated. The following

example negates the previous one. Also note the extra parentheses that are necessary to negate

the whole condition and not just the first part of it:

if(!(numberOfEnemies == 0 || exitKeyFound == true)){

 message = "You can't get to the next Level yet!";

}

Another very common structure in programming languages are loops. By using loops a

certain part of the code can be executed several times. There are different types of loops.

The first one is the “for”-loop. It is marked with the keyword “for”. It needs two instructions

and one condition as arguments (in the order: instruction 1, condition, instruction 2 –

separated by semicolons). The code inside the “for”-loop is executed as long as the condition

evaluates to “true”. The first instruction is executed once (and only once!) at the very

beginning of the loop, and the second one is executed at the end of each single loop iteration.

“for”-loops are usually used to execute some code a defined number of times. The following

example code adds the value 20 to the current score for each enemy that has been destroyed.

Therefore a “count” variable is introduced and set to zero at the beginning. Then it is

incremented as long as it is smaller than the value of “enemiesDestroyed”:

76

var count : int;

for(count = 0; count < enemiesDestroyed; count++){

 currentScore = currentScore + 20;

}

Another type of loop are “while”-loops. These are less complicated, because they only need a

condition in their declaration. The code inside the loop is executed as long as the condition is

true. The following demonstrative example code creates new enemies as long as there are less

than 50 enemies:

while(enemiesCount < 50){

 createNewEnemy();

}

A similar type of loop is the “do-while” loop. It also only needs a condition. The difference to

the “while”-loop is as follows: The “while” loop checks if the condition is met, and then

executes the code statements inside. But the “do-while” loop first executes the statements, and

then checks the condition afterwards. So it is possible that the code in the “while”-loop is not

executed at all, but the “do-while” always processes the code inside at least once!

Usage looks similar to the following example. It increases the lives of the player until the

maximum is reached. But no matter how high the maximum is set, the lives are at least

increased by 1:

do{

 playerLives++;

}while(playerLives < maxLives);

When working with loops it is very important to check that the conditions are designed in a

way that makes it always possible for the computer to exit the loop. If this is not the case,

there is an infinite loop which will cause the application to crash. So always make sure that

the conditions defined in the loops will evaluate to “false” at some point!

The final general concept of programming that will be described in this module are functions.

These are constructs that allow to use the same lines of code at different locations without the

77

need to write them multiple times. They can be defined once and “called” (meaning that the

code in the function will be executed) anywhere in the script. A function must be defined by

using the keyword “function” like shown in the following example:

function createNewEnemy(){

 enemiesCount++;

 message = "Alert! New enemy detected!";

}

A call to the function to execute it always contains its name and parentheses:

createNewEnemy();

It is not only possible that functions contain commands to execute, they can also return

values. In this case the keyword “return” has to be used. A call to such a function can be

utilized to get a result for further processing:

function getTotalScore(){

 totalScore = scorePerEnemy * enemiesDestroyed;

 return totalScore;

}

message = "Your total score is: " + getTotalScore() ;

This makes even more sense when introducing parameters to a function. Parameters make

functions flexible. They allow to adapt the call of a function to the current situation by passing

the values given in the call to the code in the function. To do so, variables are declared when

defining the function. These variables can be set when calling it:

function getTotalScore(scorePerEnemy : int, enemies Destroyed : int){

 totalScore = scorePerEnemy * enemiesDestroyed;

 return totalScore;

}

message = "Your total score is: " + getTotalScore(5 0, 22);

78

In general programming is a huge topic and cannot be handled in further details here. But the

concepts shown are the most fundamental ones that should be clear to every Unity developer.

3.7.2 MODULE 06.02: Programming scripts for Unity

There are some particularities a developer needs to be aware of when creating scripts for

Unity.

First of all: A script itself is a normal asset in the project folder. But it won’t be executed

unless it is applied to a game object (or prefab). When applying a script to an object, it

becomes a component of this object. But the script file still can be modified, though it is

applied as a component of an object. The same asset file can be set onto several different

objects. But all of those components execute the code from the same asset file!

There can be parts of a code that refer to a certain object. In general these parts automatically

refer to the object the script is attached to. If the script is attached to multiple game objects,

than the script is executed for each object separately.

Another fundamental issue are special functions that need to be defined when working with

scripts. When writing scripts with Unity, most code has to be inside of a function.

But not any arbitrary function: Unity provides different function names that represent

different actions that may happen during the execution of an application. Unity automatically

performs the code defined in such a function when the corresponding action happens. For

example, there is a function that is called automatically when the user clicks onto an object in

the scene. The developer can now define the commands that shall be executed when this

action happens by defining the corresponding function. You will see this in action later. Some

examples of the most important functions that are provided with Unity are:

• Update: This is probably the most central function. It is being executed during every

frame during the whole application. Place code that needs to be performed all the time

into this function.

• FixedUpdate: While “Update” is called every frame that is rendered by the engine,

“FixedUpdate” is only executed at certain frames, depending on the physics engine.

Put code that manipulates object physics (see later modules) into this function.

• Start: “Start” is only called once at the begin of the application. It can be used for

example to initialize the state of an object.

79

• OnMouseDown: This function is automatically being called when the object the script

is attached to is being clicked on by the user. This could be used for instance for a top-

down strategy game, where the user can give commands through clicking.

• OnTriggerEnter & OnCollisionEnter : These functions are being called when two

different objects touch or “collide” with each other. They will be handled in more

detail in module 7.

You can make use of an arbitrary number of functions in a script, there is no limit. But of

course the code should always serve the purpose, so make sure that you only use functions

that are really necessary! A complete list of all available built-in functions can be found at

http://unity3d.com/support/documentation/ScriptReference/MonoBehaviour.html. There also

the exact definition of the functions (including parentheses and parameters) can be found.

Important : Unity provides these “built-in” functions, but don’t forget that it is also possible

to define your own arbitrary functions in a program!

Most code you write can be put into either a built-in function or functions you created on your

own. But it is also possible to write code into the script without any function surrounding it.

This code will be executed when the game object that has the script attached is loaded. But it

generally can be recommend to put any initializing commands into the “Start” function.

However there is one thing that makes sense to put code outside any function: Variable

declarations. If you declare a variable inside a function, it will only be accessible from within

this function. This makes sense in some cases, but often you want a variable to be accessed

from the whole script. Then you need to declare it outside. If it is defined as “private” it can

only be modified from within the (whole) script, “public” means to make it visible to other

scripts and objects as well. Declaring a variable as “public” (or with no defined visibility) has

another consequence: The value of the variable can be manipulated conveniently through the

inspector in the interface. This looks similar to the following figure:

80

Figure 28: Public variables can be modified with the inspector view

Here the script component called “Mouse Look” (which is a script provided with Unity’s

standard assets) has the following public variables: “Axes”, “Sensitivity X”, “Sensitivity Y”,

“Minimum X”, “Maximum X”, “Minimum Y” and “Maximum Y”. The values of these

variables can be modified directly through the inspector view.

Be aware of the fact that this only sets the initial state of the variables, which might be

changed during the running application. Furthermore note that though you change the values

in the inspector, the initial values in the script asset itself (if they were set at all) do not

change. The values set in the inspector always override the original values defined in the

script file. This behavior is a source for lots of mistakes when working with Unity!

You can reset all values set in the inspector to the original values in the script by clicking the

“cog”-icon in the upper right corner of the script component and choosing “Reset”.

You will now build a simple example script that demonstrates some concepts and allow the

simple movement of an object. Create a “Capsule” game object that will serve as provisional

player character and name it “Player”. Also change the layout by clicking “Window” �

“Layouts” � “2 by 3”. This will allow to keep the capsule in the field of sight if it moves

away.

Now create a new JavaScript file by clicking on “Assets” � “Create” � “JavaScript”. An

asset called “NewBehaviourScript” will appear in the project folder. Rename this file to the

name “PlayerMove”. When it is selected, the inspector shows the contents of the file. It was

automatically filled with an empty “Update” function that’s ready to be used.

But you cannot edit the file in the inspector. To do so either click the button “Edit…” in the

inspector view or double-click the asset. This will open the editor for modifying scripts. Now

put the following lines of code into the script and save it:

81

public var speed : float = 10.0;

function Update () {

 var translationForward : float

 = Input.GetAxis("Vertical") * speed;

 var translationSideward : float

 = Input.GetAxis("Horizontal") * speed;

 translationForward = translationForward * Time.d eltaTime;

 translationSideward = translationSideward * Time.d eltaTime;

 transform.Translate(translationSideward, 0, transl ationForward);

}

On top a public “float” variable called “speed” is declared that shall define how fast the player

moves in the application. It is initially set to 10.0, but this can be modified through the

inspector.

Then comes the “Update” function: Everything inside this function will be executed during

every rendered frame of the application, several times per second. Inside two other “float”

variables called “translationForward” and “translationSideward” are defined. They shall

contain the value the character object shall be moved in the current frame, either sideways,

forward or backward.

The function “Input.GetAxis” is a function provided by Unity and tells us if the player

pressed an arrow-key on the keyboard. The parameter “Vertical” checks for the “up” and

“down” keys, the parameter “Horizontal” for “left” and “right”. If one of the keys was

pressed, the function returns either 1 or -1 (depending on the direction, 1 is for up and right, -1

for left and down).

But you probably want the player to move at a certain speed, and not only 1 unit per frame. So

the value returned by the function (which is either 1, -1 or 0 if no key was pressed at all) is

multiplied with the “speed” variable declared at the beginning of the file.

The next two lines modify the “translation” variables again by multiplying them with

“Time.deltaTime”. This is a function provided by Unity that allows to make a game

independent from the current framerate. As you already know the computer renders a certain

number of frames per second. How many frames can be rendered depends on the hardware of

the machine: A high-end machine may constantly render 70 frames per second, while another

one may only produce 20 frames per second. But you don’t want the character to move faster

on a faster machine (because there the “Update” function is called more often per second).

82

This is where the “Time.deltaTime” value can be used. By multiplying the current speed

value with it, it will be reduced proportionally to the amount of time it took to render the

frame. This has the effect that the character will move 10 units per second, and not 10 units

per frame. Multiplication with “Time.deltaTime” is often necessary when performing an

action every frame including numeric values.

Finally you have the exact values to move the player object in the current frame. It can be

done by using “transform”: This refers to the “transform” component of the game object the

script is attached to. It offers several functions, one of them is “Translate”. “Translate” needs

three numerical parameters, defining how much to move the object into the directions of x, y

and z. Put the value for sideward translation as the parameter for x, and forward translation as

parameter for z. Y remains to 0, which means that the player cannot move up or down.

Now that the “move” script is ready to use it needs to be applied to a game object. To do so,

just drag the asset from the project folder view onto the “Player” object in the hierarchy. You

can now see a new component in the inspector of the object called “Player Move (Script)”. It

furthermore shows the “Speed” parameter with a current value of 10.

Center the capsule object in the scene view, and click the “Y”-handle on the scene gizmo to

view it from top. Do that to make sure you can see the object actually moves when pressing

the buttons (you could also adjust the “Main Camera” to see the object in the game view).

Now press the preview button (the “Play” button in the upper area) and try to move the

capsule around by pressing the arrow keys on the keyboard. If everything has been done

correctly, the capsule should be moving according to the buttons that were pressed.

After that change the “speed” value in the inspector from 10 to 20 and preview again. You

will see that the object instantly moves faster. It is even possible to change the value during

preview, but then the changes will be lost when stopping the preview.

When you changed the value of “speed” in the inspector you will notice that the first line in

the script itself has not changed, it still shows a value of 10. Remember that values set in the

inspector will override any settings from the file!

To reset the “speed” to the value of the file, click on the “cog”-icon of the component in the

inspector and choose “Reset”. The “speed” will be 10 again.

83

The functions shown in the example script were just a small excerpt of the functions provided

by Unity. Other important examples are:

• transform.Rotate: Allows to rotate an object.

• transform.LookAt : Rotates an object in a way to directly face another object.

• Debug.Log: Prints the given text message to the console. Use this function to test and

evaluate your application.

• GetComponent: Returns a component of the defined type of the current object.

• GameObject.Find: Returns a game object with the given name.

• Instantiate: Programmatically clones a given object at a defined position with defined

rotation.

• animation.Play: Starts the animation attached to this game object.

• audio.Play: Starts to play an audio source attached to this game object.

There are countless other functions provided by Unity that cannot be mentioned here as well.

If you don’t know which function to use or how to define a specific function, always refer to

the Scripting Reference. The Scripting Reference is a documentation of all objects and

functions available when programming with Unity. It also provides full-text search for when

you don’t know exactly where to find something you need. Many code examples can be found

in the reference which you can adapt to solve your own tasks. The Scripting Reference can be

viewed with an internet browser and is opened automatically by clicking “Help” � “Scripting

Reference” in Unity’s menu.

3.8 MODULE 07: Physics and interaction between obje cts

Goal: Learn to know how “triggers” and “collisions” can be used for interaction between

objects, what are the differences, how to implement physical behavior and learn to know the

concept of tags

Difficulty : Advanced

Prerequisites: Basic knowledge about game objects (module 04.02), prefabs (module 05),

knowledge about programming scripts (module 06)

One of the most important things when developing 3D-applications are the interactions

between different objects. There are different types of interactions, but the primary concept

84

that is of interest here are “collisions”. A collision between two objects happens when the two

different objects touch each other. To be more precise: When the “colliders” of the objects

identify that the objects have contact.

“Colliders” are components in Unity that automatically check for collisions. A collider

“weaves” an invisible web around the object it is attached to. When another object (with a

collider) crosses this web, Unity registers a collision to which one can react by using scripts.

There are different types of collider shapes. A collider can precisely match the object it

encloses in every detail (a so-called “mesh collider”), or just have a simple shape that does

contain the object, but does not match every detail (for example “Sphere Colliders” or “Box

Colliders”). Though a collider is invisible in the final application, a green “web” around the

objects signify it in the scene view. The following figure shows three different colliders

around the same object, each one matching the object differently:

Figure 29: Different types of colliders on the same object

As you can see in the figure, only the last collider – the “mesh collider” – exactly matches the

palm object. The other colliders would identify collisions even when the other object did not

precisely touch the actual palm.

So why not always use “mesh colliders”? The answer is because of processing efforts. It takes

up much more resources of the machine to check if any object exactly touched any of the

palm leaves, than just checking if an object is within a certain distance of the palm.

Furthermore in many cases it is not necessary to check collisions that precise. In a fast-paced

action game the player could never see a difference in the range of some units. So always try

to use simple-shaped colliders if possible.

85

Colliders will be dealt with later, but first another related concept in 3D-applications and

Unity is introduced that can add much realism to an application: Physical behavior.

Unity has a built-in “physics engine”, a technology that calculates the behavior of objects in

realtime under consideration of their mass, the force that acts upon them and other physical

objects in proximity. For example this allows to roll an object down the hill in a realistic

manner without any necessary programming.

In Unity physical behavior is not applied to game objects per default. They need to be

provided with a special component that marks them as “physic objects” and allows

configuration of physic parameters. This component is called “RigidBody”.

You can try out how physical behavior looks like in action with a simple example: Create a

plane that serves as ground for the objects. Now create two cubes and one sphere object. Place

them in some height above the ground, and also above each other. Now attach the

“RigidBody” component to all three of the objects by selecting them and clicking

“Component” � “Physics” � “RigidBody”. Make sure you can see the objects in the scene

view, and press “Play” to preview the result: The objects should fall down to the ground and

realistically collide with each other, the sphere will probably roll away. You can also play

around with the “Mass” parameter in the inspector of the “RigidBody” component. Objects

with higher mass will tend to push objects with lower mass aside.

You will now build a small game that makes use of physical objects and demonstrates some

concepts. The purpose of the game shall be to hit some targets by shooting balls.

First create a plane that serves as ground for the objects. Put some cubes onto the plane that

shall be the targets for now. Increase them in size to make it easier to hit them. Make sure

they are on the plane (not below or intersecting), so they cannot fall through. Add a

“RigidBody” component to all the cubes and rename their names in the hierarchy to

“Target1”, “Target2”, “Target3”,… and so on. Test that the targets don’t fall through the

plane by previewing the application.

Next you need to add the player to the game. If there is still a “Main Camera” object in your

hierarchy: Delete it, because you will use a different camera object.

If they are not already in your project folder, import the “Character Controller” standard

assets by clicking “Assets” � “Import Package” � “Character Controller”. After that choose

86

the “First Person Controller” prefab from the “Standard Assets” / “Character Controllers”

folder that was created and put it into the scene. Make sure it stands on the plane and cannot

fall through. Test if it can be controlled correctly by previewing.

Then you need something to shoot for the player. Create a simple “Sphere” object and provide

it with a “RigidBody” component. Because you want the player to be able to shoot lots of

objects and not only one, make a prefab out of the sphere. Click “Assets” � “Create” �

“Prefab” and drag the sphere object onto the grey “New Prefab”. Rename the prefab now to

“ShootingBall”. Because you can use the prefab now, you don’t need the actual sphere in the

scene anymore, so delete the “Sphere” object from the scene view.

Now it is time to equip the player and make him able to shoot balls in the direction he is

currently looking. Create a new JavaScript file in the asset view, rename it to “PlayerShoot”

and fill it with the following code:

var impulse = 100;

var objectToShoot : Rigidbody;

function Update () {

 if(Input.GetMouseButtonDown(0)){

 var clone : Rigidbody;

 clone =

Instantiate(objectToShoot, transform.position, tran sform.rotation);

 clone.AddForce(

transform.forward * impulse, ForceMode.Impulse);

 }

}

Note that you can insert line breaks at different positions than shown in the script above, it

does not matter where to put them when using JavaScript.

The script contains several interesting parts of code: At the beginning two different (public)

variables are declared. The first one is a simple number, but the second one is of type

“RigidBody”. This demonstrates that it is not only possible to use numeric or text variables,

but also complex objects as variables. It is called “objectToShoot” and will be set to the

projectile used for shooting later.

Then follows the “Update” function: It contains code that only is being executed when

“Input.GetMouseButtonDown(0)” is true, which is the case when the user clicks the left

87

mouse button in the application. Inside another variable which also is of type “RigidBody” is

declared and called “clone”. Because the player may shoot an arbitrary number of projectiles,

the program needs to produce a “clone” of the original object every time he clicked the left

mouse button.

This is done by using the “Instantiate” function: It expects an object to clone in the first

parameter (the original “objectToShoot”) as well as values for position and rotation.

By using the name “transform” you can access the transform-component of the current object

the script is attached to. “transform.position” gives the position and “transform.rotation” the

rotation of the current object. So a clone projectile is created at the exact position and with the

same rotation as the object the script is attached to.

Creating the object to shoot is not enough, it also has to fly away. This is done in the last line

beginning with “clone.AddForce”. This is a method that can be called on a “RigidBody”

object and allows to “push” a physical object. “transform.forward” gives the direction you

want to push the object (in the forward direction of the current “transform” component), and

by multiplying it with the public “impulse” variable, you can adjust the shooting speed in the

inspector of the script by changing the value of “impulse”. The second parameter

“ForceMode.Impulse” just says that the “push” is applied once in form of a single impulse,

and not constantly.

You want the player to shoot the balls in the direction he is currently looking, so save the

script now and attach it to the “Main Camera”, a child object of the “First Person Controller”

in the hierarchy view. A dialog will warn that “this action will lose connection to the prefab”.

This does not matter for now, so just click “Continue”.

You can now see the “Player Shoot (Script)” component in the inspector when selecting the

“Main Camera”. There you can modify the two public variables defined in the script: The

“impulse” makes it possible to configure the speed of the balls shot away.

The other one was a variable of type “RigidBody”. It is currently set to “None” and expects

some object with a “RigidBody” component. Such a public object variable can simply be set

in Unity by dragging it into the inspector: To do so, make sure the “Main Camera” is still

selected, and drag the “ShootingBall” prefab from the asset view onto the “Object To Shoot”

variable in the inspector. It is important that you hold the left mouse button on the

“ShootingBall” prefab, otherwise it will be selected and the inspector view changes. If you

have done it correctly, the “Player Shoot (Script)” component will now show the

“ShootingBall” as value for the “Object To Shoot”.

88

After that it is time to test the application. If all steps were performed correctly, then it should

be possible for the player to walk around and shoot balls into the direction he is currently

looking by clicking the left mouse button. Try to hit the cubes by shooting them: They should

be pushed away in a realistic way when colliding with a ball.

Now improve the little game even further: It could be a nice addition if the application would

register actual hits of the targets. This could be used for example to increase the score of the

player with every hit. But for now you will just give out a message to the console.

To achieve this, implement some code that reacts to collisions. Create a JavaScript file in the

project folder and rename it to “ObjectCollision”. Put the following code inside and save:

function OnCollisionEnter(collision : Collision) {

 Debug.Log("COLLISION DETECTED !");

}

The function “OnCollisionEnter” is automatically called by Unity if the object the script is

attached to starts a physical collision with another object. To be more precise: If the

“Collider” components of the objects get in contact with each other. The parameter variable

named “collision” of type “Collision” holds various types of information about the collision

itself, this will be used later.

Now attach the “ObjectCollision” script onto the “ShootingBall” prefab. Because the script

has no public variables, it does not need any further configuration. Preview the game and

shoot the targets. You will see the “COLLISION DETECTED !” message on the bottom of

the interface. It shows the last message of the console. To see all messages, click “Window”

� “Console”. A window will open that shows all messages. If you hit more than one target,

there should be more than one message.

Now try the following: Start the preview and shoot a ball into open space, make sure you

don’t hit any of the targets, and also not the ground. You will see that the “COLLISION

DETECTED !” message will be shown again. Why is this the case even when you don’t hit a

target?

The answer is that the sphere is created at the position of the player character, and therefore

Unity identifies a collision with the “First Person Controller” object. But you want the code

89

only to be executed when a target cube is hit. So you need to somehow “mark” the cubes as

“targets”. This is where the concept of tagging comes into play.

Tagging is a concept that is very common in various software applications. It is being used to

group different items that share something in common. For example webshops or blogs use it

to group articles that are concerned with the same topic.

In Unity you can use tags to mark certain objects. A tag can be any kind of name, for example

“Player”, “Enemy”, “Item”, “Spawn Point”,… and so on.

You will now mark the target cubes with the tag “Target” to be able to distinguish them from

other objects. To do so, select one of the cubes. On top of the inspector there is the word

“Tag” displayed. Click the box with the value “Untagged” beside it: It shows some predefined

tags, but the name “Target” is not among them. So choose the option “Add Tag…”.

This changes the inspector to view the “Tag Manager”. Click on the grey arrow beside the

“Tags” option, which opens all existing user-defined tags. It is a list where “Element0” is the

first tag, “Element1” the second one,… etc. It is currently empty and only shows “Element0”.

Click into the empty field right from “Element0”, write “Target” inside and press enter.

Instantly “Element1” appears and would allow to add further tags. But for now that’s enough

tags, instead select a target cube. Now click the “Tags” box again, and choose the “Target”

tag that is available now. Repeat this selection for all target cubes, so they are not “Untagged”

anymore.

Now modify the “ObjectCollision” script to make use of the introduced tag. Change it like

shown in the following listing:

function OnCollisionEnter(collision : Collision) {

 if(collision.gameObject.tag.Equals("Target")){

 Debug.Log("COLLISION WITH TARGET !");

 }

}

The script now accesses the “collision” parameter that contains information about the

collision itself. It allows to access the other game object that collided with the object the script

is attached to. Any game object allows to access its tag-name. All three steps together are

written like “collision.gameObject.tag”, with dots in between every access step. “Equals” is a

method that allows to check if a value (for example a string) is equal to another given value.

90

Here the parameter “Target” is given. So the condition is only true if the tag from the other

game object in the collision equals the name “Target”. If this is the case, the message

“COLLISION WITH TARGET !” is printed to the console.

Now preview the application again. Shoot the balls into air – nothing should happen. Then hit

a cube (that was tagged before) – the message should be shown.

Trigger

The techniques shown in the example before work pretty well when you want to identify

physical collisions through script, thus collisions that inflict some kind of force upon each

other. But it is very often the case that you want to register that an object touched an invisible

collider without actually being affected by the collision. An example could be the case that

you want to register if the player entered (or left) a certain area without notifying him to

launch an event (for instance alert some enemies). If you want to detect contact between

colliders without any physical force involved, Unity provides the concept of triggers.

So you will improve the small game even further: Because it is very easy to shoot the targets

at close range, you want to identify if the player is within a certain area at which the distance

is long enough.

To do so, create a cube object. Now stretch the cube in its scaling dimensions to be very large.

It should cover about a third of the ground plane, on the farther side of the targets. The cube

should have the dimensions of an area from which it is okay for the player to start his

shooting exercises.

After that, if you preview the game you will notice that there is a cube that might be the

“shooting range”, but the player cannot get inside. So change that now: Stop the preview,

select the cube and check the “Is Trigger” checkbox in its “Box Collider” component. This

makes the collider to act as trigger, and has the effect that the player can directly walk through

the object.

Because you furthermore want the cube to be invisible, deactivate the “Mesh Renderer”

component: You can do this by unchecking the checkbox beside the “Mesh Renderer”

headline of the component. This means that the object is still there, but not rendered anymore

by the engine.

You now need a script that reacts to entering and exiting the “shooting range”. Create a

JavaScript asset called “ObjectTrigger” and put in the following code:

91

function OnTriggerEnter (other : Collider) {

 if(other.gameObject.tag.Equals("Player")){

 Debug.Log("Shooting range entered! Start shooting !");

 }

}

function OnTriggerExit (other : Collider) {

 if(other.gameObject.tag.Equals("Player")){

 Debug.Log("Left shooting range! Stop shooting!");

 }

}

There are two different functions used now: The first one is being executed when an object

first collides with the trigger and enters the area of the collider, the second one when the

object leaves the area of the collider.

Because you only want to react to the player entering or exiting the shooting range, a check

for the tag “Player” is done. Of course this demands that you set the tag of the “First Person

Controller” object in the scene to “Player” (which is a predefined tag and therefore does not

need to be added).

Now attach the “ObjectTrigger” script to the “shooting range” cube and start the application

preview: Try to walk in and out of the area. When entering, the first message should be

shown, when exiting the second one. Because of the check for tags no message should appear

when shooting balls directly through the “shooting range”.

This was a small overview about the most important concepts regarding collisions and

triggers. There are lots of other things to know, you can get more information at

http://unity3d.com/support/documentation/Components/class-BoxCollider.html and other

documents in the reference manual.

92

3.9 MODULE 08: Cameras

Goal: Learn the basic concepts of cameras in Unity

Difficulty : Intermediate

Prerequisites: Basic knowledge about game objects (module 04.02), basic knowledge about

programming scripts (module 06), tags (module 07)

“Cameras” are special objects in Unity that serve as the “eyes” of the user within the

application: A user running the application will see exactly what a camera captures in its field

of sight.

If you are using the “First Person Controller” or the “3rd Person Controller” provided with

Unity’s standard assets, you probably do not have to care a lot about cameras. These character

controllers are already provided with cameras and also scripts that automatically make those

cameras controllable and follow the player object.

In case you want to create a camera yourself there are some things you need to be aware of:

• Cameras themselves are invisible objects, but they are marked with a small camera-

icon in the scene view. It furthermore highlights the field of sight of the camera with

white lines forming a trapezoid.

• Any application should be provided with a “Main Camera”. This is the camera that

should be active when starting the application (though this is not always the case) and

be the primary view for the player. In general it is a camera like any other one but

named “Main Camera” and marked with the tag “MainCamera”.

• When selecting a camera in the scene view a small preview window in the bottom

right area is displayed. This shows what the selected camera can “see” at the moment.

• It can be quite tricky to position a camera that shall capture a certain area from a

specific point of view. This is quite difficult when trying to apply the correct rotation

and position with the inspector. There is a function in Unity that can help here: Select

the camera you want to position and change the point of view in the scene view to be

exactly where you want the camera to look at. Now click “GameObject” � “Align

With View” in the menu. Now the camera will be set at the exact position with the

current rotation of the scene view.

93

• When you have two or more cameras in the scene, you will get the “There are X audio

listeners in the scene”-message, where X is the number of cameras. The reason is that

cameras do not only “see” for the player, they also “listen” to sounds. For this they use

the “Audio Listener” component. But of course it does not make sense to listen from

more than one location, there can only be one audio output for the user. To get rid of

the warning message, just deactivate the “Audio Listener” components you don’t need

(make sure one is still active) by clicking the checkbox to the left from the headline of

these components.

There are some configuration options in the inspector for cameras that might also be

interesting for Unity beginners:

• The “Projection” option allows to choose between “Perspective” and “Orthographic”

projection. It defines the type of perspective that is being rendered. The first one is the

standard type of three-dimensional projection with objects in distance getting smaller.

“Orthographic” enables a similar perspective to what is shown when activating the

scene view gizmo to enter “isometric” mode. It means that all objects remain their size

relative to each other, no matter how far away they are. “Orthographic” for example

can make sense when developing a top-down strategy game.

• The “Field of View” allows to configure the view angle of the camera in degrees. A

wider field of view allows to capture a larger area, but objects seem to be farther

away. A narrower vision captures a smaller region and has the effect of “zooming”

onto the objects.

• A camera does not capture all objects at infinite distance or when they are too close.

The “Clipping Planes” define at which distances the camera starts and stops

rendering the environment. The “Near Clipping Plane” defines at which distance

objects will be rendered, so objects closer than that won’t be displayed. The “Far

Clipping Plane” defines until what distance rendering takes place. All objects outside

that distance won’t be captured by the camera.

In some applications you want the possibility to allow the player to switch between different

cameras. A racing game for example could let the user switch between the cockpit of the car

and an outside view.

To achieve this, the following (improvable) script can be used. It works for two cameras

named “Camera1” and “Camera2”, and changes the perspective when the “space” key is

94

pressed. Attach this script to one of the cameras and make sure that only one camera is active

at the beginning of the application:

function Update () {

 if(Input.GetKeyDown("space")){

 camera1 = GameObject.Find("Camera1");

 camera2 = GameObject.Find("Camera2");

 camera1.camera.enabled = !camera1.camera.enabled;

 camera2.camera.enabled = !camera2.camera.enabled;

 }

}

If the “space” key was pressed, the script first searches for the two camera objects by using

the built-in “GameObject.Find” function.

It then enables the “camera” component at the camera that was disabled before and vice versa.

The exclamation mark “!” is an operator that negates a boolean value. So by writing “A = !A”

one can express “set to A the opposite value of what it has now”. This leads in switching the

current value of A.

Further script components for cameras can be found in Unity’s menu in the section

“Component” � “Camera-Control”.

3.10 MODULE 09: Animations

Goal: Learn basic concepts of animation in general and how to animate objects within Unity

Difficulty : Intermediate

Prerequisites: Basic knowledge about game objects (module 04.02)

In general animations mean the execution of predefined changes for attributes over a certain

period of time. This might sound complicated at first, but the concept is quite easy to

understand when giving an example: An animation could be an object at position (0, 0, 0)

first, then moving to position (5, 0, 0) within the time of 30 frames. Another kind of animation

could be a blue light that smoothly changes to yellow within 100 frames.

95

Animations need to be used quite often in 3D-applications: For opening doors, moving

platforms or running enemies. It is possible to animate almost any kind of attribute. Unity

provides great support in creating such animations through the interface.

But before you create your own animation it is first necessary to learn to know the basic

concepts of animation in general. These are concepts that are not only applied in Unity, but in

lots of other software tools that allow to define animations:

Each animation consists of several frames. A frame is one “picture” of the animation. When

playing some frames consecutively in a short period of time the illusion of movement is

created. It is important that there are only small differences between each frame. For example

the first frame could be a door in closed state, the second frame shows a small gap which gets

slightly larger with each frame. The last frame then shows the door in its open state.

This is where the concept of “keyframes” comes into play. When defining an animation, it

would be very time-consuming for the developer to design every frame of the animation, thus

the example door in all its states from closed to open. But smart software tools allow to

shorten this process: A developer just has to define the keyframes, and the animation software

automatically calculates the frames between them.

To get back to the example: The user would just define the door in its closed and open state,

and the software could work out all frames between closed and open. This is done through a

technique called “interpolation” . It works like in the following example: An object at

position (0, 0, 0) in the first frame and position (10, 8, 5) in the last frame must be at position

(5, 4, 2.5) after the first half of the frames passed. This position can be interpolated by the

software.

Unity (and also other software tools) provide a comfortable way of analyzing the animations.

The changing of the attributes over time can be captured in a two-dimensional coordinate

system. The x-axis represents the current point in time of the animation, called “time line” . It

always starts with zero. The y-axis represents the values of the different attributes, for

example the transform’s z-position or the color value. When designing an animation, Unity

fills this coordinate system with lines called “animation curves” . They represent the

changing of the different attributes over time. One complete animation from start to end is

called an “animation clip” .

96

You will now do a sample animation to learn to know the concept within Unity. It is also

possible to import animations created with external modeling applications using the “FBX-

Importer” component, but you will just use Unity here:

Create a new scene and insert a cube at position (0, 0, 0). You can also insert a light source to

make things better visible if you want to. Change the window layout of the interface to “Tall”

and center the cube in the scene view.

Now click on “Window” � “Animation” in the menu, which causes a new window to appear.

You can fixate the floating window in the bottom area of the scene view by dragging the tap

labeled with “Animation” into the lower area. Make sure you can see the animation view and

the scene view both at once now.

If the cube is selected, the animation view should show several attributes of the cube on the

left side, for example the “transform” attributes, collider, material, … and others. These are

the attributes that can be animated (which is not the default case for all properties). To start

creating an animation, you have to click the red “record” button on the top left of the

animation window. When clicking you will be prompted to save a file in a folder. This is

because animations are normal asset files that need to be stored in your project folder. Give it

an arbitrary name and click “save”. Now you are in “Animation Mode”. All changes made

now affect the animation (but not the current state of scene).

The grey area on the right side of the animation view displays the animation curves (when

there are any). The top part labeled with time codes like “0:00” and “0:30” is the time line. It

can be used to change the current frame of the animation that is being shown. You will see a

vertical red line crossing the area. This shows at which point in time of the animation you

currently are. You can drag it around by clicking it in the time line (it cannot be dragged by

clicking it in the grey area!), holding the mouse button and moving the cursor.

Make sure the red line is at the start of the animation, and click the “Transform” component

on the left side of the animation view. This causes all “transform”-attributes like “Position.x”,

and “Position.y” to be selected. Now click the “Add Keyframe” button in the top left area of

the animation view. It looks like a small diamond with a plus-sign. Small “diamond”-shapes

are symbols for keyframes. If you have done everything correct a small keyframe-symbol

should have appeared in the upper area of the grey field.

Now drag the red line to the time code of “1:00” (which means 1 second after animation

start). Change the position of the cube to (0, 5, 5). Make sure you can still see the cube in the

scene view. Another keyframe-symbol should have been appeared. You have now made two

97

keyframes, enough for a small animation. You can click the “Play” button beside the “record”

button in the animation view to preview the animation created.

After that change the position of the red line to the time code of “0:30” (which means 30

frames after animation start). Set the x-position of the cube to 5 now, which creates another

keyframe. Furthermore a curve has been created by Unity that looks similar to the following

figure:

Figure 30: Animation curves

The red curve represents the change of the x-position over time. Unity automatically tries to

animate smooth transitions, so a round curve without sharp edges appears. When you press

the animation-preview button now, you will see that the cube does not only move diagonally

upwards, but also makes a curve forward and backwards (of course depending on your point

of view).

All other attributes can be changed the same way as done for the position now. It is easy to

make a rotating object by changing the rotation attributes over time or make an object that

increases in size by modifying its scale. But you can also animate other things than the

“transform”-properties: All attributes shown on the left side of the animation view can be

animated! This allows possibilities limited only by imagination.

98

Some more notes on animation:

• When working with the animation curves, you can use the mousewheel to zoom and

press the middle-mouse button to move. But be aware of the following fact: The

preview-button only plays the part of the animation that is currently viewed via the

animation curves! If you want to reset the view press the “F” button while hovering

the mouse cursor over the animation view.

• You can change the so-called “wrap mode” of an animation. This defines whether an

animation is played once, in a loop, or forward and backward again. Select the

animation file in the asset view and change the “Wrap Mode” in the inspector.

• When starting the application, animations are played automatically by default. You

can change this by selecting the animated object, and uncheck the “Play

Automatically” property in the inspector of the “Animation” component.

• If you want to play an animation programmatically you just have to insert the line

“animation.Play();” at the position you want it to play and attach the script to the

object with the animation component. If the object has more than one animation you

can use a text parameter to choose the intended animation: For example

“animation.Play(‘myAnimation’);” or “animation.Play(‘openDoor’);”

3.11 MODULE 10: Sounds

Goal: Learn how to integrate sounds in a Unity application

Difficulty : Intermediate

Prerequisites: Basic knowledge about game objects (module 04.02), basic knowledge about

programming scripts (module 06)

A 3D-application becomes much more vivid if the user can hear sounds that dynamically fit to

the current situation. Examples for sounds can be things like starting an engine, shooting a

weapon, background music or character voices.

When working with sound in Unity, you need to get familiar with three basic concepts:

• “Audio Clips” are sound files in the asset folder. They contain the data of the sound

effect (or music) to play. Unity is able to support the following file formats for sounds:

*.mp3, *.wav, *.ogg and *.aif

99

• “Audio Sources” are game objects with an “AudioSource” component. They need to

be provided with an “Audio Clip” to work. “Audio Sources” define the position of the

sound in space, their volume, when to play it and other settings.

• “Audio Listeners” are components attached to a game object that shall be able to

capture the sounds from the “Audio Sources”. The “Main Camera” is automatically

equipped with an “Audio Listener”, which is sufficient in most cases. This way the

camera does not only represent the “eyes” of the player within the application, but also

his sense of hearing. Note that there can only be one active “Audio Listener” per

scene.

When working with sounds in Unity, it is important to distinguish between 2D- and 3D-

sounds. The difference lies within the way they are played back to the player: While a 2D-

sound always keeps the same volume no matter of the player’s position, a 3D-sound is

automatically adapted to its distance to the “Audio Listener”: If the player walks away from

the sound, it dies away, if he walks toward it, the volume increases.

This creates dynamic sound effects that increase the realism of an application. Both types of

sounds have their use cases: While 2D-sounds are well-suited for instance for background

music, 3D-sounds can be used to underlie events with a certain position, for example

explosions or gunfire.

You will now see how to create “Audio Sources” in Unity. For this exercise you will need

two different sound files: One with music playing over some minutes, and another one with a

short sound effect that stops within seconds. Unfortunately it is not possible in this context to

provide any sound files, so please search the web to find any two sounds, if you have not

already any examples on your computer. See the file-formats before to know what formats are

supported.

Put the files into your Unity asset folder by dragging them from your file system into the

project folder view. This will cause Unity to automatically import these files.

Select the music-file in the asset view. The inspector will show several properties. The most

important one is the “3D Sound” checkbox, which defines whether or not it is a three-

dimensional sound. It should be checked for now. Furthermore in the bottom area there is a

play-button that allows to preview the sound.

100

Now create a small scene that allows to experiment with these sounds a bit: Delete the “Main

Camera” if existing. Then create a plane as provisional ground and put the “First Person

Controller” prefab on it (if you have not already imported it: Click “Assets” � “Import

Package” � “Character Controller”). The “First Person Controller” is automatically equipped

with an “Audio Listener” component that makes it possible to hear sounds from any sources.

But there are no sources yet that could play any sound. So you need to create an “Audio

Source”.

To do so, create an empty game object. Rename it to “AudioSource” and equip it with the

right component by clicking “Component” � “Audio” � “Audio Source”. The empty game

object now gets a “Speaker”-icon in the scene view.

You furthermore need to provide the component with an “Audio Clip”. Click the small circle

beside the option “Audio Clip” in the inspector of the selected game object. Now choose the

music-file asset by double-clicking it.

There are several important options that can be modified in the inspector: “Mute” allows to

silent the sound, “Play On Awake” defines whether the sound is started with the current scene

and “Loop” repeats the sound if it has finished.

But for now leave all options unchanged. Place the empty game object on the outer regions of

the plane, so the player has to walk some distance to get to it. Start the application preview:

You should hear the sound of the music playing. Try to walk to the audio source and away

again. The volume of the music should change with the distance of the player character. If the

music sounds a bit “weird” during walking, try to change the “Doppler Level” option in the

“3D Sound Settings” of the “Audio Source” component to zero. This simulates a physical

effect that makes sound more realistic, but is not appropriate in all situations.

To model music as three-dimensional sound is useful in situations where the application

should create the realistic impression of a speaker that is located somewhere in the

environment. But in most cases ambient sound makes more sense in 2D. So you will change

this now: Select the music-file in the asset view and uncheck the box at “3D Sound”. Any

change here must be confirmed with the “Apply” button below the options. By clicking it, the

sound will be converted into a 2D-sound.

When the process has finished preview the application again: You will see that the sound does

not change anymore when moving around.

101

Beside background music “Audio Sources” can also be used to create sound-effects: Short

sounds that underlie certain events in the application. Any object can be the source of an

audio effect, even the player itself. Select the “First Person Controller” in the hierarchy view

and click “Component” � “Audio” � “Audio Source” in the menu. Confirm the following

dialog that warns about “losing the prefab connection” by clicking the button “Add”. This will

equip the “First Person Controller” with an “Audio Source” component.

You now need to define the “Audio Clip”: Click the small circle beside the option and choose

the short sound-file you have imported into the asset folder. The kind of sound does not

matter for the purpose. When you preview the application now, the sound effect will be

played instantly.

However you want to start the sound by script. So unselect the “Play On Awake” checkbox in

the “Audio Source” component of the “First Person Controller”. When previewing the

application now, the sound-effect should not be played anymore.

Next you need a script that initiates the sound on command. Create a JavaScript asset and call

it “PlayerSound”. Fill it with the following lines of code and attach it to the “First Person

Controller”:

function Update () {

 if(Input.GetKeyDown("space")){

 audio.Play();

 }

}

Preview the application. The sound should be played now when pressing the “space”-key.

This way it is easy to play sound per scripting.

Other useful functions for sounds are “audio.Stop()”, which stops playing, and

“audio.Pause()” that pauses playing. The function “audio.PlayOneShot(clipObject)” allows to

play a certain object of type “AudioClip”, which could be for example a public variable

configurable through the inspector.

102

3.12 MODULE 11: GUI objects

Goal: Learn how to use “GUI Texts”, “GUI Textures” and make a basic menu

Difficulty : Intermediate

Prerequisites: Knowledge about programming scripts (module 06)

When developing 3D-applications, it is often necessary to provide the player with

information: Examples are the current score, health, speed, enemies left,… etc. For this

purpose it often is not necessary to design complex 3D-objects, simple text is enough.

Furthermore it is important that this text is in the players field of sight all the time, and does

not get smaller when the player walks in any direction. In other words: It should not be

located in 3D-space, just always on the front of the screen.

Unity provides special game objects that easily fulfill this purpose: They are called “GUI

Texts”. A “GUI Text” can be created by clicking “GameObject” � “Create Other” � “GUI

Text”. When creating such an object it immediately appears on screen. It is an object like any

other one, but behaves a bit different: Though it has a transform component, it is not affected

by changing the values for rotation and scale. Neither it is affected by the position value at the

z-axis.

But the values of x- and y-position change the location of the text on screen. Be aware that the

coordinates (0, 0) mark the bottom-left corner, and (1, 1) the top-right corner of the screen.

These coordinates are relative to screen size. So if you want a text in the middle of the screen

you just have to define the values (0.5, 0.5).

Other important configuration options of a “GUI Text” object in the inspector:

• Text: Defines what text shall be displayed by the object.

• Anchor: States the position of the text relative to the “transform” component.

• Font: Allows to configure the font style of the text. Fonts need to be imported into the

project folder to be available. This can be done by simply dragging a *.ttf file into the

asset view.

• Font Style: Gives the opportunity to make letters bold and/or italic.

103

If you want to dynamically change the text of a “GUI Text” object, you can use the command

“guiText.text = ‘my new text’”. Remember to place the new text to assign under double-

quotes!

Besides the possibility to show static text for the player, it is also possible to render flat

images onto the screen without any location in 3D-space. They could be used to design a

fancy health bar or a map of the current terrain. These game objects are called “GUI

Textures”.

You can create a “GUI Texture” by clicking “GameObject” � “Create Other” � “GUI

Texture” in the menu. It works quite similar to “GUI Texts”: The position can be set the same

way, but note that “GUI Textures” are affected by modifying the scale values in the

transform. Furthermore instead of defining a value for the “text” option, you have to specify a

texture (a graphical image) with the “Texture”-option in the inspector.

Also the “Pixel Inset”-option now provides to set the “Width” and “Height” of the texture.

This allows to set the dimensions from the graphic when rendered. It is useful to prevent them

from changing with different screen resolutions. Without specifying these values a “GUI

Texture” will scale with the current screen resolution and look very different on different

screens. Make sure to set the scale values of x and y in the “transform” to zero when

modifying the “Width” and “Height” of the “Pixel Inset”.

Beside the possibilities described to display information on screen, it is also often necessary to

show elements the user can interact with. Probably the most common purpose, that is featured

by nearly every 3D-application, is a menu that can be used to define several options, start and

quit the application. Such a menu must contain elements the user can click to cause certain

actions. You can do this with Unity through scripting.

To draw interactive elements onto the screen, you can make usage of the “OnGUI()” function

provided by Unity. It is called automatically every frame. The function can be filled with

commands that draw different GUI-elements and make it possible to react to interactions.

A very common type of GUI-elements are “buttons”. These are objects that can be clicked by

the user which causes a predefined action to happen.

Create an empty game object and name it “GUI” (position does not matter). Now create a

JavaScript file named “GuiMenu” and fill in the following code:

104

function OnGUI () {

 if (GUI.Button (Rect (25, 25, 100, 30), "First But ton")) {

 Debug.Log("First button clicked!");

 }

 if (GUI.Button (Rect (25, 65, 100, 30), "Second Bu tton")) {

 Debug.Log("Second button clicked!");

 }

}

Now attach the script file to the empty GUI object. You only need this empty object to get the

script into the scene as a component, otherwise it would not be executed.

Start the preview of the application: There should be two buttons now in the upper left corner:

Try to click both of them which should cause the defined text messages to appear in the

console.

The interesting part of the script are the conditions of the “if”-statements. They are functions

that cause a button to be drawn onto the screen, and also check if it was clicked at the same

time.

These functions called “GUI.Button” take two parameters: The first one is a “rectangle”

object created with the function “Rect”. It is used to define the position and dimensions of the

button. The first two numbers define the x- and y-position on screen, the next two numbers

the width and the height of the rectangle (and therefore the buttons). The second parameter is

a text that defines the caption of the button.

Other important GUI-elements that can be created through functions are:

• GUI.Label : Just creates a text on screen.

• GUI.TextField : Draws a field that can be filled with (a single-line) text by the user.

• GUI.TextArea: Draws a field that can be filled with multi-line text by the user.

• GUI.Toggle: A checkbox that can be either checked or unchecked.

• GUI.HorizontalSlider : Draws a control with a knob that can be moved along a bar.

105

Please refer to the documentation at

http://unity3d.com/support/documentation/Components/gui-Controls.html for a complete list

of all GUI-elements and how to use them.

3.13 MODULE 12: Publishing the application

Goal: Learn how to publish an application made with Unity

Difficulty : Beginner

Prerequisites: None

Finally when you have finished developing your application, or you just want to test it on

another computer, you need to convert it into another format. You can do a preview of the

program within Unity, but another machine might not have Unity installed, and furthermore

you don’t want your application to be modifiable on other computers, they should only be

able to execute it. The process of converting the application into a format that allows

execution on other machines without being able to modify it is called “building the

application”. The result of this process is a “build”.

It is very easy to build an application with Unity. It needs some configuration to be done in a

dialog after clicking “File” � “Build Settings” in the menu. The first thing you have to define

is which scenes you want to include in your build. An application can consist of one or more

scenes. A scene could for example represent one level of a game. By using the “Add Current”

button you can add the scene you are currently editing to the list. Other scenes can be added

by dragging them from the project view into the list.

This list does not only define the scenes that shall be included in the build, but also their

order. On the right side of each scene an index number marks the position of the scene in the

order.

If you want to change from one scene to another within the application, you have to do this by

script. It can easily be done by using a function: The call “Application.LoadLevel(2)” would

load the scene with index number “2” in the list of the build settings. It is also possible to give

a name as parameter like “Application.LoadLevel(‘finalBoss’)”.

You can change the order of scenes by dragging them around in the build settings list. It is

furthermore possible to exclude a scene from a build by unchecking the box beside it, or

remove it by selecting it and pressing the “Del”-key.

106

The next important decision is the target-platform of the build. The final application can only

be run on machines of the platform type you choose here. It offers the following choices:

• Web Player: Publishes applications into a format that allows to play them from a

website using an internet browser. But note that the browser needs to be provided with

a special plug-in.

• PC and Mac Standalone: Allows to choose between Windows and different Mac OS

X architectures.

• iOS & Android : Builds the application for mobile devices with one of the two

operating systems. Not possible in the free version of Unity.

• Xbox 360, PS 3 and Wii: Publishes the application for one of the three video game

consoles. Not possible in the free version of Unity.

When you have chosen the desired platform (supported by your current version of Unity) you

can click “Build”. This prompts you to choose a location for the results of the build process.

You can save the files into the root of the project folder, but do not store them directly into the

assets folder of the project.

The other option is to click “Build And Run”, which does not only create the build, but also

executes it promptly. If you have executed an application that provides no opportunity for the

player to quit yet, you need to use your operating system’s keyboard shortcut for quitting. On

Windows this can be done by pressing “Alt” and “F4” together.

Unity creates different results depending on the target-platform. On Windows an executable

*.exe file along with a folder with suffix “_Data” is created. You need to copy both of them

onto another machine for running the application there. For Mac an “app bundle” will be

produced that can be executed and also contains all necessary resources. When building for

the “Web Player”, Unity creates a HTML template-file together with a data file. The

application can be started by opening the HTML file in a browser.

Note that the free version of Unity always builds an application that starts with the Unity-

logo. This can only be avoided through buying the “Pro”-version of Unity.

107

3.14 MODULE 13: Extending Unity

Goal: Get an overview of the possibilities of how to extend the features of Unity

Difficulty : Intermediate

Prerequisites: None

Although Unity is a very comprehensive software tool, there might be useful tasks and

features it cannot cover. These cases can often be handled by extending the software Unity.

Please note that the “extensions” in this context do not (directly) influence the applications

developed with Unity, but the software Unity itself. They can add new features to the software

or make some tasks easier than before.

There are many different types of extensions. They following list tries to categorize them into

several groups and describe them. Please note that you might read of different types of

extensions at other resources, because there are many ways how to categorize them:

• Script libraries : A “script library” in this context is nothing more than one (or more)

complex script files that provide functions that ease certain tasks and can be used from

other scripts. Usually it can be put into the asset view just like any other script file. An

example is the “iTween” library that allows to do many kinds of animations with low

efforts. It can be found at http://itween.pixelplacement.com/.

• Editor scripts: These are special types of scripts that allow to extend the standard user

interface of Unity and can handle certain tasks. There are many editor scripts available

on the web, and it is not a superior challenge to create one on your own.

They are script files that have to be placed into a folder called “Editor” in the project

folder. In most of those scripts you will find statements that start with a “@”-

character. These are instructions that are interpreted directly by Unity itself and can

modify or extend its interface. An example for a useful editor script are the

“TransformUtilities”, which allow to easily align and copy the values of different

“transform” components and can be found at

http://www.unifycommunity.com/wiki/index.php?title=TransformUtilities.

• Frameworks: Frameworks are groups of assets that can help to achieve particular

tasks when developing an application. Some of those frameworks can be downloaded

as files in format *.unitypackage. It is a format that packages a group of assets in a

single file. Such files can be imported into your project folder by clicking “Assets” �

108

“Import Package” � “Custom Package…”. It is also possible that they consist of asset

files packaged in a *.zip archive that needs to be unpacked into the project folder.

The different assets of a framework belong together and provide new features through

novel components or other elements. An example extension is the “Terrain Toolkit”

which provides several tools to ease the creation of realistic terrain. It can be found at

http://unity3d.com/support/resources/unity-extensions/terrain-toolkit.

• Plug-ins: Plug-ins are extensions that can add or modify functionality at a very deep

level of the Unity software. They allow for example to extend the editor and use new

components. With plug-ins it is possible to do incredible things with Unity. But know

that development of plug-ins is not trivial.

There are two different kinds of plug-ins: Plug-ins created via the “.NET” technology

and native plug-ins which are written in other languages. The latter ones can only be

used with a Unity “Pro” license.

Plug-ins provide *.dll files, which are compiled programming libraries. There are

different ways of how to install plug-ins, but in general they have to be put into your

project folder. An example plug-in is “Path”, which adds pathfinding functionalities to

your application and can be found at http://angryant.com/path.html.

109

4 Development of applications with Unity in a team

Knowing the technical aspects of how to use Unity is an absolute requirement when

developing interactive 3D-applications. But beside these functional issues there are other

skills as well that are necessary for creating high-quality applications.

Because of their complexities such applications are often developed within a team. But

developing an application within a team brings new difficulties into the process. It is not

enough to produce the necessary artifacts, the work that has to be done needs to be divided

among the team members. Results need to be synchronized with each other, communication

has to be done in a structured way to avoid misunderstandings, some kind of planned process

needs to be performed to circumvent redundant work, idle work time needs to be avoided and

it is necessary to keep the time schedule.

This chapter contains approaches for improving the teamwork when developing applications

with Unity. The target audience are students who are beginning to learn Unity within an

university context. It is often necessary for them to work on applications in small groups, but

very rarely they are experienced teams who have been developing software for a long time.

Most often it is the case that these students are not only new to Unity itself, they also do not

know how to implement an efficient development process that reduces efforts and increases

quality of results.

These are the assumptions for the approaches shown here. Because the students are no

experienced developers, the processes presented here do not only need to be efficient, they

need to be simple as well. It does not make sense for students to force them to spend more

time on learning and implementing a complex process (which can hardly be done within a few

months) than on learning the technical basics themselves. Therefore it is necessary to provide

these students with simple guidelines that can improve efficiency without too much process

overhead.

110

4.1 Structuring and synchronizing artifacts in a te am

When developing 3D-applications the team members produce different kinds of (digital)

artifacts. These artifacts can for example be 3D-models, script files or whole scenes. They are

stored within the project folder of Unity.

Because all members of the team work on the assets of the project folder at the same time,

there is lots of potential for producing inconsistencies between the members. Therefore it is

very useful to agree upon a shared way of structuring the artifacts. This makes sure that all

students have the same view onto the project folder, and helps to keep it organized.

Three general ways to structure the project folder are recommended in this thesis:

• Structuring assets by type: This means to group all assets of the same type into a

shared folder. Asset types are for example “Script”, “Material” or “Prefab”. A folder is

created for each of the types necessary for your project. The following figure shows an

example structure:

Figure 31: Structuring assets by type

This kind of structure is very easy and quick to implement. It can also be adapted to

better serve the purposes of your particular project. It is very clear and unambiguous

where to put newly created assets.

A drawback of this method is that it might mix different assets that do not relate to

each other into the same folder. Furthermore the contents of each folder can become

111

very huge for projects that are more ambitious. This might result in overloaded and

confusing lists of assets. Therefore this method is probably best suited for small

projects with a low number of assets.

• Structuring assets by purpose: Another way to structure the assets is to group them

together by related purpose. For instance a complex enemy object can consist of

several types of assets: A 3D-model, materials, several scripts that define the logic and

finally a prefab to make it reusable. These assets share the same purpose: To model

the “enemy” in the game. The following figure gives an example for a folder structure

demonstrating this idea:

Figure 32: Structuring assets by purpose

This is a more complex structure. But it makes sure that assets that do not relate to

each other are not getting mixed up. The lists of assets within the folders should not

get too long, but it might be the case that there are lots of folders in the asset view.

Another problem is the fact that many assets do not have a single purpose, they are

needed for several different things, like for example different kinds of enemies. To

solve this, “Shared” folders can be introduced that contain multi-purpose assets. This

structure is well-suited for most projects, though it does not make sense to use it if

there are too many files in “Shared” folders.

112

• Hybrid structures : Another possible solution is to group assets both by type and

purpose. This means to have “purpose-folders” containing “type-folders” that finally

contain the assets themselves. The other way round is also possible: “Type-folders”

containing “purpose-folders”. The following figures give examples:

Figure 33: Structuring assets by purpose and by type

The hybrid method can be very complex and result in lots of different folders. It

should only be used in projects with a high number of different assets.

In general it cannot be said which method is best for development, because it depends a lot on

the type of project and the number and kinds of assets used in it.

Also be aware of the fact that it is very easy with Unity to restructure the assets using the

project folder view at any time. All references to assets remain intact when rearranging them.

So if you do not know what structure to use, it is probably best to start with the simplest

structure (group assets by type), and refactor it if it is not practicable anymore. But very

important is the following: All team members should be using the same project structure!

113

This brings us to another issue when working in a team: Synchronizing the artifacts.

Artifacts do not remain the same during a project, they are changed continuously. When

different persons work together on the same files, possible conflicts can occur.

This is the case when the following scenario happens: Person A starts working on a file. In the

meantime person B opens the same file, makes his changes and saves them. These changes

could not have been adapted by A. So when A saves his changes, the modifications done by B

are lost.

This can result in lots of additional efforts as well as into social conflicts between team

members. Therefore it is of primary importance to avoid such conflicts. To achieve this, it is

necessary to implement some kind of “lock” onto resources. A “lock” is a concept that allows

a person to change resources by himself, but simultaneously block others from modifying the

locked resources. Others can still “read” those resources and therefore use them, but are not

able to change them. The holder of the lock then saves his changes and releases the lock.

Others can now modify the resources, but it is assured that they start working on the files in

their most recent state.

There are also approaches to “merge” a file in two different states if a conflict has occurred.

But it can be very complicated and error-prone. In general it might be possible for files

containing only text (like script files), but is hardly achievable for binary assets (like 3D-

models).

Different methods exist to perform the synchronization of work results. Among them are:

• Manual file synchronization: This is probably the most common method of sharing

work results among beginners. Team members just manually exchange the files they

worked on with each other, often by using a medium like USB flash drives. There is

no mechanism that resembles an automated lock. Students have to “lock” files by

according the resources they work on with each other. But of course this is no

guarantee to avoid conflicts. Misunderstandings, complicated relations between

different files or uncooperative behavior can easily result in inconsistencies. Therefore

this method can only be used for very small, simple projects with clear agreements

between the different team members at project start.

• Synchronization over a centralized file storage: This means that each team member

has access to the same location that stores the files in their most recent versions.

Contrary to a process where each team member organizes the resources on their own

114

machine, this makes sure that students share the same view onto the most recent state

of the project.

There are different ways of implementing this method, from manually exchanging

files with the store (like for example when using a shared FTP-server), to using

services that automatically synchronize the files on the local machine with the

centralized server. A locking mechanism might be available, but this is not always the

case. If not, students have to arrange with each other.

This method brings some advantages through the consistent view onto the current state

of the files, but is no guarantee to avoid conflicts. It furthermore might consume lots

of time for the network traffic to send and receive large files from the server.

• Transactional version control: A sophisticated solution for development projects in

general is to use a version control technology like for example “Subversion”. These

technologies allow to send changes to a centralized server in a transactional way.

Local copies can automatically be synchronized with the server. This ensures

consistency on all machines. They usually also provide a locking mechanism that

keeps other team members from modifying locked resources. Furthermore it is not

only possible to view the most recent version of resources from the server, but also

previous versions. This technique can be used for analyzing the evolution of assets or

restore features that have been removed.

Version control protocols are often smart enough to only send the differences of a file

compared it its previous version to a server, so network traffic can be reduced to the

inevitable minimum.

Version control systems are very commonly used for collaborative development. But

because of their features, they are not trivial to use. So they are probably not well-

suited for small projects performed by people who are not familiar with version

control.

The method to choose for synchronizing projects depends on the number and the skills of the

team members, their experience in team work and the size of the project. Though it is not an

advisable approach in general, a tiny project in a small team might come off best with manual

synchronization if the team members agree on a process that avoids conflicts. Version control

can prove its strengths in large projects, but creates an unnecessary overhead and technical

problems due to inaccurate usage when used for a small assignment.

115

4.2 Development process

To produce a high-quality product, all efforts should be performed in a structured way. If all

team members do just what they think to do right now, chaos is at hand and goals won’t be

met due to the lack of shared understanding of the project.

In this master thesis a development process that is well suited to teams of students who begin

to learn Unity is recommended. It meets the concerns of the different phases of a project while

still allowing to adapt to close deadlines. It was designed to be rather simple to make

implementation for beginners very easy. The process was influenced by the incremental way

of developing an application with usage of prototyping described in the work of Pearce and

Ashmore. They analyzed the development of a prototype for a multiplayer game [Pearce and

Ashmore, 2007].

The following figure illustrates the development process:

Figure 34: A development process for beginner teams

116

The process starts with a vision of the application that shall be developed. A vision is the idea

for the software students must have at the beginning of the project. It is the “big picture” the

students work towards to, but only consists of vague concepts that lack any details at this

phase. In university context, it is also possible that the vision is already predefined for the

students.

If this is not the case, a vision can be formed through communication and techniques like

brainstorming. Although it is possible to refine the vision in later stages of the project, it can

result in additional efforts. This is why students should spend sufficient time in developing a

vision of a quality application that fulfills its purposes.

The vision is the input for the first (and following) iterations. The work in iterative,

incremental steps is one of the most important aspects of this development process. Work is

not being done in one big package, but in small incremental steps. Each step adds new

features or improves existing ones of the application.

Very important is the fact, that each iteration should produce a runnable, tested

application as result. This helps students to meet the schedule and do not overstrain

themselves. It is often the case that beginners underestimate efforts when developing

software. They try to implement a huge application and get overwhelmed with the

requirements when deadlines come closer. A process that refines the application in small

steps, each one producing a runnable result, can avoid this problem.

But of course it is important to choose the right size for an iteration. This can be done through

the definition of goals. A goal is some objective the students plan to realize for the current

iteration. Goals can be divided into several tasks to define them more precisely.

Example: A goal could be to “Implement enemy AI”, which is divided into multiple tasks like

“Implement enemy pathfinding” and “Implement enemy attack patterns”.

It is furthermore important to assign all tasks to persons in a collective decision. If they are

not assigned, it can be the case that persons only do the tasks they prefer and certain tasks

remain untreated. There should be at least one responsible person for each task. Of course it is

also possible to work together on tasks.

The actual work process can be separated into three different phases. In general the phases are

handled successively, but it is also possible (and can make a lot of sense!) to interleave them.

This process does not force any kind of order regarding the different work phases, but the

117

demonstrated order tends to fit for many projects. But keep in mind that it should always be

possible to refine the results from a previous phase, or have different persons working in

different phases at the same time.

The results of all three phases should be tested to a varying extent. It might make little sense

in early stages, but gets more and more important with progressing development stages. The

different phases are:

• Design: The design should result in concepts that concretize the vision in more detail.

While the vision itself is very vague, the design specifies the application as exact as

possible at the current stage of the project. Results of design can include rules for a

game, how to control the player, what the environment shall look like, background

story,… etc. The design is very important, it does not only give the direction for all

further work, it is also crucial for the quality of the application. It does not matter how

well a game was implemented that is boring by nature.

It is not easy but possible to test the design at an early stage. It could be done by using

mock-ups that try to resemble the game or the application. Furthermore feedback from

persons of the target audience might help to improve the design. But of course it is

easier to test the design itself in later stages of the project, when the application can

already be run. The design can and should always be refined if necessary.

• Prototype: During the “prototyping” phase actual development is done with Unity (or

other tools used). However the goal is not to implement a finished, highly-polished

product, but to realize a first prototype of the features for the current iteration. This

means that not every detail is completed, only the most fundamental things. When

implementing a new type of enemy for example, it does not need to be made with a

highly-detailed 3D-model right away. It makes more sense to just create a simple

capsule (or another shape that resembles it) and use it as provisional enemy. This

allows to rapidly test the current concepts and design of the application. This way

many design flaws can be avoided before any unnecessary efforts were spent.

It furthermore helps students to estimate the efforts and further implications of their

application: If it is already quite difficult to implement a racing game with simple

rectangles, it shows how challenging a realistic racing game with physical behavior

can be.

118

• Refinement: Refinement consists of all tasks that need to be done for a functional,

presentable application (but only within the comprehension of the current iteration).

This includes detailed 3D-models, working scripts and complete environments. A lot

of testing should be done to ensure the quality of the application. The result should be

an application that fulfills the goals defined at the beginning of the iteration in all

necessary details.

After an iteration was finished, the team should be able to have an application that can be

compared with the end vision of the software. The team must now decide what goals to

realize for the next iteration, if there is one necessary at all. The result of the last iteration

should be saved separately from the development branch. This allows to present something

runnable even if the next iteration cannot be finished within schedule.

The set of goals for the next iteration should be chosen with the time schedule and the efforts

the team members can invest in mind. It might also be the case that goals could not be

achieved in the previous iteration, so they can be done in the next step. It makes sense to tend

to choose a smaller set of goals for the iteration, because efforts are often underestimated.

Also be aware of the importance of testing! It can mean plenty of additional efforts, but

increase quality tremendously.

119

5 Conclusion & Further Work

The development of interactive 3D-applications is a very complex task. It requires the

investment of high efforts and expertise.

The software tool “Unity” is able to ease development of interactive 3D-applications. It

combines an intuitive graphical user interface with concepts that are easy to understand and

apply. It provides all necessary technologies required to implement realistic 3D-software.

Therefore it is very well suited to teach development of 3D-applications to beginners.

In the context of this master thesis the requirements and problems students encounter when

beginning to learn Unity were analyzed. For that reason two different university courses with

students of architecture and computer science were investigated with qualitative research.

This analysis showed the most important technical and didactical aspects to consider when

teaching Unity to beginners.

These findings were considered for the creation of resources that help students to learn Unity.

The resources contain technical instructions that cover the most important aspects when

developing 3D-applications with Unity, as well as guidelines for development of applications

in a team within the university context. The guidelines include the recommendation for a

development process that fits well for the students.

Because the resources shall be easily accessible to the students, an evaluation was conducted

on how to store them in a centralized repository. The result of this evaluation was to save the

resources in a “WordPress”-blog, which ensures flexibility and low efforts for authors as well

as lots of possibilities to find resources for students.

The results of this master thesis could be extended with further work regarding different

aspects: The technical tutorials themselves cover the most important details for beginners, but

skip some information that is important for students who want to improve their skills any

further. Moreover the detailed usage of important plug-ins and frameworks should be

described. The tutorials could also be enriched by producing demonstrative videos that show

the concepts described in action. This could be a valuable resource for beginners.

120

Figures

Figure 1: The AquaMOOSE 3D environment (figure from [Elliot et. al., 2002]) 3

Figure 2: AquaMOOSE 3D - ring game (figure from [Elliot et. al., 2002]) 4

Figure 3: Reconstructing a 3D-model from 2D-plans (figures from [Lu et. al., 2005]) 5

Figure 4: Screenshot of the game "Doom" from 1993 (image from [PC Games, 2010]) 6

Figure 5: Screenshot of the game “Half-Life 2” from 2004 (image from [golem.de, 2004]) 7

Figure 6: Screenshot from "Blender" (figure from [Wikipedia, “Blender”]) 8

Figure 7: Screenshot from "Unity" (figure from [Unity, “What’s New in Unity 2.5”]) 9

Figure 8: Screenshot of the 3D-model from castle "Waldenfels" that was provided for the 48

hours game development contest 12

Figure 9: Overview of the different modules about Unity 34

Figure 10: Projecting a three-dimensional object onto a two-dimensional screen 35

Figure 11: Coordinate systems with different dimensions 36

Figure 12: Global and local space 37

Figure 13: The basic operations translation, rotation and scaling 39

Figure 14: The interface of Unity 42

Figure 15: The "scene gizmo" 44

Figure 16: The terrain editor 46

Figure 17: The basic game objects 49

Figure 18: The basic tools for object manipulation 49

Figure 19: The "Transform" component 50

Figure 20: Different "gizmos" for manipulation of objects 51

Figure 21: Diffuse and specular light reflection on surfaces 55

Figure 22: Simulating fire with a particle system 59

Figure 23: Animating the colors of the particles 62

Figure 24: The "First Person Controller" prefab in the project folder view 64

Figure 25: The "First Person Controller" prefab in the scene view 64

Figure 26: Modifying, reverting and applying the attributes of a prefab instance 68

Figure 27: Losing and restoring the connection between an instance and its source prefab 68

Figure 28: Public variables can be modified with the inspector view 80

Figure 29: Different types of colliders on the same object 84

Figure 30: Animation curves 97

121

Figure 31: Structuring assets by type 110

Figure 32: Structuring assets by purpose 111

Figure 33: Structuring assets by purpose and by type 112

Figure 34: A development process for beginner teams 115

122

References

[Goldstone, 2009]

Will Goldstone. 2009. Unity Game Development Essentials. Packt Publishing.

[Wikipedia, “Bewegte Bilder”]

Seite „Bewegte Bilder“. In: Wikipedia, Die freie Enzyklopädie. Bearbeitungsstand: 5. Januar

2011, 10:16 UTC.

URL: http://de.wikipedia.org/w/index.php?title=Bewegte_Bilder&oldid=83473671

(Accessed: 19th May 2011, 16:31 UTC)

[Elliot et. al., 2002]

J. Elliot, L. Adams and A. Bruckman, No magic bullet: 3D video games in Education, in

Proceedings of 5th ICLS 2002.

[Lu et. al., 2005]

Lu, T., Tai, C., Bao, L., Su, F. and Cai, S., 3D Reconstruction of Detailed Buildings from

Architectual Drawings, Computer-Aided Design and Applications, Vol. 2, Nos. 1-4, 2005, pp

527-536.

[PC Games, 2010]

http://www.pcgames.de/Retrospektive-Thema-214694/Specials/Meilensteine-der-

Spielgeschichte-Eine-Retrospektive-des-digitalen-Hobbys-Teil-3-744144/

(Accessed: 22nd May 2011)

[golem.de, 2004]

http://www.golem.de/0411/34765.html

(Accessed: 23rd May 2011)

[Wikipedia, “Blender”]

Seite „Blender (Software)“. In: Wikipedia, Die freie Enzyklopädie. Bearbeitungsstand: 17.

Mai 2011, 22:21 UTC. URL:

123

http://de.wikipedia.org/w/index.php?title=Blender_(Software)&oldid=88965234

(Accessed: 29th May 2011, 11:39 UTC)

[Unity]

http://unity3d.com/

(Accessed: 30th May 2011)

[Unity, “What’s New in Unity 2.5”]

http://unity3d.com/unity/whats-new/unity-2.5.html

(Accessed: 30th May 2011)

[Waldenfels]

http://www.waldenfels.at/

(Accessed: 05th June 2011)

[Klett, 2001]

Fanny Klett. 2001. A Design Framework for Interaction in 3D Real-Time Learning

Environments. In Proceedings of the IEEE International Conference on Advanced Learning

Technologies (ICALT '01). IEEE Computer Society, Washington, DC, USA, 63-.

[Trac]

http://trac.edgewall.org/

(Accessed: 04th July 2011)

[MediaWiki]

http://www.mediawiki.org/

(Accessed: 06th July 2011)

[WordPress]

http://wordpress.org/

(Accessed: 06th July 2011)

124

[Kohive]

http://kohive.com/

(Accessed: 06th July 2011)

[ResourceSpace]

http://www.resourcespace.org/

(Accessed: 06th July 2011)

[Razuna]

http://www.razuna.org/

(Accessed: 06th July 2011)

[Hearn, Baker, 2003]

D. Hearn and M. P. Baker, Computer Graphics with OpenGL, 3rd ed. Prentice Hall, 2003.

[Pearce and Ashmore, 2007]

Celia Pearce and Calvin Ashmore. 2007. Principles of emergent design in online games:

Mermaids phase 1 prototype. In Proceedings of the 2007 ACM SIGGRAPH symposium on

Video games (Sandbox '07). ACM, New York, NY, USA, 65-71.

