
Dissertation

Query-Driven Program Testing

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

Univ. Prof. Dipl.-Ing. Dr. techn. Helmut Veith
E184/4

Institut für Informationssysteme

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Michael Tautschnig
0928914

Girardigasse 4/25
1060 Wien
Österreich

Wien, im Februar 2011
Michael Tautschnig

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

ii

Kurzfassung

Testen von Software bezeichnet die Ausführung von Programmen mit dem
Ziel, Fehler zu finden. Abdeckungskriterien, wie etwa die Abdeckung von
Entscheidungen oder multiple condition/decision coverage (MC/DC), bes-
timmen dabei die Eignung einer Menge von Testfällen bei der Suche nach
Fehlern. Testen, sowie die Messung der durch eine Testreihe induzierte Ab-
deckung des Programms, spielen eine entscheidende Rolle in aktuellen Soft-
wareenwicklungsprozessen: Richtlinien für die Zertifizierung, wie etwa DO-
178B, fordern als Nachweis der Systemsicherheit Testreihen, die bestimmte
Abdeckungskriterien erfüllen. Trotz dieser herausragenden Bedeutung für
sicherheitskritische Systeme bleibt Testen nach wie vor eine informale und
manuelle Tätigkeit. Das führt zu erhöhter Fehleranfälligkeit der Systeme
und hohen Kosten nebst schlechter Prognostizierbarkeit, und verhindert eine
höhere Automatisierung. Große Hürden auf dem Weg zu einer umfangre-
icheren Automatisierung sind insbesondere das Fehlen formaler Strukturen
zur Beschreibung von Abdeckungskriterien und, als Folge davon, die fehlende
Flexibilität von bestehenden Testfallgeneratoren.

In dieser Dissertation wird ein neues Verfahren zur vollautomatischen
Testfallgenerierung beschrieben, das Testfälle zu formalen Beschreibungen
von Abdeckungskriterien erzeugt. Die Spezifikation der Testfälle erfolgt
dabei etwa durch Testingenieure. Der Kern dieses Verfahrens ist ein formales
Gerüst, das die Beschreibung von Abdeckungskriterien ermöglicht. Darauf
aufbauend wird die deklarative Testfallspezifikationssprache FQL (FShell
Query Language) beschrieben. Dazu passend wurde ein Backend entwickelt,
das Testfälle zu FQL Anfragen erzeugt. Diese Architektur wurde in Analogie
zu Datenbanken gewählt und daher wird der Ansatz als query-driven program
testing bezeichnet. Die Umsetzung erfolgte für C Programme und führte zum
Werkzeug FShell, das auf Teilen des C Bounded Model Checkers (CBMC)
aufbaut.

Die Spezifikationssprache für Testreihen, FQL, wurde als einfach an-
wendbare und klar strukturierte Sprache mit formaler Semantik konzipiert.
Mögliche Anwendungen sind sowohl die Testfallgenerierung als auch die Mes-
sung der Abdeckung – insbesondere auch in agilen Entwicklungsprozessen
und manueller Programmexploration, wo ausgewählte Programmteile unter-
sucht werden müssen. Neben solchen speziellen Szenarien werden aber auch
Standard-Abdeckungskriterien wie die Abdeckung von basic blocks, multiple

iii

condition coverage oder predicate complete coverage unterstützt. Auf Grund
ihrer Ausdrucksstärke ist FQL auch dazu geeignet, die Kluft zwischen Model
Checking und Testen zu verringern.

Das Backend basiert auf bounded model checking. Mit Hilfe von Kom-
ponenten von CBMC wird Unterstützung für volles ANSI C erreicht. Die
Verwendung von Model Checkern für die Testfallgenerierung wurde schon
mehrfach diskutiert, aber dennoch unterscheiden sich die die Anforderun-
gen für Model Checking und Testen deutlich. Für eine effiziente Testfall-
generierung zu einer FQL Anfrage wurde daher die von CBMC erzeugte
SAT Formel durch Übersetzungen in Aussagenlogik der aus FQL Anfragen
erzeugten Automaten erweitert. Mittels iterative constraint strengthening,
des wichtigsten algorithmischen Beitrags dieser Dissertation, kann eine FQL
Anfrage in nur einem Aufruf des Model Checkers und mit einer neuartigen
Form von inkrementellem SAT solving gelöst werden: Für jede vom SAT
solver bestimmte Lösung erfolgt ein Vergleich mit dem Abdeckungskriterium
um dann die Klauseldatenbank des SAT solvers so zu erweitern, dass redun-
dante Lösungen ausgeschlossen werden.

Zur experimentellen Evaluierung wird für eine Menge von informellen
Anforderungen gezeigt, wie diese in FQL übersetzt werden können. Außer-
dem werden mit diesen Spezifikationen Experimente durchgeführt und es
wird die Skalierbarkeit von FShell in Experimenten mit Gerätetreibern,
Steuerungssoftware aus dem Automobilbereich und open source Software
gezeigt.

iv

Abstract

Software testing is the process of executing a program to discover errors.
Coverage criteria, such as decision coverage or multiple condition/decision
coverage (MC/DC), define the adequacy of a test suite for finding errors.
Tests, and coverage criteria in particular, play a crucial role in today’s soft-
ware development processes: certification guidelines, such as DO-178B, re-
quire test suites satisfying certain coverage criteria as evidence of system
safety. Despite the importance for safety of mission-critical systems, soft-
ware testing remains a largely informal and manual task. This makes testing
an error-prone, costly and unpredictable process, and hinders higher degrees
of automation. Major obstacles are the lack of formal frameworks for code
coverage criteria and, as a consequence thereof, missing versatility of existing
automated test case generators.

In this dissertation we describe a new method for fully automatic test
case generation following formal specifications given by test engineers. We
build upon a well-defined mathematical core that captures the semantics
of coverage criteria. On top of this framework we define the declarative
test specification language FQL, the FShell query language. These formal
specifications are supplemented with an engine that generates test cases in
response to FQL queries. We chose this overall design of a mathematical
core, a query language and an efficient back end in analogy to databases and
hence refer to our method as query-driven program testing. The full workflow
is implemented for ANSI C programs in a tool called FShell, which uses
components of the C Bounded Model Checker (CBMC).

FQL is designed to be simple and concise in daily use, features a precise
semantics, leverages suitable engines to compute matching test suites, and as-
sess the coverage achieved by a test suite. Equipped with sufficient expressive
power, FQL helps to close the gap between testing and model checking; it
also supports agile software development and manual program exploration by
realizing coverage criteria which are complex but narrowly aimed at specific
program properties. Our query language subsumes standard coverage criteria
ranging from simple basic block coverage all the way to predicate complete
coverage and multiple condition coverage, but also facilitates on-the-fly re-
quests for test suites specific to the code structure, to external requirements,
or to ad hoc needs arising in program understanding/exploration.

To perform automated test case generation we build upon bounded model

v

checking. We re-use components of CBMC to gain support for full ANSI C
syntax and semantics. Although the principal analogy between counterex-
ample generation and white-box testing has been repeatedly addressed, the
usage patterns and performance requirements for software testing are quite
different from formal verification. For efficient test case generation with re-
spect to an FQL query we augment the SAT formula generated by bounded
model checking with an additional propositional encoding of query-derived
automata. Our main algorithmic contribution is a method called iterative
constraint strengthening which enables us to solve a query for an arbitrary
coverage criterion by a single call to the model checker and a novel form
of incremental SAT solving: Whenever the SAT solver finds a solution, our
algorithm compares this solution to the coverage criterion, and strengthens
the SAT solver’s clause database with additional clauses which exclude re-
dundant new solutions.

To evaluate the language, we show how to express a list of informal re-
quirements in FQL. Moreover, we perform practical experiments with the
sample specifications. We demonstrate the scalability of FShell and its
ability to compute compact test suites with experiments involving device
drivers, automotive controllers, and open source projects.

All we have to decide is what
to do with the time that is
given to us.

J. R. R. Tolkien,
The Fellowship of the Ring

vii

Acknowledgments

First of all I would like to thank my adviser Helmut Veith for guiding me
through this labyrinth of graduate research. In those years of being a PhD
student I learned far more than what one could expect of doing a PhD. Part
of this experience was moving twice, first from Munich to Darmstadt, and two
years later to Vienna. Despite the overhead of moving, this enriched my life
with knowledge about different academic cultures and forms of organization,
and of course extended social networks.

Next I would like to thank Daniel Kroening – not only for accepting to
review my dissertation, but especially for his passion in building and improv-
ing the CPROVER framework, without which most of the work presented in
this thesis never would have happened.

Most parts of this work were developed in a team, together with Andreas
Holzer, Christian Schallhart and Helmut Veith. I am grateful for all the time
and energy they invested in this project, for which this dissertation shall only
be a first summary. Christian, thank you for teaching me all the details about
the C++ programming language. Andi, I would also like to thank you for
our discussions at any time of the day (others might call some of it “night”).
The project was further inspired by our project partners Sven Bünte and
Michael Zolda, whom I would also like to thank for their invaluable feedback
on the implementation.

Our team, again, was embedded in a larger and evolving group, including
my office mates Mohammad Khaleghi, Visar Januzaj and Florian Zuleger,
and Johannes Kinder and Stefan Kugele. Despite being always busy, many
of them offered help in reviewing parts of this thesis. Especially Johannes
and Andi went to great lengths to provide detailed feedback – thank you!
Part of the time that I formally was a PhD student was spent on industrial
collaborations. Thanks to Stefan Kugele and Wolfgang Haberl those times
in Munich were a lot of fun.

Of course, given this work was performed in parts at three different uni-
versities, many more people were involved directly or implicitly in this work.
I would like to wholeheartedly extend my gratitude to all of you!

Even though such an academic life already stretches far beyond a formal
34-40.5 working hours job, such work can only be performed successfully
when provided with tireless support by friends and family. I would like to
thank my parents and Samira’s parents for giving me a warm and cosy home

viii

at any time, which becomes even more important when one doesn’t quite
know anymore which town to call one’s home. I would like to thank my
brother and my friends for helping me to build nice and comfortable places
wherever I moved. Samira, thank you for your loving support and all your
patience, and for following me to any place.

Thank you!

München Darmstadt Wien Innsbruck Oxford, 2006–2011
Michael Tautschnig

Contents

1 Introduction 1
1.1 Software Testing . 2

1.1.1 Terminology . 3
1.1.2 Applications of Software Testing 4

1.2 Query-Driven Program Testing 6
1.3 Overview of Realization . 8

1.3.1 Mathematical Framework 9
1.3.2 Query Language . 9
1.3.3 Test Case Generation Back End 10

1.4 Advantages and Limitations of the Implementation 12
1.5 Contributions . 14
1.6 Related Work . 15

2 Requirements for the Design of FQL 19

3 A Primer on Query-Driven Program Testing 23
3.1 FQL Language Concept . 23

3.1.1 Path Patterns: Regular Expressions 25
3.1.2 Coverage Specifications: Quoted Regular Expressions . 25
3.1.3 Target Graphs and Filter Functions 27
3.1.4 Target Alphabet: CFA Edges, Nodes, Paths 29
3.1.5 Full FQL Specifications 31

3.2 Example Specifications . 32
3.3 Disambiguating Specifications using FQL 35
3.4 Tool Support for Query-Driven Program Testing: FShell . . . 38

4 A Mathematical Model for White-box Program Testing 42
4.1 Intermediate Representation: Control Flow Automata 42

ix

Contents x

4.2 Concrete Program Semantics: Transition Systems 45
4.3 Predicates and Coverage Criteria 46

5 FQL – the FShell Query Language 58
5.1 FQL Design Overview . 58
5.2 FQL Elementary Coverage Patterns 60

5.2.1 Semantics of Elementary Coverage Patterns 61
5.2.2 Interpretation of Path Patterns as Path Predicates . . 62

5.3 Target Graphs and CFA Transformers 63
5.4 Filter Functions for ANSI C 66

5.4.1 ANSI C Specific Terminology 67
5.4.2 Detailed Specification of Filter Functions 69

5.5 FQL Specifications . 71
5.6 Full FQL Specifications . 74
5.7 Example of FQL Query Evaluation 78
5.8 Expressive Power and Usability 80

5.8.1 Scenario 1: Structural Coverage Criteria 80
5.8.2 Scenario 2: Data Flow Coverage Criteria 81
5.8.3 Scenario 3: Constraining Test Cases 81
5.8.4 Scenario 4: Customized Test Goals 83
5.8.5 Scenario 5: Seamless Transition to Verification 84

5.9 Discussion . 85

6 FShell 87
6.1 Overview of CBMC’s Architecture 87
6.2 Tool Architecture . 90
6.3 Front End and Query Parsing 92

6.3.1 Command Line Options 93
6.3.2 Interactive Shell, Control Commands, and Macros . . . 97
6.3.3 Processing FQL Queries 99
6.3.4 Running Example . 101

6.4 Computing Target Graphs . 101
6.4.1 Example . 103
6.4.2 Predicates over Program Variables 103

6.5 Trace Automata . 104
6.5.1 Construction of Trace Automata 107
6.5.2 Program Traces . 111

Contents xi

6.6 Integrating Trace Automata 112
6.6.1 Program Instrumentation 112
6.6.2 Propositional Encoding of Trace Automata 121

6.7 Efficient Test Case Enumeration 126
6.7.1 Overview of CDCL/DPLL SAT Solving 126
6.7.2 Guided SAT Enumeration 127
6.7.3 Coverage Analysis . 134

6.8 Test Suite Minimization . 137
6.9 Computing Test Inputs . 139
6.10 Test Harness Generation . 140

7 Evaluation 142
7.1 Uses of Query-Driven Program Testing 142

7.1.1 Measurement-based Execution Time Analysis 143
7.1.2 Model/Implementation Consistency Checking 143
7.1.3 Coverage Evaluation 143
7.1.4 Reasoning on Coverage Criteria 144
7.1.5 Test Case Generation 145
7.1.6 Discussion . 145

7.2 Expressiveness . 145
7.3 Experimental Evaluation . 147

7.3.1 Efficient Evaluation of Complex Queries 150
7.3.2 Applicability to Real-World Software 153
7.3.3 Comparing to other Test Case Generation Approaches 154
7.3.4 Scalability . 157

7.4 Comparison of Instrumentation vs. Native SAT Encoding . . . 159
7.5 Minimization of Test Suites 162

8 Conclusions 164

Bibliography 167

Curriculum Vitae 188

Beware of bugs in the above code;
I have only proved it correct, not
tried it.

Donald E. Knuth

Chapter 1

Introduction

Software testing is performed ever since the first programs were written. As
of today, testing is a key technique to provide evidence for correct operation
of a system with respect to requirements. Hence testing is an integral part
of software development processes. This includes development processes for
industrial and safety critical systems, such as automotive systems [Int98],
avionics [RTC92], or medical devices [Int03, Int06]. Yet there are two main
problems that go hand-in-hand, as we shall see. First, there is a lack of
suitable formalizations of what has to be tested. Second, testing remains one
of the most expensive parts of systems development. Excessive cost is largely
determined by the labor-intensiveness of manual testing, as we shall discuss
first:

Cost. At the time where first programs were written, “program checkout”
(testing and debugging) was the most labor-intensive step [Bak57]. The sit-
uation had neither changed quarter a century later, where the general rule of
thumb was that 50% of development expenses are spent on testing [MSBT04],
nor has it changed more than 50 years later: talking to industry confirms that
testing accounts for at least 50% of development costs. Given today’s cost
pressure this is hardly affordable anymore. To improve on this, testing must
be increasingly automated and be made as efficient as possible, for example
with respect to the following criterion stated by Myers [MSBT04]:

What subset of all possible test cases has the highest probability
of detecting the most errors?

1

1 Introduction 2

Clearly, naïve random testing – although highly automated, and in many
cases the only automated procedure that is employed – can hardly yield a
small set of test cases matching the above criterion. Hence more elaborate
approaches for automated test case generation are sought for. Automation,
however, requires a precise description of what is to be tested. Hence it is
hampered by the lack of formalization:

Formalization. Test adequacy criteria, such as code coverage metrics, de-
termine whether a set of test cases is suitable for detecting a high number
of errors. For efficient automated test case generation these criteria must be
formalized in a suitable way, such that test case generators can use them as
guidance in computation of test cases. Although formalizations of selected
criteria have been described in the literature (cf. Section 1.6), there is still
no single framework that consistently captures a majority of the proposed
coverage criteria. Therefore automated test case generation is always limited
to a small set of hard-coded coverage criteria.

We therefore first developed a formal framework for describing coverage
criteria, and, on top of that, an efficient technique for automated white-
box program testing. Through proper formalization we therefore achieve
automation to a much higher degree, which again shall help to reduce cost.
Before we give a detailed description of our approach, we describe the general
setting.

1.1 Software Testing

Myers [MSBT04] defines software testing as “. . . the process of executing a
program with the intent of finding errors.” This clearly distinguishes software
testing from techniques such as static analysis [NNH99], abstract interpreta-
tion [CC77], or model checking [CE81, QS82], which aim at proving programs
correct w.r.t. a specification without actually executing the program.

Testing could only establish correctness if all possible executions of a
program had been shown to be error-free. This, however, is infeasible in all
practical cases. Therefore, testing can only establish confidence that certain
errors are not present, while it tells nothing about other potential errors. Its
bug-finding capabilities, the ease of use and its scalability, however, made
testing remain an integral part of software development. Furthermore all
proofs of correctness will have to be complemented by tests as only tests show

1 Introduction 3

the effects of actual executions, whereas proofs are bound to the correctness of
assumptions on the environment (cf. [GG75] for a more extensive discussion).
More even than a formal correctness proof, a well chosen suite of test cases
is known to be extremely valuable for the working programmer: it helps
to understand program behavior, it gives immediate feedback about code
changes, it helps detect compiler errors (a particularly important issue in the
context of off-the-beaten-track embedded processors), it enables the physical
measurement of execution time and power consumption [WRKP05], and it
can grow as the program develops. The last years have also seen novel formal
verification techniques which integrate dynamic analysis with software model
checking and static analysis [BCH+04b, GHK+06].

1.1.1 Terminology

As formal definitions are given no earlier than Chapter 4, we give an informal
description of several important terms here.

• Test Input. Test input is program input that causes a unique sequence
of steps in the execution of the program.

• Test Case. A test case describes an execution of the program. To
denote such an execution, often only test input and the expected output
is given.

• Test Suite. A test suite is a set of test cases.

• Coverage Criterion. A coverage criterion defines a metric over test
suites. A coverage criterion measures the adequacy of a test suite for
finding a certain set of errors. Well known coverage criteria include
statement coverage, condition coverage or path coverage. A coverage
criterion itself can also help to discover errors, e.g., dead code if full
coverage of statements cannot be achieved.

• Test Goal. A test goal is a property of a test case. Coverage criteria
induce test goals: for instance, statement coverage yields one test goal
per statement. Each such property then states that one of the state-
ments must be reached. Test goals are also known as test targets or
test obligations.

1 Introduction 4

• Test Harness. A test harness is a program fragment that executes
the program under test with a specific test input.

In software testing we distinguish two main areas:

• In black-box testing the description of the system under test is limited
to its interface and test inputs are therefore solely selected according
to this interface description or other requirements specifications. To
increase the likelihood of finding errors, testers choose boundary val-
ues or other specific values that likely yield errors. While computing
specific inputs is easy to accomplish, error-free execution upon these
inputs yields no information about even only slightly varied input data.

• White-box testing, in contrast, includes information about the logic of
the program, its structure, and its implementation. First, this per-
mits systematic study of parts of the program deemed critical. Second,
interesting combinations of input values can be determined from the
source code and reasoning about equivalence classes of input parame-
ters becomes possible.

In the remainder of this dissertation we are solely concerned with white-
box testing.

1.1.2 Applications of Software Testing

Applications of white-box testing range from ad hoc debugging to software
certification of safety-critical systems:

1. For debugging, we need program specific ad hoc test suites that cover,
e.g., certain lines of code or functions, or enforce a precondition in the
execution of a function high up in the call stack. For reproducing stack
traces we further need to model sequences of function calls, possibly
including conditions over function arguments.

2. For requirement-based testing [WRHM06, UL06], we need test suites
which reflect the intended system behavior. Alternatively, also vio-
lation of requirements must be tested by explicitly describing faulty
behavior.

1 Introduction 5

3. For certification, we need test suites that ensure standard coverage
criteria, like condition coverage, in connection with industry standards
such as DO-178B [RTC92].

4. In most practical cases the situation is even more complex: For in-
stance, while a system is still under development, we want to assure,
e.g., condition coverage, but avoid test cases invoking certain unimple-
mented functions.

It is therefore interesting to note that there is relatively little support for
testing by formal methods and test case generation tools in today’s incre-
mental development processes. In particular, there is a strong need for a tool
chain which allows the non-expert user to specify the test goals to be covered
and the program paths permissible as test cases in the suite to be generated
from this specification and source code.

Current best practice therefore requires a lot of tedious manual work to
find test suites. Manual test case generation incurs both high costs and im-
precision. Even though heuristic automated test case generation techniques
such as random testing or directed testing [BM83, CDE08, God07, GKS05,
GHK+06, SMA05] are very useful for general debugging, they can usually not
achieve the coverage goals discussed here. Furthermore they are incompat-
ible both with today’s incremental development processes and certification
standards. Incremental development of the product is accompanied by in-
crementally developing unit tests, either by a dedicated test engineer or the
product developers themselves.

Working with industry and in several software projects we have seen test
suites that achieve high coverage, e.g., 90% statement coverage, without
being constructed with explicit coverage goals. Such test suites are built
manually or using variants of random testing. In general, the most common
use cases are covered, but often special cases and error paths remain untested.
Manually deriving test cases for such scenarios is tedious and, as going from
single functions to larger code chunks in integration testing, increasingly hard
to do. Cheap random testing is not an option in such cases as it unnecessarily
bloats a possibly well engineered test suite.

Instead of working towards automatic one-shot test suite generation, we
intend to help test engineers and developers in these manual, labor-intensive
steps with a tool that (a) simplifies the manual work needed to derive test
cases and (b) can efficiently compute test cases missing in a desired test suite.

1 Introduction 6

At the very core of these two goals lies a need for a means to specify test cases
in a declarative way. Such specifications enable automatic generation of high
quality test suites as defined by the developer. Because of its declarative
style and an analogy to databases that we outline below, we refer to this
approach as query-driven program testing.

1.2 Query-Driven Program Testing

Approaching testing from a model checking background, we were quite sur-
prised that the literature contains a rich taxonomy and discussions of test
coverage criteria (cf. Section 1.6), but is lacking a systematic framework for
their specification. We believe that such a framework helps to reason about
specifications and build tools which are working towards common goals.

History of computer science has shown that the introduction of temporal
logic was essential to model checking, similarly as SQL/relational algebra
was to databases. In particular, a formal and well-designed language helps
to separate the problem specification from the algorithmic solution. Taking
this analogy one step further, we developed query-driven program testing.
This method, with its main constituents outlined in Figure 1.1, follows the
main concepts of database systems: given a database and a declarative query,
the back end efficiently processes these as black-box, and returns a result set.

Test Case
Generation
Back End

Source Code

Coverage
Specification

Test Suite

Figure 1.1: Query-driven program testing

In query-driven program testing we view the program as a database.
Given a declarative coverage specification over such a program, the test case
generation back end processes these inputs in a black-box fashion, and returns
a set of test cases. We emphasize the advantage of the black-box style of the
back end: we can apply optimizations and even use completely different
solving strategies without changing the interface to the user.

1 Introduction 7

Query-driven program testing is a method that provides both improve-
ments in industrial practice as well as it opens up new research directions.
We list some of these:

• Test Case Generation. Query-driven program testing enables us to
compute test suites according to user specified coverage criteria. This
feature is a crucial difference to directed testing which aims at good
program coverage as a push button tool but has no explicit coverage
goals. In particular, it enables the programmer to do intelligent and
adaptive unit testing, even for unfinished code.

• Requirement-driven Testing. We can translate informal require-
ments into rigorous test specifications, and generate a covering test
suite. When we evaluate the resulting test suite against a generic cov-
erage criterion such as decision coverage, we understand whether the
requirements contain sufficient detail to guide the implementation.

• Certification. We can formulate precise criteria for code certifica-
tion in our query language and evaluate them on the source code.
The lack of formal test specifications (even in standards such as DO-
178B [RTC92]) has lead to inconsistent tool support. To illustrate the
problem, we have used the four commercial test tools CoverageMe-
ter [CMe], CTC++ [CTC], BullseyeCoverage [Bul], and Rational Test
RealTime (RTRT) [RTR] to check for condition coverage on the C pro-
gram shown in Listing 1.1.

1void foo(int x) {
2 int a = x > 2 && x < 5;
3 if (a) { 0; } else { 1; }
4}

Listing 1.1: Sample program

We compiled the C program using the tool chain of each coverage anal-
ysis tool and ran the programs with the two test cases x = 1 and x =
4. Here, CoverageMeter and CTC++ reported 100% coverage but the
other two tools returned a mere 83%. The difference occurs because
BullseyeCoverage and RTRT treat not only the variable a in line 3 as
condition but also x>2 and x<5 in line 2.

1 Introduction 8

• Coverage Evaluation. We can determine coverage with respect to
a query achieved by other test methods, e.g., directed, model-based,
or manual testing. A clear understanding of coverage enables us to
combine existing testing techniques in a precise manner. For instance,
we can derive concise specifications of missing test cases to perform
automated coverage completion with a more powerful tool such as the
query-driven test case generator presented in this dissertation.

• Systematic Reasoning about Test Specifications. We believe
that a rigorously defined test specification language and the underly-
ing mathematical framework gives us a clean and simple basis to study
fundamental issues about test specifications such as equivalence and
subsumption of specifications, normal forms, distribution of specifica-
tions to multiple test servers etc.

• Independent Development of Back Ends. The test specification
language precisely defines the interface available to the user of a query-
driven program testing tool chain. Therefore back end optimizations or
even completely new back ends can be developed and later be added as
drop-in replacements. A first back end is presented in this dissertation,
but there is also already ongoing work on a second back end which,
internally, uses almost orthogonal concepts.

1.3 Overview of Realization

To implement query-driven program testing we decompose the task into three
main building blocks:

1. Analogously to relational algebra begin a foundation for databases,
we define a mathematical framework to give a semantics of coverage
criteria.

2. On top of this framework we define a declarative language that can be
used by practitioners – “SQL for program testing.”

3. We develop back ends that facilitate efficient generation of test cases
for real-world programs.

1 Introduction 9

Our solution culminates in a tool – FShell1 – which processes C pro-
grams as input source code, accepts queries in FQL (FShell Query Lan-
guage), and computes corresponding test suites.

1.3.1 Mathematical Framework

The mathematical core of this dissertation is a slink framework that suffices to
model standard coverage criteria. We use control flow automata as syntactic
and transition systems as semantic representation of programs. Thereupon
we define three levels of predicates: state predicate, path predicates, and
path set predicates. These types of predicates are used to describe the test
goals induced by coverage criteria. Therefore we are then able to give a
formal definition of coverage criteria. To the best of our knowledge, this
is the first model that captures all kinds of coverage criteria in a single
mathematical framework. The resulting abstraction layer encompassing all
practical coverage criteria is essential for the definition of a query language.

1.3.2 Query Language

Despite the practical importance of a test specification language, there was
very little previous work on this topic. With the aim of developing an auto-
matic test case generation tool for measurement-based execution time anal-
ysis, we first developed a prototype that permitted specifications of paths in
terms of a sequence of lines of code [HSTV08]. This early prototype helped
to explore capabilities of automatic test case generation, but the semantics
of its specification language was only described in terms of an implementa-
tion, which often led to non-obvious results. We consequently developed the
mathematical model sketched above, which we first described in [HSTV09].
Such proper foundations enabled us to develop efficient algorithms in the
test case generation back end. The query language FQL built on top of
this mathematical model was presented in [HSTV10]. Specifications in FQL
enable the user to formulate test specifications which range from local code-
specific requirements (“cover all decisions in function foo using only calls
from function bar to foo”) to generic code-independent requirements (“con-
dition coverage”). We have designed FQL as a specification language which

1Originally FORTAS shell, as it was developed within the research project FORTAS –
Formal Timing Analysis Suite for Real Time Programs

1 Introduction 10

is easy to read – it is based on regular expressions – but has an expressive
and precise semantics.

The main challenge was to find a language that enables us to work towards
these goals, but is simple enough to be used by practitioners, and clean
enough to facilitate a clear semantics. The role models for our language were
languages such as LTL and SQL. We believe that our language FQL is a
valuable first step towards a test specification language bearing the quality
of these classics. It is easy to find a complicated very rich test specification
language, but the challenge was to find a simple and clean one. The main
difficulty we were facing in the design of FQL stems from the need to talk
about both structural and syntactic elements of the code, and the semantics
of the program under test in one formalism.

1.3.3 Test Case Generation Back End

Another major contribution of this dissertation is an efficient query engine
which integrates our theoretical framework, code instrumentation, bounded
model checking, and SAT enumeration into a tool of high efficiency. Our
query engine employs and adapts the software model checking framework of
Kroening’s C bounded model checker (CBMC) [CKL04]. CBMC handles full
ANSI C and translates such programs to Boolean formulas in a bit-precise
manner. A SAT solver then computes satisfying assignments, which corre-
spond to counterexamples of a safety property. We adapted and extended
the code based to employ it for efficient test case generation. Given an FQL
query, our tool performs the following conceptual steps, cf. Figure 1.2:

(1) We use the code base of CBMC to first obtain an intermediate repre-
sentation of the program under test and later a SAT instance whose
solutions correspond to the feasible program paths.

(2) With information about the intermediate representation we can trans-
late the FQL query into automata over statements in the intermediate
representation. If the query contains predicates over program vari-
ables, instrumentation is used to embed evaluation of predicates into
the program. The SAT instance computed by CBMC is augmented
with propositional encodings of the automata. Furthermore we keep
mapping information, such that for each SAT solution, we can easily
determine which test goals are covered.

1 Introduction 11

C Source FQL Query

Test Suite

CBMC
Components

Automata
Construction

Iterative Constraint Strengthening

Test Suite Minimization

Figure 1.2: Query processing

(3) We use the SAT solver to enumerate test cases as solutions to the SAT
instance until we satisfy the coverage criterion defined by the query.
The iterative constraint strengthening technique used in this step is
discussed below.

(4) To remove redundant test cases, we perform a test suite minimization.
This problem is an instance of the minimum set cover problem, which
we reduce to a series of SAT instances.

Iterative Constraint Strengthening (ICS). A naïve implementation of
step (3) above would either use SAT enumeration to compute an enormous
number of test cases until the test goals are reached, or it would call the
SAT solver for each query goal anew. In iterative constraint strengthening,
we circumvent both problems by modifying the clause database of the SAT
solver on-the-fly. Whenever the SAT solver halts to output a solution, we
compare the test case obtained from this solution against the test goals. Then
we add new clauses to the clause database in such a way that the next solution
is guaranteed to satisfy at least one test goal that had not yet been covered.
In this way, we exploit incremental SAT solving to quickly enumerate a test
suite of high quality: since we only add new clauses to the clause database,

1 Introduction 12

the SAT solver is able to reuse information learned in prior invocations.
We further refine this strategy in groupwise constraint strengthening (GCS):
coverage criteria such as Cartesian combinations of basic block coverage or
predicate complete coverage nominally have an exponential number of test
goals. For efficient enumeration we partition the goals into a small number
of groups characterized by a common compound goal.

1.4 Advantages and Limitations of the Imple-
mentation

Query-driven program testing is a method that is applicable for all kinds
of programming languages and software. Yet, in our implementation we
restricted ourselves to C programs and had to take several decisions. Our
choice of CBMC and bounded model checking as a query solving back end
has advantages which come at a price: On the one hand, we achieve excellent
performance and have the guarantee that the model-checker respects ANSI C,
which is important for low level code, our primary application area. On the
other hand, a bounded model checking approach is unable to compute certain
test cases involving paths larger than the constant bound. It is easy to come
up with examples where this situation will happen, but it is detectable by
CBMC and accounted for in our implementation; in our evaluation we had
to find suitable bounds, which we state for each experiment.

The following additional issues have to be considered when working with
C programs, and we describe how they are addressed:

• Bit-precise Reasoning. C programs, especially those used in em-
bedded systems, make frequent use of bit-wise operators for efficiency
reasons. Consequently any program analysis must take these operators
plus architecture-specific properties such as bit-widths of data types,
overflow, and endianness into account. CBMC uses bit-precise model-
ing and includes support for architecture configuration.

• Pointers and Dynamic Memory Allocation. Pointers, including
function pointers, are part of any non-trivial C program. CBMC fully
supports pointers to data objects and resolves function pointers to the
resulting function calls. Pointer arithmetic and dynamic memory allo-
cation are supported as well.

1 Introduction 13

• Arrays and Data Structures. Through pointers and dynamic mem-
ory allocation unbounded data structures can be built at runtime.
CBMC can analyze these up to a given bound. For test case genera-
tion in cases where the entry function takes pointers to data structures
as input parameters, however, additional stubs have to be written at
present. While this will be addressed in future work, we currently
assume that such pointers reference invalid memory (a worst-case as-
sumption).

• Behavior left undefined in ANSI C. The standard defining ANSI
C [Ame99a] leaves several aspects to an implementation, such as the
representation of floating point numbers or order of evaluation for ar-
guments of arithmetic operations. For floating point numbers, CBMC
already includes support for standardized representations, which may
become part of future versions of FShell. Other aspects left undefined
are resolved in an arbitrary way.

• Concurrency and Atomicity. Multi-threaded code is not yet prop-
erly supported. Basic support is currently being developed, but testing
concurrent software requires extensions of FQL as well. This will be
addressed in future work.

• Library Calls. Calls to functions where no source code is available
are assumed to return nondeterministic values. For many functions of
the C library, CBMC includes stubs that approximate the behavior of
these functions. For test case generation, we consider the return values
of undefined functions as part of the test input.

• Inline assembly. Neither FShell nor CBMC addresses inline as-
sembly in any way, other than skipping over it. If future versions of
CBMC gain support for embedded assembly code, possibly by com-
bining CBMC with analysis frameworks for binaries [KV08], FShell
would readily no longer ignore it. For proper testing, however, exten-
sions of FQL will likely become necessary.

• Test Input. When arbitrary programs are tested it remains to define
what is considered as input parameters. In FShell we include as test
input all parameters of the entry function, undefined local variables,
and return values of undefined functions. Optionally, global variables

1 Introduction 14

can be marked as test input – by default, and in accordance with the
ANSI C standard, CBMC zero-initializes global variables.

• Test Execution. As a result of the lack of a well-defined input-
interface test execution is a non-trivial task. Variables and functions
marked as test input by FShell have to be set to the computed values.
At present, only a prototypical Perl script is provided that edits (copies
of) the source code to include input values.

1.5 Contributions

To summarize the approach sketched above, this dissertation contributed to
improvements in the state of the art in the following ways:

• Query-driven program testing is an entirely new approach towards test-
ing. In this approach the test engineer uses a declarative query lan-
guage (FQL) to specify the test goals to be covered. The design of this
query language follows requirements (Chapter 2) that were collected
while working in industrial projects. As this approach for software
testing is new, we give a tutorial-style introduction that describes the
main concepts of FQL and several use cases. Furthermore we show-
case the practical use of FQL in the automated test case generation
tool FShell (Chapter 3).

• The core of query-driven program testing is a mathematical framework
to describe coverage criteria (Chapter 4). We show that this formal
framework is sufficiently general to describe both well-established cov-
erage criteria and new coverage criteria defined in an ad hoc manner.

• FQL is the first declarative language that allows programmers to spec-
ify coverage criteria in a concise and flexible manner (Chapter 5). The
specification language builds upon the above mathematical framework,
with the restriction to elementary coverage criteria.

• The main contribution of this dissertation is the efficient implementa-
tion of query-driven program testing using FQL in the tool FShell
(Chapter 6). FShell adopts components of the C bounded model
checker to enable practical automated test case generation for ANSI C

1 Introduction 15

programs. Efficient computation of test suites is achieved by employ-
ing SAT solvers in several ways: for test case enumeration, for coverage
analysis, and for test suite minimization. We show the effectiveness of
our approach on several case studies and dedicated experiments (Chap-
ter 7).

1.6 Related Work

The idea of using code coverage as a measurement for test adequacy was
first presented in [MM63]. Structural coverage criteria, e.g., basic block cov-
erage, condition coverage, or path coverage, and data flow coverage criteria
such as all-definitions are well studied [How75, Hua75, Pai75, McC76, Her76,
WHH80, LK83, Gou83, RW85, Nta88, FW88, Het88, CPRZ89, HS91, BM93,
UY93, ZHM97, AOX08], albeit with different names and a notable lack of
precise definitions. Publications on specific coverage criteria tend to establish
formalisms that suffice to describe the specific set of criteria only, making use
of set-based [FW93] or graph-based [PC90] approaches. There is, however,
only little work on mathematical frameworks that generalize to all these cri-
teria, and even less work for making coverage criteria applicable in test case
generation.

Vilkomir and Bowen [VB08] present a comprehensive formalization using
the Z notation. They build a series of schemata to compare several well
known coverage criteria. Although such an approach enables proper reason-
ing about different coverage criteria, it is not suitable for test case generation:
They do not consider specifics of programming languages nor are program
semantics modeled in any way. Hence instantiation of the schemata for a
given program such as to discuss test case generation is not possible.

A framework targeted at automatic test case generation was described
by Lee et al. [HLSU02, TSL04], who use CTL to formalize coverage criteria.
They apply CTL as a formal framework to describe both structural and data
flow coverage criteria. Using these specifications, they apply model checkers
for automatic test generation. For representing the system under test they
use extended finite state machines, which naturally induce Kripke structures
for capturing semantics. Apart from different notations, these foundational
definitions only differ from the concepts described in Sections 4.1 and 4.2 in
the lack of annotations, which we attach to CFA edges. Structural code cov-
erage criteria, however, are defined on source code. Hence these annotations

1 Introduction 16

are a key capability to retain the relation to source code and only these enable
a formal definition of standard coverage criteria. Ammann et al. [AOX08] use
graphs as basic concept and define several coverage criteria on top of these.
Yet they are also missing a relation to source code. While they do argue that,
e.g., node coverage on graphs equals statement coverage on source code, this
does not easily generalize to other white-box coverage criteria.

Although standard coverage criteria are a key aspect in the design of
query-driven program testing in general and the query language in partic-
ular, we strive for a more versatile specification language. Hence we also
studied work that allows to describe tests beyond standard coverage crite-
ria. Many of these publications are found in context of model-based testing.
Most existing formalisms for test specifications focus on the description of
test data, e.g., TTCN-3 [Din04] and the UML 2.0 Testing Profile [SDGR03],
but none of them allows to describe structural coverage criteria. Friske et
al. [FSWl08] have presented coverage specifications using OCL constraints.
Although OCL provides the necessary operations to speak about UML mod-
els, OCL constraints can yield hard to read expressions for complex coverage
criteria. There exist several approaches that cover specifically the test in-
put generation part for UML models: In the tradition of automata-theoretic
methods, the most common [DNSVT07] approaches employ UML state ma-
chines [WS07, CTF01] and interaction diagrams [NS09], respectively.

The basic principles behind model-based testing were described by Chow
in 1978 [Cho78], the term model-based testing was coined and further re-
fined by Dalal et al. [DJK+99]. Their work includes automated test input
generation and focuses on boundary value testing. Hessel et al. [BHJP04]
present a specification language for coverage criteria at model level that uses
parameterized observer automata. Test suites for specified coverage crite-
ria can be automatically generated using the tool Uppaal Cover [HLM+08].
In [BHM+09], the generation of test inputs for Simulink models is realized
via a translation of models to C code. This code is subsequently processed
by a tool that – like FShell – is built upon CBMC. One of the most
advanced model-based testing tool chains is Spec Explorer [VCG+08]. It
combines model-based testing with various techniques for automated test
case generation. Spec Explorer works on Spec# models and .Net code and
uses AsmL [BGN+03] as formal foundation. Building upon Spec Explorer,
Kicillof et al. [KGTB07] describe an approach that combines model-level

1 Introduction 17

black-box testing with parametrized white-box unit testing. Black-box ap-
proaches, such as input/output conformance (also known as “ioco”) testing
as performed in the TorX framework [TB03], require different specifications.
Query-driven program testing could even be applied in such cases, albeit
only using a fraction of its power. Briones et al. [BBS06] investigate cov-
erage measures considering the semantics of a functional specification and
weighted fault models to arrive at minimal test suites in a black-box setting.

Random testing [BM83], fuzz testing [GLM08], and the use of genetic
algorithms [Hol92] for test case generation [JSE96, PHP99] are applicable
in both black-box and white-box settings, but cannot flexibly incorporate
coverage specifications. Directed testing, and further symbolic execution
based approaches aim at achieving a high code coverage with respect to
standard criteria like basic block or path coverage [CDE08, God07, GKS05,
GHK+06, SMA05, TS05, TS06]. These approaches are not tailored towards
flexible and customized coverage criteria, and are therefore orthogonal to our
work. It is an interesting question for future research, however, which FQL
specifications can be solved efficiently by directed testing.

The use of model checking for test case generation was first proposed
in [GH99]. They did, however, not consider coverage as guidance. Test
case generation with model checkers following coverage specifications was
proposed in [RH01a]. This was further refined in [HLSU02, TSL04, FW06,
HLM+08, RH01b, HRV+03], as in parts already discussed above. The notion
of coverage, however, must be taken with a grain of salt: Some of these pub-
lications focus on coverage of specifications rather than structural coverage,
cf. [FWA09] for a survey. They use NuSMV [CCGR99], SAL2 [HdMR04],
and Java PathFinder [VPK04] as model checking back ends. Consequently
none of these approaches support ANSI C syntax and semantics.

Prior to our work, Beyer et al. [BCH+04b] presented a test case gen-
eration engine for C programs that supports “target predicate coverage”,
i.e., every program location has to be visited by some test case that en-
ters the location such that predicate p evaluates to true. In FQL, this cov-
erage criterion is given by the specification cover {p}.NODES(ID). For test
case generation Beyer et al. use an extended version of the C model checker
BLAST [HJMS02, BHJM07]. Note that BLAST uses the database analogy
in a different way than we do. BLAST uses a query language [BCH+04a] to
process and access reachability information from the software model checker.

1 Introduction 18

However, the BLAST query language is not well suited for specifying com-
plex coverage criteria: (i) Specifications have to be stated in a combination
of two formalisms, one for an observer automaton, and the other for a rela-
tional query. (ii) The BLAST language misses concise primitives for coverage
criteria; for instance, path coverage can only be achieved by creating an in-
dividual observer automaton for each program path. (iii) The encoding of
FQL’s passing clause into a BLAST observer automaton is in general non-
trivial for the test engineer.

. . . the tools we are trying to use and the language
or notation we are using to express or record our
thoughts, are the major factors determining what
we can think or express at all!

Edsger W. Dijkstra
Chapter 2

Requirements for the Design of
FQL

Bearing in mind what Dijkstra said in “The Humble Programmer” [Dij72]
(see quote above), the design of the query language will be a key to success
of query-driven program testing. The language must balance expressiveness
versus an easy-to-use syntax and its underlying concepts must be rigorous
yet easily accessible to the programmer. In engineering our query language
FQL we therefore considered the possible use cases described in Section 1.2
to end up with the following list of requirements that have to be addressed:

(a) Simplicity and Code Independence. Simple coverage specifica-
tions should be expressed by simple FQL specifications. For example,
well-known coverage criteria should be expressed with short queries. At
the same time, however, it should be avoided to require a new keyword
for each coverage criterion. The resulting small set of reserved words
must be chosen in a way that makes queries easy to read. Furthermore,
to facilitate early test goal specifications and their reuse throughout a
project, FQL specifications should be maximally code independent; for
instance, a specification referring to a procedure should not depend on
line numbers.

(b) Encapsulation of Language Specifics. Specifications given in FQL
necessarily refer to elements of source code. Nevertheless FQL should
reduce the specifics of a programming language, such as ANSI C, to
a minimum. To this end, FQL should provide a clear and concise
interface with the underlying programming language.

19

2 Requirements for the Design of FQL 20

(c) Precise Semantics. FQL specifications should have a simple and
unambiguous semantics.

(d) Expressive Power. FQL should be based on a small number of or-
thogonal concepts. These must allow to express coverage specifications
ranging from standard coverage criteria to ad hoc coverage requests
arising during systems development, as discussed in Section 1.1.2. As
examples of the wide variety of possible coverage specifications we list
24 possible queries in Figures 2.1–2.3.

(e) Tool Support for Real World Code. FQL must have a good trade-
off between expressive power and feasibility. In particular, common
coverage specifications should lend themselves naturally to efficient test
case generation algorithms.

Scenario 1: Structural Coverage Criteria. The certification of critical
software systems often requires coverage criteria such as basic block, condition
or decision coverage [MSBT04] which refer to entities present in all source code.
This results in our first specifications.

[Q1-2 — “Standard Coverage Criteria”] Basic block coverage and condition
coverage.
Assuming that Q2 refers to BullseyeCoverage and RTRT’s interpretation of

condition coverage, one must also be able to express the competing criterion:

[Q3 — “Alternative Condition Coverage”] Condition coverage as defined by
CoverageMeter and CTC++ (see Section 1.2).
For intensive testing a developer will employ a variant of path cover-

age [Nta88], but restrict it to local coverage due to high costs:

[Q4 — “Acyclic Path Coverage”] Cover all acyclic paths through functions main
and insert.

[Q5 — “Loop-Bounded Path Coverage”] Cover all paths through main and
insert which pass each statement at most twice.

Figure 2.1: Twenty-four examples of informal test case specifications

2 Requirements for the Design of FQL 21

Scenario 2: Data Flow Coverage Criteria. We give three examples
of typical data flow coverage criteria.

[Q6 — “Def Coverage”] Cover all statements defining a variable t.

[Q7 — “Use Coverage”] Cover all statements that use the variable t as right
hand side value.

[Q8 — “Def-Use Coverage”] Cover all def-use pairs of variable t.

Scenario 3: Constraining Test Cases. During development and for
code exploration, it is often important to achieve the desired coverage with test
cases which, for instance, avoid a call to an unimplemented function. Below we
list five examples of this group.

[Q9 — “Constrained Program Paths”] Basic block coverage with test cases that
satisfy the assertion j > 0 after executing line 2.

[Q10 — “Constrained Calling Context”] Condition coverage in a function
compare with test cases which call compare from inside function sort only.

[Q11 — “Constrained Inputs”] Basic block coverage in function sort with test
cases that use a list with 2 to 15 elements.

[Q12 — “Recursion Depth”] Cover function eval with condition coverage and
require each test case to perform three recursive calls of eval. [Q13 —

“Avoid Unfinished Code”] Cover all calls to sort such that sort never calls
unfinished. That function is allowed to be called outside sort – assuming
that only the functionality of unfinished that is used by sort is not testable.

[Q14 — “Avoid Trivial Cases”] Cover all conditions and avoid trivial test cases,
i.e., require that insert is called twice before calling eval.

Figure 2.2: Twenty-four examples of informal test case specifications (cont.)

2 Requirements for the Design of FQL 22

Scenario 4: Customized Test Goals. Complementary to the con-
straints on test cases of Scenario 3, we also want to modify the set of test
goals to be achieved by the test cases.

[Q15 — “Restricted Scope of Analysis”] Condition coverage in a function
partition with test cases that reach line 7 at least once.

[Q16 — “Condition/Decision Coverage”] Condition/decision coverage (the
union of condition and decision coverage) [MSBT04].
To study interactions of two program parts, it is not sufficient to cover the

union of the test goals induced by each part; tests must cover their Cartesian
product:

[Q17 — “Interaction Coverage”] Cover all possible pairs between conditions in
function sort and basic blocks in function eval, i.e., cover all possible interac-
tions between sort and eval.
In a similar spirit, we can also approximate path coverage by covering pairs,

triples, etc. of basic blocks:

[Q18-20 — “Cartesian Block Coverage”] Cover all pairs, triples, and quadruples
of basic blocks in function partition.

Scenario 5: Seamless Transition to Verification. When full verifi-
cation by model checking is not possible, testing can be used to approximate
model checking. For instance, we can specify to cover all assertions.

[Q21 — “Assertion Coverage”] Cover all assertions in the source.

[Q22 — “Assertion Pair Coverage”] Cover each pair of assertions with a single
test case passing both of them.
We can finally use test specifications to provoke unintended program behavior,

effectively turning a test case into a counterexample. In the following examples,
we check the presence of an erroneous calling sequence and the violation of a
postcondition:

[Q23 — “Error Provocation”] Cover all basic blocks in eval without reaching
label init.

[Q24 — “Verification”] Ask for test cases which enter function main, satisfy the
precondition, and violate the postcondition.

Figure 2.3: Twenty-four examples of informal test case specifications (cont.)

Quality is never an accident;
it is always the result of in-
telligent effort.

John Ruskin

Chapter 3

A Primer on Query-Driven
Program Testing

Automated test case generation techniques such as random testing or di-
rected testing can help to quickly uncover a series of bugs when run on a
previously untested program. It is rarely the case, however, that a program
is put together in one atomic step and only being tested afterwards. Instead,
today’s agile development style [BBvB+01] emphasizes incremental develop-
ment, where testing is supposed to happen in intermediate steps as well. But
even in an idealized industrial development process, where only completed
implementations are tested, these tests have to follow an engineer’s specifi-
cations instead of randomly walking the code. Query-driven program testing
aims to fill this void: We use declarative specifications of test suites – queries
– and provide suitable back ends that automatically generate suitable test
cases. In the following we start from very simple specifications and describe
how the programmer expresses them using our query language FQL. We
continue to more complex usage scenarios and describe subtle differences in
specifications, which can be clearly distinguished using FQL. We end with
an example session of our tool, FShell, and briefly describe its usage.

3.1 FQL Language Concept

It is natural to specify a single program execution – a test case – on a fixed
given program by a regular expression. For instance, to obtain a test case
which leads through line number 4 (covers line 4) of the program, we can

23

3 A Primer on Query-Driven Program Testing 24

write a regular expression ID* . @4 . ID*, where ‘ID’ denotes a wildcard.
We will refer to such regular expressions as path patterns. Equipped with a
suitable alphabet which involves statements, assertions and other program
elements, path patterns are the backbone of our language.

Writing path patterns as test specifications is simple and natural, but
has a principal limitation: it only works for individual tests, and not for test
suites. Let us discuss the problem on the example of basic block coverage.
Basic block coverage requires a test suite where

“for each basic block in the program there is a test case in the test
suite which covers this basic block.”

It is clear that basic block coverage can be achieved manually by writing one
path pattern for each basic block in the program. The challenge is to find
a specification language from which the path patterns can be automatically
derived. This language should work not only for simple criteria such as basic
block coverage, but, on the contrary, facilitate the specification of complex
coverage criteria, such as those described in the introduction. To understand
the requirements for the specification language, let us analyze the above
verbal specification:

A The specification requires a test suite, i.e., multiple test cases, which
together have to achieve coverage.

B The specification contains a universal quantifier, saying that each basic
block must be covered by a test case in the test suite.

C Referring to entities such as “basic blocks” the specification assumes
knowledge about program structure.

D The specification has a meaning which is independent of the concrete
program under test. In fact, it can be translated into a set of path
patterns only after the program under test is fixed.

The challenge is to find a language with a syntax, expressive power, and
usability appropriate to the task. Our solution is to evolve regular expressions
into a richer formalism (FQL) which is able to address the issues A-D.

In the following we will discuss the main features of FQL. We use the
C code snippet shown in Listing 3.1 to explain basic aspects of FQL. To
exemplify more complex test specifications and their FQL counterparts we
will augment this snippet with additional program code.

3 A Primer on Query-Driven Program Testing 25

1 int cmp(int x, int y) {
2 int value = 0;
3 if (x > y)
4 value = 1;
5 else if (x < y)
6 value = −1;
7 return value;
8}

Listing 3.1: C source code of function cmp

3.1.1 Path Patterns: Regular Expressions

FQL is a natural extension of regular expressions. To cover line 4, we just
write

> cover "ID* . @4 . ID*"

The quotes indicate that this regular expression is a path pattern for which
we request a matching program path. We use the operators ‘+’, ‘*’, ‘.’ for
alternative, Kleene star and concatenation. Note that the regular expressions
can contain combinations of conditions and actions, as in

> cover "ID* . { x==42 } . @4 . ID*"

which requests a test where the value of variable x is 42 at line 4. For the
first query a suitable pair of inputs is, e.g., x = 1, y = 0, whereas the second
query requires x = 42 and a value of variable y smaller than 42, such as y =
0.

3.1.2 Coverage Specifications:
Quoted Regular Expressions

Using the regular alternative operator ‘+’ we can build a path pattern match-
ing all basic block entries in Listing 3.1. These map to line numbers 2, 4, 6,
and 7. Consequently we can describe the basic block entries using the path
pattern @2 + @4 + @6 + @7 and use a query

> cover "ID* . (@2 + @4 + @6 + @7) . ID*"

to request one matching test case. For basic block coverage, however, we are
interested in multiple test cases covering all of these four lines – a test suite.

3 A Primer on Query-Driven Program Testing 26

b
a

a

a

b

a

c

d

(a) a*.b.a* + c.d*

a?ba? +
cd?

(b) "a*.b.a* + c.d*"

a?ba?

cd?

(c) "a*.b.a*"+"c.d*"

Figure 3.1: Automata resulting from expansion of path patterns and coverage
specifications

Note that no single assignment to the parameters x and y can cause execution
of both assignments in lines 4 and 6. As path patterns are well suited to de-
scribe single test cases, we introduce coverage specifications, which describe a
finite language over path patterns, where each word defines one test goal. We
emphasize finiteness: An infinite number of test goals would lead test case
generation ad absurdum. To tackle the infinite nature of an expression like
ID* we introduce quoting : The coverage specification "ID*" queries for one
test case that matches a word in the language of ID*. The same holds true
for expressions such as "ID* . (@2 + @4 + @6 + @7) . ID*" as used above,
where we implicitly used quoting. We refer to this extension of regular ex-
pressions as quoted regular expressions. Together with concatenation and
alternative, but not Kleene star, FQL combines quoted regular expressions
into coverage specifications for test suites. We illustrate the effect of quoting
on a simple example: A path pattern a*.b.a* + c.d* describes an infinite
language

L(a*.b.a* + c.d*) = {b, c, ab, cd, aba, cdd, aab, aaba, aabaa, . . .}

with a corresponding finite automaton shown in Figure 3.1(a). If we enclose
this pattern into quotes, then the expansion of the regular expression will be
blocked. Thus, "a*.b.a* + c.d*" defines a finite language

L("a*.b.a* + c.d*") = {a?ba? + cd?}

and the automaton shown in Figure 3.1(b). If only the two subexpressions are
quoted, i.e., "a*.b.a*"+"c.d*" is used as coverage specification, we obtain
two words: Formally, we treat the quoted regular expressions "a*.b.a*" and
"c.d*" as temporary alphabet symbols x and y and obtain all words in the

3 A Primer on Query-Driven Program Testing 27

resulting regular language x+ y with L(x+ y) = {x, y}, cf. Figure 3.1(c):

L("a*.b.a*"+"c.d*") = {a?ba?, cd?}.

The words of coverage specification are the path patterns which the test suite
has to satisfy. As we will see more clearly below, this feature equips FQL
with the power for universal quantification. To specify a test suite achieving
basic block coverage we hence write

> cover "ID*" . (@2 + @4 + @6 + @7) . "ID*"

which is tantamount to a list of four path patterns:

> cover "ID* . @2 . ID*"
> cover "ID* . @4 . ID*"
> cover "ID* . @6 . ID*"
> cover "ID* . @7 . ID*"

3.1.3 Target Graphs and Filter Functions

For a fixed given program, coverage specifications using ID and line numbers
such as @7 are useful to give ad hoc coverage specifications. For program
independence and generality, FQL has support to access additional natural
program entities such as basic blocks, files, decisions, etc. We call these
functions filter functions.

For instance, in the above example, the filter function @BASICBLOCKENTRY
is essentially a shorthand for the regular expression @2+@4+@6+@7. Thus, the
query

> cover "ID*" .@BASICBLOCKENTRY. "ID*"

will achieve basic block coverage. To make this approach work in practice,
of course we have to do more engineering work. It is only for simplicity of
presentation that we identify program locations with line numbers.

Towards this goal, we represent programs as control flow automata (CFA).
Henzinger et al. [HJMS02] proposed CFAs as a variant of control flow graphs
where statements are attached to edges instead of nodes. The nodes then
correspond to program locations. In Figure 3.2 the CFA for Listing 3.1 is
shown; for illustration, we use line numbers as program locations. This CFA
contains assignments, a function return edge, and assume edges: bracketed
expressions describe assumptions resulting from Boolean conditions.

3 A Primer on Query-Driven Program Testing 28

2

3

4 5

6

7

8

value := 0

[x > y]

value := 1

[x <= y]

[x >= y]
[x < y]

value := −1

return value

Figure 3.2: Control flow automaton for Listing 3.1

We define target graphs is a subgraphs of the CFA. Filter functions are
used to extract different target graphs from a given program. For instance,
we have filter functions for individual program lines such as @4, basic blocks
(@BASICBLOCKENTRY), functions (as in @FUNC(sort)), etc. To consider another
example, the filter function @CONDITIONEDGE refers to the true/false outcomes
of all atomic Boolean conditions in the source code.

Thus, filter functions and target graphs provide the link to the individual
programming language. The evaluation of filter functions to target graphs is
the only language-dependent part of FQL.

Let us return to our running example: The filter function ID selects the
entire CFA as target graph. For the program in Listing 3.1 with the CFA
of Figure 3.2 an expression @2 selects the edge (2, 3), and @BASICBLOCKENTRY
yields the edges (2, 3), (4, 7), (6, 7) and (7, 8). For @CONDITIONEDGE we obtain
the subgraph consisting of the edges (3, 4), (3, 5), (5, 6) and (5, 7); the same
result could have been obtained by combining the target graphs of @3 (edges
(3, 4), (3, 5)) and @5 (edges (5, 6), (5, 7)), using set union: FQL provides
functionality to extract and manipulate target graphs from programs, for
instance the operations ‘&’ and ‘|’ for intersection and union of graphs, or
‘NOT’ for complementation. For example, to extract the conditions of function
cmp only, we intersect the target graphs of @FUNC(cmp), which yields all edges
in function cmp, and @CONDITIONEDGE. In FQL, we write this intersection as
@FUNC(cmp) & @CONDITIONEDGE.

3 A Primer on Query-Driven Program Testing 29

3.1.4 Target Alphabet: CFA Edges, Nodes, Paths

In our test specifications, we can interpret target graphs via their edges, their
nodes or their paths. In most cases, it is most natural to view them as sets
of edges. In the above examples, we implicitly interpreted a target graph
resulting from the application of a filter function @BASICBLOCKENTRY as a set
of edges: for Listing 3.1 we obtained four edges.

In fact, expressions such as @BASICBLOCKENTRY, which we used throughout
the section, are shorthands for regular expressions constructed from the set of
CFA edges, which can be made explicit by stating EDGES(@BASICBLOCKENTRY).
By default, FQL will interpret every target graph as a set of edges.

The target graph, however, can also be understood as a set of nodes – or
even as a description of a set of finite paths. Let us study these three cases on
practical examples of coverage requirements for the program in Listing 3.1.

• Edges. In FQL, EDGES(@FUNC(cmp)), or simply @FUNC(cmp), yields the
expression (2, 3) + (3, 4) + (3, 5) + (4, 7) + (5, 7) + (5, 6) + (6, 7) + (7, 8).
Hence the coverage specification of a query

> cover "EDGES(ID)*" . EDGES(@FUNC(cmp)) . "EDGES(ID)*"

has eight goals, one for each edge. Three different test inputs, e.g., (x
= 0, y = -1), (x = 0, y = 0), and (x = -1, y = 1), are required to
cover all edges.

• Nodes. Statement coverage requires that each program statement is
covered by some test case. In this case, it is not necessary to cover each
edge of a CFA, which would yield branch coverage; for an if (cond)
stmt; without else it suffices to reach the CFA nodes with outgoing
edges for cond and stmt. Hence, to request statement coverage of
function cmp we use NODES(@FUNC(cmp)), which yields the expression
2 + 3 + 4 + 5 + 6 + 7 + 8. Consequently the corresponding query

> cover "ID*" . NODES(@FUNC(cmp)) . "ID*"

yields only seven test goals (words). In this case, two pairs of test
inputs suffice, e.g., (x = 0, y = -1) and (x = -1, y = 1).

• Paths. The operator PATHS(T,k) extracts the target graph computed
by a filter function T such that no node occurs more than k times. For a

3 A Primer on Query-Driven Program Testing 30

2

3

3′

3′′

4
5

6
7

8

value := 0

[x != 0]
[x == 0]

[y != 0]

[y == 0]
[x > y] [x <= y]

value := 1
[x >= y] [x < y]

value := −1

return value

x y x > y

true ∗ true

true ∗ false

false true true

false true false

false false ∗

2

3

3′

3′′

4
5

6
7

8

2

3

3′

3′′

4
5

6
7

8

2

3

3′

3′′

4
5

6
7

8

2

3

3′

3′′

4
5

6
7

8

2

3

3′

3′′

4
5

6
7

8

Figure 3.3: Multiple condition coverage of (x || y) && x > y

practical example assume we replace the condition x > y in line 3 with
(x || y) && x > y to additionally test for at least one of x or y to be
non-zero. The CFA for the modified function cmp is shown in Figure 3.3.
To exercise this complex condition with multiple condition coverage we
have to test all Boolean combinations of atomic conditions. Owing
to short-circuit semantics only five cases remain to be distinguished, as
described by the table in Figure 3.3. These five cases exactly correspond
to the paths of the target graph computed by the filter function @3, i.e.,
the edges corresponding to line 3 of the program. In FQL we use
PATHS(@3, 1) to describe the bounded paths in this target graph, i.e.,
(3, 3′′, 4) + (3, 3′′, 5) + (3, 3′, 3′′, 4) + (3, 3′, 3′′, 5) + (3, 3′, 5), as illustrated
with bold edges in the CFAs at the right side of Figure 3.3. The query

> cover "ID*" . PATHS(@3, 1) . "ID*"

3 A Primer on Query-Driven Program Testing 31

gives rise to five test goals. We require a bound to be specified, which
in this case is 1, as cyclic target graphs would otherwise yield an infinite
number of paths, and hence an infinite number of test goals.

3.1.5 Full FQL Specifications

General FQL specifications have the form

in G cover C passing P

where both in G and passing P can be omitted.

• The clause ’in G’ states that all filter functions in the cover clause
are applied to a target graph resulting from first applying the filter
function G. In practice, this is often used as

in @FUNC(foo) cover EDGES(@DEF(x))

which is equivalent to the specification

cover EDGES(COMPOSE(@DEF(x),@FUNC(foo)))

• To restrict testing to a certain area of interest, FQL contains passing
clauses, i.e., path patterns which every test case has to satisfy. For
instance, by writing

> cover "ID*" . @BASICBLOCKENTRY . "ID*"
passing ˆNOT(@CALL(unimplemented))*$

we request basic block coverage with test cases restricted to paths where
function unimplemented is never called. Such specifications enable
testing of unfinished code, where only selected parts will be exercised.
Furthermore, we can use passing clauses to specify invariants: Using
the query

> cover "ID*" . @BASICBLOCKENTRY . "ID*"
passing ˆ(ID.{x >= 0})*$

we request basic block coverage through a test suite where variable x
never becomes negative. Note that the passing clause contains only
path patterns and does not contain quotes. The symbols ‘ˆ’ and ‘$’ are
explained below.

3 A Primer on Query-Driven Program Testing 32

FQL also contains syntactic sugar to simplify test specifications. In partic-
ular, -> stands for .ID*. (or ."ID*". when used in coverage specifications).
Moreover, as stated above, EDGES is assumed as default target alphabet con-
structor. Therefore the above query for not calling function unimplemented
expands to

> cover "EDGES(ID)*" . EDGES(@BASICBLOCKENTRY) . "EDGES(ID)*"
passing EDGES(NOT(@CALL(unimplemented)))*

In addition, "EDGES(ID)*" is by default added before and after a coverage
specification in the cover clause of an FQL query; for the passing clause we
add the unquoted version:

> cover "EDGES(ID)*" . EDGES(@BASICBLOCKENTRY) . "EDGES(ID)*"
passing EDGES(ID)*.EDGES(NOT(@CALL(unimplemented)))*.EDGES(ID)*

To avoid this implicit prefix/suffix being added, Unix grep style anchoring
using ‘ˆ’ and ‘$’ can be used. As shown above, this is mainly necessary when
required invariants are specified, which have to hold for the entire path, or
to ensure that the example function unimplemented is never called.

3.2 Example Specifications

In the preceding sections we described the framework and basic concepts of
FQL. In the following we give a number of practical usage scenarios and
resulting FQL queries.

• Statement coverage. This standard coverage criterion requires a set of
program runs such that every statement in the program is executed at
least once. To specify a test suite achieving statement coverage for the
entire program at hand we use the FQL query

> cover NODES(ID)

• Basic block coverage with invariant. FQL makes it easy to modify
standard coverage criteria. Consider for instance basic block coverage
with the additional requirement that the variable errno should remain
zero at all times:

> cover @BASICBLOCKENTRY passing ˆ(ID.{errno==0})*$

3 A Primer on Query-Driven Program Testing 33

• Multiple condition coverage in specified scope. It is often desirable to
apply automated test input generation to a restricted scope only. This
situation comes in two flavors: First we consider coverage for a certain
function only. In FQL we use the query

> in @FUNC(foo) cover @CONDITIONEDGE

to request condition coverage for decisions in function foo only. The
second interesting restriction is to avoid execution of parts of the pro-
gram, e.g., unfinished code. The following query achieves condition
coverage and uses the passing clause to disallow calls to a function
named unfinished:

> cover @CONDITIONEDGE passing ˆNOT(@CALL(unfinished))*$

To achieve multiple condition coverage, all feasible Boolean combina-
tions of atomic conditions must be covered. This corresponds to all
paths in the control flow graphs of the decisions in the program. In
FQL, this is expressed as follows:

> cover PATHS(@CONDITIONGRAPH, 1)
passing ˆNOT(@CALL(unfinished))*$

• Combining coverage criteria. When full path coverage is not achievable,
we can either choose to approximate it, or to restrict it to the most
critical program parts and use, e.g., basic block coverage elsewhere. As
an approximation of path coverage we suggest covering all pairs (or
triples) of basic blocks in the program. This is easily expressed using
the following queries

> cover @BASICBLOCKENTRY->@BASICBLOCKENTRY
> cover @BASICBLOCKENTRY->@BASICBLOCKENTRY->@BASICBLOCKENTRY

for pairs and triples, respectively. If path coverage is a must, but can
be restricted to function critical, we use a query

> cover PATHS(@FUNC(critical), 3) + @BASICBLOCKENTRY

to achieve basic block coverage for the entire program and path coverage
with an unwinding bound of 3 in function critical only. If necessary,
this procedure can be repeated for other important functions.

3 A Primer on Query-Driven Program Testing 34

• Predicate complete coverage. Ball suggested predicate complete cover-
age [Bal04] as a new coverage criterion that subsumes several standard
coverage criteria, except for path coverage. Given a set of predicates,
e.g., x ≥ 0 and y = 0, we state the query

> cover ({x>=0}+{x<0}).({y==0}+{y!=0}).EDGES(ID)
.({x>=0}+{x<0}).({y==0}+{y!=0})

It is not difficult to extend FQL with features to automatically extract
lists of predicates.

• Testing recent changes. In incremental software development we often
want to assess the effects of changes to the software. Assume that in
a recent change lines 5, 6, and 7 were modified, and that the code in
line 8 calls a function bar. We would therefore like to systematically
consider the effects of lines 5, 6, and 7 on function bar. In FQL this is
easily done using the query

> cover (@5+@6+@7) -> (@CONDITIONEDGE&@FUNC(bar))

which for each of lines 5, 6, and 7 requests condition coverage inside
bar.

• Reproducing stack traces. During program debugging it is easy to ob-
tain a call stack of current execution state. It is, however, a lot harder
to reproduce the same call stack to understand the cause of a problem.
With FQL, this task is simple. Given a call stack of foo, bar, foo we
turn this into a query

> cover @CALL(foo) -> @CALL(bar) -> @CALL(foo)

Note that this query may be too imprecise if, e.g., foo can be left such
that bar is called outside foo. Therefore the query can be refined to

> cover @CALL(foo)."NOT(@EXIT(foo))*".@CALL(bar)
."NOT(@EXIT(bar))*".@CALL(foo)

• Testing according to requirements. In industrial development processes
test cases are often specified on a model rather than the source code.
These specifications may be given for instance as a sequence diagram

3 A Primer on Query-Driven Program Testing 35

which describes a series of events. Once these events are translated to
code locations, e.g., “call function foo”, “reach line 42”, “call function
bar”, we can use an FQL query

> cover @CALL(foo) -> @42 -> @CALL(bar)

to express this requirement.

3.3 Disambiguating Specifications using FQL

Assume we are given the following – informal – test suite description:

“Cover (1) all calls to cmp and (2) all conditions inside cmp.”

To study the differences of possible interpretations of such a description,
we use function cmp from Listing 3.1 and append as calling function the code
shown in Listing 3.2, which performs multiple calls to cmp after reading three
integers as input.

10 int main() {
11 int x, y, z, xy, yz, xz;
12 x = input(); y = input(); z = input();
13 xy = cmp(x, y);
14 yz = cmp(y, z);
15 xz = cmp(x, z);
16 return 0;
17}

Listing 3.2: C source code of function main with multiple calls to cmp

The added value of FQL lies in the ability to precisely define test goals in
a simple yet expressive language. We study several valid interpretations of
the above informal description as well-defined FQL queries. For the above
test suite request we will use the filter function @CALL(cmp) to specify “(1) all
calls to cmp” (lines 13–15 of Listing 3.2) and @CONDITIONEDGE & @FUNC(cmp) for
“(2) all conditions inside cmp”. It remains to refine the meaning of the “and”
connecting the two parts of the description. There are two major choices for
this combination: either we want to cover the union of all call positions and
all condition outcomes and write one of the – equivalent – queries

> cover @CALL(cmp) | (@CONDITIONEDGE & @FUNC(cmp))

3 A Primer on Query-Driven Program Testing 36

> cover @CALL(cmp) + (@CONDITIONEDGE & @FUNC(cmp))

or we want to cover all possible combinations of calls to cmp and subsequent
condition outcomes inside cmp:

> cover @CALL(cmp) -> (@CONDITIONEDGE & @FUNC(cmp))

In this query we require a more complex coverage: We want test cases in
which all Cartesian combinations of calls to cmp and condition outcomes in
that function occur in the test suite. To see this, just note that the first two
queries give rise to 7 path patterns (three calls plus four condition outcomes),
while the third amounts to 12 path patterns (three calls times four condition
outcomes).

This can be further refined to ensure that for each call site each of the
condition outcomes is reached before function cmp is left. In this case we
write

> cover @CALL(cmp)."NOT(@EXIT(cmp))*".(@CONDITIONEDGE & @FUNC(cmp))

with the filter function @EXIT(cmp) describing the return edges of function
cmp; complementing the corresponding target graph yields all edges not leav-
ing function cmp. Further note the implicit "ID*" that is prepended and
appended: Any of the three calls may be matched by the path patterns that
serve as test goals.

Solutions to these queries are test suites. For brevity we denote these as
sets of triples of input values for the variables x, y, and z. In Figure 3.4
we illustrate the resulting program runs as dotted gray lines. In this figure
we inline the CFA of function cmp three times, once for each call site. Bold
edges denote covered evaluations of conditions.

For the first two queries, the singleton test suite {(1, 0, 1)} covers all
calls and condition outcomes. Figure 3.4(a) shows the resulting program
execution. One test case can cover all test goals of this specification since
calls to cmp are not tied to test goals for condition coverage. For the third
and fourth query possible solutions are {(1, 0, 1), (2, 0, 1), (1, 0, 2)} (program
runs shown in Figure 3.4(b)) and {(1, 0, 0), (0, 1, 0), (0, 0, 1)} (Figure 3.4(c))
respectively. Note that the first test suite does not satisfy the later two
queries and the second suite does not satisfy the last query; the third solution,
however, satisfies all three queries.

3 A Primer on Query-Driven Program Testing 37

13 2

3

4 5

6

7

8

14 2

3

4 5

6

7

8

15 2

3

4 5

6

7

8

(a) Test suite {(1, 0, 1)} satisfying
cover @CALL(cmp) | (@CONDITIONEDGE & @FUNC(cmp))

13 2

3

4 5

6

7

8

14 2

3

4 5

6

7

8

15 2

3

4 5

6

7

8

(b) Test suite {(1, 0, 1), (2, 0, 1), (1, 0, 2)} satisfying
cover @CALL(cmp) -> (@CONDITIONEDGE & @FUNC(cmp))

13 2

3

4 5

6

7

8

14 2

3

4 5

6

7

8

15 2

3

4 5

6

7

8

(c) Test suite {(1, 0, 0), (0, 1, 0), (0, 0, 1)} satisfying
cover @CALL(cmp)."NOT(@EXIT(cmp))*".(@CONDITIONEDGE & @FUNC(cmp))

Figure 3.4: Test suites satisfying the different queries

3 A Primer on Query-Driven Program Testing 38

3.4 Tool Support for Query-Driven Program
Testing: FShell

FQL queries are processed by our tool FShell. Our tool supports both
interactive and scripted test case generation for real world C code. As back
end, FShell uses components of CBMC [CKL04], which enables support
for full C syntax and semantics. FShell is available for download in binary
form for the most popular platforms at http://code.forsyte.de/fshell.

The design of FShell comprises two main parts. The front end handles
user interaction with a command line interface. There, control commands
such as loading source files, macro definitions, and FQL queries are entered
by the user. The back end performs the actual test case generation. The
user of FShell is almost exclusively concerned with the front end. The
only exception to this are command line options controlling the operation
of the back end. FShell has several additional command line options to
control output and operation; the complete list of currently supported options
can be obtained by running fshell --help. We explain these options in
Section 6.3. The complete set of commands accepted by the interactive shell
is shown after typing help.

1 int foo(int x, int y) {
2 if (x > y)
3 return x;
4 else
5 return y + 10;
6}

Listing 3.3: Source code (bar.c)

We will now describe the use of FShell on the C program of Listing 3.3.
Assume we are interested in a test suite achieving condition coverage. As dis-
cussed in Section 3.2, the corresponding FQL query is cover @CONDITIONEDGE.
For effective test case generation for this coverage criterion we need to relate
it to a program. In our case, we want to use function foo of source file bar.c.

We therefore start FShell, load the source, set the function, and state
the query:

$ fshell --verbosity 2 --outfile tests.txt --tco-location
FShell2>

http://code.forsyte.de/fshell

3 A Primer on Query-Driven Program Testing 39

FShell is now ready for user interaction. It has been started with status
information limited to errors and warnings and test data being written to
a file “tests.txt”. Details about the command line switches (including the
meaning of --tco-location) are discussed in Section 6.3. As next step we
load the source code:

FShell2> add sourcecode ’bar.c’
FShell2>

The file name to be loaded is given in single quotes. On Unix systems tab
completion can be used to find and complete the file name with less typing.
As bar.c does not have a main function, we must tell FShell the name of
the program’s entry function. In our case this is function foo:

FShell2> set entry foo
FShell2>

Now that FShell has all the information to process the program we can
pass in the FQL query to start test case generation:

FShell2> cover @CONDITIONEDGE
FShell2> quit

As we have no other test case requirements in this session, we have imme-
diately left FShell after the test case generation step. The test data has
been written to tests.txt, which we will inspect in a minute. Before doing so
we want to execute the program with the computed test cases. We will also
measure the coverage that is achieved by this test suite using gcov -b, which
measures branch coverage. Even though gcov does not understand FQL syn-
tax and semantics, this coverage check will give us a good idea whether test
case generation was for condition coverage successful.

To execute the program on the inputs of the computed test suite we first
have to turn the test suite into a test harness. This test harness is a C
fragment that calls function foo with the computed inputs. We generate
the test harness from tests.txt using a script and compile and execute the
harness together with the original program (cf. Section 6.10 for details):

$ TestEnvGenerator.pl < tests.txt
$ make -f tester.mk BUILD_FLAGS="-fprofile-arcs -ftest-coverage"
./tester 1
./tester 2
$ gcov -b bar.c.mod.c

3 A Primer on Query-Driven Program Testing 40

File ’bar.c.mod.c’
Lines executed:100.00% of 4
Branches executed:100.00% of 2
Taken at least once:100.00% of 2
No calls
bar.c.mod.c:creating ’bar.c.mod.c.gcov’

Coverage measurement using gcov confirms that the computed test suite
achieved the intended coverage as 100% of branches were taken.

We will now inspect the output of test cases as produced by FShell. We
run FShell once again, but omit the command line options controlling test
case output:

$ fshell --verbosity 2
FShell2> add sourcecode ’bar.c’
FShell2> set entry foo
FShell2> cover @CONDITIONEDGE
Test Suite 0:
IN:
x=301989888
y=268435457

IN:
x=-2013265917
y=7

FShell2> quit

In this second session we can use FShell’s command history to repeat the
commands of the previous sessions by pressing the cursor-up key. The result-
ing test suite consists of two test cases, marked with a leading ‘IN:’. Each
test case is described as a list of assignments to variables that denote the
test inputs. In our case we have x and y as variables and FShell has com-
puted the inputs x = 301989888, y = 268435457 and x = -2013265917, y
= 7. As FShell employs a SAT solver for computing input values, which
has no knowledge about small or even minimal values for inputs, the values
computed by FShell are arbitrarily chosen from the domain determined by
the variable type but are guaranteed to satisfy the FQL specification.

In tests.txt, where the results of the first session were written to, we find

3 A Primer on Query-Driven Program Testing 41

addition information (because of the --tco-location option):

Test Suite 0:
IN:
ENTRY foo(x,y)@[file bar.c line 1]
int x@[file bar.c line 1]=301989888
int y@[file bar.c line 1]=268435457

IN:
ENTRY foo(x,y)@[file bar.c line 1]
int x@[file bar.c line 1]=-2013265917
int y@[file bar.c line 1]=7

Here, all assignments include the location where an assignment of input
values has to take place. In addition, the name of the entry function together
with its argument names is printed. This data is necessary for automatic test
harness generation, as explained in Section 6.10.

It is impossible to make anything foolproof
because fools are so ingenious.

Corollary to Murphy’s Law

Chapter 4

A Mathematical Model for
White-box Program Testing

In testing, we face the problem of studying the relation between test suite
specifications on the one hand, e.g., basic block coverage, which are con-
cerned with structural properties of the program, and program executions
on the other hand. The core of query-driven program testing is a mathe-
matical model which allows to reason about this relationship. This model
encompasses both a formal description of the program under scrutiny and
the mathematical foundations of test suite specifications. Based on these
notions, we formalize the notion of coverage criteria. We will therefore first
introduce our representation of programs: we use control flow automata as
an intermediate language. The semantics of programs represented as control
flow automata are given by transition systems.

4.1 Intermediate Representation: Control Flow
Automata

We use control flow automata (CFA) [HJMS02] as intermediate representa-
tion of programs. A representation of programs as CFAs makes programs
both easier to handle formally than the program source code and is a repre-
sentation independent of the programming language. In contrast to control
flow graphs, control flow automata have statements attached to edges instead
of nodes. CFAs are more suitable for our modeling than control flow graphs,
because (i) they model programs using a small number of different kinds of

42

4 A Mathematical Model for White-box Program Testing 43

1 int bar(int x, int y) {
2 int ret = 0;
3 if (x > y)
4 ret = 1;
5 return ret;
6}

7 int foo(int l , int a) {
8 int t ;
9 while(l > 0) {

10 t = bar(l, a);
11 a += t;
12 −−l;
13 }
14 return a;
15}

2

3

4

5

6

9

10

11

12

13

15

16

sample.c:2 fct:bar bbentry

ret := 0

sample.c:3 fct:bar

[x > y]

sample.c:4 fct:bar bbentry

ret := 1

sample.c:3

fct:bar

[x <= y]

sample.c:5 fct:bar bbentry

return ret

skip

[l > 0]
[l <= 0]

t := bar(l , a)

a := a + t

l := l − 1

return a

Figure 4.1: Sample C source code and corresponding control flow automata

statements, (ii) CFAs allow to model nondeterminism which can be used in
modeling environments, and (iii), as we discuss in detail in Section 4.2, CFAs
very naturally induce a transition system. In addition to the original defini-
tion of CFAs we annotate edges with parsing information, as in testing we
still oftentimes refer to source code, e.g., when specifying coverage of certain
lines of code.

CFA nodes represent program counter values drawn from the natural
number N; edges are labeled with operations and annotations, drawn from

4 A Mathematical Model for White-box Program Testing 44

finite sets Op and An, respectively. An operation op ∈ Op is either a skip
statement, assignment, assumption (modeling conditional statements), func-
tion call, or function return. Annotations include parsing information such as
line numbers, file names, function names, labels, etc. For example, Figure 4.1
shows the C source code of two functions bar and foo and the correspond-
ing control flow automata involving a skip statement, several assignments, a
function call to bar, return statements in each function, and assume state-
ments marked with brackets: an if (x > y)-statement translates to its true-
and false outcomes [x > y] and [x <= y], respectively. In the CFA for func-
tion bar we furthermore included annotations, shown in sans-serif font. Each
statement is annotated with file name and line number, such as sample.c:3

for line 3 of file sample.c, the function name (fct:bar), and bbentry for edges
corresponding to a new basic block in the source program.

We note that the sets Op and An are only finite for a fixed given program.
The underlying domains may be infinite as these include, e.g., the set of all
finite strings for variable names.

Definition 4.1 Control Flow Automaton (CFA)
A control flow automaton (CFA) is a tuple 〈L,E, I〉, where L ⊂ N is a finite
set of program locations, E ⊆ L × Lab × L is a set of edges that are labeled
with pairs of operations and annotations from Lab = Op× 2An, and I ⊆ L is
a set of initial locations. We denote the set of CFAs with CFA.

We write LA, EA, and IA to refer to the set of program locations, the set
of edges, and the set of initial locations of a CFA A, respectively. We define
union ‘∪’, intersection ‘∩’, and difference ‘\’ as operations on CFAs:

〈L1, E1, I1〉 ∪ 〈L2, E2, I2〉 = 〈L1 ∪ L2, E1 ∪ E2, I1 ∪ I2〉
〈L1, E1, I1〉 ∩ 〈L2, E2, I2〉 = 〈L1 ∩ L2, E1 ∩ E2, I1 ∩ I2〉
〈L1, E1, I1〉 \ 〈L2, E2, I2〉 = 〈L′, E ′, I ′〉 where

E ′ = E1 \ E2,

L′ = (L1 \ L2) ∪ {`, `′ | (`, l, `′) ∈ E ′}, and
I ′ = I1 ∩ L′.

Note that the last condition for difference, I ′ = I1 ∩ L′, ensures that the
required condition I ′ ⊆ L′ also holds for the resulting CFA.

4 A Mathematical Model for White-box Program Testing 45

4.2 Concrete Program Semantics: Transition
Systems

Complementary to the CFA view on the program, which primarily captures
the syntactic information of a program, we study the transition system in-
duced by a CFA. The transition system describes the concrete program se-
mantics in terms of reachable states and transitions between them. The
states of a transition system are best thought of as snapshots of machine
configurations, consisting of (at least) valuations of the program counter and
the memory. The domain of states is then defined by the architecture of a –
possibly abstract – machine.

Definition 4.2 Transition System
A transition system 〈S,R, I〉 consists of a state space S, a transition relation
R ⊆ S×S, and a nonempty set of initial states I ⊆ S. A state in S consists
of a program counter value and a description of the memory. We denote with
L(T) the set of paths π = 〈s0 . . . sm〉 such that s0 ∈ I and (si, si+1) ∈ R,
for 0 ≤ i < m.

In order to relate a CFA A = 〈L,E, I〉 to a corresponding transition
system T = 〈S,R, I〉 we fix the following functions:

• We consider the operation op ∈ Op as a function op : S → 2S that
takes a program state and determines a finite set of successor states.
This definition caters for the fact that there may be no successor state,
as in case of final states, or there can be one or more successor states.
The latter case models nondeterminism.

• By pc : S → L we denote the function that, given a program state s,
yields its program location pc(s).

• By post : E × S → 2S we denote a function that, given a CFA edge
(`, (op, an), `′) ∈ E and a program state s, returns the set {s′ | pc(s) =

`, pc(s′) = `′, s′ ∈ op(s)}.

A CFA A naturally induces a transition system TA:

Definition 4.3 Induced Transition System
Given a CFA A, we define the induced transition system TA = 〈S,R, I〉
where S contains all possible program states, R = {(s, s′) ∈ S × S | ∃e ∈
EA.s

′ ∈ post(e, s)}, and I = {s ∈ S | pc(s) ∈ IA}.

4 A Mathematical Model for White-box Program Testing 46

This framework for defining program semantics is parameterized in the do-
main of the state space and the semantics of the programming language
that is used to interpret op ∈ Op. The function post defines, for instan-
tiations of op for a concrete programming language, a forward collecting
semantics [DS90].

4.3 Predicates and Coverage Criteria

Let T = 〈S,R, I〉 be a transition system. With S? ⊇ L(T) we denote the set
of all sequences of states, including the empty sequence 〈〉. For a sequence
π = 〈s0s1 . . . sm〉 ∈ S? and i ≤ j we write πi...j to denote the substring (but
not an arbitrary subsequence) 〈si . . . sj〉. For a state s ∈ S, we write s ∈ π,
iff s = si holds for some 0 ≤ i ≤ m.

We use state predicates to describe properties of individual program states
and we use path and path set predicates in the description of individual test
targets and coverage criteria. Here, a predicate is a function mapping states,
paths, or sets of paths to {true, false} and is expressed in a suitable logic.

Definition 4.4 State, Path, & Path Set Predicates
A state predicate ϕ is a predicate on the state space S, a path predicate φ is
a predicate over the set S?, and a path set predicate Φ is a predicate over the
set 2S

?. We write s |= ϕ iff a state s ∈ S satisfies ϕ, π |= φ iff a path π ∈ S?
satisfies φ, and Γ |= Φ iff a path set Γ ⊆ S? satisfies Φ.

We call a state predicate ϕ, a path predicate φ, or a path set predicate
Φ feasible over T , iff, respectively, there exists a reachable state s ∈ S with
s |= ϕ, a path π ∈ L(T) with π |= φ, or a path set Γ ⊆ L(T) with Γ |= Φ.

Frequently, we are looking for a path (path set) which contains a state (a
path) which satisfies a given state (path) predicate – leading to an implicit
existential quantification:

Definition 4.5 Implicit Existential Quantification
To evaluate a state predicate ϕ over a path π, we implicitly interpret ϕ to be
existentially quantified, i.e., π |= ϕ stands for ∃s ∈ π.s |= ϕ. Analogously, a
path predicate φ is existentially evaluated over a path set Γ, i.e., Γ |= φ iff
∃π ∈ Γ.π |= φ.

4 A Mathematical Model for White-box Program Testing 47

Remark 4.6 Note that a path π can satisfy a state predicate ϕ and its nega-
tion ¬ϕ, if there exist two states s, s′ ∈ π with s |= ϕ and s′ |= ¬ϕ. Moreover,
a state predicate ϕ can also be interpreted over a path set Γ in the natural
way, i.e., Γ |= ϕ iff ∃π ∈ Γ.∃s ∈ π.s |= ϕ.

We interpret the Boolean connectives ∧, ∨, and ¬ on state, path, and
path set predicates in the standard way. For path predicates φ1 and φ2 we
define predicate concatenation φ1 · φ2 where π |= φ1 · φ2 holds iff

(π0...n |= φ1 and πn...|π|−1 |= φ2 for some 0 ≤ n < |π|)
or (〈〉 |= φ1 and π |= φ2) or (π |= φ1 and 〈〉 |= φ2)

holds. Note that the last state of π0...n is the first state of πn...|π|−1.

Definition 4.7 Test Case and Test Suite
Let T be a transition system. Then a test case is a single path π ∈ L(T)

and a test suite Γ is a finite subset Γ ⊆ L(T) of the paths in L(T).

A coverage criterion imposes a predicate on test suites:

Definition 4.8 Coverage Criterion
A coverage criterion Φ is a mapping from a CFA A to a path set predicate ΦA.
We say that Γ ⊆ L(TA) satisfies coverage criterion Φ on TA, the transition
system induced by A, iff Γ |= ΦA holds.

Our definition of coverage criteria is very general, but can readily be ap-
plied on a concrete example. We first show exemplary formalizations of cov-
erage criteria for basic block coverage (ΦBB) and condition coverage (ΦCC):

ΦBB(A) := {true · b · true | b ∈ is_bbentry(A)}
ΦCC(A) := {true · c · true | c ∈ is_condedge(A)}

Both definitions describe a set of path predicates, built using predicate con-
catenation, and functions is_bbentry : CFA→ CFA and is_condedge : CFA→
CFA, respectively. These functions are evaluated over a CFA to compute a
sub-CFA thereof. For is_bbentry we get the sub-CFA consisting of all edges
annotated with “bbentry”. The function is_condedge yields the sub-CFA with
all assume-edges of the CFA. In Chapter 5 such functions will be formally
introduced as filter functions.

4 A Mathematical Model for White-box Program Testing 48

We can now instantiate these coverage criteria, e.g., for the CFA of func-
tion bar, which was shown in Figure 4.1. We will refer to this CFA as Abar.
Thereby we arrive at path set predicates ΦAbar

BB and ΦAbar
CC for basic block and

condition coverage, respectively:

ΦAbar
BB ≡ {true · (`, l, `′) · true ∧ pc(`) ≡ 2 ∧ pc(`′) ≡ 3,

true · (`, l, `′) · true ∧ pc(`) ≡ 4 ∧ pc(`′) ≡ 5,

true · (`, l, `′) · true ∧ pc(`) ≡ 5 ∧ pc(`′) ≡ 6}
ΦAbar
CC ≡ {true · (`, l, `′) · true ∧ pc(`) ≡ 3 ∧ pc(`′) ≡ 4,

true · (`, l, `′) · true ∧ pc(`) ≡ 3 ∧ pc(`′) ≡ 5}

Like the examples above, most coverage criteria used in practice – and all
criteria expressible by FQL – are based on sets of test goals which need to be
satisfied. Typically, test goals are path predicates, leading to the prototypical
setting accounted for in the next definition. A coverage criterion, MC/DC,
where test goals are path set predicates, is discussed at the end of this chapter.

Definition 4.9 Elementary Coverage Criterion
An elementary coverage criterion Φ is a coverage criterion defined as follows:

(i) There is a mapping Φ(A) = {Ψ1, . . . ,Ψk} which maps a CFA A to a
finite set of path predicates {Ψ1, . . . ,Ψk}. We call Ψi a test goal.

(ii) Φ(A) induces the predicate ΦA such that Γ |= ΦA holds iff for each
test goal Ψi ∈ Φ(A) which is feasible over TA, Γ contains a test case
π ∈ L(TA) with π |= Ψi:

Γ |= ΦA iff
k∧
i=1

L(TA) |= Ψi ⇒ Γ |= Ψi

Intuitively, an elementary coverage criterion Φ is a function that maps
a CFA A to a finite set Φ(A) of path predicates. A test suite Γ satisfies
an elementary coverage criterion Φ on program A, if each path predicate in
Φ(A) is matched by an element of the test suite Γ, except for those path
patterns which are semantically impossible in the program (e.g., dead code).

4 A Mathematical Model for White-box Program Testing 49

Remark 4.10 It is semi-decidable whether a test goal Ψ is feasible over TA,
i.e., whether L(TA) |= Ψ is valid for a given CFA A and a path predicate Ψ.
Proof. If L(TA) is finite, then L(TA) |= Ψ is decidable by computing the
finite disjunction ∨

π∈L(TA)

π |= Ψ.

Conversely, if L(TA) if infinite, then it is recursively enumerable by applying
Definition 4.3 as enumerator. Undecidability follows by reduction from the
Halting problem with Ψ encoding the input to be accepted. �

Appropriateness of Elementary Coverage Criteria

Definition 4.9 completes our formal framework. However, it remains to study
whether these definitions are actually appropriate. We therefore use the ax-
ioms described by Zhu and Hall [ZH93] to evaluate which of these axioms are
guaranteed to be valid for elementary coverage criteria. As we will conclude
in Remark 4.15, an elementary coverage criterion may violate two of these
axioms, which is in fact desirable.

Weyuker [Wey86] presented a set of axioms that describe the characteris-
tics of test adequacy criteria. Zhu and Hall [ZH93] formalized these axioms
to arrive at a measurement theory for test adequacy. In the following we
re-state the ten axioms given by Zhu and Hall and then study whether ele-
mentary coverage criteria are consistent with these axioms. The axioms of
Zhu and Hall are based on a definition of a measureMS

P (C) called a test data
adequacy criterion that, given a specification S, a program P , and a test set
C (a test suite given in terms of test inputs), evaluates to a real number in
the interval [0, 1].

We give a variant of their definition that omits specifications (properties
of the program) as we do not use such specifications in our framework. Fur-
thermore we use CFAs instead of a generic concept of well formed programs
and use sequences of states instead of test inputs as a description of test
data. Therefore we arrive at the following definition:

Definition 4.11 Test Data Adequacy Criterion [ZH93]
A test data adequacy criterion M is a mapping from the set of CFAs CFA

and the powerset of state sequences 2S
? to the real interval [0, 1]:

M : CFA× 2S
? → [0, 1].

4 A Mathematical Model for White-box Program Testing 50

The axioms due to Zhu and Hall [ZH93] are summarized as follows. Note
that finite additivity is only a stronger alternative to sub-additivity, hence
Zhu and Hall speak of ten axioms only and we will not assign it its own
number. For the ease of notation for the rest of this section we assume that
A ∈ CFA, Γ,Γ′,Γ1,Γ2 ∈ 2S

? , and r ∈ [0, 1].

∀A,Γ.1 ≥M(A,Γ) ≥ 0 (Normalization)

∀A.M(A, ∅) = 0 (Inadequacy of empty test)

∀A.M(A,L(TA)) = 1 (Adequacy of exhaustive testing)

∀A, r.0 ≤ r < 1⇒
∃Γ.Γ is finite and M(A,Γ) ≥ r

(Finite applicability)

∀A,Γ,Γ′.Γ ⊆ Γ′ ⇒M(A,Γ) ≤M(A,Γ′) (Monotonicity)

∀A,Γ1,Γ2.M(A,Γ1 ∪ Γ2) ≤M(A,Γ1) +M(A,Γ2) (Sub-additivity)

∀A,Γ1,Γ2.Γ1 ∩ Γ2 = ∅ ⇒
M(A,Γ1 ∪ Γ2) = M(A,Γ1) +M(A,Γ2)

(Finite additivity)

∀A,Γ,Γ1,Γ2.Γ2 ⊆ Γ1 ⇒M(A,Γ ∪ Γ2)−
M(A,Γ2) ≥M(A,Γ ∪ Γ1)−M(A,Γ1)

(Diminishing returns)

∀A,Γ,Γ1,Γ2, countably. . .
many

(Γ1 ⊆ Γ2 ⊆ . . . ∧
∞⋃
i=1

Γi = Γ⇒

lim{M(A,Γi) | i = 1, 2, . . .} = M(A,Γ))

(Convergence)

∀A,Γ.M(A,Γ) = M(A,Γ ∩ L(TA)) (Relevance)

∀A,Γ.M(A,Γ) = 1⇒ Γ ⊇ L(TA) (Imperfect testing)

Note that the axioms of Zhu and Hall are parametrized in the definition
of the metric M . This metric can be chosen specifically for each coverage
criterion. For a general analysis, however, we fix the following coverage
measure that applies to all elementary coverage criteria and all CFAs, but
uses the semi-decidable property to determine feasibility of test goals.

4 A Mathematical Model for White-box Program Testing 51

Definition 4.12 Elementary Coverage Measure
Let A be a program and let Φ be an elementary coverage criterion with
Φ(A) = {Ψ1, . . . ,Ψk}. We define the elementary coverage measure MΦ

E as

MΦ
E : CFA× 2S

? → [0, 1]

A,Γ 7→ |{Ψ | Ψ ∈ Φ(A) ∧ (Γ ∩ L(TA)) |= Ψ}|
|{Ψ | Ψ ∈ Φ(A) ∧ L(TA) |= Ψ}|

The elementary coverage measureMΦ
E computes the ratio of satisfied test

goals over all feasible test goals. Note that feasibility is only guaranteed to
be decidable if L(TA) is finite, i.e., A always terminates after finitely many
steps. We define the following functions for numerator (the number of covered
goals) and denominator (the number of all goals) of MΦ

E :

covered(A,Γ) := |{Ψ | Ψ ∈ Φ(A) ∧ (Γ ∩ L(TA)) |= Ψ}|
goals(A) := |{Ψ | Ψ ∈ Φ(A) ∧ L(TA) |= Ψ}|

which simplifies MΦ
E to

MΦ
E (A,Γ) =

covered(A,Γ)

goals(A)
.

In Proposition 4.13 we will now show that there exists an elementary
coverage criterion that satisfies all of Zhu and Hall’s axioms under the (un-
decidable) assumption of program termination. We prove this claim by giving
a concrete example: exhaustive testing. In exhaustive testing each feasible
path yields one test goal. Hence the definition of elementary coverage criteria
does not contradict Zhu and Hall’s axioms. Existence of such an elementary
coverage criterion, however, does not guarantee that all axioms are valid for
all elementary coverage criteria, as we will show in Proposition 4.14.

Proposition 4.13 The Elementary Coverage Measure for Exhaus-
tive Testing satisfies Zhu and Hall’s Axioms
For all programs A terminating after finitely many steps, i.e., L(TA) is finite
and non-empty, we define exhaustive testing Φexh as an elementary coverage
criterion

Φexh(A) := {Ψ | π, π′ ∈ L(TA) with π 6= π′ ⇔ π |= Ψ ∧ π′ 6|= Ψ}.

The induced elementary coverage measure MΦexh
E satisfies Zhu and Hall’s

axioms.

4 A Mathematical Model for White-box Program Testing 52

Proof. We first observe that MΦexh
E simplifies to

MΦexh
E (A,Γ) =

|Γ ∩ L(TA)|
|L(TA)|

because each path in L(TA) induces exactly one test goals, and all of which
are feasible. Furthermore we have |L(TA)| > 0 for all A by assumption of
non-emptiness.

1. Normalization.

∀A,Γ. |Γ ∩ L(TA)| ≤ |L(TA)| ⇒ ∀A,Γ.1 ≥MΦexh
E (A,Γ) ≥ 0

2. Inadequacy of empty test.

∀A. |∅ ∩ L(TA)| = 0⇒ ∀A.MΦexh
E (A, ∅) = 0

3. Adequacy of exhaustive testing.

∀A. |L(TA) ∩ L(TA)| = |L(TA)| ⇒ ∀A.MΦexh
E (A,L(TA)) = 1

4. Finite applicability. Follows from 2. and 3., and the assumption that
|L(TA)| is finite.

5. Monotonicity.

∀A,Γ,Γ′.Γ ⊆ Γ′ ⇒ |Γ ∩ L(TA)| ≤ |Γ′ ∩ L(TA)| ⇒
∀A,Γ,Γ′.Γ ⊆ Γ′ ⇒MΦexh

E (A,Γ) ≤MΦexh
E (A,Γ′)

6. Sub-additivity.

∀A,Γ1,Γ2. |(Γ1 ∪ Γ2) ∩ L(TA)| ≤ |Γ1 ∩ L(TA)|+ |Γ2 ∩ L(TA)| ⇒
∀A,Γ1,Γ2.M

Φexh
E (A,Γ1 ∪ Γ2) ≤MΦexh

E (A,Γ1) +MΦexh
E (A,Γ2)

Finite additivity.

∀A,Γ1,Γ2.Γ1 ∩ Γ2 = ∅ ⇒ |(Γ1 ∪ Γ2) ∩ L(TA)| =
|Γ1 ∩ L(TA)|+ |Γ2 ∩ L(TA)| ⇒

∀A,Γ1,Γ2.Γ1 ∩ Γ2 = ∅ ⇒MΦexh
E (A,Γ1 ∪ Γ2) =

MΦexh
E (A,Γ1) +MΦexh

E (A,Γ2)

4 A Mathematical Model for White-box Program Testing 53

7. Diminishing returns.

∀A,Γ,Γ1,Γ2.Γ2 ⊆ Γ1 ⇒ Γ \ Γ2 ⊇ Γ \ Γ1 ⇒
MΦexh

E (A,Γ \ Γ2) ≥MΦexh
E (A,Γ \ Γ1)

∧ for i = 1, 2: Γ ∪ Γi = (Γ \ Γi) ∪ Γi ∧ (Γ \ Γi) ∩ Γi = ∅ finite additivity⇔
∀A,Γ,Γ1,Γ2.Γ2 ⊆ Γ1 ⇒MΦexh

E (A,Γ ∪ Γ2)−MΦexh
E (A,Γ2) ≥

MΦexh
E (A,Γ ∪ Γ1)−MΦexh

E (A,Γ1)

8. Convergence.

∀A,Γ. |Γ ∩ L(TA)| ≤ |L(TA)| monotonicity⇒

∀A,Γ,Γ1,Γ2, countably. . .
many

(Γ1 ⊆ Γ2 ⊆ . . . ∧
∞⋃
i=1

Γi = Γ⇒

lim{MΦexh
E (A,Γi) | i = 1, 2, . . .} = MΦexh

E (A,Γ))

9. Relevance.

∀A,Γ. |Γ ∩ L(TA)| = |(Γ ∩ L(TA)) ∩ L(TA)| ⇒
∀A,Γ.MΦexh

E (A,Γ) = MΦexh
E (A,Γ ∩ L(TA))

10. Imperfect testing.

∀A,Γ.MΦexh
E (A,Γ) = 1⇒ |Γ ∩ L(TA)| = |L(TA)| ⇒ Γ ⊇ L(TA)⇒

∀A,Γ.MΦexh
E (A,Γ) = 1⇒ Γ ⊇ L(TA)

�

Therefore we conclude that there exists an elementary coverage criterion
that satisfies all of Zhu and Hall’s axioms. This is, however, not the case
for all elementary coverage criteria, because finite additivity and imperfect
testing cannot be guaranteed in general. We formalize this in the following
proposition. As we discuss in Remark 4.15, the invalidness of these two ax-
ioms is in fact desirable – finite additivity would mean that any additional
test cases, if satisfying any goals, satisfy additional test goals. Imperfect test-
ing would enforce exhaustive testing as the only acceptable testing method.

4 A Mathematical Model for White-box Program Testing 54

Proposition 4.14 Elementary Coverage Criteria and Zhu and Hall’s
Axioms
Let Φ be an elementary coverage criterion. For all A ∈ CFA where at least
one test goal of Φ(A) = {Ψ1, . . . ,Ψk} is feasible, all of Zhu and Hall’s axioms
other than finite additivity and imperfect testing are valid for the above defined
elementary coverage measure MΦ

E .
Proof. By the (undecidable) assumption of at least one feasible test goal
we have goals(A) ≥ 1 and therefore MΦ

E is well-defined.

1. Normalization.

∀A,Γ.(Γ ∩ L(TA)) ⊆ L(TA)⇒
covered(A,Γ) ≤ goals(A)⇒ ∀A,Γ.1 ≥MΦ

E (A,Γ) ≥ 0

2. Inadequacy of empty test.

∀A.covered(A, ∅) = 0⇒ ∀A.MΦ
E (A, ∅) = 0

3. Adequacy of exhaustive testing.

∀A.covered(A,L(TA)) = goals(A)⇒ ∀A.MΦ
E (A,L(TA)) = 1

4. Finite applicability. Follows from 2. and 3. with goals(A) ≤ k for
Φ(A) = {Ψ1, . . . ,Ψk}.

5. Monotonicity.

∀A,Γ,Γ′.Γ ⊆ Γ′ ⇒ covered(A,Γ) ≤ covered(A,Γ′)⇒
∀A,Γ,Γ′.Γ ⊆ Γ′ ⇒MΦ

E (A,Γ) ≤MΦ
E (A,Γ′)

6. Sub-additivity.

∀A,Γ1,Γ2.covered(A,Γ1 ∪ Γ2) ≤ covered(A,Γ1) + covered(A,Γ2)⇒
∀A,Γ1,Γ2.M

Φ
E (A,Γ1 ∪ Γ2) ≤MΦ

E (A,Γ1) +MΦ
E (A,Γ2)

Finite additivity, however, does not hold in general: two paths π, π′ ∈
L(TA) with π 6= π′ (and hence {π} ∩ {π′} = ∅) could still satisfy the
same test goal.

4 A Mathematical Model for White-box Program Testing 55

7. Diminishing returns. We define

common(Γ,Γ′) :={Ψ | Ψ ∈ Φ(A) ∧ (Γ ∩ L(TA)) |= Ψ}∩
{Ψ | Ψ ∈ Φ(A) ∧ (Γ′ ∩ L(TA)) |= Ψ}

to denote the set of test goals satisfied both by test suite Γ and by test
suite Γ′. With sub-additivity we have for i = 1, 2:

MΦ
E (A,Γ ∪ Γi) = MΦ

E (A,Γ) +MΦ
E (A,Γi)−

|common(Γ,Γi)|
goals(A)

. (4.1)

We apply this as follows:

∀A,Γ,Γ1,Γ2.Γ2 ⊆ Γ1 ⇒ |common(Γ,Γ2)| ≤ |common(Γ,Γ1)| ⇔
∀A,Γ,Γ1,Γ2.Γ2 ⊆ Γ1 ⇒

MΦ
E (A,Γ) +MΦ

E (A,Γ2)− |common(Γ,Γ2)|
goals(A)

−MΦ
E (A,Γ2) ≥

MΦ
E (A,Γ) +MΦ

E (A,Γ1)− |common(Γ,Γ1)|
goals(A)

−MΦ
E (A,Γ1)

Equation (4.1)⇔

∀A,Γ,Γ1,Γ2.Γ2 ⊆ Γ1 ⇒MΦ
E (A,Γ ∪ Γ2)−MΦ

E (A,Γ2) ≥
MΦ

E (A,Γ ∪ Γ1)−MΦ
E (A,Γ1)

8. Convergence.

∀A,Γ.covered(A,Γ) ≤ covered(A,L(TA))
monotonicity⇒

∀A,Γ,Γ1,Γ2, countably. . .
many

(Γ1 ⊆ Γ2 ⊆ . . . ∧
∞⋃
i=1

Γi = Γ⇒

lim{MΦ
E (A,Γi) | i = 1, 2, . . .} = MΦ

E (A,Γ))

9. Relevance.

∀A,Γ.covered(A,Γ) = covered(A,Γ ∩ L(TA))⇒
∀A,Γ.MΦ

E (A,Γ) = MΦ
E (A,Γ ∩ L(TA))

10. Imperfect testing does not hold for any Φ(A) = {Ψ1, . . . ,Ψk} (L(TA).

�

4 A Mathematical Model for White-box Program Testing 56

Remark 4.15 The result that precisely finite additivity and imperfect test-
ing are not valid for elementary coverage criteria in general confirms that our
definition is appropriate: if finite additivity were valid, each test goal could
be satisfied by exactly one path π ∈ L(TA) only.

The validity of imperfect testing would contradict the use of coverage cri-
teria as stopping rules: for full coverage, testing would have to continue until
all paths have been explored.

Although elementary coverage criteria suffice to model a large class of
coverage criteria there exist standard coverage criteria that do not fit this
definition. The best known coverage criterion of this kind is modified condi-
tion/decision coverage (MC/DC) [RTC92]. MC/DC, by definition, includes
statement, condition, and decision coverage. Furthermore the definition of
MC/DC given in [RTC92] states:

. . . and each condition in a decision has been shown to affect the
decision’s outcome independently. A condition is shown to affect
a decision’s outcome independently by varying just that condition
while holding fixed all other possible conditions.

The crucial aspect here is that pairs of test cases are required to demon-
strate the effect of varying a single condition, because the condition valua-
tions contradict each other and therefore cannot both occur in a single traver-
sal of the decision. This property of MC/DC has been formally modeled by
Vilkomir and Bowen [VB08] using Z notation. Besides MC/DC also coverage
criteria for semantic dependence, as defined by Podgurski and Clarke [PC90],
require pairs of test cases to cover a single testing target. Pairs of test cases,
however, cannot be described using path predicates.

Lemma 4.16 A pair of test cases cannot be specified using a single path
predicate.
Proof. By Definition 4.4 path predicates are evaluated over a single path.
For sets (and therefore also pairs) of paths, existential quantification is in-
troduced (Definition 4.5). Let φ be a path predicate and let Γ be a set of
paths.

Γ |= φ⇔ ∃π ∈ Γ.π |= φ

4 A Mathematical Model for White-box Program Testing 57

We show that no interpretation of φ can distinguish whether Γ is a singleton
set or contains two or more paths:

Γ = {π, π′} |= φ⇒ π |= φ ∨ π′ |= φ

W.l.o.g. assume that π satisfies φ. Therefore it holds that

Γ′ |= φ with Γ′ = {π} (Γ.

�

We conclude that these coverage criteria are not elementary coverage
criteria, and in particular MC/DC is not an elementary coverage criterion.

Proposition 4.17 MC/DC is not an elementary coverage criterion.
Proof. To achieve coverage, Vilkomir and Bowen [VB08] state that MC/DC
requires pairs of test cases for each condition. With Lemma 4.16 it follows
that MC/DC therefore requires a coverage criterion constructed as a set of
path set predicates. Therefore MC/DC matches Definition 4.8 (Coverage
Criterion), but not Definition 4.9 (Elementary Coverage Criterion). �

Life would be so much easier
if we could just see the source
code.

Unknown

Chapter 5

FQL – the FShell Query Language

In this chapter we present our test specification language FQL, the FShell
Query Language. We designed FQL as a tool for programmers and test engi-
neers working with ANSI C software. In FQL, the engineer writes declarative
specifications of tests, which are subsequently solved by an appropriate back
end. The declarative style fully decouples specifications from algorithmic is-
sues of the back end. Hence, in this chapter we solely focus on the syntax and
semantics of FQL, and describe how they map to the mathematical model of
Chapter 4. The description of algorithmic solving strategies for FQL queries
will be given in Chapter 6.

We conclude this chapter with a discussion of the requirements described
in Chapter 2 and how FQL addresses these. This includes a list of 24 queries
that express the specifications Q1-24 in FQL.

5.1 FQL Design Overview

Technically, FQL consists of two languages:

(1) The core of FQL are elementary coverage patterns (ECPs), i.e., quoted
regular expressions whose alphabet are nodes, edges and conditions
of a concrete CFA. Referring to low level CFA details, ECPs are not
intended to be written by human engineers, but rather the formal cen-
terpiece for a precise semantics and implementation.

(2) FQL specifications are very similar to ECPs, but do not refer to CFA
details. Instead, they use filter functions to refer to program elements.

58

5 FQL – the FShell Query Language 59

language dependent language independent

C Source FQL Query

Control Flow
Automata

Target Graphs

Elementary Cov-
erage Patterns

Elementary Cov-
erage Criterion

C Front End

Filter Function Evaluation

Target Alphabet Construction

Quoted Regular Expression Evaluation

Figure 5.1: FQL language layers

For a given program, an FQL specification can be easily translated into
an ECP by parsing the program and “expanding” the target graphs, com-
puted from filter functions, into regular expressions over the CFA alphabet.
Semantically, each FQL specification boils down to an elementary coverage
criterion.

The relation of the language layers briefly described above is depicted in
Figure 5.1. Given the C source code of a program, a front end constructs
CFAs as an intermediate representation of the source code. These are used in
the only programming language dependent evaluation step of an FQL query,
the filter function evaluation. All further evaluation steps down to ECPs are
language independent. In the following sections we describe these layers in
a bottom-up fashion, starting with elementary coverage patterns as the core
of FQL.

5 FQL – the FShell Query Language 60

5.2 FQL Elementary Coverage Patterns

Table 5.1 shows the syntax of elementary coverage patterns. The nonterminal
symbols P , C, and Φ represent path patterns, coverage specifications, and
ECPs, respectively. An elementary coverage pattern cover C passing P is
composed of a coverage specification C and a path pattern P . The alpha-
bets E and L depend on the program under scrutiny: L is a finite set of
CFA locations and E is a finite set of CFA edges. The symbols in S are state
predicates, e.g., {x > 10}. By ε we denote the empty word and ∅ denotes the
empty set. We form more complex path patterns over the alphabet symbols
using standard regular expression operations. We denote union with ‘+’,
concatenation with ‘.’, and Kleene star with ‘?’.

Φ ::= cover C passing P

C ::= C + C | C.C | ε | ∅ | L | E | S | "P"
P ::= P + P | P.P | ε | ∅ | L | E | S | P ?

Table 5.1: Syntax of elementary coverage patterns

A coverage specification is a star-free regular expression over an extended
alphabet: In addition to the alphabets L, E and S, we use new symbols
introduced using the quote operator : Each expression "P", where P is a
path pattern, introduces a single new symbol "P" in the alphabet of coverage
specifications. As informally introduced in Section 3.1.2, the quote operator
blocks expansion of the path pattern, which itself is a regular expression.
Each quoted path pattern P therefore adds a literal "P" to the alphabet.

We note that the use of regular expressions to describe path patterns is
not a limitation of the underlying framework (see Chapter 4), but a deliberate
choice to foster usability for the working programmer. Context free proper-
ties such as matching lock/unlock calls, however, can therefore currently not
be expressed in FQL. Future extensions of FQL may well include more pow-
erful path pattern expressions: the quote operator serves as tokenizer that
enables fully distinct treatment of coverage specifications possibly including
quoted subexpressions on the one hand and path patterns on the other hand.
Therefore we give a separate description of the semantics of path patterns
and coverage specifications even for the common operators.

5 FQL – the FShell Query Language 61

5.2.1 Semantics of Elementary Coverage Patterns

Table 5.2 defines the semantics of path patterns and coverage specifications
as formal languages over alphabets of program locations, state predicates,
program transitions, and symbols newly introduced by the quote operator.
By L(P) and L(C) we denote the language of a path pattern P and a cov-
erage specification C, respectively. Except for the newly introduced quote
operator, all equations follow standard regular expression semantics. The
case of Kleene star L(P ?) is only relevant for path patterns, and L("P")

only appears as part of coverage specifications.
The expression "P" introduces "P" as a new symbol and, thus, L("P")

results in the singleton set {"P"}. For example, L(("a+ b" + "c?")."ac") is
the set {"a+ b""ac", "c?""ac"}. We discuss the last line of Table 5.2 in the
following section.

L(P1 + P2) = L(P1) ∪ L(P2)

L(C1 + C2) = L(C1) ∪ L(C2)

L(P1.P2) = {w1w2 | w1 ∈ L(P1), w2 ∈ L(P2)}
L(C1.C2) = {w1w2 | w1 ∈ L(C1), w2 ∈ L(C2)}
L(ε) = {ε}
L(∅) = ∅
L(`) = {`} where ` ∈ L
L(ϕ) = {ϕ} where ϕ ∈ S
L(e) = {e} where e ∈ E
L(P ?) = L(P)?

L("P") = {"P"}
L(cover C passing P) = {w ∧ "P" | w ∈ L(C)}

Table 5.2: Semantics of FQL elementary coverage patterns

5 FQL – the FShell Query Language 62

5.2.2 Interpretation of Path Patterns as Path Predi-
cates

Given a coverage specification C or path pattern P , we interpret each w ∈
L(C) or w ∈ L(P) as a path predicate (cf. Definition 4.4). We write π |= w

iff π satisfies the word w and define the semantics of π |= w in Table 5.3
inductively over the structure of w:

π |= ∅ iff false

π |= ε iff π is the empty sequence 〈〉
π |= ` iff π has the form 〈s〉 and pc(s) = `

π |= ϕ iff π has the form 〈s〉 and s |= ϕ

π |= e iff π has the form 〈ss′〉 and s′ ∈ post(e, s)

π |= "P" iff there is a w ∈ L(P) such that π |= w

π |= w iff π |= a · w′ with w = aw′ and a ∈ L ∪ E ∪ S
π |= w iff π |= "P" · w′ with w = "P"w′

Table 5.3: Interpretation of path patterns as path predicates

The empty set is unsatisfiable and the empty word ε matches the empty
sequence 〈〉 only. A program counter value ` or a state constraint ϕ matches
a singleton state only. A transition e matches a pair 〈ss′〉 of states, where
the semantics of the operation involved in the transition determines whether
s′ is a concrete successor of s (see Section 4.2).

The coverage specification "P" is satisfied by a path π, iff there is a
word w ∈ L(P) that is satisfied by π. The case π |= aw amounts to predicate
concatenation as defined in Section 4.3.

Applying these definitions, an ECP cover C passing P combines a cov-
erage specification C and a path pattern P to obtain a set of path predicates
as defined in the last line of Table 5.2:

L(cover C passing P) = {w ∧ "P" | w ∈ L(C)}.

5 FQL – the FShell Query Language 63

5.3 Target Graphs and CFA Transformers

Target graphs enable the user to directly access natural program entities
such as basic blocks, line numbers, decisions etc. without referring to nodes
or edges of the CFA. Formally, a target graph is a fragment of a control flow
automaton and typically contains those parts of the source code that are
relevant for a given testing target.

Definition 5.1 CFA Transformer & Target Graph
A CFA transformer is a function T : CFA→ CFA which, on input of a CFA
A = 〈L,E, I〉, computes a target graph T [A] = 〈L′, E ′, I ′〉.

The result of applying a CFA transformer T to a CFA A is denoted by
T [A]. A CFA transformer T is either a filter function F (cf. Definition 5.2),
function composition, or a set-theoretic operation on target graphs. As shown
in Table 5.4, FQL has operators that induce these CFA transformers: the
operator COMPOSE takes as arguments operators T1 and T2 to define func-
tion composition for any instantiation of T1 and T2 as CFA transformers.
Analogously ‘|’, ‘&’, and SETMINUS are operators to define set union, set in-
tersection and set subtraction, respectively. Again, these operators take two
arguments such that, upon instantiation with CFA transformers T1 and T2,
a CFA transformer is induced as defined in Table 5.4.

COMPOSE(T1, T2)[A] = T1[T2[A]]

(T1|T2)[A] = T1[A] ∪ T2[A]

(T1&T2)[A] = T1[A] ∩ T2[A]

SETMINUS(T1, T2)[A] = T1[A] \ T2[A]

ID[A] = A

Table 5.4: Operators inducing CFA transformers

The most important CFA transformers are filter functions, which extract
a subset of the edges of a CFA. Hence the CFA transformer ID, which is the
identity function on CFAs as defined in Table 5.4, is also a filter function.
We will first formally define filter functions and then discuss them in detail.

5 FQL – the FShell Query Language 64

Definition 5.2 Filter Functions on CFAs
A filter function is a CFA transformer F : CFA → CFA which computes for
every CFA A = 〈L,E, I〉 a target graph F [A] = 〈L′, E ′, I ′〉 with L′ ⊆ L,
E ′ ⊆ E, and I ′ ⊆ L′, such that E ′ ⊆ L′ × Lab× L′ holds.

Before defining the various concrete filter functions supported by FQL
we exemplify Definition 5.2 on the filter functions @BASICBLOCKENTRY and
@CONDITIONGRAPH. The target graph @BASICBLOCKENTRY[A] contains the edges
necessary for basic block coverage on A. The filter function @CONDITIONGRAPH
extracts the portions of A that are related to decisions.

1 int partition (int a [], int left , int right) {
2 int v = a[right], i = left − 1, j = right, t ;
3 for (;;) {
4 while (a[++i] < v) ;
5 while (j > left && a[−−j] > v) ;
6 if (i >= j) break;
7 t = a[i]; a[i] = a[j]; a[j] = t;
8 }
9 t = a[i]; a[i] = a[right]; a[right] = t;

10 return i;
11}

Listing 5.1: Example source code (sort.c)

For example, consider Figure 5.2(a), which shows the CFA for the code in
Listing 5.1. The target graph @BASICBLOCKENTRY[A] depicted in Figure 5.2(b)
(edges not contained in the target graph are grayed out) is obtained by apply-
ing the filter function @BASICBLOCKENTRY to A. For @CONDITIONGRAPH we get
the parts of the CFA A related to decisions in Listing 5.1, see Figure 5.2(c).

In Definition 5.2, the condition I ′ ⊆ L′ enables a filter function to change
the set of initial locations. For instance, @BASICBLOCKENTRY[A], as shown
in Figure 5.2(b), sets the initial locations (indicated by double circles) to
the start locations of the edges in the target graph. In the definitions of
the various filter functions below, we will therefore give the set of initial
locations for each filter function. The significance of initial locations will be
visible once we define the PATHS operator in Section 5.5, because paths only
start in initial locations.

5 FQL – the FShell Query Language 65

202122

3

40 41

50

5152

53 54

6

70

71

72

90

91

92

10

11

v:=a[right]i:=left-1

j:=right

[1!=0]

[!(1!=0)]

i:=i+1

[a[i]<v]

[!(a[i]<v)]

skip
[j>left]

[!(j>left)]j:=j-1

[a[j]>v]

[!(a[j]>v)]
skip [i>

=j]

[!(i>=j)]

t:=a[i]

a[i]:=a[j]

a[j]:=t

t:=a[i]

a[i]:=a[right]

a[right]:=t

return i

(a) Control flow automaton A

202122

3

40 41

50

5152

53 54

6

70

71

72

90

91

92

10

11

v:=a[right]i:=left-1

j:=right

[1!=0]

[!(1!=0)]

i:=i+1

[a[i]<v]

[!(a[i]<v)]

skip
[j>left]

[!(j>left)]j:=j-1

[a[j]>v]

[!(a[j]>v)]
skip [i>

=j]

[!(i>=j)]

t:=a[i]

a[i]:=a[j]

a[j]:=t

t:=a[i]

a[i]:=a[right]

a[right]:=t

return i

(b) Target graph for @BASICBLOCKENTRY[A]

202122

3

40 41

50

5152

53 54

6

70

71

72

90

91

92

10

11

v:=a[right]i:=left-1

j:=right

[1!=0]

[!(1!=0)]

i:=i+1

[a[i]<v]

[!(a[i]<v)]

skip
[j>left]

[!(j>left)]j:=j-1

[a[j]>v]

[!(a[j]>v)]
skip [i>

=j]

[!(i>=j)]

t:=a[i]

a[i]:=a[j]

a[j]:=t

t:=a[i]

a[i]:=a[right]

a[right]:=t

return i

(c) Target graph for @CONDITIONGRAPH[A]

Figure 5.2: Control flow automaton of partition (Listing 5.1) and target
graphs

5 FQL – the FShell Query Language 66

5.4 Filter Functions for ANSI C

Filter functions encapsulate the interface to the programming language. Thus
future extensions of FQL may provide both additional filter functions for C
programs, if requested by test engineers, and filter functions suitable for
different programming languages without otherwise affecting the design of
FQL . Therefore we use the prefix ‘@’ to ensure that filter function names do
not collide with other FQL keywords even with future extensions of FQL.

Table 5.5 gives an overview of the filter functions currently supported
in FQL. The exact definitions of supported filter functions are specific to
ANSI C [Ame99a], hence we first establish according terminology, which is
specified in detail below. A detailed specification of filter functions is then
given in Section 5.4.2.

@BASICBLOCKENTRY one edge per basic block
@CONDITIONEDGE one edge per (atomic) condition outcome
@DECISIONEDGE one edge per decision outcome (if, for, while,

switch, ?:)
@CONDITIONGRAPH all edges contributing to decisions
@FILE(a) all edges in file a
@LINE(x) all edges in source line x
@FUNC(f) all edges in function f
@STMTTYPE(types) all edges within statements types
@DEF(t) all assignments to variable t
@USE(t) all right hand side uses of variable t
@CALL(f) all call sites of f
@ENTRY(f) entry edge of f
@EXIT(f) all exit edges of f

Table 5.5: Filter functions in FQL – informal overview

The implementation of filter functions, however, is not based on C source
code but rather on CFAs. To extract appropriate CFA edges we rely on
annotations added to a CFA while parsing the source code. For example,
we annotate the first edge of each basic block as “basic block entry edge”,
bbentry, as described in Section 4.1. Besides such annotations describing code
structure we also add basic parsing information such as source file names and
line numbers.

5 FQL – the FShell Query Language 67

5.4.1 ANSI C Specific Terminology

Source Files and Lines. Whenever referring to C source code, we speak
of preprocessed source text. That is, #include, #define, etc. have been
expanded and replaced as defined by the ANSI C standard. Preprocessing
can result in new #line directives, which provide information about the
original source text file and location, which would otherwise be lost after
processing #include directives. These #line markers are processed by the
C front end and file and line number annotations in the CFA are adjusted
accordingly, as defined in [Ame99b].

Static CFA. For computing target graphs we require a static CFA, i.e.,
function calls through function pointers must be resolved by the C front end
using static analysis. The same holds true for a sound treatment of longjmp
and setjmp, which must have been resolved using static analysis. As it will
not always be possible to statically resolve function pointers to a unique func-
tion call and jump targets to a unique location, a sound overapproximation
using finite case distinction can be used instead. This could result in target
graphs that are supersets of the precise target graph, but no edges will be
missed.

Apart from such run-time dependent parts of the CFA, we also have
to handle behavior left undefined by the C standard, such as the order of
evaluation of function or operand arguments. In building a static CFA the C
front end will make arbitrary choices for such implementation-defined steps.

C Basic Blocks. We refer to a basic block as a subgraph of the CFA
that represents a maximal sequence of source statements which can only be
entered at the first of them and exited at the last of them [Muc97]. In case
such a basic block only consists of a conditional statement, we introduce a
skip statement in order to have a unique edge representing the basic block.
Such an additional skip statement occurs in Figure 5.2 on the edge leaving
state 50.

C Conditions. If a node has more than one successor and as C has no
concept of nondeterminism, the node refers to a condition, e.g., node 6 refers
to i>=j. Such expressions are Boolean expressions containing no Boolean
operators other than negation. The edges leaving a condition node are called

5 FQL – the FShell Query Language 68

condition edges which are in this case the edges to 70 and 90.

Short-Circuit Evaluation and Condition Graphs. In C programs the
operators “&&” and “||” induce short-circuit evaluation, i.e., the second ar-
gument will only be evaluated if the Boolean outcome cannot be deduced
from the first one. Each argument of these operators is itself a condition
and we refer to expressions involving short-circuit evaluation as aggregated
Boolean expressions. Because of short-circuit evaluation, every aggregated
Boolean expression induces a non-trivial control flow to abort the evaluation
as soon as possible. For example, if the first condition j>left in evaluat-
ing (j>left && a[–j]>v), occurring in line 5 of Listing 5.2, turns out to
be false, then a[–j]>v is never evaluated. The control flow automaton in-
duced by a Boolean expression is called the corresponding condition graph.
For example, the “while” statement of line 5 induces the network of nodes
50 to 54 and includes the conditions j>left and a[–j]>v. In particular,
the condition graph does not only consist of the condition edges but also of
all other computations which are necessary to evaluate the Boolean expres-
sion. For example, the condition graph of (j>left && a[–j]>v) includes
the transition 52 to 53 which performs the operation j:=j−1.

Note that aggregated Boolean expressions also occur outside conditional
statements – imposing non-trivial control flow in apparently unconditional
code, e.g., line 2 of the program in Listing 1.1 does not evaluate x<5 if x>2
already evaluated to false.

C Decisions. Following the definition given in DO-178B [RTC92] and af-
firmed in [Cer02], a decision is a “Boolean expression composed of conditions
and zero or more Boolean operators.” In C code, these are the Boolean ex-
pressions controlling a condition statement (an if, switch, while, or for
statement), every statement involving the conditional operator ?:. Follow-
ing the definition given in DO-178B this furthermore includes aggregated
Boolean expressions occurring outside conditional statements as discussed
above.

Short-circuit evaluation can induce condition graphs that have several
outgoing edges for the true or false outcome. For such multiple outgoing
edges we add a new state that has only a single outgoing edge labeled with
a skip statement. This edge is then used to represent the corresponding
outcome of the overall decision. For example in Figure 5.2, the node 54 has

5 FQL – the FShell Query Language 69

been introduced to collect all false outcomes of the while statement in line 5
and the edge from 54 to 6 is therefore used to represent the false outcome
of this decision (this edge must be inserted as well as a unique basic block
entry edge for the if statement following in line 6).

5.4.2 Detailed Specification of Filter Functions

In the following descriptions we will use a function start defined over CFA
edges: For a set E of edges, we define the set of start locations start(E) =

{` | (`, l, `′) ∈ E}. We use this function to define the initial locations of
the target graphs IF [A] computed by each filter function F . As discussed
in Section 5.5, the initial locations determine the starts of paths in target
graphs.

• @BASICBLOCKENTRY[A] consists of all the edges in A which correspond
to the first statement of a basic block. Figure 5.2(b) shows the tar-
get graph for @BASICBLOCKENTRY[A], referring to Listing 5.1. Here,
I@BASICBLOCKENTRY[A] = start(E@BASICBLOCKENTRY[A]), indicated with double cir-
cles in Figure 5.2(b).

• @CONDITIONEDGE[A] consists of the edges which correspond to the true

and false outcomes of all conditions in A. We define I@CONDITIONEDGE[A] =

start(E@CONDITIONEDGE[A]).

• @CONDITIONGRAPH[A] consists of all condition graphs induced by the eval-
uation of a Boolean expression in A. Thus @CONDITIONGRAPH[A] is the
superset of @CONDITIONEDGE[A] which contains not only the condition
edges but also all the computations interconnecting them. Figure 5.2(c)
shows the target graph for @CONDITIONGRAPH[A].

Each condition graph is a directed acyclic graph with a unique entry
node corresponding to the entry locations of the represented decisions,
i.e., the locations where the program execution starts to evaluate these
(aggregated) Boolean expressions. The set I@CONDITIONGRAPH[A] consists of
the entry locations of all condition graphs.

• @DECISIONEDGE[A] consists of the edges which correspond to a specific
outcome of a decision in A (e.g., for an if-statement, there is a true-
and a false-edge) and I@DECISIONEDGE[A] is the set start(E@DECISIONEDGE[A]).

5 FQL – the FShell Query Language 70

• @STMTTYPE(types)[A] consists of all those edges which correspond to the
execution of all statements of types types, where we allow for types

all kinds of statements occurring in C, e.g., @STMTTYPE(if, switch,
for, while, ?:) selects all computations performed by conditional
statements. The set I@STMTTYPE(types)[A] is start(E@STMTTYPE(types)[A]).

• @FILE(file)[A] contains all edges of A annotated with file file and the
set of initial locations I@FILE(file)[A] is the union of initial locations of the
CFAs representing the C functions contained in file.

• @LINE(n)[A] contains all edges ofA annotated with line n and the initial
locations are defined by I@LINE(n)[A] = start(E@LINE(n)[A]).

• @FUNC(fct)[A] contains all edges of A corresponding to C function fct.
The set I@FUNC(fct)[A] is the singleton set consisting of the initial location
of the CFA of fct, if this node is in A.

• @ENTRY(fct)[A] contains all edges of A that are outgoing edges of the
initial location of the CFA of function fct. The initial states are equiv-
alent to those of @FUNC(fct)[A]: I@ENTRY(fct)[A] = I@FUNC(fct)[A].

• @EXIT(fct)[A] consists of all function return edges of A annotated with
function fct, and edges of A that have no successor in the CFA corre-
sponding to C function fct. The set I@EXIT(fct)[A] is start(E@EXIT(fct)[A]).

• @CALL(fct)[A] contains all function call edges of A where function fct is
called and I@CALL(fct)[A] is start(E@CALL(fct)[A]).

• @DEF(v)[A] contains all assignment edges in A where a symbol v is used
as left-hand side. The set I@DEF(v)[A] is start(E@DEF(v)[A]).

• @USE(v)[A] consists of all edges of A where the value of a symbol v is
read and I@USE(v)[A] is start(E@USE(v)[A]).

As described in Section 5.1, FQL technically consists of two languages.
We have described elementary coverage patterns, the basic language, in Sec-
tion 5.2. The language to be used by human engineers, however, should not
refer to elements of CFAs, but source code elements instead. This gap is
bridged by target graphs and filter functions. Having defined filter functions
we are now ready to describe the language used by the test engineer, which
we refer to as FQL specifications.

5 FQL – the FShell Query Language 71

5.5 FQL Specifications

Table 5.6 defines the syntax of FQL specifications. Basic operations like
‘+’ or ‘.’ are the same as in ECPs, but, where ECPs had nodes and edges
of a CFA, FQL specifications derive these sets of nodes and edges from
target graphs. Given a target graph, we can choose to obtain either (i) all
nodes, (ii) all edges, or (iii) all paths in the target graph as symbols in
coverage specifications or path patterns. In the first and second case, the
nodes and edges induce a tractably sized set of symbols. The third case yields
an exponential number of symbols for an acyclic graph and an unbounded
number in general. We thus require the explicit specification of a bound that
limits the number of recurrences of a node in each path.

Φ ::= cover C passing P

C ::= C + C | C.C | (C) | N | S | "P"
P ::= P + P | P.P | (P) | N | S | P*

N ::= NODES(T) | EDGES(T) | PATHS(T,k)
T ::= F | ID | COMPOSE(T,T)

| T|T | T&T | SETMINUS(T,T)
F ::= @BASICBLOCKENTRY | @CONDITIONEDGE

| @CONDITIONGRAPH | @DECISIONEDGE | @FILE(a)
| @LINE(x) | @FUNC(f) | @STMTTYPE(types)
| @DEF(t) | @USE(t) | @CALL(f) | @ENTRY(f) | @EXIT(f)

Table 5.6: Syntax of FQL

More specifically, given a CFA A, a CFA transformer T , and a positive
integer k, we apply the operators NODES(T), EDGES(T), and PATHS(T,k) to
obtain target alphabets from a target graph T [A]. Given a specification Φ and
a CFA A, every operator NODES(T), EDGES(T), and PATHS(T,k) in Φ expands
to a sum

∑
(iterated ‘+’) of path patterns which represent the nodes, edges,

and k-bounded paths in the target graph T [A], respectively:

5 FQL – the FShell Query Language 72

NODES(T) 7→
∑

`∈LT [A]

`

EDGES(T) 7→
∑

e∈ET [A]

e

PATHS(T,k) 7→
∑

p∈pathsk(T [A])

p

Intuitively, NODES(T) is the set of nodes of the target graph T [A] obtained
by applying T to A. Analogously, EDGES(T) yields the set of edges of the
target graph T [A]. For a target graph T [A], a k-bounded path is a path
in T [A] which starts in one of the initial locations IT [A] and visits no target
graph node ` ∈ LT [A] more than k > 0 times. We define:

pathsk(T [A]) = {(`0, l0, `1).(`1, l1, `2).(`n, ln, `n+1) | n ≥ 0 ∧ `0 ∈ IT [A]

∧ (`i, li, `i+1) ∈ ET [A] ∧ `i occurs at most k times}

In case a set NODES(T), EDGES(T), or PATHS(T,k) evaluates to the empty
set on T [A] the corresponding operator expands to the symbol ∅.

1 if ((x > 10
2 && y < 100)
3 || (x < y))
4{ ... }
5else
6{ ... }

1

2 3

4 6

[x > 10]
[!(x > 10)]

[!(y < 100)]

[y < 100]
[x < y]

[!(x < y)]

Figure 5.3: Edge- vs. path-coverage

As an example underlining the differences between the three operators
consider the target graph shown in Figure 5.3. Let `i denote the node la-
beled with i. The CFA A has the set of nodes LA = {`1, `2, `3, `4, `6} and the
operator NODES(ID) yields the expression `1 + `2 + `3 + `4 + `6. The opera-
tor EDGES(ID) yields the path pattern e1,2 +e1,3 +e2,3 +e2,4 +e3,4 +e3,6, where
ei,j denotes the edge from node `i to node `j. With IA = {`1} the operator
PATHS(ID,1) yields all bounded paths starting in `1, described by the expres-
sion e1,2+e1,3+e1,2.e2,3+e1,2.e2,4+e1,2.e2,3.e3,4+e1,2.e2,3.e3,6+e1,3.e3,4+e1,3.e3,6.

5 FQL – the FShell Query Language 73

Semantics of FQL Specifications

Intuitively, the semantics of an FQL specification Φ is obtained by replacing
each occurrence of NODES, EDGES, and PATHS in Φ by the corresponding sum
and applying the semantics of Table 5.2. To formalize this step we extend
the language of elementary coverage patterns of Table 5.2 by definitions for
NODES, EDGES, and PATHS as shown in Table 5.7:

L(NODES(T [A])) = {` | ` ∈ LT [A]}
L(EDGES(T [A])) = {e | e ∈ ET [A]}

L(PATHS(T [A],k)) =
⋃

p∈pathsk(T [A])

L(p)

Table 5.7: Semantics of NODES, EDGES, PATHS

It remains to related an FQL specification Φ to a CFA A to obtain T [A]

for a CFA transformer T . We proceed according to Table 5.8:

(P1 + P2)[A] = P1[A] + P2[A]

(C1 + C2)[A] = C1[A] + C2[A]

(P1.P2)[A] = P1[A].P2[A]

(C1.C2)[A] = C1[A].C2[A]

(P)[A] = (P [A])

(C)[A] = (C[A])

NODES(T)[A] = NODES(T [A])

EDGES(T)[A] = EDGES(T [A])

PATHS(T,k)[A] = PATHS(T [A],k)

S[A] = S

P*[A] = (P [A])*

"P"[A] = "P [A]"

(cover C passing P)[A] = cover C[A] passing P [A]

Table 5.8: Application of CFA A to FQL specifications

5 FQL – the FShell Query Language 74

In this step an FQL specification

Φ = cover C passing P

maps a CFA A to a finite set Φ(A) of path predicates. We define Φ(A) by
reducing Φ to an ECP:

Φ(A) = L((cover C passing P)[A])

Proposition 5.3 An FQL specification Φ = cover C passing P is an ele-
mentary coverage criterion (Definition 4.9).
Proof. We first show that an FQL specification Φ satisfies Definition 4.8
and therefore is a coverage criterion: Φ defines a mapping from CFAs to a
set of path patterns, as follows: An FQL specification Φ defines a mapping
from CFAs to a set of path predicates by first applying the definitions from
Table 5.8, and then applying CFA transformers as described in Table 5.4 and
filter functions (Section 5.4.2). We thereby arrive at elementary coverage
patterns, which define languages over path patterns (Table 5.2), which we
interpret as path predicates (Table 5.3).

It remains to show that this language over path patterns is finite. As a
CFAA by Definition 4.1 has a finite number of locations LA and therefore also
a finite number of edges EA the expansion in Table 5.7 yields finite languages
of nodes, edges, or bounded paths. Filter functions (Definition 5.2) and the
CFA transformers defined in Table 5.4 preserve finiteness, hence Table 5.2
yields a finite language for any FQL specification Φ = cover C passing P .

Each word in the resulting finite language is interpreted as a path pred-
icate. The finite set of path predicates is a path set predicate as described
in Definition 4.9, hence Φ is a coverage criterion (Definition 4.8). As Φ is
a finite set of path predicates, Φ fulfills Definition 4.9 and therefore is an
elementary coverage criterion. �

We give an example of the full sequence of evaluation steps from FQL
specifications down to sets of path patterns in Section 5.7. For the complete
picture, however, we first describe additional syntactic sugar to arrive at the
full language available to the human engineer.

5.6 Full FQL Specifications

We first describe the most complete form of FQL queries and then show
how this reduces to FQL specifications as described in the preceding section.

5 FQL – the FShell Query Language 75

Furthermore we present several technically redundant constructions that help
to further simplify the use of FQL.

We extend FQL specifications to the form

Φ = in T cover ˆC$ passing ˆP$

The full syntax of FQL is given in Table 5.9. Before presenting the seman-
tics of full FQL specifications in Tables 5.10 and 5.11, we give an intuitive
description: the clause in T with a CFA transformer T states that, given
a CFA A, all filter functions in the cover clause are applied to the target
graph T [A]. The prefix ‘ˆ’ and the suffix ‘$’ perform anchoring in analogy
to Unix grep. If either of those anchors is omitted, "ID*" is prepended and
appended to cover and passing clauses. Not only can these anchors be omit-
ted, also the ‘in’ and ‘passing’ clauses are optional. Furthermore, as EDGES
is the most common interpretation for target graphs, it is taken as default if
neither the operator NODES, nor EDGES, nor PATHS is given.

Φ ::= in T Φ′ | Φ′

Φ′ ::= cover C ′ passing P ′ | cover C ′

C ′ ::= C | ˆC | ˆC$ | C$
P ′ ::= P | ˆP | ˆP$ | P$
C ::= C + C | C.C | C->C | (C) | N | S | "P" | C==k | C<=k
P ::= P + P | P.P | P->P | (P) | N | S | P* | P==k | P<=k | P>=k
N ::= T | NODES(T) | EDGES(T) | PATHS(T,k)
T ::= F | ID | COMPOSE(T,T)

| T|T | T&T | SETMINUS(T,T) | NOT(T)
F ::= @BASICBLOCKENTRY | @CONDITIONEDGE

| @CONDITIONGRAPH | @DECISIONEDGE | @FILE(a)
| @LINE(x) | @x | @FUNC(f) | @STMTTYPE(types)
| @DEF(t) | @USE(t) | @CALL(f) | @ENTRY(f) | @EXIT(f)

Table 5.9: Syntax of full FQL specifications

Tables 5.10 and 5.11 show how the additional constructs and syntactic
sugar reduce to FQL specifications as presented in Section 5.5.

5 FQL – the FShell Query Language 76

in T Φ′ = Φ′ } T

Φ′ = Φ′ } ID

cover C ′ passing P ′ } T = cover C ′ } T passing P ′

cover C ′ } T = cover C ′ } T passing ˆID*$

C ′ } T =


C } T if C ′ ≡ ˆC$

C } T."ID*" if C ′ ≡ ˆC

"ID*".C } T if C ′ ≡ C$

"ID*".C } T."ID*" if C ′ ≡ C

P ′ =


P } ID if P ′ ≡ ˆP$

P } ID."ID*" if P ′ ≡ ˆP

"ID*".P } ID if P ′ ≡ P$

"ID*".P } ID."ID*" if P ′ ≡ P

(C1 + C2)} T = C1 } T + C2 } T

(C1.C2)} T = C1 } T.C2 } T

(C1->C2)} T = (C1."ID*".C2)} T

(C)} T = (C } T)

"P"} T = "P } T"

(C==k)} T =


ε if k = 0

(C.C︸ ︷︷ ︸
k times

)} T

(C<=k)} T =
k∑
i=0

(C==i)} T

Table 5.10: Translation of full FQL to FQL specifications

5 FQL – the FShell Query Language 77

(P1 + P2)} T = P1 } T + P2 } T

(P1.P2)} T = P1 } T.P2 } T

(P1->P2)} T = (P1."ID*".P2)} T

(P)} T = (P } T)

P*} T = (P } T)*

(P==k)} T =


ε if k = 0

(P.P︸ ︷︷ ︸
k times

)} T

(P<=k)} T =
k∑
i=0

(P==i)} T

(P>=k)} T = (P==k.P*)} T

S } T = S

N } T1 =


EDGES(COMPOSE(T2,T1)) if N ≡ T2

NODES(COMPOSE(T2,T1)) if N ≡ NODES(T2)

EDGES(COMPOSE(T2,T1)) if N ≡ EDGES(T2)

PATHS(COMPOSE(T2,T1),k) if N ≡ PATHS(T2,k)

NOT(T) = SETMINUS(ID,T)

@x = @LINE(x)

Table 5.11: Translation of full FQL to FQL specifications (cont.)

5 FQL – the FShell Query Language 78

5.7 Example of FQL Query Evaluation

We show how a specification for condition coverage first describes an ele-
mentary coverage criterion and then maps to a coverage predicate given the
source code shown in Figure 5.3. As initial specification we use

cover @CONDITIONEDGE

which constitutes a valid specification for full FQL. We first translate this
specification to an FQL specification according to the rules of Tables 5.10
and 5.11:

cover @CONDITIONEDGE

cover @CONDITIONEDGE} ID

cover @CONDITIONEDGE} ID passing ˆID*$

cover "ID*".@CONDITIONEDGE} ID."ID*" passing ID*

cover "ID*".COMPOSE(@CONDITIONEDGE,ID)."ID*" passing ID*

We finally add the EDGES operator to arrive at an FQL specification:

Φ =cover "EDGES(ID)*".EDGES(COMPOSE(@CONDITIONEDGE,ID)).

"EDGES(ID)*" passing EDGES(ID)*

This FQL specification Φ describes the coverage criterion “condition cov-
erage” independently of the program under test. For any given program A,
however, we can compute the set of path patterns Φ(A) that serve as test
goals.

As first step we rewrite the above FQL specification as an ECP using
sums over each set of edges as described in Section 5.5:

cover "
∑

e∈EID[A]

e ∗".
∑

e∈ECOMPOSE(@CONDITIONEDGE,ID)[A]]

e."
∑

e∈EID[A]

e ∗" passing
∑

e∈EID[A]

e ∗

With Table 5.4, we simplify EID[A] and ECOMPOSE(@CONDITIONEDGE,ID)[A]:

ID[A] = A
⇒ EID[A] = EA

5 FQL – the FShell Query Language 79

and

COMPOSE(@CONDITIONEDGE,ID)[A] = @CONDITIONEDGE[ID[A]]

= @CONDITIONEDGE[A]

⇒ ECOMPOSE(@CONDITIONEDGE,ID)[A] = E@CONDITIONEDGE[A]

For the example of the program of Figure 5.3 we can determine the target
graphs A and @CONDITIONEDGE[A]. In this case we only describe the sets of
edges of these target graphs:

EA = {e1,2, e1,3, e2,3, e2,4, e3,4, e3,6}
E@CONDITIONEDGE[A] = {e1,2, e1,3, e2,3, e2,4, e3,4, e3,6}

and therefore∑
e∈EA

=
∑

e∈E@CONDITIONEDGE[A]

= e1,2 + e1,3 + e2,3 + e2,4 + e3,4 + e3,6.

Substituting this sum we obtain the elementary coverage pattern

cover "(e1,2 + . . .+ e3,6)?".e1,2."(e1,2 + . . .+ e3,6)?"

+ "(e1,2 + . . .+ e3,6)?".e1,3."(e1,2 + . . .+ e3,6)?"

+ "(e1,2 + . . .+ e3,6)?".e2,3."(e1,2 + . . .+ e3,6)?"

+ "(e1,2 + . . .+ e3,6)?".e2,4."(e1,2 + . . .+ e3,6)?"

+ "(e1,2 + . . .+ e3,6)?".e3,4."(e1,2 + . . .+ e3,6)?"

+ "(e1,2 + . . .+ e3,6)?".e3,6."(e1,2 + . . .+ e3,6)?"}
passing (e1,2 + . . .+ e3,6)?

Following Table 5.2, this ECP yields the following set Φ(A) of path patterns:

{"(e1,2 + . . .+ e3,6)?".e1,2."(e1,2 + . . .+ e3,6)?" ∧ "(e1,2 + . . .+ e3,6)?",

"(e1,2 + . . .+ e3,6)?".e1,3."(e1,2 + . . .+ e3,6)?" ∧ "(e1,2 + . . .+ e3,6)?",

"(e1,2 + . . .+ e3,6)?".e2,3."(e1,2 + . . .+ e3,6)?" ∧ "(e1,2 + . . .+ e3,6)?",

"(e1,2 + . . .+ e3,6)?".e2,4."(e1,2 + . . .+ e3,6)?" ∧ "(e1,2 + . . .+ e3,6)?",

"(e1,2 + . . .+ e3,6)?".e3,4."(e1,2 + . . .+ e3,6)?" ∧ "(e1,2 + . . .+ e3,6)?",

"(e1,2 + . . .+ e3,6)?".e3,6."(e1,2 + . . .+ e3,6)?" ∧ "(e1,2 + . . .+ e3,6)?"}.

By interpreting these path patterns as path predicates (Table 5.3) we
arrive at a predicate permissible as an elementary coverage criterion (Defini-
tion 4.9) with six test goals.

5 FQL – the FShell Query Language 80

5.8 Expressive Power and Usability

In the following we show how the test case specificationsQ1-24 of Chapter 2,
Figures 2.1–2.3, can be expressed in FQL. We will see that even complex
specifications can be written as succinct and natural FQL specifications.
Experiments with these specifications will be discussed in Chapter 7.

5.8.1 Scenario 1: Structural Coverage Criteria

[Q1-2 — “Standard Coverage Criteria”] Basic block coverage and condition
coverage.

Q1: cover @BASICBLOCKENTRY
Q2: cover @CONDITIONEDGE

Queries Q1-2 demonstrate how succinct some of the most common coverage
criteria can be expressed in FQL. At the same time we also assign them a
formal semantics.

[Q3 — “Alternative Condition Coverage”] Condition coverage as defined by
CoverageMeter and CTC++ (see Section 1.2).

Q3: cover @CONDITIONEDGE & @STMTTYPE(if,switch,for,while,?:)

According to our observations, the coverage measurement tools CoverageMe-
ter and CTC++ only consider (aggreated) Boolean expressions within the
conditional statement of if, switch, for, while, and ?: when computing
the goals for “condition coverage”. To mimic this coverage criterion, we re-
strict the target alphabet of condition edges to these statement types by
intersecting the respective target graphs.

[Q4 — “Acyclic Path Coverage”] Cover all acyclic paths through functions
main and insert.

[Q5 — “Loop-Bounded Path Coverage”] Cover all paths through main and
insert which pass each statement at most twice.

Q4: cover PATHS(@FUNC(main) | @FUNC(insert),1)
Q5: cover PATHS(@FUNC(main) | @FUNC(insert),2)

5 FQL – the FShell Query Language 81

We use the operator PATHS to extract bounded paths from a selected target
graph. The informal specifications request the union of functions main and
insert as target graph. Acyclic paths correspond to a bound of 1, and the
specification for Q5 implies a bound of 2.

5.8.2 Scenario 2: Data Flow Coverage Criteria

[Q6 — “Def Coverage”] Cover all statements defining a variable t.

[Q7 — “Use Coverage”] Cover all statements that use the variable t as right
hand side value.

Q6: cover @DEF(t)
Q7: cover @USE(t)

We observe that FQL is not only well suited to express structural code cover-
age criteria, but also data flow coverage criteria can be expressed in succinct
manner. It should be noted, however, that extensions to coverage of all defi-
nitions, i.e., def-coverage for all variables, require a preceding extraction of all
variable names from the code to generate a proper query. Given a tool that
parses the source code and lists all variables, a query can be automatically
generated as, e.g.,

cover @DEF(var1) + @DEF(var2) + @DEF(var3)

for extracted variable names var1, var2, and var3.

[Q8 — “Def-Use Coverage”] Cover all def-use pairs of variable t.

Q8: cover @DEF(t)."NOT(@DEF(t))*".@USE(t)

QueryQ8 describes proper def-use pairs, i.e., the expression "NOT(@DEF(t))*"
ensures that no further assignment to variable t occurs before a read (a use)
of variable t.

5.8.3 Scenario 3: Constraining Test Cases

[Q9 — “Constrained Program Paths”] Basic block coverage with test cases
that satisfy the assertion j > 0 after executing line 2.

5 FQL – the FShell Query Language 82

Q9: cover @BASICBLOCKENTRY passing ˆ(@2.{j>0}+NOT(@2))*$

We combine basic block coverage, as already specified in query Q1, with a
restriction on the program’s state space. The passing clause allows to state
this constraint independently of the description of structural coverage. The
constraint states that any test case must in each step either pass line 2 and
satisfy the property j > 0, or pass some code location other than line 2.

[Q10 — “Constrained Calling Context”] Condition coverage in a function
compare with test cases which call compare from inside function sort only.

Q10: cover @CONDITIONEDGE & @FUNC(compare) passing
ˆ(NOT(@CALL(compare))*.(@CALL(compare) & @FUNC(sort))*)*$

Instead of constraining the data space we restrict code paths in this query.
Note the importance of anchoring using ‘ˆ’ and ‘$’ in these restrictions: had
it been omitted, by default ID* would be prepended and appended. As a
result, any prefix and suffix would be permitted in test cases, as long as
some part of the test case matches the restriction. In fact, because of the
Kleene star used in these constraints, no match would be required at all (zero
repetitions of the constraint).

[Q11 — “Constrained Inputs”] Basic block coverage in function sort with
test cases that use a list with 2 to 15 elements.

Q11: cover @ENTRY(sort).{len>=2}.{len<=15}."NOT(@EXIT(sort))*"
.@BASICBLOCKENTRY

In writing query Q11 we assume that function sort takes an argument len
that describes the length of the input list. We then enforce that function
sort is not left before matching one of the basic blocks using the expression
"NOT(@EXIT(sort))*".

[Q12 — “Recursion Depth”] Cover function eval with condition coverage
and require each test case to perform three recursive calls of eval.

Q12: in @FUNC(eval) cover @CONDITIONEDGE passing @CALL(eval)
.NOT(@EXIT(eval))*.@CALL(eval).NOT(@EXIT(eval))*.@CALL(eval)

5 FQL – the FShell Query Language 83

Analogously to query Q11, we enforce in query Q12 that function eval is
not left – amounting to recursion as we require yet another call of function
function eval using the target graph @CALL(eval).

[Q13 — “Avoid Unfinished Code”] Cover all calls to sort such that sort
never calls unfinished. That function is allowed to be called outside sort
– assuming that only the functionality of unfinished that is used by sort
is not testable.

[Q14 — “Avoid Trivial Cases”] Cover all conditions and avoid trivial test
cases, i.e., require that insert is called twice before calling eval.

Q13: cover @CALL(sort) passing ˆ(NOT(@FUNC(sort))*
.(@FUNC(sort) & NOT(@CALL(unfinished)))*.NOT(@FUNC(sort))*)*$

Q14: cover @CONDITIONEDGE passing ˆ(NOT(@CALL(eval))*
.@CALL(insert))>=2

QueriesQ13-14 showcase further situations where a structural code coverage
criterion is combined with restrictions on calling sequences. As described in
these examples, such situations both arise in ad hoc testing and debugging
where code is incomplete and also in integration testing where trivial test
cases must be avoided.

5.8.4 Scenario 4: Customized Test Goals

[Q15 — “Restricted Scope of Analysis”] Condition coverage in a function
partition with test cases that reach line 7 at least once.

[Q16 — “Condition/Decision Coverage”] Condition/decision coverage (the
union of condition and decision coverage) [MSBT04].

[Q17 — “Interaction Coverage”] Cover all possible pairs between conditions
in function sort and basic blocks in function eval, i.e., cover all possible
interactions between sort and eval.

Q15: in @FUNC(partition) cover @CONDITIONEDGE passing @7
Q16: cover @CONDITIONEDGE + @DECISIONEDGE
Q17: cover (@CONDITIONEDGE & @FUNC(sort))

->(@BASICBLOCKENTRY & @FUNC(eval))

5 FQL – the FShell Query Language 84

In queries Q15-17 we combine standard coverage criteria in novel ways. The
need for such combinations arises in ad hoc testing (Q15), test case genera-
tion for certification (Q16 – coverage requirements in higher assurance levels
of DO-178B always include the coverage requirements of lower levels), and
integration testing. Note the different ways of combining coverage criteria
that are required in these situations and hence different FQL operators.

[Q18-20 — “Cartesian Block Coverage”] Cover all pairs, triples, and quadru-
ples of basic blocks in function partition.

Q18: cover @BASICBLOCKENTRY->@BASICBLOCKENTRY
Q19: cover @BASICBLOCKENTRY->@BASICBLOCKENTRY->@BASICBLOCKENTRY
Q20: cover @BASICBLOCKENTRY->@BASICBLOCKENTRY

->@BASICBLOCKENTRY->@BASICBLOCKENTRY

In FQL it is easy to construct arbitrary Cartesian products of test goal
sets using concatenation (‘.’). Most often, however, we are not interested
what occurs on a path from one test goal set to another, and hence use an
intermittent ID*, abbreviated by ‘->’.

5.8.5 Scenario 5: Seamless Transition to Verification

[Q21 — “Assertion Coverage”] Cover all assertions in the source.

[Q22 — “Assertion Pair Coverage”] Cover each pair of assertions with a
single test case passing both of them.

Q21: cover @STMTTYPE(assert)
Q22: cover @STMTTYPE(assert)->@STMTTYPE(assert)

In software verification we are interested in proving all assertions to hold.
While proving correctness is almost always impossible using testing, execut-
ing all assert statements (or, as a refinement thereof, all pairs off assert
statements) at least provides confidence that the assertions are not trivially
violated.

[Q23 — “Error Provocation”] Cover all basic blocks in eval without reaching
label init.

[Q24 — “Verification”] Ask for test cases which enter function main, satisfy
the precondition, and violate the postcondition.

5 FQL – the FShell Query Language 85

Q23: cover (@BASICBLOCKENTRY & @FUNC(eval))
passing ˆNOT(@LABEL(init))*$

Q24: cover @ENTRY(main) passing @ENTRY(main).{precond()}
.NOT(@EXIT(main))*.{!postcond()}.@EXIT(main)

FQL specifications are well suited to precisely describe certain execution se-
quences, hence also for specification of paths that are known to be invalid
executions. If such a test case exists, then the error can be provoked. There-
fore the expected result of such a query would be that no such test case
exists. Query Q23 describes such a code path only, but query Q24 even
uses pre- and postconditions. Again, if such a path exists, it is know to be
an error trace.

5.9 Discussion

In this chapter we formally described FQL which is – to the best of our
knowledge – the first test specification language which satisfies the require-
ments (a) to (d) of Chapter 2. Challenge (e) is mainly fulfilled by FShell,
which we describe in Chapter 6. We addressed challenges (a)–(d) as follows:

(a) FQL is based on three concepts which enable the user to specify cover-
age criteria in simple and succinct specifications: (1) To specify single
test cases, we use path patterns to select program paths. These patterns
are given by regular expressions. Future extensions of FQL, however,
can also include more powerful path pattern expressions. (2) The al-
phabet of the path patterns refers to program parts such as basic blocks,
line numbers, function calls etc. We use the concept of filter functions
to extract the target alphabet from an individual program. (3) Most
coverage criteria require a test suite to cover a number of individual
path patterns which depend on the program under test. For instance,
simple basic block coverage yields one path pattern per basic block. We
achieve the necessary expressive power by a natural extension of regu-
lar expressions – quoted regular expressions – which matches test suites
rather than individual executions. All three concepts are combined into
a concise and easy-to-read formalism with a precise semantics.

(b) Encapsulation of language specifics is achieved by filter functions, which
compute target graphs. A target graph is a fragment of a control flow

5 FQL – the FShell Query Language 86

automaton and typically contains those parts of the source code that
are relevant for a given testing target. Target graphs provide an in-
termediate layer between language specific and language independent
aspects of test case generation. While the construction of the underly-
ing control flow automata (CFAs) is language dependent, the semantics
built atop target graphs and CFAs is language independent.

(c,d) These orthogonal concepts taken together allowed us to build a simple
yet expressive declarative language atop the mathematical model of
Chapter 4. Section 5.8 demonstrated that all example specifications
from Figures 2.1–2.3 can be easily expressed in FQL.

I now suggest that we confine ourselves
to the design and implementation of in-
tellectually manageable programs.

Edsger W. Dijkstra

Chapter 6

FShell

In this chapter we describe the implementation of query-driven program test-
ing in FShell. We describe the user interface of FShell, its control com-
mands, and the use of FQL in FShell. The major part of this chapter then
explains the steps that FShell internally performs to arrive at a set of test
cases. We conclude with a description of test harness generation, which turns
these test cases into executable code.

First impressions of the front end have been given in Section 3.4. The
current back end of FShell is based on bounded model checking [BCCZ99],
using the code base of CBMC [CKL04]. We chose CBMC as the first back
end for query-driven program testing because (1) it supports full C syntax
and semantics, (2) bit-precise bounded model checking is conceptually closer
to testing than an abstraction/refinement approach, and (3) CBMC is well
engineered and offers a very clean design and a stable code base. FShell
is, like CBMC, implemented in C++ and accounts for approximately 16k
lines of source code. We first summarize the steps that CBMC undertakes
to perform program verification and then describe how FShell uses some of
CBMC’s components to implement query-driven program testing.

6.1 Overview of CBMC’s Architecture

Bounded model checkers such as CBMC reduce questions about program
paths to Boolean constraints in conjunctive normal form (CNF) which are
solved by standard SAT solvers. The back end of FShell employs the func-
tionality of CBMC to obtain SAT instances suitable for test case generation.

87

6 FShell 88

Recall that on input of a program annotated with assertions, CBMC outputs
a SAT instance the solutions of which describe program paths leading to
assertion violations. In order to do so, CBMC performs the following main
steps, which are outlined in Figure 6.1:

Command
Line Front End

ANSI C Parser

Type Checking

GOTO Conversion

Static Analysis &
Instrumentation

Program
Unwinding

CNF Conversion

SAT Solver

Counterexample
Analysis

Figure 6.1: CBMC architecture

1. The command line front end processes options given by the user and
configures CBMC accordingly. The configuration options mainly con-
cern the system architecture to be assumed, i.e., the bit-width of basic
data types and endianness, and operating system specific configuration
parameters.

2. The ANSI C parser first calls a C preprocessor (cl on Microsoft Win-
dows systems and cpp on Unix-like systems) and then reads the pre-
processed source files. CBMC therefrom builds a parse tree annotated
with source file- and line information.

6 FShell 89

3. Type checking populates a symbol table by traversing the parse tree,
collecting all type names and symbol identifiers, and assigning type
information to each symbol that is found. CBMC aborts if any incon-
sistencies are detected by type checking.

4. CBMC uses “GOTO programs” as intermediate representation. In this
language, all non-linear control flow, such as if/switch-statements, loops
and jumps, is translated to equivalent guarded goto statements. These
statements are gotos that include optional guards, such that these
guarded gotos also suffice to model if/else branching. The most im-
portant classes of statements left at this intermediate level are assign-
ments, gotos, function calls, function returns, declarations, assertions,
and assumptions.

CBMC generates one GOTO program for each C function found in the
parse tree. Additionally it adds a new main function that first calls an
initialization function for global variables and then calls the original
program entry function.

5. As next step, CBMC performs a number of analyses on the GOTO
functions. First, function pointers are resolved via a light-weight static
analysis that checks for type compatibility between formal parameters
of declared functions and the actual parameters at the point of call
through a function pointer. All matching targets are combined to a list
of conditional calls, where a branch is taken if the actual value of the
function pointer matches the address of the target function. Thereby
we arrive at a static call graph as discussed in Section 5.4.2. Further
analyses and property instrumentation include a pointer analysis with
subsequent instrumentation to catch pointer-related errors such as in-
valid dereferencing by suitable assertions, property instrumentation for
assertions on overflows or division by zero, and inlining of small func-
tions.

6. As CBMC implements a variant of bounded model checking it has
to pay special attention to loops. Unlike the original bounded model
checking algorithm presented in [BCCZ99], CBMC currently does not
increase the maximum length of paths as bounded model checking pro-
ceeds, and is thus not complete. Instead, CBMC eagerly unwinds loops
up to a fixed bound, which can be specified by the user on a per-loop

6 FShell 90

basis or globally, for all loops. In the course of this unwinding step,
CBMC also translates the GOTO functions to static single assignment
(SSA) form [AWZ88, RWZ88, CFR+89]. At the end of this process the
program is represented as a mathematical equation over renamed pro-
gram variables in guarded statements. The guards determine whether,
given a concrete program execution, an assignment is actually made.

7. The resulting equation is translated into a CNF formula by bit-precise
modeling of all expressions plus the Boolean guards (cf. [CKY03]).
Here it should be noted that CBMC also supports other decisions
procedures as back ends, such as SMT (satisfiability modulo theories)
solvers [NOT04, NOT06], in which case an encoding other than CNF is
used. For FShell, however, we are only interested in the SAT solver-
based back end of CBMC.

8. The CNF formula is passed to the SAT solver, which tries to find a
satisfying assignment. Here, such an assignment corresponds to a path
violating at least one of the assertions in the program under scrutiny.
Conversely, if the formula is unsatisfiable, no assertion can be violated
with the given unwinding bounds.

9. If a satisfying assignment was found, the bounded model checker has
determined a counterexample to the specification given in terms of as-
sertions. To turn the model of the SAT formula into information useful
for the user of CBMC, it is translated into a list of assignments. CBMC
finds this sequence by consulting the equation of guarded statements:
each statement with a guard evaluating to true under the computed
model constitutes an assignment occurring in the counterexample. The
actual values being assigned are also found in the model of the SAT
formula.

6.2 Tool Architecture

For a given FQL query, we derive a matching test suite via the following
steps:

1. FShell’s front end accepts a query and coordinates further processing,
in parts using components of CBMC, as outlined in the following steps.
Details of the front end are described in Section 6.3.

6 FShell 91

2. The C front end of CBMC builds GOTO programs from the program
under test as described above. We use these GOTO programs as repre-
sentation of a CFA. We furthermore perform a bounded model checking
run to check for failing assertions or insufficient unwinding before start-
ing test case generation (cf. Section 6.3.3).

3. Given a coverage specification, we evaluate all filter expressions over
these GOTO programs to obtain the desired target graphs (cf. Sec-
tion 6.4).

4. The resulting elementary coverage pattern is translated to a pair of
trace automata, which we introduce in Section 6.5.

5. CBMC builds a Boolean equation describing all states yielding a vio-
lation of a given property (assertion) of the input program. It is then
able to produce an example of such a violation (counterexample). In
test case generation, we use this scheme by adding the property stating
that no test case matching a given query exists. Any counterexample
then describes a path that fulfills the query.

FShell implements two techniques to enable subsequent enumeration
of test cases: the technically straightforward option is instrumentation
of trace automata into GOTO functions. The overhead of instrumenta-
tion, however, is often prohibitively high (cf. Chapter 7), hence we have
implemented a second approach that performs a propositional encoding
of trace automata to combine it with CBMC’s CNF formula derived
from the program under test. Both of these approaches are described
in Section 6.6.

6. We efficiently enumerate test cases using guided SAT enumeration as
described in Section 6.7. By construction, the resulting test suite sat-
isfies the coverage criterion of the given FQL query.

7. Some of the test cases in the computed test suite, however, may be
redundant. We therefore include a minimization step where we again
use a SAT solver to compute the minimal subset of the original test
suite that still fulfills the coverage criterion (cf. Section 6.8).

8. We print the test suite in terms of a list of required initial values of
memory locations (variables) such that these values induce a unique
execution path. This procedure is described in Section 6.9.

6 FShell 92

As a refinement of Figure 1.2, Figures 6.3–6.16 will illustrate these steps
in full detail. Figure 6.2 shows the collaboration and interfaces of the in-
volved components. In the following sections we describe all these steps and
components in further detail.

Command
Line Options Control Commands

C Source Files
FQL Queries

in ... cover ...
passing ...

Annotated CFA A
FQL Specifi-
cation cover
C passing P

Instrumented
CFA A′

Observation
Automaton

Test Goal
Automaton

Test Suite Γ

FShell Front
End (Figure 6.3)

Building Trace Au-
tomata (Figure 6.5)

Test Case Genera-
tion (Figure 6.16)

Figure 6.2: FShell architecture overview

6.3 Front End and Query Parsing

In the following we will describe the components of Figure 6.3 in detail.
From a user’s point of view the front end of FShell is a shell-like interactive
command line interface. A graphical user interface in terms of a plug-in for

6 FShell 93

the Eclipse IDE 1 is work in progress. Yet also the command line interface
aims at good usability by providing standard shell features such as an editing
history or macros.

Command
Line Options Control Commands

C Source Files
FQL Queries

in ... cover ...
passing ...

Annotated CFA A
FQL Abstract
Syntax Tree

FQL Specifi-
cation cover
C passing P

FShell Inter-
active Front End

C Preproces-
sor, C Parser

FQL Query Parser

Query Nor-
malization

Assertion Check

Figure 6.3: FShell front end architecture

6.3.1 Command Line Options

Before entering the interactive shell, however, the user may give a number
of command line parameters, which we explain next. The general command
syntax to call FShell is

fshell [options ...] [file.c ...]

where [options ...] are described below and [file.c ...] are zero or
more source file names.

1See http://www.eclipse.org

http://www.eclipse.org

6 FShell 94

• General options:

– --help, -h, -?: Display copyright information and the list of
command line options.

– --version: Show the current version.

• Platform configuration:

– -I path: Add path to the C preprocessor’s search path for ex-
panding #include directives. This option may be given multiple
times, which is the case for -D macro as well:

– -D macro: Define the C preprocessor macro macro, where macro
is either only a macro name or of the form name=value.

– --16, --32, --64: Set the bit-width of the C type int to 16, 32,
or 64 bits, respectively.

– --LP64, --ILP64, --LLP64, --ILP32, --LP32: Set the bit-widths
of int, long, and pointers as defined in [The98].

– --little-endian, --big-endian: Set endianness for conversions
between words and bytes.

– --unsigned-char: Make char type unsigned.

– --ppc-macos, --i386-macos, --i386-linux, --i386-win32, and
--winx64: Set platform-specific defines, bit-widths, and endian-
ness according to the given processor and operation-system com-
bination.

– --no-arch: Do not enable any platform-specific configuration
other than setting the bit-widths to the same configuration the
host running FShell uses.

• Options controlling program instrumentation and loop unwinding:

– --no-library: By default CBMC, and therefore FShell, ships
an abstracted version of system library functions. This options
disables inclusion of such code.

– --show-goto-functions: Display the GOTO functions after in-
strumentation as described in Section 6.6. This option is primarily
useful for debugging purposes.

6 FShell 95

– --no-assumptions: The programmer can add assumptions to the
program under test using the __CPROVER_assume(x)macro. That
is, the property x is enforced to hold true at the program point
where the macro was inserted. If --no-assumptions is set, as-
sumptions will be ignored.

– --enable-assert: By default, FShell disables user-defined as-
sertions, i.e., they are replaced by skip statements. This option
disables such replacement.

– --function f : Use function f as program entry point instead of
“main”.

– --depth k: Perform at most k steps in unwinding the program.

– --unwind k, --unwindset L:k,..., --show-loop-ids: Unwind
all loops, recursions, and backward gotos at most k times. With
--unwindset L:k,... the unwinding bound k is set for loop with
id L only, where L can be found using --show-loop-ids, which
lists all loops with their identifiers.
After unwinding a loop, an unwinding assertion is added, unless
--no-unwinding-assertions is given, which is explained below.

– --no-unwinding-assertions, --partial-loops: The first op-
tion inhibits generation of assertions at the end of a sequence of
bodies of an unwound loop. The assertion checks that the loop
exit condition is indeed always fulfilled, i.e., the number of unwind-
ing steps was sufficient. With this option, instead, an assumption
is added that requires the condition to hold. With the param-
eter --partial-loops, no such assumption is generated. Note
that this option implies --no-unwinding-assertions and possi-
bly makes the analysis unsound, because each loop is replaced by a
fixed number of conditional repetitions of the loop body without
any checks whether the loop condition evaluates to false after-
wards.

• Options controlling the user interface:

– --xml-ui: Change FShell’s output to XML formatted text,
which is more suitable for machine processing.

6 FShell 96

– --verbosity n, --statistics: The option --verbosity n with
0 ≤ n ≤ 9 defines the amount of status information printed while
running FShell. n = 0 disables all output other than test cases,
n ≥ 1 enables error messages, n ≥ 2 adds warnings, n ≥ 6 enables
progress information (n = 6 is the default), n ≥ 8 adds statistics,
and n = 9 yields debugging information. With --statistics
additional statistics are enabled independently of the verbosity.
These statistics include CPU time and memory usage, test suite
size, the number of test goals, and further information about the
test case generation process which may vary with future release of
FShell.

– --query-file f changes to scripted mode where commands are
read line by line from file f instead of entering interactive mode.

• Options controlling test case generation strategies:

– --use-instrumentation: Use instrumentation of GOTO func-
tions to represent trace automata, as described in Section 6.6.1.
The default is to use the propositional encoding of Section 6.6.2.

– --sat-coverage-check, --no-internal-coverage-check: Any
computed test case may satisfy more than one test goal. To
determine these additional test goals either a SAT solver or a
built-in routine can be used, as detailed in Section 6.7.3. Op-
tion --use-instrumentation implies the use of the SAT solver.
Otherwise, using --sat-coverage-check the SAT solver is run
in addition to the build-in coverage checking function. With the
command line option --no-internal-coverage-check the built-
in routine is disabled even in case of the propositional encoding
and the SAT solver will be used exclusively.

• Test suite output:

– --show-test-goals: List the test goals defined by the coverage
specification as a list of paths. Each path is described by a list of
source code locations. For example, for the session of Section 3.4
we get:

Test goal 0 (-2147483647&396&398): <TRUE>...bar.c:2-bar.c:2
...(bar.c:2-bar.c:2|bar.c:2-bar.c:3|bar.c:2-bar.c:3|

6 FShell 97

bar.c:2-bar.c:5|bar.c:3|NO_LOCATION-bar.c:6|bar.c:5)
Test goal 1 (-2147483647&397&398): <TRUE>...bar.c:2-bar.c:3

...(bar.c:2-bar.c:2|bar.c:2-bar.c:3|bar.c:2-bar.c:3|
bar.c:2-bar.c:5|bar.c:3|NO_LOCATION-bar.c:6|bar.c:5)

In this case we have two test goals, with each of them first pass-
ing any statement (<TRUE>), then either the else or if branch
(bar.c:2-bar.c:2 or bar.c:2-bar.c:3), and then again any of
the statements, now listed as CFA edges.

– --outfile f : Write the computed test suite to file f . If the file
already exists, the new test suite is appended.

– --tco-* options: These options control the format and contents of
the test case output, with each of them enabling specific additional
information:

∗ With --tco-location, as was already shown in Section 3.4,
the program entry function is printed and for each assignment
the C type of the variable and the location of the initialization
is shown. This information is required for subsequent test
harness generation (cf. Section 6.10).
∗ The option --tco-called-functions adds another section

to the output: for each test case, the sequence of functions
called while executing the test case is printed.
∗ Analogously, --tco-assign-globals causes a printout of the

sequence of assignments to global variables.

The last two options are intended for validation of test results
through inspection of the sequence of function calls and assign-
ments to global variables, respectively.

6.3.2 Interactive Shell, Control Commands, and Macros

Once the user launches FShell with options other than --version, --help,
or --query-file, FShell enters interactive mode. If source file names
were given on the command line, the corresponding files are parsed first.
FShell aborts with an error message if parsing fails at this point. Source
files are preprocessed using a C preprocessor. For Unix-like systems and for
Windows/MinGW this is cpp. The user may wish to override this by setting
the “CPP” environment variable to the desired preprocessor.

6 FShell 98

In interactive mode FShell displays the prompt

FShell2>

to signal that it is waiting for user input. The input is now either a control
command or a macro definition as detailed below, or an FQL query using the
syntax described in Section 5.6. FShell processes all keywords in a case-
insensitive manner. Lines starting with ‘//’ are ignored, which is mainly
useful for adding comments in FShell query scripts. To save typing for
repeated commands or queries, FShell’s interactive mode features a shell-
like history function which stores previous sessions in a file “.fshell2_history”.
The history is accessed using cursor up- and down keys or Ctrl+r.

Control Commands. The following control commands are supported by
FShell:

• HELP: Display the syntax of all accepted commands as a grammar in
Backus-Naur form (BNF).

• QUIT or EXIT: Leave FShell.

• ADD SOURCECODE ’f’: Load and parse source file f . Equivalent to
listing a source file on the command line, apart from the fact that
parse errors here are not fatal. They result in an error message only
and FShell does not abort.

Optionally, additional C preprocessor defines may be given as ADD
SOURCECODE -D macro ’f’ where macro is only set for loading and
parsing f .

• SHOW FILENAMES: Display the list of loaded source files.

• SHOW SOURCECODE ’f’, SHOW SOURCECODE ALL: Show the contents of
a loaded file f or all loaded files, including line numbers.

• SET ENTRY f : Set program entry to function f . Equivalent to the
command line option --function f .

• SET LIMIT COUNT k: Stop test case generation after at most k test
cases for any given FQL query.

6 FShell 99

• SET NO_ZERO_INIT: The ANSI C standard mandates that objects with
static lifetime are zero-initialized [Ame99c]. If, however, global vari-
ables should be treated as inputs for test case generation, e.g., because
they are set through direct memory access in embedded systems code,
this behavior is undesirable. With this command, zero-initializer are
removed.

• SET ABSTRACT f : Make function f undefined, only retain its declara-
tion. This command is useful to remove complex functions from the
analysis, when their actual behavior can be considered irrelevant for
test case generation.

• SET MULTIPLE_COVERAGE k: Attempt to perform the test case gener-
ation step k ≥ 1 times for a single FQL query to obtain k test suites
achieving the same coverage with distinct test suites. Later test suites
may have fewer test cases and achieve less coverage, if some test goals
can not be covered using different test data.

Defining Macros. FShell supports C-style macros to simplify the nota-
tion of complex or repeated query parts. Macro names are case-sensitive and
defined like C macros using the #define directive. For instance

FShell2> #define st(s) @STMTTYPE(s)
FShell2> cover st(if) + st(assert) + st(while)

first defines an abbreviation for the filter function @STMTTYPE, which we then
use to abbreviate the FQL query cover @STMTTYPE(if) + @STMTTYPE(assert)
+ @STMTTYPE(while). Macro definitions remain valid for the duration of an
FShell session.

6.3.3 Processing FQL Queries

If a user enters text that is neither recognized as a control command nor
as a macro definition, FQL query processing is initiated. First macros are
expanded and then an FQL query is sent to the FQL parser. The parser
generates an abstract syntax tree (AST) for each valid FQL query or aborts
with a syntax error if parsing fails.

If parsing the query succeeds a bounded model checking run is performed
over the given program, unless this has already been done for some previous

6 FShell 100

query and no command to change the entry function or zero-initializers has
been passed to FShell meanwhile (see Section 6.3.2). This bounded model
checking run is necessary to rule out failing assertions, including failing un-
winding assertions (cf. option --no-unwinding-assertions as described in
Section 6.3.1). Any such failing assertion would subsequently cause wrong
results in computing test cases: FShell could return paths that do not reach
the end of the program, but instead lead to the violated assertion.

Internal Representation of FQL queries. As internal representation of
FQL queries we use an irregular heterogeneous AST [Par09]. Implementing
an irregular heterogeneous AST requires more initial implementation effort
as each node type requires its own class, but permits very efficient traversal
of such trees using the visitor pattern: each node type gets its own visitor
function and calls of these functions are directly performed through the vtable
without any conditional branching. In our implementation of the AST we
use sharing of syntactically equivalent subgraphs, which turns the AST into
a directed acyclic graph. Using the abstract factory and singleton design
patterns [GHJV94] plus reference counting, this yields compact, efficient, and
easy-to-use data structures. A similar implementation was used in [GHT09]
for representation of regular expressions, where it proved to scale to millions
of leaves. Even though we do not expect to handle queries of such size, this
design proves useful as we can efficiently copy entire subtrees at the cost
of only one additional pointer and create new AST objects at any point in
the code without taking care of memory management – all objects will be
reclaimed by the singleton factory.

Normalization. The AST generated by the FQL parser may still have an
in T clause as described in Section 5.6. Normalization performs the steps
described in Tables 5.10 and 5.11 to reduce the FQL query to an FQL
specification cover C passing P as described in Section 5.5.

Furthermore simplifications for syntactic equivalences are performed as
shown in Table 6.1. After normalization all further processing of FQL queries
is safely restricted to FQL specifications of Section 5.5.

6 FShell 101

P1 + P2 = P1 iff P1 ≡ P2

C1 + C2 = C1 iff C1 ≡ C2

T1|T2 = T1 iff T1 ≡ T2

T1&T2 = T1 iff T1 ≡ T2

Table 6.1: Simplification rules for syntactic equivalences

6.3.4 Running Example

We reconsider the example of Section 3.4 and use that code and query as a
running example for the remainder of this chapter. In that section we had
applied the query cover @CONDITIONEDGE to the source code of Listing 3.3. In
Figure 6.4 we show the corresponding CFA A, as it is built by the C front
end.

2

3 5

6

[x > y] [!(x > y)]

return x return y + 10

Figure 6.4: CFA A for Listing 3.3

Processing and normalization, as described in this section, of the query
cover @CONDITIONEDGE yields the FQL specification

Φ =cover "EDGES(ID)*".EDGES(COMPOSE(@CONDITIONEDGE,ID)).

"EDGES(ID)*" passing EDGES(ID)*

as we described in detail in Section 5.7.

6.4 Computing Target Graphs

Given the preparation of source code and an FQL query as explained in the
preceding section we turn the focus to the back end as described in Fig-
ures 6.5 and 6.16. At this point we proceed with an annotated CFA A,

6 FShell 102

which is internally represented as GOTO functions that were generated by
CBMC’s C front end. The original FQL query has been normalized to an
FQL specification Φ = cover C passing P . As next step, filter functions
and other CFA transformers must be evaluated on A according to the se-
mantics specified in Section 5.4.2 and Table 5.4, respectively. Furthermore
we handle predicates over program variables, which we denoted by the set S
in the syntax and semantics described in Chapter 5, in the same step.

Annotated CFA A
FQL Specifi-
cation cover
C passing P

Instrumented
CFA A′

Target Graphs

Observation
Automaton

Test Goal
Automaton

Predicate In-
strumentation

CFA Trans-
former Evaluation

Evaluation of
Path Pattern P

Evaluation of
Coverage Spec-

ification C

Figure 6.5: FShell back end architecture part I

In FShell we implement this evaluation using a post-order traversal
of the query AST, again employing the visitor pattern. The design of our
AST, as described above, furthermore facilitates an efficient implementation
of caching, such that each expression T is only evaluated once.

We build a mapping eval : T → CFA that maps each filter function or CFA
transformer T to a target graph eval(T). The post-order traversal guarantees
that all target graphs of subexpressions have been computed such that CFA

6 FShell 103

transformers can be applied immediately. The resulting target graph is added
to the mapping. If an expression T evaluates to a target graph with an empty
set of locations, a warning is emitted:

warning: Filter expression T evaluates to empty target graph

It should be noted that at the time of writing the implementation of filter
evaluation in FShell does not fully conform with the semantics detailed
in Section 5.4.2, because annotations have not yet been completely imple-
mented. As a result, the filter functions @DECISIONEDGE and @CONDITIONGRAPH
are currently not supported and @BASICBLOCKENTRY possibly yields target
graphs containing additional edges.

6.4.1 Example

We return to the running example that we introduced in Section 6.3.4. The
FQL specification Φ that we obtained after normalization contains the CFA
transformers ID and COMPOSE, and the filter function @CONDITIONEDGE. Cache
lookups ensure that the CFA transformer ID will only be evaluated once
over A despite occurring four times in this FQL specification. We get the
following results for the mapping eval:

eval(ID) = 〈{`2, `3, `5, `6},
{e2,3, e2,5, e3,6, e5,6}, {`2}〉

eval(@CONDITIONEDGE) = 〈{`2, `3, `5}, {e2,3, e2,5}, {`2}〉
eval(COMPOSE(@CONDITIONEDGE,ID)) = 〈{`2, `3, `5}, {e2,3, e2,5}, {`2}〉

6.4.2 Predicates over Program Variables

FShell implements support for predicates via instrumentation of the origi-
nal CFA. For each unique predicate {p} occurring in C or P the corresponding
C expression is inserted into the CFA A using the CFA shown in Figure 6.6.
This snippet is inserted by replacing each original node with the new CFA.
Each edge of the new fragment is annotated with instrumented to ensure these
instrumented edges are not otherwise considered while evaluating filter func-
tions.

This new CFA fragment has distinct successor locations of the initial
location `1, depending on whether p evaluates to true (successor location `2)
or false (`3) at the location where the fragment is inserted. Thereby the

6 FShell 104

semantic evaluation of a path pattern {p} is shifted to a syntactic match
of CFA edges; the semantic aspect is left to the underlying bounded model
checking procedure.

1

2

3

instrumented

[p]
instrumented

[! p]

instrumented

skip

Figure 6.6: CFA snippet for {p}

In this instrumentation step the variable names occurring in p must be
resolved to symbol names that are valid in the scope where the CFA snippet is
inserted. If such name resolution fails, e.g., because a variable is only defined
in a certain function but not globally, p is replaced by a nondeterministic
value. For example, consider a query

cover {a > 10}.@CONDITIONEDGE.{x < 5}

with two predicates a > 10 and x < 5. If the query is applied on the code
of Listing 3.3 of Section 3.4, where no variable named ‘a’ occurs in function
foo, the first predicate will be replaced by a new nondeterministic value nd1.
Therefore two CFA snippets as shown in Figure 6.6 will be inserted for each
node, one for the predicate nd1, and one for the predicate x < 5.

Along with instrumentation FShell builds a mapping pred : S → CFA

that realizes the translation to a syntactic match as discussed above. Each
predicate p ∈ S maps to the set of edges that result from inserting the
edge 〈`2, skip, instrumented, `3〉 of the CFA shown in Figure 6.6, i.e., pred(p) =

{〈`2, l, `3〉 , 〈`′2, l, `′3〉 , . . .}.

6.5 Trace Automata

In Chapter 5 we reduced FQL specifications to elementary coverage patterns
and then gave a semantics in terms of formal languages. With the prepa-
rations of the preceding section, we are set to perform the reduction to an
elementary coverage pattern for a given FQL specification Φ. A representa-

6 FShell 105

tion as a set of words, however, is inefficient and impractical in an operational
setting.

Hence we use nondeterministic finite automata: we introduce trace au-
tomata, which formally model languages over path patterns. In FShell,
however, we do not use the path predicate semantics of path patterns as
FShell never explicitly builds the underlying transition system. Instead
we will match program traces (hence also the name “trace automata”) which
are the result of unwinding the program as described in Section 6.1, and are
formally defined in Section 6.5.2.

Target graphs can yield large sets of locations and edges. An automaton
that generates path patterns from locations and edges would thus have an
equally large number of transitions. In trace automata we therefore directly
use target graphs and have transitions on target graphs.

Definition 6.1 Trace Automaton
A trace automaton A = 〈Q,Σ, I,∆, F,G〉 is a nondeterministic finite au-
tomaton with a non-empty finite set of states Q = {q0, q1, . . . , qn}, where
Σ ⊆ CFA ∪ {ε} is an alphabet of target graphs, I ⊆ Q is the set of initial
states, ∆ ⊆ Q × Σ × Q is the transition relation, F ⊆ Q is the set of final
states, and G ⊂ 2Q × {one, all, none} is a partitioning of Q that marks test
goal states.

The language L(A) accepted by a trace automaton A is the set of path
patterns generated by accepting runs of A, where a run is described by a se-
quence of transitions q0

A0→ q1
A1→ . . .

An→ qn+1 with Ai ∈ Σ. The run is accept-
ing, iff q0 ∈ I and qn+1 ∈ F . The set of path patterns generated by this run
is described by the elementary coverage pattern L(A0) .L(A1)L(An),
where L(Ai) for a CFA Ai = 〈LAi

, EAi
, IAi
〉 is again an elementary coverage

pattern – the sum over all edges and additional locations:

L(Ai) =
∑
e∈EAi

e+
∑

`∈LAi
∧∀`′∈LAi

.(〈`,l,`′〉6∈EAi
∧〈`′,l,`〉6∈EAi

)

`

For a query Φ = cover C passing P we can now describe translations
to a pair of trace automata AC and AP for the coverage specification C and
the path pattern P , respectively. We call AC the test goal automaton and
AP the observation automaton.

The mapping G describing test goal states is relevant for the test goal
automaton only. The reason for this mapping lies in the fact that we will

6 FShell 106

also expand quoted expressions "P" occurring in C to their corresponding
trace automata but still need a means to recover the set of test goals from
AC . We use “one” to describe states where all incoming edges of a set of
states Q′ ⊆ Q only yield one test goal, corresponding to a quoted expression
in the coverage specification C. With “all” we denote states that result from
other coverage specifications, where each incoming transition produces one
test goal. “none” marks states that are not relevant for determining the set
of test goals. We formalize this in the following definition.

Definition 6.2 Test Goals specified by Trace Automata
Each accepting run q0

A0→ q1
A1→ . . .

An→ qn+1 of a trace automaton A =

〈Q,Σ, I,∆, F,G〉 with q0 ∈ I and qn+1 ∈ F induces a set of path patterns
defining test goals if there exists a set of states Q′ ⊆ Q such that (Q′, one) ∈ G
or (Q′, all) ∈ G and {q0, q1, . . . , qn+1} ∩Q′ 6= ∅.

For such a run defining test goals, a transition qi
Ai→ qi+1 with qi+1 ∈ Q′

and (Q′, all) ∈ G yields a subgoal for each path pattern in L(Ai). Otherwise,
if (Q′, one) ∈ G or (Q′, all) ∈ G, L(Ai) is one subgoal. The set of test goals of
such a run is then computed as the Cartesian product of the set of subgoals.

Each run induces a corresponding sequence of pairs of state sets/markers
〈(Q1,m1), . . . , (Qk,mk)〉 with (Qj,mj) ∈ G and q0 ∈ Q1, {qj, . . . , qj+l} ∈ Qj,
and qn+1 ∈ Qk. Two accepting runs define the same test goals if they induce
the same sequences of state sets and if the runs only differ in states of sets
marked “none” or “one”.

Example. In Figure 6.7 we show the trace automata resulting from the
FQL specification of Section 6.3.4. The edges are labeled with target graphs
AID and AE as computed using eval. With the results of Section 6.4.1 and
the systematic construction described in the next section we have

AID = 〈{`2, `3, `5, `6}, {e2,3, e2,5, e3,6, e5,6}, ∅〉
AE = 〈{`2, `3, `5}, {e2,3, e2,5}, ∅〉

The test goal automaton (Figure 6.7(a)) and the observation automaton
(Figure 6.7(b)) are precisely specified as follows, which most importantly also

6 FShell 107

q0 q1 q2 q3
AID

AID

AE

AE

AID

AID

(a) Trace automaton for C

q0 q1
AID

AID

(b) Trace automaton for P

Figure 6.7: Trace automata for running example

includes the mapping of test goal states:

AC = 〈{q0, q1, q2, q3}, {AID,AE}, {q0},
{(q0,AID, q1), (q1,AID, q1), (q0,AE, q2), (q1,AE, q2),

(q2,AID, q3), (q3,AID, q3)},
{q2, q3}, {({q0, q1}, one), ({q2}, all), ({q3}, one)}〉

AP = 〈{q0, q1}, {AID}, {q0},
{(q0,AID, q1), (q1,AID, q1)}, {q0, q1}, {({q0, q1}, none)}〉

6.5.1 Construction of Trace Automata

We will now describe the translation of FQL specifications to trace au-
tomata. By construction, these translations yield trace automata that de-
scribe the same set of path patterns and test goals as their corresponding
elementary coverage patterns. In these translations we apply the functions
pred : S → CFA and eval : T → CFA of Section 6.4 to obtain target graphs
from predicates and CFA transformers, respectively. These target graphs are
subgraphs of the CFA A′ = 〈L′, E ′, I ′〉 that is instrumented with predicate
information.

Trace Automata for Quoted Regular Expression Operators. In the
translation of coverage specifications to trace automata we refrain from us-
ing standard textbook translations that involve introducing ε-edges, because
subsequent removal of such edges would require extra care for updating the
test goal mapping G. For path patterns, however, we will use translations as
described in standard textbooks, such as [HU79].

In the following we will use FQL specifications and their corresponding
translations to trace automata interchangeably when the distinction is clear

6 FShell 108

from the context. Hence, when referring to, e.g., the test goal mapping G
of the trace automaton resulting from translating a coverage specification C
we use GC as abbreviated notation. In figures we mark the trace automata
resulting from preceding translations using sinuous lines.

...

...

C1

C2

Figure 6.8: Trace automaton for C1 + C2

The translation of C1 + C2, as shown in Figure 6.8, merges the initial
states of the translations of C1 and C2. As test goal states we have the union
G = GC1 ∪ (GC2 \ (IC2 , none)).

ε

ε

ε

ε

P1

P2

Figure 6.9: Trace automaton for P1 + P2

For path patterns P1, P2 we use a standard textbook translation shown
in Figure 6.9, which introduces ε-edges instead of merging any nodes. As
path patterns do not induce any test goals we have G = {(Q, none)}.

...
...

C1 C2

Figure 6.10: Trace automaton for C1.C2

The concatenation of coverage specifications C1 and C2 is represented by
the trace automaton shown in Figure 6.10. We start with the translation
of C1 to a trace automaton and copy all outgoing transitions of the initial

6 FShell 109

state of the translation of C2 to each accepting state of the translation of C1.
The previous initial state IC2 of C2 is removed and accepting state markers
of C1 are reset. By construction, these operations do not affect the test goal
mapping function G for states other than those marked “none”. Therefore
we have G = GC1 ∪ (GC2 \ (IC2 , none)).

εP1 P2

Figure 6.11: Trace automaton for P1.P2

For path patterns we again use a standard textbook translation for con-
catenation, as we show in Figure 6.11. Note that our constructions guarantee
that trace automata of path patterns always have exactly one initial state.
The same holds true for the final state, apart from the case of PATHS(T,k),
which will be explained below. We again have G = {(Q, none)}.

P

ε

ε

Figure 6.12: Trace automaton for P*

For Kleene star we again use a construction including ε-edges, as shown
in Figure 6.12, to ensure we only have one final state. As this case is only
relevant for path patterns, we have G = {(Q, none)}.

...
P

Figure 6.13: Trace automaton for "P"

For a quoted expression we first copy the automaton that we obtained for
the path pattern P and transform it to an ε-edge free trace automaton. The
resulting trace automaton in general may have fewer states, but possibly has
more than one final state, as indicated in Figure 6.13. As the quote operator
lifts path patterns to coverage specifications, we reset the test goal states:
G = {(F, one), (Q \ F, none)}.

6 FShell 110

Trace Automata for Basic Alphabets S and N . In the remaining
translations we show trace automata for predicate expressions (alphabet S),
and NODES, EDGES and PATHS (alphabet N). We will observe that pred and
eval fully encapsulate the programming language specific details – with trace
automata we deal with edges and nodes of a CFA only.

Note that these trace automata may become part of both trace automata
for path patterns and trace automata for coverage specifications. We there-
fore eagerly define the test goal states G as necessary for coverage specifica-
tions; path patterns, as shown above, override these later on.

q0 q1
pred(S)

(a) Trace automaton
for S

q0 q1
AL

(b) Trace automa-
ton for NODES(T)

q0 q1
AE

(c) Trace automa-
ton for EDGES(T)

Figure 6.14: Trace automata for basic alphabets other than PATHS

As shown in Figure 6.14(a), for any predicate we use the set of edges
that pred yields as the target graph of a new transition. Analogously we
create new transitions for NODES(T) and EDGES(T) as shown in Figures 6.14(b)
and 6.14(c), respectively. In these two cases, however, we use eval to obtain
the target graphs. We define AL =

〈
Leval(T), ∅, ∅

〉
for NODES(T), i.e., we only

use the locations of the target graph obtained by eval(T). For EDGES(T) we
get AE =

〈
L′, Eeval(T), ∅

〉
where L′ = {` | 〈`, l, `′〉 ∈ Eeval(T) ∨ 〈`′, l, `〉 ∈

Eeval(T)}, i.e., we use the edges of the target graph eval(T) and restrict the
locations to those occurring in these edges. For all three cases of Figure 6.14
we define G = {({q0}, none), ({q1}, all)}

...

Ae1
Ae2 Ae3

Ae1 Ae42

Figure 6.15: Trace automaton for PATHS(T,k)

For PATHS(T,k) we only sketch a possible result in Figure 6.15. The
precise result is built by using the construction from C1 + C2 (Figure 6.8)

6 FShell 111

for
PATHS(T,k) =

∑
p∈pathsk(eval(T))

p

and apply the translation for C1.C2 (Figure 6.10) for each path p, which is a
sequence of edges. As a result we have one target graph for each such edge,
which in Figure 6.15 we denote by Ae1 for an edge e1. As test goal states we
define G = {(F, all), (Q \ F, none)}.

We initially mark the last states of each such path as accepting states.
In case a trace automaton of PATHS(T,k) is used in the translation of a path
pattern, additional ε-edges are added at the end of each path leading to a
new common final state. Thereby again we arrive at the case of only one final
state, which simplifies the construction of trace automata of path patterns
as described above.

6.5.2 Program Traces

We want to use trace automata to match program executions. Hence our
main interest does not lie in the words or language they generate, but how
words are accepted.

These words are given as programs executions, which we describe as se-
quences of CFA edges. We call these descriptions program traces. We dis-
tinguish between abstract traces and concrete traces : abstract traces are
linearized and unwound abstractions of CFAs, i.e., an abstract trace con-
tains all possible edge sequences of concrete executions such that any actual
program run is described by a subsequence of the abstract trace. A concrete
trace induces such a subsequence by all those edges that map to true under
a mapping ιtA for an abstract trace tA.

Definition 6.3 Abstract and Concrete Traces
Bounded unwinding of a CFA A yields an abstract trace tA = 〈e0e1 . . . el〉 of
length l + 1 with ei ∈ EA. A concrete trace is an abstract trace tA with an
additional mapping ιtA : EA → {true, false}.

A trace automaton A accepts (or matches) a concrete trace if the word
induced by the subsequence of edges mapping to true under ιtA is in the
language of the path patterns (cf. Table 5.2) generated by A.

6 FShell 112

Propositional Encoding. CBMC transforms a CFA A first into an ab-
stract trace tA and then into a CNF formula, which we denote by φ[tA]. This
CNF formula encompasses an encoding of the mapping ιtA . A model of the
formula therefore describes a concrete trace, and hence a program execution.
As explained in Section 6.1, each model corresponds to an execution violating
one of the assertions.

CBMC maintains a mapping between tA and the literals of φ[tA]. In the
constructions that we will use in the following sections this mapping allows
us to identify the Boolean variables that express whether an edge or location
is reached in a given program execution (a concrete trace with a mapping
ιtA). For an edge e (a location `) we write ιtA(e) (ιtA(`)) to express the fact
that an edge e (a location `) is reached.

6.6 Integrating Trace Automata

Given an operational description of FQL specifications in terms of automata
we need to build an analysis that computes test cases following this specifica-
tion. Our goal is to map the instrumented CFA A’ and the trace automata
AC and AP obtained from the FQL specification Φ to a SAT instance. Us-
ing this SAT instance we will perform efficient enumeration of test cases as
described in Section 6.7.

We will describe two approaches to obtain such a SAT instance, which
adhere to the same interface as indicated by the box in Figure 6.16. The
first one, which is described in Section 6.6.1, is based on additional instru-
mentation of the CFA A′ with code implementing the two trace automata.
Here, only test goal states are directly encoded into the CNF formula. In the
second approach we encode the entire trace automata into a propositional
formula without prior instrumentation. This technique will be described in
Section 6.6.2.

6.6.1 Program Instrumentation

We want to use trace automata as a means of specification. CBMC, however,
only supports assertions. We therefore instrument the program with a trace
automaton such that the resulting program reaches a failing assertion in the
course of an execution if, and only if, this program execution – a concrete
trace – is matched by the trace automaton. Hence we implement a trace

6 FShell 113

Observation
Automaton

Test Goal
Automaton

Instrumented
CFA A′

Test Suite Γ

Automata In-
strumentation

Trace Au-
tomata to CNF

Conversion
of A to CNF

Guided SAT
Enumeration

Test Suite
Minimization

Test Suite Output

Figure 6.16: FShell back end architecture part II

6 FShell 114

automaton as a monitor of program execution. This monitor is bound to a
program via a logging layer. The monitor component implements transitions
and is called via the logging functions in order to perform such transitions. At
the end of the program, i.e., after returning from the program entry function,
we add an assertion that requires that the trace automaton has not reached
any accepting state. As a result, CBMC will try to find counterexamples
that violate this assertion, i.e., CBMC computes program executions that
reach an accepting state.

Let A = 〈Q,Σ, I,∆, F,G〉 be a trace automaton. Program instrumenta-
tion proceeds as follows both for the test goal automaton and the observation
automaton to build a fully instrumented CFA A′′ from A′.

1. Create a global integer variable stateA that stores the current state
of the automaton A. The bit-width of this integer variable is set to
dlog2(|Q|)e to use the minimal number of bits encoding the state num-
ber.

2. Map each target graph Ai ∈ Σ to an integer i which we will use as
identifier.

3. Walk the locations of the CFA A′ to build up the logging layer. At each
location ` first check for target graphs Aj ∈ Σ matching this location,
i.e., ` ∈ L(Aj). If there is no such target graph, skip location instru-
mentation and proceed to edges as described below. Let {Ai1 , . . . ,Aik}
be a set of target graphs matching the current location, i.e., ` ∈ L(Aij)
for all 1 ≤ j ≤ k. We may have to match all of them and accordingly
perform several transitions of the automaton. Thereby we account for
the fact that state predicates, which such target graphs are, require
repeatedly matching the same program location per the definition of
predicate concatenation in Section 4.3. In this case the trace automa-
ton makes several transitions without consuming more of the program
execution, while for edges the trace automaton and program execution
proceed in a lockstep manner. In order to implement this behavior, we
repeatedly nondeterministically log one of these matches using func-
tion calls filter_trans_A_ij() guarded by fresh Boolean variables
ndj. We insert the GOTO-equivalent of the C code shown in List-
ing 6.1 r times, where r is the number of target graphs in Σ matching
only locations instead of edges. This yields a program that is capable of
simulating the above behavior of possibly matching all target graphs.

6 FShell 115

1{
2 _Bool nd1;
3 _Bool nd2;
4 ...
5 _Bool ndk;
6 if (nd1)
7 filter_trans_A_i1();
8 else if (nd2)
9 filter_trans_A_i2();

10 ...
11 else if (ndk)
12 filter_trans_A_ik();
13}

Listing 6.1: Logging layer

After location matching we check for target graphs Aj ∈ Σ ∪ eval(ID)

matching one of the outgoing edges e of location `, i.e., e = 〈`, l, `′〉 ∈
L(Aj). All edges other than those added by prior instrumentation
(marked by the annotation instrumented) will at least be matched by
eval(ID). We insert one copy of the code already shown in Listing 6.1
with the modification that the last choice is deterministic, i.e., else
if (ndk) becomes an “else” only. Consequently, if only one match-
ing target graph is found, no nondeterministic branching is used and
filter_trans_A_j is called.

If the location ` has two outgoing edges e1 and e2, these are necessarily
assume-edges of the CFA. In this case the inserted code blocks must
be guarded with the appropriate condition. To this end, the guarding
condition of each assume-edge is copied. This is safe as the construction
performed by CBMC guarantees that these conditions are side-effect
free.

4. Add the monitor component. Each function filter_trans_A_j, as
called by the logging part shown in Listing 6.1, computes a fraction
of the transition relation of the trace automaton A: depending on the
current state q, as stored in stateA, filter_trans_A_j performs one
of the transitions q

Aj→ q′ such that (q,Aj, q′) ∈ ∆.

We show an example source code of the function filter_trans_A_j
in Listing 6.2. For each state q that has outgoing transitions on Aj

6 FShell 116

1void filter_trans_A_j() {
2 switch(stateA) {
3 case q: {
4 _Bool nd1;
5 _Bool nd2;
6 if (nd1)
7 stateA = qa;
8 else if (nd2)
9 stateA = qb;

10 else
11 stateA = qc;
12 break;
13 }

15 case q′: {
16 _Bool nd1;
17 if (nd1)
18 stateA = qx;
19 else
20 stateA = qy;
21 break;
22 }
23 case q′′:
24 break;
25 default:
26 assume(0);
27 }
28}

Listing 6.2: Monitor function

we add a nondeterministic choice over its possible successor states.
Furthermore we handle the case that filter_trans_A_j is called in a
state q that has no outgoing transitions onAj with assume(false). Such
an assumption terminates (symbolic) execution of the path beyond this
point, making the final assertion unreachable. Therefore CBMC will
not compute such paths. This is formally equivalent to setting stateA
to some additional (and hence dead) state q−1, but more efficient.

5. For F = {qi1 , . . . , qik} we generate the assertion

assert (!(stateA == qi1 || ... || stateA == qik));

which is violated if stateA equals one of the final states of the trace
automaton upon reaching the assertion at the end of the program.

The preceding steps guarantee that a test case is an accepting run for
the trace automaton A. As we perform this instrumentation both for the
test goal automaton and the observation automaton, and we want each test
case to be an accepting run for both of the automata we combine the two
assertions generated in the last instrumentation step into

assert (!((stateAC
== qi1 || ...) && (stateAP

== qj1 || ...)));

to assert the combined property.

6 FShell 117

Example. In Listing 6.3 we present the ANSI C equivalent of the instru-
mented GOTO functions for the program originally shown in Listing 3.3.
We observe a blowup from a six-line program in Listing 3.3 to 61 lines, plus
initialization code and the assertion in the main function. We study the
overhead in the following paragraph.

Overhead of Program Instrumentation. The above instrumentation
steps impose a considerable overhead in program size, resulting in a larger
abstract trace. We formalize this in the following proposition.

Proposition 6.4 The number of edges of the abstract trace tA′′, denoted by
|tA′′ |, develops polynomially in the number of transitions and the size of the
alphabet of the trace trace automata AC and AP for any given abstract trace
tA′ before instrumentation. We have

|tA′′ | ∈ O
(
(|∆AC

| · |ΣAC
|+ |∆AP

| · |ΣAP
|) · |tA′|

)
.

Proof. In instrumentation as described above we only consider locations
and edges of A’, i.e., edges not added by a previous automaton instrumen-
tation step. We can therefore consider the overhead of instrumentation for
each of AC and AP independently. Let A = 〈Q,Σ, I,∆, F,G〉 be a trace
automaton. For each location of the CFA A′ we insert the logging code at
most |Σ| times. For outgoing edges we insert one logging block for each edge.
As there are at most two such edges we have a bound of |Σ|+ 2, or O(|Σ|).
This insertion may occur at each location, resulting in |tA′ | ·O(|Σ|) insertions
occurring in the abstract trace.

It remains to determine the size of each inserted block. A location or
edge may belong to all target graphs of Σ, resulting in |Σ| nondeterministic
choices in the code of Listing 6.1. Each choice induces a unique function
call of the monitor code. The abstract trace has inlined versions of all these
functions, amounting to a total of O(|Σ|+ |∆|) edges for each inserted block.
By construction of our trace automata we have |Σ| ≤ |∆|.

For the trace automaton A we thus get a bound

|tA′| · O(|Σ|) · O(|∆|) ∈ O(|∆| · |Σ| · |tA′|).

Summing up these bounds for AC and AP completes the proof. �

6 FShell 118

1 int state_A_C, state_A_P;

3void filter_trans_A_C_1() {
4 switch(state_A_C) {
5 case 0: state_A_C = 1;
6 break;
7 case 1: state_A_C = 1;
8 break;
9 case 2: state_A_C = 3;

10 break;
11 case 3: state_A_C = 3;
12 break;
13 default:
14 assume(0);
15 }
16}
17void filter_trans_A_C_2() {
18 switch(state_A_C) {
19 case 0: state_A_C = 2;
20 break;
21 case 1: state_A_C = 2;
22 break;
23 default:
24 assume(0);
25 }
26}
27void filter_trans_A_P_1() {
28 switch(state_A_P) {
29 case 0: state_A_P = 1;
30 break;
31 case 1: state_A_P = 1;
32 break;
33 default:
34 assume(0);
35 }
36}

38 int foo(int x, int y) {
39 if (x > y) {
40 _Bool nd1;
41 if (nd1) filter_trans_A_C_1();
42 else filter_trans_A_C_2();
43 } else {
44 _Bool nd1;
45 if (nd1) filter_trans_A_C_1();
46 else filter_trans_A_C_2();
47 }
48 if (x > y)
49 filter_trans_A_P_1();
50 else
51 filter_trans_A_P_1();
52 if (x > y) {
53 filter_trans_A_C_1();
54 filter_trans_A_P_1();
55 return x;
56 } else {
57 filter_trans_A_C_1();
58 filter_trans_A_P_1();
59 return y + 10;
60 }
61}

64void main() {
65 state_A_C = 0;
66 state_A_P = 0;
67 int x, y;
68 foo(x,y);
69 assert (!((state_A_C == 2 ||
70 state_A_C == 3)
71 && (state_A_P == 0 ||
72 state_A_P == 1)));
73}

Listing 6.3: Instrumented version of Listing 3.3

6 FShell 119

We note that the real overhead may be smaller on some instances as
trivially unreachable edges will not occur in the abstract trace computed by
CBMC. Yet we do observe the overhead being this large in general. On some
randomly picked examples with |ΣAC

| = |ΣAP
| = 1 and |∆AP

| = 2, varying
only ∆AC

, we have:

• |tA′ | = 29 (a small program with ten lines of code), but observe |tA′′ | =
787 for |∆AC

| = 6; |tA′′ | = 873 for |∆AC
| = 7; and |tA′′| = 1103 for

|∆AC
| = 10.

• |tA′ | = 428 (a part of joplift.c; joplift.c is described in Table 7.1). We
find |tA′′ | = 13688 for |∆AC

| = 6; |tA′′| = 15154 for |∆AC
| = 7; and

|tA′′ | = 19064 for |∆AC
| = 10.

For our running example we have |tA′ | = 14, |ΣAC
| = 2, |∆AC

| = 6, |ΣAP
| = 1,

and |∆AP
| = 1. We observe a blowup factor of almost 18, to |tA′′ | = 251.

The overhead for the SAT formula built from the abstract trace, however,
is by far not as large – we see factors of 3 or 4, both for the number of
variables and the number of clauses, where we had factors of up 44 in the
above examples for the overhead in the abstract trace. As a result of the
careful design with variables using as few bits as possible, we observe that
our additional code permits a very efficient encoding, but the increase for the
abstract trace may still be prohibitive. We therefore describe an alternative
technique in Section 6.6.2.

Handling Test Goals. Our instrumentation guarantees that any concrete
trace computed by CBMC violates the assertion added in the last of the
above instrumentation steps, i.e., we reach accepting states of both AC and
AP within a bounded number of steps. For the test goal automaton, however,
we furthermore need to handle test goal states. We do so at the level of the
CNF formula.

As described in Section 6.5.2, CBMC translates the fully instrumented
CFA A′′ to the CNF formula φ[tA′′], which includes an encoding of the map-
ping ιtA′′ . The test goal states described by G therefore translate to the
following:

• For each state q ∈ Q′ with (Q′, all) ∈ G we first identify all edges Eq =

{e1, . . . , ek} of A′′ where the assignment stateAC
= q of Listing 6.2 was

inserted. Reaching such an edge amounts to reaching state q. An edge

6 FShell 120

ei ∈ Eq is necessarily reached via a logging call filter_trans_AC_j
on one of the edges {fi1 , . . . , fimq

}. Each such logging call together
with reaching ei then constitutes one subgoal (cf. Definition 6.2) gik ,
which we construct as follows: the abstract trace tA′′ contains multiple
copies of each CFA edge as a result of unwinding the CFA and inlining
functions. For an edge e we name these {e1, . . . , el}. Each edge eji
has a corresponding set of logging calls {f ji1 , . . . f

j
imq
}. Subgoals gik for

1 ≤ k ≤ mq are defined by

gik ≡
∨

1≤j≤l

ιtA′′ (e
j
i) ∧ ιtA′′ (f

j
ik

).

We define the set of all goals induced by Q′ as a function goals(Q′) with

goals(Q′) =
⋃
q∈Q′

 ∨
ei∈Eq

gik | 1 ≤ k ≤ mq

 .

• For q ∈ Q′ with (Q′, one) ∈ G we again collect all edges Eq as described
above. In this case, however, we only get a single subgoal and goals(Q′)

returns a singleton set with

goals(Q′) =

∨
q∈Q′

∨
ei∈Eq

∨
1≤j≤l

ιtA′′ (e
j
i)

 .

We obtain the set of all test goals per Definition 6.2 by inspecting all
accepting runs of AC . The states of an accepting run induce a sequence
〈(Q1,m1), . . . , (Qk,mk)〉 with (Qi,mi) ∈ G where mi ∈ {one, all, none}. For
(Qi,mi) with mi 6= none we use the above function goals(Qi) to obtain sets
of Boolean variables. For (Qj, none) we define goals(Qj) = {true} and set the
set of test goals described by AC to

Φ(A) = {Ψ1 ∧Ψ2 ∧ . . . ∧Ψk | Ψi ∈ goals(Qi) with 1 ≤ i ≤ k}. (6.1)

Remark 6.5 The above construction of test goals via the Cartesian product
yields a set of a size being exponential in k.

For most practical queries k is very small (≤ 5), but still the eager con-
struction of test goals as shown above yields an avoidable overhead: in Sec-
tion 6.7 we introduce groupwise constraint strengthening to avoid this explicit
and eager Cartesian construction.

6 FShell 121

Example. In Section 6.5.1 we obtained AC with

G = {({q0, q1}, one), ({q2}, all), ({q3}, one)}.

The function goals is therefore defined as follows, using line numbers of the
code in Listing 6.3 to hint at corresponding edges:

goals({q0, q1}) =

{
ιtA′′ (e

1
65) ∨

∨
1≤j≤4

ιtA′′ (e
j
5) ∨

∨
1≤j≤4

ιtA′′ (e
j
7)

}

goals({q2}) =

{ ∨
1≤j≤2

(
ιtA′′ (e

j
19) ∧ ιtA′′ (e

j
42)
)
∨
∨

1≤j≤2

(
ιtA′′ (e

j
21) ∧ ιtA′′ (e

j
42)
)
,

∨
1≤j≤2

(
ιtA′′ (e

j
19) ∧ ιtA′′ (e

j
46)
)
∨
∨

1≤j≤2

(
ιtA′′ (e

j
21) ∧ ιtA′′ (e

j
46)
)}

goals({q3}) =

{ ∨
1≤j≤4

ιtA′′ (e
j
9) ∨

∨
1≤j≤4

ιtA′′ (e
j
11)

}

The Cartesian product of these sets of subgoals then results in two test goals
Φ(A) = {Ψ1,Ψ2}.

6.6.2 Propositional Encoding of Trace Automata

We showed in Proposition 6.4 that translation of trace automata through
program instrumentation imposes a polynomial overhead. We furthermore
noticed that this overhead is indeed observed on abstract traces, resulting in
prohibitively large abstract traces. At the same time, however, we found that
the SAT instance that CBMC builds from these abstract traces is, whenever
such a construction is still feasible, only enlarged by a factor being an order
of magnitude smaller.

Thus we propose to replace the instrumentation of trace automata by
a direct encoding as a propositional formula. While being more low-level
in terms of what objects we manipulate within CBMC’s components, and
therefore possibly harder to realize and debug, we find two definitive advan-
tages in this step, which are also confirmed by the experiments presented in
Section 7.4:

1. The overhead of larger abstract traces is completely avoided.

6 FShell 122

2. The propositional encoding will even further reduce the overhead in
the size of the SAT formula. One of the main reasons here is that non-
deterministic choices can be encoded as a Boolean disjunction instead
of introducing new variables.

Trace automata, as specified in Definition 6.1, define regular languages
over locations and edges. The classical Büchi-Elgot-Trakhtenbrot Theo-
rem [Büc60, Elg61, Tra62] states that regular languages and monadic second
order logic (MSO) have the same expressive power and that the translation
between these formalisms is effective. In our case we are only concerned with
the translation of a nondeterministic finite automaton (NFA) into MSO. Let
A = 〈{q0, . . . , qk},Σ, q0,∆, F 〉 be an NFA. The property w ∈ L(A) translates
to w |= ϕ with ϕ defined as follows:

ϕ ≡ ∃X0, . . . , Xk.ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4

ϕ1 ≡
∧

0≤i 6=j≤k

∀x.¬(Xi(x) ∧Xj(x))

ϕ2 ≡ ∀x.¬∃y.S(y, x)→ X0(x)

ϕ3 ≡ ∀x, y.S(x, y)→
∨

(i,a,j)∈∆

(Xi(x) ∧ Pa(x) ∧Xj(y))

ϕ4 ≡ ∀x.¬∃y.S(x, y)→
∨

(i,a,j)∈∆∧j∈F

(Xi(x) ∧ Pa(x))

Here, S(x, y) is the successor predicate over natural numbers (including zero).
X0, . . . , Xk are second order variables with the intended semantics thatXj(x)

is true if and only if A is in state qj after reading position x in word w. Each
letter a ∈ Σ induces a first order predicate Pa with Pa(x) evaluating to true

if and only if there is an ‘a’ at position x in word w.
As our intention, however, is to use a SAT solver, we have to come up

with a propositional encoding instead of a formula in second order logic. To
this end we first observe that the length of words we have to process by a
trace automaton A = 〈Q,Σ, I,∆, F,G〉 is bounded by l = |tA′ | · |Σ|: given
an abstract trace tA′ we have to process each location at most |Σ| times
as discussed in Section 6.6.1. From boundedness of word length it follows
that the resulting language has at most 2l words and can be encoded as a
propositional formula – at least the naïve encoding exists, where we represent
the language as a disjunction over these words.

For a more efficient encoding we follow the above translation according to
Büchi-Elgot-Trakhtenbrot and as first step describe an encoding which still

6 FShell 123

uses first order predicates PA. Given the upper bound on the word length l
we arrive at the following formula:

ϕ ≡ ∃x0
0, . . . , x

1
l , . . . , x

k
0, . . . , x

k
l .ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4

ϕ1 ≡
∧

0≤j≤l

∧
0≤m6=n≤k

¬(xmj ∧ xnj)

ϕ2 ≡
∨
qi∈I

xi0

ϕ3 ≡
∧

0≤j<l

∨
(qm,A,qn)∈∆

(xmj ∧ PA(j + 1) ∧ xnj+1)

ϕ4 ≡
∨
qj∈F

xjl

We replaced each second order variable Xj, which represented sets of states,
by l + 1 Boolean variables xj0...l with Xj(y) ⇔ xjy. This encoding introduces
(l+1)·(k+1) existentially quantified Boolean variables. We can, however, also
get an encoding that only uses (l+1)·dlog2(k+1)e bits, at the expense of a new
first order predicate: we replace x0...k

i by a single bit-vector sj of dlog2(k+1)e
bits and a new first order predicate Qj(x) that is true whenever x is the bit-
vector encoding of j. By definition of Qj(x) the formula ¬(Qm(sj)∧Qn(sj))

is a tautology for m 6= n. As an additional improvement, ϕ1 of the above
formula can therefore be omitted.

Implementation. In Algorithm 6.1 we present the algorithm that incre-
mentally builds the formula ϕ, as described above, for an abstract trace tA′′
and a trace automaton A = 〈Q,Σ, I,∆, F,G〉. We traverse the abstract trace
tA′′ , which we obtain by first adding the trivial assertion

assert (0);

at the end of CBMC’s main function to ensure that there is some as-
sertion. This is similar to the instrumentation of the assertion described in
Section 6.6.1, but without specifying any final states of the trace automata.
Enforcing program executions that reach final states will be solely handled
by the propositional encoding.

We incrementally build the formula ϕ in φ. We initialize φ in line 2, which
resembles ϕ2.

By traversing the abstract trace (lines 3–18) we can evaluate the predicate
PA of ϕ3 to translate it into a property using the literals that encode ιtA′′ .

6 FShell 124

input: tA′′ , A = 〈Q,Σ, I,∆, F,G〉

1 j := 0

2 φ :=
∨
qi∈I Qi(sj)

3 foreach e = 〈`, op, an, `′〉 ∈ tA′′ do
4 TGL := {A | A ∈ Σ ∧ ` ∈ L(A)}
5 for i := 0 to i < |TGL| do
6 j := j + 1

7 φ′ :=
∨
A∈TGL∧(q,A,q′)∈∆(Qq(sj−1) ∧Qq′(sj))

8 φ := φ ∧ ((sj−1 ↔ sj) ∨ (ιtA′′ (`) ∧ φ
′))

9 goals := build_goals(tA′′, A, TGL, `, j)

10 TGE := {A | A ∈ Σ ∧ e ∈ L(A)}
11 if TGE = ∅ ∧ instrumented 6∈ an then φ := φ ∧ ¬ιtA′′ (e)
12 else
13 j := j + 1

14 φ′ :=
∨
A∈TGE∧(q,A,q′)∈∆(Qq(sj−1) ∧Qq′(sj))

15 if instrumented ∈ an then φ′ := φ′ ∧ (sj−1 ↔ sj)

16 φ := φ ∧ (ιtA′′ (e)→ φ′)

17 φ := φ ∧ (ιtA′′ (e) ∨ (sj−1 ↔ sj))

18 goals := build_goals(tA′′, A, TGE, e, j)

19 φ := φ ∧
∨
qi∈F Qi(sj)

20 return (φ, goals)

Algorithm 6.1: Construction of propositional encoding

6 FShell 125

We describe this case for edges (lines 10–18); for locations (lines 4–9) the
basic approach is the same, but has to be repeated as already described in
Section 6.6.1.

Given an edge e in the abstract trace tA′′ we collect in TGE all target
graphs A ∈ Σ that contain e. In accordance with ϕ3 we must take one of the
possible transitions (line 14), if ιtA′′ (e) evaluates to true (line 16), unless the
edge was added by (predicate) instrumentation (line 15). If ιtA′′ (e) evaluates
to false, the state bit-vector must remain constant (line 17).

The requirement that we end in an accepting state, ϕ4, is added in line 19.
The resulting formula φ therefore resembles ϕ as described previously, with
PA being replaced by expressions using ιtA′′ .

Handling Test Goals. As part of the traversal we also build the mapping
goals, as already described in the preceding section, on the fly. For an incre-
mental construction we call Algorithm 6.2 (function build_goals()). We
use the same function for both locations (x = `) and edges (x = e).

input: tA′′ , A = 〈Q,Σ, I,∆, F,G〉, TG, x, j

1 foreach A ∈ TG do
2 foreach (q,A, q′) ∈ ∆ do
3 if ∃Q′.q′ ∈ Q′ ∧ (Q′, all) ∈ G then
4 if ∃s.ιtA′′ (x) ∧Qq′(s) ∈ goals(Q′) then
5 goals(Q′) := goals(Q′) \ {ιtA′′ (x) ∧Qq′(s)}
6 goals(Q′) := goals(Q′) ∪ {ιtA′′ (x) ∧ (Qq′(s) ∨Qq′(sj))}
7 else
8 goals(Q′) := goals(Q′) ∪ {ιtA′′ (x) ∧Qq′(sj)}

9 else if ∃Q′.q′ ∈ Q′ ∧ (Q′, one) ∈ G then
10 g′ := false

∨
g∈goals(Q′) g

11 goals(Q′) := {g′ ∨ ιtA′′ (x) ∧Qq′(sj)}

12 return goals

Algorithm 6.2: Function build_goals() for incremental construction
of goals

6 FShell 126

Overhead. With this approach, for the same examples that we picked in
case of program instrumentation, we now get an increase in the size of the
SAT formula of a factor of two only – before we had factors of 3 to 4 for very
simple queries and trace automata. Furthermore the growth in the number
of variables will be only logarithmic in the number of states of the trace
automata.

6.7 Efficient Test Case Enumeration

Given the CNF encoding φ[tA′′] (including the propositional encoding φ of
Section 6.6.2) plus the set of test goals goals we want to efficiently compute
a set of test cases that satisfies the test goals. For this section we will use
the terms “test case” and model of the SAT formula interchangeably. We
write π ∈ φ[tA′′], where π is a path, iff there exists a model of φ[tA′′] with
a concrete trace describing π. In Section 6.9 we describe the translation
of models to practically useful test cases. Hence the focus of this section
is the use of SAT solving for efficient and guided enumeration of models –
enumeration of arbitrary solutions would be computationally intractable and
would yield excessively large test suites. We will therefore introduce guided
SAT enumeration in Section 6.7. In guided SAT enumeration we repeatedly
solve a SAT instance while incrementally adding clauses to achieve the desired
guidance. While technically an arbitrary SAT solving strategy can be used,
this process will be most efficient if conflict-driven clause learning (CDCL) is
employed. In the following section we will therefore give a short introduction
to CDCL SAT solving and describe the interface to the SAT solver that we
assume in later sections.

6.7.1 Overview of CDCL/DPLL SAT Solving

The problem of satisfiability of Boolean formulas was one of the first problems
shown to be NP-complete by Cook [Coo71]. As the problem is commonly
referred to as “SAT”, decision procedures for this problem are called “SAT
solvers”. The DPLL algorithm [DP60, DLL62] was one of the first sound
and complete procedures to solve the SAT problem. DPLL underlies the
most successful current solvers, although (incomplete) stochastic local search
procedures such as GSAT [SLM92] and WalkSAT [SKC94] were also very
popular several years ago.

6 FShell 127

DPLL-style SAT solvers today employ a number of heuristic improve-
ments over the original procedure, which made the algorithm work efficiently
on many practical problems, especially for satisfiable SAT instances. Only
recently it has been shown [PD09] that modern CDCL solvers are still ca-
pable of producing short refutation proofs also for unsatisfiable instances,
given an appropriate choice of heuristics. The main improvements are con-
flict analysis and clause learning as pioneered by GRASP [SS99] and further
improved in CHAFF [ZMMM01], which also added efficiency improvements
in Boolean constraint propagation using watched literals [MMZ+01] and dy-
namic variable reordering. The watched literals scheme was further improved
in PicoSAT [Bie08], but recently several solvers moved back to head/tail-lists
as earlier proposed in SATO [ZS94], because watched literals are patent cov-
ered.

The SAT solver MiniSat [ES03] made a major contribution to wide adop-
tion of SAT solvers. It provided a clean and very compact implementation
of the most successful techniques of CDCL SAT solving.

For FShell we employ version 2.2.0 of the MiniSat solver as the decision
procedure of CBMC. MiniSat provides the following conceptual application
programming interface (function names and argument types do not neces-
sarily match the implementation):

• Adding constraints with function add(φ): The method takes an arbi-
trary Boolean constraint φ (not necessarily in CNF).

• Checking for satisfiability with solve(φ): The method returns true iff
there exists a solution to the constraints added to the clause database so
far under the additional assumption φ. Assumptions φ are not added
to the clause database and therefore may vary over a series of calls
to solve() without making the solver state inconsistent. If a call to
solve() returns true, a witness is cached.

• Obtaining a model with solution(): The method returns the last
witness cached in a call to solve().

6.7.2 Guided SAT Enumeration

To generate a test suite Γ for a CFA A matching an elementary coverage
criterion Φ(A) we introduce iterative constraint strengthening (ICS). In ICS,

6 FShell 128

work with the CNF representation φ[tA′′] to build a test suite Γ iteratively
from a sequence of test suites Γ0 ⊂ Γ1 ⊂ · · · ⊂ Γm with Γ0 = ∅ and Γq =

{π1, . . . , πq} for 1 ≤ q ≤ m. In the m-th iteration, we reach a fixed point
when no more new goals can be covered.

Algorithm Overview. In the q-th iteration we build the path constraint
ICSPCq (Equation (6.2)) and obtain the test case πq+1 as one of its solutions.
Here, ICSPCq describes those models of φ[tA′′] which describe paths covering
a hitherto uncovered test goal. If no such test goal exists any more, ICSPCq
becomes unsatisfiable. Having determined a new test case πq+1, we build
ICSPCq+1 and continue the procedure with the (q + 1)-st iteration until we
reach an iteration m where ICSPCm becomes unsatisfiable.

In order to fit the framework of incremental SAT solving (cf. [ES03]), we
rewrite ICSPCq (Equation (6.3)) in such a way that we are able to describe
ICSPCq+1 incrementally in terms of ICSPCq by only adding new constraints
without removing or changing previously added constraints (Equation (6.4)).
Using this incremental formulation of ICSPCq, we describe iterative constraint
strengthening (ICS) based upon an incremental SAT solver in Algorithm 6.3.
The m paths finally collected by ICS constitute indeed a covering test suite
(Theorem 6.8).

Path Constraints. The initial path constraint ICSPC0 requires that a path
is a model of φ[tA′′] and covers at least one of the test goals Ψ for Ψ ∈ Φ(A).
Subsequently, in ICSPCq, we require the path to cover at least one test goal Ψ

which remained uncovered by the test suite Γq. Since Γq+1 must cover at least
one more test goal than Γq, it suffices to strengthen the constraint ICSPCq
to obtain ICSPCq+1. Below, we write uncovq = {Ψ | Ψ ∈ Φ(A) ∧ Γq 6|= Ψ} for
the set of test goals not covered in Γq. Note that uncov0 = Φ(A) since Γ0 = ∅
covers no test goals at all. Then, for 0 ≤ q ≤ m, we search for a solution
πq+1 to the q-th constraint

ICSPCq := φ[tA′′] ∧
∨

Ψ∈uncovq

Ψ (6.2)

Note that the empty disjunction is equivalent to false, i.e., if uncovq = ∅, then
ICSPCq ≡ false. Thus, ICSPCq is satisfied by exactly those paths in φ[tA′′]

which satisfy at least one feasible test goal still uncovered by Γq. If no such
test goal exists, i.e., if Γq achieves coverage, then ICSPCq is unsatisfiable.

6 FShell 129

Proposition 6.6 ICSPCq demands further Coverage
ICSPCq (Equation (6.2)) is satisfied by exactly those paths in φ[tA′′] which
satisfy at least one feasible test goal taken from Φ(A) being unmatched by Γq.
If no such test goal exists ICSPCq is unsatisfiable.
Proof. Note that uncovq is defined as the subset of test goals which are
not satisfied by Γq. Then Equation (6.2) is satisfied by exactly those paths
which are in φ[tA′′] and which satisfy at least one such test goal in uncovq.
If no such test goal exists, the disjunction in Equation (6.2) becomes empty
and ICSPCq simplifies to false. �

Incremental Path Constraints. In incremental SAT solving, we use a
single persistent clause database for consecutive solver invocations. When
the SAT solver finds a solution, we add new clauses to the clause database,
but do not remove any clauses. When the execution of the SAT solver is
continued, the learned clauses obtained during earlier invocations remain
valid and help to guide the search of the solver. Therefore, we have to
construct ICSPCq+1 from ICSPCq by only adding further constraints to the
clause database. Observe that uncovq+1 ⊂ uncovq holds for 0 ≤ q ≤ m − 1.
Thus in going from ICSPCq to ICSPCq+1, we have to remove all test goals
Ψ with Ψ ∈ uncovq \ uncovq+1 from the disjunction

∨
Ψ∈uncovq

Ψ occurring in
Equation (6.2). To do so, we introduce a new Boolean variable Sa for each
test goal Ψa and write ICSPCq equisatisfiable as

ICSPCq :=

φ[tA′′] ∧
∨

Ψa∈Φ(A)

(Sa ∧Ψa)

 ∧ ∧
Ψa /∈uncovq

¬Sa (6.3)

Proposition 6.7 Equations (6.2) and (6.3) are equisatisfiable
The two formulations of ICSPCq in Equation (6.2) and in Equation (6.3) are
equisatisfiable by models involving the same path π.
Proof. Recall the two formulations of ICSPCq from Equations (6.2)
and (6.3), respectively:

φ[tA′′] ∧
∨

Ψ∈uncovq

Ψ and

φ[tA′′] ∧
∨

Ψa∈Φ(A)

(Sa ∧Ψa)

 ∧ ∧
Ψa /∈uncovq

¬Sa

(⇒) Assume that Equation (6.2) has a model π. Then π ∈ φ[tA′′] must
hold, and there must exist a test goal Ψa ∈ uncovq ⊆ Φ(A) with π |= Ψa. Fix

6 FShell 130

such an a and assign Sa = true and Sa′ = false for all a′ 6= a. This expanded
assignment satisfies Equation (6.3): π ∈ φ[tA′′] holds, and for the fixed test
goal Ψa, the conjunct Sa ∧ Ψa holds as well. As we assigned false to all
variables Sa′ for a′ 6= a, and since Ψa ∈ uncovq, we find that

∧
Ψa /∈uncovq

¬Sa is
satisfied as well – such that the expanded assignment satisfies Equation (6.3)
as a whole.

(⇐) Assume that Equation (6.3) has a model. Then π ∈ φ[tA′′] must
hold, and there must exist a test goal Ψa ∈ Φ(A) with Sa ∧Ψa. Fix such an
a and observe that for this a the variable Sa must be assigned with true. Since∧

Ψa /∈uncovq
¬Sa must be satisfied as well, Ψa ∈ uncovq must hold. Therefore

we obtain π |= Ψa for a Ψa ∈ uncovq and consequently the assignment
satisfying Equation (6.3) must satisfy Equation (6.2) as well.

Note that in both directions, we did not alter the path π such that both
formulations are satisfied by models describing the same set of paths. �

Thus ICSPCq consists of (a) an initial expression, shown above in square
brackets, which remains unchanged throughout all iterations, and (b) a con-
junction which is expanded from one iteration to the next. Adding ¬Sa to
the constraint renders the corresponding conjunct Sa ∧Ψa unsatisfiable, and
therefore only the conjuncts for Ψa ∈ uncovq remain enabled. Note that for
ICSPC0 we have true ≡

∧
Ψa /∈uncov0

¬Sa. Thus, in each iteration step, we use

ICSPCq+1 := ICSPCq ∧
∧

Ψa∈uncovq\uncovq+1

¬Sa (6.4)

to obtain ICSPCq+1 from ICSPCq. Since we only add further constraints
conjunctively, this approach fits the requirements of incremental SAT solving.

Iterative Constraint Strengthening. The resulting algorithm ICS is
shown in Algorithm 6.3.

In line 1 we initialize the iteration counter q, the first test suite Γ0, and
the set of test goals uncov0 uncovered by Γ0. Then in line 2, we add the initial
expression from Equation (6.3) and start the search for the first solution in
line 3. If a solution is found, it is obtained from the solver, assigned to πq+1,
and added to Γq+1. Then, after initializing uncovq+1, we update the clause
database following Equation (6.4) and fill the set uncovq+1 in lines 7 to 9: for
each yet uncovered test goal Ψa ∈ uncovq, we check whether πq+1 satisfies Ψa

(cf. Section 6.7.3). If this is the case, Ψa ∈ uncovq \ uncovq+1 holds, and thus

6 FShell 131

input: φ[tA′′], Φ(A)

1 q := 0, Γ0 := ∅, uncov0 := Φ(A)

2 add(φ[tA′′] ∧
∨

Ψa∈Φ(A) (Sa ∧Ψa))
3 while solve(true) do
4 πq+1 := solution()
5 Γq+1 := Γq ∪ {πq+1}
6 uncovq+1 := ∅
7 foreach Ψa ∈ uncovq do
8 if πq+1 |= Ψa then add(¬Sa)
9 else uncovq+1 := uncovq+1 ∪ {Ψa}

10 q := q + 1

11 return Γq

Algorithm 6.3: Iterative Constraint Strengthening (ICS)

we add ¬Sa in line 8. Otherwise Ψa remains uncovered by Γq+1 and hence
we add Ψa to uncovq+1 in line 9. Once no further solution is found in line 3,
the accumulated suite Γq is returned.

Theorem 6.8 Correctness of Iterative Constraint Strengthening
The test suite Γ returned by the algorithm ICS(φ[tA′′],Φ(A)) in Algorithm 6.3
satisfies Γ ⊆ φ[tA′′] ∧ Γ |= Φ(A).

Proposition 6.9 Correctness of Incremental Formulation of ICSPCq
Equation (6.3) and the incremental formulation in Equation (6.4) are equiv-
alent, where we use

ICSPC0 ≡

φ[tA′′] ∧
∨

Ψa∈Φ(A)

(Sa ∧Ψa)


for the base case.
Proof. (q = 0) First, note that the equivalence holds for the base case q = 0

since uncov0 = Φ(A) holds and thus
∧

Ψa /∈uncovq
¬Sa as an empty conjunction

simplifies to true, i.e., Equation (6.3) simplifies to ICSPC0 as stated in the
proposition.

(q ⇒ q + 1) Considering Equation (6.3), the only difference between
ICSPCq and ICSPCq+1 are the different conjuncts in

∧
Ψa /∈uncovq

¬Sa. Since

6 FShell 132

uncovq+1 ⊂ uncovq we find that uncovCq+1 = uncovCq ∪ (uncovq \ uncovq+1)

where the complement refers to Φ(A) as universe. But these are exactly the
conjuncts added with

∧
Ψa∈uncovq\uncovq+1

¬Sa in Equation (6.4). This proves
the equivalence between Equations (6.3) and (6.4) for q + 1, assuming the
equivalence already holds for q – and thus completes the induction. �

Remark 6.10 (Nondeterminism in Choosing πq+1) The algorithm ICS
leaves the particular choice of πq+1 open to the underlying SAT solver (line 4).
Potential optimizations could control this choice to minimize the number of
test cases necessary to obtain coverage.

Proof of Theorem 6.8
The constraints added incrementally to the SAT solver up until iteration q

amount to Equation (6.4): In line 2, the initial constraint for ICSPC0 is added
to the solver. Then, in line 8, we add the constraint ¬Sa for all Ψa ∈ Φ(A)

with πq+1 |= Ψa. Thus all the corresponding test goals Ψa are covered at
least in iteration (q + 1) – while they are possibly already covered in some
earlier iteration – and therefore we have uncovq \ uncovq+1 ⊆ {Ψa ∈ Φ(A) |
πq+1 |= Ψa}. Consequently, in line 8 all conjuncts of

∧
Ψa∈uncovq\uncovq+1

¬Sa
are added to the solver – in addition to some redundant conjuncts ¬Sa for
Ψa /∈ uncovq which have been added already in earlier iterations.

ICS solves ICSPCq in iteration q: Since the collected constraints amount
to Equation (6.4), and since Propositions 6.7 and 6.9 together prove that
Equation (6.4) is equisatisfiable to Equation (6.2), we find that ICS solves in
the q-th iteration the constraint ICSPCq (line 3). Moreover, Propositions 6.7
and 6.9 guarantee that the path π remains unchanged such that the solution
obtained in line 4 is a path solving ICSPCq as defined by Equation (6.2).

ICS is correct if it terminates: By Proposition 6.6, we know that if no
solution is found in line 3, then no additional feasible and yet uncovered
test goal exists, i.e., the current test suite Γq covers all test goals from Φ(A)

which are feasible in φ[tA′′]. Hence, if ICS terminates and returns a result in
line 11, then the returned test suite satisfies the theorem statement.

ICS terminates: Thus, it remains to show that the loop terminates. If
the loop does not terminate in the q-th iteration, then the condition in line 3
is not satisfied, i.e., a path πq+1 is found such that πq+1 satisfies ICSPCq.
By Proposition 6.6, we know that πq+1 must satisfy at least one hitherto
uncovered test goal Ψa, i.e., Ψa ∈ uncovq \ uncovq+1. Since at least one such

6 FShell 133

Ψa must exist in every iteration, we obtain uncovq+1 ⊂ uncovq for all q ≥ 0.
Assume that the loop does not terminate. Then ICSPCq must be satisfiable
for all q ≥ 0. Since uncovm is empty after m ≤ |Φ(A)| = k iterations,
the right conjunct

∨
Ψa∈uncovq

π |= Ψa in Equation (6.2) becomes the empty
disjunction afterm ≤ k iterations. But then, ICSPCm is unsatisfiable – which
is a contradiction. �

Groupwise Constraint Strengthening. As stated in Remark 6.5, the
number of test goals is exponential in the number of test goal groups, as
described by the mapping goals. For this reason, the disjunction in ICSPC0

will be of exponential size – thus rendering iterative constraint strengthening
hard for such coverage criteria. But in practice, such criteria are only appli-
cable for two reasons [Bal04]: First, because many of these test goals are, in
our terminology, infeasible, and second, because a single test case potentially
covers multiple test goals simultaneously.

To mitigate this situation, we introduce groupwise constraint strength-
ening (GCS) as an optimization of iterative constraint strengthening. To
apply GCS, we require the test goals to be partitioned into k distinct groups
Gi = {Ψi

1, . . . ,Ψ
i
ki
} of mutually exclusive subgoals for 1 ≤ i ≤ k, i.e., we

require that there exists no path π with π |= Ψi
g ∧Ψ′ and π |= Ψi

h ∧Ψ′ for all
1 ≤ g 6= h ≤ ki and 1 ≤ i ≤ k with Ψ′ being the conjunct of subgoals from
each of the other groups Gj. In this setting the set of test goals Φ(A) can be
written as

Φ(A) = {Ψ1 ∧Ψ2 ∧ . . . ∧Ψk | Ψi ∈ Gi with 1 ≤ i ≤ k}

which precisely resembles Equation 6.1 of Section 6.6.1 – goals immediately
yields such groups.

In the GCS algorithm, we avoid the construction of the initial and large
disjunction

∨
Ψ∈uncovq

Ψ, as it appears in ICSPCq (Equations (6.2) and (6.3));
in fact we already avoid the eager construction of the conjuncts Ψ ∈ Φ(A):
we only build the conjunction Ψ when Ψ is known to be feasible. Therefore
we do not remove elements from a set uncovq, but conversely incrementally
build a set covq of already covered test goals.

Furthermore observe that φ[tA′′] (including φ) by construction already
guarantees that any model satisfies at least one test goal. With the obser-
vation of mutual exclusiveness it suffices to rule out each test goal that is
satisfied.

6 FShell 134

Therefore GCS proceeds like ICS but with Equation (6.2) replaced by

GCSPCq := φ[tA′′] ∧
∧

Ψ1∧Ψ2∧...∧Ψk∈covq

k∨
i=1

¬Ψi (6.5)

and with incrementally adding test goals to covq. Similar to ICS we also
adopt GCSPCq to fit incremental SAT solving: more precisely, we only start
with the constraint GCSPC0 = φ[tA′′] and incrementally add clauses

∨k
i=1 ¬Ψi

built from covq as shown in Equation (6.5).
Written in the form of Equation (6.5), GCSPCq does not explicitly refer

to any infeasible test goals and only involves feasible test goals as subexpres-
sions. This significantly reduces the size of the constructed constraint.

The effectiveness of GCS as an optimization of ICS relies on three condi-
tions: (a) mutual exclusiveness of groups must be determined in an efficient
way; we have mutual exclusion by construction of trace automata for all cov-
erage specifications other than C1 + C2. In the latter case we first eagerly
build more complex subgoals, which are then again mutually exclusive. (b)
The disjunction of all test goals must be available in a succinct formulation.
In our case this is already encoded in φ[tA′′]. (c) The fraction of feasible test
goals must be small, since the negation of each feasible test goal is added to
GCSPCq in some iteration q. Conditions (a) and (b) hold by means of our
construction. If condition (c) does not hold, then mostly also the number of
required test cases will be large – but this is inherent in the coverage crite-
rion. In the worst case it is still at most as large as the initial constraint of
ICS, ICSPC0.

6.7.3 Coverage Analysis

As a result of our constructions in Sections 6.6.1 and 6.6.2, each step in
guided SAT enumeration initially yields a path covering only one additional
test goal. Our encoding of trace automata as monitors running in parallel
implies that each solution produced by the SAT solver also induces only one
run of the test goal automaton. This accepting run of the trace automaton
is chosen nondeterministically among several possible accepting runs for the
same program path.

These alternative accepting runs may yield additional test goals covered
by the same test case. In FShell we have implemented two approaches to

6 FShell 135

discover these additional runs: we can either use the SAT solver by perform-
ing repeated runs with additional assumptions, or perform simulation of all
possible runs of the test goal automaton. Either of these approaches can be
employed for the coverage check πq+1 |= Ψa in line 8 of Algorithm 6.3.

SAT-based Coverage Analysis. In guided SAT enumeration a test case
is a model of the SAT formula. We remove all assignments to literals from
this model that do not correspond to values of program variables of A′, i.e.,
all Boolean variables of trace automata processing become undefined. We
use the remaining model as initial assumption and start a new SAT solver
instance for another run of guided SAT enumeration with the assumption of
the fixed program path. This process enumerates all test goals satisfied by
the same test case. The SAT solver returns “unsatisfiable” (UNSAT) if and
only if no further test goals can be satisfied by this test case.

Despite the beauty of using guided SAT enumeration within guided SAT
enumeration it incurs a noticeable overhead: this approach requires one call
to the SAT solver for each satisfiable test goal. Furthermore a new solver
instance must be started for each test case as the UNSAT result of the inner
guided SAT enumeration loop only holds true under the assumption of a
given test case. Because of this undesirable overhead we implemented another
approach for coverage analysis, which does not use a SAT solver:

Simulation of NFA Runs. An abstract program trace and a model com-
puted by the SAT solver yield a concrete program trace. We can therefore
simulate the test goal automaton over the concrete program trace to record
accepting runs of the test goal automaton that describe test goals (cf. Defi-
nition 6.2). We use Algorithm 6.4 to perform this simulation.

In this approach we traverse the concrete program trace in program order.
In each step we record the reachable states of the test goal automaton to build
up a run tree of the test goal automaton (lines 1–12). We store the subgoals
that are known to be satisfied via lookups in the goals mapping (lines 7–11).
At the end of the program trace we inspect all accepting states in the list
of reached states (line 14). For these states we try to translate each set of
subgoals (line 16) into a test goal. The algorithm then returns the set of
successfully translated subgoals.

6 FShell 136

input: tA′′ , ιtA′′ , 〈Q,Σ, I,∆, F,G〉, goals

1 foreach q ∈ I do
2 subgoals[q] := ∅
3 foreach e ∈ tA′′ with ιtA′′ (e) = true do
4 subgoals′ := ∅
5 foreach q ∈ subgoals and S ∈ subgoals[q] do
6 foreach q′ ∈ Q with ∃A.e ∈ A ∧ (q,A, q′) ∈ ∆ do
7 if ∃Q′.q′ ∈ Q′ ∧ (Q′, one) ∈ G then
8 subgoals′[q′] := {subgoals′[q′]} ∪ {S ∪ goals(Q′)}
9 else if ∃Q′.q′ ∈ Q′ ∧ (Q′, all) ∈ G then

10 if ∃g ∈ goals(Q′).g = ιtA′′ (e) ∧ (Qq′(s) ∨ . . .) then
11 subgoals′[q′] := {subgoals′[q′]} ∪ {S ∪ {g}}

12 subgoals := subgoals′

13 satgoals := ∅
14 foreach q ∈ subgoals with q ∈ F do
15 foreach S ∈ subgoals[q] do
16 if

∧k
i=1 ∃Ψi ∈ S ∩Gi then

17 satgoals := satgoals ∪ {
∧k
i=1 Ψi}

18 return satgoals

Algorithm 6.4: Simulation of test goal automaton runs

6 FShell 137

Choosing the Coverage Checking Strategy. Whether FShell uses the
SAT solver or the built-in simulation for coverage analysis can be controlled
by the user as explained in Section 6.3. In our experiments we observed
that for common and simple queries the built-in simulation is much faster,
but for queries inducing a large amount of nondeterminism in the test goal
automaton the SAT-based approach is still preferable.

6.8 Test Suite Minimization

Guided SAT enumeration ensures that each computed test case satisfies at
least one additional test goal – but such a test case may also satisfy test
goals already fulfilled by previously computed test cases. Thus a test suite
may contain redundant test cases, i.e., test cases that only fulfill test goals
also fulfilled by at least one other test case. With the help of the coverage
analysis described above we can obtain a mapping covers : Γ → 2Φ(A) that
describes the set of test goals fulfilled by each test case π ∈ Γ.

Offutt et al. [OPV95] discuss heuristic minimization strategies that tra-
verse a list of test cases forward and/or backwards to eliminate redundant
test cases. In FShell we implemented an optimal minimization approach
that is guaranteed to find a minimal subset of a test suite Γ that still sat-
isfies the same set of test goals. We first show that the decision problem of
whether a given test suite can be minimized to a chosen size is NP-complete.
Then we present an iterative minimization algorithm that uses incremental
SAT solving to arrive at a minimal test suite. Experimental results for this
approach are shown in Section 7.5.

Proposition 6.11 Test Suite Minimization is NP-complete [TG05,
HO09]
Let Γ be a test suite with a test goal map covers : Γ → 2Φ(A). Deciding
whether there is a test suite Γ′ ⊆ Γ of size at most k for some integer k is
NP-complete.
Proof. The test suite minimization problem is an instance of SET-
COVER(U, S, k) with the universe

U =
⋃
π∈Γ

covers(π)

and a family of subsets S = {covers(π) | π ∈ Γ}. SET-COVER is NP-
complete [Kar72]. �

6 FShell 138

Given that the decision problem is NP-complete, we use a series of SAT
solver calls to solve the corresponding minimization problem. Using Al-
gorithm 6.5 we determine the minimal solution by strictly monotonically
decreasing the size bound k.

input: Γ, covers : Γ→ 2Φ(A)

1 disj := ∅
2 foreach π ∈ Γ do
3 foreach Ψ ∈ covers(π) do
4 disj(Ψ) := disj(Ψ) ∨ enc(π)

5 foreach Ψ ∈ disj do add(disj(Ψ))
6 add(enc((

∑
π∈Γ enc(π)) < K))

7 Γ′ := Γ

8 k := |Γ′|
9 while solve(enc(K = k)) do

10 Γ′′ := ∅
11 foreach π ∈ Γ′ do
12 if enc(π) ∈ solution() then Γ′′ := Γ′′ ∪ {π}
13 Γ′ := Γ′′

14 k := |Γ′|
15 return Γ′

Algorithm 6.5: Test suite minimization

We first encode the SET-COVER problem by introducing a new Boolean
variable for each test case using a mapping function enc() (line 4). We
encode the minimization constraint as a sum over the new Boolean variables
where (enc(π)= false) ≡ 0 and (enc(π)) = true) ≡ 1 with the constraint
< K where K is a fresh and sufficiently large bit vector (line 6). We perform
iterative minimization in the loop in lines 9–14. We start with K = k = |Γ|.
If the problem is satisfiable, the model of the SAT formula induces a test
suite Γ′ (Γ and we set k = |Γ′|. Once the SAT solver returns UNSAT
(false), we have shown that Γ′ is the smallest possible test suite.

6 FShell 139

6.9 Computing Test Inputs

In FShell, a test case is internally described by a model π of the program’s
SAT formula φ[tA′′]. Together with the abstract trace this describes a con-
crete trace and thus a program execution. To aid the user, however, we need
to translate this result into a representation as succinct as possible. As we
deal with deterministic programs only, it suffices to list all input to the pro-
gram, which may include sources of randomness. FShell handles a number
of situations that can occur as test input:

1. Arguments to the program entry function.

2. Global variables when NO_ZERO_INIT was set, as explained in Sec-
tion 6.3.

3. Uninitialized local non-static variables.

4. Return values of undefined functions (possible side-effects of these un-
defined functions are not handled).

We compute the test inputs by stepping through the concrete trace and
perform a program analysis for definition-clear paths [RW85, NNH99]. In
this analysis we record all uses of variables that occur before a definition
of the corresponding variable. Each such uninitialized variable or use of an
undefined function for initialization is then taken as test input, where the
effective value is found in the model of the SAT formula.

Proposition 6.12 The definition-clear path analysis as sketched above com-
putes the most succinct representation of a test case.
Proof. In the programs we analyze all operations contained in abstract
traces are deterministic. Hence results of expressions exclusively depend
on input or previously computed expressions. If any input is not fixed or
a value of an expression is not available, multiple successor states may be
possible. Any representation of test cases must therefore at least contain all
input values or unavailable expressions. The definition-clear path analysis
determines all such inputs, i.e., values that are read before being defined. �

Examples of the resulting output of FShell have been shown in Sec-
tion 3.4.

6 FShell 140

6.10 Test Harness Generation

In the preceding section we discussed how we translate paths, as computed
in bounded model checking, into a succinct description as a set of test in-
puts. The purpose of a test harness is to drive executions of the original
program under test to follow the previously computed paths – by providing
the computed inputs.

Each of the four cases of input, as listed in Section 6.9, requires sep-
arate treatment by a test harness, resulting in the following requirements
specifications:

1. Arguments to the entry function are handled by a wrapper function. To
avoid linking programs caused by, e.g., a duplicate definition of a main
function, the original program entry function must be renamed. The
wrapper then calls the renamed function with the computed inputs.

2. Initialization of global variables is performed in a new initialization
function that is called by the wrapper before calling the renamed entry
function.

3. Local variables get values assigned at the point of their declaration.
This requires modification of the program source code.

4. Undefined functions with computed return values must be defined as
new C functions that only return the desired value or a sequence of
such values in case of multiple call sites.

A fully automated solution of these tasks requires parsing the source code
and printing the modified program plus possibly tweaking the build environ-
ment. As a prototypical instance thereof we provide a solution using Perl
scripts: the script TestEnvGenerator.pl takes as input the test output of
FShell with command line option --tco-location being set. The latter
is necessary for the test harness generation to have source line numbers and
variable type information available. The test harness generator then builds a
file “tester.c” that holds the wrapper function and a Makefile “tester.mk” (on
Windows systems a batch file “tester.bat” is created instead). The Makefile
contains source editing commands. These commands – Perl text replacement
commands – are executed on a copy of the original source files. The Makefile
furthermore provides the compile and link commands to build the program

6 FShell 141

using the modified files, and also a cleanup target. The build command
honors the BUILD_FLAGS variable to set additional compiler options, such
as enabling instrumentation for coverage measurement using gcov (cf. Sec-
tion 3.4). The text editing commands insert test inputs for all test cases
at once, using arrays of values which are indexed using a global test case
counter.

The wrapper code in tester.c sets this counter, using one of two ways:
in the basic test harness generator a new main function is built in tester.c
that takes the test case index from the command line. As an alternative
means, also a unit test tool kit can be used for the wrapper function, which
may provide additional logging and statistics. We implemented support for
CUnit2, but also other unit test frameworks3 could be investigated.

2See http://cunit.sourceforge.net
3An overview of test frameworks can be found at http://www.opensourcetesting.

org/unit_c.php

http://cunit.sourceforge.net
http://www.opensourcetesting.org/unit_c.php
http://www.opensourcetesting.org/unit_c.php

Applications programming is a race between
software engineers, who strive to produce
idiot-proof programs, and the Universe which
strives to produce bigger idiots.
— So far the Universe is winning.

Rick Cook, Wizardry CompiledChapter 7

Evaluation

In this chapter we present an evaluation of query-driven program testing with
experimental studies of both FQL and FShell. For a proper evaluation we
exercise them in a number of orthogonal ways. We start with a study of the
practical applicability of query-driven program testing by describing ongo-
ing and planned projects. Afterwards we turn to FQL in detail and discuss
its expressiveness. Following the list of requirements for FQL described in
Chapter 2 we further describe the efficiency of query evaluation on a number
of complex queries and the applicability of FQL and FShell to real soft-
ware. We close this chapter with a detailed evaluation of FShell regarding
scalability, efficiency of different implementation options, its advantage over
competitors, and the effects of test suite minimization.

7.1 Uses of Query-Driven Program Testing

Having a formalism at hand that is usable by the working programmer and
that precisely defines the semantics of coverage criteria enables the devel-
opment of new tools and methods for software engineering in general and
for software testing in particular. To demonstrate practical usefulness of
query-driven program testing, we first describe two ongoing projects with
the embedded systems industry. Afterwards we discuss research directions
occurring in the context of FQL and their potential applications.

142

7 Evaluation 143

7.1.1 Measurement-based Execution Time Analysis

Our initial motivation for FQL and the test case generation back end was
measurement-based execution time analysis for embedded real-time software.
Together with our project partners [BK08, ZK08, ZBK09, BKZT11] we are
developing a framework to provide early feedback about the distribution
of execution times to the developer. In this project, query-driven program
testing enables us to efficiently compute test suites appropriate for timing
analysis.

7.1.2 Model/Implementation Consistency Checking

In collaboration with an avionics supplier we are currently developing an au-
tomated technique to check consistency of models (UML activity diagrams)
and their implementation (C code). We first compute a test suite at model
level that, e.g., covers all edges of the model. Each model-level test case then
describes a path through the model. We use this model-level test case as
path pattern in an FQL passing clause and ask for condition coverage at
implementation level. The number of test cases computed reflects the rela-
tionship between model and implementation and leads to detailed feedback
on possibly unintended discrepancies.

7.1.3 Coverage Evaluation

Although there exist tools for coverage analysis these tools are fixed to few
specific criteria. In contrast, a coverage analysis tool for FQL enables the
user to check for coverage criteria that are specific to a project and where
no such tools are available yet. One such example is focused testing : For
example, does a regression test suite cover a recently changed code part
adequately? In case the test suite fails to do so, we want to determine the
uncovered parts and derive new specific FQL queries that yield the missing
test cases. Here, one can think of an automatic improvement of regression
test suites using version control tools, coverage evaluation and our FQL back
end in combination.

Coverage evaluation can take place at different levels, e.g., at model level
as well as at implementation level of a system under development. Analyzing
test suites for these different levels with respect to the same coverage criterion
can reveal deficiencies in the validation process. One example of such an

7 Evaluation 144

approach is our already mentioned project on checking consistency of model
and implementation in an avionics setting.

Finally, coverage analysis enables us to systematically investigate the rea-
sons for the infeasibility of test goals. We can identify uncovered test goals
and, then, extract relevant dependencies in the program using techniques like
program slicing.

7.1.4 Reasoning on Coverage Criteria

The precise semantics of FQL queries makes it possible to relate coverage
criteria to different entities occurring in the software development process.
We already discussed coverage evaluation which relates a test suite to a
coverage criterion specified in FQL.

Another fundamental question is the relation between different coverage
criteria themselves, for example, are two FQL specifications equivalent or
does one coverage criterion subsume the other? Such questions arise when
comparing coverage criteria originating from requirements to standard struc-
tural coverage criteria, like basic block coverage, which are used for certifica-
tion purposes. Here, the goal is to show that requirements coverage implies
structural coverage. Such a reasoning enables us to obtain FQL queries that
characterize the difference between two queries. This is not only helpful for
test case generation but also for identifying the code behavior that is not
yet captured and thus enables an assessment of the requirements and the
corresponding validation efforts.

Another question is the investigation of the relation of an FQL specifi-
cation and the source code under scrutiny. For example, what impact has
a code change on the semantics of an FQL specification and what does this
tell us about an existing test suite?

The last question we want to address in this section is the relation between
coverage criteria expressed as FQL queries and the algorithmic approaches
used for test case generation. Since FQL queries are purely declarative,
how can we decide what test case generation techniques we should apply to
efficiently generate test suites?

7 Evaluation 145

7.1.5 Test Case Generation

Our current back end is only a first step towards test case generation for FQL
queries. In combination with a coverage analysis tool as discussed above,
we will be able to combine different test case generation tools to obtain
covering test suites: First, we generate an initial test suite using light-weight
techniques, like random testing, then, using our coverage analysis tool, we
derive new FQL queries which target at yet uncovered code parts and answer
these queries using our back end.

7.1.6 Discussion

Our projects demonstrate the usefulness of FQL’s flexible test case specifica-
tion to practical problems in embedded systems. For avionics software that
must conform to highest safety requirements we will, however, need to add
support for modified condition/decision coverage. This is beyond the scope
of elementary coverage criteria and requires path set predicates as test goals.
We consider a proper integration as future work.

7.2 Expressiveness

We use the example specifications from Figures 2.1–2.3 as guidance for our
evaluation of sufficient expressiveness of FQL. We already showed in Sec-
tion 5.8 that in principle we can express all of them in FQL. For further
evaluation, and since most scenarios – for referring to line numbers or func-
tion names – make only sense for programs which contain certain tokens, we
give three sample programs: The file list2.c, shown in Listing 7.1, extends the
program of Listing 5.1. The files sort1.c (Listing 7.2) and sort2.c (Listing 7.3)
contain fragments performing array manipulation.

We describe the results of evaluation using FShell in Section 7.3.1.

1 int partition (int a [], int left ,int right) {
2 int v = a[right], i = left − 1, j = right, t ;
3 for (;;) {
4 while(a[++i] < v) ;
5 while(j > left && a[−−j] > v) ;
6 if (i >= j) break;
7 t = a[i]; a[i] = a[j]; a[j] = t;

7 Evaluation 146

8 }
9 t = a[i]; a[i] = a[right]; a[right] = t;

10 return i;
11}

13 int main(int argc,char ∗ argv[]) {
14 int A[3];
15 partition (A, 0, 2);
16}

Listing 7.1: Source code of list2.c

1#include <stdio.h>

3 int compare(int a,int b) {
4 if (a <= b) return 1;
5 return 0;
6}

8 int unfinished ();

10void sort(int ∗ a,int len) {
11 int i , t ;
12 for(i=1; i<len; ++i) {
13 if (compare(a[i−1],a[i]))continue;
14 unfinished ();
15 t=a[i];
16 a[i]=a[i−1];
17 a[i−1]=t;
18 }
19 return;
20}

22void eval(int ∗ a,int len) {
23 int i ;

24 for(i=0; i < 3; ++i)
25 printf ("a[%d]=%d\n", i, a[i]);
26 return;
27}

29 int main(int argc,char ∗ argv[]) {
30 int i ;
31 int A[3];
32 int verify ;

34 for(i=0;i < 3;++i)
35 sort(A, 3);

37 if (verify) {
38 assert (compare(A[0],A[1]));
39 assert (compare(A[1],A[2]));
40 }

42 eval(A, 3);

44 return 0;
45}

Listing 7.2: Source code of sort1.c

7 Evaluation 147

1#include <stdio.h>

3 int rand_init;

5void insert(int ∗ a,int pos) {
6 int rand;
7 a[pos] = rand%rand_init;
8 return;
9}

11void eval(int∗ a,int first ,int last){
12 if (first > last) return;
13 printf ("a[%d]=%d\n",first,a[first]);
14 eval(a+1, first +1, last);
15 return;
16}

18 int precond() {
19 return (rand_init == 7);
20}

22 int postcond() {
23 return (rand_init == 7);
24}

26 int main(int argc,char ∗ argv[]) {
27 int i ;
28 int A[3];
29 int max;

31 if (max > 0)
32 init : rand_init = 7;

34 for(i=0; i<max; ++i)
35 insert (A, i);

37 eval(A, 0, max);

39 return 0;
40}

Listing 7.3: Source code of sort2.c

7.3 Experimental Evaluation

In the following sections we describe experiments using FShell. We apply it
on a range of source codes that we consider possible real-world scenarios for
future use of FQL with FShell. We first give an overview of the source code
we use and then describe the execution environment used in all subsequent
experiments.

For each program we describe origin and size, plus necessary options: As
FShell builds upon a bounded model checker, in several cases the number
of loop unwindings to be performed must be fixed beforehand. In Table 7.1
we list all main source file names, the number of lines of code (SLOC)1, and
unwinding options.

The nature of our sources is as follows:
1Measured using David A. Wheeler’s SLOCCount tool.

7 Evaluation 148

Source SLOC Unwinding Options

list2.c 15 –unwind 3
sort1.c 36 –unwind 4
sort2.c 30 –unwind 4 –no-unwinding-assertions

cdaudio 16279
floppy 15813 –unwind 10 –no-unwinding-assertions
kbfiltr 10287
parport 45753 –unwind 1 –no-unwinding-assertions

pseudo-vfs.c 553

matlab.c 3444

memman.c 377 –unwind 5 –no-unwinding-assertions

adpcm.c 504 –unwind 100 –partial-loops
nsichneu.c 2361
statemate.c 1053 –unwind 3

autopilot 5945 –unwind 20 –partial-loops
fly_by_wire 4609 –unwind 10 –partial-loops

cat.c 27 –unwind 10 –no-unwinding-assertions
echo.c 161 –unwind 3 –no-unwinding-assertions
nohup.c 33 –unwind 10 –no-unwinding-assertions
seq.c 37 –unwind 5 –no-unwinding-assertions
tee.c 73 –unwind 5 –no-unwinding-assertions

PicoSAT 6646 –unwind 3 –no-unwinding-assertions

joplift.c 1184

Table 7.1: Source code and unwinding options used in our experiments

7 Evaluation 149

• list2.c, sort1.c, sort2.c: The sources, as shown in the preceding section,
were manually crafted for experimenting with complex queries.

• cdaudio, floppy, kbfiltr, parport: Preprocessed device drivers from the
Windows Driver Development Kit used in [BCH+04b] for generating
test cases with BLAST. The source code was downloaded from http:
//www.sosy-lab.org/~dbeyer/blast_mc/. We had to remove inline as-
sembly as CBMC’s C front end does not yet support VC++ inline
assembly.

• pseudo-vfs.c: A simplified version of the Linux virtual file system layer,
available at http://research.nianet.org/~radu/VFS/. In [GLMS09]
this was used to apply model checking tools to the Linux virtual file
system layer.

• matlab.c: An engine controller provided by an industrial collabora-
tor from the automotive industries. It is generated from a MAT-
LAB/Simulink model.

• memman.c: As another example of industrial code we examined a dy-
namic memory manager for airborne software systems.

• adpcm.c, nsichneu.c, statemate.c: These files were taken from the Mä-
lardalen WCET Benchmark suite, available at http://www.mrtc.mdh.
se/projects/wcet/benchmarks.html. adpcm.c implements functionality
for adaptive pulse code modulation, nsichneu.c simulates a Petri net,
and statemate.c was automatically generated by STARC (STAtechart
Real-time Code generator).

• autopilot, fly_by_wire: Source code from PapaBench, a real-time em-
bedded benchmark built from software controlling an unmanned aerial
vehicle. We used version 0.4, downloaded from http://www.irit.fr/
recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97.

• cat.c, echo.c, nohup.c, seq.c, tee.c: We picked some tools from the
Unix coreutils in Busybox 1.14, which can be downloaded from http:
//www.busybox.net/. These tools were also studied in [CDE08].

• PicoSAT: As an example of a complete software package, we analyzed
the sources of the SAT solver PicoSAT. We used version 913 from
http://fmv.jku.at/picosat/.

http://www.sosy-lab.org/~dbeyer/blast_mc/
http://www.sosy-lab.org/~dbeyer/blast_mc/
http://research.nianet.org/~radu/VFS/
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97
http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97
http://www.busybox.net/
http://www.busybox.net/
http://fmv.jku.at/picosat/

7 Evaluation 150

• joplift.c: An elevator control software initially used for benchmark-
ing a Java-optimized processor (JOP) in [PS07]. A student translated
the code manually from Java to C and, for use with CREST [BS08],
instrumented, and merged into a single file using CIL [NMRW02].

Experimental Setup. All experiments described in this chapter were per-
formed on a Debian/Lenny 64bit Linux system running on an Intel Xeon
series E5345 CPU running at 2.33 GHz. The system is equipped with 16 GB
of main memory, but most of our experiments only require a fraction of that.
We describe execution times and memory usage in detail with each of our
experiments.

We used version 1.2 of FShell 2, as available from http://code.forsyte.
de/fshell. Newer versions of FShell will appear on this web page (super-
seding version 1.2), which shall not invalidate any of the experimental results.

7.3.1 Efficient Evaluation of Complex Queries

We evaluated the example specifications Q1-24 shown in Section 5.8 with
our tool. In order to do so, we applied each specification to one of the three
suitable source files, which were shown in Listings 7.1–7.3.

In Table 7.2 we summarize the results of evaluating Q1-24 from Sec-
tion 5.8 with FShell. For each FQL specification we first list the source
file it was evaluated on. Then we give the number of test goals (#goals), the
number of test cases (#cases) determined by the back end, and the number
of infeasible test goals (#infeas).

All specifications were processed in less than one second (see column
“Time”). Each run of the test case generation engine required no more than
60 MB of memory (column “Mem”). We observe that FShell scales well
even for Q20 with more than 14,000 test goals.

In addition to this broad range of complex queries on small program
fragments we experimented with non-trivial queries on larger code bases.
We applied a series of queries to autopilot from the PapaBench suite (see
also description above). We used the following templates for queries C1-6
on autopilot that enforce a certain function call stack and focus coverage
criteria to single functions:

http://code.forsyte.de/fshell
http://code.forsyte.de/fshell

7 Evaluation 151

Query Source #goals #cases #infeas Time [s] Mem [MB]

Q1 list2.c 11 3 0 0.27 53
Q2 list2.c 8 3 0 0.28 53
Q3 list2.c 8 3 0 0.29 53
Q4 sort2.c 6 2 2 0.12 53
Q5 sort2.c 9 3 3 0.11 53
Q6 list2.c 2 1 0 0.16 53
Q7 list2.c 2 1 0 0.17 53
Q8 list2.c 4 1 2 0.18 53
Q9 list2.c 11 3 0 0.27 57
Q10 sort1.c 2 1 0 0.13 52
Q11 sort1.c 8 1 1 0.40 58
Q12 sort2.c 2 1 0 0.10 53
Q13 sort1.c 1 1 0 0.11 52
Q14 sort2.c 6 1 1 0.10 52
Q15 list2.c 8 1 3 0.30 54
Q16 sort1.c 29 2 0 0.12 52
Q17 sort1.c 12 1 0 0.10 52
Q18 list2.c 121 4 53 0.85 58
Q19 list2.c 1331 4 1060 0.74 56
Q20 list2.c 14641 4 13927 0.87 59
Q21 sort1.c 2 1 0 0.08 52
Q22 sort1.c 4 1 3 0.10 52
Q23 sort2.c 3 1 0 0.09 52
Q24 sort2.c 2 0 2 0.11 53

Table 7.2: Experimental results for example specifications

7 Evaluation 152

C1-3 cover @CONDITIONEDGE & @FUNC(fn)
passing @ENTRY(periodic_task) -> @ENTRY(fn)

C1-3 cover (@CONDITIONEDGE & @FUNC(periodic_task))
-> (@CONDITIONEDGE & @FUNC(fn))

passing @ENTRY(periodic_task) -> @ENTRY(fn)

We instantiate these templates by substituting for fn the names of functions
course_run, climb_control_task, and altitude_control_task. We thus
query for a test suite satisfying condition coverage in function fn (C1-3), and
combined condition coverage of function periodic_task and function fn in
queries C4-6. For all test cases we require that they first pass through the
entry of function periodic_task and thereafter reach the entry of function
fn.

The results are summarized in Table 7.3. We conclude that FShell
nicely handles non-trivial queries over larger code bases – autopilot has 5945
lines of code. Note, however, that execution times range from 4.8 seconds to
26 seconds, with a comparatively small variance in memory usage only. A
closer look at each of the experiments showed that in all cases approximately
2 seconds were spent in preparation of the SAT formula (unwinding and
query augmentation), and the rest of the time is spent in solving the SAT
formula. This states a prime example of query cost varying with the exact
choice of test goals: the cost of computing appropriate inputs for condition
coverage in fn varies with the choice of fn. Given that our options for fn
are functions occurring on distinct code paths, this was to be expected.

Query Function fn #goals #cases #infeas Time[s] Mem[MB]

C1 course_run 3 1 1 4.77 280
C2 climb_control_task 3 1 1 22.43 275
C3 altitude_control_task 3 1 1 14.71 283
C4 course_run 57 1 21 12.81 305
C5 climb_control_task 57 1 21 14.34 302
C6 altitude_control_task 57 1 21 25.65 304

Table 7.3: Experimental results for complex queries

7 Evaluation 153

7.3.2 Applicability to Real-World Software

To study applicability of our back end to real-world embedded systems code,
and possibly also software systems, we chose a set of program-independent
queries and applied them to the following set of programs: (1) we picked some
tools from the Unix coreutils in Busybox, studied as well in [CDE08], (2) we
selected kbfiltr from the Windows DDK, initially studied in [BCH+04b], and
(3) we chose an example use case from [GLMS09] where model checking tools
were applied to the Linux virtual file system layer. In addition to these well
studied examples we applied our framework on two industrial case studies.
(4) We performed test case generation for an engine controller code generated
from a MATLAB/Simulink model (matlab.c). (5) We examined a dynamic
memory manager for airborne software systems (memman.c). (6) For a more
extensive study of embedded systems code we added three examples from
the Mälardalen WCET Benchmark suite. (7) As an example of a complete
software package, we analyzed the sources of the SAT solver PicoSAT.

We summarize our experiments in Table 7.4. To compare to previous

BB (Q1) CC (Q2) BB2 (Q18)
Source #goals #cases #goals #cases #goals #cases #infeas

cat.c 15 3 10 3 225 3 164
echo.c 23 3 18 3 529 3 502
nohup.c 19 4 14 4 361 10 212
seq.c 33 5 26 4 1089 15 602
tee.c 17 2 14 2 289 2 242

kbfiltr 239 53 201 54 57121 164 48492

pseudo-vfs.c 9 3 6 3 81 3 53

matlab.c 42 4 35 4 1764 10 1393

memman.c 55 2 42 3 3025 4 2230

adpcm.c 130 1 72 1 16900 1 6354
nsichneu.c 508 1 506 1 258064 1 193039
statemate.c 277 1 247 1 76729 1 75677

PicoSAT 396 29 294 28 156816 401 79442

Table 7.4: Summary of real-world experiments

7 Evaluation 154

work, we first established basic block coverage (specification Q1). We give
the number of test goals and the number of test cases that were necessary
to cover these test goals. Given loop bounds of 3 to 100 (cf. Table 7.1), we
compute test suites for 100% coverage of all feasible test goals. In [CDE08]
in many cases coverage of more than 90% is achieved, but the feasibility of
the remaining test goals is not investigated.

Furthermore, we achieved condition coverage with spec Q2 and “squared”
basic block coverage with spec Q18 for all benchmarks. In case of Q18,
many of the resulting test goals are expectedly infeasible. We include these
numbers in the column “#infeas”.

As shown in full detail in Table 7.9, columns titled “SAT Encoding”, all
experiments (except for Mälardalen benchmarks and PicoSAT, as discussed
below) were performed using at most 350 MB of memory. Each test suite
was computed in less than 22 seconds. As Mälardalen benchmarks and Pi-
coSAT have a larger code base involving a series of loops, the experiments
for basic block coverage and condition coverage took up to 54 seconds and
required up to 733 MB. For squared basic block coverage, the experiments
took approximately 55 minutes and consumed 6.9 GB of memory.

7.3.3 Comparing to other Test Case Generation Ap-
proaches

We first compare FShell with random testing and directed testing – two
well-established techniques for test case generation, and afterwards com-
pare with BLAST, which is conceptually closest to FShell. We strictly
focus on performance in this comparison, leaving aside other added value of
query-driven program testing and usability aspects such as FShell effec-
tively printing test suites or not requiring any instrumentation.

For the comparison with random testing and directed testing we chose
an elevator control software (joplift.c as listed above). Even though this is
a program of moderate size only, as a real-world control software it contains
a number bit-operations and its control has to distinguish a series of cases.
This results in 124 possible branches, out of which 123 are feasible. The
remaining one cannot be taken as surrounding guards fix the value of the
corresponding condition. As coverage metric we chose condition coverage
(Q2), which means we have 123 feasible test goals.

To perform random testing we inserted calls to rand() to initialize in-

7 Evaluation 155

put parameters randomly. For improved coverage results we added specific
knowledge about the code and mapped the randomly chosen values into the
interval [0, 99].

Directed testing was done using CREST [BS08], which implements con-
colic testing as pioneered by CUTE [SMA05] and DART [GKS05]. CREST
supports several traversal strategies, but for our experiments depth-first
search performed best.

Our results are summarized in Table 7.5. For both random testing and
directed testing the number of iterations had to be fixed, as shown in col-
umn “Iterations”. For random testing this also determines the number of test
cases being generated. A uniform random number generator would eventu-
ally yield full coverage as the number of iterations is increased. As expected,
random testing is extremely fast; here, the time of one second, as needed for
one million iterations, even includes repeated execution of the main control
loop of joplift.c for coverage measurement. Coverage, however, remains low.
Despite one million test cases being computed, not even 50% of the branches
are taken. In directed testing, using CREST, the iteration count only sets
an upper limit on the number of test cases being computed. Once no more
branches can be covered, test case generation stops. As the decision pro-
cedures employed by CREST are incomplete for C programs, an uncovered
branch does not necessarily mean infeasibility. As shown in Table 7.5, we
observe such behavior in our experiment. CREST stops after covering 78 of
123 branches. Most likely this is due to bit-operations being employed by
joplift.c. For CREST, the fastest test case generation approach was found
to be a depth-first search strategy. This resulted in an execution time of
approximately 13 seconds.

Tool Iterations #cases Time [s] Coverage

Random 10 10 0.01 16.4%
Random 1000000 1000000 1.03 42.1%
CREST 10 10 0.31 43.9%
CREST 5000 527 13.22 63.4%
FShell – 36 1.30 100.0%

Table 7.5: Comparison of FShell with random testing and directed testing
to achieve condition coverage

7 Evaluation 156

Although FShell is not as fast as random testing, it was the only ap-
proach to achieve full coverage in this experiment. In order to do so, only 36
test cases are necessary. Of course it must be stated that the chosen bench-
mark is favorable for FShell: it includes few loops and is of moderate code
size, requires bit-precise modeling, and contains complex conditions. An it-
erative approach like directed testing will likely scale much better to large
programs with complex loops.

As the concepts implemented in FShell are related to both directed
testing and model checking, we chose BLAST as further benchmarking ref-
erence. To the best of our knowledge, the test case generation engine built
into BLAST is the only tool coming close to the capabilities of FShell in
terms of controllability of test case generation. Still, it should be noted that
BLAST is a full fledged model checker and is not as optimized towards test-
ing as FShell is. A detailed discussion of BLAST and its query language
was given in Section 1.6.

Their set of benchmarks, presented in [BCH+04b], is well documented
and all source files are publicly available. To achieve equivalent test goals, we
generated test suites with basic block coverage. The results are summarized
in Table 7.6. The results for BLAST are taken literally from [BCH+04b],
because the version of BLAST performing test case generation is currently
unavailable. As Beyer et al. performed their experiments on a 3.06 GHz
Dell Precision 650 with 4 GB RAM, comparison of execution times should
be taken with a grain of salt – our system has a lower clock rate but likely
comes with a higher memory bandwidth, larger caches, etc.

BLAST FShell (Q1)
Source #cases Time [s] #cases Time[s] Speedup

cdaudio 85 1500 76 24.03 62.4
floppy 111 1500 69 33.24 45.1
kbfiltr 39 300 53 3.76 79.8
parport 213 5460 133 117.16 46.6

Table 7.6: Results on device drivers – comparison with BLAST

Compared to the execution times reported in [BCH+04b] we observe
speedups of 45 to nearly 80 times. The generated test suites are mostly

7 Evaluation 157

smaller, with the exception of kbfiltr, where FShell computes 53 test cases
and BLAST found a covering test suite with 39 test cases.

FShell (Q18)
Source #goals #cases Time[s]

cdaudio 147456 249 118.36
floppy 195364 232 178.02
kbfiltr 57121 158 19.77
parport 1067089 349 447.33

Table 7.7: Results on device drivers – Q18

To study scalability on these device drivers, we additionally computed
“squared” basic block coverage (Q18). As shown in Table 7.7, we find cov-
ering test suites for possibly more than one million test goals (parport with
1,067,089 test goals) in less than eight minutes. Our experiments with Q18
required up to 3.4 GB of memory, whereas basic block coverage (Q1) was
doable within 1.4 GB of memory.

As discussed in the next section, however, we had to refrain from testing
a file parclass of the Windows DDK suite, which was successfully studied
in [BCH+04b].

7.3.4 Scalability

To discuss scalability of query-driven program testing we must distinguish
complexity inherent in queries on the one hand and the cost of evaluating
queries over complex programs using FShell on the other hand. The first
problem is intrinsically tied to query-driven program testing. Dealing with
complex programs, however, is almost exclusively an issue of the back end.
The only inevitable aspect is evaluation of filter functions to target graphs,
the complexity of which is program dependent.

The feasibility of handling complex queries was already shown in Sec-
tion 7.3.1. Furthermore, experiments resulting in large sets of test goals were
described in Table 7.7: for parport FShell easily handled more than one
million test goals. In Table 7.2 we also showed that going from simple basic
block coverage (Q1) over “squared” basic block coverage to quadruples of
basic blocks scales well.

7 Evaluation 158

The scalability of FShell as a back end in query-driven program testing
is tied to the source code under scrutiny. As FShell employs bounded
model checking the main limitations are large code bases and complex loops.
In our experiments, as described above, we hence focused on programs of
moderate size, with few loops. One of the programs that failed testing using
FShell is parclass from the Windows DDK, which was previously studied
using BLAST in [BCH+04b]. This device driver consists of 100853 SLOC and
has several loops. We aborted all attempts of unwinding using FShell 2,
version 1.2, after 12 hours. As we already reported successful testing using
earlier versions of FShell [HSTV08], however, this specific case deserves
further investigation.

Finally we also studied the net effect of using incremental test case gen-
eration vs. naïve iterative invocations of the underlying model checker. Note
that in the latter case coverage constraints are not even considered, i.e., in
this setup all calls likely yield the same test case.

Source Q2 Q18

kbfiltr 19.8 12.5
PicoSAT 8.7 1.9

Table 7.8: Speedup by incremental test case generation

In Table 7.8, we present the speedup achieved by generating covering test
suites in a single test job. We exemplified these comparisons for condition
coverage (Q2) and “squared” basic block coverage (Q18). To estimate the
speedup, for the naïve approach we multiplied the cost of computing a single
test case with the number of test cases computed by FShell in incremental
test case generation. Most notably, this simplified model misses the effort
needed for computing the coverage of one test case, which is the main cost in
test case generation for PicoSAT/Q18. Therefore, in this case, we find the
estimated speedup to be only as low as a factor of 1.9. For kbfiltr we observe
a speedup that is an order of magnitude larger.

7 Evaluation 159

7.4 Comparison of Instrumentation vs. Native
SAT Encoding

As described in Chapter 6, FShell supports two modes of solving FQL
queries. The technically straightforward approach is the use of instrumenta-
tion, where automata corresponding to FQL queries are added as additional
code to the program. This instrumented program is then translated into a
SAT formula. While more easily implemented, it hinders efficiency in a num-
ber of ways. First, programs with a large number of statements yield corre-
spondingly many instrumentation points, causing a blowup of the program.
Second, non-trivial automata, as derived from queries such as “squared” basic
block coverage, result in complex interactions of the instrumentations added
to the program. At the time of unwinding the instrumented program this
yields guards in the resulting equation that have to consider all these complex
interactions.

To avoid such problems, we further implemented the direct encoding of
automata into the SAT formula of the unmodified program. This avoids
problems with blowup in the unwinding step, at the expense of a more com-
plex SAT formula. The experiments described in this section show that this
additional cost is clearly acceptable as (1) scalability with complex queries
is improved and (2) we gain speedups of factors of more than 700.

We study the scalability for complex queries on the example of multiple
basic block coverage, i.e., queries Q1, Q18-20, and new queries for five- and
sixfold combination of basic blocks (abbreviated as BB5 and BB6, respec-
tively). We apply these queries to list2.c from Listing 7.1. Figure 7.1 shows
the results of this comparison. We observe that even for BB6, which yields
1,771,561 test goals, the SAT-based approach scales well in terms of execu-
tion time (2.66 seconds), whereas the use of instrumentation causes execution
time to rise to nearly 4 minutes. Notice that list2.c is only 15 lines in size.

To investigate scalability of the SAT-based encoding in comparison to
instrumentation on real-world code we used the examples described in Sec-
tion 7.3.2. The results are shown in Table 7.9. Through the use of native
SAT encoding we observe speedups over the instrumentation-based approach
up to a factor of 707.29. For benchmarks with a large number of statements
resulting from unwinding the program, such as adpcm.c and PicoSAT, we
notice a comparatively small speedup (factors of 4 and 34) for “squared”

7 Evaluation 160

Instrumentation SAT Encoding
Query Time [s] Mem [MB] Time [s] Mem [MB]

Q1 1.75 81 0.27 53
Q18 3.70 92 0.85 58
Q19 7.15 105 0.74 56
Q20 14.93 119 0.87 59
BB5 39.09 151 1.29 83
BB6 224.31 451 2.66 339

(a) Execution times and memory usage for Q1, Q18-20, BB5, and
BB6

1

10

20

30

40

1 2 3 4 5 6
n

Time [s]

Instrumentation

Native SAT

(b) Execution times for n-fold Cartesian combina-
tion of basic blocks (BB6 omitted for instrumentation-
based approach)

Figure 7.1: Comparison of instrumentation-based approach vs. native SAT
encoding

7 Evaluation 161

basic block coverage. This is mainly due to coverage analysis employed in
the SAT-based setting becoming costly. We are investigating optimizations
using AVL DAGs as proposed by Myers [Mye84] and persistent data struc-
tures [DSST89] to remedy this.

Instrumentation SAT Encoding
Source Query Time [s] Mem [MB] Time [s] Mem [MB] Speedup

cat.c Q1 3.88 127 0.27 88 14.37
cat.c Q2 3.10 124 0.27 88 11.48
cat.c Q18 7.61 144 0.30 90 25.37

echo.c Q1 7.45 151 0.36 92 20.69
echo.c Q2 7.11 150 0.36 92 19.75
echo.c Q18 13.26 173 0.40 95 33.15

nohup.c Q1 0.56 89 0.12 82 4.67
nohup.c Q2 0.55 88 0.13 82 4.23
nohup.c Q18 1.35 93 0.20 82 6.75

seq.c Q1 6.15 131 0.31 84 19.84
seq.c Q2 6.10 129 0.35 84 17.43
seq.c Q18 20.84 152 1.10 88 18.95

tee.c Q1 9.37 156 0.41 98 22.85
tee.c Q2 9.05 156 0.38 98 23.82
tee.c Q18 16.84 179 0.52 102 32.38

kbfiltr Q1 195.42 348 3.77 158 51.84
kbfiltr Q2 171.25 341 3.48 158 54.97
kbfiltr Q18 1174.74 542 21.37 342 54.97

pseudo-vfs.c Q1 0.19 57 0.02 47 9.50
pseudo-vfs.c Q2 0.17 57 0.01 47 17.00
pseudo-vfs.c Q18 0.24 59 0.02 48 12.00

matlab.c Q1 105.81 139 0.67 93 157.93
matlab.c Q2 98.97 134 0.54 94 183.28
matlab.c Q18 109.70 147 1.35 100 81.26

memman.c Q1 18.70 183 1.97 101 9.49
memman.c Q2 15.45 179 1.94 101 7.96
memman.c Q18 44.35 214 2.63 105 16.86

7 Evaluation 162

Instrumentation SAT Encoding
Source Query Time [s] Mem [MB] Time [s] Mem [MB] Speedup

adpcm.c Q1 5347.08 1277 7.56 374 707.29
adpcm.c Q2 5001.25 1245 7.43 373 673.12
adpcm.c Q18 13258.60 1848 3112.60 1253 4.26

nsichneu.c Q1 1862.84 903 8.02 321 232.27
nsichneu.c Q2 1850.56 903 5.60 321 330.46
nsichneu.c Q18 11706.10 1220 62.50 434 187.30

statemate.c Q1 252.46 338 0.77 91 327.87
statemate.c Q2 232.31 329 0.72 91 322.65
statemate.c Q18 473.45 461 1.67 110 283.50

PicoSAT Q1 9276.24 2112 52.86 733 175.49
PicoSAT Q2 8184.68 2057 53.14 705 154.02
PicoSAT Q18 112856.00 5205 3260.04 6865 34.62

Table 7.9: Execution times and memory usage for real-world code experi-
ments with instrumentation-based approach vs. native SAT encoding

7.5 Minimization of Test Suites

In practical testing it is often crucial to have test suites as small as possible,
for a number of reasons: (1) execution of each test case must be observed to
spot wrong behavior; (2) in certified processes each test case must be docu-
mented; (3) execution of tests takes time and blocks resources. Automatic
test case generation must hence ensure that the produced test suites are as
small as possible. FShell therefore implements a-posteriori minimization of
test suites that computes the smallest covering test suite from a given set of
test cases.

As this step requires solving an optimization problem, it can be costly.
We therefore describe the overhead in terms of memory and time incurred
by the minimization step. In Table 7.10 we list for a selected subset of our
benchmarks the test cases removed by minimization (“#removed”), the re-
sulting number of test cases (“#cases”), the time the minimization step took,
and the additional memory required to perform this step. We see that mini-

7 Evaluation 163

Source Query #removed #cases Time [s] Mem [MB]

parport Q1 10 133 0.04 0
parport Q18 174 349 4.90 46
parport Q2 15 133 0.04 0
cat.c Q1 1 3 0.00 0
cat.c Q2 0 3 0.00 0
cat.c Q18 2 3 0.00 0
seq.c Q1 2 5 0.00 0
seq.c Q2 6 4 0.00 0
seq.c Q18 12 15 0.02 0
matlab.c Q1 2 4 0.00 0
matlab.c Q2 1 4 0.00 0
matlab.c Q18 0 10 0.01 0
PicoSAT Q1 23 29 0.04 0
PicoSAT Q2 14 28 0.02 0
PicoSAT Q18 226 401 59.12 3780
joplift.c Q2 13 36 0.02 0

Table 7.10: Results and overhead of test suite minimization

mization results in test suites 40% the size of the originally computed suite
(Q2 on seq.c). Even though there is not always potential for minimization,
even reducing already small test suites works well. For large test suites, as
in case of parport of PicoSAT, the minimization steps becomes more costly.
Still we get reductions to two thirds of the original size and hence believe
that this additional effort is well spent.

Program testing can be a very effective way
to show the presence of bugs, but it is hope-
lessly inadequate for showing their absence.

Edsger W. Dijkstra

Chapter 8

Conclusions

In this dissertation we presented a new approach to program testing: query-
driven program testing follows the design principles of database systems,
where we view the source code as a database of program executions, and
the user formulates queries over the program. The query language, FQL, is
designed as a declarative specification language for test suites. Its declarative
nature shields the user from implementation details of the query solving back
end.

In Chapter 2 we stated five challenges for the design of a test specification
language:

(a) Simplicity and Code Independence. Regular languages as base
formalism make FQL easy to read; Section 5.8 demonstrates that even
complex criteria have simple specifications. Our use of control flow
automata and the concept of target graphs ensure code independence.

(b) Encapsulation of Language Specifics. We obtain target graphs
from control flow automata using filter functions (Section 5.4.2), which
uniquely encapsulate the programming language specific aspects of the
software under test and coverage criteria defined thereupon.

(c) Precise Semantics. We have given a formal definition of coverage
criteria in Chapter 4 and provided a precise semantics of our language
FQL in Chapter 5. Every FQL specification yields an elementary
coverage criterion.

(d) Expressive Power. We have demonstrated that all informal specifi-
cations of Figures 2.1–2.3 can be expressed in FQL. Yet we designed

164

8 Conclusions 165

FQL as an open framework to be extended as new requirements arise.

(e) Tool Support for Real World Code. In Chapter 7 we presented
experimental results for our test case generation back end FShell,
which we presented in Chapter 6. Amongst others, we generated test
suites for device drivers, a SAT solver, and embedded systems code.

The query solving back end accepts an FQL specification and C source
code as input. As output it then computes a test suite matching the ele-
mentary coverage criterion described by the FQL specification. Thus our
tool FShell treats a C program as a database which is queried by the user.
FShell implements a query solving back end based on bounded model check-
ing. Our back end uses two new algorithms which guide the SAT solver to
efficiently enumerate test suites.

Our implementation FShell demonstrates the effectiveness and versatil-
ity of query-driven program testing. FShell provides an interactive shell-like
interface to state FQL queries. It builds upon CBMC to translate a given C
program into a SAT formula. To solve a query, FShell additionally encodes
automata representing the path patterns derived from the query.

The new algorithms, iterative and groupwise constraint strengthening, en-
able us to efficiently generate test suites for a query given in our specification
language FQL. Starting with an initially empty test suite, we incrementally
add new test cases that satisfy yet uncovered test goals until we reach a fixed
point. Then every feasible test goal is covered by the resulting test suite. Our
experimental results confirm the practical feasibility and relative efficiency
of our approach.

Future Work

Despite the contributions already made in this work, there remain a num-
ber of research questions to be addressed and technical improvements to be
implemented. We will first list a set of open questions for FQL, and then
discuss open issues around FShell.

The language FQL gives rise to a number of interesting questions, both
about the formalism and its efficient evaluation.

• How to check equivalence and subsumption of specifications? How can
we approximate a specification by a simpler one with a larger test suite;

8 Conclusions 166

where is a good trade-off? How can we rewrite a specification into a
normal form for which test cases can be found more easily?

• How can we trace code changes that compromise the meaning of a test
specification? How can we reuse existing test suites after code changes?
When can we reuse existing test suites for new specifications?

• Which specifications are amenable to directed testing? How can we
combine incomplete light-weight testing with FQL back ends for better
efficiency? How can we build efficient predicate abstraction based tools
for FQL test case generation? How can we distribute specifications
over multiple servers and solve them in parallel?

• How to obtain feedback about an infeasible test goal? How can we
succinctly describe a set of test goals that is not yet covered by a given
test suite?

• How to capture criteria such as MC/DC that go beyond elementary
coverage criteria? How can we combine FQL with input/output tables
and executable specifications? How can we apply FQL to high level
models such as UML? How can we extend FQL to support testing of
concurrent software?

Concerning FShell, we also plan to add a number of improvements in
future versions.

• Usability. We plan to provide a plug-in for the Eclipse IDE. Further-
more, the output of the command line tool shall be improved according
to feedback from industry and users in academia.

• Concurrent Software. One of our major next steps will be developing
support for concurrent software, both in the back end as well as at
language level, following earlier work such as [BAEFU06] or [FNU03].
We expect improved support for concurrent C programs in CBMC,
which will also bring support to testing concurrent software to FShell.
For proper testing of such software, however, we will also need to extend
FQL, as said above.

• Performance Improvements. Extensive studies of FQL and its
properties will also foster more efficient processing of certain queries
in FShell.

Bibliography

[A-M07] Proceedings of the 3rd Workshop on Advances in Model Based
Testing, A-MOST 2007, co-located with the ISSTA 2007 Inter-
national Symposium on Software Testing and Analysis, Lon-
don, United Kingdom, July 9-12. ACM, 2007.

[Ame99a] American National Standards Institute. ANSI/ISO/IEC 9899-
1999: Programming Languages — C. American National Stan-
dards Institute, 1430 Broadway, New York, NY 10018, USA,
1999.

[Ame99b] American National Standards Institute. ANSI/ISO/IEC 9899-
1999: Programming Languages — C, chapter 6.10.4. In ANSI
C [Ame99a], 1999.

[Ame99c] American National Standards Institute. ANSI/ISO/IEC 9899-
1999: Programming Languages — C, chapter 6.7.8. In ANSI
C [Ame99a], 1999.

[AOX08] Paul Ammann, Jeff Offutt, and Wuzhi Xu. Coverage criteria
for state based specifications. In Hierons et al. [HBH08], pages
118–156.

[AR04] George S. Avrunin and Gregg Rothermel, editors. Proceedings
of the ACM/SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2004, Boston, Massachusetts,
USA, July 11-14, 2004. ACM, 2004.

[AWZ88] Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck.
Detecting equality of variables in programs. In POPL, pages
1–11, 1988.

167

Bibliography 168

[BAEFU06] Yosi Ben-Asher, Yaniv Eytani, Eitan Farchi, and Shmuel Ur.
Producing scheduling that causes concurrent programs to fail.
In Ur and Farchi [UF06], pages 37–40.

[Bak57] Charles L. Baker. Review of D. D. McCracken, digital com-
puter programming. Math. Comput., 11(60):298–305, 1957.

[Bal04] Thomas Ball. A theory of predicate-complete test coverage and
generation. In de Boer et al. [dBBGdR05], pages 1–22.

[BBS06] Laura Brandán Briones, Ed Brinksma, and Mariëlle Stoelinga.
A semantic framework for test coverage. In Graf and Zhang
[GZ06], pages 399–414.

[BBvB+01] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cock-
burn, Ward Cunningham, Martin Fowler, James Grenning,
Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian
Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff
Sutherland, and Dave Thomas. Manifesto for agile software
development, 2001.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and
Yunshan Zhu. Symbolic model checking without bdds. In
Cleaveland [Cle99], pages 193–207.

[BCH+04a] Dirk Beyer, Adam J. Chlipala, Thomas A. Henzinger, Ranjit
Jhala, and Rupak Majumdar. The Blast query language for
software verification. In Giacobazzi [Gia04], pages 2–18.

[BCH+04b] Dirk Beyer, Adam J. Chlipala, Thomas A. Henzinger, Ranjit
Jhala, and Rupak Majumdar. Generating tests from coun-
terexamples. In ICSE 2004 [ICS04], pages 326–335.

[BGN+03] Michael Barnett, Wolfgang Grieskamp, Lev Nachmanson, Wol-
fram Schulte, Nikolai Tillmann, and Margus Veanes. Towards
a tool environment for model-based testing with AsmL. In
Petrenko and Ulrich [PU04], pages 252–266.

[BHJM07] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak
Majumdar. The software model checker blast. STTT, 9(5-
6):505–525, 2007.

Bibliography 169

[BHJP04] Johan Blom, Anders Hessel, Bengt Jonsson, and Paul Pet-
tersson. Specifying and generating test cases using observer
automata. In Grabowski and Nielsen [GN05], pages 125–139.

[BHM+09] Angelo Brillout, Nannan He, Michele Mazzucchi, Daniel Kroe-
ning, Mitra Purandare, Philipp Rümmer, and Georg Weis-
senbacher. Mutation-based test case generation for Simulink
models. In de Boer et al. [dBBHL10], pages 208–227.

[Bie08] Armin Biere. Picosat essentials. JSAT, 4(2-4):75–97, 2008.

[BJK+05] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin
Leucker, and Alexander Pretschner, editors. Model-Based Test-
ing of Reactive Systems, Advanced Lectures [The volume is
the outcome of a research seminar that was held in Schloss
Dagstuhl in January 2004], volume 3472 of Lecture Notes in
Computer Science. Springer, 2005.

[BK08] Sven Bünte and Raimund Kirner. The acquaintance of hard-
ware timing effects: A sine qua non to validate temporal re-
quirements in embedded real time systems. In Junior Scientist
Conference, November 2008.

[BKZT11] Sven Bünte, Raimund Kirner, Michael Zolda, and Michael
Tautschnig. Improving the confidence in measurement-based
timing analysis. In ISORC 2011 [ISO11]. To appear.

[BM83] David L. Bird and Carlos Urias Munoz. Automatic genera-
tion of random self-checking test cases. IBM Systems Journal,
22(3):229–245, 1983.

[BM93] W. G. Bently and E. F. Miller. Ct coverage âĂŤ initial results.
Software Quality Journal, 2:29–47, 1993. 10.1007/BF00417425.

[BNvGV07] Koen Bertels, Walid A. Najjar, Arjan J. van Genderen, and
Stamatis Vassiliadis, editors. FPL 2007, International Confer-
ence on Field Programmable Logic and Applications, Amster-
dam, The Netherlands, 27-29 August 2007. IEEE, 2007.

Bibliography 170

[BS08] Jacob Burnim and Koushik Sen. Heuristics for scalable dy-
namic test generation. In Inverardi et al. [IIV08], pages 443–
446.

[Büc60] J. Richard Büchi. Weak second-order arithmetic and finite au-
tomata. Zeitschrift für Mathematische Logik und Grundlagen
der Mathematik, 6:66–92, 1960.

[Bul] BullseyeCoverage 7.11.15. http://www.bullseye.com/.

[BV05] Franz Baader and Andrei Voronkov, editors. Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, 11th Interna-
tional Conference, LPAR 2004, Montevideo, Uruguay, March
14-18, 2005, Proceedings, volume 3452 of Lecture Notes in
Computer Science. Springer, 2005.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation:
A unified lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In POPL, pages 238–
252, 1977.

[CCGR99] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia,
and Marco Roveri. NUSMV: A new symbolic model verifier.
In Halbwachs and Peled [HP99], pages 495–499.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE:
Unassisted and automatic generation of high-coverage tests
for complex systems programs. In Draves and van Renesse
[DvR08], pages 209–224.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthe-
sis of synchronization skeletons using branching-time temporal
logic. In Kozen [Koz82], pages 52–71.

[Cer02] Certification Authorities Software Team. What is a “deci-
sion” in application of modified condition/decision coverage
(MC/DC) and decision coverage (DC)? CAST-10, 2002.

[CFR+89] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Weg-
man, and F. Kenneth Zadeck. An efficient method of com-

http://www.bullseye.com/

Bibliography 171

puting static single assignment form. In POPL, pages 25–35,
1989.

[Cho78] Tsun S. Chow. Testing software design modeled by finite-state
machines. IEEE Trans. Software Eng., 4(3):178–187, 1978.

[CKL04] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool
for checking ANSI-C programs. In Jensen and Podelski [JP04],
pages 168–176.

[CKY03] Edmund M. Clarke, Daniel Kroening, and Karen Yorav. Be-
havioral consistency of c and verilog programs using bounded
model checking. In DAC 2003 [DAC03], pages 368–371.

[Cle99] Rance Cleaveland, editor. Tools and Algorithms for Construc-
tion and Analysis of Systems, 5th International Conference,
TACAS ’99, Held as Part of the European Joint Conferences
on the Theory and Practice of Software, ETAPS’99, Amster-
dam, The Netherlands, March 22-28, 1999, Proceedings, vol-
ume 1579 of Lecture Notes in Computer Science. Springer,
1999.

[CMe] CoverageMeter 5.0.3. http://www.coveragemeter.com/.

[COM01] 25th International Computer Software and Applications Con-
ference (COMPSAC 2001), Invigorating Software Develop-
ment, 8-12 October 2001, Chicago, IL, USA. IEEE Computer
Society, 2001.

[Coo71] Stephen A. Cook. The complexity of theorem-proving proce-
dures. In STOC 1971 [STO71], pages 151–158.

[CPRZ89] Lori A. Clarke, Andy Podgurski, Debra J. Richardson, and
Steven J. Zeil. A formal evaluation of data flow path selection
criteria. IEEE Trans. Software Eng., 15(11):1318–1332, 1989.

[CTC] CTC++ 6.5.3. http://www.verifysoft.com/en.html.

[CTF01] Philippe Chevalley and Pascale Thévenod-Fosse. Automated
generation of statistical test cases from UML state diagrams.
In COMPSAC 2001 [COM01], pages 205–214.

http://www.coveragemeter.com/
http://www.verifysoft.com/en.html

Bibliography 172

[DAC01] Proceedings of the 38th Design Automation Conference, DAC
2001, Las Vegas, NV, USA, June 18-22, 2001. ACM, 2001.

[DAC03] Proceedings of the 40th Design Automation Conference, DAC
2003, Anaheim, CA, USA, June 2-6, 2003. ACM, 2003.

[DAT05] 2005 Design, Automation and Test in Europe Conference and
Exposition (DATE 2005), 7-11 March 2005, Munich, Ger-
many. IEEE Computer Society, 2005.

[dBBGdR05] Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and
Willem P. de Roever, editors. Formal Methods for Compo-
nents and Objects, Third International Symposium, FMCO
2004, Leiden, The Netherlands, November 2 - 5, 2004, Revised
Lectures, volume 3657 of Lecture Notes in Computer Science.
Springer, 2005.

[dBBHL10] Frank S. de Boer, Marcello M. Bonsangue, Stefan Hallerst-
ede, and Michael Leuschel, editors. Formal Methods for Com-
ponents and Objects - 8th International Symposium, FMCO
2009, Eindhoven, The Netherlands, November 4-6, 2009. Re-
vised Selected Papers, volume 6286 of Lecture Notes in Com-
puter Science. Springer, 2010.

[DCM82] Mariangiola Dezani-Ciancaglini and Ugo Montanari, editors.
International Symposium on Programming, 5th Colloquium,
Torino, Italy, April 6-8, 1982, Proceedings, volume 137 of Lec-
ture Notes in Computer Science. Springer, 1982.

[Dij72] Edsger W. Dijkstra. The humble programmer. Commun.
ACM, 15(10):859–866, 1972.

[Din04] George Din. TTCN-3. In Broy et al. [BJK+05], pages 465–496.

[DJK+99] Siddhartha R. Dalal, Ashish Jain, Nachimuthu Karunanithi,
J. M. Leaton, Christopher M. Lott, Gardner C. Patton, and
Bruce M. Horowitz. Model-based testing in practice. In ICSE,
pages 285–294, 1999.

Bibliography 173

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland.
A machine program for theorem-proving. Commun. ACM,
5(7):394–397, 1962.

[DNSVT07] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira, and
Guilherme H. Travassos. A survey on model-based testing ap-
proaches: a systematic review. In WEASELTech, pages 31–36,
2007.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for
quantification theory. J. ACM, 7(3):201–215, 1960.

[DS90] Edsger W. Dijkstra and Carel S. Scholten. Predicate calculus
and program semantics. Springer-Verlag New York, Inc., New
York, NY, USA, 1990.

[DSST89] James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and
Robert Endre Tarjan. Making data structures persistent. J.
Comput. Syst. Sci., 38(1):86–124, 1989.

[DvR08] Richard Draves and Robbert van Renesse, editors. 8th
USENIX Symposium on Operating Systems Design and Im-
plementation, OSDI 2008, December 8-10, 2008, San Diego,
California, USA, Proceedings. USENIX Association, 2008.

[ECB01] 8th IEEE International Conference on Engineering of Compu-
ter-Based Systems (ECBS 2001), 17-20 April 2001, Washing-
ton, DC, USA. IEEE Computer Society, 2001.

[EJ05] Michael D. Ernst and Thomas P. Jensen, editors. Proceedings
of the 2005 ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis For Software Tools and Engineering, PASTE’05, Lis-
bon, Portugal, September 5-6, 2005. ACM, 2005.

[Elg61] Calvin C. Elgot. Decision problems of finite automata design
and related arithmetics. Trans. Amer. Math. Soc., 98:21–51,
1961.

[ES03] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In
Giunchiglia and Tacchella [GT04], pages 502–518.

Bibliography 174

[FNU03] Eitan Farchi, Yarden Nir, and Shmuel Ur. Concurrent bug
patterns and how to test them. In IPDPS 2003 [IPD03], page
286.

[FSWl08] Mario Friske, Bernd-Holger Schlingloff, and Stephan Weiß-
leder. Composition of model-based test coverage criteria. In
Giese et al. [GHNS08], pages 87–94.

[FW88] Phyllis G. Frankl and Elaine J. Weyuker. An applicable fam-
ily of data flow testing criteria. IEEE Trans. Software Eng.,
14(10):1483–1498, 1988.

[FW93] Phyllis G. Frankl and Elaine J. Weyuker. A formal analysis
of the fault-detecting ability of testing methods. IEEE Trans.
Software Eng., 19(3):202–213, 1993.

[FW06] Gordon Fraser and Franz Wotawa. Property relevant software
testing with model-checkers. ACM SIGSOFT Software Engi-
neering Notes, 31(6):1–10, 2006.

[FWA09] Gordon Fraser, Franz Wotawa, and Paul Ammann. Testing
with model checkers: a survey. Softw. Test., Verif. Reliab.,
19(3):215–261, 2009.

[Gen09] Ian P. Gent, editor. Principles and Practice of Constraint Pro-
gramming - CP 2009, 15th International Conference, CP 2009,
Lisbon, Portugal, September 20-24, 2009, Proceedings, volume
5732 of Lecture Notes in Computer Science. Springer, 2009.

[GG75] John B. Goodenough and Susan L. Gerhart. Toward a theory
of test data selection. IEEE Trans. Software Eng., 1(2):156–
173, 1975.

[GH99] Angelo Gargantini and Constance L. Heitmeyer. Using model
checking to generate tests from requirements specifications. In
Nierstrasz and Lemoine [NL99], pages 146–162.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns. Addison-Wesley Publishing Company,
Inc., Reading, Massachusetts, 1994.

Bibliography 175

[GHK+06] Bhargav S. Gulavani, Thomas A. Henzinger, Yamini Kannan,
Aditya V. Nori, and Sriram K. Rajamani. Synergy: a new al-
gorithm for property checking. In Young and Devanbu [YD06],
pages 117–127.

[GHNS08] Holger Giese, Michaela Huhn, Ulrich Nickel, and Bernhard
Schätz, editors. Dagstuhl-Workshop MBEES: Modellbasierte
Entwicklung eingebetteter Systeme IV, Schloss Dagstuhl, Ger-
many, 7.-9. April 2008, Tagungsband Modellbasierte Entwick-
lung eingebetteter Systeme, volume 2008-2 of Informatik-Be-
richt. TU Braunschweig, Institut für Software Systems Engi-
neering, 2008.

[GHT09] Hermann Gruber, Markus Holzer, and Michael Tautschnig.
Short regular expressions from finite automata: Empirical re-
sults. In Maneth [Man09], pages 188–197.

[Gia04] Roberto Giacobazzi, editor. Static Analysis, 11th International
Symposium, SAS 2004, Verona, Italy, August 26-28, 2004,
Proceedings, volume 3148 of Lecture Notes in Computer Sci-
ence. Springer, 2004.

[Gie08] Holger Giese, editor. Models in Software Engineering, Work-
shops and Symposia at MoDELS 2007, Nashville, TN, USA,
September 30 - October 5, 2007, Reports and Revised Selected
Papers, volume 5002 of Lecture Notes in Computer Science.
Springer, 2008.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART:
directed automated random testing. In Sarkar and Hall [SH05],
pages 213–223.

[GLM08] Patrice Godefroid, Michael Y. Levin, and David A. Molnar.
Automated whitebox fuzz testing. In NDSS 2008 [NDS08].

[GLMS09] Andy Galloway, Gerald Lüttgen, Jan Tobias Mühlberg, and
Radu Siminiceanu. Model-checking the Linux virtual file sys-
tem. In Jones and Müller-Olm [JMO09], pages 74–88.

Bibliography 176

[GM08] Aarti Gupta and Sharad Malik, editors. Computer Aided Veri-
fication, 20th International Conference, CAV 2008, Princeton,
NJ, USA, July 7-14, 2008, Proceedings, volume 5123 of Lecture
Notes in Computer Science. Springer, 2008.

[GN05] Jens Grabowski and Brian Nielsen, editors. Formal Approaches
to Software Testing, 4th International Workshop, FATES 2004,
Linz, Austria, September 21, 2004, Revised Selected Papers,
volume 3395 of Lecture Notes in Computer Science. Springer,
2005.

[God07] Patrice Godefroid. Compositional dynamic test generation. In
Hofmann and Felleisen [HF07], pages 47–54.

[Gou83] John S. Gourlay. A mathematical framework for the investi-
gation of testing. IEEE Trans. Software Eng., 9(6):686–709,
1983.

[GT04] Enrico Giunchiglia and Armando Tacchella, editors. Theory
and Applications of Satisfiability Testing, 6th International
Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-
8, 2003 Selected Revised Papers, volume 2919 of Lecture Notes
in Computer Science. Springer, 2004.

[GZ06] Susanne Graf and Wenhui Zhang, editors. Automated Tech-
nology for Verification and Analysis, 4th International Sym-
posium, ATVA 2006, Beijing, China, October 23-26, 2006,
volume 4218 of Lecture Notes in Computer Science. Springer,
2006.

[HAS01] 6th IEEE International Symposium on High-Assurance Sys-
tems Engineering (HASE 2001), Special Topic: Impact of Net-
working, 24-26 October 2001, Albuquerque, NM, USA, Pro-
ceedings. IEEE Computer Society, 2001.

[HBH08] Robert M. Hierons, Jonathan P. Bowen, and Mark Harman,
editors. Formal Methods and Testing, An Outcome of the
FORTEST Network, Revised Selected Papers, volume 4949 of
Lecture Notes in Computer Science. Springer, 2008.

Bibliography 177

[HdMR04] Grégoire Hamon, Leonardo Mendonça de Moura, and John M.
Rushby. Generating efficient test sets with a model checker. In
SEFM 2004 [SEF04], pages 261–270.

[Her76] P. M. Herman. A data flow analysis approach to program
testing. Australian Computer Journal, 8(3):92–96, 1976.

[Het88] Bill Hetzel. The complete guide to software testing. QED In-
formation Sciences, Inc., Wellesley, MA, USA, 2 edition, 1988.

[HF07] Martin Hofmann and Matthias Felleisen, editors. Proceedings
of the 34th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2007, Nice, France,
January 17-19, 2007. ACM, 2007.

[HJMS02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and
Grégoire Sutre. Lazy abstraction. In POPL, pages 58–70,
2002.

[HLM+08] Anders Hessel, Kim Guldstrand Larsen, Marius Mikucionis,
Brian Nielsen, Paul Pettersson, and Arne Skou. Testing real-
time systems using UPPAAL. In Hierons et al. [HBH08], pages
77–117.

[HLSU02] Hyoung Seok Hong, Insup Lee, Oleg Sokolsky, and Hasan Ural.
A temporal logic based theory of test coverage and generation.
In Katoen and Stevens [KS02], pages 327–341.

[HO09] Hwa-You Hsu and Alessandro Orso. Mints: A general frame-
work and tool for supporting test-suite minimization. In ICSE
2009 [ICS09], pages 419–429.

[Hol92] John H. Holland. Adaptation in natural and artificial systems.
MIT Press, Cambridge, MA, USA, 1992.

[Hor02] R. Nigel Horspool, editor. Compiler Construction, 11th Inter-
national Conference, CC 2002, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS
2002, Grenoble, France, April 8-12, 2002, Proceedings, volume
2304 of Lecture Notes in Computer Science. Springer, 2002.

Bibliography 178

[How75] William E. Howden. Methodology for the generation of pro-
gram test data. IEEE Trans. Computers, 24(5):554–560, 1975.

[HP99] Nicolas Halbwachs and Doron Peled, editors. Computer Aided
Verification, 11th International Conference, CAV ’99, Trento,
Italy, July 6-10, 1999, Proceedings, volume 1633 of Lecture
Notes in Computer Science. Springer, 1999.

[HRV+03] Mats Per Erik Heimdahl, Sanjai Rayadurgam, Willem Visser,
George Devaraj, and Jimin Gao. Auto-generating test se-
quences using model checkers: A case study. In Petrenko and
Ulrich [PU04], pages 42–59.

[HS91] Mary Jean Harrold and Mary Lou Soffa. Selecting and using
data for integration testing. IEEE Softw., 8:58–65, March 1991.

[HSTV08] Andreas Holzer, Christian Schallhart, Michael Tautschnig, and
Helmut Veith. FShell: Systematic test case generation for dy-
namic analysis and measurement. In Gupta and Malik [GM08],
pages 209–213.

[HSTV09] Andreas Holzer, Christian Schallhart, Michael Tautschnig, and
Helmut Veith. Query-driven program testing. In Jones and
Müller-Olm [JMO09], pages 151–166.

[HSTV10] Andreas Holzer, Christian Schallhart, Michael Tautschnig, and
Helmut Veith. How did you specify your test suite ? In Pecheur
et al. [PAN10], pages 407–416.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages and Computation. Addison-Wesley,
1979.

[Hua75] J. C. Huang. An approach to program testing. ACM Comput.
Surv., 7(3):113–128, 1975.

[HW03] Dieter Hogrefe and Anthony Wiles, editors. Testing of Commu-
nicating Systems, 15th IFIP International Conference, Test-
Com 2003, Sophia Antipolis, France, May 26-28, 2003, Pro-
ceedings, volume 2644 of Lecture Notes in Computer Science.
Springer, 2003.

Bibliography 179

[ICS04] 26th International Conference on Software Engineering (ICSE
2004), 23-28 May 2004, Edinburgh, United Kingdom. IEEE
Computer Society, 2004.

[ICS09] 31st International Conference on Software Engineering, ICSE
2009, May 16-24, 2009, Vancouver, Canada, Proceedings.
IEEE, 2009.

[IIV08] Paola Inverardi, Andrew Ireland, and Willem Visser, edi-
tors. 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2008), 15-19 September
2008, L’Aquila, Italy. IEEE, 2008.

[Int98] International Electrotechnical Commission. Functional safety
of electrical / electronic / programmable electronic safety-
related systems. IEC standard 61508, 1998.

[Int03] International Organization for Standardization. ISO/IEC
13485:2003: Medical devices – Quality management systems
– Requirements for regulatory purposes. International Organi-
zation for Standardization, Geneva, Switzerland, 2003.

[Int06] International Organization for Standardization. IEC 62304:-
2006: Medical device software - Software life cycle proces-
ses. International Organization for Standardization, Geneva,
Switzerland, 2006.

[IPD03] 17th International Parallel and Distributed Processing Sym-
posium (IPDPS 2003), 22-26 April 2003, Nice, France, CD-
ROM/Abstracts Proceedings. IEEE Computer Society, 2003.

[ISO11] 2011 IEEE International Symposium on Object/Component/-
Service-Oriented Real-Time Distributed Computing, ISORC
2011, Newport Beach, CA, USA, 28-31 March 2011. IEEE
Computer Society, 2011.

[JMO09] Neil D. Jones and Markus Müller-Olm, editors. Verification,
Model Checking, and Abstract Interpretation, 10th Interna-
tional Conference, VMCAI 2009, Savannah, GA, USA, Jan-
uary 18-20, 2009. Proceedings, volume 5403 of Lecture Notes
in Computer Science. Springer, 2009.

Bibliography 180

[JP04] Kurt Jensen and Andreas Podelski, editors. Tools and Al-
gorithms for the Construction and Analysis of Systems, 10th
International Conference, TACAS 2004, Held as Part of the
Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2004, Barcelona, Spain, March 29 - April 2,
2004, Proceedings, volume 2988 of Lecture Notes in Computer
Science. Springer, 2004.

[JSE96] B. F. Jones, H. H. Sthamer, and D. E. Eyres. Automatic struc-
tural testing using genetic algorithms. Software Engineering
Journal, 11(5):299–306, 1996.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems.
In R. E. Miller and J. W. Thatcher, editors, Complexity of
Computer Computations, pages 85–103. Plenum Press, New
York, USA, 1972.

[KGTB07] Nicolas Kicillof, Wolfgang Grieskamp, Nikolai Tillmann, and
Víctor A. Braberman. Achieving both model and code coverage
with automated gray-box testing. In A-MOST 2007 [A-M07],
pages 1–11.

[Koz82] Dexter Kozen, editor. Logics of Programs, Workshop, York-
town Heights, New York, May 1981, volume 131 of Lecture
Notes in Computer Science. Springer, 1982.

[KS02] Joost-Pieter Katoen and Perdita Stevens, editors. Tools and
Algorithms for the Construction and Analysis of Systems, 8th
International Conference, TACAS 2002, Held as Part of the
Joint European Conference on Theory and Practice of Soft-
ware, ETAPS 2002, Grenoble, France, April 8-12, 2002, Pro-
ceedings, volume 2280 of Lecture Notes in Computer Science.
Springer, 2002.

[KV08] Johannes Kinder and Helmut Veith. Jakstab: A static analysis
platform for binaries. In Gupta and Malik [GM08], pages 423–
427.

Bibliography 181

[LK83] Janusz W. Laski and Bogdan Korel. A data flow oriented pro-
gram testing strategy. IEEE Trans. Software Eng., 9(3):347–
354, 1983.

[Man09] Sebastian Maneth, editor. Implementation and Application of
Automata, 14th International Conference, CIAA 2009, Syd-
ney, Australia, July 14-17, 2009. Proceedings, volume 5642 of
Lecture Notes in Computer Science. Springer, 2009.

[McC76] Thomas J. McCabe. A complexity measure. IEEE Trans.
Software Eng., 2(4):308–320, 1976.

[MM63] Joan C. Miller and Clifford J. Maloney. Systematic mis-
take analysis of digital computer programs. Commun. ACM,
6(2):58–63, 1963.

[MMZ+01] MatthewW. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao
Zhang, and Sharad Malik. Chaff: Engineering an efficient sat
solver. In DAC 2001 [DAC01], pages 530–535.

[MSBT04] Glenford J. Myers, Corey Sandler, Tom Badgett, and Todd M.
Thomas. The Art of Software Testing. Wiley, 2 edition, June
2004.

[Muc97] Steven S. Muchnick. Advanced Compiler Design and Imple-
mentation. Morgan Kaufmann, 1997.

[Mye84] Eugene W. Myers. Efficient applicative data types. In POPL,
pages 66–75, 1984.

[NDS08] Proceedings of the Network and Distributed System Security
Symposium, NDSS 2008, San Diego, California, USA, 10th
February - 13th February 2008. The Internet Society, 2008.

[NL99] Oscar Nierstrasz and Michel Lemoine, editors. Software Engi-
neering - ESEC/FSE’99, 7th European Software Engineering
Conference, Held Jointly with the 7th ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering, Toulouse,
France, September 1999, Proceedings, volume 1687 of Lecture
Notes in Computer Science. Springer, 1999.

Bibliography 182

[NMRW02] George C. Necula, Scott McPeak, Shree Prakash Rahul, and
Westley Weimer. CIL: Intermediate language and tools for
analysis and transformation of c programs. In Horspool
[Hor02], pages 213–228.

[NNH99] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Prin-
ciples of Program Analysis. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1999.

[NOT04] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Ab-
stract dpll and abstract dpll modulo theories. In Baader and
Voronkov [BV05], pages 36–50.

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solv-
ing sat and sat modulo theories: From an abstract davis–
putnam–logemann–loveland procedure to dpll(). J. ACM,
53(6):937–977, 2006.

[NS09] Ashalatha Nayak and Debasis Samanta. Model-based test cases
synthesis using UML interaction diagrams. ACM SIGSOFT
Software Engineering Notes, 34(2):1–10, 2009.

[Nta88] Simeon C. Ntafos. A comparison of some structural testing
strategies. IEEE Trans. Software Eng., 14(6):868–874, 1988.

[OPV95] A. Jefferson Offutt, Jie Pan, and Jeffrey M. Voas. Procedures
for reducing the size of coverage-based test sets. In Proceed-
ings of Twelfth International Conference on Testing Computer
Software, pages 111–123, 1995.

[Pai75] Michael R. Paige. Program graphs, an algebra, and their impli-
cation for programming. IEEE Trans. Software Eng., 1(3):286–
291, 1975.

[PAN10] Charles Pecheur, Jamie Andrews, and Elisabetta Di Nitto, edi-
tors. ASE 2010, 25th IEEE/ACM International Conference on
Automated Software Engineering, Antwerp, Belgium, Septem-
ber 20-24, 2010. ACM, 2010.

Bibliography 183

[Par09] Terence Parr. Language Implementation Patterns: Create Your
Own Domain-Specific and General Programming Languages.
Pragmatic Bookshelf, 1st edition, 2009.

[PC90] Andy Podgurski and Lori A. Clarke. A formal model of pro-
gram dependences and its implications for software testing,
debugging, and maintenance. IEEE Trans. Software Eng.,
16(9):965–979, 1990.

[PD09] Knot Pipatsrisawat and Adnan Darwiche. On the power of
clause-learning sat solvers with restarts. In Gent [Gen09], pages
654–668.

[PHP99] Roy P. Pargas, Mary Jean Harrold, and Robert Peck. Test-
data generation using genetic algorithms. Softw. Test., Verif.
Reliab., 9(4):263–282, 1999.

[PP06] Lori L. Pollock and Mauro Pezzè, editors. Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2006, Portland, Maine, USA, July 17-20,
2006. ACM, 2006.

[PS07] Christof Pitter and Martin Schoeberl. Time predictable CPU
and DMA shared memory access. In Bertels et al. [BNvGV07],
pages 317–322.

[PU04] Alexandre Petrenko and Andreas Ulrich, editors. Formal Ap-
proaches to Software Testing, Third International Workshop
on Formal Approaches to Testing of Software, FATES 2003,
Montreal, Quebec, Canada, October 6th, 2003, volume 2931 of
Lecture Notes in Computer Science. Springer, 2004.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verifi-
cation of concurrent systems in CESAR. In Dezani-Ciancaglini
and Montanari [DCM82], pages 337–351.

[RH01a] Sanjai Rayadurgam and Mats Per Erik Heimdahl. Coverage
based test-case generation using model checkers. In ECBS 2001
[ECB01], pages 83–.

Bibliography 184

[RH01b] Sanjai Rayadurgam and Mats Per Erik Heimdahl. Test-
sequence generation from formal requirement models. In HASE
2001 [HAS01], pages 23–31.

[RTC92] Software considerations in airborne systems and equipment
certification. RTCA/DO-178B, 1992.

[RTR] Rational Test RealTime 7.5. http://www.ibm.com/software/
awdtools/test/realtime/.

[RW85] Sandra Rapps and Elaine J. Weyuker. Selecting software test
data using data flow information. IEEE Trans. Software Eng.,
11(4):367–375, 1985.

[RWZ88] Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
Global value numbers and redundant computations. In POPL,
pages 12–27, 1988.

[SDGR03] Ina Schieferdecker, Zhen Ru Dai, Jens Grabowski, and Axel
Rennoch. The UML 2.0 testing profile and its relation to
TTCN-3. In Hogrefe and Wiles [HW03], pages 79–94.

[SEF04] 2nd International Conference on Software Engineering and
Formal Methods (SEFM 2004), 28-30 September 2004, Bei-
jing, China. IEEE Computer Society, 2004.

[SH05] Vivek Sarkar and Mary W. Hall, editors. Proceedings of the
ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation, Chicago, IL, USA, June 12-15,
2005. ACM, 2005.

[SKC94] Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strate-
gies for improving local search. In AAAI, pages 337–343, 1994.

[SLM92] Bart Selman, Hector J. Levesque, and David G. Mitchell. A
new method for solving hard satisfiability problems. In AAAI,
pages 440–446, 1992.

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic
unit testing engine for C. In Wermelinger and Gall [WG05],
pages 263–272.

http://www.ibm.com/software/awdtools/test/realtime/
http://www.ibm.com/software/awdtools/test/realtime/

Bibliography 185

[SS99] João P. Marques Silva and Karem A. Sakallah. Grasp: A search
algorithm for propositional satisfiability. IEEE Trans. Comput-
ers, 48(5):506–521, 1999.

[STO71] Conference Record of Third Annual ACM Symposium on The-
ory of Computing, 1971, Shaker Heights, Ohio, USA. ACM,
1971.

[TB03] Jan Tretmans and Ed Brinksma. TorX: Automated model-
based tesing. In First European Conference on Model-Driven
Software Engineering, pages 31–43, 2003.

[TG05] Sriraman Tallam and Neelam Gupta. A concept analysis in-
spired greedy algorithm for test suite minimization. In Ernst
and Jensen [EJ05], pages 35–42.

[The98] The Open Group. Data Size Neutrality and 64-bit Support.
IEEE, 1998.

[Tra62] Boris A. Trakhtenbrot. Finite automata and monadic second
order logic (russian). Siberian Math. J, 3:103–131, 1962. (
English translation in Amer. Math. Soc. Transl. 59, 1966, 23–
55).

[TS05] Nikolai Tillmann and Wolfram Schulte. Parameterized unit
tests. In Wermelinger and Gall [WG05], pages 253–262.

[TS06] Nikolai Tillmann and Wolfram Schulte. Unit tests reloaded:
Parameterized unit testing with symbolic execution. IEEE
Software, 23(4):38–47, 2006.

[TSL04] Li Tan, Oleg Sokolsky, and Insup Lee. Specification-based test-
ing with linear temporal logic. In Zhang et al. [ZGD04], pages
493–498.

[UF06] Shmuel Ur and Eitan Farchi, editors. Proceedings of the 4th
Workshop on Parallel and Distributed Systems: Testing, Anal-
ysis, and Debugging, held in conjunction with the ACM SIG-
SOFT International Symposium on Software Testing and Anal-
ysis (ISSTA 2006), PADTAD 2006, Portland, Maine, USA,
July 17, 2006. ACM, 2006.

Bibliography 186

[UL06] Mark Utting and Bruno Legeard. Practical Model-Based Test-
ing: A Tools Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2006.

[UY93] Hasan Ural and Bo Yang. Modeling software for accurate data
flow representation. In ICSE, pages 277–286, 1993.

[VB08] Sergiy A. Vilkomir and Jonathan P. Bowen. From MC/DC
to RC/DC: Formalization and analysis of control-flow testing
criteria. In Hierons et al. [HBH08], pages 240–270.

[VCG+08] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wol-
fram Schulte, Nikolai Tillmann, and Lev Nachmanson. Model-
based testing of object-oriented reactive systems with Spec Ex-
plorer. In Hierons et al. [HBH08], pages 39–76.

[VPK04] Willem Visser, Corina S. Pasareanu, and Sarfraz Khurshid.
Test input generation with java PathFinder. In Avrunin and
Rothermel [AR04], pages 97–107.

[Wey86] Elaine J. Weyuker. Axiomatizing software test data adequacy.
IEEE Trans. Software Eng., 12(12):1128–1138, 1986.

[WG05] Michel Wermelinger and Harald Gall, editors. Proceedings
of the 10th European Software Engineering Conference held
jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2005, Lisbon, Portugal,
September 5-9, 2005. ACM, 2005.

[WHH80] Martin R. Woodward, David Hedley, and Michael A. Hennell.
Experience with path analysis and testing of programs. IEEE
Trans. Software Eng., 6(3):278–286, 1980.

[WRHM06] Michael W. Whalen, Ajitha Rajan, Mats Per Erik Heimdahl,
and Steven P. Miller. Coverage metrics for requirements-based
testing. In Pollock and Pezzè [PP06], pages 25–36.

[WRKP05] Ingomar Wenzel, Bernhard Rieder, Raimund Kirner, and Pe-
ter P. Puschner. Automatic timing model generation by CFG
partitioning and model checking. In DATE 2005 [DAT05],
pages 606–611.

Bibliography 187

[WS07] Stephan Weißleder and Bernd-Holger Schlingloff. Deriving in-
put partitions from uml models for automatic test generation.
In Giese [Gie08], pages 151–163.

[YD06] Michal Young and Premkumar T. Devanbu, editors. Pro-
ceedings of the 14th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2005, Portland,
Oregon, USA, November 5-11, 2006. ACM, 2006.

[ZBK09] Michael Zolda, Sven Bünte, and Raimund Kirner. Towards
adaptable control flow segmentation for measurement-based
execution time analysis. In Laurent George, Maryline Chetto,
and Mikael Sjodin, editors, 17th International Conference on
Real-Time and Network Systems, pages 35–44, Paris, France,
October 2009.

[ZGD04] Du Zhang, Éric Grégoire, and Doug DeGroot, editors. Proceed-
ings of the 2004 IEEE International Conference on Informa-
tion Reuse and Integration, IRI - 2004, November 8-10, 2004,
Las Vegas Hilton, Las Vegas, NV, USA. IEEE Systems, Man,
and Cybernetics Society, 2004.

[ZH93] Hong Zhu and P. A. V. Hall. Test data adequacy measurement.
Softw. Eng. J., 8:21–29, January 1993.

[ZHM97] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Soft-
ware unit test coverage and adequacy. ACM Comput. Surv.,
29(4):366–427, 1997.

[ZK08] Michael Zolda and Raimund Kirner. Divide and measure: CFG
segmentation for the measurement-based analysis of resource
consumption. Technical Report 65/2008, Technische Univer-
sität Wien, Institut für Technische Informatik, 2008.

[ZMMM01] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz,
and Sharad Malik. Efficient conflict driven learning in boolean
satisfiability solver. In ICCAD, pages 279–285, 2001.

[ZS94] Hantao Zhang and Mark E. Stickel. Implementing the davis-
putnam algorithm by tries. Technical report, The University
of Iowa, 1994.

Curriculum Vitae

Michael Tautschnig
Girardigasse 4/25

1060 Wien
Austria

michael.tautschnig@gmail.com
www.forsyte.at/~tautschnig

Birth 28th February 1983 in Rum, Austria
Citizenship Austrian

Education Technische Universität München Munich, Germany
10/2002 – 4/2006
Diploma in computer science (major) and mathematics (mi-
nor) with distinction. Thesis title: Development of a tool
to solve mixed logical/linear constraint problems. Thesis
supervisor: Prof. Manfred Broy.
BRG Adolf-Pichler-Platz Innsbruck, Austria
9/1993 – 6/2001
Secondary school finished with distinction.

Professional
Activities

Program Committee
CSR 2010.
Conference Referee
STVR; STACS 2011; DATE 2011; HVC 2010; RTSS 2010;
FMCAD 2010; ICTAC 2010; CAV 2010; CSR 2010; FM-
CAD 2009; QEST 2009; CAV 2009; ISoLA 2008; LATA
2007; ICALP 2007; CSR 2007.

Oxford University ComLab Research assistant
Oxford, United Kingdom since 1/2011
Research assistant in the group of Dr. Daniel Kroening.

Vienna University of Technology Research assistant
Vienna, Austria 1/2010 – 12/2010
Ph.D. student in the group of Prof. Helmut Veith. Key re-
searcher in BMWI grant 20H0804B in the frame of LuFo IV-
2 project INTECO in collaboration with Diehl Aerospace.

www.forsyte.at/~tautschnig

Simon Fraser University Internship
Vancouver, Canada 11/2008 – 12/2008
Research collaboration with Prof. Dirk Beyer.

Technische Universität Darmstadt Research assistant
Darmstadt, Germany 3/2008 – 12/2009
Ph.D. student in the group of Prof. Helmut Veith. Key
researcher in DFG grant FORTAS – Formal Timing Analysis
Suite for Real Time Programs (VE 455/1-1); key researcher
in INTECO in collaboration with Diehl Aerospace.

Technische Universität München Research assistant
Munich, Germany 5/2006 – 2/2008
Ph.D. student in the group of Prof. Helmut Veith. Key re-
searcher in research collaboration with BMW; key researcher
in DFG grant FORTAS.

To me vi is zen.
To use vi is to practice zen.
Every command is a koan.
Profound to the user, unintel-
ligible to the uninitiated.
You discover truth every time
you use it.

Satish Reddy

	Introduction
	Software Testing
	Terminology
	Applications of Software Testing

	Query-Driven Program Testing
	Overview of Realization
	Mathematical Framework
	Query Language
	Test Case Generation Back End

	Advantages and Limitations of the Implementation
	Contributions
	Related Work

	Requirements for the Design of FQL
	A Primer on Query-Driven Program Testing
	FQL Language Concept
	Path Patterns: Regular Expressions
	Coverage Specifications: Quoted Regular Expressions
	Target Graphs and Filter Functions
	Target Alphabet: CFA Edges, Nodes, Paths
	Full FQL Specifications

	Example Specifications
	Disambiguating Specifications using FQL
	Tool Support for Query-Driven Program Testing: FShell

	A Mathematical Model for White-box Program Testing
	Intermediate Representation: Control Flow Automata
	Concrete Program Semantics: Transition Systems
	Predicates and Coverage Criteria

	FQL – the FShell Query Language
	FQL Design Overview
	FQL Elementary Coverage Patterns
	Semantics of Elementary Coverage Patterns
	Interpretation of Path Patterns as Path Predicates

	Target Graphs and CFA Transformers
	Filter Functions for ANSI C
	ANSI C Specific Terminology
	Detailed Specification of Filter Functions

	FQL Specifications
	Full FQL Specifications
	Example of FQL Query Evaluation
	Expressive Power and Usability
	Scenario 1: Structural Coverage Criteria
	Scenario 2: Data Flow Coverage Criteria
	Scenario 3: Constraining Test Cases
	Scenario 4: Customized Test Goals
	Scenario 5: Seamless Transition to Verification

	Discussion

	FShell
	Overview of CBMC's Architecture
	Tool Architecture
	Front End and Query Parsing
	Command Line Options
	Interactive Shell, Control Commands, and Macros
	Processing FQL Queries
	Running Example

	Computing Target Graphs
	Example
	Predicates over Program Variables

	Trace Automata
	Construction of Trace Automata
	Program Traces

	Integrating Trace Automata
	Program Instrumentation
	Propositional Encoding of Trace Automata

	Efficient Test Case Enumeration
	Overview of CDCL/DPLL SAT Solving
	Guided SAT Enumeration
	Coverage Analysis

	Test Suite Minimization
	Computing Test Inputs
	Test Harness Generation

	Evaluation
	Uses of Query-Driven Program Testing
	Measurement-based Execution Time Analysis
	Model/Implementation Consistency Checking
	Coverage Evaluation
	Reasoning on Coverage Criteria
	Test Case Generation
	Discussion

	Expressiveness
	Experimental Evaluation
	Efficient Evaluation of Complex Queries
	Applicability to Real-World Software
	Comparing to other Test Case Generation Approaches
	Scalability

	Comparison of Instrumentation vs. Native SAT Encoding
	Minimization of Test Suites

	Conclusions
	Bibliography
	Curriculum Vitae

