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Introduction

In [JLT] it was shown that a bounded cyclic selfadjoint operator in a Pontryagin
space is unitarily equivalent to the operator of multiplication by the independent
variable in some space Π(φ), where Π(φ) is a Pontryagin space generated by a
distribution φ which belongs to a certain class F of linear functionals. In this
thesis we investigate how this result can be generalized to the case of a bounded
cyclic definitizable selfadjoint operator in a Krĕın space.

In Chapter 1 we give a basic overview of distributions and extend the class
of linear functionals F , introduced in [JLT], to fit the spectral properties of a
bounded definitizable selfadjoint operator in a Krĕın space. The main difference
to the Pontryagin space case is the real part of the spectrum. For a selfadjoint
operator in a Pontryagin space with only real spectrum there exists a positive
definitizing polynomial, which is no longer true in the situation of a bounded
definitizing selfadjoint operator in a Krĕın space. This reflects in the definition
of the class of distributions corresponding to the real part of the spectrum, which
is denoted by F(R). The condition in [JLT] that the distribution corresponding
to the real part of the spectrum is a positive measure except on a finite subset
M of R is weakened, to the requirement that on each closed interval which is
a subset of R \M the distribution is either a positive or negative measure, see
Definition 1.5. The main result of the first chapter is an integral representation
for a distribution of F(R) with a one element exception set, see Proposition
1.21.

In Chapter 2 we build a model for a distribution in ϕ ∈ F(R) with exception
set {0} using the data from some integral representation of ϕ. We define an inner
product on the space of all polynomials by means of the distribution ϕ, and an
embedding from the set of all polynomials into a space L2(ν) ⊕ Cn. On this
space we explicitly define an indefinite inner product such that this embedding
becomes isometric. The space obtained by factorizing out the isotropic part of
the closure of the range of this embedding is defined as the model Krĕın space,
cf. Theorem 2.18. The model multiplication operator is defined such that it
is compatible with the operator of multiplication by the independent variable
on the space of all polynomials. Finally we show that the model spaces and
operators constructed from different integral representations of ϕ are unitarily
equivalent, cf. Theorem 2.19.

The main purpose of Chapter 3 is to construct an operator model for an
arbitrary distribution of F(R), and to add possible non-real spectrum. This is
a rather technical section. Given a distribution φ, we construct a Krĕın space
Kφ, a bounded cyclic definitizable selfadjoint operator Aφ, and an embedding
ιφ of the space of all polynomials into Kϕ, such that ιφ has dense range and Aφ
is compatible with the multiplication operator on the space of all polynomials,
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cf. Theorem 3.19 and Corollary 3.20.
In the last chapter, Chapter 4, we investigate the converse question. Given

a bounded cyclic definitizable selfadjoint operator A in a Krĕın space K, we
construct a distribution φ. We show that A is weakly unitarily equivalent to
the operator Aφ, cf. Theorem 4.4. Being weakly unitarily equivalent means that
there exists an isometric mapping U : K → Kφ with dense domain and dense
range, such that AφU = UA. We show that under some additional properties
on the spectrum of A, namely if each singular critical point of A has finite index,
this weak unitary equivalence is bicontinuous, i.e. a strong unitary equivalence.
Finally, we show that the distribution constructed from a model operator Aφ is
nothing but φ.

In contrast to [JLT], where the situation in a Pontryagin space is treated, we
consider a Krĕın space and therefore the measure representing the distribution
on intervals without critical points is either a positive or negative measure.
This affects the result known in the Pontryagin space situation in so far that
in general only a weak isometry is obtained. The methods used are mostly the
same as in a Pontryagin space except that we make use of the geometry and
spectral theory of a Krĕın space. Further we do not restrict ourselves to a fixed
representation for a distribution but show that every representation leads to the
same object.



Chapter 1

Distributions of the class F

1.1 Basic Theory of distributions

Let Ω be an open subset of R. By C∞(Ω) we denote the space of complex valued
functions on Ω which have derivatives of all orders. As usual we consider on
C∞(Ω) the topology generated by the seminorms

pN (f) := max{|f (n)(x)| : x ∈ KN , n ≤ N}, N ∈ N0 := N ∪ {0}, f ∈ C∞(Ω),

where Ki, i ∈ N, are compact subsets of Ω such that Ki ⊆ K̊i+1 and Ω =⋃
i∈NKi. This topology we will denote by τ∞. For a compact set K ⊆ Ω

we denote by DK(Ω) the space of all f ∈ C∞(Ω) whose support lies in K. By
D(Ω) we denote the union of the spaces DK(Ω) where K ranges over all compact
subsets of Ω and call it the test function space. Consider on each DK(Ω) the
subspace topology induced by the topology τ∞ on C∞(Ω) and denote it by τK .
Further define

W :=
{
W ⊆ D(Ω) :

W is convex and balanced
W ∩ DK ∈ τK ∀K ⊆ Ω compact

}
and let τ be the collection of all unions of sets of the form f+W , with f ∈ D(Ω)
and W ∈ W. Then

(
D(Ω), τ

)
is a locally convex topological vector space and

W is a local base for τ . A distribution on Ω is a continuous linear functional on
D(Ω) with respect to the topology τ . The space of distributions on Ω will be
denoted by D′(Ω).
A distribution is called real if it takes real values on real test functions.
For m ∈ N0 denote by Cmc (Ω) the space of complex valued functions on Ω
with compact support which have derivatives up to order m. For f ∈ Cmc (Ω),
m ∈ N0, we introduce the norms

‖f‖m := max{|f (j)(x)| : x ∈ Ω, 0 ≤ j ≤ m} = max{‖f (j)‖∞ : 0 ≤ j ≤ m},

where ‖.‖∞ denotes the uniform norm.
A linear functional ϕ on D(Ω) belongs to D′(Ω) if and only if, for every compact
set K in Ω, there exists N ∈ N0 := N ∪ {0} and a constant CK <∞ such that

|ϕ(f)| ≤ CK‖f‖N , for all f ∈ DK(Ω). (1.1.1)

3



4 CHAPTER 1. DISTRIBUTIONS OF THE CLASS F

If ϕ is such that one N will do for all K, then ϕ is said to have finite order.
In this case the smallest number N ∈ N0 for which (1.1.1) is satisfied for all
K is called the order of ϕ. If no N will do for all K, then ϕ is said to have
infinite order. The order of ϕ is denoted by ord(ϕ). To characterize the order
of a distribution it is useful to introduce further function spaces similar to the
spaces DK(Ω) and D(Ω), respectively. For a compact subset K of Ω and m ∈ N0

we define

DmK(Ω) := {f ∈ Cm(Ω) : supp f ⊆ K},

Dm(Ω) :=
⋃
K⊆Ω

K compact

DmK(Ω).

Note that Dm(Ω) is precisely the space of functions of class Cm having compact
support. Equip the spaces DmK(Ω) with the norm ‖.‖m and denote the induced
topology by τmK . Analogously to the construction of the topology on D(Ω) define

Wm :=
{
W ⊆ Dm(Ω) :

W is convex and balanced
W ∩ DmK ∈ τmK ∀K ⊆ Ω compact

}
and let τm be the collection of all unions of sets of the form f + W , with
f ∈ Dm(Ω) and W ∈ Wm. We consider on each space Dm(Ω), m ∈ N0, the
topology τm.
The following table (Ω ⊆ R open, m ∈ N0, K ⊆ R compact) gives an overview
of the introduced spaces and the local bases for the corresponding topologies.

space top. local base

C∞(Ω) τ∞

{
VN : N ∈ N

}
, with VN :=

{
f ∈ C∞(Ω) : pN (f) < 1

N

}
DK(Ω) τK

{
ṼN : N ∈ N

}
, with ṼN :=

{
f ∈ DK(Ω) : ‖f‖N < 1

N

}
D(Ω) τ

{
W ⊆ D(Ω) :

W is convex and balanced
W ∩ DK ∈ τK ∀K ⊆ Ω compact

}
DmK(Ω) τmK

{
Ṽ ′N : N ∈ N

}
, with Ṽ ′N :=

{
f ∈ DmK(Ω) : ‖f‖N < 1

N

}
Dm(Ω) τm

{
W ⊆ Dm(Ω) :

W is convex and balanced
W ∩ DmK ∈ τmK ∀K ⊆ Ω compact

}
The distributions of order at most m ∈ N0 can be characterized as follows:

1.1 Proposition. Let ϕ be a distribution on Ω and m ∈ N0. Then ϕ has order
at most m if and only if ϕ can be extended to a continuous linear functional on
Dm(Ω). In this case the extension is unique.

The proof uses the fact that D(Ω) is dense in Dm(Ω) and can be found in
[HL, Proposition 3.1, p. 268]. By this proposition we can identify the space of
distributions of order at most m, m ∈ N0, on Ω with the space of continuous
linear forms on Dm(Ω), which we denote by D′m(Ω).

For a locally integrable complex function g in Ω, define

ϕg(f) :=

∫
Ω

fgdλ, f ∈ D(Ω),

where λ denotes the Lebesgue measure. Then for all f ∈ DK(Ω) it holds that

|ϕg(f)| ≤
(∫

K
|g|dλ

)
‖f‖0, so ϕg is a distribution of order zero. Similarly we
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can define a distribution of order zero corresponding to a complex or positive
Borel measure µ on Ω by

ϕµ(f) :=

∫
Ω

fdµ.

Recall that a Borel measure is a positive measure µ defined on the σ-algebra of
all Borel sets in a locally compact Hausdorff space X which satisfies µ(K) <∞,
for every compact set K. If a locally compact Hausdorff space X has a countable
base it follows that every Borel measure is regular. Therefore any Borel measure
on any subset of R is regular. If µ is a negative or complex measure defined on
the σ-algebra of all Borel sets in a locally compact Hausdorff space X we call
it a Borel measure if its total variation |µ| is a Borel measure. By M(Ω) we
denote set of all complex Borel measures on Ω and by B(Ω) the Borel σ-algebra
on Ω.

The support of a distribution ϕ is defined as:

suppϕ := Ω \
⋃{

ω is an open subset of Ω : ϕ(f) = 0, ∀f ∈ D(ω)
}
.

Of special interest for the next section are distributions with compact support.
They can be characterized as follows:

1.2 Proposition. Let ϕ be a distribution on Ω. Then ϕ has compact support
if and only if ϕ can be extended to a continuous linear functional on C∞(Ω).
In this case the extension is unique.

A proof can be found in [HL, Proposition 3.3, p. 282].

For p ∈ N0 and ϕ ∈ D′(Ω) the formula

ϕ(p)(f) := (−1)pϕ
(
f (p)

)
,

defines a linear functional on D(Ω), which is called the p-th (distributional)
derivative of ϕ. If |ϕ(f)| ≤ C‖f‖N for all f ∈ DK(Ω), then it follows that

|ϕ(p)(f)| ≤ C‖f (p)‖N ≤ C‖f‖N+p, f ∈ DK(Ω),

which implies that ϕ(p) is a distribution. Further it holds suppϕ(p) ⊆ suppϕ
for all p ∈ N0, c.f. [HL, Proposition 2.4, p. 294]. Moreover if ϕ ∈ D′m(Ω) it
follows that ϕ(p) ∈ D′m+p(Ω).

The following proposition characterizes elements of class D′m, m ∈ N0. A
proof can be found in [E, Theorem 4.8.1, p. 318].

1.3 Proposition. Let m ∈ N0 and ϕ ∈ D′m(Ω). Then there exist distributions
ϕj ∈D′0(Ω), j = 0, . . . ,m, such that

ϕ =

m∑
j=0

ϕ
(j)
j . (1.1.2)

If ϕ has compact support K, the distributions ϕj, j = 1, . . . ,m, may be as-
sumed to have their supports contained in any preassigned neighborhood of K.
Conversely, any finite sum of the form (1.1.2) is an element of D′m(Ω).
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1.4 Corollary. Let ϕ be a distribution on Ω with compact support. Then the
order of ϕ is finite and there exist regular complex Borel measures µj, j =
0, . . . , ord(ϕ), with compact support on Ω such that

ϕ =

ord(ϕ)∑
j=0

µ
(j)
j .

Proof. By [R, Theorem 6.24, p. 164] a distribution with compact support has
finite order. Denote by m ∈ N0 the order of the distribution ϕ and by K ⊆ Ω its
support. Fix compact subsets K ′, K ′′ of Ω such that K ⊆ K̊ ′ ⊆ K ′ ⊆ K̊ ′′ ⊆ K ′′.
By Proposition 1.3 there exist distributions ϕj ∈ D′0(Ω), j = 0, . . . ,m, such that

ϕ =
∑m
j=0 ϕ

(j)
j and suppϕj ⊆ K̊ ′ for j = 0, . . . ,m. Every ϕj is an element of

D′0(Ω), so every ϕj is a continuous linear functional on D0(Ω). Hence there
exist constants Cj , j = 0, . . . ,m, such that

|ϕj(f)| ≤ Cj‖f‖0, f ∈ D0
K′′(Ω).

Let {ω1, ω2} be a partition of unity subordinate to the open cover {K̊ ′′, (K ′)c}.
Then for f ∈ D0(Ω) it holds ω1f ∈ D0

K′′ and ϕj(f) = ϕj(ω1f), j = 0, . . . ,m.
This yields

|ϕj(f)| ≤ Cj‖ω1f‖0 ≤ Cj‖f‖∞, j = 0, . . . ,m, f ∈ D0(Ω).

Therefore ϕj , j = 0, . . . ,m, is a continuous linear functional on D0(Ω) = Cc(Ω).
By the Riesz Representation Theorem there exist regular Borel measures µj ,
j = 0, . . . ,m, such that

ϕj(f) =

∫
Ω

fdµj , j = 0, . . . ,m, f ∈ Cc(Ω).

Therefore ϕj = µj , j = 0, . . . ,m, in the distributional sense. q

1.2 Distributions of the class F(R)
Let ϕ be a distribution on R and I ⊆ R an interval. We say ϕ restricted to I
is a Borel measure if there exists a Borel measure µ supported on a subset of I
such that

ϕ(f) =

∫
I

fdµ, f ∈ D(R) with supp f ⊆ I.

1.5 Definition. For a finite set M ⊆ R denote by F(R,M) the class of real
distributions ϕ with compact support, such that for all [a, b] ⊆ R \ M the
distribution ϕ restricted to [a, b] is a finite positive or negative Borel measure.
Then we define

F(R) :=
⋃
M⊆R

M is finite

F(R,M).

If the cardinality of M equals 1, i.e. M = {α}, α ∈ R, we write abbreviatory
F(R, α) for F(R, {α}).



1.2. DISTRIBUTIONS OF THE CLASS F(R) 7

By Proposition 1.2 every ϕ ∈ F(R) has a unique extension to a continuous
linear functional on C∞(Ω). In this sense we can apply ϕ to elements of C∞(Ω).

1.6 Definition. Let ϕ ∈ F(R) and M a finite subset of R such that ϕ ∈
F(R,M). We define ZM as the set of all components of R \M . We call M
minimal if there exists no N ⊆ R such that |N | < |M | and ϕ ∈ F(R, N).

Note that for ϕ ∈ F(R) a minimal set M such that ϕ ∈ F(R,M) does not
have to be unique.

1.7 Proposition. Let ϕ ∈ F(R) and M a finite subset of R such that ϕ ∈
F(R,M). Then for every Z ∈ ZM there exists a positive or negative (possibly
unbounded) Borel measure µZ on Z such that

ϕ(f) =

∫
Z

fdµZ , f ∈ D(R) with supp f ⊆ Z.

Proof. Let Z ∈ ZM and assume first that Z is bounded. In this case Z = (a, b)
with a, b ∈ R. For every n ∈ N define an := a + 1

n and bn := b − 1
n . Then by

definition for every n ∈ N there exists a finite positive or negative measure µn
on [an, bn] such that

ϕ(f) =

∫
[an,bn]

fdµn, f ∈ D(R) with supp f ⊆ [an, bn].

For any natural number m less than n and any test function f with supp f ⊆
[am, bm] it follows that∫

[am,bm]

fdµm = ϕ(f) =

∫
[an,bn]

fdµn =

∫
[am,bm]

fdµn.

By a density argument this implies µn(∆) = µm(∆) for all ∆ ∈ B
(
[am, bm]

)
.

Clearly µn is a positive (negative) measure if and only if µm is a positive (neg-
ative) measure. Now we define a measure on (a, b) by

µ(∆) := lim
n→∞

µn
(
∆ ∩ [an, bn]

)
, ∆ ∈ B

(
(a, b)

)
.

Since (µn)n∈N is a monotonic sequence, µ is a well-defined set function from
(a, b) to [0,∞], or [−∞, 0] respectively. We need to show that µ is a Borel
measure on (a, b). Assume that (µn)n∈N is a sequence of positive (and of course
finite) measures. In the case where all measures µn, n ∈ N, are negative just
consider the sequence (−µn)n∈N and the same argument applies. Now consider a
disjoint countable collection (Ai)i∈N of members of B

(
(a, b)

)
then the monotone

convergence theorem shows that

µ
( ∞⋃
i=1

Ai

)
= lim
n→∞

µn

( ∞⋃
i=1

Ai ∩ [an, bn]
)

= lim
n→∞

∞∑
i=1

µn
(
Ai ∩ [an, bn]

)
=

=

∞∑
i=1

lim
n→∞

µn
(
Ai ∩ [an, bn]

)
=

∞∑
i=1

µ(Ai).
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Let K be a compact subset of (a, b), then there exists a natural number n such
that K ⊆ [an, bn]. Since µn is a finite measure it follows that

µ(K) ≤ µ([an, bn]) = µn([an, bn]) <∞,

thus µ is a Borel measure on (a, b). Further for every f ∈ D(R) with supp f ⊆
(a, b) it holds that

ϕ(f) =

∫
[an,bn]

fdµn =

∫
(a,b)

fdµ,

when n is chosen such that supp f ⊆ [an, bn]. The cases Z = (−∞, b) or
Z = (a,∞), a, b ∈ R, can be proven similarly using the fact, that ϕ has compact
support. If the only component is Z = R the assertion of this proposition follows
immediately by definition. q

1.8 Definition. Let ϕ ∈ F(R) and M a finite subset of R such that ϕ ∈
F(R,M). For any α ∈ M denote by Z±α the components of R \M such that
supZ−α = α = inf Z+

α . For a ∈ R \M we denote by Za the element of ZM such
that a ∈ Za. For Z ∈ ZM we denote by µZ the measure from Proposition 1.7
corresponding to the component Z.

1.9 Corollary. Let ϕ ∈ F(R) and M a finite subset of R such that ϕ ∈
F(R,M). Define M̃ := M ∩ suppϕ, then it holds

suppϕ =
⋃

Z∈ZM

suppµZM ∪ M̃.

1.10 Remark. Let ϕ ∈ F(R) and M a finite subset of R such that ϕ ∈ F(R,M).
Assume that M consists of one element α ∈ R. If M is not minimal, i.e.
ϕ ∈ F(R, ∅), then ϕ is either a positive or negative measure on R and clearly
the support of ϕ coincides with the support of µR. If M = {α} is minimal, then
µZ+

α
and µZ−α can have different sign. In this case the following situations can

occur:

·) α is an element of suppµZ+
α

and suppµZ−α ,

·) α is an element of suppµZ+
α

or suppµZ−α ,

·) α is not an element of suppµZ+
α

and suppµZ−α but an element of suppϕ,

·) α is not an element of suppµZ+
α

, suppµZ−α and suppϕ.

It follows that the set suppϕ\
(
suppµZ+

α
∪suppµZ−α

)
is either empty or consists

of the element α.

We want to consider the question how we can restrict an element of F(R)
to real intervals. Let ϕ ∈ F(R,M), where M is a finite subset of R. Let
∆ be an open, half-open or closed interval of R such that ∂∆ ∩M = ∅ and
µZ(∂∆∩Z) = 0 for every Z ∈ ZM . We denote the set of all these intervals with
Dϕ,M . For ∆ ∈ Dϕ,M we define

G∆ :=
{
{(−∞, a),Ω, (b,∞)} :

Ω is an open interval of R, a, b ∈ R,
M ∩∆ ( [a, b] ( Ω ⊆ ∆

}
.
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Now we can define the restriction of ϕ to elements of Dϕ,M . Let ∆ ∈ Dϕ,M

and Γ ∈ G∆, i.e. there is an open interval Ω and a, b ∈ R such that M ∩∆ (
[a, b] ( Ω and Γ = {(−∞, a),Ω, (b,∞)}. Let γ := {ωl, ω0, ωr} ⊆ D(R) be a
partition of unity subordinate to the cover Γ, then we define

ϕ|∆(f) := ϕ(fω0) +

∫
Za

fωlχ∆dµZa +

∫
Zb

fωrχ∆dµZb , f ∈ D(R),

where χ∆ denotes the indicator function on ∆. We have to show that this
construction is independent of the choice of Γ and γ. This is the assertion of
the following lemma:

1.11 Lemma. Let ϕ ∈ F(R) and M a finite subset of R such that ϕ ∈ F(R,M).
For each ∆ ∈ Dϕ,M the functional ϕ|∆ is independent of the choice of the open
cover Γ ∈ G∆ and the partition of unity γ. Further ϕ|∆ is a distribution on R.

Proof. For i = 1, 2 let Ωi be open intervals of R and ai, bi ∈ R, such that Γi :=
{(−∞, ai),Ωi, (bi,∞)} ∈ G∆ and choose partitions of unity γi :={ωi,l, ωi,0, ωi,r}
subordinate to Γi. Now define a := max{a1, a2}, b := min{b1, b2} and Ω :=
Ω1 ∪ Ω2, then clearly Γ := {(−∞, a),Ω, (b,∞)} ∈ G∆. For a partition of unity
γ := {ωl, ω0, ωr} subordinate to Γ it holds

ω0 = ωi,l − ωl + ωi,0 + ωi,r − ωr, i = 1, 2.

Clearly Zai = Za and Zbi = Zb for i = 1, 2. Further supp(ωi,l−ωl) ⊆ [inf Ω, a] ⊆
∆ and supp(ωi,r−ωr) ⊆ [b, sup Ω] ⊆ ∆, i = 1, 2 and therefore for every f ∈ D(R)
it follows that

ϕ(fω0) = ϕ(fωi,0) + ϕ(f(ωi,l − ωl)) + ϕ(f(ωi,r − ωr)) =

= ϕ(fωi,0) +

∫
Za

f(ωi,l − ωl)χ∆dµZa +

∫
Zb

f(ωi,r − ωr)χ∆dµZb , i = 1, 2.

This implies that the definition of ϕ|∆ is independent of the choice of the open
cover Γ and the partition of unity γ. It remains to show that ϕ|∆ ∈ D′(R). Let
K ⊂ R be a compact set, then there exists a constant CK > 0 and N ∈ N0 such
that |ϕ(f)| ≤ CK‖f‖N for f ∈ DK(R), since ϕ is a distribution. This implies∣∣ϕ|∆(f)

∣∣ ≤ |ϕ(fω0)|+
∫
Za

|f |ωlχ∆d|µZa |+
∫
Zb

|f |ωrχ∆d|µZb | ≤

≤ CK‖fω0‖N + ‖f‖N
(
|µZa |

(
(−∞, a] ∩∆

)
) + |µZb |

(
[b,∞) ∩∆

))
, f ∈ DK(R).

By the Leibniz formula it follows that there exists a constant C ′ > 0 such that
‖fω0‖N ≤ C ′‖f‖N . This gives the following estimate∣∣ϕ|∆(f)

∣∣ ≤ (CKC ′+|µZa |((−∞, a]∩∆
)
)+|µZb |

(
[b,∞)∩∆

))
‖f‖N , f ∈ DK(R),

which shows that ϕ|∆ is a distribution on R. q

1.12 Definition. Let ϕ ∈ F(R) and M a finite subset of R such that ϕ ∈
F(R,M). A system of disjoint ordered intervals ∆i ∈ Dϕ,M , i = 1, . . . , n, i.e.
∆i ≤ ∆i+1 for i = 1, . . . , n− 1, such that R \

⋃n
j=1 ∆j is a finite set is called a

ϕ-M -decomposition of R.
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1.13 Lemma. Let ϕ ∈ F(R) and M a finite subset of R such that ϕ ∈ F(R,M)
and ∆, ∆′ ∈ Dϕ,M . Then it holds:

(i) If ∆ ∩M = ∅, then there exists Z ∈ ZM such that ∆ ⊆ Z and

ϕ|∆(f) =

∫
∆

fdµZ , f ∈ D(R).

(ii) The support of ϕ|∆ is a subset of ∆.

(iii) The functional ϕ|∆ belongs to the class F(R,M ∩∆) and ϕ|∆(f) = ϕ(f)
for f ∈ D(R) with supp f ⊆ ∆.

(iv)
(
ϕ|∆

)
|∆ = ϕ|∆.

(v) ϕ|∆ = ϕ|∆̊ = ϕ|∆.

(vi) If ∆ ∩∆′ = ∅ and ∆ ∪∆′ ∈ Dϕ,M then ϕ|∆∪∆′ = ϕ|∆ + ϕ|∆′ .

(vii) Let ∆1, . . . ,∆n be a ϕ-M -decomposition of R. Then the distribution ϕ
can be written as

ϕ(f) =

n∑
j=1

ϕ|∆j (f), f ∈ D(R).

Proof.

ad (i) : The existence of Z ∈ ZM with ∆ ⊆ Z is obvious. Choose a partition of
unity γ := {ωl, ω0, ωr} subordinate to the cover Γ := {(−∞, a),Ω, (b,∞)} ∈ G∆.
Then Za = Zb = Z and for f ∈ D(R) it holds

ϕ|∆(f) = ϕ(fω0) +

∫
Z

fωlχ∆dµZ +

∫
Z

fωrχ∆dµZ =

∫
∆

fdµZ .

ad (ii) : For any open set O ⊆ R \ ∆ it clearly holds ϕ|∆(f) = 0 for every
f ∈ D(O), hence suppϕ|∆ ⊆ ∆.

ad (iii) : By Lemma 1.11 ϕ|∆ is a distribution and by (ii) ϕ|∆ has compact
support. We have to show that for every [a, b] ∈ R \ (M ∩∆) the distribution
ϕ|∆ restricted to [a, b] is a finite positive or negative Borel measure.
Let [a, b] ∈ R \ (M ∩∆) and f ∈ D(R) with supp f ⊆ [a, b]. If M ∩∆ = ∅ by (i)
there exists Z ∈ ZM such that ∆ ⊆ Z and

ϕ|∆(f) =

∫
∆

fdµZ =

∫
[a,b]

fχ∆∩[a,b]dµZ .

Hence ϕ|∆ restricted to [a, b] is a finite positive or negative Borel measure.
If M ∩ ∆ 6= ∅, then there exists an element α ∈ R such that M ∩ ∆ = {α}.
Choose an open interval Ω and c, d ∈ R such that α ∈ (c, d) ( [c, d] ( Ω ⊆ ∆
and Ω ∩ [a, b] = ∅. Assume first b < inf Ω and choose a partition of unity
γ := {ωl, ω0, ωr} subordinate to the cover Γ := {(−∞, c),Ω, (d,∞)} ∈ G∆.
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Then ωl ≡ 1 on [a, b] and ω0, ωr vanishes on [a, b]. Therefore we have for every
f ∈ D(R) with supp f ⊆ [a, b]

ϕ|∆(f) =

∫
Zc

fωlχ∆dµZc =

∫
[a,b]

fχZc∩∆∩[a,b]dµZc ,

which shows that ϕ|∆ restricted to [a, b] is a finite positive or negative measure.
The case a > sup Ω is proven analogously. Therefore ϕ|∆ ∈ F(R,M ∩∆).
If f ∈ D(R) with supp f ⊆ ∆, then it holds

ϕ|∆(f) = ϕ(fω0)+

∫
Zc

fωldµZc+

∫
Zd

fωrµZd = ϕ(fω0)+ϕ(fωl)+ϕ(fωr) = ϕ(f).

ad (iv) : Assume ∆ ∩M = ∅. Choose an element Γ := {(−∞, a),Ω, (b,∞)} ∈
G∆ with corresponding partition of unity γ := {ωl, ω0, ωr}. Let Z ∈ ZM such
that ∆ ⊆ Z. Since ∆ ∩M = ∅ we have Za = Zb = Z. By (i) it follows that

(
ϕ|∆

)
|∆(f) = ϕ|∆(fω0) +

∫
Z

fωlχ∆dµZ +

∫
Z

fωrχ∆dµZ =

∫
∆

fdµZ = ϕ|∆(f).

If ∆ ∩M 6= ∅, then there exists α ∈ R such that ∆ ∩M = {α}. Choose an
element Γ := {(−∞, a),Ω, (b,∞)} ∈ G∆ with corresponding partition of unity
γ := {ωl, ω0, ωr}. The restriction of ϕ to ∆ is given by

ϕ|∆(f) = ϕ(fω0) +

∫
Za

fωlχ∆dµZa +

∫
Zb

fωrχ∆dµZb , f ∈ D(R),

Denote the measures corresponding to ϕ|∆ on the elements of ZM∩∆, i.e. on
{(−∞, α), (α,∞)}, by µα− and µα+ . By (iii) it follows that µ−α (µ+

α ) and µZa
(µZb) coincide on ∆. Therefore for every f ∈ D(R) it holds

(
ϕ|∆

)
∆

(f) = ϕ|∆(fω0) +

∫
(−∞,α)

fωlχ∆dµα− +

∫
(α,∞)

fωrχ∆dµα+ =

= ϕ(fω0ω0) +

∫
Za

f(ω0ωl + ωl)χ∆dµZa +

∫
Zb

f(ω0ωr + ωr)χ∆dµZb = ϕ|∆(f),

since {ω0ωl + ωl, ω0ω0, ω0ωr + ωr} is a partition of unity subordinate to Γ.

ad (v) : This follows immediately from the definition of the restriction and the
fact that µZ(∂∆ ∩ Z) for every Z ∈ ZM .

ad (vi) : Assume ∆ < ∆′. Since ∆, ∆′ and ∆ ∪∆′ are elements of Dϕ,M

and ∆ ∩ ∆′ = ∅ it follows that ∆ ∩ ∆′ consists exactly of one element which
we will denote by x. By (v) we can assume that x 6∈ ∆ and x 6∈ ∆′. Let
Γ := {(−∞, a),Ω, (b,∞)} ∈ G∆, Γ′ := {(−∞, a′),Ω′, (b′,∞)} ∈ G∆′ and choose
corresponding partitions of unity γ := {ωl, ω0, ωr}, γ′ := {ω′l, ω′0, ω′r} subordi-

nate to Γ and Γ′, respectively. Further let Γ̃ := {(−∞, a), Ω̃, (b′,∞)} ∈ G∆∪∆′ ,

where Ω̃ is the smallest open interval which contains Ω ∪ Ω′. Since ∆ < ∆′ the
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components Zb and Za′ coincides. Further ωrω
′
0 = ω′0 and ωrω

′
r = ω′r. This

implies that

ω0 + ωrω
′
l + ω′0 + ωl + ω′r = ω0 + ωr − ωrω′0 − ωrω′r + ω′0 + ωl + ω′r = 1,

hence {ωl, ω0 + ωrω
′
l + ω′0, ω

′
r} is a partition of unity subordinate to the cover

Γ̃. Then for f ∈ D(R) it holds

ϕ|∆(f) + ϕ|∆′(f) = ϕ(fω0) +

∫
Za

fωlχ∆dµZa +

∫
Zb

fωrχ∆dµZb+

+ϕ(fω′0) +

∫
Za′

fω′lχ∆′dµZa′ +

∫
Zb′

fω′rχ∆′dµZb′ =

= ϕ(fω0) +

∫
Zb

f
(
ωrχ∆ + ω′lχ∆′ + χ{x}

)︸ ︷︷ ︸
ωrω′l

dµZb + ϕ(fω′0)+

+

∫
Za

fωlχ∆dµZa +

∫
Zb′

fω′rχ∆′dµZb′ =

= ϕ
(
f(ω0 + ωrω

′
l + ω′0)

)
+

∫
Za

fωlχ∆dµZa +

∫
Zb′

fω′rχ∆′dµZb′ = ϕ|∆∪∆′ .

ad (vii) : This follows directly from (v) and (vi). q

1.14 Lemma. Let β ∈ C∞(R) be a monotone function with suppβ ⊆ (0,∞)
such that β|(1−ε,∞) ≡ 1, for some ε > 0. For α ∈ R and k ∈ N define functions

βk,α+
(t) := β

(
k(t − α)

)
, βk,α−(t) := βk,α+

(−t) and βk,α(t) := 1 − βk,α−(t) −
βk,α+(t). Then

(i) For every compact subset K of R and m ∈ N0 there exists a constant
CK,m > 0 such that

max
{∥∥∥((t− α)mβk,α±

)(j)∥∥∥
∞,K

: 0 ≤ j ≤ m
}
≤ CK,m, k ∈ N,

where ‖.‖∞,K denotes the uniform norm of a function restricted to K.

(ii) For every f ∈ D(R) with f (j)(α) = 0, 0 ≤ j ≤ m, there exist constants
C̃m > 0, k0 ∈ N such that

‖fβk,α‖m ≤ C̃m, k ≥ k0.

(iii) For every k ∈ N the family {βk,α− , βk,α, βk,α+
} is a C∞ partition of unity.

Proof.

ad (i) : Let K be a compact subset of R and m′ ∈ N0, m′ ≤ m. For k ∈ N it
follows that

(
(t− α)mβk,α+

(t)
)(m′)

(t) =

m′∑
j=0

(
m′

j

)
m!

(m′ − j)!
(t− α)m−m

′+jkjβ(j)
(
k(t− α)

)
.
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For j = 0 the addend is bounded by m!
m′!‖(t − α)(m−m′)β‖∞,K . If j > 0 then

suppβ(j) ⊆ [0, 1], so the addend may be non zero only if 0 ≤ k(t−α) ≤ 1. There-

fore the j-th summand can be estimated by
(
m′

j

)
m!

(m′−j)!‖(t−α)(m−m′)β(j)‖∞,K .

This implies the existence of constants CK,m′ > 0, m′ = 0, . . . ,m, such that∥∥∥((t− α)mβk,α+(t)
)(m′)∥∥∥

∞,K
≤ CK,m′ , k ∈ N,m′ ∈ N0,m

′ ≤ m.

Now define CK,m := max{CK,m′ : m′ ∈ N0,m
′ ≤ m} which gives the desired

estimate. The case for βk,α− can be proven analogously.

ad (ii) : Let f ∈ D(R) such that f (j)(α) = 0, 0 ≤ j ≤ m, and k ∈ N. Then for
every η > 0 there exists a δ > 0 such that∣∣f (j)(t)

∣∣ ≤ η|t− α|m−j , |t− α| ≤ δ, j = 0, . . . ,m. (1.2.1)

This can be proven by induction. For j = m the assertion follows by con-
tinuity. Suppose 1 ≤ j ≤ m and assume |f (j)(t)| ≤ η|t − α|m−j . For ev-
ery t ∈ R by the mean value theorem there exists an intermediate value ξt ∈(
min{α, t},max{α, t}

)
such that

f (j)(ξt) =
f (j−1)(t)

t− α
.

If |t− α| ≤ δ then |ξt − α| ≤ δ and our induction hypothesis implies that

|f (j−1)(t)| = |f
(j)(ξt)|
|t− α|

≤ η|t− α|m−j+1, |t− α| ≤ δ.

This shows (1.2.1). Define β0(t) := 1−β(t)−β(−t), then βk,α(t) = β0

(
k(t−α)

)
,

k ∈ N. It follows that

(
fβk,α

)(m′)
(t) =

m′∑
j=0

(
m′

j

)
f (j)(t)β

(m−j)
0

(
k(t− α)

)
km−j .

Since suppβ0 ⊆ (−1, 1) this sum vanishes if k|t− α| ≥ 1. If k|t− α| < 1 define
k0 := [ 1

δ ] + 1, then it holds

|t− α| < 1

k
≤ δ, k ≥ k0.

Using inequality (1.2.1) it follows that

(
fβk,α

)(m′)
(t) ≤

m′∑
j=0

(
m′

j

)
η|t− α|m−jβ(m−j)

0

(
k(t− α)

) 1

|t− α|m−j
=

=

m′∑
j=0

(
m′

j

)
ηδm−jβ

(m−j)
0

(
k(t− α)

)
, k ≥ k0.

Therefore the j-th summand is bounded by
(
m′

j

)
ηδm−j‖β(m−j)

0 ‖∞ if k ≥ k0.

This yields the existence of a constant C̃m such that ‖fβk,α‖m ≤ C̃m if k ≥ k0.
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ad (iii) : This assertion is immediate. q

1.15 Definition. Let ϕ ∈ F(R) and M a finite subset of R such that ϕ ∈
F(R,M). Choose T ∈ T such that |M ∩ ∆| ≤ 1 for every ∆ ∈ IT . For an
element α ∈M ∩∆ we define the order of the distribution ϕ at α as

ord(ϕ;α) := ord(ϕ∆).

1.16 Proposition. Let ϕ ∈ F(R) and M a finite subset of R such that ϕ ∈
F(R,M). For every interval I ⊆ R with I ∩M = {α} and dist(I,M \ {α}) > 0
it holds

|t− α|ord(ϕ;α)dµZ±α

∣∣
I∩Z±α

are finite measures.

Proof. Set m := ord(ϕ;α) and assume that µZ+
α

is a positive measure. If µZ+
α

is a negative measure, simply consider −µZ+
α

. We show that (t− α)mdµZ+
α

is a
finite measure. Therefore fix some a ∈ R with a > |α| and suppϕ∩ I ⊆ (−a, a).
For k ∈ N let βα,k+

be as in Lemma 1.14. Abbreviatory we will write βk instead
of βα,k+

. Since βk(t) = 1 if t > α+ 1
k , for all k ∈ N, it follows that

(
(t− α)mdµZ+

α

)(
[α+

1

k
, a]
)

=

a∫
α+ 1

k

(t− α)mdµZ+
α

=

a∫
α+ 1

k

βk(t)(t− α)mdµZ+
α
≤

≤
a∫
α

βk(t)(t− α)mdµZ+
α

= ϕ
(
(t− α)mβk

)
, k ∈ N.

By Proposition 1.4 there exist complex Borel measures µj , j = 0, . . . ,m, on R
such that ϕ =

∑m
j=0 µ

(j)
j on I ∩ Z+

α . This yields for every k ∈ N

|ϕ
(
(t− α)mβk

)
| =

∣∣∣ m∑
j=0

µ
(j)
j

(
(t− α)mβk

)∣∣∣ ≤ m∑
j=0

∣∣∣µj(((t− α)mβk
)(j))∣∣∣ ≤

≤
m∑
j=0

a∫
α

∣∣∣((t− α)mβk(t)
)(j)∣∣∣d|µj | ≤ m∑

j=0

∥∥∥((t− α)mβk
)(j)∥∥∥

∞,[α,a]
|µj |
(
[α, a]

)
.

According to Lemma 1.14 the terms ‖((t− α)mβk)(j)‖∞,[α,a], j = 0, . . . ,m, are
uniformly bounded with respect to k and since the measures |µj |, j = 0, . . . ,m,
are finite there exists a constant M > 0 such that |ϕ

(
(t− α)mβk

)
| ≤M for all

k ∈ N. Now it follows that∣∣∣((t− α)mdµZ+
α

)(
[α+

1

k
, a]
)∣∣∣≤M, k ∈ N,

hence (t− α)mdµZ+
α

is a finite measure on (α, a).

The claim that |t−α|ord(ϕ;α)dµZ−α is a finite measure can be proven analogously.

q

1.17 Definition. Let M ⊆ R be a finite set and ϕ ∈ F(R,M). For α ∈M and
an interval I ⊆ R with I ∩M = {α} and dist(I,M \ {α}) > 0 we define

k±α := min
{
m±α ∈ N0 : |t− α|m

±
α dµZ±α |I∩Z±α is a finite measure

}
,

and kα := max{k+
α , k

−
α }.
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1.18 Remark. This definition is independent of the choice of the interval I.
Moreover for ϕ ∈ F(R, α), α ∈ R, Proposition 1.16 shows that kα ≤ ord(ϕ;α) ≤
ord(ϕ).

1.19 Proposition. Let α ∈ R and ϕ ∈ F(R, α). Further assume that f ∈ D(R)
is such that f (0)(α) = · · · = f (ord(ϕ))(α) = 0. Then

ϕ(f) =

∫
Z−α

fdµZ−α +

∫
Z+
α

fdµZ+
α
.

Proof. For k ∈ N let βk,α− , βk,α and βk,α+
as in Lemma 1.14. Since f ∈ D(R)

and {βk,α− , βk,α, βk,α+} is a C∞ partition of unity for every k ∈ N it follows
that

ϕ(f) = ϕ(fβk,α−) + ϕ(fβk,α) + ϕ(fβk,α+
) =

=

∫
Z−α

fβk,α−dµZ−α + ϕ(fβk,α) +

∫
Z+
α

fβk,α+
dµZ+

α
.

Define fα+
:= (t − α)−k

+
α f , then fα+

is continuous, and hence bounded on
[α,∞). We have fα+

βk,α+
→ fα+

χZ+
α

pointwise on Zα+ for k → ∞, and the
dominated convergence theorem yields

lim
k→∞

∫
Z+
α

fβk,α+dµZ+
α

= lim
k→∞

∫
Z+
α

fα+βk,α+(t− α)k
+
α dµZ+

α
=

=

∫
Z+
α

fα+(t− α)k
+
α dµZ+

α
=

∫
Z+
α

fµZ+
α
.

Similarly it follows that

lim
k→∞

∫
Z−α

fβk,ldµZ−α =

∫
Z−α

fdµZ−α .

Set m := ord(ϕ) and denote by µj , j = 0, . . . ,m, the complex Borel measures

on R as in Proposition 1.4 such that ϕ =
∑m
j=0 µ

(j)
j . We have

ϕ(fβk,α) =

m∑
j=0

µ
(j)
j (fβk,α) =

m∑
j=0

(−1)j
∫
R

(fβk,α)(j)dµj .

For each j = 0, . . . ,m, the integrand converges pointwise to zero when k tends to
∞. According to Lemma 1.14 the integrand is uniformly bounded with respect
to k for every j = 0, . . . ,m, hence we can apply the dominated convergence
theorem and obtain

lim
k→∞

ϕ(fβk,α) = 0,

which completes the proof. q
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1.20 Remark. If ϕ ∈ F(R, α), α ∈ R, then, by definition, ϕ has compact support.
By Proposition 1.2 the distribution ϕ can be extended in a unique way to a linear
functional on C∞(R). Therefore the last proposition implies that

ϕ
(
(t− α)j

)
=

∫
Z−α

(t− α)jdµZ−α +

∫
Z+
α

(t− α)jdµZ+
α
, j > ord(ϕ).

For a function f which possess a n-th derivative at t = α we use the notation

f{α,n}(t) :=

{
f(t) if n = 0,

f(t)−
∑n−1
i=0

(t−α)i

i! f (i)(α) if n ≥ 1.

If α is clear from the context we may just write f{n}.

1.21 Proposition. If α ∈ R and ϕ ∈ F(R, α), then there exist constants
k ∈ N0, l ∈ N0 ∪ {−1}, c0, . . . , cl ∈ R, and a signed finite Borel measure σ with
compact support, σ({α}) = 0 and σ|Zα± has the same sign as µZα± , such that

ϕ(f) =

∫
R

f{α,2k}(t)

(t− α)2k
dσ(t) +

l∑
i=0

ci
i!
f (i)(α), f ∈ D(R). (1.2.2)

The data k, l, c0, . . . , cl, σ can be chosen such that

(IR-1) cl 6= 0 if l ≥ 0,

(IR-2) if k > 0 the function t 7→ 1
(t−α)2 is not σ-integrable,

and with these requirements k, l, c0, . . . , cl, σ are unique. In fact, they can be
computed by means of ϕ as follows

k :=

{
1
2kα, if kα is even
1
2 (kα + 1), if kα is odd

,

σ is the measure corresponding to the distribution (t−α)2kϕ restricted to R\{α},
i.e. dσ(t) = (t− α)2kdµZ−α (t) + (t− α)2kdµZ+

α
(t),

ci :=


ϕ
(
(t− α)i

)
, i = 0, . . . , 2k − 1,

ϕ
(
(t− α)i

)
−

−
(∫

Z−α
(t− α)idµZ−α +

∫
Z+
α

(t− α)idµZ+
α

) , i = 2k, 2k + 1, . . . ,

and l := max{j ∈ N : cj 6= 0} ∪ {−1}.

Note that by Remark 1.20, ci = 0 if i is larger than the order of ϕ.

Proof. Define k, l, c0, . . . , cl, σ as given by means of the distribution ϕ in the
formulation of this proposition. By Remark 1.18 the measure σ is a signed
finite Borel measure with compact support and clearly it has no point mass at
α. Further define λ as

λ :=

{
ord(ϕ)+1

2 if ord(ϕ) is odd,
ord(ϕ)+2

2 if ord(ϕ) is even.
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Now let f ∈ D(R) and apply Proposition 1.19 to the function f{α,2λ}, then it
follows that

ϕ(f) = ϕ(f{α,2λ}) +

2λ−1∑
i=0

ϕ
(
(t− α)i

)f (i)(α)

i!
=

=

∫
Z−α

f{α,2λ}dµZ−α +

∫
Z+
α

f{α,2λ}dµZ+
α

+

2λ−1∑
i=0

ϕ
(
(t− α)i

)f (i)(α)

i!
=

=

∫
Z−α

f{α,2k}dµZ−α +

∫
Z+
α

f{α,2k}dµZ+
α

+

2λ−1∑
i=0

ϕ
(
(t− α)i

)f (i)(α)

i!
−

−
2λ−1∑
i=2k

(∫
Z−α

(t− α)idµZ−α +

∫
Z+
α

(t− α)idµZ+
α

)f (i)(α)

i!
=

=

∫
R

f{α,2k}

(t− α)2k
dσ(t) +

l∑
i=0

ci
i!
f (i)(α).

This gives the desired integral representation of ϕ. Condition (IR-1) is satisfied
by the definition of l. In order to show that (IR-2) holds let k > 0 and assume
that the function t 7→ 1

(t−α)2 is σ-integrable. This would imply∫
R

1

(t− α)2
d|σ|(t) =

∫
Z−α

(t− α)2k−2d|µZ−α |(t) +

∫
Z+
α

(t− α)2k−2d|µZ+
α
|(t) <∞.

This is a contradiction to the minimality of kα. The uniqueness is immediate.
q

1.22 Remark. Let ϕ ∈ F(R, α), α ∈ R and k ∈ N0, l ∈ N0∪{−1}, c0, . . . , cl ∈ R
and σ as in the preceding proposition satisfying 1.21 (IR-1), (IR-2). The integral
representation (1.2.2) implies that α ∈ suppϕ if k > 0 or l ≥ 0 and α ∈ suppσ
if k > 0 (condition 1.21 (IR-2)). By Corollary 1.9 and Remark 1.10 it follows
that

suppϕ = suppσ if k = 0 ∧ l = −1 or k > 0.

If k = 0 then the situation α ∈ suppσ and α 6∈ suppσ can occur. Therefore we
have

suppϕ = suppσ ∪ {α} if k = 0 ∧ l ≥ 0.

1.3 Distributions of the class F(C \ R)
As in [JLT] we introduce a class F(C \ R, B) as follows. Let B ⊂ C \ R be
a finite set such that B is symmetric with respect to the real axis, i.e. B =
{β1, . . . , βm, β1, . . . , βm} with βi ∈ C+, i = 1, . . . ,m. Further fix some νi ∈
N, i = 1, . . . ,m, and dij ∈ C, i = 1, . . . ,m, j = 0, . . . , νi − 1 and define for
locally holomorphic functions on B the linear functional

ψ(f) =

m∑
i=1

νi−1∑
j=0

(
dij
j!
f (j)(βi) +

dij
j!
f (j)(βi)

)
. (1.3.1)
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We write ψ ∈ F(C \ R, B) if ψ is a linear functional on H(B), the space of
all locally holomorphic functions on B, of the form (1.3.1). By a corollary of
Runge’s Theorem [C2, Corollary 1.15, p.200] every f ∈ H(B) can be uniformly
approximated by polynomials on B, hence every ψ ∈ F(C \ R) is uniquely
determined by its restriction to P.

The minimal set B such that ψ ∈ F(C \ R, B) is denoted by σ0(φ).

1.23 Definition. We define F(C\R) := ∪BF(C\R, B), where B runs through
all finite R-symmetric subsets of C \R, and the class F of linear functionals by

F := F(C \ R)×F(R).

Every φ ∈ F can be represented as φ = (ϕ,ψ) with ϕ ∈ F(R) and ψ ∈
F(C \ R).

1.24 Lemma. Let [a, b] ⊆ R, k ∈ N0 and A a subalgebra of Ck([a, b]) that
separates points, is closed under complex conjugation and is nowhere vanishing.
If for every f ∈ A and z ∈ C there exists an element g ∈ A such that g′ = f
and g(0) = z then A is dense in Ck([a, b]), where Ck([a, b]) is endowed with the
norm ‖.‖k.

Proof. Let f ∈ Ck([a, b]) and ε > 0. We have to show that there exists an
element g ∈ A such that ‖f − g‖k < ε. Since f (k) ∈ C([a, b]) by the Stone-
Weierstrass theorem there exists an element g0 ∈ A such that ‖f (k)−g0‖∞ < ε.
By assumption there exists an element g1 ∈ A with g′1 = g0 and g1(0) =
f (k−1)(0). For x ∈ [a, b] it follows that

x∫
a

(
f (k)(t)−g0(t)

)
dt = f (k−1)(x)−f (k−1)(0)−g1(x)+g1(0) = f (k−1)(x)−g1(x).

Without loss of generality assume b− a ≥ 1, then the last equation implies

‖f (k−1) − g1‖∞ ≤ sup
x∈[a,b]

x∫
a

∣∣f (k)(t)− g0(t)
∣∣dt < ε

(b− a)k−1
≤ ε.

Inductively it follows that there exist elements gj ∈ A with g′j = gj−1, gj(0) =

f (k−j)(0), j = 2, . . . , k, such that

‖f (k−j) − gj‖∞ < ε, j = 0, . . . , k.

Define g := gk, then we have

‖f − g‖k = max
{
‖f (j) − g(j)‖∞ : j = 0, . . . , k

}
< ε,

which completes the proof. q

1.25 Lemma. The set of all polynomials C[x] is dense in C∞(R).

Proof. Recall that a local base for the topology on C∞(R) is given by

W(0) =
{
U
‖.‖m,[−N,N]
ε (0) : ε > 0, N ∈ N,m ∈ N0

}
,

where U
‖.‖m,[−N,N]
ε (0) = {g ∈ C∞(R) : ‖f‖m,[−N,N ] < ε}. By Lemma 1.24 for

any set W ⊆W(0) and f ∈ C∞(R) it holds (f+W )∩C[x] 6= ∅. This implies that
f ∈ closτ∞(P), hence the space of all polynomials is dense in

(
C∞(R), τ∞

)
. q



Chapter 2

Model spaces for
distributions of class F(R, 0)

2.1 Representations for elements of F(R, 0)
2.1 Definition. By Θ we denote the set of all tuples (k, l, σ, c0, . . . , cl) where

·) k ∈ N0 and l ∈ N0 ∪ {−1},

·) σ is a finite signed measure on R with compact support and σ({0}) = 0,

·) each of the the restrictions σ|R+ and σ|R− is either a positive or a negative
measure,

·) c0, . . . , cl ∈ R.

For ϑ ∈ Θ we define

ϕϑ(f) :=

∫
R

f{2k}(t)

t2k
dσ(t) +

l∑
i=0

ci
i!
f (i)(0), f ∈ D(R). (2.1.1)

Note that if l = −1 the constants c does not appear, i.e. (k,−1, σ) ∈ Θ.

2.2 Definition. We call ϑ = (k, l, σ, c0, . . . , cl) ∈ Θ a minimal representation if

·) k = 0 and l = −1 or

·) k > 0,
∫
R

1
t2 dσ(t) =∞ and l = −1 or

·) k = 0 and l = max{n ∈ N0 : cn 6= 0} or

·) k > 0,
∫
R

1
t2 dσ(t) =∞ and l = max{n ∈ N0 : cn 6= 0}.

2.3 Lemma. If ϑ ∈ Θ, then ϕϑ ∈ F(R, 0).

Proof. Clearly ϕϑ is a linear functional on D(R). Let ∆ := suppσ and define
for f ∈ D(R)

g(t) :=
f{2k}(t)

t2k
, t ∈ ∆ \ {0}.

19
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Then by Taylor’s theorem there exists for every t ∈ ∆ an intermediate value

ζt ∈ (min{0, t},max{0, t}) such that f{2k}(t) = f (2k)(ζt)
t2k

(2k)! . It follows that

limt→0 g(t) = f(2k)(0)
(2k)! . Therefore the function g has a continuous extension to

∆, which we also denote by g. Clearly we have ‖g‖∞ ≤ 1
(2k)!‖f

(2k)‖∞. Let

V :=
{
f ∈ D(R) : sup

t∈∆
0≤i≤max{2k,l}

|f (i)(t)| ≤ 1
}
,

then we have for all f ∈ V

|ϕϑ(f)| ≤
∣∣∣∫
R

f{2k}(t)

t2k
dσ(t)

∣∣∣+ max
i=0,...,l

|f (i)(0)|
l∑
i=0

|ci|
i!
≤
∫
∆

|g(t)|d|σ|(t)+

+ max
i=0,...,l

|f (i)(0)|
l∑
i=0

|ci|
i!
≤ 1

(2k)!
‖f (2k)‖∞|σ|(∆) + max

i=0,...,l
|f (i)(0)|

l∑
i=0

|ci|
i!
≤

≤ 1

(2k)!
|σ|(∆) +

l∑
i=0

|ci|
i!

<∞.

Since V is a neighborhood of 0 it follows that ϕϑ is a distribution and obviously
ϕϑ belongs to F(R, 0). q

If ϕ ∈ F(R, 0), an element ϑ ∈ Θ is called a representation of ϕ, if ϕ =
ϕϑ. We know from Proposition 1.21 that for each ϕ ∈ F(R, 0) there exists
a representation. This representation, however, is not unique. The set of all
representations of a fixed distribution ϕ ∈ F(R, 0) is denoted by Θϕ, i.e. Θϕ :=
{ϑ ∈ Θ : ϕϑ = ϕ}.

For some density arguments we will need a corollary of the Stone-Weierstrass
Theorem (see [C1, Corollary V.8.2, p.146]):

2.4 Corollary. If X is compact and A is a closed subalgebra of C(X) that
separates the points of X and is closed under complex conjugation, then either
A = C(X) or there is a point x0 ∈ X such that A = {f ∈ C(X) : f(x0) = 0}.

2.5 Remark. Let ν be a positive Borel measure on R with compact support such
that ν({0}) = 0 and N ∈ N0. Then for any compact set X which contains the
support of ν the set A := {t 7→ tNp(t) : p ∈ P} ⊆ CX is dense in L2(ν). Note
that A is the set of all polynomials on X such that the derivatives up to order
N − 1 vanishes at t = 0.
Obviously A is a subalgebra of C(X). Further it separates point, since the
polynomial p(t) := t2N+1 is an element of A, and clearly A is closed under
complex conjugation. By Corollary 2.4 it follows that

clos‖.‖∞(A) = {f ∈ C(X) : f(0) = 0}.

Since convergence in
(
C(X), ‖.‖∞

)
implies convergence in

(
L2(ν), ‖.‖L2(ν)

)
we

have
{f ∈ C(X) : f(0) = 0} = clos‖.‖∞(A) ⊆ clos‖.‖L2(ν)

(A).

Since ν({0}) = 0, the L2(ν)-closure of the left hand side equals L2(ν), hence A
is dense in L2(ν).
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2.6 Lemma. Let ϕ ∈ F(R, 0) and let ϑ1 = (k, l, σ, c0, . . . , cl) and ϑ2 = (k, l̂, σ̂,

ĉ0, . . . , ĉl̂) be representations of ϕ with l ≤ l̂. Then σ = σ̂, ci = ĉi, i = 0, . . . , l,
and ĉl+1 = · · · = ĉl̂ = 0.

Proof. Since ϕϑ1 = ϕϑ2 , by relation (2.1.1), for f ∈ C∞(R) it follows that

∫
R

f{2k}(t)

t2k
dσ(t) +

l∑
i=0

ci
i!
f (i)(0) =

∫
R

f{2k}(t)

t2k
dσ̂(t) +

l̂∑
i=0

ĉi
i!
f (i)(0). (2.1.2)

Let X be a compact subset of R which contains the support of σ and σ̂ and
define r := max{2k− 1, l}. Then for every polynomial p whose derivates vanish
up to order r at t = 0, it holds p{2k} = p and (2.1.2) implies∫

R

p(t)

t2k
dσ(t) =

∫
R

p(t)

t2k
dσ̂(t).

By Remark 2.5 the set of functions t 7→ p(t)
t2k

, t ∈ X, is dense in L2(σ) and L2(σ̂),
therefore σ = σ̂. Hence the integrals in (2.1.2) cancel, and we obtain

l∑
i=0

ci
i!
f (i)(0) =

l̂∑
i=0

ĉi
i!
f (i)(0), f ∈ C∞(R),

which implies ci = ĉi, i = 0, . . . , l, and ĉl+1 = · · · = ĉl̂ = 0. q

2.7 Definition. Let ϕ ∈ F(R, 0) and let ϑ = (k, l, σ, c0, . . . , cl) be a represen-
tation of ϕ. If k is as in the minimal representation we say ϑ is a representation
of ϕ with minimal k.

2.8 Definition. For a fixed distribution ϕ ∈ F(R, 0) we define a relation 4
on Θϕ as follows: Let ϑ1 = (k, l, σ, c0, . . . , cl) and ϑ2 = (k̂, l̂, σ̂, ĉ0, . . . , ĉl̂) be
representations of ϕ, then

ϑ1 4 ϑ2 :⇔ l ≤ l̂ and k ≤ k̂.

2.9 Remark. The relation 4 is a partial order on Θϕ. Further the minimal
element in

(
Θϕ,4

)
is exactly the minimal representation.

2.2 Linear Spaces associated to a representation

Let σ be a finite signed measure on R with compact support and σ({0}) = 0
such that the restrictions σ|R+ and σ|R− are either positive or negative measures.
Then the linear space L2(|σ|) endowed with the inner product

(f, g)|σ| :=

∫
R

fgd|σ|, f, g ∈ L2(|σ|),

is a Hilbert space. Denote by PR± the orthogonal projection onto the subspace
L2(|σ|)|R± . Then we can write L2(|σ|) = PR−L

2(|σ|)⊕PR+L2(|σ|). Now consider
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the operator J : L2(|σ|)→ L2(|σ|) defined by

J :=


I sign(σ|R+) = sign(σ|R−) = 1,

PR+ − PR− sign(σ|R+) = 1 and sign(σ|R−) = −1,

PR− − PR+ sign(σ|R+) = −1 and sign(σ|R−) = 1,

−I sign(σ|R+) = sign(σ|R−) = −1.

(2.2.1)

Obviously the operator J is a fundamental symmetry, i.e. J−1 = J∗ = J , and(
L2(|σ|), (J., .)|σ|

)
is a Krĕın space. The J-inner product is explicitly given by

(f, g)σ := (Jf, g)|σ| =

∫
R

fgdσ, f, g ∈ L2(|σ|).

Abbreviatory we will write L2(σ) for the Krĕın space
(
L2(|σ|), (., .)σ

)
. By

(., .)Cn , n ∈ N, we denote the usual euclidean inner product on Cn. We de-
fine an inner product on the space L2(|σ|)⊕ Cn by(

(f ; ξ), (g; ζ)
)
L2(|σ|)⊕Cn := (f, g)|σ| + (ξ, ζ)Cn , (f ; ξ), (g; ζ) ∈ L2(σ)⊕ Cn.

Clearly
(
L2(|σ|)⊕ Cn, (., .)L2(|σ|)⊕Cn

)
is a Hilbert space.

2.10 Definition. Let ϕ ∈ F(R, 0) and ϑ = (k, l, σ, c0, · · · , cl) ∈ Θϕ. We define
a linear space Lϑ and two inner products (., .)ϑ and [., .]ϑ on Lϑ by

Lϑ := L2(|σ|)⊕ Cmax{l+1,k}+k,

(., .)ϑ := (., .)L2(|σ|)⊕Cmax{l+1,k}+k ,

[., .]ϑ := (G., .)ϑ,

where G is the Gram operator given by

J
c0 c1 . . . ck−1 ck . . . c2k−2 . . . cl 1

c1 . .
.

. .
.

. .
. . . .

... . .
.

. .
.

. .
. . . .

ck−1 c2k−2 . .
.

1

ck . .
.

. .
.

... . .
.

. .
.

c2k−2 . .
.

... . .
.

cl
1

. . .

. . .

1


︸ ︷︷ ︸

k-columns

︸ ︷︷ ︸
l−k+1-columns

︸ ︷︷ ︸
k-columns
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Note that if k = 0 and l = −1 then Lϑ = L2(|σ|) and the inner product
[., .]ϑ is just (., .)σ.
If l ≤ k− 1 then the finite dimensional part of the Gram operator has the form(
C Ek
Ek 0

)
, where Ek denotes the k × k unit matrix and C the Hankel matrix

which contains the constants c0, . . . , cl as in the above scheme.
Obviously, it holds that Lϑ = L2(|σ|)[+̇]ϑCmax{l+1,k}+k. Further it is practically

to write ~f ∈ Lϑ as

~f = (f ; a0, . . . , al; b0, . . . , bk−1) ∈ L2(|σ|)⊕ Cmax{l+1,k} ⊕ Ck.

2.11 Remark. Let ϕ ∈ F(R, 0), ϑ = (k, l, σ, c0, . . . , cl) ∈ Θϕ and M := max{j ∈
N0 : cj 6= 0}∪{−1}. The isotropic part of Lϑ with respect to the inner product
[., .]ϑ equals the kernel of G. It is sufficient to consider the restriction of G to
its finite dimensional part. Denote this restriction by Ĝ. It follows immediately
from the structure of Ĝ that every element in the kernel must be 0 in the first
k entries. If l < k then clearly the Ĝ is regular. If l ≥ k we have to compute
the kernel of the matrix

G̃ :=



ck . . . cl−k cl−k+1 . . . . . . cl 1
...

...
... . .

. . . .
...

...
... . .

. . . .

c2k−1 . . . cl−1 cl 1
c2k . . . cl
... . .

.

cl


.

Clearly G̃ is a l−k+1× l+1 dimensional matrix. If M ≤ k−1 then an element
~f ∈ Lϑ is in the kernel of G̃ if and only if

~f = (0; 0, . . . , 0︸ ︷︷ ︸
k-times

, y0, . . . , yl−k; 0, . . . , 0︸ ︷︷ ︸
k-times

)T , yi ∈ C, i = 0, . . . , l − k.

If M ≥ k, define Ck,M as the Hankel matrix of the form

Ck,M :=

cmax{k,M−k+1} . . . cM
... . .

.

cM 0

 . (2.2.2)

Then Ck,M is (M − k + 1)× (M − k + 1) dimensional if M < 2k − 1 and k × k
dimensional if M ≥ 2k − 1. Since cM 6= 0 it follows that Ck,M is regular. To
compute the kernel of the above matrix it is useful to write it in block matrix
form. For i, j ∈ N0 denote by 0i,j ∈ Ci×j the i× j dimensional zero matrix and

by Ii ∈ Ci×i the unit matrix. Then for M < 2k − 1 the matrix G̃ writes as(
Ck,M 0M−k+1,l−M IM−k+1 0M−k+1,2k−M−1

02k−M−1,M−k+1 02k−M−1,l−M 02k−M−1,M−k+1 I2k−M−1

)
,

and for M ≥ 2k + 1 we have C̃k,M−2k+1 Ck,M 0k,l−M Ik
C ′M−2k+1,M−2k+1 0M−2k+1,k 0M−2k+1,l−M 0M−2k+1,k

0l−M,M−2k+1 0l−M,k 0l−M,l−M 0l−M,k

 ,
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with

C̃ =

 ck . . . cM−k
...

...
c2k−1 . . . cM−1

 and C ′ =

c2k . . . cM
... . .

.

cM 0

 .

Note that C ′ is regular. Consider the case M < 2k − 1 first. Let ~α ∈ CM−k+1,
~β ∈ Cl−M , ~γ ∈ CM−k+1 and ~δ ∈ C2k−M−1 then (~α, ~β,~γ, ~δ)T is in the kernel of
G̃ if and only if

Ck,M~α = −~γ and ~δ = ~02k−M−1,

where ~0n, n ∈ N, denotes the n-dimensional zero vector. Therefore the kernel
is given by

ker G̃ =
{(
~α, ~β,−Ck,M~α,~02k−M−1

)T
: ~α ∈ CM−k+1, ~β ∈ Cl−M

}
.

Obviously, it holds that dim ker G̃ = l − k + 1.
In the case M ≥ 2k − 1 consider ~α ∈ CM−2k+1, ~β ∈ Ck, ~γ ∈ Cl−M and ~δ ∈ Ck,
then (~α, ~β,~γ, ~δ)T is in the kernel of G̃ if and only if

~α = ~0M−2k+1 and Ck,M ~β = −~δ,

so the kernel in this case is given by

ker G̃ =
{(
~0M−2k+1, ~β,~γ,−Ck,M ~β

)T
: ~β ∈ Ck, ~γ ∈ Cl−M

}
,

and clearly dim ker G̃ = k + l −M .
The isotropic part of Lϑ with respect to the inner product [., .]ϑ is given by

L
[◦]ϑ
ϑ =



{(0;~0k;~0k)T }, l ≤ k − 1,

{(0;~0k, ~yl−k+1;~0k)T }, M ≤ k − 1, l ≥ k,

{(0;~0k, ~xM−k+1, ~yl−M ;−Ck,M~xM−k+1,~02k−M−1)T }, k − 1 < M,

M < 2k − 1,

{(0;~0M−k+1, ~xk, ~yl−M ;−Ck,M~xk)T }, k − 1 < M,M ≥ 2k − 1,

where ~0, ~x, ~y are row vectors whose index corresponds to their dimension and
Ck,M is the regular Hankel matrix defined in (2.2.2).

Note that an element (a0, . . . , amax{l,k−1}; b0, . . . bk−1)T ∈ Cmax{l+k+1,2k}

is in ran Ĝ if and only if there exists (x0, . . . , xmax{l,k−1}; y0, . . . , yk−1)T ∈
Cmax{l+k+1,2k} such that

aj =

max{l,k−1}∑
i=j

cixi−j + yj , j = 0, . . . , k − 1,

aj =

max{l,k−1}∑
i=j

cixi−j , j = k, . . .max{l, k − 1},

bj = xj , j = 0, . . . , k − 1.

This implies that Ĝ is injective on ran Ĝ.
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Now we endow the space of all polynomials P with an inner product which
derives from a distribution ϕ ∈ F(R, 0):

2.12 Definition. For a fixed distribution ϕ ∈ F(R, 0) we define an inner prod-
uct on P, the space of all complex valued polynomials, by

[p, q]ϕ := ϕ(pq), p, q ∈ P.

By At, t ∈ R, we denote the multiplication operator on P, i.e. At(p) = tp(t),
p ∈ P.

2.13 Definition. Let ϕ ∈ F(R, 0), ϑ = (k, l, σ, c0, . . . , cl) be a representation
of ϕ and N := max{l, k − 1}. Then we define an operator on Lϑ by

Aϑ :



Lϑ→Lϑ

(f ; a0, . . . , aN ; b0, . . . , bk−1)T 7→
(
tf + ak−1; 0, a0, . . . , aN−1;

b1, . . . , bk−1,

∫
R

f(t)dσ(t)
)T

and call it the multiplication operator on Lϑ.

Since the measure σ has compact support, the multiplication operator Aϑ is
everywhere defined and bounded. Also note that if k = 0, then Lϑ = L2(|σ|)⊕
Cl+1 and the multiplication operator is understood as

Aϑ
(
(f ; a0, . . . , al)

T
)

= (tf ; 0, a0, . . . , al−1)T .

The operator Aϑ admits the following matrix representation

t· 0 . . . 0 1
0 . . . . . . 0

1
. . .

...

0
. . .

. . .
...

...
. . . 1 0

0 . . . 0 1 0 . . . . . . 0

0 . . . 0 0 1
. . .

...
...

...
... 0

. . .
. . .

...

0 . . . 0 0
...

. . . 1 0
0 0 . . . . . . 0 0 1 0 . . .
...

...
...

...
. . .

. . .
. . .

0
...

...
...

. . . 1
(., 1)σ 0 . . . . . . 0 0 . . . . . . 0


︸ ︷︷ ︸

k-columns

︸ ︷︷ ︸
N−k+1-columns

︸ ︷︷ ︸
k-columns



26 CHAPTER 2. MODEL FOR F(R, 0)

2.14 Definition. Let ϕ ∈ F(R, 0) and ϑ = (k, l, σ, c0, . . . , cl) be a representa-
tion of ϕ. For any polynomial p ∈ P we define

p̃
[k,σ]
j :=

∫
R

p{2k−j}(t)

t2k−j
dσ(t), 0 ≤ j ≤ k.

The notation .[k,σ] is to distinguish between different representation of ϕ. If
there are only representations under consideration with the same k and same σ

we just write p̃j instead of p̃
[k,σ]
j .

2.15 Proposition. Let ϕ ∈ F(R, 0) and ϑ = (k, l, σ, c0, . . . , cl) be a represen-
tation of ϕ. Then the mapping

ιϑ :


(P, [., .]ϕ)→ (Lϑ, [., .]ϑ)

p 7→
(p{k}
tk

;
p(0)(0)

0!
, . . . ,

p(max{l,k−1})(0)

(max{l, k − 1})!
; p̃0, . . . , p̃k−1

)T
is isometric and the following diagram commutes

P
ιϑ //

At

��

Lϑ

Aϑ

��
P ιϑ

// Lϑ.

If k = 0 then ιϑ is understood as the mapping

p 7→
(
p,
p(0)(0)

0!
, . . . ,

p(l)(0)

l!

)T
∈ L2(|σ|)⊕ Cl+1, p ∈ P.

In order to proof this Proposition we need a rather technical result first.

2.16 Lemma. For p, q ∈ P, α ∈ R and k ∈ N0 the following identity holds

(pq){α,2k}(t) = p{α,k}(t)q{α,k}(t)+

k−1∑
j=0

(t−α)j
(
pjq{α,2k−j}(t) + qjp

{α,2k−j}(t)
)
,

where pi := p(i)(α)
i! , i ∈ N0, and qi := q(i)(α)

i! , i ∈ N0.

Proof. If k = 0 the statement of this lemma writes as (pq)(t) = p(t)q(t) which is
trivial. For k ∈ N this lemma can be proved using induction on k. Abbreviatory
we will write p{m} (q{m}) instead of p{α,m} (q{α,m}), m ∈ N0. For k = 1 the
right side of the equation yields

p{1}(t)q{1}(t) + p0q{2}(t) + q0p
{2}(t) = p(t)q(t)− p0q(t)− q0p(t) + p0q0+

+ p0

(
q(t)− q0 − (t− α)q1

)
+ q0

(
p(t)− p0 − (t− α)p1

)
=

= p(t)q(t)− p0q0 − (t− α)(p0q1 + p1q0) = (pq){2}(t),
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hence the equation holds in the case k = 1. Now using the inductive hypothesis
we have

(pq){2k+2}(t)=(pq){2k}(t)− (t− α)2k

(2k)!
(pq)(2k)(α)− (t− α)2k+1

(2k + 1)!
(pq)(2k+1)(α)=

= p{k}(t)q{k}(t) +

k−1∑
j=0

(t− α)j
(
pjq{2k−j}(t) + qjp

{2k−j}(t)
)
−

− (t− α)2k
2k∑
j=0

pjq2k−j − (t− α)2k+1
2k+1∑
j=0

pjq2k+1−j =

= p{k+1}(t)q{k+1}(t) + (t− α)kpkq{k+1}(t) + (t− α)kqkp
{k+1}(t)+

+ (t− α)2kpkqk +

k−1∑
j=0

(t− α)j
[
pj

(
q{2k−j+1}(t) + (t− α)2k−jq2k−j

)
+

+qj

(
p{2k−j+1}(t) + (t− α)2k−jp2k−j

)]
− (t− α)2k

2k∑
j=0

pjq2k−j−

− (t− α)2k+1
2k+1∑
j=0

pjq2k+1−j =

= p{k+1}(t)q{k+1}(t) +

k∑
j=0

(t− α)j
(
pjq{2k−j+1}(t) + qjp

{2k−j+1}(t)
)

+

+ (t− α)2kpkqk + (t− α)2k
k−1∑
j=0

(pjq2k−j + qjp2k−j)−

− (t− α)2k
2k∑
j=0

pjq2k−j − (t− α)2k+1
2k+1∑
j=0

pjq2k+1−j =

= p{k+1}(t)q{k+1}(t) +

k∑
j=0

(t− α)j
(
pjq{2k−j+2}(t) + qjp

{2k−j+2}(t)
)

and the equation is proved. q

Proof (Proposition 2.15). By Lemma 2.16 it holds

(pq){2k}(t) = p{k}(t)q{k}(t) +

k−1∑
j=0

tj

(
p(j)(0)

j!
q{2k−j}(t) +

q(j)(0)

j!
p{2k−j}(t)

)
,

therefore we obtain from (2.1.1)

[p, q]ϕ = ϕ(pq) =

∫
R

(pq){2k}(t)

t2k
dσ(t) +

l∑
i=0

ci
(pq)(i)(0)

i!
=

=

∫
R

(
p{k}(t)q{k}(t)

t2k
+

k−1∑
j=0

p(j)(0)

j!

q{2k−j}(t)

t2k−j
+

k−1∑
j=0

q(j)(0)

j!

p{2k−j}(t)

t2k−j

)
dσ(t)+
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+

l∑
i=0

ci

i∑
h=0

p(h)(0)

h!

q(i−h)(0)

(i− h)!
=

=

∫
R

p{k}(t)q{k}(t)

t2k
dσ(t) +

k−1∑
j=0

p(j)(0)

j!

∫
R

q{2k−j}(t)

t2k−j
dσ(t)+

+

k−1∑
j=0

∫
R

p{2k−j}(t)

t2k−j
dσ(t)

q(j)(0)

j!
+

l∑
i=0

ci

i∑
h=0

p(h)(0)

h!

q(i−h)(0)

(i− h)!
. (2.2.3)

Let N := max{l, k − 1}, then clearly

∫
R

p{k}(t)q{k}(t)

t2k
dσ(t) =

=

[(p{k}
tk

; 0, . . . , 0; 0, . . . , 0
)T
,
(q{k}
tk

; 0, . . . , 0; 0, . . . , 0
)T]

ϑ

,

k−1∑
j=0

p(j)(0)

j!

∫
R

q{2k−j}(t)

t2k−j
dσ(t) =

=

[(
0;
p(0)(0)

0!
, . . . ,

p(N)(0)

(N)!
; 0, . . . , 0

)T
,
(

0; 0, . . . , 0; q̃0, . . . , q̃k−1

)T]
ϑ

,

k−1∑
j=0

∫
R

p{2k−j}(t)

t2k−j
dσ(t)

q(j)(0)

j!
=

=

[(
0; 0, . . . , 0; p̃0, . . . , p̃k−1

)T
,
(

0;
q(0)(0)

0!
, . . . ,

q(N)(0)

N !
; 0, . . . , 0

)T]
ϑ

.

In the case l < k − 1 we set cn := 0, n > l. Then we have

l∑
i=0

ci

i∑
h=0

p(h)(0)

h!

q(i−h)(0)

(i− h)!
=

N∑
i=0

i∑
h=0

ci
p(h)(0)

h!

q(i−h)(0)

(i− h)!
=

=

N∑
h=0

N∑
i=h

ci
p(h)(0)

h!

q(i−h)(0)

(i− h)!
=

N∑
h=0

N∑
i=0

ci+h
p(h)(0)

h!

q(i)(0)

i!
=

=

[(
0;
p(0)(0)

0!
, . . . ,

p(N)(0)

N !
; 0, . . . , 0

)T
,
(

0;
q(0)(0)

0!
, . . . ,

q(N)(0)

N !
; 0, . . . , 0

)T]
ϑ

.

Hence by (2.2.3) it follows that [p, q]ϕ = [ιϑ(p), ιϑ(q)]ϑ, i.e. ιϑ is an isometry.
It remains to prove that the operator Aϑ satisfies the diagram. Let p ∈ P and
define q(t) := Atp(t) = tp(t), then we have

q(j)(0)

j!
=

1

j!

(
tp(t)

)(j)
(0) =

1

j!

j∑
i=0

(
j

i

)
t(i)|t=0p

(j−i)(0) =

{
0, j = 0
p(j−1)(0)

(j−1)! , j ≥ 1.

Using this relation we can rewrite the regularized term q{k}. For k > 0 it follows
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that

q{k}(t) = q(t)−
k−1∑
i=0

q(i)(0)

i!
ti = tp(t)−

k−1∑
i=1

p(i−1)(0)

(i− 1)!
ti =

= t
(
p(t)−

k−2∑
i=0

p(i)(0)

i!
ti
)

= tp{k−1}(t).

Then we have for j = 0, . . . , k − 1, k > 0,

q̃j =

∫
R

q{2k−j}(t)

t2k−j
dσ(t) =

∫
R

tp{2k−j−1}(t)

t2k−j
dσ(t) =

=

∫
R

p{2k−(j+1)}(t)

t2k−(j+1)
dσ(t) = p̃j+1.

Now clearly ιϑ(q) writes as

ιϑ(q) =



(
tp; 0, p

(0)(0)
0! , . . . , p

(l−1)(0)
(l−1)!

)T
k = 0,(p{k−1}

tk−1
; 0,

p(0)(0)

0!
, . . . ,

p(max{l,k−1}−1)(0)

(max{l, k − 1} − 1)!
;

p̃1, . . . , p̃k−1,

∫
R

p{k}(t)

tk
dσ(t)

)T k > 0.

Since p{k−1}(t)
tk−1 = tp

{k}(t)
tk

+ p(k−1)(0)
(k−1)! for k > 0 it follows that ιϑ(Atp) = Aϑ

(
ιϑ(p)

)
for all p ∈ P.

q

2.17 Corollary. Let ϕ ∈ F(R, 0), ϑ = (k, l, σ, c0, . . . , cl) ∈ Θϕ and N :=
max{l + 1, k}. Then

(i) Aϑ
(
ran ιϑ

)
⊆ ran ιϑ,

(ii) [Aϑ x, y]ϑ = [x,Aϑ y]ϑ, x, y ∈ ran ιϑ,

(iii) Aϑ
(
ran ιϑ

[◦]ϑ
)
⊆ ran ιϑ

[◦]ϑ ,

(iv) for all x ∈ Lϑ it holds ε[AN+1+ν
ϑ x,AN+1

ϑ x]ϑ ≥ 0, where ε := sign(σ|R+)
and ν := 1

2 | sign(σ|R+)− sign(σ|R−)|.

Proof. ad (i) : By Proposition 2.15 we have Aϑ(ran ιϑ) = ran ιϑ. Since the
operator Aϑ is bounded it follows that Aϑ

(
ran ιϑ

)
⊆ ran ιϑ.

ad (ii) : By Proposition 2.15 the mapping ιϑ : P → Lϑ is an isometry and
Aϑ ◦ιϑ = ιϑ ◦At on P. Therefore it follows for every p, q ∈ P

[Aϑ ιϑ(p), ιϑ(q)]ϑ = [(Aϑ ◦ιϑ)p, ιϑ(q))]ϑ = [(ιϑ ◦At)p, ιϑ(q)]ϑ = [Atp, q]ϕ =

= [p,Atq]ϕ = [ιϑ(p), (ιϑ ◦At)q]ϑ = [ιϑ(p), (Aϑ ◦ιϑ)q]ϑ = [ιϑ(p),Aϑ ιϑ(q)]ϑ.

This implies that Aϑ is symmetric on ran ιϑ. Since the inner product [., .]ϑ is
obtained from the Hilbert space inner product (., .)ϑ via the Gram operator G
it follows by continuity that Aϑ is symmetric on ran ιϑ.
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ad (iii) : Let x ∈ ran ιϑ
[◦]ϑ , then [x, z]ϑ = 0 for all z ∈ ran ιϑ. By (i) and (ii)

it follows that [Aϑ x, y]ϑ = [x,Aϑ y]ϑ = 0 for all y ∈ ran ιϑ. This implies that
Aϑ x ∈ ran ιϑ

[◦]ϑ .

ad (iv) : Let ~f = (f ; a0, . . . , aN ; b0, . . . , bk−1)T ∈ Lϑ and define g(t) := tN+1f +

tNak−1 + tN−1ak−2 + · · ·+ tN−k+1a0, then for some ~b1,~b2 ∈ Ck it holds

ε[AN+1+ν
ϑ

~f,AN+1
ϑ

~f ]ϑ = ε
[(
tνg; 0, . . . , 0;~b1

)T
,
(
g; 0, . . . , 0;~b2

)T ]
ϑ

=

= ε

∫
R

tν |g(t)|2dσ(t) = ε

∫
R−

tν |g(t)|2dσ|R−(t) + ε

∫
R+

tν |g(t)|2dσ|R+(t) ≥ 0.

This completes the proof. q

2.3 Model space for F(R, 0)
Our aim in this section is to construct a Krĕın space to a given distribution
ϕ ∈ F(R, 0) such that the space of all polynomials can be embedded isometri-
cally and that there exists a bounded selfadjoint definitizable operator which is
compatible with the multiplication operator on the polynomials.
In the beginning we choose some representation ϑ ∈ Θϕ and consider the space
ran ιϑ/ran ιϑ

[◦]ϑ endowed with the factor space inner product1. That this factor
space is a Krĕın space is one assertion of the following theorem:

2.18 Theorem. Let ϕ ∈ F(R, 0) and ϑ ∈ Θϕ. Then Kϑ := ran ιϑ/ran ιϑ
[◦]ϑ ,

endowed with the factor space inner product [., .]Kϑ , is a Krĕın space. The
operator Aϑ induces a bounded, selfadjoint, definitizable operator Aϑ in Kϑ.
There exists a real definitizing polynomial p for Aϑ such that x = 0 is the only
zero of p. There exists an isometry ι̂ϑ : P → Kϑ with dense range such that the
following diagram commutes

P
ι̂ϑ //

At

��

Kϑ
Aϑ

��
P

ι̂ϑ

// Kϑ.

(2.3.1)

Then we will show that the Krĕın space Kϑ is independent up to unitary
equivalence. This is is the main theorem of this section:

2.19 Theorem. Let ϕ ∈ F(R, 0) and ϑ1, ϑ2 ∈ Θϕ. Then there exists a unitary2

mapping Uϑ1,ϑ2
: Kϑ1

→ Kϑ2
such that Uϑ1,ϑ2

Aϑ1
= Aϑ2

Uϑ1,ϑ2
and the following

diagram commutes

Kϑ1

Uϑ1,ϑ2 // Kϑ2

P.
ι̂ϑ1

__??????? ι̂ϑ2

??�������

(2.3.2)

1Let
(
L, [., .]

)
be an inner product space, M be a linear subspace of L◦, and denote by

π : L → L/M the canonical projection. Then an inner product, the factor space inner product
is well-defined on the factor space by [πx, πy]L/M := [x, y] for x, y ∈ L.

2Let (Ki, [., .]Ki ), i = 1, 2, be Krĕın spaces and U ∈ B(K1,K2). We say U is unitary if U is
surjective and isometric, i.e. [Ux,Uy]K2

= [x, y]K2
for all x, y ∈ K1.
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This justifies the following definition:

2.20 Definition. Let ϕ ∈ F(R, 0) and choose a representation ϑ ∈ Θϕ. Define
Kϕ := Kϑ, Aϕ := Aϑ and ιϕ := ι̂ϑ. The triple (Kϕ, Aϕ, ιϕ) will be the model
for the distribution ϕ ∈ F(R, 0). We refer to Kϕ as the model space, to Aϕ as
the model operator and to ιϕ as the model embedding.

By the main theorem Kϕ is well-defined up to unitary equivalence and the
following diagram commutes

P
ιϕ //

·t
��

Kϕ

Aϕ

��
P ιϕ

// Kϕ.

(2.3.3)

Recall that an operator A in a Krĕın space (K, [., .]K) is called cyclic if there
exists a generating element u0 ∈ K such that cls{Anu0 : n ∈ N0} = K, where
cls denotes the closed linear span and the closure is taken with respect to the
topology induced by a fundamental decomposition.

2.21 Corollary. Let ϕ ∈ F(R, 0) and Kϕ be the corresponding model space with
model operator Aϕ. Then Aϕ is cyclic with generating element ιϕ(1).

Proof. By diagram 2.3.3 it follows that p(Aϕ)
(
ιϕ(1)

)
= ιϕ(p) for every p ∈ P.

Further Theorem 2.18 implies that ran ιϕ is dense in Kϕ. This shows that Aϕ
is cyclic with generating element ιϕ(1). q

Before we are able to prove these theorems, we need some auxiliary results.

2.22 Lemma. Let
(
X, (., .)X

)
and

(
Y, (., .)Y

)
be Hilbert spaces and B : X →

Y be a bounded operator. Further let [., .]X be a (., .)X-continuous indefinite
inner product on X and [., .]Y be a (., .)Y -continuous indefinite inner product
on Y . If B(X [◦]X ) ⊆ B(Y [◦]Y ), then there exists a unique bounded operator
B̂ : X/X[◦]X → Y/Y [◦]Y , such that the diagram

X
B //

πX

��

Y

πY

��
X/X[◦]X

B̂

// Y/Y [◦]Y

(2.3.4)

commutes, where πX and πY denote the respective quotient maps.
If X/X[◦]X and Y/Y [◦]Y are a Krĕın spaces it holds

(i) B̂ is isometric if [Bx,By]Y = [x, y]X for all x, y ∈ X.

(ii) B̂ is unitary if B is surjective and [Bx,By]Y = [x, y]X for all x, y ∈ X.

If in addition the spaces X and Y coincide we have

(iii) B̂ is selfadjoint if [Bx, y]X = [x,By]X for all x, y ∈ X.
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Proof. First note, that X [◦]X and Y [◦]Y are closed, since [., .]X and [., .]Y are
continuous. Define a mapping B̂ : X/X[◦]X → Y/Y [◦]Y by

B̂
(
x+X [◦]X

)
:= Bx+ Y [◦]Y , x ∈ X.

If x+X [◦]X = x′+X [◦]X , x, x′ ∈ X, then x−x′ ∈ X [◦]X , and therefore we have
B(x)−B(x′) = B(x− x′) ⊆ Y [◦]Y . Now it follows that

B̂
(
x+X [◦]X

)
− B̂

(
x′ −X [◦]X

)
= 0 + Y [◦]Y ,

so B̂ is well-defined. Clearly B̂ is linear. Note that πY ◦B = B̂ ◦ πX , and that
if B̂′ : X/X[◦]X → Y/Y [◦]Y is such that πY ◦B = B̂′ ◦ πX , then

B̂′
(
x+X [◦]X

)
= B̂′

(
πX(x)

)
= πY (Bx) = B̂

(
x+X [◦]X

)
for each member x+X [◦]X of X/X[◦]X , thus B̂ is unique. Since πX and πY are

continuous open mappings it follows that B̂ is a bounded linear operator.
Now suppose X/X[◦]X and Y/Y [◦]Y are a Krĕın spaces.

ad (i) : For x, y ∈ X it follows[
B̂
(
πX(x)

)
, B̂
(
πX(y)

)]
Y/

Y [◦]Y
=
[
πY (Bx, πY (By)

]
Y/

Y [◦]Y
=

=
[
Bx,By

]
Y

=
[
x, y
]
X

=
[
πX(x), πY (y)

]
X/

X[◦]X
.

ad (ii) : Clearly, if B is surjective so is B̂ and using part (i) gives (ii).

ad (iii) : Since X = Y denote the quotient map πX : X → X/X[◦]X just by π.
For x, y ∈ X we have[

B̂
(
π(x)

)
, π(y)

]
X/

X[◦]X
=
[
π(Bx), π(y)

]
X/

X[◦]X
=
[
Bx, y

]
X

=

=
[
x,By

]
X

=
[
π(x), π(By)

]
X/

X[◦]X
=
[
π(x), B̂

(
π(y)

)]
X/

X[◦]X

.

Since π is surjective the operator B is selfadjoint. q

2.23 Lemma. Let (X, ‖.‖X), (Y, ‖.‖Y ) be Banach spaces and X = X1+̇X2 such
that dimX2 <∞ and X1 is closed. Then it holds:

(i) If P : X → X is the projection with kerP = X2, then P (Z) is closed in
(X1, ‖.‖X) for every closed subspace Z ⊆ X.

(ii) If T ∈ B(X,Y ), kerT = X2 and ‖Tx‖Y ≥ γ‖x‖X for all x ∈ X1 and a
constant γ > 0, then T (Z) is closed in (Y, ‖.‖Y ) for every closed subspace
Z ⊆ X.

Proof.

ad (i) : The quotient space
(
X/X2

, ‖.‖X/X2

)
is a Banach space and the topology

induced by the quotient norm ‖.‖X/X2
coincides with the final topology on

X/X2
with respect to the canonical projection π : X → X/X2

. The mapping
π|X1 : X1 → X/X2 is bijective and, as a restriction of π, continuous. Since X1

is closed,
(
X1, ‖.‖X

)
is a Banach space and the open mapping theorem implies
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that π|X1
is a homeomorphism. Let Z be a closed subspace of X, then we have

π|X1

(
P (Z)

)
= π(Z) ⊆ X/X2

. The space π(Z) is closed in X/X2
with respect to

the final topology, because π−1
(
π(Z)

)
= Z +X2 and dimX2 <∞. Since π|X1

is a homeomorphism it follows that P (Z) = π|−1
X1

(
π(Y )

)
is closed in (X1, ‖.‖X).

ad (ii) : Assume first that Z is a closed subspace and Z ⊆ X1. Let (yn)n∈N be a
sequence in T (Z) with yn → y ∈ Y . Then for each n ∈ N there exists a xn ∈ Z
such that yn = Txn, n ∈ N. We have

‖xn − xm‖X ≤
1

γ
‖yn − ym‖Y , n,m ∈ N,

hence (xn)n∈N is a Cauchy sequence in X, thus (xn)n∈N converges to an element
x ∈ X. Since Z is closed it follows that x ∈ Z. The boundedness of T implies
that yn = Txn → Tx. Therefore y = Tx with x ∈ Z, thus T (Z) is closed.
If Z is an arbitrary closed subspace of X, then T (Z) = T (P (Z)). By the first
part of this lemma P (Z) is closed and a subspace of X1. By the preceding
argument it follows that T (Z) is closed. q

Now we are able to prove the first theorem of this section.

Proof (Theorem 2.18). Assume ϑ = (k, l, σ, c0, . . . , cl). Let H := ran ιϑ and
denote by PH : Lϑ → H the orthogonal projection onto the closed subspace H.
Define GH := PHG|H, then GH is a bounded and selfadjoint operator on H.
The Hermitian sesquilinear form [., .]H := (GH., .)ϑ defines an indefinite inner
product on H which satisfies

[x, y]H=(GHx, y)ϑ=(PHGx, y)ϑ=(Gx,PHy)ϑ=(Gx, y)ϑ=[x, y]ϑ, ∀x, y ∈ H.
(2.3.5)

The isotropic part H[◦]ϑ is given by

H[◦]ϑ = {x ∈ H : [x, y]H = 0 ∀y ∈ H} = kerGH.

In order to show that H/H[◦]ϑ is a Krĕın space it is sufficient to show that

ranGH is closed (see [AI, 6.13 page 40]). Denote by Ĝ the restriction of G to
the finite dimensional subspace Cmax{k+l+1,2k}. Define X1 := L2(|σ|)+̇ ran Ĝ
and s := dim ran Ĝ. Then we have Lϑ = X1+̇ ker Ĝ and clearly dim ker Ĝ =
max{k+l+1, 2k}−s <∞. Since Ĝ is injective on ran Ĝ (see Remark 2.11) there
exists a constant γ > 0 such that ‖Ĝa‖Cs ≥ γ‖a‖Cs . Then for x = (f ; a) ∈ X1

it follows

‖Gx‖ϑ =‖Jf‖L2(|σ|)+‖Ĝa‖Cs ≥ min{1, γ}
(
‖f‖L2(|σ|)+‖a‖Cs

)
=min{1, γ}‖x‖ϑ.

By Lemma 2.23 (ii) we obtain that G(H) is closed in Lϑ. Since kerPH is finite
dimensional Lemma 2.23 (i) yields that PH

(
G(H)

)
is closed. Therefore ranGH

is closed.
Since

(
H, (., .)ϑ|H×H

)
is a Hilbert space and the inner product [., .]ϑ is continuous

with respect to the inner product (., .)ϑ we can apply Lemma 2.22. By Corollary
2.17 (iii) and Lemma 2.22 the operator Aϑ induces a bounded operator Aϑ on
Kϑ = H/H[◦]ϑ . Denote by πH : H → Kϑ the quotient map and by ιH : Kϑ → H
the natural embedding. The factor space inner product on Kϑ is given by

[πHx, πHy]Kϑ = [x, y]H, x, y ∈ H.
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By (2.3.5), Corollary 2.17 (i), (ii), Lemma 2.22 (iii) and the fact that Aϑ =
πH Aϑ ιH, for x, y ∈ H it holds

[Aϑx, y]Kϑ = [πH Aϑ ιHx, πHιHy]Kϑ = [Aϑ ιHx, ιHy]H = [Aϑ ιHx, ιHy]ϑ =

= [ιHx,Aϑ ιHy]ϑ = [ιHx,Aϑ ιHy]H = [πHιHx, πH Aϑ ιHy]Kϑ = [x,Aϑy]Kϑ ,

hence Aϑ is selfadjoint.
Since Aϑ = πH Aϑ ιH it follows that Amϑ = (πH Aϑ ιH)m = πH Amϑ ιH, for m ∈ N,
which implies that

[Amϑ x, x]Kϑ = [πH Amϑ ιHx, πHιHx]Kϑ = [Amϑ ιHx, ιHx]ϑ, x ∈ Kϑ, m ∈ N.

By Corollary 2.17 (iv) it follows immediately that p(z) = εz2N+2+ν is a definitiz-
ing polynomial for Aϑ, where ε := sign(σ|R+)m ν := 1

2 | sign(σ|R+)− sign(σ|R−)|
and N := max{l + 1, k}. Clearly p is real and z = 0 is the only zero of p.
Let ι̂ϑ := πH ◦ ιϑ, then by Proposition 2.15 it follows that

[ι̂ϑp, ι̂ϑq]Kϑ = [πH(ιϑp), πH(ιϑq)]Kϑ = [ιϑp, ιϑq]H + 0 = [p, q]ϕ, p, q ∈ P.

Hence ι̂ϑ :
(
P, [., .]ϕ

)
→
(
Kϑ, [., .]Kϑ

)
is an isometry. Further we have

Aϑ◦ι̂ϑ = Aϑ◦πH◦ιϑ = πH◦Aϑ ◦ιH◦πH◦ιϑ = πH◦Aϑ ◦ιϑ = πH◦ιϑ◦At = ι̂ϑ◦At,

thus the diagram commutes. q

We now turn to the proof of the main result of this section.

2.24 Lemma. Let ϕ ∈ F(R, 0) and let ϑ1 = (k, l, σ, c0, . . . , cl) and ϑ2 = (k, l̂, σ̂,

ĉ0, . . . , ĉl̂) be representations of ϕ with l < l̂. Let N := max{l, k − 1} and

N̂ := max{l̂, k − 1}, then the mapping

ΦLϑ2
,Lϑ1

:

{ (
Lϑ2 , [., .]ϑ2

)
→
(
Lϑ1 , [., .]ϑ1

)(
f ; a0, . . . , aN̂ ; b0, . . . , bk−1

)T 7→ (
f ; a0, . . . , aN ; b0, . . . , bk−1

)T
is a continuous isometry from Lϑ2

onto Lϑ1
and the following diagram commutes

P
ιϑ1

���������
ιϑ2

��>>>>>>>

Lϑ1
Lϑ2

.
ΦLϑ2

,Lϑ1

oo

(2.3.6)

Proof. Lemma 2.6 implies σ = σ̂, ci = ĉi, i = 0, . . . , l, and ĉl+1 = · · · = ĉl̂ = 0.

Since N ≤ N̂ the mapping ΦLϑ2
,Lϑ1

is always surjective and clearly ΦLϑ2
,Lϑ1

is continuous. In the case that l̂ < k − 1 the spaces Lϑ1 and Lϑ2 as well as the
inner products (., .)ϑ1 and (., .)ϑ2 coincide. Thus ΦLϑ2

,Lϑ1
is the identical map

and therefore an isometry.
Now suppose l < k − 1 and l̂ ≥ k − 1: Let ~f = (f ; a0, . . . , al̂; b0, . . . , bk−1)T

and ~g = (g;α0, . . . , αl̂;β0, . . . , βk−1)T be in Lϑ2
. By Remark 2.11 it follows that

~f [◦]ϑ2 := (0; 0, . . . , 0, ak, . . . , al̂; 0, . . . , 0)T and ~g[◦]ϑ2 := (0, 0, . . . , 0, αk, . . . , αl̂;
0, . . . , 0)T are in the isotropic part of Lϑ2

. Therefore we have

[~f,~g]ϑ2
= [~f − ~f [◦]ϑ2 , ~g − ~g[◦]ϑ2 ]ϑ2

= [ΦLϑ2
,Lϑ1

~f,ΦLϑ2
,Lϑ1

~g]ϑ1
.
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It remains to prove the case l ≥ k − 1. Let ~f and ~g be as in the previous
case, then the elements ~f [◦]ϑ2 := (0; 0, . . . , 0, al+1, . . . , al̂; 0, . . . , 0)T and ~g[◦]ϑ2 :=
(0, 0, . . . , 0, αl+1, . . . , αl̂; 0, . . . , 0)T are in the isotropic part of Lϑ2

. It follows
that

[~f,~g]ϑ2 = [~f − ~f [◦]ϑ2 , ~g − ~g[◦]ϑ2 ]ϑ2 = [ΦLϑ2
,Lϑ1

~f,ΦLϑ2
,Lϑ1

~g]ϑ1 .

To prove that ΦLϑ2
,Lϑ1

(ιϑ2
(p)) = ιϑ1

let p ∈ P. Then we have

ΦLϑ2
,Lϑ1

(ιϑ2
(p)) = ΦLϑ2

,Lϑ1

((p{k}
tk

;
p(0)(0)

0!
, . . . ,

pN̂ (0)

N̂ !
; p̃0, . . . , p̃k−1

)T)
=

=
(p{k}
tk

;
p(0)(0)

0!
, . . . ,

pN (0)

N !
; p̃0, . . . , p̃k−1

)T
= ιϑ1

(p). q

2.25 Lemma. Let ϕ ∈ F(R, 0) and let ϑ1 = (k, l, σ, c0, . . . , cl) and ϑ2 = (k, l̂, σ̂,

ĉ0, . . . , ĉl̂) be representations of ϕ with l < l̂. Consider the mapping ΦLϑ2
,Lϑ1

from the previous lemma, then ΦLϑ2
,Lϑ1

(
ran ιϑ2 + L

[◦]ϑ2

ϑ2

)
= ran ιϑ1 + L

[◦]ϑ1

ϑ1
.

Proof. By (2.3.6) it follows that ΦLϑ2
,Lϑ1

(ran ιϑ2
) = ran ιϑ1

and by continuity
we have ΦLϑ2

,Lϑ1
(ran ιϑ2) ⊆ ran ιϑ1 . Define a mapping Φ′ : Lϑ1 → Lϑ2 by

Φ′
(
(f ; a0, . . . , aN ; b0, . . . , bk−1)T

)
:= (f ; a0, . . . , aN , 0, . . . , 0; b0, . . . , bk−1)T ,

(2.3.7)
where N := max{l, k − 1}. Then the mapping Φ′ is continuous and clearly
ΦLϑ2

,Lϑ1
◦ Φ′ = id |Lϑ1

. Further Φ′ is isometric with respect to the indefinite

inner products [., .]ϑ1
and [., .]ϑ2

. Since ΦLϑ2
,Lϑ1

(
L

[◦]ϑ2

ϑ2

)
= L

[◦]ϑ1

ϑ1
it follows that

ΦLϑ2
,Lϑ1

(
ran ιϑ2 + L

[◦]ϑ2

ϑ2

)
= ran ιϑ1 + L

[◦]ϑ1

ϑ1
and continuity of ΦLϑ2

,Lϑ1
implies

ΦLϑ2
,Lϑ1

(
ran ιϑ2 + L

[◦]ϑ2

ϑ2

)
⊆ ran ιϑ1 + L

[◦]ϑ1

ϑ1
. (2.3.8)

Further we have Φ′
(
ran ιϑ1

+L
[◦]ϑ1

ϑ1

)
⊆ ran ιϑ2

+L
[◦]ϑ2

ϑ2
and since Φ′ is continuous

it holds

Φ′
(

ran ιϑ1
+ L

[◦]ϑ1

ϑ1

)
⊆ ran ιϑ2

+ L
[◦]ϑ2

ϑ2
.

Let x ∈ ran ιϑ1
+ L

[◦]
ϑ1
⊆ Lϑ1

and define y := Φ′(x), then ΦLϑ2
,Lϑ1

(y) = x, hence
(2.3.8) yields

ΦLϑ2
,Lϑ1

(
ran ιϑ2

+ L
[◦]ϑ2

ϑ2

)
= ran ιϑ1

+ L
[◦]ϑ1

ϑ1
.

Obviously the following inclusions holds

ran ιϑi + L
[◦]ϑi
ϑi
⊆ ran ιϑi + L

[◦]ϑi
ϑi
⊆ ran ιϑi + L

[◦]ϑi
ϑi

, i = 1, 2.

Since L
[◦]ϑi
ϑi

, i = 1, 2, is finite dimensional ran ιϑi +L
[◦]ϑi
ϑi

is closed and therefore

ran ιϑi + L
[◦]ϑi
ϑi

= ran ιϑi + L
[◦]ϑi
ϑi

, i = 1, 2.

It follows that ΦLϑ2
,Lϑ1

: ran ιϑ2
+ L

[◦]ϑ2

ϑ2
→ ran ιϑ1

+ L
[◦]ϑ1

ϑ1
is surjective. q
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2.26 Lemma. Let ϕ ∈ F(R, 0) and ϑ1 = (k, l, σ, c0, . . . , cl) and ϑ2 = (k̂, l, σ̂,

ĉ0, . . . , ĉl) be representations of ϕ with k < k̂ and l ≥ 2k̂ + 1. Then it holds

dσ̂ = t2(k̂−k)dσ and

ĉi =


ci, i = 0, . . . , 2k − 1

ci + (ti−2k, 1)σ, i = 2k, . . . , 2k̂ − 1

ci, i = 2k̂, . . . , l

,

p̃
[k̂,σ̂]
j = p̃

[k,σ]
j −

2(k̂−k)−1∑
i=0

p(2k−j+i)(0)

(2k − j + i)!
(ti, 1)σ, j = 0, . . . , k̂.

Proof. Since ϑ1, ϑ2 ∈ Θϕ we have by relation (2.1.1) for all f ∈ D(R)

∫
R

f{2k}(t)

t2k
dσ(t) +

l∑
i=0

ci
f (i)(0)

i!
=

∫
R

f{2k̂}(t)

t2k̂
dσ̂(t) +

l∑
i=0

ĉi
f (i)(0)

i!
. (2.3.9)

The integral on the left side of this relation can be rewritten as

∫
R

f{2k}(t)

t2k
dσ(t) =

∫
R

f{2k̂}(t) +
∑2k̂−1
i=2k

f(i)(0)
i! ti

t2k
dσ(t) =

=

∫
R

f{2k̂}(t)

t2k̂
t2(k̂−k)dσ(t) +

2k̂−1∑
i=2k

f (i)(0)

i!
(ti−2k, 1)σ.

Now relation (2.3.9) writes as

∫
R

f{2k̂}(t)

t2k̂
t2(k̂−k)dσ(t) +

2k̂−1∑
i=2k

f (i)(0)

i!
(ti−2k, 1)σ +

l∑
i=0

ci
f (i)(0)

i!
=

=

∫
R

f{2k̂}(t)

t2k̂
dσ̂(t) +

l∑
i=0

ĉi
f (i)(0)

i!
.

For every f ∈ D(R) with f (i)(0) = 0, i = 0, . . . , l, it follows that

∫
R

f{2k̂}(t)

t2k̂
dσ̂(t) =

∫
R

f{2k̂}(t)

t2k̂
t2(k̂−k)dσ(t).

Therefore we have dσ̂ = t2(k̂−k)dσ. Further we have the following relationship
between ci and ĉi, i = 1, . . . , l:

ĉi =


ci i = 0, . . . , 2k − 1

ci + (ti−2k, 1)σ, i = 2k, . . . , 2k̂ − 1

ci, i = 2k̂, . . . , l

.
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For j = 0, . . . , k̂ we have

p̃
[k̂,σ̂]
j =

∫
R

p{2k̂−j}(t)

t2k̂−j
dσ̂(t) =

∫
R

p{2k̂−j}(t)

t2k−j
dσ(t) =

=

∫
R

p{2k−j}(t)

t2k−j
dσ(t)−

∫
R

2k̂−j−1∑
i=2k−j

p(i)(0)

i!

dσ(t)

t2k−j
= p̃

[k,σ]
j −

2(k̂−k)−1∑
i=0

p(i)(0)

i!
(ti, 1)σ.

This completes the proof. q

2.27 Lemma. Let ϕ ∈ F(R, 0) and ϑ1 = (k, l, σ, c0, . . . , cl) and ϑ2 = (k + 1,
l, σ̂, ĉ0, . . . , ĉl) be representations of ϕ with l ≥ 2k + 1. Define a mapping

ΨLϑ1
,Lϑ2

:



(
Lϑ1

, [., .]ϑ1

)
→
(
Lϑ2

, [., .]ϑ2

)
(
f ; a0, . . . , al; b0, . . . , bk−1

)T 7→ (1

t
(f − ak); a0, . . . , al; b̃0, . . . , b̃k−1,

(f, 1)σ − ak(1, 1)σ − ak+1(t, 1)σ

)T
,

where b̃j := bj − a2k−j(1, 1)σ − a2k+1−j(t, 1)σ, j = 0, . . . , k − 1. Then ΨLϑ1
,Lϑ2

is a continuous isometry and the diagram

P
ιϑ1

���������
ιϑ2

��=======

Lϑ1 ΨLϑ1
,Lϑ2

// Lϑ2

(2.3.10)

commutes.

Proof. By Lemma 2.26 we have dσ̂ = t2dσ and

ĉi =


ci, i = 0, . . . , 2k − 1

c2k + (1, 1)σ, i = 2k

c2k+1 + (t, 1)σ, i = 2k + 1

ci, i ≥ 2k + 2

.

Let ~f = (f ; a0, . . . , al; b0, . . . , bk−1)T ∈ Lϑ1 then it follows that∥∥∥1

t
(f − ak)

∥∥∥2

L2(|σ̂|)
=

∫
R

|f(t)− ak|2

t2
d|t2dσ|(t) =

=

∫
R

|f(t)− ak|2d|σ|(t) = ‖f − ak‖2L2(|σ|).

Therefore the mapping ~f 7→ 1
t (f − ak) from Lϑ1 → L2(|σ̂|) is continuous. Since

the inner product (., .)σ is continuous with respect to the Hilbert space topology
it follows that the mapping ΨLϑ1

,Lϑ2
is continuous.

Denote by G the Gram operator of Lϑ1
and by G′ the restriction to the finite
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dimensional subspace Ck+l+1. Let Ĝ and Ĝ′ be defined analogously. Hence we
have

Ĝ′ =

(
G′ ek+1

eTk+1 0

)
+ (1, 1)σT2k+1 + (t, 1)σT2k+2

where ek+1 = (0, . . . , 0, 1, 0, . . . , 0)T denotes the k+ 1 unit vector in Ck+l+1 and

Tn :=

(
T̃n 0
0 0

)
∈ Ck+l+2

with T̃n := (en|en−1| · · · |e1) ∈ Cn×n. Abbreviatory for ΨLϑ1
,Lϑ2

we just write

Ψ. For ~f = (f ; a0, . . . , al; b0, . . . , bk−1)T , ~g = (g;α0, . . . , αl;β0, . . . , βk−1)T ∈
Lϑ1 it follows that

(Ψ~f,Ψ~g)Lϑ2
= (ĜΨ~f,Ψ~g) =

(1

t
(f − ak),

1

t
(g − αk)

)
σ̂

+
(
Ĝ′(Ψ~f)′, (Ψ~g)′

)
,

(2.3.11)

where (Ψ~f)′ denotes the restriction of Ψ~f to Ck+l+2 and (Ψ~g)′ respectively. It’s

useful to define Ψ̃~f := (a0, . . . , al; b̃0, . . . , b̃k−1)T , then we have

(Ψ~f)′ =
(

Ψ̃~f
(f,1)σ−ak(1,1)σ−ak+1(t,1)σ

)
.

Analogously we define Ψ̃~g. The first term of the right side of relation (2.3.11)
leads to (1

t
(f − ak),

1

t
(g − αk)

)
σ̂

=

∫
R

f(t)− ak
t

g(t)− αk
t

dσ̂(t) =

=

∫
R

(f(t)− ak)(g(t)− αk)dσ(t) = (f, g)σ − ak(g, 1)σ − αk(f, 1)σ + akαk(1, 1)σ.

Further we have(
Ĝ′(Ψ~f)′, (Ψ~g)′

)
=
(
G′Ψ̃~f, Ψ̃~g

)
+ ak

(
(g, 1)σ − αk(1, 1)σ − αk+1(t, 1)σ

)
+

+ αk

(
(f, 1)σ − ak(1, 1)σ − ak+1(t, 1)σ

)
+ (1, 1)σ

(
T2k+1(Ψ~f)′, (Ψ~g)′

)
+

+ (t, 1)σ

(
T2k+2(Ψ~f)′, (Ψ~g)′

)
.

Hence equation (2.3.11) writes as

(Ψ~f,Ψ~g)Lϑ2
= (f, g)σ − akαk(1, 1)σ − akαk+1(t, 1)σ − αkak+1(t, 1)σ+

+
(
G′Ψ̃~f, Ψ̃~g

)
+ (1, 1)σ

(
T2k+1(Ψ~f)′, (Ψ~g)′

)
+ (t, 1)σ

(
T2k+2(Ψ~f)′, (Ψ~g)′

)
.

We define 0n := (0, . . . , 0)T ∈ Cn×1 and for m,n ∈ N, m > n let am,n :=
(am, am−1, . . . , an)T ∈ Cm−n+1×1.

(
G′Ψ̃~f, Ψ̃~g

)
=
(
G′ ~f ′ − (1, 1)σG

′
(

0l+1
a2k,k+1

)
− (t, 1)σG

′
(

0l+1
a2k+1,k+2

)
, Ψ̃~g

)
=

=
(
G′ ~f ′, Ψ̃~g

)
− (1, 1)σ

((
a2k,k+1

0l+1

)
, Ψ̃~g

)
− (t, 1)σ

((
a2k+1,k+2

0l+1

)
, Ψ̃~g

)
.



2.3. MODEL SPACE FOR F(R, 0) 39

Since T2k+1(Ψ~f)′ = (a2k,0,0l−k+1)T and T2k+1(Ψ~f)′ = (a2k+1,0,0l−k)T we have(
G′Ψ̃~f, Ψ̃~g

)
+ (1, 1)σ

(
T2k+1(Ψ~f)′, (Ψ~g)′

)
+ (t, 1)σ

(
T2k+2(Ψ~f)′, (Ψ~g)′

)
=

=
(
G′ ~f, Ψ̃~g

)
+ (1, 1)σ

(( 0k
ak,0

0l−k+1

)
, (Ψ~g)′

)
+ (t, 1)σ

(( 0k
ak+1,0

0l−k+1

)
, (Ψ~g)′

)
=

=
(
G′ ~f,~g

)
− (1, 1)σ

(
G′ ~f,

(
0l+1

α2k,k+1

))
− (t, 1)σ

(
G′ ~f,

(
0l+1

α2k+1,k+2

))
+

+ (1, 1)σ

(( 0k
ak,0

0l−k+1

)
, (Ψ~g)′

)
+ (t, 1)σ

(( 0k
ak+1,0

0l−k+1

)
, (Ψ~g)′

)
=

=
(
G′ ~f,~g

)
+ (1, 1)σ

[(( 0k
ak,0

0l−k+1

)
, (Ψ~g)′

)
−
(
~f,
(

α2k,k+1

0l+1

))]
+

+ (t, 1)σ

[(( 0k
ak+1,0

0l−k+1

)
, (Ψ~g)′

)
−
(
~f,
(

α2k+1,k+2

0l+1

))]
=

=
(
G′ ~f,~g

)
+ (1, 1)σakαk + (t, 1)σ(ak+1αk + akαk+1).

It remains to show that the diagram (2.3.10) commutes. For every p ∈ P we
have

ιϑ1
(p) =

(
p{k}

tk
;
p(0)(0)

0!
, . . . ,

p(l)(0)

l!
; p̃

[k,σ]
0 , . . . , p̃

[k,σ]
k−1

)T
,

ιϑ2(p) =

(
p{k+1}

tk+1
;
p(0)(0)

0!
, . . . ,

p(l)(0)

l!
; p̃

[k+1,σ̂]
0 , . . . , p̃

[k+1,σ̂]
k

)T
.

By Lemma 2.26 it follows that

p̃
[k+1,σ̂]
j = p̃

[k,σ]
j − p(2k−j)(0)

(2k − j)!
(1, 1)σ −

p(2k+1−j)(0)

(2k + 1− j)!
(t, 1)σ, j = 0, . . . , k,

and since
1

t

(p{k}(t)
tk

− p(k)(0)

k!

)
=
p{k+1}(t)

tk+1

it follows that ΨLϑ1
,Lϑ2

(
ιϑ1

(p)
)

= ιϑ2
(p) for every p ∈ P. q

2.28 Lemma. Let ϕ ∈ F(R, 0) and ϑ1 = (k, l, σ, c0, . . . , cl) and ϑ2 = (k + 1,
l, σ̂, ĉ0, . . . , ĉl) be representations of ϕ with l ≥ 2k + 1. Denote b̃′j := bj +
a2k−j(1, 1)σ + a2k+1−j(t, 1)σ, j = 0, . . . , k − 1, and define a mapping

Ψ′Lϑ2
,Lϑ1

:

{ (
Lϑ2 , [., .]ϑ2

)
→
(
Lϑ1 , [., .]ϑ1

)(
f ; a0, . . . , al; b0, . . . , bk

)T 7→ (
t · f + ak; a0, . . . , al; b̃

′
0, . . . , b̃

′
k−1

)T
.

Then Ψ′Lϑ2
,Lϑ1
◦ΨLϑ1

,Lϑ2
= idLϑ1

and Ψ′Lϑ2
,Lϑ1
|ran ιϑ2

is a continuous isometry

with Ψ′Lϑ2
,Lϑ1

(ran ιϑ2
) = ran ιϑ1

.

Proof. Clearly we have Ψ′Lϑ2
,Lϑ1
◦ΨLϑ1

,Lϑ2
= idLϑ1

and Ψ′Lϑ2
,Lϑ1

is continuous.

By (2.3.10) we have ΨLϑ1
,Lϑ2

(ran ιϑ1
) = ran ιϑ2

and applying Ψ′Lϑ2
,Lϑ1

yields
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Ψ′Lϑ2
,Lϑ1

(ran ιϑ2
) = ran ιϑ1

. By continuity it follows that Ψ′Lϑ2
,Lϑ1

(ran ιϑ2
) ⊆

ran ιϑ1 . On the other hand it holds

ran ιϑ1
= Ψ′Lϑ2

,Lϑ1

(
ΨLϑ1

,Lϑ2
(ran ιϑ1

)
)
⊆ Ψ′Lϑ2

,Lϑ1
(ran ιϑ2

),

thus Ψ′Lϑ2
,Lϑ1

(ran ιϑ2
) = ran ιϑ1

. Again, by (2.3.10), we have ΨLϑ1
,Lϑ2
◦ ιϑ1

=

ιϑ2
, and the mappings ιϑ1,2

: P → Lϑ1,2
are isometric with respect to the

indefinite inner product [., .]ϑ1,2
on Lϑ1,2

. Applying Ψ′Lϑ2
,Lϑ1

yields ιϑ1
=

Ψ′Lϑ2
,Lϑ1
◦ ιϑ2 and therefore Ψ′Lϑ2

,Lϑ1
is isometric on ran ιϑ2 . By continuity this

property extends to the closure of ran ιϑ2 . Thus, we have proven the lemma. q

Let ϑ1 = (k, l, σ, c0, . . . , cl) and ϑ2 = (k̂, l, σ̂, ĉ0, . . . , ĉl̂) be representations

of ϕ ∈ F(R, 0), with k < k̂ and l ≥ 2k̂ + 1. Let n := k̂ − k, then there

exists numbers c
(j)
0 , . . . , c

(j)
l and signed measures σj , j = 0, . . . , n, such that

θj := (k + j, l, σj , c
(j)
0 , . . . , c

(j)
l ) belong to Θϕ for j = 0, . . . , n. Clearly we have

ϑ0 = θ0 ≺ θ1 ≺ · · · ≺ θn = ϑ2.

The previous lemma suggests to define a mapping from Lϑ1 to Lϑ2 by

ΥLϑ1
,Lϑ2

:= ΨLθn ,Lθn−1
◦ · · · ◦ΨLθ1 ,Lθ2

◦ΨLθ0 ,Lθ1
. (2.3.12)

Obviously ΥLϑ1
,Lϑ2

is an isometry and the following diagram commutes

P
ιϑ1

���������
ιϑ2

��>>>>>>>

Lϑ1 ΥLϑ1
,Lϑ2

// Lϑ2 .

(2.3.13)

As the composition of continuous mappings ΥLϑ1
,Lϑ2

is continuous.

2.29 Corollary. Let ϕ ∈ F(R, 0) and ϑ1 = (k, l, σ, c0, . . . , cl) and ϑ2 = (k̂, l, σ̂,

ĉ0, . . . , ĉl) be representations of ϕ with k < k̂ and l ≥ 2k̂ + 1. Then there exists
a linear mapping Υ′ : Lϑ2

→ Lϑ1
such that Υ′|ran ιϑ2

is a continuous isometry
and Υ′(ran ιϑ2

) = ran ιϑ1
. Further the following diagram

P
ιϑ1

���������
ιϑ2

��=======

Lϑ1
Lϑ2

Υ′
oo

commutes.

Proof. This follows immediately from the considerations above and Lemma 2.28.
q
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2.30 Lemma. Let ϕ ∈ F(R, 0) and ϑ1 = (k, l, σ, c0, . . . , cl) and ϑ2 = (k̂, l, σ̂,

ĉ0, . . . , ĉl) be representations of ϕ with k < k̂ and l ≥ 2k̂ + 1. Denote

b̃j := bj −
2k̂−j−1∑
i=2k−j

ai
(
ti−(2k−j), 1

)
σ
, j = 0, . . . , k − 1,

d̃j :=
(
f,

1

tk−j

)
σ
−

2k̂−j−1∑
i=k

ai
(
ti−(2k−j), 1

)
σ
, j = k, . . . , k̂ − 1.

Then the mapping ΥLϑ1
,Lϑ2

is explicitly given by

ΥLϑ1
,Lϑ2

:



(
Lϑ1 , [., .]ϑ1

)
→
(
Lϑ2 , [., .]ϑ2

)
(
f ; a0, . . . , al; b0, . . . , bk−1

)T 7→ ( 1

tk̂−k

(
f −

k̂−1∑
i=k

ait
i−k); a0, . . . , al;

b̃0, . . . , b̃k−1, d̃k, . . . , d̃k̂−1

)T
.

Proof. Let n := k̂ − k and θj := (k + j, l, σj , c
(j)
0 , . . . , c

(j)
l ), j = 0, . . . , n, be

representations of ϕ such that

ϑ0 = θ0 ≺ θ1 ≺ · · · ≺ θn = ϑ2.

We prove this lemma by induction. For n = 1 we have ΥLϑ1
,Lϑ2

= ΨLθ0 ,Lθ1
.

For the induction step n − 1 7→ n let ~f = (f ; a0, . . . , al; b0, . . . , bk−1)T ∈ Lθ0 .
Then we have

ΥLθ0 ,Lθn−1
(~f) =

( 1

tk̂−1−k

(
f−

k̂−2∑
i=k

ait
i−k); a0, . . . , al;β0, . . . , βk−1, δk, . . . , δk̂−2

)T
,

where βj := bj−
∑2k̂−j−3
i=2k−j ai(t

i−(2k−j), 1)σ0
, j = 0, . . . , k−1 and δj := (f, 1

tk−j
)σ0

−
∑2k̂−j−3
i=k ai(t

i−(2k−j), 1)σ0
, j = k, . . . , k̂ − 2. Using the induction hypothesis

it follows that

ΨLθn ,Lθn−1
◦ · · · ◦ΨLθ1 ,Lθ2

◦ΨLθ0 ,Lθ1
(~f) = ΨLθn ,Lθn−1

◦ΥLθ0 ,Lθn−1
(~f) =

= ΨLθn ,Lθn−1

(
ΥLθ0 ,Lθn−1

(~f)
)

=

(
1

t

( 1

tk̂−1−k

(
f −

k̂−2∑
i=k

ait
i−k)− ak̂−1

)
;

a0, . . . , al; β̃0, . . . , β̃k−1, δ̃k, δ̃k̂−2,( 1

tk̂−1−k

(
f −

k̂−2∑
i=k

ait
i−k), 1)

σn−1

− ak̂−1(1, 1)σn−1 − ak̂(t, 1)σn−1

)T
,

where β̃j := βj − a2k̂−2−j(1, 1)σn−1
− a2k̂−1−j(t, 1)σn−1

, j = 0, . . . , k − 1 and

δ̃j := δj−a2k̂−2−j(1, 1)σn−1
−a2k̂−1−j(t, 1)σn−1

, j = k, . . . , k̂−2. The first term
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on the right side of this relation can be rewritten as

1

t

( 1

tk̂−1−k

(
f −

k̂−2∑
i=k

ait
i−k)− ak̂−1

)
=

1

tk̂−k

(
f −

k̂−2∑
i=k

ait
i−k
)
−
ak̂−1t

k̂−1−k

tk̂−k
=

=
1

tk̂−k

(
f −

k̂−1∑
i=k

ait
i−k
)
.

Since (1, 1)σn−1
= (t2(k̂−1−k), 1)σ0

and (t, 1)σn−1
= (t2(k̂−1−k)+1, 1)σ0

it follows

that b̃j = β̃j for j = 0, . . . , k and d̃j = δ̃j for j = k, . . . , k̂ − 2. Further we have

( 1

tk̂−1−k

(
f −

k̂−2∑
i=k

ait
i−k), 1)

σn−1

− ak̂−1(1, 1)σn−1
− ak̂(t, 1)σn−1

=

=
(
f,

1

tk−(k̂−1)

)
σ0

−
k̂−2∑
i=k

ai

(
ti−(2k−(k̂−1)), 1

)
σ0

−

−ak̂−1(t2(k̂−1−k), 1)σ0
− ak̂(t2(k̂−1−k)+1, 1)σ0

= d̃k̂−1.

Thus we have shown that

ΨLθn ,Lθn−1
◦ · · · ◦ΨLθ1 ,Lθ2

◦ΨLθ0 ,Lθ1
= ΥLϑ1

,Lϑ2
. q

Now it is possible to give the proof of Theorem 2.19.

Proof (Theorem 2.19). Let ϑ1 = (k1, l1, σ1, c0, . . . , cl1) and ϑ2 = (k2, l2, σ2, ĉ0,
. . . , ĉl2). Without loss of generality we can assume k1 ≤ k2. If k1 = k2 and
l2 > l1 we can apply Lemma 2.24. Therefore there exists a continuous surjective
isometry ΦLϑ2

,Lϑ1
:
(
Lϑ2 , [., .]ϑ2

)
→
(
Lϑ1 , [., .]ϑ1

)
. Owing to Lemma 2.25 it

holds ΦLϑ2
,Lϑ1

(
ran ιϑ2 +L

[◦]ϑ2

ϑ2

)
= ran ιϑ1 +L

[◦]ϑ1

ϑ1
. Since

(
ran ιϑi +L

[◦]ϑi
ϑi

)[◦]ϑi =

ran ιϑi
[◦]ϑi + L

[◦]ϑi
ϑi

for i = 1, 2 and

ΦLϑ2
,Lϑ1

(
ran ιϑ2

[◦]ϑ2 + L
[◦]ϑ2

ϑ2

)
⊆ ran ιϑ1

[◦]ϑ1 + L
[◦]ϑ1

ϑ1

we can apply Lemma 2.22. Denote by Φ̂Lϑ2
,Lϑ1

the induced mapping between
the factor spaces with respect to the isotropic parts, then by Lemma 2.22 (ii)
the mapping Φ̂Lϑ2

,Lϑ1
is unitary.

For i = 1, 2 there exists unitary mappings

Tϑi : ran ιϑi/ran ιϑi
[◦]ϑi
→ ran ιϑi + L

[◦]ϑi
ϑi

/
ran ιϑi

[◦]ϑi+L
[◦]ϑi
ϑi

.

Define Uϑ2,ϑ1 := T−1
ϑ1
◦ Φ̂Lϑ2

,Lϑ1
◦ Tϑ2 , then Uϑ2,ϑ1 is a unitary mapping from

Kϑ2
onto Kϑ1

. The inverse Uϑ1,ϑ2
of U−1

ϑ2,ϑ1
is also unitary.

Now consider the case k1 < k2. Let ϑ̃1 := (k1, l̃, σ̃1, c̃1, . . . , c̃l̃) and ϑ̃2 :=

(k2, l̃, σ̃2, ˜̂c1, . . . , ˜̂cl̃) such that l̃ ≥ 2k2 + 1. By the first part of the proof there
exists unitary operators Vϑ1,ϑ̃1

: Kϑ1
→ Kϑ̃1

and Vϑ̃2,ϑ2
: Kϑ̃2

→ Kϑ2
. According

to Corollary 2.29 there exists a continuous surjective isometry Υ′ : Lϑ̃2
→ Lϑ̃1

.
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Lemma 2.22 (ii) ensures the existence of a unitary operator Υ̂′ : Kϑ̃2
→ Kϑ̃1

.
Now define

Uϑ1,ϑ2
:= Vϑ̃2,ϑ2

◦ Υ̂′−1 ◦ Vϑ1,ϑ̃1
: Kϑ1

→ Kϑ2
,

then Uϑ1,ϑ2 is unitary.
Combining the diagrams (2.3.6), (2.3.1), (2.3.4), and using continuity, it

follows that

Kϑ1

Aϑ1 //

Uϑ1,ϑ2

��

Kϑ1

Uϑ1,ϑ2

��

P

At

��

At

AA

ι̂ϑ1
55kkkkkkkkkkk

ι̂ϑ2 ))SSSSSSSSSSS P.

ι̂ϑ1
iiSSSSSSSSSSS

ι̂ϑ2uukkkkkkkkkkk

Kϑ2 Aϑ2

// Kϑ2

(2.3.14)

Therefore Uϑ1,ϑ2Aϑ1 = Aϑ2Uϑ1,ϑ2 and the diagram (2.3.2) commutes. q

2.4 Notes about the minimal representation

Let ϕ ∈ F(R, 0) and ϑ ∈ Θϕ be a representation of ϕ. In this section we will
show that the embedding ιϑ has dense range if ϑ is representation of ϕ with
minimal k.

2.31 Definition. Let ν be a positive finite measure on R and k ∈ N0. Then
we define a seminorm on the space of all polynomials by

mν,k(p) :=

(∫
R

|p{k}(t)|2

t2k
dν(t)

) 1
2

(p ∈ P).

If not otherwise stated in the rest of this section ν will denote a positive
finite measure and k a nonnegative integer.

2.32 Lemma. If g is a linear functional on P which is continuous with respect
to the seminorm mν,k, then there exists an element v ∈ L2(ν) such that

g(p) =

∫
R

p{k}(t)

tk
v(t)dν(t),

for all p ∈ P.

Proof. Consider on P the inner product

(p, q)P :=

∫
R

p{k}(t)

tk
q{k}(t)

tk
dν(t),
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then the mapping

Φ :

{(
P, (., .)P

)
→
(
L2(ν), (., .)L2(ν)

)
p 7→ p{k}

tk

is an isometry. Since g is a linear functional on P which is continuous with
respect to the seminorm mν,k there exists a constant C > 0 such that |g(p)| ≤
Cmν,k(p) = C(p, p)

1/2
P for every p ∈ P. Define on Φ(P) a linear functional g̃ by

g̃ :

{
Φ(P) → C
Φ(p) 7→ g(p),

then we have |g̃(Φ(p))| ≤ C(p, p)
1/2
P = C(Φp,Φp)

1/2
L2(ν), in particular g̃ is well-

defined. By the Hahn-Banach theorem g̃ can be extended to a continuous linear
functional on L2(ν) and hence there exists an element v ∈ L2(ν), such that

g(p) = g̃(Φp) =

∫
R

p{k}(t)

tk
v(t)dν(t),

for every p ∈ P. q

2.33 Lemma. Let n ∈ N and f1, . . . , fn be linear functionals on P such that
no linear combination of them is continuous with respect to the seminorm mν,k.
Then the mapping

ι :

{
P → L2(ν)⊕ Cn

p 7→
(
p{k}

tk
; f1(p), . . . , fn(p)

)T ,
has dense range. Here L2(ν) ⊕ Cn is understood as the Hilbert space endowed
with the sum inner product of (., .)L2(ν) and the euclidean inner product on Cn.

Proof. To show that ι has dense range assume the converse. Then there exists
an element (y; ξ1, . . . , ξn)T ∈ L2(ν)⊕Cn, which is not equal (0; 0, . . . , 0)T , such
that ι(P) ⊥ (y; ξ1, . . . , ξn)T . Since the polynomials are dense in L2(ν) and every

polynomial can be written as p{k}

tk
, p ∈ P, this implies that (ξ1, . . . , ξn)T 6=

(0, . . . , 0)T . For every p ∈ P it holds(p{k}
tk

, y
)
L2(ν)

+

n∑
i,j=1

fj(p)ξi = 0, (2.4.1)

which yields∣∣∣ n∑
i,j=1

fj(p)ξi

∣∣∣ =
∣∣∣(p{k}

tk
,−y

)
L2(ν)

∣∣∣ ≤ ∥∥∥p{k}
tk

∥∥∥
L2(ν)

‖y‖L2(ν) =

= ‖y‖L2(ν)

(∫
R

|p{k}(t)|2

t2k
dν(t)

) 1
2

= ‖y‖L2(ν)mν,k(p),

for every p ∈ P. This would imply that there exists a non trivial linear com-
bination of the functionals f1, . . . , fn which is continuous with respect to the
seminorm mν,k. This is a contradiction and therefore ι has dense range. q
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2.34 Lemma. Assume ν has compact support, ν({0}) = 0 and that if k > 0
the function t 7→ 1

t2 is not ν-integrable. For i ∈ N0 define linear functionals on

P by ξi(p) := p(i)(0)
i! , and if k > 0,

τj : p 7→
∫
R

ε(t)
p{2k−j}(t)

t2k−j
dν(t), j = 0, . . . , k − 1,

where ε(t) is a function on R such that each of the restrictions ε|R+ and ε|R− is
either +1 or −1. Then no finite linear combination of the functionals ξi and, if
k > 0, τj is continuous with respect to the seminorm mν,k.

Proof. Assume there exists a finite linear combination of the functionals ξi and
τi that is continuous with respect to the seminorm mν,k. Then, by Lemma 2.32,
there would exist an element v ∈ L2(ν) and constants N ∈ N0, λi, i = 0, . . . , N ,
and µj , j = 0, . . . , k − 1, not all equal to zero, such that

N∑
i=0

λiξi(p) +

k−1∑
j=0

µjτj(p) =

∫
R

p{k}(t)

tk
v(t)dν(t), p ∈ P. (2.4.2)

Let p be a polynomial of degree less than k, then we have p{k} = 0, ξi(p) = 0
for i = k, k + 1, . . . and τj(p) = 0 for j = 0, . . . , k − 1. Therefore (2.4.2) implies
λi = 0 for i = 0, . . . , k − 1.

Denote by S the set of polynomials whose derivatives vanish at t = 0 up to
the order r := max{N, 2k}. For p ∈ S it holds ξk(p) = ξk+1(p) = · · · = ξr(p) = 0
and p{2k−j} = p{k} = p, j = 0, . . . , k − 1, hence it follows

k−1∑
j=0

µj

∫
R

ε(t)
p(t)

tk
t−k+jdν(t) =

∫
R

p(t)

tk
v(t)dν(t). (2.4.3)

Let X be a compact subset of R such that supp ν ⊆ X. We show that the set

{t 7→ ε(t)p(t)
tk

: p ∈ S} ⊆ CX is dense in L2(ν). Since p ∈ S it is equivalent to
show that the set

S̃ :=
{
t 7→ ε(t)tr−k+1p(t) : p ∈ P} ⊆ CX

is dense in L2(ν). Let f ∈ L2(ν) and define f̃(t) := ε(t)f(t). By Remark 2.5
there exists polynomials pn, n ∈ N, such that for qn(t) := tr−k+1pn(t), n ∈ N,
it holds

lim
n→∞

‖f̃ − qn‖L2(ν) = 0.

Define q̃n(t) := ε(t)qn(t), n ∈ N, then q̃n ∈ S̃, n ∈ N, and since ε2 = 1 ν-a.e. it
follows that for n ∈ N it holds

‖f − q̃n‖2L2(ν) = ‖ε2f − εqn‖2L2(ν) =

∫
R

|ε2(t)f(t)− ε(t)qn(t)|2dν(t) =

=

∫
R

|ε(t)f(t)− qn(t)|2dν(t) = ‖f̃ − qn‖2L2(ν).
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This shows that S̃ is dense in L2(ν). Hence and since ε2 = 1 ν-a.e. equation
(2.4.3) implies that

k−1∑
j=0

µjt
−k+j = εv ∈ L2(ν).

Since t−2 is not ν-integrable it follows µj = 0, j = 0, . . . , k−1. To complete the

proof put p̃(t) := t−kp{k}(t) =
∑deg p
i=k i!−1ti−kp(i)(0). Then we have p̃(n)(0) =

n!(k + n)!−1p(k+n)(0), n = 0, . . . ,max{l, k − 1}, and it follows

N∑
i=k

λiξi(p) =

N−k∑
i=0

λi+k
p(i+k)(0)

(i+ k)!
=

N−k∑
i=0

λi+k
p̃(i)(0)

i!
=

∫
R

p̃(t)v(t)dν(t).

This yields λj = 0, j = k, . . . , N , because ν({0}) = 0. q

2.35 Corollary. Let ϕ ∈ F(R, 0) and ϑ = (k, l, σ, c0, . . . , cl) ∈ Θϕ be a repre-
sentation of ϕ with minimal k. Then ran ιϑ = Lϑ.

Proof. By Lemma 2.34 and 2.33 it follows that ran ιϑ is dense in Lϑ. q

Note that if k = 0 and l = −1 then Kϑ = L2(σ), Aϑ is the usual multiplica-
tion operator on L2(σ), i.e. Aϑ(f)(t) = tf(t), f ∈ L2(σ), and ι̂ϑ is the canonical
embedding P ↪→ L2(σ).

2.5 The spectrum of Aϕ

2.36 Lemma. Let ϕ ∈ F(R, 0) and ϑ = (k, l, σ, c0, . . . , cl) ∈ Θϕ be the minimal
representation of ϕ. Then 0 is an eigenvalue of Aϕ and a maximal Jordan chain
at 0 is given by

z0 = (0; 0, . . . , 0; 1, 0, 0, . . . , 0)T ,

z1 = (0; 0, . . . , 0; 0, 1, 0, . . . , 0)T ,

...

zk−1 = (0; 0, . . . , 0; 0, 0, . . . , 0, 1)T ,

if l ≤ 2k, and

z0 = (0; 0, . . . , 0, 0, 1; 0, . . . , 0)T ,

z1 = (0; 0, . . . , 0, 1, 0; 0, . . . , 0)T ,

...

zl−k = (0; 0, . . . , 0︸ ︷︷ ︸
k-times

, 1, 0, . . . , 0; 0, . . . , 0)T ,

if l ≥ 2k + 1.

Proof. Assume an element (f ; a0, . . . , aN ; b0, . . . , bk−1)T ∈ Lϑ, N = max{l, k −
1}, is in the kernel of Aϑ, then it must hold that tf + ak−1 = 0. For f 6= 0
it follows that f = − 1

t ak−1, but this is not possible since 1
t 6∈ L2(σ) if ϑ is
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the minimal representation. Now it follows that the kernel of Aϑ is given by
kerAϑ = {(0; 0, . . . , x; y, 0, . . . , 0)T : x, y ∈ C}. Therefore two maximal Jordan
chains of Aϑ are given by

x0 = (0; 0, . . . , 0, 0, 1; 0, . . . , 0)T , y0 = (0; 0, . . . , 0; 1, 0, 0, . . . , 0)T ,

x1 = (0; 0, . . . , 0, 1, 0; 0, . . . , 0)T , y1 = (0; 0, . . . , 0; 0, 1, 0, . . . , 0)T ,

...
...

... yk−1 = (0; 0, . . . , 0; 0, 0, . . . , 0, 1)T .

xN−k = (0; 0, . . . , 0︸ ︷︷ ︸
k-times

, 1, 0, . . . , 0; 0, . . . , 0)T .

Since ϑ is minimal, by Corollary 2.35 we have that Lϑ = ran ιϑ. Therefore by
Theorem 2.18 the operator Aϑ : Lϑ → Lϑ induces an operator Aϑ : Lϑ/L[◦]ϑ

ϑ

→
Lϑ/L[◦]ϑ

ϑ

. Clearly we have that

dim
(
L

[◦]ϑ
ϑ ∩ ranAϑ

)
= dimL

[◦]ϑ
ϑ − 1 and dim

(
L

[◦]ϑ
ϑ ∩ kerAϑ

)
= 1.

Since Aϑ
(
L

[◦]ϑ
ϑ

)
⊆ L

[◦]ϑ
ϑ it follows that ran

(
Aϑ |L[◦]ϑ

ϑ

)
⊆ L

[◦]ϑ
ϑ ∩ ranAϑ. Because

of
dim ran

(
Aϑ |L[◦]ϑ

ϑ

)
= dimL

[◦]ϑ
ϑ − 1 = dim

(
L

[◦]ϑ
ϑ ∩ ranAϑ

)
,

we have ran
(
Aϑ |L[◦]ϑ

ϑ

)
= L

[◦]ϑ
ϑ ∩ ranAϑ. Now it follows that

kerAnϑ =
(
Anϑ
)−1
(
L

[◦]ϑ
ϑ

)
/
L

[◦]ϑ
ϑ

= kerAnϑ /L[◦]ϑ
ϑ

.

This shows that 0 is an eigenvalue of Aϑ and that a maximal Jordan chain of
Aϑ is given by y0, . . . , yk−1 if l ≤ 2k and by x0, . . . , xl−k if l ≥ 2k + 1. Due to
unitary equivalence this assertion follows for Aϕ. q

2.37 Proposition. Let ϕ ∈ F(R, 0), then the spectrum of the multiplication
operator Aϕ is given by σ(Aϕ) = suppϕ ∪ {0}.

Before we launch into the proof, we need some basic facts about the essential
spectrum. More can be found in [GGK, Chapter XI]. For A ∈ B(X), where X is
a Banach space, the essential spectrum of A, denoted by σess(A), is by definition
the set of all λ ∈ C such that A−λ is not a Fredholm operator. Recall that A ∈
B(X) is a Fredholm operator if kerA and X/ranA are finite dimensional. Note
that the conditionX/ranA is finite dimensional implies that ranA is closed. The
essential spectrum is invariant under compact perturbations. Further σess(A)
is compact and if C \ σess(A) is connected, then σ(A) \ σess(A) consists of
eigenvalues of finite type only, cf. [GGK, Corollary XI.8.5, p. 204].

Proof (Proposition 2.37). Let ϑ = (k, l, σ, c0, . . . , cl) ∈ Θϕ be the minimal rep-
resentation and consider the operator Aϑ, the multiplication operator on Lϑ.
Assume that k > 0. Recall that for ~f = (f ; a0, . . . , aN ; b0, . . . , bk−1), N :=
max{l, k − 1}, the multiplication operator is given by

Aϑ(~f) =
(
tf + ak−1; 0, a0, . . . , aN−1; b1, . . . , bk−1,

∫
R

f(t)dσ(t)
)
,
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Clearly (0; 0, . . . , 0; 1, 0, . . . , 0)T ∈ kerAϑ, so 0 ∈ σp(Aϑ) and since this vector is
not in the isotropic part of Lϑ it follows that 0 ∈ σp(Aϑ), the point spectrum

of the factor operator. For λ 6= 0 and σ({λ}) = 0 the equation (Aϑ−λ)~f = ~y ∈
L

[◦]ϑ
ϑ yields

tf + ak−1 − λf = 0,

0− λa0 = 0,

ai−1 − λai = 0, i = 1, . . . , l − k,al−k − λal−k+1

...
al−1 − λal

 =

x1

...
xk

 ,


b1 − λb0

...
bk−1 − λbk−2∫
R fdσ − λbk−1

 = −Ck,l


x1

...
xk−1

xk

 .

Therefore ai, i = 0, . . . , l− k, are equal to zero. This implies (t− λ)f = 0, thus
f = 0 since σ({λ}) = 0. Now we have

0
al−k+1

...
al−1

− λ

al−k+1

...

...
al

 =


x1

...

...
xk

 ,


b1
...

bk−1

0

− λ


b0
...
...

bk−1

 = −Ck,l


x1

...

...
xk

 .

Define linear mappings Lλ, Rλ by

Lλ :=


−λ 0 . . . 0

1
. . .

. . .
...

. . .
. . . 0

0 1 −λ

 , Rλ :=


−λ 1 0

0
. . .

. . .
...

. . .
. . . 1

0 . . . 0 −λ

 ,

then these conditions can be written as Lλ~a = ~x, Rλ~b = −Ck,l~x, where ~a =

(al−k+1, . . . , al)
T , ~b = (b0, . . . , bk−1)T and ~x = (x1, . . . , xk)T . This implies that

−Ck,lLλ~a = Rλ~b ⇔ −R−1
λ Ck,lLλ~a = ~b.

Easy computation gives Ck,lLλ = RλCk,l and therefore it holds ~b = −Ck,l~a. It

follows that if ~f ∈ Lϑ such that (Aϑ−λ)~f ∈ L
[◦]ϑ
ϑ then ~f ∈ L

[◦]ϑ
ϑ . This shows

that the factor operator (Aϑ−λ) is injective if and only if λ 6= 0 and σ({λ}) = 0.
Therefore σp(Aϑ) = {λ ∈ suppσ : σ({λ}) 6= 0} ∪ {0}.
Now define linear operators M,T : Lϑ → Lϑ by

M
(
(f ; a0, . . . , aN ; b0, . . . , bk−1)

)
:= (t · f ; 0, . . . , 0),

T
(
(f ; a0, . . . , aN ; b0, . . . , bk−1)

)
:=
(
ak−1; 0, a0, . . . , aN−1; b1, . . . , bk−1,

∫
R

fdσ
)
.
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Then we can write the multiplication operator as Aϑ = M+T . Since T is a finite
rank operator it follows that T is compact. Therefore σess(Aϑ) = σess(M). Let

λ ∈ C and ~f = (f ; a0, . . . , aN ; b0, . . . , bk−1), then it follows that (M −λ)~f = 0 if
and only if (t−λ)f = 0. Hence σp(M) = {λ ∈ C : σ({λ}) 6= 0}. For λ ∈ supp(σ)
and σ({λ}) = 0 define Sn := (λ − 1

n , λ + 1
n ), n ∈ N, then |σ|(Sn) > 0 for all

n ∈ N and |t − λ| < 1
n for all t ∈ Sn, n ∈ N. Denote by χSn the characteristic

function on Sn, then for n ∈ N it follows that

‖(M − λ)χSn‖2 = ‖(t− λ)χSn‖2 =

∫
Sn

|t− λ|2d|σ|(t) ≤ 1

n2
|σ|(Sn) =

1

n2
‖χSn‖2.

Therefore M−λ is not boundedly invertible. We show that ran(M−λ) is dense
in L2(|σ|). Let f ∈ L2(|σ|), then the functions

fn(t) :=
1

t− λ
χR\Sn(t)f(t), n ∈ N,

belong to L2(|σ|). By the Lebesgue dominated convergence theorem (M −
λ)fn → f in L2(|σ|). Therefore it follows that λ ∈ σc(M). If λ 6∈ suppσ then
clearly λ ∈ ρ(M). Summarizing we have shown that

σp(M) = {λ ∈ C : σ({λ}) 6= 0},
σc(M) = {λ ∈ C : λ ∈ suppσ, σ({λ}) = 0},
ρ(M) = {λ ∈ C : λ 6∈ suppσ}.

For λ ∈ σc(M) the range ran(M − λ) can not be closed and therefore σc(M) ⊆
σess(M). Since the spectrum of M is a subset of the real line and the essen-
tial spectrum is compact it follows that C \ σess(M) is connected. Therefore
C \ σess(Aϑ) is also connected. It follows that σ(Aϑ) \ σess(Aϑ) consists of
eigenvalues of finite type only. We have already shown that σp(Aϑ) = {λ ∈
suppϕ : σ({λ}) 6= 0} ∪ {0}, hence σ(Aϑ) = supp(σ)∪ {0}. By Remark 1.22 we
have 0 ∈ suppσ and suppσ = suppϕ, hence σ(Aϕ) = σ(Aϑ) = suppϕ.
If k = 0 and ϑ is the minimal representation Lϑ is non degenerated (see Re-
mark 2.11), hence by Corollary 2.35 we have that Kϕ = Lϑ and Aϕ = Aϑ. If
k = 0 and l = −1, then the multiplication operator Aϑ is just the usual multi-
plication operator on the Krĕın space Lϑ = L2(σ). Therefore the spectrum of
Aϑ equals the support of σ. By Remark 1.22 we have suppϕ = suppσ, hence
σ(Aϕ) = suppϕ.
If k = 0 and l = 0 then the multiplication operator is given by

Aϑ
(
(f ; a0)

)
= (tf ; 0).

Clearly (0; 1) ∈ kerAϑ and the same reasoning as above gives σ(Aϑ) = suppσ∪
{0}. By Remark 1.22 it follows that σ(Aϕ) = suppϕ.
If k = 0 and l > 0 then the multiplication operator is given by

Aϑ
(
(f ; a0, . . . , al)

)
= (tf ; 0, a0, . . . , al−1).

Again the argument that the essential spectrum is invariant under compact
perturbations yields σ(Aϑ) = suppσ. q
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2.38 Definition. Let (K, [., .]) be a Krĕın space and A ∈ B(K) be a selfadjoint
definitizable operator. Denote by d(A) the set of all definitizing polynomials for
A and by N(p) the zero set of the polynomial p. The set of the (finite) critical
points of A is defined as

c(A) :=
⋂

p∈d(A)

N(p) ∩ σ(A) ∩ R.

Further denote for p ∈ d(A) by Ωp the semi-ring of all Borel subsets of R the
boundaries of which are bounded away from N(p) and by Ω×p the sets ∆ ⊆ Ωp
such that N(p) ∩∆ = ∅.

The following formulation of the spectral theorem is due to M.A. Dritschel,
see [D, Theorem 18, p. 100].

2.39 Theorem. Let K be a Krĕın space and T ∈ B(K) be a selfadjoint op-
erator with definitizing polynomial p, and assume that the set Z of zeros of p
is contained in the real line R. Then there exists a unique spectral function
E : Ωp → B(K) with the following properties:

(i) For ∆ ∈ Ωp, E(∆) ∈ B(K) is an orthogonal projection.

(ii) E(∅) = 0 and E(R) = I.

(iii) For ∆,∆′ ∈ Ωp, E(∆ ∩∆′) = E(∆)E(∆′).

(iv) If {∆n}∞n=1 ⊆ Ωp are pairwise disjoint and
⋃∞
n=1 ∆n ∈ Ωp, then

E

( ∞⋃
n=1

∆n

)
=

∞∑
n=1

E(∆n).

(v) Let ∆ ∈ Ωp and E(∆) = ranE(∆). If for all t ∈ ∆ we have p(t) > 0,
then E(∆) is uniformly positive, and if p(t) < 0, then E(∆) is uniformly
negative.

(vi) For ∆ ∈ Ωp, E(∆) ∈ {T}′′, the double commutant of T .

(vii) If ∆ ∈ Ωp and E(∆) = ranE(∆), then σ
(
T |E(∆)

)
⊆ ∆.

Moreover, if φ is a Borel measurable function which is bounded on σ(T ), then
the integral ∫

X

φ(λ)p(λ)dE(λ)

is a strongly convergent improper integral, where X = R \ Z. Finally, the
operator φ(T )p(T ) may be expressed as

φ(T )p(T ) =

∫
X

φ(λ)p(λ)dE(λ) +
∑
ν∈Z

φ(ν)Nν ,

where Nν ∈ B(K) is a positive selfadjoint operator, N2
ν = 0, and E(∆)Nν =

NνE(∆) = 0 for every ∆ ∈ Ωp and ν ∈ Z, ν 6∈ ∆.
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Recall that a subspace L of a Krĕın space (K, [., .]) is called uniformly positive
(uniformly negative) if there is a number δ > 0 such that

[x, x] ≥ δ‖x‖2, x ∈ L,
(
[x, x] ≤ −δ‖x‖2, x ∈ L

)
where ‖.‖ is a norm on K which is induced by some fundamental decomposition.
A subspace L of (K, [., .]) is uniformly positive (uniformly negative) if and only
if K admits a fundamental decomposition K = K+[+̇]K− such that L ⊆ K+

(L ⊆ K−), see [B, Theorem V.5.6, p. 108]. So a closed subspace L of (K, [., .])
is uniformly positive (uniformly negative) if and only if it is a Hilbert (anti-
Hilbert) space with the inner product [., .] of K. Since orthogonal projections in
a Krĕın space have closed range these considerations yield:

2.40 Corollary. Let (K, [., .]) be a Krĕın space and A ∈ B(K) be a selfadjoint
operator with a real definitizing polynomial p with only real zeros and ∆ ∈ Ωp
such that sign p|∆ is either +1 or −1. Further denote by E the spectral function
of A according to Theorem 2.39. Then the decomposition

K = E(∆)K[+̇]
(
I − E(∆)

)
K

reduces3 A, and the restriction A∆ := A|E(∆)K is a linear bounded selfadjoint

operator in the Hilbert space
(
E(∆)K, (., .)∆

)
, where the inner product is defined

as (., .)∆ := sign p|∆ · [., .]|E(∆)K×E(∆)K.

2.41 Definition. Let A be a selfadjoint definitizing operator in a Krĕın space
(K, [., .]) and E the spectral function of A. If α ∈ c(A) and for arbitrary λ0, λ1 ∈
R \ c(A) the limits

lim
λ↗α

E([λ0, λ]) and lim
λ↘α

E([λ, λ1])

exist in the strong operator topology, α is called a regular critical point of A,
otherwise α is called a singular critical point. Denote by cr(A), cs(A) the sets
of regular critical points, singular critical points of A, respectively. A point
α ∈ c(A) is said to be a critical point of finite index of A if there exists an open
interval ∆ containing α such that E(∆)K is a Pontryagin space. The set of all
critical points of finite index, singular critical points of finite index, is denoted
by cf (A), csf (A), respectively.

2.42 Remark. These limits always exists if α 6∈ c(A), see [L, Section II.5, p. 39].

2.43 Proposition. Let ϕ ∈ F(R, 0) and (k, l, σ, c0, . . . , cl) ∈ Θϕ be the minimal
representation of ϕ. Then

c(Aϕ) = {0} if


k = 0, l = −1 ∧ {signσ|R+ , signσ|R−} = {+1,−1},
k = 0, l = 0 ∧ {signσ|R+ , signσ|R− , sign c0} ⊇ {+1,−1},
k = 0, l > 0,
k > 0,

3Let (K, [., .]) be a Krĕın space, L a linear subspace of K and A ∈ B(K). If AL ⊆ L
and AL[⊥] ⊆ L[⊥] then we say L reduces A. If L1,L2 are linear subspaces of K such that
K = L1[+̇]L2 and ALi ⊆ Li, i = 1, 2, then we say that this decomposition reduces A.
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and c(Aϕ) = ∅ otherwise. For ∆ ∈ Ω×p the spectral function E(∆) has the
following matrix representation:

χ∆· t−kχ∆ t−k+1χ∆ . . . t−1χ∆ 0 0

0 0 0 0

0 0 0 0

(., t−kχ∆)σ (1, t−2kχ∆)σ (1, t−2k+1χ∆)σ . . . (1, t−k−1χ∆)σ
(., t−k+1χ∆)σ (1, t−2k+1χ∆)σ (1, t−2k+2χ∆)σ . . . (1, t−kχ∆)σ

...
...

...
. . .

... 0 0

(., t−1χ∆)σ (1, t−k−1χ∆)σ (1, t−k−2χ∆)σ . . . (1, t−2χ∆)σ


.

If c(Aϕ) = {0}, then the point 0 is a regular critical point of Aϕ if and only if
k = 0.

Proof. By Theorem 2.18 there exists a real definitizing polynomial p such that
x = 0 is the only zero of p. By Proposition 2.37 we have 0 ∈ σ(Aϕ) and therefore
it holds c(Aϕ) ⊆ {0}.

Let p be a real definitizing polynomial of Aϕ with only zero x = 0, see
Theorem 2.18, then Theorem 2.39 implies the existence of a unique spectral
function E : Ωp → B(Kϕ). It is sufficient to show the matrix representation of
the spectral function for bounded real intervals such that 0 is not in the closure.
So let ∆ be a bounded real interval with 0 6∈ ∆. Without loss of generality
assume p > 0 on ∆, and hence p > 0 on the half real axis containing ∆. Then
by Corollary 2.40 for any closed interval ∆̃ such that 0 6∈ ∆̃ and ∆ ⊆ ∆̃ the space
H∆̃ := E(∆̃)Kϕ endowed with the inner product (., .)∆̃ := [., .]|E(∆̃)Kϕ×E(∆̃)Kϕ
is a Hilbert space and Aϕ|H∆̃

is a bounded linear selfadjoint operator on H∆̃.
Hence there exists a unique spectral measure F on the Borel subsets of σ(Aϕ|H∆̃

)
such that

F (∆) =

∫
σ(Aϕ|H

∆̃
)

χ∆dF = ΦF (χ∆),

where ΦF denotes the ∗-homeomorphism from B(σ(Aϕ|H∆̃
),A)4→ B(H∆), φ 7→∫

φdF , see [C1, Theorem 2.3, p. 264]. Let n ∈ N, n is odd, and consider the set

Pn := {p ∈ C[x] : ∃q ∈ C[x] : p(x) = q(xn) x ∈ ∆̃}.

Then Pn is a linear subspace of the space of bounded complex valued functions
on ∆. Further Pn is nowhere vanishing, separates point and is closed under
complex conjugation, hence by the Stone-Weierstrass Theorem Pn is dense in
C(∆̃).
Clearly there exists a sequence of continuous functions (fk)k∈N which converges
pointwise to χ∆ on ∆̃. Since Pn is dense in C(∆̃) for each k ∈ N there exists a

sequence (g
(k)
l )l∈N in Pn which converges uniformly to fk. Then by a diagonal

argument the sequence pm := g
(m)
m converges pointwise to χ∆ on ∆̃. Further

the sequence (pm)m∈N is uniformly bounded, i.e. supm∈N ‖pm‖∞ <∞. By the
definition of Pn there exists a sequence of polynomials qm ∈ C[x], m ∈ N, such
that pm(x) = qm(xn), x ∈ ∆̃. In particular it holds limm→∞ qm(xn) = χ∆(x),
x ∈ ∆̃. By the properties of ΦF it follows that

(
ΦF (pm)

)
m∈N converges to

4A is the Borel σ-algebra on σ(Aϕ|H
∆̃

) and B(σ(Aϕ|H
∆̃

),A) is the set of A-measurable

complex valued functions on σ(Aϕ|H
∆̃

).
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ΦF (χ∆) in the strong operator topology. By the spectral theorem it holds
ΦF (pm) =

∫
pmdF = pm(Aϕ|H

∆̃
). This implies that

lim
m→∞

qm
(
(Aϕ|H∆̃

)n
)
g = ΦF (χ∆)g = F (∆)g, g ∈ H∆̃.

Hence we can obtain F (∆) as a strong limit of a sequence of polynomials in
(Aϕ|H∆̃

)n, n odd. For sufficiently large n ∈ N we have

Anϑ=



tn· tn−k tn−k+1 . . . tn−1 0 0
0 0 0 0
0 0 0 0

(., tn−k)σ (1, tn−2k)σ (1, tn−2k+1)σ . . . (1, tn−k−1)σ
(., tn−k+1)σ (1, tn−2k+1)σ (1, tn−2k+2)σ . . . (1, tn−k)σ

...
...

...
. . .

... 0 0
(., tn−1)σ (1, tn−k−1)σ (1, tn−k−2)σ . . . (1, tn−2)σ


,

with respect to the decomposition Lϑ = L2(σ)⊕Ck⊕Cl−k+1⊕Ck. This operator

leaves the isotropic part L
[◦]ϑ
ϑ (see Remark 2.11) invariant, hence the operator

Anϕ and its restriction to H∆̃ admits a similar matrix representation. In fact
it is given by the same scheme except, that this time the decompositions is
L2(σ)⊕ Ck ⊕ Cr ⊕ Ck, where

r :=

{
0, l < 2k − 1

l − 2k + 1, l ≥ 2k − 1
.

By the linearity of the inner product and since in each term of the matrix
representation we can isolate the factor tn and qm(tn) converges to χ∆ we obtain
the following representation for F (∆)

χ∆· t−kχ∆ t−k+1χ∆ . . . t−1χ∆ 0 0

0 0 0 0

0 0 0 0

(., t−kχ∆)σ (1, t−2kχ∆)σ (1, t−2k+1χ∆)σ . . . (1, t−k−1χ∆)σ
(., t−k+1χ∆)σ (1, t−2k+1χ∆)σ (1, t−2k+2χ∆)σ . . . (1, t−kχ∆)σ

...
...

...
. . .

... 0 0

(., t−1χ∆)σ (1, t−k−1χ∆)σ (1, t−k−2χ∆)σ . . . (1, t−2χ∆)σ


.

Let E be the Krĕın space spectral function and ∆0 a bounded real interval such
that 0 6∈ ∆0. Then F̃ (∆) := E(∆ ∩∆0), ∆ ∈ Ωp, is a spectral measure for the
selfadjoint operator Aϕ|H∆0

in the Hilbert space H∆0
. By the uniqueness of the

spectral measure it follows that F̃ = F . This proves the matrix representation
for E(∆), ∆ ∈ Ω×p .

If k > 0, then for ~x = (0; 1, 0, . . . , 0)T we have

‖E(∆)‖ ≥ ‖E(∆)~x‖ ≥ |(1, t−2kχ∆)σ| =
∣∣∣∣∫
∆

1

t2k
dσ(t)

∣∣∣∣, ∆ ∈ Ωp.

By the minimality of k the function t 7→ 1
t2k

is not σ-integrable on R and
therefore the limits limλ↗0E([−1, λ]) and limλ↘0E([λ, 1]) does not exist in the
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strong operator topology. This implies that 0 ∈ c(Aϕ) (see Remark 2.42) and
that 0 is a singular critical point.
It remains to consider the case k = 0. Note that if k = 0 and ϑ is the minimal
representation Lϑ is non degenerated (see Remark 2.11), hence by Corollary
2.35 we have that Kϕ = Lϑ and Aϕ = Aϑ. According to [L, Proposition 4.2,
p.35] 0 is a critical point of Aϕ if and only if for each ∆ ∈ Ωp with 0 ∈ ∆ the
scalar product [., .]Kϕ is indefinite on E(∆)Kϕ. So let ∆ ∈ Ωp such that 0 ∈ ∆.
Since R ∈ Ωp and because of the semi-ring property of Ωp there exists ∆j ∈ Ωp,
j = 1, . . . , n, pairwise disjoint, such that

∆c = R \∆ =

n⋃
j=1

∆j .

Since 0 ∈ ∆ it follows that 0 6∈ ∆j , j = 1, . . . , n, hence ∆j ∈ Ω×p , j = 1, . . . , n.
Now Theorem 2.39 implies that

E(∆) = E(R)−E(∆c) = I−
n∑
j=1

E(∆j) =


χ∆c 0 . . . 0

0 1
...

. . .

0 1

 ∈ L2(σ)⊕Cl+1.

This shows that, in the case l > 0, the scalar product [., .]Kϕ is indefinite on
E(∆)Kϕ, hence 0 ∈ c(Aϕ). If l = −1, then the spectral function E(∆) is simply
the multiplication with the characteristic function χ∆c on L2(σ) and therefore
the scalar product is indefinite on E(∆)Kϕ if and only if {signσ|R+ , signσ|R−} =
{+1,−1}, i.e. both signs were attained. If l = 0 elements of E(∆)Kϕ are of the
form (fχ∆c ; a0) with f ∈ L2(σ) and a0 ∈ C and the scalar product computes as[(

fχ∆c

a0

)
,
(
fχ∆c

a0

)]
Kϕ

=

∫
∆c

|f |2dσ + c0|a0|2.

Which implies that the scalar product on E(∆)Kϕ is indefinite if and only if
{signσ|R+ , signσ|R− , sign c0} = {+1,−1}.
Finally assume k = 0 and 0 ∈ c(Aϕ). Then it holds

‖E(∆)‖ ≤ |σ|(∆c) + 1 ≤ |σ|(R), ∆ ∈ Ωp, 0 ∈ ∆,

and since σ is a finite measure by [L, Proposition 5.6, p.40] it follows that 0 is
a regular critical point of Aϕ. This completes the proof. q

2.44 Remark. Note that the above Proposition shows that for ϕ ∈ F(R, 0) it
holds that c(Aϕ) = ∅ if and only if ϕ ∈ F(R, ∅).



Chapter 3

Model spaces for
distributions of class F

In this chapter we construct the model space for distributions of class F . We
start by defining a model for distributions of class F(R). Therefore we will make
use of Lemma 1.13 (vii), which states that if ϕ ∈ F(R) and M a finite subset
of R such that ϕ ∈ F(R,M) and ∆1, . . . ,∆n, n ∈ N, be a ϕ-M -decomposition
of R, then we can write the distribution ϕ as

ϕ(f) =

n∑
j=1

ϕ|∆j (f), f ∈ D(R).

We can choose the ϕ-M -decomposition of R such that |M∩∆j | ≤ 1, j = 1, . . . , n.
By Lemma 1.13 (iii) it follows that ϕ|∆j ∈ F(R, αj), for some αj ∈ R, or
ϕ|∆j

∈ F(R, ∅). So we will construct model spaces for distributions of class
F(R, α), α ∈ R, and F(R, ∅).

3.1 Model for distributions of class F(R, α)
In order to construct the model space for distributions of class F(R, α), α ∈ R,
we consider the translation operator on C∞ which is defined by

Tαf(t) := f(t− α), f ∈ C∞(R).

3.1 Definition. For ϕ ∈ F(R, α), α ∈ R, we define a mapping τα : F(R, α)→
F(R, 0) by (ταϕ)(f) = ϕ(Tαf), f ∈ C∞(R).

First we show that τα is well-defined. According to Proposition 1.21 there
exist constants k, l ∈ N0, c0, . . . , cl ∈ R and a signed finite Borel measure σ with
compact support, σ({α}) = 0 and σ|Zα± has the same sign as µZα± , such that

ϕ(f) =

∫
R

f{α,2k}(t)

(t− α)2k
dσ(t) +

l∑
i=0

ci
i!
f (i)(α), f ∈ D(R).

55
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For t ∈ R set σ̃(t) := σ(t + α), then it holds σ̃({0}) = 0, σ̃|R+ and σ̃|R− are
either positive or negative measures. Now, for f ∈ D(R), it follows that

(ταϕ)(f) = ϕ(Tαf) =

∫
R

(Tαf){α,2k}(t)

(t− α)2k
dσ(t) +

l∑
i=0

ci
i!

(Tαf)(i)(α) =

=

∫
R

f(t− α)−
∑2k−1
i=0

(t−α)i

i! f (i)(0)

(t− α)2k
dσ(t) +

l∑
i=0

ci
i!
f (i)(0) =

=

∫
R

f{0,2k}(s)

s2k
dσ̃(s) +

l∑
i=0

ci
i!
f (i)(0).

Lemma 2.3 implies that ταϕ is an element of F(R, 0).
We are ready to define the model space and model operator for ϕ ∈ F(R, α).

3.2 Definition. Let ϕ ∈ F(R, α), then we define

Kϕ := Kταϕ, Aϕ := Aταϕ + αI and ιϕ := ιταϕ ◦ T−α.

3.3 Lemma. Let ϕ ∈ F(R, α), then σ(Aϕ) = suppϕ ∪ {α} and the following
diagram commutes:

P
ιϕ //

·t
��

Kϕ

Aϕ

��
P ιϕ

// Kϕ.

(3.1.1)

Proof. The assertion about the spectrum of Aϕ is an immediate consequence of
Proposition 2.37. To see that the diagram commutes, let p ∈ P, then we have

Aϕ
(
ιϕ(p)

)
= Aταϕιϕ(p) + αιϕ(p) = Aταϕιταϕ

(
p(t+ α)

)
+ αιταϕ

(
p(t+ α)

)
.

On the other hand it holds for every p ∈ P

ιϕ
(
tp(t)

)
= ιταϕ

(
(t+ α)p(t+ α)

)
= ιταϕ

(
tp(t+ α)

)
+ αιταϕ

(
p(t+ α)

)
.

Since ταϕ ∈ F(R, 0) diagram (2.3.3) yields

Aταϕιταϕ
(
p(t+ α)

)
= ιταϕ

(
tp(t+ α)

)
,

which implies (3.1.1). q

3.2 Model for distributions of class F(R, ∅)
Let ϕ ∈ F(R, ∅) and choose an arbitrary element α ∈ R \ suppϕ. Then we can
understand the distribution ϕ as an element of F(R, α), and we define the model
space, model operator and model embedding simply as the corresponding triple
for the distribution ϕ considered as an element of F(R, α). Because α 6∈ suppϕ
this definition does not depend on the choice of α.
Since ϕ ∈ F(R, ∅) there exists a Borel measure σ on R such that ϕ(f) =

∫
R fdσ,

f ∈ D(R). Hence the model space is explicitly given by L2(σ), the model
operator is the multiplication operator on L2(σ), and the model embedding is
the canonical embedding P ↪→ L2(σ).
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3.3 Model for distributions of class F(C \ R)
Let ψ ∈ F(C \ R) and assume σ0(φ) = {β, β}. For p ∈ P the distribution ψ
admits the following representation (see equation (1.3.1))

ψ(p) =

ν−1∑
j=0

(
dj
j!
p(j)(β) +

dj
j!
p(j)(β)

)
,

where dj ∈ C, j = 0, . . . , ν − 1 and dν−1 6= 0. We equip P with the inner
product [p, q]ψ := Ψ(pq). Further define

W :=

(
0 Ŵ ∗

Ŵ 0

)
, with Ŵ :=


d0 d1 · · · dν−1

d1 d2 · · · 0
...

...
. . .

...
dν−1 0 · · · 0

 .

3.4 Definition. Let ψ ∈ F(C \ R) and σ0(ϕ) = {β, β}. We define an operator
on C2ν by

Aψ :


C2ν → C2ν

(a0, . . . , aν−1; b0, . . . , bν−1) 7→ (βa0, a0 + βa1, . . . , aν−2 + βaν ;

βb0, b0 + βb1, . . . , bν−2 + βbν−1)

(3.3.1)
and call it the multiplication operator on C2ν .

3.5 Remark. The multiplication operator Aψ admits the following matrix rep-
resentation

Aψ =

(
B̂ 0

0 B̂

)
, with B̂ :=



β 0 0 · · · 0
1 β 0 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 β

 .

3.6 Theorem. Let ψ ∈ F(C \ R) and σ0(ϕ) = {β, β}. Then the mapping

ιψ :

P → C2ν

p 7→
(
p(0)(β)

0! , . . . , p
(ν−1)(β)
(ν−1)! ; p

(0)(β)
0! , . . . , p

(ν−1)(β)
(ν−1)!

)T
is an isometry of

(
P, [., .]ψ

)
onto the finite dimensional non-degenerated inner

product space
(
C2ν , (W., .)C2ν

)
and therefore induces an isometric isomorphism

of
(
P/P0, [., .]ψ

)
onto

(
C2ν , (W., .)C2ν

)
. Further the following diagram com-

mutes

P
ιψ //

At

��

C2ν

Aψ

��
P ιψ

// C2ν .
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Proof. Since dν−1 6= 0 the matrix W is regular which implies that the linear
space

(
C2ν , (W., .)C2ν

)
is non-degenerated. For n ∈ N denote by Pn the space of

polynomials with degree less or equal than n. Clearly P2ν−1 is a 2ν dimensional
subspace of P. By the fundamental theorem of algebra it follows that the
mapping ιψ|P2ν−1 is injective. This implies that ιψ|P2ν−1 and therefore ιψ is
surjective.
Let p, q ∈ P, then we have

[p, q]ψ =

ν−1∑
j=0

1

j!

(
dj(pq)

(j)(β) + dj(pq)
(j)(β)

)
=

=

ν−1∑
j=0

(
dj

j∑
i=0

p(i)(β)

i!

q(j−i)(β)

(j − i)!
+ dj

j∑
i=0

p(i)(β)

i!

q(j−i)(β)

(j − i)!

)
=

=

ν−1∑
i=0

p(i)(β)

ν−1∑
j=i

dj
i!

q(j−i)(β)

(j − i)!
+ p(i)(β)

ν−1∑
j=i

dj
i!

q(j−i)(β)

(j − i)!

 =

= (Wιψp, ιψq)C2ν .

Since
(
C2ν , (W., .)C2ν

)
is non-degenerated there exists an isometric isomorphism

of
(
P/P0, [., .]ψ

)
onto

(
C2ν , (W., .)C2ν

)
.

It remains to show that the operator Aψ satisfies the diagram. Let p ∈ P and
define q(t) := Atp(t) = tp(t), then we have

q(j)(β)

j!
=

1

j!

j∑
i=0

(
j

i

)
t(i)|t=βp(j−i)(β) =

{
βp(β), j = 0

β p
(j)(β)
j! + p(j−1)(β)

(j−1)! , j ≥ 1.

Hence ιψ(q) is given by

ιψ(q) =
(
β
p(0)(β)

0!
, β
p(1)(β)

1!
+
p(0)(β)

0!
, . . . , β

p(ν−1)(β)

(ν − 1)!
+
p(ν−2)(β)

(ν − 2)!
;

β
p(0)(β)

0!
, β
p(1)(β)

1!
+
p(0)(β)

0!
, . . . , β

p(ν−1)(β)

(ν − 1)!
+
p(ν−2)(β)

(ν − 2)!

)
.

This implies that Aψ
(
ιψ(p)

)
= ιψ

(
At(p)

)
. q

3.7 Definition. For ψ ∈ F(C \ R) with σ0(ψ) = {β, β} we define the model
space Kψ as the space C2ν with the inner product [., .]Kψ := (W., .)C2ν , the
model operator Aψ as in (3.3.1) and the embedding ιψ as in Theorem 3.6.

3.8 Proposition. Let ψ ∈ F(C \ R) and σ0(ψ) = {β, β}. Then the operator
Aψ is bounded, selfadjoint and definitizable in Kψ. Further the spectrum of Aψ
is given by σ(Aψ) = {β, β}.

Proof. Clearly, Aψ is a bounded operator. In order to show that Aψ is selfadjoint
with respect to the indefinite inner product (W., .)C2ν it is sufficient to show that
WB = B∗W . Since ŴT = Ŵ it follows that

WB =

(
0 Ŵ B̂

Ŵ B̂ 0

)
, B

T
W =

(
0 (Ŵ B̂)T

(Ŵ B̂)T 0

)
.
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For Ŵ B̂ we have

Ŵ B̂ = βŴ +


d1 d2 · · · dν−1 0
d2 d3 · · · 0
... 0

dν−1 0
0

 ,

which implies that (Ŵ B̂)T = Ŵ B̂. Therefore Aψ is selfadjoint with respect to
the inner product (W., .)C2ν . By the theorem of Cayley-Hamilton it follows that
Aψ is definitizable.
By definition of the operator Aψ its spectrum coincides with σ0(ψ). q

3.9 Definition. Let ψ ∈ F(C \ R) and σ0(ψ) = {β1, . . . , βn, β1, . . . , βn}. For
i = 1, . . . , n, denote by (Kψi , Aψi , ιψi) the model space, model operator and the
embedding corresponding to the distribution ψi with σ0(ψi) = {βi, βi}. Then
we define

Kψ :=

n⊕
i=1

Kψi , Aψ :=

n⊕
i=1

Aψi and ιψ =

n⊕
i=1

ιψi .

3.10 Proposition. Let ψ ∈ F(C \ R) and σ0(ψ) = {β1, . . . , βn, β1, . . . , βn}.
Then the operator Aψ is bounded, selfadjoint and definitizable in Kψ. Further
the spectrum of Aψ is given by σ(Aψ) = σ0(ψ).

Proof. As the orthogonal sum of bounded and selfadjoint operators Aψ is a
bounded and selfadjoint operator in Kψ. Since Kψ is finite dimensional by the
theorem of Cayley-Hamilton there exists a polynomial p such that p(Aψ) = 0.
Therefore Aψ is definitizable. The assertion about the spectrum is immediate.

q

3.4 Model for distributions of class F(R)
3.11 Definition. Let ϕ ∈ F(R) and M a finite subset of R such that ϕ ∈
F(R,M). Further let ∆1, . . . ,∆n, n ∈ N, be a ϕ-M -decomposition of R such
that |M ∩ ∆i| ≤ 1, 1 ≤ i ≤ n. Now we define the model space, the model
operator and the model embedding for the distribution ϕ as

Kϕ :=

n⊕
i=1

Kϕ|∆i , Aϕ :=

n⊕
i=1

Aϕ|∆i and ιϕ :=

n⊕
i=1

ιϕ|∆i .

We have to show that this definition is (up to unitary equivalence) indepen-
dent of the ϕ-M -decomposition of R. This is the assertion of the next lemma.

3.12 Lemma. Let ϕ ∈ F(R) and M a finite subset of R such that ϕ ∈ F(R,M).
If ∆1, . . . ,∆n, n ∈ N, and ∆̃1, . . . , ∆̃m, m ∈ N, are ϕ-M -decompositions of
R such that |M ∩ ∆i| ≤ 1, 1 ≤ i ≤ n, and |M ∩ ∆̃j | ≤ 1, 1 ≤ j ≤ m,
then there exists a unitary mapping U :

⊕n
i=1Kϕ|∆i →

⊕m
i=1Kϕ|∆̃i such that

U
⊕n

i=1Aϕ|∆i =
⊕m

i=1Aϕ|∆̃i
U .
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Proof. Without loss of generality we can assume that ∆1, . . . ,∆n, ∆̃1, . . . , ∆̃m

are open intervals, see Lemma 1.13 (v), and that for every i ∈ {1, . . . , n} there
exists ri ∈ N, j1, . . . , jri ∈ {1, . . . ,m}, j1 < · · · < jri , such that

∆̃j1 ∪ · · · ∪ ∆̃jri
= ∆i.

It is sufficient to show, that there exists a unitary mapping

U : Kϕ|∆i →
jri⊕
j=j1

Kϕ|∆̃j . (3.4.1)

Assume ri = 2 and let ∆̂1 := ∆̃j1 = (a, b), ∆̂2 := ∆̃j2 = (b, c), then ∆ := ∆i =

(a, c). If ∆ ∩M = ∅ Consider the case ∆ ∩M = {α}, α ∈ R, and α ∈ ∆̂1.
The case α ∈ ∆̂2 is proven analogously. We start with the special case α = 0.
Choose a representation ϑ = (k, l, σ, c0, . . . , cl) for the distribution ϕ|∆ such that
l ≥ 2k. For the distribution ϕ|∆̂1

fix a representation ϑ1 = (k, l, σ̂, c0, . . . , cl)
and clearly σ̂ = σ|(a,b). Since ϕ|∆̂2

is a bounded measure and σ|(b,c)({0}) = 0
the triple ϑ2 = (0, 0, σ) with σ = σ|(b,c) is a representation for ϕ|∆̂2

. Let
~x := (x; y0, . . . , yl; z0, . . . , zk−1) and

z̃j := zj −
∫
R

1

tk−j

(
x(t)−

2k−j−1∑
i=k

yit
i−k
)
dσ(t), j = 0, . . . , k − 1.

Now we can define a mapping ι from Lϑ onto Lϑ1 ⊕ Lϑ2 by

ι(~x) =

(
x|supp σ̂; y0, . . . , yl; z̃0, . . . , z̃k−1;

(
x(t)tk +

k−1∑
i=0

yit
i
)∣∣∣

suppσ

)
.

First note that ι is surjective. To see this, let ~g ∈ Lϑ1 ⊕ Lϑ2 and assume
~g = (f1; a0, . . . , al; b0, . . . , bk−1; f2). Define

f := f1χ∆̂1
+
f2 −

∑k−1
i=0 ait

i

tk
χ∆̂2

,

zj := bj +

∫
R

1

tk−j

(
f(t)−

2k−j−1∑
i=k

ait
i−k
)
dσ(t).

then f ∈ L2(σ̂) and ι
(
(f ; a0, . . . , al; z0, . . . , zk−1)

)
= ~g.

Further ι is injective. Let ~f = (f ; y0, . . . , yl, z0, . . . , zk−1) ∈ Lϑ, ~f 6= 0, and

assume ι(~f) = 0. It follows that x|∆̂1
= 0 and y0 = . . . = yl = 0. This implies

that x(t)tk|∆̂2
= 0, hence x = 0 and therefore z0 = · · · = zk−1 = 0. This shows

that ι is bijective.
Let ~x := (x; y0, . . . , yl; z0, . . . , zk−1) ∈ Lϑ such that ‖~x‖Lϑ = 1. Since 1

tm ,
m ∈ N, is bounded on [b, c] there exists constants C1, C2 > 0 such that for
j = 0, . . . , k − 1 and C := 1 + C1 + C2 it holds

|z̃j | ≤ |zj |+
∫
R

∣∣∣ 1

tk−j
x(t)

∣∣∣d|σ|(t) +

2k−j−1∑
i=k

|yi|
∫
R

∣∣∣ 1

t2k−j−i

∣∣∣d|σ|(t) ≤
≤ |zj |+ C1‖x‖L2(|σ|) + C2(k − j) max

i∈{k,...,2k−j−1}
|yi| ≤ 1 + C1 + C2(k − j) ≤ C.
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Further there exists a constant D > 0 such that

‖xtk +

k−1∑
i=0

yit
i‖2Lϑ2

≤
∫
R

∣∣x(t)tk
∣∣d|σ|(t) +

k−1∑
i=0

|yi|
∫
R

|ti|d|σ|(t) ≤ D

Therefore it follows that

‖ι(~x)‖2Lϑ1
⊕Lϑ2

= ‖(x; y0, . . . , yl; z̃0, . . . , z̃k−1)‖2Lϑ1
+ ‖xtk +

k−1∑
i=0

yit
i‖2Lϑ2

=

= ‖x‖2L2(|σ̂|) + ‖(y0, . . . , yl)‖2Cl+1 + ‖(z̃0, . . . , z̃k−1)‖2Ck + ‖xtk +

k−1∑
i=0

yit
i‖2Lϑ2

≤

≤ 1 + (l + 1) + kC +D.

This implies that ι is a bounded linear operator from Lϑ onto Lϑ1
⊕Lϑ2

. Since
ι is bijective it follows that ι−1 is bounded.
Further the mapping ι satisfies the following diagram

Lϑ
ι // Lϑ1

⊕ Lϑ2

P
ιϑ

``@@@@@@@@ ιϑ1
⊕ιϑ2

::uuuuuuuuuu

(3.4.2)

To see this, let p ∈ P, then

ιϑ(p) =
(p{k}
tk

;
p(0)(0)

0!
, . . . ,

p(max{l,k−1})(0)

(max{l, k − 1})!
; p̃0, . . . , p̃k−1

)T
,

with p̃j := p̃
[k,σ]
j =

∫
R
p{2k−j}(t)
t2k−j

dσ(t), and

ιϑ1
(p) =

(p{k}
tk
|∆̂1

;
p(0)(0)

0!
, . . . ,

p(max{l,k−1})(0)

(max{l, k − 1})!
; p̃0, . . . , p̃k−1

)T
,

ιϑ2
(p) = p|∆̂2

.

Since

p{2k−1}(t)

t2k−j
=

1

tk−j

(p{k}(t)
tk

−
2k−j−1∑
i=k

p(i)(0)

i!
ti−k

)
, j = 0, . . . , k − 1.

it follows that

ι(ιϑ(p)) =
(p{k}
tk

∣∣∣
∆̂1

;
p(0)(0)

0!
, . . . ,

p(max{l,k−1})(0)

(max{l, k − 1})!
; z̃0, . . . , z̃k−1; p|∆̂2

)
,

which implies diagram (3.4.2).
Now let ~x, ~y ∈ ran ιϑ then there exists elements p, q ∈ P such that ~x = ιϑ(p)
and ~y = ιϑ(q). By diagram (3.4.2) and Lemma 1.13 (v), (vi) it follows that

[~x, ~y]ϑ = [ιϑ(p), ιϑ(q)]ϑ = [p, q]ϕ|∆ = [p, q]ϕ|∆̂1
+ [p, q]ϕ|∆̂2

=

= [ιϑ1
(p), ιϑ(q)]ϑ1

+ [ιϑ2
(p), ιϑ2

(q)]ϑ2
= [ι(p), ι(q)]Lϑ1

⊕Lϑ2
.
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Therefore ι is an isometry from (ran ιϑ, [., .]ϑ) onto (ran(ιϑ1
⊕ ιϑ2

), [., .]Lϑ1
⊕Lϑ2

).

Since ι and ι−1 are continuous this property extends to the closure, i.e. the
mapping

ι :
(
ran ιϑ, [., .]ϑ

)
→
(
ran(ιϑ1

⊕ ιϑ2
), [., .]Lϑ1

⊕Lϑ2

)
is an isometric isomorphism. By Lemma 2.22 (ii) ι induces a unitary operator
U between the factor spaces

U : ran ιϑ/ran ιϑ
[◦]ϑ → ran(ιϑ1

⊕ ιϑ2
)/

ran(ιϑ1
⊕ιϑ2

)
[◦]Lϑ1

⊕Lϑ2
.

It remains to show that

ran(ιϑ1 ⊕ ιϑ2)/
ran(ιϑ1

⊕ιϑ2
)
[◦]Lϑ1

⊕Lϑ2
= ran ιϑ1/ran ιϑ1

[◦]ϑ ⊕ L2(σ). (3.4.3)

First note that ran(ιϑ1 ⊕ ιϑ2) ⊆ ran ιϑ1 ⊕ L2(σ) and therefore ran(ιϑ1 ⊕ ιϑ2) ⊆
ran ιϑ1

⊕ L2(σ). To prove the other inclusion let f be a continuous function
with supp f ⊆ (b, c] and N := max{l + 1, 2k}. Then the function

f̃(t) :=

{
0 t ∈ [a, b]
f(t)
tN

t ∈ (b, c]

is continuous on [a, c]. Now we can approximate the function f̃ uniformly on
[a, c] by polynomials, i.e. there exists p̃n ∈ C[z] such that p̃n → f̃ uniformly on
[a, c]. Now it follows that pn := tN p̃n → tN f̃ = f uniformly on [a, c]. Clearly
all derivatives of pn up to the order N − 1 vanishes at t = 0. Hence

(ιϑ1 ⊕ ιϑ2)pn =
(
pn|[a,b]; 0, . . . , 0;

b∫
a

pn(t)

t2k
dσ(t), . . . ,

b∫
a

pn(t)

tk+1
dσ(t)

)
⊕ (pn|(b,c]).

Since pn converges uniformly to f and supp f ⊆ (b, c] we obtain (ιϑ1
⊕ιϑ2

)(pn)→
~0⊕ f ∈ ran(ιϑ1

⊕ ιϑ2
). If f ∈ L2(σ) then we can approximate f by continuous

functions in the L2 sense. This means that there exists continuous fn with
supp fn ⊆ (b, c] such that fn → f with respect to the L2 norm and therefore
~0⊕ fn → ~0⊕ f in Lϑ1 ⊕ Lϑ2 . This yields

{~0} ⊕ L2(σ) ⊆ ran(ιϑ1
⊕ ιϑ2

).

If f ∈ (ran ιϑ1
) ⊕ L2(σ) then there exists a polynomial p ∈ P and an element

g ∈ L2(σ) such that f = ιϑ1
p⊕ g. Further it holds

f=(ιϑ1⊕ιϑ2)p+
(
~0⊕(g−ιϑ2p|(b,c])

)
∈ ran(ιϑ1⊕ιϑ2)+{~0}⊕L2(σ) ⊆ ran(ιϑ1⊕ ιϑ2).

Now clearly ran ιϑ1
⊕ L2(σ) ⊆ ran(ιϑ1

⊕ ιϑ2
), thus we have

ran ιϑ1
⊕ L2(σ) = ran(ιϑ1

⊕ ιϑ2
). (3.4.4)

Since
(
ran ιϑ1

⊕L2(σ)
)[◦]Lϑ1

⊕Lϑ2 =
(
ran ιϑ1

)[◦]ϑ1 ⊕{0} equation (3.4.3) follows.
This shows the existence of a unitary operator U : Kϑ → Kϑ1

⊕Kϑ2
.

Owing to Theorem 2.18 there exists isometries ι̂ϑ,ϑ1,2
: P → Kϑ,ϑ1,2

with dense
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range such that diagram (2.3.1) holds. Therefore we have (Aϑ1
⊕ Aϑ2

)
(
(ι̂ϑ1
⊕

ι̂ϑ2)(p)
)

= (ι̂ϑ1 ⊕ ι̂ϑ2)
(
At(p)

)
and it follows that

P
ι̂ϑ //

At

��

Kϑ
U //

Aϑ

��

Kϑ1
⊕Kϑ2

Aϑ1
⊕Aϑ2

��

P
ι̂ϑ1
⊕ι̂ϑ2oo

At

��
P

ι̂ϑ

// Kϑ
U

// Kϑ1
⊕Kϑ2 P

ι̂ϑ1
⊕ι̂ϑ2

oo

By continuity we obtain (Aϑ1
⊕Aϑ2

)U = AϑU .
Now consider the case α 6= 0. By definition Kϕ|∆ = Kταϕ|∆ and similar Kϕ|∆̂1

=

Kταϕ|∆̂1
. Since M ∩ ∆̂2 = ∅ there exists a signed measure σ with compact

support that coincides with ϕ|∆̂2
on ∆̂2 and the space Kϕ|∆̂2

can be identified

with L2(σ). Clearly the space Kταϕ|∆̂2
can be identified with L2(σ̃) where

σ̃(t) = σ(t + α). The existence of a unitary mapping U between Kϕ|∆ and
Kϕ|∆̂1

⊕Kϕ|∆̂2
is obtained by the considerations above and special case α = 0.

The general case for ri > 2 follows by induction. q

3.13 Remark. Let ϕ ∈ F(R), M a finite subset of R such that ϕ ∈ F(R,M)
and ∆1, . . . ,∆n, n ∈ N, be a ϕ-M -decomposition of R. Since ϕ|∆i

∈ F(R), 1 ≤
i ≤ n, it is clarified what model we associate to this distribution. Therefore we
can define a model for ϕ-M -decompositions without the additional requirement
|M ∩∆i| ≤ 1, 1 ≤ 1 ≤ n, analogously to Definition 3.11.

3.14 Lemma. Let
(
Ki, [., .]Ki

)
, i = 1, . . . , n, be Krĕın spaces and Ai ∈ L(Ki),

i = 1, . . . , n, definitizable selfadjoint operators with respective definitizing poly-
nomials pi, i = 1, . . . , n. Denote by N(pi) the zero set of the polynomial pi,
i = 1, . . . , n, and set mi := inf N(pi), Mi := supN(pi), i = 1, . . . , n, and
M0 := −∞, mn+1 := +∞. If

(i) Mi−1 < mi, i = 1, . . . , n,

(ii) Mi−1 < minσ(Ai) ≤ maxσ(Ai) < mi+1, i = 1, . . . , n, and

(iii) sign pi|(Mi,mi+1) = sign pi+1|(Mi,mi+1), i = 1, . . . , n− 1,

then the operator
⊕n

i=1Ai ∈ L
(⊕n

i=1 Ki
)

is definitizable with definitizing poly-
nomial p := δ ·

∏n
i=1 pj, where δ := sign pn|(−∞,mn).

Proof. We prove the existence of a definitizing polynomial p for A1⊕A2. Then
we show that the operator A1 ⊕ A2 with definitizing polynomial p satisfies
the requirements (i)-(iii) of the lemma. The general statement will follow by
induction.
Let δ := sign p2|(−∞,m2), and define p := δp1 ·p2, then for x = x1 +x2 ∈ K1⊕K2

it follows that

[p(A1 ⊕A2)x, x]K1⊕K2
=
[(p(A1) 0

0 p(A2)

)(
x1

x2

)
,

(
x1

x2

)]
K1⊕K2

=

=
[
p1(A1) · δp2(A1)x1, x1

]
K1

+
[
δp1(A2) · p2(A2)x2, x2

]
K2
.
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The function z 7→ δp2(z) is positive on (−∞,m2). By (ii) we have σ(A1) < m2

and therefore there exists a open set U ⊇ σ(A1) such that f : z 7→
√
δp2(z)

is holomorphic on U . By the Riesz-Dunford functional calculus there exists a
linear operator B1 such that B2

1 = δp2(A1). Now we have[
p1(A1) · δp2(A1)x1, x1

]
K1

=
[
p1(A1)B2

1x1, x1

]
K1

=
[
p1(A1)B1x1, B1x1

]
K1
≥ 0,

since p1 is definitizing for A1. By (iii) it follows that sign p1|(M1,∞) = δ.
Therefore the function z 7→ δp1(z) is positive on (M1,∞). Again there exists
an open set U ⊇ σ(A2) such that f : z 7→

√
δp1(z) is holomorphic on U . The

Riesz-Dunford functional calculus ensures the existence of an operator B2 such
that B2

2 = δp1(A2). This yields[
δp1(A2) · p2(A2)x2, x2

]
K2

=
[
B2

2p2(A2)x2, x2

]
K2

=
[
p2(A2)B2x2, B2x2

]
K2
≥ 0,

since p2 is definitizing for A2. Now we have shown that

[p(A1 ⊕A2)x, x]K1⊕K2
≥ 0, x ∈ K1 ⊕ K2.

Therefore A1 ⊕ A2 is definitizable with definitizing polynomial p = δp1 · p2.
Clearly minN(p) = m1, maxN(p) = M2 and σ(A1) ≤ σ(A1 ⊕ A2) ≤ σ(A2).
Since δp1 is positive on (M1,∞) by (iii) it follows that

sign p|(M2,m3) = sign δp1p2|(M2,m3) = sign p2|(M2,m3) = sign p3|(M2,m3).

We have shown that the operator A1⊕A2 with definitizing polynomial p satisfies
the requirements (i)-(iii). q

3.15 Lemma. Let (K1, [., .]K1
), (K2, [., .]K2

) be Krĕın spaces and Ai ∈ B(Ki),
i = 1, 2, be definitizable selfadjoint operators with only real spectrum such that
the operator A := A1 ⊕ A2 ∈ B(K1 ⊕ K2) is definitizing with real definitizing
polynomial p. Further assume that there exists a closed interval ∆ ∈ Ωp such

that σ(A1) ⊆ ∆ and σ(A2) ⊆ R \ ∆̊ and E(∂∆) = 0, where E denotes the
spectral function of A. If A1 and A2 are cyclic with generating elements u1 and
u2, respectively, then A is cyclic with generating element u := u1 ⊕ u2.

Proof. Clearly, A is selfadjoint in the Krĕın space K1 ⊕ K2 and has only real
spectrum. Therefore there exists a spectral function E, see Theorem 2.39. Let
L := cls{Anu : n ∈ N0}. Since A is a bounded operator it holds that

L = cls{(A− z)−1u : z ∈ ρ(A)},

Further E(∆) is the strong limit of a contour integral over the resolvent and
therefore it holds E(∆)L ⊆ L. By the same reasoning we have that E(R\∆̊)L ⊆
L. Since E(∂∆) = 0 it follows that

L = E(∆)L[+̇]K1⊕K2

(
I − E(∆)

)
L.

Then we have

E(∆)L = E(∆) cls{Anu : n ∈ N0} = cls{E(∆)Anu : n ∈ N0} =

= cls{An1u1 : n ∈ N0} = K1.

Analogously it follows that
(
I −E(∆)

)
L = K2. This implies that L = K1 ⊕ K2,

i.e. A is cyclic with generating element u. q
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3.16 Remark. If X is a Banach space and T1, T2 ∈ B(X) are cyclic operators
with generating element u1 and u2, respectively, such that their spectra can
be separated, i.e. there exists closed disjoint subsets ∆1,∆2 of C such that
σ(Ti) ⊆ ∆i, i = 1, 2, then T1 ⊕ T2 is cyclic with generating element u1 ⊕ u2.
The proof works in the same way, just the spectral function E is replaced by
the Riesz Idempotent, see [C1, p. 210].

3.17 Proposition. Let ϕ ∈ F(R) and Kϕ the corresponding model space with
model operator Aϕ. Then Aϕ is bounded selfadjoint and definitizing in Kϕ.
Further Aϕ is cyclic with generating element ιϕ(1).

Proof. Let M be a finite subset of R such that ϕ ∈ F(R,M) and ∆1, · · · ,∆n,
n ∈ N, be a ϕ-M -decomposition of R. By definition we have Aϕ =

⊕n
i=1Aϕ|∆i .

As an orthogonal sum of bounded selfadjoint operators Aϕ is bounded and self-
adjoint in Kϕ. In order to prove that Aϕ is definitizable we have to show that
the operators Aϕ|∆i , i = 1, . . . , n, satisfy the requirements of Lemma 3.14. Ow-
ing to Proposition 2.37 it follows that σ(Aϕ|∆i ) ⊆ ∆i for i = 1, . . . , n.
For i ∈ {1, . . . , n} denote by σi the measure with supp(σi) ⊆ ∆i correspond-
ing to the distribution ϕ|∆i . If ∆i ∩M = α, α ∈ R, then by definition Aϕ∆i

=

Aταϕ|∆i +αI. Therefore by Theorem 2.18 the polynomial p(z) = ε(z−α)2N+2+ν ,

with ε = sign(σi|(α,∞)), ν = 1
2 | sign(σi|(α,∞))− sign(σi|(−∞,α))| and N ∈ N0, is

definitizing for Aϕi .
In the case ∆i∩M = ∅ either p(z) = 1 or p(z) = −1 is a definitizing polynomial
for Aϕ|∆i .
It remains to show that Aϕ is cyclic. Let A := Aϕ1

⊕Aϕ2
, then clearly A is self-

adjoint and has real spectrum. By Lemma 3.14 A is definitizing and since Aϕ1

and Aϕ2 have real definitizing polynomials there exists a real definitizing poly-
nomial p for A. By Lemma 3.3 and the choice of the ϕ-M -decomposition of R
there exists a closed interval ∆ ∈ Ωp such that σ(Aϕ1

) ⊆ ∆ and σ(Aϕ2
) ⊆ R\∆̊.

For example ∆ := ∆ϕ1
is a possible choice. Denote by E the spectral function

of A, then E(∂∆) = 0, since the measure corresponding to the distribution ϕ
has no mass at ∂∆. By Corollary 2.21 ιϕi(1) is a generating element for Aϕi ,
i = 1, 2. Now Lemma 3.15 implies that A is cyclic with generating element
ιϕ1

(1)⊕ ιϕ2
(1) = ιϕ1⊕ιϕ2

(1). Repeating this argument with A and Aϕ3
etc., it

follows that that Aϕ is cyclic with generating element ιϕ(1). q

3.5 Model for distributions of class F
Now we are able to define the model space and model operator for a distribution
φ ∈ F .

3.18 Definition. Let φ ∈ F with φ = (ϕ,ψ) where ϕ ∈ F(R) and ψ ∈ F(C\R).
Denote by (Kϕ, Aϕ, ιϕ) and (Kψ, Aψ, ιψ) the model space, model operator and
embedding corresponding to the distribution ϕ and ψ respectively. Then we
define

Kφ := Kϕ ⊕Kψ, Aφ := Aϕ ⊕Aψ, ιφ := ιϕ ⊕ ιψ.

3.19 Theorem. Let φ ∈ F then Kφ is a Krĕın space and Aφ is a bounded,
selfadjoint and definitizable operator on Kφ. Further Aφ is cyclic with generating
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element ιφ(1) and the following diagram commutes

Kφ
Aφ // Kφ

P

ιφ

OO

At

// P.

ιφ

OO

Proof. We can write the distribution φ as (ϕ,ψ) where ϕ ∈ F(R) and ψ ∈ F(C\
R). Denote by Kϕ, Aϕ, ιϕ and Kψ, Aψ, ιψ the Krĕın space, model operator and
model embedding corresponding to ϕ and ψ respectively according to definition
3.11 and 3.9. The space Kφ is the orthogonal sum of Krĕın spaces and therefore
a Krĕın space. By Proposition 3.17 and 3.10 the operators Aϕ and Aψ are
bounded, selfadjoint and definitizable. Clearly the operator Aφ = Aϕ ⊕ Aψ is
bounded and selfadjoint in Kϕ ⊕Kψ.
To show that Aφ is definitizable let p1 be a definitizable polynomial for Aϕ. Since
Kψ is finite dimensional there exists a polynomial p2 such that p2(Aψ) = 0 and
clearly p2 is definitizing for Aψ. Then for x ∈ Kφ with x = x1 ⊕ x2 ∈ Kϕ ⊕Kψ
it follows that[

(p1p2p2)(Aφ)x, x
]
Kφ

=
[
(p1p2p2)(Aϕ)x1, x1]Kϕ +

[
(p1p2p2)(Aψ)x2, x2]Kψ =

=
[
p1(Aϕ)p2(Aϕ)x1, p2(Aϕ)x1

]
Kϕ︸ ︷︷ ︸

≥0

+
[
p1(Aψ)p2(Aψ)x2, p2(Aψ)x2

]
Kψ︸ ︷︷ ︸

=0

≥ 0,

since p1 is definitizing for Aϕ. Therefore p(z) := p1(z)p2(z)p2(z) is a definitizing
polynomial for Aφ.
Since the real and non-real spectrum of a selfadjoint operator in a Krĕın space
can be separated, it follows from Remark 3.16 that Aφ is cyclic with generating
element ιφ(1). q

3.20 Corollary. Let φ ∈ F , then the model embedding ιφ has dense range in
the model space Kφ.

Proof. By Theorem 3.19 it follows that Aφ is cyclic with generating element
ιφ(1) and that

ιφ(t 7→ tn) = Anφιφ(1), n ∈ N0.

This implies that ιφ(P) = span{Anφιφ(1) : n ∈ N0} and since Aφ is cyclic it

follows that ιφ(P) is dense in Kφ. q



Chapter 4

Cyclic definitizable
selfadjoint operators in
Krĕın spaces

In order to prove the main assertions of this chapter, some basic definitions of
spectral theory are needed. Let X be a Banach space and T∈B(X). For a closed
and relatively open subset ∆ of σ(A) denote by ER(∆) the Riesz Idempotent,
i.e.

ER(∆) = ER(∆;A) =
1

2πi

∫
Γ

(z −A)−1dz,

where Γ is a positively oriented Jordan system1 such that ∆ is in the inside2 of
Γ and σ(A) \∆ is in the outside3 of Γ (see [C1, p. 210]). For λ ∈ C the number

ν(λ) := inf{n ∈ N0 : (T − λ)nER({λ}) = 0} ∈ N0 ∪ {+∞}

is called the Riesz index corresponding to λ with respect to T . A point with
finite positive Riesz index is necessarily an eigenvalue, but it could have infinite
multiplicity.

The Riesz Idempotent is a useful tool to separate the real and non-real
spectrum of a definitizable selfadjoint operator in a Krĕın space. The non-real
part of the spectrum of an operator A is denoted by σ0(A). A proof of the
following proposition (even in the unbounded case) can be found in [J, Lemma
1, p. 122]:

4.1 Proposition. Let A be a bounded definitizable selfadjoint operator in a
Krĕın space (K, [., .]K). Then for a non-real number z0 we have z0 ∈ σ(A) if and
only if z0 is a zero of each real definitizing polynomial of A.
In particular, σ0(A) consists of no more than a finite number of points, sym-
metric with respect to the real axis.

1If Γ = {γ1, . . . , γm} is a collection of closed rectifiable curves, then Γ is positive oriented
if (a) {γi} ∩ {γj} = ∅, i 6= j; (b) for a ∈ C \

⋃m
j=1{γj}, n(Γ; a) :=

∑m
j=1 n(γj ; a) is either 0 or

1, where n(γ; a) denotes the winding number of a closed rectifiable curve γ in C; (c) each γj
is a simple curve.

2The inside of Γ, ins Γ, is defined by ins Γ := {a : n(Γ; a) = 1}.
3The outside of Γ, out Γ, is defined by out Γ := {a : n(Γ; a) = 0}.

67
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Moreover, every real definitizing polynomial p of A has a real definitizing divisor
p0 such that the set of non-real zeros of p0 coincides with σ0(A) and the orders
of the non-real zeros of p0 coincide with their Riesz indices with respect to A,
respectively.

4.2 Remark. Let A be a bounded definitizable selfadjoint operator in a Krĕın
space (K, [., .]K) and denote by ER the Riesz Idempotent, i.e. the mapping
defined for a closed and relatively open subset ∆ of σ(A) by According to
Proposition 4.1 the decomposition

K =
(
I − ER(σ0(A))

)
[+̇]KER

(
σ0(A)

)
K

reduces the operator A. The operator A|ER(σ0(A))K is bounded and its spectrum
consists of a finite number of eigenvalues with finite Riesz index. The operator
A|I−ER(σ0(A))K is bounded selfadjoint with only real spectrum and there exists
a real definitizing polynomial for A|I−ER(σ0(A))K with only real zeros.

4.3 Proposition. Let A be a bounded definitizable selfadjoint operator in a
Krĕın space (K, [., .]K). Then the linear functional

ζu :

{
P → C
p 7→ [p(A)u, u]K

, u ∈ K, (4.0.1)

induces a unique element φu := (ζR,u, ζC\R,u) ∈ F , such that

ζu(p) = ζR,u(p) + ζC\R,u(p), p ∈ P.

In particular ζR,u ∈ F(R, c(A)) and ζC\R,u ∈ F(C \R, σ0(A)), and the sets c(A)
and σ0(A) are minimal (see Definition 1.6).
Denote by E the spectral function for A|ER(σ(A)∩R)K and by µZ the Borel mea-
sure on a component Z of R \ c(A) corresponding to ζR,u (see Proposition 1.7).
Then µZ(∆) = [E(∆)u, u]K =: Eu,u(∆) for ∆ ∈ B(R), ∆ ⊆ Z. Therefore we
have

ζR,u(f) =

∫
Z

fdEu,u, f ∈ D(R) with supp f ⊆ Z. (4.0.2)

Proof. According to Remark 4.2 for p ∈ P it holds

[p(A)u, u]K = [p(A)ER(σ(A) ∩ R)u, u]K + [p(A)ER(σ0(A))u, u]K.

The latter inner product can be written as

[p(A)ER(σ0(A))u, u]K =
∑

β∈σ(A)∩C+

(
[p(A)ER({β})u, u]K + [p(A)ER({β})u, u]K

)
.

Recall that the non-real spectrum of A consists only of eigenvalues with finite
Riesz index, hence for every β ∈ σ(A) \ R there exists kβ ∈ N0 such that
(A − βI)kβER({β}) = 0. Note that kβ = kβ . Every polynomial p ∈ P can be
written as

p(x) =

deg p∑
j=0

p(j)(β)

j!
(x− β)j ,
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which implies that

[p(A)ER({β})u, u]K =

kβ−1∑
j=0

p(j)(β)

j!
[(A− βI)jER({β})u, u]K, p ∈ P.

Since for β ∈ σ0(A) it holds ER({β})A = AER({β}), ER({β})∗ = ER({β}) and
A is selfadjoint it follows that

[(A− βI)jER({β})u, u]K = [(A− βI)jER({β})u, u]K.

This gives

[p(A)ER(σ0(A))u, u]K =
∑

β∈σ(A)∩C+

kβ−1∑
j=0

(p(j)(β)

j!
[(A− βI)jER({β})u, u]K+

+
p(j)(β)

j!
[(A− βI)jER({β})u, u]K

)
.

Since the non-real spectrum of A is a finite set this equation implies that the
functional

p 7→ [p(A)ER(σ0(A))u, u]K, p ∈ P, (4.0.3)

is of the form (1.3.1). Since every element of F(C \ R) is uniquely determined
by its restriction to P it follows that this functional induces a unique element
ζC\R,u ∈ F(C \ R, σ0(A)) such that

ζC\R,u(p) = [p(A)ER(σ0(A))u, u]K, p ∈ P.

Clearly there is no proper subset N of σ0(A) such that ζC\R,u ∈ F(C \ R, N).
It remains to show that the functional

p 7→ [p(A)ER(σ(A) ∩ R)u, u]K, p ∈ P, (4.0.4)

belongs to F(R, c(A)). Define A0 := A|ER(σ(A)∩R)K, then A0 is a bounded
definitizing selfadjoint operator in ER(σ(A) ∩ R)K. Set u0 := ER(σ(A) ∩ R)u,
then it is sufficient to show that the functional

ζ̃u0
:

{
P → C
p 7→ [p(A0)u0, u0]K

,

induces a unique element ζ̃R,u0 ∈ F(R, c(A)), such that ζ̃R,u0(p) = ζ̃u0(p) for
p ∈ P. Denote by p0 a real definitizing polynomial for A0 with only real zeros
α1, . . . , αn of orders µ1, . . . , µn. By uniqueness of the partial fraction expansion
of 1

p0(t) there exists unique real constants cij such that

1

p0(t)
=

n∑
i=1

µi∑
j=1

cij
(t− αi)j

, t ∈ R \ {α, . . . , αn}.

For arbitrary p ∈ P we define the polynomials

g(t; p) := p0(t)

n∑
i=1

µi∑
j=1

cij(t− αi)−j
(
p(αi) + · · ·+ p(j−1)(αi)

(j − 1)!
(t− αi)j−1

)
,

h(t; p) :=

n∑
i=1

µi∑
j=1

cij(t− αi)−jp{αi,j}(t).
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Therefore we have

p(t)− p0(t)h(t; p) = p(t)− p0(t)

n∑
i=1

µi∑
j=1

cij(t− αi)−j ·

·

(
p(t)−

j−1∑
k=0

p(k)(αi)

k!
(t− αi)k

)
= g(t; p),

and hence any p ∈ P can be written as

p(t) = g(t; p) + p0(t)h(t; p).

Choose a bounded open interval ∆ such that σ(A0) ⊆ ∆ and define the set S
by

S :=
{
p ∈ P : sup

t∈∆
0≤k≤µ

∣∣p(k)(t)
∣∣ ≤ 1

}
,

where µ := max{µ1, . . . , µn}. The polynomial g(.; p) depends on p only through
the numbers p(j)(αi), i = 1, . . . , n, j = 0, . . . , µi − 1, therefore ‖g(A0; p)‖ <∞
for p ∈ S which implies that

sup{|[g(A0; p)u0, u0]K| : p ∈ S} <∞.

To estimate the remaining terms |[p0(A0)h(A0; p)u0, u0]| we introduce on K the
inner product {., .} := [p0(A0)., .]K. This inner product is nonnegative, since p0

is a definitizing polynomial for A0 and further A0 is symmetric with respect to
{., .}. Therefore H := (K/K0, {., .}) is a Hilbert space and A0 induces a bounded
selfadjoint operator Ã0 in H. Since for λ ∈ ρ(A0) the operator Rλ(A0) :=
(A0 − λI)−1 is bounded on K it can be extended to an operator R̃λ(A0) on H.
Further it holds

R̃λ(A0)(Ã0 − λI) = (Ã0 − λI)R̃λ(A0) = I

on a dense subset of H and it follows λ ∈ ρ(Ã0), hence ρ(A0) ⊆ ρ(Ã0). Moreover
σ(Ã0) is contained in ∆. By the spectral theorem there exists a measure ν
supported on ∆, such that for q ∈ P it holds

{q(A0)u0, u0} = [p0(A0)q(A0)u0, u0]K =

∫
∆

q(t)dν(t).

Using Taylor’s formula we obtain for any p ∈ P

p{αi,j}(t) = p(t)−
j−1∑
k=0

(t− αi)k

k!
p(k)(αi) =

=

µi−1∑
k=j

(t− αi)k

k!
p(k)(αi) +

(t− αi)µi
µi!

p(µi)(ξi),

for a proper intermediate value ξi. This yields

|h(t; p)| =
∣∣∣ n∑
i=1

µi∑
j=1

cij(t− αi)−jp{αi,j}(t)
∣∣∣ ≤

≤
∣∣∣ n∑
i=1

µi∑
j=1

cij

µi−1∑
k=j

(t− αi)k−j

k!
p(k)(αi)

∣∣∣+
∣∣∣ n∑
i=1

µi∑
j=1

cij
(t− αi)µi−j

µi!
p(µi)(ξi)

∣∣∣,
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therefore the polynomials h(.; p), p ∈ S, are uniformly bounded on ∆ and hence

sup{|[p0(A0)h(A0; p)u0, u0]| : p ∈ S} <∞.

It follows that
sup{ζ̃u0

(p) : p ∈ S} <∞.
Because S is a neighborhood of 0 in the subspace topology of C∞(R) on P,
the functional ζ̃u0 is continuous. By Lemma 1.25 the polynomials are dense
in C∞(R), hence ζ̃u0 has a unique continuous extension to a linear functional
on C∞(R) which induces a distribution with compact support ζ̃R,u0

. We will

denote the extension to C∞(R) also with ζ̃R,u0
.

Clearly ζ̃R,u0 is real. Let M = {α1, . . . , αn} ⊆ R, the zeros of the definitizable
polynomial for A0, and f ∈ C∞ with supp f ⊆ [a, b] ⊆ R \ M . According
to Lemma 1.25 there exists a sequence of polynomials (pn)n∈N such that pn
converges to f in

(
C∞(R), τ∞

)
. Now we have

ζ̃R,u0
(f) = lim

n→∞
ζ̃R,u0

(pn) = lim
n→∞

[pn(A0)u0, u0]K = lim
n→∞

[∫
pndEu0, u0

]
K

=

=
[∫

fdEu0, u0

]
K

=

∫
[a,b]

fdEu0,u0
.

Since Eu0,u0
is a positive or negative measure it follows that ζ̃R,u0

∈ F(R,M).
Clearly c(A) ⊆ M , hence if there is an index i0 with 1 ≤ i0 ≤ n such that
αi0 6∈ c(A), then there exists a real definitizing polynomial pi0 with pi0(αi0) 6= 0.
Using the same construction as for the definitizing polynomial p0 and the argu-
mentation above shows that ζ̃R,u0

∈ F(R,M \ {αi0}). Repeating this process

yields ζ̃R,u0
∈ F(R, c(A)). The characterization of a critical point (see [L, Propo-

sition 4.2, p.35]) states that for any real interval ∆ containing a critical point of
A the scalar product [., .]K is indefinite on E(∆)K, where E denotes the spectral
function of A0. This shows that there exists no proper subset M̃ of c(A) such
that ζ̃R,u0

∈ F(R, M̃). q

Let (K1, [., .]K1) and (K2, [., .]K2) be Krĕın spaces and Ai ∈ B(Ki), i = 1, 2. We
say that A1 is weakly unitarily equivalent to A2 if there exists a linear isometry
U : D ⊆ K1 → K2 with dense domain and dense range such that A1(D) ⊆ D
and UA1 = A2U on D.

4.4 Theorem. Let A be a cyclic bounded definitizable selfadjoint operator in a
Krĕın space (K, [., .]K) with generating element u ∈ K. Denote by φu the unique
element of F induced by the functional ζu as in (4.0.1), Proposition 4.3. Then
A is weakly unitarily equivalent to the operator Aφu in Kφu . A weak unitary
equivalence is given by the mapping

U :

{(
ιφu(P), [., .]Kφu

)
→
(
K, [., .]K

)
ιφu(p) 7→ p(A)u

. (4.0.5)

Proof. Write φu as (ϕu, ψu) ∈ F , then by Theorem 3.19 and Proposition 4.3 for
p, q ∈ P it holds

[ιφu(p), ιφu(q)]Kφu = [p, q]φu = ϕu(pq) + ψu(pq) =

= [pq(A)u, u]K = [p(A)u, q(A)u]K. (4.0.6)
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If q ∈ P such that ιφu(q) = 0, then the last equation implies that

[p(A)u, q(A)u]K = 0, p ∈ P.

Since u is a generating element, it follows that {p(A)u : p ∈ P} is dense in K.
Further for every y ∈ K each of the functionals [., y]K is continuous and therefore
it holds [x, q(A)u]K = 0, x ∈ K. This shows that q(A)u is isotropic and because
as a Krĕın space K is non-degenerated we have q(A)u = 0. On the other hand if
q ∈ P such that q(A)u = 0, similar argumentation, using the fact that ran ιφu is
dense in Kφu (see Theorem 3.19), yields ιφu(q) = 0. Thus we have shown that
for q ∈ P it holds ιφu(q) = 0 if and only if q(A)u = 0.
Therefore the mapping

U :

{(
ιφu(P), [., .]Kφu

)
→
(
K, [., .]K

)
ιφu(p) 7→ p(A)u

is well-defined. Clearly U is linear and equation (4.0.6) shows that U is isometric.
Further the domain of U is dense in Kφu and the range of U is dense in K.
By Theorem 3.19 we have Aφu ◦ ιφu(P) = ιφu ◦ At(P) and therefore we have
Aφu

(
ιφu(P)

)
⊆ ιφu(P). Further for p ∈ P it holds

UAφu
(
ιφu(p)

)
= UιφuAt(p) = Ap(A)u = AU

(
ιφu(p)

)
.

This shows that A is weakly unitarily equivalent to Aφu . q

This theorem raises the question under what conditions the weak unitary
equivalence can be be extended to the whole space, i.e. whether the isometry U
constructed in proof is continuous and its continuation is surjective or not. We
give sufficient conditions depending on the type of critical points.

4.5 Remark. It is sufficient to consider bounded definitizable selfadjoint oper-
ators in a Krĕın space with only real spectrum and only critical point 0. To
see this, let A be a bounded definitizing selfadjoint operator in the Krĕın space
(K, [., .]) and denote by E the spectral function of A. According to Remark
4.2 we can assume that A has only real spectrum. Let α ∈ c(A) and choose
an open interval ∆ containing α but no other critical point of A. Then the
decomposition

K = E(∆)K[+̇](I − E(∆))K

reduces A, and for the restriction A∆ := A|E(∆)K we have c(A∆) = {α}. Re-
placing A by A− α we can assume α = 0.
Due to [J, Lemma 3, p. 128] there exists a real definitizing polynomial p0 of A∆

whose zeros are real such that

c(A∆) = N(p0) ∩ σ(A∆),

where N(p0) denotes the zeros of p0. If ∆ is a sufficiently small interval con-
taining α but no other zeros of p0 we can assume that the polynomial p0 is of
the form p0(z) = ±zq, q ∈ N0. Therefore we can restrict ourselves to a bounded
definitizable selfadjoint operator A in a Krĕın space with only real spectrum
such that c(A) = {0} and p0(z) = ±zq, q ∈ N0 is a definitizing polynomial or
c(A) = ∅.
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The next proposition ensures the existence of a unitary equivalence under
sufficient conditions on the spectrum of the operator.

4.6 Proposition. Let A be a cyclic bounded definitizable selfadjoint operator
in a Krĕın space (K, [., .]K) with generating element u ∈ K. Denote by φu the
unique element of F induced by the functional ζu as in (4.0.1), Proposition 4.3.
If cs(A) = csf (A) then A is unitarily equivalent to the operator Aφu in Kφu .

Proof. According to Remark 4.2 we can divide the proof into the cases that A
has only complex and only real spectrum. By Remark 4.5 the latter case can be
reduced to the case that c(A) = {0} with definitizing polynomial p0(z) = ±zq,
q ∈ N0, and the case c(A) = ∅. The case that A has a critical point at zero will
be distinguished further into the case that 0 is a singular critical point of finite
index, case 2a, and the case that 0 is a regular critical point, case 2b. Write φu
as (ϕu, ψu) ∈ F and note that in these cases it is sufficient to consider Kψu and
Kϕu respectively. Denote by U the weak unitary mapping which establishes the
weak unitarily equivalence as in (4.0.5).

Case 1, (σ(A) = σ0(A)): Clearly, the mapping U : ιψu(P)→ Kψu is already
unitary.

Case 2a, (c(A) = cf (A) = {0}, σ0(A) = ∅): Since 0 is the only critical
point of A and it is of finite index it follows that (K, [., .]K) is a Pontryagin
space. Further the domain and the range of U are dense, hence their closures
are non-degenerated. Following [B, Theorem 3.1, p. 188] this implies that U is
invertible and that U and U−1 are continuous. This yields the existence of a
unitary extension Û of U from Kϕu onto K such that ÛAϕu = AÛ .

Case 2b, (c(A) = cr(A) = {0}, σ0(A) = ∅): Since 0 is the only critical point
of A it follows that ϕu ∈ F(R, 0).
Equation (4.0.2) and the fact that 0 is a regular critical point implies that k = 0
in the minimal representation.
Denote by p0 a real definitizing polynomial for A and by E the spectral function
of A as in Theorem 2.39. Further let λ(p0) be the order of the zero 0 of the
definitizing polynomial p0. By Remark 4.5 we can assume that p0(z) = ±zλ(p0).
Let ϑ = (0, l, σ, c0, . . . , cl) ∈ Θϕu be a representation of ϕu such that l ≥ λ(p0).
Recall that the mapping ιϑ : P → Lϑ, see Proposition 2.15, is given by

ιϑ(p) =
(
p;
p(0)(0)

0!
, . . . ,

p(l)(0)

l!

)T
, p ∈ P.

Corollary 2.35 implies that ran ιϑ = Lϑ. The space Lϑ can be decomposed as

Lϑ = L2(σ−)[+̇]ϑCl+1[+̇]ϑL
2(σ+),

where σ± = |σ|
∣∣
R± . Similar to Theorem 4.4 define a mapping Ũ by

Ũ :

{(
ιϑ(P), [., .]Lϑ

)
→
(
K, [., .]K

)
ιϑ(p) 7→ p(A)u

.

As in the proof of Theorem 4.4, using Proposition 2.15, it follows that Ũ is
linear, isometric and has dense domain and dense range.
For n ∈ N define the intervals ∆−n := (−∞,− 1

n ], ∆n := (− 1
n ,

1
n ) and ∆+

n :=
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[ 1
n ,+∞), then they are elements of Ωp0

and their union is R, hence Theorem
2.39 (iv) yields

E
(
∆n

)
= I − E

(
∆−n
)
− E

(
∆+
n

)
.

Since A is bounded and 0 is a regular critical point of A the limits E− :=
limn→∞E

(
∆−n
)

and E+ := limn→∞E
(
∆+
n

)
exists in the strong operator topol-

ogy. Therefore E0 := limn→∞E
(
∆n

)
exists in the strong operator topol-

ogy. By Theorem 2.39 (iii) the family of bounded projections
(
E(∆n)

)
n∈N

is monotone decreasing4. Therefore for m,n ∈ N, m ≤ n, we have that
ranE(∆n) ⊆ ranE(∆m) which implies that

ranE0 ⊆
⋂
n∈N

ranE(∆n).

This shows that E0K ⊆
⋂

∆∈Ωp
0∈∆

E(∆)K =: S0.

Consider the mappings

Λ±
0

:

 ιϑ(P) → K(
p; p

(0)(0)
0! , . . . , p

(l)(0)
l!

)T
7→ p(A)E±

0
u
,

then Ũ writes as Ũ = Λ− + Λ0 + Λ+.
Denote by ‖.‖ the Hilbert space norm on K induced by some fundamental de-
composition and let n ∈ N. Then for p ∈ P it holds

‖Λ−
(
ιϑ(p)

)
‖ = ‖p(A)E−u‖ ≤
≤
∥∥p(A)

(
E− − E(∆−n )

)
u
∥∥+

∥∥p(A)E(∆−n )u
∥∥. (4.0.7)

Define on K− := E(∆−n )K an inner product by (., .)− := sign p0|R− , then
(K−, (., .)−) is a Hilbert space. Setting un := E(∆−n )u the second norm can
be computed using the spectral theorem for a bounded selfadjoint operator in
a Hilbert space by∥∥p(A)E(∆−n )u

∥∥2
= ‖p(A)un‖2 =

∫
∆−n

|p|2dEun,un , p ∈ P,

where Eg,h(∆) :=
(
E(∆)g, h

)
− for g, h ∈ K− and ∆ a Borel set of σ(A|K−).

Since Eun,un = σ− on ∆−n it follows that∥∥p(A)E(∆−n )u
∥∥ ≤ ‖p‖L2(σ−), p ∈ P.

Since n ∈ N was arbitrary and E− is the limit of E(∆−n ) in the strong operator
topology, equation (4.0.7) implies that

‖Λ−
(
ιϑ(p)

)
‖ ≤ ‖p‖L2(σ−) ≤ ‖ιϑ(p)‖ϑ, p ∈ P,

where ‖.‖ϑ denotes the norm induced by the inner product (., .)ϑ. This shows
that the mapping Λ− : ιϑ(P) → K is continuous. Similar it follows that the

4Two projections E1, E2 in a Banach space X are said to be ordered in their natural order
E1 ≤ E2 if E1E2 = E2E1 = E1, see [DS, Definition 4, p. 481]. This definition requires that
E1X ⊆ E2X and (I − E1)X ⊇ (I − E2)X.
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mapping Λ+ : ιϑ(P)→ K is continuous.
By [L, Proposition 5.1, p.37] S0 is the algebraic eigenspace of A corresponding
to the eigenvalue 0 and moreover Aλ(p0)+1S0 = {0}. Therefore there exists

u0, . . . , uλ(p0) ∈ S0 and α0, . . . , αλ(p0) ∈ C such that E0u =
∑λ(p0)
i=0 αiui. By

Taylor’s theorem any polynomial p ∈ P can be written as p(x) =
∑d
j=0

p(j)(0)
j! xj .

Hence for p ∈ P it holds

p(A)E0u =

d∑
j=0

p(j)(0)

j!
Aj

λ(p0)∑
i=0

αiui =

λ(p0)∑
j=0

p(j)(0)

j!

λ(p0)∑
i=0

αiA
jui.

Since l ≥ λ(p0) and by Hölder’s inequality the last equation yields the following
estimate for p ∈ P

‖Λ0

(
ιϑ(p)

)
‖ = ‖p(A)E0u‖ ≤

λ(p0)∑
j=0

∣∣∣∣p(j)(0)

j!

∣∣∣∣ λ(p0)∑
i=0

|αi|‖A‖j‖ui‖ ≤

≤
(
λ(p0) + 1

)(λ(p0)∑
j=0

∣∣∣∣p(j)(0)

j!

∣∣∣∣2
) 1

2 λ(p0)∑
i=0

|αi|‖A‖j‖ui‖︸ ︷︷ ︸
=:δj

≤

≤
(
λ(p0) + 1

)
max

j=0,...,λ(p0)
δj · ‖ιϑ(p)‖ϑ.

This shows that the mapping Λ0 : ιϑ(P)→ K is continuous. Now it follows that
the mapping Ũ = Λ−+Λ0 +Λ+ is continuous. Further the domain of U is dense
in the space Lϑ hence there exists a continuation by continuity Û : Lϑ → K.
Clearly Û is isometric and since (K, [., .]K) is as a Krĕın space nondegenerated

it follows that Û
(
L

[◦]ϑ
ϑ

)
= {0}. Since ran ιϑ = Lϑ, Theorem 2.18 shows that

Lϑ/L[◦]ϑ
ϑ

= Kϕu . According to Lemma 2.22 Û induces an continuous isometric

operator with dense range on the factor space, i.e. U : Kϕu → K. Following
[B, Lemma 3.9, p. 127] implies that U−1 is continuous. This yields the existence
of a unitary extension Û of U from Kϕu onto K such that ÛAϕu = AÛ .

Case 3, (σ0(A) = ∅, c(A) = ∅): In this situation we have a Hilbert or anti
Hilbert space, hence the assertion is well known. q

Recall that for φ ∈ F by Theorem 3.19 the model operator Aφ is cyclic with
generating element ιφ(1).

4.7 Corollary. Let φ ∈ F and Aφ be the model operator in the model space

Kφ. Denote by φ̃ the unique element of F induced by the functional ζ̃(p) :=
[p(Aφ)ιφ(1), ιφ(1)]Kφ , p ∈ P, i.e. the distribution corresponding to Aφ and

generating element ιφ(1) as in (4.0.1), Proposition 4.3. Then φ̃ = φ.

Proof. Write φ as (ϕ,ψ) ∈ F(R) × F(C \ R) and denote by ζ̃R and ζ̃C\R the

real and non-real part of φ̃ as in Proposition 4.3. Let B be a subset of C \ R
which is symmetric with respect to the real axis such that σ0(ψ) = B, i.e.
ψ ∈ F(C \ R, B). By Proposition 3.10 it follows that σ(Aψ) = B. Since

σ(Aψ) = σ0(Aφ) Proposition 4.3 implies that ζ̃C\R ∈ F
(
C \ R, σ(Aψ)

)
, thus

ζ̃C\R = ψ.



76 CHAPTER 4. CYCLIC DEFINITIZABLE SELFADJOINT OPERATORS

If ϕ is an element of F(R, ∅) then by Proposition 4.3 ζ̃R is a positive or negative
measure on R and equation (4.0.2) implies that ζ̃R = ϕ. Otherwise let n ∈ N
and M := {α1, . . . , αn} a n-element subset of R such that ϕ ∈ F(R,M) and
M is minimal. Using Lemma 1.13 we can write ϕ as sum of distributions
ϕαi ∈ F(R, αi), i = 1, . . . , n. Therefore and according to the construction of Aϕ
we can assume that ϕ ∈ F(R, 0) \ F(R, ∅). Let ϑ = (k, l, σ, c0, . . . , cl) ∈ Θϕ be
the minimal representation of ϕ. By Proposition 2.43 and Remark 2.44 it holds
c(Aϕ) = {0} and by Proposition 4.3 it follows that ζ̃R ∈ F(R, 0) \ F(R, ∅).
Denote by k, l, c0, . . . , cl and σ the unique data satisfying (IR-1) and (IR-2) from
the integral representation as in Proposition 1.21 of ϕ and by k̃, l̃, c̃0, . . . , c̃l̃ the

unique data of ζ̃R. Then it holds

ϕ(f) =

∫
R

f{2k}(t)

t2k
dσ(t) +

l∑
i=0

ci
i!
f (i)(0), f ∈ D(R),

and

ζ̃R(f) =

∫
R

f{2k̃}(t)

t2k̃
dσ̃(t) +

l̃∑
i=0

c̃i
i!
f (i)(0), f ∈ D(R).

Denote by E the spectral function of Aϕ and by µR± the measure corresponding
to ϕ as in Proposition 1.7. Then by Proposition 4.3 it follows that µR±(∆) =
E1,1(∆) for ∆ ∈ B(R), ∆ ⊆ R±. Therefore equation (4.0.2) yields that

ϕ(f) =

∫
R±

fdµR± =

∫
R±

fdE1,1 = ζ̃R(f), f ∈ D(R) with supp f ⊆ R±.

This shows that µR± = E1,1|R± which implies that k = k̃ and σ = σ̃. Setting

pj(t) := tj , j ∈ N0, we have since k = k̃ and σ = σ̃ that

c̃i =

{
ζ̃R(pi), i = 0, . . . , 2k − 1,

ζ̃R,1(pi)− (ti−2k, 1)σ, i = 2k, 2k + 1, . . . .

Let πϑ : Lϑ → Kϕ the canonical projection and ~x := π−1
ϑ

(
ιϕ(1)

)
. Note that

~x = (0; 1, 0, . . . , 0; 0, . . . , 0)T if k > 0 and that ~x = (1; 1, 0, . . . , 0)T if k = 0.
Since Aiϕιϕ(1) = πϑ

(
Aiϑ ~x

)
, i ∈ N0, we have

ζ̃R(pi) = [pi(Aϕ)ιϕ(1), ιϕ(1)]Kϕ = [Aiϕιϕ(1), ιϕ(1)]Kϕ =

=
[
πϑ
(
Aiϑ ~x

)
, πϑ~x

]
Kϕ

=
[
Aiϑ ~x, ~x

]
ϑ
.

Easy computation gives that

[
Aiϑ ~x, ~x

]
ϑ

=

{
ci, i = 0, . . . , 2k − 1,

ci + (ti−2k, 1)σ, i = 2k, 2k + 1, . . . ,

where ci = 0 if i > l. This shows that ci = c̃i, i = 0, . . . , l and l = l̃. Therefore
the integral representations of ϕ and ζ̃R coincide and by the uniqueness of the
data satisfying (IR-1) and (IR-2) it follows that ϕ = ζ̃R. Thus we have shown
that φ̃ = φ. q
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