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Abstract

In the last decade, logic programming experienced new impetus by the growth of Answer Set
Programming (ASP) as one of the key drivers in the academic world. However, ASP could not
attract the same interest as other declarative programming languages in practice so far. This lack
of interest in ASP may be explained by the absence of a sufficiently supported software engi-
neering methodology resulting in a difficulty of designing and developing ASP programs. No
tools supporting the development of ASP programs are available. So far, no modeling environ-
ment has been introduced in the context of software development based on the ASP paradigm,
which offers valuable abstraction and visualization support during the development process.

This thesis aims at establishing a novel method for visually designing and analyzing ASP
programs. Therefore, a graphical approach for the visualization of ASP is proposed, which is
based on concepts presented in literature for other declarative approaches. Moreover, concepts
of model engineering are combined with the field of logic programming. Following an Model-
Driven Engineering approach, an ASP-specific modeling language is established which is able
to visualize important facets of ASP. The modeling language is applied within a graphical editor
for the model creation. The resulting models are transformed to textual ASP programs by a code
generator. The model engineering approaches are used to define the metamodel, a graphical
editor, and to generate the ASP program code from models. Therefore, the link between the
formalism of ASP and the graphical representation has to be established. Due to the close con-
nection between ASP and deductive databases—databases with logical reasoning capabilities—
the widely used Entity Relationship diagram is applied as initial visualization method for ASP
programs.

This thesis is structured in iterative advancement phases. Starting with a simple visualization
of non-deductive programs, entire solution packages for deductive ASP programs are introduced.
In a final step, the technical realization is discussed and evaluated, and potential enhancements
are outlined.
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Kurzfassung

Im letzten Jahrzehnt erlebte die Logikprogrammierung durch die Verbreitung von Answer Set
Programmierung (ASP) als eine der treibende Kräfte neuen Auftrieb in der akademischen Welt.
Jedoch konnte ASP in der Praxis bislang nicht das gleiche Interesse hervorrufen wie andere
deklarative Programmiersprachen. Dieses fehlende Interesse könnte durch die Absenz geeig-
neter Methodologien des Software Engineerings erklärt werden, welche die Entwicklung von
ASP Programmen erschwert. Tools, die den Entwicklungsprozess von ASP Programmen unter-
stützen, sind nicht verfügbar. Bislang wurde keine Modellierungsumgebung für die ASP Soft-
wareentwicklung vorgestellt, die eine wertvolle Abstraktions- und Visualisierungsunterstützung
bietet.

Diese Arbeit zielt darauf ab, eine neuartige Methode für die Erstellung und Analyse von ASP
Programmen zu etablieren. Dies wird durch die Vorstellung eines graphischen Ansatzes für die
Visualisierung von ASP erreicht, welche auf Konzepten aus der Literatur für andere deklarative
Sprachen basiert. Darüber hinaus werden Konzepte des Model Engineerings mit dem Bereich
der Logikprogrammierung verknüpft. Aufbauend auf einem Model-Driven Engineering Ansatz
wird eine ASP-spezifische Modellierungssprache erstellt, welche wichtige Facetten von ASP
darstellen kann. Diese Modellierungssprache wird durch die Erstellung von Modellen mittels
eines graphischen Editors angewandt. Damit erzeugte Modelle können mit einem Code Genera-
tor zurück in ASP Programme transformiert werden. Die Model Engineering Konzepte werden
eingesetzt um ein Metamodel, einen graphischen Editor und einen Code Generator zu erstel-
len. Infolgedessen muss eine Verbindung zwischen den ASP Formalismen und der graphischen
Repräsentation definiert werden. Aufgrund der engen Verknüpfung zwischen ASP und deduk-
tiven Datenbanken—Datenbanken mit Inferenz-Fähigkeiten—wird das weit verbreitete Entity
Relationship Diagramm als initiale Visualisierungsmethode für ASP Programme eingesetzt.

Diese Arbeit verfeinert iterativ eine initiale Lösung. Beginnend bei einer einfachen Visuali-
sierung nicht-deduktiver Programme werden komplette Lösungspakete für deduktive ASP Pro-
gramme vorgestellt. In einem finalen Schritt wird die technische Realisierung behandelt und
evaluiert, und Möglichkeiten für weitere Forschungstätigkeiten in dem Bereich aufgezeigt.
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CHAPTER 1
Introduction

1.1 Motivation

Logic programming as application of mathematical logics for programming often is dated back
to the proposition of the advise taker problem in 1958 [35]. The advise taker problem is a the-
oretical computer program, which is able to infer new knowledge from a set of given premises.
However, the foundation of logic programming cannot definitely be fixed to a certain date. Sev-
eral decades of active research in this field have passed and until today a lot of facets of logic
programming could develop.

In the last decade, logic programming experienced a new impetus by the growth of answer
set programming (ASP) as key driver [41]. In particular, the success of ASP is caused by al-
lowing programmatic non-monotonic reasoning—the revision of decisions when the knowledge
level rises [2]—and a simple definition of general and normative statements [2]. Another asset
is its declarative semantics [19] and the existing powerful solvers like DLV and SMODLES (cf.
a short introduction of these systems is given in Section 2.5).

The research interest in ASP has been tremendous which is underlined by the number of
more than 11 500 publications accessible on ACM Digital Library1 which relate to ASP. The
ASP concept is trimmed towards solving “difficult, primarily NP-hard, search problems” [33].
Moreover, there exists a wide range of research and application areas2 related to ASP, e.g.,
decision support systems [3], configuration, information integration, security analysis, agent
systems, semantic web, and planning. However, ASP could not attract sufficient interest to be
widely integrated in professional application fields and could not even attract the same interest
as other logic programming languages such as Prolog3 [23]. This may be explained by the diffi-
culty of designing and developing ASP programs which is not sufficiently supported by present

1Web site: http://portal.acm.org/, last accessed: February 24, 2011
2More information about these application areas: http://www.kr.tuwien.ac.at/research/

projects/WASP/showcase.html, last accessed: March 3 2010
3Access to ISO/IEC 13211-1:1995 (Prolog): http://www.iso.org/iso/catalogue_detail.htm?

csnumber=21413, last accessed: March 3 2010

1
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tools. The aim of this thesis is to support the transition process from a scientific programming
approach—mainly used in theoretical research—to an applicable solution for multitude of dif-
ferent existing problems.

1.2 Problems

The development of ASP programs is hampered by two major issues. First, the consequence of
rules might be unclear for the user. This is caused by the multitude of possible rule applications,
and the complexity of understanding constraint rules. The non-monotonicity is a great asset, but
it aggravates the ease of understanding why a certain answers set is or is not returned. Second,
logical sentences are spread over a number of rules. This can be seen as asset for declaring
rules as it allows the developer to focus on the most recent issues and to reuse rules. How-
ever, it implies a difficulty in overlooking all possible rule matches by implicitly transferring
abstract rule definitions to operational rule executions in an ad-hoc manner. Another problem
results from the textual definition of ASP programs. The linearity of text files strongly limits the
understandability of ASP programs as they themselves represent non-linear graphs.

The stated problems aggravate the ease of designing ASP programs and, therefore, reduces
the adoption and quality levels in professional applications. These issues are related with the
code-centric approach of the ASP program design process.

1.3 Solution

The problems discussed above are tackled in this thesis by providing a meta-description of ASP
programs in such a way that it allows the identification of variable interactions, rule relationships,
and their particular application. This is tackled by proposing a graphical approach for designing
ASP programs—related to the concept of [16] which presents a formal meta-program of the
original program. It is the aim of this approach to set up a layer above classical ASP that is able
to establish a design-first paradigm in the development process by hiding code specific elements.
Therefore, a model-based design layer unifying the involved artifacts (rules, their literals, and
the application of rules) in a single diagram is provided, which allows the designing, analyzing
and improving of an ASP program at one single point of interest. This allows the concentration
on design- rather than code-specific issues and improves communicability of programs.

This model-based methodology is applied due to following reasons [27]: First, the textual
representation of ASP programs linearly and declaratively describes the dependencies of rules
and their applicability. Such a description can be compared with a set of relationships which
are linearly chained together. Furthermore, the syntax is typical highly influenced by the ca-
pabilities of the solver executing the ASP code. By the usage of visualization techniques such
linear representations can be graphically organized in a way which provides recognizable rela-
tionships identifiable at one single glance. Even the specific adoptions for used solvers can be
removed in these graphical representations. In Figure 1.1, an example highlighting the improved
understandability of relationships through visualization—a textual rule as unorganized sequen-
tial chain of literals on left side, is opposed to an organized visualization on the right side. In the
visualization of the literals, walk, swim, jump, and likes_fish may be organized around penguin
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penguin

animal live

walk

swim

jump

likes_fish

example rules model

animal ← penguin
live ← animal
walk ← penguin
swim ← penguin
jump ← penguin
likes_fish ← penguin

AND
AND
AND
AND
AND
AND

Figure 1.1: Structuring linear text in a non-linear model

which itself inherits live from animal whereas in the textual representation no similar organiza-
tion is possible.

This visualization-layer using the described methodology is established in three phases pro-
viding the following contributions: (i) A simple structural visualization for non-deductive ASP
programs is given. (ii) Starting from propositional logic programs iteratively visualization so-
lutions for deductive n-ary logic programs are constructed. (iii) Subsequently, the modeling
language and the associated code generator for the final concept is technically established.

1.4 Structure

This thesis is structured as follows. In Section 2 the fundamentals of ASP are introduced which
are complemented by an overview of state-of-the-art ASP solvers. Then related approaches are
reviewed in Section 3 and used in Section 4 to provide an initial non-deductive concept for visu-
alizing ASP programs. As major contribution a visualization for deductive programs is given in
Section 5. The transition from theoretical concepts to an applicable and executable prototypical
solution is described in Section 6 and evaluated in Section 7. From these results some enhance-
ments are proposed in Section 8. In Section 9, this thesis concludes with a summary of results
including a brief outlook on the integration of advanced language features.
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CHAPTER 2
Answer Set Programming

In this section the syntax and semantics of answer set programs based on the definitions of [14]
and [42] are introduced. Moreover, several advanced characteristics, concrete examples, and an
overview on state-of-the-art ASP solvers are given in order to introduce the concepts used within
this thesis.

2.1 Syntax

Answer set programs are constructed from symbols of their alphabet A which represent the
primary artifacts we are concerned with.

Definition 1 (Alphabet) An alphabet A for defining an answer set program is a triple of the
form A=(P, V, C) which consists of the set of predicates P, the set of variables V, and the set of
constants C with P ≠ ∅ and C ≠ ∅. The set of constants is also referred to as domain.

The following naming conventions for elements of an alphabet A=(P, V, C) are used within
this thesis: Each predicate symbol p ∈ P is represented as string which has to start with a letter.
Each variable v ∈ V starts with a capital letter, whereas each constant c ∈ C starts with a lower
case letter or a number. Anonymous variables—newly introduced variables which are not reused
in a given context—are denoted by an underscore “_”.

Some examples of predicates symbols, variables, and constants are as follows:

• Predicates: high, bigger, Car, VeryBig, old, fOoD

• Variables: X, Y, Month, Building, Year

• Constants: x, y, december, empireState, 1920

Definition 2 (Term) Let A=(P, V, C) be the alphabet of an answer set program where P is a set
of predicates, V is a set of variables and C is a set of constants, then an element t ∈ V ∪ C is
called a term. A term is called ground iff t ∈ C.

5



Definition 3 (Arity) The arity n of a predicate symbol p ∈ P—denoted by arity(p)—is defined
by the number of terms which p is attached to. For each predicate symbol p ∈ P the condition
arity(p) ≥ 0 is satisfied.

A term t being attached to a predicate symbol p is called an argument of p. A sequence of
terms t1, . . . , tn is denoted as [t1, tn].

Definition 4 (Atom) Let A be an alphabet of the form A=(P, V, C), then a predicate p(t1, . . . , tn)
with p ∈ P and arity(p)=n is called atom over the alphabet A, iff all ti ∈ V ∪ C (also referred
to as atom over p). The atom p(t1, . . . , tn) is ground, iff all terms [t1, tn] are ground. Note that
ground atoms may be considered as predicates with arity 0.

Some examples of predicates with varying arity from zero to k are as follows. For predicates
with arity of zero the brackets may be omitted.

• Arity 0: car() or car, healthy() or healthy

• Arity 1: car(t), healthy(t)

• Arity k: airport(t1, . . . , tk)

Definition 5 (Literal) An atom or a negated atom over the alphabet A is called literal over
A. A negated atom is a symbol of the form ¬p (logic negation), where p is an atom. A literal
represented by a negated atom is called negated literal. Otherwise it is called positive literal.

According the language features provided by programs, a type differentiation in classic,
normal, and extended logic programs is used by [4]. Classic logic programs do not support any
negations, whereas normal logic programs extend classic logic programs with default-negations
(cf. Definition 13). Only extended logic programs (an extension of normal logic programs)
support the default-negation (not) as well as the strong negation (¬). Extended logic programs
are considered in this thesis. However, default-negations represent monadic connectives [4] and
are, therefore, not contained in literal definitions.

Answer set programs consist of rules which hold a set of literals. According the uses head
literals a differentiation in disjunctive and non-disjunctive rules is made (cf. Definition 6). More-
over, rules can represent facts or constraints, or can be positive, false, or ground.

Definition 6 (Rule) A rule r over the alphabet A is a tuple ⟨H,B⟩ where H is a set of atoms and
B is a set of literals over A. The rule r is disjunctive iff ∣H ∣ > 1. Iff ∣H ∣ = 1, the rule is called
non-disjunctive. The disjucntive rule r with head {h1, . . .hk} and body {b1, . . . , bn, not bn+1,
. . . , not bm} is denoted by

h1 ∨ . . . ∨ hk ← b1, . . . , bn,not bn+1, . . . ,not bm.

One exemplary disjunctive and one non-disjunctive rule is given in the following:

• Disjunctive: warm ∨ hot← summer, sun.

6



• Non-disjunctive: warm← summer, sun.

Definition 7 (Rule types) A rule r over the alphabet A is

• a fact, iff body(r) = ∅ where body(r) are the all body literals of r;

• an (integrity) constraint (here named constraint rule), iff head(r) = ∅ where head(r) are
all head literals of r;

• positive, iff body−(r) = ∅ where body−(r) represents all negated literals of the body
(body literals);

• ground, iff every atom of head(r) and body(r) is ground;

• false, iff body(r) = ∅ and head(r)=∅ ;

If r is neither a constraint nor a fact rule, it is named standard rule.

Definition 8 (Program) An answer set program Π is a set of rules according to Definition 7.

The Herbrand Base (HB) for the answer set program Π is implicitly defined by the alphabet
A of Π. The Herbrand Universe—HU(Π) for the answer set program Π—is the set of ground
terms formable with the alphabet A of Π [2]. The Herbrand Base—HB(Π)—is the set of ground
atoms formable with the predicates P of A of a program Π [2] and the arguments of HU(Π).

Π2.1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r1 ∶ parent(terach, isaac) ← .

r2 ∶ parent(isaac, abraham) ← .

r3 ∶ ancestor(X,Y ) ← parent(X,Y ).
r4 ∶ ancestor(X,Z) ← parent(X,Y ), ancestor(Y,Z).

(2.1)

The program Π2.1 based on [47] describes the ancestors of people from known parent-child
relationships (parent). From the definition of Π2.1, its Herbrand Universe HU(Π2.1) = {ter-
ach, isaac, abraham} and the predicates P2.1={parent/2, ancestor/2}—where parent/2 and an-
cestor/2 represent predicates with the arity two—can be identified. With the use of P2.1 and
HU(Π2.1) the Herbrand Base HB is given by{

parent(terach, terach), parent(terach, isaac), parent(terach,
abraham), parent(isaac, isaac), parent(isaac, terach),parent(isaac,
abraham), parent(abraham, abraham), parent(abraham,terach),
parent(abraham, isaac),

ancestor(terach, terach), ancestor(terach, isaac), ancestor(terach,
abraham), ancestor(isaac, isaac), ancestor(isaac, terach),
ancestor(isaac, abraham), ancestor(abraham, abraham),
ancestor(abraham, terach), ancestor(abraham, isaac)

} is constructed.

7



2.2 Semantics

The answer set semantics as extension of the stable model semantics [18] of normal logic pro-
grams defines the semantics for answer set programs.

Definition 9 (Interpretation) A set of positive and strong negated literals is an interpretation
X, iff X does not contain any complementary literal pairs. X satisfies a literal Li (denoted
by X ⊧ Li), if Li ∈ X and ¬Li ∉ X . A rule r is applicable under X, iff body+(r) ⊆ X and
body−(r) ∩X = ∅—otherwise it is blocked under X. The rule r is satisfied by X (X ⊧ r), iff
Li ∈ head(r) and Li ∈ X or r is blocked under X. X satisfies a program Π over A(I ⊧ Π), iff X
satisfies r for every rule r ∈ Π.

Definition 10 (Model) The interpretation X is a model of Π, iff X ⊧ r for each rule r ∈ Π. The
model X of Π is minimal for Π, iff there does not exist any model X’ of Π with I ′ ⊂ I .

Π2.2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r1 ∶ car ← .

r2 ∶ red ← car.
r3 ∶ traffic ← car.

(2.2)

M2.3 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m0 ∶ {car, red}
m1 ∶ {car, red, red, traffic}
m2 ∶ {car, red, traffic}

(2.3)

In Equation 2.3 three interpretations are given for Π2.2. The interpretations m1 and m2 are
models of Π2.2 as they satisfy each rule r ∈ Π2.2—whereas m0 is not a model of Π2.2. As
m2 ⊆ m1 holds, m1 cannot be a minimal model. m2 is a minimal model of Π2.2, because no
model X for Π2.2 exists for which X ⊆m2 and X =m2 holds.

Definition 11 (Answer set) Each minimal model X of Π is an answer set of Π denoted by
AS(Π). Iff AS(Π) = ∅ (∣AS(Π)∣ = 0), then Π is called inconsistent. Each A ∈ AS(Π) is a subset
of the Herbrand Base of Π.

The answer sets of an ASP program Π are identified by computing the reduct ΠS of the
ground instantiated program Π for the state S (S is an interpretation consisting of a set of literals
L ∈ Π). This computation is based on the Gelfond-Lifschitz-Reduction [18] as described in
Definition 12 [4]. In particular, each model X is an answer set of Π, iff X is a minimal model of
the reduct ΠX of Π with ΠX = { head(r)← body+(r) ∣ r ∈ Π, body−(r) ∩X = ∅ }.

Definition 12 (Reduct) A reduct ΠS for the state S of the program Π is of the form: ΠS ∶=
{H ← A1, . . . ,An. ∣ H ← A1, . . . ,An,notB1, . . . ,notBm. ∈ Π,{B1, . . . ,Bm} ∩ S = ∅}. ΠS

is computed for Π by eliminating all rules, which contain a default-negated body literal not B
where B ∈ S, and by eliminating all negated body literals from all other rules.
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The default and logical-negation allow the differentiation between queries failing as a con-
sequence of undemonstrability (not)—the satisfaction of the query is unprovable—and queries
failing by proving the negation of the query [4].

Definition 13 (Negation) If for a model X of Π and the literal L the conditions X ⊭ L and
X ⊭ ¬L hold, then undefined(L) for X and X ⊧ not L hold (default-negation of L). If for a
model X of Π the condition X ⊧ ¬Q holds (strong negation of Q), then X ⊭ Q and X ⊧ not Q
hold as well.

Constraint rules eliminate integrity breaking models from the set of answer sets AS(Π) for
an answer set program Π. Consequently, no answer set X ∈ AS(Π) can violate any constraint
rule r of the form body(r)={b1, . . . , bk} and head(r)=∅. Fact rules add tuples which hold for
all answer sets of AS(Π). Therefore, each answer set X of the program Π has to satisfy X ∩
head(r) ≠ ∅ for every fact rule r ∈ Π of the form head(r) = {h1, . . . , hk} and body(r)= ∅.

The answer set program Π2.4 provides two answer sets: {tree, big} ⊧ Π2.4 and {bush, ¬ big}
⊧ Π2.4. Rule r1 is a fact which determines that one of disjunctively connected literals is part of
each answer set—tree ∨ bush. The rule r3 uses the default-negated body literal not big which
is satisfied whenever an answer set does not contain big. As a consequence, whenever a answer
set contains bush instead of tree as consequence of applying rule r1, rule r2 cannot be applied
and big does not hold. Therefore, the body literals of rule r3 can be satisfied by this answer set,
which leads to the satisfaction of ¬big—the bush is, therefore, definitely not big. For trees it is
obviously the opposite situation.

Π2.4 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r1 ∶ tree ∨ bush ← .

r2 ∶ big ← tree.

r3 ∶ ¬big ← not big.

(2.4)

2.3 Characteristics

The following properties for answer set programs are discussed in this section: First, charac-
teristics of executing ASP programs are reviewed. Second, two language characteristics are
inspected—the non-monotonicity and the declarativity of ASP.

Execution of Answer Set Programs

According to [2] there exist several characteristics concerning the execution of ASP programs,
which are listed in the following:

• In answer set programs the ordering of literals within the head or the body of a rule is not
important for the outcome. This stands in high contrast to other logic programs where a
certain literal application order is defined which influences the computed results.
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• The same applies for the ordering of rules. In answer set programs, no ordering of rules
is defined. An ordering of the rule application r1, . . . , ri, . . . , rj , . . . , rn, therefore is not
guaranteed. If both rules ri and rj are eligible to be applied, there is no guarantee that
ri is applied before rj or vice versa. However, practically the answer set solvers have to
apply one rule after each other.

• The default-negation allows a consistent regulation of loops and recursions.

Non-Monotonicity

An essential property of answer set programming is its non-monotonic nature. This means that
decisions are revised in ASP programs Π when the knowledge is isolated. For example, the
knowledge of A can be used to infer B. However, if we do not only know A, but C as well, it
could eliminate or modify the previously computed result.

Definition 14 (Non-monotonocity) A program Π is monotonic, iff for every Xi for which Π ⊧
Xi holds, Π ∪ r ⊧ Xi holds as well for any arbitrary rule r—otherwise Π is non-monotonic.
A language is non-monotonic, iff it allows the definition of any non-monotonic program Π—
otherwise the language is monotonic.

Π2.5 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 ∶ summer ∨winter ← .

r2 ∶ warm ← oven_on.
r3 ∶ warm ← summer.

r4 ∶ ¬icy ← warm.

r5 ∶ ← ¬icy,winter, oven_on.
(r6 ∶ oven_on ← .)

(2.5)

For example in Equation 2.5 rule r1 is a fact of the form summer ∨ winter. In this example
it is warm in summer or when the oven is on (rule r2 and r3). Whenever it is warm it cannot be
icy (rule r4). Rule r5 asserts that it is not possible to believe that ¬icy has to hold when warm
is inferred of consequence of oven_on. This represents a revision of previous decisions. If the
oven is turned on, e.g., by uncommenting rule r6, this revision is necessary to avoid inconsistent
states, e.g., a system of a car believes it cannot be icy, although it is icy. The most common way
of receiving inconsistent states is the massive usage of default-negations and disjunctions.

Declarativity

Answer set programming is a fully declarative logic programming language [2]. Declarative
languages provide declarations built of symbols that implicitly define a certain associated op-
erational behaviour that is applied by underlying runtime solver. Declarative programs are,
therefore, a set of declarations Di representing the behaviour of Π and the associated objects

to be reasoned about—Π =
n

⋃
i=0

Di for the program Π. Each declaration Di requires a runtime
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interpretation which dynamically associates imperative commands in the form Ci → Ci+1 →
. . .→ CL → . . .→ Cn with Di. These commands can be different for each solver S interpreting
Di. For this purpose, Di needs not express the operational commands associated with Π and,
therefore, allows an easier specification of Π. However, the impedance mismatch of designtime
and runtime have to be independently faced for each used tuple ⟨Π, S⟩ (where S is an arbitrary
solver), as every S can use different algorithms interpreting the declarations of Π.

Definition 15 (Declarative behaviour) B is the behaviour associated with Π which results
from BΠ = BD + BS where BD is the behaviour specified by the declarations D ∈ Π and
BS is the behaviour resulting from the program interpretation of a solver S.

An expected behaviour B and a set of objects O have to be formulated in declarative state-
ments to allow reasoning. These declarations, furthermore, remove the necessity of specifying
all details of B. For example the literal buy(x,y) with arity two could mean that x buys product
y. It cannot specify the details of involved actions (commands), e.g., x goes to shop s by using
bus b, looks for product type p in row r, finds it in cell c, and buys it with his credit card u. In
lieu of an expression providing the operational semantics, only declarations are placed hiding
the real application behaviour. This allows the focussing on the design of the rules rather than
on the application of the rules and the implied actions.

Another characteristic is the differentiation of hard failing (negation) and failing caused by
missing evidence (result is unknown). This behaviour has already been described in previous
sections.

2.4 Program Examples

In this section some examples of answer set programs are presented to put the previously given
definitions into practice. Beginning with a simple program, incrementally further ASP features
are reviewed. In particular, the negations, the splitting in cases, the revision of decisions, and
the usage of functions are discussed.

Negations

The program Π2.6—adopted from [4]—uses positive and negative literals. The constant polly
refers to a bird whereas tweety refers to a penguin—as we know penguins are birds that cannot
fly. The program Π2.6 describes this problem as follows. Rule r1 asserts that each penguin
is a bird. Rule r2 defines that every bird can fly, if not defined differently. Without rule r3
tweety could fly as well, although he is defined as penguin by penguin(tweety). Rule r3 fixes this
problem by specifying that penguins cannot fly. Rule r2 and r3 may look contradictory at the first
glance, but this combination of rules specifies that flying penguins cannot be contained in a stable
answer set fulfilling all rules. The only resulting answer set, therefore, is {penguin(tweety),
bird(polly), bird(tweety), ¬ fly(tweety), fly(polly)}.
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Π2.6 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 ∶ bird(X) ← penguin(x).
r2 ∶ fly(X) ← bird(x), not ¬fly(x).
r3 ∶ ¬fly(x) ← penguin(x).
r4 ∶ penguin(tweety) ← .

r5 ∶ bird(polly) ← .

(2.6)

Cases & Revisions

For many ASP programs several different answer sets exist—these answer sets represent differ-
ent valid solutions for applying the rule set of a program. Program Π2.7 based on the idea of [4]
highlights that the default-negation is a key driver for increasing the number of such cases—the
number of returned answer sets.

Π2.7 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r1 ∶ ¬R(x) ← P (x), not R(x).
r2 ∶ P (X) ← not Q(X).
r3 ∶ Q(X) ← not P (X).

(2.7)

In particular, the rules r2 and r3 are complementary as the one is applied only, if the result
of the other rule has no evidence. Both P(X) and Q(X) cannot be part of the same answer set.
Applying rule r2 before r3 returns P(X), as there is no evidence of Q(X). As a consequence the
body of r3 is not fulfillable any more. The opposite occurs, if the rule r3 is applied before. As the
order of execution is not defined in the answer set semantics, both answer sets are returned—one
holds P(X) and one Q(X) with all consequences resulting from the eligibility of applying other
rules.

Another important aspect is the revision of decisions for which constraint rules are key
drivers. The usage of such rules can be seen in Equation 2.5. The primary difference to standard
rules is the semantics of constraint rules. Constraint rules (cf. rule r5 in Equation 2.5) are used
to eliminate impossible predicate combinations in answer sets, but not to infer new knowledge.
Sometimes classical rules can have a similar functionality—e.g., the usage of contradictory rules
r3 and r4 in Equation 2.7 disallows that both predicates are used in the same answer sets.

Contradictions

Programs can be constructed, which make us of contradictory rules (complementary rules) lead-
ing to no stable answer set. In the program Π2.8 [17] the rule r1 adds ¬p(X) to each answer
set, which does not contain p(X). The rule r2, however, adds p(X) to the answer set, whenever
¬p(X) is contained. This represents a contradiction, as the literal p(X) and its negation are
contained in the same candidate answer set. Consequently, no valid stable answer set can result
from Π2.8.
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Π2.8 =
⎧⎪⎪⎨⎪⎪⎩

r1 ∶ ¬p(X) ← notp(X)
r2 ∶ p(X) ← ¬p(X).

(2.8)

Functions

Not only static values are applicable as literal arguments, but also functions and functional op-
erators can be added in certain implementations. The program Π2.9 [17] for example shows the
possibility of functional extensions in ASP.

Π2.9 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r1 ∶ e(0).
r2 ∶ e(X + 2) ← not e(X).
r3 ∶ p(X + 1) ← e(X), not p(X).
r4 ∶ p(X) ← e(X), not p(X + 1).

(2.9)

If no maximum number is set in the solver, an infinite number of answer sets containing
an infinite number of literals will result from Π2.9, e.g., {e(0), e(3), e(4), e(7), e(8), . . .} [17].
Concrete implementations of solvers are reviewed in the following section.

2.5 Implementations

To be able to compute the answer sets from a program Π so called solvers (solver systems) are
used. Solvers are implementations for answer set programs following the answer set semantics
presented above. In this section, state-of-the-art ASP solvers are introduced and compared.
According to [4] all introduced systems act by searching all possible states. As this proceeding
involves a high effort, efficient algorithms are necessary which optimize the following tasks [4]:
(i) the actual searching algorithm, (ii) the reduction of the search space, and (iii) the algorithm
for grounding.

Non-Disjunctive Solvers

There exists a huge set of answer set solvers that do not support disjunctions. In the following
only two very popular and wide-spread solvers are introduced which are useable by the front-end
Lparse1—namely SMODELS and ASSAT(X). Such front-ends are necessary to allow the devel-
oper to access the functionality provided by a solver library through a graphical user interface
or command-line utility.

1SMODELS & Lparse information and download: http://www.tcs.hut.fi/Software/smodels/,
last accessed: February 24, 2011
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SMODELS

SMODELS1 is the most popular system for answer set programs [31]. It is a non-disjunctive
solver following the answer set semantics extended with several additional features like func-
tions, cardinalities, and weights [31].

An example of cardinalities provided by [31] is as follows:

1{a, b, not c}2.

These cardinalities can be seen as boundaries for literals—i.e., a minimum and maximum
number of body literals is given, which have to be contained in a candidate answer set in order
to apply a rule. In the example, one is the lower and two is the upper boundary. This indicates
a minimum of one and a maximum of two literals, which are allowed to be satisfied. If in the
example above a and b are satisfied, c may be satisfied despite the default-negation as well (in
the knowledge of Π) in order to be able to apply this rule. If c is not known to be satisfied, not c
is fulfilled. This would exceed the upper boundary.

Cardinalities implicitly give each addressed literal the same weight—only the number of
literals contained in the answer set is relevant. In contrast the concept of weights extends car-
dinalities by explicitly assigning weights to each literal. A weight is some numerical value,
typically a decimal number in the interval [0,1]. The lower and upper bound are expressed by
decimal numbers as well which state which sum of literal weights at least and at most has to be
satisfied.

An example of weights is provided by [31]:

1.02 ≤ {a = 1.0, b = 0.02, not c = 0.04} ≤ 1.03.

ASSAT(X)

In this section the Answer Set by SAT2 (ASSAT(X)) solver is introduced (cf. [31,34]). It is based
on the use of satisfiability (SAT) solvers. SAT solvers are widely adopted and highly optimized
systems. ASSAT(X) can be used with different SAT solvers. The overall process involves the
transformation of a program Π to a set of clauses which is then computed by the SAT solvers
to produce a single output model M . If the solver is able to verify that M is an answer set, this
is the result. If it is no answer set, the set of clauses is extended [31]. As it only searches for a
single output model, it can only compute one answer set at once. For computing other sets, rules
have to be added that can exclude already retrieved answer sets [34]. This, obviously, restricts
the ease of use.

Disjunctive Solvers

There exists a set of solvers that is able to handle disjunctions in answer set programs. Two
of these solvers are introduced in this section—namely DLV and CMODELS. Disjunctions are
valuable in ASP as they allow the specification of more general rules that allow the consideration
of different cases (answer sets) within a single rule.

2ASSAT(X) download and information: http://assat.cs.ust.hk/, last accessed: February 24, 2011
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DLV

The DLV project3 realizes a Disjunctive Datalog System [31]. DLV is an extension of the
Datalog language to allow the usage for answer set programming—it integrates the epistemic or
connective. DLV is free for academic and non-commercial use. It is a generic system consisting
of a kernel on which several front-ends are built on. The built-in front-ends provide special
functionalities for inheritance, diagnosis, planning, database querying, and meta-interpretation
[31]. A set of external front-ends is available as well.

DLV allows the usage of disjunctions [32]. DLV furthermore allows the usage of queries
and is intended to be used for the Guess/Check/Optimize (GCO) paradigm [31]—the GCO holds
rules for guessing an output, constraints for checking integrity of solutions, and an optimization
part using “weak rules” [31].

The DLV kernel uses as three-layered architecture to compute results. The main steps of
the computation involve the usage of “heuristics with extensive lookahead” [31] to compute
models. These models are then verified by model-checkers to show, if they are answer sets of
this program or not. Found answer sets are then returned.

ΠDLV =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r1 ∶ −ok ∶ −not − hazard.

r2 ∶male(X) ∨ female(X) ∶ −person(X).
r3 ∶ fruit(P ) ∨ vegetable(P ) ∶ −plant_food(P).
r4 ∶ true ∨ false ∶ −.

(2.10)

An exemplary program provided by [5] using the DLV notation is shown in Equation 2.10. It
demonstrates the abilities in specifying disjunctive connectives. For example fact rule r4 infers
either true or false. As no other rules are used that could avoid this result, at least two answer
sets have to be returned just from the specification of this program. Other disjunctions are placed
in r2 and r3. The separation of head and body (←) is shown as ∶ − which can be easier typed.
The logical-negation ¬ is denoted by a hyphen prior to a literal, e.g. –hazard.

CMODELS

Similar to ASSAT, the CMODELS4 solver makes use of SAT solvers as well. However, with
the support of the solver zChaff5—which is a SAT solver as well—it can proof the “minimality
of found models”4. The SAT solvers are used for searching models M that are answer sets.
CMODELS makes use of the Lparse front-end as well. It is intended to be used for the compu-
tation of answer sets for programs “that are tight or can be transformed into tight programs, and
does not suffer from these limitations” [32]. Tight programs do not hold any loop formulas [32]

3DLV download and information: http://www.dbai.tuwien.ac.at/proj/dlv/, last accessed:
February 24, 2011

4CMODELS download and information: http://www.cs.utexas.edu/~tag/cmodels/, last ac-
cessed: February 24, 2011

5zChaff information: http://www.princeton.edu/~chaff/zchaff.html, last accessed: February
24, 2011
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which could avoid termination [34]. In the second release of CMODELS called CMODELS-2,
the computation of non-tight programs works similar to ASSAT [32]. It, therefore, “is capable
of handling arbitrary nondisjunctive programs, by implementing the same techniques as AS-
SAT” [31].

Summary of Comparison

There exists a set of ASP solvers which support different language constructs like disjunctions,
and computation approaches, but are similar in syntax. Often different solvers can be integrated
in a front-end, e.g., Lparse, and even the base solvers can often be extended. There are even
solvers that can only compute one single answer set for Π—e.g., ASSAT(X). Not all solvers
are able to handle disjunctions (epistemic or). Many examples in previous sections have used
disjunctions and, therefore, it is for the context of this thesis highly desirable to use systems
with such a functionality. Interesting extensions are available in the SMODELS solvers, e.g.,
cardinalities.

2.6 Summary

Answer set programs are constructed by an implicitly defined alphabet A = (P,V,C) where P
is a set of predicates, V a set of variables, and C a set of constants. From A a set of rules are
constructed which are can be disjunctive or non-disjunctive. Each answer set program Π follows
the answer set semantics which is an extension of the stable model semantics. The reduct ΠX

of Π, the Gelfond-Lifschitz-Reduction [18], of every minimal X is an answer set of Π denoted
by X ⊆ AS(Π). Answer set programs as extended logic programs support the default-negation
not, failing for undemonstrability, and the logical-negation ¬. Moreover, answer set programs
Π are of declarative nature, i.e., they hide the operational application of Π, and non-monotonic
nature, i.e., they increase the knowledge state can revise decisions. The operational application
of Π is achieved by using answer set programming implementations which are called solvers,
e.g., DLV (disjunctive) or SMODELS (non-disjunctive).

2.7 Challenges

In this section, some challenges are discussed, which have to be solved for making ASP attrac-
tive in practical application. The first challenge is illustrated in Equation 2.11—addressing the
3-Coloring-Problem. In particular, the program Π2.11 colors each vertex (vtx) in red, green, or
blue. Vertexes connected by an edge should not have the same colour which is avoided by the
specification of constraint rule r6. However, the result might not meet the expectations of most
developers as one error exists. In rule r3 the variable U is unbound—unbound means that a
variable is used once in a single context. This is an error which has to be corrected by replac-
ing it with V. This example is given to highlight the great effect a simple statement or hardly
recognizable typing mistake can have for the behavior of Π.
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Π2.11 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1a ∶ edge(b, a) ← .

r1b ∶ edge(c, a) ← .

r2a ∶ vtx(a) ← .

r2b ∶ vtx(b) ← .

r2c ∶ vtx(c) ← .

r3 ∶ chlrd(V, red) ∨ chlrd(V, green) ∨
∨chlrd(V, blue) ← vtx(U).
r6 ∶ ← edge(V, U), chlrd(V, C),

chlrd(U, C).

(2.11)

This appetizer is considered to provide the first challenge to be solved by this thesis, i.e., the
easier identification of erroneous code. The second challenge is the difficulty of understanding
dependencies resulting from deductions in ASP programs. This challenge is also based on pro-
gram Π2.11 of Equation 2.11 in which the recognition of relationships resulting from deductions
or structural conditions such as from vtx and edge to chlrd are important for the overall program
behavior. These relationships also include type and cardinality constraints which are textually
only implicitly introduced and are, therefore, difficult to be handled.
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CHAPTER 3
Related Work

To overcome the already discussed problems of answer set program development (cf. Section
1), a development support methodology is necessary. The development process is divided into
three major tasks (extended ideas from [49]): (i) The initial development of a solution for a
given problem and the iterative improvement of the program quality and functionality, (ii) the
debugging process (finding the reasons for errors and removing them), and (iii) a verification
of the formulated solution against its specification. The focus of these three tasks within this
thesis is mainly set on (i), as the finding of errors or even the verification of solutions has to take
place after formulating an initial solution for a problem. Optimally, a single approach is capable
of supporting all three tasks, but not a single integrated solution for ASP was available at the
moment of writing this thesis. For this reason, this section aims at identifying concepts with the
closest available relationship to ASP supporting at least one of the three tasks.

3.1 Selection Policy

The focus of the chosen approaches is set on visualization techniques, in order to profit from the
capability of visualizations to meaningfully structure solution dependencies in a parallel manner.
Such a structuring reduces the effort in recognizing the underlying program behavior and, there-
fore, supports the developer in the software development process. Although many visualization
approaches exist, most of them are not relevant for ASP. Additionally, the related work focus has
to be generalized and extended to all languages of declarative nature, as approaches for assisting
the ASP development are very rare.

As a consequence, mainly visualizations assisting the software development of declarative
languages are introduced which are supplemented by a few relevant visualization techniques for
imperative languages. However, most imperative visualization concepts are not transferrable to
the field of declarative programming and are, therefore, not relevant. In particular, the Unified
Modeling Language (UML) is fully trimmed to the object-oriented paradigm which is not related
to ASP. Though, a solution is presented in this section referring to concepts of MOF and UML,
respectively.
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3.2 Program Conception

One aspect for supporting the software development is the assistance in the design and concep-
tion process of programs. The program conception refers to the process of identifying solution
paths for a given problem and for finding concepts for meaningfully structuring and modular-
izing these programs. In particular, two main categories of such solution are of interest. First,
concepts from the data and knowledge engineering field, e.g., database modeling techniques, are
given to inspect classical solutions which have already been established or have the potential to
be established as standard for the program conception process. Thereafter, this section continues
with a set of logic-oriented approaches being closer related to ASP.

Data & Knowledge Engineering

In the field of data and knowledge engineering well known and established concepts exist for vi-
sually supporting the conception of programs and databases. Especially, the Entity Relationship
(ER) [10] diagram dominates the definition of data structures today which is highly interesting
as ASP predicates can be compared to data structures as well. Furthermore, the visualization
of program elements such as rules has a high importance in understanding and designing an
ASP program. Consequently, a solution for modeling ontologies is given which is capable of
visualizing rules—these rules are similar to ASP rules.

Entity Relationship Diagram

Answer set programs have a close relationship to deductive databases [15]—databases with
logical reasoning capabilities. The design process of databases mainly focuses on defining the
database schemas. These schemas are mostly modeled by using ER-diagrams which allow a
clear definition of existing structures and dependencies. For example in Figure 3.1 the two
tables Person and Address are designed with their attributes as columns, e.g., svnr or ID, and
their associated data types, e.g., String, by the means of a standard ER-diagram. Each table in
the ER-diagram may be created by SQL statements. These statements are used for physically
establishing or describing the database structures.

There even exist relevant extensions to ER-diagrams such as ERL [22] or the approach pre-
sented in [21] which add deduction functionalities to ER-diagrams: ERL is a query language
allowing the formulation of clauses in predicate logic visualized as ER-diagrams [13]. From
these clauses—i.e., assertions—an ERL-graph can be constructed which visually represents the
deductions expressed by these clauses.

The Figure 3.2 provided by [22] demonstrates the capability of ER-diagrams to model struc-
tural relationships between entities, e.g, the binary relationship between Science Fac Student
and Science Faculty Enrollment. However, inferences and constraints—such as ensuring that
Suspended Student and Science Fac Student are disjoint—cannot be modeled in classical ER-
diagrams and, therefore require assistance by ERL and the ERL-graph respectively. In Figure
3.3 this example is transferred to an ERL graph where a set of clauses for an ER-diagram—
representing a faculty organization—are visualized. The ERL graph complements the function-
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Figure 3.1: Data structures relating to database structures shown in an ER-diagram

Figure 3.2: A sketched ER-diagram being used as basis for an ERL graph
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ality provided by ER-diagrams by providing inference capabilities through the visualization of
clauses.

Figure 3.3: Transforming ERL clauses for an ER-diagram to an ERL-graph

Another approach is given by [21] proposing an extension for ER-diagrams allowing the
formulation of constraints within the diagram to avoid inconsistent states (these constraints are
comparable to ASP constraints).

The above given ER-diagrams highlight the good capabilities of ER-diagrams for graphi-
cally organizing relationships. For this reason, ER-diagrams established themselves as fitting
technique for the initial conception and iterative enhancement of databases. However, it has not
proved suitable for visualizing entire logic programs yet as only query language and constraint
extensions already exist. Nevertheless, an advancement of ER-diagrams to model ASP programs
according the close relationship to logic programming languages is a promising starting point.

Ontology Modeling Language

The Web Ontology Language (OWL)—standardized by the World Wide Web Consortium (W3C)1

—is a Description Logic-based (DL) ontology language [7]. Ontologies are used for describ-
ing terms and their relationships. In OWL this is done by using a textual language based on
the Resource Description Framework (RDF), which requires from users to recognize and re-
member a multitude of relationships provided in a sequential order. Brockmans et. al [8] have
introduced the Ontology Definition Metamodel (ODM) being used as modeling language for
defining ontologies—the visual modeling capabilities are introduced by defining a UML pro-
file [40] for ODM. Even OWL rules have been integrated in an advanced ODM version [7]—the

1OWL information: http://www.w3.org/2004/OWL/, last accessed: February 24, 2011
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visual representation of such rules is an important aspect for deducting solution ideas for ASP
rule visualizations as well.

Figure 3.4: Visualization of a OWL description logic example using rules

In the example shown in Figure 3.4 of [7] the DL rule

badV intager(x)← ownsWinery(x, y) ∧ dislikesWine(x, z) ∧ hasMaker(z, y)

is visualized with the ODM UML Profile. The visualization is built around the three used vari-
ables x, y, and z which are placed in boxes representing the rule head or the rule body respec-
tively. Each literal is represented as directed edge between two variables or as attribute of a
variable for unary literals. This is a simple mechanism for visualizing the most important ele-
ments involved in the rule. However, this approach is limited to a maximum literal arity of two,
although DL can support any arity. Literals with higher arity could be supported by introducing
more-way edges—the sequence of variables in more-way edges needs an additional specifica-
tion in the diagram. Another drawback is the weak binding between variables in the rule head
and the rule body which is only textually listed. The rule body is connected by a directed dashed
edge with the rule head.

Logic-Based Languages

For efficiently supporting the program conception process of logic-based languages, a simplifi-
cation of inference relationships is necessary. This is achieved by the Diagrammatic Predicate
Logic (DPL) which tries to model predicate logic formulas in a UML style. Solutions for pred-
icate logic highly interrelate with ASP which is itself based on predicate logic. Another inter-
esting approach is given which focusses on visualizing ASP programs as services rather than
as code elements. As such a focussing on the program behavior can reduce the visualization
complexity, this approach is chosen for a deeper inspection.

Diagrammatic Predicate Logic

The modeling of first order predicate logic (PL1) is illustrated with the assistance of the approach
by Lamo [30]. In this paper, a modeling language named DPL is proposed that allows the
modeling of PL1 expressions on meta and instance level. PL1 allows the definition of formulas
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based on a given set of constants, function symbols, predicates, and variables—as introduced
for ASP. Generally, it has to be noted that the language of ASP is a subset of PL (except default-
negations) and, therefore, PL approaches of any order strongly relate to ASP.

DPL allows the definition and usage of binary relationships between predicates, e.g., in-
equality relationships triggered by unique key attribute differentiations among predicates. Gen-
eral relationship aspects are modeled in a schema, which is named the “specification”–––an
example is given in Figure 3.5). Relationships between particular instances of a given predicate
are modeled in another diagram type, which is named “Instances of Diagrammatic Specifica-
tion”, e.g., Package:p1 holding the classes Class:c1 and Class:c2 in the example of Figure 3.6.

Figure 3.5: A specification diagram of PL1 [30]

In the example of Figure 3.5, a formula with the predicates Person and Company is mod-
eled. The used arrows represent relationships. For example, the arrow from Company to Person
represents a relationship for hiring employees. These arrows are labeled and are, furthermore,
enhanced by defined constraints—e.g., the invariant [Inv].

In Figure 3.6, the same constellation is shown on instance level. These instances are mod-
eled in the same notation as the specification. However, no constraints are necessary to be
visualized on this level. For example the Company hires the Person p2. This relationship is,
furthermore, expressed by the Employment predicate.

Conceptually DPL is based on “Generalized Sketches” which represents “a graphical repre-
sentation of category theory” [30]. DPL attempts to transfer this approach to the Model Driven
Engineering field. Therefore, it tries to formulate the transferring from PL1 to models by defin-
ing the possible signature as “underlying graph” [30].

Disadvantages of DPL can be seen in (i) the low level of abstraction and (ii) the inability
for expressing all types and variants of PL1 formulas. (i) is expressed by the focus on instance
modeling rather than schema modeling. High levels of abstraction are valuable in the modeling
context as it allows to describe complex systems. (ii) is related to the fact that only some very
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Figure 3.6: An instance specification diagram of PL1 [30]

specific scenarios—e.g., key based equality—are presented with DPL, but the building of full
formulas including connectives (and, or, xor, implications), braces as mechanism for nesting
terms and rich sets of used variables and parameters are left unaddressed by this approach.
Furthermore, the notation does not highlight possible ways of solving, modifying, optimizing,
or reducing formulas in any way. It is unclear, if this diagram can be reconverted to PL1 formulas
or if PL1 formulas could be automatically visualized in this manner.

Service-Oriented Modeling with Answer Set Programming

The specification of services with preferences as models (based on a metamodel) is proposed
by Confalonieri et. al [11]. From such models model transformations transfer the stored con-
tent to models conforming to the metamodel of answer set programs “with possibilistic ordered
disjunctions” [11]. The stated services are accumulations of preferences referring to a cer-
tain functional—holding inputs with preconditions and outputs with postconditions—and non-
functional properties. These preferences are associated with a certain goal specified by the user.
All functional properties are defined to be related to services. These services are set in the
environment of the service oriented architecture (SOA) [46].

This approach allows the definition of specific answer set programs by creating services
within models. It is, therefore, directly related to a specific usage scenario. Additionally, [11]
represents the first discussed approach intensively broaching the overcoming of the code-centric
program development by proposing a service-centric alternative focus. Technically, these mod-
els are realized by introducing a metamodel as modeling language allowing the specification of
model instances describing particular services.

However, the approach is context-dependent (dependent on SOA) as it is not trimmed to sup-
port a general design-centric development and analysis of program results. For such a design-
centricity the models—conforming to the proposed metamodels—have to focus on the graphical
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development proceeding in lieu of the data encapsulation (data-centricity) as it is done in [11].
Moreover, a drawback is the used specific language variant which disallows user defined lan-
guage or language element variations according to technological boundaries, e.g. used solvers.

3.3 Debugging

Another relevant perspective is the usage of textual language visualizations for debugging pur-
poses. Debugging focuses on identifying the error origins which provides an essential assistance
why a certain erroneous behavior has been returned. The success of visual debugging mecha-
nisms deeply relates to their problem-specific adaption. The more the program semantics is
related to the visualization methodology, the better key elements can be highlighted. Another
important aspect is the stepwise visualization of the operational semantics.

Educational Debugging

Neumerkel et. al [36] highlights the applicability of visualizations for logic programs for ed-
ucational purposes. They considers visualizations as “powerful aid for learning a program-
ming language” [36] which can be applied for logic programming as well. The approach of
Neumerkel et al. enhances the GUPU (Gesprächsunterstützende Programmierübungsumgebung)
programming environment—with the purpose to support students in designing and debugging
Prolog [23] programs—with visualization capabilities. GUPU allows the compiling and execu-
tion of Prolog programs and assists them during the developing process. If a compilation fails,
error messages are added to the program code as comment. GUPU even provides assertions
like the identification of duplicate code. In addition, customized assertions can be added or
even be complemented by using assertion queries. This non-graphical development assistance
was enriched by viewers which concentrate on the elementary visualization of answer substitu-
tions. Other aspects than answer substitutions are out of the focus of this visualization approach.
Furthermore, there exist predefined “problem specific viewers” [36] which visualize answer
substitutions according their context-specific semantics. For example a provided viewer [36]
visualizes answer substitutions of railway networks. This “problem specific viewer” [36] visu-
alizes all applicable cities on a map. Cities are connected by a line, whenever there exists a
direct train connection. This visualization mechanism is very simple and allows the recognition
of possible railway routes.

Although this pluggable context-specific visualization approach is able to provide stunning
visualization results for logic programs, three drawbacks have to be considered. First, it rep-
resents a static visualization solution which does not allow any interactions except code mod-
ifications. Second, problems for which no “problem specific viewer” [36] exists, have to be
visualized in an elementary viewer. Third, the operational semantics and program structures
which are responsible for producing the output (e.g., rules, predicates, and variables) are not
involved in the visualization—thus, no additional assistance is provided.
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Model Transformation Debugging

Model transformations are typically very complex and for this purpose declarative model trans-
formation languages are advancing. For such languages, however, other debugging mechanisms
are necessary. Therefore, two alternative solutions for the debugging of the declarative modeling
transformation language QVT-Relations (QVT-R) are briefly inspected: (i) de Lara et al. [12]
and (ii) TROPIC [43]. Both approaches address the problem of debugging needs by applying the
straightforward Petri net visualization. However, (ii) aims at visualizing the hidden operational
semantics of declarative statements by building a flow of atomic transformations from one item
to another. Therefore, it does not only visualize QVT-R, but it also offers good analysis op-
portunities as typical mistakes can be realized by wrong arrow linkings, missing arrows, wrong
instances or similar errors [29]. In contrast (i) concentrates on visualizing abstract relationships
extended by a textual notation. This visualization does not allow a stepwise inspection of the hid-
den operational semantics, but a much more compact way of visualizing existing relationships
between elements of models.

As all declarative languages hide the operational semantics, which aggravates the ease of
debugging, the approach (ii) can be transferred to other declarative languages, e.g., ASP, as
well. This can be beneficial as this approach provides clear visual sequences of actions and
allow the stepwise debugging of programs. However, it has to be stated that the visualization
technique of (ii) tends to grow disproportionately to the involved program statements which is a
drawback for more complex problems. Additionally, (i) does not support the stepwise inspection
of the operational behavior of a model transformation execution.

Translational Debugging

There exist many functional programming languages like Haskell2 or TOY [1] which have a
huge community behind them. In lieu of states, variable assignments, and defined commands as
known from imperative programming languages, functional languages only make use of (math-
ematical) functions.

Figure 3.7: Transformation of a TOY code file to a Prolog representation [9]

2Haskell information and download: http://haskell.org/, last accessed: February 24, 2011
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A translational approach for debugging of such languages is the “graphical declarative de-
bugger of incorrect answers for the constraint lazy functional-logic programming language
TOY” [9]. The debugging in a step-by-step manner introduced and used for many imperative
languages is often “not suitable for debugging declarative programming languages” [9]. How-
ever, this debugger is concentrates on the identification of errors comprised in programs written
in functional languages like TOY. As visualized in Figure 3.7 the debugging process starts with
the raw TOY code file as input. This file is syntactically and semantically analyzed and trans-
formed to an intermediary code file. The resulting code is again checked by a type checker and
afterwards Prolog code is generated. The last step is undertaken because this debugger is written
in Prolog. This debugger then obtains a formal computation tree that is the entry point for debug-
ging. From this point on the developer can freely inspect the results of the computation tree or
call provided strategies “or finding out a buggy node and hence an incorrect program rule” [9].
Furthermore, it obviously holds that TOY can be used for debugging Prolog code as well. The
computation from TOY to Prolog is a translational strategy that tries to bring the language on a
better analyzable platform.

Translational approaches provide the possibility of profiting from other languages, plat-
forms, or representations. However, the identification reasons for problems requires two trans-
formation steps. First, an initial forward transformation—allowing the debugging—and second
the backward transformation of the identified error causes to its original representation is nec-
essary. This reduces the debugging dynamics and increases the risk of transformation errors.
However, such solutions are appropriate, if native solutions are too effortful or cannot be estab-
lished.

3.4 Analysis & Verification

Besides the approaches applicable for initial program designs and concepts usable for iden-
tifying particular error causes, techniques are necessary which allow proofing, verifying, and
inspecting of existing programs. To verify or analyze the appropriateness of a solution, it is
essential to (a) make the effects of code element dependencies, e.g., rules, and (b) the program
structures explicit. Aspect (a) is taken on by using dependency graphs highlighting applicable
sequences of predicate usages. Aspect (b) can be interpreted in two ways as in ASP programs
rules and variables have a strong effect on the overall program behavior. Variable dependencies,
equalities and inequalities are tackled by String Diagrams, whereas rule distances—giving an
idea of applicable sequences of rule applications—are visualized by Colored Graphs. If none
of these two perspectives provide appropriate development support, they may be assisted by
an approach based on the Human Usable Textual Notation (HUTN)—originally intended for
visualizing models—which allows the semantic organization of code blocks.

Dependency Graph

Sureshkumar et al. [48] states that effective tool support provided by IDEs is crucial for the
success of ASP. This statement results from a survey among ASP developers that should identify
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the most essential IDE features for developing ASPs. It is concluded that a dependency graph
has “demonstrated strong support” [48] and was, therefore, implemented.

Π3.1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 ∶ { martian(P), venetian(P) } 1 ← person(P).
r2 ∶ {female(P), male(P) } 1 ← person(P).
r3 ∶ lies(P) ← person(P), martian(P), female(P).
r4 ∶ lies(P) ← person(P), venetian(P), male(P).
r5 ∶ truthful(P) ← person(P), martian(P), male(P).
r6 ∶ truthful(P) ← person(P), venetian(P), female(P).
r7 ∶ ← person(P), lies(P), truthful(P).

(3.1)

The dependency graph shown in Figure 3.8 visualizes the dependencies of predicates used in
an example program Π3.1. The presented approach does not make use of any form of negation,
epistemic or, or any instance information such as Π. It is, however, a very useful and simple
demonstration of how the literals stated in Π3.1 interrelate. As it does not focus on facts and
other language elements it cannot be used for explaining a particular result.

Figure 3.8: A dependency graph of a simple answer set program [48]

The graph of Figure 3.8 makes only use of a single variable X. The predicates, therefore,
are in the form of person(X) or female(X). The stated approach does not discuss how different
variables or constants could be integrated in the dependency graph. It is, however, very likely
that several graphs could result from a single program in more sophisticated cases. Dependency
graphs, therefore, represent a good visualization basement which, however, has to be extended
to support a set relevant missing program elements, e.g., rule dependencies, higher arities, or
facts.
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String Diagram

A diagrammatic approach for assisting the PL1 verification is provided by [6]. It aims to transfer
each PL1 theory to Pierce systems (monoidal 2-category of relations) for which Pierce himself
provides a “graphical system for handling first-order calculus of relations”. This is modernized
in [6] by transferring it to categorical and geometrical logics. The geometrical visualization is
realized by using so called String Diagrams [6] which are enhanced for this application.

This approach allows a good recognition of equalities and inequalities of used variables.
The full visualization focuses on the description of variables, their interrelations, and possible
equalities with other variables. Such diagrams can be rewritten to step-by-step transform a
formula in equivalent representations—allowing graphical proofs of formula equivalences. In
[6], it is claimed that several proofs could be found, with the help of the stated approach. The
rewriting is formally defined by using deformation rules. The rewriting typically involves several
steps, which can be aggregated as well.

Figure 3.9: A diagrammatic representation of a simple PL1 formula as String Diagram [6]

In Figure 3.9, an example for visualizing simple PL1 formulas is shown. The diamonds—
p(X) and p(Y )—are symbols for predicates. These predicates are bound to variables by using
edges labelled by the name of these variables—e.g., to X . Variables used within the same
boxed structure could be, but need not be, equal. As this formula (that is stated below the
diagrammatic representation) ensures the inequality between X and Z, as well as between Y
and Z, the variable Z is placed within an own boxed structure. For ensuring inequality for all
three variables all three would have to be placed in different structures—which would, therefore,
lead to at least two boxes within the dashed environment.

This approach is very useful for finding proofs and reductions of formulas by using elim-
inations and deformations. As the graphical representation is mainly based on descriptions of
variables in lieu of focusing on formulas itself (leaving some PL1 concepts behind), this ap-
proach is not intended to be used for the design of PL1 formulas.
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Colored Graph

Colored graphs of Konczak et al. [28] for ASP programs focus on the visualization of depen-
dencies between rules in Colored Graphs. This is therefore intended to provide an assistance
in recognizing why rules can or cannot be applied. The applicability of rules in a given state
(an answer set being constructed for a program Π) is visualized by colorings of edges. It is,
therefore, also possible to provide graphs representing operational information.

Π3.2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 ∶ p ← .

r2 ∶ b ← p.

r3 ∶ f ← b, not f ′.
r4 ∶ f ′ ← p, not f.
r5 ∶ b ←m.

r6 ∶ x ← f , f ′, not x.

(3.2)

Figure 3.10: Colored graphs of an answer set program [28]

An exemplary program shown in Equation 3.2 is visualized as colored dependency graphs
in Figure 3.10. The graph highlights the distance between particular rules—the steps which are
necessary to be apply a rule as a consequence of another rule. For example in (a) the rule r1
of Π3.2 has a directed edge to r2. This edge is labelled with the distance of 0. This distance
describes the reachability of r2 from r1. As the result (head) of r1 represents the body literal of
r2, the rule r2 can directly be applied after r1 can be applied—therefore, the distance is 0. In
other notations the distance of rules defines the color of edges—green, blue, and red. In (b) of
Figure 3.10 the coloring C5 is added to the graph which represents some instance information
(facts). This coloring marks involved rules as reachable (⊕) or unreachable states (⊖). In (b)
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still rules r1 and r2 of (a) are reachable. This is not the case for r6 which is labeled by ⊖.
This results from the definition of r6 that states that if no evidence of x (not x) exists, x is
returned. After applying this rule once, it cannot be applied a second time. The coloring C1

already holds r6 and, therefore, is unreachable using all edges. The unary edge from r6 to r6
holds the distance of 1 in both (a) and (b) as it cannot be directly applied after r6 has been called
again. A special case is the edge between r3 and r4 which is bidirectional with a distance of 1
as it only allows the application one of both rules.

This approach is useful for identifying the applicability of rules in a certain program state.
However, it cannot express the relationships of variables, the usage of constants and, therefore,
the reasoning for the outcome (certain answer sets). The notation, however, is very compact and
the approach using distances between rules provides precise way of describing relationships.

HUTN

HUTN [38]—which was standardized by OMG3—is an approach which focuses on visually
and meaningfully organizing textual code elements in recognizable blocks. Its suitability for
representing declarative languages is shown by Pau Giner et al. [20] who have introduced a
Test-Driven-Development concept for transformation languages. In particular, the HUTN no-
tation is used for organizing properties related to the testing of transformation languages. It is
furthermore stated by [20] that HUTN is generic and could be “applied to any MOF-based meta-
model” and would be fully automated and “no human intervention” would be necessary. As it is
named “Human Usable”, HUTN is designed to be human-understandable and easy modifiable.

Figure 3.11: A HUTN example representation [20]

In Figure 3.11, there exists a class Class1 in the section Test Data. This information is
provided as input for the test case. On the right side there is placed the Expected result. It is
mainly dividable in “result parts and assertions” [20]. In the result part the expected result can
be defined to be “inclusion, exclusion or exact” [20]. The assertions are named OCL-queries,
which have to return true. If the expected result for a specified input matches the outcome and
all assertions return true, the test case is correct.

3HUTN information: http://www.omg.org/spec/HUTN/, last accessed: February 24, 2011
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For the context of ASP the capability of organizing textual in visual and semantically orga-
nized groups, seems to be a transferrable assistance in designing ASP programs. However, the
complexity of ASP rules and their dependencies is often so high that a code organization might
not be an applicable exclusive solution as development support.

3.5 Summary

In this section, several approaches for visual development support for different declarative lan-
guages were presented. The most directly applicable approaches for ASP are dependency graphs
and Colored Graphs. Dependency graphs allow the visualization of hierarchical literal depen-
dencies without involving particular rules nor variables and constants. Colored graphs in contrast
are able to visualize the rule interrelations by highlighting the distances between rules. This dis-
tance is useful for identifying which rule can be applied in which state (after executing a certain
other rule). To be able to identify the behaviour of answer set programs, it is necessary to under-
stand the rule interrelations and the variable interactions. Such variable interactions are not used
by any discussed answer set program visualization except of String Diagrams, which describe
argument dependencies for predicate logic in a compact way. An extensive and service-specific
approach is presented by [11] where a service-model is specified and afterwards transferred to
an ASP model. This concentration on the program behavior rather than on visualizing syntactic
code elements, can reduce the solution complexity. However, the approach is hampered by its
specific nature and its data-centric models. Nevertheless, these four approaches are highly in-
teresting for the future visualization of answer set programs. Additionally, the simplicity of the
Diagrammatic Predicate Logic is a useful example for logics visualization.

However, none of the mentioned seems applicable for completely supporting the software
development process. On the one hand, no single concept was available assisting in the concep-
tion, the debugging, and the verification of ASP programs at the same time. On the other hand,
no solution could be identified which is capable of abstractly visualizing all essential elements or
even comprised deductions of ASP programs. For this purpose, it is the aim following sections
to propose more complete solutions being optimized for ASP.
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CHAPTER 4
Visualization of Non-Deductive Answer

Set Programs

In this section, an initial approach for visualizing some aspects of ASP programs as a first con-
ceptual visualization attempt is given, which mainly tackles the program conception task. This
initial solution is based on Entity-Relationship (ER) diagrams which are well established in
database modeling field. Their strength is their capability of describing relationships between
database tables and structures. For the context of ASP such a visualization can be used for de-
scribing structural and static relationships of a program Π. Elements of Π are facts, constraints,
and other rules (deductive rules). Facts and rules are known elements of classical database and
are, therefore, describable in terms of ER-diagrams. This idea is used to undertake a first visu-
alization attempt which focus on these two rule types. The restriction to facts and constraints is
removed in consecutive approaches found in the next sections.

4.1 The Big Picture

Contrary to the introduced related works, the proposed approach should be applicable for sup-
porting the program conception. This is achieved by assisting in the design process of the pred-
icate formats—the predicate name and the sequence of arguments of a predicate—extractable
from literals used in ASP programs. The predicate format is dependent on related values (at-
tributes), relationships to other predicates (explicit constraints) and general design decisions
(implicit constraints), e.g., primary keys. However, the textual modeling of relationships is of-
ten effortful and intransparent. For this purpose, a concept based on ER-diagrams is proposed to
provide an abstract structural design layer above textual decisions. This abstract design layer is
capable of structurally and parallel visualizing a multitude of relationships and their comprised
properties.

The resulting ER-diagram of this abstract design layer defines a schema transferred to an
ASP program whose basis is a created tool for generating facts. This initial program is non-
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Figure 4.1: The big picture of the non-deductive ASP program visualization and its environment

deductive as it only comprises facts as well as constraints. As the derived predicate format is
heteronomous, assistance in defining particular facts for the modeled ASP program is essential.
This is undertaken in a final generation step.

The big picture of the discussed approach is shown in Figure 4.1—grey boxes indicate the
technical assistance provided by the introduced approach. For a given program specification,
the abstract Design Layer of this approach is used for designing non-deductive ASP programs.
The ER-diagrams are used for designing the structures of ASP programs—predicate formats
based on predicates and their arguments. Thereafter, the supporting technologies can be used
for generating facts and for generating constraints for these facts. Beyond the boundaries of this
layer, classical methods can be used as well for comparing and evaluating the generated code
against the original specification or for enhancing it with deductive rules.

4.2 Describing Non-Deductive Answer Set Programs

In this section, a bridge between ER-based visualization and ASP code is constructed by dis-
cussing the mapping of facts, their relationship, and constraints. The textual representation of a
predicate including all of its arguments, is called the predicate format in this thesis. The predi-
cate format—which is the basement for other definitions—is implicitly discussed by proposing
the fact mappings.

Entities

An entity in an ER-diagram represents a database table. Each entity can hold a set of attributes
referring to columns of tables holding primitive type information. A primary key is used to
ensure the uniqueness of entity instances—primary keys are marked in the diagram with a text-
decoration.

These entities with their attributes can be transferred to ASP entities. Such ASP entities are
atoms of the visualized entities in a textual ASP code representation. The definition of entities
implicitly extends the set of available predicates which are the basis for textually specified or
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generated literals of a program’s rules. These predicates hold a certain textual sequence of
arguments which is named predicate format in this thesis.

pilotsvnr

pilotsvnr

name

 pilot(SVNR)  pilot(1234)

pilot(1234 , smith) pilot(SVNR, Name)

Predicate format Ground atoms

Figure 4.2: The transformation of ER-diagram tables and attributes to ASP code

Each attribute—including primary keys—of an entity is transferred to an argument of the
textual representation. In Figure 4.2 two examples are given which highlight the basic entity
transformation. The primary key SVNR and the attribute Name represent arguments of the predi-
cate pilot—cf. central column of Figure 4.2 using variables to demonstrate the predicate format.
Exemplary ground atoms for the predicate pilot—e.g., pilot(1234, smith) (the text-decoration is
only used to highlight the transformation process)—are given on the right column.

Relationships

The most commonly used relationship variant in ER-diagrams is the binary relationship (cf. Fig-
ure 4.4). It involves exactly two referenced entities and can be considered to be the most common
relationship type. Additionally, unary relationship exist which represent relationships from an
entity to itself. Another applicable ER-diagram relationship is the so called n-ary relationship
(cf. Figure 4.3). Not all n-ary relationships are sufficiently replaceable by binary relationships
and, therefore, need an explicit integration in the visualization of the design layer. For solvers
supporting cardinalities—lower and upper bounds of referred instances—further considerations
are necessary. In particular, a differentiation in (i) one-to-one (1:1), (ii) one-to-many (1:n), and
(iii) many-to-many (n:m) relationship variants is required (cf. Figure 4.4).

(i) One-to-one related entities are in a relationship between two entities, where exactly one
instance of each entity exists. Consequently, none of these entities directly depends on the other
entity—e.g., a person can reference an airport, but an airport can also reference a person (cf.
Figure 4.4). (ii) One-to-many related entities express a relationship from one entity instance
to a set of instances of another entity. (iii) In one-to-many relationships, each instance of one
entity can refer to a number of instances of another entity and vice versa. For this purpose,
such relationships represent own database tables (in the background) which store the references
between these entities.

To transform such relationships to textual ASP code, the differentiation according the car-
dinalities of the relationships is most essential (cf. Figure 4.5). (i) As one-to-one relationships
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Figure 4.4: The cardinalities of relationships of ER-diagrams

imply a direct relationship between two single entity instances, the primary key of one entity
is added as argument (foreign key) to the second predicate. For unary relationships (an entity
pointing to itself) a single solution is available, whereas for binary two alternative transforma-
tions exist, which are syntactically equivalent, but can provide program-specific optimizations
(e.g., an engine logically depends to a vehicle rather than vice versa). (ii) In cases of one-to-
many related predicates, the key of the predicate being targeted by an edge to this relationship
with a cardinality of one (one-related predicate) is added to the other predicate (many-related) as
foreign key. For relationships which are not of binary nature (involving exactly two predicates)
an additional textual predicate is required for expressing the relationship. (iii) All many-to-many
relationships require an additional implicit predicate representing the relationship. All primary
keys of all referenced predicates are added as attributes of this additional predicate. They to-
gether represent a joined primary key (cf. Figure 4.5).

Ternary relationships, a special case of n-ary relationships, have to be transformed differ-
ently. Each relationship is textual described by an implicit entity holding the keys of each in-
volved other entity. The primary key is represented by a joined key of all keys representing
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 pilot(1234)  can_fly(1234, boeing737)  airplaneType(boeing737)

pilot airplaneTypecan_fly1234 boeing737

Figure 4.5: Transferring predicates to an intermediary representation

predicates being targeted by this relationship with a cardinality greater than one. These keys
require an identical handling as proposed for binary relationships.

Constraints

Two types of ASP constraints can be derived from ER-diagrams. On the one hand, primary
key constraints which require the uniqueness of an identifier for predicates. For this purpose,
constraint rules are necessary which are violated whenever two atoms with the same primary key,
but different values of other attributes, exist (cf. Figure 4.6), e.g., two airports with the same
ID, but a different capacity, exist. On the other hand, each argument of a predicate represents
a certain (primitive or complex) type. For this purpose, the assignments for a predicate have to
be checked for their type consistency. In addition, cardinality constraints are already restricted
by the definition of a number of arguments for a predicate. Cardinality constraints, therefore,
represent implicit constraints whereas all others are explicit.

4.3 Code Generation

The code generation process starts by identifying the textual predicate format which is based on
the used attributes and relationships to other predicates. On this basis, general constraints are
generated and afterwards supplemented by the generation of particular facts based on tuples of
constants. The code generator is intended to support the syntax of the DLV solver.

Generation of Constraints

Primary key constraints. To validate if a primary key constraint is violated, a set of constraint
rules is necessary for a single primary key. Each constraint rule validates, if for one primary key
two different tuples exist in the same candidate answer set—an answer set not validated against
the constraint rules of the program. So, for for each non-primary key attribute a constraint rule
is necessary which is violated whenever at minimum two different values for the same primary
key exist. The following example shows the uniqueness validation of the primary key R1 for
airplane. The constraint itself is formulated in a second rule to improve the ease of debugging
whenever a constraint is violated.

nok_pk_airplane_type(R1) :- airplane(R1, T1, _),
airplane(R1, T2, _), T1 != T2.
:- nok_pk_airplane_type(R1), airplane(R1, _, _).
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Type constraints. The type constraints are generated by identifying if the arguments of a pred-
icate represent an attribute or a foreign key—an attribute referring to another entity. It has to
be avoided that values not conforming to the type of the attribute can be used as attribute. If
an argument represents a foreign key, it has to be ensured that this value is used as primary key
of an instance of this referred entity. For these purposes, type constraints have to be generated.
As literals using free variables and default-negation would be necessary to express such con-
straints, the usage of a single rule would be unsafe in DLV. For this purpose, all constraints are
represented by two rules in the following manner.

ok_airPlane_type(R1) :- airplane(R1, T1, _), airplaneType(T1, _).
:- not ok_airPlane_type(R1), airplane(R1, _, _).

If an argument represents an attribute of a predicate, a fictive type is constructed named by
using the attribute name plus the postfix “_val”, e.g., “capacity_val”.

Generation of Facts

In the previous sections, the applicable predicates and the necessary constraint rules were de-
fined. These predicates can be used to formulate the interpretation of a program Π by adding
facts holding predicates with constant values. This section is dedicated to the automated for-
malization of such facts from a given ER-diagram expressing Π. For each predicate a set of
tuples of constants can be applied which have to express the values representing this predicate
and all of its relationships. For example for the predicate airplane of the Figure 4.6 the tuple
⟨1, Boeing737, 1⟩ can be applied.

The automatization is achieved by interpreting the ER-diagram. The ER-diagram is then
transferred to a set of predicates. Afterwards commands can be applied for adding the values of
a predicate. In the background, they are automatically transformed to valid predicates. This is
achieved by allowing the usage of commands, e.g. “add” and “format”. The “add” command
allows the adding of one fact. The “format” command can print the argument sequence of a
predicate. Each argument representing a value of another predicate (foreign key) is displayed
with the name of the predicate it depends to and the name of the argument itself. This is nec-
essary as arguments need not have unique names over all involved predicates. Each argument,
however, has to be named uniquely for one predicate.

4.4 Evaluation

In this section, the implementation is evaluated by an example. This is undertaken by proposing
an exemplary non-deductive ASP program being visualized as ER-diagram which is generated
to textual ASP code. This example is evaluated in several steps afterwards.

Example

An answer set program which aims at organizing the placement of airplanes is used to illustrated
the above presented concepts (cf. Figure 4.6). Each airplane is assigned to an airport which
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represents its home base. Each airport has a given capacity. Each airplane assigned to an
airport requires a subset of the airport capacity according its own size. The size is defined
by the airplaneType of the airplane. Each predicate uses a primary key, e.g., the name of the
airplaneType. This scenario can be visualized as ER-diagram (cf. Figure 4.6).

airplane

airplaneType

airport

is_of

capacity

name size

transportItem

ID

regNr

based neighbor
n

m

1n

n

1

IS-A

Figure 4.6: The ER-diagram representing an answer set program for the scheduling of airplanes

The corresponding ER-diagram can be transformed to the following answer set code accord-
ing the DLV syntax:

%PRIMARY KEY CONSTRAINTS
%(each ID can only occur once)
nok_pk_airplane_type(R1) :- airplane(R1, T1, _),

airplane(R1, T2, _), T1 != T2.
:- nok_pk_airplane_type(R1), airplane(R1, _, _).
nok_pk_airplane_base(R1) :- airplane(R1, _, HB1),

airplane(R1, _, HB2), HB1 != HB2.
:- nok_pk_airplane_base(R1), airplane(R1, _, _).
nok_pk_airport_capacity(ID) :- airport(ID, C1), airport(ID, C2),

C1 != C2.
:- nok_pk_airport_capacity(ID), airport(ID, _).
nok_pk_airplaneType_size(N) :- airplaneType(N, S1),

airplaneType(N, S2), S1 != S2.
:- nok_pk_airplaneType_size(N), airplaneType(N, _).

%TYPE CONSTRAINTS
ok_airplane_type(R1) :- airplane(R1, T1, _), airplaneType(T1, _).
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:- not ok_airPlane_type(R1), airplane(R1, _, _).

ok_based_type(R1) :- airplane(R1, _, HB1), airport(HB1, _).
:- not ok_base_type(R1), airplane(R1, _, _).

ok_airport_capacity_type(HB) :- airport(HB1, C1), capacity_val(C1).
:- not ok_airport_capacity_type(HB), airport(HB, _).

ok_airplaneType_size_type(T) :- airplaneType(T, S1),
airplaneType_val(S1).

:- ok_airplaneType_size_type(T), airplaneType(T).

ok_neighbor_type(HB1, HB2) :- neighbor(HB1, HB2), airport(HB1, _),
airport(HB2, _).

:- not ok_neighbor_type(HB1, HB2), neighbor(HB1, HB2).

The generated code considers the transformation of cardinalities, primary key uniqueness
constraints, and type constraints. The sequence of arguments for each predicate is implicitly
given by the used attributes of the entities. Furthermore, for each entity of this example a set of
facts can be generated. The following example highlights this generation process by showing
the usage of the format and add command. First, the sequence of the arguments of airplane
is printed. Then an airplane is added as fact including an implicit displaying of the predicate
format. The argument values (constants) are then entered separated by a space. To support space
characters within a value block quotations marks can be used, e.g., “B̈oeing 737’̈’

%TYPE A COMMAND
:format airplane
regNr airplaneType.name airport.ID %THE PRINTED FORMAT

:add airplane
regNr airplaneType.name airport.ID %AUTOMATICALLY PRINTED FORMAT
%USER ADDS ONE AIRPLANE WITH THE FOLLOWING VALUES
:1 Boeing737 1

%OR USE QUOTATIONS MARKS
:1 "Boeing 737" 1

%RRESULTING FACT
airplane(1, Boeing737, 1) :- .
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Lessons Learned

The approach using ER-diagrams for visualizing answer set programs is able to express cardi-
nality and type constraints. Such constraints are typically very verbose in textual representations
and, therefore, represent a strong asset for designing ASP programs. An additional strength is
the representation of inheritance relationships (cf. Figure 4.7) in ER-diagrams—they could be
integrated in future approaches—which allow the simplification of typical ASP problems. For
example, birds can have the optional capability to fly. A differentiation of subtypes of birds
according their capabilities can be expressed by using an inheritance relationship. In particu-
lar, two subtypes of bird are shown in Figure 4.7: non_flying_bird and flying_bird. From these
subclasses a lot of animals can inherit, e.g., a penguin has to be a non_flying_bird. Often such
patterns are more difficult expressible in textual representations then in ER-diagrams and, there-
fore, simplify the design process of such constellations.

bird

non_flying_bird flying_bird

IS-A

IS-A

penguin

Figure 4.7: Inheritance patterns in answer set programs visualized with an ER-diagram

As a consequence, an important result of this initial approach is the necessity of visualizing
relationships compromised in ASP programs. Even the integration of inheritance relationship,
ternary relationships and further structural dependencies could increase the expressing power of
the given approach.

The most essential learned lesson is the power of simplified visualizations allowing the par-
alleling of relationship representations. Often long lists of constraint rules are visualizable in
a small ER-diagrams (cf. Figure 4.6). In addition, the automated fact generation—which is
textually complex for predicates being involved in a set of relationships—strongly decreases
the problems of wrongly specifying values for arguments of literals being dependent on other
definitions. For this purpose, concepts for fact specifications should be integrated in future solu-
tions as well. Moreover, such ER-diagrams are well-known and, therefore, reduce the effort in
initially understanding this visualization technique.
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Furthermore, it can be stated that the proposed approach is applicable for assisting in the pro-
gram conception, debugging, and verification task of the ASP development. The initial program
conception is a strong asset of ER-diagrams which are intended for being used for initial visual-
izations of structures. Additionally, typical pitfalls such as the missing of a relationship—often
hardly recognizable in textual notations—and the wrong specification of types—e.g., primitive
type attribute instead of an intended relationship to another complex type—are easily recog-
nizable. This simplifies the debugging process for non-deductive ASP programs. Moreover, the
verification of ASP programs is supported as well by allowing comparing the visual diagram ele-
ments with the specification. This process could be automated for typical models and formalized
program specifications.

4.5 Critical Discussion

Beyond these boundaries of non-deductive programs functional requirements in entire deductive
programs exist which cannot be visualized in such a manner. In particular, inferences cannot be
described with ER-diagrams, e.g., a constraint for validating that the capacity of airports is
not exceeded (cf. Figure 4.6), cannot be derived from this visualization. As a consequence, the
described solution is only applicable for modeling the data basis of ASP programs. Additionally,
it has to be noted that facts are not directly integrated in the ER-diagrams which would represent
a useful future extension. From these experiences in visualizing non-deductive ASP program,
an approach for deductive programs is established in forthcoming sections which tries to remove
the described limitations.
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CHAPTER 5
Visualizing Inferences & Design

Decisions

The approach proposed in Section 4 realizes a simple method for visualizing ASP programs by
reusing concepts of ER-diagrams. However, this approach only considered a subset of the ASP
language. Powerful features like inferences, negations, or disjunctions were neglected in favor
of reducing the visualization complexity. In this section, we therefore introduce a graphical
approach for answer set programs based on [16] and inspired by the concepts of Section 3
providing such features as extensions. The proposed approach is established by developing a
first solution for propositional answer set programs. Thereafter, the visualization is stepwise
improved to finally support answer set programs of arbitrary arity. This proceeding allows an
iterative enhancement and integration of simple concepts.

The new approach is established by combining several beneficial concepts. In particular, the
visualization simplicity, the clear defined abstraction levels, and the good technical support are
realized by the usage of Model Driven Engineering1 (MDE) [45] techniques.

The presentation of the proposed approach is, therefore structured as follows: First, a visu-
alization approach for propositional ASP programs, i.e., programs only consisting of predicates
with arity zero, is proposed. Second, the approach is extended for programs with an arity not
bigger than one. Third, concepts for programs consisting of predicates with arbitrary arity are
presented.

5.1 The Big Picture

Typically the design of an answer set program Π is undertaken on code basis. From a specifi-
cation, a set of answer set rules is created by the developer. These rules are then executed by

1Most popular is the Model Driven Architecture approach proposed by the Object Management Group—
Information: http://www.omg.org/mda/, last accessed: February 24, 2011
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a solver which calculates possible answer sets. Such solvers are black boxes hiding the actual
execution, i.e, the calculation of answer sets, from the user.
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Figure 5.1: The big picture

From the textual representation of the code, inter-dependencies of the rules are not directly
visualized. The reasons for answer sets, therefore, can only be identified by analyzing the re-
turned answer sets themselves. This interpretation then allows the correction of the initially
created code (cf. the standard development approach in Figure 5.1), if an erroneous behavior is
identified. The improvement of the code—and its expected answer sets—can then be checked
by re-executing the program and interpreting the changes in the returned answer sets.

To overcome this code-centricity, we establish a design layer and a design-first methodology
(cf. the proposed development approach in Figure 5.1). This layer is responsible for visually
providing assistance in analyzing the modalities of rule applications associated with a returned
answer set. Furthermore, it may be essential to provide a basis for the assistance in identifying
causes for unexpected results, i.e., an explanation why an expected answer set is not returned
or an unexpected answer set is returned. This is done by structurally visualizing the effects of
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constraint rules to the construction of a program’s answer sets—cf. the inconsistent answer set
in Figure 5.1. In a first attempt direct structural relationships between possible violation origins
and the violated constraints (cf. constraint violation origin in Figure 5.1) are established to
improve the understandability of Π’s behavior. This allows a real-time solver-based simulation
of constraint violations.

To achieve such a design-centric development, the program Π, which is based on a specifica-
tion, is visualized in an abstract and graphical design model representing the possible rule appli-
cations. Our approach follows ideas similar to the non-visual concept of [16] which represents a
formal meta-program of the original program expressing constraint violations. In particular [16]
computes a meta program D(Π) for a program Π by projecting the relevant answer sets to the
predicates of Π. Consider the following exemplary answer set A = { int(lnight), int(lbright),
int(lcandlelight), violated(lr3) } for program Π5.1 which states that night, bright, and candle-
light are part of one particular answer set. However, as the constraint rule r3 eliminates expected
answer sets holding bright and night without torch_on, a violation (violated(. . . )) for this par-
ticular expected answer set is stated. The term int represents the considered interpretation of Π.
Consequently, int(lcandlelight) refers to the valid containment of the literal candlelight in the
considered interpretation.

Π5.1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r1 = night ∨ day ←,
r2 = bright← candlelight

r3 = ← night, bright, not torch_on.
r4 = candlelight← .

(5.1)

After establishing an MDE-based design model (integrating ideas of [16]), the model serves
as basis for analyzing and redesigning Π. The model can be even transformed to ASP code—
cf. (1) in Figure 5.1—and thereafter be executed by a solver—cf. (2) and (3) in Figure 5.1. As a
consequence, the returned answer sets provided by the solver can be involved in further analysis
of Π as well. The final model, the generated code, and the returned answer sets can be used to
be validated against the original specification. In this thesis, we focus on sketching the basic
workflow only and discuss the other topics as possible topics of future work.

As the design layer should allow the analysis of possible rule application sequences, rules are
an integral part of the graphical representation. In particular, there is a necessity for visualizing
rule interrelations, and the involved literals and their conditions, i.e., the used arguments of
literals.

5.2 Syntactical Preliminaries

As the presented approaches are based on graphs, the relevant graph concepts are revisited in
this section and extended by definitions specific to the visualization concepts for deductive ASP
programs proposed in this thesis.
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Graphs Revisited

The proposed visualization is based on concepts used for Model Driven Engineering (abbre-
viated as model-based approach). Models in this context may be considered as graphs which
provide some useful properties for the realization of our approach. This is assisted by clearly
specified abstraction hierarchies [25], which provide an abstract alphabet definition for mod-
els in each degree of abstraction. Additionally, models can be cut in semantical pieces named
submodels—this can reduce the visualization complexity. For these reasons, models are applied
in this thesis and as a consequence, the used graph concepts are shortly revisited. In this section,
graphical models are always named models—models from the ASP context are named answer
sets.

Definition 16 (Directed graph) The ordered pair G = ⟨V,E⟩ of the form E ⊆ V × V—where V
is a finite number of vertices and E a finite number of edges—is a directed graph. A graph of the
form G = ⟨V,E ,L⟩ where L is a set of labels and E ⊆ V ×V ×L is a triple of the form ⟨v1, v2, l⟩
(v1, v2 ∈ V and l ∈ L) is called directed labeled graph.

Definition 17 (Dependency graph) Let G = ⟨V,E ,L⟩ be a directed labeled graph, then G is
a dependency graph for the program Π, iff V=HB(Π) and L = {+, -} and for all a, b ∈ V the
condition ⟨a, b,+⟩ ∈ E holds, whenever a rule r ∈ Π with a ∈ head(r) and b ∈ body+(r) exists, or
⟨a, b,−⟩ ∈ E holds, whenever a rule r ∈ Π with a ∈ head(r) and b ∈ body−(r) exists. A directed
graph G+ = ⟨V,E+, L⟩ where E+ = {⟨v1, v2⟩∣⟨v1, v2,+⟩ ∈ E} is called positive dependency
graph w.r.t. G. A directed graph G− = ⟨V,E−, L⟩ where E− = {⟨v1, v2⟩∣⟨v1, v2,−⟩ ∈ E} is
called negative dependency graph w.r.t. G.

Definition 18 (Typed Dependency Graph) Let G = ⟨V,E ,L⟩ be a dependency graph for the
program Π with the alphabet A=(P, V, C), then G is a typed dependency graph for Π, if every
v ∈ V has the type of an element of V—type(v) ∈ V . Type(v) represents a function for identifying
to which element of A a node is referring to.

The basis for the considered graphs in this thesis is provided by typed dependency graphs (cf.
Definition 18). For each directed graph (DG), i.e., a typed dependency graph for the program Π,
a set of paths can be constructed involving a set of vertices (nodes) and edges.

Definition 19 (Path) A path p in a directed labeled graph G = ⟨V,E ,L⟩ is a sequence p=v1,
. . . , vn (n ≥ 1) where for each element vi ∈ p and vi+1 ∈ p—with vi, vi+1 ∈ V and 1 ≤ i < n—an
edge ei = ⟨vi, vi+1⟩ ∈ E exists.

In some cases the restriction to acyclic graphs is useful, because it reduces the risk of infinite
loops or hardly visualizable constellations.

Definition 20 (Acyclicty) A directed graph G is called acyclic if no path p with p=v1, . . . , vi,
. . . ,vj , . . . , vn exists in G where vi = vj for i ≠ j.
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Graphs for Deductive Programs

The approaches presented in the following sections are based on typed dependency graphs
G = ⟨V,E ,L⟩ (cf. Section 5.2). All elements of Π are visualized as graphical nodes of V
and interconnected by edges of E. In this section, some specific definitions are introduced being
used by all following graphical approaches.

Definition 21 (Elementary nodes) Let A=(P, V, C) be the alphabet of the program Π and GΠ =
⟨V,E ,L⟩ be a graph of Π, then each visualized element has a correspondence to an elementary
node v ∈ V .

Definition 22 (Standard gateway node) Let A=(P, V, C) be the alphabet of the program Π and
GΠ be a graph representing Π, then node g is named a standard gateway node, iff it represents an
element of A being attached to the tuple li=⟨Vi, Pi,Ci⟩—Vi ⊆ V , Pi ∈ P , and Ci ⊆ C—referring
to a literal of rule r (where r is a rule of Π) in GΠ.

Definition 23 (Rule gateway node) Let A=(P, V, C) be the alphabet of the program Π and GΠ

be a graph representing Π, then node g is a rule gateway node, iff it represents an element of
r ∈ R where R are the rules of Π.

Definition 24 (Gateway node) Let GΠ = ⟨V,E ,L⟩ be a graph representing the program Π,
then each node g ∈ V represents a gateway node, iff g represents a standard gateway node or
rule gateway node of Π.

Elementary nodes are used for visually representing the elements of the alphabet of Π,
whereas gateway nodes represent placeholders for being the elements of ASP rules. No re-
dundancy of elementary nodes is allowed in the graph G of Π whereas gateway nodes represent
different applications of the same alphabet element, e.g., applying different term assignments or
negations for particular rules.

A requirement for all nodes is the retention of the used naming structures provided by the
program Π to be visualized. A literal has to be named as similar as possible in the graphical rep-
resentation (node) as in the code. This is very important for the understanding of the semantics
of Π.

Definition 25 (Edge) An edge of the graph G is a tuple of the form e = ⟨S,T ⟩ where e points
from a source node S to a target node T, and S, T are gateway nodes of G.

In ASP programs, relationships or dependencies between rules are only implicitly existent.
In the graphical visualization, edges (cf. Figure 5.5) can be used to make them syntactically
explicit to users. Each edge pointing to a node declares a dependency of this node to the origin
of the edge. Detailed definitions of dependencies are introduced in Section 5.3.

49



5.3 Propositional Answer Set Programs

In the following sections, the previously presented ER-diagram based approach—cf. Section
4—is revised for supporting the visualization of deductive answer set programs. In particular,
the visualization is adapted to allow the representation of arbitrary rules (cf. Section 5.4 and
Section 5.5). In this section, only propositional logic ASP programs are considered by step-
wise translating ASP programs Π to a graphical representation. This restriction of the ASP
language allows the concentration on basic program structures and reduces the necessity for an
own instance-based visualization layer (or even model). An example for propositional answer
set programs is shown in Equation 5.2.

Π5.2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 ∶ summer ∨winter ← .

r2 ∶ warm ← oven_on.
r3 ∶ warm ← summer.

r4 ∶ ¬icy ← warm.

r5 ∶ ← ¬icy,winter, oven_on.

(5.2)

Definition 26 (Propositional Answer Set Programs) Let A be the alphabet of Π the form A=(P,
V, C), then Π is a propositional logic program, iff for each predicate p occurring in Π it holds
that arity(p)=0.

Representations of Language Concepts

In the following, we shortly introduce several graphical language concepts that are necessary to
visualize answer set programs.

Nodes & Edges for the Representation of Rules

Nodes. Each rule of the program Π consists of a set of body and head literals. Body and head
literals are visualized as gateway nodes. These nodes can be positive (unnegated) or negated.
Each positive node is represented as node with dotted border without any additional labeling.
Negations are expressed by labels in boxes. The (1) classical negation (¬) and the (2) default-
negation (not) are supported by our approach. Negated nodes are visualized like positive literals,
but require an additional label ¬ (negation) or not (default-negation) as demonstrated in Figure
5.2. The label for default-negations can only be used for body literals.

L
not

L
¬

L

Figure 5.2: Nodes representing positive, default-negated, and strong negated literals
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Edges. For gateway nodes a set of directed relationships forming dependency structures are
expressed by edges. Each node targeted by an edge is dependent on the source of this edge.
This dependency relationship has some implications on the containment of literals (visualized
as nodes) in answer sets, which are thereinafter introduced. Dependency modalities result from
the used edge variant and their associated semantics. These dependency variants and concrete
edge types are introduced in the following definitions.

Definition 27 (Dependency) Let e be an edge of the form e = ⟨S,T ⟩ in the graph GΠ repre-
senting the program Π, then S (the source) is directly dependent on T (the target), iff T can be
applied via S and the connecting edge e—S is a predecessor of T in the graph. T is indirectly
dependent on a set of gateway nodes N, iff T can be applied by any edge ⟨Ni, T ⟩ where Ni ∈ N .
In the graph, T is a successor of one or more gateway nodes in N.

In the simulation of answer sets a direct dependency resulting from an edge e = ⟨S,T ⟩
implies that for every answer set Xi of Π the following two conditions hold S ∈ Xi ⇒ T ∈ Xi

holds for every unnegated or strong negated S. Direct dependencies can be used to form a set
of dependencies—i.e., a rule being dependent on all of its body literals—forms a conjunction of
dependencies. In the simulation of answer sets, indirect dependencies in contrast imply for every
answer set Xi of Π that for the set of gateway nodes N ∈ Π the condition N ∈ Xi ⇒ T ∈ Xi

holds as well as any Ns with Ns ⊂ N exists satisfying Ns ∈ Xi ⇒ T ∈ Xi. More details on
dependency concepts are introduced in forthcoming sections.

Two different categories of edges are necessary to express relationships forming direct and
indirect dependencies in Π: ED, and ESR edges.

Each body literal or head literal—based on Definition 6—represented as graphical nodes
connected with the rule comprising this literal by making use of ED edges (this is a direct
relationship).

Definition 28 (ED edge) Let GΠ=⟨V,E ,L⟩ be the graph for a program Π, then an ED edge is
a directed edge of the form e = ⟨S,T ⟩ where T is directly dependent on S, and S=g and T=r
(named a consummation of g by r) or S=r and T=g (named a production of g by r) for the rule
r ∈ R (where R are the rules of Π) and the standard gateway node g ∈ V .

According to Definition 28 two variants of ED according the node type of the edge source
and target. (a) The ED−Body edge is used for connecting body literals (denoted as gateway
nodes) of a rule r in Π. As a consequence, r is directly dependent on the information content
of the connected body literal. If a set of ED−Body edges for r is used, each literal as source of
these edges represents an ∧-connected body literal of r in Π, e.g., L1 ∧ L2 ∧ . . .∧ Ln where
Li with 0 < i ≤ n are body literals of r. (b) The ED−Head edge connects head literals of r
with r. The gateway nodes targeted by these edges therefore are implicitly ∨-connected head
literals directly depending on r. In Figure 5.3 an example is given highlighting these implicit
conjunctions and disjunction of nodes. The gateway nodes representing the body literals hot and
summer are implicitly ∧-connected. The gateway nodes representing the head literals swimming
and sleeping are ∨-connected.
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swimming

summer

r1: swimming, sleeping ← hot, summer.

Rule r2

hot

sleeping

∧

∨

Figure 5.3: An example of implicit connectives for gateway nodes

Definition 29 (Candidate answer set) Let Π be a program with the rules R with RC ⊆ R (RC

is the set of constraint rules of Π), then a model of Π according Definition 10, which has not
been validated against RC , is called a candidate answer set of Π.

Definition 30 (ESR edge) A directed edge e of the form e = ⟨S,T ⟩ represents an ESR edge,
iff S=g1 and T=g2 where g1 is a standard gateway node representing head literal l1 and g2 is
a standard gateway node representing body literal l2. T is indirectly dependent on all nodes
Si—arbitrary gateway nodes—for which an edge of the form ⟨Si, T ⟩ exists.

Definition 31 (ESR satisfaction) Let e be an ESR edge of the form e = ⟨S,T ⟩, then the indirect
dependency of T on S causes that the condition S ∈ AS → T ∈ AS (AS represents a candi-
date answer set of a program Π) has to hold—this is abbreviated by T is satisfied by e. The
relationship between S and T is named sender-receiver relationship.

hot

hot

hothot

...

...... ...

Figure 5.4: Three ESR edges pointing from head literals to a body literal of another rule

In Figure 5.4 an example is given using ESR edges as specified in Definition 30 and 31.
Three body literals hot are connected via ESR edges with a body literal hot of another rule. The
indirect dependencies of ESR edges imply that whenever one of the head literals of the first rule
can be reached (is contained in the inspected answer set), the body literal of the successor rule
can be reached. The ED edges in contrast require that every connected predecessor node can be
reached—is element of the respective answer set.
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As body literals could be indirectly dependent on head literals of all applicable rules of Π,
a differentiation between body literals as edge targets ({b1, . . . , bn, not bn+1, . . . , not bm}
in Definition 6) and available sources ({h1, . . .hk} of Definition 6) is necessary to recognize
possible rule applications in the visualization. The textual representation does not explicitly, i.e.,
visually, link these source nodes with a target node. Contrary, in our approach a set of sender-
receiver relationships are used for explicitly visualizing such constellations (cf. Definition 30)
with the help of ESR edges. Graphically it has to be differentiated between default-negated and
all other head literals targeted by ESR edges. All body literals without default-negation have to
be targeted by at least one ESR edge pointing to them in order to allow the application of the rule.
For this case, the special edge variant ESR−Add. is used. Contrary, each edge targeting a default-
negated body literal (as gateway node) can inhibit the execution of the rule comprising this body
literal. As consequence, each candidate answer set or subset of it comprising an instance being
element of a literal tuple corresponding to a default-negated body literal of a rule, is excluded
from being applicable for the rule execution.

Dependency Origins Semantics Source Target

ED−Body Direct All ∧ Std. gateway Rule gateway
ED−Head Direct All ∨ (only for Rule gateway Std. gateway

disj. programs)
ESR−Add. Indirect Any Sharing resource Std. gateway Std. gateway

(Bound to (additively)
a literal)

ESR−Subtr. Indirect Any Sharing resource Std. gateway Std. gateway
(Bound to (subtractively)
a literal)

Table 5.1: Summary of variants of edges based on [4]

For providing a better overview and syntactic differentiation based on [4], the presented
edges are summarized in Table 5.1 and visualized in Figure 5.5. The following five character-
istics are inspected: On the one hand (i) the dependency relationship between the source and
the target of an edge (cf. Definition 27), (ii) the consummation Origins of nodes (stating, if a
target node has to consume from all source nodes from connected edges, or can consume from
any applicable source), and (iii) general semantical differences, i.e., implicit connectives or the
general functionality of an edge, are used to compare the discussed types of edges. On the other
hand (iv) the type of nodes which can act as Source of a directed edge variant, and (v) the type
of nodes which can act as Target of a directed edge variant are inspected. The characteristics (i)
to (iii) are related to semantical properties whereas (iv) and (v) highlight syntactical differences.

According these five characteristics, ED edges can be classified as edges providing direct
relationships between a source and a target. Every specified source for a node connected via ED

edges, has to be reachable to involve the target—denoted by the number of alternative origins
for the satisfaction of a dependency, which is exactly one for each ED edge. The set of standard
gateway nodes from which an ED−Body points to a rule gateway node, is implicitly ∧ connected.
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Contrary, standard gateway nodes being targeted by ED−Head edges, are ∨-connected—this is
only possible for disjunctive programs. Especially of interest are the ESR−Add. and ESR−Subtr.

(cf. Table 5.1 and Figure 5.5) edges providing an indirect dependency relationship causes the
possibility of multiple origins (from any origin a consummation is possible) as predecessor
nodes. It is undefined from which particular origin the body literal is actually consumed. If
not all body literals of a rule are satisfied sufficiently by at least one providing ESR−Add. tar-
geting them or an ESR−Subtr. edge points to a default-negated body literal, no consumption is
undertaken—the rule is not applied.

ProduceConsume

Rule

LL

L

Rule

L

(subtractively)

L

L

X

Share resource
(additively)

Share resource

ESR-Add. ESR-Subtr. ED-Body ED-Head

Figure 5.5: Types of edges

All four discussed edge variants are exemplary shown in Figure 5.5. On the left the edges
for sender-receiver edges are visualized in additive and subtractive variants. In particular, these
edges share the resource L with another rule. On the right side edges for directed dependencies
are used for body literals and head literals of a rule.

Putting it all together

A rule itself represents a rule gateway node. Rules are essential to be visualized as they are
essential for understanding the underlying code of Π. Rules represent the only structuring fa-
cility within Π, as the ASP language does not comprise structuring concepts such as objects
or functions. However, such encapsulations (could be separation of concerns) are valuable for
debugging Π and for dynamically applying program parts.

Rule r1

Head literal

General rule

Constraint r1

Constraint rule

Fact r1

Fact rule
Body literal

[1..N]

Body literal

[1..N]

Head literal

Figure 5.6: Different variants of rules
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Special forms of rules are facts and constraints. Facts are entry points for the graphical
representation, as they typically do not depend on other rules. Consequently, in this approach
facts are integrated in an overall graphical visualization in lieu of focusing on the modeling
of their schema (cf. Section 4). In particular, facts do not require any incoming edge E and
produce outputs that can be used by several other rules. Constraint rules do not contribute any
literals to a candidate answer set. Such rules restrict the number of possible answer sets by
eliminating inconsistent or unintentional candidate answer sets. As constraint rules have to be
applied at any place of the graph, their graphical visualization is definitely more challenging
than the visualization of facts or other rules. All three types of rules are shown in Figure 5.6.
The different types may be distinguished by their labeling and their ability of handling incoming
and outgoing edges.

Summary

There exist elementary nodes and gateway nodes. Elementary nodes are used for explicitly
visualizing the alphabet of a program Π. Gateway nodes are used for representing alphabet
elements being used within a rule—predicates, variables and constants, and the rule itself. Gate-
way nodes—except rule gateway nodes—may be decorated with additional properties such as
negations.

Moreover, several different edges are necessary to graphically represent an answer set pro-
gram. An overview of the defined edges according the following characteristics are given in
Table 5.1. In particular, the differentiation of direct relationships and sender-receiver relation-
ships is necessary. Direct relationships result from explicit dependencies, i.e., a rule comprising
a set of literals. Sender-receiver relationships are implicit relationships resulting from all possi-
ble rule applications.

sweating

hot

hot hot

r1: hot ← summer
r2: hot ← oven_on

r3: sweating ← hot,
not ventilator_on

Rule r2

summer oven_on

Rule r1

Rule r3

ventilator_on
not

Figure 5.7: A first visualization of a deductive ASP program

An example making use of these nodes and edges is given in Figure 5.7. The program
consists of three rules where the rules r1 and r2 exactly contain one body and one head literal.
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The rule r3 contains a second body literal which is default-negates (not ventilator_on). Each
literal represented by a gateway node (cf. right side of Figure 5.7) is connected with a rule by
using an ED edge, e.g., the body literal oven_on as gateway node is connected to rule r2. As rule
r3 can consume hot from rule the body literal hot of rule r1 and r2 (two ESR edges are pointing
to it), r3 is therefore applicable whenever rule r1 and r2 are applicable and no rule holding a head
literal ventilator_on is applicable. As a rule is only applied when all default-negated literals are
not targeted by any ESR−Add. edge (cf. r3 in Figure 5.7) and all others are targeted by at least one
ESR−Add. edge, sweating is indirectly dependent on r1 and r2. Furthermore, it has to be noted
that the nodes hot may be considered as redundant. The reduction of redundancies is discussed
in the Section 8.

Program Arrangement

To be able to construct a program Π consisting of a set of rules, the head literals of each rule—the
set of literals [CI ,CN ] (N is one for non-disjunctive programs)—are connected with body liter-
als of other rules. The dependencies of rules were defined in the previously discussed concepts.
The usage of different rule types and their interactions is introduced in this section.

To be able to meaningfully construct a program as a visual model, it is essential to identify
which nodes can act as root nodes. This approach can also be reused for undertaking reverse
engineering of existing ASP codes to such graphical models. Root nodes represent a starting
point in the visual simulation of ASP programs and represent nodes in the graph which are not
dependent on other nodes. Fact rules or standard rules which only hold default-negated body
literals can be represent as root nodes (gateway nodes).

The graphical representation is intended to be read from top to bottom—loops or recursions
can influence this reading guideline. As a consequence, root nodes should be placed at the top
of the graph. This adoption is used for improving the ease of recognition of essential elements.
Typical root nodes are facts which are the basis for applying other rules. Not only facts can act
as root nodes, but also other rules which only hold default-negated body literals. This implies
that any rule with one or more positive literals (atoms) cannot be used as root node as these
atoms cannot be satisfied without the assistance of another rule.

A path—as introduced in Section 5.2—expresses a particular sequence, such as a rule se-
quence. With each move along edges (without recursion this is typically downwards) on a path
from root nodes to final nodes, nodes without any outgoing edge, of the graph G, a chain of
dependencies is constructed. A final node is dependent on all other nodes on the path. In Figure
5.8, all following nodes are dependent on the root nodes L1 and L2. The final node L5, there-
fore, is dependent on all previous nodes (L1, L2, L4) except L3 which is not reachable over any
path from L5. Although nodes might be involved in several paths, these paths are not directly
influenced by each other. The only influence of other paths occurs when SRSubtr. edges point to
a node of another path. Then the forward processing of a path might be interrupted at this node.
As a consequence, this visualization implicitly constructs a reduct of Π from which duplicates
have to be removed to construct valid answer sets.

Moreover, the path construction in the graph is comparable to the logical implication—
rlevel−1 → rlevel−2 → ... → rlevel−n. The satisfaction of preconditions by predecessor rules
automatically leads to an application of this rule (the successor rule) as well. The application of
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L1

...

L4

...

L2

...

L3

...

L5

Dependencies Graph

L1: {}
L2: {}

L3: {L1}
L4: {L1, L2}

L5: {L1, L2, L4}

Figure 5.8: Dependencies of nodes

a successor rule could, but needs not, automatically prove that the predecessor rules are satisfied
as well. This dependency behaviour can be simplified to the following definition: Each rule
(representing the vertex v ∈ G) is dependent on each of its direct predecessors on all pi ∈ G
which satisfy v ∈ pi—direct predecessors have the distance of one edge.

Each constructible path p of a complete graph GΠ conforming to a valid answer set pro-
gram Π, expresses an ASP model of Π (cf. Definition 10). By eliminating existing duplicates
from it and removing ASP models violating constraints, a reduct Πp results—an answer set of
Π. Invalid paths p comprising misspecified edges (e.g., incorrect sources or targets are used),
misspecified nodes, misspecified inferences—not corresponding to Π—or incomplete node and
edges sequences (missing elements) cannot be transferred to valid answer sets.

Contrary to facts (and other root nodes), constraint rules do not provide literals as conclu-
sions (head), but only body literals. Therefore, constraint rules cannot be placed as root nodes,
but rather as final nodes. Although the constraint rules have to be fulfilled at any point of the
computation of Π, the final position of constraint rules is sufficient as they are enforced to be
applied. This can be only achieved at the bottom of a graph where the state is inherited from
predecessor rules. All other rules are positioned between root nodes (e.g., facts) and final nodes
(constraint rules or final nodes when no constraint rule is available) in a desired execution order.
The interrelations are achieved by using ESR edges.

These three blocks of rules visualized as graphical nodes are the layers of Π. These layers are
intended to be used for all programs. In Figure 5.9 these three layers are graphically visualized.
Facts r1, r2, and r3 serve as root nodes (like facts, cf. Section 5.3), from which standard rules
(r4, r5, . . . ) are applied, and finally ending with constraint rule r6 (cf. Section 5.3) on the third
layer. If there are no constraint rules, the last layer remains empty.
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Rule r4

L1 L2 L3

L4

Fact r2

L2

Fact r1

L1

Fact r3

L3

Rule r5

L6

... Other rules

L5... ...

Other consumers

Constraint r6

L1 L2 L7

Root nodes, e.g., facts

Standard rules

Standard rules

Constraints

Figure 5.9: The layers of an ASP program graph

5.4 Programs of Literals with Maximum Arity One

Unary logic predicates as literals of ASP rules have to be visualized differently than proposi-
tional programs. This strongly influences the complete visualization of ASP programs as well.
Therefore, the proposed concept for deductive propositional answer set programs is extended by
the introduction of arguments (variables, constants) and their equalities or inequalities. The arity
is limited to one as the visualization complexity strongly increases by introducing concepts for
higher arities. It is, therefore, the aim of this section to provide a basis for the usage of predicates
with higher arities than zero. In the second part of this section the visualization is enhanced as
the newly introduced features require some visual adoption.
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Variables & Constants

The basic visualization approach of unary literals needs concepts to show constants (instances).
This is necessary as each used variable may correspond to a set of constant values in the ex-
ecution or simulation of an ASP program. Constant values are of the form L(a) where a is
the constant and L is a predicate. Recall, that variable names are written with upper case and
constants with a lower case starting letter.

Rule r1

L1(a) L1(X) L1(b)

L2(a) L2(X) L2(b)

Rule r2

L1(a) L1(X) L2(b)

L3(a) L3(X)

L2(X)
not

X

r1:   

r1-a:   L2(a) ← L1(a).
r1-b:   L2(b) ← L1(b).

r2: 

r2-a:     L3(a) ← L1(a), not L2(b).
r2-b:     L2(b) ← L1(b), not L2(b).

semantics for constants

1 2

L3(X) ← L1(X), not L2(X).L2(X) ← L1(X).

Figure 5.10: Two unary logic answer set program examples—one applicable (1) and one inap-
plicable (2)

In the example (1) of Figure 5.10 the rule r1 makes use of the literal L1(X). For each constant
value corresponding to X that satisfies L1(X), L2(X) is the consequence. This implicitly requires
a parsing or identification of “constant to variable relationships” in respect to previously inferred
literals. Therefore, for a rule L2(X) ← L1(X) constant-specific rule applications are existing
(e.g., L2(a) ← L1(a).) For the concrete examples of constant L1(a) and L1(b)—provided by
predecessor rules—the literals L2(a) and L2(b) are returned. For both of these constants the
rule can be applied independently. Whenever a constant satisfies all body literals holding a
specific variable (e.g., X) as argument, it corresponds to this variable in this rule—a literal
gateway for this constant is added to all usages of this variable (e.g.,L1(a)). If there exist
unbound variables in the head (variables in body literals which do not correspond to a variable
in any literal of the head—or vice versa) of standard rules, only some constant-specific literal
gateways are defined which do not correspond to any constant. Rules making use of default-
negations require a different handling of constants in the visual representation. In particular,
the constants violating such body literals avoid the rule application. Furthermore, an additional
edge variant (EC)—the dashed red edges—that allows a differentiation of applicable constant
values and general dependencies, is necessary. In (2) of Figure 5.10 L2(b) violates not L2(X)
as no evidence of any constant value matching L2(X) is allowed. This violation could only
be avoided by defining that b may not match X . This matching is achieved by only attaching
applicable constants to literals of a rule. It is necessary to note that for fact rules a variable is not
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be available. Therefore, only instance-specific literals are produced.

Definition 32 (Equality) The binary predicate equal(X , Y ) implies that CX ⊆ CY and CY ⊆
CX holds where X and Y are variables, CX is a set of constants matching X, and CY is a set of
constants matching Y. This equality predicate for X and Y is denoted by X = Y .

Definition 33 (Inequality) The binary predicate unequal(X , Y ) implies that CX /⊆ CY and
CY /⊆ CX where X and Y are variables, CX is a set of constants matching X, and CY is a set of
constants matching Y. This inequality predicate for X and Y is denoted by X ≠ Y .

Equalities and inequalities of variables may be defined to avoid the application for unin-
tended constellations. Such inequality and equality expressions represent binary predicates with
a simplified notation, e.g., X = Y and X ≠ Y could be used instead. However, a solver-specific
understanding and handling of such expressions is necessary.

Rule r2

L1(a) L1(X) L2(b)

L3(a) L3(X)

L2(Y)

Expression
fieldRule r2 X ≠ Y

Figure 5.11: The usage of an expression field

Equalities and inequalities require additional language concepts. It has to be noted that an
equality or inequality is valid within a complete rule application. This is notable as the definition
of such equalities or inequalities are placed in the rule body in ASP. Typically such equalities
or inequalities are used in ASP to ensure that two variables are not matched with the same
constants—e.g., the inequality of X ≠ Y states that the literals L1(X) and L2(Y) have to be
addressed by different constants. The rules in ASP are structurally independent of each other—
only values are passed to other rules or are consumed from other rules. The behaviour of the rule
application is, therefore, highly influenced by such definitions. As a consequence, the equalities
and inequalities of variables and all other constraint expressions necessary within a rule, are
directly integrated in the graphical rule definition. For this purpose, an expression field (cf.
Figure 5.11) is added to the rule’s node. Such expressions could also hold other expressions or
a set of expressions. Complementary expressions could lead to a non applicability of rules. As
the number of such expressions in Π is typically small, the placement in the rule node provides
sufficiently space for their visualization. In Figure 5.11 the rule r2 holds two body literals—
L1(X) and L2(X). Both have to be satisfied to produce L3(X). Additionally, X and Y have to be
unequal (X ≠ Y ). This means that at least one instance (a constant) being attached to the literal
L2 has to exist which does not not correspond to X (used as argument for L1) to satisfy the rule.
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Another interesting difference to propositional ASP can be seen in the usage and definition of
facts. In propositional ASP programs no differentiation can be made between general statements
and concrete instances. For example in propositional logic programs the predicate warm states
that it is generally warm, whereas in first-order logic ASP programs warm(rooma) can more
specifically state that it is only warm in rooma (cf. Π5.3 in Figure 5.3). Graphically, a set of
constants conforming to the same argument of a literal within a fact, can be aggregated to a
single visual rule representation (an abstract fact definition). The specific variables are attached
to the arguments of a literal (concrete facts).

Π5.3 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r1 = warm(rooma)← .

r2 = warm(roomb)← .

r3 = warm(roomc)← .

(5.3)

In contrast to propositional answer set programs, for unary logic programs another differen-
tiation is necessary. In unary logic programs each usage of a literal L is customized by the used
variable usage Vu for a rule r. Therefore, different usages of the same literal expression, e.g.,
Fly(X) from the expression Fly can refer to a different application behaviour in a rule context.
Therefore, in this approach for unary logic programs the following concepts have to separated
from each other: Variables and their usages (variable usages); Literals and their application for
a rule (literal gateway); Constants and their application for a variable usage in a rule.

A variable usage is an application of a variable in a particular rule of a program Π, a literal
gateway is an application of a literal for a particular variable usage, and a constant gateway is an
application of a constant for a particular variable usage.

Definition 34 (Variable usage) Let GΠ = ⟨V,E ,L⟩ (V is a set of vertices, E is a set of edges,
and L is a set of labels) be a graph for the program Π = ⟨P,V,C⟩ (P is a set of predicates, V is a
set of variables, and C is a set of constants). Then a variable usage of the rule r ∈ R represents
a vertex vu ∈ V forming the tuple ⟨v, r⟩ where the variable v ∈ V and the rule r ∈ Π.

Definition 35 (Literal gateway) Let GΠ = ⟨V,E ,L⟩ (V is a set of vertices, E is a set of edges,
and L is a set of labels) be a graph for the program Π = ⟨P,V,C⟩ (P is a set of predicates, V
is a set of variables, and C is a set of constants). Then a literal gateway lg ∈ V representing a
literal l ∈ r where the rule r ∈ Π—forming a tuple ⟨l, r⟩.

Definition 36 (Constant gateway) Let GΠ = ⟨V,E ,L⟩ (V is a set of vertices, E is a set of edges,
and L is a set of labels) be a graph for the program Π = ⟨P,V,C⟩ (P is a set of predicates, V
is a set of variables, and C is a set of constants). Then a constant gateway of the rule r ∈ Π
represents a vertex cg ∈ V forming the tuple ⟨c, vu⟩ where the constant c ∈ C and the variable
usage vu ∈ Π.

The assignment of elements to tuples representing variable usages, literal gateways, and
constant gateways are achieved by using typed references and edges of the graph G representing
a particular answer set program Π.
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Optimization for Program Analysis

In the previous, section relationships and instant-specific definitions have been integrated in the
same visualization. This is an asset for understanding the behaviour principles of a program, but
it may be difficult to recognize variable usages over a range of different variables and constants.
This may be explained by the need to link the root node providing constants with consuming
nodes (a rule consuming this literal). So, if a certain constant is used by one of the first nodes
from the top and used by one of the last nodes from the top, at least one edge crosses the overall
visualization canvas. The longer the used edges, the more often edges will cross each other and
the higher the visualization complexity will be. Therefore, it can be advisable to separate these
levels from each other. This is achieved by using a meta level model and several instance level
diagrams. The instance level diagrams are specific instance based reductions of the program Π
whereas the the visualizations on the meta level do not visualize any constants. So, the meta-level
model is responsible for designing Π. The proposed enhancements in this section are intended
to improve the applicability for analysis. This is achieved by a clear coupling of information,
the focus on essential nodes and a clear reasoning visualization why a certain rule is applied or
a certain constraint rule is violated.

Meta Level

The visualization (model) on the meta level provides a complete overview of the application de-
sign. It visualizes all rules using variables. All constants addressing these variables are excluded
from the visualization. This view on an ASP program is intended to be used for developing
paths for the application of rules. It is called the “meta level” as it provides a view on a higher
abstraction level than instance-based models (or models including instances).

The program Πfl1 of Figure 5.12 introduces two root rules: r1 and r3. If a product X does
not satisfy cheap(X), it satisfies expensive(X). If X does not satisfy expensive(X), it satisfies
cheap(X). Therefore, a product cannot be cheap and expensive at the same time. However, there
can be different answer sets that define this differently for the same product. If a product is
cheap, the customer buys it. However, if the customer realizes that the product has already
been used (not used not satisfied), we do not know how he decides. The customer does not buy
(¬buy(X)) an expensive (expensive) product. Furthermore, the buying of any product is legally
prohibited and, therefore, disallows answer sets with this literal constellation. More general
constraint rules can be used as well, that disallow the buying of products (buy(X)) when the item
is sold out (sold_out(X))—cf. rule r5 in Figure 5.12.

Instance Level

The instance level visualization opens the possibility of reducing the overall visualization com-
plexity in two ways: First, constants that are not part of an answer set for a particular scenario
and are not necessary for a constraint rule visualization, are left out. Second, structures (nodes,
edges) which are not involved in producing an answer set and which are not necessary for under-
standing the violation of a constraint rule, need not be visualized. This view, therefore, allows
the reasoning why a certain answer result could or could not be returned without involving de-
tails that are not necessary for understanding the behaviour of Π for this particular case.
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Rule r1
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¬
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∏fl1:

r1: cheap(X) ←  not expensive(X), 
   product(X).

r3: expensive ← not cheap(X), 
   product(X).

r2: buy(X) ← cheap(X), not used(X).
r4: ¬buy(X) ← expensive(X).

product(X) product(X)

sold_out(X)
...

r5: ← poor(X), buy(X).
...

sold_out(X)

Figure 5.12: A model on meta level representing the ASP program Πfl1

To reduce the visualization complexity, it is necessary to aggregate similar rules, e.g., two
rules with the literals product(a) and product(b) can be abstracted to product(X). This is achieved
by visually attaching constants to variables, e.g., a and b are attached to X in a rule. For this pur-
pose, boxes for instances are added to literal gateway nodes representing body or head literals.

In Figure 5.13 the two answer sets ASI and ASII for program Πfl1 of Figure 5.12 are shown.
Several facts were not visualized in the meta level model. The following three facts have been
used: product(a), product(b), used(a). These facts allow the processing of Π at instance level as
the variables cannot provide particular answer sets. The duplicate literal gateways expensive(X)
between rules r3 and r3 are redundant. However, by adding new rules, edges to the literal
representing a body literal of r5 may be necessary. As a consequence more constants may be
added to this node as well. Therefore, this redundancy is accepted at this point.

In the visualization ΠASI of Figure 5.13, the rules r3 and r4 of program Πfl1 do not have
an effect on the answer sets. Therefore, they are not visualized. As a and b are both products
and there is no knowledge of a and b being expensive, both are applicable for rule r1. This rule
returns that both are cheap. This makes them eligible for being used by rule r2. However, this
rule has another body literal (not used) which is only satisfied by b. The knowledge of used(a)
disallows its usage for r2—marked with a red cross. This visualization is essential as it provides
the reasoning for certain results. In following steps these invalid values need not be handled
any more. As the result of r3 (buy(b)) does not violate the constraint rule of r5, the answer
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Figure 5.13: An instance level model representing the ASP Πfl1 with the constants a and b

set is valid. The result of ASI, therefore, is: ASI= {product(a), product(b), used(a), cheap(a),
cheap(b), buy(b)}.

In the visualization ΠASI of Figure 5.13 the rules of r1, r2, and r5 of program Πfl1 are
not necessary for understanding the outcome. Here the situation is complementary to ASI . As
no knowledge is present that the products a and b are cheap, they are expensive. As a conse-
quence, these products are not bought (¬buy(a) and ¬buy(b)) by the customer. The result of
ASII, therefore, is: ASII= {product(a), product(b), used(a), expensive(a), expensive(b), ¬buy(a),
¬buy(b)}.

Description Layer

The declarative nature of ASP is an asset for fastening the development process, but it is not
able to point out which meaning is associated with each involved predicate for the human user.
Therefore, an additional enhancement for the understandability of Π and its potentially hidden
semantics is proposed by the definition of an own description layer. Descriptions are models
describing the predicates of the used literals in more details. This layer is necessary as the other
layers focus on the rule application or the rule design, but cannot describe the semantics and
interrelations of used literals.
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The notation can be based on UML Class diagrams [40]—and UML Object diagrams, re-
spectively. The diagrams have to be extended to allow the versatility of predicates. Predicates
can have different semantics. Generally, it is useful to differentiate between the usage of nouns
(e.g. car(X)), adjectives/adverbs (e.g., fast(X)), and verbs (buy(X)). Nouns can be visualized
like classes. They provide some attributes, relationships and a certain inheritance structure. Ad-
jectives and verbs are classes without specific attributes, but can be in an inheritance relationship
as well.

The detailed specification of the description layer is out of the scope of this thesis. The
description layer can be seen as logical extension to the other layers. This layer is introduced as
it is highly relevant for the design of Π to define and communicate the properties, behaviour and
semantics of predicates used as ASP literals. However, the realization can be done in several
ways, e.g., UML profile [40] or own models.

Optimization for Program Design

The introduction of constants in diagrams, increased the visualization complexity, as more ele-
ments are required to be integrated in the graph of Π. In the previous subsection, this increased
complexity was tackled by defining different visualization levels based on the grade of abstrac-
tion, and by restricting the visualization to subsets of programs. However, for design-time visu-
alizations of programs, all involved rules with all variables and constants should be accessible
from a single artifact (the visual representation), which negatively influences the grade of com-
plexity of this single artifact. Therefore, in this section a diagram is presented that is useable
for design-centric approaches—placing the model as entry point of development (design-first)—
rather than automatic generation for analysis. This transition from an analysis- to design-centric
visualization is organized in two steps: (i) The extraction of the constant mappings and (ii)
extraction of the variable declarations from literals.

Extracting Constant Mappings

The key difference to the approaches for analysis is the handling of variables and constants
within the rule node. Within one rule a certain variable is unique. Beyond this rule, representing
a scope of knowledge, the same variable name, e.g., X, can applied arbitrary times—they do
not represent the same variable though. As these variables are unique within a rule, they can be
attached to a rule to reduce the visualization effort, i.e., defining edges pointing to and from a
variable. However, as the spatial close coupling of literals and the involved variables represents
an asset for analysis-centric usage scenarios, the containment of variables in literal gateway
nodes seems inappropriate for the program design usage. As a consequence the visualization for
these two usage scenarios has to be different for variables.

For constants the knowledge boundaries are different than for variables. Each constant is a
unique instance within an ASP program, e.g., car1 or expensive. Constants relate to a variable
in each eligible rule. Whenever a rule is applied, all constants corresponding to a variable used
as head literal are added to this node being derived from nodes representing body literals of
the same variable. This constant forwarding proceeds along the defined paths of a program Π.
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As consequence, constants can be directly mapped to variables in the visualization, in lieu of
mapping them to literals holding a corresponding variable.

Rule r3

L1(X)

L3(X)

L2(Y)

X

a b

a b

Rule r1

L1(Z)

Z

a b

a b

L2(X)

X

c

c

Rule r2

c

c

... ...

Mapping
Constants
to Variables

Fact r0

L0
a b

L0(Z)

∏design:

X ≠ Y Y

Figure 5.14: A design-centric model-based visualization of the ASP Πdesign

A mapping of constants to variables is introduced in Figure 5.14 where three rules exist
which describe the meta level structures of the ASP program Πdesign—abstract deductions
which are not based on the interrelations of constants. This concept is enhanced by Con-
stantMappers in the nodes of the rule—marked with a green border—which relate to the us-
age of (in-)/equalities. The ConstantMappers hold all involved variables as nodes (variable
usages)—marked with a grey background. For better visualization these mappers can be di-
vided to be visualized on both sides of the rules. This division reduces the number of edges
crossings in the graph. The variable nodes representing certain variables interact with a set of
constants. Without previous definitions of constants corresponding to a variable within a rule,
these interactions cannot be provided. However, from a given definition onwards a step-by-step
interpretation is possible. This step-by-step interpretation is an eligible solution as it correlates
with the rule-based step-by-step execution which is used in ASP. The fact in rule r0 (aggregated
from r0 (a) and r0 (b)) provides the initial mapping of the constants a and b to the literals being
processable in abstract mappings. Root nodes as the mentioned fact r0 do not hold any incoming
edges—neither on meta nor on instance level. As facts do not make use of variables, the gateway
node placed used for variables is unlabeled in Figure 5.14.

Our approach visually maps constants received via incoming edges, to rule-specific variables
(cf. Figure 5.14). When a rule holding a set of constants on which a variable is dependent on
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(usage in the body of the rule) is applied, these constants are forwarded to the head of the rule. As
the interrelation of literals and applicable constants is already defined by the used variables, no
explicit visual link of constants and literals is necessary. Such a behaviour can be seen in rule r3
of Figure 5.14 where the constants a and b—represented as constant nodes—refer to the variable
X. The involved constants interrelate. These interrelations represent relationships that can be of
additive or subtractive nature (special variants of ESR−Add. or ESR−Subtr. edges respectively).
These relationships are visualized with the help of undirected red edge. A subtractive nature
means that constants referring to a variable are excluded from being used as constants of a
specific variable of another rule. In particular, rule r1 provides the constants a and b—locally
mapped on the variable Z—in the state of literal L1(a) and L1(b) to the rule r3. In this rule these
constants are locally mapped to the variable X. As a rule can consume from several rules, several
edges can head to a constant node or exit from an outgoing constant node.

For the case of several literals referring to the same variable, several edges have to be headed
to a variable gateway node. These edges are linked by gateway nodes representing the constants
as input and output values. If a variable corresponds to a set of variables of other rules, a set of
edges exist indicating these relationships. To simplify this handling an automated generation of
edges between rules using constants is obviously useful, e.g., by integrating a solver. Alterna-
tively, automated checking based on solvers could be established which visually indicate missing
or impossible edges. The separation of operational information—although it is integrated in the
same artifact—supports the ability for running automated procedures at a later stage than the
development of the meta level structures and the definition of known root nodes.

Extracting Variable Declarations

In the approach of Section 5.4, the extraction of constraint mappings has already eliminated the
necessity of constant nodes being added to literal nodes. In particular, this processing step has
already initiated the shifting from a highly redundant rule- and variable-centric to a visually less
complex variable-centric methodology. To continue this methodology shift, the variable decla-
rations comprised in literals have to be extracted and combined with the literal definitions used
for constants. This progress can again strongly decrease the visualization effort and therefore
improve the ease of understanding of the graph.

This transition is achieved in three steps. First, the variables are placed as accessible nodes
within rule nodes. Second, the variables from the literals are removed. Third, the gateway nodes
for literals do not directly interact with the rule, but with the variable nodes held by a rule.
Therefore, the edge from these gateway nodes point to variable nodes. These variable nodes
represent the same variables that have been removed in the second step.

As this change can increase the edges pointing to a single variable node, it is essential to
aggregate nodes in blocks where all incoming and outgoing edges can be shared by each par-
ticipant of the aggregation. This is the case for constants that can be mapped to a variable. A
constant mapped to a variable can be consumed and be used to produce outputs in the same way
as all other constants referring to the same variable. Therefore, a constant usage box is applied
bundling them graphically together. This bundling reduces the amount of edges pointing to the
same variable. One jointly used edge as able to express the same behaviour for all used con-
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stants. This improvement is highly necessary for programs holding a multitude of constants for
each variable as this can happen, if real world examples are being solved by ASP.
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Figure 5.15: Mapping literals to variable nodes

In Figure 5.15, the program is adopted to this new visualization methodology. The rule r0 is
a fact that holds an empty variable box pointing to the meta structures (the gateway node repre-
senting the literal L0) and a constant usage box holding the constants a and b. This is equivalent
to the textual notation of L0(a) and L0(b). These values are than passed on to rule r1 where L1
is returned for these two constants. Rule r2 acts similarly to rule r1 mapping constant c using
the variable X to the literal L2. The results of r1 and r2 are then consumed by the variables X
and Y in rule r3. This example clearly demonstrates the visualization complexity reduction for
adding further constants and literals in comparison to the initial visualization shown in Figure
5.14. Moreover, the visualization only follows one single methodology for both meta and in-
stance level visualization. The two approaches in one visualization are joined to improve the
consistency in modeling ASPs.
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5.5 Programs of Literals with Unconstrained Arity

The expression capabilities of unary logic answer set programs Πu are limited. Many typical
algorithmic problems, e.g., the NP-hard Graph Coloring Problem [26], require the involvement
of the neighborhood relationship, however. Such problems can have the following form: If X is
a neighbor of Y, then X will satisfy the literal Li. Such sentences cannot be expressed using the
arity of one. Therefore, it is essential for the applicability of the presented concepts to support
ASP programs with higher arity. For this purpose, the presented concepts have to be enhanced.
From each literal node representing a certain literal, several variables need to be referenceable.
This is achieved by allowing the usage of more than one ED edge pointing from or to a gateway.
As the ordering of variables of a literal, can influence the literal semantics, the ordering of
outgoing or ingoing D_Edges has to be absolute. For example, the literal better(X,Y) states
that X is better than Y. The literal better(Y,X), however, expresses the opposite of better(X,Y)
(cf. Figure 5.16). Relationships with undirected behaviour such as equal(X,Y) (cf. Figure 5.16)
do not need orderings, but can make use of orderings. Although orderings could be implicitly
expressed by some conventions or unique unlabeled nodes, this section enforces orderings to
allow a clear correspondence between textual and visual representation of the same program Π.

X Y

better

worse

X Y
equal

better(X,Y)
=worse(Y,X)

equal(X,Y)
=equal(Y,X)

Figure 5.16: Directed and undirected literal behaviours

The ordering OLj(A1, . . . ,Ak,Ak+1, . . . ,AN) where O(Ak+1) > O(Ak) for the N argu-
ments Ak of the Literal Lj can be visualized in several ways. First, ordering boxes (cf. Figure
5.17) can be used, which are placed within a gateway node of a literal. Each ordering box
is labeled with an ordering value—an integer specifying its absolute ordering position within
Lj . The variable to which or from which an ED edge points to the ordering box (with a cer-
tain ordering value) of Lj is, therefore, equal to the variable at position of the ordering value
(Vordering value) of Lj in the textual representation. To simplify the visualization ordering labels
(cf. Figure 5.17), labeling the ED edges, can be used in lieu of ordering boxes.

In Figure 5.17 two examples are shown in the two different visualization approaches. The
left example visualizes the literal better(X,Y ) (arity is two). It, therefore, requires the us-
age of two ED edges—one points to the variables X and the other one to Y . For each used
edge a ordering box or ordering label is necessary. The right example visualizes the literal
literal(X1,X2, . . . ,Xk, . . . ,XN). As this literal has an arity of N , N edges and N ordering
boxes or ordering labels are used.

Another necessary extension is the usage of constants—constants which do not correspond
to any variable, but represent a fixed literal value—as arguments of a literal (cf. Figure 5.18).
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Figure 5.18: Using constants as arguments of a literal

In unary answer set programs the usage of constants are uncommon as ground literals would
result, but in n-ary logic answer set programs it is often useful to use such constellations, e.g.,
in the Graph Coloring Problem the reduction to a number of colours also the definition of a rule
for each case represented by a constant. In Figure 5.18, each vertex (vtx(X)) having the color
(c) (color(X, c)), is recolored with d (X, d). The literal color has two arguments, which are label
in the graph to correspond to the textual argument sequence—the vertex X is the first argument,
whereas c and d respectively is the second argument.

5.6 Identification of Answer Sets

Answer sets are the results of a program Π. Directed graphs are used for the graphical rep-
resentation of Π in the approach of this thesis. The computation of the answer sets based on
the graphical representation can be provided by integrating solvers, e.g., DLV. This integration
is considered to be future work beyond the general focus of this thesis. Nevertheless, for two
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reasons it is important to state how a visual representation of answer sets is achievable. First, the
computation of answer sets by solvers should be visually simulated in a step-by-step manner.
Second, the visualization of these answer set calculations should be understandable by users.

This visualization therefore is undertaken by the help of defining answer set paths pi of the
graph. A precondition is that the visualized inferences (sender-receiver) relationships are valid—
they have been automatically constructed or validated before, e.g., by solvers. The calculation
of paths starts by the identification of root nodes. From each root node a set of paths can be
constructed. A simulation of each answer set path pi without solver can be undertaken by starting
with a set of literals only containing the head literals of the root node, e.g., L0 when L0 is the root
node of pi. Special considerations are necessary for not-negated and disjunctions (cf. Section
9.2) which automatically split up this set into several subsets. Each path has a certain final node
which does not hold any outgoing edges—nodes with no outgoing edges. Such final nodes can
be calculated by searching for all nodes without outgoing edges. In particular, all constraint
rules are final nodes as well as all other nodes without outgoing edges, which do not have a
relationship to any constraint rule.
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Figure 5.19: Converging, diverging and mixed edges

Each valid path from any root node L0—no incoming edges—to any final node Ln is an
eligible answer set path—if a literal tuple conforming to each node on the path is in the candidate
answer set, it is a valid answer set. It is notable that nodes with several outgoing edges (diverging
edges) from a node informally split a single path in several ongoing paths—this implies that
computationally these two paths can be jointly simulated from the root of the path to the node
from which edge diverge. Diverging rules can, but need not, be a result of disjunctive head
literals. They can be result of several outgoing ESR edges pointing to different applicable rules
from a certain head literal of a predecessor rule. This behaviour is comparable with a choice-
element where the path could continue. Answer set paths with the same final node form an
answer set. This is especially important for converging edges of a node—two paths are directing
to a single node Ln (cf. Figure 5.19 graphical representations of converging, diverging and
mixed edges). From this point on the answer set paths are handled identically—such point is
therefore named a join point in the simulation. Such join points computational aggregate the
previously computed results in the simulation to a single answer set for which the computation
is proceeded.
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Definition 37 (Answer set path) An answer set path of the graph G = ⟨V,E ,L⟩ is a path of
the form p=v1, . . . vn where each vi ∈ V (1 ≤ i ≤ n) v1 ∈ root(G) (root vertices of G) and
vn ∈ final(G) (final nodes of G).

By computing an answer set path from its root to its final node, all passed literals as vertices
of the path are added to an intermediary result set. At each join point the computed literal sets
of all related paths are merged. An example for a join point is given in Figure 5.8, in which L5
is dependent on L1, L2, L4. Each computed set of literals is regarded to be a candidate answer
set—candidate answer sets that are answer sets without any validation against the constraint
rules of Π.

Constraint r3

L1 L2 L7

L6

L5...

L2

L1

......

Rule r2Rule r1

...

Figure 5.20: The answer set bus integrating constraint rules in the visualization

After the candidate answer sets are computed, a routine is necessary for identifying which
candidate answer sets are valid answer sets (valid minimals models of G). Textually this is done
by executing a program with a solver. This graph-based computation of answer sets, can be
achieved by the integration of automatic routines such as solvers. In particular, it is important
to integrate the computation of constraint rules and to validate, if the added edges visualizing
inferences of ASP are specified correctly (no missing or wrongly set edges). For the integration
of constraints of Π three variants are proposed: The answer set bus, answer set containers, and
the constraint rule integration variant.

Answer Set Bus. The simplest variant is the visualization of the answer sets as horizontal
line (the answer set bus). This line aggregates all paths together and links it with the defined
constraint rules—constraint rules are always applicable to all candidate answer sets—cf. Figure
5.20 where such an answer set bus is positioned between the standard rules r1 and r2, and
the constraint rule r3. This aggregation implies that all head literals of each path pointing to
this bus are candidate answer sets which have to be verified. If no connected constraint rule is
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violated, a path represents an answer set. If it violates at least one constraint rule, the path cannot
be returned as answer set. The simplicity of visualization is a great asset that is, moreover,
strengthened by the high abstraction level. It can, therefore, provide a good overview of the
relationships. However, to verify that pi does not violate any constraint rule, all head literals of a
path have to be known. These head literals can be computed and represent the candidate answer
set of pi. The answer set bus, however, does not provide any visual support for identifying
these set of head literals of pi. This can be regarded as disadvantageous as the developer has to
compute such paths just-in-time to understand the full behaviour of Π.

Rule r2
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L5... ...

Constraint r3

L1 L2 L7

Standard rules

Pot. answer sets

Rule r1

L2

L1

......

L1 L2
......

L5 L6
......A1 AII

Pot answer sets

Constraints

Figure 5.21: Computing answer sets for applying constraint rules

Answer Set Container. A possible extension of this approach is the visualization of particular
answer sets. Answer sets are containers of a set of literals in the visualization (node visualized
with black border containing a set of literal gateways). The containers have to be filled with
the literals reached over the path directing to it (and joined paths). The filling process can
be automatized by solvers. These candidate answer sets have to be linked with the constraint
rules as described in (i). Without any computation or manual creation of the answer sets, the
visualization does not provide a higher information level to the user. The visualization of literals
comprised in all applicable answer sets reduces reduces the level of abstraction to some extend.
However, it allows a visual identification which candidate answer set of Π does not violate any
constraint rule and, therefore, is a real answer set. In Figure 5.21 two exemplary candidate
answer sets (AI and AII) are described in an own layer by defining a box for each. All involved
literals are shown in these boxes. From these answer sets all constraint rules can consume literals
to satisfy their body literals. This visualization variant allows to identify that both described
candidate answer sets are valid answer sets. AI satisfies L1 and L2 of rule r3, but may not satisfy
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L7 (nothing indicates this satisfaction in Figure 5.21). AII does not even satisfy any of the body
literals of r3. As no other constraint rule is defined for the answer set bus of Π, both are valid
answer sets.
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Constraints

Rule r1

L2
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Figure 5.22: Visualization of all edges between constraint rule literals and other rule literals

Constraint Rule Integration. The constraint rule integration variant visualizes all edges from
head literals corresponding to body literals of any constraint rule. As a consequence of the
visual link between constraint rules and the occurrences of the involved literals, the resulting
visualization is very extensive and visually complex. It allows the identification of origins of a
constraint rule violation, which cannot be shown whether in the answer set bus nor in the answer
set container visualization. As the origins of literals can be head and body literals of any layer
of the graph, the edges often have to cross other edges or nodes. The more constraint rules are
used and the more the constraint rules interact with rules, the more edges have to be placed on
the graph. Intensive usages of constraint rules in combination with this visualization approach,
could disallow the concentration on other rules comprising the inferences of the program. In
Figure 5.22 all edges from the body literals of constraint rule r4 are visualized by blue edges—
these edges are special consumption edges named constraint edges. These edges point to each
existence of the stated literals in any other rule (which is no constraint rule itself). This could
involve several edges from one body literal of r4 to literals of other rules. This is not necessary
for the body literal L2 of r2 and r3, as the rule r1 is the only origin providing L2 for both
rules. If there are more origin nodes for one literal Li than consuming nodes on one level, it is
advantageous to direct the constraint edge to the nodes of the consuming level (successor nodes).
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All three variants have some advantages and disadvantages. The effort in computation is
highest for the answer set container variant as an extensive simulation mechanism or solver has
to be integrated. The effort in visualization is highest for constraint rule integration approach
as the multitude of constraint edges have to be added from each head literal of the graph con-
forming to any body literal of a constraint rule. However, the expression power of answer set
containers and the constraint rule integration approach is much higher than for the answer set
bus, which does not provide a clear linking of origins of constraint violations and cannot simu-
late the computation effectively. However, for simplifying following figures of this section, the
answer set bus will be mainly used.

5.7 Summary By Example

In the previous sections, the most essential features for visualizing ASP programs of any ar-
ity have been proposed. In the following example, a summary is given highlighting the most
essential features proposed in this section.

Rule r1

Loaded

Rule r2

AllowedToDriveDrive

Constraint r3

Drive

∏SE1:

r1: Drive ← Loaded, DriverReady.
r2: ¬AllowedToDrive 

   ← DrinksAlcohol.

r3: ← Drive, ¬AllowedToDrive.

DriverReady DrinkAlcohol

¬

AllowedToDrive 
¬

X
Figure 5.23: Visualization example of a propositional ASP program

First, only propositional atoms are used. This implies that no differentiation between oper-
ational information (instances) and rule design (abstract definition of rule behaviours) is neces-
sary. This can be seen in Figure 5.23 where driving (Drive) is possible when the driver is ready
(DriverReady) and the truck is Loaded. However, if the driver drinks alcohol, he is not allowed
to drive. The constraint rule r3 shows that a drunken driver cannot coexist with drive in an an-
swer set, as this is legally prohibited—the boldly visualized X indicates a constraint violation.
The program of Figure 5.23 it good example for highlighting the need for adding variables and
constants in order to increase the applicability of the program ΠSE1, e.g., there could be several
Drivers—one is drunk and cannot drive, but another one is not drunk and is allowed to drive.

Therefore, the usage of variables and constants is useful for differentiating between different
instances. This is shown in Figure 5.24. In this figure, literals related to the same instance make
use of the same variable. These variable usages represent the meta level visualization of the
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Constraint r3
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∏SE2:

r1: Drive(X) ← Truck(Y),
Loaded(Y), Ready(X), Driver(X).

r2: ¬AllowedToDrive(X)
   ← DrinksAlcohol(X).

r3: ← Drive(X), 
¬AllowedToDrive(X).

Ready(X) DrinksAlcohol(X)

¬

AllowedToDrive(X) 
¬

Driver(X)Truck(Y)

X
Figure 5.24: The meta level visualization of a unary logic ASP

unary logic ASP ΠSE2. The program ΠSE2 is an extension of ΠSE1 which introduces necessary
variables and makes use of additional literals, e.g., Truck(Y). Such literals are addable as unary
logic programs are more expressive. The expressiveness of program ΠSE2 can be increased, the
higher arities can be visualized. Furthermore Figure 5.24 highlights, the boundaries of unary
literals as such literals cannot describe interrelations in one literal, e.g., Drive(X) only describes
that a particular Driver is allowed to drive, but it cannot express the interrelation with a certain
Truck (his or her specific truck for example).

Rule r1

Loaded(Y)

Rule r2

AllowedToDrive(X)Drive(X)

Constraint r3

Drive(X)

∏SE3:

r0a: Truck(t) ← .
r0b: Loaded(t) ← .
r0c: Ready(d) ← .
r0d: Driver(d) ← .
r0e: DrinksAlcohol(d) ← .

r1: Drive(X) ← Truck(Y),
Loaded(Y), Ready(X), Driver(X).

r2: ¬AllowedToDrive(X)
   ← DrinksAlcohol(X).

r3: ← Drive(X), 
¬AllowedToDrive(X).

Ready(X) DrinksAlcohol(X)

¬

AllowedToDrive(X) 
¬

Driver(X)Truck(Y)

t t d d d

d d d d

X
Figure 5.25: The instance level visualization of a unary logic ASP

As the meta level does not describe any constants (instances), the instance level answer set
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visualizations are necessary. Such a visualization (the only one for this example) can be seen in
Figure 5.25. This figure shows ΠSE3 which extends ΠSE2 by adding concrete facts. The graph
only needs to visualize involved rules and their particular constant consumption and production
for this particular case. In this example, however, all rules have to be visualized as all directly
involve the result. In particular, no answer set is returned by ΠSE3 as the constraint rule r3 is
violated by the driver d who is allowed to drive a particular truck t, but who is drunk as well.
As this is prohibited in this example as it is prohibited by law of most countries, this answer set
may not be returned.

Loaded(Y)

Allowed_to_drive(X)Drive(X)

Drive(X)

∏SE3

ri: Truck(t) ← .
... //Facts 
r1: Drive(X) ← Truck(Y),

Loaded(Y), Ready(X), Driver(X).
r2: ¬Allowed_to_drive(X)

   ← Drinks_alcohol(X).

r3: ← Drive(X), 
¬Allowed_to_drive(X).

Ready(X) Drinks_alcohol(X)

¬

Allowed_to_drive(X) 
¬

Driver(X)Truck(Y)

X

X

t d

t d

Rule r1Y XRule r2

d

d

Constraint r3

...

X

......... ... ...

joining literals
d

Figure 5.26: A design-centric model of the program ΠSE3

The stated unary models are more likely to be used for analysis as they hide some elements
of Π and are very extensive for those elements of Π being displayed. The meta level hides the
instance information and the instance level hides nodes not involved in particular computations.
From a design-centric paradigm the model has to be able to express all information relevant for
Π in a compact way. This is accomplished as visualized in Figure 5.26 where the literal argu-
ments are encapsulated in the rule nodes, e.g., X and Y in rule r1. This separation of variables
allows the rule-based mapping of constants to variables, e.g., Truck(t) is achieved by mapping
the constant instance t to the variable Y in rule r1—the meta level literal Truck(Y) is, therefore,
supplied with the instance of t like all other rules using Y as argument. This visualization variant
allows the removing of the constant nodes placed at gateway nodes in previous analysis-centric
approaches (cf. Figure 5.25). This reduction decreases the effort necessary to visually specify
the program. However, this benefit is lowered to some extend as the number of constants is
small. Furthermore, the visualization can be further optimized by reducing the variable declara-
tion from each gateway node. This visualization can be seen in Figure 5.27. The behaviour is
the same as in Figure 5.26, but the more compact visualization improves the ease of adding new
body or head literals (gateway nodes) and constants.

The constraint rule visualization in rule r3 of Figure 5.26 and Figure 5.27 is especially
interesting. It might look as if the “variable to constants mapping” is not sufficient to highlight
a certain violation. However, the variable nodes of the constraint rule r3 is only supplied with
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ri: Truck(t) ← .
... //Facts 
r1: Drive(X) ← Truck(Y),

Loaded(Y), Ready(X), Driver(X).
r2: ¬Allowed_to_drive(X)
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r3: ← Drive(X), 
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                    r3
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Drive Allowed_to_drive
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Figure 5.27: Extracted variable declarations in a design-centric visualization of ΠSE3

constants that satisfy all body literals of r3 using the relevant variable. Others are not linked with
this constraint rule and, therefore, do not indicate relevance for violation. Paths satisfying all
literals of all variables, violate the constraint rule. For a better understanding of the satisfaction
of involved literals, the edges are bound together in cases (joining literals in Figure 5.26 for
the binding of Drive(d) and Allowed_to_drive(d)) represented by constant usage boxes in 5.27.
It is advisable to automatize or automatically check such linkings.

Another notable difference of analysis-centric instance level to design-centric models, is the
necessity for design-centric models to visualize all specified structures of the program ΠSE3 to
provide a complete overview of the program behaviour.
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CHAPTER 6
Realization

In this section, a prototype of the previously introduced modeling language for ASP is presented.
Furthermore, the transformation from a model representation to the ASP code is achieved by
proposing concepts for code generation. The visualization of ASP programs allows developers
to concentrate on design issues rather than focusing on textual program syntax. In particular, we
focus on giving a prototype implementing the most essential and recent concepts of the previous
sections.

The presented realization approach of this thesis is named “VIsual DEsign and Analysis
Support for Answer Set Programs” (VIDEAS ASP or briefly abbreviated VIDEAS). VIDEAS
is Latin and can be translated to “You could see” (present subjunctive). VIDEAS ASP therefore
states that you could see answer set programs Π (as specified in Definition 8) which underlines
the focus of this thesis to highlight and visualize the essential elements of an ASP program Π.
The used subjunctive expresses the possibility of gaining new insights into the behaviour of ASP
programs.

6.1 Modeling Language

The proposed approaches are based on basic graph definitions (cf. Section 5.2). In this section,
it is the intention to transfer this graph-based approach to concrete models and metamodels.
This transition is eligible as models are based on graphs, and this transition is, furthermore,
advantageous as models provide sufficient tool support, and defined abstraction levels (model,
metamodel, metametamodel. . . ), e.g., in the standardization of Meta Object Facility (MOF) [39]
models by the Object Management Group1.

The proposed modeling solutions are based on Eclipse Ecore2 providing a technical real-
ization of such abstraction levels for models. Ecore itself is fully integrated in the Integrated

1OMG information: http://www.omg.org/, last accessed: February 24, 2011
2Ecore information: http://www.eclipse.org/modeling/emf/, last accessed: February 24, 2011
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Development Environment (IDE) Eclipse3 which is used in version 3.5 “Galileo” by the Eclipse
Modeling Framework (EMF)4.

Environment & Boundaries

As this thesis has a primary focus of enabling design-centric program development, the design-
centric approach allowing the visualization of inferences is prototypically realized within
VIDEAS and documented in this and following sections.

The presented approach is a graphical visualization using models. Each model represents
a particular program Π built for a certain problem specification. All of these models have to
conform to a metamodel defining the VIDEAS modeling language. This metamodel is presented
in Section 6.1 and is made accessible as graphical editor using Eclipse’s Graphical Modeling
Framework (GMF)5.

Metamodel

The metamodel has to contain a root class, which holds all other model elements. Each other
class has to be transitively connected with the root class via containment relationships. This root
class is called DesignModel in VIDEAS. Each class that is directly (distance of one) accessible
to the root class is a class of special importance for the model, e.g., often reused class, a class
with a major influence on the model definition, or a class referring to a multitude of other classes.
In VIDEAS such classes are: Rule, Variable, Constant and Literal. The class Rule represents
all rule nodes and handles variables, constants referring to these variables and literals specified
over literals. Variables, Constants and Literals are root-accessible. Their usages in Rules are
decoupled from their specification—this decoupling is realized by using own classes which are
necessary with respect to the intended graphical visualization of explicitly showing the usages.
Therefore, they have to be defined on the same level (root-accessible) as Rules. It is essential to
reduce the amount of root-accessible classes to a minimum to improve the recognizability and
ease of step-by-step defining models. Often the accessibility of reused classes can be preserved
by creating an aggregation from a class that is hierarchically higher situated. Only if such a
placement cannot be achieved or is not sufficient, classes should be made root-accessible.

The resulting metamodel of the defined modeling language, however, is very complex. As
a consequence, it is divided into three main models. The model of Figure 6.1 provides an
overview of the involved classes. Details to this model are then added in the models of Figure
6.2 and Figure 6.3.

All Rules, GatewayNodes, and ConstantUsageBoxes are subclasses of the abstract class
Node (cf. Figure 6.2). The class Rule is a concrete class as facts, constraints, and standard
rules are structurally similar to express. Therefore, each rule of any of these types can techni-
cally be changed to another type by adding or removing edges to LiteralGateways. The class

3Eclipse information and download: http://www.eclipse.org, last accessed: February 24, 2011
4EMF information and download: http://www.eclipse.org/modeling/emf/, last accessed: Febru-

ary 24, 2011
5GMF information and download: http://www.eclipse.org/modeling/gmf/, last accessed: Febru-

ary 24, 2011
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Figure 6.1: The simplified metamodel for the design-centric modeling language
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Figure 6.2: The inheritance relationships of the class Node
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Figure 6.3: The inheritance relationships of the class Edge

GatewayNode is abstract as it can be differentiated between GatewayNodes representing Liter-
als (LiteralGateway) and Constants (ConstantGateway). In contrast to the class ConstantGate-
way the LiteralGateway class holds to two concrete subclasses representing the specifics for
the usage in the rule head and body—LiteralGatewayHead and LiteralGatewayBody. The class
ConstantGateway does not require any specifics for the usage in the rule head or body, as all
ConstantGateways are only addresses by the ConstantUsageBox holding them. The class Con-
stantUsageBox, therefore, has the two concrete subclasses ConstantUsageBoxHead and Con-
stantUsageBoxBody.

The inheritance structure of Edges is shown in Figure 6.3. There exist three major sub-
classes of Edge—the KS_Edge linking a ConstantUsageBox and KnowledgeSpace, the D_Edge
representing direct dependencies to other items, and the (SR_Edge) sharing resources with other
objects. These three subclasses are abstract classes and, therefore, cannot be instantiated. The
D_Edge has the subclasses D_Lit_Edge and D_Cons_Edge. D_Lit_Edge expresses a direct
dependency between a VariableUsage and a LiteralGateway. The D_Cons_Edge is used for
defining a direct dependency between a VariableUsage and a ConstantGateway. Both classes
are available as head and body subclasses as well. This differentiation is necessary to express
the direction of the used Edges. The subclasses of SR_Edge are SR_AS_Edge, SR_Lit_Edge
(abstract)—expressing the resource sharing between two LiteralGateway—and SR_Cons_Edge
(abstract)—expressing the resource sharing between two ConstantGateways. The SR_AS_Edge
are used to share LiteralGatewayHead nodes with constraint Rules consuming results from (Lit-
eralGatewayBody nodes) other Rules (more details are presented later on). The two subclasses of
KS_Edge are KS_Head_Edge and KS_Body_Edge. KS_Head_Edge links a VariableUsageBox-
Head with a KnowledgeSpaceHead, whereas KS_Body_Edge links a VariableUsageBoxBody
object with a KnowledgeSpaceBody object. For both SR_Lit_Edge and SR_Cons_Edge addi-
tively and subtractively variants exist.
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Classes & References

In the metamodel of Figure 6.1 no differentiation is made between fact, constraint, and standard
rules. This is not necessary as their visualization is not dependent on their number of incoming
or outgoing edges (more details on Rules as constraints are discussed later on). However, their
semantics is significantly different for the user. The class Rule holds VariableUsages, and a
ConstraintBox via aggregations. VariableUsages—representing a variable within a rule—are
the central element for binding Literals—in form of their usages represented by instances of
LiteralGatewayBody and LiteralGatewayHead—to rules. The ConstraintBox is the container of
all defined constraints. Such a ConstraintBox can hold a number of constraints (referring to the
interface IConstraint) of different type. If no constraint exists, no ConstraintBox is necessary.

Constants. For each VariableUsage a set of Constants refers to the underlying Variable. All
Constants eligible to be associated with the same Variable, are identically handled within the
rule. These identical constants are bundled in ConstantUsageBoxes. This ConstantUsage-
Box holds a set of ConstantGateways, which represent nodes referring to a single Constant
each. The ConstantUsageBoxes themselves do not refer to any Constant in particular—they
are only containers for gateways referring to Constants. It is highly important to state that
the ConstantUsageBoxHead and ConstantUsageBoxBody addressing the same VariableUsage
(D_Cons_Edge) and referring to the same KnowledgeSpace (KS_Edge) in the same rule, have to
contain the same amount of ConstantGateways which refer to the same Constants. This can be
addressed by defining them once for a VariableUsage and reusing them for the particular edges
pointing from or to it. However, this separation hampers the forward development methodology
in the model creation procedure. Without having defined the ConstantUsageBox before, it can-
not be accessed when the developer is trying to define it. Furthermore, the preceding definition
of the ConstantUsageBoxes, would require an additional class ConstantUsageBoxesGateway.
This is necessary to redundantly highlight all incoming (body) and outgoing (head) Constants
for each VariableUsage as it was proposed by the conceptual approach of previous sections.
Without such a gateway, involved edges would have to point backwards to the same instance as
used before which hampers the understanding of the model by the used top-down proceeding.
However, this further separation resulting from additional gateways aggravates the intuitiveness
of the modeling process. Therefore, in this thesis it is accepted that the ConstantUsageBoxes
referring to the same VariableUsage could be defined inconsistently by the users. This draw-
back can be addressed by additional OCL constraints in the future. In particular, each Vari-
ableUsage can hold a set of incoming and outgoing ConstantUsageBoxes which are accessed by
D_Cons_Body_Edge and D_Cons_Body_Edge, respectively.

Literals. The class Literal holds an attribute expression. The expression represents the String
value of the Literal without defining the useable arguments, e.g., Buy in lieu of Buy(X). These
definitions are, therefore, independent from the gateway nodes using them. From the Vari-
ableUsages of a Rule the edges D_Lit_Body_Edge—the body edge consuming literals—and
D_Lit_Head_Edge—the head edge producing literals—can be used to address and create Liter-
alGatewayNodes. In particular, one of those edges can only point to or from a single node. These
LiteralGatewayNodes are those gateways only being able to refer to certain Literals. For this
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purpose, each LiteralGatewayNode has to hold a reference to a single Literal. Therefore, these
nodes are placeholders of Literals representing an application. Such applications are specific
definitions for rules and their variables usages and are, therefore, dependent on their placement
context. They hold further attributes describing this relationship—negated and defaultNegated.

Sharing Resources. The resources (literals or constants) referring to a certain VariableUsage
can be shared with other rules. In particular, these resources are shared (additively or subtrav-
tively) with other GatewayNodes (abstract) by using SR_Edges (abstract). From each Literal-
GatewayHead a set of SR_Lit_Edges can be used which each point to a consuming Literal-
GatewayBody of another rule. The same principle is applied for each ConstantUsageBoxBody
which can share the constants with ConstantUsageBodHead instances of other rules. To reduce
the amount of necessary edges, the sharing of single Constants using their ConstantGateways
is prohibited. This addresses the problem that real world applications often tend to involve a
multitude of Constants referring to the same VariableUsage.

Constraint Rules. The validation of constraint rules (Rules with constraint purpose) is achieved
by using SR_AS_Edges. SR_AS_Edges point from LiteralGatewaysHead nods of standard Rules
to LiteralGatewayBody nodes of constraint rules. Such SR_AS_Edges point from each Liter-
alGatewayHead on the graph to each LiteralGatewayBody of each constraint rule —referring
to the same Literal as the LiteralGatewayHead node. To disallow the involvement of standard
Rules as consumers of resources shared using SR_AS_Edges, two strategies are proposed. First,
an own Rule class called ConstraintRule is created. This class again involves the necessity to
create some further classes handling the special needs of the ConstraintRules, e.g., Constraint-
VariableUsages, ConstraintLiteralGatewayHead, and D_Cons_Head_Edge. The effort of this
strategy involves the creation of these classes and the references to these classes in the meta-
model, as well as their integration in graphical editors in later sections. Second, the edge cre-
ation is automatized. Each rule without any head literals is automatically handled as constraint
rule. Each LiteralGatewayHead node of standard rules is automatically connected with Literal-
GatewayBody nodes of constraint rules referring to the same Literal. Optimally, even real-time
modifications automatically lead to a revision of SR_AS_Edge usages. As the first strategy would
optimally involve an automated Edge creation as well, it is beneficial to reduce the effort by ap-
plying the second strategy only. Therefore, the differentiation between different rule types is
dispensable.

Graphical Editor

A graphical editor allows the graphical definition of models based on a certain modeling lan-
guage. Each object in a model—based on the VIDEAS alphabet represented by the VIDEAS
metamodel—is shown as graphical element6 on the diagram7 canvas. The available alphabet

6The term “element” generally refers to a graphical representation of an object based on a class of the VIDEAS
modeling language in this section.

7The diagram in the context of GMF refers to the graphical editor of a certain model—in this thesis a model
based on the metamodel of the VIDEAS modeling language
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is defined by the classes of the metamodel representing VIDEAS. The editor handles the com-
patibility (grammar) of these items in the model definition by allowing and disallowing certain
placements on the canvas. The compatibility is derived from the specified references in the
VIDEAS metamodel. For each of those concrete classes (items on the canvas) a certain visual
representation has to be specified. In particular, the visualization has to allow the distinction of
the used classes—especially the distinction of classes representing edges and nodes have to be
made. Such a distinction can mainly be achieved by using different shapes and colors.

Figure 6.4: The GMF Dashboard8 guiding the creation of the graphical editor

The graphical editor for the design-centric modeling language VIDEAS is created by using
the editor functionality of Eclipse GMF. With this help, the EMF Generator Model (genmodel)
is created from the metamodel (defined in EMF). This is a “data model”9 used as intermediary
format. The genmodel allows the generation of the code classes from the modeled classes in
the EMF metamodel. Furthermore, the genmodel is a prerequisite for creating a graphical editor
with GMF. Even the code that can be generated from this genmodel is necessary to run the
GMF editor. To establish an own graphical editor, the GMF Dashboard is provided by GMF.
The GMF Dashboard (cf. Figure 6.4) guides the creation of the graphical editor by assisting in
the creation and combination of the necessary files. Necessary files are the Domain Model (the
VIDEAS metamodel), the Domain Gen Model (the produced genmodel from the metamodel),
the Graphical Def Model, the Tooling Def Model, the Mapping Model, and the Diagram Editor
Gen Model which is the overall outcome. After integrating all of these model files, the graphical
editor may be used within the Eclipse environment.

8Information on GMF and GMF Dashboard: http://www.eclipse.org/modeling/gmp/, last ac-
cessed: February 24, 2011

9Data model information: http://wiki.eclipse.org/Graphical_Modeling_Framework/
GenModel/Hints, last accessed: February 24, 2011
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Adopting the Metamodel to GMF Requirements

The creation of a model using a graphical editor has a higher requirement of root-accessible
classes than non-graphical models. Root-accessible classes in graphical editors are classes that
can be placed on the canvas, which represent the root class. Therefore, all classes, which have to
be directly placeable on the canvas, have to be made root-accessible. The particular difference
to non-graphical models can be found in the transitive placement of graphical elements, e.g.,
Edges. An Edge is typically in an relationship to a source element, and points to a target element
(another relationship). As an Edge is neither visually placed within another graphical element
(compartment). The source or the target of the Edge, nor automatically placed on the canvas
when another item is added, it has to be made root-accessible in the metamodel in order to
allow an independent canvas placement. Non-graphical models, however, can construct such
object sequences by using a series of containments pointing from one object to its followup
(based on containments)—a direct relationship to the root-class need not exist. Therefore, some
classes have to be made root-accessible to support the graphical placements. Mostly this can be
achieved by declaring an inheritance relationship to the classes Edge or Node which are root-
accessible themselves. KnowledgeSpaces are rather virtual constructs that can be automatically
generated to highlight the accessibility of certain nodes of the class LiteralGatewayHead. They
are, therefore, not applicable to be defined as classical node and are directly made accessible
(containment) by the root class.

Another extension is necessary to improve the maintainability of Edge definitions in the
involved GMF models—especially the Mapping Model. GMF requires each Edge (defined as
Connection) to provide the reference to a source and a target element—the endpoints of the
Edge. Both references point from the Edges to the involved endpoints. These references have
to be defined—if not already existing for the particular class—and named properly. The naming
is essential for the maintainability of the GMF model files. Therefore, all these references are
named “source” or “target” respectively. By using these two references, the transitive contain-
ments from source elements via Edges to the target elements are redundant. As Edges can be
used by more than one source class and Edges can point to more than one target class, this nam-
ing convention could not be adopted to each of the subclasses of Edge. Therefore, several source
and target references could exist with similar naming. These relationships, therefore, have to be
interpreted in the GMF models. As the regeneration of GMF models from particular sources can
lead to the removal of such definitions, the necessary mapping has to be renewed. To avoid the
difficulties identifying the correct source and target element, subclasses of existing Edge classes
are created that only have to hold a single source and a single target reference—they, therefore,
represent a single usage purpose. This breakdown of existing usage purposes, simplifies the
GMF model definition and maintenance.

Moreover, GMF in the current version has some visualization limits, which disallow the
usage of boolean types, i.e., negated and defaultNegated in the LiteralGateway of the VIDEAS
metamodel. Consequently, boolean values are expressed by enumerations (Enum) of strings in
graphical editor. The Enum Negation—used for the attribute negated—holds an empty String
(negated is false) and “neg” (negated is true) as Enum Literals. The Enum DefaultNegation—
used for the attribute defaultNegated holds an empty String (defaultNegated is false) and “not”
(defaultNegated is true) as Enum Literals.
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Graphical Def Model

The Graphical Def Model is used for defining the graphical appearance of the model objects.
For each graphical element (visually delimitated from other elements by its shape, color, border,
usage within the graph, etc.) a figure is defined. Typically for each concrete class a figure is
created—especially when this model is generated from a metamodel—which can be adopted to
its special needs. However, a unique figure definition for each class of the metamodel might
not be necessary, as functional similar classes may require the same appearance, e.g., Constan-
tUsageBoxHead and the ConstantUsageBoxBody have the same appearance, but have different
relationships. The Graphical Def Model supports a wide range of supported shapes (e.g., rect-
angle or ellipse) for connections as well as for classes. It, furthermore, allows the usage of
elements as Labels and Compartments. If the standard adjustments are not sufficient, even own
classes referring to predefined shapes can be created and used.

In VIDEAS, mainly rounded rectangles are used to express nodes. Elements being used as
containers for other elements (Compartments) are visualized with a light background color. The
only exceptions are Rule elements—the most essential element on the canvas—which are, there-
fore, marked with a background in deep grey. Basic elements—e.g., Literals—are expressed
by simple elements (typically as square rectangles) to allow better differentiation. Polylines are
used to express connections (Edges). In particular, direct dependencies are represented by di-
rected Edges and indirect dependencies are represented by visually undirected Edges (no arrows
are placed on the graphical shape of the edge).

Typically, names or useful identifiers, e.g., the identifier of Rule, are used as Labels. More-
over, it is essential to use the attributes negated and defaultNegated of GatewayNodes as Labels
to allow easy recognition of possible rule applications.

Tooling Def Model

The Tooling Def Model is necessary to define which elements are placed in the tooling palette
of the graphical editor and which ones are placed in the menu bar. VIDEAS only makes use
of palettes at the moment of writing. Additional elements can be easily added to the palette
or to the menu bar in extensions. The defined tools in VIDEAS are grouped in blocks. Such
blocks help to organize the available elements in such a way that they are easily findable. In
particular, four tool blocks are defined (cf. Figure 6.5): (i) Basic elements, (ii) rule-oriented
elements, (iii) edges, and (iv) refinement elements. The block (i) represents the most essential
elements which are prerequisites for all other elements. In VIDEAS, this involves the classes
Variable, Constant, and Literal. All of these classes are not directly used to specify the flow
of rules. All classes standing in a direct and close relationship to Rules are placed in block
(ii). All available concrete Edges are placed in block (iii). The tool block (iv) concentrates
on features which are not used by the majority of diagrams representing Π Such features, e.g.,
OCLConstraint, InequalityConstraint and InequalityConstraint, are meant as refinements of the
graphical models.

The Tooling Def Model, furthermore, allows the usage of other names than defined by the
metamodel class names. This is not used for VIDEAS, but can help to optimize the class names
for their visualization, e.g., abbreviations, and can be used for modifications in the future.
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Figure 6.5: The VIDEAS Tooling Def Model, with collapsed and uncollapsed tool groups

Mapping Model

The Mapping Model (cf. Figure 6.6) combines the visualization defined in the Graphical Def
Model with the palette definitions of the Tooling Def Model. All previously discussed models
are included in the Mapping Model by using certain references. The main mapping definitions of
this model are, however, undertaken in the block Mappings which allows the placement of two
different mappings: (i) Top Node Reference and (ii) Link Mapping. All classes being represented
as own nodes on the canvas are declared as Top Node Reference. All Top Nodes are, therefore,
root-accessible classes that are chosen from the referenced metamodel (VIDEAS metamodel).
All classes that are not root-accessible, can only be used as Compartments or Labels of Top
Nodes by adding a child reference. Such references point from Top Nodes to elements being ac-
cessible from this Top Node. Compartments allow the placement of elements within the bound-
aries of another element—such elements in VIDEAS are ConstantGateways, VariableUsages,
ConstraintUsageBoxes, and all three classes referring to the interface IConstraint. Labels al-
low the presentation of some value directly visible on the canvas—e.g., Name of the class Rule.
Each added Label increases the visualization complexity. Consequently, VIDEAS focuses on
some labels being essential for the recognition of the program only, i.e. mainly name attributes.
Compartments and Labels can only be declared as child elements of Top Nodes. All Edges in
VIDEAS are declared as Link Mapping. For such Link Mappings a source and a target reference
has to be defined.

Required labels have to be added to the Top Node Reference or Compartment definition
in the Mapping Model as well. They have to combined with their visual representation in the
Graphical Def Model, but need not be linked to any definition of the Tooling Def Model. A
special case of such labels represents the labeling of referred object, e.g., a Variable from a
VariableUsage. Such labelings are not supported by GMF and, therefore, are not addable to
the Mapping Model. They are realized in a self-created custom project which overwrites the
visualization of the involved nodes. The custom project is necessary to allow modifications of
the Mapping Model without having the need to add this functionality by hand again.

The Mapping Model, moreover, offers some further functionalities like reuse of graphical
and tooling definitions for other mappings. For example, if an item cannot only be used as
Compartment of several other elements, but it can also be placed as Root Node, several entries
for the same visualization and tooling element can be created providing this functionality. For
example LiteralGateways nodes can directly be placed on the canvas or be placed within the
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Figure 6.6: An excerpt of the VIDEAS Mapping Model

boundaries of a KnowledgeSpace, which differ in some advanced features as presented in Section
9.2. Such variations can be easily achieved by removing the child access (for a particular class)
for the Top Node definition in the Mapping Model. The Mapping Model, furthermore, allows
the exchange of used graphical visualizations, tooling definitions, or related classes. If elements
are not listed in the Mapping Model, they are not useable in the graphical editor.

Diagram Editor Gen Model

The outcome of the process guided by the GMF Dashboard is stored in the Diagram Editor
Gen Model. Before the generation of this model can take place, all previously discussed models
have to be selected. By varying some of the referenced models, several different outcomes can be
produced and stored as Diagram Editor Gen Model. The resulting model is used as intermediary
format for generating the code for the diagram editor. As the Mapping Model already unifies the
definitions of all models in one model representation, no configuration is typically necessary in
the Diagram Editor Gen Model.

From this model automatically the diagram code (the main code for the graphical editor)
can be generated. It is completed by the code being generated from the genmodel which holds
the classes representing the model elements themselves (e.g., Rule). Afterwards the resulting
projects can be exported as Eclipse plugins and integrated in the Eclipse IDE. For testing purpose
the projects can be started as Eclipse Application.

VIDEAS Editor

After integrating the VIDEAS plugins representing all generated code of the EMF and GMF
models, VIDEAS can be used. The VIDEAS diagram (the graphical model in GMF) can be
created by adding a new file to an existing (or newly created) project.

The VIDEAS graphical editor by default shows the Toolbar on the right, and the Canvas
on the left side (cf. Figure 6.7). The blocks in the Toolbar of the VIDEAS graphical editor are
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Figure 6.7: An exemplary usage of the VIDEAS graphical editor
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visualized by bigger row margins—e.g., (5) to (6). Each block holds Palette separators (solid
lines) to further structure the toolbar in semantical groups—e.g., (8) - (11). Each listed element
in the Toolbar is used and numbered at least once on the Canvas in Figure 6.7. The numbers on
the Canvas correspond to the numbers next to the Toolbar. These numbers are used in this Fig-
ure to highlight the actual visual representation that could be achieved for each element in GMF.
The graphical editor as shown in Figure 6.7 is, moreover, more colorful than presented in the
conceptual approach (cf. Figure 5.27). Some further deviations exist as GMF sets some visual-
ization limitations, e.g., labels to referenced objects (custom visualization) cannot be recognized
on strong background and, therefore, require white backgrounds.

The GMF editor automatically supports Connections defined as Polylines (representing Edges)
that connect vertexes—(16) to (28). The naming of the elements—(1) to (32)—in the Toolbar is
the same as the concrete classes they represent. The elements D_Lit_ConstantValue_Head_Edge
(18) and D_Lit_ConstantValue_Body_Edge (19) are not shown in Figure 6.7 as they have the
same appearance as the edges from (16) to (21).

6.2 Code Generation

From the graphical model representation of program Π (defined by using the graphical editor of
VIDEAS) a code generation mechanism is necessary to execute Π with a certain solver S. For
this purpose, the Eclipse project Model To Text (M2T)10 is used. In particular, the template lan-
guage Xpand—which is assisted by Xtend and Check files—is used. One transformation (code
generation) file (UnaryTemplate) is established, which defines the output created in the transfor-
mation process. The UnaryTemplate file can transform answer set programs with at an arity of
one including the usage of negations. Additionally, another transformation template (NaryTem-
plate is provided which is capable of generating the basic code structure for programs of any
arity—fact rules as well as advanced features of Section 9.2 are not supported. The restriction
of the n-ary generation is related to technological boundaries which increase the effort of build-
ing efficient string chains of the arguments of a literal (such arguments represent cross-products
of the listed ConstantGateways). In VIDEAS, for each model a new file is created with the file
ending .dlv as the textual notation is based on DLV (some advanced features are added which are
not supported by DLV). Check is used to ensure that the model being transformed fulfills certain
constraints, e.g., a Rule cannot consume (LiteralGatewayBody) from its own LiteralGateway-
Head nodes. The transformation is executed by a generator file calling the main method of the
UnaryTransformation with a certain input model—a model based on the VIDEAS generator
model, e.g., created by the VIDEAS graphical editor.

The transformation process is Rule-centric. Each node connected to a Rule (via an Edge) or
contained elements of a Rule are transformed. All other elements are not relevant for the code
generation. Elements not being transformed can be necessary to support the understanding of
the behaviour of Π or can be redundant—unbound elements which do not support the under-
standing and have no influence on Π’s behaviour. As a VIDEAS Rule is powerful, but complex

10Information and download: http://www.eclipse.org/modeling/m2t/, last accessed: February 24,
2011

91

http://www.eclipse.org/modeling/m2t/


(many incoming and outgoing edges), (i) specific code generation procedures for fact and stan-
dard Rules are defined, and a separation of the code generation for head and body literals of a
Rule is required. (i) Fact Rules cannot be transformed like standard Rules as facts do not hold
any LiteralGatewayBody nodes. Variables pointing to LiteralGatewayHead nodes, therefore,
are unbound. Therefore, for each LiteralGatewayHead for each referenced ConstantGateway
a constant-specific head literal is generated in the textual representation. Standard Rules, how-
ever, are responsible for a set of constants and, therefore, involve Variables instead of particular
UnaryTransformationConstants. (ii) Head and body of Rules are symmetrically defined around
a Rule. However, the involve specific head or body specific classes which have to be accessed
and transformed. The produced code, therefore, is similar, but the processing requires a differ-
entiation. The separation of code generation around the dimension of head and body literals
is even more necessary for providing the opportunity of adding specific transformation strate-
gies, e.g., restrictions, in the future. All four blocks obtainable from these two dimensions are
technically established by two Xtend files: Extensions and GeneratorExtensions. Extensions are
used to simplify the access to certain model elements, e.g., accessing the container element of
a Rule—the DesignModel. The GeneratorExtensions are responsible for supporting the busi-
ness logics for often reused code sections. Such often reused code sections are defined in the
GeneratorExtensions and are then called at multiple locations in the MainTemplate file. This
separation improves the readability of the transformation code and is, therefore, essential for the
maintainability of the generator.

Moreover, the generated code is normally not well-formatted. For this purpose, so called
beautifier are used that remove unnecessary white spaces and line breaks. As M2T out of the
box only provided a beautifier for XML and for Java, a answer set program specific beautifier
had to be written. VIDEAS, therefore, provides a simple beautifier called VIDEASBeautifier.
This beautifier removes all line breaks which are no direct successors of dots and tokenizes each
such a way hat each block is only separated by a single whitespace. A direct integration of
the VIDEASBeautifier in M2T was not implemented in the initial version of the VIDEAS code
generator. The resulting code, beautified with the VIDEASBeautifier, is executable with S and
returns answer sets of Π.

6.3 Summary

The proposed approach is named VIDEAS. For this approach two main prototypical contribu-
tions were given: (i) The graphical model editor, and (ii) a code generator. (i) The basis for the
graphical model editor is defined by the VIDEAS metamodel. Several features are integrated
in this metamodel such as the support of programs using logic of unconstrained arity, and some
additional features presented in Section 9.2. (ii) From graphical models defined by the graphical
editor code can be generated using the VIDEAS code generator which is optimized for DLV. In
particular, two generators are given: One is optimized for unary logic programs providing the
advanced features of the VIDEAS metamodel, the second represents a generator of the basic
elements of n-ary logic programs.
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CHAPTER 7
Evaluation

This section aims for evaluating the previously presented approach and its prototypical real-
ization by examples. For this purpose, two answer set programs are given as exemplary usage
scenarios—a unary logic and a binary logic program. Both represent typical answer set programs
of the ASP literature. The binary logic example, however, is used to involve the suitability for
more sophisticated real world scenarios which often cannot be expressed with the limited ca-
pabilities of unary logic programs. These examples are both visualized in VIDEAS and then
evaluated in these two categories: (i) Visualization and (ii) generated code.

7.1 Usage Scenarios By Example

Two typical examples are chosen to allow the evaluation of the introduced approach. First, a
simple unary logic program (named Penguins-Cannot-Fly problem in this thesis) is given which
answer the question with animals can fly. Especially, the non-flying penguins are considered as
special case. The second example (3-Coloring-Problem [26]) represents one of the first NP-hard
problems that has been published. This example, moreover, contains binary predicates.

Unary Logic

The simple Penguins-Cannot-Fly-Problem—as it is named in this thesis—is simple problem that
tries to identify which birds can fly. This exemplary program ensures that penguins are birds that
cannot fly, but all other birds are able to fly (this is naturally not transferrable to the biological
context). This behaviour is achieved in three rules (two facts and two standard rules). The facts
are used to setup the used interpretation. In particular, the two birds tweety and pingu are con-
sidered. The constant pingu represents a penguin which, therefore, cannot fly. The standard rule,
however, provides the main behaviour of this program. Only birds are considered—bird(X)—
which are not knowingly penguins—not penguin(X). These two conditions are represented as
body literals. For all birds which are no penguins the rule is applied and the head literal fly—
fly(X)—is added to the answer set.
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The stated solution for the Penguins-Cannot-Fly-Problem is based on the answer set program
of Equation 7.1. Each application of facts for a Constants, is represented as own rule. The more
constants are added to this solution for the Penguins-Cannot-Fly-Problem, the more textual rules
are necessary. As two Constants for bird are used, the two facts r1 and r2 are necessary.

Π7.1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r1 ∶ bird(tweety) ← .

r2 ∶ penguin(pingu) ← .

r3 ∶ bird(X) ← penguin(X).
r4 ∶ fly(X) ← bird(X), not penguin(X).

(7.1)

Graphically, this problem is shown in Figure 7.1, which involves the following nodes and
edges. For the sake of readability the figures have been digitally reworked. The rules r1 and
r2 can be visualized as single fact rules which hold ConstantGateways for each matching Con-
stant—tweety for r1 and pingu for r2 (cf. Figure 7.2). The graphical notation, therefore, only
requires the assignment of a new ConstantGateway in lieu of additional independent rules as in
the textual representation.

pingu tweety penguinbird fly

X

1

Rule        r1

tweety

1

Rule        r2

1

Rule        r4X

bird

bird

not

penguin

penguin

flytweety

1 1

1

Rule        X

bird

r3

penguinpingu

pingu

tweety

pingu

Figure 7.1: The graphical visualization of the Penguins-Cannot-Fly-Problem
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To allow the construction of an entire ASP program (cf. Figure 7.1), elementary nodes have
to be visualized as well. In Figure 7.2 Variables (i.e. X) are shown as orange boxes, Predicates as
purple boxes (i.e. penguin, bird, and fly), and Constants as green boxes (i.e. pingu and tweety).

Variables

PredicatesConstants
pingu tweety penguinbird fly

X

Figure 7.2: The visualization of the elementary nodes of the Penguins-Cannot-Fly-Problem
program

From the facts shown in Figure 7.3 and Figure 7.4 a set of ESR−Add. edges—visualized
as dotted blue edges—or ESR−Subtr. edges—visualized as dotted red edges—can target other
nodes.

Variable
gateway

Rules

r1: bird(tweety)←.

r2: penguin(pingu) ←.

Constant
gateways E_SR-Subtr.E_SR-Add.

1

Rule        r1

tweety

1

Rule        r2

bird penguinpingu

Figure 7.3: The visualization of the facts of the Penguins-Cannot-Fly-Problem program

The standard rule r4 which assures that only birds which are no penguins can fly described
in detail in Figure 7.5. This rules inspects the birds tweety and pingu from rule r1 and r3, and
excludes all penguins from being processed (pingu provided by rule r2).

Binary Logic

The second problem is named 3-Coloring-Problem. It represents a restriction of the Graph
Coloring Problem discussed in Section 9.2 to three constant colors. This example allows to
highlight the variable interactions, the necessity of ordering labels and to provide a more realistic
usage scenario. Basically, this problem aims for coloring vertices vtx in such a manner that
neighboring vertices do not hold the same color. This usage scenario requires the following
rules:
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1

Rule        X

bird

r3

penguinpingu

pingu

r3: bird(X)← penguin(X).

bird(X)

penguin(X)

penguin(pingu)

bird(pingu)

Figure 7.4: The visualization of the facts of the Penguins-Cannot-Fly-Problem program

1

Rule        r4X

bird
not

penguin

flytweety

1 1

tweety

r4: fly(X) ← bird(X),
not penguin(X).

not penguin(X)bird(X)
constant specific
simulation

fly(X)

Figure 7.5: The visualization of a standard rule of the Penguins-Cannot-Fly-Problem program

Π7.2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1a ∶ edge(b, a) ← .

r1b ∶ edge(c, a) ← .

r2a ∶ vtx(a) ← .

r2b ∶ vtx(b) ← .

r2c ∶ vtx(c) ← .

r3 ∶ chlrd(V, red) ← not chlrd(V, green), not chlrd(V, blue), vtx(V).
r4 ∶ chlrd(V, green) ← not chlrd(V, red), not chlrd(V, blue), vtx(V).
r5 ∶ chlrd(V, blue) ← not chlrd(V, green), not chlrd(V, red), vtx(V).
r6 ∶ ← edge(V, U), chlrd(V, C), chlrd(U, C).

(7.2)
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One possible solution for the stated problem is shown in Equation 7.2. It represents the
underlying basis for the VIDEAS visualization. The rules r1 and r2 represent the facts for the
constants a, b, and c. The rules r3 to r5 are responsible for the initial coloring (chlrd) for the
vertices (vtx). The rule r6 is the constraint with empty head that removes inconsistent solutions.

b c

red green blue

a b c

edge vtx chlrd

C U V

edge

1 2

Rule        r1

a

Rule             r2

vtx

Rule             r3V

chlrd

1

2

Rule        r6UV C

chlrdchlrdedge

1 2 1 2 1 2

...

a b

c

X

1

red

vtx chlrd

11

chlrd
not

Rule             r4V

chlrd

1

2

red

vtx chlrd

11

not
chlrd
not

Rule             r5V

chlrd

1

2

red

vtx chlrd

11

not

1

2

1

not

2

2 2 2

chlrd
not

1

2

Figure 7.6: A non-disjunctive graphical visualization of the 3-Coloring-Problem

The details of the program behaviour are explained with the assistance of a VIDEAS model
(cf. Figure 7.6). The fact rule r1 provides two edges: Edge(b,a) and Edge(c,a). These edges
are realized by adding a LiteralGatewayHead with the expression edge which is assigned to two
VariableUsages as arguments. The constants b and c are assigned to the first VariableUsage re-
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ferring to the Variable U. The second argument refers to the Variable v which is addressed by the
constant a. These edges represent connections between certain vertices named vtx. Therefore,
a, b, and c are defined as vertices in rule r2. The rules r3 to r5 represent the main functionality
of this solution. Unfortunately, the required ConstantUsageBoxes and the contained Constant-
Gateways could not be added to the graphical representation of Figure 7.6 as a result of a GMF
related technical issue. Adding any further element could not be realized which could reflect a
technical boundary of GMF at the moment of writing. In particular, a GMF has only been pos-
sible to visualize a maximum number of elements placed on the canvas—other elements have
been ignored. Nevertheless, these three rules provide an initial coloring of each vtx for which
none of the other two colors was assigned. For this purpose, the three constants red, green, and
blue are used as the three color values. They are directly used as arguments of the literal chlrd
which proves or sets the coloring. Each of the three rules sets the color of an uncolored vtx to
one of these constant colors. As this coloring process from rule r1 to r5 only guarantees that
all constants satisfying vtx are colored in one particular color, it has to be checked in constraint
rule r6 if the colors are the same as for a neighboring vtx. Two vertices are neighbors if they
are connected by at least one edge. For this purpose, the rule r6 consumes all edges bound to
the variables V and U. If the vertices matching to V or U, respectively, have the same color
expressed by variable C, the potential answer set is no valid answer set and has to be removed.

This example clearly demonstrates the complexity increase and technical boundaries of this
visualization approach. A lot of information is packed on a very small canvas. Several crossings
or close placements of connections are necessary to allow the graphical representation in the
actual visualization approach. For this purpose, the stated solution for the 3-Coloring-Problem
is modified by using disjunctive rules. This modification reduces the number of rules and their
Edges (cf. Equation 7.3).

Π7.3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1a ∶ edge(b, a) ← .

r1b ∶ edge(c, a) ← .

r2a ∶ vtx(a) ← .

r2b ∶ vtx(b) ← .

r2c ∶ vtx(c) ← .

r3 ∶ chlrd(V, red) ∨ chlrd(V, green) ∨ chlrd(V, blue)
← vtx(V).

r6 ∶ ← edge(V, U), chlrd(V, C),
chlrd(U, C).

(7.3)

The rules r3 to r5 of Equation 7.2 are simplified to the single disjunctive rule r3 which
expresses the same behaviour as the original rules. In the visualization (cf. the screenshot of
Figure 7.7) the rules r1a to r2c (cf. Figure 7.9), and the rule r6 (cf. Figure 7.11) remain identi-
cally. The disjunctions of rule r3 (cf. Figure 7.10) are visualized by using KnowledgeSpaces for
each LiteralGateway for chlrd. Each of these disjunctively connected LiteralGateways is used
to express one constant color, e.g. red.
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Figure 7.7: A disjunctive graphical visualization of the 3-Coloring-Problem

Predicates
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a b c
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C U V Variables

Figure 7.8: Visualization of the elementary nodes of the disjunctive 3-Coloring-Problem pro-
gram

99



The elementary nodes of this visualization for program Π7.3 are shown in Figure 7.8. In
particular, the constants red, green, blue, a, b, and c in the form of green elementary nodes
are placed on the canvas. Furthermore, the predicates edge, vtx, and chlrd are shown as purple
elementary nodes. The variables of the program—i.e. V, U, and C—are visualized by orange
elementary nodes.

r1a: edge(b, a) ←.
r1b: edge(c, a) ←.

r2a: vtx(a) ←.
r2b: vtx(b) ←.
r2c: vtx(c) ←.

b c

edge

1 2

Rule        r1

a

Rule             r2

vtx
a b

c

1

Figure 7.9: Visualization of the fact rules of the disjunctive 3-Coloring-Problem program

r3: chlrd(V, red) ∨ chlrd(V, green) ∨ chlrd(V, blue) ← vtx(V).

Rule             r3

vtx

V

chlrd chlrd chlrdred blue

1

2

1 1

2

2

a b

c

green

Figure 7.10: Disjunctive rule for a visualization of the 3-Coloring-Problem

The five fact rules of program Π7.3 are visually aggregated to the two comprehensive rules
1 and 2 (cf. Figure 7.9). This is achieved by referencing the constants a, b, and c to two
constant-independent rules. A disjunctive standard rule is shown in detail in Figure 7.11. In
this visualization three knowledge spaces are used holding one head literal each, e.g., chlrd(V,
red). A special case is comprised in the constraint rule r6 which uses the predicate chlrd as two
literals (cf. Figure 7.11). These literals check if two different vertices matching variables V and
U have the same color—this is ensured with variable C. Additionally, it is checked if an edge
from constants matching V to constants matching U exists.
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r6: ← edge(V, U), chlrd(V, C), chlrd(U, C)

Rule        r6UV C

chlrdchlrdedge

1 2 1 2 1 2

X

Figure 7.11: Constraint rule for the visualization of the disjunctive 3-Coloring-Problem pro-
gram

7.2 Visualization

The visualization capabilities of VIDEAS are evaluated in three categories: (1) The complexity,
(2) the quality, and (3) its ability to support analysis. Each of these categories is evaluated in
respect to the stated usage scenarios.

Complexity

The complexity of a graphical VIDEAS model relates to the number of used rules and their
interrelations. The number of added Constants, however, only has a minor influence on the
visualization complexity. Of high importance for the involved complexity are the defined Liter-
alGateways of the rules. The more LiteralGateways a rule uses the more likely is an interaction
with other rules. Therefore, LiteralGateways have to be connected with a rule and, furthermore,
can share or receive information from other rules.

For the Penguins-Cannot-Fly-Problem shown in Figure 7.1 44 elements are necessary to
express the underlying answer set program. These 44 elements contain three rules, five Liter-
als, and two Constants. For the 3-Coloring-Problem of Figure 7.6 more than 144 elements are
necessary from which 6 are rules, 17 are Literals, and three are Constants. The 144 elements
represent the actually shown elements. However, the Constants of the rules r3 to r5 could not be
added to the diagram (resulting from the GMF implementation boundaries). The simplified vari-
ant shown in Figure 7.7 reduces the effort to 97 elements including all ConstantUsageBoxes, but
not involving an arbitrary combination of ConstantGateways in a state. The adding of a further
graphical element increases the complexity by a specified value range. Such a range is for exam-
ple [2, 2+SR_Edgesin/SR_Edgesout] for a LiteralGateway. This range is mainly influenced
by the number of Edges sharing information with other rules. The more rule dependencies exist,
the more hidden information can be visualized and, therefore, requires more graphical elements.
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overall() ∶
elementaryNodes() + rules()

elementaryNodes() ∶
∣Literals∣ + ∣Constants∣ + ∣V ariables∣

literalGtws(rule r) ∶
∣LiteralGateways∣ + ∣KnowledgeSpaces∣ + ∣D_Edges∣+
+ ∣SR_Edges∣ + ∣SR_AS_Edges∣)

constantUB(rule r) ∶
∣ConstantUsageBoxes∣ + ∣ConstantGateways∣+
+ ∣D_Cons_Edges∣ + ∣SR_Cons_Edges∣ + ∣KS_Edges∣

rules() ∶

R +
R

∑
r=1

(∣V ariableUsage∣ + (∣ConstraintBoxes∣+

+ ∣Constraints∣) + literalGtws(this)+
+ constantUB(this))

(7.4)

A more general description of the VIDEAS complexity is shown in Equation 7.4 as pseudo
code returning the number of required elements on the canvas. The function overall provides
the complexity of Π based on two functions elementaryNodes() and rules() (for R rules con-
tained in Π). The function elementaryNodes() establishes the elementary nodes reused by other
elements: Literals, Constants, and Variables. The function rules() represents the rule-centric
elements of Π. These elements are the rule itself, the contained VariableUsages, the Literal-
Gateways (including the KnowledgeSpaces they may depend to), the ConstantUsageBoxes and
their containments, as well as optionally a ConstraintBox with a number of Constraints. The
complexity calculations of LiteralGateways and ConstantUsageBoxes are placed in the func-
tions literalGtws() and constantUB() respectively.

This pseudo code is used to demonstrate that the definition of rules is critical for the com-
plexity of Π. Furthermore, it supports the analysis from the two exemplary usage scenarios of
this section by highlighting the complexity of LiteralGateways in comparison to ConstantGate-
ways. As a consequence, the adding of new rules is critical for the complexity of the visual
representation of Π as it involves many related elements. LiteralGateways with their number
of direct relationships are the critical elements of a rule. Therefore, both elements are dispro-
portionately responsible for complexity increases of the overall graph and, therefore, have to
be reduced, if possible. For this purpose, only a beneficial subset of the number of rules of Π
should be visualizable as well.

Although in this section additional effort for visualization is discussed, the provided per-
spective on ASP programs may be a valuable asset in designing and analyzing programs. The
visualization allows the developer to set the focus on design issues rather than on implementation
details. In particular, this allows the concentration on program design decision only, eliminat-
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ing the effort for program code specific decisions in the software development. Moreover, this
perspective may only be applied by developers, whenever classical ASP software development
techniques have proven to be inefficient.

Quality & Environmental Boundaries

The graphical model provides a single artifact visualizing the behaviour of Π. In the code this
behaviour is spread over a set of rules. Their interrelations are not directly specified in the code,
but are clearly visible in the graphical model (cf. Figure 7.1 and 7.6). This graphical model is,
therefore, able to highlight which LiteralGateways are potentially violating a constraint rule, is
sharing information with other rules, or is preventing the execution of successor rules. This new
perspective on Π is the most essential asset provided by VIDEAS. Moreover, the design-specific
issues are decoupled from their code by making use of an abstract visualization which allows
the focussing on essential elements and, therefore, advocates the focussing on essential deci-
sions regarding the behaviour of Π. The complexity of understanding a solver-specific syntax
is removed and, therefore, allows a design process which is independent of particular textual
notations. This is a further asset for the interoperability of Π.

Each used element is clearly labeled or can be recognized by comparing shapes and colors,
e.g., the literal gateway bird is labeled with “bird”. Furthermore, the rules as most essential
elements are visually set apart of all elements. This is a great asset in recognizing the behaviour
of Π. However, the visualization could be optimized such that semantical dissimilar elements
are visually separated even more effectively. Nevertheless, the produced graphical model can
be used for communicating the behaviour of Π and documenting it for further extensions or
maintenance work. In the professional software engineering sector the communicability and
ability to document a program, is already valued as highly important factor. So, it is essential
for answer set programs as well to support such features conveniently which can be addressed
by applying the VIDEAS approach.

The visualization is, however, hampered by the disproportionally growing visualization com-
plexity which challenges actual visualization techniques and the human capability of recogniz-
ing the essentials on the graph. In particular, problematic is the number of crossings and closely
placed elements. Such element placements increase the effort in recognizing interrelations of
elements described by Connectives. Furthermore, only a certain number of elements of a de-
fined size can be placed on the canvas in such way that they can be recognized at once. The
technical boundary of GMF’s capability of managing a greater number of graphical elements is
an additional drawback. It is, therefore, necessary to hide some elements placed on the canvas.
Another technical boundary of GMF is that the addition of elements sometimes is hindered by
some GMF bugs. Nevertheless, the capabilities provided by GMF allow the easy definition of
own graphical models such as VIDEAS. As GMF is a dynamically developed Eclipse project,
some of the stated issues are probably removed in future versions for which VIDEAS can be
adopted.

Another boundary of GMF is the problem of inconsistent visualizations. In particular, ele-
ments based on the same graphical definition are sometimes visualized differently in different
contexts. An element used as Compartment, e.g., LiteralGateways, is sometimes differently
visualized than as Top Node Link, although their visualization is defined identically. This hand-
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icap, however, does not strongly interfere with the ability to evaluate VIDEAS as done in this
section.

Analysis

For the analysis of the program Π three areas are inspected: (i) Recognizability of Π’s essen-
tials, (ii) the application of constraint rules, (iii) the recognition of similar patterns, and (iv) the
application of not-negations.

(i) The essential elements of Π are rules. These rules are easily recognizable in VIDEAS
(cf. Figure 7.6). Especially the dependencies of rules—from which rules they consume and
which other rules consume from them—are visualized in VIDEAS. These dependencies cannot
be directly shown in the textual representation and are, therefore, a very valuable additional
information for recognizing problematic or even erroneous elements of Π. Common pitfalls in
the design of answer set programs are often related to misspecification of such rule dependencies.
Such pitfalls can be identified by interpreting the Edges pointing to or from a rule to other
elements (cf. Figure 7.12).

Figure 7.12: Visual rule-centricity leading to a multitude of elements associated to rules

(ii) Constraint rules (cf. rule r6 Figure 7.6) consume inputs via special Edges. These Edges
demonstrate dependencies of head literals with constraint rules and, therefore, help to identify
why a constraint rule is violated for a particular set of data. This is a valuable asset, but optimally
such constraint rule applications could automatically highlight for which path a violation exist. A
highlighting of a violation has not been implemented yet. This, therefore, represents an intended
enhancement for the future.

(iii) The example of Figure 7.6 demonstrates that equivalences and similar patterns of rules
are highlighted by the usage of visual representations. The rules r3 to r5 are structurally similar
representing different cases. To optimize the capability of recognizing similar elements algo-
rithms could help to identify similar patterns. Furthermore, the disabling of uninvolved elements
could allow better communication of existing patterns.

(iv) The not-negation is represented in the graphical representation as subtraction of Liter-
alGateways and ConstantGateways. The subtraction of ConstantGateways from a set can be
identified in Figure 7.1 where in rule r0 all penguins are subtracted from the set of shared Con-
stantGateways as birds. This allows a good overview of actual states of Π and, therefore, sup-
ports the understanding of Π’s behaviour. Nevertheless, this step would be optimally supported
by automated constant forwarding mechanisms.
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7.3 Generated Code

The VIDEAS visualization of Figure 7.1 expressing the Penguins-Cannot-Fly-Problem can be
transferred back to a textual answer set program representation by running the code generator
UnaryTemplate producing code runnable in DLV (cf. Equation 7.5). Executing this code returns
a single answer set: {bird(tweety), bird(pingu), penguin(pingu), fly(tweety)}. The good perfor-
mance and the high output quality allow a seamless switching of Π’s representation which is a
key-factor for the applicability of VIDEAS.

Π7.5 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r1 ∶ bird(tweety) ∶ − .

r2 ∶ penguin(pingu) ∶ − .

r3 ∶ bird(X) ∶ − penguin(X).
r4 ∶ fly(X) ∶ − bird(X), not penguin(X).

(7.5)

The more complex example of Figure 7.7 can be transformed to answer set program code as
well. For this purpose, the n-ary code generator of the file NaryTemplate is used. This file is not
able to produce all language constructs. The result is shown in Equation 7.6 in an unmodified
DLV syntax.

Π7.6 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1a ∶ edge(b, a) ∶ − .

r1b ∶ edge(c, a) ∶ − .

r2a ∶ vtx(a) ∶ − .

r2b ∶ vtx(b) ∶ − .

r2c ∶ vtx(c) ∶ − .

r3 ∶ chlrd(V, red) v chlrd(V, green) v
v chlrd(V, blue) ∶ − vtx(V).

r6 ∶ ∶ − edge(V, U), chlrd(V, C),
chlrd(U, C).

(7.6)

In this equation, the facts are not generated which entails a necessity for code modifications
to allow an execution on solvers such as DLV. For this reason, the generation of facts represent a
required future enhancement of the proposed generator. However, both code generators strongly
increase the suitability and applicability for professional/academic usages or experiments. So,
they represent a useful advancement for VIDEAS and answer set programming in general.

7.4 Summary

The VIDEAS approach provides a new perspective on answer set programs, which allows the
focussing on the essentials. The recognition of misspecified rule dependencies or other common
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errors is better recognizable with VIDEAS. Even common patterns can be easier identified and
communicated. The solid code generation provides a good transition to executable answer set
programs. However, the visual representation and especially the technical environment shall be
optimized in future versions. The code generation requires further optimizations in terms of
support for higher arities, and is optimally complemented by a counterpart parsing answer set
program code to visualize VIDEAS models.
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CHAPTER 8
Lessons Learned: Usability

Enhancement

According the high visualization complexity of VIDEAS some usability enhancements are nec-
essary. Possible enhancement variants are briefly discussed in this section. This resulting ap-
proach is based on VIDEAS and is therefore named VIDEAS+. In lieu of applying these pro-
posed usability enhancements of VIDEAS+, alternative problem- or environment-specific op-
timizations could be valuable enhancements of VIDEAS+. However, in this thesis a general
usability enhancement is introduced.

8.1 Optimization Strategies

In particular, the following three main optimizations for the VIDEAS visualization are proposed
in this section to reduce the visualization complexity: (i) Redundancy minimization, (ii) decou-
pling of solver-specific capabilities, and (iii) hiding of implicitly expressed information.

(i) In VIDEAS, the redundancy of elements mainly expressed by the usage of gateway
nodes represents an asset in recognizing different sort of dependencies organized around ASP
rules. However, these redundancy non-linearly increases the visualization complexity while
adding new program statements. For this purpose, this redundancy is immolated by moving to
a resource-based perspective of ASP programs. Such resources are mainly predicates which are
used as literals in ASP rules. Each resource can be used 1 to n times, but is only placed once on
the canvas. For this purpose the usage modalities, e.g., negations, different cases or equalities,
have to be handled by transitions dedicated to a rule.

(ii) Another complexity issue of VIDEAS can be related to its intention of providing visu-
alizations closely related to the original program representation. On the one hand this is a great
asset as the dependencies of rules in the visualization are directly related to textual rules. On the
other hand visualizations integrating the capabilities of solvers or technical restrictions limit the
visualization power, if the relationship between ASP code or ASP solver and the visualization is
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too close. In particular, the usage of inheritance patterns and connectives might not be supported
by solvers, but allow a more compact representation in the visualization. Therefore the usage of
visualization-specific elements aggregating code elements is enforced in VIDEAS+.

(iii) Not all elements in a VIDEAS visualization are necessary for understanding the behav-
ior of an ASP program. Especially, the heavy usage of labels can be reduced by introducing
conventions. In VIDEAS+, the top-to-bottom and left-to-right reading of elements is introduced
as convention. This implies that the first element from the top-left of a graphical element, e.g.,
literal gateway, corresponds to the first, the very right element at the bottom to the last argument
of a textual code block, e.g., literal. Consequently, such a convention can also be used for the
naming of element such as variables. As each variable gateway is handled as usage of a unique
variable, the naming is irrelevant at the design-time of ASP programs. For this reason the vari-
able names can be randomly added when generating the ASP code. Each element, which is not
addressed by head and body literals, is unbound.

8.2 Visualization of Transitions

One crucial factor to realize these optimizations is the efficiency of the visualization of such
transitions. There are several possible options which are pointed out in Figure 8.1. Transitions
could be established by adding directed relationships—cf. (a) in Figure 8.1—from one predicate
to another or even one predicate attribute to another (based on the syntax of ER-diagrams).
However, such transitions are not applicable for expressing cases based on attribute conditions,
e.g., inequalities, and cannot be sufficiently visualize which relationships (edges) are dependent
on each other. Therefore, this visualization variant cannot express powerful ASP programs.

A puristic transition alternative based on a self-defined syntax is given in (b) of Figure 8.1.
In this variant, each line of a transition represents a case. These lines provide a set of term
gateways which can be shared be several cases or be used independently, e.g., chlrd(X, C) and
chlrd(Y,C) where chlrd(. . . ) are cases. The variables X and Y (represented as gateways) are
dedicated to one of these cases, and C (vertical box on the right of the transition) is a variable
which is used in the visualization of both literals. To reduce the number of edges a vertical
term gateway is introduced, which allows the specification of conditions with rule-wide scope,
i.e., X and Y are both elements of vtx independently of the case the depend to. These transi-
tions semantically represent cross-products of all instances—comparable to matching behavior
of graph transformations [44]—satisfying all conditions specified by this transition. As this im-
plies permutations of all instances consumed by each term gateway, are produced as result by
this transition, the semantics of such transitions is difficult to understand and hampers the ease
of program development.

A more comprehensible transition approach is provided by Colored Petrinets (CPN) [24]
which can clearly express value mappings by color patterns—cf. (c) in Figure 8.1. Each transi-
tion is fired (the rule is applied) whenever all body literals—represented by colored MetaTokens
(comparable to nodes)—pointing to this transition are satisfied. The transition then produces
a head literal—represented as colored MetaToken—to which an edge points to. To ensure that
only corresponding resources are consumed or produced, two-colored MetaTokens are necessary
ensuring this relationship within a Transition—this elements are directly target by predicates (a
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Figure 8.1: Several transition variants as usability enhancements for VIDEAS+

box is used representing complete instances of a predicate instead of instances of arguments).
Such two-colored MetaTokens hold the color of the literal—border color—and the argument
color—inner color. To reduce the MetaToken count, one-colored MetaTokens representing these
literals themselves which would be typically used by CPN were eliminated. Consequently, one
argument—e.g., the first—is set as mastering argument to which all others refer. The result-
ing transition behavior is simple and expressive, but still requires a multitude of two-colored
MetaTokens which strongly raises the visualization complexity.

For this purpose, a context-specific CPN variant is proposed which tries to establish the
bindings of literal arguments (cases) without the usage of two-colored MetaTokens—cf. (d) in
Figure 8.1. These bindings are realized by a visual band (cf. the relationships of edges are bound
in Figure 8.1) binding two consumptions (head literals) together. Furthermore, context-specific
primitive relationships such as inequalities or equalities can replace these sophisticated CPN
transitions for simple rule constellations. As this variant allows the visualization of sophisticated
ASP language features and offers primitive relationships to reduce the visualization effort, this
variant is chosen for VIDEAS+.
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8.3 Example

These three optimizations are shown in the example of Figure 8.2 which is based on the ASP
program Π8.1 which was visualized by VIDEAS in Figure 7.7. Arguments of predicates and
MetaTokens of transitions are unlabeled according the new implicit naming convention. The
usage of connectives—e.g., chlrd(. . . , red) ∨ chlrd(. . . , green) ∨ chlrd(. . . , blue), are enforced.
The resource-centricity is most obvious for the predicate chlrd where values are provided by
one transition (more different transitions could provide values as well) and consumed by other
transitions—independently of the applied values. The bound edges pointing from chlrd to the
constraint transition show the visualization of several literals of the same predicate—a case—
being consumed by a single transition. Edges being dependent on each other can have the same
color to allow an easier recognition, e.g., purple and brown in Figure 8.2. Equalities are enforced
by using the same MetaToken color which mean that the same value is consumed several times.
The usage of different colors states that different instances are used—to ensure their inequality
additional constraints can be specified for each transition.

Π8.1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1a ∶ edge(b, a) ← .

r1b ∶ edge(c, a) ← .

r2a ∶ vtx(a) ← .

r2b ∶ vtx(b) ← .

r2c ∶ vtx(c) ← .

r3 ∶ chlrd(V, red) v chlrd(V, green) v
v chlrd(V, blue) ← vtx(V).
r6 ∶ ← edge(V, U), chlrd(V, C),

chlrd(U, C).

(8.1)

It seems notable that the enforcement of language features simplifying the visualization,
i.e., connectives, has to be ensured by supporting techniques in the realization informing the
developer of possible simplifications.

vtx
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≠

X
red
green
blue

V

Figure 8.2: The 3-Coloring-Problem visualized by VIDEAS+
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As these transitions are not fully trimmed to the textually realization of rules, the generated
rules from the graphical model can differ according the capabilities of the solver the code is
optimized for. For this purpose, an assistance is necessary for superimposing rule patterns. In
Figure 8.3 such a rule pattern is provided for a non-disjunctive solver which therefore divides
the transition modeling a disjunction—red, green, and blue—into three non-disjunctive rules.
The constraint transition can be expressed by a single non-disjunctive rule. Resources involved
in transitions are only added to rule patterns, if only a certain configuration, e.g., blue, is part of
a particular rule.
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≠

X
red
green
blue

V

Figure 8.3: Visualizing rule patterns for a non-disjunctive solver with VIDEAS+
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CHAPTER 9
Conclusion

9.1 Summary

Over the last years answer set programming (ASP) has been responsible for a great impetus
of logic programming. However, the lack of interest in logic programming for professional
applications could not be tackled by ASP so far. This might be explained by the absence of a
sufficiently supported software development methodology.

For the purpose of counteracting the absence of such methodologies, innovative visualiza-
tion approaches supporting the conception, analysis, and debugging of ASP programs were pro-
posed in this thesis. First, a concept for non-deductive ASP programs based on ER-diagrams
was presented, which is capable of designing structural relationships and furthermore allows the
generation of facts and constraints for these facts. As this approach is not capable of visual-
izing program structures necessary to understand the program behavior and is not capable of
handling deductions, a more complex method is necessary. In the second step, these drawbacks
were therefore addressed by proposing an approach which allows the stepwise visualization of
deductions comprised in ASP programs. The approach was named VIDEAS and was realized in
a prototypical implementation with the usage of Eclipse EMF, GMF and M2T projects. This re-
alization includes a graphical diagram editor and a code generator. However, in the evaluation of
VIDEAS its complexity challenging modern visualization techniques highlighted the necessity
for further advancements. As a consequence, in a final step usability enhancements were under-
taken reducing the visualization effort of VIDEAS—this approach named VIDEAS+ provides
some ideas of possible enhancement scenarios and underline the applicability of visualization
approaches for ASP development purposes. Additionally, an outlook on advanced features such
as cardinalities, weights, and connectives is given in the following section.

113



9.2 Outlook on Advanced Features

Beyond the focus of visualizing basic features of deductive ASP programs Π (cf. Section 5),
some advanced language features can be integrated in the visualization approach as well. This
section gives a brief outlook on the introduction of such features. In particular (i) connectives,
(ii) cardinalities and weights, and (iii) inheritance patterns are inspected. Some of the listed
features are already integrated in the VIDEAS implementation.

Connectives

The connectives in ASP have an implicit and explicit nature. In this section, therefore, con-
nectives are considered from the perspective of implicit and explicit usages, as well as inter-
compatibility of connectives.

Connectives are explicit whenever a keyword or a graphical counterpart is required to ex-
press a connective relationship between two elements, e.g., in a or b the disjunction (or) rep-
resents an explicit connective. Conjunctions (∧/AND) and disjunctions (∨/OR) mainly allow
the differentiation, if literals can or cannot be applied within the same candidate answer set.
Recall, that each body literal is implicitly in a conjunctive relationship (only separated by com-
mas), whereas head literals are automatically in a disjunctive relationship (cf. Figure 9.1). This
implies that all body literals have to be satisfied to apply the rule comprising them.

Figure 9.1: The semantics of the implicit connectives in ASP rules

In ASP, the enforced disjunctions between head literals are explicitly noted. In addition to
these commonly used explicit disjunctions in ASP programs, explicit conjunctions could textu-
ally and visually extend the ASP concept as well. Explicit conjunctions are of high relevance
for other logics such as predicate logic, and therefore could find their way in ASP as well. Gen-
erally, ASP programs have a very restricted structure concerning the usage of connectives. The
VIDEAS approach provides the flexibility to model formulas of arbitrary structure in a holistic
manner. As a consequence a holistic visualization concept for unenforced, enforced, implicit
and explicit connectives is given in the following sections.

Visualization

Implicit or explicit connectives can be visualized by using knowledge spaces (new metamodel
class: KnowledgeSpaceBody (body literals) or KnowledgeSpaceHead (head literals)). Graphi-
cally all literals being placed in the same knowledge space are accessible at the same time by
successor rules. If no knowledge space is added to the graph, the implicit connectives—as in-
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troduced above—are used. Nevertheless, it is highly recommended to make use of knowledge
spaces to ensure the consistency of the visualization.

Figure 9.2: The accessible knowledge of ∨ and ∧ connected literals

Such knowledge spaces are visualized with the head literals L3 and L4 in Figure 9.2. On the
left side (a) two ∨ connected head literals are visualized. Both of these head literals are contained
in own knowledge spaces, which are visualized by a grey background for all connected literals
in the same space—in this case only one literal for each space. The same constellation with ∧
connected head literals is shown in (b) of Figure 9.2. The literals L3 and L4 share the same
knowledge spaces and are, therefore, both accessible for following rules. As both literals—L3
and L4—are required to be satisfied to apply rule r2, (a) requires different sources for L3 and/or
L4 to be somehow applied. To apply it for both constellations (L3 and L4 being consumed from
rule r1) both literals need additional sources. In the simplest case this is again a rule returning
L3∨L4. Further sources for L3 or L4 are not required in example (b) as both can be consumed
from rule r1. At this point it is again necessary to highlight that the constellation of example
(b) in Figure 9.2 does not show a syntactically correct ASP program, i.e., ∧ connectives are
unsupported.

Inter-Compatibility & Hierarchization. The introduction of connectives creates the opportu-
nity of nested connective usages producing extremely sophisticated formulas. As such formulas,
however, mostly do not directly correspond to ASP programs, they are only briefly sketched in
this section. Some inter-compatibility scenarios are introduced in Figure 9.3. For known solvers
only variants (a) to (c) are applicable. Variants (d) to (f) are nearby extensions that highlight the
extendability of the presented approach.
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Figure 9.3: The variations of ∨ and ∧ within an ASP rule

The variants (a) and (b) show semantically identical non-disjunctive literals—(b) uses an
additional knowledge space to ensure the visualization consistency. The variant (c) introduces
disjunctive literals with the example L1 ∨ L2. Both literals of (c) are in different knowledge
spaces and, therefore, cannot be used in the same successor rule at the same time. Conjunctive
literals are introduced in variant (d) where L1 and L2 share the same knowledge space.

These atomic connections can be combined to formulas which are then transferrable to dis-
junctive normal form (DNF) or conjunctive normal form (CNF). DNF encapsulates conjunctive
literals in disjunctions, e.g., (L1 ∧ L2) ∨ (L3 ∧ l4) (cf. (e) in Figure 9.3). Each ∧ connected
block (marked by the brackets) shares the same knowledge space—limiting the accessibility of
literals. As the blocks are ∨ connected, they do not share their space. In contrast the visualiza-
tion of CNF—(f) in Figure 9.3—is only possible by introducing a nesting of knowledge spaces
which hampers the ease of understanding. Consequently, a transformation to DNF is enforced.

Cardinalities & Weights

For a set of body literals of a rule, cardinalities (new metamodel class: Cardinality; cf. Fig-
ure 6.1) define a threshold of literals to be satisfied—the minimum and maximum number of
body literals, which have to be contained in the answer set—in order to apply the rule. Such
constraints are supported by solver extensions, e.g., for SMODELS [37].

The textual cardinality is expressed by a lower and an upper bound. Graphically cardinalities
have to be recognizable at a glance as well. For this purpose, they are directly visualized as
labels of knowledge spaces as shown in Figure 9.4—(b) to (d) highlight lower and upper bounds
(e.g., [2,3] represents the lower bound 2 and the upper bound 3). Weights (new metamodel
class: Weights) in contrast provide a decimal weight (class: WeightValue) for each body literal.
Whenever the sum of the weights of the body literals are greater than the lower bound or equal
(as decimal) and less or equal than the upper bound, the rule can be applied—cf. (e) to (h) of
Figure 9.4.

Another usage variant is offered by rule specific cardinalities and weights (cf. (a) and (e)
of Figure 9.4) which are not yet supported by solvers. A nesting of cardinality/weight blocks
(including rule specific cardinalities/weights) can allow a precise “factor weighting” of literals.
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Figure 9.4: Graphical cardinalities (a-d) and weights (e-h) for ASP programs

Two further modifications are necessary to visually support the usage of knowledge spaces
for cardinalities and weights. First, more than one constant usage box for consumed and pro-
duced constants have to be useable for each variable usage. Second, each constant usage box
refers to (at most) one knowledge space.

Extraction of Inheritance Patterns

Often answer set rules describe generally applicable patterns. In this section, one particular
pattern—the inheritance relationships describing inheritances of literals, e.g., all Cars are Vehi-
cles as well—is extracted from answer set rules. Inheritances are implicitly expressed in ASP
programs by using additional rules. To simplify such relationships in the visualization, inheri-
tances should be shown decoupled from other rules (cf. the relationship on the right of Figure
9.5). As a consequence aggregating edges (marked with a in Figure 9.5) can be used point-
ing from subliterals to superliterals. The resulting deductions are more directly applicable in
comparison to the previously introduced visualization (cf. on the left of Figure 9.5).

Technical Realization

Additional effort is required in the technical realization of VIDEAS in order to support the
presented advanced features. In particular, a set of further classes according the chosen advanced
features have to be added to the meta model (cf. Section 6) and have to be complemented by a
visual representation used in the graphical editor. Consequently, the code generators have to be
enhanced as well. In this thesis, the advanced features of cardinalities, weights, and connectives
are technically integrated in VIDEAS.

The graphical editor provides the capabilities to visualize all these advanced features. Even
the UnaryTemplate code generator could be adopted to match these proposed advancements. If
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Figure 9.5: Extracting general guilty patterns (inheritance) from rules

required by a solver, the code generator can ignore unsupported language concepts, e.g., cardi-
nalities and weights for DLV. The standard settings of the UnaryTemplate focuses on the capabil-
ities of DLV. Another possible optimization would be the generation of an intermediary format
program code (supporting all advanced language constructs), which is in a post-processing step
adopted to the specific capabilities of the used solver. This may be beneficial in order to allow
custom post-processors for a variety of solvers.

9.3 Future Work

This section is intended to introduce ideas for future extensions and approaches beyond the
boundaries of this thesis. First of all, it is highly important to add the actual ASP program
execution state in the visualization. This can only be achieved by integrating a solid solver,
e.g., DLV. Such a solver may help to highlight which constraint Rule is violated by which Con-
stantGateway on which path. It, moreover, allows the stepwise proceeding of the execution
and therefore provides intermediary states. In addition, the establishment of round-trips from a
textual answer set program Π via a graphical model back to a modified textual representation
of Π is another important required capability. At the moment the initial process from Π to its
graphical model is not automated. This, however, is essential to support the optimal integration
of VIDEAS in the ASP development and to allow a dynamic switching between representations.

Not only the generation of an initial graphical model should be automatable, but every step
which involves the forwarding of elements. In particular, ContantGateways are additively and
subtractively shared with a set of successor Rules. In the current prototype these ConstantGate-
ways have to be added to every ConstantUsageBox by hand although the abstract representation
already enables a forwarding. Furthermore, the identification of successor rules for LiteralGate-
ways can be automated.

To support the quality of ASP programs, used patterns should be highlighted. Furthermore,
some standard patterns could be integrated to the toolbar menu to allow the easy recreation of
patterns.
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To reduce the necessary elements on the canvas a differentiation of cases should be made
possible. In particular, the searching for constants can allow the generation of a set of graphs
which provide relevant perspectives on Π. Such a proceeding can be compared with WHYLINE
[49] for the programming language ALICE1 where “Why did?” or “Why didn’t” questions can
be asked. For VIDEAS this could be reinterpreted by asking questions like “Why was a literal
[not] part of this/any answer set?” or “Why was an answer set with the literals L1, . . . , LN [not]
returned?” (or formally denoted by “Why did Π ⊭as {[Lit1](. . . ), . . . , [LitN ](. . .)}?”). This
could provide a backwards debugging mechanism, which builds an explanatory visualization of
related elements of Π from targeted error origins.

Finally, the sketched usability enhancements require further conceptual deepening assisted
by empirical user studies, and an initial practical realization. Such enhancements are crucial for
reducing the visualization complexity and are therefore essential for allowing a fast recognition
of (erroneous) program behaviors.

1Information and download: http://www.alice.org/, last accessed: February 24, 2011
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