

Technische Universität Wien
A-1040 Wien ! Karlsplatz 13 ! Tel. +43-1-58801-0 ! www.tuwien.ac.at

Survey and Taxonomy of

Autonomic Large-scale Computing

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Gabriel Kittel
Matrikelnummer 9027972

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung

Betreuer: Univ.-Prof. Dr. Schahram Dustdar
Mitwirkung: Univ.-Ass. Mag. Dr. Ivona Brandic

Wien, 29.09.2010

 (Unterschrift Verfasser) (Unterschrift Betreuer)

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Gabriel Kittel
Eduard-Sueß-Gasse 8/5
1150 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die
Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen
Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden
Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 29.09.2010 _______________________
 (Unterschrift Verfasser)

Contents

1 Introduction 15
1.1 Motivation . 16
1.2 Problem field . 17

1.2.1 Grid computing . 18
1.2.2 Cloud computing . 19
1.2.3 Autonomic computing . 20

1.3 Research issues and scientific contribution 20
1.4 Organization of the thesis . 21

2 Related Work 23
2.1 Taxonomies of grid computing . 23

2.1.1 Taxonomy of grid resource management systems 23
2.1.2 Taxonomy of market-based resource management systems . . . 28
2.1.3 Resource submission taxonomy 32
2.1.4 Taxonomy of data grids . 32
2.1.5 Taxonomy of grid monitoring systems 35
2.1.6 Taxonomy of desktop grids . 37
2.1.7 Taxonomy of grid applications 38
2.1.8 Taxonomy of grid workflow management systems 39
2.1.9 Taxonomy of grid workflow verification and validation 41
2.1.10 Taxonomy of grid workflow scheduling 42
2.1.11 Taxonomy of grid computing security 44

2.2 Taxonomies of cloud computing . 46
2.2.1 Virtual machine taxonomy . 46

2.3 Autonomic computing taxonomies . 47
2.3.1 Taxonomy for system adaptation 47
2.3.2 Compositional adaptation taxonomy 48
2.3.3 Taxonomy of dependable and secure computing 49

3 Concepts and terminology 53
3.1 Grid computing . 53

3.1.1 Grid architecture . 54
3.1.2 Reference projects . 56

3.2 Cloud computing . 60
3.2.1 Cloud ontology . 61
3.2.2 Cloud architecture . 63

5

3.2.3 Reference projects . 64
3.3 Autonomic computing . 68

3.3.1 Defining characteristics of an autonomic system 69
3.3.2 Architecture of an autonomic system 70
3.3.3 Adoption of autonomic systems 74
3.3.4 Reference projects . 75

4 Survey and taxonomy of autonomic large-scale computing 81
4.1 Survey of autonomic large-scale computing projects 81

4.1.1 Grid resource managers and schedulers 81
4.1.2 Desktop grids . 83
4.1.3 Other grid middleware . 86
4.1.4 Cloud computing systems . 90
4.1.5 Quality of service frameworks 93
4.1.6 Workflow management systems 96
4.1.7 Development frameworks . 101

4.2 Taxonomy of autonomic large-scale computing 105
4.2.1 Approach for building a taxonomy 105
4.2.2 Self-management areas in large-scale computing 106
4.2.3 Approaches in autonomic large-scale computing 120

5 Catalog of autonomic large-scale computing projects 129
5.1 Project information . 129
5.2 Project classification within the taxonomy 131

5.2.1 Area of autonomic large-scale computing 131
5.2.2 Autonomic computing approach 137
5.2.3 Autonomic approaches by large-scale computing areas 140

5.3 Results of the classification . 143

6 Conclusions and future work 145

6

List of Figures

1.1 Google search trends for clusters, grids, and clouds 19

2.1 Taxonomy of grid systems [113] . 24
2.2 Resource management system model [113] 25
2.3 Taxonomy of grid resource management systems (adapted from [113]) 26
2.4 Scheduling in grid resource management systems (adapted from [113]) 27
2.5 Categorization of market-based resource management systems [188] . . 29
2.6 Taxonomy of data grids (adapted from [182]) 33
2.7 Taxonomy of grid monitoring systems (adapted from [193]) 36
2.8 Levels of grid monitoring [193] . 36
2.9 Taxonomy of desktop grids (adapted from [184]) 37
2.10 Taxonomy of grid applications (adapted from [168]) 38
2.11 Taxonomy of workflow management systems (adapted from [192]) . . . 39
2.12 Taxonomies of grid workflow verification and validation [49] 41
2.13 Taxonomy of grid workflow scheduling (adapted from [187]) 43
2.14 Taxonomy of grid computing security [47] 45
2.15 Taxonomy of virtual machines [164] 46
2.16 Taxonomy of compositional adaptation (adapted from [127]) 48
2.17 Taxonomy of dependable and secure computing [23] 50

3.1 Sharing relationships within virtual organizations [71] 54
3.2 Grid architecture [71] . 55
3.3 Globus toolkit architecture [68] . 57
3.4 Layered grid architecture integrating Globus and Alchemi [121] 59
3.5 NAREGI grid middleware stack [125] 60
3.6 Layers within a cloud ontology [190] 62
3.7 High-level cloud architecture [41] . 63
3.8 Autonomic element with control loop [104] 70
3.9 Knowledge representation policies [108] 72
3.10 The autonomic computing adoption model [100] 75
3.11 System model for autonomic power management [124] 77
3.12 FOCALE autonomic management element architecture [106] 78

4.1 InteGrade’s intra-cluster architecture. [81] 84
4.2 AutoMAGI architecture and deployment model [157] 87
4.3 Self-healing with MDD and the Näıve Bayes Classifier [54] 91
4.4 Reference grid environment for service composition [14] 94

7

4.5 GWFE reputation-based dependable scheduling architecture [152] . . . 97
4.6 JOpera workflow engine architecture [93] 98
4.7 ASSIST parallel module (parmod) [9] 102
4.8 Taxonomy of self-management areas 107
4.9 Taxonomy of application management 108
4.10 Taxonomy of quality of service management 111
4.11 Taxonomy of resource provisioning . 112
4.12 Taxonomy of autonomic resource management 114
4.13 Taxonomy of autonomic scheduling . 115
4.14 Taxonomy of autonomic schedule modification 117
4.15 Approaches in autonomic large-scale computing 120
4.16 Taxonomy of agents in autonomic large-scale computing 123
4.17 Taxonomy of optimization in autonomic large-scale computing 126

8

List of Tables

3.1 Cloud service layers covered by reference projects 65
3.2 Policy types in autonomic computing 73

4.1 Taxonomies represented by directed acyclic graphs 106

5.1 Project information for autonomic large-scale systems 130
5.2 Application management area . 132
5.3 Data management area . 132
5.4 Development area . 132
5.5 Quality of service area . 132
5.6 Resource management area . 133
5.7 Approach of autonomic large-scale computing 138
5.8 Areas of large-scale computing within approaches of autonomic computing141

9

Kurzfassung

Verschiedene Ansätze im Bereich der verteilten Systeme hatten bereits das Ziel, Rech-
nerkapazität als eine öffentliche Versorgungsleistung vergleichbar mit Wasser, Gas,
Elektrizität und Telefonie anzubieten. Cloud Computing ist der aktuellste dieser An-
sätze, bei dem virtuelle Rechnerinfrastruktur, Softwareentwicklungsplattformen und
Anwendungen nach Bedarf über das Internet bereitgestellt werden. Anbieter von Cloud
Computing wie Amazon und Google nutzen Virtualisierungstechniken in ihren beste-
henden Großrechenzentren, um Rechnerdienste im Rahmen eines Geschäftsmodells be-
reitzustellen, das auf ressourcenbezogenem Preismanagement basiert. Damit Unterneh-
men betriebsnotwendige Rechnerleistungen Cloud-Anbietern anvertrauen, muss jedoch
ein zuverlässiger Zugriff auf diese ausgelagerten Kapazitäten gewährleistet sein, der die
Zuverlässigkeit der bestehenden öffentlichen Versorgungseinrichtungen erreicht oder
sogar übertrifft. Um dieser Anforderung zu begegnen, versprechen Anbieter von Cloud
Computing eine Verfügbarkeit von 99,9 % oder höher. Während die Verfügbarkeit
von Diensten mit Hilfe etablierter Technik wie Hochverfügbarkeitsclustern und Proxy-
Rechnern zur Serverlastverteilung erreicht werden kann, setzt die Gewährleistung an-
derer wichtiger Dienstgüteparameter wie Antwortzeit oder Datentransferrate die lau-
fende Anpassung von Diensten und Rechnerinfrastruktur an sich ständig ändernde
Rahmenbedingungen wie Verfügbarkeit von Systemressourcen oder Anzahl von An-
fragen voraus.

Autonomic Computing ist ein Ansatz, um der aus der Dynamik von Änderungen
der Ressourcenverfügbarkeit und Systemlast resultierenden Komplexität der Syste-
madministration zu begegnen, indem Rechnersysteme entwickelt werden, die sich auf
Grundlage vorgegebener Richtlinien selbsttätig an sich ändernde Rahmenbedingun-
gen anpassen. Die Möglichkeiten dieser Selbstanpassung werden üblicherweise mit den
Begriffen Selbstkonfiguration, Selbstoptimierung, Selbstheilung und Selbstschutz be-
schrieben. Autonomic Computing wurde bereits im Bereich des Grid Computing ange-
wandt, das den gemeinsamen, organisationsübergreifenden Zugriff auf heterogene Sy-
stemressourcen über standardisierte Schnittstellen ermöglicht. Grid Computing wird
vorwiegend im wissenschaftlichen Bereich eingesetzt, um den verteilten Zugriff auf
Höchstleistungsrechner im Rahmen von organisationsübergreifenden, rechenleistungs-
intensiven Forschungsprojekten zu ermöglichen. Da Grid Computing üblicherweise
über lang laufende Aufträge (Jobs) im Stapelbetrieb genutzt wird, die oftmals die
Übertragung großer Datenbestände einschließen, ist deren zuverlässige Abarbeitung
trotz der Komplexität der organisationsübergreifenden Systemadministration in be-
sonderem Maße notwendig.

Das Projekt Foundations of Self-managing ICT Infrastructures (FoSII) an der TU
Wien beabsichtigt, die Unterstützung von Selbstmanagement in bestehenden service-

11

orientierten Architekturen, die den aktuellen Implementierungen von Cloud-Compu-
ting und Grid-Computing zugrundeliegen, zu verbessern. Ein strukturierter Überblick
über bestehende Projekte, die Autonomic Computing in Rechnersystemen großen Maß-
stabs wie Grids und Clouds einführen, und eine Taxonomie, die Klassifikationskrite-
rien für solche Systeme anbietet, würden es ermöglichen, den aktuellen Stand der
Forschung aufzubereiten, indem Kriterien vorgeschlagen werden, aufgrund derer An-
wendungsbereiche, Teilprobleme und Lösungsansätze in diesem Bereich identifiziert
werden können. Ein solcher Überblick mit Taxonomie existiert derzeit jedoch nicht.

Ziel dieser Diplomarbeit ist es, den aktuellen Stand der Technik im Bereich des
Selbstmanagements mittels einer Taxonomie des Autonomic Large-Scale Computing
systematisch zu untersuchen. Die Arbeit präsentiert einen Überblick über Projekte
und theoretische Arbeiten in diesem Bereich und schlägt eine Taxonomie vor, um das
Forschungsgebiet des Autonomic Computing in verteilten Systemen großen Maßstabs
zu klassifizieren. Sie identifiziert die Funktionsbereiche Anwendungsmanagement, Da-
tenmanagement, Entwicklung, Dienstgütemanagement und Ressourcenmanagement,
in denen Selbstmanagement im Rahmen von verteilten Systemen großen Maßstabs
bereits eingesetzt wurde. Weiters beschreibt sie auf Regelkreisen basierende, agenten-
basierende und proxybasierende Architekturen im Bereich des Autonomic Computing.

Die Anwendung dieser Taxonomie auf die in der Übersicht enthaltenen Projekte
ergibt einen Kriterienkatalog, der Forschungsschwerpunkte identifiziert, welche im au-
tonomen Ressourcenmanagement im Bereich von Grid-Systemen und im Dienstgüte-
management im Bereich von Cloud-Systemen liegen. Einige Projekte untersuchen be-
stimmte Teilaspekte autonomer verteilter Systeme großen Maßstabs, wie Optimierung
oder maschinelles Lernen. Überblick und Taxonomie erlauben es, den aktuellen Stand
der Forschung im Bereich autonomer verteilter Systeme großen Maßstabs zu bewerten
und ermöglichen dadurch weitere Fortschritte in diesem Bereich.

12

Abstract

In the area of distributed systems, several approaches have emerged with the objec-
tive to deliver computing power as a public utility like water, gas, electricity and
telephony. Cloud computing is the latest of those approaches where virtual comput-
ing infrastructure, software development platforms and applications are provisioned on
demand over the Internet. Cloud providers like Amazon or Google use virtualization
technology within their existing large-scale data centers in order to deliver comput-
ing services following a business model based on resource pricing. In order to have
organizations entrust mission-critical computing services to cloud providers, reliable
possibility of access to those outsourced capacities needs to be ensured which meets
and possibly exceeds the reliability of the existing public utilities. In order to address
this requirement, cloud operators promise 99.9 % or higher availability. While service
availability can be achieved using mature technology like high-availability clusters and
load-balancing proxies, a prerequisite for delivering quality of service related to other
attributes like response time or data transfer rate is the adaptation of services and
computing infrastructure to constantly changing environmental conditions like avail-
ability of system resources or number of service requests.

Autonomic computing is a computing paradigm that promises to deliver systems
adapting themselves to environmental changes by employing self-management mech-
anisms guided by policies as an effort to address the management complexity that
arises from the dynamics of resource availability and system load in large-scale com-
puting systems. Capabilities of autonomic systems are usually described by the prop-
erties of self-configuration, self-optimization, self-healing and self-protection. Auto-
nomic computing has previously been introduced to grid computing, which is a large-
scale distributed computing paradigm that allows sharing of heterogeneous computing
resources within a virtual organization using standard interfaces. Grid computing
is prevalent in the scientific domain, where high-performance computing resources
hosted at a research institution are made available for organizations participating on
computation-intensive research projects. Since the usual operation mode of grid com-
puting is to submit long-running batch jobs possibly involving the transfer of large
volumes of data, reliable completion of those jobs in spite of the system manage-
ment complexity resulting from the involvement of multiple organizations is a crucial
requirement.

The Foundations of Self-managing ICT Infrastructures project (FoSII) at TU Vienna
intends to enhance self-management support in existing service-oriented architectures
which provide the basis of current cloud computing and grid computing implementa-
tions. A survey of existing projects that introduce autonomic computing to large-scale
computing systems like grids and clouds, and a taxonomy that provides classification

13

criteria for that research field would allow to assess the current state of research by sug-
gesting criteria to help identify application areas, subproblems and approaches within
that field. However, such a survey and taxonomy have not yet been proposed to this
day.

The goal of this thesis is to systematically investigate the state of art of self-
management by providing a taxonomy of autonomic large-scale computing. It presents
a survey of projects and theoretical work in that field and proposes a taxonomy that
classifies autonomic large-scale computing. It identifies the functional areas of appli-
cation management, data management, development, quality of service management
and resource management where self-management has been applied in large-scale com-
puting projects, and the autonomic computing architectures of loop-based systems,
agent-based systems and proxy-based systems.

Applying the taxonomy to the surveyed projects results in a criteria catalog show-
ing that research focuses on autonomic resource management in grid computing, and
autonomic quality of service management in cloud computing, while several projects
explore specific autonomic system capabilities like optimization or machine learning in
large-scale distributed computing systems. Survey and taxonomy allow to assess the
current state of research in autonomic large-scale distributed systems, thus supporting
further advancements in the field of autonomic large-scale distributed computing.

14

1 Introduction

The vision that computing power will one day be a public utility like water, gas,
electricity and telephony has been perceived as early as 1969 [111]. Utility comput-
ing [153], where computing power shall be available to private and business consumers
on demand as a service, requires service providers to establish a massively scalable
infrastructure and mechanisms that allow the automated provisioning of resources ac-
cording to standards. Cloud computing is the latest large-scale computing paradigm
that promises to deliver the vision of utility computing by dynamically provisioning
computing resources based on service-level agreements established through negotiation
between service providers and consumers [41]. Cloud computing is related to the more
established paradigms of cluster computing [149, 36] and grid computing [69], since
all of these concepts provide access to high-performance computing resources. While
the packaging of software into services is a well-established technology, the potential
of providing computing power as a service currently is restricted due to a lack of dy-
namism and adaptivity in current service-oriented architectures. The Foundations of
Self-Governing ICT Infrastructure (FoSII) project [73] at TU Vienna currently inves-
tigates this research issue.

Autonomic computing [140] is a paradigm that promises to deliver self-managed
computing systems by providing mechanisms that allow self-adaptation of services in
reaction to changes in environmental conditions guided by high-level policies. Cur-
rently, several publications and projects exist with the goal to build autonomic large-
scale distributed computing systems. With a growing body of research, the need arises
for a taxonomy that allows to categorize concepts used in research, relates the newly
identified concepts to established concepts from other fields, and possibly allows the
identification of new research issues [80].

This thesis proposes a taxonomy of autonomic large-scale computing that identifies
common concepts and categories in that field in order to support the development
of self-managing systems in the field of utility computing and other related areas. A
survey of autonomic large-scale systems results in a catalog that identifies concepts in
autonomic large-scale computing established in current projects.

Section 1.1 further outlines the FoSII project and describes why the taxonomy of
autonomic large-scale computing is suitable to address the problems investigated by
that project. Section 1.2 provides background about the problem field the thesis
addresses by giving a short introduction to the concepts of grid computing, cloud
computing, autonomic computing, and other related concepts. Section 1.3 describes
the scientific contribution of this thesis which consists of a taxonomy and survey of
autonomic large-scale systems. Section 1.4 finally outlines the organization of the
thesis.

15

1.1 Motivation

Although cloud computing promises to deliver the vision of computing power as a
public utility besides water, gas, electricity and telephony, among the obstacles to
the acceptance of cloud computing [21] is reliability. In order to be accepted by the
public [147], reliability of cloud services needs at least to match, or possibly even
exceed reliability of the other public utilities.

Currently, public cloud systems like Amazon AWS [10] or Google Apps [83] promise
to deliver highly available and well-performing service backed by the reputation of
their data centers. However, for businesses to be willing to entrust their mission-
critical applications to a cloud provider, non-functional requirements like availability
and response time need to be guaranteed by specifying quality of service attributes and
formally establishing service-level agreements. Most public cloud providers issue SLAs
that guarantee availability and offer credit in case that availability cannot be achieved.
Although a high degree of infrastructure availability currently can be attained using
well-established and mature technology like redundant high-availability clusters and
load-balancing proxies, in order to take account of other QoS attributes like response
time or data transfer rate, systems need to adapt to dynamically changing patterns of
service usage. While it traditionally has been the task of system administrators to re-
configure systems in order to adapt to changing requirements, manual reconfiguration
is not feasible at cloud computing centers due to their size and complexity. Thus, large-
scale computing systems need to support self-adaptation to changing environmental
conditions without human intervention.

Self-adaptation of a single system can be achieved by introducing a system man-
agement component that collects information from the system and its environment,
decides if the system configuration needs to be changed based on that information
and applies configuration changes resulting from that decision back to the system. In
the case of distributed systems consisting of several interconnected nodes, each node
needs to employ its own management component, and the communication protocol
employed by the distributed system needs to provide a means for the management
components to exchange information. Contemporary cloud computing systems usu-
ally are based on web services, implementing a service-oriented architecture. However,
current service-oriented architectures lack support for self-adaptation, thus restricting
the possibilities for self-management.

The Foundations of Self-Governing ICT Infrastructures project (FoSII) [73] which is
conducted at TU Vienna addresses the problem of lacking dynamism and adaptivity in
current service-oriented architectures by developing methods for self-management and
communication between ICT (Information and Communications Technology) systems
with the goal to allow for delivering computing power as a service.

In order to achieve this goal, the FoSII project employs the paradigm of autonomic
computing [107], where systems adapt themselves in reaction to changes in their envi-
ronment in order to reach or maintain a state defined by a set of high-level policies is-
sued by human operators. Within the FoSII project, the autonomic computing model
is augmented by introducing self-governing principles that may improve or produce

16

the rules that are part of a policy. Currently, the project focuses on negotiation and
monitoring of service-level agreements (SLA), deriving high-level SLAs from low-level
system parameters, and on managing compliance requirements regarding security and
privacy.

Although there is already a growing body of work outside the FoSII project that
explores self-management in large-scale distributed systems, it has not yet been sys-
tematically investigated. A comprehensive survey of that work would allow to derive
a taxonomy providing a classification by criteria observed in the surveyed projects.
Such a taxonomy would allow to identify common patterns and methods for employ-
ing self-management in large-scale computing systems in order to advance the field of
autonomic large-scale computing and to support the introduction of autonomic large-
scale computing technologies in the FoSII project and other projects with similar goals.
However, a taxonomy on self-adaptation in large-scale distributed computing has not
yet been proposed to this day.

1.2 Problem field

Large-scale distributed computing investigates systems that exceed other available
systems in their ability to solve computing problems of a large size, handle large
amounts of data, or serve a large quantity of users. Compared with other systems
available in the same period they differ not in functionality but in scale. In this work
the term covers the interrelated paradigms of cloud computing and grid computing
which will be further outlined in the following sections. Other paradigms covered
by large-scale computing are high performance computing, volunteer computing, and
global distributed computing.

High performance computing or cluster computing [36] investigates computer sys-
tems that are equipped with extraordinary processing power compared with other
systems available at the time of their creation. A system type studied in high perfor-
mance computing are single high-performance computers called supercomputers which
are based on a custom architecture. Supercomputer architectures have employed vec-
tor register processors where single instructions operate on an array of data, and
massive parallel processing where many independent processors interconnected with
a high-speed network operate on the same task [24]. During the last two decades,
supercomputers have been challenged by clusters [60] consisting of a large number of
independent nodes, often commodity hardware, that are grouped together by cluster
software that supports inter-node communication by employing the message-passing
interface (MPI) [132]. High performance computing centers are often operated by sci-
entific institutions and nowadays usually support access to their resources by means
of another large-scale distributed system like a grid.

In volunteer computing [13], users contribute their idle computing resources to a
large-scale distributed computing system, mostly in a non-dedicated fashion. A com-
mon resource type in volunteer computing is the processing power of desktop comput-
ers during idle periods, where detection of those periods may be triggered by a screen-

17

saver application. Global distributed computing projects like SETI@home [12] use
those contributed computing resources to solve specific computation-intensive prob-
lems.

Short introductions to grid computing, cloud computing, and autonomic computing
are presented in Sections 1.2.1, 1.2.2 and 1.2.3, respectively, in order to provide a
background on the problem field addressed by this thesis.

1.2.1 Grid computing

Grid computing [69] is a special field of distributed computing that enables organiza-
tions to share resources like computing power, data, and storage in accordance with
policies and sharing rules [71]. Computing nodes available on the grid often are expen-
sive high-performance clusters that are shared on a cooperative basis within a scientific
community.

Grids allow the sharing of computational and storage resources, network resources,
code repositories, and database catalogs. Since potential consumers of these resources
often are located in a different control domain than the resources, the concept of a
virtual organization (VO) has been introduced. This concept allows physical organiza-
tions like universities or companies to enter or leave virtual organizations in accordance
with sharing rules established within the virtual organization, in order to participate
in joint projects.

The Open Grid Services Architecture (OGSA) [70] is based on a service-oriented
architecture and introduces the concept of grid services as an extension of web ser-
vices that allows to create, destruct and statefully invoke services on the grid. Other
concepts in grid computing include desktop grids, also called enterprise grids, that
allow to share the resources of idle desktop computers within an actual organization
or a virtual organization. Desktop grids provide special means to remove resources
from the grid when they are accessed by the local user of a desktop computer.

The usual mode of operation in computational grids is to submit a computational
job on the grid and later collect results. Jobs may be dependent on existing data
repositories, resulting in the need for providing information about how to access those
repositories. Some grids allow to submit scientific workflows consisting of multiple
interdependent jobs. Thus, resource management, scheduling, and workflow manage-
ment are important research topics within grid computing. Grid systems are optimized
to process jobs and workflows that contain very computation-intensive scientific cal-
culations with the need to access very large data repositories or streams of real-time
data.

Reference applications for grid computing include distributed aircraft engine di-
agnostics, earthquake engineering, management and analysis of distributed data in
astronomy, medicine and high-energy physics, in silico experiments in bioinformatics,
and enterprise resource management [69].

Section 3.1 gives a detailed introduction to the discipline of grid computing.

18

Figure 1.1: Google search trends for cluster computing (bottom), grid computing (mid-
dle) and cloud computing (top as of 2009) (adapted from [41])

1.2.2 Cloud computing

Cloud computing [41] allows data centers to offer computing resources based on inter-
connected virtualized computers to users on the Internet as a service. Key characteris-
tics of cloud systems include their massive scale, the single ownership, the deliverance
of services and provisioning of unified computing resources on demand, and the goal
of establishing service-level agreements. Current clouds are based on web services and
are commercially offered within a utility pricing model.

Cloud computing depends on the existing technologies of virtualization and cluster
resource management. Virtualization allows multiple virtual machines to be employed
on a single physical machine. Since each of the virtual machines provides an indepen-
dent operating environment secured from other virtual machines, this model allows to
offer computing services that are tailored to the individual needs of multiple customers
in cloud computing. Also, resource management is a crucial point for the success of
cloud computing, since service requirements of users change over time and service-level
agreements need to be met.

Buyya et al. [41] provide a comparison of cloud computing with the related paradigms
of grid computing and cluster computing. All of these distributed computing paradigms
allow to combine computational resources of multiple systems in order to provide re-
mote access to high-performance resources. However, while clusters usually group
together centrally owned and managed commodity computers in order to provide re-
sources that may be used within an organization, and grids interconnect high-end
computers including clusters belonging to different organizations using open standards
and supporting decentralized management, clouds combine commodity computers and
high-end servers with single ownership in order to provide resources in form of vir-
tual machines that are provisioned on demand. Figure 1.1 displays the Google search
trends for cluster computing, grid computing, and cloud computing in order to show
the popularity of the related paradigms over time.

Commercial services currently offered on the cloud include applications like Google
Apps [83] that allow to directly use applications, software platforms like the Google

19

App Engine [82] that offer an API against which applications can be developed, and
infrastructure offerings like Amazon Web Services [10] that provide direct access to
virtual machine images.

Section 3.2 gives a detailed introduction to the discipline of cloud computing.

1.2.3 Autonomic computing

Autonomic computing [107, 140] is a concept that introduces self-management ca-
pabilities to computing systems in order to reduce or possibly eliminate the human
intervention needed for maintaining those systems. It is related to the concept of au-
tonomous agents [74, 156] in allowing programs to self-adapt to changing environment
conditions. However, while an agent senses environment conditions and acts on these
conditions according to its own rules, the concept of autonomic computing proposes a
hierarchy of systems with self-management capabilities that act according to high-level
policies using a control loop.

IBM [99] envisions that autonomic computing will allow customers to specify high-
level business policies and have systems act according to those policies without the need
of human intervention. In order to achieve this goal, characteristics like self-awareness,
self-configuration, self-optimization, self-healing, self-protection, adaptation to the en-
vironment, interaction with other autonomic systems according to established stan-
dards, and anticipation of resource usage are defined.

The term autonomic computing has been chosen in order to stress the resemblance of
the concept with the functions of the autonomous nervous system of the human body.
The autonomous nervous system subconciously regulates bodily functions like blood
pressure and pulse in reaction to environmental variables like the outside temperature,
freeing the mind for pursuing higher-level tasks. In the same vein, autonomic systems
shall relieve data center operators from the burden of manually adjusting operational
parameters of individual computing systems, reducing their responsibility to the task
of formulating guiding policies.

Section 3.3 gives a detailed introduction to the discipline of autonomic computing.

1.3 Research issues and scientific contribution

This thesis contributes a comprehensive survey of autonomic large-scale distributed
computing, a taxonomy based on that survey which is to our knowledge the first tax-
onomy that specifically addresses the field of autonomic large-scale distributed com-
puting, and finally a catalog of autonomic large-scale distributed computing systems
classified by that taxonomy.

The survey of autonomic large-scale distributed computing intends to include all
work that investigates self-management in the disciplines of grid computing and cloud
computing. It provides a summary for each work describing overall functionality and
autonomic capabilities of each project.

20

Taxonomies, by providing a classification scheme based on the examination of ex-
isting items in a field, help to organize knowledge in that field, identify classes of
existing items and their prevalence and sometimes predict the discovery or creation of
new items [80]. Thus, taxonomies not only allow to systematically present the current
knowledge within a field, they also help to identify new research opportunities. If a
taxonomy is accepted within a research community, it also helps to standardize the
usage of terms and concepts, which is part of the maturing process of a research field.
A taxonomy based on a survey of current work in autonomic large-scale computing
systems thus helps to systematically present the current state of autonomic large-scale
computing, suggests a standardized use of terms and concepts, and possibly helps to
identify new areas in large-scale computing where self-management may be applied.

Finally, the thesis presents a catalog of autonomic large-scale distributed comput-
ing projects classified by terms and concepts established within the taxonomy, that
allows to correlate research issues in large-scale distributed computing and autonomic
computing methods addressing those issues.

1.4 Organization of the thesis

This section presents the structure of the thesis and summarizes the contents of the
following chapters.

Chapter 2 presents existing taxonomies related to the fields of grid computing, cloud
computing and autonomic computing as related work.

Chapter 3 describes concepts and terminology relevant to this thesis. It provides an
introduction to the topics of grid computing, cloud computing, and autonomic com-
puting and then introduces as reference some non-autonomic grid and cloud projects
and autonomic projects that explore other fields than large-scale computing.

Chapter 4 conducts a comprehensive survey of autonomic large-scale computing
projects and introduces the taxonomy of autonomic large-scale computing that has
been derived from that survey.

Chapter 5 presents a catalog of the surveyed autonomic large-scale computing sys-
tems. Here the taxonomy that has been derived from the autonomic large-scale com-
puting projects surveyed in Chapter 4 is reapplied to those projects in order to create
the catalog.

Chapter 6 finally presents the conclusions drawn from creating the taxonomy and
catalog of autonomic large-scale computing systems and suggests future work in the
field of autonomic large-scale computing.

21

2 Related Work

This chapter presents related taxonomies in the areas of grid computing, cloud com-
puting, and autonomic computing. Section 2.1 presents related taxonomies that are
concerned with aspects of grid computing. Section 2.2 introduces taxonomies that are
related to the area of cloud computing. Section 2.3 finally presents taxonomies related
to autonomic computing.

2.1 Taxonomies of grid computing

Within the field of grid computing, several taxonomies have already been proposed
that cover the field as a whole, subtopics of grid computing like resource management
or workflow management, or special concerns.

Section 2.1.1 presents a taxonomy of grid resource management systems [113]. Sec-
tion 2.1.2 introduces a taxonomy of market-based resource management systems [188].
Section 2.1.3 describes a taxonomy of resource submission [27]. Section 2.1.4 presents
a taxonomy of data grid systems [182]. Section 2.1.5 describes a taxonomy of grid
monitoring systems [193]. Section 2.1.6 presents a taxonomy of desktop grids [184].
Section 2.1.7 introduces a taxonomy for grid applications [168]. The next three sections
are concerned with grid workflow management, where Section 2.1.8 presents a taxon-
omy of grid workflow management systems [192], Section 2.1.9 describes a taxonomy of
grid workflow verification and validation [49], and Section 2.1.10 outlines a taxonomy
of grid workflow scheduling [187]. Finally, Section 2.1.11 presents a taxonomy of grid
computing security [47].

2.1.1 Taxonomy of grid resource management systems

Krauter et al. [113] present a survey and taxonomy of resource management systems
in grid computing in order to identify possible architectural approaches in grid re-
source management. The taxonomy consists of a grid system taxonomy, a resource
management taxonomy based on an abstract resource management system model, and
a taxonomy of scheduling and resource allocation.

The remainder of this section introduces the taxonomies of grid systems, resource
management, and scheduling, that together form the taxonomy of resource manage-
ment systems, and presents results from the survey of grid resource management sys-
tems.

23

A TAXONOMY AND SURVEY OF GRID RMS 137

computational
Grid

Grid systems

collaborative

data Grid

service Grid

high throughput

on demand

multimedia

distributed supercomputing

Figure 1. A Grid systems taxonomy.

platform model because the focus is on issues relevant to the designers of RMSs rather than issues
relevant to application and toolkit designers.

Several taxonomies for characterizing a distributed system are presented in References [8] and [9].
The EM3 taxonomy in Reference [8] classifies a heterogeneous computing system based on the
number of execution modes and machine models. An extended version of the taxonomy developed
in Reference [5] is also presented in Reference [8] to characterize the scheduling algorithms in
heterogeneous computing systems. Our taxonomy is focused on RMS design issues and thus differs
from the taxonomies presented in Reference [8]. The taxonomy presented in Reference [9] provides a
broad characterization based on the external interfaces, internal system design, class of hardware and
software resource support, and resource management issues. Our taxonomy of RMS is more detailed
than the one presented in Reference [9].

GRID SYSTEM TAXONOMY

The design objectives and target applications for a Grid motivate the architecture of the RMS. This
paper groups design objectives into three themes: (a) improving application performance, (b) data
access, and (c) enhanced services. Using these themes, Grid systems are placed into the categories
shown in Figure 1.

The computational Grid category denotes systems that have higher aggregate computational
capacity available for single applications than the capacity of any constituent machine in the system.
Depending on how this capacity is utilized, these systems can be further subdivided into distributed
supercomputing and high throughput categories. A distributed supercomputing Grid executes the
application in parallel on multiple machines to reduce the completion time of a job. Typically,
applications that require distributed supercomputing are grand challenge problems such as weather
modeling and nuclear simulation. A high throughput Grid increases the completion rate of a stream
of jobs and are well suited for ‘parameter sweep’ type applications such as Monte Carlo simulations
[10,11].

The data Grid category is for systems that provide an infrastructure for synthesizing new information
from data repositories such as digital libraries or data warehouses that are distributed in a wide area
network. Computational Grids also need to provide data services but the major difference between a
data Grid and a computational Grid is the specialized infrastructure provided to applications for storage

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

Figure 2.1: Taxonomy of grid systems [113]

Grid system taxonomy

Grid systems are grouped by their design objective, resulting in the categories of
computational grid, data grid, and service grid. The grid systems taxonomy based on
this categorization is shown in Figure 2.1 [113].

Computational grid systems are designed to improve application performance and
offer computational capacity for single applications that is higher than any of the
system capacities of the grid member systems. Computational grid systems are subdi-
vided into distributed supercomputing systems that are typically used for parallelized
computation of grand challenge problems in order to reduce job completion time. High
throughput systems on the other hand are optimized to increase the completion rate
of a stream of applications.

Data grid systems provide an infrastructure for data access and storage manage-
ment to applications, in order to allow extracting information from large-scale data
repositories. While some computational grid systems also implement their own data
management functionality, data grid systems provide a specialized infrastructure for
this purpose. Data grid systems are used for data mining purposes, in order to corre-
late information from various data sources.

Service grid systems provide composite services that are not provided by any single
machine on the grid. This category is subdivided into on-demand, collaborative, and
multimedia grid systems. On-demand service grids dynamically provide new services
composed from base services. Collaborative service grids enable real-time interaction
between users by providing a virtual workspace. Multimedia service grid systems
provide an infrastructure for real-time multimedia applications, requiring provisions
to support quality of service across multiple machines [133].

The survey indicates that most grid resource management systems fall into one of
the categories described above, since the development of a general-purpose grid system
supporting multiple or all of those categories is a hard problem.

Resource management taxonomy

The taxonomy of resource management systems is based on an abstract model shown in
Figure 2.2 [113]. The model is based on a multilayer resource management system that
allows to interconnect schedulers at different levels and provides four interfaces and

24

several functional units. The resource consumer interface connects with actual appli-
cations or higher-level resource management systems. The resource provider interface
similarly allows access to actual resources or lower-level resource management systems.
The resource manager support interface is used for access to support functions like
naming or security. The resource manager peer interface finally allows interconnection
with other resource management systems in order to provide functionality like resource
discovery and co-allocation.

140 K. KRAUTER, R. BUYYA AND M. MAHESWARAN

Resource
consumers

...

Grid toolkits

Applications

Grid toolkits

Applications

RMSRMSRMS

RMSRMSRMS

ResourcesResourcesResources

ResourcesResourcesRMS
support

ResourcesResourcesRMS
support

Grid toolkits

Applications

Figure 2. RMS system context.

Resource provider
interface

Resource consumer
interface

R
esource m

anager
support interface

R
es

ou
rc

e
m

an
ag

er
pe

er
 in

te
rf

ac
e

Resource/
Job

monitor

Scheduler
&

State estimator

Naming
proxy

Resource
reservation

agent

Security
proxy

QoS broker/
Request

interpreter

Resource
resolver/

co-allocator

Resource
discoverer/

disseminator/
trader

Job
 queue Reservations

Resource/
Job status

Resource
Info. Service

Other
proxy

Figure 3. RMS system abstract structure.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

Figure 2.2: Resource management system model [113]

Based on the abstract resource management system model described above, a taxon-
omy of grid resource management systems is developed. Figure 2.3 (adapted from [113])
shows the top levels of the resource management system taxonomy.

The resource model refers to the description of grid resources by applications and
resource management systems. A schema-based approach uses a description language
and possibly a query language to describe resources. An object model defines opera-
tions on resources as part of the resource model. Both schema-based and object model
approaches are subdivided in fixed and extensible models, with the extensible types
allowing the extension of the resource model.

The resource namespace describes the organization of the names that are used to
access resources on the grid. A relational namespace uses concepts borrowed from
relational databases to access resource names that are organized in tuples. A hierar-
chical namespace organizes resources by hierarchical structures that typically reflect
the physical or logical network structure. On the third level, the taxonomy also de-
fines relational/hierarchical hybrids where the contents of a relation are hierarchically

25

Figure 2.3: Taxonomy of grid resource management systems, compiling the resource
management system taxonomies introduced in [113].

organized for the purpose of distribution. A graph namespace finally organizes names
using nodes and pointers.

The QoS support policy defines quality of service levels offered by the systems. Some
systems do not provide any QoS support. Soft QoS support refers to systems that
support admission control by providing explicit QoS attributes for resource requests,
but do not suport policing, since they cannot enforce service level agreements. Hard
QoS support on the other hand refers to systems that provide both admission control
and policing.

Information store organization determines the implementation of persistence of-
fered by the resource management system. The distributed objects category is sub-
categorized into object model-based and language-based types. The former refers to
language-independend object models like CORBA, the latter to language-specific per-
sistence layers like those offered in Java. Network directory information stores are
based on a relational database, while offering different interfaces to the database that
constitute the subcategories within the taxonomy. X.500/LDAP type directories offer
the interface and schema provided by the respective standard to interface with the
data. Relational directories allow operations on the relational database using other
query interfaces. The third subcategory is named “other” and refers to network direc-
tory access methods that do not fit in the other two categories.

Resource discovery is initiated by an application in order to find a resource on the
grid, while resource dissemination is initiated by resource in order to find an application
that can use it. Resource discovery is either query-based or agent-based. Query-based
resource discovery operates either on centralized or distributed directories. While
query-based systems use queries in order to operate on a directory, agent-based ap-
proaches send code fragments across machines that are interpreted locally. Resource

26

Figure 2.4: Scheduling in grid resource management systems, compiling the scheduling
taxonomies introduced in [113].

dissemination approaches defined within the taxonomy are the batch/periodic ap-
proach where resource information is made available on each machine on the grid before
being disseminated periodically, and the online/on demand approach where resource
information is disseminated directly by the originating machine. In the batch/periodic
approach, the taxonomy distinguishes between push and pull techniques.

Scheduling and resource allocation taxonomy

The taxonomy of scheduling in grid resource management systems examines the prop-
erties of scheduler organization, state estimation, rescheduling, and scheduling policy.
The scheduling taxonomy is displayed in Figure 2.4 [113].

Scheduler organization is either centralized, decentralized, or hierarchical. In a
centralized organization, there exists a single scheduling controller with system-wide
responsibilities in decision making, leading to a simple and robust design with the
disadvantage of having scalability issues. In a hierarchical organization, higher-level
controllers manage a larger set of resources than lower-level controllers. A decen-
tralized organization addresses issues like fault-tolerance, scalability, and multi-policy
scheduling, but introduces problems in coordination between schedulers and usage
tracking.

State estimation, which in grid systems is always based on partial or stale informa-
tion, is categorized into predictive and non-predictive models. Predictive models use
both current and historical data for state estimation and are based either on heuris-
tics, pricing models, or machine learning. Predictive heuristics use predefined rules for
state estimation. In a pricing model approach, resources are bought and sold accord-
ing to market dynamics. Machine learning techniques uses learning schemes for state
estimation. Non-predictive state estimation techniques use either heuristics based on

27

the current resource status and job information or a probability distribution model
based on expected characteristics of the current job.

Rescheduling refers to the temporal characteristics of reexamining and possibly re-
ordering the job scheduling queue. In periodic or batch rescheduling, resource requests
and system events are grouped and then processed at intervals that are either periodic
or triggered by events. In event-driven online models, rescheduling occurs immediately
in reaction to resource requests or system events.

The scheduling policy determines reordering of jobs and requests during reschedul-
ing. Fixed scheduling policies are subcategorized into system oriented and application
oriented approaches and refer to systems with policies that are predetermined by the
resource manager. System-oriented fixed policies maximize for system throughput,
while application-oriented fixed policies strive to minimize application runtime or to
optimize other application-specific metrics. Extensible scheduling policies allow the
changing of policies by external entities and are subcategorized into ad-hoc and struc-
tured schemes. Ad-hoc extensible scheduling policies implement a fixed policy but
allow an external agent to change the resulting schedule. Structure extensible schemes
provide models of the scheduling process that allow external agents to override the
default behavior of the scheduler.

Survey of resource management systems

A survey of grid resource management systems examines the following grid projects
and maps them to the taxonomy: 2K, AppLES, Bond, Condor, Darwin, European
DataGrid, Globus, Javelin, GOPI, Legion, MOL, NetSolve, Nimrod/G, Ninf, and
PUNCH.

The survey shows that all projects except European DataGrid are either compu-
tational or service grid projects. Most systems support an extensible resource model
and employ a periodic push approach to resource dissemination. Resource discovery
approaches and resource models are correlated: While object model systems often use
agents for resource discovery, schema-based systems employ queries. Generally, most
aspects of the taxonomy have been explored in the different systems.

2.1.2 Taxonomy of market-based resource management
systems

Yeo and Buyya [188] present a taxonomy and survey of market-based resource man-
agement systems for utility-driven cluster computing. The taxonomy examines the
properties of cluster resource management systems and differentiates between clus-
ters, distributed databases, grids, parallel and distributed systems, peer-to-peer sys-
tems and the world wide web as computing platforms. In the context of grid com-
puting, grid resources are often located on clusters, with grid schedulers submitting
and monitoring jobs on cluster systems through interaction with the cluster resource
manager.

28

The taxonomy for utility-driven cluster computing is based on the five perspectives
of market model, resource model, job model, resource allocation model, and evaluation
model, which are shown in Figure 2.5 [188] and discussed in the remainder of this
section. Then, a summary of the market-based resource management systems survey
is given.

A TAXONOMY FOR UTILITY-DRIVEN CLUSTER COMPUTING 1383

Market
Resource Management

Systems

Clusters

Distributed Databases

Grids

Peer to Peer

World Wide Web

Computing
Platforms

Distributed Systems
Parallel and Evaluation Model Taxonomy

Resource Allocation Model Taxonomy

Job Model Taxonomy

Resource Model Taxonomy

Market Model Taxonomy

Taxonomies

based

Figure 1. Categorization of market-based RMSs.

Examples of large-scale Grid systems that are composed of cluster systems includes the TeraGrid [15]
in the United States, LHC Computing Grid [16] in Europe, NAREGI [17] in Japan, and APAC Grid [18]
in Australia.

In addition, commercial vendors are progressing aggressively towards providing a service
market through Grid computing. For instance, IBM’s E-Business On Demand [19], HP’s Adaptive
Enterprise [20] and Sun Microsystem’s pay-as-you-go [21] are using Grid technologies to provide
dynamic service delivery where users only pay for what they use and thus save from investing heavily
on computing facilities. Vendors and respective users have to agree on Service Level Agreements
(SLAs) that serve as contracts outlining the expected level of service performance such that vendors
are liable to compensate users for any service under-performance. Cluster RMSs thus need to
support SLA-based resource allocations that not only balance competing user needs but also enhance
the profitability of the cluster owner while delivering the expected level of service performance.
This reinforces the significance of using market-based mechanisms to enable utility-driven cluster
computing. Market concepts and mechanisms incorporated at the cluster computing level can enforce
SLAs to deliver utility and facilitate easy extensions to support Grid economy [22] for service-oriented
Grids.

Market-based RMSs have been utilized in many different computing platforms: clusters [23–25];
distributed databases [26,27]; Grids [28–30]; parallel and distributed systems [31–33]; peer-to-
peer [34]; and World Wide Web [35–37] (see Figure 1). They have a greater emphasis on user QoS
requirements as opposed to traditional RMSs that focus on maximizing system usage. Market concepts
can be used to prioritize competing jobs and assign resources to jobs according to users’ valuations for
QoS requirements and cluster resources.

Market-based cluster RMSs need to support three requirements in order to enable utility-driven
cluster computing [23]: (i) provide a means for users to specify their QoS needs and valuations;
(ii) utilize policies to translate the valuations into resource allocations; and (iii) support mechanisms
to enforce the resource allocations in order to achieve each individual user’s perceived value or
utility. The first requirement allows the market-based cluster RMS to be aware of user-centric service

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

Figure 2.5: Categorization of market-based resource management systems [188]

Market model taxonomy

Market model refers to the representation of real-world economic concepts in the re-
source management system. It comprises the sub-taxonomies of economic model,
participant focus, trading environment, and QoS attributes.

The economic model [37] establishes the allocation of resources based on market
interaction between producers and consumers. Possible economic models within the
taxonomy are commodity market, posted price, bargaining, tendering/contract-net,
auction, bid-based proportional resource sharing, community/coalition/bartering, and
monopoly/oligopoly.

The participant focus identifies the party that shall benefit from resource manage-
ment and may be either consumer, producer, or facilitator. Systems with a consumer
focus aim to optimize properties of the jobs issued by the consumers, while those with
a producer focus try to maximize producer benefits from resource usage. Systems
with a facilitator focus introduce a facilitator that draws gains from coordinating and
negotiating resource allocations between producers and consumers.

Trading environment describes the motive of trading between participants and is
either cooperative or competitive. Cooperative trading has the participants working
together for a collective benefit like a common resource sharing environment, while in a
competitive trading each participant acts according to individual goals like allocating
resources.

QoS attributes describe consumer requirements that the producer needs to satisfy.
Possible attributes are time, cost, reliability, and trust/security. QoS time may refer

29

to job execution time, data transfer time, or to a job completion deadline. The cost
attribute can be expressed in monetary or non-monetary terms like resource consump-
tion. Reliability represents the expected level of service guarantee, and trust/security
identifies the level of security needed.

Resource model taxonomy

The resource model taxonomy categorizes the architectural style of a cluster system. It
comprises the sub-taxonomies of management control, resource composition, schedul-
ing support, and accounting mechanism.

Management control investigates the organization of resource management, which
may be either centralized or decentralized. Centralized management control uses a
single resource manager for the whole cluster, while decentralized management control
uses multiple resource managers with each of them being responsible for a subset of
resources.

Resource composition describes the layout of resources within the cluster. A cluster
with homogeneous resource composition has multiple nodes with identical resource
configuration, while in the case of heterogeneous resource composition, nodes may be
configured individually.

Scheduling support refers to the scheduling capabilities of the underlying operating
system of a cluster. Space-shared scheduling allows a single job per processor at any
given time, while time-shared scheduling supports multiple jobs on a single processor.

The accounting mechanism is responsible for storing job execution information for
the purpose of charging the user or planning future resource allocation decisions. It
may be either centralized or decentralized. Centralized accounting uses a single ac-
counting manager responsible for the whole cluster, while decentralized accounting
uses multiple accounting managers, each being responsible for a subset of information.

Job model taxonomy

The job model taxonomy describes attributes of jobs that are executed on a clus-
ter. It comprises the sub-taxonomies of job processing type, job composition, QoS
specification, and QoS update.

The job processing type may be either sequential or parallel. With sequential job
processing, jobs are processed independently from each other on a single processor.
Parallel job processing requires the distribution of jobs to multiple processors before
execution and speeds up processing for distributable jobs.

Job composition describes the mapping between tasks and jobs. In a single-task job
composition, each job consists of a single task, while in a multiple-task job composition,
a job may be composed from multiple tasks. Multiple-task compositions may consist
of dependent or independent tasks. In the case of independent tasks, parallelization
may speed up job execution.

QoS specification refers to the type of specification that may be associated with a
job and includes constraint-based, rate-based, and optimization-based specifications.

30

A constraint-based specification includes a value or a range of values for each QoS
attribute that satisfies the minimum QoS requirements. Rate-based QoS specification
specifies a rate that signifies the required level of service over type. For instance,
a credit deprecation rate can be specified so that the user pays less for longer job
execution time. In the case of optimization-based QoS, the user specifies a specific
QoS that shall be optimized in order to maximize the utility.

QoS update describes whether QoS requirements may be changed after job submis-
sion. In the case of static QoS update, such changes are disallowed, while dynamic
QoS update allows to change QoS requirements during job lifetime.

Resource allocation model taxonomy

The resource allocation model taxonomy describes factors that influence the allocation
decision of a resource management system. It comprises the sub-taxonomies of resource
allocation domain, resource allocation update, and QoS support.

Resource allocation domain refers to the operational scope of a resource management
system and may be internal or external. In case of an internal resource allocation
domain, jobs may only be assigned within the cluster, while an external resource
allocation domain enables the execution of jobs on remote cluster systems.

Resource allocation update identifies whether a resource management system is
able to change an existing resource allocation in reaction to environmental changes.
Adaptive resource allocation upates allows to adjust the resource allocation, while
non-adaptive resource allocation uses a fixed resource allocation for each job.

The sub-taxonomy for QoS support is derived from the grid resource management
systems taxonomy [113] described in Section 2.1.1 and defines soft QoS support for
systems that allow the specification of QoS requirements but do not guarantee their
satisfaction. Hard QoS support refers to systems that provide measures to ensure
that specified QoS requirements are fullfilled. Hard QoS support usually depends
on admission control that allows to reject jobs whose QoS requirements cannot be
satisfied. Systems may provide both soft and hard QoS support in order to meet the
needs of different user groups.

Evaluation model taxonomy

The evaluation model taxonomy describes how the efficiency and effectiveness of re-
source management systems may be assessed. It comprises the sub-taxonomies of
evaluation focus, evaluation factors, and overhead analysis

The evaluation focus describes the point of view from which evaluation is performed
and corresponds to the participant focus sub-taxonomy described above. A consumer
focus evaluates the utility delivered to the consumer, while a producer focus or a
facilitator focus measures the value gained by the producer or facilitator, respectively.

Evaluation factors may be system-centric or user-centric and describe the metrics
that are used for evaluation. System-centric evaluation factors measure the overall

31

performance of the cluster system like average wait time or system throughput, while
user-centric factors are used for assessment from the user’s perspective.

Overhead analysis examines overheads introduced by the resource management sys-
tem and is categorized into system overhead analysis and interaction protocol overhead
analysis. System overhead refers to overheads that are introduced by the underlying
system, while interaction protocol overhead means overhead introduced by the oper-
ating policies of the resource management system like communication between nodes.

Survey of market-based resource management systems

A survey investigates a number of market-based resource management systems based
on clusters, grids, and peer-to-peer networks. Cluster systems included in the survey
are Cluster-On-Demand, Enhanced MOSIX, Libra, REXEC, and Utility Data Center.
In addition to these systems, the survey includes the grid projects Faucets, Nimrod/G,
and Tycoon, and the Peer-to-Peer system Stanford Peers Initiative. The survey shows
that at the time of its publication, most systems support only simple job models
with sequential processing type, single-task job composition and static QoS update.
Thus, the taxonomy outlines possible future enhancements of market-based resource
management systems.

2.1.3 Resource submission taxonomy

A taxonomy of resource submission [27] categorizes types of submission in the context
of systems where providers offer a platform that can be used by consumers. The
taxonomy distinguishes between jobs, workflows, and arbitrary resources.

The resource type of job defines whether native jobs may be run at the provider’s
platform. Native jobs are specified using a job description language. A workflow may
be submitted in the same manner as a simple job. Workflows are specified using a
workflow language. In some environments, arbitrary resources may be submitted that
are specified using a service specification language.

2.1.4 Taxonomy of data grids

Venugopal et al. [182] present a taxonomy of data grids, which are defined as systems
that provide services for discovery, transfer and manipulation of very large datasets
that are stored in distributed repositories. For this purpose, data grids manage replica
catalogs and storage resources that can be accessed by compute resources.

The taxonomy of data grids first compares data grids with related research paradigms
and then introduces the taxonomy elements of data grid organization, data transport,
data replication and scheduling. The following sections provide a summary of the
taxonomy. Then, results from the survey of data grid projects are presented.

The main differences between data grids and the other data-intensive research areas
identified are heavy computational requirements, wider heterogeneity and autonomy,

32

the support for virtual organizations, and the traditional focus of data grids on scien-
tific applications.

Figure 2.6 (adapted from [182]) shows the taxonomy of data grids.

Figure 2.6: Taxonomy of data grids, compiling the taxonomies introduced in [182].

Data grid organization

The data grid organization taxonomy identifies the organizational characteristics of
model, scope, virtual organization, data sources, and management. The model tax-
onomy describes ways of organizing data sources and distinguishes between monadic,
hierarchical, federation, and hybrid models. Data grids following a monadic model
gather all data into a central repository. Hierarchical models distribute data orig-
inating from a single source. Within a federation, each participating organization
maintains its own data, and hybrid models finally merge the preceding approaches.

Scope is either intradomain or interdomain, where intradomain scope refers to re-
striction to a single scientific domain thus allowing specialization, and interdomain
scope describes a generic infrastructure applicable to various domains.

Virtual organizations (VOs) reflect social organization and may be either collabora-
tive, regulated, economy-based or reputation-based. Collaborative VOs are created by
organizations collaborating on a single goal. Regulated VOs are controlled by a single
organization. Access to economy-based VOs is guided by service-level agreements, and
reputation-based VOs allow access for entities based on their provided level of service.

Data sources are transient or stable. Transient data sources (e.g., satellites) are
available only at restricted time periods, while stable data sources are considered to
be permanently available.

33

Finally, management is identified as being autonomic or managed. Managed grids
require frequent human intervention in order to remain operable, while autonomic
grids employ self-management as described in section 3.3.

Data transport

The taxonomy of data transport mechanisms describes issues around the actual move-
ment of data by introducing the categories of function, security, fault tolerance, and
transfer mode. The function of a data transport includes a transfer protocol, an
overlay network, and a file I/O mechanism following a three-tier structure. Transfer
protocol refers to the network protocol used for data transfer. The overlay network
is an optional layer responsible for routing data. The file I/O layer finally provides
transparent access to remote files.

Security aspects are authentication, authorization, and encryption. Authentication
may occur either by passwords or by cryptographic keys. Authorization is coarse-
grained or fine-graine, where coarse-grained authorization refers to methods provided
by the underlying file system, and fine-grained authorization to methods that exceed
file-system-based authorization. Encryption employs either SSL or is unencrypted.

Fault tolerance modes are restart transmission, resume transmission or cached trans-
fers. Restart transmission describes the absence of fault tolerance. Resume transmis-
sion allows continuing a transmission starting with the last acknowledged byte. Cached
transfers refers to the store-and-forward transfer mode of peer-to-peer overlay networks
which do not require connectivity to the original data source.

Finally, supported transfer modes may be block, stream, compressed, and bulk
modes. While the former three modes refer to the capabilities of traditional data
transfer protocols, the bulk mode category groups together advanced capabilities like
parallel data transfer and striped transfer.

Data replication and storage

The taxonomy of data replication and storage contains a replica architecture taxon-
omy and a replica strategy taxonomy. The replica architecture taxonomy consists of
a model, a topology, storage integration, transfer protocols, metadata, update prop-
agation, and catalog organization. The architectural model of a data replication is
either centralized by employing a master replica being propagated to the other nodes,
or decentralized employing many copies of the data that need to be synchronized. The
topology of nodes in a replica management system may be flat, hierarchical or hybrid,
employing different topologies at different levels. With regard to storage integration,
tightly-coupled replication systems exercise control over local disk I/O, intermediately-
coupled systems control the replication mechanism, and loosely-coupled systems have
applications and users control replication using standard file transfer protocols. Trans-
fer protocols may be open or closed with regard to the possibility of data access in-
dependent from the replication mechanism. Metadata may contain system-dependent
and user-defined attributes, and may be updated actively by the replica management

34

system or passively by the user. Update propagation is synchronous like in databases
or asynchronous, the latter being distinguished in epidemic (i.e., updating all repli-
cas) and on-demand propagation. Catalog organization finally is based on a tree, on
document hashes, or on a DBMS.

The replica strategy taxonomy differentiates by method, granularity, and objective
function. Method is either static or dynamic regarding adaptations to changing net-
work and storage conditions. Granularity of replication is categorized into dataset
(i.e., multiple files), files, and fragments. Objective functions for replication finally are
maximization of locality, exploiting popularity, economic objectives, minimization of
update costs, preservation in case of failures, and effective propagation of new files.

Resource allocation and scheduling

The taxonomy of resource allocation and scheduling examines the application model,
scope, data replication, utility function and locality of a data grid. The application
model taxonomy distinguishes between process-oriented applications not structured
into tasks, independent tasks, bags of tasks where all tasks must complete success-
fully, and workflows which define dependencies between tasks. Scope is individual or
community-based. Scheduling with an individual scope occurs from the user’s per-
spective, while community-based scheduling follows central policies. Data replication
refers to the coupling of scheduling to replication of required data, with coupled sched-
ulers replicating a permanent copy for future use, and decoupled schedulers working
on a transient data copy. Utility functions in scheduling finally are minimization of
computation time (makespan), load-balancing among the nodes, maximizing profit for
the user, and observing quality of service requirements.

Survey of data grid systems

A survey of data grid systems examines the following data grids: LCG, EGEE,
BIRN, NEESgrid, GriPhyn, Grid3, BioGrid, Virtual Observatories, Earth System
Grid, GridPP, eDiaMoND, and the Belle Analysis Data Grid. In addition the data
transport technologies GASS, IBP, FTP, SFTP, GridFTP, Kangaroo, Legion, and SRB
are examined. These systems are then mapped to the taxonomy of data grids.

Observations from mapping the surveyed systems to the taxonomy include that most
data grids follow the hierarchical or federated models using only a few well-established
data sources, the identification of GridFTP as the standard data transfer protocol,
and the dominance of manual static replication by system administrators in order to
maximize locality and of scheduling strategies that reduce makespan.

2.1.5 Taxonomy of grid monitoring systems

Zanikolas et al. [193] present a taxonomy of grid monitoring systems that is based
on the Grid Monitoring Architecture (GMA) [176] published by the Global Grid
Forum. The taxonomy defines levels 0 to 3 of monitoring systems with additional

35

qualifiers. Figure 2.7 (adapted from [193]) shows the grid monitoring taxonomy and
Figure 2.8 [193] further explains the levels of grid monitoring defined there.

Figure 2.7: Taxonomy of grid monitoring systems, compiling the taxonomy introduced
in [193].

S. Zanikolas, R. Sakellariou / Future Generation Computer Systems 21 (2005) 163–188 167

Fig. 3. Mapping GMA components to phases of monitoring. Square brackets and parenthesis indicate optional and grouped expressions respec-

tively, whereas “+” stands for at least one repetition of the preceding item (see text for further explanation).

on. Probably the most important feature of the GMA

is the separation of the discovery and retrieval opera-

tions (i.e., discover from the registry and retrieve from

producers or republishers).

Revisiting GMA: Because GMA’s components are

fairly general, we correlate its main components to

the phases of the monitoring process (as described in

Section 2.2). As shown in Fig. 3, a sensor (shown by

a circle) must generate events (i.e., the first phase of

monitoring), may process them and may make them

available to local consumers only (e.g., through a lo-

cal file); a producer (depicted as a box) may imple-

ment its own sensors, may process events (generated

by built-in or external sensors) and must support their

distribution to remote consumers, hence the producer

interface; a republisher (shown as a rounded box) must

apply some type of processing to collected events and

make them available to other consumers; a hierarchy

of republishers (shown as a polygon) consists of one

or more (hence, the “+” sign) republishers; finally, a

consumer (depicted as an ellipse) may apply some pro-

cessing before presenting the results to the end-user or

application.

2.5. Other recommendations and standards

The Global Grid Forum, in addition to the GMA

document, hosts several other activities that relate

to grid monitoring. Among others, a simple XML-

based producer-consumer protocol is informally de-

scribed in [13] to encourage interoperability. Regard-

ing event types, the Network Measurements Work-

ing Group (NM-WG) is developing an XML schema

for exchanging network performance measurements

within the framework of the Open Grid Services In-

frastructure (OGSI). On the same topic, the CIM-

based Grid Schema Working Group (CGS-WG) is

working towards the development of a Grid schema

based on the Common Information Model (CIM)

[14], an object oriented, platform-independent stan-

dard that provides the means for specifying concep-

tual information models for management systems. An-

other schema is the Grid Laboratory Uniform Envi-

ronment (GLUE), developed as part of the DataTag

project in order to facilitate interoperability between

selected US and EU Grid sites. The GLUE schema has

gained wide acceptance given its adoption by Globus

MDS3. Finally, the Grid Benchmark Research Group

(GB-WG) aims to specify metrics and benchmarks

to promote, among others, quantitative comparability

of grid hardware and middleware, applications, and

practices.

3. A scope-oriented taxonomy of monitoring

approaches and frameworks

The previous section has refined the GMA com-

ponents by mapping them to monitoring phases. This

section proposes a taxonomy of monitoring systems,

which is primarily concerned with a system’s provi-

sion of GMA components (as they were defined in

Fig. 3). The categories of the proposed taxonomy are

named from zero to three depending on the provision

and characteristics of a system’s producers and repub-

lishers (Fig. 4).

Level 0: Events flow from sensors to consumers in

either an on-line or an offline fashion (i.e., at

the time of measurements being taken or after-

Fig. 4. The categories of the proposed taxonomy of monitoring sys-

tems. Note that, although not shown to avoid clutter, the sensor sym-

bol can be omitted in systems where producers have built-in sensors.

Figure 2.8: Levels of grid monitoring: S = sensor, P = producer, R = republisher,
H = hierarchy of republishers, C = consumer. [193]

Level 0 characterizes self-contained systems that do not expose their functionality
through a producer interface. Level 1 refers to producer-only systems, where sensors
are separately implemented or provided by the producer. Systems on level 2 feature
producers and republishers, with republishers providing only fixed functionality. Level
3 systems feature a producer and a hierarchy of republishers.

In addition to the levels defined above, the taxonomy uses qualifiers that further
categorize the functionality of grid monitoring systems. The multiplicity qualifier
applies to systems on level 2 and denotes whether republishers are centralized or
distributed. The type of entities refers to the systems primarily monitored: hosts,
networks, applications, availability, and general-purpose. The stackable qualifier refers
to systems that support operation on top of another monitoring system.

A survey of grid monitoring systems examines the level 0 systems MapCenter and
GridICE and the level 1 system Autopilot. On level 2, the survey examines a monitor-
ing system based on the CODE framework and the systems GridRM, Hawkeye, HBM,
Mercury, NetLogger, NWS, OCM-G, Remos, and SCALEA-G. Finally, the level 3
systems Ganglia, Globus MDS, MonALISA, Paradyn/MRNet, and RGMA are sur-
veyed. The survey concludes that most considered systems maintain a database with
an archive, which is exposed through an interface by some tools. Almost all systems

36

support host and network events. Data delivery models and event formats are imple-
mented in various ways. Since there is no coordination between projects, functionality
often overlaps, and interoperability is limited.

2.1.6 Taxonomy of desktop grids

Vladiou and Constantinescu [184] present a three-level hierarchical taxonomy for desk-
top grids which are grids consisting of resources provided by idle desktop computers.
Figure 2.9 (adapted from [184]) shows the top two levels of the taxonomy.

Figure 2.9: Taxonomy of desktop grids, compiling the taxonomies introduced in [184].

Desktop grids are categorized by infrastructure, models, and software. On the in-
frastructure level, the resource type is either volunteer and enterprise, the platform is
web-based or middleware-based, scalability is Internet-based or LAN-based, and se-
curity is trust-based, authentication-based or sandbox-based. On the level of models,
the computing model is either master-worker or based on parallel paradigms. The ar-
chitecture is centralized, hierarchical, or peer-to-peer. Finally, the taxonomy identifies
the data model types of middleware, data servers, and direct communication.

The software level examines applications, architecture, administration, and license
type. The application type supported by a desktop grid may be limited to a set of
dedicated applications, restricted to Java applets, or it may include one or more of
legacy, script, compiled, and lightweight applications. The software platform speci-
fies the operating system allowed for desktop grid nodes. Some systems, e.g. those
implemented in Java are operating system independent, while others support one or
more operating systems from the set of Windows, Linux, Unix, Solaris, and MacOS.
Software administration examines whether systems distinguish between administra-
tive and non-administrative users. The software license taxonomy finally distinguishes
between closed and open source licenses.

37

A survey examines the following desktop grid systems and maps them to the taxon-
omy: distributed.net, Entropia, SETIhome, Bayanihan, Condor, XtremWeb, QADPZ,
BOINC, SZTAKI LDG, and Javelin. The survey concludes, that desktop grids are a
method of providing computing power to scientists that is easily available, and the
taxonomy helps to choose the right tool for each scientific purpose.

2.1.7 Taxonomy of grid applications

Suciu and Potolea [168] present a taxonomy for grid applications that is based Flynn’s
taxonomy of computer architectures [66] and on a taxonomy of cryptographic and
cryptanalytic algorithms for grid applications [167]. The adaptation of those tax-
onomies to grid applications results in the following categories: SPNF (single program
no file), SPSF (single program single file), SPMF (single program multiple file), MPNF
(multiple program no file), MPSF (multiple program single file), and MPMF (multiple
program multiple file). The file category refers to the cardinality of input files that
may be processed by a job, while the program category denotes the support for paral-
lelization. Figure 2.10 (adapted from [168]) shows the taxonomy of grid applications.

Figure 2.10: Taxonomy of grid applications, representing the taxonomy introduced
in [168].

While applications in the SPNF and SPSF categories can process a single job at
a time, the number of simultaneously running jobs in the SPMF, MPNF and MPSF
categories is limited with the maximum number of programs and files, respectively.
MPMF type applications support the highest degree of parallelism which is propor-
tional to the number of programs and number of files. The SPSF, SPMF, MPSF,
and MPMF optionally may support data parallelism (DP), which means that input
files are split logically into slices which are processed simultaneously. In this case the
maximum number of jobs increases with the supported number of data slices. On

38

the output side, the taxonomy distinguishes between single output (SO) and multiple
output (MO) modes, where single output refers to the requirement of concatenating
the outputs of multiple jobs into a single file.

The taxonomy provides a mathematical model in order to formally define the cate-
gories described above and gives example applications for each category. A survey of
existing systems is not conducted, though.

2.1.8 Taxonomy of grid workflow management systems

Yu and Buyya [192] present a taxonomy of workflow management systems for grid com-
puting that identifies five elements of a grid workflow management system: workflow
design, information retrieval, workflow scheduling, fault tolerance, and intermediate
data movement. The top levels of the taxonomy are shown in Figure 2.11 (adapted
from [192]).

Figure 2.11: Taxonomy of workflow management systems, compiling the taxonomies
introduced in [192]

Workflow design includes the key factors of structure, model, composition systems
and QoS constraints. Workflow structure is represented as a directed acyclic graph
(DAG) or as a non-DAG and classified as sequence, parallelism, choice, and in the
case of a non-DAG additionally as iteration. Workflow models are either abstract or
concrete models, while workflow composition systems are either user-directed or au-
tomatic. The taxonomy for user-directed workflow composition systems distinguishes
between language-based or graph-based modeling and specifies a number of language
types and representations for graphs. QoS constraints are derived from existing models
for workflows based on web services [44, 122, 142] and specify the dimensions of time,

39

cost, fidelity, reliability and security which can be assigned at task level or workflow
level.

The taxonomy of information retrieval in grid workflow management systems in-
cludes the three dimensions of static information, historical information, and dynamic
information. Static information is related either to infrastructure, configuration, QoS,
access, or to the user and may be used for pre-selection of resources during workflow
initialization. While historical information is not further subdivided, dynamic infor-
mation is categorized as being related to resources, the state of task execution or to
the market.

Workflow scheduling is identified as being a case of global task scheduling [46] where
the global scheduler coordinates with local management systems. Scheduling is dis-
cussed from the views of architecture, decision making, planning scheme, strategies,
and performance estimation. The scheduling architecture may be centralized, hierar-
chical, or decentralized. Decisions are made either on a local or a global level. Planning
schemes, which are methods for translating abstract workflows to concrete workflows
include static and dynamic schemes, the former being user-directed or simulation-
based, and the latter prediction-based or just-in-time. From the strategy viewpoint,
heuristics developed to solve the NP-complete problem of workflow scheduling [65] are
categorized into performance-driven, market-driven and trust-driven strategies. Fi-
nally, possible performance estimation techniques are simulation, analytical modeling,
historical data, on-line learning, and hybrid approaches.

The taxonomy of fault tolerance in grid workflow management systems follows
Hwang and Kesselman [98] in distinguishing between task-level and workflow-level
techniques. Task-level techniques are catalogued into retry, alternate resource, check-
point/restart, and replication. Workflow-level techniques are alternate task, redun-
dancy, user-defined exception handling, and rescue workflow.

Intermediate data movement refers to the staging of input files that need to be ac-
cessed by the tasks of a workflow and of output files generated by that tasks to remote
sites. The taxonomy of grid workflow management systems distinguishes between
user-directed and automatic data movement. User-directed data movement refers to
systems that require the user to manage data transfer as part of the grid workflow
specification. Automatic data movement systems derive staging from a workflow spec-
ification and are categorized into centralized, mediated, and peer-to-peer approaches.
A centralized approach for data movement defines a central point that collects execu-
tion results and transfers them to subsequent execution points. A mediated approach
manages intermediate data locations using a distributed data management system
like a catalog service, while in a peer-to-peer approach the executing nodes themselves
transfer data to subsequent nodes.

A survey of grid workflow management systems examines the following grid workflow
management projects and maps them to the taxonomy: Condor DAGMan, Pegasus,
Triana, ICENI, Taverna, GridAnt, GrADS, GridFlow, Unicore, Gridbus workflow,
Askalon, Karajan, and Kepler. The survey shows that many of these systems provide
graph-based workflow editing environments that allow to compose a workflow using
drag-and-drop techniques. Most projects use their own graphical workflow language

40

though, due to lack of standardization. On the other hand, quality of service is not
addressed very well since most projects focus on system centric policies in resource al-
location. Especially, market-driven strategies are largely ignored. While most projects
include performance prediction services that are used for schedule optimization, fault
handling techniques often are not implemented.

2.1.9 Taxonomy of grid workflow verification and validation

Chen and Yang [49] provide a taxonomy that categorizes methods for ensuring correct-
ness of grid workflows. At the top level, correctness is ensured through verification and
validation. Verification ensures that the specification and execution of a grid workflow
is free of errors. Validation ensures that the grid workflow meets the requirements
stated by the developer of the grid workflow. Figure 2.12 [49] shows the taxonomies
of grid workflow verification and validation.

A TAXONOMY OF GRID WORKFLOW VERIFICATION AND VALIDATION 349

workflow systems. Chen et al. [31] and Chen and Yang [32–34] discuss checkpoint selection for
temporal verification at run-time execution stage. Chen and Yang [17] introduce four consistency
states to a fixed-time constraint and develops corresponding verification algorithms. Buyya et al. [3],
Yu and Buyya [14] and Yu et al. [35] discuss Quality of Service (QoS) scheduling issues and presents
a grid economy-based architecture with corresponding grid middleware. Sadiq and Orlowska [36]
discuss how to analyse workflow process models by using graph reduction techniques.
However, as far as grid workflow verification and validation is concerned, current research is still

in infancy. To the best of our knowledge, very little work has been done and very few projects focus
on grid workflow verification and validation issues. Therefore, a systematic identification and an
overall classification of key issues in the grid workflow verification and validation field are needed
which can help us find out main points in the field and avoid some unnecessary work as much
as possible. Hence, in this paper, we investigate the key issues in grid workflow verification and
validation, and present a taxonomy for them. Especially, we identify some important points which
are not stated by the current research and hence need further investigation. The taxonomy depicts
an overall picture for grid workflow verification and validation.
The remainder of the paper is organized as follows. Section 2 discusses the taxonomy of grid

workflow verification and validation. Section 3 conducts a survey of existing projects and presents
a further discussion. Section 4 concludes our contributions and points out future work.

2. TAXONOMY

We investigate grid workflow verification taxonomy in Section 2.1 and grid workflow validation
taxonomy in Section 2.2.

2.1. Grid workflow verification

Specifically speaking, based on [19], grid workflow verification is mainly concerned with the spe-
cific correctness of grid workflow specification and execution such as no deadlock, no livelock,
no temporal violation or no resource conflict. It aims at no faults in grid workflow specification
and execution under the condition where complex scientific and business process requirements
have already been correctly supported in grid workflow specification by the selected grid workflow
management system. Correspondingly, as shown in Figure 2, grid workflow verification taxonomy
consists of six elements: (a) structure verification; (b) performance verification; (c) resource ver-
ification; (d) authorization verification; (e) cost verification; and (f) temporal verification. In this
section, we look at each element in detail.

Figure 2. Elements of grid workflow verification.

Copyright 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:347–360
DOI: 10.1002/cpe

354 J. CHEN AND Y. YANG

Figure 3. Elements of grid workflow validation.

ensure that all complex scientific and business process requirements are modelled or redesigned
in the grid workflow specification. Otherwise, the grid workflow specification is incomplete and
incorrect from the perspective of user requirements and needs. For example, some grid workflow
management systems or architectures cannot support temporal constraint modelling [38]. Then,
for those time-critical scientific and business processes such as climate modelling processes for
weather forecast, the corresponding grid workflow specifications are incomplete or even incorrect
as temporal information will be ignored. In fact, different grid workflow management systems
provide different basic models and constructs for complex scientific and business process modelling.
And different models and constructs have different expressive power [38]. A complex scientific or
business process which can be modelled by one grid workflow management system may not be
completely modelled by another one. Therefore, a question is raised between complex scientific and
business processes and grid workflow modelling power. That is, whether current complex scientific
and business process requirements can be supported by the selected grid workflow management
system. This is particularly important when e-scientists or e-business people develop or purchase
corresponding grid workflow management system products to support their complex scientific and
business processes. To answer this question, grid workflow validation must be conducted. We
need to describe a complex scientific or business process as a proper representation. Then, we
represent the expressive power of the selected grid workflow management system. Finally, we need
to develop some efficient approaches to validate the consistency between them. Hence, as shown in
Figure 3, the grid workflow validation taxonomy consists of three elements: (a) representation of
complex scientific and business processes; (b) representation of expressive power of grid workflow
management systems; and (c) validation approaches.

2.2.1. Representation of complex scientific and business processes

To check the consistency between complex scientific and business processes and corresponding grid
workflow specifications, firstly, we need to capture and represent complex scientific and business
processes.
Some methods such as Petri Net or process algebra (mainly pi-Calculus) might be used to

represent complex scientific and business processes [20,21,52,53]. However, a complex scientific
or business process normally changes often [6,7,38]. Changes in process requirements may lead to
significant state adjustments in the Petri Net-based representation or significant equation adjustments
in the process algebra-based representation [54]. Some other models such as state machine or
concurrent transaction logic also have similar problems [55]. How to extend the expressive ability

Copyright 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:347–360
DOI: 10.1002/cpe

Figure 2.12: Taxonomies of grid workflow verification and validation [49]

The taxonomy of grid workflow verification consists of the elements of structure veri-
fication, performance verification, resource verification, authorization verification, cost
verification and temporal verification. Structure verification verifies the consistency of
the syntactic structure of the workflow, in order to avoid deadlocks, livelocks and sim-
ilar conditions. The subcategories of structure verification are syntactic verification
and semantic verification. Performance verification verifies if performance require-
ments are met. Possible approaches for performance computation include Markovian
chain theory, queuing theory, and simulation tools. Resource verification verifies the
absence of resource conflicts between different workflows and activities in the case of
resource competitions. Authorization verification of the grid workflow specification
checks the consistency between resource access policies and defined roles, while during
grid workflow execution it checks for unauthorized access in order to trigger protective
measures. Cost verification checks whether grid workflow specification and execution
meets budget requirements, and temporal verification ensures that grid workflows are
completed in time.

41

The categories within the grid workflow validation taxonomy are representation of
complex scientific and business processes, representations of expressive power of grid
workflow management system, and validation approaches. The representation of pro-
cesses category states whether a system supports a defined means to formally represent
the scientific or business process. Possible methods for process representation include
Petri nets or process algebra. Representation of expressive power states which control
structures are used to represent grid workflows. Current grid workflow management
systems mostly support parallel, selective, sequential, and iterative control structures.
Possible validation approaches result from the process representation and expressive
power of grid workflow management systems. Successful validation means that a map-
ping exists between business process and workflow.

A survey examines the following grid workflow verification and validation projects
and maps them to the taxonomy: DILIGENT, CROWN, Discovery Net, SwinDeW-G,
and CAT. The survey shows that no project supports resource verification, authoriza-
tion verification or cost verification. Besides CROWN that partially supports analysis
of the expressive power of its workflow modeling language GPEL, no project currently
supports any method for workflow validation.

2.1.10 Taxonomy of grid workflow scheduling

Within grid workflow management systems, scheduling – which is defined as the assign-
ment of grid services to workflow tasks – needs to be optimized in order to minimize
execution time, maximize job throughput, minimize cost or satisfy other criteria. The
taxonomy of the multi-criteria grid workflow scheduling problem [187, 186] classifies
existing approaches for optimization by two specific criteria and aims to provide a basis
for developing generalized scheduling approaches that address multiple optimization
criteria. Figure 2.13 [187] shows the top levels of the grid workflow scheduling taxon-
omy.

The taxonomy analyzes the following facets of the workflow scheduling problem:
scheduling process, scheduling criteria, resource model, task model, and workflow
model. The taxonomy for each of these facets is organized in three levels that match
the subject-predicate-object notation of RDF1.

The taxonomy of scheduling process includes the predicates of criteria multiplic-
ity, workflow multiplicity, dynamism, and advance reservation. Criteria multiplicity is
classified into single criterion and multiple criteria approaches. While single criterion
approaches usually strive to minimize execution time and are rather common, multiple
criteria approaches need to specify trade-offs between potentially contradicting criteria
and thus introduce additional complexity. Workflow multiplicity describes the number
of workflows that are subject to optimization and is classified either as single workflow
or multiple workflows. Single workflow optimization optimizes a single workflow per
scheduling process, while multiple workflows refers to the possibility of optimizing the
execution of multiple workflows within a single scheduling process. Dynamism refers

1Resource Description Framework, http://www.w3.org/RDF/

42

http://www.w3.org/RDF/

Figure 2.13: Taxonomy of grid workflow scheduling, compiling the taxonomies intro-
duced in [187].

to the relation between workflow scheduling and workflow execution and is described
in three classes: Just-in-time scheduling, where scheduling of a single task is per-
formed immediately prior to execution, full-ahead planning, where the whole workflow
is scheduled before its execution, and hybrid approaches that combine just-in-time
scheduling and full ahead planning. Advance reservation finally refers to the possi-
bility of delegating future resource capabilities to users. The taxonomy of scheduling
process distinguishes between systems with reservation and without reservation.

The taxonomy of scheduling criteria includes the predicates of optimization model,
workflow structure dependence, optimization impact, calculation method, cost model
flexibility, intradependence, and interdependence. Optimization model describes the
perspective from which the scheduling of workflows is optimized, which is either
workflow-oriented or Grid-wide. Workflow structure dependence describes dependen-
cies between individual tasks of a workflow and is classified in structure dependent
and structure independent criteria, with structure dependent criteria being subclassed
by the aggregation type of average, conjunctive, disjunctive, and mixed. Optimization
impact is classified into objectives (maximized, minimized, and focused) and con-
straints (global or local). The calculation method may be additive, multiplicative or
concave. Cost model flexibility is fixed or adaptive. Intradependence refers to depen-
dence between individual scheduling decisions by a single criterion and is classified
into intradependent and non-intradependent scheduling criteria, with intradependent

43

criteria being subclassed into partial cost related and aggregated cost related criteria.
Interdependence describes the dependence between different scheduling criteria and is
classified into interdependent and non-interdependent pairs of criteria.

The taxonomy of grid resources includes the predicates of diversity and task ex-
ecution. The classes of diversity are homogenous and heterogenous. Homogenous
resources have identical static and dynamic characteristics, while heterogeneous re-
sources are subclassed into single type resources having resources of the same type
but with different characteristics, and multiple type resources, where resources with
different types are considered for scheduling optimization. Task execution refers to the
assignment of resources to tasks and is classified into non-multiprogrammed models,
where a resource is assigned to a single task, and multiprogrammed models, where
multiple tasks can be scheduled on a single resource at the same time.

The taxonomy of workflow tasks includes the predicates of resource mapping and
migration. Resource mapping is rigid, moldable, or malleable. Rigid resource mapping
requires a task to use a predetermined number of resources. Moldable task mapping
determines the required number of resources for a task at execution time, and malleable
task mapping allows resources to be added or withdrawn from a job during execution.
Migration is classified into migrative and non-migrative tasks. Migrative tasks may
be checkpointed, preempted and resumed using a different set of resources.

The taxonomy of workflow model includes the predicates of component model, gen-
erality, atomic structure dynamism, and data processing. The component model is
either task oriented or task and transfer oriented. While in the graph of a task ori-
ented workflow model tasks are represented as nodes and data transfers as edges,
within a task and data transfer oriented model both tasks and data transfers are rep-
resented as nodes. Generality is classified as specific or general digraph, where general
digraph (directed graph) models may be formally described by a directed graph with
the nodes and edges representing tasks and data transfers as described above, and
specific models are described by a regular structure which is a well-defined subset of
the general digraph model. Atomic structure dynamism refers to the possibility of
modifying a given workflow structure during optimization and is classified into fixed
and tunable models. Data processing distinguishes between single data set models
and pipelined models, with the latter class referring to the processing of a stream
consisting of multiple data sets during multiple workflow executions.

The taxonomy is applied to the following Grid systems: GrADS, Vienna Grid Envi-
ronment, PEGASUS, ASKALON, K-WfGRid, Instant-Grid and to several approaches
by other authors. The study identifies the workflow scheduling approach as not yet
being fully addressed by existing work and states that the taxonomy may facilitate
the development of new scheduling approaches based on the problem classes identified
by the taxonomy.

2.1.11 Taxonomy of grid computing security

Chakrabarti et al. [47] present a taxonomy of grid computing security that identifies
security issues in grid systems. At the top level, grid security issues are categorized

44

into host level, architecture level, and credential level issues. Figure 2.14 [47] shows
the taxonomy of grid computing security.

Grid Computing

 www.computer.org/security/ IEEE SECURITY & PRIVACY 45

sues pertain to denial-of-service (DoS) attacks within
the grid system; information security issues such as
confidentiality, integrity, and authentication fall un-
der this category.

Credential-level issues become very important in a
grid context because multiple systems require varied
credentials for users to access them. We touch briefly
on the different credential systems applicable to the
grid context.

In the following sections, we discuss each of these
issues in greater detail, along with countermeasures.

Host-level issues and solutions
Whenever a host affiliates itself to the grid, concerns
regarding the host’s safety arise. We can further cat-
egorize these host-level issues under data protection and
job starvation.

Data protection
Whenever a host is affiliated with the grid, one chief
concern regards protecting that host’s pre-existing
data. This concern stems from the fact that the host
submitting the job might be untrusted or unknown to
the host running the job. To the latter, the job might
well be a virus or a worm that could destroy the sys-
tem. We can categorize the solutions to this issue into
four main types: application-level sandboxing, virtualiza-
tion, user-space sandboxing, and flexible kernels.

Application-level sandboxing. Application-level sand-
boxing or proof-carrying code (PCC)2 is used to safely
execute untrusted code. In a PCC system, the code
recipient has a set of rules guaranteeing safe execution.
PCC must comply with these safety rules (or policies)
and carry formal proof of this compliance. Note that
the producer of such code is untrusted, so the recipient
must validate the proof before code execution. Within
the overall system, the programs are tamperproof—
any modification will either render the proof invalid
or, if the proof remains valid, cause it to lose its status as
a safety proof. If the proof remains valid and is a safety
proof, the system can execute the code with no harm-
ful effects. PCC’s main advantages are as follows:

The code producer, rather than the code recipient, is
responsible for code safety proofs.
No cryptographic or third party is required.
It prevents potentially dangerous code from ex-
ecuting.

However, for PCC to be effective, application provid-
ers must conform to PCC rules, which prevent PCC
from being deployed on a large scale. This solution
also requires modifying a huge amount of legacy code
already available.

•

•
•

Virtualization. Another way to provide isolation is
through virtualization, in which the creation of virtual
machines provides the illusion of a single machine (See
the On the Horizon department on p. 65 for more
on virtual machines). Hosted virtualization and para-
virtualization are popular techniques.

In the hosted-virtualization model, multiple op-
erating systems, called guest OSs, run as applications
on the host OS. Generally, this model doesn’t require
modifying the host OS, but because multiple redi-
rections take place, this model’s performance suffers
significantly. One of the most popular hosted-virtual-
ization solutions is VMware’s GSX server (see www.
vmware.com). VMware uses numerous proprietary
optimizations that reduce various virtualization over-
heads. In spite of these optimizations, the overheads
the GSX server introduces can be significantly high,
depending on the application. This drawback led to
the development of the paravirtualization model.
(Note, however, that the hosted-virtualization model
is extremely popular in spite of its performance issues
because it provides an easy solution to the virtualiza-
tion problem.)

In the paravirtualization model, the virtualization
is embedded into the OS through modification and
recompilation of the OS. Its performance is compara-
tively better than hosted-virtualization-based systems.
Xen,3 developed at Cambridge University, is a popular
example of a paravirtualization system; it’s fast and has
a very low overhead on its overall performance, which
it achieves by storing hardware states in memory and
managing them efficiently. Because it’s open source
and shows good performance, Xen is even witnessing
commercial implementations.

However, one big impediment to the wide-scale
adoption of Xen and other paravirtualization solu-
tions is that they lack virtualization capabilities due
to their underlying IA-32 architecture, which has at
least 17 instructions4 that make it “nonvirtualizable.”
Therefore, kernels based on the IA-32 architecture
must be compiled to make them aware of Xen’s vir-

Grid security issues

Host level Architecture level Credential level

Data
protection

Job
starvation

Policy
mapping

Denial
of service

Information
security

Resource level VO level Confidentiality Integrity Authentication

Figure 1. Taxonomy of grid computing security issues. We broadly classify
them as host-, architecture-, or credential-level issues.

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on November 13, 2009 at 10:01 from IEEE Xplore. Restrictions apply.

Figure 2.14: Taxonomy of grid computing security [47]

The host level issues category refers to security threats originating from new, un-
trusted hosts that are added to the grid. Host level issues are classified into data
protection and job starvation issues. Data protection refers to the problem that a
job might be submitted to the grid that contains a worm or virus. Solutions to the
data protection problems are application-level sandboxing, virtualization, user-space
sandboxing, and flexible kernels. Job starvation refers to remote jobs starving local
jobs in a system. Countermeasures to job starvation are advanced reservation and
priority reduction.

The architecture level issues category refers to security problems that affect the grid
system as a whole. Architecture level issues are classified into information security,
policy-mapping, and denial-of-service (DoS). Information security refers to concerns
that arise regarding the communication between grid nodes and includes the issues
of secure communication, authentication, and single sign-on. Information security is
addressed by the grid security infrastructure (GSI)2 standard. GSI implements secure
communication at the transport and message levels using web services standards.
Authentication is implemented in GSI using certificates. Single sign-on and delegation
in GSI are implemented through a proxy that employs a certificate for delegation.
Policy-mapping occurs either at resource level or at the level of a virtual organization
(VO). The denial of service (DoS) issue can be addressed either using preventive
solutions or reactive solutions.

The credential level issues category refers to the initiation, storage, renewal, trans-
lation, delegation, and revocation of credentials within a grid system. Credential
management systems are categorized into credential repositories and credential feder-
ation systems. While the former systems are concerned with the storage of credentials,
the latter ones help manage credentials across multiple systems, domains, and realms.

2Grid Security Infrastructure, http://www.globus.org/toolkit/docs/latest-stable/security/

45

http://www.globus.org/toolkit/docs/latest-stable/security/

2.2 Taxonomies of cloud computing

This section presents existing taxonomies of cloud computing. Since cloud computing
is a relatively new field of distributed computing, no taxonomy that specifically ad-
dresses cloud computing has yet been proposed. However, because cloud systems are
implemented using existing technologies like cluster computing and virtual machines,
taxonomies of these areas are relevant to cloud computing.

In particular, the taxonomy of market-based resource management systems for
utility-driven cluster computing [188] previously described in Section 2.1.2, and the
taxonomy of resource submission that has been introduced in Section 2.1.3 are rel-
evant to grid and cloud computing. Section 2.2.1 describes a taxonomy of virtual
machines [164].

2.2.1 Virtual machine taxonomy

Smith and Nair [164] propose a virtual machine (VM) taxonomy as part of an overall
description of virtual machine architectures. Virtual machines are created by adding a
software layer to a physical machine in order to support multiple system architectures.
Figure 2.15 [164] shows the taxonomy of virtual machines.

Codesigned VMs
Functionality and portability are the goals of

most system VMs that are implemented on hard-
ware already developed for some standard ISA. In
contrast, codesigned VMs implement new, propri-
etary ISAs targeted at improving performance,
power efficiency, or both. The host’s ISA may be
completely new, or it may be an extension of an
existing ISA.

A codesigned VM has no native ISA applications.
Instead, the VMM appears to be part of the hard-
ware implementation; its sole purpose is to emu-
late the guest’s ISA. To maintain this illusion, the
VMM resides in a region of memory concealed
from all conventional software. It includes a binary
translator that converts guest instructions into opti-
mized sequences of host ISA instructions and caches
them in the concealed memory region.

Perhaps the best-known example of a codesigned
VM is the Transmeta Crusoe.11 In this processor,
the underlying hardware uses a very-long instruc-
tion word architecture, and the guest ISA is the Intel
IA-32. The Transmeta designers focused on the
power-saving advantages of simpler VLIW hard-
ware.

The IBM AS/400 (now the iSeries) also uses co-
designed VM techniques.12 Unlike other codesigned
VMs, the AS/400’s primary design objective is to
provide support for an object-based instruction set
that redefines the HW/SW interface in a novel fash-
ion. Current AS/400 implementations are based on
an extended PowerPC ISA, whereas earlier versions
used a considerably different, proprietary ISA.

VIRTUAL MACHINE TAXONOMY
Given this broad array of VMs, with different

goals and implementations, it is helpful to put them
in perspective and organize the common imple-
mentation issues. Figure 5 presents a simple tax-
onomy of VMs, which are first divided into either
process or system VMs. Within these two major
categories, VMs can be further distinguished
according to whether they use the same ISA or a
different one. The basis for this differentiation is
that ISA emulation is a dominant feature in those
VMs that support it.

Among the process VMs that do not perform ISA
emulation are multiprogrammed systems, which
most of today’s computers already support. Also
included are same-ISA dynamic binary optimizers,
which employ many of the same techniques as ISA
emulation.

Process VMs with different guest and host ISAs
include dynamic translators, with the machine

interface typically defined at the ABI level, and HLL
VMs with an API-level interface.

System VMs consist of classic system VMs as
well as hosted VMs that provide replicated, iso-
lated system environments. The primary difference
between classic system and hosted VMs is the
VMM implementation rather than the function
they provide to the user.

In whole-system VMs, wherein the guest and
host ISAs are different, performance is often sec-
ondary to accurate functionality. When perfor-
mance or power/area efficiency becomes important,
as is the case with codesigned VMs, the VM imple-
mentation interface may be closer to the proces-
sor’s physical hardware.

M odern computer systems are complex struc-
tures containing numerous closely interact-
ing components in both software and

hardware. Within this universe, virtualization acts
as a type of interconnection technology. Interjecting
virtualizing software between abstraction layers
near the HW/SW interface forms a virtual machine
that allows otherwise incompatible subsystems to
work together. Further, replication by virtualiza-
tion enables more flexible and efficient use of hard-
ware resources.

VMs are now widely used to enable interoper-
ability between hardware, system software, and
application software. Given the heavy reliance on
standards and consolidation occurring in the indus-
try, it is likely that any new ISA, operating system,
or programming language will be based on VM
technology. In the future, VMs should be viewed
as a unified discipline to the same degree that hard-

May 2005 37

Process VMs System VMs

Different
ISA

Same
ISA

Different
ISA

Same
ISA

Multiprogrammed
systems

Dynamic
translators

Classic system
VMs

Whole-system
VMs

Codesigned
VMs

Hosted
VMs

High-level-language
VMs

Same-ISA dynamic
binary optimizers

Figure 5. Virtual machine taxonomy. Within the general categories of process
and system VMs, ISA simulation is the major basis of differentiation.

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on November 17, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

Figure 2.15: Taxonomy of virtual machines [164]
(ISA = instruction set architecture)

On the top level, the taxonomy distinguishes between process VMs and system VMs.
While process VMs provide an application binary interface or application programming
interface for applications, a system VM offers a complete environment for an operating
system and applications.

The main categories of the process VM taxonomy are multiprogrammed systems
and dynamic translators. Multiprogrammed systems refers to the ability of almost
all contemporary operating systems to simultaneously run multiple processes on a

46

single processor, while providing a separate environment for each process. A dynamic
translator allows to execute program binaries that have been compiled for a machine
type differing from the executing machine.

The main system VM taxonomy categories are classic system VMs and hosted VMs.
Classic VMs employ a fully privileged virtual machine manager that is placed on top of
the hardware and manages multiple virtual machines with reduced privileges. Hosted
VMs execute a virtualization software on top of an existing operating system, that
allows the execution of multiple virtual machines.

2.3 Autonomic computing taxonomies

This section presents related taxonomies that are relevant to the field of autonomic
computing. The taxonomies presented in this section are concerned with software
adaptation, which is a prerequisite for autonomic computing, since the execution of
change plans requires the modification of running programs.

Section 2.3.1 presents a taxonomy for system adaptation [175]. Section 2.3.2 in-
troduces a taxonomy of compositional adaptation [127]. Section 2.3.3 describes a
taxonomy of dependable and secure computing [23].

2.3.1 Taxonomy for system adaptation

System adaptation refers to the capability of a system to adapt itself to environmental
changes with the goal of stability. Tianfield and Unland [175] propose a taxonomy
that classifies system adaptation into passive adaptation, parametric adaptation, and
mission-oriented adaptation.

Passive adaptation establishes a simple control loop that includes a sensor, a regula-
tor and an effector. The passive adaptation scenario includes both manually regulated
and automated systems. The example of a water leveling plant is given, with a valve
forming the regulator. Sensor and effector may be provided either by a human opera-
tor’s vision and hands, respectively, or by an automated regulation device.

Parametric adaptation introduces a parametric control loop that allows the update
of tunable parameters using feedback control. The feedback control loop consists of the
steps of determining the tunable parameters from a set of perceivable parameters that
includes all recent changes in the environment, determining updates on the tunable
parameters, and enforcing the determined updates into the system. Updates on the
parameters are determined using some optimization algorithm.

Mission-oriented adaptation establishes a set of control loops designated for separate
control missions in order to address the complexity of a system that has too many
parameters to be managed by a single control loop. In most cases, the control loop
set is organized as a hierarchy, thus establishing a hierarchical control architecture
suitable for large complex systems [174].

The concepts of system adaptation outlined in the taxonomy may be observed both
in the discipline of feedback control which is concerned with continuous parameters of

47

systems that follow physical laws, and in computing systems that are artificial systems
mostly governed by human definitions in terms of discrete states and events. While
the specific models and algorithms of feedback control thus are not directly applicable
to autonomic computing, these systems can take advantage of the general frameworks
and methodologies for feedback control and adaptive control.

2.3.2 Compositional adaptation taxonomy

McKinley et al. [127] present a taxonomy of compositional adaptation. Compositional
adaptation is an approach for software adaptation where structural or algorithmic
system components are exchanged in order to fit a program into a changing environ-
ment. It contrasts with parameter adaptation, where program variables are modified
for the same purpose. The prerequisites for compositional adaptation are separation
of concerns between business logic and crosscutting concerns, computational reflection
where a program has access to its own structure, and component-based design that
allows composing applications from preexisting components.

Figure 2.16 (adapted from [127]) shows the compositional adaptation taxonomy
that categorizes existing methods for supporting compositional adaptation by the di-
mensions of software recomposition technique (how), composition time (when), and
composition location (where).

Figure 2.16: Taxonomy of compositional adaptation, representing the taxonomy intro-
duced in [127].

Software recomposition techniques [6] form the first dimension of the taxonomy and
create an additional level of indirection in order to support software composition. Some
techniques realize this indirection by applying specific design patterns like function
pointers, wrappers, proxies, the strategy pattern or the virtual component pattern.
Others use aspect-oriented programming where auxiliary functions are separated from

48

business logic and isolated into a specialized software layer, reflection that allows
a program to access and possibly modify its own structure, or both. Middleware
techniques finally modify the interaction between the application and its middleware,
with middleware interception being transparent to the application, and integrated
middleware providing adaptive services that are explicitly invoked by the application.

The second dimension of the taxonomy categorizes approaches by the time of com-
posing adaptive behavior with business logic. Later composition time introduces ad-
ditional flexibility, thus allowing more powerful adaptation methods, but also compli-
cates the problem of maintaining consistency within the adapted program. Composi-
tion may occur at development time with adaptive behavior being hardwired into the
program, at compile or link time which leads to an application that is customizable
for different environments, at load time for configurable applications, or at runtime.
While the first three approaches are referred to as static composition methods, run-
time composition is also called dynamic composition and is further categorized into
tunable software composition that prohibits modification of code but allows the fine-
tuning of cross-cutting concerns in response to changing environment conditions, and
mutable software composition that permits the exchange of the program’s function
thus allowing for the recomposition of a running program into a functionally different
one.

Composition location finally is the third dimension of the taxonomy of composi-
tional adaptation that investigates where the adaptive code is located. Adaptive code
may be inserted either at the middleware layer or directly into the application pro-
gram. Middleware layer approaches may support adaptation at the host-infrastructure
layer in form of an additional interprocess communication layer or by using facilities
provided by a virtual machine. Adaptive behavior may also be introduced in higher
middleware layers, allowing portability across virtual machines. In this case, middle-
ware components typically support adaptation either by intercepting and modifying or
redirecting remote method invocation messages, or by providing explicit calls to adap-
tive middleware services. Approaches that implement adaptation in the application
program are either supported by the programming language itself or weave adaptive
code into the functional code at compile time or later.

A survey identifies research projects, commercial packages, and standard specifi-
cations that provide compositional adaptation. Examples of surveyed projects are
AspectJ [61] that introduces adaptive behavior into Java programs by implementing
aspect-oriented programming at compile time within the application layer, and the
Open ORB platform [53] that supports reflection at runtime within the middleware
layer.

2.3.3 Taxonomy of dependable and secure computing

Avižienis et al. [23] present a taxonomy of dependable and secure computing which
unifies the previously separate concerns of dependability which is defined as the ability
of delivering service that can justifiably be trusted by avoiding service failures that
are more frequent and more severe than is acceptable, and security which is defined

49

as satisfying all of the conditions of availability for authorized actions only, no disclo-
sure of information (confidentiality), and absence of unauthorized system alterations
(integrity). Figure 2.17 [23] shows the top levels of the dependability and security
taxonomy.

. Fault preventionmeans to prevent the occurrence or
introduction of faults.

. Fault tolerancemeans to avoid service failures in the
presence of faults.

. Fault removal means to reduce the number and
severity of faults.

. Fault forecasting means to estimate the present
number, the future incidence, and the likely con-
sequences of faults.

Fault prevention and fault tolerance aim to provide the
ability to deliver a service that can be trusted, while fault
removal and fault forecasting aim to reach confidence in
that ability by justifying that the functional and the
dependability and security specifications are adequate and
that the system is likely to meet them.

2.5 Summary: The Dependability and Security Tree

The schema of the complete taxonomy of dependable and
secure computing asoutlined in this section is shown inFig. 2.

3 THE THREATS TO DEPENDABILITY AND SECURITY

3.1 System Life Cycle: Phases and Environments
In this section, we present the taxonomy of threats that may
affect a system during its entire life. The life cycle of a
system consists of two phases: development and use.

The development phase includes all activities from
presentation of the user’s initial concept to the decision that
the system has passed all acceptance tests and is ready to
deliver service in its user’s environment. During the
development phase, the system interacts with the develop-
ment environment and development faultsmay be introduced
into the system by the environment. The development
environment of a system consists of the following elements:

1. the physical world with its natural phenomena,
2. human developers, some possibly lacking competence

or having malicious objectives,
3. development tools: software and hardware used by the

developers to assist them in the development
process,

4. production and test facilities.

The use phase of a system’s life begins when the system
is accepted for use and starts the delivery of its services to
the users. Use consists of alternating periods of correct
service delivery (to be called service delivery), service
outage, and service shutdown. A service outage is caused by
a service failure. It is the period when incorrect service
(including no service at all) is delivered at the service
interface. A service shutdown is an intentional halt of
service by an authorized entity. Maintenance actions may
take place during all three periods of the use phase.

During the use phase, the system interacts with its use
environment and may be adversely affected by faults
originating in it. The use environment consists of the
following elements:

1. the physical world with its natural phenomena;
2. administrators (including maintainers): entities (hu-

mans or other systems) that have the authority to
manage, modify, repair and use the system; some
authorized humans may lack competence or have
malicious objectives;

3. users: entities (humans or other systems) that receive
service from the system at their use interfaces;

4. providers: entities (humans or other systems) that
deliver services to the system at its use interfaces;

5. the infrastructure: entities that provide specialized
services to the system, such as information sources
(e.g., time, GPS, etc.), communication links, power
sources, cooling airflow, etc.

6. intruders: malicious entities (humans and other
systems) that attempt to exceed any authority they
might have and alter service or halt it, alter the
system’s functionality or performance, or to access
confidential information. Examples include hackers,
vandals, corrupt insiders, agents of hostile govern-
ments or organizations, and malicious software.

As used here, the term maintenance, following common
usage, includes not only repairs, but also all modifications
of the system that take place during the use phase of system
life. Therefore, maintenance is a development process, and
the preceding discussion of development applies to main-
tenance as well. The various forms of maintenance are
summarized in Fig. 3.

It is noteworthy that repair and fault tolerance are
related concepts; the distinction between fault tolerance and
maintenance in this paper is that maintenance involves the
participation of an external agent, e.g., a repairman, test
equipment, remote reloading of software. Furthermore,
repair is part of fault removal (during the use phase), and
fault forecasting usually considers repair situations. In fact,
repair can be seen as a fault tolerance activity within a
larger system that includes the system being repaired and
the people and other systems that perform such repairs.

14 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

Fig. 1. Dependability and security attributes.

Fig. 2. The dependability and security tree.

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on November 17, 2009 at 10:31 from IEEE Xplore. Restrictions apply.

Figure 2.17: Taxonomy of dependable and secure computing [23]

The following sections describe the top categories of the taxonomy which are at-
tributes of dependability and security, threats to dependability and security, and means
to attain dependability and security.

Attributes of dependability and security

The identified attributes of dependability and security are availability, reliability,
safety, confidentiality, integrity, and maintainability. Availability is defined as readi-
ness for correct service, reliability as continuity of correct service, safety as absence of
catastrophic consequences on users and environment, integrity as absence of improper
(i.e. unauthorized) system alterations, and maintainability as ability to undergo mod-
ifications and repairs. Confidentiality is the absence of unauthorized disclosure of
information.

Empirically, dependability may be identified by the condition of other systems ac-
tually depending on the observed system. In this case the dependability of systems
that depend on the observed system is affected by the dependability of the observed
system. The condition of dependence on another system being accepted constitutes
trust.

Threats to dependability and security

Threats to dependability and security are faults, errors, and failures. An error is
defined as a deviation of a system’s external state from the correct state, while a fault
is the adjudged or hypothesized cause of an error. A failure is an event where the
delivered service deviates from the correct service, with a service being defined as a
sequence of external states.

50

Faults are classified by eight binary viewpoints of creation phase (development or
operation), system boundaries (internal or external), cause (natural or human-made),
dimension (hardware or software), objective (malicious or non-malicious), intent (de-
liberate or non-deliberate), capability (accidental or incompetence), and persistence
(permanent and transient). Combination of these viewpoints results in 256 theoretical
manifestations, of which 31 are identified as being likely. For example, malicious faults
are always deliberate, and natural faults always affect hardware and are non-malicious
and non-deliberate. These 31 fault classes are assigned to the partially overlapping
groupings of development faults that occur during development, physical faults that
affect hardware, and interaction faults that include all external faults.

Failures are classified into service failures, development failures, and dependability
failures. Service failures result from deviation of delivered service to correct service and
are characterized by the viewpoints of failure domain (content or timing), detectability
(signaled to the user, or not signaled), consistency (consistent, i.e. perceived identi-
cally by all users, or inconsistent), and consequence (between minor and catastrophic).
Systems that are designed and implemented to fail only in specified modes to a spec-
ified limited extend are called fail-controlled systems. A system where only minor
failures may occur is called a fail-safe system. Development failures may be complete
or partial, with complete development failures resulting in the termination of the de-
velopment process and the system not being placed into service, and possible results of
a partial development failure being budget overrun, schedule overrun, or downgrading
of functionality, performance or predicted dependability and security. Dependability
and security failures occur due to service failures that are more frequent or more se-
vere than acceptable according to a previously agreed-on dependability and security
specification.

Means to attain dependability and security

Means to attain dependability and security are fault prevention, fault tolerance, fault
removal, and fault forecasting. Fault prevention aims to prevent the occurrence or
introduction of faults. It is a goal of software and hardware development methodologies
and is not further discussed within the taxonomy.

Fault tolerance aims to prevent service failures in the presence of faults. The cat-
egories of fault tolerance are error detection and system recovery. Error detection
identifies the presence of errors and occurs as concurrent detection which takes place
during normal service delivery, and preemptive detection that takes place while nor-
mal service delivery is suspended. System recovery transforms the system into a state
without detected errors or faults that can be activated again, and is subcategorized
into error handling that eliminates errors from the system and fault handling that
prevents faults from being activated again.

Fault removal reduces the number and severity of faults. In the development cycle,
the steps of fault removal are verification that a system complies to a set of given
properties, diagnosis of the faults detected during verification, and performing neces-
sary corrections. Verification is categorized into static verification, where the program

51

is not executed and dynamic verification that executes the program to be verified.
Dynamic verification of a program with real input is called testing. Fault removal in
the system use phase is either preventive maintenance that removes faults that have
not yet produced errors or corrective maintenance that removes faults after errors have
been reported.

Fault forecasting finally estimates the present number, future incidence and conse-
quences of faults. The categories of fault forecasting are ordinal or qualitative eval-
uation that aims to identify and classify possible failure modes and probabilistic or
quantitative evaluation that aims to evaluate the probability of system attributes (mea-
sures) being satisfied.

52

3 Concepts and terminology

This chapter provides an introduction to the concepts and terminology relevant to the
survey and taxonomy of autonomic large-scale computing. Section 3.1 introduces the
field of grid computing. Section 3.2 gives an introduction to cloud computing, and
Section 3.3 finally describes autonomic computing.

3.1 Grid computing

The Grid [69] is a distributed computing infrastructure that has originally been cre-
ated in order to enable organizations to share computing resources for the purpose of
scientific computing in order to solve computationally intensive problems. The term
grid computing refers to the electric power grid and suggests that from a user per-
spective, the location and other details of the used resources are as transparent as the
origin of the electric power that is consumed.

Foster et al. [71] define the grid problem as

coordinated resource sharing and problem solving in dynamic, multi-institutional
virtual organizations.

This definition outlines that the sharing of resources – such as computing power,
storage, or data – has to be coordinated. Since users and resources typically live within
different control domains (e.g., companies, university sites), resource providers need
to employ sharing policies for specific user groups. A set of organizations with asso-
ciated resource sharing rules is called a virtual organization (VO). Actual (physical)
organizations are entitled to enter or leave virtual organizations subject to the sharing
rules established within the VO.

The concept of a virtual organization enables competitors in some industry field
to collaborate within a joint project by sharing a subset of their resources, since
membership of an actual organization in a VO may be temporary, e.g. limited to
the lifetime of some project. Figure 3.1 [71] shows the relationship between actual
organizations and VOs, where the ovals denote actual organizations, and P and Q are
virtual organizations.

The following kinds of resources may be shared [71]:

• Computational resources

• Storage resources

• Network resources

53

Figure 3.1: Sharing relationships within virtual organizations [71]

• Code repositories

• Database catalogs

Section 3.1.1 provides a high-level architectural description of the grid [71] and
introduces the Open Grid Services Architecture (OGSA) that implements that high-
level architecture. Section 3.1.2 presents a selection of grid projects.

3.1.1 Grid architecture

A high-level architectural description of the grid [71] consists – from bottom to top
– of a fabric layer which provides resource-level operations, a connectivity layer for
data exchange between fabric-level resources (including security aspects), a resource
layer for obtaining information about and negotiating access to resources, a collective
layer for operations on a collection of resources, and finally an application layer which
contains the user applications.

The grid architecture follows a “hourglass” model, with the resource layer being
the hourglass’s neck. So, while the other layers are allowed to offer a wide range of
protocols, the protocol set offered in the resource layer should be restricted.

The grid architecture and its relation to the Internet protocol architecture are shown
in Figure 3.2 [71].

Fabric layer The fabric layer comprises the resources which are shared on the grid.
Resources may be physical resources like storage or computing power which are ac-
cessed directly by the respective protocols of the grid fabric layer. Logical resources
include computer clusters and distributed file systems which are accessed by the means
of another protocol like a cluster resource manager or NFS. These protocols are not
part of the grid architecture.

54

Figure 3.2: Grid architecture [71]

Since different resource implementations offer different capabilities, it is recom-
mended that the protocol includes introspection mechanisms to have the higher level
protocols query the respective capabilities. For example, some resource implementa-
tions offer advance reservation, which enables applications (e.g. workflow management
systems) to plan for resource utilization.

Connectivity layer The connectivity layer defines communication protocols that are
used for data exchange between fabric-layer resources, and authentication protocols
to verify the identity of users and resources. While for communication, usually the
protocols of the IP stack are used, the grid architecture allows for adaptation, if the
need for new protocols should arise.

Authentication solutions within the connectivity layer should be based on existing
standards. Since they operate on a large scale – potentially on a global scale – they
should support single sign-on and delegation of rights, and they should integrate with
existing local authentication solutions like Unix authentication and Kerberos.

Resource layer The resource layer defines protocols for the sharing of individual
resources. Information protocols on the resource layer provide information about a
resource’s state and structure, while management protocols allow for the negotiation
of access to a resource.

The resource layer forms the neck of the grid architecture’s “hourglass” model. So
the protocol set offered on this layer should be small and focused.

Collective layer The collective layer offers protocols for handling collections of re-
sources. This includes directory services which allow to discover resources, software
discovery services, co-allocation services that allocate a group of resources, data repli-
cation, monitoring and diagnostics.

55

Services on the collective layer may either be general-purpose or developed for the
specific need of some virtual organization or application domain.

Application layer The application layer finally comprises the user applications that
are running on a grid and invoke the protocols and services described above. Applica-
tions may call protocols and services provided by frameworks in the grid application
layer.

The Open Grid Services Architecture

The Open Grid Services Architecture (OGSA) [70] is based on a service-oriented ar-
chitecture and defines a set of protocols and interfaces that are implemented as a de
facto standard in the Globus Toolkit [68], which is described in Section 3.1.2. OGSA
introduces the concept of a grid service, which is an extension of a web service that
allows for creation, destruction and stateful invocation of services. Thus, concepts
originally developed for web services can be applied to grid services.

Grid services implement one or more interfaces that consist of a set of operations
and offer some capabilities. A grid service may implement functions on resource or
collective level.

3.1.2 Reference projects

This section introduces selected grid infrastructure and middleware projects that form
the basis of a large part of currently existing grid infrastructure. While these projects
do not feature autonomic capabilities themselves, some of the autonomic grid projects
that will be surveyed in Section 4.1 are based on one of the middleware stacks presented
here.

Globus toolkit

The Globus toolkit [68] is a widespread software toolkit that provides tools and an API
to build applications for. The current version 4 implements the Open Grid Services
Architecture (OGSA) described in Section 3.1.1 and is built on top of the Web Services
Resource Framework (WSRF)1.

The Globus toolkit includes service implementations such as the GRAM (Grid Re-
source Allocation and Management) execution manager and GridFTP for data access
and data movement between nodes, containers for user-developed services written in
various programming languages, a security infrastructure, and tools for building new
grid services, and a set of client libraries and command line programs that allows
accessing these services and capabilities from various environments. Figure 3.3 [68]
shows the architecture of the Globus toolkit, some of its components and possible
interactions with other components of a grid system.

1OASIS Web Services Resource Framework, http://www.oasis-open.org/committees/wsrf/

56

http://www.oasis-open.org/committees/wsrf/

Figure 3.3: Globus toolkit architecture [68]

From a functional point of view, the components of the Globus Toolkit cover exe-
cution management, data management, information services, and security. Execution
management is provided by the Grid Resource Allocation and Management (GRAM)
service mentioned in the previous section. GRAM provides a web services interface
for managing execution of computations like individual tasks, services, or subtasks
on remote computers. Data management components of the Globus Toolkit are
the GridFTP service that provides high-performance memory-to-memory and disk-
to-disk data movement, the reliable file transfer (RFT) service that manages multiple
GridFTP transfers, the replica location service (RLS) that provides access to location
information about replicated files and data sets, and data access and integration tools
(OGSA-DAI) for access to relational and XML data.

Several grid projects are based on the infrastructure and protocol stack provided by
the Globus Toolkit. Projects directly based on the Globus Toolkit include NSF Tera-
Grid [154] and the cancer Biomedical Informatics Grid (caGrid) [162]. Grid infrastruc-
ture that is based on a different protocol stack often provides gateways to Globus-based
grids, making the Globus Toolkit a de facto standard for grid computing.

UNICORE

Unicore (Uniform Interface to Computing Resources) [62] is a grid platform operated
by Unicore Forum e.V., a consortium of European high-performance computing cen-
ters. It originated as a software infrastructure interconnecting computing centers in
Germany over the Internet, in order to allow users to submit batch jobs with auto-
matic data staging to be executed on heterogeneous systems at multiple remote sites.
After computing paradigm had emerged, the follow-up “Unicore Plus” project en-
hanced the existing software into a grid middleware system that now includes client

57

and server software, is based on standards like the Open Grid Services Architecture
and is implemented in Java for platform independence.

Unicore is based on a three-layered architecture consisting of a client layer, a service
layer, and a system layer. The client layer provides several types of user interfaces
like a command line client called ucc, an Eclipse2 plugin, a high level API (HiLA),
and a web portal. These clients support the management of batch jobs that allocate
resources at multiple sites. The job preparation agent which is a client component
is responsible for ensuring syntactical correctness of the jobs before submission. The
service layer consists of an authentication gateway that authenticates requests using
X.509 certificates and passes them to a network job supervisor which maps abstract
requests into concrete jobs. The concrete jobs then are handed to target system
interface daemons forming the interface to the system layer. The system layer finally
consists of the target hosts which execute the user jobs.

Besides job management, Unicore supports storage access, file transfer, workflow
management, security and information services. While Unicore is based on its own
infrastructure, it is interoperable with Grid infrastructure based on the Globus Toolkit
described above.

Alchemi

Alchemi [121] is a grid computing framework developed at the University of Mel-
bourne, Australia. While conventional grids are usually formed by interconnecting
Unix-based high-performance computers, Alchemi allows to build a grid from idle re-
sources of Windows-based desktop computers. Such a system is called an enterprise
grid or desktop grid. Alchemi is impemented on top of the Microsoft .NET framework,
allowing grid applications to be written in a language supported by .NET like C#.

Together with the Gridbus Grid Service Broker [40] which has been extended with an
Alchemi actuator besides the existing Globus actuator, the Alchemi framework allows
to execute jobs both on Globus and Alchemi resources. Figure 3.4 [121] shows the
relation between the Globus toolkit and Alchemi within a grid architecture integrating
both high performance computing and desktop resources.

The basic deployment scenario of Alchemi is a cluster of desktop computers con-
sisting of a manager node that manages multiple executor nodes. However, within a
multi-cluster environment, a manager may connect to other managers in a hierarchical
fashion. Within the global grid scenario described in the previous section, the top Al-
chemi manager node is managed by a cross-platform manager. A grid broker connects
both to Globus-based resources and the Alchemi cross-platform manager. Desktop
computers that share resources may execute jobs either when triggered by a screen
saver, or periodically. Alchemi uses .NET remoting for communication between its
components, and web services for the public interface.

2Eclipse IDE, http://www.eclipse.org

58

http://www.eclipse.org

Figure 3.4: Layered grid architecture integrating Globus and Alchemi [121]

NAREGI

NAREGI [125] is a project instituted in Japan under which a grid middleware stack,
a networking infrastructure, and scientific applications have been developed. Fig-
ure 3.5 [125] shows the NAREGI grid middleware stack.

The lower and middle-tier layer of the middleware is responsible for resource man-
agement and scheduling. It consists of a superscheduler that supports resource man-
agement across virtual organizations, the GridVM local resource controller that offers
a virtual layer of computing resources, and information services for resource discov-
ery. The programming environment supports message passing (GridMPI) and remote
procedure call (GridRPC) mechanisms adapted for grid applications. Ninf-G [171]
is a reference implementation for GridRPC developed within the NAREGI project,
that operates using basic services from the Globus toolkit like GRAM and MDS. The
application environment of NAREGI finally includes a visual workflow tool that al-
lows managing distributed jobs independent of specific Grid middleware, the GridPSE
problem solving environment that allows collaboration between distributed simulation
applications, and a real-time visualization system that allows to present simulation
results. The networking subsystem consists of a network function infrastructure that
supports bandwith control and policy-based QoS routing, and a communication pro-
tocol infrastructure.

The NAREGI middleware is designed to interoperate with resources managed by
Globus or the Unicore system. It uses the functions provided by the Globus toolkit
for tasks like basic security checking, job launching, and file transfer.

59

Fig. 3. NAREGI grid middleware stack.

B. Grid Programming Environment (WP-2)

There have been various attempts to provide a pro-
gramming model and a corresponding system or language
appropriate for grid computing. Many such efforts have been
collected and catalogued by the Advanced Programming
Models Research Group (APM-RG) of the Global Grid
Forum (GGF). Two particular programming models that
have proven viable are a Remote Procedure Call (RPC)
mechanism tailored for the grid, called GridRPC, and a
grid-enabled Message Passing Interface (MPI). Although
from a very high level viewpoint, the programming model
provided by GridRPC is that of standard RPC combined
with asynchronous, coarse-grained parallel tasking, in prac-
tice, there are a variety of features that will largely hide the
dynamic, insecure, and unstable aspects of the grid from
programmers.

1) GridRPC: GridRPC not only enables individual
applications to be distributed ut also can serve as the basis
for even higher level software substrata, such as distributed
scientific components on the grid. Ninf-G is a reference
implementation of the GridRPC API and a proposed GGF
standard. Ninf-G aims to support the development and
execution of grid applications that will run efficiently on
a large-scale computational grid. Here, the large-scale
computational grid in question is a cluster of about ten
geographically distributed cluster systems, each consisting
of tens to hundreds of processors. Ninf-G has been de-

signed to provide: 1) high performance in a large-scale
computational grid; 2) the rich functionalities required to
compensate for the heterogeneity and unreliability of the
grid environment; and 3) an application programming inter-
face (API) supporting easy development and execution of
grid applications.

Ninf-G has been implemented to work with basic grid ser-
vices, such as GSI, GRAM, and MDS in the Globus Toolkit,
version 2. Ninf-G employs the following components from
the Globus Toolkit: the Grid Resource Allocation Manager
(GRAM) invokes remote executables; the Monitoring and
Discovery Service (MDS) publishes interface information
and the pathnames of GridRPC components; Globus-IO is
used for communication between clients and remote exe-
cutables; and Global Access to Secondary Storage (GASS)
redirects stdout and stderr of the GridRPC component to the
client tty [3]–[6].

We evaluated the performance of Ninf-G by using a
weather forecasting system developed with it [7]. The
experimental results showed that Ninf-G enables stable,
efficient utilization of a large-scale cluster of clusters. We
were, thus, able to demonstrate the feasibility of Ninf-G for
this type of environment and to confirm that it can run on a
computational grid with realistic performance for relatively
fine-grain, task-parallel applications, which are considered
unattractive applications on a grid. Ninf-G has been released
as open-source software and is available at the Ninf project
home page.

MATSUOKA et al.: JAPANESE COMPUTATIONAL GRID RESEARCH PROJECT: NAREGI 525

Figure 3.5: NAREGI grid middleware stack [125]

3.2 Cloud computing

Cloud computing has emerged as a new computing paradigm in the field of parallel
and distributed computing, where applications, software platforms, infrastructure and
hardware resources are provided for a fee, and are accessible globally over the Internet.
The term cloud computing denotes that from a user perspective, the applications and
infrastructure reside on a “cloud” on the Internet and are accessible on demand from
any location.

As cloud computing is a novel concept, there has not yet been an agreement on
a single definition. Several definitions have been proposed [181], and two of those
definitions will be presented here. Buyya et al. [41] propose the following definition:

A Cloud is a type of parallel and distributed system consisting of a col-
lection of inter-connected and virtualized computers that are dynamically
provisioned and presented as one or more unified computing resource(s)
based on service-level agreements established through negotiation between

60

the service provider and consumers.

As the definition suggests, virtualization is a prerequisite technology for cloud com-
puting. Providers often are commercial operators who own large data centers, where
they set up a hypervisor and offer access to virtual machines (VM) to the public.

Clouds resemble grids in that they enable access to high-performance remote com-
puting resources. However, where grids originate from the research community and
offer access to resources within a community called virtual organization, clouds at
the moment are usually offered by commercial operators and provide resources to the
public based on a resource pricing model.

Foster et al. [72] offer another definition for cloud computing:

[Cloud computing is] a large-scale distributed computing paradigm that is
driven by economies of scale, in which a pool of abstracted, virtualized,
dynamically-scalable, managed computing power, storage, platforms, and
services are delivered on demand to external customers over the Internet.

This definition stresses that unlike in the case of grid computing, where a defined
set of resources is shared within a virtual organization, clouds are massively scalable
and deliver services to customers on the Internet.

Section 3.2.1 presents an ontology which categorizes the services currently offered
on the cloud into several layers. Section 3.2.2 describes the high-level architecture of
a typical cloud system.

3.2.1 Cloud ontology

Since cloud computing is a new field, little standardization has been done yet. However,
cloud systems can be categorized as falling into one of five layers [190], which are (from
bottom to top):

• a firmware/hardware layer (hardware as a service, HaaS),

• a cloud-specific software kernel,

• an infrastructure layer consisting of

– computational resources (infrastructure as a service, IaaS),

– storage resources (data-storage as a service, DaaS) and

– communication facilities (communication as a service, CaaS),

• a software environment layer (platform as a service, PaaS), and finally

• an application layer (software as a service, SaaS).

61

Figure 3.6: Layers within a cloud ontology [190]

These layers are depicted in Figure 3.6 [190].
Existing cloud systems may be categorized as operating on one of the layers pro-

posed. For example, while Google Apps [83] provides software as a service (SaaS) and
thus is situated on the application layer, the engine behind Google Apps [82], which
is offered as a service itself, falls in the platform as a service (PaaS) category and thus
is situated on the software environment layer.

The following paragraphs give a description of the cloud ontology layers.

Infrastructure as a Service (IaaS) The Infrastructure as a Service category contains
cloud projects, where infrastructure operators directly provide physical or virtual hard-
ware resources through a software stack. This layer may be further subdivided [190]
into Infrastructure as a Service (IaaS) projects in the narrow sense, Data-storage as
a Service (DaaS3) – sometimes called Disk as a Service – and Hardware as a Service
(HaaS). The difference between these cloud service types basically lies in the kind
of resources being made available, the protocols used to access the services, and the
availability of intermediate management layers.

Platform as a Service (PaaS) Cloud projects in the Platform as a Service category
offer a development platform for applications, mainly consisting of a runtime environ-
ment and an API. This allows developers of cloud applications to use the same cloud
environment for development, where the finished application finally will be deployed,
while avoiding setup costs of the development environment and eliminating a source
of possible application errors.

Software as a Service (SaaS) Software as a Service denotes applications hosted on
cloud systems which are available to the end-user usually via a web interface. For

3The abbreviation DaaS is sometimes used to denote Database as a Service, which will be handled
as a special case of Platform as a Service (PaaS) here.

62

Figure 3.7: High-level cloud architecture [41]

the end user, this model has the advantage that application and data are available
through any Internet connection, and that there is no need of installing, configuring
and maintaining office applications on local systems. Service providers also save de-
velopment and maintenance cost, since software only needs to be deployed within the
provider’s data center, thus reducing the number of test cases in the software testing
process.

3.2.2 Cloud architecture

Buyya et al. [41] describe a high-level cloud architecture consisting of four entities
involved when providing resources on the cloud. Within this architecture, cloud sys-
tems offer multiple virtual machines that are operated on top of a group of physical
machines using a hypervisor. The virtual machines are managed by a SLA resource
allocator that offers functionality for service request examination and admission con-
trol, pricing, accounting, VM availability monitoring, dispatching and monitoring of
accepted service requests.

Figure 3.7 [41] shows the high-level architecture briefly described in the previous
paragraph, which will be further outlined in the remainder of this section.

63

Users/brokers The top layer displayed in the aforementioned figure shows users who
submit service requests to the cloud, and brokers acting on their behalf.

SLA resource allocator The SLA resource allocator consists of a service request ex-
aminer and admission control which is responsible for accepting or rejecting service
requests submitted by users or brokers based on QoS requirements, and passes accepted
requests to the pricing mechanism that decides how the request will be charged, the
accounting mechanism maintaining the actual resource usage, the VM monitor track-
ing availability of VMs and their assigned resources, the dispatcher responsible for
starting the requested services on allocated VMs, and the service request monitor that
keeps track of service execution.

Virtual machines Services offered on the cloud are provided using virtual machines
(VMs). Multiple VMs may be run concurrently on a single physical machine in iso-
lation from each other, where different operating environments may be installed on
the virtual machines running on the same physical machine, in order to provide a
customized environment for each service offered on the cloud.

Physical machines Multiple physical machines are operated within the data center
in order to provide scalability. Machine types may range from commodity hardware
to specialized high-end servers.

3.2.3 Reference projects

This section presents some reference cloud computing projects that cover one or more
of the cloud service layers introduced in Section 3.2.1. Table 3.1 shows which cloud
service layers are covered by the reference projects.

Industrial projects

Several cloud projects are actively marketed by the computing industry. The following
paragraphs present a selection of commercial cloud projects.

Amazon Web Services Amazon EC2 (elastic compute cloud), part of Amazon Web
Services [10], is based on the Xen hypervisor4 and provides a computing environment
in form of virtual machines, called Amazon machine images (AMI). Users may either
choose from one of the pre-configured virtual machines or configure and upload their
own. Amazon EC2 uses Amazon S3 (simple storage service) for persistence of the
virtual machine images. Amazon S3 falls in the Data-storage as a Service (DaaS)
subcategory of IaaS according to the definitions provided in Section 3.2.1.

While Amazon S3 is priced for used disk space, data transfer and number of requests,
EC2, besides charging for data transfer, offers pricing per usage hour (i.e. virtual

4Xen hypervisor, http://www.xen.org

64

http://www.xen.org

IaaS PaaS SaaS
Industrial projects
Amazon Web Services x x
Google Apps x x
HP Flexible Computing Services x x x
IBM Smart Business Services x x x
Microsoft Windows Azure x
Microsoft Office Live x
Salesforce.com x x

Academic projects
Aneka x
Eucalyptus x
Nimbus x
RESERVOIR x

Table 3.1: Cloud service layers covered by reference projects

machine instance uptime) or pricing per year. Amazon also provides a monitoring
service called Amazon CloudWatch as an add-on to EC2 which might be used for
implementing autonomic capabilities in the future.

Besides EC2 and S3, Amazon offers simple database, queueing, and MapReduce
services within their web services [10].

Amazon Elastic MapReduce is based on Apache Hadoop5 and offers an implementa-
tion of Google’s MapReduce programming model [56]. MapReduce requires an Ama-
zon EC2 instance and is priced per hour. Amazon SimpleDB offers a database service
which eliminates the need of defining a database schema and indexes by offering a
pre-defined data model based on domains which consist of attribute-value pairs. It is
priced per hour, data transfer, and storage size. Amazon Simple Queue Service (SQS)
provides the user with message passing functionality and is priced based on number
of requests and data transfer.

Amazon MapReduce, SimpleDB, and SQS offer services to application developers
in order to avoid the need to set up and maintain the respective systems on their own
site. Thus, they fall into the Platform as a Service category.

Google Apps Google Apps [83] provide the user with e-mail, calendar, office appli-
cations like word processing or spread sheets, instant messaging, and web publishing
tools. Documents from existing office applications may be uploaded and edited using
Google apps. Documents may either be made publicly available, or be shared with
selected other Google account owners in order to enable collaboration.

Thus, Google Apps provides a standard office environment, eliminating the need

5Apache Hadoop, http://hadoop.apache.org/

65

http://hadoop.apache.org/

of configuring (or even owning) a personal computer at the cost of increasing the
dependence on an available Internet connection and requiring trust in the application
provider regarding data integrity, availability, and confidentiality. Legal concerns may
also apply, since potentially confidential data may be migrated across country borders.

The Google App Engine [82] provides the API used by Google Apps in order to
support the development of custom applications which are interoperable with Google
Apps, e.g. by requiring the user to sign in using a Google account. Currently, either
Python or Java may be used as programming languages. A simple application server
is provided to allow offline development.

Google solicits SDK patches from developers in order to improve their API. Appli-
cations may be published in a gallery, in order to be deployed by other users.

HP Infrastructure Provisioning Service Infrastructure Provisioning Service (IPS) is
an offering within HP’s Flexible Computing Services (FCS) [96], which provides access
to server, storage, and operating system platforms and associated system management
tools [102].

The HP Infrastructure Provisioning Service plus Scheduling (IPS+) is part of Hewlett-
Packard’s Flexible Computing Services [96] and offers the hardware and operating sys-
tem services described above plus grid-management, scheduling, compilers, and other
development software [102].

The Application Provisioning Service (APS) is an option provided on top of the
infrastructure and platform services offerings. Besides allowing the installation of
customer-provided applications, applications for computer aided engineering (CAE)
are offered, which target the oil and gas industries, and financial services [102].

IBM Smart Business Services IBM offers a cloud computing platform within their
Smart Business Services [101]. Infrastructure offerings include the Smart Business
Desktop Cloud, which offers a virtual operating system environment (Windows or
Linux) targeted at desktop users. The Smart Business Test Cloud allows customers to
deploy cloud services within their private network, using IBM CloudBurst hardware.
Thus, applications can be migrated between the customer’s private network and IBM’s
data center.

Microsoft Windows Azure and Office Live Microsoft Windows Azure [129] is a
cloud-based operating system and development platform. The Windows Azure plat-
form allows to develop applications using existing Microsoft technologies like .NET6

that can be deployed either locally or on the cloud. Thus, existing applications may
be migrated to the cloud.

The Azure services platform consists of the Windows Azure environment, AppFabric
(formerly called .NET services) that offers a distributed infrastructure for developers,
SQL Azure providing database access, and the codename “Dallas” service that offers
access to content collected from public data sources in a central location using an API

6Microsoft .NET, http://www.microsoft.com/NET/

66

http://www.microsoft.com/NET/

based on representational state transfer (REST), which is an architectural style for
building web services.

Office Live [128] is another cloud platform from Microsoft that provides an online
data store where users may save documents, organize them within workspaces, share
workspaces for collaboration, and view and edit documents in a web browser. Doc-
ument types supported include Microsoft Office documents and Microsoft Outlook
items.

Salesforce force.com Salesforce.com [159] is a customer relationship management
(CRM) tool offered as a service. Salesforce.com consists of a sales and a service cloud,
each denoting the respective business process within customer relationship manage-
ment.

The force.com [158] platform allows for the development of enhancements to applica-
tions provided within the Salesforce.com customer relationship management platform.
Besides customizing the database and user interface, business workflows may be cre-
ated, and business applications may be developed.

Academic projects

The following paragraphs present a selection of cloud projects that have been initiated
by academic institutions. This includes projects where academic institutions cooperate
with the computing industry.

Aneka Aneka [52, 41] is a software platform for cloud computing based on .NET.
Originating from enterprise grid computing7, it has been adapted to support the cloud
paradigm, enabling free resources of individual desktop computers to form an enter-
prise cloud. To achieve this goal, an Aneka container is configured on each desktop
computer to provide basic functionality like persistence, security, and communication.
The container is able to host additional services in order to support functionality
like indexing or scheduling. Requesters communicate with the Aneka cloud through
the Gridbus broker [183], which also enables advance reservation and negotiation on
service level agreements.

Aneka supports different application development models like grid task, grid thread,
and MapReduce [56], and allows for the definition of custom models.

Eucalyptus Eucalyptus [139] is an open source cloud infrastructure project targeted
at researchers who want to explore cloud capabilities. It can be set up on commodity
hardware – ranging from a single laptop to a cluster – in a non-dedicated fashion,
allowing the usage of available hardware. The design of Eucalyptus is modular in
order to allow the replacement of components for research purposes. It emulates the
API of Amazon EC2 described on page 64 in order to allow using EC2’s command
line tools.

7An enterprise grid is a grid that provisions the resources of desktop computers.

67

Nimbus The Nimbus science cloud [136] developed at University of California is a
public cloud for the scientific community. Its focus is to provide a cloud infrastructure
to domain scientists familiar with grid computing. Nimbus supports Amazon EC2
and Globus WSRF interfaces, thus allowing usage of both Amazon’s client tools and
existing grid computing tools. Virtual machines can be scheduled using the Portable
Batch Scheduler (PBS). Components of Nimbus are designed to be replaceable.

RESERVOIR The RESERVOIR project – Resources and Services Virtualization
without Barriers [155] – is a result from a cooperation between IBM, SAP, Telefónica
I+D, and three European universities. It addresses the limited scalability of single-
provider clouds, the current lack of interoperability among cloud providers and sup-
ports Business Service Management (BSM) which is a strategy for measuring IT ser-
vices from a business perspective by managing service-level agreements.

In order to achieve the goals outlined above, an architecture is employed which has
infrastructure providers operate one or more virtual execution environments (VEE)
per site. Service providers distribute the execution of their applications among the
VEE hosts that may be located at the same or at different sites. Applications that
are deployed on the RESERVOIR cloud include a service manifest that formally de-
fines an SLA between the respective infrastructure provider and service provider. The
service manifest specifies parameters like minimum and maximum number of CPUs,
memory size, and application instances. RESERVOIR distinguishes between explicit
and implicit modes of capacity provisioning, where the former mode has the ser-
vice provider explicitly state their capacity needs (sized applications), and the latter
one lets the infrastructure provider estimate the resource requirements and allocate
resources according to a high-level policy which usually includes the goal to avoid
over-provisioning.

Components of the RESERVOIR cloud include the service manager which is re-
sponsible for interaction with the service providers, deploying and provisioning VEEs,
and ensuring SLA compliance by adjusting application resource usage. Another com-
ponent is the virtual execution environment manager (VEEM) that assigns VEEs to
VEE hosts subject to policies specified by the service manager. If permitted by policy,
VEEMs may place VEEs at remote sites operated by a different cloud provider, thus
creating a federation of clouds. The virtual execution environment host (VEEH) finally
is responsible for managing individual VEEs on a specific virtualization platform.

3.3 Autonomic computing

The autonomic computing paradigm has been proposed [107] as a solution for han-
dling the complexity involved in managing large-scale distributed computing systems
and applications. The term autonomic computing has been chosen for the concept’s
resemblance to the autonomic nervous system in biology, which is responsible for main-
taining a stable state of an organism (e.g. the human body) by adapting parameters
like blood pressure or pulse as a reaction to a changing environment (e.g. outside

68

temperature) on a subconscious level. Similarly, autonomic computing systems adapt
to changing environment conditions (e.g. system load) by tuning system parameters
without intervention of a system operator in order to maintain a stable system state.
Human operators are solely responsible for providing high-level guidance in form of
policies, from which actions of the autonomic system are derived.

The remainder of this section is organized as follows: Section 3.3.1 introduces the
characteristics that define an autonomic system. The general architecture of an au-
tonomic system is discussed in Section 3.3.2. An adoption model for transitioning
existing systems into autonomic systems is given in Section 3.3.3. Section 3.3.4 finally
introduces some autonomic projects.

3.3.1 Defining characteristics of an autonomic system

Autonomic computing may be viewed as a next step in relation to existing technolo-
gies like fault-tolerant systems and proprietary system management solutions that
currently help system administrators maintain systems operable. Thus, the following
eight characteristics have been proposed to define an autonomic system, as opposed
to existing technologies [99, 91, 79]:

Self-awareness Autonomic systems need to be aware of their capabilities, current
status, allocation of resources and connections to other systems.

Context awareness Autonomic systems shall be aware of their operating environment,
available resources and other systems to interact with.

Openness Since autonomic systems need to interact with other systems, they shall be
implemented using open standards.

Anticipativeness Autonomic system shall support proactive management of their re-
sources by anticipating future environment changes and usage profiles.

The remaining four aspects of self-management are also known as self-* or self-star
properties [107]:

Self-configuration Autonomic systems shall configure themselves according to high-
level guidelines. Typical self-configuration actions include software upgrades
(including the possibility of a rollback in case of problems with the new software
version) or installation of new components.

Self-optimization Autonomic systems shall continually seek ways to optimize them-
selves, e.g. by adjusting tunable software parameters. Optimization shall hap-
pen proactively, i.e. under the current environment conditions, or in reaction to
degrading performance.

Self-healing Autonomic systems shall detect failures and issue appropriate measures
to maintain an operable state by correcting or circumventing the underlying
problem.

69

Figure 3.8: Autonomic element with control loop [104]. An autonomic system is com-
posed of autonomic elements.

Self-protection Autonomic systems shall be able to detect and protect from internal
and external attacks, viruses or unauthorized access.

3.3.2 Architecture of an autonomic system

On a conceptual level, an autonomic system is composed of one or more autonomic
elements interacting with each other, where the scope of an autonomic element may be
determined by the underlying system architecture. For example, in a service-oriented
architecture an autonomic element may correspond to a service.

Figure 3.8 [104] shows that each autonomic element consists of an autonomic man-
ager and a managed resource. While the former implements autonomic behavior of the
autonomic element, the latter implements the service’s functionality. This architecture
allows introducing autonomic behavior to existing services by adapting the existing
service into a managed resource and then adding the autonomic manager.

Autonomic manager

The autonomic manager shown in the aforementioned figure implements the autonomic
control loop (sometimes called MAPE-K loop) which consists of monitoring, planning,
analysis, and execution steps and is guided by knowledge. While these steps describe
the functionality required of the autonomic control loop and suggest its design, they
do not prescribe a control flow, though. So for example it is possible for planning to
call monitoring in order to get additional information.

The following paragraphs describe the individual steps of the autonomic control
loop.

Monitoring Monitoring collects data using the sensors of the managed resource. The
monitoring step includes filtering and aggregation of raw data. Monitoring may occur

70

in a continuous mode (e.g. using counters) or by request (e.g. execution of queries).

Analysis Analysis provides mechanisms to correlate data from monitoring. Forecast-
ing techniques may be applied in order to identify problems that may be passed to
planning. Analysis may request additional data from monitoring if needed.

Planning Planning provides actions based on analysis that allow achieving system
goals. Planning is guided by policies described below and results in actions passed to
the execution step.

Execution Execution carries out the mechanisms required to execute a plan using
the capabilities provided by the managed resource’s effector.

Knowledge The autonomic control loop is guided by knowledge accessible by each of
its four steps. Knowledge consists of configuration and management data like symp-
toms, policies, requests for change, and change plans [100].

Policies may be specified at different levels of abstractions which are shown in Fig-
ure 3.9 and described below.

Managed resource

A managed resource is a hardware or software component or a collection of components
that is managed by the autonomic manager. The autonomic manager controls the
managed resource by collecting data from the sensor and issuing configuration changes
through the effector.

Sensor The sensor provides mechanisms to collect information about the managed
resource, either using methods which can be called by the autonomic manager, or by
sending messages that may be collected.

Effector The effector allows changing the state or configuration of the managed re-
source. Possible implementations of an effector include a configuration API, message
passing, or a web service.

Policies

According to the defining characteristics of an autonomic system as described in Sec-
tion 3.3.1, an autonomic system shall be aware of its capabilities and current state,
which has to be represented as some form of knowledge. In order to represent knowl-
edge, the policy types described in the following paragraphs and presented in Fig-
ure 3.9 [108] have been proposed [108, 97, 156]:

71

every state in the relevant state space and provide a single
unique action for each. Unfortunately, when even moderately
large sets of Action policies are created manually by people, it
is quite difficult to ensure that the resulting policy set satisfies
this criterion. Recognizing then the fallibility of humans in
specifying Action policies, we need additional mechanisms
to help reduce the potential for conflicts, and to handle them
when they do arise. We discuss this further in the next section.

Fig. 2. Relationships between different types of policy.

Alternatively, coherent action can be automatically derived
from the higher level forms of policy. Figure 2 illustrates the
relationships between the three types of policy in a unified
framework. Goal policies are translated into actions during
system operation by any of a variety of methods including
generative planning [7, chapter 11] for example. To generate
a sequence of actions that achieves the desired goal, generative
planning necessarily takes into account the results of perform-
ing an action. This in turn requires that the system have a
model of itself that indicates how actions change the state
of the system. In simple cases, translation of Goal policies
into actions can be achieved purely via modeling without any
planning, as will be illustrated in the next section.

Implementing Utility Function policies requires optimiza-
tion algorithms. Because Utility Functions are a function of
states, it might appear easy and natural to use optimization to
directly identify the most desirable state as a Goal from which
actions can then be derived via planning and/or modeling.
However, one needs to identify the most valuable feasible
state, and in general that identification requires system mod-
eling. A likely byproduct of such modeling is knowledge
of the low-level actions that result in a given state. Thus,
once the most optimal state is identified, it is likely that the
actions required to achieve that state are already known, so
the intermediate step of establishing a goal state can be by-
passed. Furthermore, deriving actions directly from the Utility
Function policy allows the optimizer to take into account
the potential costs of actions. Costs could include explicit
monetary costs (such as the cost of power for running a server
or the cost of obtaining computation from a data center), or
opportunity costs (the cost, not explicitly modeled in the utility
function, of not doing something else of value).

In many dynamic autonomic computing scenarios Utility
Function policies would be optimized online to compute
the best actions for the current state. There can also be
situations in which it is feasible to use the utility function
to compute an entire Action policy set offline, which is then

interpreted by the running system. This approach is taken
in the decision-theoretic planning literature by using Markov
Decision Processes [22] to compute the actions that should
be taken every state such that the optimal expected sum of
(discounted) utility is obtained over the sequence of all states
visited. A hybrid approach can also be taken, whereby the
policy set is periodically recomputed online when conditions
change sufficiently to make the old policy set suboptimal.

It is worth noting that Utility Function policies can be
properly viewed as generalizations of Goal policies. Indeed,
conceptually, a utility function can be defined by specifying
a complete set of disjoint goals and assigning values to them.
(This is not generally feasible when there is a large state space,
and is impossible if the state space is continuous. In these
cases, more compact functional expressions of utility functions
are more practical.) On the other hand, although Action
policies are computed by optimizing Utility Function policies,
there is no meaningful sense in which Utility Function policies
can be derived from Action policies because Action policies
are defined over the current state space and Utility Function
policies are defined over the desired state space.

Although not shown, there may also be self-loops in Fig. 2.
For example, Utility Functions may be translated into other
forms of Utility Functions for use in multiple levels of decision
making. In this case, different Utility Functions correspond to
the same value system translated into different state spaces.
For instance, a Utility Function at one level could specify
the relative value of different service levels—to be used for
optimizing the performance of a stream of transactions in one
part of the system—while a Utility Function at another level
could specify the value for obtaining different amounts of
computational resources—to be used for optimally allocating
resources throughout the system. Generally, to derive some
Utility Function B from Utility Function A, a procedure
must compute, for each state in the space of B, the optimal
value that could be obtained in the space of B. This requires
optimization algorithms and a model of how available actions
can transform the state space of B to the state space of A.
The next section will demonstrate via a simple example how
a service-level utility function by one autonomic component
can be transformed into a resource-level function to be used
by another autonomic component. One can easily imagine
other examples in which Goal policies at one level can be
transformed into Goal policies at another level.

III. DATA CENTER SCENARIO

The previous section introduced and discussed (somewhat
abstractly) three types of policies and a framework that
encompassed them. In this section, we shall illustrate and
compare the three types of policy more concretely via a data
center scenario that is based on a prototype that we and our
colleagues at IBM Research have implemented [23], [21].

As shown in Figure 3, the model data center is comprised of
a number of Application Environments that provide application
services to customers. Application Environments are logically
separated from each other, each providing a distinct application

!"#$%%&'()*+#,+-.%+/',-.+0111+0(-%"(2-'#(23+4#"5*.#6+#(+!#3'$'%*+,#"+7'*-"'89-%&+:;*-%<*+2(&+=%->#"5*+?!@A0BCDEFG+
EHIJKLHMNFNHOPEF+Q+MEREE+S+MEEF+0111+

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on July 24, 2009 at 05:20 from IEEE Xplore. Restrictions apply.

Figure 3.9: Knowledge representation policies [108]

Action policies Action policies express what action shall be taken if a system cur-
rently is in a given state. Action policies are specified using rules that follow the
general pattern of if condition then action, where the condition implicitly represents
the current system state and the action the desired transition from this state. How-
ever, action policies do not specify the target state that will be reached by executing
an action. Action policies typically are formulated using a policy language. Many
policy languages express policies using event-condition-action (ECA) rules, where the
event triggers the evaluation of the condition which may result in execution of the
action. Within those policy languages, event and condition together represent the
current system state.

Action policies are executed immediately and thus consume few system resources.
However, conflicts may occur between different policies in an action policy set. Meth-
ods for resolving such conflicts include adding meta-policies to the policy set that ex-
plicitly specify actions for conflicting states, eliminating overlapping conditions from
the policy set so that at most one policy matches each possible condition, or assigning
priorities to individual policies so that in case of a conflict, only the policy with the
highest priority is executed. For many applications including autonomic computing
it is furthermore required that the action policy set covers the whole state space and
provides a single unique action for each state. Goal policies and utility functions which
are described in the following paragraphs are not subject to conflicting policies.

Goal policies Goal policies specify a desired system state and leave it to the system
to derive actions in order to make a transition from the current to the desired state.
More than one desired state may be given explicitly or by specifying criteria, among
which the system may chose at random. In order to translate goal policies to action
policies, a system needs to have a model of itself that specifies possible system states
and a mapping from actions to state transitions. Based on that model, generative
planners [156] may translate goal policies to action policies.

As long as the goals themselves are not contradictory, goal policies are not subject to
policy conflicts since the system is responsible for taking appropriate actions in order
to meet the goals. However, goal policies do not specify what action a system shall
take if a desired state cannot be reached. While possible actions in that case include

72

Action policies Goal policies Utility policies
Conflicting policies impossible – + +
Unspecified states impossible + – +
Maintainable for human operator + + –

Table 3.2: Policy types in autonomic computing

giving up on a subset of goals in order to allow satisfaction of the complementary
subset, or for quantifiable goals like server response times to allow a small deviation
from all of the goals, goal policies do not allow to express such tradeoffs, since they
only distinguish between acceptable and unacceptable system states.

Utility policies Policies based on utility functions assign an ordinal value to each
possible state, allowing the system to choose the highest-ranked state that can be
currently reached. This overcomes the limitation of goal policies not to give directions
for the case that no desired system state is feasible. Instead of a binary distinction
between desired and undesired system states, a utility value is mapped to each system
state. Optimization algorithms may be applied to utility policies in order to translate
them to goal policies. In order to distinguish between feasible and not feasible states
during optimization, a system model is usually required. Since the system model
includes knowledge about actions that result in a given state, the step of generating
intermediate goal policies may be bypassed.

Utility policies in theory are the most powerful class of policies since unlike goal
policies they provide a result for each possible system state, and unlike in the case
of action policies there is no potential for conflicting policies. However, they leave
the burden to specify an adequate utility function to the system operator which often
is too difficult for practical purposes. Utility policies may be combined with goal
policies that set constraints in order to prevent the selection of states with too low
utility values.

Table 3.2 summarizes and compares the characteristics of the policy types outlined
in the previous sections, with a plus sign denoting an advantage of a specific policy
type, while a minus sign stands for a disadvantage.

Composition of autonomic systems

While the autonomic architecture described above focuses on the structural and behav-
ioral characteristics of a single autonomic element, this section introduces approaches
for building an entire autonomic system.

Kephart et al. [107] envision an autonomic system that is composed of multiple
autonomic elements interacting with each other. Within an hierarchy of autonomic el-
ements, higher-level autonomic elements shall manage lower-level autonomic elements
based on higher-level policies.

73

A life cycle of relationships between autonomic elements shall consist of the following
stages: specification, which may include registration with a public service registry and
description of the element’s capabilities using an ontology; location of other autonomic
elements based on name or function; negotiation for a service agreement; provisioning
of resources; operation under the negotiated agreement; and finally termination of the
agreement, when the service is no longer needed.

Negotiation processes between autonomic elements may be as simple as a demand
for service, where a lower-level element unconditionally provides service to a higher-
level element if possible based on resource availability. Within a first-come, first-served
negotiation, service requests are honored in the received order, as long as resources are
available. In posted-price negotiation schemes, the service provider sets a price and
the service requester decides whether to consume the resource at that price. Com-
plex negotiation schemes may include multiple rounds of negotiation over multiple
attributes.

Brazier et al. [30] state that systems composed of multiple autonomic elements re-
semble multi-agent systems that interact with services as employed in service-oriented
computing. An autonomic element shall be modeled as a rational, goal-directed agent
that is able to reason about its intentions and to plan its actions. An autonomic system
composed of autonomic elements thus is analogous to a multi-agent system composed
of agents. Autonomic systems may benefit from an agent interaction model called
stigmergy, swarm intelligence or emergent system, where agents by following a simple
behavior pattern jointly change an environment, leading to more complex behavior
emerging from the multi-agent system. The challenge of that approach is to achieve
a well-defined behavior of the overall system conforming to pre-defined requirements.
A possible approach for verifying system behavior of an emergent system is to run
simulations.

3.3.3 Adoption of autonomic systems

IBM [100] proposes an adoption model which gradually introduces autonomic capa-
bilities into existing systems. The adoption model is shown in Figure 3.10 [100].

The dimensions given in Figure 3.10 denote the following adaptations to existing
systems:

• The functionality dimension given on the x-axis characterizes increasing auto-
nomic functionality, from (1) manual level (i.e. no autonomic features), to (2)
monitor only, (3) monitor and analysis, (4) full control loop (monitor, analysis,
plan, and execute), and finally (5) control loop guided by policies, which counts
as full implementation of autonomic functionality.

• The control scope dimension given on the y-axis characterizes the level of man-
agement, starting from (A) individual subcomponents (e.g. an individual ap-
plication) to (B) single instances (e.g. a whole application server), (C) multiple
instances, i.e. all resources of the same type, to (D) multiple resources of different
types, and finally (E) the whole business system.

74

Figure 3.10: The autonomic computing adoption model [100]

• The service flow dimension along the z-axis denotes the introduction of auto-
nomic capabilities across different IT processes, such as configuration manage-
ment or security management.

3.3.4 Reference projects

This section introduces selected reference projects for autonomic computing. While
these projects do not explicitly address large-scale computing and thus are not part of
the survey, they are included here in order to present a view on possible applications for
autonomic computing. In addition, most projects described here provide prerequisite
technologies for large-scale computing.

Applications of autonomic computing presented in this section are the power man-
agement of data centers which is an optimization problem between low power consump-
tion and performance, network security where malicious access needs to be identified,
and runtime reconfiguration of applications.

Power management

The minimization of power consumption is a requirement of growing relevance in the
field of distributed computing. For handheld and mobile devices, battery lifetime is
not just a distinguishing characteristic for competition in the marketplace, but a key
factor in order to allow adding complexity and reducing the size and weight of the
devices. For data centers, the same rationales apply on a larger scale: minimization
of power consumption improves competitiveness by reducing total cost of ownership,

75

but may be even required in order to allow further expansion of a data center due
to power shortage. The requirement of low power consumption may also result from
government regulations either in form of subsidies for energy-saving measures or by
regulation that sets an upper border to power consumption. Since mobile endpoints
and data centers both are required for large-scale projects, successful and efficient
power management is a key factor for further establishment of large-scale computing.

Khargharia et al. Khargharia et al. [109, 110] model the power management problem
as an optimization problem, where power consumption shall be minimized given that
QoS requirements are met. Key factors are the startup times of systems that are in
down state, and resume times of systems that are in suspended state. They use a
hierarchy of autonomic managers for autonomic power management of a data center
consisting of a web server cluster as front end tier, an application server cluster as mid
tier, and a database cluster as back end tier in order to address the trade-off between
minimization of power consumption and meeting QoS requirements described above.

The system is modeled and optimized using DEVS discrete event system modeling
and simulation [194]. A global component manager is responsible to minimize power
consumption of the front end tier cluster based on the size of the global service queue,
such that the global request loss rate and global average wait time constraints are met.
A local component manager performs power and performance optimization on server
level based on the local queue size.

Mastroleon et al. Mastroleon et al. [124] formulate the autonomic power manage-
ment problem described in the introduction to this section using a dynamic program-
ming (DP) approach [25]. The work is based on a model of a single application server
shown in Figure 3.11 [124], which comprises a single job buffer with an initial number
of jobs, a pool of available CPUs, an allocation environment of CPUs available for
job scheduling, and a thermal environment that models the environmental effects of
CPU usage. At each step in a decision process based on a time-homogeneous Markov
chain, costs are associated with a job backlog, CPU allocation, increasing environment
temperature, and reconfiguration of CPU usage.

The objective is to minimize costs while serving all the jobs initially stored in the
buffer. The solution of the DP is a function of the current system state consisting of the
job backlog, the current temperature, the number of available CPUs and the number
of allocated CPUs. The optimal solution does not depend on past states and thus
may be implemented using stationary policies. Since solving a DP is computationally
intensive, several heuristics are proposed, including the allocation of no cpus in the
case of an empty job buffer, at least one cpu in the case of a non-empty buffer, and
increasing the number of cpus with increasing queue size.

Network management

In the area of network management, the autonomic computing paradigm is applied
for adapting network infrastructure to configuration changes, and to detect and cir-

76

Fig. 1. The Model.

the number of CPUs available for other tasks) and increases
the service cost and power consumption associated with it.

We focus on the simple model depicted in Fig. 1, taking the
local perspective of an arbitrarily chosen buffer. The model is
comprised of a single job buffer of size B, a CPU pool, a
CPU allocation environment and a thermal environment. We
assume that the buffer initially (at time 0) contains b0 jobs of a
given type (no job arrivals occur in this simple model). At the
beginning of each time slot, a decision regarding the number
of CPUs to be used during the slot, is taken. The decision is
based on the state of the CPU allocation environment and the
state of the thermal environment of the model, as explained
later.

The state of the CPU allocation environment a, is the
number of CPUs that are available for use by the buffer at
the beginning of each slot. It takes values in the finite set
A of all attainable CPU environment states. The buffer may
actually not choose to use all the CPUs available to it in the
slot. When a decision is made (regarding how many CPUs the
buffer will use in the current slot), the difference between the
number c of CPUs that were used in the previous slot and
the number u of CPUs to be used in this slot will affect a.
Specifically, the state after the decision will be a∗ = a+ c−u
(available CPUs + CPUs that were in use before - CPUs to
be used next). It is assumed that a∗ remains invariant within
each time slot once the decision is made. However, the CPU
allocation environment state in the following time slot will
switch according to a time-homogeneous Markov chain. More
specifically, the CPU allocation environment changes from
a∗ ∈ A in a time slot (after decisions) to a′ ∈ A in the
next time slot (before decisions) with probability

pa∗a′|u

which depends on the control u. Recall that u is the number
of CPUs the buffer has decided to engage and use in the
current time slot to serve its jobs. The Markov chain is
irreducible and aperiodic. This random CPU environment
captures the interactions of the buffer under consideration with
the multitude of other tasks that engage and release CPUs all
the time.

When the decision is made to use u CPUs in a slot, the head-
of-line job in the buffer completes service and leaves at the
end of the slot with probability s(u), which is increasing in u.
Thus, the buffered job population drops by 1 with probability
s(u) and remains constant with probability 1− s(u). Service
completion events are statistically independent in consecutive
slots and also independent from CPU availability switching
events (conditioned on u).

There is also a thermal environment state t which fluctuates
according to a time-homogeneous Markov chain, taking values
in a finite set T of all attainable states. It is assumed that t
remains invariant within each time slot. Given the number
of CPUs available in the beginning of a time slot a and
the decision (number of CPUs to be used) u, the thermal
environment changes from t ∈ T in the current time slot to
t′ ∈ T in the next one with probability

qtt′|(c,a,u)

which depends on the the vector (c, a, u). The Markov chain
is assumed to be irreducible and aperiodic, and statistically
independent of the CPU availability environment (conditioned
on (c, a, u)) and service completion events. Note that (c, a, u)
alone does not fully capture the decisions and actions of other
tasks in the system. However, the thermal environment t could
reflect the thermal influence of the multitude of other tasks that
engage and release CPUs all the time.

A. The Cost Structure

Let us now consider the costs the system incurs in each time
slot. Assuming that at the beginning of a slot there are b jobs
remaining in the buffer, the state of the thermal environment
is t and it is decided to use u CPUs (instead of c that were
used in the previous slot), we have the following 3 types of
costs:

1) Backlog cost Cb(b), increasing in the number of jobs b
in the buffer.

2) Power cost (and thermal stress) Cut(u, t), increasing in
the number u of CPUs used and the state (temperature)
t of the thermal environment.

3) Reconfiguration cost Cuc(u, c), capturing the overhead
of changing the number of CPUs from c to u. We expect
it to depend on the difference between u and c.

Other than the previously stated general structural properties
of the various cost functions, we make no further assumptions
on their particular forms.

B. Optimal Control

The objective is to serve all the jobs initially stored in
the buffer (b0 in number), while minimizing the overall cost
incurred in the process. The system state to be tracked at each
time slot is (b, t, c, a), that is the current job backlog b in
the buffer, the current state of the thermal environment t, the
number of CPUs that were used in the previous slot c, and
the current state of the CPU allocation environment a. There
is only one decision to be made at the beginning of each slot
and that is the number u of CPUs to be used.

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 944 0-7803-9415-1/05/$20.00 © 2005 IEEE

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on February 1, 2010 at 00:46 from IEEE Xplore. Restrictions apply.

Figure 3.11: System model for autonomic power management [124]

cumvent unauthorized access. The following paragraphs present the FOCALE project
which is an example for the former application realizing the self-configuration prop-
erty, and ML-IDS as an example for the latter one which addresses self-protection
capabilities.

FOCALE The FOCALE [106] project is an autonomic networking project developed
at the Waterford Institute of Technology in Ireland. It adapts the overall architecture
of autonomic computing systems for the task of network management by providing
a model-based translation layer which maps vendor-specific commands and data like
SNMP to vendor-neutral commands and data. Figure 3.12 [106] shows the functional
architecture of an autonomic management element in FOCALE associated with a
managed resource.

FOCALE comprises a distributed architecture that allows an autonomic manager to
manage entities ranging from a single network device to a complete subnetwork. Au-
tonomic managers use a maintenance control loop when the system is in normal state,
and an adjustment control loop when reconfiguration actions are to be performed.

ML-IDS In the area of network security, the autonomic computing paradigm is real-
ized within an anomaly-based multi-level intrusion detection system [7, 150, 131] that
implements the self-protection property. Anomaly-based intrusion detection systems
gain information by observing system behavior, as opposed to pattern-based systems
that monitor network traffic to identify signatures of an attack. System metrics are
collected in order to model overall system behavior to be in normal state, uncertain
state, or abnormal state. Local control loops manage the behavior of individual sys-
tem resources, whereas the global control loop is responsible for managing the whole
system. An autonomic runtime system consisting of common web services and an au-
tonomic runtime manager is responsible for establishing autonomic properties. Since
current QoS protocols do not distinguish between normal and attacking network traf-
fic, a quality of protection (QoP) framework is established.

77

IEEE Communications Magazine • October 2007 117

• Detect sets of policies that will or potential-
ly could conflict, given certain network con-
text.

• Resolve conflicts by modifying or removing
polices based on separate resolution poli-
cies or by referring back to the appropriate
policy author for a decision.

Policy conflict analysis must be done at each
level of the continuum, with high level policies
only “deployed” if they, and all the policies asso-
ciated with them at lower levels of the continu-
um, are detected as being conflict-free. Policy
conflict analysis is widely researched and is
acknowledged as an extremely difficult chal-
lenge; however, we believe significant advances
can be made by harnessing the semantic infor-
mation available in DEN-ng and associated
ontologies to facilitate more powerful conflict
analysis algorithms than those currently avail-
able. Our initial work on this approach is
described later and in more detail in [9].

Finally, we note that the model-centered
approach (previously outlined) primarily pro-
vides for explicit control of network behavior
and as such, can be viewed as an evolution of
traditional network management approaches.
However, this approach is limited by the capabil-
ities (and configurability) of the network devices
and the capability of maintaining up-to-date
information and ontological models of very com-
plex and highly dynamic network topologies.
Additionally, we believe that true autonomic
network management will require the deploy-
ment of processes and algorithms within network
devices themselves. These would act in a highly
distributed manner, serving to optimize network
behavior with respect to stability, performance,
robustness, and security — in effect, providing
the kind of self-management functionality dis-
cussed earlier. We argue that these processes
and algorithms must be incorporated into the
overall model-centered management process so
that their operation can be re-parameterized to
modify their behavior to satisfy high-level poli-
cies. This provides the required integration point
between the (top-down) model-centered man-
agement approach and the (bottom-up) self-
management approach in which highly
distributed algorithms applying local rules give
rise to the desired emergent global behavior.

THE FOCALE AUTONOMIC
NETWORK MANAGEMENT

ARCHITECTURE

In this section, we describe how the concepts for
autonomic management described earlier are
realized in the context of a concrete architec-
tural model for distributed autonomic network
management systems. The FOCALE architec-
ture is based on the observation that business
objectives, user requirements, and environmental
context all change dynamically. Therefore, a sin-
gle, statically defined, management control loop
is insufficient — we need the ability to adapt the
behavior of the control loop so that it can effec-
tively manage the network to react appropriately
to observed or hypothesized changes. FOCALE

implements two control loops: a maintenance
control loop is used when no anomalies are found
(i.e., when either the current state is equal to the
actual state, or when the state of the managed
element is moving towards its intended goal); an
adjustment control loop is used when one or
more policy reconfiguration actions must be per-
formed, and/or new policies must be codified
and deployed.

Of course, it is unreasonable to assume that a
single entity can maintain all the information
required to realize the FOCALE control loops
for large scale networks containing large num-
bers of heterogeneous (in terms of available
functionality, vendor-specific programming
model, and specific configuration) devices.
Therefore, FOCALE must be a distributed archi-
tecture, to the degree that even individual net-
work devices may incorporate autonomic
management software, implementing the mainte-
nance and adjustment control loops. To this end,
FOCALE assumes that any managed resource
(which can be as simple as a device interface or
as complex as an entire system or network) can
be associated with an autonomic management
element (AME), by interfacing the functionality
of the managed resource to the functionality of
an autonomic manager (AM) using a model-
based translation layer (MBTL), as shown in Fig.
3. As Fig. 4 shows, AMEs can be modularized to
first form a uniform autonomic management
domain (AMD) and then to an autonomic man-
agement environment; with each level containing
policy, security, discovery, context, and analysis
services that serve to harmonize the operation of
the AMEs/AMDs.

! Figure 3. FOCALE autonomic management element functional architecture.

System
policies

System
ontology

Object
models

DEN-ng
information

model

Vendor-
neutral data

Vendor-neutral
commands

Vendor-
specific data

Vendor-specific
commands

Model-based
translation layer

Reasoner

Autonomic
manager

Automatic management element

Event
manager

Learner

State
manager

Action
manager

Policy analyzer
and PDP

Managed resource(s)

JENNINGS LAYOUT 9/20/07 2:09 PM Page 117

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on February 23,2010 at 01:38:41 EST from IEEE Xplore. Restrictions apply.

Figure 3.12: FOCALE autonomic management element architecture [106]

False positives are a problem in intrusion detection system that prevent activation
of autonomic actions based on monitoring and analysis. Thus, an adaptive learning
algorithm and a multilevel analysis consisting of protocol behavior analysis, rule-based
behavior analysis, and payload behavior analysis has been implemented, which are
combined using least squares technique. An action translation module translates the
desired high level action into action steps for the managed network modules.

Runtime reconfiguration

Runtime reconfiguration refers to allowing dynamic reconfiguration of running systems
without the need of stopping or restarting of application components.

Kheiron Kheiron [86, 87] is a framework that allows introducing runtime reconfig-
uration support in applications which run in a managed execution environment like
Microsoft’s CLR or the Java VM that provide a management API. In the case of CLR,
the profiler APIs are used to collect information about parameters like memory usage
of the application. An execution monitor catches module load and unload events,

78

while the bytecode and metadata transformer allows the replacement of bytecode,
thus triggering a JIT recompile of the modified method. For native applications which
have been written in languages like C, a management API is not available. There-
fore, profiling and debugging information generated by the compiler is used to collect
information, and the Dyninst API8 for generating runtime code.

8Dyninst, http://www.dyninst.org/

79

http://www.dyninst.org/

4 Survey and taxonomy of autonomic
large-scale computing

This chapter conducts a comprehensive survey of autonomic large-scale computing.
It includes projects that explicitly support autonomic capabilities in order to address
large-scale computing problems and presents a taxonomy derived from properties of
those projects.

Section 4.1 presents work in the domain of autonomic large-scale computing that is
part of the survey. Section 4.2 examines considerations to be taken into account when
building taxonomies and presents the taxonomy of autonomic large-scale computing.

4.1 Survey of autonomic large-scale computing
projects

This section presents a survey of large-scale computing projects with self-manage-
ment capabilities. Work that extends existing large-scale computing projects with
autonomic capabilities is listed under the respective project name. Theoretical contri-
butions and unnamed projects are listed under the author’s names.

Section 4.1.1 introduces autonomic grid resource managers and schedulers. Sec-
tion 4.1.2 presents desktop grid and peer-to-peer systems with self-management sup-
port. Section 4.1.3 describes autonomic grid middleware projects that do not fall into
one of the preceding categories. Section 4.1.4 introduces work that investigates auto-
nomic computing within cloud computing platforms. Section 4.1.5 presents work that
examines the autonomic management of quality of service parameters and service level
agreements in large-scale computing systems. Section 4.1.6 lists autonomic scientific
workflow management systems. Section 4.1.7 finally introduces projects that support
the development of autonomic large-scale computing systems.

4.1.1 Grid resource managers and schedulers

This section describes projects that use autonomic capabilities in order to address
the problems of resource management and scheduling in grid computing, excluding
desktop grids which will be described in the next section. A taxonomy of grid resource
management systems has been presented in Section 2.1.1.

81

Dasgupta et al.

Dasgupta et al. [55] present an architecture for run-time fault handling in grid job-
flow management which targets the self-healing capability of autonomic computing.
A prototype implementation consists of two domains using different implementations
and different internal architecture, but mapping to the same conceptual architecture
consisting of a job flow manager responsible for sequencing individual jobs and main-
taining concurrency, and a meta-scheduler that selects resources and executes jobs.
The meta-scheduler contains logic to decide between local and remote job execution.

In order to implement self-healing capabilities, a generic proxy intercepts job flows
and adds run-time fault handling based on rules to detect failures and policies for
recovery actions. In addition, the proxy maintains a job flow repository and fault-
tolerant patterns that specify common actions like re-submitting the job with modified
parameters or to a different domain.

Dynaco framework

The Dynaco framework [34] is designed to introduce dynamic adaptation into grid
resource management in order to react to changing resource availability during job
execution. Buisson et al. [35] use the principles of autonomic computing by employing
a control loop consisting of observe, decide, plan, and execute sub-functions while del-
egating the actual sub-functions to plug-ins. This design allows to implement various
methods for each sub-function, e.g., to have the decide (analyze) step being delegated
to a program implemented in an imperative language like Java, to use decision rules
which are evaluated by some expert system, or to employ a genetic algorithm.

Job management in Dynaco is designed to refrain from stopping and restarting a job
in order to avoid the associated performance penalty. Instead, it requires the jobs to
be “malleable” by design, i.e. to allow for acquisition and release of resources during
job execution. Ultimately, job management strategies may be submitted by the user
as part of the job data.

Dynaco is built on top of the Fractal [32] component system.

Jarvis et al.

Jarvis et al. [105] present an autonomic middleware service that may be integrated with
standard Grid middleware tools like the Condor scheduler [75] and Globus information
services [68]. It is based on the PACE [138] performance analysis toolkit.

On a local (intra-domain) level, the Titan resource manager [166, 165] is used to
manage resources and to schedule jobs to Condor one by one, with resource usage
directions added which are based on PACE predictions. Thus, the jobs are queued
within Titan, not Condor. On the queued jobs, Titan employs a genetic algorithm
for resource selection that calculates multiple schedules, throws away unsuccessful
schedules, and replaces the current best schedule, if a better schedule has been found.
The genetic algorithm uses status information obtained from Condor for adaptation
of the queued job’s resource allocations.

82

For multi-domain task management, the intra-domain resource usage and perfor-
mance data is published using a performance information service based on the moni-
toring and discovery service from the Globus toolkit. A network of agents [42] uses this
performance data for deciding on each incoming job request, if it should be fulfilled
locally or directed to another site.

The GridFlow workflow management system presented in Section 4.1.6 is related
to this project, since it is also based on the Titan scheduler, the PACE performance
analysis toolkit, and the ARMS agent-based resource management system.

Perez et al.

Perez et al. [148] combine reinforcement learning and utility functions [172, 173] for job
scheduling on the EGEE grid infrastructure introduced in Section 3.1.2. The reinforce-
ment learning framework uses a time-utility-function that represents user satisfaction
as a decreasing function of job completion time and models “fairness” as the difference
between actual and previously agreed-on resource allocation between participants of
a virtual organization.

A reward is calculated from time-utility and fairness that is used to determine the
reward associated with the selection. The scheduler uses the SARSA (State-Action-
Reward-State-Action) algorithm [169] with neural network training for reinforcement
learning.

4.1.2 Desktop grids

This section presents autonomic desktop grid systems which are also called enterprise
grids, and peer-to-peer systems. Desktop grids are grids consisting of idle resources of
desktop computers. Grid computing in a peer-to-peer network employs a homogeneous
set of nodes that are at the same time providers and consumers of grid resources. A
taxonomy of desktop grids has been presented in Section 2.1.6.

CoordAgent

CoordAgent [76] is an enterprise grid middleware based on mobile agents. In order to
locate resources of desktop computers within a grid, a structure similar to Internet-
based discussion groups is established, where a moderator creates a group that may
be joined by desktop computers. The group itself may be distributed among several
computers. When a user submits a job, the group information is used to locate suitable
resources for job execution, and a mobile agent is created on the requester’s behalf.

CoordAgent supports process migration in case a desktop computer becomes un-
available during job execution. Checkpointing occurs by periodically storing a snap-
shot on computers selected using a quorum-based protocol. This requires that applica-
tions are written in C/C++ or Java, and that they are being preprocessed beforehand
using a JavaCC/Antlr-based preprocessor. In case of C/C++ programs, the prepro-
cessor inserts setjmp and longjmp instructions that allow saving the execution envi-

83

ronment including the program counter, but only supports process migration among
homogenous machines. Since Java does not support manipulation of the program
counter, state-capturing statements are inserted that divide the user code in functions
that are executed before and after migration, respectively.

Inter-process communication allows location of a migrated process and takes into
account that sites may be located behind a firewall or within a private network. A
middleware-unique ID is assigned to each job which gets translated into an IP address
on each process migration. Agent transfer uses the http or https port of the TCP
protocol stack in order to accommodate to the common network security practice of
closing all but a few common ports.

The mobile agent described above is responsible for maintaining the process state
by initiating process migration in case of resource unavailability and finally returns
the result to the requester.

InteGrade

InteGrade [81] is a desktop grid middleware based on CORBA which allows to use
the idle resources of desktop computers in a shared or dedicated manner. It orga-
nizes desktop computer resources into a hierarchy of clusters with a cluster manager
node responsible for managing cluster nodes and for communication between clus-
ters. The problem of idle desktop resources suddenly becoming busy or unavailable is
addressed by collecting usage statistics and determining the probability of being avail-
able for each node, in combination with a checkpointing mechanism that periodically
saves the current state of a computation. InteGrade implements the bulk-synchronous
parallel (BSP) model [178] of parallel computation which separates the concerns of
inter-process communication and scheduling but requires frequent synchronization.

Figure 4.1 [81] shows the architecture of a single cluster within the InteGrade mid-
dleware.

INTEGRADE: OO GRID MIDDLEWARE LEVERAGING IDLE RESOURCES 7

Dedicated Node Resource
Provider Node

LRM LRM

NCC

LUPA

User Node

Cluster
Manager

LRMLUPA

ASCT

GUPA GRM

...

Figure 1. InteGrade’s Intra-Cluster Architecture

that the GRM uses its local information about the cluster state as a hint for locating the best
nodes to execute an application. After that, the GRM engages in a direct negotiation with
the selected nodes to ensure that they actually have the sufficient resources to execute the
application at that moment and, if possible, reserves the resources in the target nodes. In case
the resources are not available in a certain node, the GRM selects another candidate node
and repeats the process. The information, execution, and reservation protocols are based on
previous work in the 2K Resource Management Subsystem [24]. A recent extension of this
protocol [25] implemented by our group allows the GRM to engage in information updates,
resource negotiation, and reservation across a collection of clusters connected through the
Internet. Figure 2 depicts a possible cluster hierarchy. Resources in any of the clusters can be
transparently accessed if needed.

Similarly to the LRM/GRM cooperation, the Local Usage Pattern Analyzer (LUPA) and
the Global Usage Pattern Analyzer (GUPA) handle intra-cluster usage pattern collection and
analysis. The LUPA executes in each cluster node that is a user workstation∗ and collects data
about its user usage patterns. Based on long series of data, it derives usage patterns for that
node throughout the week. Each node’s usage pattern is periodically uploaded to the GUPA.
This information is made available to the GRM, which can make better scheduling decisions
due to the possibility of predicting a node’s idle periods based on its usage patterns.

The Node Control Center (NCC) allows the owners of resource providing machines to set
the conditions for resource sharing, if they so wish. Parameters such as periods in which they
do not want their resources to be shared, the portion of resources that can be used by grid
applications (e.g., 30% of the CPU and 50% of its physical memory), or definitions as to

∗The LUPA is not executed in dedicated nodes that can only be used remotely.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–1
Prepared using cpeauth.cls

Figure 4.1: InteGrade’s intra-cluster architecture. The inter-cluster architecture con-
nects several cluster manager nodes to form a hierarchy of clusters. [81]

84

AutoGrid [161] is an autonomic grid middleware built using the Adapta [160] frame-
work which allows the development of self-adapting component-based distributed ap-
plications. It is based on the InteGrade enterprise grid middleware described above.
AutoGrid implements context-awareness, self-optimization, self-healing and self-con-
figuration capabilities by providing a monitoring service as sensor and a dynamic
reconfiguration service as effector.

Possible self-configuration actions in AutoGrid include replacement of an application
algorithm by using the lazy object replacement approach of the Adapta framework,
and changing of application parameters. Self-healing is based on the fault-tolerance
mechanisms supported by the Integrade middleware, namely retrying, replication, and
checkpointing. AutoGrid currently supports replication and allows dynamic change of
the number of replicas. Self-optimization provides means for replacing the scheduling
algorithm.

Neto et al. [134] employ a model based on interceptors as an alternate approach
for adding self-management capabilities to the InteGrade middleware. Interceptors
are used to modify non-functional properties of a system. The interceptor model
employed here consists of a monitor and several implementor components, each of
them implementing a non-functional property. Since the dynamic interceptor model is
implemented on the communications layer, applications written for the InteGrade mid-
dleware need not to be modified as it is the case with AutoGrid which uses additional
components in its infrastructure.

Organic Grid

Chakravarti et al. [48] address the problem of scheduling within a desktop grid. Desk-
top grids require the grid middleware to adapt to a frequently changing environment,
since the resources of desktop computers are only available on the grid, if the computer
is powered on and not used for interactive applications.

The Organic Grid middleware uses an approach that combines decentralized schedul-
ing and strongly mobile agents. Strong mobility in agents allows computational tasks
to disregard mobility issues, leading to simpler program code. Additionally, the agents
support forced mobility, which means that agent migration can be initiated from an
external thread, i.e. the grid middleware on behalf of a user reclaiming their desktop’s
resources.

If an agent migrates to another node, the destination becomes a child node of the
source. The agent’s knowledge about the grid environment is organized using a tree-
based overlay network with the task origin as root, the child nodes as vertices, and
the edges weighted with the children’s perceived performance. Initial migration is
supported by a “friend’s list”. If an agent is started with a task that is divisible into
subtasks, it executes one of the tasks and sends requests for work to other nodes.
A node that receives a request for work sends a clone of its agent to the requester,
with the requester becoming the child of this node. Each node periodically informs
its parent of the performance of its children. The parent may add new grandchildren
to its list of children in order to contact them directly in future. This leads to nodes

85

with good performance moving closer to the root of the overlay network.

So-Grid

Forestiero et al. [67] present So-Grid, a self-organizing information system for the
management of grid resources in a peer-to-peer network that employs bio-inspired
algorithms for replication of resource descriptors and discovery of those descriptors.
Agents pick and drop resource descriptors according to probability functions in order
to replicate and reorganize available resources. Agents switch between copy mode for
replication and move mode for reorganization autonomously, i.e. based on their local
information. The discovery algorithm directs searches to regions of the grid where the
appropriate resource type is accumulated. In order to direct searches, grid hosts that
accumulate a large number of descriptors for a given class are elected as representative
peers that attract queries for that class type. Parameters that influence the agent’s
decisions for resource selection include the average connection time of a peer and the
update interval of resources.

4.1.3 Other grid middleware

This section describes autonomic grid middleware projects that are part of this survey
and do not fall into one of the categories described in the two previous sections,
which have been resource management and scheduling, and desktop grids. Problems
addressed by the projects in this section using autonomic computing methods include
client access, service discovery and data transfer optimization.

AutoMAGI

AutoMAGI [157] is an autonomic mobile-to-grid middleware which is designed to en-
able access from mobile devices like mobile phones and PDAs to grid resources. In
order to achieve mobile grid access, limited client resources and a highly unreliable
network connection have to be taken into account. Thus, the middleware is organized
into autonomic components which operate as semantic web services.

Components in AutoMAGI include a client communication interface responsible
for the decision of whether a loss of connection detected during monitoring has been
intentional (i.e. requested by the user) or unintentional (e.g. client-side lack of network
coverage). A job broker service is responsible for scheduling the job on the grid on
behalf of the client (which may be offline at that point). Job results are stored within
the knowledge component described below, and finally passed to the mobile client
when it reconnects. Security and support for multiple instances of the middleware are
provided.

The knowledge management component of AutoMAGI uses semantic web technolo-
gies to organize knowledge passed by the autonomic elements, like context information,
system logs, performance metrics and policies. Since each autonomic element may have
its own knowledge model, the knowledge management component is also responsible

86

!"!#$%!&%'()(&%*&+,-./&'+*$%&%0!(!�'./!(&-.&1-.!&2-%0&

%0!&3!(-,!3&/*'1&*4&%0!&#*56*.!.%7&

80-(&5'..!,&*4&(%,$#%$,!&4'#-1-%'%!(&-.&+$-13-./&$6&'&

)-.3& *4& '& #*.%,*1& 1**6& +9& !561*9-./& %0!& 5*.-%*,:&

'.'19;!:& 61'.& '.3& !"!#$%!& #-,#1!:& 20-#0& -(& *4&)!9&

(-/.-4-#'.#!&4*,&'$%*.*5-#&+!0'<-*,&=>?@7&

&

!"#$%&'($)*#$+,-.&/,&%+/#
&

80!& A$%*BACD& 5-331!2',!& -(& !"6*(!3& '(& '& 2!+&

(!,<-#!&%*&%0!-!.%&'661-#'%-*.7&80!&#*56*.!.%(&*4&%0!&

5-331!2',!& E'(& (0*2.& -.& F-/$,!& >G& ',!& 3-(#$((!3&

+,-!419&'(&4*11*2(7&

&

!"0"#1.2,'3/+4#2/+3.,/#
&

80!&3-(#*<!,9&*4&%0!&5-331!2',!&+9&5*+-1!&3!<-#!(&

-(&5'.'/!3&+9&!561*9-./&'&HIID&,!/-(%,9&=J>@:& =JK@7&

80!& #*56*(-%-*.&*4& %0!&#$,,!.%&2!+& (!,<-#!(&5'9&.*%&

/-<!& ($44-#-!.%& 4'#-1-%-!(& %*& 3!6-#%& '.& '$%*.*5-#&

+!0'<-*,& *,& %*& -.%!/,'%!& %0!5& (!'51!((19& 2-%0& *%0!,&

'$%*.*5-#&#*56*.!.%(&+$%&2-%0&%0!&'3<!.%&*4&(!5'.%-#&

2!+&(!,<-#!&%!#0.*1*/-!(&1-)!&LMNOP&=JQ@:&-%&+!#*5!(&

6*((-+1!& %*& 6,*<-3!& '& 4$.3'5!.%'1& 4,'5!2*,)& 4*,&

,!6,!(!.%-./& '.3& ,!1'%-./& 3!<-#!(& '.3& (!,<-#!(& 2-%0&

%0!-,& 6*1-#-!(& '.3& 3!(#,-+-./:& ,!'(*.-./& '.3&

-.4!,!.#-./&'+*$%&%0!-,&4$.#%-*.'1-%-!(&'.3&#'6'+-1-%-!(7&

&

&
!

"#$%&'!()!*'+,-./'01!/-2',!302!3&45#1'41%&'!
-6!7%1-879:!

&

&L.#!& %0!& 5-331!2',!& (!,<-#!& -(& 3!61*9!3& '.3&

,!/-(%!,!3:&*%0!,&'661-#'%-*.(R3!<-#!(&2*$13&+!&'+1!&%*&

3-(#*<!,& '.3& -.<*)!& -%& $(-./& %0!& ASD& -.& %0!& HIID&

(6!#-4-#'%-*.& =JK@&20-#0& -(& 3!4-.!3& -.&TBN:&2,'66!3&

-.&'&PLAS&!.<!1*6!&'.3&(!.%&*<!,&U88S7&

&

!"5"#67./8'99%8.,:&.'8#.8&/+;:,/#
&

80!& (!,<-#!& '3<!,%-(!3& %*& %0!& #1-!.%& -(& %0!&

#*55$.-#'%-*.& -.%!,4'#!& +!%2!!.& %0!& 5*+-1!& 3!<-#!&

'.3&%0!&5-331!2',!7&80-(&1'9!,&!.'+1!(&%0!&5-331!2',!&

%*& *6!,'%!& '(& '& (!5'.%-#& 2!+& (!,<-#!& =J?@& '.3&

#*55$.-#'%!& <-'& %0!& PLAS& 4,'5!2*,)& =JV@7& 80!&

*.%*1*/9& ,!6*(-%*,9& -.& %0!& 5-331!2',!& '1(*& #*.%'-.(&

%0!& 3!<-#!& '.3& $(!,& ,!1'%!3& *.%*1*/-!(& '.3& (!,<-#!&

6*1-#-!(&4*,&%0!&3!<-#!(:&$(!,(&'.3&'661-#'%-*.(7&I$!&%*&

%0-(&(!,<-#!O*,-!.%!3&'66,*'#0:& -%& -(&.*%&5'.3'%*,9&4*,&

%0!& #1-!.%& '661-#'%-*.& %*& ,!5'-.& #*..!#%!3& %*& %0!&

5-331!2',!& '%& '11& %-5!(& 20-1!& %0!& ,!W$!(%& -(& +!-./&

6,*#!((!37&&

M!& 4*#$(& *.& 6,*<-3-./& ($66*,%& 4*,& *441-.!&

6,*#!((-./& -.& %0!& A3'6%-<!& X*55$.-#'%-*.&

#*56*.!.%:& +9& #*.(-3!,-./& !-%0!,&*4& %0!& %2*&)-.3(&*4&

3-(#*..!#%-*.(Y& -.%!.%-*.'1& 3-(#*..!#%-*.:& 20!,!& %0!&

$(!,& 3!#-3!(& %*& 3-(#*.%-.$!& %0!& 2-,!1!((& #*..!#%-*.&

0-5(!14&*,&3*!(.Z%&#',!&-4&%0!,!&-(&'&#*..!#%-*.&*,&.*%:&

'.3& $.-.%!.%-*.'1& 3-(#*..!#%-*.:& 20-#0& 5-/0%& *##$,&

3$!& %*& <',-'%-*.(& -.& +'.32-3%0:& .*-(!:& 1'#)& *4& 6*2!,&

!%#7&80!&A3'6%-<!&X*55$.-#'%-*.&#*56*.!.%&$%-1-;!(&

'& #*..!#%-*.&5*.-%*,& 4*,& %0-(& 6$,6*(!& +$%& %0!& [*+& 4*,&

4'#-1-%'%-./& -.&5')-./& ($#0&3!#-(-*.(& %0'%&20!%0!,& %0!&

3-(#*..!#%-*.&2'(& -.%!.%-*.'1& *,& .*%& -(& 3*.!&2-%0& %0!&

0!16& *4& 3!#-(-*.& ,$1!(& *4& %0!& #*56*.!.%7& 80!& '#%-*.&

,$1!(& *4& %0!& #*56*.!.%& %')!& %0!& #*.%,-+$%-./& 4'#%*,(&

'.3& 6','5!%!,(& -.%*& '##*$.%& '.3& +'(!3& *.& %0!&

6',%-#$1',&6*1-#9:&6,*#!!3&2-%0&%0!&#*$,(!&*4&'#%-*.(&%*&

+!&$.3!,%')!.7&&

I$,-./& !"!#$%-*.:& #0!#)6*-.%(& ',!& 5'-.%'-.!3& '%&

%0!-!.%&'.3&%0!&5-331!2',!:& %')-./&-.%*&'##*$.%& %0!&

6*1-#-!(&*4&%0!&3!<-#!:&$(!,&'.3&'661-#'%-*.:&-.&*,3!,&%*&

6%-5-;!& ,!-.%!/,'%-.& '4%!,& 3-(#*..!#%-*.& '.3&

-.#*,6*,'%!&4'$1%&%*1!,'.#!7&

&

!"!"#)+.<#6'99%8.,:&.'8#.8&/+;:,/#
&

80!& C,-3& X*55$.-#'%-*.& -.%!,4'#!& 6,*<-3!(&

'##!((&%*&%0!&C,-3&(!,<-#!(&+9&#,!'%-./&2,'66!,(&4*,&%0!&

ASD& '3<!,%-(!3& +9& %0!& C,-37& 80!(!& 2,'66!,(& -.#1$3!&

(%'.3',3&C1*+$(&6,*%*#*1(&($#0&'(&C\AB&=J]@:&BIP&

=J^@:& CPD& =J_@& !%#7& 20-#0& ',!& *+1-/'%*,9& 4*,& '.9&

'661-#'%-*.& %,9-./& %*& #*55$.-#'%!& 2-%0& %0!& C,-3&

(!,<-#!(7&80-(&!.'+1!(&%0!&5-331!2',!&%*&#*55$.-#'%!&

2-%0&%0!&C,-3:&-.&*,3!,&%*&'##*561-(0&%0!&[*+&'((-/.!3&

+9&%0!-!.%7&D%(&2*,)-./&-(&-.*(!&#*11'+*,'%-*.&2-%0&

%0!& C,-3& D.4*,5'%-*.& #*56*.!.%:& 20-#0& '1(*& $(!(&

C1*+$(&'.3&-(&3-(#$((!3&1'%!,&-.&%0!&(!#%-*.7&

&

Proceedings of the Joint International Conference on Autonomic and Autonomous Systems
and International Conference on Networking and Services (ICAS/ICNS 2005)

0-7695-2450-8/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on April 20, 2009 at 11:18 from IEEE Xplore. Restrictions apply.

Figure 4.2: AutoMAGI architecture and deployment model [157]

for data and knowledge integration and for resolving conflicts that may arise due to
conflicting goals.

A security infrastructure allows to specify different levels of trust among the agents,
and provides cryptographic protocols for encryption of communication between agents.

The middleware supports the deployment of multiple instances of the AutoMAGI
gateway. An arbitrator component allows to share information between the gateway
instances according to high-level guidance. In case a client disconnects and recon-
nects to a different gateway instance, the client sends the last used gateway ID upon
reconnection, allowing the gateway that processes the current connection to obtain
information from the gateway where the client has previously been connected.

GATES

The GATES middleware (grid-based adaptive execution of streams) [50, 51] uses exist-
ing grid standards and tools for real-time processing of data streams that are generated
from data collection instruments or received through WAN communication in a rate
faster than the respective disk write speeds, disallowing temporary storage. A self-
adaptation algorithm allows optimization of processing accuracy under the real-time
constraint. The middleware requires applications to use a specific API to expose ad-
justment parameters like the sampling rate. This API is called periodically by the
stream processor in order to increase or decrease the values of certain parameters
based on current status of the processing system.

For example, if incoming data cannot be processed in real time at the current sam-
pling rate due to high system load – which can be determined by observing the pro-
cessing queue length – the middleware increases the application’s sampling rate, thus

87

reducing accuracy while maintaining stability.
The adaptation algorithm’s objective is to keep the average queue size between

configurable low and high thresholds. An open problem is how to maintain system
stability by appropriately weighing past and current queue lengths.

Gounaris et al.

Gounaris et al. [84] present an approach for self-optimization in grids based on web
services, that tunes the block size of a response to a OGSA-DAI web service (database
interface) in order to minimize total response time of database calls. It uses an auto-
nomic controller that resides on the client side and thus has limited information about
the service. So, self-management occurs solely in reaction to the currently observed
actual response time of a database call. Optimization of the response time must take
into account noise in the performance graph resulting from the client-side observation
and the moving optimum resulting from dynamic system behavior. In addition, fast
convergence is required.

Two optimization algorithms are presented in order to solve the problem outlined
above. The first one is a runtime optimization algorithm based on Newton’s method
with averaging applied to mitigate the algorithm’s sensitivity to noise. The second
algorithm is based on switching extremum control. For the application of finding the
optimal block size for a data transfer, fast convergence and low overshooting – i.e.
avoidance of intermediate solutions far away from the optimal point – is required.
Experimental evaluation shows that the algorithm based on switching extremum con-
trol outperforms the algorithm based on Newton’s method. While the case study
is conducted in the context of OGSA-DAI web services, the presented methods are
applicable for similar optimization problems.

GridSim

GridSim [39] is a toolkit that allows the simulation of resource allocation and schedul-
ing mechanisms. Assuncão et al. [22] provide an extension framework for GridSim that
allows to model policies for the provisioning and negotiation of resources and services.
The policies developed with this framework can be used by autonomic managers. Ex-
ample acquisition and provisioning policies based on the Catallaxy economic model
are given.

Guan et al.

Guan et al. [88, 89] introduce an autonomic service discovery middleware for pervasive
devices built on semantic web technology. The web ontology language for services
(OWL-S) [123] is used to describe grid services by extending its service profile with
grid-specific service parameters. For example, a service type is specified in order to
distinguish between an information access scenario, where a pervasive client is used to
retrieve information, and a work assistant scenario, where a pervasive client initiates
the execution of a program on the grid.

88

A service discovery algorithm uses the ontology described above to match requests
with services based on the taxonomic relation of concepts. The algorithm distinguishes
between strict and non-strict requirements. After selecting all services which do match
all of the strict requirements, a score is calculated to represent the matching of non-
strict requirements. Calculation of the score is based on the semantic distance between
requirement and service, which is a function of their class relationship within the
ontology.

Guo et al.

Guo et al. [90] use intelligent agents to achieve self-organization of autonomic elements
in a grid environment. Autonomic elements publish their capabilities and interests
based on ontologies and first order predicate logic, and they establish acquaintance
relationships with each other. Autonomic managers are agents, and their managed
resources are either application grid services, management grid services, or lower-level
agents. Composite services are services which are composed of lower-level services that
are integrated according to a guideline called recipe.

The collaboration life cycle between autonomic elements consists of invitation, ne-
gotiation, affirmance, request, monitoring, exception handling, and termination. Ele-
ments pass information to other elements with matching interests using notifications.
Verification rules are employed to decide if a piece of information or an event matches
some interest. The control loop of each element first decides which management work
is to be done and then either performs it or establishes collaboration with other ele-
ments that have matching capabilities.

ICENI

The Imperial College e-Science Networked Infrastructure (ICENI) is middleware frame-
work which adapts the component model of software engineering to grid computing.
Applications and resources are modeled as components with component metadata
expressed in Component XML (CXML) [77]. Within the Open Grid Services Archi-
tecture, ICENI is situated between the application and collective layers with the goal
to provide application abstraction in the scientific computing field.

Hau et al. [92] use ontological annotation in order to provide autonomic service adap-
tation within ICENI. The annotation of components published in the ICENI frame-
work is extended with semantic information which the scheduler can use for semantic
matching of components. For example, a+b has the same semantics as sum(a,b,0),
allowing to add up two numbers using a component with addition functionality that
requires three parameters. However, autonomic service adaptation is not part of the
current version of the ICENI architecture. [126].

OptimalGRID

Almaden OptimalGRID [59, 118] is a middleware developed at the IBM Almaden
Research Center which automates the problem partitioning, problem deployment and

89

run-time management for large-scale, parallel distributed applications.
First, a connected parallel problem is partitioned into original problem cells (OPC)

with connections that are represented using a map. Then, the OPCs from a region of
the map are statically aggregated into OPC collections. One or more OPC collections
are dynamically assigned to a variable problem partition (VPP) for execution on a grid
node. Communication between OPCs on the edges of neighboring OPC collections
is minimized, since it consumes network resources. A tuple-space communication
system based on TSpaces [117] is used to implement a distributed whiteboard model
that allows client access to one or more shared global message boards. The optimal
number of whiteboards depends on the problem size and is determined using autonomic
methods described in the following paragraph.

The first component on the OptimalGRID system involved in application execution
is the problem builder that determines the optimal number of nodes needed to solve
the problem. The autonomic program manager (APM) is assigned to one of the grid
nodes and collects performance and diagnostic data from the VPPs. Pluggable policy
modules may be added to the APM in order to support specific optimization goals.
Self-configuration occurs during the initial problem assignment to specific nodes based
on their computing power and memory sizes, and the network latency in order to
minimize overall problem solving time. Self-optimization and self-healing is supported
by writing the state of all OPCs to the whiteboard periodically with a configurable
interval length, in order to allow recovery from a failed node.

Zhao et al.

Zhao et al. [197] present an autonomic grid data management system based on the Grid
Virtualized File System (GVFS) [196]. An autonomic data scheduler service maintains
parameters like the client-side disk cache size using a utility function based on the size
of the client-side data set, computing power of a node, and deadline requirements. A
data replication service maintains a number of replicas. Since increasing the number
of replicas of a given data set enhances data availability but increases replication cost,
a benefit-cost-analysis is done based on available knowledge of reliability values of the
nodes. Additionally, data sets of applications with high priority and data sets of active
applications are given a higher value. Data replica regeneration in case of data server
failures is also supported. The grid data management system is supported by client-
side and server-side autonomic file system services. Functionality supported includes
autonomic cache configuration, data replication, and session redirection.

4.1.4 Cloud computing systems

This section presents work that explicitly describes self-management in cloud comput-
ing systems. Work presented in this section either addresses a problem that is specific
to cloud computing or investigates a general problem in that context.

90

AbdelSalam et al.

AbdelSalam et al. [1] present a scheme that minimizes energy consumption of a cloud
computing center and identifies suitable time-slots for change management, while satis-
fying processing requirements of interactive applications based on service-level agree-
ments and previous usage data. The system model assumes a group of identically
configured servers with an operation frequency manageable by hardware-based power-
management techniques. Client SLAs are translated to computing power requirements
by executing test query sets provided by the customer.

Assuming a cubic relationship between operating frequency and power consumption,
the optimal number of servers and their operating frequencies are determined for each
time period based on the sum of the client computing power requirements. [2] Time
slots with low demand, where the optimum number of servers is less than the total
number of servers are identified as being suitable for change management purposes.

Dai et al.

Dai et al. [54] present a framework for self-diagnosis and self-healing in cloud systems
that uses multivariate decision diagrams (MDD) in order to determine the severity level
of a problem, and a Näıve Bayes classifier (NB) to identify the category of a problem
and possible remedies. Figure 4.3 [54] shows the self-diagnosis and self-healing process
employed by the framework.

50 Y. Dai, Y. Xiang, and G. Zhang

3 Hybrid Diagnosis Approach

The hybrid diagnosis approach is a general concept that represents a combination of
the analytical tools cooperating together to realize the diagnosis purpose as shown in
Fig. 1.

Y
C Naïve

Bayes
Classifier

Healing Z

S

S X

NB
Learn ing

Multivariate
Decision
Diagram

Pre-proces

Fig. 1. Hybrid diagnosis integrating the MDD and the Naïve Bayes Classifier

There are several important modules for the hybrid diagnosis. The first module is
to quickly get the overall severity levels in order to decide which type of healing
method or prescription to apply. Depending on the severity, the corresponding
diagnosis and healing category can be selected, e.g. some severe problems need quick
solutions whereas some minor problems need intelligent solutions. Determining a
wrong category may lead to missing the best recovery time. Thus, we implement the
MDD (Multivariate Decision Diagram) [11], to determine severity levels, which is
very efficient as the first module in Fig. 1.

Then, the Naïve Bayes Classifier is applied to infer the possible consequences.
First, the severity level C output from the MDD module feeds forward to the Healing
module for selecting the corresponding healing categories. The severity level C also
feeds forward to diagnosis module to determine which model to apply. The symptoms
S are pre-processed to X and then feed into the Naïve Bayes Classifier to derive the
possibilities associated with corresponding consequences. Finally, the results are the
consequences (Y) out of the diagnosis for self-healing. Then, the healing module
selects and runs the corresponding prescription with the result Z. After that, the Naïve
Bayes learning is applied to train the Naïve Bayes network and then to adjust the
parameters.

The MDD and Naïve Bayes network integrate together to realize the hybrid
diagnosis function. The following subsections respectively show how to deploy them
into this hybrid diagnosis.

3.1 Multiple-valued Decision Diagrams (MDD)

The Multiple-valued decision diagram (MDD) [12] is a natural extension of Binary
Decision Diagram (BDD)[13-14] to the multiple-valued case. A MDD is a directed
acyclic graph (DAG) with up to n sink nodes, each labeled by a distinct logic value 0,
1, ……, n-1. Each non-sink node is labeled by an n-valued variable and has n

Figure 4.3: Self-healing with MDD and the Näıve Bayes Classifier [54]

A multivariate decision diagram, which is a directed acyclic graph extending a binary
decision diagram for the case of n-valued variables, thus having up to n sink nodes
represents the overall severity level of the current system state. The severity level
obtained by applying the MDD is used to determine if some immediate action like
suspending or killing suspect processes needs to be performed before running the
actual and possibly time-consuming diagnosis process.

Diagnosis assesses the probability for a problem class based on the observed attribute
values, applying Bayes’ theorem to the actual values and their probabilities known
from history data. Problem identification includes a list of possible remedies and
their predicted consequences. The result of applying each remedy is checked against

91

the predicted consequence in order to determine success. Parameters of the original
problem and the successful remedy are used as input for the Näıve Bayes learning
network in order to adjust parameters for future diagnosis.

Iqbal et al.

Iqbal et al. [103] address the problem of guaranteeing response times of cloud ap-
plications. They present a prototype based on the Eucalyptus [139] cloud system
introduced in Section 3.2.3 which allows cloud systems to adapt to the condition of
heavy use by autonomically requesting additional resources. The architecture of the
prototype consists of a load balancing proxy and several virtual machine images con-
taining instances of the cloud application. Monitoring examines the proxy log file in
order to detect sessions with an average response time exceeding a certain threshold.
If such sessions exist, a new cloud application instance is created and the load balancer
configuration is updated to include the newly created virtual machine.

Planned future enhancements of the prototype are to allow dismissing unused virtual
machines in periods of low traffic, and the prediction of high traffic periods.

Libra+$Auto

Libra+$Auto [189] is a mechanism for advance reservation of cloud resources that
employs autonomic resource pricing, allowing commercial cloud providers to increase
revenue by applying price discrimination, which is the economic term for the practice
of charging different customers with different prices for the same good, with the good
in question being computing resources.

While most commercial cloud computing systems currently offer static unit pricing
of resource usage, pricing in Libra+$Auto is a function of expected workload demand
and resource availability. Since resources are reserved in advance, expected workload
demand is known to the system. Providers may configure a static base price with
a fixed weight that allows the charging of a minimum price, and a unit price with
its weight being adjusted automatically based on node availability. The price per
computing node is calculated as the weighted sum of the base and unit prices, and the
total price as the sum of the prices of the reserved computing nodes at the current
time slot.

Libra+$Auto is implemented within the Aneka cloud computing platform described
in Section 3.2.3. The implemented reservation system allows to select nodes within
independent time slots for sequential applications, or a set of nodes within the same
time slot for parallel applications.

Paton et al.

Paton et al. [143] present an approach for adaptive workload management on cloud
systems based on utility functions, with the goal of allowing to handle unpredictable
variations in workload resulting from the composition of cloud services. Utility func-
tions combined with optimization algorithms are identified as a paradigm for workload

92

execution management. After describing a methodology for developing a utility-based
workload management approach, the applications of autonomic workflow execution
and autonomic query workload execution are studied.

The methodology states that, after identifying a property to optimize, a utility
function and a cost model shall be defined. While utility is expressed in terms of
the chosen property, the cost model predicts the workload performance while taking
into account adaptation costs. After designing a representation for the assignment of
workload components to computational resources (e.g. a vector of tasks) and selecting
an algorithm for optimization, the control loop of the autonomic controller may be
implemented.

The adaptive workload management methodology is applied to the case of auto-
nomic workflow execution, where workflows are mapped to cloud resources. Here, op-
timization occurs by the utility properties of response time and profit. In the case of
autonomic query workload execution, utility properties are response time and number
of QoS targets met. The utility-based approach is shown to outperform action-based
adaptation strategies in the context of cloud workload management.

4.1.5 Quality of service frameworks

This section introduces projects that examine the management of non-functional re-
quirements expressed in terms of quality of service parameters, and the negotiation
of service level agreements in large-scale computing systems. Work described in this
section presents algorithms or research prototypes that target QoS management and
SLA negotiation in the context of large-scale computing systems.

Koller et al.

Koller et al. [112] present an SLA management proxy that can be used to add SLA
management to existing services. The proxy maps services to virtual services that are
accessed by the consumer, who calls the virtual services offered by the proxy instead
of the original ones. Virtual services are responsible for communicating with the
respective original services. Besides passing through the functionality of the original
service, virtual services add monitoring of the original services – which requires the
services to offer monitoring capabilities – and provide status reports derived from
monitoring that may be accessed by the consumer.

During the communication setup phase, the proxy identifies services that fulfill
the requested QoS parameter and maps a physical service to the virtual one. When
communication is established, the proxy supports preventive monitoring that allows
to notify a system operator if QoS parameters exceed a certain threshold so that there
is a risk of violating a service-level agreement in the near future.

In order to resolve conflicts of interest between producers and consumers, the proxy
approach allows for neutral evaluation and management of SLAs, provided that the
proxy system is operated by a third party. If the proxy is operated by the service

93

provider instead, it allows the agreed-on SLAs to be stored at a third party notary
site.

PAWS

PAWS - Processes with Adaptive Web services [16, 146] is a framework for the exe-
cution of business processes based on web services which has been developed at Po-
litecnico di Milano. An optimizer component within that framework is responsible for
composing web services such that quality of service constraints are satisified [20].

Anselmi et al. [14] propose an algorithm for selecting web services (and, by extension,
grid services) for composition subject to quality of service requirements. In order
to minimize the computation power required to solve the web service composition
problem, the approach presented optimizes the mapping between abstract and concrete
web services for a set of requests simultaneously.

visioning. VOs’ resources are represented by concrete Web
services which are physically deployed and executed by Lo-
cal Grids. A VO supports a limited number of Web service
operation invocations and can execute concrete Web service
operations that are located in different VO sites.

Grid middleware provides basic mechanisms to manage
the overall infrastructure of a service center, adapting the
physical configuration to the requirements of varying incom-
ing workloads, implementing service differentiation and per-
formance isolation of multiple Web services.

As depicted in Figure 2, our framework exploits local grids
monitoring infrastructure and includes a Service Registry,
and a Service Broker.

Figure 2: The reference grid environment

Low level information provided by the Grid Monitoring
Infrastructure is used to identify requests of different Web
services operations and to estimate requests service times
(i.e., the CPU and disk time required by the physical infras-
tructure to execute each operation).

The Service Registry stores the variable QoS profiles and
the number of available invocations. As discussed in [3], QoS
profiles follow a discrete stepwise function that is periodic
with period T (see Figure 3) and are obtained taking into
account seasonal workload variations. The discrete time in-

!

"#$%

"#&'

&!

! "#$#%#&

&

Figure 3: Example of a periodic QoS profile

terval will be denoted by u, the discretization interval size

by ∆. We assume that QoS profiles are constant in each
interval u. The quality value for dimension r, operation o of
Web service j in time interval u will be denoted by qj,o,u,r.
In autonomic systems, ∆ is about half an hour [1], and if
we assume that the incoming workload has a daily seasonal
component, T is 24 hours. Index u ranges in {1, . . . , U},
where U = !E/∆" and E denotes the execution time global
constraint for the composed process. We denote by Nj,o,u

the number of available operation o invocations for concrete
Web service j which can be executed in the time interval u.

In order to simultaneously schedule multiple requests, the
Short Term Instance Predictor forecasts the number of in-
stances N which will be submitted to the Service Broker in
the next control interval u. As in [5], the Short Term In-
stance Predictor has been implemented combining smoothing-
exponential techniques, auto-regressive-moving-average and
polynomial regression models. The Local Resource Alloca-
tor reserves local grid physical resources to different Web
service operation invocations in order to meet QoS require-
ments [3]. Since the high variability of the Internet work-
loads, the allocator employs autonomic techniques for the
dynamic allocation of grid physical resources among differ-
ent Web service invocations. Application requirements are
met adapting the physical infrastructure by exploiting grid
middleware primitives (e.g. Globus toolkit GRAM or EGEE
WMS, [18]).

Finally, the Broker receives composed Web service execu-
tion requests from VO members and external users, consults
the local and remote Service Registries in order to obtain
QoS profiles qj,o,u,r and available Web service operation in-
vocations Nj,o,u, receives the prediction on the number of
instances N for the next control interval, and determines the
global plan. Local grid resources are subsequently reserved
on the basis of the global plan identified by the broker and
Nj,o,us are updated accordingly.

Note that, within the proposed framework, the execution
plan of an arriving request is pre-determined since the selec-
tion is performed in the previous time interval. At the end
of every control time interval, the grid reserves resources
according to the global plan.

4. FORMULATION AND ALGORITHMS
FOR THE MI-WSC PROBLEM

In our framework, the broker of each VO, see Figure 2,
solves a MI-WSC problem for each time interval u finding
the optimal mapping between tasks and Web service opera-
tions for N instances. Clearly, the broker solves the problem
within interval u.

Unless otherwise specified, we assume that indices j and
o respectively range in sets WSi and OPj , where reference
indices i and j will be clear from the context. Recall that
if not otherwise stated indices i, u, r, k and n respectively
range in {1, . . . , I}, {1, . . . , U}, {1, . . . , R}, {1, . . . , K} and
{1, . . . , N}. Execution time will be indexed by r = 1.

In Section 4.1 we give a MILP formulation of the MI-WSC
problem. In Section 4.2 we show that the MILP optimal
solution requires a strong computational effort and makes
unfeasible the analysis of real world workloads. Therefore,
in Section 4.3 we propose a greedy heuristic which quickly
computes a suboptimal solution.

3

Figure 4.4: Reference grid environment for service composition [14]

A reference environment shown in Figure 4.4 [14] consisting of multiple virtual or-
ganizations (VO) is given that share their resources which are represented by concrete
web services and can be accessed by an end-user. Each VO contains a service registry
and a service broker which is responsible for the mapping process described above. An
NP-hard optimal solution based on mixed integer linear programming (MILP) and a
greedy heuristic algorithm are given that solve the multi-instance web service compo-
sition (MI-WSC) problem by discretizing periodic QoS profiles that are stored in the
service registry.

Ardagna et al. [19, 18, 17] present a reference framework for web service selection
and resource allocation in autonomic grid environments. Models are presented for the
end user and the provider perspective. While the end user’s goal is to maximize QoS,

94

the provider wants to maximize SLA revenues and to minimize resource management
costs.

In order to maximize SLA revenues, the local resource allocator uses a short-term
workload predictor, historical workload statistics, and data from the grid monitor
to assign a fraction of the available capacity to each web service invocation. QoS
maximization for the end user occurs on the grid broker level, where preferences and
constraints are specified.

VieSLAF framework

The VieSLAF framework [29] addresses the problem of service negotiation between
producers and consumers which do not have matching QoS templates, e.g., prices de-
noted in different currencies. Non-matching QoS templates are a realistic assumption
in heterogenous Grids or Clouds, since the publishing of services is usually not coordi-
nated across different organizations. In order to allow negotiation with non-matching
templates, a meta-negotiation process is introduced which uses meta-negotation doc-
uments consisting of pre-requisites (e.g. negotiation terms or security requirements),
a list of supported negotiation protocols, and terms of an agreement (e.g. proposed
3rd party arbitrator).

SLA templates and meta-negotiation documents are categorized by application do-
main and stored in a knowledge base where they may be accessed using a GUI. The
user then may add SLA mappings to the remote templates. During meta-negotiation,
SLA mappings and XSLT transformation are applied, and eventually a service method
is selected and invoked. Finally, public SLA templates are adapted based on the sub-
mitted SLA mapping.

Brandic et al. [28] apply the principles of autonomic computing in order to monitor
SLA parameters and for the adaptation of meta-negotiation documents. Measurements
of parameters which have to be monitored periodically are stored in a parameter pool
and returned to the user on request, while other parameters are measured on request
and the measurement result returned immediately. Adaptation of SLA templates may
be initiated by producers or consumers. A property issued by the registry adminis-
trator defines how often a request for a specific SLA parameter has to be submitted
in order to be accepted. On acceptance of a new SLA parameter, a new revision of
the SLA template is published and all existing SLA mappings are assigned to the new
revision. SLA templates which have not been requested for a specified amount of time
may be removed from the registry.

Subsequent work [27] investigates the life cycle of self-manageable cloud services in
the context of the VieSLAF framework and defines a resource submission taxonomy
which is presented in Section 2.1.3 of this thesis. Then, after discussing the archi-
tecture of self-manageable cloud services, its application to negotiation bootstrapping
and service mediation within the VieSLAF framework is studied. The life cycle of a
self-manageable cloud service consists of the phases of meta negotiation, negotiation,
execution, and post-processing. While in the meta negotiation phase, negotiation
protocols, SLA specification languages and similar issues are negotiated, during nego-

95

tiation – i.e. after agreement on the mentioned issues – specific terms of contract like
execution time and price are negotiated. Service execution includes job submission,
job monitoring and similar actions, while post-processing releases resources after job
execution.

Possible self-management actions during job execution and post processing include
job migration in case of failures, and early release of resources in case of abnormal
job termination. Self-management during meta-negotiation consists of a monitoring
phase that selects candidate services, an analysis phase that queries the knowledge
base for bootstrapping strategies, a planning phase that allows users to define new
bootstrapping strategies if missing, and an execution phase that starts negotiation
with the selected strategy. Self-management during negotiation similarly consists of
a monitoring phase, where inconsistencies between SLA templates may be discovered,
an analysis phase that queries for applicable SLA mappings, a planning phase, where
the user may define new SLA mappings if existing SLAs cannot be applied, and an
execution phase that applies SLA mappings in order to allow to begin negotiations
between heterogeneous providers and consumers.

Weng et al.

Weng et al. [185] present an agent negotiation model based on the concept of a market-
oriented grid [31, 38], where access to resources is associated with cost and negotiated
between resource owners and consumers that are represented through agents. A rea-
soning model based on fuzzy cognitive map (FCM) theory is employed that consists
of a set of concept state values and a set of associated weights and maps negotiation
issues like QoS to concepts. During negotiation, values of issue concepts are exchanged
between agents, while weights and the degree of satisfaction are kept private.

4.1.6 Workflow management systems

This section presents scientific workflow management systems in large-scale comput-
ing. Scientific workflow management systems manage collections of interdependent
scientific computation jobs. Tasks provided by workflow management systems include
selecting computing resources, providing access to data repositories, scheduling jobs,
and handling faults. A taxonomy of grid workflow management systems [192] is intro-
duced in Section 2.1.8.

Gridbus Workflow Engine

The Gridbus Workflow Engine (GWFE) [85] is part of the Gridbus Toolkit [40] de-
veloped at the GRIDS Laboratory, University of Melbourne. Workflows in GWFE
are defined using an XML-based workflow language called GWFE workflow language
(xWFL). A decentralized just-in-time scheduler is employed, where each task has its
own task manager, and the task managers communicate using events. Tuple spaces
are used to store and retrieve events [191].

96

A self-managing scheduling algorithm employed within the Gridbus Workflow En-
gine is based on a reputation system for selecting a grid site for workflow execu-
tion [152]. Figure 4.5 shows the scheduling architecture which at each site consists
of a Grid Autonomic Scheduler (GAS) that obtains reputation information from a
peer-to-peer coordination space based on a distributed hash table (DHT).

Grid site p

Grid site u

Application

Subscribe
Reply

Application

P
u
b
li
s
h

R
e
p
ly

F
e
e
d
b
a
c
k

Grid Autonomic
Scheduler

S
u
b
s
c
ri

b
e User

User

Grid
Autonomic
Scheduler

Grid Autonomic
Scheduler

User

Grid site s

Publish

Feedback

Submit

1

2
7

4

P
u
b
li
s
h

Subsc
ri
be

Fe
ed

bac
k

R
ep

ly

5

6

Heart beat

Result

Task

Job queue

3

T2T1

DHT-based Overlay

of Grid Peers

Autonomic Manager

Local Resource Manager

Grid Peer

Grid Autonomic Scheduler

Feedback

Subscribe
(claim)

Publish
(ticket)

Monitor

Plan

Schedule

Analyze Reputation

Verification

output input

•Discovery
•Coordination
•Messaging

Core Services

Figure 1. Reputation-based dependable scheduling architecture. Grid sites p, l, s, and u are managed
by their respective Grid Autonomic Scheduler services.

tion. Every site in the federation has its own resource
set descriptor that includes information about the CPU
architecture, number of processors, memory size, sec-
ondary storage size, and operating system type.

The application scheduling and resource discovery in
the Grid-Federation is facilitated by a specialized Grid
Resource Management System (GRMS) known as Grid
Autonomic Scheduler (GAS). Fig. 1 shows an example
Grid-Federation resource sharing model consisting of
Internet-wide distributed Grid sites. Every contribut-
ing Grid site maintains its own GAS service. A GAS
service is composed of the software components: Grid
Autonomic Manager (GAM), Local Resource Manage-
ment System (LRMS) and Grid Peer.

The GAM component of GAS exports a Grid site
to the federation and is responsible for scheduling lo-
cally submitted jobs (workflows, parallel applications)
in the federation. Further, it also manages the exe-
cution of remote jobs (workflows) in conjunction with
the local resource management system. The LRMS
software module can be realized using systems such as
SGE (Sun Grid Engine) [9].

The Grid peer implements infrastructure level core
services for enabling decentralized and distributed re-
source discovery supporting resources status lookups
and updates across a federation. It also enables de-
centralized inter-GAS interaction for optimizing load-
balancing and distributed resource provisioing. These
core services are divided into a number of sub-layers:
(i) higher level services for discovery, coordination,
and messaging; (ii) low level distributed indexing and
data organization techniques; (iii) DHT-based self-
organizing routing structure.

A Grid Peer service accepts three basic types of ob-
jects from the GAM service as regards to dependable
and dynamic scheduling: (i) a claim, is an object sent
by a GAM to the DHT overlay for locating the re-
sources that match the user’s application requirements,
(ii) a ticket, is an update object sent by a Grid site,
mentioning about the underlying resource conditions,
and (iii) a feedback, is an object sent by a GAM regard-
ing the reputation of a Grid site in the system upon
the output arrival of a previously submitted task. In
general, a Grid resource is identified by more than one
attribute (such as number of processors, type of operat-
ing system, CPU speed); so a claim, ticket or feedback
object is always multi-dimensional. Further, each of
these objects can specify different kinds of constraints
on the attribute values.

The self-organizing routing structure is largely de-
signed over Chord [18]. Grid Peer nodes in the Chord
overlay are interconnected based on a ring topology. By
maintaining a small routing state of O(log n) per node,
Chord as well as other DHTs offer deterministic look
ups in a completely decentralized and distributed man-
ner. Traditionally, the basic Chord implementation
is incapable of supporting complex multi-dimensional
Grid resource search algorithms, as it was originally
designed to support only one-dimensional search algo-
rithms (document or name search in peer-to-peer file
sharing network). In order to support complex resource
discovery (processor type, OS type, CPU speed) over
Chord routing structure, a multi-dimensional data dis-
tribution indexing technique [14] (a variant of MX-CIF
Quad tree [19]) is implemented. In depth discussion of
this aspect of the system is beyond the scope of this

3

Figure 4.5: GWFE reputation-based dependable scheduling architecture [152]

A research proposal of the same authors uses self-management in order to address
the problem of conflicting schedules that occur, if multiple workflow management
systems schedule their workflows within the same pool of resources [151].

GridFlow

GridFlow [43] is a workflow management system built on top of ARMS [42], a re-
source management system based on mobile agents. GridFlow distinguishes between
local sub-workflows, which are collections of related tasks expected to be executed on
resources belonging to one physical organisation, and a global workflow consisting of
one or more sub-workflows.

Each sub-workflow is managed by exactly one agent within ARMS. An agent consists
of the data which is to be processed by a task, instructions how to process the data,
and information on how to migrate to another site after sub-workflow completion.
Thus, scheduling is decentralized in order to avoid the workflow engine becoming a
bottleneck.

Checkpointing is used to allow a workflow to be restarted from after the last known
completed task in case of failure. GridFlow supports local checkpointing, where an
archive copy of the current state is left at each site after sub-workflow completion, and
remote checkpointing, where a central checkpoint location exists.

97

Workflow scheduling in GridFlow is designed to minimize overall execution time,
with estimated performance data provided by the PACE toolkit [138]. GridFlow uses
Titan [166] for resource management.

An autonomic extension to GridFlow [135] adds self-healing, self-optimization and
self-configuration capabilities. In order to achieve these capabilities, each agent is
wrapped with pre- and post-execution performance monitoring instructions that al-
low the extension to react to failures by retrying, replicating, or checkpointing. Since
retrying is unacceptable in workflows that require once-only execution, the user may
restrict the allowed failure handling strategies at workflow creation time, thus provid-
ing a management policy. Failure handling strategies are designed to minimize the
bull-whip effect that occurs when rescheduling of a sub-workflow results in reschedul-
ings of other sub-workflows.

Section 4.1.1 describes a related grid middleware service which is also based on the
ARMS resource manager, the PACE toolkit, and the Titan scheduler.

JOpera

JOpera [63] is a service composition tool originally targeted for web service compo-
sition, which has been extended to support distributed scientific workflows in grid
computing.

The distributed workflow engine of JOpera [144, 145] employs a number of navigator
threads to determine the tasks within a workflow that are ready to be scheduled,
and several dispatcher threads responsible for actual task invocation. These tasks
communicate using tuple spaces. In order to achieve good performance, the number
of navigator and dispatcher threads needs to be properly configured. Figure 4.6 [93]
shows the architecture of the JOpera workflow engine.

tion of a PID Controller policy in Section 4 as baseline and
then present our zero-configuration policy in Section 5. In
Section 6 we compare the different policies, present related
work in Section 7 and draw conclusions in Section 8.

2. Motivation

We begin with an experiment to show the significant im-
pact that the configuration of an autonomic controller may
have on the performance of an autonomic system. In par-
ticular, we have assigned different values to two thresh-
olds used by the best-known policy of the controller of the
JOpera autonomic workflow engine [6]. This Growth pol-
icy monitors the sizes of two different queues and uses these
as an indication of how much work needs to be processed
by each component of the engine. If the growth in either of
the queues exceeds predefined thresholds, then the system
will be reconfigured in order to devote more resources to
the component consuming the growing queue.

As Figure 1 clearly illustrates1, the time required to ex-
ecute the same workload is highly sensitive to the thresh-
old settings of the autonomic control policies. If thresholds
are not set optimally, the performance of the system will
suffer (by 287% in the worst case). Also, the relationship
between the performance and the thresholds is non-linear,
making it difficult to find the optimal threshold values. Set-
ting higher thresholds makes the autonomic system slower
to adapt and thus also slower to execute its workload, as
it will take longer to reach the appropriate configuration.
Reducing the threshold values makes the system change
its configuration more often. If the thresholds become too
small, the reconfiguration overhead also noticeably affects
the system’s performance.

This problem can be approached in different ways: Ei-
ther an automatic way of setting such thresholds is found or
a policy that does not require thresholds is developed.

3. Autonomic Workflow Execution

To put our study in context, in this section we outline
the architecture of the JOpera autonomic workflow engine.
For more information, we refer the interested reader to [6,
15, 16]. We have chosen JOpera for this experimental study
because it offers an extensible research platform where new
control policies can be easily plugged into the controller and
their performance can be compared and benchmarked using
real workloads.

1For the experimental setup and the workload used, please refer to Sec-
tion 6.1 and 6.2 respectively.

0

500

1000

1500

2000

2500

3000

2/1 4/2 10/5 20/10 30/15

E
xe

cu
tio

n
T

im
e

[s
]

Threshold Configuration

Figure 1. Impact of threshold configuration
on the autonomic system performance

Event Queue

Task Queue

Process
Execution

State

Navigators

(Process
Execution)

Dispatchers

(TaskExecution)

JOpera API

Event Queue

Process Queue

Figure 2. Workflow Engine Architecture

3.1. Workflow Engine

JOpera [1] is a rapid service composition tool offering a
rich visual environment built on top of Eclipse to support
the whole lifecycle of workflow modeling and execution.
In this paper we focus on the autonomic capabilities of the
JOpera distributed workflow engine, which can be deployed
over a cluster of computers to handle a large number of con-
current workflow executions.

As shown in Figure 2, the engine is designed using a
stage-based architecture. In particular, the workflow exe-
cution (or navigation) stage is decoupled from the invoca-
tion (or dispatching) of the individual tasks of the workflow.
The navigator and the dispatcher stages communicate asyn-
chronously using message queues.

Workflow execution is initiated through the engine API,
which posts a new process execution request message into
the Process queue. This request is processed by the navi-
gator, which instantiates a new workflow and begins to de-
termine which of its tasks should be executed next. Once
it has done so, it puts task execution requests into the Task
queue. These messages are received by the dispatchers that
carry out the actual task execution. Dispatchers use the
Event queue to inform navigators about the progress and
the completion of the task execution. Navigators also con-

2

Figure 4.6: JOpera workflow engine architecture. Each queue corresponds to a tuple
space. [93]

An autonomic extension to JOpera [94] uses self-tuning and self-configuration ca-
pabilities in order to determine the optimal thread pool sizes at run-time. Self-tuning
employs an information strategy that uses the tuple space size as indicator to establish

98

a configuration where the number of navigator and dispatcher threads are balanced. A
selection strategy within self-tuning then determines nodes suitable for a configuration
change (e.g. idle nodes) taking into account the costs of a configuration change. The
self-tuning component then submits change requests to self-configuration, which is re-
sponsible for actually applying configuration changes, i.e. starting additional threads,
stopping threads or killing threads. When killing a dispatcher thread, the task associ-
ated with it has to be repeated. Thus, only threads associated with repeatable tasks
(as defined by the application) may be killed. Other threads may only be stopped,
that is, they wont accept new tasks but will finish currently executing tasks. Self-
healing capabilities allow reacting to external events like failing nodes by monitoring
cluster node availability and state information and comparing monitoring data with
configuration data submitted by previously started threads. Self-healing restarts tasks
handled by failing dispatcher threads and reroutes events affected by navigator thread
failures.

Subsequent work [93] presents two zero-configuration policies for the controller de-
scribed above that rely only on observable internal system parameters like current
queue sizes. A policy based on a feedback loop controller adjusts the number of dis-
patchers such that the sum of process queue and event queue sizes equals the task
queue size but still needs to be tuned in order to avoid oscillations. A balancing policy
observes the message production and consumption rates in order to determine the
number of navigators and dispatchers.

Pegasus

Pegasus [58] is a workflow management framework developed within the GriPhyN
project [57] that is based on directed acyclic graphs (DAG) and targeted at data-
intensive applications [192]. Pegasus maps abstract workflows that are derived from
user-provided partial workflow descriptions or defined as a directed acyclic graph using
DAG XML descriptions to executable workflows in an incremental but statical fasion.
Autonomic Pegasus [115] is an extension which provides dynamic workflow adaptation
capabilities using autonomic computing principles.

When mapping abstract workflows to executable workflows, Pegasus strives to min-
imize the overall workflow execution time using heuristics. Since resource availability
changes over time, Pegasus optionally uses a scheduling horizon for executable tasks
and a mapping horizon for workflow planning as limits, which can be set by the user
based on the costs (e.g. data stage-in/stage-out) for scheduling and mapping. Apply-
ing scheduling and mapping horizons results in incremental compilation of the abstract
workflow into an executable workflow.

Lee et al. [116, 115] present an autonomic manager for Pegasus that provides a
dynamic workflow adaptation strategy, enabling a more efficient resource utilization
in a changing execution environment (e.g. additional workload on nodes) than the
incremental but static scheduling strategies originally supplied with Pegasus, thus
providing self-configuration and self-optimizing capabilities. The autonomic manager
is based on the full MAPE (monitoring, analysis, planning, and execution) cycle with

99

sensors and effectors, as described in Section 3.3.

Sensors Pegasus uses Condor DAGMan [75] for workflow execution. DAGMan logs
the relevant events, like queueing of a job, job execution, and job termination, in a log
file. Autonomic Pegasus uses a log sensor which polls the DAGMan log file in order
to extract information relating to these events and their respective time stamps.

Monitoring In the monitoring phase of the autonomic cycle, the events from the log
sensor are identified, filtered and passed to the analyzing phase. The following events
are considered to be of interest in this phase:

• Job queue: occurs when Condor submits a task to the remote scheduler.

• Execute: indicates that execution of the task has been started by the remote
scheduler.

• Termination: occurs when the task has been completed.

Analysis In analysis, the events supplied by the monitoring phase are grouped using
the CQL continuous query language [15] and then compared to previous predictions
regarding job waiting and execution times. If analysis detects a substantial increase
or decrease of these parameters, the planner is notified.

Planning Planning proposes an alternative schedule, if analysis has indicated that
rescheduling might be appropriate. The Pegasus planner is called to generate a new
schedule based on current queue time and execution time estimates. In order to
save work already done by the running tasks, intermediate results are stored in the
replica catalogue. Rescheduling uses an algorithm which takes average queue times
into account.

Then, planning compares the proposed new schedule with the current schedule –
taking into account the rescheduling costs – in order to determine if an overall im-
provement is to be expected from rescheduling. Only if such an overall performance
improvement can be achieved, the execution stage is called.

Execution Execution stops the currently running workflow and deploys a new one
based on the schedule the planner has submitted.

Effectors Pegasus commands that stop a running workflow and start a new one are
effectors in the sense of the autonomic computing model.

Evaluation shows, that the adaptive scheduling policy based on the autonomic model
results in a significant performance improvement compared with the static incremental
scheduler of Pegasus, especially with workflows that contain many tasks that can be
parallelized.

100

TigMNS workflow management

Zhang et al. [195] developed an autonomic workflow management engine that uses
event-condition-action (ECA) rules to dynamically specify workflows. Its architec-
ture consists of a matrix-based discrete-event controller [130] which employs a task-
sequencing matrix, an autonomic service component matrix and an input matrix which
are basically adjacency matrices of the corresponding dependency relation trees.

The autonomic controller supports self-configuration by modifying the matrices as
a reaction to changing user requirements, node failures or availability of additional
nodes, and self-optimization capabilities as a reaction to changing workload.

The autonomic workflow management engine has been implemented as part of a
grid-based traffic information system (TigMNS) [163] which supports different types
of clients and networks (e.g. mobile phone over GSM, PC notebook over WLAN).

WorkflowML

Nordstrom et al. [137] developed a modeling language for workflow management in grid
environments called WorkflowML, which was created using the GME and MetaGME
modeling frameworks [114]. These frameworks implement the model-integrated com-
puting (MIC) [170] approach. Models expressed in this language are transformed into
a directed acyclic graph, upon which an algorithm performs predictive analysis.

Based on this model, the authors present the initial state of an autonomic design
implementing the self-analysis property: If during workflow execution a job is in faulty
state, predictive analysis is performed in order to determine if the workflow can be
completed under this condition. This analysis forms the basis for reacting to a not-
completable workflow, like suspending the current workflow in favor of a workflow that
can be completed. However, these capabilities are not yet implemented.

4.1.7 Development frameworks

This section presents tools and frameworks that support the development of autonomic
large scale systems.

ASSIST

ASSIST [9, 180] – a software development system based upon integrated skeleton
technology – is a programming environment that allows the development of parallel
programs on top of a component model consisting of modules that are interconnected
with streams. ASSIST supports sequential modules and parallel modules (parmod).
Parmods are implemented using a coordination language that is syntactically derived
from C and the CORBA interface description language. They may contain a number
of sequential functions that can be run using virtual processes (VP) that are triggered
by items arriving from the input stream.

Virtual processes may put items onto the output streams where they are processed
according to output rules. Figure 4.7 [9] shows in its upper part the relation between

101

send1

send2
recv

matrix_mul

A

B

C=AB

1 generic main() {
2 stream long[N][N] s1;
3 stream long[N][N] s2;
4 stream long[N][N] s3;
5 send1 (output_stream s1);
6 send2 (output_stream s2);
7 matrix_mul (input_stream s1, s2)
8 output_stream s3);
9 recv (input_stream s3);

10 }
11

12 ...

20 parmod matrix_mul (input_stream long M1[N][N], long M2[N][N],
21 output_stream long M3[N][N]){
22 topology array [i:N][j:N] Pv;
23 attribute long A[N][N] scatter A[*ia][*ja] onto Pv[ia][ja];
24 attribute long B[N][N] scatter B[*ib][*jb] onto Pv[ib][jb];
25 stream long ris;
26 do input_section {
27 guard1: on , , M1 && M2 {
28 distribution M1[*i0][*j0] scatter to A[i0][j0];
29 distribution M2[*i1][*j1] scatter to B[i1][j1];
30 } } while (true)
31 virtual_processes {
32 elab1 (in guard1 out ris) {
33 VP i, j { f_mul (in A[i][], B[][j] output_stream ris);}}}
34 output_section {
35 collects ris from ALL Pv[i][j] {
36 int elem; int Matrix_ris_[N][N];
37 AST_FOR_EACH(elem) {
38 Matrix_ris_[i][j]=elem;
39 }
40 assist_out(M3, Matrix_ris_);
41 }<>; } }
42 proc f_mul(in long A[N], long B[N] output_stream long Res)
43 $c++{ register long r=0;
44 for (register int k=0; k<N; ++k)
45 r += A[k]*B[k];
46 assist_out(Res,r); }c++$

Figure 2. Sample of matrix multiplication code in ASSIST

stream realizes a one-way asynchronous channel between
two sets of endpoint modules: sources and sinks. Data items
injected from sources are broadcast to all sinks. All data
items injected into a stream should match stream type.

Modules can be either sequential or parallel. A sequen-
tial module wraps a sequential function. A parallel mod-
ule (parmod) can be used to describe the parallel execution
of a number of sequential functions that are activated and
run as Virtual Processes (VPs) on items arriving from input
streams. The VPs may synchronize with the others through
barriers. The sequential functions can be programmed by
using a standard sequential language (C, C++, Fortran).

A parmod may behave in a data-parallel (e.g. SPMD/for-
all/apply-to-all) or task-parallel (e.g. farm) way and it may
exploit a distributed shared state, which survives to VPs
lifespan. A module can nondeterministically accept from
one or more input streams a number of input items, which
may be decomposed in parts and used as function parame-
ters to instantiate VPs according to the input and distribu-
tion rules specified in the parmod. The VPs may send items
or parts of items onto the output streams, and these are gath-
ered according to the output rules. The simple application
in Fig. 2 includes three sequential modules (send1, send2,
and recv) and one parmod (matrix mul), which take two
matrixes and give their product along three different streams
(lines 2–9).

A parmod is characterized by four regions of code
describing its behavior: topology, input section,
virtual processes, and output section. The
topology declaration specializes the behavior of the Vir-
tual Processes as farm (topology none), or SMPD (topol-
ogy array). The input section enables program-
mers to declare how VPs receive data items, or parts of
items, from streams. A single data item may be dis-
tributed (scattered, broadcast or unicast) to many VPs.

The input section realizes a CSP repetitive command
[15]. The virtual processes declarations enable the
programmer to realize a parametric Virtual Process start-
ing from a sequential function (proc). VPs may be iden-
tified by an index and may synchronize and exchange data
one with another through the ASSIST language API. The
output section enables programmers to declare how
data should be gathered from VPs to be sent onto output
streams. More details on the ASSIST coordination lan-
guage can be found in [23, 3].

The example parmod in Fig. 2 exhibits a topology
array (line 22, NxN VPs behaving in a SPMD fashion).
Once the two input matrixes are received (line 27), they are
both scattered to the VPs which store them in the distributed
shared matrixes A and B (lines 28–29) that has been previ-
ously declared (lines 23–24). Then, all elements of the re-
sult matrix C are computed in parallel (lines 31–33). Once
all VPs completed the operation, a result matrix is collected
from the distributed matrix C and sent into the output stream
(lines 34–41). The code of sequential modules is not shown
for the sake of brevity.

The ASSIST compiler translates a graph of modules into
a network of processes. As sketched in Fig. 3 a), sequen-
tial modules are translated into sequential processes, while
parallel modules are translated into a parametric (w.r.t. the
parallelism degree) network of processes: one Input Section
Manager (ISM), one Output Section Manager (OSM), and
a set of Virtual Processes Managers (VPMs, each of them
running a set of Virtual Processes). Also, a number of other
processes devoted to application QoS control are added to
the network (not shown in Fig. 3). We shall introduce them
in the next sections.

!"#$%%&'()*+#,+-.%+/0-.+12"#3'$"#+4(-%"(5-'#(56+7#(,%"%($%+#(+!5"566%68+9'*-"':2-%&8+5(&+;%-<#"=>?5*%&+!"#$%**'()+@!9!ABCD+

/BCC>C/EFGBC+HFBIBB+J+FBBC+!"""#

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on July 6, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

a)

Input
Streams

Output
Streams

parmod

to the
 CAM

In
pu

t
M

an
ag

er

O
ut

pu
t

M
an

ag
er

MAM

VPVP
VP
VP

VP
VP

VPM

VPM
VP VP VP

VP
VP
VP

VP
VP VP

b)

Input
Streams

Output
Streams

to the
CAM

MAM
parmod

In
pu

t
M

an
ag

er

O
ut

pu
t

M
an

ag
er

VPM

VPM

VP
VP
VP

VPVP
VP
VP

VP
VP

VP VP VP
VPVP VP

Figure 5. An ASSIST parmod before (a) and after (b) a reconfiguration. Dark VPs are migrated from
one VPM to the other VPM under the control of the MAM. Along with VPs migration, some computa-
tional load is moved from one VPM to the other.

• Deployment annotations describing processes resource
needs, such as required hardware (platform kind,
memory and disk size, network configuration, etc.), re-
quired software (O.S., libraries, local services, etc.),
and other all strictly required constraints to enforce
code correctness.

• Adaptation policy: a reference to the desired adapta-
tion policy chosen among the ones available for the
module. Standard adaptation policies are represented
as algorithms and embedded within MAM code at
compile time.

In Section 5 an example of QoS is given. The performance
models used in the ASSIST framework range from very
simple and approximate analytical models, such as the one
used to manage task farm parmods, to more complex mod-
els derived using advanced mathematical techniques, such
as those derived in [24].

MAM main autonomic behavior consists in keeping
the load balancing among module resources, despite the
possible change of state/performance of underlying hard-
ware/software resources. At this end, the MAM is equipped
with a performance model that forecasts a sub-optimal map-
ping of VPs onto VPMs [5, 2]. The model uses VPs and
VPMs historical performance data, and exploits the struc-
tured design of the parmod. MAM control loop is the fol-
lowing:

! Monitor. It collects VPMs execution times between two
consecutive synchronization points that characterize
module workload. These may be induced by ex-
plicit barriers (e.g. between loop cycles), or any event
due to shared state synchronization or data distribu-
tion. The selection of suitable synchronization points
is performed at compile time and guided by struc-
tured nature of parallelism exploitation in the parmod.
It collects communication and synchronization perfor-
mances.

" Analyze. Collected data is used to verify the MAM per-
formance goal, update manager knowledge by build-

ing statistic and historical performance data. If the
performance goal is broken, the possible causes are
detected (e.g. load unbalance, not enough computing
power or network bandwidth, insufficient input data
rate).

Plan. If the performance goal is broken, a plan to re-
convey the contract to a valid status is formed, i.e. a
sequence of reconfiguration actions, each of them ad-
dressing a particular cause of performance degrada-
tion. Reconfiguration actions are chosen among legal
ones for the particular instance of the parmod (e.g. add
workers to a farm, migrate load between two VPs), and
configured by using performance model instanced with
data collected in previous stage (e.g. how many work-
ers should be added to met a given service time, how
much work should be moved from a VP to another). In
the case no reconfiguration actions appear effective for
the problem, an event is raised to the father CAM.

$ Execute. Depending of the previous outcome, it triggers
VPs redistribution among VPMs by starting the suit-
able protocol, and it negotiates a resource upgrade with
father CAM. The MAM can also receive an event by
the father CAM indicating that it has to apply a re-
structuring strategy because a global variation of per-
formance has been detected.

Note that many of the described features are really feasi-
ble due the high-level, structured nature of parallelism ex-
ploited in the ASSIST language. In particular, the pattern,
frequency, and cost of communications among VPs can be
derived from parmod declaration. They depend from par-
mod topology, data types and distribution. This informa-
tion enables the definition of parametric performance mod-
els that can be instanced with monitored data (e.g. VPs
completion time, communication bandwidth) to forecast ex-
pected performance. As an example, the performance gain
of adding a worker in farm can be forecasted by extrapolat-
ing current performance to a scenario with more PEs.

!"#$%%&'()*+#,+-.%+/0-.+12"#3'$"#+4(-%"(5-'#(56+7#(,%"%($%+#(+!5"566%68+9'*-"':2-%&8+5(&+;%-<#"=>?5*%&+!"#$%**'()+@!9!ABCD+

/BCC>C/EFGBC+HFBIBB+J+FBBC+!"""#

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on July 6, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

Figure 4.7: ASSIST parallel module (parmod) example and reconfiguration:
a) before and b) after, dark VPs being migrated [9]

a parmod, its virtual processes, associated input and output streams and output rules
using matrix multiplication as an example: the matrices A and B are sent on input
streams, and the results of the virtual processes calculating the inner products of
the row and column vectors are sent on the output stream where they are assembled
according to the output rule.

The ASSIST software architecture consists of a grid abstract machine (GAM) that
interfaces with standard grid middleware like Globus [68]. An application manager
(AM) interfaces with the GAM and supports decentralization according to various
strategies including a hierarchical decentralization, where the root node is assumed to
be highly available. The AM consists of module application managers (MAM) that
are responsible for managing a single module, and a component application manager
(CAM) that acts according to a global strategy for a component. AMs, MAMs, and
CAMs are automatically generated by the ASSIST compiler according to a manage-
ment policy in form of a quality of service contract provided by the application’s
programmer. A virtual process manager (VPM) is also generated by the compiler and
is responsible for managing all the virtual processes on a single node.

Autonomic self-management in ASSIST allows satisfaction of quality of service goals
like processing bandwidth for stream-based applications and completion time for non-
stream computations. Autonomic behavior of the MAM basically consists of load bal-
ancing according to historical performance data of the VPs and VPMs. Figure reffig-
assist shows in its lower part the control loop of the MAM which consists of (1) mon-
itoring that collects data like the VPM’s execution times, (2) analysis that verifies its
performance goal and builds historical performance data, (3) planning that generates
a sequence of reconfiguration actions in case of a broken performance goal detected
by analysis, and (4) execution that redistributes VPs among the VPMs and possibly

102

requests more resources from the CAM. The CAM may also trigger restructuring in
reaction to global performance variations.

AutoMate

AutoMate [4, 5, 141] is an autonomic Grid framework which extends OGSA to enable
the development of autonomic Grid applications. The architecture of AutoMate con-
sists of an application layer, a component layer, and a system layer. The AutoMate
project includes the Accord programming framework and the Accord composition en-
gine (ACE) as sub-projects.

Accord introduces the concept of an autonomic service which is basically a grid
service extended with a control port and a service manager.

Accord programming framework Accord [120] is a programming framework designed
to support the development of autonomic applications. Accord defines autonomic ele-
ments with a functional port, a control port and an operational port. The functional
port defines the functionalities provided by the autonomic element, the control port
exports sensors, actuators and constraints for autonomic management, and the opera-
tional port allows management of rules, which are formulated using if–then expressions.

Conflicting rules are resolved during rule execution by constructing a precondition
and disabling rules that would change the precondition (sensor-actuator-conflict). Re-
maining conflicts are resolved by relaxing the precondition according to user-defined
strategies (actuator-actuator-conflict).

Autonomic elements may be dynamically composed using a multi-agent infrastruc-
ture, where a central composition manager controls the autonomic elements using
interaction rules. The interaction rules are generated using workflow patterns [179]
which are mapped to rule templates. The rule templates are subsequently used by the
composition manager to decompose the user-supplied application workflow into inter-
action rules. Although the interaction rules are defined centrally by the composition
manager, the actual interactions are controlled by the autonomic element managers
in a decentralized manner. Elements may be added, deleted, or dynamically replaced
by other elements with compatible functional ports. Finally, Interaction relationships
may be changed by the element managers in reaction to new or changed interaction
rules.

In addition to the rule-based self-management described above, Accord has been
extended to support model-based control strategies [26] using a limited look-ahead
controller [3], where optimization occurs at each time-step within a prediction horizon
in order to satisfy QoS requirements. Accord supports the self-configuration, self-
optimizing, self-healing and self-protecting properties of autonomic systems.

Accord has been implemented as a prototype in C++ and the Message Passing
Interface (MPI), and as another prototype within the CCAFFEINE CCA framework.

103

Rudder coordination framework The Rudder coordination framework [119, 141] of
project AutoMate provides a coordination infrastructure for autonomic elements. The
architecture of Rudder consists of an agent framework of context-aware agents, and a
decentralized tuple space.

Agent framework An agent framework of context-aware agents manages context in-
formation, where the context consists of device profiles like CPU or memory, network
resources, and software metrics like processing capabilities. The agents use this con-
text information to select a plan based on predefined policies. Component agents are
responsible for managing computations performed locally within the components, and
system agents represent their collective behavior. Composition agents are transient
unlike the other agent types that exist as system services. They are responsible for
the composition of autonomic components.

Tuple space A decentralized tuple space is used for agent-based system coordination.
In extension to the capabilities usually supported by tuple spaces, the Rudder tuple
space supports matching mechanisms and reactivity. Administrators and agents both
can insert and modify policies and constraints using the tuple space.

The tuple space layer implements the tuple space capabilities described above, while
the content-based routing layer maps tuples to peer nodes. The Rudder tuple space
builds on top of the Meteor middleware described in the next section.

Meteor middleware Meteor is a middleware infrastructure that supports interactions
based on message content, called the associative rendezvous model. The middleware
consists of an overlay network layer which establishes an overlay network that is com-
posed of rendezvous peer nodes, the Squid content-based routing infrastructure which
is responsible for de-centrally discovering information, and the Associative Rendezvous
Messaging Substrate which is a matching engine responsible for matching message pro-
files.

GCM - CoreGRID component model

The CoreGRID component model [8] implements autonomic behavior of components
using behavioral skeletons, which can be used to implement autonomic managers.
Behavioral skeletons in GCM are algorithmic skeletons that serve as templates for the
implementation of parallel computing paradigms, which are tailored for the purpose
of autonomic component management and may provide a number of pre-defined plans
to achieve a self-management goal.

GCM distinguishes between passive components and active components. Passive
components can be monitored using introspection, and reconfigured, while active com-
ponents implement the full autonomic management process. GCM is based on the
Fractal [32] component model.

104

Jade

Jade [177] is an autonomic management middleware for distributed software envi-
ronments based on the Fractal [32] component model. Legacy software pieces are
encapsulated into Fractal components. The control interfaces provided by the Fractal
model are then used to implement autonomic management capabilities.

A generic self-optimizing and self-healing policy is implemented that adjusts the
number of application instances based on monitored parameters like the system load.
Self-healing with Jade is demonstrated within a DIET [45] grid application.

4.2 Taxonomy of autonomic large-scale computing

This section presents the taxonomy of autonomic large-scale computing derived from
the projects surveyed in section 4.1. It is designed to explore the current state of
implementing autonomic properties in large-scale computing systems.

The taxonomy is organized as follows: Each section describes an area within the
taxonomy of autonomic large-scale computing. Subsections describe categories and
subcategories within an area. Within each category, the first paragraph defines the
category, optionally followed by a paragraph that discusses the described category’s
relation to other categories. Finally, a short description of subcategories is provided.
At each bottom level category, a list with short descriptions of projects that match
the respective category is given.

Section 4.2.1 provides background information on building taxonomies. Section 4.2.2
classifies large-scale computing systems by their area of self-management which is the
set of functions where autonomic management is introduced. Section 4.2.3 introduces
a classification by the model of autonomic computing.

4.2.1 Approach for building a taxonomy

A taxonomy is a classification scheme that consists of a controlled vocabulary – that
is, an authoritative list of terms that identify concepts to be classified – and a hierarchi-
cal structure of relations that represent parent-child, or generalization-specialisation
relationships between the terms in that controlled vocabulary [11]. A taxonomy may
be represented by a directed acyclic graph with a set of nodes consisting of the terms
in the controlled vocabulary and a set of edges consisting of the relations between the
terms.

If a taxonomy conforms to a strict hierarchy, the taxonomy graph is a tree with
the term identifying the domain that is being classified by the taxonomy as root.
However, some taxonomies require a node to appear at more than one location within
the taxonomy, which is referred to as a polyhierarchy and is represented as a connected
graph. Another approach classifies the terms of the controlled vocabulary by multiple
sub-taxonomies, called facets or aspects. This type of taxonomy maps to a forest or
to a general ordered directed graph, if polyhierarchies are also used. Table 4.1 lists

105

Facets no yes
Polyhierarchy
no tree forest
yes connected general

Table 4.1: Taxonomies represented by directed acyclic graphs

the taxonomies and resulting graph types described above depending on the use of
polyhierarchies and facets.

Glass and Vessey [80] suggest to introduce taxonomies that structure the body of
knowledge in a field, in order to systematically describe that field, interpret aspects of
relevance, and to allow predicting future areas of development. Developing a taxonomy
involves establishing criteria for classification of items and specifying methods for
assigning items to categories completely and unambiguously.

In case of a general-purpose taxonomy, classification criteria are usually driven by
properties of the observed items themselves. Sometimes, the development of a tax-
onomy is driven by a special interest like the needs of an industry or conformance to
some technology or standard, though. In this case, classification criteria may be driven
by that interest, leading to a specialized taxonomy. In either case, the classification
should provide accurate definitions of item descriptors and guidelines for placing items
in categories, so that all items that occur in the field of interest may be unambiguously
assigned to mutually exclusive categories.

The taxonomy of autonomic large-scale computing presented in this chapter is a
general-purpose taxonomy without polyhierarchies which is based on facets in order
to classify systems by functional and non-functional criteria.

4.2.2 Self-management areas in large-scale computing

The proposed taxonomy of autonomic large-scale computing classifies systems by the
area of self-management in large-scale computing projects, which is the set of functions
that is addressed by applying autonomic methods.

The areas of self-management that have been observed within the survey of auto-
nomic large-scale computing are application management, data management, develop-
ment of autonomic large-scale computing applications, quality of service, and resource
management. These areas of autonomic management in large-scale computing sys-
tems form the top level of the taxonomy. Figure 4.8 shows the top two levels of the
taxonomy of self-management areas in large-scale computing.

The remainder of this section expands the taxonomy by describing the areas of
autonomic large-scale computing and their respective categories and subcategories, in
order to allow the unambiguous assignment of large-scale computing projects to areas
and categories within the taxonomy. The section concludes with a discussion of the
taxonomy.

106

Figure 4.8: Top two levels of the proposed taxonomy of self-management areas in large-
scale computing projects.

4.2.2.1 Application management

The application management area of autonomic large-scale computing includes all
projects that investigate self-management of functional properties of applications exe-
cuted on large-scale computing systems. Projects in this category address the problem
that run-time characteristics of the executing system are not known at build time and
allow the dynamic selection or modification of components and services in order to
address availability and performance characteristics at run-time.

Projects that investigate self-management of non-functional application properties
are assigned to the quality of service category. Projects that address the problem of
dynamic run-time characteristics in large-scale computing systems by autonomically
changing the resource allocation are assigned to the resource management category.

Figure 4.9 shows the taxonomy of the application management area of autonomic
large-scale computing which consists of the service discovery, application reconfigura-
tion, and workflow specification categories described in the following paragraphs.

Service discovery

Projects in the service discovery category of application management use autonomic
methods to lookup services at application run-time that conform to a specification
given at build time.

The projects included in the survey implement this functionality either by using
agents or by ontologies.

Agents The agents subcategory of service discovery in application management in-
cludes projects that use software agents in order to implement self-managing service
discovery at application run-time in large-scale computing systems.

107

Figure 4.9: Taxonomy of application management in autonomic large-scale computing

The following project implements autonomic service discovery using agents:

• Guo et al. [90] propose a model of an autonomic grid computing system that im-
plements autonomic elements described in Section 3.3.2 as self-organizing agents
which announce their capabilities and interests. Other agents may delegate work
based on the announced capabilities and interests. Based on this model, a mech-
anism of autonomic system management of a grid is described.

Ontology The ontology subcategory of service discovery in application management
includes projects that use ontologies in order to implement self-managing service dis-
covery at application run-time in large-scale computing systems. An ontology consists
of a set of object descriptions using a controlled vocabulary and a set of relationships
between the objects. It is used to present services using high-level descriptions in order
to allow service selection using semantic criteria.

The following projects implement autonomic service discovery using an ontology:

• Guan et al. [89] implement semantic service matching based on a context ontol-
ogy in order to facilitate grid access from pervasive devices like mobile phones.

• Hau et al. [92] implement autonomic service adaptation in the ICENI [78] grid
middleware framework by using ontological annotation of service definitions.
Based on that service ontology, the framework supports semantic matching and
service adaptation at run-time.

Application reconfiguration

Projects in the application reconfiguration category of application management use
autonomic methods in order to perform reconfiguration actions of an application that
is executed on a large-scale computing system.

The following project impements autonomic application reconfiguration:

108

• AutoGrid [161] is an autonomic extension of the InteGrade [81] desktop grid
middleware that allows changing application parameters and replacement of ap-
plication algorithms at run-time based on resource availability and QoS require-
ments.

Workflow specification

Projects in the workflow specification category of application management use auto-
nomic methods in order to allow the specification of a workflow at run-time based on
a high-level description.

The following project implements autonomic workflow specification:

• Zhang et al. [195] present an autonomic grid workflow engine for the TigMNS
traffic information system that maps high-level missions specified using a matrix-
based distributed event controller (DEC) to a grid workflow based on run-time
characteristics of the requesting client and the information system grid.

4.2.2.2 Data management

The data management area of autonomic large-scale computing includes all projects
that use self-management for the processing of data maintained in large-scale comput-
ing systems.

The categories of data management are real-time data and persistent data.

Real-time data

Projects in the real-time category of data management in large-scale computing sys-
tems use autonomic methods in order to allow the processing of data streams arriving
in real-time.

The following project implements autonomic management of real-time data:

• GATES [51] is an autonomic grid middleware that supports the processing of
data streams by adjusting the data sampling rate in order to achieve the best
accuracy under the real-time constraint.

Persistent data

Projects in the persistent data category of data management in large-scale computing
systems use autonomic methods in order to manage persistent huge data sets used for
large-scale computing applications.

The following project implements autonomic management of persistent data:

• Zhao et al. [197] propose an autonomic grid data management architecture for
grid computing based on the grid virtualized file system (GVFS) [196] that op-
timizes data placement and data replica regeneration for grid applications.

109

4.2.2.3 Development

The development area of autonomic large-scale computing includes projects that in-
vestigate tools and methods for the development of autonomic large-scale computing
applications.

The categories of autonomic large-scale computing development are frameworks and
wrappers.

Frameworks

The frameworks category of autonomic large-scale computing development includes
projects that provide development frameworks for autonomic large-scale computing
applications.

The following projects provide a development framework for autonomic large-scale
computing applications:

• Project AutoMate [141] provides a framework for the development of auto-
nomic applications for the gridby extending the Open Grid Services Architecture
(OGSA) described in Section 3.1.1 in order to provide autonomic capabilities.

• The GCM Grid Component Model [8] provides a framework based on behavioral
skeletons that allows to implement autonomic control in Grid applications.

Wrappers

The wrappers category of autonomic large-scale computing development includes pro-
jects that support the development of software wrappers for the enhancement of legacy
applications with autonomic capabilities.

The following project supports the development of autonomic large-scale computing
applications using wrappers:

• Jade [177] is a development framework that provides a component model for
the deployment and reconfiguration of software environments and control loops
for autonomic behavior. Jade allows to develop autonomic wrappers for legacy
software like grid middleware systems.

4.2.2.4 Quality of service

The quality of service area of autonomic large-scale computing includes projects that
investigate self-management for the specification and maintenance of QoS properties
in large-scale computing systems. Quality of service refers to non-functional properties
like response time and availability. A set of QoS properties may be formally specified
as a service-level agreement (SLA) in order to guarantee non-functional criteria.

Figure 4.10 shows the taxonomy of quality of service management in autonomic
large-scale computing which is categorized into service composition, negotiation, and
resource provisioning.

110

Figure 4.10: Taxonomy of autonomic quality of service management in large-scale
computing

Service composition

Projects in the service composition category of QoS in autonomic large-scale com-
puting use autonomic methods in order to compose services such that non-functional
criteria are met. Self-management of functional criteria is categorized into the appro-
priate category of the application management area instead.

The following project implements autonomic service composition for QoS:

• Within the PAWS [16] framework for the composition of web services sub-
ject to QoS requirements, Ardagna et al. [18] investigate the service selection
and resource allocation problem from the user’s and the provider’s perspective.
Anselmi et al. [14] provide algorithms to solve the web service composition prob-
lem.

QoS negotiation

Projects in the negotiation category of QoS in autonomic large-scale computing use
autonomic methods in order to guide a negotiation process that selects a service from
a set of services such that given QoS requirements are satisfied. The projects included
in the survey implement QoS negotiation either as an agent-based system or using an
autonomic control loop.

Agents The agents subcategory of QoS negotiation in autonomic large-scale comput-
ing includes all projects that implement self-managed QoS negotiation using software
agents.

The following project implements autonomic QoS negotiation using agents:

• Weng et al. [185] present a negotiation model in a market-oriented grid, where
resource providers and consumers are represented by agents.

111

Figure 4.11: Taxonomy of autonomic resource provisioning in large-scale computing

Control loop The control loop subcategory of QoS negotiation in autonomic large-
scale computing includes all projects that implement self-managed QoS negotiation
based on an autonomic control loop as described in Section 3.3.2.

The following projects implement autonomic QoS negotiation using a control loop:

• Koller et al. [112] propose a proxy-based architecture in order to manage service
level agreements as a third party between service provider and consumer. The
architecture supports negotiation, enactment, and monitoring of SLAs.

• The VieSLAF [29] framework implements negotiation bootstrapping which is
the negotiation about parameters like negotiation protocols or SLA specification
languages, and service mediation which is the mapping between inconsistencies
in SLA templates using an autonomic control loop that triggers the application
of bootstrapping strategies and the application of SLA mappings.

Resource provisioning

Projects in the resource provisioning category of QoS in autonomic large-scale com-
puting use autonomic methods for the provisioning of resources subject to QoS re-
quirements.

Figure 4.11 shows the taxonomy of autonomic resource provisioning which is cate-
gorized into proactive and reactive provisioning explained in the following paragraphs.

Proactive provisioning Proactive provisioning refers to resource provisioning in ad-
vance such that QoS requirements are expected to be met in future. The projects
included in the survey implement proactive provisioning either by simulation or using
advance reservation.

Simulation Proactive provisioning by simulation refers to the simulation of autonomic
large-scale computing systems in order to gather a system profile based on load vari-
ations. Results of the simulation allow to determine the number of resources required
to meet QoS requirements in advance.

112

The following project implements autonomic proactive resource provisioning by sim-
ulation:

• Assunção et al. [22] provide a simulation framework implemented using Grid-
Sim [39] in order to evaluate policies for resource allocation in utility computing
environments.

Advance reservation Proactive provisioning by advance reservation refers to systems
where users are required to reserve resources before usage, such that the system
provider may provision enough resources in order to meet QoS requirements.

The following projects implement autonomic proactive resource provisioning by ad-
vance reservation:

• AbdelSalam et al. [1] propose a change-management scheme that uses advance
reservation in order to optimize a cloud computing system such that resources
may be made available for change management while the QoS requirements
specified by advance reservations are met.

• Libra+$Auto [189] uses advance reservation in order to provide autonomic re-
source pricing for utility computing services based on resource availability and
user application and service requirement.

Reactive provisioning Projects that employ autonomic reactive provisioning use self-
management techniques in order to detect expected or actual failures to meet QoS
requirements and apply appropriate reconfiguration in order to reach a system state
that again satisfies QoS requirements.

The following project implements autonomic reactive resource provisioning:

• Iqbal et al. [103] propose an architecture for management of SLAs promising a
certain service response time which is implemented within the Eucalyptus [139]
cloud. It is based on a load balancer and a component that monitors the load
balancer’s log files. On detection of SLA violations, the manager triggers the
provisioning of additional resources.

4.2.2.5 Resource management

The resource management area of autonomic large-scale computing includes projects
that investigate self-management of large-scale computing resources.

Figure 4.12 shows the taxonomy of autonomic resource management in large-scale
computing which is categorized into system management where self-management is
applied in the context of internal management purposes, and scheduling where auto-
nomic resource management is used for scheduling of applications, jobs, or workflows.

113

Figure 4.12: Taxonomy of autonomic resource management in large-scale computing

System management

Autonomic resource management in the context of system management of large-scale
computing systems includes work that employs self-management in order to keep a
large-scale computing system operable according to its specification.

The system management category includes the subcategories of error discovery and
performance optimization.

Error discovery The error discovery subcategory of autonomic resource manage-
ment in the context of system management of large-scale computing systems includes
projects that employ autonomic resource management for the purpose of detecting
and correcting errors. Work included in this subcategory implements the autonomic
self-healing capability described in Section 3.3.1.

The following project implements autonomic error discovery:

• Dai et al. [54] propose an architecture for self-diagnosis and self-healing in a cloud
computing system that uses a multiple-valued decision diagram in order to de-
termine the severity of an error, and a Näıve Bayes classifier for the classification
of the detected error.

Performance optimization The performance optimization subcategory of autonomic
resource management in the context of system management of large-scale computing
systems includes projects that employ autonomic resource management for system
performance optimization.

The following projects implement autonomic performance optimization:

• JOpera [94] is a distributed workflow engine that employs self-management of
the number of navigator threads and dispatcher threads in order to minimize
task runtime.

• Gounaris et al. [84] present optimization algorithms that are applied for mini-
mizing the response time of a grid-based database service by modifying its block
size.

114

Figure 4.13: Taxonomy of autonomic scheduling in large-scale computing

Scheduling

The scheduling category of resource management in autonomic large-scale computing
includes projects that investigate autonomic scheduling of jobs and workflows in large-
scale systems.

While projects in the system management category of resource management de-
scribed above autonomically adapt resources in order to process a given job schedule,
work in this category autonomically adapts job schedules for a given set of resources.
Thus, system management and scheduling may be seen as complementary categories
of resource management.

Figure 4.13 shows the taxonomy of scheduling in autonomic large-scale comput-
ing which is categorized into schedule delegation, resource allocation, and schedule
modification and described in the following paragraphs.

Schedule delegation The schedule delegation subcategory of autonomic scheduling
includes all projects where a client delegates the scheduling of jobs or workflows to an
autonomic large-scale computing system.

The following project implements autonomic scheduling by schedule delegation:

• AutoMAGI [157] is an autonomic grid middleware that supports access from
mobile devices with unreliable connectivity to grid services by providing means to
store identification data and job results of disconnected clients into the autonomic
knowledge component, in order to initiate transfer of the results of completed
jobs to the client upon reconnection.

Resource allocation The resource allocation subcategory of autonomic scheduling
includes all projects that employ self-management for the allocation of resources to
jobs or workflows. Based on the resource selection method, the taxonomy distinguishes

115

between reputation-based approaches where resources are selected based on historical
performance data, reinforcement learning approaches where resources are allocated
based on a reward received from previous resource allocations, and agent-based ap-
proaches where agents represent both resource providers and resource consumers.

Reputation-based resource allocation This subcategory includes projects that employ
a reputation-based approach for resource allocation. Reputation is information as-
sociated with a resource that is established based on historical information about
properties like resource availability and performance.

The following project implements resource allocation for autonomic scheduling using
a reputation-based approach:

• Rahman et al. [151] introduce a reputation-based autonomic scheduling archi-
tecture for the Gridbus Workflow Engine (GWFE) [85] consisting of several grid
sites managed by an autonomic scheduler that are connected by an overlay net-
work. A reputation system calculates the reputation score of a grid site based
on the feedback of previous interactions with that site.

Resource allocation by reinforcement learning This subcategory includes projects that
employ an approach for resource allocation based on reinforcement learning. Rein-
forcement learning is a machine learning scheme where a system chooses actions that
are expected to be associated with an award based on previous experience.

The following project implements resource allocation for autonomic scheduling using
an approach based on reinforcement learning:

• Perez et al. [148] combine reinforcement learning with utility functions in order to
provide an autonomic scheduler at site level of the EGEE [64] grid infrastructure.
The reinforcement learning framework expresses user satisfaction as a utility
function decreasing with the expected job completion time.

Resource allocation using agents This subcategory includes projects that use agents
representing jobs for resource allocation.

The following projects implement resource allocation for autonomic scheduling using
an agent-based approach:

• OrganicGrid [48] employs strongly mobile agents for decentralized scheduling of
independent identical subtasks of an application in a self-organizing peer-to-peer
desktop grid.

• So-Grid [67] is another self-organizing agent-based peer-to-peer desktop grid that
uses bio-inspired algorithms for autonomic resource allocation and agent repli-
cation.

116

Figure 4.14: Taxonomy of autonomic schedule modification in large-scale computing.
Each project shall be categorized by method and by scope.

Schedule modification The schedule modification subcategory of autonomic schedul-
ing includes all projects that employ self-management in order to modify schedules in
reaction to changing availability or performance characteristics of a large-scale com-
puting system.

The taxonomy of schedule modification which is shown in Figure 4.14 categorizes
projects by the method of schedule modification and by its scope. The scope of
schedule modification may be a single job, a workflow consisting of multiple jobs and
their interdependencies, or a partition of a job. Methods of schedule modification are
to reschedule jobs, job partitions or those parts of a workflow that have not yet been
executed with a different resource allocation, state saving or checkpointing of a job or
job partition followed by suspending and resuming with a different resource allocation,
or requiring application support for dynamically changing the resource allocation of a
running job.

Rescheduling Rescheduling refers to executing a failed job or job partition again from
the beginning using a different set of resources.

The following projects implement schedule modification by rescheduling:

• Jarvis et al. [105] employ a genetic algorithm on jobs in a queue of a grid sys-
tem that continuously searches for a better schedule. Thus they implement
rescheduling on job level.

• Dasgupta et al. [55] implement rescheduling on job level for autonomic manage-
ment of job-flows in a grid environment. When job monitoring detects a failing
job, it is resubmitted to an alternate location.

• Pegasus [58] is a grid workflow management system. Autonomic workflow man-
agement in Pegasus [115] implements rescheduling on workflow level by employ-
ing a scheduling strategy that allows to reschedule the workflow based on current
resource performance data.

117

• Paton et al. [143] present a methodology for adaptive workload management on
cloud systems using utility functions that implements rescheduling on workflow
level. Autonomic workflow execution is given as an example application, where
an optimization algorithm explores alternative assignments of a given schedule,
possibly leading to rescheduling of the workflow to a different site.

• The ASSIST [9] component framework partitions a problem into parallel modules
(parmod) using a coordination language. Parmods are distributed among virtual
processors (VP) which are able to synchronize with each others. Virtual process
managers (VPM) contain a group of VPs and are distributed among grid nodes.
An autonomic resource management component of the ASSIST framework re-
distributes VPs among VPM on detection of violation of a previously defined
performance goal (goal based mode) or a better distribution strategy (best ef-
fort mode). Since the ability of redistribution of already executing parmods is
not explicitly mentioned, it is assumed here that redistribution is restricted to
non-executing parmods. Thus, ASSIST implements rescheduling on partition
level.

State saving State saving refers to resuming a failed job or job partition using a
different set of resources based on an intermediate state of execution that has been
saved before.

The following project implements schedule modification by state saving on job level:

• CoordAgent [76] is a desktop grid middleware based on mobile agents that rep-
resent client users and coordinate job execution and allocation of desktop re-
sources. Agents migrate to other resources using checkpointing, when a desktop
computing resource suddenly becomes unavailable (e.g. being reclaimed by its
interactive user).

The following projects implement schedule modification by state saving on workflow
level:

• Nichols et al. [135] propose a model for autonomic workflow execution within the
GridFlow [43] grid workflow execution engine using mobile agents. The model
implements schedule modification by allowing agents to migrate autonomically
between resources. Local and remote checkpointing allows continuation of the
workflow in case of a resource failure.

• Nordstrom et al. [137] present a model based on the WorkflowML language which
employs predictive self-analysis of workflow execution in order to detect work-
flows that may not be completed due to failed resources. Such workflows may
be suspended using checkpointing in favor of workflows that may be completed,
which matches the definition for the taxonomical category schedule modification
by state saving on workflow level.

The following project implements schedule modification by state saving on partition
level:

118

• OptimalGrid [59] is a self-managing desktop grid middleware designed for solving
connected parallel problems using a finite element model that partitions a com-
putation problem among grid nodes. OptimalGrid implements self-configuration
by determining the optimal number of grid nodes and self-optimization by select-
ing a node configuration based on properties like network latency or computing
power. Intermediate results are saved on a distributed whiteboard and are reused
in case of a node failure.

Application support Application support refers to systems that require jobs to support
changes of the resource allocation at run-time.

The following project implements schedule modification by application support:

• DYNACO [34] implement self-adapting grid resource management using a con-
trol loop that detects and reacts to changes in the execution environment. The
actual management functions are delegated to plugins. DYNACO requires jobs
to adapt to resource allocation changes at run-time. This constitutes schedule
modification by application support on job level.

4.2.2.6 Discussion of the large-scale computing area taxonomy

The area of autonomic large-scale computing taxonomy intends to categorize auto-
nomic large-scale computing by the problem that is addressed using self-management.
It has identified five functional areas of autonomic large-scale computing on its top
level. Application management refers to the selection of services or components for
applications. Data management refers to self-adaptation of data processing within
large-scale computing systems. Development refers to projects that help for the de-
velopment of autonomic large-scale computing systems and applications. Quality of
service management refers to work that provides self-management within the process of
establishing and maintaining QoS in large-scale distributed computing systems. The
resource management category finally includes work that provides self-management
within the process of maintaining and assigning system resources to applications.

Applying the taxonomy to the surveyed projects shows that projects that usually
are considered to be related to each other (e.g. workflow management systems) appear
in different categories since the categories are based on self-management functionality,
not project functionality or technology. Similarly, agents appear as subcategory of
service discovery in application management, negotiation in quality of service, and
resource allocation in scheduling, since agents have been used to implement those
different kinds of functionality.

These observations show the need for a complementary taxonomy covering non-
functional aspects, which will be presented in the following section.

119

4.2.3 Approaches in autonomic large-scale computing

The approach of autonomic large-scale computing taxonomy describes the methods
and technologies that have been used in order to develop an autonomic large-scale
computing system. On its top level, the taxonomy distinguishes between work that
presents a whole autonomic large-scale computing system, and work that explores how
to autonomically manage certain aspects of large-scale computing.

Figure 4.15 shows the taxonomy of autonomic large-scale computing approaches.

Figure 4.15: Approaches in autonomic large-scale computing

4.2.3.1 Architecture of autonomic large-scale computing systems

The architecture of autonomic large-scale computing systems taxonomy classifies sys-
tems by their autonomic architecture. The main architectures observed are based
on control loops or on agents, employ a self-management proxy or have autonomic
capabilities built into the main application.

Control loop based systems

The category of control loop based autonomic large-scale computing systems includes
all projects that use a control loop in order to provide autonomic functionality. Par-
ticularly this includes systems that implement the autonomic computing architecture
described in Section 3.3, which proposes a system composed of autonomic elements,
each of them consisting of an autonomic manager that manages a resource using a
loop decomposed into monitor, analyze, plan, and execute phases (MAPE loop).

The following projects fall into the category of control loop based autonomic large-
scale computing systems:

• AutoMAGI [157] is a grid middleware for mobile device access that is composed
of autonomic components implementing the MAPE loop described above.

• Guo et al. [90] employ agent-based autonomic managers that manage grid ser-
vices using a MAPE control loop. Grid services managed by autonomic man-

120

agers are categorized into management services for system management work,
application services for human demand, and lower-level agents.

• Dynaco [34] is a framework that extends grid resource management systems in
order to support adaptable applications. Adaptability in Dynaco [35] is decom-
posed into observe, decide, plan, and execute steps delegating their functionality
to external applications.

• Zhao et al. [197] provide autonomic data management for grid applications.
The system architecture consists of services for data scheduling, replication, and
file system operations. Each service is implemented as an autonomic element
containing a MAPE loop.

• VieSLAF [29] is an SLA management framework supporting negotiations using
non-matching SLA templates. It uses an autonomic MAPE control loop for
negotiation bootstrapping and service mediation [28] which are the initial steps of
a negotiation process that is also applicable to self-managing cloud services [27].

• Autonomic management within the Gridbus Workflow Engine [151] is imple-
mented by employing an autonomic manager comprising a MAPE loop for each
participating grid site. The autonomic managers communicate with each other
using a tuple space [191].

• JOpera [94] is a web service composition tool supporting grid workflows that
implements autonomic management of the number of executor and navigator
threads, and recovery of failed nodes using a closed-feedback loop controller.

• Workflow management within the grid-based TigMNS traffic information sys-
tem [195] uses a MAPE control loop for workflow specification.

• An autonomic extension for the Pegasus grid workflow management system [115]
by providing an autonomic manager implementing the MAPE control loop for
workflow adaptation.

• WorkflowML [137] is a workflow specification language for large-scale computing
environments that supports predictive workflow analysis for autonomic workflow
management. It currently supports the monitoring and analysis steps of the
MAPE control loop.

• ASSIST [9] is a development framework for grid applications under the control
of a module application manager that implements the MAPE control loop for
self-adaptation of resource allocations.

• GCM [8] is a component model for autonomic grid applications that distinguishes
between passive components supporting introspection and dynamic reconfigura-
tion, and active components defining methods for implementing the full MAPE
control loop.

121

• Jade [177] is a framework that wraps legacy applications including grid middle-
ware systems into autonomic managers supporting a feedback control loop.

Agent-based systems

The category of agent-based autonomic large-scale computing systems includes all
projects that use agents in order to provide autonomic functionality.

This section first describes the projects that employ agents. Then, a taxonomy of
agents is given, and the agent-based projects are categorized based on that taxonomy.

The following projects fall into the category of agent-based autonomic large-scale
computing systems:

• CoordAgent [76] is a desktop grid middleware based on mobile agents that repre-
sent client users and coordinate job execution and allocation of desktop resources.

• Guo et al. [90] employ agents representing autonomic elements for system man-
agement work in grid computing environments. Agents communicate with each
other based on their capabilities and interests in order to establish relationships
of acquaintance, collaboration, or notification. Capabilities and interest which
are represented using first-order predicate logic and ontologies, are evaluated
using logic reasoning and semantic cooperation.

• Jarvis et al. [105] present an autonomic grid middleware service that employs a
network of peer-to-peer agents for multi-domain task management. Each domain
participating in the grid is represented by an agent that acts as a resource broker
by publishing information about the local task queue and resource utilization
using the Monitoring and Discovery Service (MDS) from Globus Toolkit [68].

• OrganicGrid [48] is a desktop grid middleware employing strongly mobile agents
that form an overlay network for autonomic scheduling. Agents represent a
large computational task consisting of subtasks that may be delegated to other
agents. In addition, agents are able to execute subtasks from other agents.
Agents maintain parent-child relationships with each other and may choose to
adopt grandchildren based on performance metrics.

• So-Grid [67] is a desktop grid middleware based on a system of agents that use
bio-inspired algorithms for resource discovery and allocation which implement
stochastic pick and drop operations for grid resource descriptors.

• Weng et al. [185] have agents represent consumers and producers in a market-
oriented grid environment based on a fuzzy cognitive map (FCM) model that
represents negotiation issues like quality of service.

• GridFlow [43] is a grid workflow management system built on top of the ARMS [42]
resource management system based on mobile agents. Self-management in Grid-
Flow [135] uses agents that support checkpointing and migration for decentral-
ized workflow execution, where each agent represents a distinct sub-workflow.

122

Each agent contains pre- and post-execution performance monitoring instruc-
tions.

• AutoMate [141] is a framework for the development of autonomic grid comput-
ing systems. Within AutoMate, autonomic elements are modeled as components
and composed using the Accord [120] composition engine. Composition plans are
executed using the Rudder coordination middleware [119] that forms the coordi-
nation layer of the AutoMate project. Context-aware agents in Rudder maintain
information about system resources and act based on pre-defined policies.

Several taxonomies for agents exist. Franklin et al. [74] classify agents by properties
that include being communicative, learning, or mobile. Brustoloni’s [33] taxonomy
categorizes software agents as regulating, planning, and adaptive agents. Figure 4.16
shows a taxonomy of agents that is based on properties observed in the surveyed
projects.

Figure 4.16: Taxonomy of agents in autonomic large-scale computing

Communicative agents Communicative agents are agents that are able to interact
with other agents in order to achieve a goal. Agents may coordinate their behavior,
or they may negotiate in order to establish a contract.

Communicative agents are used in CoordAgent [76], by Guo et al. [90], Jarvis et
al. [105], OrganicGrid [48], Weng et al. [185], GridFlow [135], and AutoMate [141].

Mobile agents Mobile agents are agents that are able to move between different
execution sites.

Mobile agents are used in CoordAgent [76], OrganicGrid [48], by Weng et al.. [185],
and in GridFlow [135].

Multi-agent systems with emergent behavior A multi-agent system with emergent
behavior is composed of a large number of simple agents that together produce complex
behavior. The principle of emergence which is also called swarm intelligence, is inspired
by the behavior of organisms like ants or termites.

Multi-agent systems with emergent behavior are employed in the OrganicGrid [48]
and So-Grid [67] projects.

123

Proxy-based systems

Proxy-based autonomic large-scale computing systems employ a proxy for communi-
cation between components which exercises self-management functionality.

The following projects fall into the category of proxy-based autonomic large-scale
computing systems:

• Dasgupta et al. [55] employ a transparent proxy for grid job-flow management
that triggers an autonomic recovery component on detection of a failure.

• Iqbal et al. [103] minimizes the response time of an cloud-based web applications
by monitoring a load balancer log file in real-time and instantiating additional
virtual machines if needed.

• Koller et al. [112] present an SLA management architecture that employs a proxy
for autonomic SLA negotiation.

Systems with built-in autonomic behavior

This category comprises all systems that have autonomic behavior built into their
main functionality. Built-in autonomic behavior includes system architectures where
self-management work is triggered by application-specific events or implied by the
application’s main purpose.

The following projects fall into the category of large-scale computing systems with
built-in autonomic behavior:

• AutoGrid [161] is an autonomic desktop grid middleware that extends the Inte-
Grade [81] middleware using the Adapta [160] framework which describes adapt-
able elements and reconfiguration actions using an XML-based language. Neto
et al. [134] present an alternate approach that uses dynamic interceptors in
order to provide dynamic adaptation for InteGrade. Both approaches employ
functionality provided by the CORBA middleware.

• Based on the GridSim [39] grid simulation toolkit, Assunção et al. [22] present a
framework for the modeling and simulation of policies for resource management,
negotiation and service provisioning.

• Jarvis et al. [105] present an autonomic scheduling middleware service that be-
sides employing agents for multi-domain task management as described above,
employs a co-scheduler on the job queue in order to optimize the current sched-
ule.

• OptimalGrid [59] employs self-configuration and self-optimization after each step
in the calculation of a parallel problem.

124

4.2.3.2 Autonomic large-scale computing capabilities

The taxonomy of autonomic large-scale computing capabilities classifies capabilities
of large-scale computing systems that result in autonomic behavior.

The categories of autonomic large-scale computing capabilities are semantic capa-
bilities, machine learning, and optimization.

Semantic capabilities

The category of semantic capabilities in autonomic large-scale computing systems
includes all projects that use semantic web technologies in order to produce autonomic
behavior.

The following projects present autonomic large-scale systems based on semantic web
technologies:

• Guan et al. [89] present a grid service discovery middleware based on the OWL-S
semantic language in order to provide access for pervasive devices. The auto-
nomic large-scale computing functionality provided by this work is service dis-
covery.

• Hau et al. [92] present an autonomic service adaptation framework for the
ICENI [78] grid middleware that provides semantic service matching based on
OWL-S. The autonomic large-scale computing functionality provided by this
work is service adaptation.

Machine learning

The category of machine learning in autonomic large-scale computing systems includes
all projects that employ learning in order to produce autonomic behavior.

The following projects present autonomic large-scale systems based on machine
learning:

• Perez et al. [148] present a grid scheduler that uses reinforcement learning based
on a utility function for schedule optimization. The autonomic large-scale com-
puting functionality provided by this work is scheduling.

• Dai et al. [54] present a framework for self-diagnosis and self-healing in cloud
systems based on multivariate decision diagram and a Näıve Bayes classifier.
The autonomic large-scale computing functionality provided by this work is error
recovery.

Optimization

The category of autonomic optimization in large-scale computing includes all projects
that explore how to use autonomic computing methods in order to optimize existing
functionality of a large-scale computing system.

125

Figure 4.17: Taxonomy of optimization in autonomic large-scale computing

Figure 4.17 shows the taxonomy of autonomic optimization in large-scale computing.
The surveyed projects apply optimization using methods from queueing theory,

control theory, combinatorial optimization and economic modeling.

Queueing theory The subcategory of queueing theory in autonomic large-scale com-
puting optimization includes all projects that apply self-management for the optimiza-
tion of a set of properties using methods from the field of queueing theory.

The following project uses methods from queueing theory in order to implement
self-optimization in large-scale computing:

• GATES [50] optimizes the processing of real-time data streams for grid com-
puting by self-adaptation of the sampling rate such that the length of the input
queue remains within defined boundaries, which is an indicator for the grid sys-
tem in question being able to process the data at the current rate.

Control theory The subcategory of control theory in autonomic large-scale comput-
ing optimization includes all projects that apply self-management for the optimization
of a set of properties using methods from the field of control theory.

The following project uses methods from control theory in order to implement self-
optimization in large-scale computing:

• Gounaris et al. [84] present algorithms based on runtime optimization and switch-
ing extremum control in order to minimize the total response time of an OGSA-
DAI database service.

Combinatorial optimization The subcategory of combinatorial optimization in au-
tonomic large-scale computing includes all projects that apply self-management for
the optimization of a set of properties using methods from the field of combinatorial
optimization.

The following projects use methods from combinatorial optimization in order to
implement self-optimization in large-scale computing:

126

• AbdelSalam et al. [2] provide a model for power management in a cloud com-
puting center based on the bin packing problem in order to compute the optimal
number of servers and their running frequencies.

• Work in the PAWS project [14, 20] describes the optimization of quality of service
in web service selection and composition in the context of grid computing. The
large-scale computing property optimized by this project is quality of service.

Economic modeling The subcategory of economic modeling in autonomic large-scale
computing includes all projects that apply self-management for the optimization of a
set of properties using economic models.

The following projects use economic models in order to implement self-optimization
in large-scale computing:

• Libra+$Auto [189] is a pricing mechanism that allows charging variable prices for
resource usage based on expected workload demand in a cloud computing envi-
ronment that employs advance reservations. The large-scale computing property
optimized by this project is the resource price.

• Paton et al. [143] present a methodology for designing adaptive workload exe-
cution schemes based on utility functions. The large-scale computing property
that is to be optimized is to be specified during the design process proposed by
the methodology.

127

5 Catalog of autonomic large-scale
computing projects

This chapter provides a catalog of autonomic large-scale computing projects classified
by the criteria established by applying the taxonomy developed in Chapter 4.

Section 5.1 lists general information about the projects in the catalog. Section 5.2
classifies the projects by the taxonomy that has been established in Chapter 4. Sec-
tion 5.3 finally summarizes the results of the classification within this catalog.

5.1 Project information

Table 5.1 lists project information for the work presented in this catalog. Some projects
in this catalog are autonomic large-scale computing projects that have been given a
name. Other work adds autonomic capabilities to a large-scale computing project that
is already known by a name. Such work is listed under that name. Other publications
either present conceptual work in the field of autonomic large-scale computing that
is not associated with specific projects or describe autonomic large-scale computing
projects but do not assign a name to them. Such work that cannot be associated with
a project name is listed under the authors of a publication that represents the work.

In addition to the project’s or publication’s name, the organization that hosts the
project or the affiliation of the first author of the publication representing the work is
given in order to help identify the project. Finally, the table states a reference to the
section within this thesis that provides a project description.

The project information table has the following columns:

Name The name of the autonomic large-scale computing project, or authors and date
of the publication, as described above.

Organization The organization that hosts the autonomic large-scale computing project,
or the affiliation of the first author of the publication, as described above.

Grid The grid column states whether the project covers the discipline of autonomic
grid computing. A project covers autonomic grid computing if a publication
exists that investigates the application of self-management to grid computing
within the context of the project.

Cloud The cloud column states whether the project covers the discipline of autonomic
cloud computing. A project covers autonomic grid computing if a publication

129

Name Organization Grid Cloud

Grid Middleware

AutoMAGI Kyung Hee University, South Korea x
CoordAgent University of Washington, Bothell, USA x
Dasgupta et al. IBM Corporation, South Dakota State University, Florida In-

ternational University
x

Dynaco Institut National de Recherche en Informatique, France x
GATES Ohio State University, Columbus, USA x
Gounaris et al. University of Manchester, UK x
GridSim University of Melbourne, Australia x
Guan et al. University of Southampton, UK x
Guo et al. Zhejiang University, China x
ICENI Imperial College of Science, Technology and Medicine, UK x
InteGrade Federal University of Maranhão, Brazil x
Jarvis et al. University of Warwick, Coventry, UK x
OptimalGRID IBM Corporation x
Organic Grid Ohio State University, USA x
Perez et al. CNRS and Université Paris-Sud, France x
So-Grid Institute for High Performance Computing and Networking

(ICAR-CNR), Italy
x

Zhao et al. University of Florida, USA x

Cloud computing systems

AbdelSalam et al. Old Dominion University, Norfolk, USA x
Dai et al. University of Electronic Science and Technology of China x
Iqbal et al. Asian Institute of Technology, Thailand x
Libra+$Auto University of Melbourne, Australia x
Paton et al. University of Manchester, UK x

Quality of service frameworks

Koller et al. Höchstleistungsrechenzentrum Stuttgart, Germany x x
PAWS Politecnico di Milano, Italy x
VieSLAF Vienna University of Technology, Austria x x
Weng et al. Nanyang Technological University, Singapore x

Workflow management systems

Gridbus University of Melbourne, Australia x
GridFlow University of Warwick, Coventry, UK x
JOpera Swiss Federal Institute of Technology (ETHZ) x
Pegasus University of Southern California, USA x
TigMNS Tongji University, Shanghai, China x
WorkflowML Vanderbilt University, Nashville, USA x

Development frameworks

ASSIST University of Pisa, Italy x
AutoMate Rutgers State University of New Jersey, USA x
GCM University of Pisa, Italy x
Jade Institut National Polytechnique de Toulouse, France x

Table 5.1: Project information for autonomic large-scale systems

130

exists that investigates the application of self-management to cloud computing
within the context of the project.

5.2 Project classification within the taxonomy

This section applies the taxonomy of autonomic large-scale computing that has been
proposed in Section 4.2 to the autonomic large-scale computing projects listed in
Table 5.1. The taxonomy allows to classify the projects by the functional area of
large-scale computing that is addressed using methods of autonomic computing, and
by the autonomic computing approach employed for this purpose.

A classification of the large-scale computing projects of this survey by their self-
managed functional area is given in Section 5.2.1. A classification by the autonomic
computing approach is given in Section 5.2.2.

5.2.1 Area of autonomic large-scale computing

In this section, the projects included in the survey will be classified by their area of
autonomic large-scale computing as defined in Section 4.2.2. Section 5.2.1.1 presents
the catalog of autonomic large-scale computing systems classified by large-scale com-
puting areas. Then, after providing rationales for the assignment of projects within
the taxonomy in Section 5.2.1.2, a discussion of the classification is presented in Sec-
tion 5.2.1.3.

5.2.1.1 Classification

The tables in this section apply the area of autonomic large-scale computing taxonomy
to the projects included in the survey. Each table represents an area of autonomic
large-scale computing that has been defined in the taxonomy. The categories within
each area and their respective subcategories are displayed in the respective table.

Table 5.2 classifies autonomic large-scale computing projects in the application man-
agement area. Projects with autonomic data management capability are listed in
Table 5.3. Projects that cover the development of autonomic large-scale computing
systems are listed in Table 5.4. Table 5.5 lists large-scale computing projects with
autonomic capabilities in the quality of service area. Table 5.6 finally categorizes
large-scale computing projects with autonomic capabilities in the resource manage-
ment area.

5.2.1.2 Rationales for classification

This section provides rationales for the establishment of the categories within the
taxonomy of autonomic large-scale computing areas, and for the assignment of projects
to categories.

131

Application management
Service discovery Application Workflow

Agents Ontology reconfiguration specification
Guan et al. x
Guo et al. x
ICENI x
InteGrade x
TigMNS x

Table 5.2: Application management area

Data management
Real-time data Persistent data

GATES x
Zhao et al. x

Table 5.3: Data management area

Development
Framework Wrapper

AutoMate x
GCM x
Jade x

Table 5.4: Development area

Quality of service
Negotiation Resource provisioning

Service Proactive Reactive
composition Control Simu- Advance

Agents loop lation reservation
GridSim x
AbdelSalam et al. x
Iqbal et al. x
Libra+$Auto x
Koller et al. x
PAWS x
VieSLAF x
Weng et al. x

Table 5.5: Quality of service area

132

Resource management
System

management Scheduling
E

rr
or

di
sc

ov
er

y

P
er

fo
rm

an
ce

op
ti

m
iz

at
io

n

Sc
he

du
le

de
le

ga
ti

on

Resource allocation Schedule modification
Method Scope

R
ep

ut
at

io
n

R
ei

nf
or

ce
m

en
t

le
ar

ni
ng

A
ge

nt
s

R
es

ch
ed

ul
e

St
at

e
sa

vi
ng

A
pp

lic
at

io
n

su
pp

or
t

Jo
b

W
or

kfl
ow

P
ar

ti
ti

on

AutoMAGI x
CoordAgent x x x
Dasgupta et al. x x
Dynaco x x
Gounaris et al. x
Jarvis et al. x x
OptimalGrid x x
OrganicGrid x
Perez et al. x
So-Grid x
Dai et al. x
Paton et al. x x
Gridbus WFE x
GridFlow x x
JOpera x
Pegasus x x
WorkflowML x x
ASSIST x x

Table 5.6: Resource management area

133

Application management area The application management area intends to cover
all projects that use autonomic capabilities to manage the functionality of the ap-
plication. While other areas of the taxonomy described further below describe how
autonomic computing is used to enable execution of previously defined applications,
the application management area describes how autonomic computing is used to spec-
ify or compose an application before execution.

Service discovery is a well-defined research field within service-oriented computing
that investigates methods for locating and selecting services based on functional or
non-functional criteria. Since in service-oriented computing applications are composed
of services, the location of services determines the composition of the application, or in
case of selection by functional criteria even the functionality of the application. Thus,
in this taxonomy, service discovery is a category of application management.

Application reconfiguration allows to change the configuration of an already exe-
cuting application. Reconfiguration actions range from changing a configuration pa-
rameter to changing a complete module. In contrast to the service discovery category
described above which is based on the service-oriented computing paradigm, the ap-
plication reconfiguration category implies a component-oriented model.

Workflow specification allows to specify or compose a scientific workflow using au-
tonomic methods. This category implies that the workflow constitutes an application
which is composed of the workflow’s jobs.

Guan et al. [89] employ an ontology for service discovery based on semantic match-
ing, Guo et al. [90] have agents representing services publish and discover their capa-
bilities. Hau et al. [92] implement ontological annotation in the ICENI grid middle-
ware [78] for semantic matching of services. AutoGrid [161] which is an autonomic
extension of the InteGrade [81] grid middleware, supports application reconfigura-
tion by object replacement within a running application. Workflow specification in
TigMNS [195] is employed by mapping high-level missions to a grid workflow.

Data management area The data management area intends to cover all projects
that use autonomic capabilities in order to manage data in a large-scale computing
environment. Data management is categorized into real-time data and persistent data
which each are defined by the properties of a single grid computing project.

GATES [51] employs autonomic real-time data management by modifying the pro-
cessing accuracy of a stream such that it can be processed by a grid system in real
time.

Zhao et al. [197] employ autonomic management of persistent data within the grid
virtualized file system (GVFS) by maintaining parameters like the client size disk
cache in order to optimize data access from grid applications.

Development area The development area intends to cover all projects that support
the development of autonomic large-scale computing applications.

While AutoMate [141] and GCM [8] both present frameworks supporting the de-
velopment of autonomic grid applications, Jade [177] uses an approach for wrapping

134

legacy applications into self-managing components.

Quality of service area The quality of service area includes all large-scale comput-
ing projects that investigate self-management of QoS properties. QoS refers to non-
functional system properties like response time or reliability which may be formally
defined using a service-level agreement (SLA).

The taxonomy of QoS in autonomic large-scale computing distinguishes on its top
level between service composition, negotiation, and resource provisioning. While ser-
vice composition for QoS composes services such that QoS properties are optimized,
QoS negotiation has a service provider and a service consumer negotiate for QoS re-
quirements, resulting in a service-level agreement. Resource provisioning finally has a
service provider provision resources such that given QoS requirements are met.

Service composition is investigated within the PAWS [16] project by composing
services such that QoS properties like runtime are minimized.

Within QoS negotiation, the taxonomy distinguishes between agent-based and con-
trol loop-based negotiation. While Weng et al. [185] employ negotiating agents, Koller
et al. [112] and work within the VieSLAF project [29] employs loop-based controllers
for negotiation.

Resource provisioning may either be proactive, which means that future provision-
ing of resources is planned such that QoS requirements are met, or reactive, where
a system actively monitors resource usage for adaptation in reaction to a detected
QoS degradation. Proactive resource management may be employed by simulation or
by requiring advance reservation of resources. While Assunção et al. [22] present a
simulation framework for autonomic service policies within the GridSim [39] toolkit,
AbdelSalam et al. [1] and Libra+$Auto [189] both require advance reservation of re-
sources, the former for optimizing resource usage, the latter for optimizing resource
pricing. Reactive provisioning is employed by [103], where additional resources are
provisioned upon detection of QoS degradation.

Resource management area The resource management area includes work that in-
vestigates autonomic resource management in large-scale computing systems. On the
top level, the taxonomy distinguishes between two perspectives on resource manage-
ment. The first one, system management, refers to self-management that is employed
in order to keep system resources in a desired state. It may also be seen as a system-
internal perspective since the system’s own resources are maintained, or a resource-
centric perspective since resources are adapted according to some higher-level speci-
fication. The second perspective on resource management, scheduling, refers to the
selection of resources for scheduling using autonomic methods. It may also be seen as
a system-external perspective since the resources of external systems are maintained,
or a schedule-centric perspective since schedules are adapted based on resource prop-
erties.

System management is categorized into error discovery and performance optimiza-
tion. Dai et al. [54] use autonomic methods for detecting and classifying errors, fol-

135

lowed by application of remedies. JOpera [94] supports self-management of thread
pool sizes in order to minimize response time. Gounaris et al. [84] finally optimize the
response time of a grid-based database service.

Scheduling is categorized into schedule delegation, resource allocation and schedule
modification. The schedule delegation category is established by a single project, Au-
toMAGI [157] where mobile clients with limited resources and unreliable connectivity
delegate the process of scheduling to a gateway. Resource allocation refers to auto-
nomic methods for allocating resources before running an application or independent
thereof (e.g. to maintain a list of resources), schedule modification allows changing
the schedule of an already running application in reaction to changes in resource prop-
erties. Resource allocation is further categorized by the method of determining suit-
able resources, namely reputation-based schemes, reinforcement learning, and agents.
Schedule modification is further categorized by the method of schedule modification
and by its scope, that is, whether the schedule of a complete workflow, a single job that
may be part of a workflow, or a part of a job called partition is modified. Methods of
schedule modification are rescheduling of failed items, state saving such that a sched-
uled item may be resumed from some state of execution other than the beginning,
and application support, where a system requires applications to support dynamic
modification of the current schedule. The properties described above are implemented
in the surveyed systems as described in Section 4.2.2.5 and listed in Table 5.6.

5.2.1.3 Discussion

The tables referenced above show five projects in the application management area,
two data management projects and three development projects. Eight projects are
categorized into the quality of service area, and 18 projects investigate autonomic
resource management in large-scale computing systems. The number of projects within
each area is reflected in the number of categories and subcategories within those areas.
Half of the projects focus on autonomic resource management, followed by quality of
service management, application management, development and data management.
Within each area, one or more categories exist that are defined by a single project.
The data management area itself is defined by two projects, each of them establishing
a category within that area.

The classification shows that the problems in large-scale computing that are most
frequently addressed by applying the autonomic computing paradigm are resource
management and quality of service management. All of the cloud computing projects
included in the survey belong to one of these two areas, while the remaining three
areas are exclusively populated by grid projects.

Within the resource management taxonomy, 14 of 18 projects are assigned to the
scheduling category, 13 thereof to one of the subcategories of resource allocation or
schedule modification which are distinguished from each other by the point of time
where self-management is applied rather than the research problem that is being ad-
dressed. This leads to the conclusion that the problem most frequently investigated
in large-scale computing projects by applying autonomic computing methods is the

136

assignment of system resources to scheduled or running applications.

5.2.2 Autonomic computing approach

In this section, the projects included in the survey will be classified by the approach of
autonomic computing that has been chosen, as defined in Section 4.2.3. Section 5.2.2.1
presents the catalog of autonomic large-scale computing systems classified by auto-
nomic computing approach. Then, after providing rationales for the assignment of
projects within the taxonomy in Section 5.2.2.2, a discussion of the classification is
presented in Section 5.2.2.3.

5.2.2.1 Classification

This section applies the autonomic computing approach taxonomy to the projects
included in the survey. A single table is used to present the results of the classification
with its columns mapping the taxonomy introduced in Section 4.2.3.

Table 5.7 classifies the projects included in the survey by their autonomic computing
approach.

5.2.2.2 Rationales for classification

This section provides rationales for the establishment of the categories within the
taxonomy of autonomic computing approaches, and for the assignment of projects to
categories.

The top level of the autonomic computing approaches provides a classification by the
architecture chosen to implement autonomic behavior, and by the capabilities provided
by self-management. Usually, autonomic capabilities of a project are classified by
the properties of self-configuration, self-optimization, self-healing and self-protection
introduced in Section 3.3.1. Herrmann et al. [95] state that the differences between
these properties are somewhat fuzzy, though: is a system with poor response time
faulty and thus subject to self-healing or simply performing sub-optimally and thus
subject to self-optimization? The projects included in the survey confirm this point by
actually implying slightly different meanings of the properties, especially regarding the
difference between self-configuration and self-optimization, since optimization often is
accomplished by applying configuration actions.

Based on the observations stated above, this taxonomy prefers to provide on its
second level a classification by capabilities actually observed in the surveyed projects.

Autonomic computing architecture The autonomic computing architecture cate-
gory describes the architectural approach that the projects included in the survey
follow to implement autonomic behavior. Most projects use an architecture where
self-management is encapsulated into components distinguished from components pro-
viding system functionality. While several projects follow the autonomic computing
architecture described in Section 3.3.2 which is composed of elements managed by

137

Autonomic computing approach
Architecture Capabilities
Agents Optimizing

C
o
n
tr

o
l

lo
o
p

M
o
b
il
e

C
o
m

m
u
n
ic

a
t.

E
m

er
g
en

t

P
ro

x
y

B
u
il
t-

in

S
em

a
n
ti

c

L
ea

rn
in

g

C
o
n
tr

o
l

th
eo

ry

Q
u
eu

ei
n
g

th
.

C
o
m

b
in

a
to

ri
a
l

E
co

n
o
m

ic
m

o
d
.

Grid middleware

AutoMAGI x
CoordAgent x
Dasgupta et al. x
Dynaco x
GATES x
Gounaris et al. x
GridSim x
Guan et al. x
Guo et al. x x
ICENI x
InteGrade x
Jarvis et al. x x
OptimalGrid x
OrganicGrid x x x
Perez et al. x
So-Grid x
Zhao et al. x

Cloud computing systems

AbdelSalam et al. x
Dai et al. x
Iqbal et al. x
Libra+$Auto x
Paton et al. x

Quality of service frameworks

Koller et al. x
PAWS x
VieSLAF x
Weng et al. x

Workflow management systems

Gridbus WFE x
GridFlow x x
JOpera x
TigMNS x
Pegasus x
WorkflowML x

Development frameworks

ASSIST x
AutoMate x
GCM x
Jade x

Table 5.7: Approach of autonomic large-scale computing

138

autonomic managers that consist of a control loop decomposed into monitor, ana-
lyze, plan, and execute steps, others implement autonomic behavior using software
agents. Agents may be mobile, that is they move between different nodes of a large-
scale computing system. They may be communicative by sending messages to and
receiving messages from other agents. Multi-agent systems finally may be emergent
by providing complex behavior that emerges from simple behavior patterns of multiple
agents.

A third architectural approach observed in the survey is to encapsulate self-man-
agement into a proxy that intercepts and modifies communication within a large-
scale distributed computing system. The fourth category, built-in autonomic behavior,
refers to system architectures where autonomic capabilities are tightly integrated with
system functionality.

Several projects explore specific capabilities of autonomic computing but do not
present a fully operating autonomic large-scale computing system and thus cannot
be associated with a system architecture. Often the explored capabilities may be
implemented in a system following an arbitrary architectural style.

Rationales for the classification of individual projects within the taxonomic category
of autonomic computing architecture are given in Section 4.2.3.1.

Autonomic computing capabilities The taxonomy of capabilities in autonomic large-
scale computing systems is targeted at projects exploring a specific capability intended
to be part of an autonomic large-scale computing system. As stated in the introduction
to this section, the capability model followed here is to be distinguished from the self-
management capabilities of an autonomic system introduced in Section 3.3.2.

The service discovery mechanism presented by Guan et al. [89] and autonomic service
adaptation in the ICENI grid infrastructure [92] introduce autonomic behavior to
large-scale computing systems using semantic web technologies. Perez et al. [148] and
Dai et al. [54] provide self-management by machine learning.

Several projects present optimization mechanisms of autonomic large-scale comput-
ing systems, which are further categorized by the optimization approach. Gounaris
et al. [84] employ an optimization approach based on control theory for access to a
database service. The technique used in the GATES project [51] for optimizing real-
time data transfer originates in queueing theory. AbdelSalam et al. [2] and work within
the PAWS project [14, 20] apply combinatorial optimization techniques for resource
provisioning and quality of service, respectively. Optimization within the Libra+$Auto
resource pricing mechanism [189] and the adaptive workload execution methodology
introduced by Paton et al. [143] finally is based on economic models.

5.2.2.3 Discussion

This section discusses the results of the surveyed projects’ classification by the ap-
proach of autonomic large-scale computing taxonomy.

Of the 36 projects included in the survey, 26 present an autonomic large-scale com-
puting system that can be classified by its architecture, while 10 projects explore

139

specific capabilities. 13 of the 26 autonomic large-scale computing system projects
employ an architecture based on a control loop, as suggested by the autonomic com-
puting model introduced in Section 3.3.2. Eight projects are based on software agents
that introduce self-management but are not structured like autonomic elements. Three
projects employ a self-management proxy, and three projects have autonomic behavior
integrated into system functionality. The remaining ten projects explore specific capa-
bilities, six thereof by optimization, two by machine learning, and two using semantic
technologies.

Of the 13 projects employing an architecture composed of autonomic elements,
Guo et al. [90] model the autonomic elements as communicative software agents, and
AutoMAGI [157] employs an architecture composed of autonomic elements operating
as semantic web services. The remaining 11 projects employ a single central autonomic
manger.

Of the ten projects that investigate specific autonomic capabilities, six projects tar-
get specific optimization problems. Two projects investigate semantic web technologies
and two others machine learning in the context of autonomic large-scale computing.

The conclusion drawn from the classification is that while several projects employ
a central loop-based autonomic controller, and several others use software agents, the
combination of these technologies suggested by Brazier et al. [30], while being employed
by Guo et al. [90] for grid system management purposes, remains to be addressed by
future work in other areas of autonomic large-scale computing.

5.2.3 Autonomic approaches by large-scale computing areas

This section combines the taxonomy of large-scale computing areas introduced in
Section 4.2.2 with the taxonomy of autonomic computing approaches introduced in
Section 4.2.3 in order to determine if there exist approaches that are preferred within
certain areas of large-scale computing.

Section 5.2.3.1 describes the classification criteria of the combined taxonomy. Sec-
tion 5.2.3.2 investigates rationales for establishing the combined taxonomy. Sec-
tion 5.2.3.3 finally discusses results of the combined classification.

5.2.3.1 Classification

Table 5.8 shows the combined taxonomy of large-scale computing area and autonomic
computing approach. On the top two levels, projects are categorized into the four
major architectural styles of autonomic computing, namely control loop, agents, proxy,
and built-in support or into the three major autonomic capabilities, namely machine
learning, optimization, and semantics. Each of those architectures or capabilities is
subcategorized into the five major areas identified by the large-scale computing area
taxonomy, namely application management, data management, development, quality
of service management and resource management, provided that at least one project
is included in the survey that applies the architecture or capability within that area.

140

Autonomic computing approach and large-scale computing areas
Architecture Capabilities

Control loop Agents Proxy Built-in L Opt. S

A
p

p
.

m
g
m

t.

D
a
ta

m
g
m

t.

D
ev

el
o
p

m
en

t

Q
o
S

R
es

o
u

rc
e

m
g
m

t.

A
p

p
.

m
g
m

t.

D
ev

el
o
p
m

en
t

Q
o
S

R
es

o
u

rc
e

m
g
m

t.

Q
o
S

R
es

o
u

rc
e

m
g
m

t.

A
p

p
.

m
g
m

t.

Q
o
S

R
es

o
u

rc
e

m
g
m

t.

R
es

o
u

rc
e

m
g
m

t.

D
a
ta

m
g
m

t.

Q
o
S

R
es

o
u

rc
e

m
g
m

t.

A
p

p
.

m
g
m

t.

Grid middleware
AutoMAGI x
CoordAgent x
Dasgupta et al. x
Dynaco x
GATES x
Gounaris et al. x
GridSim x
Guan et al. x
Guo et al. x x
ICENI x
InteGrade x
Jarvis et al. x x
OptimalGrid x
OrganicGrid x
Perez et al. x
So-Grid x
Zhao et al. x
Cloud computing systems
AbdelSalam et al. x
Dai et al. x
Iqbal et al. x
Libra+$Auto x
Paton et al. x
Quality of service frameworks
Koller et al. x
PAWS x
VieSLAF x
Weng et al. x
Workflow management systems
Gridbus WFE x
GridFlow x
JOpera x
TigMNS x
Pegasus x
WorkflowML x
Development frameworks
ASSIST x
AutoMate x
GCM x
Jade x
No. of projects 2 1 3 1 6 2 1 1 4 2 1 2 1 1 2 1 3 2 2

Table 5.8: Areas of large-scale computing within approaches of autonomic computing
L = machine learning, S= semantic technologies

141

5.2.3.2 Rationales for classification

Rationales for classification of the individual projects within the taxonomies of large-
scale computing areas and autonomic approaches have been given in Section 5.2.1
and 5.2.2, respectively. The purpose of the classification within the combined taxon-
omy is to investigate if there are correlations between classes of large-scale computing
problems and autonomic computing approaches that address them.

5.2.3.3 Discussion

This section discusses results of the classification of the projects included in the survey
by the combined taxonomy of autonomic computing approaches in large-scale com-
puting areas. While the surveyed projects represent a too small sample with regard to
the number of classes to apply statistical methods, some combinations of large-scale
computing functionality and autonomic technology are noteworthy.

Table 5.8 shows a total of six projects that investigate resource management using
an approach based on an autonomic control loop. Four projects use an agent-based
approach for resource management. Three projects support the development of auto-
nomic large-scale computing applications that use an approach based on control loops,
and another three projects investigate optimization in the quality of service area. Two
projects each explore control loops in application management, agents in application
management, quality of service management using a proxy, application management
using an architecture with integrated autonomic support, machine learning in resource
management, optimization in resource management and semantic technologies in ap-
plication management. The remaining combinations are each explored by a single
project.

Of the six loop-based resource management projects, four are in the area of workflow
management systems. Three of the four agent-based projects in the resource manage-
ment area are desktop grid systems. While managing a workflow using a central
controller and representing the nodes of a desktop grid as independent agents seems
to be an obvious decision at the first glance, both resource management problems are
in fact quite similar, though, since in both cases the problem is the assignment of a
sequence of jobs or job partitions with interdependencies to resources that dynamically
change their availability or performance. The difference between the two operational
models of workflow management and desktop grids seems to be that in workflow man-
agement systems like Pegasus, the original concept was a static assignment of jobs to
resources that were supposed to be reliable, and dynamic resource management has
been added at a later time. In the case of desktop grids, it has been a requirement
from the beginning, that desktop computers may reclaim their resources or simply
disappear without causing job failure. In other words, in workflow management sys-
tems, disappearance of resources traditionally has been considered a fault, while in
desktop grid systems it has always been regarded as a normal mode of operation.
Thus, grid workflow management systems that originally have lacked self-adaptation
capabilities have been a natural target for applying the autonomic computing archi-

142

tecture described in Section 3.3.2 which has been designed for adoption of autonomic
capabilities by legacy systems.

While resource management and QoS management are the functional areas with
the most projects and thus have been implemented using all of the four architectural
styles defined within the taxonomy, some autonomic capabilities seem to target only a
few functional areas. Both projects that employ machine learning target the resource
management area. While work from Perez et al. applies machine learning for future
decisions on the selection of resources provided by other systems, machine learning
as employed by Dai et al. has the goal to improve fault diagnosis of a system’s own
resources.

Another special capability, the application of semantic technologies for self-man-
agement is targeted at the functional area of application management, specifically at
service discovery as shown in Table 5.2. Both projects in those categories, work from
Guan et al. and ICENI employ semantic service annotation based on ontologies in
order to allow service discovery and service selection based on the service’s semantics.

Finally, optimization with regard to quality of service management has been studied
by three projects. Table 5.7 shows that two of these projects, work of AbdelSalam et
al. and work within the PAWS project employ methods from the field of combinatorial
optimization. The third of these projects, the Libra+$Auto pricing mechanism applies
optimization using an economic model based on utility functions.

5.3 Results of the classification

This chapter presented a catalog of autonomic large-scale computing that has been
created by classifying the autonomic large-scale computing projects of the survey con-
ducted in Section 4.1 using the taxonomy proposed in Chapter 4. Each project has
been assigned to a subcategory and category within an area of large-scale computing,
as defined in Section 4.2.2 and to an autonomic computing approach as defined in
Section 4.2.3. Finally, a combined taxonomy showing which approach of autonomic
computing has been used to address which problem in large-scale computing has been
presented.

The catalog showed that the topics that are most frequently investigated by within
the field of autonomic large-scale computing are resource management and quality of
service management. On the other hand, the area of data management in grid systems
has been addressed only by two projects. The relative majority of the surveyed projects
employs an autonomic computing architecture based on autonomic elements composed
of managed elements and autonomic managers, the latter employing a control loop
decomposed into monitor, analyze, plan and execute functions. Other architectural
styles for autonomic computing that have been employed by the surveyed projects
are agent-based systems, systems employing a proxy for autonomic management, and
systems with self-management tightly integrated into the application’s functionality.

The main conclusion drawn from the catalog of autonomic large-scale computing
systems is that, while the particular strength of the concept of autonomic comput-

143

ing presented in Chapter 3 is adding autonomic capabilities to non-autonomic legacy
systems, for large-scale computing projects that incorporate self-management capabil-
ities from the beginning, alternate architectural styles like agent-based or proxy-based
systems are equally suitable.

144

6 Conclusions and future work

This thesis explored the field of autonomic large-scale distributed computing and pre-
sented autonomic computing as an approach to provide self-management in current
large-scale distributed computing systems. It has conducted the first attempt on a
survey and taxonomy of autonomic large-scale distributed computing.

While several interrelated large-scale computing paradigms exist, like grid comput-
ing which provides sharing of system resources usually located at high-performance
computing centers within scientific communities, and the more recent paradigm of
cloud computing, where data centers provide system resources and software as a ser-
vice over the Internet as an effort to realize the vision of utility computing [41], broad
acceptance of these paradigms has been impeded by difficulties to provide reliable
service expressed as quality of service and formalized within service level agreements,
that originate in the complexity and dynamism of those systems.

Autonomic computing, where policy-based controllers provide self-management to
computing systems with the goal of relieving human system administrators from man-
ually adapting those systems to dynamically changing requirements and correcting
faults of components has been identified as a possible solution to provide the required
reliability, resulting in research projects like Foundations of Self-Governing ICT Infras-
tructures (FoSII) that explore self-management in large-scale distributed computing
systems.

This thesis has presented a comprehensive survey of the existing body of work
in autonomic large-scale distributed computing. It has identified 27 autonomic grid
projects that provide middleware services, workflow management or enable application
development, five autonomic cloud computing projects and four projects exploring self-
management of quality of service in large-scale distributed computing systems. Based
on those projects, a taxonomy of autonomic large-scale computing has been derived,
which is organized by the two dimensions of autonomic large-scale computing area and
approach of autonomic computing. While the taxonomy of autonomic large-scale com-
puting areas intends to describe and classify the functional dimension of autonomic
computing in large-scale distributed systems by identifying the areas of application
management, data management, development, quality of service management, and
resource management where autonomic computing has been applied in the large-scale
computing projects included in the survey, the taxonomy of autonomic computing
approaches describes autonomic computing technology like architectural styles and
capabilities that have been applied to those functional areas. Autonomic comput-
ing architectures identified within the surveyed projects include control loop based
architectures, agent-based architectures and proxy-based architectures. Autonomic
capabilities include optimization, machine learning and semantics.

145

The survey showed that most work in autonomic large-scale distributed comput-
ing targets the field of grid computing, while only a few research projects specifi-
cally explore autonomic capabilities in cloud computing systems or investigate specific
problems like quality of service management applicable to both fields. While this
phenomenon largely originates in the higher degree of maturity of grid computing
compared to the relatively new field of cloud computing, another reason for the dom-
inance of grid projects within the survey is that inclusion of cloud systems had to
be restricted to academic projects since commercial cloud operators like Amazon or
Google up to this day do not have issued publications that would allow to assess
self-management capabilities of their cloud infrastructures.

Application of the taxonomy to the surveyed projects resulted in a catalog of auto-
nomic large scale distributed computing systems that identified functional areas and
autonomic approaches explored by those projects. The research problem addressed
most frequently within autonomic large-scale computing is self-adaptation in resource
management, which includes the assignment of tasks to resources in scheduling. While
autonomic resource management largely prevails in grid projects which dominate in
the survey, autonomic cloud projects tend to focus on quality of service management,
which includes the provisioning of resources. This difference in research focus appar-
ently maps the different operation modes of grid and cloud systems. While within
grid systems, resources are cooperatively shared between organizations or in the case
of desktop grids even between individual users and thus tend to suddenly appear and
disappear, leaving the burden to find and select suitable and reliable resources on the
system issuing the job, with cloud computing resources are under the control of a
single operator who is entitled to capacity planning with regard to the number of jobs
processed and the expected quality of service.

With regard to the autonomic computing approaches taxonomy, the catalog showed
that the autonomic computing architecture proposed by IBM which is composed of
autonomic elements that employ a control loop consisting of the steps of monitoring,
planning, analyzing and executing guided by knowledge, has been largely accepted
within the field of large-scale computing and implemented by several projects. A num-
ber of grid projects followed the approach of adopting that model to existing projects.
Architectures that are based on cooperating autonomic software agents have also been
explored, especially in projects that have required autonomic capabilities from the be-
ginning like desktop grid systems where traditional central system management modes
are not feasible. System architectures based on self-management proxies allow a third
party to employ self-management with existing systems, which has been identified as
a suitable approach for quality of service management [112].

The existing body of work in the field of large-scale distributed computing systems
shows that all of the autonomic computing architectures that have been described
in this thesis are effective in providing self-management capabilities within different
functional areas of large-scale distributed computing systems. Project classification
within this thesis has already suggested that IBM’s autonomic computing architecture
is especially suited for adding autonomic capabilities to existing non-autonomic large-
scale distributed computing systems. However, future work needs to further investigate

146

those architectures in order to compare advantages and disadvantages of the autonomic
computing approaches presented in this thesis, with the goal of providing information
to implementers of autonomic large-scale computing systems supporting their decision
on an autonomic computing architecture for their specific requirements.

While capabilities of an autonomic system usually are described using the properties
of self-configuration, self-optimization, self-healing and self-protection, the taxonomy
presented in this thesis refrained from using those properties for classification. While
providing a useful scheme for describing the general capabilities of an autonomic com-
puting system, those properties lack standardization, leading to different usages in
different projects, thus impeding direct comparison of projects by those criteria. Fu-
ture work, possibly by a standardization body, may formally define the meanings of
those properties in order to allow direct comparison of autonomic computing systems.
On the other hand, the self-management properties may be regarded to be intention-
ally ambiguous, since for example the classification of a self-management action as
self-optimization or self-healing depends on the classification of the underlying system
behavior that is subject to self-management as suboptimal or faulty [95].

The success of cloud computing as a means to deliver the vision of utility computing
heavily depends on its acceptance by the public. A key factor for that acceptance is
reliability. While autonomic computing has been identified as a means for providing
this reliability in a scalable fashion by enabling self-management of cloud computing
resources, the field of autonomic large-scale distributed computing systems up to this
date lacked a comprehensive survey and taxonomy of the existing body of work in
that area. By presenting a survey and taxonomy of autonomic large-scale distributed
computing for the first time, this thesis provides a tool that helps for further advance-
ments in autonomic large-scale distributed computing research within projects like
Foundations of Self-Governing ICT Infrastructures (FoSII) [73].

147

Bibliography

[1] Hady AbdelSalam, Kurt Maly, Ravi Mukkamala, Mohammad Zubair, and David
Kaminsky. Towards energy efficient change management in a cloud computing
environment. In Scalability of Networks and Services, volume 5637/2009 of Lec-
ture Notes in Computer Science, pages 161–166. Springer Berlin / Heidelberg,
2009.

[2] Hady S. Abdelsalam, Kurt Maly, Ravi Mukkamala, Mohammad Zubair, and
David Kaminsky. Analysis of energy efficiency in clouds. In Computation World:
Future Computing, Service Computation, Cognitive, Adaptive, Content, Pat-
terns, pages 416 –421, Nov. 2009.

[3] Sherif Abdelwahed, Nagarajan Kandasamy, and Sandeep Neema. A control-
based framework for self-managing distributed computing systems. In WOSS
’04: Proceedings of the 1st ACM SIGSOFT workshop on Self-managed systems,
pages 3–7, New York, NY, USA, 2004. ACM.

[4] Manish Agarwal, Viraj Bhat, Hua Liu, Vincent Matossian, Venkatesh Putty,
Cristina Schmidt, Guangsheng Zhang, Zhen Li, Manish Parashar, Bithika
Khargharia, and Salim Hariri. AutoMate: enabling autonomic applications on
the grid. In Autonomic Computing Workshop, 2003, pages 48–57, June 2003.

[5] Manish Agarwal and Manish Parashar. Enabling autonomic compositions in
grid environments. In Grid Computing, 2003. Proceedings. Fourth International
Workshop on, pages 34–41, Nov. 2003.

[6] Mehmet Aksit and Zièd Choukair. Dynamic, adaptive and reconfigurable sys-
tems overview and prospective vision. In Distributed Computing Systems Work-
shops, 2003. Proceedings. 23rd International Conference on, pages 84–89, May
2003.

[7] Youssif Al-Nashif, Aarthi Arun Kumar, Salim Hariri, Guangzhi Qu, Yi Luo,
and Ferenc Szidarovsky. Multi-level intrusion detection system (ML-IDS). In
Autonomic Computing, 2008. ICAC ’08. International Conference on, pages
131–140, June 2008.

[8] Marco Aldinucci, Sonia Campa, Marco Danelutto, Marco Vanneschi, Peter Kil-
patrick, Patrizio Dazzi, Domenico Laforenza, and Nicola Tonellotto. Behavioural
skeletons in GCM: Autonomic management of grid components. In Parallel,
Distributed and Network-Based Processing, 2008. PDP 2008. 16th Euromicro
Conference on, pages 54–63, Feb. 2008.

149

[9] Marco Aldinucci, Marco Danelutto, and Marco Vanneschi. Autonomic QoS in
ASSIST grid-aware components. In Parallel, Distributed, and Network-Based
Processing, 2006. PDP 2006. 14th Euromicro International Conference on, pages
10 pp.–, Feb. 2006.

[10] Amazon.com. Amazon web services. http://aws.amazon.com/, July 2009.

[11] American Society for Indexing. About taxonomies & controlled vocabularies.
http://www.taxonomies-sig.org/about.htm, Sep 2009.

[12] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan
Werthimer. SETI@home: an experiment in public-resource computing. Com-
mun. ACM, 45(11):56–61, 2002.

[13] David P. Anderson and Gilles Fedak. The computational and storage potential
of volunteer computing. In Cluster Computing and the Grid, 2006. CCGRID 06.
Sixth IEEE International Symposium on, volume 1, pages 73 – 80, May 2006.

[14] Jonatha Anselmi, Danilo Ardagna, and Paolo Cremonesi. A QoS-based selec-
tion approach of autonomic grid services. In SOCP ’07: Proceedings of the
2007 workshop on Service-oriented computing performance: aspects, issues, and
approaches, pages 1–8, New York, NY, USA, 2007. ACM.

[15] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL continuous query
language: semantic foundations and query execution. VLDB Journal: Very
Large Data Bases, 15(2):121–142, Jun. 2006.

[16] Danilo Ardagna, Marco Comuzzi, Enrico Mussi, Barbara Pernici, and Pierluigi
Plebani. PAWS: A framework for executing adaptive web-service processes. Soft-
ware, IEEE, 24(6):39–46, Nov.-Dec. 2007.

[17] Danilo Ardagna, Gabriele Giunta, Nunzio Ingraffia, Raffaela Mirandola, and
Barbara Pernici. QoS-Driven Web Services Selection in Autonomic Grid Envi-
ronments, volume 4276 of Lecture Notes in Computer Science, pages 1273–1289.
Springer, 2006.

[18] Danilo Ardagna, Silvia Lucchini, Raffaela Mirandola, and Barbara Pernici. Web
Services Composition in Autonomic Grid Environments, volume 4103 of Lecture
Notes in Computer Science, pages 375–386. Springer, 2006.

[19] Danilo Ardagna and Barbara Pernici. Global and Local QoS Guarantee in Web
Service Selection, volume 3812 of Lecture Notes in Computer Science, pages
32–46. Springer, Sep 2005.

[20] Danilo Ardagna and Barbara Pernici. Adaptive service composition in flexible
processes. Software Engineering, IEEE Transactions on, 33(6):369 –384, june
2007.

150

http://aws.amazon.com/
http://www.taxonomies-sig.org/about.htm

[21] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H.
Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion
Stoica, and Matei Zaharia. Above the clouds: A Berkeley view of cloud com-
puting. Technical Report UCB/EECS-2009-28, EECS Department, University
of California, Berkeley, Feb 2009.

[22] Marcos Dias de Assunção, Werner Streitberger, Torsten Eymann, and Rajkumar
Buyya. Enabling the simulation of service-oriented computing and provisioning
policies for autonomic utility grids. In Grid Economics and Business Models, vol-
ume 4685/2007 of Lecture Notes in Computer Science, pages 136–149. Springer
Berlin / Heidelberg, 2007.

[23] Algirdas Avižienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Ba-
sic concepts and taxonomy of dependable and secure computing. Dependable
and Secure Computing, IEEE Transactions on, 1(1):11–33, Jan.-March 2004.

[24] Gordon Bell and Jim Gray. What’s next in high-performance computing? Com-
mun. ACM, 45(2):91–95, 2002.

[25] Dimitri P. Bertsekas. Dynamic programming and optimal control. Athena Sci-
entific, 1995.

[26] Viraj Bhat, Manish Parashar, Hua Liu, Mohit Khandekar, Nagarajan Kan-
dasamy, and Sherif Abdelwahed. Enabling self-managing applications using
model-based online control strategies. In Autonomic Computing, 2006. ICAC
’06. IEEE International Conference on, pages 15–24, June 2006.

[27] Ivona Brandic. Towards self-manageable cloud services. In Computer Software
and Applications Conference, 2009. COMPSAC ’09. 33rd Annual IEEE Inter-
national, volume 2, pages 128–133, July 2009.

[28] Ivona Brandic, Dejan Music, and Schahram Dustdar. Service mediation and
negotiation bootstrapping as first achievements towards self-adaptable grid and
cloud services. In Grids meet Autonomic Computing Workshop 2009 - GMAC09.
In conjunction with the 6th International Conference on Autonomic Computing
and Communications, Jun. 2009.

[29] Ivona Brandic, Dejan Music, Philipp Leitner, and Schahram Dustdar. VieSLAF
framework: Increasing the versatility of grid QoS models by applying semi-
automatic SLA-mappings. In Grid Economics and Business Models, volume
5745/2009 of Lecture Notes in Computer Science, pages 60–73. Springer Berlin
/ Heidelberg, 2009.

[30] Frances M.T. Brazier, Jeffrey O. Kephart, H. Van Dyke Parunak, and Michael N.
Huhns. Agents and service-oriented computing for autonomic computing: A
research agenda. Internet Computing, IEEE, 13(3):82–87, May-June 2009.

151

[31] James Broberg, Srikumar Venugopal, and Rajkumar Buyya. Market-oriented
grids and utility computing: The state-of-the-art and future directions. Journal
of Grid Computing, 6(3):255–276, 2008.

[32] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-
Bernard Stefani. The FRACTAL component model and its support in java.
Software: Practice and Experience, 36(11-12):1257 – 1284, Sep.-Oct. 2006.

[33] Jose C. Brustoloni. Autonomous agents: Characterization and requirements.
Technical Report CMU-CS-91-204, Carnegie Mellon University, 1991.

[34] Jérémy Buisson, Françoise André, and Jean-Louis Pazat. Performance and
practicability of dynamic adaptation for parallel computing: an experience
feedback from Dynaco. Research Report/Publication interne 1782, Institut
National de Recherche en Informatique et en Automatique (INRIA), http:
//hal.inria.fr/inria-00001087/en/, 2006.

[35] Jérémy Buisson, Françoise André, and Jean-Louis Pazat. Supporting adaptable
applications in grid resource management systems. In Grid Computing, 2007
8th IEEE/ACM International Conference on, pages 58–65, Sep 2007.

[36] Rajkumar Buyya. High Performance Cluster Computing: Architectures and
Systems. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.

[37] Rajkumar Buyya, David Abramson, Jonathan Giddy, and Heinz Stockinger.
Economic models for resource management and scheduling in grid computing.
Concurrency and Computation: Practice and Experience, 14(13-15):1507–1542,
2002.

[38] Rajkumar Buyya and Kris Bubendorfer. Market-Oriented Grid and Utility Com-
puting. Wiley Series on Parallel and Distributed Computing. Wiley, November
2009.

[39] Rajkumar Buyya and M. Manzur Murshed. GridSim: A toolkit for the model-
ing and simulation of distributed resource management and scheduling for grid
computing. Concurrency and Computation: Practice and Experience, 14(13-
15):1175–1220, 2002.

[40] Rajkumar Buyya and Srikumar Venugopal. The Gridbus toolkit for service
oriented grid and utility computing: an overview and status report. In Grid
Economics and Business Models, 2004. GECON 2004. 1st IEEE International
Workshop on, pages 19–66, April 2004.

[41] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and
Ivona Brandic. Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility. Future Generation Computer
Systems, 25(6):599 – 616, 2009.

152

http://hal.inria.fr/inria-00001087/en/
http://hal.inria.fr/inria-00001087/en/

[42] Junwei Cao, Stephen A. Jarvis, Subhash Saini, Darren J. Kerbyson, and Gra-
ham R. Nudd. ARMS: An agent-based resource management system for grid
computing. Scientific Programming, Volume 10(2):135–148, 2002.

[43] Junwei Cao, Stephen A. Jarvis, Subhash Saini, and Graham R. Nudd. GridFlow:
workflow management for grid computing. In Cluster Computing and the Grid,
2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM International Symposium on,
pages 198–205, May 2003.

[44] Jorge Cardoso, Amit Sheth, John Miller, Jonathan Arnold, and Krys Kochut.
Quality of service for workflows and web service processes. Web Semantics:
Science, Services and Agents on the World Wide Web, 1(3):281 – 308, 2004.

[45] Eddy Caron, Frédéric Desprez, Frédéric Lombard, Jean-Marc Nicod, Laurent
Philippe, Martin Quinson, and Frédéric Suter. A scalable approach to network
enabled servers. In Euro-Par 2002 Parallel Processing, volume 2400/2002 of
Lecture Notes in Computer Science, pages 239–248. Springer Berlin / Heidelberg,
2002.

[46] Thomas L. Casavant and Jon G. Kuhl. A taxonomy of scheduling in general-
purpose distributed computing systems. Software Engineering, IEEE Transac-
tions on, 14(2):141–154, Feb. 1988.

[47] Anirban Chakrabarti, Anish Damodaran, and Subhashis Sengupta. Grid com-
puting security: A taxonomy. Security & Privacy, IEEE, 6(1):44–51, Jan.-Feb.
2008.

[48] Arjav J. Chakravarti, Gerald Baumgartner, and Mario Lauria. The organic grid:
self-organizing computation on a peer-to-peer networkrganic rid: self-organizing
computation on a peer-to-peer network. In Autonomic Computing, 2004. Pro-
ceedings. International Conference on, pages 96–103, May 2004.

[49] Jinjun Chen and Yun Yang. A taxonomy of grid workflow verification and
validation. Concurrency and Computation: Practice and Experience, 20(4):347–
360, 2008.

[50] Liang Chen and Gagan Agrawal. Self-adaptation in a middleware for process-
ing data streams. In Autonomic Computing, 2004. Proceedings. International
Conference on, pages 292–293, May 2004.

[51] Liang Chen, Kolagatla Reddy, and Gagan Agrawal. Gates: a grid-based middle-
ware for processing distributed data streams. In High performance Distributed
Computing, 2004. Proceedings. 13th IEEE International Symposium on, pages
192–201, June 2004.

[52] Xingchen Chu, Krishna Nadiminti, Chao Jin, Srikumar Venugopal, and Rajku-
mar Buyya. Aneka: Next-generation enterprise grid platform for e-science and

153

e-business applications. In e-Science and Grid Computing, IEEE International
Conference on, pages 151–159, Dec. 2007.

[53] Geoff Coulson, Gordon S. Blair, Michael Clarke, and Nikos Parlavantzas. The
design of a configurable and reconfigurable middleware platform. Distributed
Computing, 15(2):109–126, 2002.

[54] Yuanshun Dai, Yanping Xiang, and Gewei Zhang. Self-healing and hybrid di-
agnosis in cloud computing. In Cloud Computing, volume 5931/2009 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2009.

[55] Gargi Dasgupta, Onyeka Ezenwoye, Liana Fong, Selim Kalayci, Sayed Masoud
Sadjadi, and Balaji Viswanathan. Runtime fault-handling for job-flow manage-
ment in grid environments. In Autonomic Computing, 2008. ICAC ’08. Inter-
national Conference on, pages 201–202, June 2008.

[56] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on
large clusters. In Proc. 6th Symp. Operating System Design and Implementation
(OSDI), pages 137–150. Usenix Assoc., 2004.

[57] Ewa Deelman, Carl Kesselman, Gaurang Mehta, Leila Meshkat, Laura Pearl-
man, Kent Blackburn, Phil Ehrens, Albert Lazzarini, Roy Williams, and Scott
Koranda. GriPhyN and LIGO, building a virtual data grid for gravitational wave
scientists. In High Performance Distributed Computing, 2002. HPDC-11 2002.
Proceedings. 11th IEEE International Symposium on, pages 225–234, 2002.

[58] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John Good, Anas-
tasia C. Laity, Joseph C. Jacob, and Daniel S. Katz. Pegasus: A framework for
mapping complex scientific workflows onto distributed systems. Scientific Pro-
gramming, 13(3):219–237, 2005.

[59] Glenn Deen, Toby Lehman, and James Kaufman. The Almaden OptimalGrid
project. In Proceedings of the Autonomic Computing Workshop. Fifth Annual
International Workshop on Active Middleware Services. AMS 2003, pages 14–21.
IEEE Computer Society, June 2003.

[60] Jack Dongarra, Thomas Sterling, Horst Simon, and Erich Strohmaier. High-
performance computing: clusters, constellations, mpps, and future directions.
Computing in Science Engineering, 7(2):51 – 59, Mar 2005.

[61] Eclipse Foundation. AspectJ project site. http://www.eclipse.org/aspectj/.

[62] Dietmar W. Erwin and David F. Snelling. UNICORE: A grid computing envi-
ronment. In Euro-Par 2001 Parallel Processing, volume 2150/2201 of Lecture
Notes in Computer Science, pages 825–834. Springer Berlin / Heidelberg, 2001.

[63] ETH Zürich. JOpera. http://www.iks.ethz.ch/jopera/, Jul. 2009.

154

http://www.eclipse.org/aspectj/
http://www.iks.ethz.ch/jopera/

[64] European Grid Initiative. EGEE: Enabling grids for e-science. http://www.
eu-egee.org, Aug. 2009.

[65] David Fernández-Baca. Allocating modules to processors in a distributed system.
Software Engineering, IEEE Transactions on, 15(11):1427–1436, Nov. 1989.

[66] Michael J. Flynn. Some computer organizations and their effectiveness. Com-
puters, IEEE Transactions on, C-21(9):948–960, Sept. 1972.

[67] Agostino Forestiero, Carlo Mastroianni, and Giandomenico Spezzano. So-Grid:
A self-organizing grid featuring bio-inspired algorithms. ACM Trans. Auton.
Adapt. Syst., 3(2):1–37, 2008.

[68] Ian Foster. Globus toolkit version 4: Software for service-oriented systems.
Journal of Computer Science and Technology, 21(4):513–520, July 2006.

[69] Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 2nd edition, 2004.

[70] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The phys-
iology of the grid: An open grid services architecture for distributed systems
integration. In Open Grid Service Infrastructure WG, Global Grid Forum, 2002.

[71] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: En-
abling scalable virtual organizations. In First IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid, 2001. Proceedings., pages 6–7, 2001.

[72] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing and grid
computing 360-degree compared. In Grid Computing Environments Workshop,
2008. GCE ’08, pages 1–10, Nov. 2008.

[73] Foundations of Self-Governing ICT Infrastructures (FOSII). Project site. http:
//www.infosys.tuwien.ac.at/linksites/FOSII/, 2009.

[74] Stan Franklin and Art Graesser. Is it an agent, or just a program?: A taxonomy
for autonomous agents. In Intelligent Agents III Agent Theories, Architectures,
and Languages, volume 1193/1997 of Lecture Notes in Computer Science, pages
21–35. Springer Berlin / Heidelberg, 1997.

[75] James Frey, Todd Tannenbaum, Miron Livny, Ian Foster, and Steven Tuecke.
Condor-G: A computation management agent for multi-institutional grids. Clus-
ter Computing, 5(3):237–246, July 2002.

[76] Munehiro Fukuda, Yuichiro Tanaka, Naoya Suzuki, Lubomir F. Bic, and Shinya
Kobayashi. A mobile-agent-based pc grid. In Autonomic Computing Workshop,
2003, pages 142–150, June 2003.

155

http://www.eu-egee.org
http://www.eu-egee.org
http://www.infosys.tuwien.ac.at/linksites/FOSII/
http://www.infosys.tuwien.ac.at/linksites/FOSII/

[77] Nathalie Furmento, Anthony Mayer, Stephen McGough, Steven Newhouse, and
John Darlington. A component framework for HPC applications. In Euro-
Par 2001 Parallel Processing, volume 2150/2001 of Lecture Notes in Computer
Science, pages 540–548. Springer Berlin / Heidelberg, 2001.

[78] Nathalie Furmento, Anthony Mayer, Stephen McGough, Steven Newhouse, Tony
Field, and John Darlington. ICENI: Optimisation of component applications
within a grid environment. Parallel Computing, 28(12):1753 – 1772, 2002.

[79] Alan Ganek. Overview of autonomic computing: Origins, evolution, direction.
In Parashar and Hariri [140], chapter 1, pages 3–18.

[80] Robert L. Glass and Iris Vessey. Contemporary application-domain taxonomies.
IEEE Software, 12(4):63–76, 1995.

[81] Andrei Goldchleger, Fabio Kon, Alfredo Goldman, Marcelo Finger, and Ger-
mano Capistrano Bezerra. Integrade: object-oriented grid middleware leveraging
the idle computing power of desktop machines. Concurrency and Computation:
Practice and Experience, 16(5):449–459, 2004.

[82] Google, Inc. Google App Engine. http://code.google.com/appengine.

[83] Google, Inc. Google Apps. http://www.google.com/apps/business/index.
html.

[84] Anastasios Gounaris, Christos Yfoulis, Rizos Sakellariou, and Marios D. Dika-
iakos. A control theoretical approach to self-optimizing block transfer in web
service grids. ACM Trans. Auton. Adapt. Syst., 3(2):1–30, 2008.

[85] Gridbus Project. Gridbus Workflow Engine. http://www.gridbus.org/
workflow/, Jul. 2009.

[86] Rean Griffith and Gail Kaiser. A runtime adaptation framework for native C
and bytecode applications. In Autonomic Computing, 2006. ICAC ’06. IEEE
International Conference on, pages 93–104, June 2006.

[87] Rean Griffith, Giuseppe Valetto, and Gail Kaiser. Effecting runtime recon-
figuration in managed execution environments. In Parashar and Hariri [140],
chapter 18, pages 369–387.

[88] Tao Guan, Ed Zaluska, and David De Roure. An autonomic service discovery
mechanism to support pervasive device accessing semantic grid. In Autonomic
Computing, 2007. ICAC ’07. Fourth International Conference on, pages 8–8,
June 2007.

[89] Tao Guan, Ed Zaluska, and David De Roure. An autonomic service discovery
mechanism to support pervasive devices accessing the semantic grid. Interna-
tional Journal of Autonomic Computing, 1(1):34–49, 2009.

156

http://code.google.com/appengine
http://www.google.com/apps/business/index.html
http://www.google.com/apps/business/index.html
http://www.gridbus.org/workflow/
http://www.gridbus.org/workflow/

[90] Hang Guo, Ji Gao, Peiyou Zhu, and Fan Zhang. A self-organized model of agent-
enabling autonomic computing for grid environment. In Intelligent Control and
Automation, 2006. WCICA 2006. The Sixth World Congress on, volume 1, pages
2623–2627, 2006.

[91] Salim Hariri, Bithika Khargharia, Houping Chen, Jingmei Yang, Yeliang Zhang,
Manish Parashar, and Hua Liu. The autonomic computing paradigm. Cluster
Computing, 9(1):5–17, Jan 2006.

[92] Jeffrey Hau, William Lee, and Steven Newhouse. Autonomic service adaptation
in ICENI using ontological annotation. In Grid Computing, 2003. Proceedings.
Fourth International Workshop on, pages 10–17, Nov. 2003.

[93] Thomas Heinis and Cesare Pautasso. Automatic configuration of an autonomic
controller - an experimental study with zero-configuration policies. In Pro-
ceedings of the 5th IEEE International Conference on Autonomic Computing
(ICAC’08), Chicago, USA, 2008.

[94] Thomas Heinis, Cesare Pautasso, and Gustavo Alonso. Design and evaluation
of an autonomic workflow engine. In Autonomic Computing, 2005. ICAC 2005.
Proceedings. Second International Conference on, pages 27–38, June 2005.

[95] Klaus Herrmann, Gero Mühl, and Kurt Geihs. Self-management: The solution
to complexity or just another problem? IEEE Distributed Systems Online, 6,
2005.

[96] Hewlett-Packard Company. Hp flexible computing services. http://www.hp.
com/services/flexiblecomputing, July 2009.

[97] Markus C. Huebscher and Julie A. McCann. A survey of autonomic computing—
degrees, models, and applications. ACM Comput. Surv., 40(3):1–28, 2008.

[98] Soonwook Hwang and Carl Kesselman. A flexible framework for fault tolerance
in the grid. Journal of Grid Computing, 1(3):251–272, Sept. 2003.

[99] IBM. Autonomic computing: IBM’s perspective on the state of information tech-
nology. http://www.research.ibm.com/autonomic/manifesto/autonomic_
computing.pdf, 2001.

[100] IBM. An architectural blueprint for autonomic computing. IBM White Paper,
4th edition, June 2006.

[101] IBM. Smart business services. http://www.ibm.com/ibm/cloud/smart_
business/, July 2009.

[102] InformationWeek. Hp launches formal utility computing service.
http://www.informationweek.com/news/windows/microsoft_news/
showArticle.jhtml?articleID=174402582, November 2005.

157

http://www.hp.com/services/flexiblecomputing
http://www.hp.com/services/flexiblecomputing
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www.ibm.com/ibm/cloud/smart_business/
http://www.ibm.com/ibm/cloud/smart_business/
http://www.informationweek.com/news/windows/microsoft_news/showArticle.jhtml?articleID=174402582
http://www.informationweek.com/news/windows/microsoft_news/showArticle.jhtml?articleID=174402582

[103] Waheed Iqbal, Matthew Dailey, and David Carrera. SLA-driven adaptive re-
source management for web applications on a heterogeneous compute cloud.
In Cloud Computing, volume 5931/2009 of Lecture Notes in Computer Science,
pages 243–253. Springer Berlin / Heidelberg, 2009.

[104] Bart Jacob, Sudipto Basu, Amit Tuli, and Patricia Witten. A First Look at
Solution Installation for Autonomic Computing. IBM Redbooks, 1st edition,
July 2004.

[105] Stephen A. Jarvis, Daniel P. Spooner, Hélène N. Lim Choi Keung, Justin R. D.
Dyson, Lei Zhao, and Graham R. Nudd. Performance-based middleware services
for grid computing. In Autonomic Computing Workshop, 2003, pages 151–159,
June 2003.

[106] Brendan Jennings, Sven van der Meer, Sasitharan Balasubramaniam, Dmitri
Botvich, Mı́cheál Ó. Foghlú, William Donnelly, and John Strassner. Towards
autonomic management of communications networks. Communications Maga-
zine, IEEE, 45(10):112 –121, October 2007.

[107] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
IEEE Computer, 36(1):41–50, 2003.

[108] Jeffrey O. Kephart and William E. Walsh. An artificial intelligence perspective
on autonomic computing policies. In Policies for Distributed Systems and Net-
works, 2004. POLICY 2004. Proceedings. Fifth IEEE International Workshop
on, pages 3–12, June 2004.

[109] Bithika Khargharia and Salim Hariri. Autonomic power and performance man-
agement of Internet data. In Parashar and Hariri [140], chapter 21, pages 435–
469.

[110] Bithika Khargharia, Salim Hariri, and Mazin S. Yousif. Autonomic power
and performance management for computing systems. Cluster Computing,
11(2):167–181, 2008.

[111] Leonard Kleinrock. A vision for the Internet. ST Journal of Research, 2(1):4–5,
2005.

[112] Bastian Koller and Lutz Schubert. Towards autonomous SLA management using
a proxy-like approach. Multiagent and Grid Systems, 3(3):313–325, 2007.

[113] Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. A taxonomy
and survey of grid resource management systems for distributed computing.
Software: Practice and Experience, 32(2):135–164, Feb 2002.

[114] Akos Ledeczi, Miklos Maroti, Arpad Bakay, Gabor Karsai, Jason Garrett,
Charles Thomason, Greg Nordstrom, Jonathan Sprinkle, and Peter Volgyesi.
The generic modeling environment. In Proceedings of IEEE International Work-
shop on Intelligent Signal Processing (WISP 2001), May 2001.

158

[115] Kevin Lee, Norman W. Paton, Rizos Sakellariou, Ewa Deelman, Alvaro A. A.
Fernandes, and Gaurang Mehta. Adaptive workflow processing and execution in
Pegasus. In Third International Conference on Grid and Pervasive Computing
Symposia/Workshops, 2008.

[116] Kevin Lee, Rizos Sakellariou, Norman W. Paton, and Alvaro A. A. Fernandes.
Workflow adaptation as an autonomic computing problem. In WORKS ’07:
Proceedings of the 2nd workshop on Workflows in support of large-scale science,
pages 29–34, New York, NY, USA, 2007. ACM.

[117] Tobin J. Lehman, Alex Cozzi, Yuhong Xiong, Jonathan Gottschalk, Venu Va-
sudevan, Sean Landis, Pace Davis, Bruce Khavar, and Paul Bowman. Hitting the
distributed computing sweet spot with TSpaces. Computer Networks, 35(4):457
– 472, 2001.

[118] Tobin J. Lehman and James H. Kaufman. OptimalGrid: middleware for auto-
matic deployment of distributed FEM problems on an Internet-based computing
grid. In Cluster Computing, 2003. Proceedings. 2003 IEEE International Con-
ference on, pages 164–171. IEEE Computer Society, Dec. 2003.

[119] Zhen Li and Manish Parashar. Rudder: a rule-based multi-agent infrastructure
for supporting autonomic grid applications. In Autonomic Computing, 2004.
Proceedings. International Conference on, pages 278–279, May 2004.

[120] Hua Liu and Manish Parashar. Accord: a programming framework for autonomic
applications. Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, 36(3):341–352, May 2006.

[121] Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and Srikumar Venugopal. Al-
chemi: A .NET-based grid computing framework and its integration into global
grids. Technical Report GRIDS-TR-2003-8, Grid Computing and Distributed
Systems Laboratory, University of Melbourne, Australia, December 2003.

[122] Anbazhagan Mani and Arun Nagarajan. Understanding quality of service for web
services. http://www.ibm.com/developerworks/library/ws-quality.html,
January 2002.

[123] David Martin, Massimo Paolucci, Sheila McIlraith, Mark Burstein, Drew McDer-
mott, Deborah McGuinness, Bijan Parsia, Terry Payne, Marta Sabou, Monika
Solanki, Naveen Srinivasan, and Katia Sycara. Bringing semantics to web ser-
vices: The OWL-S approach. In Semantic Web Services and Web Process Com-
position, volume 3387/2005 of Lecture Notes in Computer Science, pages 26–42.
Springer Berlin / Heidelberg, 2005.

[124] Lykomidis Mastroleon, Nicholas Bambos, Christos Kozyrakis, and Dimitris
Economou. Autonomic power management schemes for internet servers and
data centers. In Global Telecommunications Conference, 2005. GLOBECOM
’05. IEEE, pages 943–947, Nov.-2 Dec. 2005.

159

http://www.ibm.com/developerworks/library/ws-quality.html

[125] Satoshi Matsuoka, Sinji Shinjo, Mutsumi Aoyagi, Satoshi Sekiguchi, Hitohide
Usami, and Kenichi Miura. Japanese computational grid research project:
Naregi. Proceedings of the IEEE, 93(3):522–533, March 2005.

[126] A. Stephen McGough, William Lee, and John Darlington. ICENI II architecture.
In Simon J. Cox and David W. Walker, editors, Proceedings of the UK e-Science
Meeting. EPSRC, Sep. 2005.

[127] Philip K. McKinley, Sayed Masoud Sadjadi, Eric P. Kasten, and Betty H. C.
Cheng. Composing adaptive software. Computer, 37(7):56–64, July 2004.

[128] Microsoft. Office live. http://www.officelive.com/, July 2009.

[129] Microsoft. Windows azure. http://www.microsoft.com/azure/, July 2009.

[130] Jose Mireles, Jr. and Frank L. Lewis. Intelligent material handling: Develop-
ment and implementation of a matrix-based discrete event controller. IEEE
Transactions on Industrial Electronics, 48(6):1087–1097, 2001.

[131] ML-IDS. Multi-level intrusion detection system. http://www.ece.arizona.
edu/~hpdc/projects/mlids/.

[132] The MPI Forum. Homepage. http://www.mpi-forum.org/.

[133] Klara Nahrstedt, Hao-hua Chu, and Srinivas Narayan. QoS-aware resource man-
agement for distributed multimedia applications. Journal of High Speed Net-
works, 7(3):229–257, 1998.

[134] Jesus José de Oliveira Neto and Fábio M. Costa. An interceptor model to
provide dynamic adaptation in the InteGrade grid middleware. In Anais do VII
Workshop on Grid Computing and Applications (WCGA2009), pages 77–88,
Recife, Brazil, May 2009. Sociedade Brasileira de Computação.

[135] Jason Nichols, Haluk Demirkan, and Michael Goul. Autonomic workflow exe-
cution in the grid. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 36(3):353–364, May 2006.

[136] Nimbus. Nimbus science cloud. http://workspace.globus.org/clouds/
nimbus.html, July 2009.

[137] Steve Nordstrom, Abhishek Dubey, Turker Keskinpala, Rahul Datta, Sandeep
Neema, and Ted Bapty. Model predictive analysis for autonomic workflow man-
agement in large-scale scientific computing environments. In Engineering of Au-
tonomic and Autonomous Systems, 2007. EASe ’07. Fourth IEEE International
Workshop on, pages 37–42, March 2007.

[138] Graham R. Nudd, Darren J. Kerbyson, Efstathios Papaefstathiou, Stewart C.
Perry, John S. Harper, and Daniel V. Wilcox. PACE–a toolset for the perfor-
mance prediction of parallel and distributed systems. International Journal of
High Performance Computing Applications, 14(3):228–251, 2000.

160

http://www.officelive.com/
http://www.microsoft.com/azure/
http://www.ece.arizona.edu/~hpdc/projects/mlids/
http://www.ece.arizona.edu/~hpdc/projects/mlids/
http://www.mpi-forum.org/
http://workspace.globus.org/clouds/nimbus.html
http://workspace.globus.org/clouds/nimbus.html

[139] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil So-
man, Lamia Youseff, and Dmitrii Zagorodnov. The Eucalyptus open-source
cloud-computing system. In Cluster Computing and the Grid, 2009. CCGRID
’09. 9th IEEE/ACM International Symposium on, pages 124–131, May 2009.

[140] Manish Parashar and Salim Hariri, editors. Autonomic Computing: Concepts,
Infrastructure, and Applications. CRC Press, Dec 2006.

[141] Manish Parashar, Hua Liu, Zhen Li, Vincent Matossian, Cristina Schmidt,
Guangsheng Zhang, and Salim Hariri. AutoMate: Enabling autonomic applica-
tions on the grid. Cluster Computing, 9(2):161–174, 2006.

[142] Chintan Patel, Kaustubh Supekar, and Yugyung Lee. A QoS oriented framework
for adaptive management of web service based workflows. In Database and Expert
Systems Applications, volume 2736/2003 of Lecture Notes in Computer Science,
pages 826–835. Springer Berlin / Heidelberg, 2003.

[143] Norman W. Paton, Marcelo A. T. Aragão, Kevin Lee, Alvaro A. A. Fernandes,
and Rizos Sakellariou. Optimizing utility in cloud computing through autonomic
workload execution. IEEE Data Eng. Bull, 32(1):51–58, 2009.

[144] Cesare Pautasso and Gustavo Alonso. JOpera: A toolkit for efficient visual
composition of web services. International Journal of Electronic Commerce,
9(2):107–141, 2005.

[145] Cesare Pautasso, Thomas Heinis, and Gustavo Alonso. Autonomic resource pro-
visioning for software business processes. Information and Software Technology,
49(1):65–80, 2007.

[146] PAWS. Processes with adaptive web services. http://www.paws.elet.polimi.
it/.

[147] PCWorld. Google outage lesson: Don’t get stuck in a cloud.
http://www.pcworld.com/article/164946/google_outage_lesson_dont_
get_stuck_in_a_cloud.html, May 2009.

[148] Julien Perez, Cécile Germain-Renaud, Balázs Kégl, and Charles Loomis. Utility-
based reinforcement learning for reactive grids. In Autonomic Computing, 2008.
ICAC ’08. International Conference on, pages 205–206, June 2008.

[149] Gregory F. Pfister. In search of clusters (2nd ed.). Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1998.

[150] Guangzhi Qu and Salim Hariri. Anomaly-based self protection against network
attacks. In Parashar and Hariri [140], chapter 23, pages 493–521.

[151] Mustafizur Rahman and Rajkumar Buyya. An autonomic workflow management
system for global grids. In CCGRID ’08: Proceedings of the 2008 Eighth IEEE

161

http://www.paws.elet.polimi.it/
http://www.paws.elet.polimi.it/
http://www.pcworld.com/article/164946/google_outage_lesson_dont_get_stuck_in_a_cloud.html
http://www.pcworld.com/article/164946/google_outage_lesson_dont_get_stuck_in_a_cloud.html

International Symposium on Cluster Computing and the Grid, pages 578–583,
Washington, DC, USA, 2008. IEEE Computer Society.

[152] Mustafizur Rahman, Rajiv Ranjan, and Rajkumar Buyya. Dependable work-
flow scheduling in global grids. In Proceedings of the 10th IEEE International
Conference on Grid Computing (Grid 2009), October 2009.

[153] Michael A. Rappa. The utility business model and the future of computing
services. IBM Systems Journal, 43(1):32–42, 2004.

[154] Daniel A. Reed. Grids, the teragrid and beyond. Computer, 36(1):62–68, Jan
2003.

[155] Benny Rochwerger, David Breitgand, Eliezer Levy, Alex Galis, Kenneth Na-
gin, Ignacio M. Llorente, Ruben Montero, Yaron Wolfsthal, Erik Elmroth, Juan
Cáceres, Muli Ben-Yehuda, Wolfgang Emmerich, and Fermı́n Galán. The reser-
voir model and architecture for open federated cloud computing. IBM Systems
Journal, 53(4), 2009.

[156] Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, second edition, 2003.

[157] Ali Sajjad, Hassan Jameel, Umar Kalim, Sang Man Han, Young-Koo Lee, and
Sungyoung Lee. AutoMAGI - an autonomic middleware for enabling mobile
access to grid infrastructure. In Autonomic and Autonomous Systems and In-
ternational Conference on Networking and Services, 2005. ICAS-ICNS 2005.
Joint International Conference on, pages 73–73, Oct. 2005.

[158] Salesforce.com. Force.com platform. http://www.salesforce.com/platform/,
July 2009.

[159] Salesforce.com. Salesforce.com. http://www.salesforce.com/, July 2009.

[160] Marcio Augusto Sekeff Sallem and Francisco José da Silva e Silva. The Adapta
framework for building self-adaptive distributed applications. In Autonomic and
Autonomous Systems, 2007. ICAS07. Third International Conference on, pages
46–46, June 2007.

[161] Marcio Augusto Sekeff Sallem and Stanley Araújo de Sousa. AutoGrid: Towards
an autonomic grid middleware. In WETICE ’07: Proceedings of the 16th IEEE
International Workshops on Enabling Technologies: Infrastructure for Collabo-
rative Enterprises, pages 223–228, Washington, DC, USA, 2007. IEEE Computer
Society.

[162] Joel Saltz, Tahsin Kurc, Shannon Hastings, Stephen Langella, Scott Oster,
David Ervin, Ashish Sharma, Tony Pan, Metin Gurcan, Justin Permar, Re-
nato Ferreira, Philip Payne, Umit Catalyurek, Enirco Caserta, Gustavo Leone,

162

http://www.salesforce.com/platform/
http://www.salesforce.com/

Michael C. Ostrowski, Ravi Madduri, Ian Foster, Subhashree Madhavan, Ken-
neth H. Buetow, Krishnakant Shanbhag, and Eliot Siegel. e-Science, caGrid,
and translational biomedical research. Computer, 41(11):58–66, Nov. 2008.

[163] YouQun Shi, ZhaoHui Zhang, Yu Fang, and ChangJun Jiang. Build city traffic
information service system based on grid platform. In Intelligent Transportation
Systems, 2003. Proceedings. 2003 IEEE, volume 1, pages 278–282 vol.1, Oct.
2003.

[164] James E. Smith and Ravi Nair. The architecture of virtual machines. Computer,
38(5):32–38, May 2005.

[165] Daniel P. Spooner, Junwei Cao, Stephen A. Jarvis, Ligang He, and Graham R.
Nudd. Performance-aware workflow management for grid computing. The Com-
puter Journal, 48(3):347–357, 2005.

[166] Daniel P. Spooner, Stephen A. Jarvis, Junwei Cao, Subhash Saini, and Gra-
ham R. Nudd. Local grid scheduling techniques using performance prediction.
Computers and Digital Techniques, IEEE Proceedings, 150(2):87–96, Mar 2003.

[167] Alin Suciu and Rodica Potolea. Cryptographic and cryptanalytic algorithms
for grid applications. In 2007 IEEE International Conference on Intelligent
Computer Communication and Processing, 2007.

[168] Alin Suciu and Rodica Potolea. A taxonomy for grid applications. In Au-
tomation, Quality and Testing, Robotics, 2008. AQTR 2008. IEEE International
Conference on, volume 3, pages 365–368, May 2008.

[169] Richard S. Sutton. Generalization in reinforcement learning: Successful exam-
ples using sparse coarse coding. In Advances in Neural Information Processing
Systems, volume 8, pages 1038–1044. MIT Press, 1996.

[170] Janos Sztipanovits and Gabor Karsai. Model-integrated computing. Computer,
30(4):110–111, Apr 1997.

[171] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-
G: A reference implementation of RPC-based programming middleware for grid
computing. Journal of Grid Computing, 1(1):41–51, 2003.

[172] Gerald Tesauro. Reinforcement learning in autonomic computing: A manifesto
and case studies. Internet Computing, IEEE, 11(1):22–30, Jan.-Feb. 2007.

[173] Gerald Tesauro, Nicholas K. Jong, Rajarshi Das, and Mohamed N. Bennani.
On the use of hybrid reinforcement learning for autonomic resource allocation.
Cluster Computing, 10(3):287–299, 2007.

[174] Huaglory Tianfield. An innovative tutorial on large complex systems. Artificial
Intelligence Review, 17(2):141–165, 2002.

163

[175] Huaglory Tianfield and Rainer Unland. Towards autonomic computing systems.
Engineering Applications of Artificial Intelligence, 17(7):689 – 699, 2004. Auto-
nomic Computing Systems.

[176] Brian Tierney, Ruth Aydt, Dan Gunter, Warren Smith, Valerie Taylor, Rich Wol-
ski, Martin Swany, and the Grid Performance Working Group. A grid monitor-
ing service architecture. White Paper GWD-GP-6-1, Global Grid Forum, http:
//www-didc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-GP-6-1.pdf, 2001.

[177] Mohammed Toure, Girma Berhe, Patricia Stolf, Laurent Broto, Noel Depalma,
and Daniel Hagimont. Autonomic management for grid applications. In Parallel,
Distributed and Network-Based Processing, 2008. PDP 2008. 16th Euromicro
Conference on, pages 79–86, Feb. 2008.

[178] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM,
33(8):103–111, 1990.

[179] Wil M.P. van der Aalst, Arthur H.M. ter Hofstede, Bartek Kiepuszewski, and Al-
istair P. Barros. Workflow patterns. Distributed and Parallel Databases, 14(1):5–
51, Jul 2003.

[180] Marco Vanneschi. The programming model of ASSIST, an environment for
parallel and distributed portable applications. Parallel Computing, 28(12):1709
– 1732, Dec 2002.

[181] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A
break in the clouds: towards a cloud definition. SIGCOMM Comput. Commun.
Rev., 39(1):50–55, 2009.

[182] Srikumar Venugopal, Rajkumar Buyya, and Kotagiri Ramamohanarao. A tax-
onomy of data grids for distributed data sharing, management, and processing.
ACM Comput. Surv., 38(1):3, 2006.

[183] Srikumar Venugopal, Rajkumar Buyya, and Lyle Winton. A grid service broker
for scheduling e-science applications on global data grids. Concurrency and
Computation: Practice and Experience, 18(6):685–699, May 2006.

[184] Monica Vladoiu and Zoran Constantinescu. A taxonomy for desktop grids from
users’ perspective. In S. I. Ao, Len Gelman, David W. L. Hukins, Andrew
Hunter, and A. M. Korsunsky, editors, Proceedings of the World Congress on
Engineering (WCE2008), pages 599–604. International Association of Engineers,
Newswood Limited, 2008.

[185] Jianshu Weng, Chunyan Miao, and Angela Goh. Dynamic negotiations for grid
services. In Autonomic Computing, 2004. Proceedings. International Conference
on, pages 296–297, May 2004.

164

http://www-didc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-GP-6-1.pdf
http://www-didc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-GP-6-1.pdf

[186] Marek Wieczorek, Andreas Hoheisel, and Radu Prodan. Towards a general
model of the multi-criteria workflow scheduling on the grid. Future Generations
Computer Systems, 25(3):237–256, March 2009.

[187] Marek Wieczorek, Radu Prodan, and Andreas Hoheisel. Taxonomies of the
multi-criteria grid workflow scheduling problem. Technical Report TR-0106,
CoreGRID European Research Network, Aug. 2007.

[188] Chee Shin Yeo and Rajkumar Buyya. A taxonomy of market-based resource
management systems for utility-driven cluster computing. Software: Practice
and Experience, 36(13):1381–1419, Nov. 2006.

[189] Chee Shin Yeo, Srikumar Venugopal, Xingchen Chu, and Rajkumar Buyya. Au-
tonomic metered pricing for a utility computing service. Future Generation
Computer Systems, In Press, Corrected Proof:–, 2009.

[190] Lamia Youseff, Maria Butrico, and Dilma Da Silva. Toward a unified ontology
of cloud computing. In Grid Computing Environments Workshop, 2008. GCE
’08, pages 1–10, Nov. 2008.

[191] Jia Yu and Rajkumar Buyya. A novel architecture for realizing grid workflow
using tuple spaces. In Grid Computing, 2004. Proceedings. Fifth IEEE/ACM
International Workshop on, pages 119–128, Nov. 2004.

[192] Jia Yu and Rajkumar Buyya. A taxonomy of workflow management systems for
grid computing. Journal of Grid Computing, 3(3-4):171–200, Sep 2005.

[193] Serafeim Zanikolas and Rizos Sakellariou. A taxonomy of grid monitoring sys-
tems. Future Generation Computer Systems, 21(1):163 – 188, 2005.

[194] Bernard P. Zeigler, Hae Sang Song, Tag Gon Kim, and Herbert Praehofer. DEVS
framework for modelling, simulation, analysis, and design of hybrid systems. In
Hybrid Systems II, volume 999/1995 of Lecture Notes in Computer Science, pages
529–551. Springer Berlin / Heidelberg, 1995.

[195] Guangsheng Zhang, Changjun Jiang, Jing Sha, and Ping Sun. Autonomic work-
flow management in the grid. In Computational Science – ICCS 2007, volume
4489 of Lecture Notes in Computer Science, pages 220–227. Springer Berlin /
Heidelberg, 2007.

[196] Ming Zhao and Renato J. Figueiredo. A user-level secure grid file system. In
Proceedings of International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC07), November 2007.

[197] Ming Zhao, Jing Xu, and Renato J. Figueiredo. Towards autonomic grid data
management with virtualized distributed file systems. In Autonomic Computing,
2006. ICAC ’06. IEEE International Conference on, pages 209–218, June 2006.

165

	Introduction
	Motivation
	Problem field
	Grid computing
	Cloud computing
	Autonomic computing

	Research issues and scientific contribution
	Organization of the thesis

	Related Work
	Taxonomies of grid computing
	Taxonomy of grid resource management systems
	Taxonomy of market-based resource management systems
	Resource submission taxonomy
	Taxonomy of data grids
	Taxonomy of grid monitoring systems
	Taxonomy of desktop grids
	Taxonomy of grid applications
	Taxonomy of grid workflow management systems
	Taxonomy of grid workflow verification and validation
	Taxonomy of grid workflow scheduling
	Taxonomy of grid computing security

	Taxonomies of cloud computing
	Virtual machine taxonomy

	Autonomic computing taxonomies
	Taxonomy for system adaptation
	Compositional adaptation taxonomy
	Taxonomy of dependable and secure computing

	Concepts and terminology
	Grid computing
	Grid architecture
	Reference projects

	Cloud computing
	Cloud ontology
	Cloud architecture
	Reference projects

	Autonomic computing
	Defining characteristics of an autonomic system
	Architecture of an autonomic system
	Adoption of autonomic systems
	Reference projects

	Survey and taxonomy of autonomic large-scale computing
	Survey of autonomic large-scale computing projects
	Grid resource managers and schedulers
	Desktop grids
	Other grid middleware
	Cloud computing systems
	Quality of service frameworks
	Workflow management systems
	Development frameworks

	Taxonomy of autonomic large-scale computing
	Approach for building a taxonomy
	Self-management areas in large-scale computing
	Approaches in autonomic large-scale computing

	Catalog of autonomic large-scale computing projects
	Project information
	Project classification within the taxonomy
	Area of autonomic large-scale computing
	Autonomic computing approach
	Autonomic approaches by large-scale computing areas

	Results of the classification

	Conclusions and future work

