
DIPLOMARBEIT

Automation Agents with a Re�ective World
Model for Batch Process Automation

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Diplom-Ingenieurs

unter der Leitung von

Ao. Univ. Prof. Dipl.-Ing. Dr. techn. Markus Vincze

Univ. Ass. Dipl.-Ing. Wilfried Lepuschitz

E376
Institut für Automatisierungs- und Regelungstechnik

eingereicht an der Technischen Universität Wien

Fakultät für Elektro- und Informationstechnik

von

Bakir �ahovi¢
Matr.-Nr.: 0325081
Radetzkystraÿe 4/16

A-1030 Wien
Österreich

Wien, im September 2010

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

Need for innovation on the global markets pushes the boundaries of manu-
facturing and production and requires them to become more adoptable and
�exible in order to keep up with the ever-changing global conditions. This
thesis presents a new approach in batch process automation that could poten-
tially improve the current situation in this �eld. Batch processes are widely
spread in industries, especially in chemical and pharmaceutical industry. They
enable �exible manufacturing of products by employing di�erent equipment of
a plant for various activities. This quality makes them especially suitable for
smaller plants.
In order to optimize the currently applied approaches to batch processes,

control systems used in realization of the process can be distributed to make
plants more �exible and failure tolerant. The IEC 61499 standard can be used
for the realization of distributed systems, for it de�nes function blocks (graph-
ical representations of algorithms) that support distribution of components.
Research in the �eld of distributed systems is developing in direction of in-

telligent systems capable of autonomous performance. With this in mind, this
thesis o�ers a look into agent technology and its application in the domain
of batch processes. This technology can be used for programming almost all
kinds of software (network applications, mobile applications, database applica-
tions, etc.). It is also applicable in other �elds of technology like e.g. robotics,
manufacturing, transportation systems and so on.
Agents generally coexist with other agents in so called Multi-Agent Systems

(MAS). This thesis presents a special approach that involves automation agents
acting as parts of MAS. Automation agents represent hardware components of
plants. They are autonomous software components that use a re�ective world
model as their knowledge data source. Automation agents are composed of
layered architecture and their low level control is developed according to IEC
61499, whereas high level control is implemented using JAVA programming
language.
This thesis will show that employment of automation agents with re�ec-

tive world model in batch process automation increases �exibility and failure
tolerance of systems, which are two very important aspects of production.

i

Kurzfassung

Die Nachfrage nach Innovationen auf den globalen Märkten erweitert die Gren-
zen der Fertigung und Produktion und verlangt von ihnen mehr Anpassungs-
fähigkeit und Flexibilität, um Schritt mit den sich ständig verändernden glo-
balen Bedingungen zu halten. Die vorliegende Arbeit stellt einen neuen Ansatz
in der Automatisierung von Batchprozessen vor, der den aktuellen Zustand in
diesem Bereich verbessern könnte. Batchprozesse werden häu�g in der In-
dustrie eingesetzt, vor allem in der chemischen und Pharmaindustrie. Durch
den Einsatz der verschiedenen Geräte einer Anlage für unterschiedliche Akti-
vitäten, machen Batchprozesse die Herstellung von Produkten �exibel. Diese
Eigenschaft macht sie besonders geeignet für kleinere Anlagen.
Zur Optimierung derzeit angewandter Ansätze im Bereich der Batchprozesse,

werden die eingesetzten Steuerungssysteme verteilt, um Anlagen �exibler und
fehlertoleranter zu machen. Der IEC 61499 Standard wird für die Realisierung
verteilter Systeme verwendet, denn er de�niert jene Funktionsbausteine (gra-
�sche Darstellung von Algorithmen), die die Verteilung der Komponenten un-
terstützen.
Im Bereich verteilter Systeme wird immer mehr in Richtung intelligenter

Systeme geforscht, die eine autonome Abwicklung von Prozessen ermöglichen.
In diesem Sinne stellt diese Arbeit Agententechnologie und deren Anwen-
dung in der Domäne von Batchprozessen vor. Diese Technologie kann für
die Programmierung nahezu aller Arten von Software verwendet werden, z.B.
Netzwerkapplikationen, mobile Applikationen, Datenbankanwendungen usw.
Darüber hinaus ist Agententechnologie auch für andere Gebiete der Technik,
wie z.B. Robotik-, Fertigungs-, Transport-Systeme usw., gut geeignet.
Agenten werden in der Regel mit anderen Agenten in sogenannten Multi-

Agenten Systemen (MAS) eingesetzt. Diese Arbeit präsentiert einen beson-
deren Ansatz zur Anwendung von Automationsagenten. Automationsagenten
sind Teil des MAS und repräsentieren Hardwarekomponenten einer Anlage.
Sie sind autonome Softwarekomponenten, die ein re�ektives Weltmodell (engl.
re�ective world model) als ihre Datenquelle verwenden. Automationsagenten
bestehen aus einer Schichtenarchitektur, wobei ihre untere Steuerungsebene
(engl. low level control) auf IEC 61499 basiert und die obere Steuerungsebene
(engl. high level control) mit der höheren Programmiersprache JAVA entwick-
elt wurde.
Diese Arbeit zeigt den Einsatz von Automationsagenten mit re�ektivem

Weltmodell in der Automatisierung von Batchprozessen, um die Flexibilität
und Ausfallsicherheit eines Systems zu erhöhen, was zwei sehr wichtige As-
pekte der Produktion sind.

ii

Acknowledgement

Let me start by expressing my deepest gratitude to all those who supported
and helped me during my studies at the Vienna Technical University. This
thesis would not have been possible without the patience and support I was
given by my family in the times I needed them the most. I would also like to
thank my �ancée who helped me prepare for my exams and read this thesis
quite a number of times trying to �nd even the smallest �aws of argumentation.
I would like to thank the people at ACIN for all the technical and professional

support that they so kindly provided me with whenever I needed it. I feel
very grateful to Professor Markus Vincze for being my supervisor. I also owe
my deepest gratitude to DI Wilfried Lepuschitz, who has helped me with his
constructive comments on the thesis and has made available his support in a
number of other ways. I am especially thankful to him for his cooperativeness,
even on weekends, and for the willingness to help me �nish the thesis on
schedule.
I also cannot forget the help and support from Dr. Munir Merdan and Dr.

Mathieu Vallée. Their inputs surely improved my knowledge in the domain of
multi-agent systems and helped me understand the subject-matter.

Bakir �ahovi¢

iii

Contents

1 Introduction 1

1.1 General Objectives . 2
1.2 Task De�nitions . 3
1.3 Structure of the Thesis . 3

2 State of the Art 5

2.1 Automation Systems . 6
2.2 Batch Processes . 7

2.2.1 Advantages of Batch Processing 8
2.2.2 Challenges in Batch Processing 9
2.2.3 IEC 61512 Standard for Batch Processes 10
2.2.4 Programming Standards in Batch Processing � Current

and Future Trends . 11
2.3 IEC 61499 � Function Blocks 12

2.3.1 IEC 61499 Reference Models 13
2.3.2 Why IEC 61499? . 16
2.3.3 Migration to IEC 61499 17

2.4 Multi-Agent Systems (MAS) . 17
2.4.1 Agent Technology . 18
2.4.2 Communication between Agents 19
2.4.3 Concept of Multi-Agent Systems 19
2.4.4 Usage of Multi-Agent Systems in Batch Process Au-

tomation . 21
2.4.5 Ontologies . 23

2.5 Conclusion . 24

3 Multi-Agent Systems for Batch Processing Automation 26

3.1 Architecture of Multi-Agent Systems 26
3.1.1 Functional Agents . 27
3.1.2 Automation Agents . 29
3.1.3 Production Work�ow Using Multi-Agent Systems 32

3.2 Architecture of Automation Agents 33

iv

3.2.1 High Level Control (HLC) 34
3.2.2 Low Level Control (LLC) 35
3.2.3 Communication between HLC and LLC 35
3.2.4 Communication between Two Automation Agents Real-

ized in LLC . 36
3.2.5 Re�ective World Model 37
3.2.6 Contents of World Model 37

3.3 Failure Detection and Recovery in MAS Based Batch Processes 40
3.4 Conclusion . 41

4 Implementation of Automation Agent Architecture with Re�ec-

tive World Model on a Laboratory Process Plant 42

4.1 Equipment and Hardware . 42
4.1.1 Target Plant . 42
4.1.2 Control System . 44

4.2 Software . 45
4.2.1 Implementation of HLC 45
4.2.2 Implementation of LLC 46

4.3 Agent Overview and Communication between Agents 47
4.4 Re�ective World Model of Automation Agents 48

4.4.1 Re�ective World Model of Tank Automation Agents . . . 49
4.5 Performing the Batch Process according to the Speci�ed Recipe 53

4.5.1 Task 1: Transport 5 Liters of Material from the Tank
T102 to the Tank T101 54

4.5.2 Task 2: Heat the Material in the Tank T101 up to 35 ◦

Celsius . 55
4.5.3 Task 3: Transport 5 Liters of Material from the Tank

T101 to the Tank T102 56
4.5.4 Usage of World Model when Performing a Task 57

4.6 Measuring Duration of Message Transmission in a Failure Free
Situation . 59

4.7 Conclusion . 62

5 Failure Detection and Recovery 63

5.1 Failure Detection and Recovery Using Both HLC and LLC . . . 64
5.1.1 Failure Detection in LLC by Using Analog Sensors . . . 64
5.1.2 Failure Recovery Using Failure Handling Agent 65

5.2 Failure Detection and Recovery Using the World Model 67
5.3 Measurement of Duration of Failure Handling 69
5.4 Conclusion . 69

v

6 Discussion of Results 71

6.1 Gains of the MAS Based Approach 71
6.2 Outcome of the Implementation 72
6.3 Summary of the Results . 73

7 Conclusion and Outlook 74

Bibliography 76

vi

List of Figures

2.1 Simpli�ed Model of a PVC Manufacturing Plant [21] 9
2.2 Reference Models according to IEC 61499 [52] 14
2.3 Function Block according to IEC 61499 [32] 15
2.4 Example of MAS Society [42] 21

3.1 Types of Automation Agents . 30
3.2 PHL Automation Agent . 31
3.3 Communication between PH Automation Agent, Functional Agent

and other Automation Agents 31
3.4 Application of HL Automation Agent with PHL Automation

Agents . 32
3.5 Production Work�ow [29] . 33
3.6 High Level Control [50] . 34
3.7 Simpli�ed World Model of a Reactor 39

4.1 Laboratory Plant in the Odo-Struger Laboratory 43
4.2 Hardware Overview . 44
4.3 Controller CPX-CEC-C1 [8] . 45
4.4 Agent Communication Network 47
4.5 Ontology of the Tank Agents T101 and T102 50
4.6 Classi�cation of Activities for the Tank Agent T102 51
4.7 Classi�cation of Activities for the Tank Agent T101 52
4.8 Observation of Activities for the Tank Agent T102 52
4.9 Transport from Tank T102 to Tank T101 � Snapshot of JADE

Sni�er . 55
4.10 Heat the Material in Tank T101 up to 35 ◦C � Snapshot of JADE

Sni�er . 56
4.11 Transport from the Tank T101 to the Tank T102 � Snapshot of

JADE Sni�er . 58
4.12 Opening the Valve V104 � Snapshot of Wireshark 60
4.13 Request the Actual Value from the Sensor B101 � Snapshot of

Wireshark . 60
4.14 Performing Task 1 from the Recipe � Snapshot of Wireshark . . 61

vii

5.1 Failure Detection in LLC of Analog Sensor B101 � Snapshot of
4DIAC-IDE . 65

5.2 Failure Recovery by Finding Another Path 66
5.3 Failure Detection using World Model in HLC 68
5.4 Part of Communication during Failure Recovery � Snapshot of

Wireshark . 70

viii

1 Introduction

Globalization of markets seems to be one of the hallmarks of the 21st century.
Among its many consequences are growing competition and need for new high-
quality products. These circumstances push companies to try to shorten their
time-to-market and increase production in order to stay competitive.
It is well known that mass production is cheaper in Asia than in Europe or

USA. That is why especially the European industry needs to focus on increas-
ing the quality of its products. Furthermore, one should not forget that the
quality is only one side of the coin. In addition to that, products of today and
tomorrow have to be innovative in their nature. Manufacturing of such prod-
ucts requires ability for swift changes, adaptations and �exibility of production
plants. In order to achieve all of these goals, new processes need to be em-
ployed. An example of improvements in this �eld is the increased presence of
computer-based production in industry. Computer-based systems gather the
information about the environment via sensors, process it and consequently
in�uence and change its state through involvement of actuators.
Currently employed process techniques, from types of processes and pro-

gramming techniques to infrastructure of plants, do not always satisfy cus-
tomers' needs. Continuous, discrete and batch processes are all widely spread
throughout industries and are used for production. Nevertheless, batch pro-
cesses are mostly used in chemical industries, food manufacturing and some
other. Focus of this thesis is on the domain of batch process automation and
their optimization proposal.
Batch processes, much like anything else, are easier to employ when they

are standardized. One of the standards applied in this �eld was IEC 61131.
It de�ned and standardized many programming techniques that, even though
widely used, do not support distributed control architecture. Consequently,
a new standard, IEC 61499 function blocks, was introduced in order to em-
ploy more �exible and failure tolerant production of goods. Function blocks
are graphical representations of algorithms and they support distributed ar-
chitecture. This technology makes it possible to employ batch processes on
distributed systems.
Employing of IEC 61499 in batch process automation can be additionally

enhanced by involving agent technology. Agents, operating in coordination

1

1.1 General Objectives

with each other in so called Multi-Agent Systems (MAS), are autonomous
and independent units that bring aspect of arti�cial intelligence to process
automation. As a result, each mechatronic device can be provided with its
own controller, assigned only to the functions provided by it. Even though
implementation of this new technology may cause additional costs for com-
panies at �rst, the �exible and failure tolerant production that it enables has
the potential of actually decreasing expenditures in the long run. Plants can
then be described as intelligent systems, because they are able to make deci-
sions on their own, handle failures and minimize the shutdown time needed for
switching production from one product to another. It also allows for defective
parts to be mended or replaced without having to stop the whole system. By
and large, developing MAS for application in batch process automation poses
an intriguing task that will require implementation of so called automation
agents. Utilization of that special agent type turns each mechatronic device
into an autonomous and independent entity. These agents use world models
as their knowledge data source.
Motivation for this thesis, derived from the aforementioned facts, is devel-

oping a MAS that consists of automation agents and additional functional
agents and supports distributed control architecture. This MAS will �nally be
implemented and tested on a batch process plant.

1.1 General Objectives

This thesis discusses development and implementation of agent technology in
batch process automation. Agent technology can be applied in the domain of
process automation in many di�erent ways, but in this thesis the focus is laid on
a special approach that employs automation agents with re�ective world mod-
els. Beside automation agents, MAS additionally contains functional agents
that are responsible for the communication with users and management of
recipe execution.
In order to comprehend the signi�cance of this idea, one needs to be familiar

with nature of automation agents. It can generally be said that automation
agents consist of high level and low level controls. High level control is imple-
mented in JADE (Java Agent DEvelopment) framework, whereas IEC 61499
function blocks was used for the low level. Automation agents are primarily
responsible for controlling the hardware.
World model is part of high level control and serves as knowledge data source

of individual automation agents. Automation agents make decisions based on
their world models. World model is called re�ective as it contains information

2

1.2 Task De�nitions

about single automation agent.
The discussed idea needs to be analyzed and implemented on the plant in

Odo-Struger laboratory at the Automation and Control Institute (ACIN)1,
Vienna University of Technology. Engineering of this speci�c MAS implies
development of the whole process, including control of mechatronic devices,
communication between agents, failure detection and failure recovery.

1.2 Task De�nitions

There are several steps that need to be carried out for the purpose of this
thesis. Tasks can be summarized as following:

• Architecture of automation agents (incl. re�ective world models) needs
to be designed and implemented for each device on the laboratory plant.

• Development of low level control, in accordance with IEC 61499 function
blocks, of each automation agent that represents hardware on the plant.

• Development and implementation of the work�ow of high level control
(in JADE) of every automation and functional agent.

• Automation agents with re�ective world model and functional agents
need to be tested on the laboratory plant. Testing includes monitoring
of system behavior in an abnormal situation (in this case a failure) and
measuring duration of message transmission from high level to low level
control.

• Discussion of results, advantages and disadvantages of this approach.

1.3 Structure of the Thesis

All of the aforementioned points will be presented and discussed in more de-
tail, for this thesis consists of seven distinctive chapters. Chapter 2 introduces
the reader to the state of the art in distributed batch process automation. It
provides an introduction to batch processes, basics of IEC 61499 and discusses
current research in the �eld of MAS. Chapter 3 explains a special MAS ap-
proach in batch processes that requires usage of automation agents and world
models. This topic includes a discussion about di�erent types of automation

1www.acin.tuwien.ac.at, accessed in September 2010.

3

1.3 Structure of the Thesis

agents, analysis of communication between agents and application of re�ective
world model.
Implementation of the approach explained in Chapter 3 is the topic of Chap-

ter 4. It also gives a description of the plant and utilized hardware and software.
Automation agents and their world models are explained and communication
between them as well as recipe execution is analyzed. At the end of Chapter
4 the message transmission duration is measured in failure free scenario and
results are presented.
Chapter 5 gives an overview of the obtained results of testing on the plant.

Measuring duration of system recovery after failure detection is also a part of
the performed tests.
Last two chapters include a discussion of the obtained results and advantages

and disadvantages of this approach. They also give an overview of possible
future research on this topic.

4

2 State of the Art

As already mentioned in Chapter 1, continuous need for innovation requires
�exible automation plants. After a brief presentation of automation systems,
this chapter gives introduction to a widely spread process type, batch process.
Batch processes have become popular due to their adaptiveness and prospects
of improvement.
Batch processes have recipes according to which output is produced. Every

recipe consists of de�ned �ow of actions that are required to be done in order
to produce that output. Those actions are programmed and �installed� on
Programmable Logic Controller (PLC) or Distributed Control System (DCS).
Among many programming techniques used in industry for programming con-
trollers, this chapter provides a brief description of a speci�c one, function
block diagram according to the norm IEC 61499 published by International
Electrical Commission (IEC).
The IEC 61499 standard supports distributed architecture and speci�es �ow

of events and algorithms, as in distributed systems one or more processes can be
executed simultaneously. Application of distributed systems can be improved
by employing agent technology. Current development in the �eld of agent
technology will be discussed in more detail at the end of this chapter. This
will provide a starting point for later chapters, as this thesis presents a new
approach in programming of �exible, failure tolerant batch processes based on
agent technology and IEC 61499.
This chapter is outlined in the following manner. First it gives an intro-

duction to batch process automation. That is followed by brief explanation
of a programming technique based on IEC 61499 function blocks. Following
section discusses agent technology in more detail and presents several current
developments and trends of their application in batch processes. Final section
deals with de�nition and characteristics of ontology that is commonly used in
agent systems.

5

2.1 Automation Systems

2.1 Automation Systems

In order to understand the topic that is about to be discussed, one �rst needs
to become familiar with few basic de�nitions from the �eld of automation. The
root of the word �automation� comes from Greek automatos which means �to
move by itself �. German institute for norms (Deutsches Institut für Normung,
DIN) de�nes �to automate� in DIN IEC 60050-351 [17] as following:

• to automate: �to employ means to enable self-acting functions in a sys-
tem�;

• system: �set of interrelated elements considered in a de�ned context as a
whole and separated from their environment�;

• automaton: �self-acting arti�cial system, whose behavior is governed ei-
ther in a stepwise manner by given decision rules or continuously by
de�ned relations and whose output variables are created from its input
and state variables�;

Automation is a noun of the verb to automate, which means to apply au-
tomation to something [40]. Speci�cally, automation is applied to systems in
order to produce goods. Focus of production is technical process, whereas
automation of this process is referred to as process automation [7].
According to DIN 66201, process and technical process are de�ned as follows

[13]:

• process: �the totality of activities in a system which are in�uencing each
other and by which material, energy or information is transformed, trans-
ported or stored�;

• technical process: �a process whose physical quantities can be acquired
and in�uenced by technical means�;

In his book Barker et al. [3] identi�ed three distinct technical process types
in process automation:

• Continuous process can be described as one in which �ow of material
or product is continuous. Product of this type of process is manufac-
tured in di�erent equipments as a result of material processing. Contin-
uous processes can be described with di�erential equations and transition
functions [7]. Some examples of this process type are generation and dis-
tribution of electricity, production of steel, etc.

6

2.2 Batch Processes

• Discrete process is the one where output appears in discrete quantities. A
speci�ed quantity of products moves in lots between workstations. Pro-
duction of cars or those of mother-boards are just some of the examples
of this process type.

• Output of batch process appears in quantities of materials or lots. Fur-
thermore, it has a de�ned beginning and an end. It also possesses char-
acteristics of both continuous and discrete processes. Some examples are
soap manufacturing, production of pharmaceuticals or beverages.

All of the above mentioned technical process types are more or less equally
important and have their place of implementation throughout industry. Nev-
ertheless, the focus of this thesis will remain on the batch processes.

2.2 Batch Processes

The word batch has several meanings. According to the Oxford English Dic-
tionary [40], �batch� describes a quantity produced at one operation. It can
also mean a quantity of anything coming at a time or a number of something
put together.
In process automation batch has a slightly di�erent meaning. It is de�ned as

material produced during batch process and as entity that represents produc-
tion of material. Batch process can be described as a process which, during a
production over a �nite time, uses one or more pieces of equipment in a de�ned
order and on a de�ned schedule. During the production a �nite quantity of
products (batch) is produced as a result [3].
During batch process, equipment of a plant can be used one or more times

to perform di�erent tasks, which is not the case with continuous processes.
For instance, during a continuous process all operations are performed at the
same time [46].
Nowadays, there are still many products manufactured using continuous

processes even though initially batch processes used to be utilized for the
production [3]. Main reason for shifting to continuous processes is a lack
of required skills and operators to employ in batch production. Continuous
processes have brought considerable pro�t to industries and switching of pro-
duction to batch processes is therefore developing rather slowly. Still, usage of
continuous processes is slowly declining in the developed world. At the same
time, utilization of batch processes is rapidly spreading to production of phar-
maceuticals, agrochemicals, food additives, photosensitive material, vitamins,
beverages and many more [46].

7

2.2 Batch Processes

During batch process, plant is in a state of constant change [22]. Employ-
ing equipment in batch processes makes it adaptable to change, which makes
these processes interesting for small companies with low capacities. Level of
complexity increases, but so does the �exibility of the plant. This has for
a consequence that the equipment of a plant employing a batch process is
generally operating in a non steady state. In other words, the equipment is
under constant change. One part of a plant can perform various operations at
di�erent times and all that within one recipe [21].
It is worth stating at this point, that batch processes are quite economical

for small companies, as they require less process equipment [3]. Manufacturing
with �exible equipment makes it possible to output large amounts of di�erent
products. This art of production shortens time-to-market of newly innovated
products.

2.2.1 Advantages of Batch Processing

It is undeniable that there is a number of positive arguments for batch process-
ing. Certainly one of the biggest advantages is �exibility and failure tolerance.
A plant that is used for fabrication of one product can easily be transformed
for production of another one. Two or more activities can be carried out at
the same time. Waiting for one activity to be �nished is rendered unnecessary.
This characteristic combined with the fact that during batch process output
usually appears as number of products and lots shortens time-to-market of
new and innovative products.
In addition, each part of equipment in a plant that employs batch processes

can be used for more than one activity. To illustrate, one pipe can be used for
transporting of material to the reactor and from the reactor. Additionally, if a
plant contains multiple reactors with same properties (heating, mixing, etc.),
any of those reactors can be used to perform the given task. In other words,
generally there is no need to de�ne which reactor has to be used. Consequently,
smaller plants can be used for production of various products.
Furthermore, every component of a plant can act as an entity for itself.

Batch processes allow modular distributed control architecture that is based
on multidisciplinary devices. These devices contain all relevant hardware and
software components required for execution of a task. This concept is similar
to the concept of object-oriented programming: reusability of components and
encapsulation of functions [28].
In case that one part of equipment stops working it can easily be substituted

by another one. In some cases, if the defective part is currently not needed for
the process, it can be replaced without stopping the plant or production.

8

2.2 Batch Processes

2.2.2 Challenges in Batch Processing

As much as �exibility of distributive systems is an advantage of batch pro-
cesses, one cannot ignore the fact that it can also be a disadvantage. Imagine
a simpli�ed system for production of PVC like illustrated in Fig. 2.1 and imag-
ine the scenario where di�erent materials from one or more di�erent reactors
are moving simultaneously to one or more other reactors. In such a situation
some pipes might be used for bidirectional transporting of material. Addition-
ally, it might be necessary to clean the pipes between transportations [21].

Figure 2.1: Simpli�ed Model of a PVC Manufacturing Plant [21]

Such a scenario might pose a quite complex engineering problem that re-
quires certain know-how in the area of batch processing.
One more matter that is characteristic to batch processes is detection of

failures. In case of continuous processes, when equipment works in a steady
state, it is easy to track failures. In batch processes equipment and �ow of
material are under constant change, so tracking and �nding of failures can
be very time consuming. To illustrate this point, let it be said that 60%
of system development e�ort with regard to batch processes is absorbed by
abnormal events [21].

9

2.2 Batch Processes

2.2.3 IEC 61512 Standard for Batch Processes

The �rst standard for batch processes approved in 1995 by the Instrument
Society of America was S88. It was later adopted by IEC as the 61512-1
standard. This was indeed a big step in process automation, because it was
the �rst time that understanding of terms was harmonized for everyone working
in this �eld [21].
It is important to emphasize how important the adoption of the IEC 61512-

1 standard was. Its signi�cance is threefold. First, adoption of this standard
enables easier communication between all stakeholders in one project. Second,
it allows di�erent vendors to produce independent, yet compatible parts that
can be used when building a plant. And third, it eases the development of
algorithms and software for batch processes. In the light of these facts, one
may expect that this will lowers the costs of batch process development.
Beside general terminology used within batch processes, the standard IEC

61512-1 includes de�nitions for structural model and recipe concept [20]. When
speaking about structural models that are de�ned in IEC 61512-1 one must dis-
tinguish carefully between physical model, process model and procedural model.
Physical model describes the physical aspect of a company and hierarchical

relationships between various entities in batch manufacturing. This model has
seven layers starting from the top to bottom with enterprise, site, area, process
cell, unit, equipment module and control module.
Procedural model consists of four layers: procedure, unit procedure, operation

and phase. This model de�nes transition between physical and process model.
These types of models are used to describe controlling of actions within parts
of equipment in order to perform tasks for the process.
The process model contains four hierarchical layers. Those are process, pro-

cess stages, process operations and process actions.
Besides general strategy and structural model, IEC 61512 de�nes recipe as

list of instructions (tasks) in order to execute a process. All batch plants have
recipes that give information about output being manufactured.
Each recipe contains a recipe head where general information about it is

speci�ed. The recipe head contains product identi�cation, version number,
the date of issue and the like.
Beside these speci�cations, recipe also contains information about material

and production data. For instance, it can specify input and output of a process.
Furthermore, recipe contains di�erent equipment requirements to produce

an output. This part of recipe is connected to the physical model.
Recipe also contains a recipe procedure. The procedure de�nes strategy of a

process and enables production of batches. This part of the recipe is connected

10

2.2 Batch Processes

to the procedural model.
Within one recipe additional information can also be speci�ed, like security,

safety or regulatory information.

2.2.4 Programming Standards in Batch Processing �
Current and Future Trends

The main focus of this thesis lies on process management and control. Upon
�nishing planning and scheduling (two additional phases in batch processing),
implementation of the process, also called controlling of the process, takes
place. This procedure belongs to the domain of lower layers of the aforemen-
tioned structured models. Even though IEC 61512 de�nes the concept of batch
processes, it lacks a de�nition of controlling process. However, standard IEC
61131 [18] provides this de�nition. It de�nes the implementation of control
processes on Programmable Logic Controller (PLC) using one of the vari-
ous programming techniques. This manner of implementing batch processes is
nowadays primarily used in the industry. IEC 61131 consists of following parts
[39]: general information and technical environment that is de�ned by the stan-
dard, general hardware model of PLC with equipment and test requirements,
programming languages, user communication, fuzzy control programming and
implementation guidelines.
There are many techniques of programming PLC. In particular, there are

Ladder Diagram (LD), Structured Text (ST), Instruction List (IL), Function
Block Diagram (FBD) or Sequential Function Chart (SFC). This thesis does
not tackle all of the programming techniques mentioned above as they are not
within its scope. The only programming technique that will be discussed in
further detail is the FBD technique. For further information on other pro-
gramming techniques interested reader is referred to technical literature, e.g.
[24].
FBs were �rst de�ned in IEC 61131-3 and did not support distributed ar-

chitecture. They are represented as graphical algorithms, containing only data
inputs, with work�ow from left to right. Within every FB is an algorithm code
that can, for example, be written in structured text.
The de�nition of FB was later extended by the norm IEC 61499. This norm

de�nes usage of FBs within distributed system domain. As it will be shown in
following sections, FBs also have event inputs and outputs according to IEC
61499. In this event driven execution of algorithm it is possible not only to
program standard procedural applications, but also to implement distributed
systems on an Object-Oriented Programming (OOP) basis.

11

2.3 IEC 61499 � Function Blocks

The IEC 61499 standard is a new promising standard, still mainly present in
the research circles. The industry is hesitant to change the winning team � the
IEC 61131 standard. However, the focus of this thesis is not the programming
technique per se, but application of batch processes in distributed systems,
as was mentioned in Chapter 1. The next section discusses IEC 61499 FBs,
which are the basis for distributed systems.

2.3 IEC 61499 � Function Blocks

Application of batch process in distributed systems could not be accomplished
with existing programming techniques based on IEC 61131. Therefore, the
new standard, IEC 61499, had to be introduced. Function Blocks (FB) that
were initially de�ned in IEC 61131-3, were amended for usage in distributed
architecture by this new norm.
Simply put, FB as a programming technique are nothing more than graphical

representation of algorithms [3]. This new concept enables FBs to become
part of a reusable, modular and complex Distributed Control Systems (DCSs).
Nowadays there is an evident trend toward distributed systems among all
programming techniques. Distributed system architecture allows, in a similar
manner like object-oriented programming, encapsulation, polymorphism and
reusability of its components.
When software is programmed to control a mechatronic component, it is

deployed on one of control systems. Mainly used control systems in indus-
tries nowadays are based either on DCS or PLC. DCS are usually used in
petrochemical industries, and they utilize few large central processors. Those
processors communicate with sensors, actuators and controllers located on a
plant through a local network. In DCS there is a central supervisory and con-
trol station that is responsible for supervision of the whole system. Distributed
components that are positioned out in the plant provide local control such as
closed loop control.
PLCs are generally utilized to operate discrete processes like those in auto-

motive industries. In a large PLC system there is a number of PLCs and a
HMI unit communicating via one or more high speed networks. PLCs are con-
structed for �eld-level operation and can be exposed to extreme conditions, like
for instance high temperatures. PLCs contain numerous inputs and outputs
(I/Os) for sensor and actuators signals.
Both DCS and PLC, even though widely spread in industries today, were

developed for monolithic software packages. They are often di�cult to reuse,
change and integrate with new components. Software packages that are written

12

2.3 IEC 61499 � Function Blocks

for one application are not easily included in another, even if they run on the
same machine and use the same programming language.
With these requirements a new trend of advanced, more complex control

systems is developed. Every device within this system, such as pump, valve or
sensor can have a built-in controller. This controller would then be linked to
other more intelligent controllers on other devices, like temperature controllers,
HMI panels, etc.
In order to accomplish this level of distributed systems, a completely new

approach to software development is required. There is an evident potential of
implementing IEC 61499 FBs as a possible approach to develop such systems.

2.3.1 IEC 61499 Reference Models

IEC 61499 de�nes a reference model for distributed systems. This reference
model is organized hierarchically and consists of �ve sub-models: system model,
device model, resource model, application model and function block model (Fig.
2.2).
This standard also de�nes three more types of models: distribution model,

management model and operational state model. In contrary to the �ve models
mentioned above that represent the physical and/or application part, the three
latter models are more functional. Since management and operational state
models are beyond the scope of this thesis, they will not be discussed any
further. The distribution model is the subject of the next section.

System model System model is shown in Fig. 2.2a. It is a composition of
devices that are connected to each other via a network. They can also be
connected to di�erent networks. Applications in a system are either spread
over more devices or only part of one device. One device can provide its
functions to more applications simultaneously.
Controlled process is not part of system model.

Device Model Device is composed of zero or more resources (Fig. 2.2b).
Device usually has an interface to a network and an interface to a process.
Device that has no resources embodies a resource itself.
Process interface is used for communication with I/Os on physical devices

(sensors, actuators). Data exchange �ows through this interface. Communi-
cation interface is used to exchange data with other resources on the same or
remote devices.

13

2.3 IEC 61499 � Function Blocks

Figure 2.2: Reference Models according to IEC 61499 [52]

Resource Model Resource is part of a device (Fig. 2.2c). It is a network of
function blocks and is considered to be the functional unit of an application.
A resource and its functions must not a�ect other resources within the same
device.
Resource is responsible for reading data from process interface and sending

data to communication interface and vice versa.

Application Model Applications are composed of function blocks and they
can be distributed over one or more resources within one or more devices. FBs
are connected with event and data connections. If an application is spread over
di�erent resources, FBs are connected via Service Interface (SI) FBs. FBs of
one application can also be grouped to form sub-applications.

Function Block Model Function block concept was �rst de�ned in IEC
61131-3 as a programming technique of PLCs. In this norm FB was de�ned

14

2.3 IEC 61499 � Function Blocks

as graphical language. FBs can be connected to other FBs by connecting the
data �ow between output and input. They contain single algorithm that was
executed after receiving data from the previous FB. With this type of execution
of FBs, it is complicated to determine the exact order of algorithms that are
executed within them, as it was not easy to determine when one FB was going
to be invoked.
Later on the new standard IEC 61499, which de�nes FBs that can be used

in distributed systems, was developed. According to IEC 61499, FBs contain
event inputs, data inputs, event outputs and data outputs. FBs also contain
algorithms that are triggered by input events (Fig. 2.3).

Event inputs Event outputs

Data inputs Data outpus

Event flow

Data Flow

Event flow

Data FlowAlgorithms

Internal data

Execution

control

Type name

Figure 2.3: Function Block according to IEC 61499 [32]

Algorithms, internal data and execution model are hidden within FBs. Ex-
ecution control de�nes which event is mapped to which algorithm. What a
FB actually does is speci�ed by internal algorithms. Depending on a type of
controller, an algorithm is written in the ST according to IEC 61131-3 or in
one of the high level programming languages like C++ or JAVA [6]. Internal
data is needed for execution of algorithms, like internal constants or variables
that are used in more than one algorithm.
IEC 61499 de�nes three types of function blocks: basic function block, com-

posite function block and service interface (SI) function block.
Basic function block contains algorithms that are invoked by input events.

15

2.3 IEC 61499 � Function Blocks

After algorithm execution, data output is set and an event output signal is
triggered.
Composite function block consists of a network of function blocks. Events

and data I/Os of inside function blocks are connected in such a manner to form
a more complex capacity as a result. Composite function blocks can contain
basic function blocks or another composite function blocks.
SI function block provides interface required for establishing communication

with a function blocks network that is deployed on other resources (on the
same or di�erent devices). SI function blocks are also used for communication
with hardware like sensors, actuators and other devices.
IEC 61499 also speci�es an execution model for function blocks. For a basic

function block �rst a value comes to a data input. After receiving an event
input, the corresponding algorithm uses input data to produce output data.
When the algorithm is done, it sends signal to the corresponding output event.
With this process one FB is executed and the next one can begin. For more
details about FB and IEC 61499 see [32], [6] and/or [48].

Distribution Model As it is shown in Fig. 2.2, applications can be dis-
tributed over di�erent resources in one or more devices. Distribution is done
when function blocks of one application are assigned to di�erent resources
and communication between them is performed via a network and SI function
blocks.
Distribution of an application or a sub-application should not in�uence the

functionality of a given application. Applications or sub-applications that are
distributed over several resources can only be in�uenced by communication
networks and by the speed of data transfer over that network.
Another important feature of applications is that they cannot be replicated,

but it is possible to make a new copy of a sub-application and then use it
again.
Function blocks on the other hand cannot be split into parts and distributed

over devices or resources. All elements of one function block must stay within
one resource. Timing of a function block depends only on one device and it is
not a�ected by the network. Function block can only be replicated by making
a new instance of the same FB type.

2.3.2 Why IEC 61499?

With the IEC 61499 FB standard, development of software for batch processes
is moving in the direction of distributed systems. Common algorithms, func-
tions and methods as parts of software are grouped to FBs. FBs enable soft-

16

2.4 Multi-Agent Systems (MAS)

ware functions to become reusable without being strictly bound to a particular
program. Concept of FB resembles to a widely spread concept of objects in
object-programming. They represent an encapsulated application and reduce
complexity of the program. Additionally, IEC 61499 also enables more �exible
production, shortening time-to-market of the new and innovative products.
On the one hand, manufacturers will have the opportunity to choose compo-

nents from di�erent vendors without worrying about compatibility problems.
Vendors, on the other hand, will be able to o�er their clients a greater range
of products. They will also be able to adapt their products according to their
clients' needs in a shorter period of time.

2.3.3 Migration to IEC 61499

Even though the IEC 61499 standard brings many bene�ts to the �eld of batch
processes, such as reusability, distribution or encapsulation of functionality,
this standard has yet to be adopted by the industry. Every company tends to
use familiar methods, tools and ways of developing as long as they bring them
pro�t and they are often reluctant when adopting new technologies [41]. This
behavioral habit might slow down the transition from old standards to IEC
61499.
One more reason why companies avoid shifting to new technologies is the

risk that this new technology would not be accepted by other vendors and
clients. There is also a risk of business partners transferring to other, com-
pletely new technologies. Costs of switching to IEC 61499 are in�uenced by
existing investments within companies. Company that invests more into edu-
cation of its employees, development tools and infrastructure (controllers that
do not support IEC 61499) will accordingly su�er higher costs of changing
to the new technologies. Consequently, adoption of new technologies is more
di�cult to implement.
Since migration to IEC 61499 is not within the scope of this thesis, the dis-

cussion will remain limited to the argument above. For additional information
see [41] and/or [16].

2.4 Multi-Agent Systems (MAS)

Concept of distributed system is a new trend in process automation, but the
idea of having distributed systems is not completely new. In fact, OOP as a
programming technique has shown the advantages of not having everything on
the same place, as is the case in monolithic software.

17

2.4 Multi-Agent Systems (MAS)

Using the idea of OOP as basis, a new programming technique has been
developed. Agent-Oriented Programming (AOP) as a new software pattern
has spread not only over the development of classical software applications,
but also over mobile technologies, process automation and so on [4].
This new concept is a meeting point of theories about arti�cial intelligence

and distributed systems. Central object of AOP is agent. Autonomy and
ability to communicate are only two of numerous characteristics of agents. In
this chapter, the idea of agent systems is described in more details.
At the beginning of this section, the basic idea of agents, as well as their

general characteristics, is described. That is followed by a description of com-
munication between agents and the FIPA standard. The second part of this
section focuses on recent developments of agent systems used in process au-
tomation.

2.4.1 Agent Technology

Technology of today is slowly but de�nitely progressing towards distributed
systems. Terms agent or agent technology are mentioned more frequently in
the recent written research in this �eld. In almost all spheres of computer
technology, starting with computer networks, operating systems, databases,
arti�cial intelligence and going further to automation technology, agents have
found the way to spread their in�uence.
One should note here that there is no strict and o�cial de�nition of agent.

However, there are some explanations what agents represent and de�ne [4]. It
can generally be said that agent is a software component that performs some
kind of service for other agents or users. According to the Oxford English
Dictionary [40] term computer agent is de�ned as follows:

�A program that performs a task such as information retrieval or
processing on behalf of a client or user, esp. autonomously.�

This de�nition is relevant because when speaking about agents, one generally
assumes a software agent. This thesis also discusses a di�erent type of agent,
so called automation agent (see Chapter 3). Automation agent consists of
software that is split into high level part, responsible for decision making and
communication to other agents, and low level part that is mainly responsible
for communication with hardware. Additionally, hardware components are also
considered to be a part of automation agents. It can be said that automation
agents are software representation of hardware devices.
Agents typically co-exist with other agents in multi-agent systems. However,

one of the most important characteristic of agents is their autonomy. It means

18

2.4 Multi-Agent Systems (MAS)

that agents are independent and can work or exist without depending on other
agents or systems.
Within a MAS, agents have opportunity to interact with each other. This

interaction is generally based on communication by exchanging messages and
reacting upon receipt of a message. Throughout this exchanging of messages
agents try to perform given tasks.

2.4.2 Communication between Agents

The aforementioned agent communication is one of the most important aspects
of MAS based distributed systems. Agents communicate with users or each
other in order to solve given tasks. Every communication requires a language
and this is no exception to that rule. Agents communicate using one of so
called agent communication languages.
Nowadays, the most spread agent communication language is the FIPA-

ACL (Foundation for Intelligent, Physical Agents � Agent Communication
Language). The main advantage of FIPA-ACL is that it allows usage of dif-
ferent content languages.
FIPA is an international non-pro�t foundation which promotes usage of

agents throughout industry. This organization performs a task of developing
speci�cations for communication between agents, but its members are not
obligated to use or implement any standards brought to them by FIPA [4] [10]
[9].
FIPA-ACL message, standardized message used for communication between

agents, can contain di�erent parameters that can be sent (see Table 2.1).
The only mandatory requirement for message sending is a valid performative

parameter, whereas all the others are optional. If a message contains some
additional parameters after all, its content can, according to FIPA, be any
string or bit combination. This allows us to transfer more information by
using for instance XML as content language [4] [5].

2.4.3 Concept of Multi-Agent Systems

New developments throughout di�erent areas of industry suggest that there is a
potential for improvement that could be brought about by MAS. Flexible, fault
tolerant batch processes are almost impossible to imagine without this agent
technology. MAS can be represented as a complex society, whose members
have responsibilities over di�erent domains, where they communicate with
each other in order to solve problems or do their tasks. Fig. 2.4 shows a MAS

19

2.4 Multi-Agent Systems (MAS)

Parameter Description
performative Type of communicative act of an ACL Message
sender Name of the agent that sends the message
receiver Recipients of the message
reply-to Name of the agent that should receive a reply to the

messages in this conversation thread
content Content of the message
language Language of the content
encoding Speci�c encoding of the language
ontology Meaning of the symbols in the content
protocol Interaction protocol used by the sending agent within

the ACL message
conversation-id Conversation identi�er, used to represent the ongoing

sequence of communicative acts
reply-with Expression that the responding agent uses to identify

the message
in-reply-to Reference to an earlier action to which this message

is a reply
reply-by Time and/or date by which a reply should follow

Table 2.1: FIPA-ACL Message Parameters [10]

with several agents working and communicating on di�erent hierarchical levels.
It can be seen that each agent has di�erent �eld of responsibility or interest.
As already mentioned, agents usually react upon receiving a message. This

is actually the main di�erence between agents in AOP and objects in OOP.
On the one hand, in order to use a method or functionality of one class in
OOP, a new object of that class needs to be instantiated. It then needs to
call the desired method from that class. On the other hand, in order to per-
form an analogue operation within AOP, agents start by exchanging messages.
After a receiver agent receives the message, the corresponding behavior will
start. There are de�ned constraints on when a behavior can be started. Those
constraints are de�ned within each behavior. When a behavior is started, an
activity is performed and/or the communication is continued as the agent that
received the message replies to the sender.

20

2.4 Multi-Agent Systems (MAS)

Figure 2.4: Example of MAS Society [42]

2.4.4 Usage of Multi-Agent Systems in Batch Process
Automation

MAS are increasingly being applied in almost all areas, starting with indus-
trial process control, telecommunication, robotics and also in transportation,
network management, mobile technology and so on [4].
Advantages of MAS were �rst recognized by industrial applications and its

techniques were initially tested there. Examples of industrial applications
where MAS were tested are process control, transport logistics, manufacturing,
etc.
In addition to the above mentioned applications of MAS, this technology

is also used in other domains, like software development, air tra�c control,
database, arti�cial intelligence, etc.
This section focuses on research currently being done throughout the �eld

of process automation, where MAS techniques are applied. One of the pro-
posed approaches to apply MAS in batch processes is explained in [15]. This
research deals with the problem of scheduling in MAS based processes. Hong
et al. considered introducing one control agent and four execution agents as a
possible solution to this problem. In the role of the control agent he proposed
a so called manage agent, which would be responsible for administering, co-
ordinating and monitoring of other agents. Execution agents would be order
agent, resource agent, model agent and scheduling agent.
Collecting customers' orders and de�ning manufacturing requirements are

21

2.4 Multi-Agent Systems (MAS)

functions of order agents. Resource agent coordinates activities of manufac-
turing resources such as people, materials, facilities, etc. during production.
Model agent models the scheduling problem. For better understanding of the
problem graphical representation, such as Petri-net [23], is usually used. Fi-
nally, there is scheduling agent that o�ers solutions for optimizing scheduling
problems.
These agents perform given tasks in the following manner. A user inputs all

the necessary requirements, as well as speci�cations about the desired prod-
uct. Since the order agent possesses knowledge through its libraries on what
tasks can be performed, it de�nes the order. This is followed by a graphical
representation of the whole problem, done by the model agent. The manage
agent then forwards the task to the resource agent. As a consequence of this
development, the scheduling agent produces the most suitable scheduling plan.
Another research which dealt with MAS in batch process control systems was

done by Samakoko et al. in [44] and Hamaguchi et al. in [14]. They proposed
a way to improve scheduling and monitoring in batch processes by introducing
an autonomous decentralized control system with four agents. Those would
include recipe agents, transfer agents, equipment agents and utility agents.
Their aim is to develop such batch process control system, which supports
plug and play of equipments without modifying initial recipes in the process.
Recipe agent is responsible for giving instructions to equipment agent about

equipment operations, while moving with material through a plant. Upon re-
ceiving instructions, equipment agent performs operations (e.g. mixing, heat-
ing, etc.) by controlling physical components. Transfer agents also have the
responsibility to control physical components, but their domain is restricted
to transport equipment such as valve, pump and so on. Supply and inventory
of the utilities (e.g. steam, cooling water, etc.) needed within the plant are
performed by utility agents.
Yet another interesting approach to employing MAS in this �eld was pro-

posed by Pirttioja et al. [43]. It di�ers from other formerly mentioned appli-
cations in that it analyzes application of MAS for monitoring tasks in process
automation. As already mentioned in Sec. 2.2 equipments in batch processes
run in a non-steady state and observation of critical changes during the op-
eration is of crucial importance. This proposed solution lists �ve applicable
agents: client agent, information agent, process agent, wrapper agent and di-
rectory facilitator.
Each of these agents plays a certain role in this agent society. Client agents

provide an interface to users and o�er them supervising services. However,
they �rst have to receive data from a source via information agents. Process
agents monitor physical components (e.g. sensors) for changes and send data to

22

2.4 Multi-Agent Systems (MAS)

information agents. It might be signi�cant to say that these process agents are
at the lowest hierarchical level. Data from physical components are translated
to common format by wrapper agents. Finally, a list of available agents and
their services are administrated by FIPA standardized directory facilitator [11].
Possibilities of application of MAS in batch processes were also studied by

Seilonen et al. [45]. He recognized that MAS could potentially be applied to
increase failure tolerance of batch processes. He argues that this could be
achieved by introducing two modules for fault handling: fault detection and
diagnostics and fault recovery. Every agent in the system monitors status of
physical components within its domain. Values collected from the physical
components are periodically scanned by the aforementioned module fault de-
tection and diagnostics. Detection of failure inevitably leads to initialization of
fault recovery. The procedure of fault recovery involves actuators which help
the system achieve a failure-free state.
Di�erent approaches that were described in this chapter show some of de-

velopments in this �eld. However, they represent only a portion of various
applications of MAS in batch process automation. This thesis will focus on
one approach with special diligence. That is the approach which utilizes the
automation agents with re�ective world model as described by Vallée et al. for
usage in transport domain [49]. These automation agents control mechatronic
components and use representations of their surrounding. This surrounding is
represented as world model, which is called re�ective as it contains information
about the speci�c agent itself. Chapter 3 deals with this topic in more detail.

2.4.5 Ontologies

It is worth stating at this point that world models of automation agents use
ontologies to describe themselves. In order to understand the concept of world
model one should �rst get familiar with this type of representation.
Studer et al. in [47] de�nes ontology as �a formal, explicit speci�cation of

a shared conceptualization�. In order to get a grip of this de�nition, �rst
there is a need to understand what are conceptualization, formal and explicit
speci�cation and sharing.
Firstly, conceptualization is a relatively complex term that can be de�ned

by mathematical de�nition for extensional relational structure [12].

�Extensional relational structure is a tuple (D, R) where D is a
set called the universe of discourse and R is a set of relations on
D.�

23

2.5 Conclusion

It is obvious that R in the above de�nition represents a set of ordinary
mathematical relations on D. These relations make a representation of a spe-
ci�c world. World in this context is in [12] de�ned as follows:

�With respect to a speci�c system S we want to model, a world
state for S is a maximal observable state of a�airs, i.e., a unique as-
signment of values to all the observable variables that characterize
the system. A world is a totally ordered set of world states, corre-
sponding to the system's evolution in time. If we abstract from time
for the sake of simplicity, a world state coincides with a world.�

Admittedly, this de�nition of conceptualization involving extensional rela-
tional structure is rather simple and incomplete. However, it should be su�-
cient for the understanding of further sections.
Secondly, for expressing world states it is necessary to choose a suitable

language capable of this task. A language is considered suitable if it can
formally and explicitly specify relations between entities in a world. In this
context, formal language speci�es facts that can be interpreted by a machine
and explicit means that all participants of the world are explicitly de�ned. For
further particulars about language characteristics may the reader be referred
to technical literature e.g. [2] and/or [1].
Finally, there is the third term in the de�nition of ontology that needs to be

explained, namely sharing. Ontologies are used to de�ne knowledge of world.
This knowledge is exchanged and shared between and within a system [51]. In
order to share the knowledge all entities need to be familiar with the ontology
language.
This brief introduction to ontologies will hopefully serve as basis which will

help the reader understand the contents of Chapter 3 and re�ective world
model of automation agents.

2.5 Conclusion

Previous sections of this chapter delivered an insight into a special aspect of
process automation, namely MAS based distributed systems for batch pro-
cesses. It started with introduction to automation systems and technical pro-
cesses and continued with a special process type, the batch process. Further
text mentioned various advantages of batch processes like �exibility and fail-
ure tolerance as well as disadvantages like complexity due to constant work in
non-steady state. It has been shown that batch processes were standardized
with IEC 61512 standard. In view of these facts, it is understandable that

24

2.5 Conclusion

the batch processes are recognized as a convenient and promising paradigm in
process automation.
Among wide range of programming techniques used in batch processes, this

chapter described the technique based on IEC 61499 FBs. With characteristics
like encapsulation, modularity and reusability FBs provide basis for engineer-
ing of distributed systems. As it is shown, it is possible to group functions
into one FB and deploy them either on one or more devices. Communication
between devices is performed via network infrastructure.
This concept of distributed systems can be expanded with MAS. As a result,

each equipment part can be represented as an autonomous agent.
With special approach to using automation agents in batch process, process

automation control systems are becoming distributed, more �exible and failure
tolerant. Doubtlessly, such systems will play an important role in the future
of manufacturing.

25

3 Multi-Agent Systems for

Batch Processing Automation

This chapter explains a special approach applied in batch processes that is
based on Multi-Agent Systems (MAS) illustrated in [49] and [29]. Automation
agents stand in the center of this approach. Their main responsibility is con-
trolling the equipment. Automation agents can also be represented as abstract
groups of other automation agents. In that case, abstract automation agents
could control equipment directly or alternatively over sub-agents.
Aside from automation agents this approach considers three more types of

functional agents, speci�cally order agents, task agents and work agents. Their
tasks are communication with users, �nding available hardware for task execu-
tion and execution of given tasks by managing automation agents, respectively.
Furthermore, there are also Directory Facilitator agents (DF agents), respon-
sible for managing lists of services managed by each individual automation
agent. It will be shown that, if necessary, additional agents can be imple-
mented. In case of need for failure detection and recovery, failure handling
agents can also be added to the system [37].
The remainder of this chapter is outlined as follows. In the beginning sec-

tions, all agents are individually explained in more detail. This is followed by a
description of work�ow and communication between agents. Finally, applica-
tions of world model and ontology as well as their relation to automation agents
is illustrated. This section serves as a theoretical introduction to Chapter 4,
where the implementation of this approach on a real plant is presented.

3.1 Architecture of Multi-Agent Systems

As we have already seen, MAS are agent societies composed of several agents,
those being functional agents (order agents, task agents, work agents, failure
handling agents, DF agents) and automation agents. Each of these agents has
di�erent responsibilities. This section describes functional and automation
agents in more details.

26

3.1 Architecture of Multi-Agent Systems

3.1.1 Functional Agents

Order Agent

MAS usually contain one order agent within their structure. Order agents are
functional agents and as such consist entirely of software. Their main task is
to receive messages from users or other systems (in case that an end product
depends on more systems), stating what output needs to be produced. In the
next step, this order agent searches for the corresponding recipe and creates a
job that contains information on product type, amount and job ID.
If a recipe for the desired product is found, it is sent to a task agent, because

these agents are responsible for execution of duties speci�ed in the recipe. After
all tasks have successfully been performed, the task agent informs the order
agent that the recipe is �nished and a batch is produced. Thereupon the order
agent gives information about successful completion of the task to the user or
the other system and manufacturing of the next product can start. In case that
the recipe could not be completed successfully, the user or the other system
has to be correspondingly informed.

Task Agent

Task agents belong to the group of functional agents and play an important
role in MAS. They receive recipes from order agents. In order to produce a
batch according to a given recipe, task agents �rst need to �nd automation
agents necessary for the task. For this purpose, a list of all automation agents
and services they perform has to be obtained from a DF agent. If all required
agents are available, task agent creates tasks according to the recipe. Those
tasks can either be production or transport. These tasks are later sent to a
work agent, because they manage automation agents.
In a case of a transport task, the task agent passes information about the

source and the destination of the material that is to be transported to a work
agent. In most cases it is also necessary to provide some additional information,
like for example required amount of the material. Production tasks are mostly
performed in one place e.g. inside of a reactor. A production task could for
instance be a chemical reaction that would require some sub-tasks like mixing
di�erent materials, heating, cooling and so on.
Upon successful completion of one task the next one starts by creation of a

new task and transmission of a message to the work agent. In case that the
work agent reports a failure, the current task is stopped and a failure descrip-
tion is sent to a failure handling agent with a request for troubleshooting. If
a solution to the failure can be found, the task agent informs the work agent

27

3.1 Architecture of Multi-Agent Systems

and the execution of the recipe can continue.
After all of the tasks have been performed, the task agent informs the order

agent that the recipe is completed. In case that the task agent was not able
to �nish all of the tasks successfully, the order agent is accordingly noti�ed.

Work Agent

Work agents manage automation agents and communicate with them. They
receive tasks from task agents. These can either be transport or production
tasks. After receiving a transport task with associated source and destina-
tion information, work agent generates a path using one of the path �nding
algorithms (e.g. Dijkstra algorithm [26]). Ultimately, the work agent sends
messages to automation agents in order to have them make changes on hard-
ware components. These changes can be for instance opening a valve, starting
a conveyor belt, etc.
If the work agent receives a production task, it sends messages to the corre-

sponding automation agents and gives them instruction about activities that
they need to perform.
When all activities involving one particular task are �nished, the work agent

passes the information on to the task agent. In case of a failure, a corresponding
error message is forwarded from an automation agent to the task agent. In the
adverse case a con�rmation about successful completion of the task is sent.

Failure Handling Agent

Failure handling agents' main function is bringing system back to normal if
such necessity presents itself. They deal with solving anomalies that can appear
in a system. As was already mentioned, if an automation agent cannot perform
a given activity, it is marked as having a failure and a work agent gets informed.
It then noti�es a task agent, which as a result stops the ongoing task and
sends an error message to a failure handling agent. The failure handling agent
researches its knowledge for a solution of the error. If the solution is found,
the task agent is informed and the work�ow continues.

Directory Facilitator Agent

DF agents manage lists of automation agents and their services. This type of
agents and its functions is de�ned by FIPA in [11].
Every automation agent can register itself with this agent at the startup.

The DF agent is also familiar with the services provided by each of the au-

28

3.1 Architecture of Multi-Agent Systems

tomation agents. Similarly, if an automation agent determines that if has a
failure, it can be deregistered from DF agent.

3.1.2 Automation Agents

As already mentioned in previous sections, automation agents control physical
components in production systems. Whereas it is common for functional agents
to be represented in a system with only one agent of each above mentioned
kind, the situation with automation agents is such, that usually each part of
the equipment is represented by one individual agent.
Automation agent architecture usually consists of two layers. These layers

are called High Level Control (HLC) and Low Level Control (LLC). One should
note here that there are automation agents that do not incorporate LLC, as it
will be explained in further text.
HLC contains world model repository and is on the one hand responsible for

communication with other agents and on the other hand for decision making.
LLC contains an interface to the physical component. Through that interface,
a LLC that is deployed on embedded controller is in charge of direct hardware
control.
Classi�cation of automation agents is illustrated in Fig. 3.1. One can see

that for the purpose of this approach they have been divided into three groups.
First group of automation agents (Fig. 3.1a) are PHL automation agents and
they consist of physical components, high level control and low level control
(PHL). Second group is called PH automation agent (Fig. 3.1b), because it
does not contain a low level control. The last group are HL automation agents
and they consist solely of a high level control and a low level control (Fig.
3.1c). Each of these automation agent types is explained in more detail in
further text.

PHL Automation Agent

This type of automation agents is the most common one. It consists of a
physical component, a high level control and a low level control (Fig. 3.2).
These automation agents usually control only one part of equipment like for
example a sensor or a valve. In that case PHL automation agent is responsible
for collecting data from the sensor or for opening or closing the valve. Further,
it can generally perform all activities related to interaction with mechatronic
devices. In this approach, each mechatronic device can have its own PHL
automation agent.

29

3.1 Architecture of Multi-Agent Systems

Abstract Automation Agent

HL Automation AgentPH Automation AgentPHL Automation Agent

Software Component

Low Level Control

1

11

Software Component Physical Component

High Level Control

World Model RepositoryDecision Making

1

1

1

1

1

«uses»

Software Component Physical Component

High Level Control

World Model RepositoryDecision Making

1

1

1

1

1

«uses»

Low Level Control

1

(a) (b) (c)

High Level Control

World Model RepositoryDecision Making

11

«uses»

Figure 3.1: Types of Automation Agents

PH Automation Agent

PH Automation agents consist of a physical component and a high level control.
The physical component in this case does not have to be a mechatronic one.
An example of this automation agent type would be an agent representing a
reactor (reactor PH automation agent). Reactor is a physical component, but
it has no other purpose or ability to do something except holding the material
in itself. Nevertheless, such agents play an important role in this speci�c agent
based approach.
This type of agent aggregates a group of other automation agents. These

can be sensors, mixers, heaters, etc. For example, the reactor PH automation
agent groups all devices located inside of the reactor, like sensors and tools
(heater, mixer, etc). PH automation agent controls activities performed within
reactor using other agents. In addition, one of the functions of the reactor PH
automation agent is to provide a communication interface for functional agents
and other automation agents. This goes to show that communication of devices
within the reactor with each other and with other devices outside of the reactor
�ows through the reactor PH automation agent (Fig. 3.3).
Admittedly, functional agents generally communicate directly to PHL and/or

HL automation agents as long as they are not grouped by the PH automation
agent. However, if PHL and/or HL automation agents are grouped by a PH

30

3.1 Architecture of Multi-Agent Systems

PHL Automation Agent

Software

High Level Control

Low Level Control

Mechatronic Part

Figure 3.2: PHL Automation Agent

automation agent, the communication �ows through the PH automation agent
(see Fig. 3.3).

Functional Agent

PH Automation Agent

1 (e.g. reactor)

PHL Automation Agent

1 (e.g. analog sensor)

PHL Automation Agent

2 (e.g. heater)

HL Automation Agent 1

(e.g. temperature control

agent)

HL Automation Agent 2

(e.g. flow control

agent)

PHL Automation

Agent 3 (e.g. pump)

Figure 3.3: Communication between PH Automation Agent, Functional Agent
and other Automation Agents

PH automation agent is a rather complex type of automation agent. It
usually has a whole world model implemented in its knowledge, in contrary to
simple automation agents, like sensors or valve automation agents. Its duty is
to manage various activities that run simultaneously. One of the characteristics
that helps it perform its tasks is its ability to detect anomalies in a system. For
instance, it can detect if a reactor is full, so it prohibits other material from
entering it. This execution of activities falls in the domain of world models
and will be discussed in further sections.

31

3.1 Architecture of Multi-Agent Systems

HL Automation Agent

The last type of automation agents that is discussed here is HL automation
agent, as shown in Fig. 3.1c. This agent consists only of software components
HLC and LLC. It does not have any physical representation and it is normally
used to provide a real-time capability to the system. In the contrary to PHL
automation agent, that also provides real-time capability, HL automation agent
does not communicate with mechatronic devices directly but through LLC of
PHL automation agents.
An example of HL automation agent is temperature control agent (Fig. 3.4).

This hysteresis controller is used to keep temperature between two values.

PHL Heater Automation Agent

Software

High Level Control

Low Level Control

Mechatronic Part

HL Temperature Control Automation Agent

Software

High Level Control

Low Level Control

PHL Sensor Automation Agent

Software

High Level Control

Low Level Control

Mechatronic Part

Figure 3.4: Application of HL Automation Agent with PHL Automation
Agents

LLC of all three agents illustrated in Fig. 3.4 are deployed on one or more
controllers. It can be seen that each of these agents also contains HLC, but
the communication between them is performed through the LLC.

3.1.3 Production Work�ow Using Multi-Agent Systems

It has been mentioned in the previous sections that agents exchange messages
among themselves in order to perform given tasks. These messages contain all
relevant information for task execution. Admittedly, they can be written in

32

3.2 Architecture of Automation Agents

any content language, but one of the most popular languages is XML, which
enables easy transmission of di�erent information using only one string in
message content.
Tasks and responsibilities of individual agent types were already explained

in Sec. 3.1.1 and 3.1.2. Additionally, Fig. 3.5 illustrates a work�ow of batch
production using MAS in form of UML sequence diagram.

OrderAgent

Job

TaskAgent WorkAgent AutomationAgent

Task

DF

I am available

product name

new

recipe: do operations

new

set AutomationAgent to busy

do tasks

change work state

work state changed

task is done

operation is done

product is done

alt

loop

status failure

failure occured

loop

loop

loop

Figure 3.5: Production Work�ow [29]

3.2 Architecture of Automation Agents

As already mentioned in previous sections, automation agents control hard-
ware components in production systems. That control can be executed directly,
given that automation agents contain physical components and LLC. Alterna-
tively, it can be performed indirectly over HLC or LLC of other automation
agents. HLC and LLC have di�erent realizations and responsibilities. They
are explained in the following.

33

3.2 Architecture of Automation Agents

3.2.1 High Level Control (HLC)

HLC is present in every automation agent's architecture. It is responsible for
general behavior of agents and their communication with other agents. It also
receives and sends messages as a part of information exchange between agents.
HLC mainly consists of following modules, as shown in Fig. 3.6:

• World model repository containing a re�ective world model.

• Low level interface, responsible for establishing communication with LLC
and providing its functions. This interface is also used for data transfer
from and to LLC.

• Communication manager that is responsible for communication with
other agents.

• Decision making is responsible for reactions to changes on plant or within
individual agents. This part represents business logic of automation
agents. Decisions are made considering requests from other agents, world
model and state of LLC.

Low Level Control

High Level Control

Communication

Management
Decision Making

World Model

Repository

Low Level Interface

Figure 3.6: High Level Control [50]

HLC is programmed in a high level programming language. Even though this
will be explained in more details in Chapter 4, it is worth stating at this point
that JADE-framework has been used to program HLC for the purpose of this
thesis. JADE stands for Java Agent DEvelopment framework, middleware used
for development of agent based applications [4] and it is fully in accordance

34

3.2 Architecture of Automation Agents

with FIPA standards [9]. All agent types explained in the sections above run
on JADE platform. Agents run autonomously on JADE platform and they
are able to communicate with each other by exchanging messages using Agent
Communication Language (ACL).

3.2.2 Low Level Control (LLC)

Not all automation agents contain LLC. Only agents that are used to directly
control one or more mechatronic devices have LLC in their architecture. These
are particularly PHL and HL automation agents.
LLC has two responsibilities. For one, like in case of simple devices (valve,

mixer, etc.), it forwards data from the HLC to the device. By doing this, they
provide an interface between hardware and the HLC.
The other responsibility is providing the real-time capability. LLC is usually

deployed directly on a controller and it is in direct contact with the device.
The signal from and to the device does not have to travel over a network.
That is why all functions that need to work in real time are implemented in
LLC. These functions are for instance a PI-Controller or a hysteresis controller.
There are also some cases where a reaction to an event is needed promptly.
Case in point would be an abnormal activity from some device, for instance a
hysteresis controller. In case that failure detection and handling unit (which is
in this case also implemented in LLC) detects a failure of a sensor that controls
temperature, the heater needs to be turned o� immediately in order to prevent
more damage [37].
LLC control can be programmed in any programming language mentioned

in Sec. 2.2.4. The only requirement is that it can be deployed onto a controller.
But, according to the approaches based on [29] and the one explained in this
thesis, LLC is realized with IEC 61499 FB. The main reason for that is the
fact that IEC 61499 supports distribution over several controllers, as MAS also
work on distributed systems basis. LLC applications can be distributed over
several resources over one or more devices. There are also cases where LLC
employ SI function blocks in order to establish communication between two
di�erent resources. Additionally, an interface to hardware is provided through
analog and digital I/Os. They can collect data from sensors and provide data
to actuators.

3.2.3 Communication between HLC and LLC

For the purpose of this thesis, HLC is implemented in JADE and LLC was
realized with software based on the IEC 61499 FB standard. HLC is started on

35

3.2 Architecture of Automation Agents

a PC and FBs were deployed on a controller (see Chapter 4 for more details).
Communication between them is done over a local network.
Since these two realizations are di�erent, a special interface is needed in

order to establish the right communication. The interface was designed in
accordance with the principle �separation of concerns� [36]. First, both enti-
ties need to be in the know of the communication channel, since they have
to use the same one in order to be able to establish the connection. Sec-
ondly, one should note here that the communication between HLC and LLC is
asynchronous. IEC 61499 supports event-triggered communication and upon
receiving a request the execution in LLC is started. As such it is suitable
for this type of communication. The execution in HLC is done in a similar
manner.
Finally, it is important for both HLC and LLC to understand the data that

they transmit, for the data needs to be interpreted in the correct way. LLC
sends the data to HLC in IEC 61499 data types. Casting to a data format
recognized by HLC is done directly in HLC, as such changes are easily done
with high-level programming languages, like JAVA.
As was already mentioned above, the implementation in LLC is deployed on

a controller. Additionally, a FB network is connected with the channel to HLC
over SI function blocks. Listeners on HLC are constantly active. Therefore,
if an event occurs, the corresponding behaviors are started. As HLC runs on
PC, a network based connection needs to be established. In order to establish
a connection HLC and LLC both use standard protocols like UDP or TCP/IP.
There are also some other ways to establish communication between HLC and
LLC, like using other protocols (for instance industrial Ethernet protocol) or
deploying HLC on a controller too. These implementations are out of scope of
this thesis and for more details see [36] and/or [34].

3.2.4 Communication between Two Automation Agents
Realized in LLC

As already mentioned, sometimes real-time capability of agents is required.
This is for example the case when some parts of HLC functions need to be
migrated to LLC. The communication between automation agents can be done
either within the same resource and the same device, or it can be distributed
over a system. In case of distribution, automation agents use SI function
blocks (publisher and subscriber) to communicate with each other. As a rule,
SI function blocks are initialized with exact IP and port information in order
to be able to establish communication with the desired automation agent [32]

36

3.2 Architecture of Automation Agents

[29].
The realization of communication between agents in LLC is required as

HLC does not have a real-time capability. According to the tests performed
by Lopez et al. it takes approximately 2 seconds for the LLC-HLC-HLC-LLC
communication to be performed [35]. Even though the tests performed during
the implementation of this thesis show di�erent results, the implementation of
functions that require a real-time capability are still implemented in LLC. For
more details see Sec. 4.6, 5.3 and Chapter 6.

3.2.5 Re�ective World Model

With creation of automation agents and distribution of these agents over sys-
tems, these have become more �exible and fault tolerant. With the distribu-
tion, automation agents become autonomous entities and require and contain
knowledge only about their environment because they are not part of central-
ized and monolithic systems.
It was mentioned that HLC of each automation agent consists of four compo-

nents, namely communication management, decision making, low level inter-
face and world model repository. Repository denotes a place where information
about production environment is stored. Due to this knowledge, automation
agents are familiar with static situation around them and their environment.
They are also familiar with the activities performed by them and other agents
in the environment [49].
An important aspect of this approach to storing information in a world

model repository is that, as agents are distributed and can run individually
on di�erent controllers, they hold information about themselves within those
repositories. Each automation agent is aware of the position it holds within
the system and of its relations to other agents. It is also aware of the activities
that it can perform. Due to these factors, this model of knowledge is called
re�ective world model.
World model has many advantages. For one thing, each agent only contains

knowledge relevant for its performance. Furthermore, the whole system is not
described in one place, but decentralized over several agents. Above all, one
of the most important advantages of world model is its assistance in detection
of anomalies [37].

3.2.6 Contents of World Model

In order to obtain information about its environment, automation agent needs
to know its position in relation to other agents. It also requires information

37

3.2 Architecture of Automation Agents

regarding activities that a�ect other agents as well as the activities that a�ect
itself. In order to provide these information world model contains two sub-
models [50] (Fig. 3.7):

• Situation model describes current agent situation. Agent situation repre-
sents its physical (i.e. height, length, etc.) and functional characteristics
(i.e. ability to heat, mix, etc). Situation model consists of ontology and
facts.

Ontology model is similar to UML class model. It describes entities that
are relevant to automation agents and relations between these entities.
These entities are usually other agents that have certain relations to the
automation agent.

Facts model describes current situation speci�ed by an ontology model
using a language de�ned by the ontology. As an example, facts state that
an automation agent T101 represents a reactor and that the reactor
T101 contains an analog sensor B101. In contrary to ontology model
that describes only general knowledge of that system (actual part of the
system where the automation agent is involved), facts model describes
the current situation of the system (at the beginning). Due to constant
change in batch processes facts model might change during production.

• Activity model describes potential activities performed by the automa-
tion agent (itself) and also expected activities performed by other agents.
Potential activities are represented abstractly and they are categorized
into sets of activities. Actions are organized hierarchically and can also
be categorized into subclasses. Every level of subclass speci�es additional
information about an activity.

For instance, it can be said that import of material is a subclass of
activities de�ned in a reactor world model. Additionally, this activity
can be re�ned by being divided into two sub-activities. Those two sub-
activities are import from a valve V101 and import from a valve V104
(in the case when reactor has two entries).

The second part of activity model is reserved for expectations and ob-
servations. Agents have an overview of ongoing and scheduled activities
and are aware of them. These expectations and observations are classi-
�ed by type of activity and timing when they are supposed to start or
�nish. Observations de�ne rather precise timing of occurrences, whereas
expectations are conditioned by the timing given by the observations.
This can be illustrated if for instance two reactors (T101 and T102) are

38

3.2 Architecture of Automation Agents

given and only one of them has an analog sensor for measurement of
material level. A pump, an analog �ow sensor and a valve could also be
added between them. An expected result of transporting material from
the reactor T101 to the reactor T102 is speci�ed in their world models.
At the time (t0, t0) beginning of material export from T101 is observed
and consequently at the time (t1-1, t1) �nishing of material import into
T102 is expected2. These observations are performed using change of
value returned by analog sensors. It is expected that no failure of valve
or pump between these two reactors occurs until both of these activities
are done (time t1).

Tank

Sensor

Tool

Connection -hasConnection

*

-hasTool
*

-hasSensor

*

(t102 isA Tank)

(t102 hasConnection v101)

(t102 hasSensor B101)

(t102 hasTool false)

Activity

Observing material

entering

«subclass»

«subclass»

Observing 3L

entering

Type: „Entering 3L“

Timing: (t0, t1=t0+d)

Type: „Observing

beginning of entering 3L“

Timing: (t0, t0)

Type: „Detecting valve

failure“

Timing: (t0,t1)

Situation Model Activity Model

Ontology

Facts

Classification of

Activities

Expectations/

Observations

Type: „Observing

finishing of entering 3L“

Timing: (t1-1, t1)

Figure 3.7: Simpli�ed World Model of a Reactor

These two above mentioned models represent re�ective world models de�ned
in agents' knowledge. They are di�erent, as situation model represents a rather
static view of the system and activity model describes a dynamic model that
includes timing and activities of agents. Through this di�erent approach to
information from the environment, agents are able operate autonomously in
MAS.

2Time (t1, t2) describes the time interval between start time t1 and end time t2.

39

3.3 Failure Detection and Recovery in MAS Based Batch Processes

3.3 Failure Detection and Recovery in MAS

Based Batch Processes

With help of its four aforementioned entities, HLC monitors changes in a
system and reacts upon them. This observation of every change helps HLC
to detect anomalies. Every automation agent using its world model detects
failures that are found in its domain, which depends on whether they are PHL,
PH or HL automation agents. Besides detection of failures, agents can also
isolate them. If an automation agent detects that is has a failure, all activities
that are a�ected by it stop. The corresponding activities are also isolated
and cannot be performed anymore, unless the isolation is eliminated. If one
automation agent performs only one activity, than the whole automation agent
has to be isolated and cannot be used. The isolation can be eliminated if there
is no failure with the hardware. This is done by setting the failure parameter
to false. The failure is set to false when a message containing this information
is received from a user or from other agents.
Detection of failures can be performed in two di�erent ways. One of them

is detection of anomalies in LLC. This type of detection is usually present in
HL automation agents. It has already been mentioned that HL automation
agents are mostly used for real-time requirements. A good example would be
a scenario with a reactor that contains a heater and an analog temperature
sensor. A hysteresis controller is implemented in LLC in order to avoid a long
signal travelling time needed for the transmission to HLC and then back to
LLC. A better solution is to set a watchdog in LLC responsible for monitoring
the temperature. In that case the temperature set point is sent from HLC and
depending on the current temperature the heater is turned on or o�. Lack
of change in current temperature after receiving the set point shows either a
failure with the heater of with the sensor.
In some cases detection of failures in LLC is not su�cient. In such a situation

failure detection can be performed in HLC. As it was mentioned, HLC uses a
world model repository as its knowledge basis for decision and communication
to other agents. Expectations and observations from the activity model can
be used for detection of failures. Observations and expectations can be used
in the case explained above, with the heater and the sensor in the reactor. If
the current and the desired temperatures are known, then the heating process
can be observed. If after a de�ned amount of time, the set temperature is not
reached then there is a failure either with the sensor or with the heater, as
possible failure of communication infrastructure is not considered.
While detection and isolation of failures is done locally within each agent,

40

3.4 Conclusion

the third step, recovery from the anomaly, does not belong to the domain of
automation agents. Recovery from the failure can mean two things: bringing
the agent with failure to a failure-free state or trying to bypass this failure
by avoiding using of the faulty agent. An example for the �rst one is, if a
reactor agent �gures out that it is full and cannot accept more material, an
agent responsible for failure recovery solves that problem by giving a task to
a work agent to transport some of the material to other tanks. An example of
the second one is if an agent detects that a heater in a reactor is not working,
then the solution is to transport all material to another reactor with a fully
functional heater and heat it up there.
In this way, failures within every agent and within the whole MAS can be

detected and recovered. This approach is partially based on [37]. In the next
chapter, some of the failure scenarios including detection and recovery will be
discussed and it will be explained how it is dealt with on a real system.

3.4 Conclusion

This chapter discussed an agent based approach to batch process control. This
approach is based on automation agents that contain world model repository
according to [49] and [29]. Additionally, some new aspects of this approach
have been considered.
It has been shown how di�erent agents communicate with each other. In a

nutshell, a user gives product information to an order agent, which controls
automation agents via task and work agents. It has also been shown that
agents are autonomous, �exible and independent from other agents. Generally,
having one automation agent for each part of hardware makes a system failure
tolerant, which is one of the most desired and needed characteristics in batch
processes.
Automation agents consist of two layers, HLC and LLC. Each of them has

a di�erent domain and responsibility in a system. By dividing control of the
hardware and decision making to LLC and HLC respectively, the system be-
comes more modular and easier to maintain, extend and also adapt for changes.
With this concept, agents are able to detect, isolate and, with help of other
agents, also recover failures in the system.
In the following chapter, application of this approach on a real system will

be discussed. Each of the above mentioned components are implemented and
tested on a laboratory plant in Odo-Struger Laboratory at ACIN, Vienna
University of Technology. For more details see Chapter 4.

41

4 Implementation of

Automation Agent

Architecture with Re�ective

World Model on a Laboratory

Process Plant

Previous chapters delivered analysis of theoretical background for implemen-
tation of the discussed approach. Also relevant for this issue is testing of
its �tness for application on an actual plant. This phase was carried out in
the Odo-Struger laboratory at the Automation and Control Institute (ACIN),
Vienna University of Technology. Before the obtained results are presented,
it is necessary to illustrate what kind of software, hardware and plant was
operated for the purpose of the experiment. Furthermore, it is necessary to
describe automation agents with their world models, since their characteristics
can vary depending on many factors. It will also be shown how each automa-
tion agent communicates with other agents in order to perform a given task.
Final sections will be dedicated to the execution of a de�ned recipe.
During the recipe execution the local network was monitored and the mes-

sage exchange between HLC and LLC is analyzed. It will be shown how long
it takes to send a message from a LLC to a HLC, to process that message and
to send a reply message back to the LLC.

4.1 Equipment and Hardware

4.1.1 Target Plant

The plant used for implementation and testing is, as was already mentioned,
stationed in the Odo-Struger laboratory at the ACIN. It is a plant that is
primarily used for study purposes. Its construction is shown in Fig. 4.1.
As it can be seen, the plant consists of two reactors, in future text denoted as

42

4.1 Equipment and Hardware

Tank T102

Tank T101

P-101

E-104

M

V-101

M

V-104

F

B-102

P

V-102

L

B-101

L

S-112

L
B-113

L

B-114

T

B104

L

S-111

Sensorbox

M101

Figure 4.1: Laboratory Plant in the Odo-Struger Laboratory

tanks, T102 and T101. They are connected via several di�erent paths. First
connection goes via the valve V102, which is a pneumatic valve containing a
sensorbox that indicates if it is closed or open. The tank T102 is positioned
higher in relation to the tank T101 and this path is only unidirectional. Other
paths that allow material to be transported from the tank T102 to the tank
T101 is via valves V101, V104. This path is only partially unidirectional and
the rest is bidirectional.
The bidirectional part of the pipeline goes through the valve V101. This

valve enables the material to be transported from the tank T101 to the tank
T102 using the pump P101. There is a path that enables transport from the
tank T101 back to the tank T101 using the pump P101 and the valve V104,
even though it was not used during the implementation. Flow through the
pump can be measured by the analog �ow sensor B102 that is positioned after
the pump. The plant also contains two more analog sensors. The �rst one, the
distance sensor B101, is positioned in the tank T102 and performs the task of
showing the level of material in that tank. The other one is the temperature
sensor B104 in the tank T101.
Perhaps it should also be mentioned that the plant also contains a mixer

(M101) and a heater (E104) positioned in the tank T101 as well as four digital
sensors that indicate if the material in the tanks reached the de�ned level or
not.
Even though the observed plant is rather simple and mainly suitable for

43

4.1 Equipment and Hardware

studying purposes, it was su�cient for the purpose of this experiment. It was
possible to implement all of the automation agents on it, as it will be shown in
the further text. For a complete hardware overview see Fig. 4.2. Further details
about di�erent components and tasks they perform will only be mentioned if
found necessary for the understanding of the experiment.

-id : int

Hardware

-actFlowRate : float

-maxFlowRate : float

-isFailed : boolean

Pump

-actVolume : float

-pressure : float

-maxTemp : float

-maxVolume : float

-minVolume : float

-lenght : float

-height : float

-width : float

-isFailed : boolean

Tank

-valveid : int

Valve

-sensorid : int

Sensors

-toolid : int

TankTool

-isOn : boolean

-isChangeable : boolean

-isFailed : boolean

-direction : int

Mixer

-isOn : boolean

-isFailed : boolean

Heater

-isChangeable : boolean

-actFlowDirection : boolean

-isOpen : boolean

-isClosed : boolean

-isFailed : boolean

Pneumatic Valve

-isChangeable : boolean

-actFlowDirection : int

-isOpen : boolean

-isFailed : boolean

Magnetic Valve

-flowRate : float

-isChangeable : boolean

-actFlowDirection : int

-isFailed : boolean

Flowsensor

-actTemp : float

-maxTemp : float

-minTemp : float

-goToTemp : float

-isFailed : boolean

Temperature Sensor

-isOn : boolean

-isFailed : boolean

Float Switch
-minDistance : float

-maxDistance : float

-actDistance : float

-isFailed : boolean

Distance Sensor

-isOn : boolean

-isFailed : boolean

Proximity Sensor

-name : string

-next : string

-distanceToNext : int

ConnectionNode

Figure 4.2: Hardware Overview

4.1.2 Control System

The whole system is implemented and run on a PC and two controllers, con-
nected to the same local network. The PC is used for the deployment of a
HLC including a user interface. A LLC is, even though it was developed on a
PC, deployed and run on the controllers.
Controllers that are used, are CPX-CEC-C1 controllers by FESTO3 (see

Fig. 4.3). These controllers use Xscale-PXA255 400 MHz agile Intel micropro-

3http://www.festo.com/ext/en/10485.htm, accessed in September 2010.

44

4.2 Software

cessors and operate with 28 MB Flash and 24 MB RAM. Two such controllers
are used, each of them controlling a di�erent part of the equipment. The plant
equipment is connected to the controllers via analog and digital I/Os.

Figure 4.3: Controller CPX-CEC-C1 [8]

An important aspect of this system is that the controllers are connected to
each other and to the PC over a local network. They are connected via digital
and analog I/Os to the sensors and actuators. Each mechatronic device uses
a unique IP and port for communication with other parts of the system.

4.2 Software

4.2.1 Implementation of HLC

As previously mentioned, the HLC is developed in JADE [4] and subsequently
deployed and run on the PC. JADE stands for Java Agent DEvelopment frame-
work, which is a middleware completely written in JAVA. JADE enables de-
velopment of agent based applications. Programmers use JAVA and JAVA
speci�c programming technique to develop agents. The only di�erence be-
tween ordinary JAVA based programming and JADE is that in JADE two
distinct agents (represented as special JAVA classes) exchange data by send-
ing messages, instead of creating new instance of the agent and calling its

45

4.2 Software

methods. JADE is used for this thesis in its version 3.7. However, the version
4.0.1 has been released since then and is currently available for download4.
JADE is equipped with runtime environment, library and graphical tools.

Runtime environment enables implementation of agents. In other words, agents
are activated and executed in a runtime environment, that is also called con-
tainer. Every container can have one or more agents. Active containers can
be grouped to form a platform.
Developing agent based applications requires additional library classes as a

supplement to standard JAVA classes. Those libraries contain agent speci�c
methods used for agent initialization, communication, behaviors, etc.
Another equally important characteristic of JADE is that it enables mon-

itoring of active agents and their activities once they start. It is possible to
observe the communication between them as well as perform administrative
actions.

4.2.2 Implementation of LLC

The LLC is developed in accordance with IEC 61499 FBs, as this programming
technique supports development of distributed systems. For development of
LLC 4DIAC is used [53]. 4DIAC stands for �framework for distributed au-
tomation and control systems�. It provides open-source, IEC 61499 supported
framework and it secures establishment of automation and control environ-
ment.
4DIAC project is still being developed and there is a certain room for im-

provement. It consist of two sub-projects, FORTE and 4DIAC-IDE. FORTE
is implemented in C++ and it is a runtime environment that enables IEC
61499 FBs to run on controllers. 4DIAC-IDE is a development environment
based on the Eclipse5 plug-in. It is used for modelling networks of IEC 61499
FBs.
After modelling FB network and implementing required algorithms within

each FB, the whole FB network is deployed on a controller. In the plant shown
in Fig. 4.1 mechatronic devices are connected to two di�erent controllers and
LLC of each device is mapped to the corresponding controller. HLC and LLC
communicate in the manner that was explained in Sec. 3.2.3.

4http://jade.tilab.com/, accessed in September 2010.
5www.eclipse.org, accessed in Semptember 2010.

46

4.3 Agent Overview and Communication between Agents

4.3 Agent Overview and Communication

between Agents

It was mentioned in previous sections that in this MAS approach a unique agent
is employed for every mechatronic device. Fig. 4.4 displays all the implemented
automation agents and the work agent. It also shows the communication
network between automation agents. As it can be seen, not all automation
agents can communicate directly with each other. Communication between
agents is usually performed by employing functions of a HLC (by exchanging
messages using methods included in JADE), with two exceptions to that rule.
Temperature control agent and �ow control agent require a real-time capability
and can therefore not be performed in HLC.

Mixer Agent

Work Agent

Temperature Cotrol AgentTank Agent

Magnetic Valve Agent

Distance Sensor Agent

Pneumatic Valve Agent Pump Agent Flow Sensor Agent

Float Switch Agent

Proximitiy Sensor Agent

Flow Control Agent

Heater AgentTemperature Sensor Agent

LL Communication

LL Communication

This agent communicates

with Functional Agents.

Flow Agent

Temperature Agent

Figure 4.4: Agent Communication Network

It is evident that every mechatronic device is represented by a PHL automa-
tion agent (compare Fig. 4.4 and 4.1). Those agents are either grouped by a
PH or a HL automation agent (see Sec. 3.1.2).
PHL automation agent can be a sensor or an actuator. These agents have

two responsibilities: to send data to and to receive data from mechatronic
devices. For instance, LLC of the analog distance sensor B101 is programmed
in such a way, that it can either return the actual value from the sensor or notify
if the desired prede�ned value is attained. Sensors can additionally have the
responsibility to detect failures in LLC (see Sec. 5.1.1). Agents representing

47

4.4 Re�ective World Model of Automation Agents

actuators can only send data to the actuator (with exception of the valve
V102 that contains a sensorbox). They can perform no intelligent or any
other sophisticated actions. Furthermore, PHL automation agents can only
communicate to either PH or HL automation agents as well as work agent.
PH automation agent can come in form of tank, �ow or temperature au-

tomation agent. It is self-explanatory that tank agent includes a physical
component and a high level control, but �ow and temperature agents do not
have any physical representation. They belong in this group because of the
similarity of their functions with those of tank automation agents. Their phys-
ical representation can be a heater and a temperature sensor for temperature
automation agent, or for �ow automation agent, a pump and a �ow sensor.
They have no direct control over these components, much like a tank agent
has no direct control over a tank.
The third and the last type of automation agents is HL automation agent.

There are two agents of this sort present in the system. One is a temperature
control agent and the other one is a �ow control agent. The temperature
control agent is realized as a hysteresis controller and the �ow control agent
is realized as a PI-Controller. Both of these controllers are implemented in
LLC, as HLC has no real-time capability. The temperature control agent
communicates with LLC of the heater agent and the temperature sensor agent
(see Fig. 4.4 and 3.4 for more details). In a similar way the �ow control agent
communicates with LLC of the pump agent and the �ow sensor agent.
Besides automation agents, the system also contains functional agents. Sev-

eral types of functional agents were implemented, namely order, task, work
and failure handling agent. Additionally, there is also a DF agent, which is
included in JADE by default and was therefore not implemented separately.
The functional agents communicate with each other in the manner shown in
Fig. 3.5. It should perhaps be mentioned that work agent is the only functional
agent that can communicate with automation agents, as is shown in Fig. 4.4.

4.4 Re�ective World Model of Automation

Agents

Re�ective world model as knowledge data source of automation agents was
introduced in Sec. 3.2.5. It was mentioned that world model consists of a
situation model and an activity model. World model of an automation agent is
called re�ective, as it contains knowledge speci�c to that particular automation
agent.

48

4.4 Re�ective World Model of Automation Agents

A complete world model, consisting of a situation and an activity model
could in this experiment only be de�ned for the tank automation agent. This
agent is the only one (in the plant in Fig. 4.1) that was complex enough to
include all sub-models of a world model. Other automation agents, like sensor
or valve agent, do not contain complete world models as they are too simple.
Since the tank is the only automation agent that was suitable for the world

model analysis, this example will be presented in the following. It can sub-
sequently analogously be used for designs of other world models for other
automation agents. Even though world models of some agents might not be
complete, they can still be useful when for instance designing big plants that
have cross-linked dependencies and requirements.

4.4.1 Re�ective World Model of Tank Automation
Agents

A simpli�ed world model of a tank was already introduced in Sec. 3.2.6 and
Fig. 3.7. This section gives a more detailed overview and explains complete
world models of the two aforementioned tanks in the plant, T102 and T101.
Even though they belong to the same group of agents, their world models are
not identical. This is because they employ di�erent sensors and actuators to
perform activities within them.

Situation Model

Even though the two tanks in the plant do not have the same mechatronic
devices inside of them, it is safe to say that they are rather similar. Generally, a
tank includes its physical representation and all kinds of actuators and sensors
inside of it within its de�nition. When they are individually instantiated,
adequate attributes stating which sensor and actuator they have are passed to
a corresponding agent.
Both of the observed tanks have the same ontology as presented in Fig. 4.5.

It is observable that each tank can theoretically have in�nite number of tools,
sensors and connection nodes. Fig. 4.5 also shows that each tank has charac-
teristic parameters like dimensions, minimum and maximum temperature, etc.
One of the most important parameters is isFailed. This parameter indicates if
a tank has a failure or not. When there is a failure, the corresponding tank
cannot be used until the failure is eliminated. It is also possible to make more
speci�c failure parameters, so that they can indicate the sensor or the action
that is a�ected by this failure.

49

4.4 Re�ective World Model of Automation Agents

-actVolume : float

-maxTemp : float

-maxVolume : float

-minVolume : float

-lenght : float

-height : float

-width : float

-isFailed : boolean

Tank Tool

Sensor

ConnectionNode -hasConnectionTo

*

-hasSensor

*

-hasTool

*

Figure 4.5: Ontology of the Tank Agents T101 and T102

However, the situation model is di�erent for the tanks T102 and T101 in
its other part, called facts. It generally describes the initial situation of a
system by giving speci�cation of ontology (see Sec. 3.2.6). The tank T102 has
following belonging facts:

(T102 isA Tank)

(T102 hasConnectionTo V102)

(T102 hasConnectionTo V101)

(T102 hasSensor B101)

(T102 hasSensor S112)

(T102 hasTool false)

The above facts state which sensors and actuators the tank T102 has at the
beginning of the process. It is observable that it has two sensors, B101 and
S112, two connections to the valves V102 and V101 and no tools. Facts for
the tank T101 are di�erent, as this tank contains other sensors and actuators.
They are stated in the following:

(T101 isA Tank)

(T101 hasConnectionTo V102)

(T101 hasConnectionTo V104)

(T101 hasConnectionTo P101)

(T101 hasSensor B104)

(T101 hasSensor S111)

(T101 hasSensor B113)

(T101 hasSensor B114)

(T101 hasTool E104)

(T101 hasTool M101)

50

4.4 Re�ective World Model of Automation Agents

The facts for the tank T101 show that it has three connections (V102, V104
and P101), four sensors (B104, S111, B113 and B114) and two tools (E104 and
M101).

Activity Model

The fact of the matter is surely that, since the tanks T102 and T101 do not
have the same equipment, they cannot perform the same activities. The tank
T101 contains a heater and a mixer, which makes it able to perform the heating
and mixing activities. Activity model of the tank T102 is rather simple, as
this tank contains less equipment (see Fig. 4.6). It is shown that the PH
automation agent of the tank T102 cannot itself perform any activities. It can
only observe changes of state and react upon them. In view of these facts, it is
clear that these observations can be used for detection of failures of equipment
and abnormal situations in the tank.

Activity

Detection of Tank

Failure

Observing Material

Entering

Observing Material

Leaving

«extends» «extends»«extends»

Observing Material

Leaving to V102

Detection of Failure

of B101 or P101

«extends» «extends»

Observing Material

Entering from V101

«extends»

Figure 4.6: Classi�cation of Activities for the Tank Agent T102

The tank T101 cannot perform any activities by itself either, since it is not
an actuator. However, state of the material can be changed by utilizing tools
inside of it. Change of state means that it can be heated and mixed. Fig. 4.7
shows the �rst part of the activity mode, classi�cation of activities. There are
two types of activities that can be performed. First one is observing activities
that are used to detect failures. How detection of failures functions will be
a subject of Chapter 5. The second activity type is execution of the actual
activity, like heating, mixing, etc. The tanks T101 and T102 are able to detect
abnormal states and other abnormalities within their domain.

51

4.4 Re�ective World Model of Automation Agents

Activity

Detection of Tank

Failure

Observing Material

Heating

Observing Material

Entering

Observing Material

Leaving

«extends» «extends»«extends» «extends»

Heating to

Temperature Set Point

«extends»

Mixing while

Heating

«extends»

Observing Material

Entering from V102

Observing Material

Leaving to P101

Observing Material

Heating to Wanted Set Point

Heating to Wanted

Set Point

Mixing while

Heating

Detection of

Failure of Heater

«extends» «extends» «extends» «extends» «extends» «extends»

Observing Material

Entering from V104

«extends»

Figure 4.7: Classi�cation of Activities for the Tank Agent T101

Second part of the activity model describes expectations and observations
of activities performed by an automation agent. Observation of activities is
de�ned in a similar way for all activities. To illustrate this point, one only needs
to refer to the activity observation of entering from V101 (see Fig. 4.8). This
scenario was tested on the plant and the results will be presented in Chapter
5. In a nutshell, if after a certain amount of time, the expected amount of the
material is not transferred from T101 to T102 using P101 and V101 (part of
the recipe � see sections below), then the importing activity will be stopped,
as soon as the failure is discovered.

Type: „Observing

beginning of entering 3L

from V101"

Timing: (12, 12)

Type: „Entering 3L“

Timing: (t0, t1=t0+d)

Type: „Observing beginning of

entering from V101“

Timing: (t0, t0)

Type: „Detecting valve

failure“

Timing: (t0, t1)

Type: „Observing finishing of

entering from V101“

Timing: (t1-1, t1)

Type: „Observing

finishing of entering 3L

from V101"

Timing: (22, 23)

Figure 4.8: Observation of Activities for the Tank Agent T102

It can be seen from the Fig. 4.8 that the activity consists of two sub-activities,
observation of activity, which is started at the beginning and observation if
failure will be returned as the return value from the sensors. If a failure is
determined, the activity is stopped. In a failure free situation, the activity
can be �nished when the tank is noti�ed that the desired material level was

52

4.5 Performing the Batch Process according to the Speci�ed Recipe

reached, by receiving message from the analog sensor B101.

4.5 Performing the Batch Process according to

the Speci�ed Recipe

MAS based approach that was explained in Chapter 3 as well as system design
from the above sections of this chapter is implemented on the plant shown in
Fig. 4.1. Every process is performed according to a de�ned recipe in order to
obtain the desired product. The recipe that is implemented for the purpose of
this research contains three tasks.
The �rst task is to transport 5 liters of material from the tank T102 to T101

using the shortest path, assuming there are no failures on that path. After
that in the second step the material in the tank T101 is heated to the set
temperature of 35 ◦ Celsius and mixed simultaneously. When the set temper-
ature is reached, it needs to be sustained for 15 seconds. The last task was to
transport 5 liters of material from T101 back to T102 also using the shortest
path. In this section it will be assumed that the recipe is performed without
failures. Failures will be tested in Chapter 5.
In order to manufacture a product by using the above mentioned recipe, the

product name has to be given to the order agent. The order agent then has to
�nd the recipe for that product in its knowledge base and sends the recipe to
the task agent. Upon this, the task agent divides the recipe into di�erent tasks
and sends them one after another to the work agent (see Fig. 3.5). For the
purpose of better understanding of the work�ow, there will be no analysis of
the message exchange between functional agents in the following sections. A
message containing the task was manually input and sent from the task agent
to the work agent. For this reason the �rst message sent from the task agent to
the work agent is not shown in the �gures. A graphical tool, Sni�er, included
in JADE was used for monitoring the message exchange[4]. Several snapshots
of the communication are presented in the next sections.
Figures that show the message exchange between agents contain shortcuts

for agent names. WA represents the work agent and TA the task agent. Ad-
ditional shortcuts that are used are TCA for the temperature control agent,
FCA for the �ow control agent and Temp and Flow for the temperature and
the �ow PH automation agent, respectively.

53

4.5 Performing the Batch Process according to the Speci�ed Recipe

4.5.1 Task 1: Transport 5 Liters of Material from the
Tank T102 to the Tank T101

The �rst task of the recipe is, as already mentioned, transporting 5 liters of
material from T102 to T101. This is done through the valve V102, as this is
the shortest path. For the purpose of �nding the shortest path, the Dijkstra
path �nding algorithm [26] was used. In general, work agent receives a message
and additional parameters from task agent specifying which action should be
performed. In this particular case, the task name is transport, the source is
the tank T102 and the destination is T101. The task is sent using XML as the
content language and it reads as follows:

<task>

<taskname>transport</taskname>

<param1>T102</param1>

<param2>T101</param2>

<param3>5L</param3>

<param4></param4>

<param5></param5>

</task>

The work agent has to �nd the shortest path between these two tanks. When
the path is found, the work agent interrogates the tank T102 if it has enough
material inside to transport 5 liters to another location. It also checks with
the tank T101 if it has enough place to store that amount of material. The
tank T102 can assess the current amount of material inside of it by using the
sensor B101, but the tank T101 can only say if it is or is not full by employing
the digital sensor S111. After ful�lling all the requirements for the material
transport, meaning that there is enough material in T102 and T101 is not
full, the valve V102 is opened. The valve V102 contains a sensorbox that can
determine if the valve is opened or not. Once the valve is successfully opened
(the valve agent informs the work agent) the message is sent to the tanks,
requesting them to inform the work agent when the material is transported.
This is determined by the tank T102 and its sensor B101. The action of
transporting material can also be stopped if the tank T101 is full which is
determined by the sensor S111. For more detailed overview of the message
exchange in the HLC during this task see Fig. 4.9. Once the task is performed,
the work agent sends a noti�cation to the task agent.

54

4.5 Performing the Batch Process according to the Speci�ed Recipe

Figure 4.9: Transport from Tank T102 to Tank T101 � Snapshot of JADE
Sni�er

4.5.2 Task 2: Heat the Material in the Tank T101 up to
35 ◦ Celsius

The second part of the recipe is entirely performed in the tank T101. The work
agent receives the task from the task agent. The task contains the primary
task name, heating, and the desired temperature. Additionally, it contains
the name of the tank in which the task should be performed. The task agent
knows and can pass on the tank name because this task is part of the recipe
and the material was transferred to the tank T101 in the �rst part of the recipe
(Sec. 4.5.1). In order to heat the material up equally, the mixer is used during
the whole heating process. Once the set temperature is reached, it has to be
sustained for a certain amount of time (15 seconds in this case). This task is
also sent using XML and the message content reads as follows:

55

4.5 Performing the Batch Process according to the Speci�ed Recipe

<task>

<taskname>heating</taskname>

<param1>T101</param1>

<param2>35</param2>

<param3>mixing</param3>

<param4></param4>

<param5></param5>

</task>

The above described task was tested on the aforementioned plant. The
communication between agents during this recipe is shown in Fig. 4.10. It is
evident that there is no communication to the heater agent in HLC. Instead,
the temperature control agent is used and it uses a LLC speci�c communication
for controlling the heater (see Fig. 3.4).

Figure 4.10: Heat the Material in Tank T101 up to 35 ◦C � Snapshot of JADE
Sni�er

4.5.3 Task 3: Transport 5 Liters of Material from the
Tank T101 to the Tank T102

The last task from the recipe is to transport the material back to the tank
T102. This is another transport task and is therefore performed similarly to
the �rst task (Sec. 4.5.1). Thus the work agent uses the Dijkstra path �nding

56

4.5 Performing the Batch Process according to the Speci�ed Recipe

algorithm to �nd the shortest path. That path is found through the pump P101
and the valve V101. The task is sent using XML content language, specifying
the source and the destination tank as well as the amount of material that
should be transported:

<task>

<taskname>transport</taskname>

<param1>T101</param1>

<param2>T102</param2>

<param3>5L</param3>

<param4>fca</param4>

<param5>2L/min</param5>

</task>

This task has two additional parameters. One of them states that �ow con-
trol should be utilized by employing the �ow control agent (FCA). The other
one speci�es that the �ow is set to 2 L/min. This control is performed in the
LLC, since it requires a real-time capability. As it was previously mentioned,
control of the �ow can be achieved by using a PI controller.
Analogous to the �rst task, the work agent interrogates if the tank T102

has the capability to import the desired amount of material and if there is
enough material in tank T101 before the transport is started. The tank T102
uses the analog sensor B101 to determine the current volume of the tank. The
tank T101 on the other hand can only use the digital sensor B113 that gives
information if the tank is empty or not. If there are no failures and the task
can be performed, the agents exchange messages as shown in Fig. 4.11 in order
to perform the task.

4.5.4 Usage of World Model when Performing a Task

From the above description of the recipe execution it is not obvious why the
world model of each agent and especially of the tank agent is so important
when implementing MAS. This section addresses this issue and analyses it
more closely.
First of all, it is important to remember that a work agent can only be

aware of tank agents and agents that are outside of a tank (valve and �ow
agent). When the work agent sends a message to the tank T102 informing
it that 5 liters of its material will be transformed to another tank, it has no
information about sensors that reside inside of the tank T102. In case of
entering of material to the tank T101, the same message structure that is sent

57

4.5 Performing the Batch Process according to the Speci�ed Recipe

Figure 4.11: Transport from the Tank T101 to the Tank T102 � Snapshot of
JADE Sni�er

to the tank T102 is also sent to the T101. After receiving the message, tank
agents use corresponding sensors (and actuators if needed) for task execution
by employing their world models. The message was written in XML content
language and reads as follows:

<msg>

<action>startLeaving</action>

<value>5L</value>

</msg>

If there were no analog sensors in any of the tanks, the material would
continue to be transported unless one of the tanks was empty or the other one
was full. Tanks themselves are generally aware of the sensors that they carry
and can stop an activity upon a change of a sensor state.
Tanks are also generally aware of the activities that can be performed within

them. For instance, in the second above mentioned task, the work agent sent

58

4.6 Measuring Duration of Message Transmission in a Failure Free Situation

a message to the tank T101 informing it that the material should be heated
up and mixed. The veri�cation if that tank contains a heater and a mixer is
performed by the tank itself after the message is received. If this request had
been sent to another tank, the reply message would state that the tank cannot
perform the desired activities.

4.6 Measuring Duration of Message

Transmission in a Failure Free Situation

The fact that communication between HLC and LLC is done via a local net-
work was already mentioned in previous sections. HLC is run on a PC and
LLC on controllers. Standard TCP protocol is used as a communication proto-
col [25] and measuring of message transmission duration was performed using
a network protocol analyzer Wireshark 6. Communication from HLC to LLC
was tested in the following points: opening the valve V104, starting the heater
and starting the mixer. The communication HLC-LLC-HLC is tested by send-
ing the message to the sensor B101 asking for the actual value. Exchange
of messages during execution of the task 1 from the recipe is measured (Sec.
4.5.1).
Fig. 4.12 shows the process of communication between HLC and LLC when a

message to open the valve V104 is sent. The HLC is running on a PC that has
the IP address 128.131.186.205 and the controllers have the IP 128.131.286.27
and 128.131.286.28. The valve V104 has the port 61558. Fig. 4.12 shows the
whole communication including a TCP speci�c handshake displaying �ags like
SYN, ACK and FIN [25]. Flags with PSH and ACK (push and acknowledge)
are relevant for the data transmission (see message number 24 and 25 in Fig.
4.12). It can be seen that it lasts approximately 1 millisecond from the moment
when the HLC sends the data until the LLC sends the acknowledgement that
it has received the data. Similar results are also obtained when sending data
to the heater and the mixer.
Another test that is performed is requesting an actual value from the sensor

B101. The sensor B101 with the port 61550 is an analog sensor running on the
controller with the IP address 128.131.186.27. Fig. 4.13 only shows messages
with the �ag PSH, as they are relevant for the data transmission. It is obvious
from the Fig. 4.13 that it takes approximately 3 milliseconds until the LLC
sends back the value requested from the sensor B101. The message number 25
displays sending of a message from HLC to LLC and the message number 27

6www.wireshark.org, accessed in September 2010.

59

4.6 Measuring Duration of Message Transmission in a Failure Free Situation

Figure 4.12: Opening the Valve V104 � Snapshot of Wireshark

Figure 4.13: Request the Actual Value from the Sensor B101 � Snapshot of
Wireshark

displays a reply to the HLC.
In order to establish the duration of data transmission between HLC and

LLC more precisely the following test is performed. Network tra�c during
the �rst task of the recipe is captured (see Sec. 4.5.1). The work�ow shown
in this �gure can be compared to the work�ow presented in Fig. 4.9. For
better understanding and easier following of the work�ow it should also be
mentioned that the sensor S111 has the IP and the port 128.131.186.28:61553
and the valve V102 has 128.131.186.27:61556. It should also be mentioned that
Fig. 4.14 displays only messages that contain �ags PSH and ACK, in order to
maintain clarity and better understanding. When the �ag PSH is set to true,
then the message is sent and when the �ag ACK is set, the message is received.
Message number 22 in Fig. 4.14 is triggered by the message 2 in Fig. 4.9.

A message requesting data from the sensor B101 is sent from its HLC. The
answer from the LLC to the HLC is sent approximately 2 milliseconds later.
The message number 27 in Fig. 4.14 is triggered by the message 6 in Fig. 4.9.
This message is sent in order to obtain the value of the digital sensor S111.
An answer is sent back to its HLC after approximately 4 ms.
When the current values of the sensors B101 and S112 are received in re-

spective HLC, HLC of tank automation agents calculate if material transport
can start. After that a message is sent to the HLC of the V102 valve agent,
indicating to the LLC that the valve should be opened. The message from
the HLC of the valve V102 to its LLC is the message number 30 in Fig. 4.14
(triggered by the message number 9 in Fig. 4.9). It can be seen that the

60

4.6 Measuring Duration of Message Transmission in a Failure Free Situation

Figure 4.14: Performing Task 1 from the Recipe � Snapshot of Wireshark

HLC needed approximately 51 milliseconds to process the data received from
the sensors. Time that lapsed between the messages number 29 and 31 was
approximately 52 milliseconds (communication LLC-HLC-HLC-LLC).
The results presented above are only few samples of the performed tests.

Other results of the performed tests indicate a slightly di�erent duration of
transmission but a similar order of magnitude (see Table 4.1). Several examples
of the obtained results from the measuring of message transmission duration
for the communication LLC-HLC-HLC-LLC are presented in the table. These
results are obtained from Fig. 4.14 and from Fig. 5.4 described later in Sec. 5.3.
Additionally the experiment of measuring the message transmission duration
during the task 1 was performed twice and the sample results of the second
round are also shown in the Table 4.1. From the results presented in this table
it can be concluded that message transmission duration from LLC to HLC,
HLC to HLC and HLC to LLC adds up to approximately 30 ms.

61

4.7 Conclusion

Sample Nr. Duration [ms]
1. 42
2. 52
3. 10
4. 49
5. 8
6. 36
7. 15
8. 29
9. 9
10. 9
11. 47
12. 48

Table 4.1: Duration of Communication LLC-HLC-HLC-LLC

4.7 Conclusion

The arguments and results that were presented suggest that the MAS approach
using automation agents and re�ective world model can be implemented on a
plant and used in batch process automation. It was shown that tank automa-
tion agents use their world models as knowledge base to communicate with
other agents and also to perform diverse activities. For the purpose of this re-
search a tank agent with a complete world model was implemented, as it is the
only agent that could perform more complicated activities and observations.
A recipe was tested on the above described plant and execution of several

tasks was presented through message exchange. Agents communicate and
share information among each other by means of message exchange in order to
perform given tasks. Communication between HLC and LLC is shown on the
example of execution of the �rst task from the recipe. Message transmission
duration between HLC and LLC in failure free case was measured.
Task execution presented in this chapter was described only for a failure

free situation. The truth of the matter is surely that failures and abnormal
situations can happen in batch process automation. Therefore the next chapter
demonstrates behavior of the system assuming a presence of a failure.

62

5 Failure Detection and

Recovery

Introduction of the new approach to batch process automation o�ers many
advantages to the industries employing it. It was shown in the previous chapter
that MAS with automation agents and re�ective world models can be applied
to batch process automation. A de�ned recipe for production of a speci�c
batch was tested on a plant in a failure free situation.
This chapter describes behavior of a system in a setting where a failure oc-

curs. Three phases of failure handling process, namely failure detection, failure
isolation and failure recovery, were already mentioned in Sec. 3.3. Failures can
be detected by using functions of LLC as well as by using world models of
automation agents. In the �rst case, a failure can be detected in LLC and
recovered by HLC. For the purpose of this research, two examples of this fail-
ure handling type will be presented. One of them employs the analog sensor
B101, but, due to the simplicity of the plant, the recovery part could not be
implemented. The second scenario involves the valve V102 not being able to
get opened.
It was already mentioned that failures can be detected, isolated and recov-

ered by using only HLC. In order for the recovery to work, it has to be assumed
that there are no failures with the communication channel between HLC and
LLC, as HLC needs values from LLC to perform its functions.
It should also be mentioned that failure recovery is very often not even

possible due to de�cient functions of plants. Recovery of a failure in future
text refers to failure isolation and stopping of an activity that caused the
failure.

63

5.1 Failure Detection and Recovery Using Both HLC and LLC

5.1 Failure Detection and Recovery Using Both

HLC and LLC

5.1.1 Failure Detection in LLC by Using Analog Sensors

Failure detection in LLC was performed by employing analog sensors in the
system. This function is implemented for the distance sensor B101. In this
scenario, when the failure is detected in the LLC, the HLC gets informed.
It was mentioned in previous sections that, when actions entering and leaving

are performed, the tank agent sends a message to the analog sensor agent B101
requesting from it a noti�cation when the end value is reached. This message
is sent in the following format:

<msg>

<action>informWhen</action>

<value>5L</value>

</msg>

With this message the sensor agent receives instruction to inform the tank
agent when the tank is �lled with 5 liters of material. If the sensor agent
receives this message it means that the level of material is about to change.
Upon this the timer in LLC is started and 10 seconds later the initial and the
current value are compared (see Fig. 5.1 � INOLD represents the initial value
and INNEW the value after 10 seconds). If the di�erence between them is less
than a de�ned value (epsilon in Fig. 5.1) it indicates that there is a failure.
The di�erence value is taken to be 30, as the controller returns integer values
representing the values of the sensor. Accuracy of a controller depends on its
architecture. In this case, the delta value of 30 was su�cient to determine if
the level of material in the tank has changed7.
If a failure is detected, error code is sent to HLC. This error code could

represent a failure of a sensor, or a failure with actions (entering or leaving).
In any case, the action being performed at that moment has to be stopped and
that sensor as well as actions are isolated and marked as failed.
The failure recovery could not be implemented due to lack of devices. If

there had been another analog sensor in that tank, it could have been used
to establish if there is a failure with sensor or the problem lies with execution

7For a 12-bit controller architecture, used in this case, maximum binary value of 1111 1111
1111 corresponds to decimal value of 4095. Decimal value of 30, used for failure detection,
corresponds to binary value of 11110 and this delta value is required for analog sensors
during failure detection, as their value �uctuates constantly due to various reasons.

64

5.1 Failure Detection and Recovery Using Both HLC and LLC

Figure 5.1: Failure Detection in LLC of Analog Sensor B101 � Snapshot of
4DIAC-IDE

of the activity. For more precise failure detection the �ow analog sensor B102
could be used, but one cannot be certain that there is no failure with the
pipeline between the tank T101 and the tank T102. If the sensor B102 shows
no failure, whereas the sensor B101 does, this can mean either that the sensors
are malfunctioning or that the pipeline between the tanks is broken.

5.1.2 Failure Recovery Using Failure Handling Agent

Another case of failure detection that involves complete recovery combined the
valve V102 (see plant in Sec. 4.1) and the path �nding algorithm. The valve
V102 contains a sensorbox with two digital sensors. These sensors indicate if
the valve is opened or closed. When the instruction to open the valve is sent,
the LLC of the valve agent V102 controls if it actually gets opened and the
corresponding value is sent to the HLC.
The �rst task of the recipe (see Sec. 4.5.1) required the material to be trans-

ported from the tank T102 to T101 through the valve V102, because this is
the shortest path. The valve V102 is a pneumatic valve, which means that it
needs compressed air to change its state. For the purpose of this experiment
the air supply was cut o�. Thereafter command to open was sent, but, as
expected, the valve could not be opened. As a result a failure message was
sent to the HLC. In this example the failure was detected in the LLC.
In the second step of the failure handling, isolation, this valve was marked

as having a failure and could not be used until the failure was removed. This
also implies that this valve cannot be considered for the purpose of �nding a
path from one tank to another.
These two phases, detection and isolation, do not involve other agents. How-

65

5.1 Failure Detection and Recovery Using Both HLC and LLC

ever, the third one, recovery, is performed by employing additional agents,
especially the failure handling (FH) agent (see Sec. 3.1.1).

Figure 5.2: Failure Recovery by Finding Another Path

Fig. 5.2 shows message exchange when a failure occurs during the �rst task
of the recipe (Sec. 4.5.1). The message number 10 shows the valve V102
informing the work agent that there is a failure. After the work agent receives
the message, it stops all activities connected with that task and asks the FH
agent for a solution of the failure. The FH agent suggests �nding another path
for the transport of the material from the tank T102 to T101 to the work agent
(the message number 15 in Fig. 5.2). Starting with the message number 18,
the task gets performed from the beginning, only in this case the path �nding
algorithm will not consider the route through the valve V102. The path used

66

5.2 Failure Detection and Recovery Using the World Model

for the transport is via V101 and V104. After that the system continues to
work as usual.

5.2 Failure Detection and Recovery Using the

World Model

The failure detection scenario explained in Sec. 5.1.1 describes a situation
where an analog sensor detects a failure at the beginning of an action. This
shows that an action that starts without a failure does not have to �nish in
the same way. For detection of a failure at the beginning of an action only one
agent needs to be employed (in case of failure described in Sec. 5.2 it is analog
sensor agent).
During the action entering in the tank T102, the material is transported

through the pump P101 (see Fig. 4.1). The pump with the �ow sensor agent
and the �ow control agent is grouped around the �ow PH automation agent.
Failure detection was further improved by employing a �ow control agent in
that process. During the third task of the recipe (Sec. 4.5.3) the message that
is sent to the work agent is:

<task>

<taskname>transport</taskname>

<param1>T101</param1>

<param2>T102</param2>

<param3>5L</param3>

<param4>fca</param4>

<param5>2L/min</param5>

</task>

From the above task it is obvious that transporting 5 liters of material takes
2.5 minutes if the pump is transporting 2 liters per minute. This fact updates
the world model of the tank T102 and the observation of the action entering
is used to detect the failure (Fig. 4.8). The tank T102 observes the activity
of entering from the valve V101. Since it knows when the action is scheduled
be �nished, it will detect a failure if this does not happen. A similar case was
explained by Merdan et al. in [37].
The failure used as a basis for failure handling scenario described in this

section was also caused manually by opening the valve V104. In this case part
of material could �ow back to the T101 and the expectation from the world
model could not be satis�ed.

67

5.2 Failure Detection and Recovery Using the World Model

Fig. 5.3 shows the message exchange for this failure. One might notice that
until the message number 15 there is no di�erence to Sec. 4.5.3. Starting with
the messages number 16 and 17, where the tank agent informs the sensor and
the work agent that there is a failure. Consequently, all activities in the tank
have to be stopped. The work agent closes the valves and stops the pump as
means of prevention. Finally, the work agent informs the task agent that the
transport was not successfully done.

Figure 5.3: Failure Detection using World Model in HLC

In order to improve failure detection and recovery, additional observations
can be added to the above model. To rely merely on a �nal veri�cation at the
end of the process, like in the above case, can hardly be considered su�cient.
Alternatively, the process could be supplemented with an additional veri�ca-
tion after one minute, stating if 2 liters of material were transported. If the
failure that occurred in the �rst minute is timely detected, this could prevent
possible damage caused by executing the whole transport.

68

5.3 Measurement of Duration of Failure Handling

5.3 Measurement of Duration of Failure

Handling

Behavior of the system when the valve V102 cannot be opened was described
in Sec. 5.1.2. It was mentioned that immediately after the failure was detected,
the whole transport task is stopped. After that the work agent, according to
the instruction from the FH agent, �nds another path in order to transport
material from the tank T102 to T101.
During this scenario, exchange of messages over the network was monitored

and a snapshot from Wireshark is shown in Fig. 5.4. This �gure shows only
a portion of the communication, from the point where the V102 valve agent
detects the failure, until the point where the work agent opens the valves
V101 and V104, because these two are used as the alternative path. The
valve V101 has the IP and port 128.131.186.27:61560 and the valve V104 has
128.131.186.27:61558. The message number 13 in Fig. 5.4 triggers the message
number 10 in Fig. 5.2. With this message, LLC of the valve V102 reports the
failure to its HLC. After isolating V102, the work agent opens the valves V101
and V104. This action is represented by the messages number 35 and 37 in
Fig. 5.4 which are triggered by messages number 26 and 27 in Fig. 5.2. The
part of the task before failure detection and after failure recovery is same as
in the failure free case.
In Fig. 5.4 it is shown that the systems needs between 1.039 and 1.042

seconds from the point where the failure is detected until the point where the
system recovered the failure.

5.4 Conclusion

Chapter 4 presented behavior of the system in a failure-free situation, when
execution of the recipe can be performed without interruption. However, ab-
normal situations and behaviors are common in batch processes. This chapter
presented two ways of failure handling. The �rst one is by employing LLC for
failure detection and the second one is by employing HLC for failure detection.
Failure isolation can be done in LLC as well as HLC. In the last step, failure

recovery is performed in HLC. It was shown that when a valve failure (fail-
ure of the valve V102) occurs, the system needs approximately 1.04 second to
isolate the component with failure and to recover. This is a very good result
considering that it would surely take longer to reroute manually. This failure
handling could also have been done by employing centralized monolithic sys-
tems. However, if this was not a manually induced failure, but a failure on

69

5.4 Conclusion

Figure 5.4: Part of Communication during Failure Recovery � Snapshot of
Wireshark

the controller which hosts the valve V102 and all the other components, the
system would have stopped and human interaction would have been necessary.
This would undoubtedly take longer than 1.04 second.
Furthermore, if there was a failure on the whole controller, the failure could

not be detected by employing only LLC. Instead, detection can be done by
combining HLC and involving the world model of the valve agent V102.

70

6 Discussion of Results

In previous chapters it was shown that distribution of systems is possible by
employing automation agents with re�ective world models. LLC of automation
agents is developed by using standard IEC 61499 function blocks that support
distribution of every mechatronic component in a system through their event
based execution. HLC is developed with JADE and it uses FIPA standardized
messages for communication between agents.
The multi-agent system presented in this thesis o�ers a new approach to

batch process automation. By implementing agent technology, systems are
getting new dimension of arti�cial intelligence and thereby evident improve-
ment to the currently employed techniques are achieved. This new agent based
approach raises some di�culties as well. This section discusses the results of
implementation of agent technology in batch process automation.

6.1 Gains of the MAS Based Approach

Every automation agent contains a world model that serves as its knowledge
source. Automation agents are aware of what happens in their immediate
environment, but not necessarily of that what happens in other parts of the
system. Being independent from each other, gives them advantage in situation
where one part of the system malfunctions or stops working.
Furthermore it is shown that this approach makes it possible to solve ab-

normal situations without human interaction. It was demonstrated that the
system can react if one part of the equipment stops working properly. In the
case explained in Sec. 5.1.2, the valve V102 could not be opened. This failure
was caused on purpose by cutting o� the air supply for this pneumatic valve,
in order to observe the corresponding behavior of the system. Failures on real
systems could be caused by actual disruption on controllers, or if the air supply
was cut o� for real. In that case the manual recon�guration would surely take
longer than the obtained result of 1.04 second needed in the case presented in
Chapter 5.
Another advantage of this type of application is that automation agents do

not depend on other components and could easily be added and removed from

71

6.2 Outcome of the Implementation

a system with minor adaptations. HLC and LLC are autonomous and perform
operations according to speci�ed events and behaviors. If the plant (Fig. 4.1)
was being equipped with an additional tank (for instance a tank that has the
same world model as the tank T101), only the IP address and ports of the
newly deployed mechatronic components and the route to and from the new
tank for the path �nding algorithm would need to be updated. After that the
system would be ready to start performing recipes that involve the new tank.
One more important gain of the system and the implementation presented in

previous chapters is that the communication duration between HLC and LLC
was noticeably reduced compared to the approach presented by Lopez et al. in
[35]. In that approach HLC and LLC were both deployed on a controller and
used shared memory to exchange the data. They used an embedded controller
with the aJile100 microprocessor that works at 100 MHz. Their results indicate
that it takes approximately 2 seconds for the message to cover the way LLC-
HLC-HLC-LLC. In the approach presented in this thesis, the whole HLC was
deployed and run on a PC with 4 GB of RAM and an Intel Core 2 Duo CPU,
P8600 working at 2.4 GHz. HLC and LLC control were connected through a
local network and the message transmission duration over the path LLC-HLC-
HLC-LLC lasted approximately 30 milliseconds. Even though a duration of 30
milliseconds for the path LLC-HLC-HLC-LLC could be considered su�cient
for the actions that require a real-time capability, implementation of the PI
and hysteresis controller was still done in LLC in order to avoid consequences
of a possible network breakdown that could cause considerable damage. This
could for instance happen if the heater could not be stopped from working after
it had been turned on. Even if the LLC of the PI-controller and the sensor
were deployed on two di�erent controllers and connected over a network, the
possibility of network breakdown would still exist. However, the probability of
thereby caused problems would be reduced due to fewer network connections
as compared to a situation where a communication to the HLC is also carried
out.

6.2 Outcome of the Implementation

Implementation of automation agents with re�ective world models in batch
process automation enables systems to become distributed, �exible and failure
tolerant. Autonomous agents have potential to support the plug and play
requirements. This new approach is tested on a small plant for study purposes
and it shows remarkable performance and results worthy of further research,
because it seems to have a great potential.

72

6.3 Summary of the Results

However, there are also few possible di�culties with the implementation.
One of them is occasional inability to forecast behavior of agents and the
system. The agents communicate with each other in order to execute their
tasks. This communication needs to include some de�ned constraints for the
agent performance in order to prevent possible undesirable behavior.
For the implementation explained in Chapter 4 a PC and two controllers

were used. This controller architecture ful�lls the usual requirements of the
plant that was used for testing. It might be necessary to use additional con-
trollers and PCs in bigger-scale plants, which could consequently lead to ad-
ditional costs. Additional expenses might also be caused by switching to this
technology from the one currently employed, as well as by the need for educa-
tion of personal developing and interacting with these new systems.
This approach focuses on the controlling part of batch process and does not

tackle its planning and scheduling. As it was shown in Chapter 2, research in
this �eld is being carried out. Admittedly, these aspects were not implemented
for the purpose of this thesis. However, due to generic and modular architec-
ture of the system it is possible to extend it with those additional aspects of
batch process automation.

6.3 Summary of the Results

Results of the implementation can be summarized in the following:

• Distributed autonomous systems are able to work and perform activities
independently.

• MAS are able to detect, isolate and recover failures without human in-
teraction.

• Within this implementation, message requires approximately 30 millisec-
onds for the path LLC-HLC-HLC-LLC. HLC can be implemented for
systems, where 30 milliseconds of latency time for some actions does not
a�ect the performance of the system.

• LLC and HLC can be reused for implementation of other similar com-
ponents.

• Automation agents representing mechatronic devices can easily be added
or removed from the system as they are independent.

73

7 Conclusion and Outlook

The presented MAS approach is relatively new in process automation. It
enables shortening of time-to-market and it enables �exible production.
In this thesis implementation of automation agents with re�ective world

model was researched and discussed. Every mechatronic component was rep-
resented by a single automation agent. Additionally other automation agents
(like those representing a tank or those controlling temperature) as well as
functional agents were implemented in the system.
Automation agents consist of HLC and LLC. LLC developed according to

IEC 61499 was deployed and run directly on a controller and HLC was devel-
oped according to the FIPA standards and run on a PC. It was shown that
even though these parts of automation agent communicate over a network, this
does not cause long latency time.
It was also shown that a system such as the one implemented can execute a

recipe on its own and that in case of a failure it is possible to recover in 1.04
second. It is possible to detect failures in LLC as well as in HLC using world
models. These are contained in HLC of every automation agent and they are
used as knowledge base for decision making.
The focus of this thesis lies on the controlling part of batch processes. Au-

tomation agents perform their activities according to speci�cations of their
behaviors, which are activated upon message reception. This implementation
could in the future work be extended to scheduling and planning of batch
processes.
Further possible future work includes testing of this implementation on a

more sophisticated and equipped plant. Behavior of the system could be tested
for a situation where the plant (Fig. 4.1) is for instance equipped with addi-
tional tanks or additional pipelines and pumps that provide alternative paths
for material transport.
It is also possible to install additional analog and digital sensors that can im-

prove failure detection and also apply additional actuators for failure recovery.
It was already mentioned before that all of this supplementary equipment can
be added with minimal adaptations. Among the required adaptations is prepa-
ration of new recipes as well as con�guration of failure handling. By adding
new equipment it would be possible to implement and test various tasks and

74

7 Conclusion and Outlook

also to combine it with scheduling and planning.
This approach and the implemented MAS serves as basis for future develop-

ments in this �eld. It was shown that this approach can be implemented and
used in batch processes. However, there are many aspects that still need to be
researched and tested on more sophisticated and complex plants.

75

Bibliography

[1] Grigoris Antoniou, Frank van Harmelen. Web Ontology Language: OWL,
pp 91-110. In Handbook on Ontologies. Ste�en Staab, Rudi Studer.
Springer-Verlag Berlin Heidelberg, Germany. 2009.

[2] Franz Baader, Ian Horrocks, Ulrike Sattler. Description Logics, pp 21-43.
In Handbook on Ontologies. Ste�en Staab, Rudi Studer. Springer-Verlag
Berlin Heidelberg, Germany. 2009.

[3] Mike Barker, Jawahar Rawtani. Batch Process Management. Newnes,
an imprint of Elsevier, Oxford, UK, 2005.

[4] Fabio Bellifemine, Giovanni Caire, Dominic Greenwood. Developing
Multi-Agent Systems with JADE. John Wiley&Sons Ltd., West Sussex,
England, 2007.

[5] Frank Dignum, Mark Greaves. Issues in agent communication. Springer-
Verlag Berlin Heidelberg, Germany, 2000.

[6] D. Dimitrova, S. Panjaitan, I. Batchkova, G. Frey. �IEC 61499 Com-
ponent Based Approach for Batch Control Systems�. In Proceedings of
17th World Congress of the International Federation of Automatic Con-
trol (IFAC 2008), Seoul, Korea, July 2008.

[7] Bernard Favre-Bulle. Automatisierung komplexer Industrieprozesse, Sys-
teme, Verfahren und Informationsmanagement. SpringerWienNewYork,
Vienna, Austria, 2004.

[8] FESTO Controller CPX-CEC-C1.
http://www.festo.com/ext/en/10485.htm, September 2010.

[9] FIPA Standards. FIPA � Foundation for Intelligent Physical Agents.
http://www.�pa.org, 2010.

[10] FIPA Standard. FIPA ACL Message Structure Speci�cation. Founda-
tion for Intelligent Physical Agents, Geneva, Switzerland, 2002. Public
Available Speci�cation. http://www.�pa.org.

76

Bibliography

[11] FIPA Standard. FIPA Agent Management Speci�cation. Foundation for
Intelligent Physical Agents, Geneva, Switzerland, 2004. Public Available
Speci�cation. http://www.�pa.org.

[12] Nicola Guarino, Daniel Oberle, Ste�en Staab. What is Ontology?, pp
1-17. In Handbook on Ontologies. Ste�en Staab, Rudi Studer. Springer-
Verlag Berlin Heidelberg, Germany. 2009.

[13] Wolfgang A. Halang, Krzysztof M. Sacha. Real-time systems: implemen-
tation of industrial computerised process automation. World Scienti�c
Publishing, Singapore, Singapore, 2001.

[14] T. Hamaguchi, T. Hattori, M. Sakamoto, H. Eguchi, Y. Hashimoto and
T. Itoh. �Multi-agent Structure for Batch Process Control�. In Proceed-
ings of the 2004 IEEE International Conference on Control Applications,
Taipei, Taiwan, September 2004.

[15] Xia Hong, Song Jiancheng. �Multi-Agent Based Scheduling for Batch
Process�. In Proceedings of the 8th International Conference on Elec-
tronic Measurement and Instruments (ICEMI 2007), pp 2-464-2-267,
2007.

[16] Tanvir Hussain and Georg Frey. �Migration of a PLC Controller to an
IEC 61499 Compliant Distributed Control System: Hands-on Experi-
ences�. In Proceedings of the 2005 IEEE of the International Conference
on Robotics and Automation, Barcelona, Spain, April 2005.

[17] IEC 60050-351. International Electrotechnical Vocabulary � Part 351:
Control technology (IEC 60050-351:2006). DIN Deutsches Institut für
Normung e.V. Beuth Verlag GmbH, Berlin, Germany, 2009.

[18] IEC 61131. Batch control � Part 1: Models and terminology. Interna-
tional Electrical Commission, Geneva, 1997. Public Available Speci�ca-
tion.

[19] IEC 61499-1. Function blocks � Part 1: Architecture. International Elec-
trical Commission, Geneva, Switzerland, 2005. Public Available Speci�-
cation.

[20] IEC 61512-1. Batch control � Part 1: Models and terminology. Interna-
tional Electrical Commission, Geneva, 1997. Public Available Speci�ca-
tion.

77

Bibliography

[21] David James. �Batch of the day�. In IET computing
and control engineering, pages 30�35, August/September 2006.
http://www.theiet.org/control

[22] David James. �Batch Process Automation�. In IET computing
and control engineering, pages 32�37, December/January 2006/07.
http://www.theiet.org/control

[23] Kurt Jensen. Coloured Petri nets: basic concepts, analysis methods, and
practical use. Springer-Verlag Berlin Heidelberg, Germany, 1997.

[24] Karl-Heinz John,Michael Tiegelkamp. IEC 61131-3: Programming In-
dustrial Automation Systems. Springer-Verlag, Berlin, Germany, 2010.

[25] Charles M. Kozierok. The TCP/IP guide: a comprehensive, illustrated
Internet protocols reference. No Starch Press Inc., San Francisco, USA,
2005.

[26] Sven Oliver Krumke, Hartmut Noltemeier. Graphentheoretische
Konzepte und Algorithmen. Vieweg Teubner, Fachverlage GmbH, Wies-
baden, Germany, 2009.

[27] Wilfried Lepuschitz, Franz Königseder and Alois Zoitl. �Conjunction of
a Distributed Control System based on IEC 61499 with a Commercial
Batch Management System�. In Proceedings of the 2009 IEEE Confer-
ence on Emerging Technologies & Factory Automation, pp 1-8, 2009.

[28] Wilfried Lepuschitz. Distributed Control in Process Automation � with
the focus on possible applications of IEC 61499. Master's thesis, Tech-
nical University of Vienna, Vienna, 2008.

[29] Wilfried Lepuschitz, Gottfried Koppensteiner, Manuel Barta, Thanh
Tung Nguyen and Constantin Reinprecht. �Implementation of Automa-
tion Agents for Batch Process Automation�. In Proceedings of the 2010
IEEE International Conference on Industrial Technology (ICIT2010), pp
524-529, 2010.

[30] Wilfried Lepuschitz, Mathieu Vallée, Alois Zoitl, and Munir Merdan.
�Online Recon�guration of the Low Level Control for Automation
Agents�. In Proceedings of the 36th Annual Conference of IEEE In-
dustrial Electronics (IECON2010), Glendale, AZ, USA, November 2010,
IN PRESS.

78

Bibliography

[31] Wilfried Lepuschitz, Alois Zoitl, Mathieu Vallée, and Munir Merdan.
�Toward Self-Recon�guration of Manufacturing Systems Using Automa-
tion Agents�. In IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, 2010, IN PRESS.

[32] Robert Lewis. Modelling control systems using IEC 61499. Technical
report, Technical University of Vienna, 2005.

[33] Dennis Lock. Project management. Gower Publishing Limited, Hamp-
shire, UK, 2007.

[34] O. J. Lopez and J. M. Lastra. �A Real-Time Interface for Agent-Based
Control�. In Proceedings of the 2nd IEEE International Symposium on
Industrial Embedded Systems (SIES2007), pp. 49�54, 2007.

[35] Omar J. Lopez Orozco and Jose L. M. Lastra. Agent-Based Control
Model for Recon�gurable Manufacturing Systems. In Proceedings of the
12th IEEE Conference on Emerging Technologies and Factory Automa-
tion (ETFA2007). pp 1233-1238, 2007.

[36] Munir Merdan, Wilfried Lepuschitz, Ingo Hegny and Gottfried Koppen-
steiner. �Application of a Communication Interface between Agents and
the Low Level Control�. In Proceedings of the 4th International Con-
ference on Autonomous Robots and Agents (ICARA2009), pp 628-633,
2009.

[37] Munir Merdan, Wilfried Lepuschitz, Bakir �ahovi¢, Mathieu Vallée.
�Failure Detection and Recovery in the Batch Process Automation Do-
main using Automation Agents�. In Proceedings of the 2nd International
Conference on Advances in Computing, Control, and Telecommunication
Technologies, Jakarte, Indonesia, December 2010, IN PRESS.

[38] Munir Merdan, Mathieu Vallée, Wilfried Lepuschitz, and Alois Zoitl.
�Monitoring and diagnostics of industrial systems using automation
agents�. In International Journal of Production Research, Vol. 49, No.
5, 2011, IN PRESS.

[39] Peter Neumann. SPS-Standard: IEC 61131: Programmierung in verteil-
ten Automatisierungssystemen. Oldenbourg Industrieverlag GmbH,
München, Germany, 2000.

[40] Oxford Englisch Dictionary Online.
http://dictionary.oed.com/, 2010.

79

Bibliography

[41] J. Peltola, J. Christensen, S. Sierla, K. Koskinen. �A Migration Path to
IEC 61499 for the Batch Process Industry�. In Proceedings of the 5th
IEEE International Conference on Industrial Informatics, pp 811-816,
2007.

[42] Teppo Pirttioja. Applying Agent Technology to Contructing Flexible
Monitoring Systems in Process Automation. PhD thesis, Helsinki Uni-
versity of Technology, Helsink, Finland, 2008.

[43] Teppo Pirttioja, Aarne Halme, Antti Pakonen, Ilkka Seilonen, Kari
Koskinen. �Multi-agent System Enhanced Supervidion of Peocess Au-
tomation�. In Proceedings of the IEEE Workshop on Distributed Intelli-
gence and Its Applications (DIS2006), pp 151-156, 2006.

[44] Masaru Sakamoto, Hajime Eguchi, Takashi Hamaguchi, Yutaka Ota,
Yoshihiro Hashimoto and Toshiaki Itoh. �Agent-Based Batch Process
Control Systems�. In M.Gh. Negoita et al. (Eds.): KES 2004, LNAI
3214, pp. 398-404, Springer-Verlag Berlin Heidelberg, Germany, 2004.

[45] Ilkka Seilonen, Kari Koskinen, Teppo Pirttioja, Pekka Appelqvist,
Aarne Halme. �Reactive and Deliberative Control and Cooperation in
Multi-Agent System Based Process Automation�. In Proceedings of the
2005 IEEE International Symposium on Computational Intelligence in
Robotics and Automation, Espoo, Finland, 2005.

[46] Paul N. Sharratt. Handbook of batch process design. Blackie Academic
and Professional, an imprint of Chapman&Hall, London, UK, 1997.

[47] R. Studer, R. Benjamins, and D. Fensel. �Knowledge engineering: Princi-
ple and methods�. In Transactions on Data and Knowledge Engineering,
25(1-2, pp. 161-198, 1998.

[48] K. Thramboulidis, S. Sierla, N. Papakonstantinou, K. Koskinen. �An
IEC 61499 Based Approach for Distributed Batch Process Control�. In
Proceedings of 5th IEEE International Conference on Industrial Infor-
matics (INDIN2007), Vienna, Austria, July 2007.

[49] Mathieu Vallée, Hermann Kaindl, Munir Merdan, Wilfried Lepuschitz,
Edin Arnautovi¢ and Pavel Vrba. �An Automation Agent Architecture
with A Re�ective World Model in Manufacturing Systems�. In Proceed-
ings of the 2009 IEEE International Conference on Systems, Man, and
Cybernetics (SMC2009), San Antonio, Texas, USA, pp 305-310, 2009.

80

Bibliography

[50] Mathiheu Vallée, Munir Merdan, Pavel Vrba. �Detection of Anomalies
in a Transport System using Automation Agents with a Re�ective World
Model�. In Proceedings of the 2010 IEEE International Conference on
Industrial Technology (ICIT2010), pp 489-494, 2010.

[51] Denny Vrande£i¢. Ontology Evaluation, pp 293�313. In Handbook on On-
tologies. Ste�en Staab, Rudi Studer. Springer-Verlag Berlin Heidelberg,
Germany. 2009.

[52] Alois Zoitl. Basic Real-Time Recon�guration Services for Zero Down-
Time. PhD thesis, Technical University of Vienna, Vienna, Austria,
2007.

[53] 4DIAC-Consortium. �4DIAC � framework for distributed industrial au-
tomation and control, open source initiative� 2010. Access date Septeber
2010. [Online]. Available: www.fordiac.org

81

	Abstract
	Kurzfassung
	Acknowledgement
	Contents
	List of Figures

	1 Introduction
	1.1 General Objectives
	1.2 Task Definitions
	1.3 Structure of the Thesis

	2 State of the Art
	2.1 Automation Systems
	2.2 Batch Processes
	2.2.1 Advantages of Batch Processing
	2.2.2 Challenges in Batch Processing
	2.2.3 IEC 61512 Standard for Batch Processes
	2.2.4 Programming Standards in Batch Processing – Current and Future Trends

	2.3 IEC 61499 – Function Blocks
	2.3.1 IEC 61499 Reference Models
	2.3.2 Why IEC 61499?
	2.3.3 Migration to IEC 61499

	2.4 Multi-Agent Systems (MAS)
	2.4.1 Agent Technology
	2.4.2 Communication between Agents
	2.4.3 Concept of Multi-Agent Systems
	2.4.4 Usage of Multi-Agent Systems in Batch Process Automation
	2.4.5 Ontologies

	2.5 Conclusion

	3 Multi-Agent Systems for Batch Processing Automation
	3.1 Architecture of Multi-Agent Systems
	3.1.1 Functional Agents
	3.1.2 Automation Agents
	3.1.3 Production Workflow Using Multi-Agent Systems

	3.2 Architecture of Automation Agents
	3.2.1 High Level Control (HLC)
	3.2.2 Low Level Control (LLC)
	3.2.3 Communication between HLC and LLC
	3.2.4 Communication between Two Automation Agents Realized in LLC
	3.2.5 Reflective World Model
	3.2.6 Contents of World Model

	3.3 Failure Detection and Recovery in MAS Based Batch Processes
	3.4 Conclusion

	4 Implementation of Automation Agent Architecture with Reflective World Model on a Laboratory Process Plant
	4.1 Equipment and Hardware
	4.1.1 Target Plant
	4.1.2 Control System

	4.2 Software
	4.2.1 Implementation of HLC
	4.2.2 Implementation of LLC

	4.3 Agent Overview and Communication between Agents
	4.4 Reflective World Model of Automation Agents
	4.4.1 Reflective World Model of Tank Automation Agents

	4.5 Performing the Batch Process according to the Specified Recipe
	4.5.1 Task 1: Transport 5 Liters of Material from the Tank T102 to the Tank T101
	4.5.2 Task 2: Heat the Material in the Tank T101 up to 35 Celsius
	4.5.3 Task 3: Transport 5 Liters of Material from the Tank T101 to the Tank T102
	4.5.4 Usage of World Model when Performing a Task

	4.6 Measuring Duration of Message Transmission in a Failure Free Situation
	4.7 Conclusion

	5 Failure Detection and Recovery
	5.1 Failure Detection and Recovery Using Both HLC and LLC
	5.1.1 Failure Detection in LLC by Using Analog Sensors
	5.1.2 Failure Recovery Using Failure Handling Agent

	5.2 Failure Detection and Recovery Using the World Model
	5.3 Measurement of Duration of Failure Handling
	5.4 Conclusion

	6 Discussion of Results
	6.1 Gains of the MAS Based Approach
	6.2 Outcome of the Implementation
	6.3 Summary of the Results

	7 Conclusion and Outlook
	Bibliography
	Bibliography

