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Kurzfassung

Ungewisse Daten entstehen in vielen Anwendungen, beispielsweise in Sensor-
netzwerken, bei der Informationsextraktion und bei der Datenintegration. Während
gewöhnliche relationale Datenbanken keine Möglichkeit bieten diese Daten zu
verarbeiten, verwalten ungewisse Datenbanken die Ungewissheit auf geeignete
Weise. Sie modellieren eine Vielzahl an möglichen Welten. Die Herausforderung
besteht darin, ungewisse Datenbanken möglichst Platz sparend darzustellen, und
gleichzeitig eine effiziente Abfragebeantwortung zu ermöglichen. U-Relationen
sind ein ein äußerst Platz sparendes Darstellungssystem für ungewisse Datenban-
ken. Abfragen in positiver relationaler Algebra, erweitert um einen Operator für
mögliche Antworten, können in polynomieller Zeit (Datenkomplexität) bearbeitet
werden.

In dieser Arbeit gehen wir der Frage nach, wie U-Relationen aktualisiert wer-
den können. Wir zeigen, dass positive relationale Algebra nicht ausreicht, um
beliebige Updates durchzuführen, und reduzieren das Aktualisierungsproblem auf
das Problem der Mengendifferenz zwischen zwei U-Relationen. Wir stellen zwei
Methoden dar: Dekompression und Negation. Während die Dekompression eine
hohe Komplexität aufweist, berücksichtigt die Negation auch die Struktur der U-
Relationen und erzielt dadurch bessere Ergebnisse. Zusätzlich erweitern wir U-
Relationen und beschreiben zwei neue Darstellungssysteme für ungewisse Daten-
banken: Ui-Relationen und Uint-Relationen. Sie behalten die Vorteile von U-
Relationen bei und reduzieren die Komplexität für die Mengendifferenz um einen
exponentiellen Faktor.

Nach einer Aktualisierung werden U-Relationen möglicherweise nicht opti-
mal dargestellt. Daher untersuchen wir das diesbezügliche Minimierungsproblem.
Wir beweisen, dass das Minimierungsproblem NP-schwer ist und erläutern zwei
Optimierungsheuristiken. Eine der beiden kann in die Berechnung der Mengendif-
ferenz integriert werden, wodurch wir eine bessere obere Schranke für die Kom-
plexität der Mengendifferenz zeigen können.

Um die praktische Anwendbarkeit der beschriebenen theoretischen Konzepte
zu belegen, haben wir einen Prototyp entwickelt. Unsere Experimente zeigen, dass
unsere Lösungen gut mit der Größe der Datenbanken skalieren. Außerdem zeigt
ein Vergleich, dass sowohl Ui-Relationen als auch Uint-Relationen deutlich den
U-Relationen überlegen sind.
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Abstract

Uncertain data arises in many applications, for example from sensor networks,
information extraction and data integration. While ordinary relational databases
do not have the capabilities to process uncertain data, uncertain databases conve-
niently manage the uncertainty. They model a multitude of possible worlds. The
challenge is to represent uncertain databases succinctly, and at the same time al-
low for efficient query evaluation. U-relations are a very succinct representation
system for uncertain databases, which have polynomial time data complexity for
positive relational algebra queries extended by an operator for computing possible
answers.

In this work we study the problem of updating U-relations. We show that
positive relational algebra does not suffice to model arbitrary updates and reduce
the problem of updating U-relations to computing set difference on U-relations.
We present two approaches: decompression and negation. While decompression
has a rather high complexity, negation considers the structure of a U-relation and
thus gives much better results. Additionally we extend U-relations and present
two new representation systems for uncertain databases: Ui-relations and Uint-
relations. They keep the advantages of U-relations and lower the complexity of set
difference exponentially.

As updating U-relations can lead to a suboptimal representation of the uncer-
tain database, we investigate the problem of optimizing U-relations. We prove
that finding the minimal representation is intractable and present two optimization
heuristics. We integrate one of them into the computation of set difference, which
gives a better bound for the complexity of set difference.

To show the practicability of our theoretical concepts we have created a proto-
type. Our experiments show that it scales well with increasing database sizes, and
a comparison makes clear that Ui-relations and Uint-relations are an improvement
over U-relations.
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1. Introduction

The amount of uncertain data rises continually. Sources of uncertain data are for exam-
ple sensor networks [13], information extraction and data integration. More and more
devices get equipped with different sensors, just think of smartphones. They gather a lot
of highly uncertain location data, which is used by many applications. When perform-
ing information extraction, ambiguous information on the web leads to uncertain data.
And in data integration conflicting sources introduce uncertainty. Ordinary relational
databases do not provide the necessary abilities to process uncertain data. This explains
the increasing need for uncertain databases that manage the uncertainty conveniently.

Incomplete and uncertain databases were introduced in the 1980’s [26, 2]. Over the
past years, research on uncertain databases has increased steadily. For a fairly recent
overview, see for example [4, 47, 17, 3]. Mostly the possible worlds semantics [2] is
used to manage uncertain data. In certain databases there is one world, consisting of
all the tuples in the database. Uncertain databases consist of a multitude of possible
worlds, of which one is supposed to be the true one. A special case of uncertain data-
bases are probabilistic databases, which have received a lot of attention by the research
community recently (e.g. [32, 44, 27, 5, 43]). In the probabilistic case each world is
assigned a probability value. Conceptually, queries on uncertain databases are eval-
uated on every world individually. In practice this cannot be done as the number of
worlds easily reaches astronomic numbers [9]. The challenge is to represent uncertain
databases succinctly, and at the same time allow for efficient query evaluation.

Several representation systems for uncertain databases have been described and are
available for use [11, 51, 52, 45, 12]. Antova et al. introduced U-relations [6], a very
competitive representation system for uncertain databases. They have polynomial time
data complexity for positive relational algebra queries extended by an operator for com-
puting possible answers. Compared to other representation systems of uncertain data-
bases, U-relations can be exponentially more succinct. So-called ws-sets describe in
which worlds a tuple actually exists. Ws-sets are formulas in disjunctive normal form
over variables with finite domains. U-relations can be used in practice through the
MayBMS project [28] which implements U-relations on top of a relational database
management system.

As in the case of certain databases, it is also natural to update uncertain databases.
In [7] an API for uncertain databases, which covers updates, is presented. The paper
mentions that for updates decompression of the succinct representation may be neces-
sary. However, it leaves open the details and also the question whether there are any

1



CHAPTER 1. INTRODUCTION 2

better methods possible. Another open problem is the evaluation of unrestricted rela-
tional algebra queries on uncertain databases. The problem of evaluating positive rela-
tional algebra queries (queries without set difference) on uncertain databases has been
studied extensively (e.g. [16, 8, 15, 19]). There has been some work beyond positive
relational algebra, like queries with having clauses [41] and queries with one level of
not-exists [50]. Fink et al. [20] describe an approach for unrestricted relational algebra
queries, but in a formalism that does not exhibit polynomial time data complexity for
computing possible answers.

In this thesis, we investigate the problem of updating uncertain and probabilistic
databases (in the form of U-relations). We have identified four principal research ques-
tions:

• Updates. How can updates be modeled on U-relations? It is quite easy to see
that set difference can be used to model updates. But set difference is expen-
sive. Are there any restricted cases for which positive relational algebra suffices?
The advantage of positive relational algebra is that it has polynomial time data
complexity.

• Set difference. How can set difference be modeled on U-relations? In [7] the use
of decompression for updates is mentioned. In a similar way decompression can
be used for set difference. What is the complexity of decompression? Are there
other approaches that have a lower complexity?

• Optimizing U-relations. Different U-relations can represent the same uncertain
database. After updating a U-relation the representation might not be optimal.
How hard is it to minimize a U-relation such that it still represents the same in-
formation? In case the problem is intractable it is of interest to find tractable
optimization heuristics.

• Experimental evaluation. How do the developed concepts and algorithms behave
in practice? A prototypical implementation can serve as a proof of concept.

Summary of Results
We study the problem of updating U-relations. In summary, we define the set difference
operator for U-relations and show how to use it to model updates. We work out algo-
rithms and study their complexity, and we prove the benefit of two new representation
systems and of various optimization measures. The main contributions are:

• Formal definition. We are the first to define relational set difference on U-relations
such that the result is again a U-relation. We reduce the problem to computing
inverses of ws-sets. To this end we propose two approaches: Decompression and
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negation. Whereas decompression is a naive method that always depends expo-
nentially on the number of involved variables, negation considers the structure of
the ws-set to reduce the cardinality of the result. On top of relational set difference
we define a comprehensive update language.

• New representations. We introduce Ui-relations, which are a generalization of
U-relations in that they additionally allow inequalities. We prove that by using
Ui-relations the complexity of query answering can drop exponentially but never
increase. Because of certain disadvantages of Ui-relations, we introduce another
generalization: Uint-relations. They replace equalities by intervals over the vari-
ables. For both generalizations we define how relational algebra queries extended
by the possible operator can be evaluated.

• Optimization of world sets. Updating uncertain databases can lead to a non-
optimal representation of uncertain relations, which increases the size of the data-
base and the time needed to answer queries. We prove that finding the minimal
representation of a U-relation, Ui-relation or a Uint-relation is intractable. In con-
sequence we propose two polynomial-time optimization heuristics that reduce the
size of the representation. We integrate one of them into the computation of in-
verses, which indeed results in a better performance. Additionally we can thus
prove a significantly better worst-case complexity. On Uint-relations another opti-
mization problem arises which we prove to be intractable too.

• Prototype. We have extended MayBMS to support set difference and arbitrary
updates. Experimentally we show the practicability and also the limits of our
approach. A comparison makes clear that Ui-relations and Uint-relations are an
improvement over U-relations. With them the query evaluation time and the size
of the updated databases is lowered considerably.

Organization
The following Chapter 2 shortly defines the basic notions used in this work. Then in
Chapter 3 we formally introduce U-relations and show how positive relational queries
are translated into queries on U-relations. Our main theoretical results are presented
in the Chapters 4–6. In Chapter 4 we trace updates back to computing the inverse of
a ws-set. To reduce the complexity of computing inverses we describe Ui-relations
and Uint-relations in Chapter 5. In Chapter 6 we study the optimization of U-relational
databases. Chapter 7 describes our implementation of the developed concepts and in
Chapter 8 we discuss the experimental results. Finally, Chapter 9 concludes and gives
an outlook to future work.



2. Preliminaries

In this chapter we shortly introduce the basic notions used throughout this thesis. For
more details on database theory we refer to comprehensive textbooks [1, 21, 40, 18].

Definition 2.0.1 (schema). A schema Σ is a finite set of relation symbols {R1, . . . , Rn}
which have a sequence of attributes [Ai,1, . . . , Ai,li ].

We write sch(R) to refer to the attributes of a relation symbol R and R[A,B,C] to
denote a relation symbol R with attributes [A,B,C].

Definition 2.0.2 (database). A databaseD over a schema Σ associates with each relation
symbol Ri in Σ a relation RD

i .

Elements of a relation are called tuples. Given a tuple t, we use the notation t.A to
reference the value of the attribute A of t and t.Ā to reference the values of the set Ā of
attributes of t.

Definition 2.0.3 (uncertain database). An uncertain database D over a schema Σ is
a finite set of databases over Σ. Each database D ∈ D is called a possible world.
Uncertain databases are also called world sets because they are sets of possible worlds.

A probabilistic database is an uncertain database where each possible world is as-
signed a probability. We call a formalism for representing uncertain databases a repre-
sentation system.

Definition 2.0.4 (complete representation system). A representation system for uncer-
tain databases is complete if it can represent every uncertain database.

Relational algebra is a variable-free query language over a schema, consisting of
the operators select (σ), project (π), cross product (×), rename (ρ), union (∪) and set
difference (\). Positive relational algebra is relational algebra without set difference.

SQL is a data manipulation and query language based on relational algebra. We use
it additionally to relational algebra because it allows us to define functions and custom
data types.

We use formulas over Boolean variables and over variables with finite domains. In
the case of Boolean variables an atom is just a variable, otherwise an atom is an equality
between a variable v and a constant in the domain of v. A literal is an atom or a negated
atom. A term is a conjunction of literals and a formula in disjunctive normal form
(DNF) is a disjunction of terms. A clause is a disjunction of literals and a formula in

4



CHAPTER 2. PRELIMINARIES 5

conjunctive normal form (CNF) is a conjunction of clauses. For variables we use letters
at the end of the alphabet, whereas for constants letters at the beginning of the alphabet.

We assume that the reader is familiar with the basic concepts of complexity theory
and refer to [10, 37, 22, 24] for further details. We just recall two complexity classes
which occur later in this work. NP is the class of problems that can be decided in poly-
nomial time by a nondeterministic Turing machine. NP-hard problems are considered
to be intractable which means that presumably there does not exist any efficient algo-
rithm to solve them. ΣP

2 is the class of decision problems solvable in nondeterministic
polynomial time with access to a coNP-oracle and part of the polynomial hierarchy. ΣP

2

contains NP and is supposed to be different from NP. The intractability of problems in
ΣP

2 follows from the intractability of problems in NP.

Given a function f : X → Y we call X the domain of f and Y the codomain of f .
The image of f is a set Y ′ ⊆ Y such that Y ′ = {f(x) | x ∈ X}. A function f : X → Y
is surjective if for each y ∈ Y there exists an x ∈ X such that f(x) = y. If f : X → Y
is surjective then |X| ≥ |Y |. Given a function f we write f -1 to denote its inverse. The
inverse of a function is not necessarily unique. In such a case we mean with f -1(y) the
set of elements x for which f(x) = y.

When using an unordered structure like for example a set we sometimes assume an
arbitrary order on it to be able to address the elements of the structure. Given an ordered
structure A, we write A[i] to refer to the i-th element of A. Note that we use zero-based
indexes.



3. U-relations

The simplest representative of uncertain data in a relational database are Codd’s “null”
values [14] which are in use in SQL. Imieliński and Lipski [26] showed that, when using
null values, only selection and projection are supported in a semantically meaningful
way. They proposed conditional tables (c-tables) to represent uncertain data such that
all operators of relational algebra are supported in a semantically meaningful way. In
c-tables each tuple is annotated with a formula over equalities x = c between variables
and constants, using ∧,∨ and ¬. The formula describes in which of the possible worlds
the tuple actually exists. While c-tables are a great theoretical concept they have less
practical value, because they allow formulas with negation which are hard to evaluate.

According to [6], a representation system for uncertain databases should satisfy the
following needs:

• It should be complete, i.e. it should be able to represent every uncertain database.

• It should be succinct, i.e. large sets of possible worlds should be representable
using only little space.

• It should allow for efficient query evaluation.

Antova, Jansen, Koch and Olteanu introduced U-relations [6] as a succinct represen-
tation system for uncertain databases. U-relations are restricted c-tables [30] and mainly
satisfy the described needs. They are a complete representation system for uncertain
databases and more succinct than other representation systems. Due to the restrictions
positive relational algebra queries, extended by an operator for possible answers, can be
evaluated in polynomial time (data complexity). For positive relational algebra queries
practically feasible algorithms have been shown, but not yet for set difference. In Chap-
ter 4 we will close this gap.

U-relations use the closed world assumption [42]. This means that every fact which
is not represented by a database is assumed to be false. World-set algebra [8] (WSA)
is a query language for uncertain databases based on relational algebra. Additionally
to the operators of relational algebra WSA provides operators to introduce uncertainty
(repair-key) and to reduce uncertainty (poss). Its full power – it captures second-order
logic over finite structures – is shown in [29]. The query language we use for U-relations
is a subset of WSA.

First we introduce U-relations by giving an example, then the subsequent sections
define U-relations formally and how the operators of positive relational algebra queries

6
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W Var Val
x 1
x 2
y 1
y 2
z 1
z 2

UP D Tid Product
() 1 Mozart-CD
() 2 Key ring
(y = 1) 3 Globe
(y = 2) 3 Snow globe

UC D Tid Country
(x = 1) 1 Austria
(x = 2) 1 France
() 2 Germany
() 3 Switzerland

US D Tid Stars
() 1 ? ? ? ? ?
() 2 ? ? ?
(z = 1) 3 ? ? ??
(z = 2) 3 ? ? ? ? ?

Figure 3.1: A U-relational database representing product ratings.

can be evaluated on them. We also describe what probabilistic U-relations are. Com-
pared to the original definition we sometimes use different notations that fit better for
our purpose.

3.1 Running Example
On the Internet there are lots of sites where users can rate products. For example Ama-
zon customers can write reviews and rate products by using one to five stars. As-
sume that we maintain a database to collect such user ratings. The ratings we get
are often ambiguous, for example because of different rating schemes on different
web sites, or because of uncertainty introduced by the information extraction tool we
use. We want to store for each rating the product name, the country of origin of the
reviewer and the rating itself. To do that we use an uncertain database of schema
Rating[Product,Country, Stars].

Suppose there are three user ratings we want to store in the database. The first one
is about a CD by Mozart and gives five stars. The country of the reviewer could be
either Austria or France because the website where the review was posted is Austrian
but the language of the review French. To model this ambiguity we introduce a binary
variable x. The valuation x = 1 means we believe that Austria is the correct country
and x = 2 means we believe that France is the correct country. We use three U-relations
to represent the three fields of the relation Rating. They vertically partition the relation.
Figure 3.1 shows how this rating is encoded in the three U-relations UP (for the product
name), UC (for the country) and US (for the star rating). The D columns (descriptor
columns) restrict in which cases we believe an attribute to be the true one and the Tid
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columns (tuple ids) are used to join the vertical partitions.
The tuple with id 1 has the product name “Mozart-CD”. This attribute is certain,

hence the empty D column. The two possibilities for the country are encoded by the
first two rows of UC , where the D column differentiates between the two valuations
of the variable x. The rating with 5 stars is certain again, hence the empty D column
in US for the tuple with id 1. Beside this first rating the database in Figure 3.1 holds
two more ratings. A certain one with id 2 which is about a key ring in form of the St.
Stephen’s Cathedral which gets 3 stars by a German reviewer. The third rating is by a
Swiss tourist. The data extraction tool we use cannot determine whether it is about a
globe or a snow globe. We use the new variable y to distinguish these two cases. y = 1
means that the third rating is about a globe, y = 2 that it is about a snow globe. The
rating by the Swiss is “good”, which could be 4 or 5 stars in our system. The variable z
distinguishes the two cases, z = 1 meaning 4 stars, z = 2 meaning 5 stars. Altogether
this gives 4 possibilities for the third rating.

The relation W is the so-called world table and defines the possible values the vari-
ables can have. The three variables all have the domain {1, 2}, hence we have 2∗2∗2 = 8
possible worlds in total. We will use the described U-relational database as a running
example in this work.

3.2 Definition of U-relations
In this section we formally define U-relations and their semantics. We use a set of
variables over finite integer domains to define the set of possible worlds. The variables
and domains are represented by a world-table.

Definition 3.2.1 (world table). A world table is a relation of schema W [Var,Val]. It
defines variables (attribute Var) and their domains (attribute Val).

Definition 3.2.2 (variables defined by a world table). Given a world tableW, vars(W ) =
{x | (x, y) ∈ W} is the set of variables defined by W .

Definition 3.2.3 (domain of a variable). Given a world-tableW and a variable x defined
by W , domW (x) = {y | (x, y) ∈ W} is the set of domain values of x.

Note that by the context it is mostly clear which world table is meant. In these cases
we just write dom(x) instead of domW (x). Given a world-table W and a variable x in
W , we use the function max(x) = max(dom(x)) to refer to the maximum domain value
of x.

Definition 3.2.4 (normalized world-table). A world table W is normalized if the do-
mains of all variables defined by W are consecutive natural numbers starting with 1,
i.e. ∀x ∈ vars(W ) : dom(x) = {1, . . . ,max(x)}.
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From now on we consider only normalized world tables that define variables with a
domain size ≥ 2. This does not restrict expressiveness.

Given a world table W each total valuation of variables defined in W identifies a
possible world. It follows that the total number of possible worlds is Πx∈vars(W )max(x).

Definition 3.2.5 (ws-descriptor). Given a world table W , a world-set descriptor (ws-
descriptor) over W is a (not necessarily total) valuation of variables defined by W .

The name refers to the semantics and will become clear in the next section. If a
ws-descriptor is a total valuation then we call it a total ws-descriptor. In case it is
clear which world table (that defines the variables and domains) is meant we omit it
and speak just of ws-descriptors. We use the logical “and” symbol in our notation as a
separator, and to denote valuations we use the “equality” symbol. For example we write
(x = 1 ∧ y = 2 ∧ z = 5). Given a ws-descriptor d we write |d| do denote the number
of equalities d consists of (its length). We assume an arbitrary order on the equalities in
a ws-descriptor d, to be able to address them. We write d[i].var to refer to the variable
on the left hand side of its i-th equality and d[i].val to refer to the constant on the right
hand side of its i-th equality. Given a ws-descriptor d, we use vars(d) to refer to the set
of variables occurring on the left hand side of the equalities in d.

Definition 3.2.6 (consistent ws-descriptors). Two ws-descriptors are consistent if they
do not assign different values to the same variable.

For example (x = 1 ∧ y = 2) and (x = 1 ∧ z = 3) are consistent, whereas
(x = 1 ∧ y = 2) and (x = 2) are inconsistent.

Definition 3.2.7 (ws-set). A ws-set over a world table W is a set of ws-descriptors over
W .

Definition 3.2.8 (consistent ws-sets). Two ws-sets S1 and S2 are consistent if there exist
ws-descriptors d1 ∈ S1, d2 ∈ S2 such that d1 and d2 are consistent.

We write vars(S) to denote the set of variables occurring in the ws-descriptors of a
ws-set S. Similar to ws-descriptors we assume an arbitrary order on ws-sets so that we
can address their elements by index. Given a ws-set S we write S[i] to denote the i-th
ws-descriptor in S.

Following Antova et al. [6] we define U-relations.

Definition 3.2.9 (U-relational database). A U-relational database over schema Σ =
(R1[A1], . . . , Rk[Ak]) is a tuple (U1,1, . . . , U1,m1 , . . . , Uk,1, . . . , Uk,mk

,W ), whereW is a
world-table and each relation Ui,j has schema Ui,j[Di,j;TRi

;Bi,j] such that Di,j defines
ws-descriptors overW , TRi

defines tuple ids (positive integers) andBi,1∪· · ·∪Bi,mi
=

Ai.
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We call the relations U1,1, . . . , Uk,mk
that represent the actual relations R1, . . . , Rk

U-relations. The data fields Bi,j are the attributes of a U-relation that represent the
actual data, whereas the ws-descriptors and the tuple ids are meta-data. U-relations
partition the actual relations Ri vertically and the tuple ids are used to reconstruct the
entire relations. The vertical partitions are used to concisely represent uncertainty at the
attribute-level. Different attributes of the same tuple can independently have different
values. Uncertainty at the attribute-level allows a more succinct representation than
uncertainty at the tuple-level.

Example 3.2.10. To fill the presented terms with more life we relate them to our running
example (Figure 3.1). It represents a U-relational database over a schema consisting of
one relation symbol Rating, hence k = 1 in the example. The three U-relations UP , UC
and US represent the actual relation Rating, hence m1 = 3. The data fields are the
attributes Product,Country and Stars.

The same attribute can occur in more than one of the vertical partitions of a U-
relational database. This overlap can be useful to speed up querying. However, in this
thesis we assume that there is no overlap, i.e. Bi,j ∩ Bi,l = ∅ for 1 ≤ i ≤ k and
1 ≤ j, l ≤ mi, j 6= l.

We make one difference to the original definition by Antova et al. in that we use
an appropriate data type ws-descriptor to encode ws-descriptors into a single column of
the U-relations Ui,j . Antova et al. encode ws-descriptors into several columns such that
each column represents one variable/value combination. This difference is necessary to
be able to carry out difference and update operations, as we will see later in Chapter 4.

Semantics
Consider a U-relational database U = (U1,1, . . . , U1,m1 , . . . , Uk,1, . . . , Uk,mk

,W ) over
schema Σ = (R1[A1], . . . , Rk[Ak]). Its world table W defines the set of variables and
their domains. Each total valuation of the variables identifies a possible world.

The function ω defines the meaning of ws-descriptors.

Definition 3.2.11 (ω for ws-descriptors). Given a ws-descriptor d over a world tableW ,
ω(d) is the set of total valuations one gets by extending d to total valuations over the
variables defined in W .

For example consider the ws-descriptor d = (x = 1 ∧ y = 3) and assume that the
world table defines three variables x, y and z such that dom(x) = dom(y) = dom(z) =
{1, 2, 3}. Then ω(d) is the set of valuations where x = 1, y = 3 and z is either 1, 2 or 3.

Total valuations identify possible worlds. Thus we can say that ws-descriptors de-
scribe sets of worlds, which finally explains the term world-set descriptor. The empty
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Rating Product Country Stars
Mozart-CD Austria ? ? ? ? ?
Key ring Germany ? ? ?
Snow globe Switzerland ? ? ??

Figure 3.2: A possible world of the product ratings database.

ws-descriptor () describes the set of all worlds. In contrast total ws-descriptors de-
scribe exactly one world. If and only if two ws-descriptors d1 and d2 are consistent,
ω(d1) ∩ ω(d2) 6= ∅.

We define the relations for each possible world separately. Consider an arbitrary
world identified by a total valuation w. For each relation Ri (1 ≤ i ≤ k) we consider
all the vertical partitions Ui,j (1 ≤ j ≤ mi). Let sch(Ui,j) = [D, T̄ , Ā]. We consider
all tuples in Ui,j . Let (d, t̄, ā) be a tuple in Ui,j . d is the ws-descriptor of the tuple, t̄
are the tuple ids and ā the data values. If w ∈ ω(d) then we insert the values ā into the
Ā-attributes of the tuple with identifier t̄ in relation Ri.

In general, some tuples in Ri may be left partial, i.e. there are tuples where not all
attributes are defined. These tuples are removed fromRi. We consider only U-relational
databases where no tuple is left partial. Antova et al. call such U-relational databases
reduced.

Example 3.2.12. We return to the running example about product ratings (see Fig-
ure 3.1). With the total valuation w = (x = 1 ∧ y = 2 ∧ z = 1) we choose a possible
world. Let us see what tuples are part of the relation Rating in this world. We consider
first the vertical partition UP . It holds that w ∈ omega(()), therefore “Mozart-CD” is
the Product attribute of a tuple with id 1, and “Key ring” is the Product attribute of a
tuple with id 2. We have that w /∈ ω((y = 1)), hence we skip the “Globe”. In contrast,
w ∈ ω((y = 2)) and so “Snow globe” is the Product attribute of a tuple with id 3. We
do the same with the tuples in the vertical partitions UC and US , which fills for each
of the tuples the Country and the Stars attribute. Figure 3.2 pictures the result, i.e. the
relation Rating in the possible world identified by w.

The U-relational database of the example would not be reduced, if – for example –
the vertical partition UC did not contain the tuple where the Country attribute is “Aus-
tria”. Then the Country attribute of the tuple with id 1 would not be defined, while
the other two attributes would be defined. It follows that the tuple would be left partial
in the world identified by w, and thus the U-relational database would not be reduced.
Note that a U-relational database can still be reduced, if none of the attributes of a tuple
is defined in some world. This just means that this tuple does not exist in that world.

The following definition expresses that valid U-relational databases do not provide
contradictory values for the same tuple attribute in the same world.
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W Var Val Prob
x 1 0.4
x 2 0.5
x 3 0.1
y 1 0.2
y 2 0.8

R D T A
(x = 2 ∧ y = 2) 1 a1

(x = 3) 2 a2

(y = 1) 2 a2

Figure 3.3: A probabilistic U-relational database.

Definition 3.2.13 (valid U-relational database). A U-relational database (U1, . . . , Un,
W ) is called valid if for all U-relations Ui[Di, T , Ai] and Uj[Dj, T , Aj] (1 ≤ i, j ≤ n)
that are vertical partitions of the same relation the following holds. For all tuples t1 ∈ Ui
and for all tuples t2 ∈ Uj it holds that if t1.T = t2.T and t1.Di is consistent with t2.Dj ,
then for all A ∈ (Ai ∩ Aj), t1.A = t2.A.

Note that this includes the case i = j. If i 6= j thenAi∩Aj = ∅ because we assumed
that there is no overlap. We consider only valid U-relational databases.

We write rep(U) to refer to the set of partial relations a U-relation U represents,
and we write rep(UDB) to refer to the uncertain database a U-relational database UDB
represents.

Note that a U-relation can contain tuples t1 and t2 that have equivalent tuple ids
and data values but different ws-descriptors, i.e. t1 = (d1, t, a) and t2 = (d2, t, a) and
d1 6= d2. This means that the values a are part of the worlds described by d1 or d2. To
find out in which worlds a data value a exists we have to consider all ws-descriptors
of tuples that have the same data value a. This is why we need to deal with sets of
ws-descriptors, ws-sets. The semantics of ws-sets follows from the semantics of U-
relations. We extend the function ω to ws-sets.

Definition 3.2.14 (ω for ws-sets). Given a ws-set S over a world table W , ω(S) =⋃
d∈S ω(d).

If and only if two ws-sets S1 and S2 are consistent, ω(S1) ∩ ω(S2) 6= ∅. A ws-set S
over a world table W can be seen as a formula φ in DNF over the variables defined in
W , where the atoms are equalities between variables and constants from their domains.
Then S describes exactly the worlds that are identified by total valuations which satisfy
φ. For example, consider the ws-set {(x = 1 ∧ y = 1), (z = 1)}. It corresponds to the
formula (x = 1 ∧ y = 1) ∨ z = 1.
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3.3 Probabilistic U-relations
A probabilistic database is an uncertain database where each possible world is assigned
a probability, such that the sum of probabilities over all worlds is 1. In U-relations, we
add to each domain value of a variable a probability value. Then the world-table has the
schema W [Var,Val,Prob]. Figure 3.3 gives an example of a probabilistic U-relational
database. Considering the world table, the worlds described by the ws-descriptor (x =
2∧ y = 2) of the first tuple in R have the probability 0.5 ∗ 0.8 = 0.4. The probability of
a world described by a total ws-descriptor d is the product of the probabilities assigned
to the valuations in d as defined in W . For each variable/value pair the probability has
to be unique, i.e. (Var,Val) is a key in W , and the sum of probability values for the
different valuations of a variable has to be 1. It follows that the sum of probabilities
over all worlds is 1, as defined.

When using probabilistic databases we are interested in the probabilities of tuples,
i.e. the probability that a tuple is actually part of the relation. For example, we want
to know the probability that there is a tuple with A = a2 (see Figure 3.3). a2 occurs
twice, therefore we need to compute the probability of the worlds described by the ws-
set {(x = 3), (y = 1)}. The two ws-descriptors in the ws-set are independent, hence
the probability for a2 is 1 − (1 − 0.1) × (1 − 0.2) = 0.28. The problem of computing
the exact probability of a ws-set is #P-hard [16]. In [30] an algorithm is presented to
compute the exact probability of a ws-set. There also exists an approximation algorithm
for probability computation of ws-sets [36].

3.4 Query Language
The query language we employ consists of the operators of relational algebra, the pos-
sible operator (poss) and the merge operator. The merge operator is used to reconstruct
relations from the vertical partitions which U-relations are. It works by joining two
partitions on the common tuple id attributes and selecting only those combinations that
have consistent ws-descriptors, i.e. that actually exist in some world. The possible op-
erator closes the possible worlds semantics and returns the tuples that are part of any
world.

Conceptually we want to evaluate a query Q on each possible world of an uncertain
database. This is infeasible in practice because of the enormous number of possible
worlds. Therefore we translate Q into a query Q̂ which we can evaluate on the U-
relational encoding of the uncertain database, such that the result of Q̂ represents the
result of Q. This is pictured in Figure 3.4. We start with a U-relational database U and
a query Q. U represents an uncertain database D. By applying Q to each of the worlds
in D individually we get an uncertain database D′. We want that the translated query Q̂
produces a U-relational database U ′ that represents exactly D′.
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U U ′

D D′

Q̂

rep(·) rep(·)

Q

Figure 3.4: Concept of query evaluation on the representation level.

Figure 3.5 shows the function J·K that translates positive relational algebra queries
with poss and merge operators into SQL queries on U-relations. Compared to the orig-
inal definition (in [6]) we translate to SQL because it supports user-defined data types.
Instead of giving a translation for the join operator we just give a translation for the
cross product because the join operator is equivalent to a cross product followed by a
selection. Q1 and Q2 are subqueries whose results are represented by the U-relations U1

and U2. The D1 respectively D2 column holds ws-descriptors and describes the set of
worlds in which a tuple is present. The T 1 respectively T 2 columns hold the tuple ids
and the A1 respectively A2 columns the actual data values. The condition α is used by
the merge operator and the condition ψ by all operators that join tuples (cross product
and merge).

Selection works as on a certain database, with the restriction that the select predicate
must not refer to the ws-descriptor nor to the tuple id. The projection operator keeps the
ws-descriptor and the id of a tuple additionally to the selected attributes. Renaming is
straightforward, with the constraint that only the data attributes are renamed. The union
operator adds “empty” columns T̄2 to U1 and T̄1 to U2 to bring U1 and U2 to the same
schema. The poss operator projects out the ws-descriptors and the tuple ids, and keeps
only the data values with an empty ws-descriptor (which represents all worlds). SQL
essentially works on multisets, so we use the distinct keyword to keep only pairwise
different tuples. The cross product uses the function ψ(·) to filter out combinations
of tuples that do not exist in any world by checking the consistency of the two ws-
descriptors. If the two ws-descriptors are consistent then they are combined by the
function concat(·) that appends one ws-descriptor to another. Given two ws-descriptors
d1 and d2, ω(concat(d1, d2)) = ω(d1) ∩ ω(d2). The condition α guarantees that only
tuples which have the same tuple id are joined by the merge operator, while ψ filters
again the consistent combinations. Note that union, cross product and merge rely on the
following equalities (S1, S2 are ws-sets):

ω(S1) ∪ ω(S2) = ω(S1 ∪ S2)

ω(S1) ∩ ω(S2) = ω({concat(d1, d2) | d1 ∈ S1, d2 ∈ S2, ψ(d1, d2)})
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From the translation J·K if follows that

Theorem 3.4.1 (see [6]). Positive relational algebra queries extended with poss and
merge can be evaluated on U-relational databases in polynomial time data complexity.

In Section 4.4 we will complete the translation of relational algebra for U-relations
and explain how the set difference operator can be translated.

Examples
Consider again the U-relational database of Figure 3.1. In Figure 3.6 two queries on
this database are presented. Query Q1 asks for all information about ratings from Swiss
persons. The selection can be pushed inside and the query rewritten into the equivalent
queryQ′1, to reduce the number of tuples in the join. The result UQ1 contains all possible
four combinations of the tuple with id 3 which is selected by the condition Country =
Switzerland. Due to the vertical partitioning the database does not have to explicitly
store all possible combinations. They are generated only when needed.

Query Q2 is a Boolean query that asks whether there are any ratings from Switzer-
land. It does not need the vertical partitions UP and US and therefore they do not have
to be merged, which gives a succinct result relation UQ2 .

Linear Time Consistency Check
The naive implementation of the consistency check ψ (see Figure 3.5) needs quadratic
time to decide whether the intersection ω(d1) ∩ ω(d2) of two ws-descriptors d1 and d2

is empty or not. By keeping the equalities of a ws-descriptor sorted by variable name
(using an arbitrary but fixed order) we can check consistency of two ws-descriptors in
linear time, as shown by Algorithm 1. The equalities of the two ws-descriptors are
iterated quasi in parallel.

It remains to keep the ws-descriptors sorted. To achieve that the concat function
must not append one ws-descriptor to the other, but merge them. This needs linear time,
as the plain concatenation.
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Let A1 := {a1, . . . , an},
U1 := JQ1K with schema [D1, T 1, A1],

U2 := JQ2K with schema [D2, T 2, A2],

α :=
∧

T∈T 1∩T 2

(U1.T = U2.T ),

ψ(d1, d2) :=
∧

i<|d1|,j<|d2|

(d1[i].var = d2[j].var→ d1[i].val = d2[j].val),

concat(d1, d2) := (d1 ∧ d2).

Jσφ(Q1)K := select ∗ from U1 where φ;

Constraint: φ is a condition on A1.

JπX̄(Q1)K := select D1, T̄1, X̄ from U1;

Constraint: X̄ ⊆ Ā1.

Jρb←ak(Q1)K := select D1, T̄1, a1, . . . , ak−1, ak as b, ak+1, . . . , an from U1;

JQ1 ∪Q2K := select D1, T̄1, 0̄ as T̄2, Ā1 from U1 union
select D2, 0̄ as T̄1, T̄2, Ā2 from U2;

Constraint: Ā1 = Ā2, T̄1 ∩ T̄2 = ∅.
Jposs(Q1)K := select distinct (), Ā1 from U1;

JQ1 ×Q2K := select concat(D1, D2), T 1, T 2, A1, A2 from U1, U2

where ψ(D1, D2);

Constraint: T 1 ∩ T 2 = ∅.
Jmerge(Q1, Q2)K := select concat(D1, D2), T 1 ∪ T 2, A1, A2 from U1, U2

where α and ψ(D1, D2);

Figure 3.5: Translation of positive relational algebra queries with poss and merge into
queries on U-relations (based on [6]).
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Q1 : σCountry=Switzerland(merge(UP ,merge(UC , US)))
Q′1 : merge(UP ,merge(σCountry=Switzerland(UC), US))

UQ1 D Tid Product Country Stars
(y = 1 ∧ z = 1) 3 Globe Switzerland ? ? ??
(y = 1 ∧ z = 2) 3 Globe Switzerland ? ? ? ? ?
(y = 2 ∧ z = 1) 3 Snow globe Switzerland ? ? ??
(y = 2 ∧ z = 2) 3 Snow globe Switzerland ? ? ? ? ?

Q2 : πtrue(σCountry=Switzerland(UC))

UQ2 D Tid
() 3 true

Figure 3.6: Exemplary queries and their results.

Algorithm 1: CONSISTENT(d1, d2)

Require: sorted ws-descriptors d1, d2

1: i = j = 0
2: while i < |d1| and j < |d2| do
3: if d1[i].var = d2[j].var and d1[i].val 6= d2[j].val then
4: return false
5: end if
6: if d1[i].var < d2[j].var then
7: i++
8: else
9: j++

10: end if
11: end while
12: return true



4. Updates and Set Difference on
U-relations

We consider updates that manipulate existing worlds. Other forms of updates introduce
new worlds or remove possible worlds. The repair-key operator introduces new worlds
to repair violated key constraints. In [38] U-relations are proposed for collaborative
data management. Instead of updating data items new versions of the data items are
inserted. A rating system allows users to democratically define the best version of a
data item, which is then used in query answering. In [30] the problem of conditioning
a probabilistic database is investigated. Conditioning an uncertain database means to
delete worlds that do not satisfy some constraint.

In this chapter we will show how update and delete statements that manipulate ex-
isting worlds can be performed on U-relations. We show that positive relational algebra
is not sufficient to express arbitrary updates. We use set difference to model updates and
explain how set difference can be computed on U-relations. The main ingredient is the
computation of inverses of ws-sets, for which we propose two methods: decompression
and negation. By providing support for set difference we support full relational algebra
on U-relations and close U-relations under the application of relational algebra queries.

4.1 Motivation
We consider again the example about product ratings as introduced in Section 3.1. As-
sume we found out that there are only snow globes and no globes, i.e. every globe is in
fact a snow globe. Therefore we issue the following update:

update R a t i n g s e t P r o d u c t = ’Snow g l o b e ’
where P r o d u c t = ’ Globe ’ ;

This update can be directly executed on the U-relation UP , because none of the other
vertical partitions is involved. But what if one wants to update the stars given by a
reviewer based on the reviewed product? For example

update R a t i n g s e t S t a r s =? where P r o d u c t = ’ Globe ’ ;

Due to the vertical partitioning the Product attribute and the Stars attribute are not in
the same U-relation. The where condition on the Product attribute holds for the tuple
with id 3 in the worlds described by (y = 1). But in US the tuple with id 3 differentiates
only between the domain values of the variable z. To encode the result of the update

18
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US D Tid Stars
() 1 ? ? ? ? ?
() 2 ? ? ?
(y = 1 ∧ z = 1) 3 ?
(y = 2 ∧ z = 1) 3 ? ? ??
(y = 1 ∧ z = 2) 3 ?
(y = 2 ∧ z = 2) 3 ? ? ? ? ?

Figure 4.1: Updated U-relation which had to be decompressed.

the representation of this tuple has to be decompressed such that it differentiates also
between the values of y. Figure 4.1 shows a possible representation of the result of the
update. In it all four combinations of valuations of the variables y and z are considered,
which we call a full decompression. Actually it would not be necessary because the two
cases where Stars = ? can be shortly described by the ws-descriptor (y = 1) and can
be merged. In practice we want to avoid full decompression. Just imagine an update
that involves 10 variables with each of them having a domain of size 10. Altogether
there are 1010 combinations which we do not want to enumerate. The necessity for
decompression is shortly mentioned in [7], but not worked out in depth.

The questions are: How can we model updates on U-relations? Can we avoid full
decompression?

4.2 Updates
To find out how updates can be computed on U-relations we look at what SQL updates
essentially are. An update is in fact a special command that runs a query and replaces
parts of the original relation. We can express the result of every SQL update by a query.
Consider the following update:

∆ : update R s e t B=Expr where Cond ;

We assume that sch(R) = [Ā, B] and that ∆ does not contain subqueries. We can
translate ∆ into a query Q that is the union of the updated tuples and the non-updated
tuples:

Q : s e l e c t Ā , Expr as B from R where Cond
union
s e l e c t ∗ from R where not Cond ;

Obviously, the result of Q is exactly the table R updated by ∆.
Now assume that R is an uncertain relation and that R is represented by U-relations

U1, . . . , Un. Let the updated attribute B be part of the vertical partition Ui. If the
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GU : update R1 s e t B=Expr from R2, . . . , Rn
where JoinCond and Cond ;

QGU : s e l e c t Ā , Expr as B from R1, . . . , Rn
where JoinCond and Cond

union
s e l e c t R1 . ∗ from R1

e xc ep t
s e l e c t R1 . ∗ from R1, . . . , Rn
where JoinCond and Cond ;

Figure 4.2: Expressing updates by queries.

expression Expr and the condition Cond only refer to attributes of Ui then the update
can be directly executed on the partition Ui. This is the case in the first example of the
previous section. But if any attribute of another vertical partition Uj (j 6= i) is used in
Expr or Cond, this simple method is not possible anymore. To decide which attributes
of Ui should be updated we need to somehow join Ui with Uj along the tuple ids.

As we already need to join tables let us consider a more general form of updates,
which is also practically relevant. In practice it is often necessary to update a table based
on information in another table. For example we have a product relation and want to
lower the price of a product if there are bad reviews. We consider the general case where
we update an attributeB of a relationR1(Ā, B) and allow to joinR1 with other relations
R2, . . . , Rn. Query GU (like General Update) in Figure 4.2 shows how such a general
update looks like in the syntax of PostgreSQL. Other relational database management
systems support similar constructs. The join condition JoinCond describes how the
relations R1, . . . , Rn are joined together and the condition Cond selects the tuples that
should be updated. Expr and Cond can refer to any attribute in the relations R1, . . . , Rn.
It is important that the update is unambiguous, i.e. if a tuple in R1 has more than one
join partner in R2, . . . , Rn then Expr must return the same value for all join partners.

Theorem 4.2.1. Consider the update statement GU defined as follows:

GU : upda te R1 s e t B=Expr from R2, . . . , Rn
where JoinCond and Cond ;

Positive relational algebra is not sufficient to compute the result of GU on U-relational
databases.

Proof. We provide a simple counterexample. Consider the U-relational database U =
(U1, U2,W ) as given in Figure 4.3 and the following update ∆:

∆ : update U1 s e t A=a2 from U2 where B=b1 ;
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W Var Val
x 1
x 2

U1 D Tid A
() 1 a1

U2 D Tid B
(x = 1) 1 b1

U ′1 D Tid a
(x = 1) 1 a2

(x = 2) 1 a1

Figure 4.3: Positive relational algebra cannot model all updates - a counterexample.

A correct representation of the result of ∆ would be the U-relation U ′1 as shown in
Figure 4.3. It distinguishes between x = 1 and x = 2. Obviously, any correct represen-
tation of the result of ∆ needs to distinguish between x = 1 and x = 2.

The equality x = 2 does neither occur in U1 nor in U2. As the translation J·K shows,
positive relational algebra queries on U-relations generate new ws-descriptors only by
concatenating existing ws-descriptors. It follows that using only positive relational al-
gebra it is not possible to get the valuation x = 2. Therefore positive relational algebra
does not suffice to compute the result of the update ∆.

Positive relational algebra does not suffice to model updates. But we can express the
update GU as query QGU, using set difference (the keyword except in SQL). Again, we
use the union of the updated tuples and the non-updated tuples, as shown in Figure 4.2.
Instead of a plain selection with a negated condition Cond we use the except statement
(set difference) to subtract from all the tuples in R1 the tuples that are updated.

We have shown that arbitrary updates cannot be computed by using positive rela-
tional algebra only. But we can model arbitrary updates by using set difference. Before
going into details on set difference we argue that our update language is comprehensive
and have a look at a special case.

Expressiveness
The kind of updates that can be done with an update query following the syntax of GU
(see Figure 4.2) includes update queries that use subqueries. Consider the following
update query:

update R1 s e t B=( s e l e c t Expr from R2, . . . , Rn where Cond1 ) where
Cond2 ;

It is equivalent to the following update that does not need subqueries:

update R1 s e t B=Expr from R2, . . . , Rn where Cond1 and Cond2 ;

Similarly the syntax of GU includes update queries that use subqueries in the con-
dition. For this consider the following update query:
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update R1 s e t B=Expr1 where Cond1 and
C=( s e l e c t Expr2 from R2, . . . , Rn where Cond2 ) ;

It is equivalent to the following update that does not need subqueries:

update R1 s e t B=Expr1 from R2, . . . , Rn where
Cond1 and Cond2 and C=Expr2 ;

In this way we can unnest subqueries in the expression that defines the value of an
updated item, as well as we can unnest subqueries in the where condition. Obviously
arbitrary levels of subqueries can be unnested. It follows that using GU we can model
arbitrary updates with subqueries.

Special case: Semi-join updates
If every tuple in R1 has exactly one join partner in R2, . . . , Rn then we can express GU
using a negated condition instead of set difference, as Q′GU does:

Q′GU : s e l e c t Ā , Expr as B from R1, . . . , Rn
where JoinCond and Cond

union
s e l e c t R1 . ∗ from R1 from R1, . . . , Rn
where JoinCond and not Cond ;

We call this kind of update the semi-join update. The precondition of each tuple
in R1 having exactly one join partner in R2, . . . , Rn is fulfilled for instance by joins
on attributes that fulfill a foreign key constraint. The precondition is necessary for the
following reasons.

• If a tuple in R1 does not have any join partner in R2, . . . , Rn then it gets lost in
the update, because it is neither part of the first operand for the union, nor part of
the second operand).

• If a tuple in R1 has more than one join partner in R2, . . . , Rn then the condition
Cond could hold for one join partner but not for another. So the tuple can possibly
be updated and not updated at the same time, which is definitely not desired.

Using J·K we can translate Q′GU into a query on U-relations and perform the update.
To apply semi-join updates to U-relations the precondition has to hold in every world,
i.e. in every world a tuple in R1 has to have exactly one join partner in R2, . . . , Rn. The
advantage of semi-join updates on U-relations is that they do not need set difference.
Their disadvantage is that all the tuples in the result relation get fully decompressed.
As an example consider the following update query on our well-known product ratings
database:

update R a t i n g s e t S t a r s =?
where P r o d u c t = ’ Sk i ’ and Count ry = ’ Belgium ’ ;
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U ′S D Tid Stars
(x = 1) 1 ? ? ? ? ?
(x = 2) 1 ? ? ? ? ?
() 2 ? ? ?
(z = 1 ∧ y = 1) 3 ? ? ??
(z = 2 ∧ y = 1) 3 ? ? ? ? ?
(z = 1 ∧ y = 2) 3 ? ? ??
(z = 2 ∧ y = 2) 3 ? ? ? ? ?

Figure 4.4: The semi-join update fully decompresses the updated relation.

GD : d e l e t e from R1 us ing R2, . . . , Rn
where JoinCond and Cond ;

QGD : s e l e c t R1 . ∗ from R1

e xc ep t
s e l e c t R1 . ∗ from R1, . . . , Rn
where JoinCond and Cond ;

Figure 4.5: Expressing delete statements by queries.

Note that we assume an implicit merge (along the tuple ids) of the three partitions
the relation Rating consists of. The query updates tuples in the partition US in case the
conditions on the other two partitions UP and UC are satisfied. When using the semi-
join update the result is a relation U ′S as shown in Figure 4.4. The update conditions
apply nowhere and therefore the result U ′S represents the same information as US . Nev-
ertheless, with a semi-join update all the tuples in US get decompressed and therefore
U ′S consists of much more tuples than US . This can be avoided by using set difference
for updates, as we will show in the next section.

4.3 Delete Statements
We consider the case that tuples are deleted in specific worlds. Delete statements are
quite similar to update statements with the difference that the tuples satisfying the con-
dition are not updated but deleted. Figure 4.5 shows how a general delete statement GD,
that allows us to join other relations, is expressed as a query QGD. Using the function
J·K we can translate it into a query on U-relations.

But one subtlety remains: U-relational databases use vertical partitioning and we
said that we want them to always be reduced. Consider an arbitrary relation R repre-
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sented by U-relations U1, . . . , Un. When deleting a tuple with a tuple id tid in the worlds
described by a ws-set S in U1, then we also have to delete the tuple tid in the worlds de-
scribed by S in U2, . . . , Un. Otherwise the U-relational database would not be reduced
anymore.

We cannot applyQGD to one partition after another because the conditions JoinCond
and Cond possibly refer to tuples that are being deleted. So we first select the tuples that
should be deleted into a temporary table. Given a delete statement GD (as in Figure 4.5)
we create a temporary table Rdel as follows:

c r e a t e t a b l e Rdel as
s e l e c t R1 . ∗ from R1, . . . , Rn
where JoinCond and Cond ;

Let Udel be the U-relation that represents the temporary table Rdel. Given Udel we delete
the respective tuples in every partition Ui of R1 as follows:

s e l e c t Ui .∗ from Ui
e xc ep t
s e l e c t Ui .∗ from merge(Ui, Udel) ;

We use merge to join the tuples in Ui with the tuples in Udel which are the tuples we
want to delete. Using except we subtract them from the U-relation Ui. We have thus
shown how to perform delete statements on U-relations.

4.4 Set Difference
We have explained how set difference can be used to perform arbitrary updates. Besides
that set difference is valuable on its own, for example to select all products that have
never been rated badly. Set difference introduces nonmonotonicity to relational algebra
as the operators of positive relational algebra are all monotone. By defining set differ-
ence on U-relations we complete relational algebra on U-relations. For all we know, so
far there have been only the following publications that consider set difference on un-
certain databases. Wang et al. [50] describe how one level of not-exists subqueries can
be supported on tuple-independent databases. This limited approach cannot be followed
to do sequences of updates because their formalism is not closed under their definition
of not-exists. In [20] Fink, Olteanu and Rath investigate the problem of evaluating unre-
stricted relational algebra queries (including set difference) on probabilistic U-relations
(limited to Boolean variables). Their goal is to answer queries, i.e. to compute the
probabilities of tuples in the query result. But the query results are not U-relations any-
more. Instead of ws-descriptors they generate arbitrarily nested formulas using ∧, ∨
and ¬. Following their definition of set difference U-relations are not closed under the
application of relational algebra anymore. This does not satisfy our needs because for
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updates we need a definition of set difference such that U-relations are closed under the
application of relational algebra.

We show how set difference can be computed such that the result is again a U-
relation. Thus we stay within the formalism. As explained in Section 3.4 we have to
define set difference such that it behaves as if it was executed in every possible world
separately. Given two relations R and S, a tuple t is in R \ S if t ∈ R and t /∈ S. In
U-relations ws-sets describe in which worlds a tuple is part of a relation. If a tuple t is
part of a relation R in the worlds described by a ws-set W1, and t is part of a relation S
in the worlds described by a ws-setW2, then t is part ofR\S in the worlds identified by
ω(W1)\ω(W2). How can we compute a ws-setW3 such that ω(W3) = ω(W1)\ω(W2)?
Using the definition of ω(·) for ws-sets we can reduce the problem to computing the
difference between a ws-descriptor and a ws-set because

ω(W1) \ ω(W2) =
(⋃

d1∈W1
ω(d1)

)
\ ω(W2) =

⋃
d1∈W1

(
ω(d1) \ ω(W2)

)
We express the difference between a ws-descriptor d and a ws-set W using the inverse
of W . To this end let us define the inverse of a ws-set. ω(()) is the set of all valuations
(which identify all worlds), hence ω(()) \ ω(W ) is the inverse of ω(W ).

Definition 4.4.1 (inverse of a ws-set). A ws-set W i is the inverse of a ws-set W if and
only if ω(W i) = ω(()) \ ω(W ).

We will define a function negate(W ) in the next section that computes the inverse
of a ws-set W . Using this function, it follows that

ω(d) \ ω(W ) = ω(d) ∩ ω(negate(W )) (4.1)

Union and intersection of ws-sets are done using union and concatenation (see Sec-
tion 3.4). In Figure 4.6 we define the difference diff of a ws-descriptor and a ws-set.
Recall that ψ (see Section 3.4) checks the consistency of two ws-descriptors. Thus it
filters out inconsistent ws-descriptors which would describe only empty sets of worlds.
From Equation 4.1 it follows that diff is correct, i.e.

ω(diff(d,W )) = ω(d) \ ω(W ).

Now we are ready to define the translation of relational set difference, using diff .
Figure 4.6 gives the details. For each tuple t in U1 we select the ws-descriptors of tuples
in U2 with the same data values, using the subquery W . So W is the ws-set we have
to subtract from the ws-descriptor t.D1, which we do with diff . diff returns a set of
ws-descriptors, let us call it W ′. Each of the ws-descriptors in W ′ forms together with
T1 and A1 a tuple in the result. We are aware that the SQL standard does not support
functions that return sets, like diff . But there is no way in the SQL standard to “de-
aggregate” the result of diff . The syntax we use is supported by PostgreSQL and we
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Let U1 := JQ1K with schema [D1, T1, A1],

U2 := JQ2K with schema [D2, T2, A2],

diff(d,W ) := {concat(d, d′) | d′ ∈ negate(W ), ψ(d, d′)}.

JQ1 \Q2K := select diff(D1,W ), T1, A1 from U1;

where W := select D2 from U2 where A2 = A1;

Constraint: A1 = A2.

Figure 4.6: Translation of set difference, based on the inverse of ws-sets.

think that this is a quite natural approach. Another approach would be to introduce a
new data type ws-set and to use it instead of ws-descriptors. Note that the tuple ids of
the second U-relation U2 do not play a role in set difference.

4.5 Inverse of a Ws-set
In the previous sections we explained how to use the inverse of a ws-set to compute
relational set difference and updates in a U-relational database. It remains to give an
algorithm for computing the inverse of a ws-set. We propose two methods: full decom-
pression and negation. In general, an exponential blowup cannot be avoid, as we will
see. We prove that negation can give exponentially smaller results then decompression.

Full decompression
Consider that we want to compute the inverse of a ws-set S. The idea of full decom-
pression is to generate all total ws-descriptors, relative to the set of variables that occur
in S. Variables that do not occur in S do not have to be considered because they are
not relevant for the inverse of S. The details are shown in Algorithm 2. Given the list
V of variables that occur in the input ws-set S, a ws-set Γ is generated. Γ contains all
total ws-descriptors relative to the variables in V . They are pairwise inconsistent and to-
gether they represent all worlds, i.e. ω(Γ) = ω(()). Note that in case S = ∅ or S = {()}
(when the number of variables is 0) we have that Γ = {()}. The inverse I is built of
all the ws-descriptors d in Γ that are not consistent with any of the ws-descriptors in
S. The lengths of the ws-descriptors in the result I do not depend on the length of the
ws-descriptors in S but on the number of variables occurring in S.

Given a ws-set S with variables which have a maximum domain size of d, we show
with the following two lemmas that d|vars(S)| is a sharp upper bound for the size of the
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Algorithm 2: INV-DECOMPRESS(S)

Require: a ws-set S
1: V = {v1, . . . , vn} = vars(S)
2: Γ = {(v1 = c1 ∧ · · · ∧ vn = cn) | c1 ∈ dom(v1), . . . , cn ∈ dom(vn)}
3: I = ∅
4: for d ∈ Γ do
5: if not consistent(d, S) then
6: I = I ∪ {d}
7: end if
8: end for
9: return I

inverses produced by INV-DECOMPRESS.

Lemma 4.5.1. Given an arbitrary ws-set S with variables which have a maximum do-
main size of d, |INV-DECOMPRESS(S)| ≤ d|vars(S)|.

Proof. Consider an arbitrary ws-set S. Let d be the maximum domain size of the vari-
ables occurring in S. The cardinality of the inverse I - as defined in Algorithm 2 - is
obviously bounded by the cardinality of Γ. |Γ| = Πv∈vars(S)|dom(v)| ≤ d|vars(S)|. It
follows that |I| ≤ d|vars(S)|.

Lemma 4.5.2. There are ws-sets S such that |INV-DECOMPRESS(S)| = Θ(d|vars(S)|),
where d is the maximum domain size of variables occurring in S.

Proof. We consider a ws-set S of cardinality 1. Let S consist of one ws-descriptor of
length n and let the domain size of each variable be d. It follows that |vars(S)| = n.
Without loss of generality the constant used in the equalities is always 1, i.e. :

S = {(x1 = 1 ∧ · · · ∧ xn = 1)}.

When applying INV-DECOMPRESS to S, we get a ws-set Γ in line 2 such that |Γ| = dn.
Of all the ws-descriptors in Γ only one, namely (x1 = 1 ∧ · · · ∧ xn = 1) is consistent
with S. All the other dn − 1 are inconsistent with S and therefore part of the result I . It
follows that |INV-DECOMPRESS(S)| = dn − 1 = d|vars(S)| − 1.

The complexity of INV-DECOMPRESS is in Θ(|S|d|vars(S)||vars(S)|). Each of the
d|vars(S)| ws-descriptors in Γ has to be compared to each ws-descriptor in S, which takes
linear time (in |vars(S)|), when using sorted ws-descriptors.
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Negation
Decompression depends exponentially on the number of involved variables. The com-
plexity is exponential in the number of the involved variables and the size of the resulting
inverse possibly too. To avoid this we present a second method, negation, to compute
the inverse. A ws-set is essentially a formula over finite variables in DNF. We negate
it (which results in a formula in CNF) and turn it back into a formula in DNF. The
following example shall clarify the idea.

Example 4.5.3. Consider the ws-set

S = {(x = 3), (x = 1 ∧ y = 2)} and dom(x) = dom(y) = {1, 2, 3}.

We view S as a formula (x = 3) ∨ (x = 1 ∧ x = 2). Negating it and pushing the
negation inside results in(

¬(x = 3)
)
∧
(
¬(x = 1) ∨ ¬(y = 2)

)
.

To turn this formula into a ws-set we have to turn it into DNF, resolve the negated
equalities and remove inconsistent terms. First we turn it into DNF and get(

¬(x = 3) ∧ ¬(x = 1)
)
∨
(
¬(x = 3) ∧ ¬(y = 2)

)
.

Then we resolve the negated equalities by substituting them with equalities on all other
domain values and get

(x = 1 ∧ x = 2) ∨ (x = 1 ∧ x = 3)∨
(x = 2 ∧ x = 2) ∨ (x = 2 ∧ x = 3)∨
(x = 1 ∧ y = 1) ∨ (x = 1 ∧ y = 3)∨
(x = 2 ∧ y = 1) ∨ (x = 2 ∧ y = 3).

Finally we keep only the consistent terms, thus removing the first, the second and the
fourth term. In addition we merge equivalent equalities in a term. The result is a ws-set
Si which is the inverse of S:

Si = {(x = 2), (x = 1 ∧ y = 1), (x = 1 ∧ y = 3), (x = 2 ∧ y = 1), (x = 2 ∧ y = 3)}.

Note that the first ws-descriptor (x = 2) in Si subsumes the last two ws-descriptors,
which means that we can safely remove them. We will return to this point in Chapter 6.

In Figure 4.7 we define negate(·) for the inverse of a ws-set S consisting of n ws-
descriptors. The inverse consists of all combinations of inverses of equalities in the ws-
descriptors d1, . . . , dn. The result is again a ws-set. To build its ws-descriptors, from
each of the n ws-descriptors in S an equality is chosen. From the i-th ws-descriptor we
choose the equality ji and use its variable di[ji].var. Its value (di[ji].val) is substituted by
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Let S = {d1, . . . , dn}.
negate(S) :=

{
(d1[j1].var = c1,j1 ∧ · · · ∧ dn[jn].var = cn,jn)

∣∣
0 ≤ ji < |di|, 1 ≤ i ≤ n,

ci,ji ∈ dom(di[ji].var), ci,ji 6= di[ji].val,
1 ≤ k ≤ n,

di[ji].var = dk[jk].var→ ci,ji = ck,jk
}

Figure 4.7: The inverse of a ws-set, using negation.

another, different value (ci,ji) in the domain of the variable. The last condition performs
a consistency check in the same manner as condition ψ (see Figure 3.5). It filters out
inconsistent ws-descriptors. Note that negate(∅) = {()} and negate({()}) = ∅.

Theorem 4.5.4. negate(·) is correct, i.e. given a ws-set S, ω(negate(S)) = ω(())\ω(S).

Proof. The proof goes by induction. The base case is a ws-set S of cardinality 1. With-
out loss of generality, let S = {(x1 = 1 ∧ · · · ∧ xm = 1)}. Obviously

negate(S) = {(x1 = 2), . . . , (x1 = max(x1)), . . . , (xm = 2), . . . , (xm = max(xm))}

is a correct inverse of S.
In the inductive step we assume that negate(·) is correct for ws-sets of cardinality at

most n. We consider a ws-set of cardinality n + 1. Let S = {d1, . . . , dn+1}. Let S1 =
{d1, . . . , dn} and S2 = {dn+1}. By assumption I = negate(S1) and I ′ = negate(S2)
are correct inverses. negate(S) is equivalent to Si = {concat(d1, d2) | d1 ∈ I, d2 ∈
I ′, ψ(d1, d2)}, for which it holds that ω(Si) = ω(I)∩ω(I ′). By the correctness of I and
I ′ it follows that

ω(I) ∩ ω(I ′) =
(
ω(()) \ ω(S2)

)
∩
(
ω(()) \ ω(S2)

)
= ω(()) \

(
ω(S1) ∪ ω(S2)

)
= ω(()) \ ω(S).

Negation can be computed using the recursive algorithm INV-NEGATE as shown
in Algorithm 3. On the i-th level of the recursion it builds the inverse of the i-th ws-
descriptor of the input ws-set S and extends the temporary ws-descriptor tmp. It does
this by iterating the equalities of the i-th ws-descriptor and the domain values of their
variables. The consistency of tmp is always ensured. If tmp gets inconsistent the recur-
sion is not continued. In the end the ws-set result holds the inverse of S.
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Algorithm 3: INV-NEGATE(S, level, tmp, result)

Recursive function: first call is INV-NEGATE(S, 0, (), {})
Require: ws-set S, integer level, ws-descriptor tmp, ws-set result

1: if level ≥ |S| then
2: return result ∪ {tmp}
3: else
4: d = S[level]
5: for e = 0 to |d| − 1 do
6: v = d[e].var
7: for i = 1 to max(v), i 6= d[e].val do
8: if consistent((v = i), tmp) then
9: result = INV-NEGATE(S, level + 1, concat(tmp, (v = i)), result)

10: end if
11: end for
12: end for
13: return result
14: end if

We analyze the complexity of INV-NEGATE. Let n be the number of ws-descriptors
the input ws-set consists of, m the maximum length of the ws-descriptors and d the
maximum domain size of the occurring variables. At each level there are O(md) pos-
sibilities (branches) and the n levels can be combined arbitrarily. For the consistency
check (line 8 in INV-NEGATE) linear time in n is needed at each level, giving n2 for
all n levels. Altogether the complexity of INV-NEGATE is in O(mndnn2). In Chapter 6
we improve INV-NEGATE such that its complexity can be bounded by an expression
exponential in |vars(S)|, like the complexity of INV-DECOMPRESS.

Let us analyze the cardinality of the ws-sets generated by INV-NEGATE. Consider
n, d and m as before. A ws-set generated by INV-NEGATE is maximal when the con-
sistency check (line 8 in INV-NEGATE) always returns true. This is the case when in
the input ws-set no variable occurs more than once. Then the cardinality of the inverse
ws-set is in O(mndn).

Comparison
We compare the cardinality of the inverses produced by decompression and negation.
The following theorem states that, given a ws-set S, |INV-NEGATE(S)| can be expo-
nentially smaller than |INV-DECOMPRESS(S)|.

Theorem 4.5.5. Let S be a ws-set such that |S| = 1 and ∀v ∈ vars(W ) : dom(v) =
{1, . . . , d}. Then |INV-NEGATE(S)| = (d−1)n and |INV-DECOMPRESS(S)| = dn−1.
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Proof. Let S be an arbitrary ws-set of cardinality 1 such that ∀v ∈ vars(W ) : dom(v) =
{1, . . . , d}, i.e. the domain size of all variables occurring in S is d. The ws-set S consists
of one ws-descriptor. Without loss of generality the constant used in the equalities is
always 1, i.e. :

S = {(x1 = 1 ∧ · · · ∧ xn = 1)}.

The proof for Lemma 4.5.2 shows that |INV-DECOMPRESS(S)| = dn− 1. It is easy
to see that |INV-NEGATE(S)| = (d− 1)n because

INV-NEGATE(S) = {(x1 = 2), . . . , (x1 = d), . . . , (xn = 2), . . . , (xn = d)}.

The complexity of INV-DECOMPRESS is exponential in the number of variables
occurring in a ws-set, whereas the complexity of INV-NEGATE is exponential in the
cardinality of the ws-set, based on the length of the ws-descriptors and the domain size
of the used variables. In Chapter 5 we show how new descriptors make the complexity
of negation independent of the domains of the used variables. In Chapter 6 we improve
INV-NEGATE such that its complexity can drop to polynomial time.

4.6 Summary
At this point we want to briefly summarize the results of this chapter and point out new
questions that have emerged. The update language we have presented is comprehensive
and includes updates with subqueries. In case an update fulfills specific conditions we
can apply the semi-join update method which requires only positive relational algebra.
This means that it can be processed in polynomial time.

We have described how set difference can be used to model arbitrary update and
delete statements on U-relations, and we have shown how to use the inverse of ws-sets
to compute set difference. To compute the inverse of a ws-set we have presented two
algorithms, one based on decompression and the other one based on negation. We have
shown that negation can give exponentially smaller results. But negation also has an
exponential worst-case complexity. Can we improve the complexity of negation? We
tackle this question in the next chapters by extending U-relations and by extending the
algorithm for negation.



5. Novel Descriptors for World Sets

In the previous chapter we have defined set difference on U-relations and shown how to
compute the inverse of a ws-set using negation (the algorithm INV-NEGATE). Negation
includes an exponential blowup in the cardinality of the input ws-set. There are two
sources for the exponential blowup: the length of the ws-descriptors and the domain
size of the variables occurring in the ws-descriptors. In this chapter we introduce new
descriptors for world sets that allow us to get rid of the dependence on the domain size
of the variables when computing the inverse. In this way the complexity of computing
inverses can be reduced exponentially.

Example 5.0.1. Suppose the police wants to keep track of stolen vehicles and observa-
tions of possibly stolen ones. After gathering data about a stolen car the police waits
for evidence before doing further investigations. For the sake of simplicity we abstract
from car models, colors and number plates and simply assign unique ids to cars. For
the same reason we also ignore location and time of an observation and only mention
car ids. We model this by a U-relational database (Cars,Obs,W ) consisting of two
U-relations of schema Cars[D,CId, Invest] and Obs[D,OId,Car]. The D columns hold
the ws-descriptors. For simplicity we omit columns for tuple ids in this example be-
cause we do not vertically partition the relations. Cars holds ids of stolen cars (attribute
CId) and defines whether the theft should be investigated (attribute Invest). Obs holds
observation ids (attribute OId) and ids of the observed cars (attribute Car). A simple
scenario is shown in Figure 5.1. A car with id 1 is registered as stolen and the police has
decided not to further investigate the theft. Two observations are reported and in both
cases the observer was not sure which car he has seen and mentions four possibilities.
In both cases the observed car possibly is the car with id 1 (in the first case if x = 1 and
in the second case if y = 2). To update the status of investigation the following update
statement is issued:

update Cars s e t I n v e s t = ’ yes ’ from Obs
where Car = CId ;

There are two observations of car 1, and due to them the where condition of the
update is satisfied in the worlds identified by valuations where x = 1 or y = 2. Using
negation we get the result of the update as shown in Figure 5.2. In the worlds where x =
1 or y = 2 the car with id 1 was observed and the theft should be further investigated.
In all the other worlds not. The value of the Invest attribute is nine times “no”. In

32
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W Var Rng
x 1
x 2
x 3
x 4
y 1
y 2
y 3
y 4

Cars D CId Invest
() 1 no

Obs D OId Car
(x = 1) 1 1
(x = 2) 1 2
(x = 3) 1 3
(x = 4) 1 4
(y = 1) 2 5
(y = 2) 2 1
(y = 3) 2 6
(y = 4) 2 7

Figure 5.1: A U-relational database representing stolen car investigations.

Cars D CId Invest
(x = 1) 1 yes
(y = 2) 1 yes
(x = 2 ∧ y = 1) 1 no
(x = 2 ∧ y = 3) 1 no
(x = 2 ∧ y = 4) 1 no
(x = 3 ∧ y = 1) 1 no
(x = 3 ∧ y = 3) 1 no
(x = 3 ∧ y = 4) 1 no
(x = 4 ∧ y = 1) 1 no
(x = 4 ∧ y = 3) 1 no
(x = 4 ∧ y = 4) 1 no

Figure 5.2: The U-relation Cars after applying the update.

Cars D CId Invest
(x = 1) 1 yes
(y = 2) 1 yes
(x 6= 1 ∧ y 6= 2) 1 no

Figure 5.3: The U-relation Cars after applying the update, using inequalities.

nine worlds it is the same and these nine worlds cannot be described by less than nine
ws-descriptors.

Assume we can use inequalities to describe world sets. Then the result of the update
can be shortly represented by the relation depicted in Figure 5.3. Instead of nine tuples
only one is necessary to represent that the value of the Invest attribute is “no” in the
nine worlds. Or assume we can use intervals to describe world sets. Then the result of
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Cars D CId Invest
(x = 1) 1 yes
(y = 2) 1 yes
(2 ≤ x ≤ 4 ∧ 1 ≤ y ≤ 1) 1 no
(2 ≤ x ≤ 4 ∧ 3 ≤ y ≤ 4) 1 no

Figure 5.4: The U-relation Cars after applying the update, using intervals.

the update can be shortly represented by the relation depicted in Figure 5.4. By using
inequalities or intervals the result gets smaller and fewer descriptors are needed. In the
next sections we present two extensions of U-relations, one additionally allowing in-
equalities and the other one additionally allowing intervals. While both extensions pre-
serve polynomial time data complexity for positive relational algebra queries extended
by the possible operator, they bring an exponential advantage for set difference.

5.1 Descriptors with Inequalities
We extend U-relations and present descriptors for world sets that consist not only of
equalities but also of inequalities.

Definition 5.1.1 (iws-descriptor). Given a world table W , an inequality-ws-descriptor
(iws-descriptor) over W is a pair (E, I), where E and I are sets of pairs (v, c) where
v ∈ vars(W ) and c ∈ domW (v), such that a variable v ∈ vars(W ) does not occur more
than once in E and such that E ∩ I = ∅.

The set E represents equalities and is actually a ws-descriptor. The set I represents
inequalities. The meaning of (v, c) ∈ I is v 6= c. To emphasize the conjunctive nature of
iws-descriptors we make use of the logical “and” symbol in our notation and combine
the two sets E and I . We use equalities for the elements in E and inequalities for the
elements in I . For example we write

(x = 1 ∧ y 6= 1 ∧ y 6= 3)

for the iws-descriptor ({(x, 1)}, {(y, 1), (y, 3)}). The condition that a variable must not
occur more than once in E serves to exclude inconsistent cases like (x = 1 ∧ x = 2).
The condition E ∩ I = ∅ serves to exclude inconsistent cases like (x = 1 ∧ x 6= 1).
Given an iws-descriptor d = (E, I) we use |d| = |E| + |I| do denote the length of d
(the number of equalities and inequalities d consists of). We use vars(d) to refer to the
set of variables occurring on the left hand side of the (in-)equalities in d.

Analogously to ws-sets we call sets of iws-descriptors iws-sets, and the inverse of
an iws-set S is an iws-set Si such that ω(Si) = ω(()) \ ω(S).

We define the semantics of iws-descriptors by defining ω for iws-descriptors.
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Definition 5.1.2 (ω for iws-descriptors). Given an iws-descriptor d = (E, I) over a
world table W , ω(d) is the set of total valuations f of variables defined by W such that
for every (v, c) ∈ E : f(v) = c and for every (v, c) ∈ I : f(v) 6= c.

Suppose for example the iws-descriptor d = (x 6= 1∧x 6= 2∧y = 3) and dom(x) =
{1, . . . , 5}. Then ω(d) is the set of valuations where x is 3, 4 or 5, and y is 3. The
semantics of iws-sets is defined by further extending the function ω to iws-sets. Given
an iws-set S, ω(S) =

⋃
d∈S ω(d). Two iws-descriptors d1 and d2 are consistent if

ω(d1) ∩ ω(d2) 6= ∅. On the syntactic level consistency of two iws-descriptors d1 and d2

can be checked by ensuring the following constraints:

• ∀(v1,c1)∈d1.E∀(v2,c2)∈d2.E(v1 = v2 → c1 = c2)

• ∀(v1,c1)∈d1.E∀(v2,c2)∈d2.I(v1 = v2 → c1 6= c2)

• ∀(v2,c2)∈d2.E∀(v1,c1)∈d1.I(v1 = v2 → c1 6= c2)

The first one equals the consistency check for ws-descriptors (the condition ψ). In
contrast to ws-descriptors an iws-descriptor can be consistent but not satisfiable by any
valuation at the same time. Assume a variable x and and dom(x) = {1, 2, 3}. The iws-
descriptor (x 6= 1 ∧ x 6= 2 ∧ x 6= 3) is consistent, its equalities and inequalities do not
contradict each other. But regarding the domain of x it is not satisfied by any valuation
because all the domain values of x occur in an inequality with x. No domain value is
left that could be assigned to x.

Definition 5.1.3 (Infeasible iws-descriptor). An iws-descriptor d for which ω(d) = ∅ is
called infeasible.

To decide feasibility of iws-descriptors we present FEASIBLE in Algorithm 4. For
all the variables in an iws-descriptor that occur in inequalities it looks up their domain
in the world table and checks whether all domain values occur in inequalities with that
variable. If this is the case for at least one variable then the iws-descriptor is infeasible.
By ordering the inequalities in I by variable name the check for feasibility is possible
in linear time in |I|.

Definition 5.1.4. Ui-relations are U-relations based on feasible iws-descriptors instead
of ws-descriptors.

The semantics of Ui-relations follows from the definition of ω for iws-descriptors.
Iws-descriptors extend ws-descriptors, therefore Ui-relations are also a complete rep-
resentation system for uncertain databases, i.e. every uncertain database can be rep-
resented using Ui-relations. As iws-descriptors extend ws-descriptors we can use a
U-relation every time we expect a Ui-relation.
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Algorithm 4: FEASIBLE(d)

Require: iws-descriptor d = (E, I)
1: vars = {v | (v, c) ∈ I}
2: for v in vars do
3: values = {c | (v, c) ∈ I}
4: if |values| ≥ max(v) then
5: return false
6: end if
7: end for
8: return true

Encoding Iws-descriptors
We use an encoding for iws-descriptors that is more practical and gives rise to an easy
definition of the inverse via negation. Remember that we assumed a normalized world
table and therefore the domains of the variables are positive integers. We encode an
iws-descriptor d = (E, I) as one set E ∪ {(x, -c) | (x, c) ∈ I}. So in this encoding
an iws-descriptor over a world table W is a set of pairs (v, c) where v ∈ vars(W )
and c ∈ domW (v) or -c ∈ domW (v). Positive constants denote equalities and negative
constants denote inequalities. For example the iws-descriptor (x = 1 ∧ y 6= 1 ∧ y 6= 3)
is encoded by the set {(x, 1), (y, -1), (y, -3)}. We assume an arbitrary order on the set
and write d[i].var to refer to the variable in the i-th element of d and d[i].val to refer to
the constant in the i-th element.

Queries on Ui-relations
In this section we show how to translate relational algebra queries with poss and merge
into queries on Ui-relations. We use a translation function J·K′ to translate relational
algebra with poss and merge. Let J·K′ be equivalent to J·K (see Figure 3.5 and 4.6) except
for the consistency check and the inverse. In Figure 5.5 we define the function ψ′ that
checks the consistency and feasibility of two iws-descriptors. It replaces ψ in J·K′. The
function consistent(·) uses the beforehand described encoding of iws-descriptors. In
Figure 5.6 we define the function negate′(·) for the inverse of an iws-set. It replaces
negate(·) in the translation J·K′. The function negate′(·) is quite similar to negate(·) for
ws-descriptors but does not depend on the domains of the occurring variables. From
each of the iws-descriptors di an (in-)equality di[ji] is chosen and the value negated to
turn an equality into an inequality and vice versa. The function ψ′ is used to check that
the generated iws-descriptors are consistent and feasible. Analogously to INV-NEGATE

we can easily turn negate′(·) into a recursive algorithm.
Let us analyze the cardinality of the iws-sets generated by negate′(·). Let n be the
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consistent(d1, d2) :=
∧

i<|d1|,j<|d2|

(
d1[i].var = d2[j].var→ d1[i].val 6= -d2[j].val ∧

(d1[i].val = d2[j].val ∨ d1[i].val < 0 ∨ d2[j].val < 0)
)

ψ′(d1, d2) := consistent(d1, d2) ∧ feasible(d1 ∧ d2)

Figure 5.5: Consistency check for iws-descriptors.

Let S = {d1, . . . , dn}.
negate′(S) :=

{
d = (d1[j1].var = -d1[j1].val ∧ · · · ∧ dn[jn].var = -dn[jn].val)

∣∣
0 ≤ ji < |di|, ψ′(d, d)

}
Figure 5.6: Negation for iws-sets.

number of iws-descriptors the input iws-set consists of and m the maximum length of
the iws-descriptors. An iws-set generated by negate′(·) is maximal when the consistency
check ψ′ always returns true. This is the case when in the input iws-set no variable
occurs more than once. Then the cardinality of the inverse iws-set is in O(mn).

From the translation J·K′ it follows that

Theorem 5.1.5. Positive relational algebra queries extended with poss and merge can
be evaluated on Ui-relational databases in polynomial time data complexity.

Proof. By Theorem 3.4.1 positive relational algebra queries extended with poss and
merge can be evaluated on U-relational databases in polynomial time data complexity.
On Ui-relations the translation of positive relational algebra queries extended with poss
and merge differs only in the consistency check ψ′. The function ψ′ needs only poly-
nomial time, as the function ψ. Hence positive relational algebra queries extended with
poss and merge can be evaluated on Ui-relational databases also in polynomial time data
complexity.

5.2 Iws-descriptors outpace Ws-descriptors
In this section we compare U-relations to Ui-relations. We show that Ui-relations can
be exponentially more succinct and that they never get less succinct than U-relations.
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The following theorem states that the result of set difference (and thus of updates)
can be exponentially more succinct when using iws-descriptors, compared to using ws-
descriptors.

Theorem 5.2.1. There are ws-sets S such that |negate′(S)| is exponentially smaller than
|negate(S)|.

Proof. Consider the ws-set S = {(x1 = 1), . . . , (xn = 1)} and let max(xi) = d for
1 ≤ i ≤ n. Then |negate(S)| = (d− 1)n because

negate(S) = {(x1 = 2 ∧ x2 = 2 ∧ · · · ∧ xn = 2),

(x1 = 3 ∧ x2 = 2 ∧ · · · ∧ xn = 2),

(x1 = 2 ∧ x2 = 3 ∧ · · · ∧ xn = 2),

...
(x1 = d ∧ x2 = d ∧ · · · ∧ xn = d)}.

In contrast |negate′(S)| = 1 because negate′(S) = {(x1 6= 1 ∧ · · · ∧ xn 6= 1)}.

Now we will show that with Ui-relations we never get less succinct than with U-
relations. Let us start with some preliminary observations and a definition which we
will use in the coming proof.

Remark 5.2.2. Given a ws-descriptor d1 and a feasible iws-descriptor d2, there are
exactly two possibilities that they are inconsistent, i.e. that ω(d1) ∩ ω(d2) = ∅ :

• (x = c) ∈ d1 ∧ (x = c′) ∈ d2, c 6= c′

• (x = c) ∈ d1 ∧ (x 6= c) ∈ d2

Definition 5.2.3. An instantiation of an iws-descriptor d is a ws-descriptor dinst such
that vars(dinst) = vars(d) and ω(dinst) ∩ ω(d) 6= ∅.

So an iws-descriptor is consistent with its instantiations. We can see the inequali-
ties in an iws-descriptor as templates that allow different instantiations. For example:
Assume a general domain {1, 2, 3}, then the iws-descriptor (x 6= 1, y 6= 1, z = 1) has
four instantiations, namely (x = 2 ∧ y = 2 ∧ z = 1), (x = 2 ∧ y = 3 ∧ z = 1),
(x = 3 ∧ y = 2 ∧ z = 1) and (x = 3 ∧ y = 3 ∧ z = 1). Let dinst be an instantiation of
an iws-descriptor d. Then ω(dinst) ⊆ ω(d).

Remark 5.2.4. Let S be the set of all ws-descriptors that are instantiations of an iws-
descriptor d. Then ω(d) = ω(S).

The following theorem states that the result of a query is never less succinct when
using Ui-relations, compared to using U-relations. Beforehand, we want to point out
that its proof is rather long and complex.



CHAPTER 5. NOVEL DESCRIPTORS FOR WORLD SETS 39

Theorem 5.2.5. Given a query Q in relational algebra extended by poss and merge,
and a U-relational database A, the number of tuples in JQ(A)K′ is never more than the
number of tuples in JQ(A)K.

Proof. The proof proceeds by structural induction on all the operators a query can con-
sist of. The main idea is to show that there is a surjective function that maps tuples in
the U-relation T = JQ(A)K to tuples in the Ui-relation T ′ = JQ(A)K′. Surjectiveness
of the function implies that |T | ≥ |T ′|. We will rely on two conditions on the function.
They help to conduct the inductive step and imply surjectiveness.

We first define the two conditions and describe their characteristics. Let f(·) be a
mapping between the tuples of a U-relation R and a Ui-relation R′, both with schema
[D, T̄ , Ā], f : R → R′. R uses ws-descriptors, whereas R′ uses iws-descriptors. As
usual, the D attribute represents the (i)ws-descriptors, the T̄ attributes represent the
tuple ids and the Ā attributes represent the actual data values. Given a tuple t ∈ R and
a tuple t′ ∈ R′ we say that t and t′ are corresponding tuples if f(t) = t′.

Condition C1:

∀t ∈ R, ∀t′ ∈ R′ :
f(t) = t′ ⇒ ω(t.D) ⊆ ω(t′.D) ∧ t.T̄ = t′.T̄ ∧ t.Ā = t′.Ā

Condition C2:
∀t′ ∈ R′ :

( ⋃
t:f(t)=t′

ω(t.D)
)
⊇ ω(t′.D)

Intuitively C1 is about the completeness ofR′ and C2 about the soundness ofR′. C1
ensures that f(·) is a mapping between tuples that have the same tuple ids and the same
data values, and that the ws-descriptor t.D describes a subset of the worlds the iws-
descriptor t′.D describes. C2 ensures that an iws-descriptor does not represent more
worlds than the corresponding ws-descriptors together. ω(t′.D) is never the empty set of
worlds because only consistent and feasible iws-descriptors are allowed in Ui-relations.
Hence C2 also implies that f(·) is a surjective function.

When we combine the two conditions we have that

∀t′ ∈ R′ :
⋃

t:f(t)=t′

ω(t.D) = ω(t′.D)

It follows that rep(R) = rep(R′). The two conditions assert that R and R′ represent the
same set of relations and that a tuple t′ in R′ has at least one counterpart in R, such that
all counterparts together represent the same information as t′.

Now we are ready to start with the actual proof. Let A be an arbitrary U-relational
database and Q an arbitrary query on A. By structural induction we show that there
is a function mapping the tuples in JQ(A)K to the tuples in JQ(A)K′ that satisfies the
conditions C1 and C2.
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The base case is a query without operators that just selects an arbitrary relation,
i.e.Q = R. Using ws-descriptors the result is a relation T = R and using iws-descriptor
the result is an identical relation T ′ = R. We define the function fT : T → T ′, that
maps tuples in T to tuples in T ′, as the identity function. It obviously satisfies the two
conditions.

Inductive step: Let ◦ be any of the operators of relational algebra, merge and poss.
LetQ = ◦Q1 (in case ◦ is unary) orQ = Q1◦Q2 (in case ◦ is binary). LetR = JQ1(A)K
and R′ = JQ1(A)K′, and in case of a binary operator S = JQ2(A)K and S ′ = JQ2(A)K′.
R and S are U-relations and R′ and S ′ are Ui-relations. R and R′ as well as S and S ′

are of the same schema. Let sch(R) = sch(R′) = [D1, T̄1, Ā1] and sch(S) = sch(S ′) =
[D2, T̄2, Ā2]. Our induction hypothesis is that there are functions fR : R → R′ and
fS : S → S ′ that satisfy the two conditions C1 and C2. In case ◦ is a unary operator, let
T = J◦Q1(A)K and T ′ = J◦Q1(A)K′. Similarly, in case ◦ is a binary operator, let T =
JQ1(A) ◦ Q2(A)K and T ′ = JQ1(A) ◦ Q2(A)K′. Let sch(T ) = sch(T ′) = [D3, T̄3, Ā3].
We show for each operator separately that there is a function fT : T → T ′, that satisfies
C1 and C2.

Selection: Selection allows only conditions on the data attributes Ā1 of R. We
consider also conditions on the tuple ids T̄1 so that we can reuse this part of the proof
for the merge operator later. Given a select predicate φ on Ā1 or T̄1, we get relations

T = s e l e c t ∗ from R where φ ;
T ′ = s e l e c t ∗ from R′ where φ ;

We define fT (t) = fR(t), where the domain of fT is T ⊆ R and the codomain is
T ′ ⊆ R′. By the inductive hypothesis fR(·) satisfies C1 and therefore corresponding
tuples in R and R′ have the same tuple ids and data values. Thus a tuple r′ ∈ R′

satisfies φ if and only if all corresponding tuples {r1, . . . , rl} = f -1
R (r) satisfy φ. Either

r′ ∈ T ′ and all r1, . . . , rl ∈ T or r′ /∈ T ′ and none of r1, . . . , rl ∈ T . It follows that
fT (·) satisfies C1 and C2.

Rename: Renaming does not change the tuples, but only the attribute names. We
simply define fT (t) = fR(t).

Projection: Projection can be used to reorder the attributes, in which case the in-
duction hypothesis is trivially satisfied by the resulting relations. Besides that projec-
tion is used to project out attributes. Without loss of generality we project out only
one attribute, because projecting out more than one attribute can be done one by one in
separate projection steps.

Suppose we project out an arbitrary attribute A ∈ Ā1, i.e.

T = s e l e c t D1, T̄1, Ā1\{A} from R ;
T ′ = s e l e c t D1, T̄1, Ā1\{A} from R′ ;

Let p(·) be the function that projects out the attribute A from a tuple. For every tuple
t ∈ T there exists a tuple r ∈ R such that t = p(r).
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Its inverse p-1(·) is well-defined (which is not trivial). To see this assume to the
contrary that there are two tuples r1 = (d1, t̄1, ā1) and r2 = (d2, t̄2, ā2) in R such that
r1 6= r2 and p(r1) = p(r2). As p(r1) = p(r2) it follows that d1 = d2, t̄1 = t̄2 and that
ā1 6= ā2. This is a contradiction to the definition of a valid U-relation, because it means
that in the worlds described by d1 the tuple with id t̄1 gets contradictory attribute values
ā1 and ā2. So the assumption was wrong and p-1(·) is well-defined.

We define fT (t) := p(fR(p-1(t))). Clearly fT satisfies the two conditions.
Union: A precondition for the union of R (R′) and S (S ′) is that T̄1∩ T̄2 = ∅. Hence

the union is always a union of two disjoint sets. Let

fT (t) := fR(t) if t ∈ R
:= fS(t) if t ∈ S

By the inductive hypothesis fR(·) and fS(·) satisfy C1 and C2 and therefore fT (·) sat-
isfies the two conditions too.

Cross product: We build the cross product of R and S, respectively R′ and S ′:

T = s e l e c t concat(D1, D2), T̄1, T̄2, Ā1, Ā2 from R,S where ψ(D1, D2) ;
T ′ = s e l e c t concat(D1, D2), T̄1, T̄2, Ā1, Ā2 from R′, S′ where ψ′(D1, D2) ;

Consider an arbitrary tuple t = ((d1∧ d2), t̄1, t̄2, ā1, ā2) in T . d1 are the equalities in
the ws-descriptor of t that originate in R and d2 are the equalities in the ws-descriptor
of t that originate in S. By definition of the cross product r = (d1, t̄1, ā1) ∈ R and
s = (d2, t̄2, ā2) ∈ S. Let r′ = fR(r) and s′ = fS(s). We define

fT (t) := ((r′.D1 ∧ s′.D2), t̄1, t̄2, ā1, ā2)

We will first show that fT (t) ∈ T ′ and that fT (·) satisfies C1. Then we will show that
fT (·) also satisfies C2.

Due to the join condition ψ the intersection ω(d1) ∩ ω(d2) 6= ∅, otherwise t would
not be part of T . As fR(·) and fS(·) satisfy C1, ω(r′.D1) ⊇ ω(r.D1) and likewise
ω(s′.D2) ⊇ ω(s.D2). Given this and the fact that ω(r.D1) ∩ ω(s.D2) 6= ∅ it follows
that ω(r′.D1) ∩ ω(s′.D2) 6= ∅. Therefore r′.D1 and s′.D2 satisfy the join condition ψ′

and fT (t) ∈ T ′. By definition of fT we have that t and fT (t) have equivalent tuple ids
and data values, and obviously ω(r′.D1∧ s′.D2) ⊇ ω(r.D1∧ s.D2). This means that fT
satisfies C1.

To see that fT (·) also satisfies C2, consider an arbitrary tuple

t′ = ((d1 ∧ d2), t̄1, t̄2, ā1, ā2) ∈ T ′.

d1 are the (in-)equalities in the iws-descriptor of t′ that originate in R′ and d2 are the
(in-)equalities in the iws-descriptor of t′ that originate in S ′. By the definition of the
cross product it follows that r′ = (d1, t̄1, ā1) ∈ R′ and s′ = (d2, t̄2, ā2) ∈ S ′. Let
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{r1, . . . , rk} = f -1
R (r′) and {s1, . . . , sl} = f -1

S (s′). The following sequence of equations
shows that fT (·) satisfies C2.

ω(t′.D3) = ω(d1) ∩ ω(d2) = ω(r′.D1) ∩ ω(s′.D2)

⊆
⋃

1≤i≤k

ω(ri.D1) ∩
⋃

1≤i≤l

ω(si.D2)

⊆
⋃

1≤i≤k,1≤j≤l

(ω(ri.D1) ∩ ω(sj.D2))

⊆
⋃

1≤i≤k,1≤j≤l,ω(ri.D1)∩ω(sj .D2)6=∅

(ω(ri.D1) ∩ ω(sj.D2))

⊆
⋃

t:f(t)=t′

ω(t.D3)

fR and fS satisfy C2 which enables the step from the first to the second line. In line 3
we apply distributivity of set intersection and union. In line 4, omitting empty sets (the
inconsistent ws-descriptors) in the union does not change the result of the union. These
are exactly the ws-descriptors of the tuples in T that are mapped to t′ by fT (·): All
combinations of tuples ri and sj where ω(ri.D1 ∧ sj.D2) 6= ∅ (condition ψ). Altogether
we have that fT (·) satisfies C2.

Merge: The merge operator is in fact a cross product followed by a selection on the
tuple id attributes (the condition α) and a projection that merges the common tuple id
attributes. We have shown that for the cross product and the selection on the tuple id
attributes a function fT (·) satisfying C1 and C2 exists. Due to condition α the values
of the common tuple id attributes are identical and thus in the projection only duplicate
data is projected out, which means that the projection does not make tuples equivalent.
It follows that there is a function fT : T → T ′ that satisfies C1 and C2.

Possible: The possible operator projects out the tuple ids and replaces the (i)ws-
descriptors with empty ws-descriptors. As fR satisfies C1 and C2, rep(R) = rep(R′). It
follows that T = T ′. We define fT (t) := t, which clearly satisfies C1 and C2.

Set Difference: The core of set difference is the inverse of a ws-set. We split the
proof for set difference into two parts: one for the inverse (negation), and one for set
difference (building on the first part).

For the inverse we show that the resulting ws-sets/iws-sets satisfy conditions similar
to the two defined conditions. We transform the two conditions C1 and C2 to two
conditions on ws-sets and iws-sets by omitting the data values and tuple ids. Let g :
W → W ′ be a function from ws-descriptors in a ws-set W to iws-descriptors in an
iws-set W ′.

Condition C1’:

∀d ∈ W,∀d′ ∈ W ′ :

g(d) = d′ ⇒ ω(d) ⊆ ω(d′)
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Condition C2’:
∀d′ ∈ W ′ :

( ⋃
d:g(d)=d′

ω(d)
)
⊇ ω(d′)

Claim 1. If g(·) satisfies C1’ and g(d) = d′ for an arbitrary ws-descriptor d, then we
can use the following conclusions:

• (x = c) ∈ d′ ⇒ (x = c) ∈ d

• (x 6= c) ∈ d′ ⇒ (x = c′) ∈ d, c′ 6= c

The correctness of Claim 1 is easy to see: by assuming the opposite we get a con-
tradiction with C1’.

Claim 2. Given a ws-setW and an iws-setW ′ such that there is a function g : W → W ′

that satisfies C1’ and C2’, there is a function gneg : negate(W ) → negate′(W ′) that
satisfies C1’ and C2’.

The proof for Claim 2 is more involved. First we will define the function gneg :
negate(W ) → negate′(W ′). Then we show that gneg(·) satisfies the two conditions C1’
and C2’, one after another.

Consider an arbitrary ws-set W and an arbitrary iws-set W ′ such that there exists a
function g : W → W ′ that satisfies C1’ and C2’. Let W ′ = {w′1, . . . , w′n} and

Gi = {wi,1, . . . , wi,li} = g-1(w′i) for 1 ≤ i ≤ n.

Gi ⊆ W and Gi is the set of ws-descriptors in W that map to w′i. The union of all n
sets is the ws-set W and the n groups are pairwise disjoint, i.e. W =

⋃
1≤i≤nGi and

Gi ∩Gj = ∅ for i 6= j. So the ws-sets Gi partition the ws-set W and

W = {w1,1, . . . , w1,l1 , . . . , wn,1, . . . , wn,li}.

As g satisfies C1’ and C2’ we conclude that ω(Gi) = ω(w′i). Gi and w′i describe the
same set of worlds. Figure 5.7 depicts the setting.

To define gneg(·) we consider a ws-descriptor d ∈ negate(W ) and show how to
construct d′ = gneg(d). Note that by the definition of negate(·) the ws-descriptor d
contains one equality for each ws-descriptor in W . So let

d = (x1,1 = c1,1 ∧ · · · ∧ x1,l1 = c1,l1 ∧ · · · ∧ xn,1 = cn,1 ∧ · · · ∧ xn,ln = cn,ln)

be an arbitrary ws-descriptor in negate(W ). Note that the xi,j’s are meta-variables and
the ci,j’s meta-constants. For example it could hold that x1,1 and x3,1 represent the
same variable or that c5,2 and c6,3 represent the same constant. For ease of notation let
di = (xi,1 = ci,1 ∧ · · · ∧ xi,li = ci,li), so that d = (d1 ∧ · · · ∧ dn). We say that di is the
i-th group of equalities that d consists of.

By the definition of negate(·) we know that every ws-descriptor wi,j ∈ W (1 ≤ i ≤
n, 1 ≤ j ≤ li) contains an equality xi,j = ĉi,j , such that ĉi,j 6= ci,j for 1 ≤ j ≤ li (the
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ws-set W
...

w1,1 = (x1,1 = ĉ1,1 ∧ . . . ),
...

. . . ,
w1,l1 = (x1,l1 = ĉ1,l1 ∧ . . . ),

G1

... . . . ,

wn,1 = (xn,1 = ĉn,1 ∧ . . . ),
. . . ,

wn,ln = (xn,ln = ĉn,ln ∧ . . . )
...

Gn

g(·)
−−−−−−−−→ ...iws-set W ′ ...

...
...w′1,

...

. . . ,

...w′n
...

...

d ∈ negate(W )
...

x1,1 = c1,1 ∧
. . . ∧

x1,l1 = c1,l1 ∧

 d1

... . . . ∧
xn,1 = cn,1 ∧

. . . ∧
xn,ln = cn,ln

 dn

gneg(·)−−−−−−−−−−→ ...d′ ∈ negate′(W ′)
...

corr(d, 1) ∧

.... . . ∧

corr(d, n)

Figure 5.7: Sketch for the proof of Claim 2.

same variables as in d, but a different constant). It follows that ω(di) ∩ ω(Gi) = ∅. As
Gi and w′i describe the same set of worlds we conclude that

ω(di) ∩ ω(w′i) = ∅ (5.1)

We define a correspondence function corr(·, ·) that assigns an equality or inequality
to each di. We will use corr(·) later to define gneg(·). Remember that xi,j = ĉi,j is part of
every wi,j . We define corr(d, i) for the ws-descriptor d in negate(W ) and its i-th group
of equalities as follows:

Case 1: There is a j such that xi,j = ĉi,j is part of w′i. This means that both w′i and
wi,j contain the equality xi,j = ĉi,j . If there is more than one j we arbitrarily choose
one. We define corr(d, i) := (xi,j 6= ĉi,j).

Case 2: There is no j such that xi,j = ĉi,j is part of w′i. This means that the variables
xi,1, . . . , xi,li can only occur in an inequality in w′i. Otherwise, if any of the variables
occurs in an equality with another constant, ω(wi,j) * ω(w′i) and g would violate C1’.
We will show that there is a j such that the inequality xi,j 6= ci,j is part of w′i. If there
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is more than one j we arbitrarily choose one. For case 2 we define corr(d, i) := (xi,j =
ci,j).

Assume to the contrary that there is no j such that xi,j 6= ci,j is part of w′i. This
means that none of the equalities in di occurs negated in w′i. In summary, di only
consists of equalities with variables that do not occur in w′i and of equalities xi,j = ci,j
for which the following holds:

xi,j is not part of an equality in w′i due to case 2 and
xi,j 6= ci,j does not occur in w′i as assumed.

By Remark 5.2.2 it follows that di is consistent with w′i, i.e. ω(di) ∩ ω(w′i) 6= ∅. This
is a contradiction to Equation 5.1. We can conclude that the assumption is wrong and
there is a j such that xi,j 6= ci,j is part of w′i.

We are ready to define

gneg(d) = (corr(d, 1) ∧ · · · ∧ corr(d, n)).

We need to show that the image of gneg(·) is actually contained in negate(W ′),
i.e. that gneg(d) ∈ negate′(W ′). Let d′ = gneg(d) for our arbitrary tuple d.

Each corr(d, i) is the negation of an (in-)equality in w′i. To show that d′ is part of
negate′(W ′) we need to show that d′ satisfies ψ′ (that it is consistent and feasible).

d′ is consistent because its equalities are all part of d, which is consistent, and in-
equalities cannot lead to inconsistency either, as we show now. Assume to the contrary
that d′ contains the equality x = c and the inequality x 6= c for an arbitrary variable x
and an arbitrary constant c. By the construction of d′ via gneg we can conclude that d
contains x = c as well as x = c′ for a c′ 6= c. This would mean that d is inconsistent,
which is not possible. Therefore we know that d′ is consistent as well.

Similarly we can see that d′ is feasible. Assume to the contrary that d′ is infeasible,
which means that there is a variable x such that d′ contains inequalities x 6= c for
all c ∈ dom(x). By the construction of d′ there is an equality x = c′ in d for each
inequality x 6= c in d′ and c′ 6= c. As d′ contains inequalities x 6= c for all c ∈ dom(x),
the equalities in d cannot be all the same, which is a contradiction to the consistency of
d. Hence the assumption must be wrong and d′ is feasible.

We have shown that d′ ∈ negate(W ′). By the definition of gneg the iws-descriptor d′

consists of equalities that likewise occur in d and of inequalities for which correspond-
ing equalities with the same variables but different constant values occur in d. Hence
ω(d) ⊆ ω(d′). It follows that gneg(·) fulfills condition C1’.

It remains to show that gneg(·) satisfies condition C2’. For this consider an arbitrary
iws-descriptor d′ ∈ negate′(W ′). Remember that W ′ = {w′1, . . . , w′n}. So |d′| = n.
Without loss of generality we assume that the first k conjuncts are inequalities and the
last n− k conjuncts are equalities, i.e.

d′ = (x1 6= c1 ∧ · · · ∧ xk 6= ck ∧ xk+1 = ck+1 ∧ · · · ∧ xn = cn).



CHAPTER 5. NOVEL DESCRIPTORS FOR WORLD SETS 46

By the definition of negate′ we know that xi = ci is part of w′i for i ∈ {1, . . . , k} and
xi 6= ci is part of w′i for i ∈ {k + 1, . . . , n}. As before, let Gi = {wi,1, . . . , wi,li} =
g-1(w′i).

By assumption g(·) satisfies condition C1’ and so by Claim 1 the equality xi = ci
is part of all wi,j , for i ∈ {1, . . . , k}, j ∈ {1, . . . , li}. For the same reason for i ∈
{k + 1, . . . , n} the ws-descriptors wi,j contain equalities xi = ci,j , where ci,j 6= ci.

Assume an arbitrary instantiation d′inst of d′:

d′inst = (x1 = ĉ1 ∧ · · · ∧ xk = ĉk ∧ xk+1 = ck+1 ∧ · · · ∧ xn = cn),

where ĉi 6= ci for 1 ≤ i ≤ k. We show that there exists a ws-descriptor d ∈ negate(W ),
such that ω(d) = ω(d′inst). Let

d = ((x1 = ĉ1)l1 ∧ · · · ∧ (xk = ĉk)
lk ∧ (xk+1 = ck+1)lk+1 ∧ · · · ∧ (xn = cn)ln),

in which exponentiation denotes multiple occurrence of an equality, connected by a
logical conjunction. Obviously ω(d) = ω(d′inst).

We argue that d is generated as a part of negate(W ). The first k groups of equalities
in d are generated because as argued before xi = ci is part of all wi,j (for 1 ≤ i ≤ k) and
ĉi 6= ci (for 1 ≤ i ≤ k). The last n − k groups of equalities in d are generated because
each ci,j 6= ci (for k + 1 ≤ i ≤ n) as shown before. So d is indeed part of negate(W ).

Let D be the set of all ws-descriptors that are instantiations of d′. By Remark 5.2.4
we conclude ω(D) = ω(d′). For each d ∈ D it holds that gneg(d) = d′, therefore
D ⊆ {d | gneg(d) = d′}. It follows that ω(d′) ⊆

⋃
d:gneg(d)=d′ ω(d). We have chosen d′

arbitrarily, therefore

∀d′ ∈ negate′(W ′) : ω(d′) ⊆
⋃

d:gneg(d)=d′

ω(d)

So gneg(·) satisfies condition C2’. We have shown that gneg(·) satisfies both C1’ and C2’,
which concludes the proof of Claim 2.

Now we are ready to show that set difference preserves C1 and C2. Recall that

T = s e l e c t diff(D1,W ) , T1 , A1 from R ;
where W := s e l e c t D2 from S where A2 = A1 ;
and diff(d,W ) := {concat(d, d′) | d′ ∈ negate(W ), ψ(d, d′)}.

Similarly T ′ is computed from R′, S ′ and negate′. Consider an arbitrary tuple t ∈
T and let t.D3 = (d1 ∧ d2). d1 is the part of t.D3 that originates in R and d2 the
part that originates in negate(·) (as defined by diff ). It follows that there exists a tuple
r = (d1, t.T̄3, t.Ā3) in R. Let W be the set of ws-descriptors of tuples in S that agree
with r on the data attributes, i.e. the result of the subquery select D2 from S
where Ā2 = Ā1 relative to r. Let r′ = fR(r). As fR satisfies C1 it follows that
r′.Ā1 = r.Ā1. Let W ′ be the set of iws-descriptors of tuples in S ′ that agree with r′
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on the data attributes, i.e. the result of the subquery select D2 from S ′ where
Ā2 = Ā1 relative to r′.

fS satisfies C1 and C2, the subqueries select by the same values r′.Ā1 = r.Ā1, hence
there is a function g : W → W ′ that satisfies C1’ and C2’. Using Claim 2 we conclude
that there is a function gneg : negate(W )→ negate′(W ′) that satisfies C1’ and C2’.

By the definition of diff we know that d2 ∈ negate(W ). We define fT as follows:

Let d3 = (fR(r).D1 ∧ gneg(d2)).

fT (t) := (d3, t.T̄3, t.Ā3).

First we show that fT satisfies C1. By definition of fT it follows that the data at-
tributes and the tuple ids of t and fT (t) are equivalent. Recall that r.D1 = d1. It holds
that ω(t.D3) ⊆ ω(fT (t).D3) as

ω(t.D3) = ω(d1 ∧ d2) ⊆ ω(fR(r).D1 ∧ gneg(d2)) = ω(fT (t).D3)

because fR satisfies C1 and gneg satisfies C1’.
To see that fT satisfies C2 consider a tuple t′ ∈ T ′. Let t′.D3 = (d1∧d2). d1 is the set

of (in-)equalities in t′.D3 that originate in R′ and d2 is the set of (in-)equalities in t′.D3

that originate in negate′(W ′). By the definition of set difference r′ = (d1, t
′.T̄3, t

′.Ā3) ∈
R′ and d2 ∈ W ′. Let {r1, . . . , rk} = f -1

R (r′) and {w1, . . . , wl} = g-1
neg(d2). The follow-

ing sequence of equations shows that fT satisfies C2.

ω(d1 ∧ d2) = ω(r′.D1) ∩ ω(d2)

⊆
⋃

1≤i≤k

ω(ri.D1) ∩
⋃

1≤i≤l

ω(wi)

⊆
⋃

1≤i≤k,1≤j≤l

(ω(ri.D1) ∩ ω(wj))

⊆
⋃

1≤i≤k,1≤j≤l,ω(ri.D1)∩ω(wj) 6=∅

(ω(ri.D1) ∩ ω(wj))

⊆
⋃

t:f(t)=t′

ω(t.D3)

fR satisfies C2 and gneg satisfies C2’ which enables the step from the first to the second
line. Then we apply distributivity of set intersection and set union. In line 4, omitting
empty sets (the inconsistent ws-descriptors) in the union does not change the result of
the union. These are exactly the ws-descriptors of the tuples in T that are mapped to t′

by fT (·): All combinations of tuples ri and ws-descriptors wj , where ω(ri.D1 ∧ wj) 6=
∅ (the condition ψ). So fT (·) satisfies C2. We have shown that fT (·) satisfies both
conditions C1 and C2. Set difference preserves the two conditions.



CHAPTER 5. NOVEL DESCRIPTORS FOR WORLD SETS 48

For every operator we have shown that there exists a function fT : T → T ′, that
satisfies the two conditions C1 and C2. This completes the inductive step. As discussed
in the beginning, C2 implies surjectiveness. Hence JQ(A)K′ consists of not more tuples
than JQ(A)K.

With this proof we have shown that by using iws-descriptors we never get larger
query results than by using ws-descriptors. On the other hand we have shown that
by using iws-descriptors the query results can be exponentially smaller. Together this
means that iws-descriptors outpace ws-descriptors.

5.3 Descriptors with Intervals
Iws-descriptors can be exponentially more succinct than ws-descriptors when a differ-
ence operator or an update operation is involved. But there is a disadvantage: When-
ever two iws-descriptors are joined, they have to be checked for feasibility. This is
expensive to do, because a lookup in the world table is needed to check the domain.
Iws-descriptors are so succinct because the inequalities allow to bypass the strictly con-
junctive nature of ws-descriptors, when we regard an inequality as a shortcut for a dis-
junction over all the other domain values of a variable. The feasibility check is needed
because the “allowed” domain values are described only indirectly by an inequality.

Avoiding the expensive feasibility check, but at the same time trying to keep the
benefit of iws-descriptors, we introduce another type of world set descriptor building on
intervals: the interval-ws-descriptor. Instead of equalities and inequalities an interval-
ws-descriptor consists of intervals on variables.

Definition 5.3.1 (intws-descriptor). Given a world table W , an interval-ws-descriptor
(intws-descriptor) over W is a set of triples (v, lo, hi) that consist of a variable v ∈
vars(W ) with a lower bound lo and an upper bound hi, such that lo ≤ hi, lo, hi ∈
domW (v) and such that a variable occurs at most once in the set.

The intended meaning for intws-descriptors is that they define lower and upper
bounds for variables. To emphasize this notationally we write for example

d =
(
(1 ≤ x ≤ 3) ∧ (6 ≤ y ≤ 6)

)
for the intws-descriptor {(x, 1, 3), (y, 6, 6)}. We say that d defines intervals on x ([1, 3])
and y ([6, 6]). Given an intws-descriptor dwe write |d| do denote the number of intervals
d defines (its length). We assume an arbitrary order on the intervals an intws-descriptor
d consists of to be able to address them. We write d[i].var to refer to the variable of its
i-th interval, d[i].lo to refer to the lower bound of its i-th interval and d[i].hi to refer to
the upper bound of its i-th interval.
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Two intws-descriptors are consistent if their intervals on the variables they have in
common intersect. This is equivalent to the fact that none of all the pairwise intersec-
tions of intervals on the same variable is empty. The function ψ′′ in Figure 5.8 for-
mally defines consistency of two intws-descriptors. For example the intws-descriptors
((1 ≤ x ≤ 3)) and ((2 ≤ x ≤ 4)) are consistent. ((1 ≤ z ≤ 3)) and ((5 ≤ z ≤ 7)) are
an example of two inconsistent intws-descriptors.

We define the semantics of intws-descriptors by extending the function ω to intws-
descriptors. Given an intws-descriptor d, ω(d) is the set of total valuations that obey the
lower and upper bounds defined in d.

Definition 5.3.2 (ω for intws-descriptors). Given an intws-descriptor d over a world
table W , ω(d) is the set of total valuations f over variables in W for which it holds that
∀i<|d|

(
f(d[i].var) ≥ d[i].lo ∧ f(d[i].var) ≤ d[i].hi

)
.

For example: The intws-descriptor
(
(1 ≤ x ≤ 3) ∧ (6 ≤ y ≤ 6)

)
represents the set

of valuations where 1 ≤ x ≤ 3 and y = 6. It can be seen as a shortcut for the ws-set
{(x = 1 ∧ y = 6), (x = 2 ∧ y = 6), (x = 3 ∧ y = 6)}. Analog to ws-sets we call
sets of intws-descriptors intws-sets. The semantics of intws-sets is defined by further
extending the function ω to intws-sets. Given an intws-set S, ω(S) =

⋃
d∈S ω(d).

Intws-descriptors make especially sense when the domains of variables do not con-
tain gaps. This is the case because we assume a normalized world table. As for ws-
descriptors, and in contrast to iws-descriptors, consistency of two intws-descriptors d1

and d2 already implies that ω(d1) ∩ ω(d2) 6= ∅. No separate check for feasibility is
necessary.

Definition 5.3.3. Uint-relations are U-relations based on intws-descriptors instead of
ws-descriptors.

The semantics of Uint-relations follows from the definition of ω for intws-descriptors.
Ws-descriptors can be seen as a special case of intws-descriptors, where the lower and
upper bounds are equivalent. It follows that Uint-relations are a complete representation
system for uncertain databases, because intws-descriptors extend the expressiveness of
ws-descriptors. This means that every uncertain database can be represented using Uint-
relations.

Queries on Uint-relations
In this section we show how to translate relational algebra queries with poss and merge
into queries on Uint-relations. We use a translation function J·K′′ to translate relational
algebra with poss and merge. Let J·K′′ be equivalent to J·K (see Figure 3.5 and 4.6)
except for the consistency check and the inverse. In Figure 5.8 we define the function
ψ′′ that checks the consistency of two intws-descriptors. It replaces ψ in J·K′′. ψ′′ checks
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ψ′′(d1, d2) :=
∧

i<|d1|,j<|d2|

(d1[i].var = d2[j].var→

d1[i].lo ≤ d2[j].hi ∧ d1[i].hi ≥ d2[j].lo).

Figure 5.8: Consistency check for intws-descriptors.

Let S = {d1, . . . , dn}.
negate′′(S) :=

{
d = ((lo1,j1 ≤ d1[j1].var ≤ hi1,j1) ∧ · · · ∧

(lon,jn ≤ dn[jn].var ≤ hin,jn))
∣∣

0 ≤ ji < |di|, 1 ≤ i ≤ n,

(loi,ji = 1 and hii,ji = di[j1].lo− 1) or
(loi,ji = di[j1].hi + 1 and hii,ji = max(di[ji].var)),

ψ′′(d, d)
}

Figure 5.9: Negation for intws-sets.

consistency of two intws-descriptors by requiring that each intersection of intervals on
the same variable is nonempty. In Figure 5.9 we define negate′′(·) for the inverse of
an intws-set. It replaces negate(·) in J·K′′. negate′′(·) is quite similar to negate(·) for
ws-descriptors but the size of the inverses it produces does not depend on the domains
of the occurring variables. Given a normalized world table, the inverse of an interval
(lo ≤ x ≤ hi) for a variable x are the two intervals (1 ≤ x ≤ lo− 1) and (hi + 1 ≤ x ≤
max(x)). Both can be empty (in case lo = 1 or hi = max(x)). negate′′(·) defines the
inverse of an intws-set S that consists of n intws-descriptors. The inverse consists of all
combinations of inverses of intervals in the intws-descriptors d1, . . . , dn. The result is
again an intws-set. To build its intws-descriptors, from each of the n ws-descriptors in
S an interval is chosen and substituted by one of the two inverse intervals. ψ′′ filters out
inconsistent ws-descriptors.

Let us analyze the cardinality of the intws-sets generated by negate′′(·). Let n be the
number of intws-descriptors the input intws-set consists of and m the maximum length
of the intws-descriptors. An intws-set generated by negate′′(·) is maximal when the
consistency check ψ′′ always returns true. This is the case when in the input intws-set
no variable occurs more than once. Then the cardinality of the inverse intws-set is in
O((2m)n).

From the translation J·K′′ it follows that
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Theorem 5.3.4. Positive relational algebra queries extended with poss and merge can
be evaluated on Uint-relational databases in polynomial time data complexity.

Proof. By Theorem 3.4.1 positive relational algebra queries extended with poss and
merge can be evaluated on U-relational databases in polynomial time data complexity.
On Uint-relations the translation of positive relational algebra queries extended with
poss and merge differs only in the consistency check ψ′′. The function ψ′′ needs only
polynomial time, as the function ψ. Hence positive relational algebra queries extended
with poss and merge can be evaluated on Uint-relational databases also in polynomial
time data complexity.

When we concatenate two intws-descriptors then we can merge intervals on the
same variable. For example consider the intws-descriptors d1 = (1 ≤ x ≤ 5) and
d2 = (3 ≤ x ≤ 8). concat(d1, d2) = (1 ≤ x ≤ 5 ∧ 3 ≤ x ≤ 8) describes the same
worlds like the intws-descriptor (3 ≤ x ≤ 5) where the two intervals on the variable x
are intersected. By ordering the intervals of an intws-descriptor by the variable names
we can check the consistency of two intws-descriptors in linear time, as we have done
it for ws-descriptors.

5.4 Intws-descriptors outpace Ws-descriptors
In this section we compare U-relations to Uint-relations. We show that Uint-relations can
be exponentially more succinct. The following theorem states that there are ws-sets S
such that |negate′′(S)| is exponentially smaller than |negate(S)|.

Theorem 5.4.1. There are ws-sets S such that |negate′′(S)| = 1 and |negate(S)| =
(d− 1)|S|, where d is the maximum domain size of the variables in S.

Proof. Consider the ws-set S = {(x1 = 1), . . . , (xn = 1)} and let max(xi) = d for
1 ≤ i ≤ n. It holds that |negate(S)| = (d− 1)n because

negate(S) = {(x1 = 2 ∧ x2 = 2 ∧ · · · ∧ xn = 2),

(x1 = 3 ∧ x2 = 2 ∧ · · · ∧ xn = 2),

(x1 = 2 ∧ x2 = 3 ∧ · · · ∧ xn = 2),

...
(x1 = d ∧ x2 = d ∧ · · · ∧ xn = d)}.

In contrast |negate′′(S)| = 1 because
negate′′(S) = {((2 ≤ x1 ≤ d) ∧ · · · ∧ (2 ≤ xn ≤ d))}.
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It follows that using Uint-relations the result of a query with set difference can be
exponentially more succinct than the result of the same query when using U-relations.

We believe that analogously to Theorem 5.2.5 it can be proven that the result of a
query is never less succinct when using Uint-relations, compared to using U-relations.
The proof has to be adopted for intws-descriptors which seems to be possible but not
trivial. We skip it because it would go beyond the scope of this thesis.

5.5 Summary
I this chapter we have presented two new representation systems for uncertain databases:
Ui-relations and Uint-relations. They extend U-relations by relying on iws- respectively
intws-descriptors instead of ws-descriptors. We have described how relational algebra
queries can be evaluated on Ui-relations and on Uint-relations.

Both of the new representation systems preserve the advantages of U-relations,
namely polynomial time data complexity for positive relational algebra queries extended
by the possible operator. We have shown that with both Ui-relations and Uint-relations
the worst-case complexity for computing the inverse of a ws-set (negation) drops ex-
ponentially. This directly improves the computation of set difference and of updates.
Furthermore we have shown, with a rather complex proof, that by using Ui-relations
one never gets larger query results than by using U-relations.

While Ui-relations and Uint-relations are a big improvement, there is still a potential
for further optimization, as the next chapter shows.



6. Optimization

In this chapter we describe different optimizations. We show how to optimize U-
relational databases and we show how to improve set difference on U-relations. In
both cases we consider U-relations, Ui-relations and Uint-relations.

With optimizing a U-relational database we mean to reduce the size, i.e. given a
U-relational database UDB we look for a smaller U-relational database UDB′ such that
rep(UDB) = rep(UDB′). To motivate why this is necessary we return to the recurring
example about product ratings as introduced in Section 3.1. As in Section 4.1, assume
there are only snow globes and no globes and therefore the following update was issued:

update UP s e t P r o d u c t = ’Snow g l o b e ’ where P r o d u c t = ’ Globe ’ ;

The result of the update is the table U ′P :

U ′P D Tid Product
() 1 Mozart-CD
() 2 Key ring
(y = 1) 3 Snow globe
(y = 2) 3 Snow globe

Figure 6.1: A U-relation that can be optimized.

It contains twice the value “Snow globe” for the tuple with id 3, with different ws-
descriptors (y = 1) and (y = 2). Let us call the two tuples t1 and t2. Knowing
that the domain of y is {1, 2} we can optimize U ′P by replacing t1 and t2 with a tuple
s = ((), 3, ’Snow globe’). The tuple s is equivalent to the replaced tuples except for the
ws-descriptor. But the ws-descriptors of t1 and t2 together represent the same worlds
as the empty ws-descriptor in s, i.e. ω(t1.D) ∪ ω(t2.D) = ω(s.D). Therefore this
replacement is correct. In general we have n tuples that are equivalent except for the
ws-descriptor. Their ws-descriptors make up a ws-set of cardinality n, which we want
to optimize.

In the first section of this chapter we formally define the problem of minimizing
ws/iws/intws-sets and prove its intractability. In Section 6.2 we describe two tractable
optimization procedures. In Section 6.3 we present a special optimization problem for
intws-descriptors and discuss its complexity. In Section 6.4 we show how the com-
plexity of set difference can be reduced by integrating one of the tractable optimization
procedures into the algorithm INV-NEGATE.

53
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6.1 Optimizing Descriptors of World Sets
In this section we first focus on iws-sets. In the end we discuss that all the results also
hold for ws-sets and intws-sets. As example, we consider an iws-set

S1 = {(x = 1), (x = 2), (x = 3)}

and let dom(x) = {1, 2, 3}. The iws-set S2 = {()}, consisting of one empty iws-
descriptor, represents the same set of worlds as S1, i.e. ω(S2) = ω(S1). Using S2

instead of S1 to describe in which worlds a tuple exists is a clear optimization. Consider
again the iws-set S1, but now let dom(x) = {1, 2, 3, 4}. The iws-set S3 = {(x 6= 4)}
is a shorter way to represent the same set of worlds. Only one iws-descriptor of length
1 is needed instead of three iws-descriptors of length 1. Now let dom(x) = {1, . . . , 7}.
Another way to represent ω(S1) is the following iws-set

S4 = {(x 6= 4 ∧ x 6= 5 ∧ x 6= 6 ∧ x 6= 7)}.

It consists of one iws-descriptor of length 4. Is it better to use S1 or to use S4? S1 mini-
mizes the total number of equalities and inequalities while S4 minimizes the cardinality
of the iws-set. We argue that the former is preferable.

When using positive queries iws-descriptors are checked for consistency/feasibility
and are merged. The time needed to merge two iws-descriptors depends linearly on their
length. The number of comparisons needed for the consistency/feasibility check also
depends directly on the number of equalities and inequalities the two iws-descriptors
consist of. Hence we should minimize the total number of equalities and inequalities an
iws-set contains.

Definition 6.1.1 (Size of an iws-set). The size of an iws-set is the total number of
equalities and inequalities its iws-descriptors consist of.

Example: The size of the iws-set S = {(x = 1 ∧ y 6= 2), (z = 1), (x = 1 ∧ y = 3)}
is 2 + 1 + 2 = 5. We are now ready to define the optimization problem:

IWS-SET MINIMIZATION [IWS MIN]

Instance: A world table W , an iws-set S over W and an integer k.

Question: Is there an iws-set S ′ over W of size at most k such that ω(S ′) =
ω(S)?

We will show that IWS MIN is ΣP
2 -complete. To show ΣP

2 -hardness we reduce the
Minimum Equivalent DNF problem (MIN DNF) [46], which is ΣP

2 -complete [49], to
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IWS MIN. MIN DNF is a famous problem inspired by the minimization of Boolean
functions and defined as follows.

MINIMUM EQUIVALENT DNF [MIN DNF]

Instance: A DNF formula φ over Boolean variables and an integer k.

Question: Is there a DNF formula equivalent to φ that contains k or fewer
occurrences of literals?

Lemma 6.1.2. There is a polynomial time reduction from MIN DNF to IWS MIN.

Proof. Consider an arbitrary instance ID = (φ, k) of MIN DNF. Let V = {x1, . . . , xn}
be the set of variables occurring in φ. φ is a disjunction of conjunctions of literals, i.e.

φ = (a1,1 ∧ · · · ∧ a1,l1) ∨ · · · ∨ (am,1 ∧ · · · ∧ am,lm).

The ai,j’s are positive or negative literals over V . We construct an instance IS =
(W,S, k) of IWS MIN. We define the world table

W := {(x1, 1), (x1, 2), . . . , (xn, 1), (xn, 2)}.

It contains the same variables as V and each variable has the domain {1, 2}. Let S be
a set of m iws-descriptors d1, . . . , dm. To every term in φ we define a corresponding
iws-descriptor di:

di := (var(ai,1) = val(ai,1) ∧ · · · ∧ var(ai,li) = val(ai,li)),

where var(x) indicates the atom used in the literal x and val(x) is 1 in case x is a positive
literal and 2 otherwise.

Before showing the correctness of the reduction we want to discuss an important
property. Each assignment of truth values to the variables in V corresponds to a total
valuation of the variables in V to {1, 2} (where true corresponds to 1 and false to 2).
Let f be a function from truth assignments to valuations that turns truth assignments
into total valuations by mapping true to 1 and false to 2. The inverse of f , f−1, is
well-defined. Due to the construction of S we conclude that

a truth assignment I satisfies φ⇔ f(I) ∈ ω(S), and
T ∈ ω(S)⇔ f−1(T ) satisfies φ

We show the correctness of the reduction in two steps.

• Assuming that ID is a positive instance of MIN DNF, we know that there is a
formula φ′ equivalent to φ that contains at most k literals. Equivalent means that
φ and φ′ are satisfied by the same truth assignments. In the same manner as we
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constructed S from φ we construct an iws-set S ′ from φ′. Obviously the size of
S ′ is at most k. We show that ω(S ′) = ω(S). First consider an arbitrary valuation
T ∈ ω(S). As argued above, f−1(T ) satisfies φ. As φ and φ′ are equivalent,
f−1(T ) also satisfies φ′. By construction of S ′ analogously to S, f(f−1(T )) =
T ∈ ω(S ′). Secondly we consider an arbitrary valuation T /∈ ω(S). Then f−1(T )
does neither satisfies φ nor φ′. f(f−1(T )) /∈ ω(S ′), therefore T /∈ ω(S ′). It
follows that ω(S ′) = ω(S).

• Now assume IS is a positive instance of IWS MIN. Then there is an iws-set S ′ of
size k′ ≤ k, such that ω(S) = ω(S ′). Without loss of generality S ′ consists of
equalities only. Because of the binary domain every inequality can be replaced by
an equality without changing the size of S ′. From S ′ we construct a formula φ′.
For every iws-descriptor di = (ai,1 = ci,1 ∧ · · · ∧ ai,li = ci,li) in S ′, 1 ≤ i ≤ k′,
we define a corresponding term ti:

ti := lit(ai,1, ci,1) ∧ · · · ∧ lit(ai,li , ci,li),

where lit(x, c) is x in case c = 1 and ¬x otherwise. Let φ′ := t1 ∨ · · · ∨ tk′ . It
consists of k′ ≤ k occurrences of literals. By the construction of φ′ we conclude
that

T ∈ ω(S ′)⇔ f−1(T ) satisfies φ′.

We show that φ and φ′ are equivalent, i.e. that they are satisfied by the same truth
assignments. First consider an arbitrary truth assignment I that satisfies φ. It
follows that f(I) ∈ ω(S) and also f(I) ∈ ω(S ′) (because ω(S) = ω(S ′)). As we
concluded f−1(f(I)) satisfies φ′. f−1(f(I)) = I , hence I satisfies φ′. Secondly
we consider an arbitrary truth assignment I that does not satisfy φ. It follows
that f(I) /∈ ω(S) and also f(I) /∈ ω(S ′). As we concluded f−1(f(I)) does not
satisfy φ′. f−1(f(I)) = I , hence I does not satisfy φ′. It follows that φ and φ′ are
equivalent.

Lemma 6.1.3. IWS MIN is in ΣP
2 .

Proof. Consider an arbitrary instance (W,S, k) of IWS MIN. We guess an iws-set S ′

and check in polynomial time whether it contains at most k equalities and inequalities.
With a coNP oracle we check that there does not exist a valuation w such that w ∈ ω(S)
and w /∈ ω(S ′) or vice versa. The check itself is feasible in polynomial time. Given w
as a total ws-descriptor we just have to check that w is consistent with both S and S ′ or
with neither of them.

By taking into account that MIN DNF is ΣP
2 -complete and combining the two lem-

mas we get:
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Theorem 6.1.4. IWS MIN is ΣP
2 -complete.

We define the analogous optimization problem for ws-sets and intws-sets. The size
of a ws-set (intws-set) is the total number of equalities (intervals) its ws-descriptors
(intws-descriptors) consist of.

WS-SET MINIMIZATION [WS MIN]

Instance: A world table W , a ws-set S over W and an integer k.

Question: Is there a ws-set S ′ over W of size at most k such that
ω(S ′) = ω(S)?

INTWS-SET MINIMIZATION [INTWS MIN]

Instance: A world table W , an intws-set S over W and an integer k.

Question: Is there an intws-set S ′ over W of size at most k such that
ω(S ′) = ω(S)?

As one can easily see, the reduction from MIN DNF also works for WS MIN and
INTWS MIN. Due to the binary domain that we get by reducing an arbitrary instance of
MIN DNF, any inequality can be represented by an equality. Similarly, intervals are not
more powerful than equalities on a binary domain. To show that WS MIN and INTWS

MIN are in ΣP
2 , the same guess-and-check algorithm can be used.

Corollary 6.1.5. WS MIN and INTWS MIN are ΣP
2 -complete.

The complexity class ΣP
2 contains NP and is assumed to be differend from NP.

Therefore WS MIN, IWS MIN and INTWS MIN are presumably harder to solve than
any problem in NP. Unless the polynomial hierarchy collapses, there does not exist any
efficient algorithm that solves WS MIN, IWS MIN or INTWS MIN.

6.2 Tractable Optimization
In the previous section we have shown that deciding if there is a smaller ws/iws/intws-
set that is equivalent to a given ws/iws/intws-set is intractable. It immediately follows
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that finding the smallest ws/iws/intws-set which is equivalent to a given ws/iws/intws-
set S is intractable. It is natural to ask for polynomial time algorithms that reduce the
size of S, even if the result is not minimal. We assume that the equalities/inequal-
ities/intervals of the descriptors in S are ordered by variable names as described in
Section 3.4. For the complexity analysis of the proposed algorithms we let n = |S| and
m = max{|d| | d ∈ S}.

Subset Elimination
So let S be a ws-, iws- or intws-set. Assume there are two ws-descriptors d1, d2 ∈ S
such that d2 represents a subset of worlds of d1, i.e. ω(d1) ⊇ ω(d2). Then we can safely
use a ws-set S ′ = S \{d2} instead of S. because ω(S) = ω(S ′) by the definition of ω(·)
and ω(d1) ⊇ ω(d2). We show how all ws-descriptors that describe subsets of worlds
can be detected.

Detecting that ω(d1) ⊇ ω(d2) is a matter of comparing d1 and d2. If every valuation
in d1 also occurs in d2 then ω(d1) ⊇ ω(d2). The following lemma states the relationship
between the equalities two ws-descriptors d1 and d2 consist of and d1 describing a subset
of the worlds of d2.

Lemma 6.2.1. Consider two ws-descriptors d1 and d2 and regard them as sets. Then
d1 ⊆ d2 ⇔ ω(d1) ⊇ ω(d2).

Proof. We proof the two directions separately.
⇒: Assume that d1 ⊆ d2. Then d2 = (d1 ∧ E), where E is some set of equalities.

By definition of ω it holds that ω(d2) = ω(d1 ∧ E) = ω(d1) ∩ ω(E). It follows that
ω(d1) ⊇ ω(d2).
⇐: Assume that d1 * d2. Then there exists an equality x = c in d1 which does not

occur in d2. Either there exists an equality x = c′ with c′ 6= c in d2, or the variable x
does not occur in d2. In the latter case we choose an arbitrary c′ ∈ dom(x), c′ 6= c. There
is always such a c′ because we do not have variables with a domain of size 1. It holds
that ω(d2 ∧ x = c′) ⊆ ω(d2), but obviously not that ω(d2 ∧ x = c′) ⊆ ω(d1). Hence
ω(d1) + ω(d2). Note that ω(d2 ∧ x = c′) 6= ∅ because d2 and x = c′ are obviously
consistent.

Using sorted ws-descriptors this property can be checked in linear time (in m), as
shown in Algorithm 5. If d1 and d2 are not consistent, we can stop. If d1 and d2 are
consistent, we know that they assign the same value to variables that occur in both of
them. The equalities in both ws-descriptors are iterated in parallel. In case d1 contains
a variable which does not occur in d2 false is returned. The condition in the last line
checks whether all equalities of d1 were consumed.
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Algorithm 5: CONTAINS(d1, d2)

Require: sorted ws-descriptors d1, d2

1: if not consistent(d1, d2) then
2: return false
3: end if
4: i = j = 0
5: while i < |d1| and j < |d2| do
6: if d1[i].var = d2[j].var then
7: i++, j++
8: else if d1[i].var < d2[j].var then
9: return false

10: else
11: j++
12: end if
13: end while
14: return i == |d1|

We can compare all ws-descriptors in S pairwise, which results in O(n2m) time
complexity for complete subset elimination on ws-sets. Note that subset elimination
also eliminates duplicate ws-descriptors.

Subset elimination is also possible on intws-sets and iws-sets, with the same com-
plexity. In case we use intervals subset elimination works slightly differently. When
comparing the variables (line 6 in Algorithm 5) we additionally have to check whether
the i-th interval of d1 contains the j-th interval of d2, i.e. whether d1[i].lo ≤ d2[j].lo and
d1[i].hi ≥ d2[j].hi.

When using iws-sets we have to consider the following facts. We always assume
that the two iws-descriptors are consistent and that the constants are pairwise distinct.

• ω((x 6= b1, . . . , x 6= bl, x 6= c)) ⊆ ω((x 6= b1, . . . , x 6= bl))

• ω((x = a)) ⊆ ω((x 6= b1, . . . , x 6= bl))

• ω((x = a)) ⊇ ω((x 6= b1, . . . , x 6= bl)) if dom(x) = {a, b1, . . . , bl}

Using these facts we can decide in linear time whether an iws-descriptor represents a
subset of worlds of another iws-descriptor.

Merge of Similar Descriptors
When using iws-sets we can merge iws-descriptors that differ only in the assignment of
values to one variable. For example: Assume dom(x) = {1, 2, 3, 4} and
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S = {(x = 1 ∧ y = 1), (x = 2 ∧ y = 1)}.

We can optimize S and merge its two descriptors into one, producing an iws-set S ′ =
{(x 6= 3, x 6= 4, y = 1)}. It holds that ω(S) = ω(S ′).

We describe the general case. Assume two iws-descriptors d1, d2 ∈ S and suppose
vars(d1) = vars(d2) = {x1, . . . , xl}. Further suppose d1 and d2 have the same equal-
ities and inequalities for {x2, . . . , xl}. Then we can build a ws-descriptor d3 such that
ω(d3) = ω(d1)∪ω(d2) and continue with a ws-set S ′ = S \{d1, d2}∪{d3}. Depending
on whether x1 occurs in an equality or inequality in d1 and d2, we differentiate between
four cases.

• d1 = (x1 = ca1 ∧ E), d2 = (x1 = ca2 ∧ E):
We construct d3 := (x1 6= cb3 ∧ · · · ∧ x1 6= cbk ∧ E),
where {cb3 , . . . , cbk} = dom(x1) \ {ca1 , ca2}.

• d1 = (x1 = ca1 ∧ E), d2 = (x1 6= cb1 ∧ · · · ∧ x1 6= cbl ∧ E)
We construct d3 := (x1 6= cd1 ∧ · · · ∧ x1 6= cdl′ ∧ E),
where {cd1 , . . . , cdl′} = {cb1 , . . . , cbl} \ {ca1}.

• d1 = (x1 6= cb2 ∧ · · · ∧ x1 6= cbl ∧ E), d2 = (x1 = cb1 ∧ E):
This case is symmetric to case 2.

• d1 = (x1 6= ca1 ∧ · · · ∧ x1 6= cal ∧ E), d2 = (x1 6= cb1 ∧ · · · ∧ x1 6= cbl′ ∧ E):
We construct d3 := (x1 6= cd1 ∧ · · · ∧ x1 6= cdl′′ ∧ E),
where {cd1 , . . . , cdl′′} = {ca1 , . . . , cal} ∩ {cb1 , . . . , cbl′}.

Each time we can apply one of the cases we get a ws-set of smaller cardinality. Only
in the first case the total number of equalities and inequalities can increase, i.e. |d3| >
|d1| + |d2|. We accept this because we possibly can merge the result d3 with another
ws-descriptor in the ws-set. Note that in all cases it can happen that we do not need the
variable x1 anymore, i.e. that d3 = (E).

Given sorted iws-descriptors d1 and d2, the initial checks, the case distinction and
the construction of d3 are possible in linear time in m. As in the subset elimination we
can try to merge all pairs of iws-descriptors in S. Additionally, after merging two iws-
descriptors into an iws-descriptor d3 it can become possible to merge d3 with another
iws-descriptor in S. This can happen at most n − 1 times because after n − 1 merges
only one iws-descriptor, which can be the empty iws-descriptor, is left. So altogether
the time complexity of this merge optimization is bounded by O(n3m).

When using intws-sets a similar merge optimization is possible. Consider

S = {(1 ≤ x ≤ 5 ∧ 1 ≤ y ≤ 2), (3 ≤ x ≤ 7 ∧ 1 ≤ y ≤ 2)}.

We can optimize S and merge its two descriptors into one, producing an intws-set
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S ′ = {(1 ≤ x ≤ 7 ∧ 1 ≤ y ≤ 2)}.

It holds that ω(S) = ω(S ′).
Let us consider the general case. Given an arbitrary intws-set S, we take two intws-

descriptors d1, d2 ∈ S. Suppose vars(d1) = vars(d2) = {x1, . . . , xl}. When d1 and d2

differ only in the interval on one variable x1 and the two intervals on x1 intersect or are
consecutive, i.e. when

d1 = (lo1 ≤ x1 ≤ hi1 ∧ E), d2 = (lo2 ≤ x1 ≤ hi2 ∧ E) and
lo1 ≤ hi2 + 1 ∧ lo2 ≤ hi1 + 1.

Then we can construct an intws-descriptor

d3 = (min{lo1, lo2} ≤ x1 ≤ max{hi1, hi2} ∧ E),

for which it holds that ω(d3) = ω(d1) ∪ ω(d2), and continue with a ws-set S ′ = S \
{d1, d2}∪{d3}. The time complexity of merging intws-descriptors until no more merge
is possible is the same as for iws-descriptors, namely O(n3m).

6.3 Optimizing Intervals
In the previous section we have described how intws-descriptors can be merged. This is
only possible if the two intervals intersect or are consecutive. If there is a gap between
the intervals they cannot be merged, which gives rise to another optimization problem.
Assume the world table of a U-relational database contains a variable x and dom(x) =
{1, . . . , 10}. Using intws-descriptors we exploit that there is a linear ordering of the
domain values: 〈1, 2, 3, . . . , 10〉. To state that a tuple exists in the worlds where x = 1
or x = 2, one intws-descriptor, (1 ≤ x ≤ 2), suffices. But now assume that a tuple t
exists in the worlds described by x = 1 or x = 4. To represent t we need two intws-
descriptors: (1 ≤ x ≤ 1) and (4 ≤ x ≤ 4). There is a gap, namely 〈2, 3〉. Without this
gap, only one intws-descriptor would be needed.

The ordering of the domain values of a variable is only used to work with intervals.
It carries no additional meaning, because the domain values are only used to identify
a world, but do not describe any properties of the world. Therefore we can optimize
the described case by defining a new linear ordering for the domain values of x, such
that 1 and 4 are consecutive. So let us define a new linear ordering for the variable
x: 〈1, 4, 2, 3, 5, . . . , 10〉 (ignoring the - now puzzling - ordering of natural numbers).
Given this new ordering, we can merge the two intws-descriptors of t into one intws-
descriptor (1 ≤ x ≤ 4). In practice it makes more sense to see the new ordering as
a permutation and rename once all the occurrences according to the permutation. The
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new linear ordering in the example is equivalent to the permutation σ:

σ =

(
1 2 3 4 5 6 7 8 9 10
1 4 2 3 5 6 7 8 9 10

)
This way we stay with the ordering of the natural numbers, the new intws-descriptor for
t is (1 ≤ x ≤ 2). If there are occurrences of x in any other intws-descriptor, they have
to be adapted too.

By applying a permutation to the domain values of a variable we can reduce the
number of intws-descriptors needed to represent tuples. Of course, this can also make
things worse. Maybe it decreases the number of intws-descriptors needed for one tuple
and increases the number of intws-descriptors needed for another tuple. The first ques-
tion is, whether there is an optimal permutation for a variable x such that there are no
more gaps. The second question is whether we can minimize the number of gaps for a
variable x and how complex this minimization is.

Let us formally define what a gap is.

Definition 6.3.1 (Gap). Given a U-relational database D with intws-descriptors, there
is a gap on a variable x of its world table if there is a relation R in D that contains
tuples t1 and t2 such that the data attributes and the tuple ids of t1 and t2 are equivalent,
the intws-descriptors of t1 and t2 are equivalent except for the intervals on x and the
intervals on x neither do overlap nor are adjacent.

This view is complicated and therefore we abstract of U-relations and formulate
the problem on sets. What we have is a variable x and sets S1, . . . , Sm of tuples that
coincide in all attributes except that the intervals on a variable x are different, i.e. the
tuples in each of the m sets are equivalent (same table, same attribute values, almost
same intws-descriptor), only the interval on the variable x can be different. We demand
that m is minimal to avoid that each tuple gets its own set, i.e. tuples that only differ in
the interval on the variable x end up in the same set.

For every set Si of tuples we construct a set of domain values Ti. Let Ti be the set
of domain values of x that are covered by intervals of the intws-descriptors in Si, for
1 ≤ i ≤ m. Note that T1, . . . , Tm are all subsets of dom(x).

Now let us formally define the problem:

GAP OPTIMIZATION [GAP OPT]

Instance: An integer n defining a setD = {1, . . . , n}, a family of non-empty
subsets T1, . . . , Tm ⊆ D and an integer k.

Question: Is there a permutation σ of D such that the total number of inter-
vals needed to represent each of σ(Ti), for 1 ≤ i ≤ m, is at most k +m?
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R D A
1 ≤ x ≤ 1 a1

3 ≤ x ≤ 4 a1

1 ≤ x ≤ 1 a2

4 ≤ x ≤ 4 a2

6 ≤ x ≤ 6 a2

5 ≤ x ≤ 8 a3

M 1 2 3 4 5 6 7 8
S1 1 0 1 1 0 0 0 0
S2 1 0 0 1 0 1 0 0
S3 0 0 0 0 1 1 1 1

Figure 6.2: From GAP OPT to CBM.

The setD represents the domain of the variable x, the subsets represent the intervals
that should be optimized and k is the maximum number of allowed gaps. In the optimal
case every subset can be represented by one interval and the total number of intervals is
m (and k = 0). The instance defined by the relation R in Figure 6.2 consists of three
subsets: {1, 3, 4}, {1, 4, 6} and {5, 6, 7, 8}. They can be represented by the matrix M .

We show that GAP OPT is equivalent to another, well-known problem about matri-
ces.

CONSECUTIVE BLOCK MINIMIZATION [CBM] [31]

Instance: A binary matrix A of size m× n and an integer l.

Question: Is there a permutation π of the columns of A, such that the total
number of blocks of consecutive 1’s in the rows of π(A) is at most l?

Lemma 6.3.2. There is a polynomial time reduction from GAP OPT to CBM.

Proof. Consider an arbitrary instance IG = (n, {T1, . . . , Tm}, k) of GAP OPT. n defines
the domain D = {1, . . . , n}. We construct an instance IC = (A, l) of CBM as follows.
Let A be a matrix of size m× n and ai,j = 1 iff j ∈ Ti (otherwise 0). Set l = k +m.

Note that the rows of A are the subsets, the columns the domain values D and a 1
(0) at ai,j signifies that the i-th subset contains (does not contain) the value j. A block
of 1’s in the i-th row of A corresponds to a subset of Ti that is an interval. Further, a
permutation of the columns of A corresponds to a permutation of D.

If IG is a positive instance then there exists a permutation σ fulfilling the properties
in question. At most k+m intervals are needed to represent the by σ permuted subsets.
As intervals correspond to blocks of 1’s in the rows of A, σ(A) has at most k + m = l
blocks of consecutive 1’s.

Vice versa, if IC is a positive instance then there exists a permutation π such that the
total number of blocks of consecutive 1’s in the rows of π(A) is at most l. As blocks of
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1’s in the rows of A correspond to intervals, in summary at most l = k + m intervals
are needed to represent each of the permuted subsets σ(Ti).

Lemma 6.3.3. There is a polynomial time reduction from CBM to GAP OPT.

Proof. Consider an arbitrary instance IC = (A, l) of CBM, where A is a matrix of
size m × n. Let A′ be the matrix that we get by removing all the rows of A that
contain only zeros. A′ is of size m′ × n (m′ ≤ m). We construct an instance IG =
(n, {T1, . . . , Tm′}, k) of GAP OPT. Let k = l − m′, Ti ⊆ {1, . . . , n} and j ∈ Ti iff
ai,j = 1.

We use the restricted matrix A′ so that the subsets T1, . . . , Tm′ are non-empty. Rows
that contain only zeros can be ignored because they never contain any blocks of 1’s, no
matter how they are permuted. As in the proof above a block of 1’s in the i-th row of A′

corresponds to a subset of Ti that is an interval, and a permutation of the columns of A′

corresponds to a permutation of D. Again, a permutation σ is a witness of IC iff it also
is a witness of IG.

CBM is NP-complete [31]. Due to the two lemmas above it follows immediately
that GAP OPT is NP-complete too. Unless P=NP there does not exist any efficient al-
gorithm that solves GAP OPT. Recently a polynomial-time approximation algorithm
was presented [23] that generates solutions for CBM that do not differ from the optimal
solutions by more than 50%. It can be used to improve bad orderings of domain values.
A special case remains: k = 0. Is there a permutation such that all the subsets can be
represented by a single interval? On binary matrices this is known as the consecutive
ones property [34] and can be solved in linear time [25]. Due to the first lemma this
means that only linear time is needed to either find a satisfying permutation of the do-
main values of a variable x or to find out that there is none. To actually achieve linear
time the subsets must not be represented by a matrix but for instance by arrays.

Let us summarize the results of this section:

Theorem 6.3.4. GAP OPT is NP-complete and there exists a polynomial time 1.5 ap-
proximation algorithm. The special case k = 0 is solvable in linear time.
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6.4 Optimizing Set Difference
This section is about optimizing the set difference operator. With optimizing we mean
to reduce the complexity of computing set difference and to reduce the size of the re-
sult. The source of complexity is the inverse of a ws-set. First we show how we can
reduce the size of the ws-set we have to compute the inverse of. Then we show how the
algorithm INV-NEGATE can be improved to generate equivalent, but smaller results in
less time.

Difference of Ws-Sets
We describe two ways to reduce the size of a ws-set we have to compute the inverse of.
Remember that ψ checks the consistency of two ws-descriptors and that in Section 4.4
we defined the difference between a ws-descriptor and a ws-set as follows:

diff(d,W ) := {concat(d, d′) | d′ ∈ negate(W ), ψ(d, d′)}.

We can ignore ws-descriptors in W that are inconsistent with d, i.e.

Lemma 6.4.1. ω(d) \ ω(W ) = ω(d) \ ω(W ′), where W ′ = {d′ ∈ W | ψ(d, d′)}.

Proof. The consistency check filters out ws-descriptors that are inconsistent with d. Let
W ′′ be the set of ws-descriptors that are filtered out, i.e. W = W ′ ∪W ′′, W ′ ∩W ′′ = ∅
and ω(d) ∩ ω(W ′′) = ∅. We have that

ω(d) \ ω(W ) = ω(d) \ (ω(W ′) ∪ ω(W ′′)) = (ω(d) \ ω(W ′′)) \ ω(W ′)

As stated ω(d)∩ω(W ′′) = ∅, hence ω(d)\ω(W ′′) = ω(d). It follows that ω(d)\ω(W ) =
ω(d) \ ω(W ′).

We consider now the difference between two ws-descriptors d1 and d2. We can
ignore equalities in d2 that also occur in d1. For example it holds that

ω((x = 1)) \ ω((x = 1 ∧ y = 2)) = ω((x = 1)) \ ω((y = 2)).

Removing the equality x = 1 from the second ws-descriptor does not change the result
because x = 1 also occurs in the first ws-descriptor.

Definition 6.4.2 (remove). Consider two ws-descriptors d1 and d2 and regard them as
sets of equalities. We define remove(d1, d2) := d1 \ d2.

For example: remove
(
(x = 1 ∧ y = 2), (x = 1)

)
= (y = 2). The following lemma

states that we can use remove to possibly reduce the length of the ws-descriptors in a
ws-set that we want to subtract from a ws-descriptor.
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Lemma 6.4.3. ω(d) \ ω(W ) = ω(d) \ ω(W ′), where W ′ = {remove(d′, d) | d′ ∈ W}.

Proof. Let W = {d1, . . . , dn}. Then ω(d) \ ω(W ) = ω(d) \ ω(d1) \ · · · \ ω(dn).
Therefore it suffices to show that

ω(d) \ ω(di) = ω(d) \ ω(remove(di, d)) (6.1)

If d and di do not have any equality in common, then remove(di, d) = di and equa-
tion 6.1 trivially holds. Assume d and di have exactly one equality x = c in common,
i.e. d = (A∧x = c) and di = (B∧x = c), whereA andB are disjoint sets of equalities.
Due to Lemma 6.4.1 it holds that

ω(d) \ ω(di) = ω(d) \
(
ω(di) ∪

⋃
c′∈dom(x),c′ 6=c

ω(B ∧ x = c′)
)

The ws-descriptor di and the ws-descriptors (B ∧ x = c′) differ only in the valuation of
x and together they enumerate all domain values of x, therefore

ω(di) ∪
⋃

c′∈dom(x),c′ 6=c

ω(B ∧ x = c′) = ω(B)

It follows that ω(d)\ω(di) = ω(d)\ω(B) which is equivalent to equation 6.1. If d and di
have more than one equality in common we can apply the above argument sequentially
and remove one equality after another.

Using Lemma 6.4.1 and 6.4.3 we can redefine the difference between two ws-sets
as follows:

diff(d,W ) := {concat(d, d′) | d′ ∈ negate(W ′), ψ(d, d′)} where
W ′ = {remove(d′, d) | d′ ∈ W,ψ(d, d′)}.

With the consistency check and with removing equalities we possibly reduce the
size of the ws-set W ′ of which we compute the inverse. The cardinality of W ′ and the
length of its ws-descriptors influence (exponentially) the complexity of computing the
inverse of W ′, hence this is a clear optimization. The consistency check and removing
equalities is also possible when using iws-descriptors or intws-descriptors.

Skipping
We are going to describe an extension of INV-NEGATE that generates equivalent but
smaller results, by incorporating subset elimination into INV-NEGATE. For the exten-
sion we can show a better exponential bound for the worst case complexity and we can
show polynomial time complexity for specific instances.
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Example 4.5.3 already showed that INV-NEGATE (see Algorithm 3) produces ws-
sets that possibly contain ws-descriptors that describe (strict) subsets of worlds of other
ws-descriptors in the result; i.e. given a ws-set S, Si = INV-NEGATE(S), there can
be ws-descriptors d1, d2 ∈ Si, d1 6= d2 such that ω(d1) ⊇ ω(d2). In Section 6.2 we
described how Si can be cleaned of unneeded ws-descriptors as d2 in polynomial time.
It would be even better to avoid generating these unneeded ws-descriptors to save time.
We will present a heuristics to achieve that. As stated by Lemma 6.2.1 it holds that
ω(d1) ⊇ ω(d2) ⇔ d1 ⊆ d2. By definition of INV-NEGATE the ws-descriptors in Si

have all the same length, so there are only two possibilities that d1 ⊆ d2: d1 and d2 are
equivalent or there is an equality that occurs more than once in d1. We focus on the
latter. Recall that on the i-th level INV-NEGATE iterates the inverse equalities of the i-th
ws-descriptor in the input ws-set. We say that INV-NEGATE “branches”. The following
example shall explain the idea of skipping.

Example 6.4.4. We consider the ws-set

S = {(y = 3), (x = 2 ∧ y = 2), (z = 1)} and let
dom(x) = dom(y) = dom(z) = {1, 2, 3}.

Let us see what happens when we apply INV-NEGATE to S. At the first level of the
recursion the inverse of the first ws-descriptor (y = 3) is built. There are two cases:
y = 1 and y = 2. We consider the first and get a temporary ws-descriptor tmp1 =
(y = 1). At the second level of the recursion the inverse of the second ws-descriptor
(x = 2 ∧ y = 2) is built. There are four cases: x = 1, x = 3, y = 1 and y = 3. Except
for the last all are consistent with tmp1 from the first level. Therefore at the second level
we get three temporary ws-descriptors tmp2

1 = (y = 1∧x = 1), tmp2
2 = (y = 1∧x = 3)

and tmp2
3 = (y = 1 ∧ y = 1) which we merge to tmp2

3 = (y = 1). tmp2
3 describes a

superset of worlds compared to the worlds described by tmp2
1 and tmp2

2, i.e.

ω(tmp2
3) = ω(tmp1) ⊃ (ω(tmp1) ∩ ω(x = 1)) = ω(tmp2

1)

ω(tmp2
3) = ω(tmp1) ⊃ (ω(tmp1) ∩ ω(x = 3)) = ω(tmp2

2).

This is exactly because the equality y = 1 is a repetition and so tmp2
3 = tmp1.

At the third level the inverse of the third ws-descriptor (z = 1) is built. There are
two cases: z = 2 and z = 3. We consider the first. The temporary ws-descriptors tmp2

1,
tmp2

2 and tmp2
3 are extended with z = 2 to ws-descriptors

tmp3
1 = (y = 1 ∧ x = 1 ∧ z = 2),

tmp3
2 = (y = 1 ∧ x = 3 ∧ z = 2) and

tmp3
3 = (y = 1 ∧ z = 2).

Now tmp3
3 describes a superset of worlds compared to the worlds described by tmp3

1 and
tmp3

2, i.e. ω(tmp3
3) ⊃ ω(tmp3

1) and ω(tmp3
3) ⊃ ω(tmp3

2). This is because tmp2
3 described



CHAPTER 6. OPTIMIZATION 68

already a superset of worlds compared to tmp2
1 and tmp2

2, and the three ws-descriptors
were extended by the same equality z = 2. It would have been the same in case of
extending with z = 3. If we extend tmp2

1, tmp2
2 and tmp2

3 with the same equalities then
the extended tmp2

3 will always describe a superset of worlds compared to the extended
tmp2

1 and tmp2
2, as stated by the following lemma.

Lemma 6.4.5. Given two ws-descriptors d1 and d2 and a set of equalities E, it holds
that ω(d1) ⊆ ω(d2)⇒ ω(d1 ∧ E) ⊆ ω(d2 ∧ E).

Proof. The correctness follows from ω(d1 ∧ E) = ω(d1) ∩ ω(E) and ω(d2 ∧ E) =
ω(d2) ∩ ω(E).

No matter how we extend tmp2
1, tmp2

2 and tmp2
3, the first two will never describe

more worlds than tmp2
3. This means that already at the second level we can forget about

tmp2
1 and tmp2

2 and do not need to continue the recursion for them. No matter what is
appended to tmp2

1 and tmp2
2 in the deeper levels of the recursion, the extended tmp2

1 and
tmp2

2 describe only a subset of worlds compared to the extended tmp2
3. We say that we

can skip the second level because we continue only with tmp2
3 = tmp1 and go on to the

third level. No branching is needed on the second level.

When can we skip a level in general? The main point in the above example is that
ω(tmp2

3) = ω(tmp1), i.e. there is a branch such that the temporary ws-descriptor from
the previous level does not get more restricted. This is the case when an equality of the
temporary ws-descriptor is repeated (if we use iws- or intws-descriptors this is different
as we will describe later). And when is an equality repeated? Assume the temporary
ws-descriptor contains an equality x = c. This equality is repeated in a branch if the
current ws-descriptor d = S[level] contains an equality x = c′ such that c′ 6= c. Recall
Example 6.4.4 where the temporary ws-descriptor tmp1 contains the equality y = 1 and
the ws-descriptor of level 2 contains the equality y = 2.

CAN-SKIP, which is defined in Algorithm 6, checks whether such a repetition would
be possible. We define an extended version of the negation algorithm in Algorithm 7.
INV-NEGATE-SKIP calls CAN-SKIP to check whether a certain level of the recursion
can be skipped, given the temporary ws-descriptor built so far. Skipping does not com-
pletely avoid the generation of ws-descriptors that describe subsets of worlds compared
to other ws-descriptors in the result of INV-NEGATE-SKIP. Therefore we do subset
elimination every time another ws-descriptor is added to the result (line 2 in Algo-
rithm 7). The method add-using-subset-elimination adds ws-descriptor d to the result
set result only if it does not describe a subset of worlds described by any of the ws-
descriptors already in result. If d is added, then the method removes all ws-descriptors
from result that describe subsets of d.

The effect of skipping depends on the order of the ws-descriptors in the ws-set.
Consider the ws-set S defined in Example 6.4.4, but now with a different order as a
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Algorithm 6: CAN-SKIP(S, level, tmp)

Require: ws-set S, integer level, ws-descriptor tmp
1: d = S[level]
2: for i = 0 to |d| − 1 do
3: for j = 0 to |tmp| − 1 do
4: if tmp[j].var == d[i].var ∧ tmp[j].val 6= d[i].val then
5: return true
6: end if
7: end for
8: end for
9: return false

Algorithm 7: INV-NEGATE-SKIP(S, level, tmp, result)

Recursive function: first call is INV-NEGATE-SKIP(S, 0, (), {})
Require: ws-set S, integer level, ws-descriptor tmp, ws-set result

1: if level ≥ |S| then
2: return result.add-using-subset-elimination(tmp)
3: else if CAN-SKIP(S, level, tmp) then
4: INV-NEGATE-SKIP(S, level + 1, tmp, result)
5: else
6: d = S[level]
7: for e = 0 to |d| − 1 do
8: v = d[e].var
9: for i = 1 to max(v), i 6= d[e].val do

10: if consistent((v = i), tmp) then
11: result = INV-NEGATE-SKIP(S, level + 1, concat(tmp, (v = i)), result)
12: end if
13: end for
14: end for
15: return result
16: end if

ws-set S ′ = {(x = 2 ∧ y = 2), (y = 3), (z = 1)}. When applying INV-NEGATE-SKIP

to S ′ CAN-SKIP returns true on the second level, but only in case the temporary ws-
descriptor built by the first level is (y = 1). Altogether INV-NEGATE-SKIP builds less
ws-descriptors when applied to S than when applied to S ′. We propose to sort the ws-
descriptors in the ws-set by length in ascending order. The idea of this heuristic is that
the later a ws-descriptor occurs in the ws-set, the higher the chance is that it can be
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skipped. By skipping long ws-descriptors more time is saved than by skipping short
ws-descriptors (without considering the domain sizes of the occurring variables).

We analyze the complexity of INV-NEGATE-SKIP and consider an arbitrary ws-set S
consisting of n ws-descriptors. Let m be the maximum length of the ws-descriptors and
d the maximum domain size of the occurring variables. The complexity of CAN-SKIP

is in O(nm) and it is called on each of the n levels of the recursion, giving n2m for all
n levels. The complexity of the consistency check on line 10 is linear in the length of
the temporary ws-descriptor which we can neglect compared to CAN-SKIP. As without
skipping, n is a limit for the number of levels where we branch and also a limit for the
length of the temporary ws-descriptor.

Lemma 6.4.6. Consider a ws-set S. When applying INV-NEGATE-SKIP to S, the num-
ber of levels where skipping is not possible is at most |vars(S)|.

Proof. Assume that we have had already |vars(S)| levels where skipping was not pos-
sible. It follows that the temporary ws-descriptor tmp contains |vars(S)| equalities, one
for each variable in S. This means that we can either skip the current level or that all
possible extensions v = i are inconsistent with tmp. So either skipping is possible or
the recursion stops because there is no consistent branch.

By Lemma 6.4.6 the number of levels where we branch is also bounded by the
number of variables occurring in S, i.e. |vars(S)|. Each time we branch we have at
mostmd possibilities. Putting it together, the complexity of INV-NEGATE-SKIP without
subset elimination is in O((md)kn2m), where k = min(|vars(S)|, n). The complexity
of the subset elimination depends quadratically on the number of ws-descriptors in the
resulting ws-set. Remember that the complexity of INV-NEGATE is exponential in n.
This means that if |vars(S)| is much smaller than n, then INV-NEGATE-SKIP is much
faster than INV-NEGATE.

So we have an exponential upper bound for the complexity of INV-NEGATE-SKIP.
In case no variable occurs twice in the input ws-set we obviously get an exponential
blowup, because skipping is only possible if a variable occurs in more than one ws-
descriptor. Now we show that due to skipping the complexity can drop to polynomial
time on specific instances.

Theorem 6.4.7. There are ws-sets on which INV-NEGATE needs exponential time, while
INV-NEGATE-SKIP finishes in polynomial time.
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Proof. Consider the following ws-set S:

S =
{

(x1 = 2, x2 = 1, x3 = 1, . . . , xn−1 = 1, xn = 1),

(x1 = 1, x2 = 2, x3 = 1, . . . , xn−1 = 1, xn = 1),

...
(x1 = 1, x2 = 1, x3 = 1, . . . , xn−1 = 2, xn = 1),

(x1 = 1, x2 = 1, x3 = 1, . . . , xn−1 = 1, xn = 2)
}

The n ws-descriptors use the same n variables in their equalities and each ws-descriptor
assigns the constant 2 to a different variable. Let the domain of each variable be
{1, . . . , d}. The cardinality of S is n and each ws-descriptor has length n. Obvi-
ously applying INV-NEGATE to S needs exponential time in n. We show that applying
INV-NEGATE-SKIP to S needs only polynomial time.

Assume that we apply INV-NEGATE-SKIP to S and that we are at an arbitrary level i
(1 ≤ i ≤ n) of the recursion. This means we consider the i-th ws-descriptor in S. We
choose an arbitrary equality with index j (1 ≤ j ≤ n), hence we decide a value for the
variable xj . We distinguish three cases.

• xj = 1. This is only possible if j = i.

• xj = 2 and j < i. Then all the following n − i levels of the recursion can be
skipped because they can also set xj = 2.

• xj = 2 and j > i. Then all the following n − i levels of the recursion can be
skipped, except for the j-th level. At the j-th level there remain O(dn) possibili-
ties. This is depicted by Figure 6.3.

• xj = c, c ∈ {3, . . . d}. This is possible for every i and j. By setting xj = c all the
following n − i levels of the recursion can be skipped because they can also set
xj = c.

Note that it is not possible to set xj = 2 if j = i.
In the second, third and fourth case it is easy to see that at most polynomial time is

needed for the rest of the recursion. Either all the remaining levels or all but one can be
skipped. Skipping a level means that there is no branching on this level, hence we do
not get exponential in the number of levels as long as only a constant number of levels
is not skipped.

In the first case none of the following levels can be skipped. But the first case affects
only one branch because it is only possible if j = i.

Skipping is also possible when using iws- or intws-descriptors. The general struc-
ture of INV-NEGATE-SKIP remains the same. Of course, the consistency check on line
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Figure 6.3: Except for level j, all levels below the i-th are skipped.

10 is a different one for iws- and intws-descriptors. The only thing that changes is the
if condition in line 4 of CAN-SKIP. We have to check if there is a branch that does not
further restrict the temporary descriptor tmp.

When using iws-descriptors this is the case if an (in-)equality is repeated, which
happens if tmp contains an equality x = c and the current descriptor d = S[level]
contains the inequality x 6= c or vice versa. To check this we use the following condition
on line 4 of CAN-SKIP:

tmp[j].var == d[i].var ∧ tmp[j].val = -d[i].val (6.2)

When using intws-descriptors a branch does not further restrict the temporary de-
scriptor tmp if tmp contains an interval (lo ≤ x ≤ hi) and the branch would extend tmp
by an interval (lo′ ≤ x ≤ hi′) such that lo′ ≤ lo and hi′ ≥ hi. This happens if the
current descriptor d = S[level] contains an interval c1 ≤ x ≤ c2 and the intersection of
[c1, c2] with [lo, hi] is empty. To check this we use the following condition on line 4 of
CAN-SKIP:

tmp[j].var == d[i].var ∧ (tmp[j].lo > d[i].hi ∨ tmp[j].hi < d[i].lo) (6.3)

The complexity bound we have shown for INV-NEGATE-SKIP with ws-descriptors
does not hold in case of iws- and intws-descriptors. This follows from the condi-
tions 6.2 and 6.3 which are “stronger” than the condition for ws-descriptors on line
4 of CAN-SKIP. Therefore fewer levels can be skipped. While the condition for iws-
descriptors requires a value to be repeated (negated), the condition for intws-descriptors
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only requires two intervals to have an empty intersection which is more likely in aver-
age. Is this relevant in practice? Our experiments will shed light on this question.

However, analogously to Theorem 6.4.7 (using the same exemplary ws-set) it can
be shown that there are iws-set and intws-sets on which INV-NEGATE-SKIP (adapted
for iws-/intws-descriptors) finishes in polynomial time, whereas INV-NEGATE needs
exponential time.

In summary, skipping lowers the complexity of negation. With skipping we can
generate equivalent but smaller inverses in less time.

6.5 Summary
After updating an uncertain database the representation is not necessarily optimal. We
have shown that the problem of minimizing U-relations, Ui-relations and Uint-relations
is ΣP

2 -complete, i.e. presumably harder than any problem in NP. In consequence we have
presented two tractable optimization methods: subset elimination and merging. While
the complexity of subset elimination is quadratic, the complexity of merging is cubic.
With skipping we have integrated subset elimination into the algorithm INV-NEGATE.
As a result of this integration, we have shown a better worst-case complexity for the
extended algorithm INV-NEGATE-SKIP. Furthermore we have shown that the gap opti-
mization problem – a special optimization problem on Uint-relations – is NP-complete.

So far, we have defined updates and set difference for U-relations, proposed new
representations that speed up set difference and thus also updates, and we have discussed
various optimization measures. After all the theoretic work we want to point out the
practical value of our contributions. Therefore we have implemented a prototype. In
the following two chapters we describe the prototype and discuss the results of the
experimental evaluation.



7. Implementation

Based on the theoretical work described in this thesis we created a prototype of an
uncertain database management system. The prototype extends MayBMS [28] which is
the practical realization of U-relations. It is a probabilistic database management system
based on PostgreSQL [39], a relational database management system. MayBMS is open
source and the source code is available under the BSD license [33]. We use the latest
version 2.1-beta, which is built on PostgreSQL version 8.3. MayBMS and PostgreSQL
are both written in C and we also use C for our extensions. We modified MayBMS and
created three variants: one using U-relations, one using Ui-relations and a third using
Uint-relations.

MayBMS works by rewriting positive relational queries extended by the repair-key
and the possible operator into pure SQL queries. It is integrated into the query engine
of PostgreSQL. The main difference to the theoretical work of Antova et al. [6] is that
in MayBMS relations are not transparently vertically partitioned. Nevertheless, the user
can utilize the advantages of vertical partitions by adapting the table schemas and the
queries manually. We kept it this way.

The main achievement of our extension of MayBMS is the implementation of the
SQL except operator for uncertain tables. With it MayBMS now supports set difference
and arbitrary updates. We implemented the except operator for U-relations, Ui-relations
and Uint-relations, using the concepts described in the previous chapters: negation, sub-
set elimination and skipping.

In the original MayBMS ws-descriptors are represented by several columns. For
each equality of the ws-descriptor one column is needed for the variable name and one
column for the value. We introduced a new data type Wsdescriptor that encapsulates an
arbitrarily long ws/iws/intws-descriptor. Using the new data type one column is enough
to represent any ws/iws/intws-descriptor. This is necessary because the except operator
produces descriptors whose length is not based on the lengths of the descriptors in the
input relations. Another advantage of this new data type is that the rewriting becomes
less complex. Besides these changes we fixed a set of bugs in MayBMS.

The following Section 7.1 provides information about the new data type. Section 7.2
presents the general architecture of PostgreSQL and we describe where we have ex-
tended it. In Section 7.3 we describe why we had to reimplement the repair-key oper-
ator from scratch and how we did it. In Section 7.4 we discuss the implementation of
the except operator and in Section 7.5 we give more detailed information on the code
structure. Section 7.6 is about the correctness of our code.
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Parse Statement

Rewrite Query

Optimize Query

Generate Plan

Execute Plan

Figure 7.1: Query processing in PostgreSQL.

7.1 Data Type Wsdescriptor
We use the term descriptor to refer to the general data type that can represent either a
ws-descriptor, an iws-descriptor or an intws-descriptor. As described in Section 3.4 we
order the (in-)equalities/intervals of a descriptor by the variable names.

A ws-descriptor can be seen as a list of equalities between variables and respec-
tive domain values. We use positive integers for both variable names and domain val-
ues. Iws-descriptors consist of equalities and inequalities. We encode inequalities by
negating the domain value, i.e. the inequality x 6= 5 is encoded by the pair (x,−5).
Intws-descriptors are lists of variable names with lower and upper bounds.

When concatenating two descriptors we optimize the result. Double occurrences
of identical equalities/inequalities/intervals are skipped. In case of iws-descriptors an
inequality x 6= c is skipped in presence of an equality x = c′ (c 6= c′) on the same
variable. In case of intws-descriptors intervals on the same variable are intersected, for
example ((1 ≤ x ≤ 5) ∧ (3 ≤ x ≤ 7)) is turned into (3 ≤ x ≤ 5).

7.2 Architecture
We describe at which points we intercept PostgreSQL/MayBMS. Figure 7.1 depicts how
the database server processes queries received from clients. The gray background marks
the steps where our main changes occur. The queries are first parsed and analyzed. The
rewriting step is traditionally used to rewrite queries on views to queries on the tables
behind the views. MayBMS rewrites queries on uncertain tables and queries containing
one of the additional operators (repair-key, possible) according to the translation func-
tion J·K presented in Chapter 3. We changed the rewriting such that it considers the new
data type instead of multiple columns to represent descriptors for world sets.

In the next step queries are optimized, i.e. the best table join order is computed.
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Person Id Name
1 Martin
1 Thomas
2 Ali
2 Ruslan
3 Jussi

Person’ D Id Name
(x=1) 1 Martin
(x=2) 1 Thomas
(y=1) 2 Ali
(y=2) 2 Ruslan
() 3 Jussi

Figure 7.2: The relation Person before and after being repaired.

Then a query plan is generated which means that the optimized query is transformed
into a tree of execution nodes. An execution node is for example a node that reads
tuples from disk, a node that performs a nested loop join or a node that sorts a relation.
In this step we create execution nodes for repair-key and uncertain except, if needed.

Finally the query plan is executed. Here the results of the query are generated. The
next two sections describe our implementation of the repair-key node and the uncertain
except node.

7.3 Repair-Key
The repair-key operator is essential to introduce uncertain data in an uncertain database.
In Chapter 3 we have described that it is part of world-set algebra [29], a powerful query
algebra for uncertain databases. It can be applied to certain tables to resolve violations
of functional dependencies. Let us have a look at a small example. Consider a table
Person[Id,Name] where the functional dependency Id→ Name is violated, as shown in
Figure 7.2. The person with id 1 has two names (Martin and Thomas) and so does the
person with id 2. To repair the table we issue the query

r e p a i r key i d in Pe r s on ;

The result of it is the table Person′. The two violations are repaired by introducing two
new variables x and y that distinguish the possible cases. Now in each of the four worlds
the functional dependency Id→ Name is satisfied.

In the MayBMS-Project repair-key is implemented via query rewriting. On the one
hand this is a nice approach because rewriting can be done outside the core of the data-
base system (the execution step in Figure 7.1). On the other hand there are severe
disadvantages. Side-effects like changing the world table are not possible, and due to
the limits of rewriting the MayBMS implementation has to sort the input relation re-
peatedly.

To be able to compute the inverse of a ws/iws/intws-set the domains of the occurring
variables need to be known. Hence a materialized world table is needed and it has to
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Algorithm 8: REPAIR-KEY(R,K)

Require: certain table R, set of key attributes K ⊆ sch(R)
1: result = empty table with schema sch(R) ∪ {_wsdesc}
2: R.sort_by(K)
3: while R.hasNext() do
4: tuple = R.next()
5: count = 1
6: while R.hasNext() ∧ R.next().K == tuple.K do
7: count++
8: end while
9: R.goBackBy(count+1)

10: var = new and unused variable name
11: for i = 1→ count do
12: tuple = R.next()
13: wsdescriptor = (var, i)
14: result.insert(tuple, wsdescriptor)
15: worldTable.insert(var, i)
16: end for
17: end while
18: return result

be filled by repair-key. That is why we had to implement repair-key as a new operator
in the core of the database system. REPAIR-KEY is depicted in Algorithm 8. We de-
scribe it shortly. The result relation contains the same tuples as the input relation, but
augmented by ws-descriptors such that the functional dependency K → sch(R) is max-
imally repaired. First (line 2) the input relation is ordered by the key attributes so that
tuples with the same keys can be accessed sequentially. The outer while loop is used to
iterate all tuples in the ordered input relation. The first part within the loop (line 4-9)
counts the number of tuples with equivalent key attributes. Let us call them the current
group. In the second part (line 10-16) the tuples of the current group get annotated with
ws-descriptors. For each group a new variable is introduced (line 10) and for each tuple
within the group another domain value is introduced (the variable i in line 11). We use
an SQL sequence to keep track of used variable names and to get new variable names.
The tuple, now augmented with a ws-descriptor, is added to the result relation and the
world table is updated. Note that we actually use empty ws-descriptors if the size of the
current group is only 1. In this way we avoid needless variables with a domain size of
only 1.
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Algorithm 9: EXCEPT(R, S)

Require: tables R and S, both of schema [_wsdesc, Ā]
1: result = empty table of schema [_wsdesc, Ā]
2: T = append(R, S)
3: T .sort_by(Ā)
4: while T .hasNext() do
5: data = T .peek().Ā
6: WR, WS = empty set
7: while T .hasNext() ∧ T .peek().Ā == data do
8: t = T .next()
9: if t comes from R then

10: WR.add(t._wsdesc)
11: else if t comes from S then
12: WS .add(t._wsdesc)
13: else
14: break
15: end if
16: end while
17: W = wsset_diff(WR, WS)
18: for d in W do
19: result.insert(d, data)
20: end for
21: end while
22: return result

7.4 Except
The except operator computes the difference of two tables. If both tables are certain
then we use the original except operator of PostgreSQL. In case any of the two input
tables is uncertain we use our implementation of except for uncertain tables If one table
is certain and the other one uncertain then we make the first one “uncertain” by adding
empty ws-descriptors to the tuples.

We implemented except for uncertain tables as a new operator in the core of the
database system. EXCEPT is depicted in Algorithm 9. It expects two tables of the same
schema as arguments and the result relation has this schema too. First we create a table
T which contains all the tuples of R and S. Note that each tuple in T gets extended by a
flag that describes whether the tuple originates in R or S. To append R to S we use the
implementation of the union operator of PostgreSQL. The tuples in T get sorted by the
data values Ā so that we can access all tuples that have the same data values sequentially.
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InvNegate

inverse(WsSet* S): WsSet*
-inverseRec(WsSet* S, int level, Wsd* tmp, 
                    bool[] skip, WsSet* result): int
-nothingToSubtract(WsSet* S): bool
-subtractInAllWorlds(WsSet* S): bool
-getChangeLevel(Wsd* d, Wsd* optimized): int

Equality
var: int
val: int

RepairKey

init(RepairKey* node, EState* estate, int eflags): State*
exec(State* state): TupleTableSlot*
end(State* state)

Wsdescriptor (Wsd)
length: int
equalities: Equality[] / Interval[]
allocate(int length): Wsd*
copy(Wsd* d): Wsd*
toString(Wsd* d): char*
isConsistent(Wsd* d): bool
areConsistent(Wsd* d1, Wsd* d2): bool
merge(Wsd* d1, Wsd* d2): Wsd*
sort(Wsd* d): Wsd*
optimize(Wsd* d): Wsd*
contains(Wsd* d1, Wsd* d2): bool
vars(List* wsdescriptors): List*
-sorted(Wsd* d): bool

WsSet
descriptors: List* of Wsd
new(): WsSet*
add(WsSet* s, Wsd* wsd): bool
sort(WsSet* s): WsSet*
contains(WsSet* s, Wsd* wsd): bool
difference(WsSet* s1, WsSet* s2): WsSet*
isDifference(WsSet* s1, WsSet* s2, WsSet* s3): bool
allWorlds(WsSet* s): bool
sameWorlds(WsSet* s1, WsSet* s2): bool
clean(WsSet* s)
free(WsSet* s)
iterator(): WsSetIterator*

UncertainExcept

init(Except* node, EState* estate, int eflags): State*
exec(State* state): TupleTableSlot*
end(State* state)

Interval
var: int
lo: int
hi: int

WorldTable
cache: CacheEntry[]
getDomain(int var): int
insert(var, val)
invalidateCache()

CacheEntry
var: int
domain: int

Figure 7.3: Code Structure.

To sort T we use the implementation of the order by operator of PostgreSQL. The outer
while loop is used to iterate all tuples in T . The inner while loop collects the descriptors
of tuples that have the same data values. The descriptors of tuples in R are added to
WR, whereas the descriptors of tuples in S are added to WS . For this differentiation we
use the before mentioned flag. Then we compute the set W which is the difference of
WR and WS (line 17). For each descriptor in W we add one tuple to the result relation.

7.5 Details
Our implementation uses C which is purely iterative. Nevertheless we applied object-
oriented thinking to achieve a better modularity and abstraction. We use C structures to
model objects and pass them as first argument to “member” methods.

A configuration option (the C macro WSD_TYPE) defines whether the database uses
ws-descriptors, iws-descriptors or intws-descriptors. Most of the methods we describe
exist in three variants, one for each descriptors.
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The diagram in Figure 7.3 depicts the parts of our code which are interesting for
the discussion. Note that it is not complete. The diagram follows the style for UML
class diagrams. Filled respectively empty diamonds represent composition respectively
aggregation. The dashed arrows denote usage, for example the methods of WsSet
call the methods of Wsdescriptor. The main structures are Wsdescriptor, WsSet and
WorldTable.

A Wsdescriptor is composed either of equalities (which can also represent inequal-
ities through negative values) or intervals, depending on the configuration option men-
tioned above.

A WsSet is a list of elements of type Wsdescriptor. Its add function adds a descrip-
tor to the set only if needed (by checking with contains). The contains function checks
for a descriptor d whether the set contains a descriptors d′ such that ω(d) ⊆ ω(d′). The
functions allWorlds and sameWorlds are intended for debugging. They decide whether
a set describes all worlds respectively whether two sets describe the same worlds. To
do this they iterate all total descriptors relative to the occurring variables, like the algo-
rithm INV-DECOMPRESS. To compute the difference of two sets we use the InvNegate
component. isDifference serves to check the correctness of the result of InvNegate, as
we will describe in the next section. inverseRec in InvNegate is the implementation of
the algorithm INV-NEGATE. To speed up skipping we use a precomputed array skip.

The component UncertainExcept encapsulates the algorithm EXCEPT and the com-
ponent RepairKey the algorithm REPAIR-KEY. Both are execution nodes in the query
plan, like for instance nodes that perform a nested loop join or that sort a relation. The
actual work is done in the exec methods which get tuples from child nodes and return
the processed tuples to parent nodes. In both cases the child node is a sort node because
both EXCEPT and REPAIR-KEY need a sorted input.

WorldTable is the internal interface to the special relation _world which holds the
world table. It uses SQL queries to find out the domain of a variable and to add new vari-
able/value combinations to the world table. The queries are executed via the server pro-
gramming interface (SPI) of PostgreSQL. The domains of variables are needed to com-
pute the inverse of a ws/iws/intws-set and in the feasibility check for iws-descriptors. To
speed up queries for the domains of variables we implemented a cache for them. Every
time the world table is changed (by an insert, update or delete statement) the cache is
invalidated.

7.6 Correctness
It is important to ensure the correctness of the code to get valid experimental results. We
cannot prove total correctness of the code but we can take measures to greatly reduce
the probability of errors.
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• Regression tests. We manually defined test cases and expected results to check the
correctness of the implemented code on a high level (SQL). For example we create
two uncertain relations R and S and verify the result of select * from R
except select * from S. Besides simple test cases we identified many
corner cases.

• Assertions. We augmented the code with assertions to verify properties of data
structures. For example every time we access a ws/iws/intws-descriptor we check
its consistency and whether its equalities are sorted by the variable names.

• Dual computation. The most complex and critical code is involved in the compu-
tation of the inverse of a ws/iws/intws-set. Therefore it makes sense to double-
check it. Besides INV-NEGATE we have described INV-DECOMPRESS as a naive
method to compute the inverse. While INV-DECOMPRESS is not useful in prac-
tice it can be used to verify the results of INV-NEGATE (as long as the number of
variables is limited). We use large numbers of randomly generated ws/iws/intws-
sets and check if the worlds described by the result of INV-DECOMPRESS and
INV-NEGATE are equivalent. This complements the regression tests which work
only with manually defined test cases.

In the productive code used for the experiments dual computation and assertions are
deactivated because they would influence the measured time values.

7.7 Summary
To point out the practical value of our contributions, we have implemented a prototype
based on MayBMS. In total about 10000 lines of code have been added or modified. In
this chapter we have described the prototype in which we had to omit many details. For
instance we have not discussed the new rewriting system because it requires in-depth
knowledge of the PostgreSQL query processing.

We have presented in more detail the implementation of the repair-key operator and
the implementation of the except operator for uncertain relations. And we have also
discussed the measures we have taken to ensure the correctness of the code. Besides
regression tests and assertions, the dual computation of the critical functions helps to
greatly reduce the probability of errors.

With the prototype we have performed a set of experiments to evaluate the practica-
bility of our approach. We describe the results in the next chapter.



8. Experimental Results

In this chapter we show the practicability of our approach for updates and set difference
on uncertain databases, and we experimentally compare U-relations to Ui-relations and
Uint-relations. We update tables and measure the time needed for the updates and the
size of the updated table. Then we measure the time needed for select-join queries
on the updated tables to determine whether using iws/intws-descriptors is beneficial in
later queries. The expectation is that with iws/intws-descriptors we can compute set
difference and updates faster than with ws-descriptors, because the updated tables are
smaller, as shown theoretically in Chapter 5. When using iws-descriptors feasibility has
to be checked at every join, which means that it is necessary to look up the domains of
the involved variables in the world table. We examine how this affects the time needed
to answer queries.

Unfortunately there does not exist any benchmark for uncertain databases yet. Many
interesting applications for uncertain and probabilistic databases have been described,
and the approaches to solve them are manifold. As a result the field of research has not
agreed yet upon one or a few typical use cases which could be treated in a benchmark.
For certain databases the Transaction Processing Performance Council [35] (TPC) is
accepted widely as an organization defining benchmarks. One of its benchmarks is the
decision support benchmark TPC-H [48]. It defines a database schema that mimics
typical business databases about products, suppliers and more. We use the database
schema defined in the TPC-H benchmark and a modified version of the TPC-H data
generator [6] that generates uncertain databases.

Section 8.1 gives more details on the test system and the test data. In Section 8.2 we
present the results for update queries, whereas in Section 8.3 we present the result for
queries with set difference. In Section 8.5 we discuss the experimental results. As we
have also implemented the repair-key operator, we compare our implementation with
the original implementation of the MayBMS project in Section 8.4.

8.1 Test System and Test Data
All the queries are run in the psql shell of PostgreSQL and the answers of the queries
are materialized into a new table (by using create table as select ...). We
run the queries ten times and report the mean evaluation time, using the PostgreSQL
statement \timing. After loading the test data into the database and before running
the update queries we call the PostgreSQL statement vacuum analyze to have more
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Figure 8.1: TPC-H Schema [48].

similar initial conditions (e.g.: the tables are pruned of “dead” tuples). The code is
compiled and all the experiments are run on the following test system:

• Linux version 2.6.37 SMP PREEMPT

• gcc version 4.5.1

• Pentium(R) Dual-Core CPU E5200 @2.50GHz

• 2 GB RAM
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Figure 8.1 shows the schema of the TPC-H benchmark which we use for our queries.
The arrows denote foreign keys and the numbers denote the numbers of tuples in the
relations, mostly multiplied with the scale factor s. The parentheses after the table
names denote the prefixes used for the column names. For example the table Part has
the attribute p_partkey.

For each attribute of the relations in the schema we use a separate vertical partition.
For instance the table partsupp is represented by five vertical partitions in our test cases.
To speed up the join of the vertical partitions we use indexes on the tuple id attributes.

To create the test databases we use the data generator described in [6]. We vary three
parameters:

• Scale factor s. It is identical to the TPC-H scale factor and defines the size of
a single possible world. A scale factor of 1 corresponds to a database of ap-
proximately 1GB. The number of tuples in the individual tables can be read off
Figure 8.1. We vary the scale factor from 0.01 to 1.
• Uncertainty ratio x. It denotes the ratio of data fields (in the vertical partitions)

that are uncertain, i.e. that do not have the same values in all worlds. We vary the
uncertainty ratio from 0.001 to 0.2.
• Maximum alternatives per attribute m. This is the maximum number of different

possible values an attribute can have. We vary m from 2 to 10.

Note that m influences the domain sizes of the variables indirectly. The reason is
that m is only a lower bound for the domain sizes of the variables, but not an upper
bound. For example consider a variable v with dom(v) = {1, . . . , 14}. Assume in case
v ≤ 7 a tuple t1 exists with various different values, and in case v ≥ 8 a tuple t2 exists
with various different values. They are mutually exclusive, there is no world in which
both tuples exist. The number of possible values for the attributes of both tuples is only
seven, but the domain size of v is 14.

The data generator expects another parameter, the correlation ratio. It denotes how
strongly the uncertain attributes are correlated, i.e. for how many attributes a variable is
used. We fixed it to 0.25.

8.2 Updates
The first set of test cases simulates a sequence of updates of the attribute ps_supplycost
in the relation partsupp, followed by a query on the updated table. Figure 8.2 shows the
performed queries.

Q1 increases the supply cost of all parts that are manufactured by “Manufacturer#1”.
The actually executed update involves four U-relations, namely the two vertical parti-
tions of partsupp that hold the attributes ps_supplycost and ps_partkey, and the two
vertical partitions of part that hold the attributes p_partkey and p_mfgr. Note that the
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Q1 : update p a r t s u p p s e t p s _ s u p p l y c o s t = p s _ s u p p l y c o s t ∗ 1 . 1
from p a r t
where p s _ p a r t k e y = p _ p a r t k e y and p_mfgr= ’ M a n u f a c t u r e r #1 ’ ;

Q2 : update p a r t s u p p s e t p s _ s u p p l y c o s t = p s _ s u p p l y c o s t ∗ 1 . 1
where p s _ a v a i l q t y < 1000 ;

Q3 : update p a r t s u p p s e t p s _ s u p p l y c o s t = p s _ s u p p l y c o s t ∗ 0 . 9
where p s _ a v a i l q t y > 9000 ;

Q4 : update p a r t s u p p s e t p s _ s u p p l y c o s t = p s _ s u p p l y c o s t ∗ 0 . 9
where p s _ a v a i l q t y > 8000 ;

Q5 : s e l e c t ∗ from p a r t s u p p ;

Figure 8.2: Test case 1: Update queries.

vertical partitions are joined implicitly along the tuple ids. Q2, Q3 and Q4 update the
supply cost based on the available quantity, using different conditions on the quantity.
They implicitly involve a join of two tables, namely the join over the vertical partitions
of partsupp for the attributes ps_supplycost and ps_availqty. Finally Q5 selects all at-
tributes from the relation partsupp which implicitly means a join of all the five vertical
partitions of partsupp.

We analyze the influence of the scale factor s, the uncertainty ratio x and the maxi-
mum number of alternatives per field m. The base values we use are s = 0.1, x = 0.05
and m = 7. The different lines in each of the diagrams correspond to updates with
ws-descriptors, iws-descriptors and intws-descriptors. We report the total time needed
for the update queries Q1, . . .Q4, as well as the number of tuples in the updated table
after applying the updates. For comparison we also give the number of tuples in the
“base table”, i.e. the number of tuples in the table before the updates. This is equal
for ws-/iws- and intws-descriptors. Further we report the time needed for a select-join
query (Q5) on the updated table.

Influence of the Scale Factor
We let x = 0.05, m = 7 and vary the scale factor. Figure 8.3 illustrates the influence of
the scale factor. The first diagram shows the time needed to perform the updates. In the
second diagram we can see that the number of tuples in the updated table rises linearly
with the scale factor. When using ws-descriptors the linear factor is higher than when
using iws- or intws-descriptors. In the third diagram we can see the time needed for the
select-join query on the updated table. We conclude that, given a moderate amount of
uncertainty, our approach for updating uncertain databases is feasible in practice even
for larger databases.
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Figure 8.3: Influence of the scale factor on updates.
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Figure 8.4: Influence of the uncertainty ratio on updates.



CHAPTER 8. EXPERIMENTAL RESULTS 88

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 2  3  4  5  6  7  8  9  10

ti
m

e
 f

o
r 

u
p
d
a
te

s 
(i

n
 s

e
co

n
d
s)

maximum alternatives per field

ws
iws

intws

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 2  3  4  5  6  7  8  9  10

n
u
m

b
e
r 

o
f 

tu
p
le

s

maximum alternatives per field

ws
iws

intws
base table

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 2  3  4  5  6  7  8  9  10

ti
m

e
 f

o
r 

se
le

ct
 (

in
 s

e
co

n
d
s)

maximum alternatives per field

ws
iws

intws

Figure 8.5: Influence of the domain size of the variables on updates.
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Influence of the Uncertainty Ratio
We let s = 0.1, m = 7 and vary the uncertainty ratio. Figure 8.4 illustrates the influence
of the uncertainty ratio. One can see that, using ws-descriptors, more than three times as
much time is needed to perform the updates for a uncertainty ratio of 0.2. With a rising
uncertainty ratio, the number of tuples in the updated table rises more than linearly,
especially in the case of ws-descriptors. When using ws-descriptors the updated table is
about twice as large as with iws- or intws-descriptors. As the third diagram shows, this
influences the time needed for the subsequent select-join query.

Influence of the Domain Size
We let s = 0.1, x = 0.05 and vary m, the maximum number of alternatives per field.
Figure 8.5 illustrates the influence of m. With a rising value for m the difference be-
tween ws-descriptors on the one hand and iws-/intws-descriptors on the other hand be-
comes greater. Iws- and intws-descriptors do not give very different results.

8.3 Set Difference
The second set of test cases consists of queries that use the set difference operator for
queries not expressible in positive relational algebra. Figure 8.6 shows the queries.

The query Q6 selects parts that were only sold at quantities of 5 or more. Q7 selects
parts that were only sold at quantities of 5 or more and whose availability is smaller
than 8000 at all suppliers. Q8 selects parts that are available at most at one supplier.
Q9 selects suppliers that offer all parts of a specific brand and size. It uses a subquery
which selects the suppliers that do not offer all parts of that brand and size.

We analyze the influence of the parameter m, the maximum number of alternatives
per field. We set the other parameters to s = 0.1 and x = 0.05. The Figures 8.7, 8.8, 8.9
and 8.10, respectively, illustrate the experimental results for query Q6, Q7, Q8 and Q9,
respectively. Note that Figure 8.7 and 8.8 use a logarithmic scale for the y-axis. The dif-
ferent lines in each of the diagrams correspond to using ws-descriptors, iws-descriptors
and intws-descriptors. For each query we report the time needed to answer it and the
number of tuples in the result of the query (except for Q9 where the answers are empty
relations).

In case m = 10, the results for Q6 and Q7 exhibit a difference of several or-
ders of magnitude for both the time needed to answer the queries and the size of
the query results. With ws-descriptors the most time and space is needed. They are
clearly outperformed by iws-descriptors and intws-descriptors. It is interesting that with
intws-descriptors clearly less time is needed than with iws-descriptors, while with iws-
descriptors the query results are smaller. We will refer to that in the summary.
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Q6 : s e l e c t p _ p a r t k e y from p a r t
e xc ep t
s e l e c t l _ p a r t k e y from l i n e i t e m _ l where l _ q u a n t i t y < 5 ;

Q7 : s e l e c t p _ p a r t k e y from p a r t
e xc ep t
s e l e c t l _ p a r t k e y from l i n e i t e m , p a r t s u p p
where l _ p a r t k e y = p s _ p a r t k e y and l _ q u a n t i t y < 5 and

p s _ a v a i l q t y >= 8000 ;
Q8 : s e l e c t p _ p a r t k e y from p a r t

e xc ep t
s e l e c t ps1 . p s _ p a r t k e y from p a r t s u p p ps1 , p a r t s u p p ps2
where ps1 . p s _ p a r t k e y = ps2 . p s _ p a r t k e y and ps1 . ps_suppkey

<> ps2 . ps_suppkey ;
Q9 : s e l e c t s_suppkey from s u p p l i e r

e xc ep t
s e l e c t s_suppkey from
( s e l e c t s_suppkey , p _ p a r t k e y

from s u p p l i e r , p a r t p
where p a r t . p_brand = ’ Brand #15 ’ and p a r t . p _ s i z e = 13
e xc ep t
s e l e c t ps_suppkey , p s _ p a r t k e y from
p a r t s u p p

) n o t a l l p a r t s ;

Figure 8.6: Test case 2: Queries with set difference.
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Figure 8.7: Comparison for query Q6.
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Figure 8.8: Comparison for query Q7.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2  3  4  5  6  7  8  9  10

ti
m

e
 i
n
 s

e
co

n
d
s

maximum alternatives per field

ws
iws

intws

 0

 100

 200

 300

 400

 500

 600

 700

 2  3  4  5  6  7  8  9  10

n
u
m

b
e
r 

o
f 

tu
p
le

s

maximum alternatives per field

ws
iws

intws

Figure 8.9: Comparison for query Q8.
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Figure 8.11: Runtime comparison for repair-key.

The queries Q8 and Q9 are processed by all three variants in a short time, even for
high values of m.

8.4 Repair-Key
To compare our new implementation of the repair-key operator with the implementation
of the MayBMS project we use a table Measurements[k,Weather,Ground]. k is the
key attribute (imagine a time stamp), Weather a weather condition (for example rain)
and Ground describes whether the ground is dry or wet. The goal is to repair the key
constraint k, i.e. k shall uniquely identify the attributes weather and ground in every
possible world.

To do that we introduce uncertainty by means of the repair-key operator, using the
following query:

r e p a i r key k in Measurements ;

Figure 8.11 compares the runtime of the implementation of the repair-key operator
in MayBMS (based on rewriting) and of our new implementation. In the figure the aver-
age value of 10 runs is shown for different numbers of tuples in the table Measurements.
Our new implementation is in all cases significantly faster, although it additionally fills
the world table which requires a lot of slow disk writings.
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The reason for this difference is that in our implementation the table on which repair-
key is carried out is sorted only once, while the original implementation of MayBMS
sorts the table several times.

8.5 Summary
We have described the test environment and the experiments we have carried out. They
show first of all the practicability of our theoretical work. We summarize the observa-
tions.

• Database size. The variation of the scale factor has shown that an increase of
the size of the database results only in a linear or slightly greater increase of time
needed to answer a query. This means that our solutions scale well with increasing
database sizes.

• Uncertainty ratio and maximum alternatives per field. The incrementation of
these two parameters has led to substantially longer query processing times and
also larger results. This is explained by the unavoidable exponential worst-case
complexity.

• New representations. As the theoretical work has already suggested, ws-descriptors
are outperformed by iws- and intws-descriptors in every place. This means that
both Ui-relations and Uint-relations are a clear improvement over U-relations.

• Feasibility check. Recall that when using iws-descriptors, the feasibility of the
iws-descriptors has to be checked after every join operation. Thus one might
expect that Ui-relations are slower in a join. In our experiments we have not ob-
served any slowdown of the select-join query following the updates, which could
have been caused by the feasibility check. The reason is the clever implementa-
tion of the feasibility check, which avoids querying the world table in most cases.

• Iws- vs. intws-descriptors. There are cases where with intws-descriptors consid-
erably less time is needed to compute set difference, than with iws-descriptors.
At the same time, with iws-descriptors the query results are smaller.

The last point needs an explanation. We believe it is due to skipping (see Sec-
tion 6.4). The skipping condition for intws-descriptors allows one to skip more levels
than the skipping condition for iws-descriptors, which in turn means that (possibly) less
time is needed with intws-descriptors.
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Decompression vs. Negation
We have presented the algorithms INV-DECOMPRESS and INV-NEGATE-SKIP to com-
pute the inverse of a ws-set. The complexity of the first is always exponential whereas
the complexity of the second is only exponential in the worst case. We performed our
tests with INV-NEGATE-SKIP and argue now that those tests could not have been fin-
ished with INV-DECOMPRESS in reasonable time.

In all the tests that we performed we monitored the ws-sets of which we computed
the inverse. Up to 20 different variables occurred in the ws-sets, and the product of the
domain sizes of the variables was up to 1015. This means that INV-DECOMPRESS would
have had to iterate sets of 1015 ws-descriptors to compute the inverse of one ws-set. This
is impossible in reasonable time.



9. Conclusion

We have studied the problem of updating uncertain databases in the form of U-relations.
Updates of uncertain databases and the need for decompression were shortly mentioned
by Antova et al. [7], but not analyzed in depth. We have shown how to use set difference
to model arbitrary updates. Set difference is also important as an operator on its own
because it allows more powerful queries. But due to its hardness it has received only
little attention so far. We have proposed algorithms, studied their complexity, and we
have introduced new representation systems for uncertain databases. For the research
questions stated in the beginning of this thesis, we can give now the following answers:

• Updates. We have considered a comprehensive update language that allows one
to join relations and that includes update queries with subqueries. We have shown
how to model such update and delete statements using set difference. In case some
constraints are fulfilled, the semi-join update approach can be applied. It relies on
positive relational algebra only and thus has polynomial time data complexity.

• Set Difference. We have reduced the problem of computing set difference to com-
puting the inverse of a ws-set. For this purpose we have proposed two methods:
decompression and negation. Whereas decompression is a brute-force approach,
negation considers the structure of the ws-set. Additionally we have introduced
two new representation systems: Ui-relations and Uint-relations. They exponen-
tially reduce the worst-case complexity of negation and thus also of set difference.
We have shown that positive relational algebra queries extended by the possible
operator have the same complexity on Ui-relations and Uint-relations as on U-
relations. In addition, with a technically involved proof we have shown that by
using Ui-relations one can never get larger query results than by using U-relations.

• Optimizing U-relations. We have proven that the problem of minimizing ws-
sets (as well as iws/intws-sets) is ΣP

2 -complete. Hence there is no efficient al-
gorithm that shrinks a U-relation to the minimally necessary size. However, we
have presented two optimization heuristics: subset elimination and merging. We
have integrated the first into the computation of inverses of ws-sets and shown
that this integration results in a significantly better worst-case complexity. For
Uint-relations we have pointed out a special optimization problem and shown its
intractability.

• Experimental evaluation. Computing set difference on U-relations has an un-
avoidable exponential worst-case complexity. However, the experiments with our

95
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prototype have shown the practicability of the described concepts for moderate
amounts of uncertainty, and that our solutions scale well with increasing data-
base sizes. Furthermore, the experiments have confirmed the predominance of
Ui-relations and Uint-relations over U-relations in practice.

Future work
We have demonstrated how to perform updates and how to compute set difference on
U-relations. Although we have answered many important questions, new ones have
appeared and should be investigated.

• Probability Computation. For probabilistic U-relations there exist exact and ap-
proximate algorithms that compute the probability that a given tuple actually is
part of a relation. Can they be adapted to compute the probabilities of tuples in
probabilistic Ui-relations and Uint-relations?

• Further Optimization. We have described several ways to optimize the computa-
tion of set difference, one of them being skipping. Are there other optimizations
possible that further reduce the complexity of set difference?

While these two questions point out research topics that directly build on the work
of this thesis, we want to suggest another open issue: benchmarks. At the moment
there does not exist any benchmark for uncertain databases. But to be able to compare
experimental results a common benchmark, based on practically relevant use cases, is
needed. What use cases are relevant in practice? To answer this question, a thorough
analysis of the applications of uncertain databases is required.
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