
Towards a distributed Concept
Search Framework for
Specialized Domains

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Christian H. Inzinger
Matrikelnummer 0225558

und

Johannes M. Schleicher
Matrikelnummer 0125876

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung

Betreuer: Univ.Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Schahram Dustdar

Mitwirkung: Dr. Hong-Linh Truong

Wien, 15.09.2010

(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

Specialized domains like Health Care, Space and Software Engineering

rely on the efficient retrieval of digital objects in order to work effectively.

Digital objects in these domains not only include typical text documents,

but also multimedia objects, like presentations, audio and video elements.

Furthermore, they are associated with domain specific concepts and per-

sons, which are crucial factors in retrieving the desired information out

of a vast number of possible candidates. The extensive amount of data,

as well as the diverse types of objects, require advanced extraction and

search mechanisms in order to enable efficient digital object retrieval. Al-

though semantic extraction and retrieval approaches exist, a truly extensi-

ble framework, fully customizable to the domains’ specifics, is missing.

In this thesis we present a distributed concept search framework for

specialized domains that fills this gap. We introduce a combined semantic

representations that allows the linking of domain specific concepts, key-

words and social structures. Furthermore, we develop a highly adaptable

and extensible software framework incorporating this combined represen-

tation, and demonstrate its feasibility with a prototype implementation.

Kurzfassung

Spezialisierte Domänen wie Gesundheitswesen, Raumfahrt und Soft-

wareentwicklung verlassen sich auf effiziente Suchverfahren für digitale

Objekte um effektiv arbeiten zu können. Digital Objekte in diesen Domä-

nen umfassen nicht nur typische Textdokumente, sondern auch Multime-

diaobjekte wie Präsentationen, Videos und Audioelemente. Außerdem

sind sie mit domänenspezifischen Konzepten und Personen verknüpft,

die wesentliche Faktoren im Auffinden der gewünschten digitalen Ob-

jekte, aus unzähligen möglichen Kandidaten darstellen. Die beträchtliche

Menge an Daten, sowie die unterschiedlichen Typen von Objekten, er-

fordern fortgeschrittene Extraktions- und Suchmechanismen um das ef-

fiziente Auffinden von digitalen Objekten zu ermöglichen. Obwohl se-

mantische Extraktions- und Suchverfahren existieren, fehlt ein wirklich

erweiterbares Framework, das spezifisch auf die Bedürfnisse der Domä-

nen angepasst werden kann.

In dieser Diplomarbeit präsentieren wir ein Concept Search Frame-

work für spezialisierte Domänen, das diese Lücke füllt. Wir stellen eine

kombinierte semantische Repräsentation vor die es uns ermöglicht domä-

nenspezifische Konzepte, Schlüsselworte und soziale Strukturen zu kom-

binieren. Weiters entwickeln wir ein anpassungsfähiges und erweiter-

bares Software Framework, welches sich dieser Repräsentation bedient

und demonstrieren die Umsetzbarkeit mittels einer Prototyp Implemen-

tierung.

Acknowledgements

We thank Univ.Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Schahram Dustdar and

Dr. Hong-Linh Truong for their supervision, support and patience.

We thank the ESA Team, in particular Andrei Aries, Andres Galvez and

Tiago Soares, for their fruitful discussion and valuable inputs and feedback.

Last but not least we thank our families for their great support and incred-

ible patience.

iii

Contents

Abstract i

Kurzfassung ii

Acknowledgements iii

Contents v

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 2

1.3 Contribution . 2

1.4 Organization of this Thesis . 3

2 Background 5

2.1 Typical Search Process . 5

2.2 Terminology . 7

3 State of the Art of existing Systems 15

3.1 Metadata representations . 16

3.2 Semantic extraction and annotation techniques 18

3.3 Storage mechanisms and concepts 20

3.4 Indexing Techniques . 22

3.5 Search Capabilities in Digital Libraries 23

3.6 Result presentation and Feedback for Search and Search Results 25

3.7 Non-functional Aspects for Search Techniques 26

v

3.8 Relevant Reference Architectures 27

3.9 Existing Systems as a Whole . 28

4 Problem Definition 31

4.1 Research Question and Approach 31

4.2 Use Cases . 33

4.3 Requirements . 36

5 Specification of a distributed Concept Search Framework for Spe-

cialized Domains 43

5.1 Linked Model for Representing Information in the Concept Search

Framework . 43

5.2 Architectural Design of the Concept Search Framework 52

5.3 Feasibility of Implementation Analysis 95

5.4 Evaluation of the Semantic Search Framework 100

6 Prototype and Evaluation 103

6.1 Overview . 103

6.2 Prototype of The Proposed Concept Search Framework 103

6.3 Experiments . 107

6.4 Comparison with Existing Systems 116

7 Conclusion and Future Plans 123

7.1 Thesis results . 123

7.2 Future Work . 124

A How to run the Concept Demonstration 127

B Experiment Sources 129

B.1 Data Model Ontology . 129

B.2 Automatic Gazetteer List Generator 136

B.3 GATE Batch Process Wrapper . 138

B.4 GATE Application Skeleton for Semantic Extraction 142

B.5 ESA Document Importer . 144

B.6 ESA Load Simulator . 145

B.7 Rest Server / Search Module . 145

Bibliography 153

List of Figures

2.1 High level overview of a typical search process 6

2.2 Digital Objects . 7

2.3 An example of a folksonomy . 10

4.1 Activity Diagram for Concurrent Domain Activity 34

4.2 Activity Diagram for Expert based Digital Object Retrieval 35

4.3 Activity Diagram for Media Library 37

5.1 Influencing factors . 44

5.2 Semantic Representation . 45

5.3 Concept Ontology . 46

5.4 Conceptual Architecture Overview . 52

5.5 Component diagram of the Digital Object Importer 58

5.6 Component diagram of a Digital Object Importer Module 59

5.7 Document Importer Component Interface overview 60

5.8 Document Importer Component Interface details 61

5.8 Document Importer Component Interface details (contd.) 62

5.9 Document Importer Module Support Interface overview 62

5.10 Document Importer Module Support Interface details 63

5.11 Sequence diagram showing a DO importer module successfully reg-

istering with the component . 64

5.12 Component Diagram of the Semantic Extraction Component 65

5.13 Exemplary Semantic Extraction Modules 67

5.14 Semantic Extraction Component Interface overview 68

5.15 Semantic Extraction Component Interface details 69

5.15 Semantic Extraction Component Interface details (contd.) 70

5.16 Semantic Extraction Module Interface overview 70

5.17 Semantic Extraction Module Interface details 70

vii

5.18 Sequence diagram showing semantic extraction of concepts from a

DO by a Semantic Extraction Module 71

5.19 Search Engine Component Overview 72

5.20 Keyword Search Module . 74

5.21 Concept Search Module . 75

5.22 Social Search Module . 75

5.23 Search Engine Component Interface overview 78

5.24 Search Engine Component Interface details 79

5.24 Search Engine Component Interface details (contd.) 80

5.25 Query Analyzer Module Interface overview 80

5.26 Query Module Interface details . 81

5.27 Keyword Search Module Interface overview 81

5.28 Keyword Search Interface details . 81

5.29 Concept Search Module Interface overview 81

5.30 Concept Search Interface details . 82

5.31 Social Search Module Interface overview 82

5.32 Social Search Interface details . 82

5.33 Result Aggregator Module Interface overview 82

5.34 Result Aggregator Interface details . 83

5.35 Sequence Diagram for a successful search operation using a com-

bined query via the Search Engine Component 84

5.36 User Participation Component Overview 85

5.37 User Participation Component Interface overview 87

5.38 User Participation Component Interface details 88

5.38 User Participation Component Interface details (contd.) 89

5.39 Overview of the Consumer Interface Component 90

5.40 Consumer Interface Component Interface overview 92

5.41 Consumer Interface Component Interface details 93

5.41 Consumer Interface Component Interface details (contd.) 94

6.1 Concept Demonstration Architecture Overview 104

6.2 gate annotation view . 109

6.3 Results for a combined Search for the keyword and concept “Ocean” 111

6.4 Faceted Browsing domain hierarchy overview 112

6.5 Browsable graph representation of the domain specific ontology . . 113

6.6 Browsable 3 dimensional representation of the domain specific in-

formation . 114

6.7 Setup of the test system for extraction 115

6.8 Setup of the test system for search) . 115

6.9 Keyword and Semantic Extraction Time in seconds for 1000 docu-

ments . 116

6.10 Keyword and Semantic Extraction Time in seconds for 1000 docu-

ments distributed . 117

6.11 Keyword and Semantic Extraction Time in seconds for 25000 docu-

ments . 118

6.12 Keyword and Semantic Extraction Time in seconds for 25000 docu-

ments distributed . 119

6.13 Keyword Query Performance . 119

6.14 Concept Query Performance . 120

List of Tables

3.1 Interfaces and used representations 25

3.2 Index/Storage scenarios . 26

3.3 Distribution scenarios . 26

3.4 Overview of digital library systems 30

4.1 Supported Digital Objects . 37

4.2 Supported Digital Object Formats . 38

4.3 Requirements for Semantic Extraction Mechanisms 38

4.4 Requirements for Semantic Annotation Mechanisms 39

4.5 Requirements for Indices . 39

4.6 Requirements for Search capabilities 40

4.7 Requirements for Interfaces and used representations 41

4.8 Engineering requirements . 42

6.1 Comparison of our proposed conceptual search framework (csf)

with existing digital library systems 121

x

1 Introduction

1.1 Overview

Recent advancements in networks, storage, computing and mobile devices

have enabled sheer volumes of data that need to be stored. Such data includes

not only typical documents, like presentations and technical reports, but also

multimedia objects like pictures, audio and video, as well associated metadata.

This data is commonly referred to as Digital Objects. Due to the high volume of

data and diverse types of objects, advanced extraction and search mechanism

are mandatory in order to retrieve relevant digital objects. This is especially

true for specialized domains like Health Care, Space, Law or Software Engi-

neering where plain keyword search simply is insufficient for efficient search

and retrieval [45]. Such domains require the digital objects to be associated

with semantic concepts, mostly defined in Domain Specific Ontologies, as well

as the association to certain social structures.

Traditional digital library systems [88; 62] were designed for generic digital

objects, and provide no explicit considerations for the requirements of highly

specialized domains, such as modeling of expertise or interest information, as

well as specialized extraction and annotation mechanisms respecting formats

prevalent in particular domains. In order to satisfy theses requirements, a com-

bined representation of domain specific concepts, keywords, social structures,

and the relations between them is necessary to enable data retrieval and anal-

ysis by domain knowledge. Beyond that, existing solutions do not provide

means to allow for granular tailoring and distribution of system aspects like

extraction and retrieval, but only offer predefined packages that may not suit

the specific needs of the domain. In addition to that, the Web 2.0 has enabled

the participation from users, thus valuable knowledge obtained from user par-

ticipation and social networks could substantially improve domain specific in-

1

2 CHAPTER 1. INTRODUCTION

formation retrieval [56] and should be incorporated. Furthermore, the large

amount of available data requires parallel algorithms and distributed com-

ponents to handle the complex and voluminous data in specialized domains

[31; 66].

1.2 Motivation

Although semantic extraction and retrieval mechanisms as well as distributed

approaches exist for the scenario outlined above, a truly extensible framework

is missing.

Current approaches revolve around static frameworks and systems that nei-

ther allow to taylor each part of the process to the requirements of the specific

domain, nor easily enable the integration of new discoveries and algorithms

for certain parts of the process.

Despite this, they miss a combined semantic representation that allows the

connection of domain specific ontologies with social and keyword information.

1.3 Contribution

Our contribution is an extensible, distributed concept search framework over-

coming the limitations outlined above.

We developed a flexible combined semantic representation and data model

that allows the connection of different metadata representations, as well as

domain specific ontologies (see Chapter 5), that can be utilized for different

domains.

Utilizing this model as a fundament, we designed a distributed component

based framework architecture, that allows the easy extensibility and adaptabil-

ity of each part of the search process to the specific needs of the domain, as well

as the integration of novel algorithms and methods at any time. Our expres-

sive API further enables easy integration of existing systems and components,

as well as the use of only specific parts of the framework that are viable for the

specialized domain. Furthermore, we ensured distributability in order to sup-

port different optimization scenarios, like for example MapReduce/Hadoop,

as well as a plethora of deployment scenarios.

1.4. ORGANIZATION OF THIS THESIS 3

Based on our design, we developed a Proof of Concept prototype. We used

the Space Domain, within the context of the European Space Agency using

ESA data, as specialized test domain for the prototype.

1.4 Organization of this Thesis

Part of this thesis has been published under the ESA Contract ESA ITT Num-

ber RFQ 3-13016/09/NL/CBi[55].

The rest of this thesis is organized as follows: Chapter 2 presents back-

ground information and terminologies for our thesis. Chapter 3 analyzes

the state-of-the art of existing systems and relevant technologies. Chapter 4

presents the problem definition as well as use cases and requirements. Chap-

ter 5 describes our proposed distributed social semantic search framework in

detail. In Chapter 6, we present proof of concept demonstration of our frame-

work. Chapter 7 gives a comprehensive comparison and concludes this thesis.

2 Background

The background for this thesis is in the domain of digital libraries [69; 83], in

particular semantic digital libraries [24; 64], specifically viewed in a software

framework perspective. Digital libraries research in general, and semantic dig-

ital libraries research in particular, have attracted much effort during the last

few years. In the past, they have been mainly involved with the extraction

of (semantic) information representing documents, the storage and manage-

ment of the extracted information, and the search of documents based on that

data. Therefore, as also mentioned in [1; 24], the relevant research topics are

knowledge extraction (object recognition, segmentation and indexing, and se-

mantic analysis), knowledge representation (document map, ontology), knowl-

edge management (distributed or centralized storage), search algorithms, and

knowledge visualization. Several techniques have been proposed for seman-

tic digital libraries. Some have been developed for domain-specific digital li-

braries, such as life science literature search [33].

In this chapter we discuss background and terminologies which are neces-

sary to fully understand the topic, and outline a traditional search process, as

well as its differences to advanced search processes, which are relevant in a

software framework perspective.

2.1 Typical Search Process

In order to explain relevant background and terminologies, we examine a sim-

plified typical search process. Figure 2.1 shows a typical keyword based search

process. The search process can be separated into three relevant phases.

The first phase is the Query construction. Traditionally, the user is given

the ability to use Free Text Input, which can be limited to keywords, or in more

advanced systems, the use of natural language. Additionally, the search pro-

cess may provide Operators to augment the Text Input, like boolean operators or

5

6 CHAPTER 2. BACKGROUND

Search Engine

Index

Query

User

Results

Phase 1 Phase 2

Phase 3

Figure 2.1: High level overview of a typical search process

regular expressions. Furthermore, Controlled Terms can be used to disambiguate

input, restrict output, or select predefined queries from a value list or a faceted

graph. Finally, the search process may provide early User feedback to facilitate

pre-query disambiguation by means of a suggestion list or semantic autocomple-

tion.

The user then submits the constructed query to the search engine, which

starts the second phase. The search engine then evaluates the query and per-

forms a matching procedure of the query against one or multiple indices of

textual content and/or metadata, based on a search algorithm. The results of

the performed matching are one or multiple digital objects.

Finally, the third phase is the presentation of the found digital objects to

the user. The presentation phase selects what to present by providing means

to constraint the result set. It further deals with organizing the results by

clustering related objects, and finally orders them by relevance based on a

ranking mechanism.

In the following section we will explain background and terminologies re-

lated to this search process.

2.2. TERMINOLOGY 7

Digital
Object

ImageText Video Other

...

PDF Doc JPG SVG OGG MPG

Figure 2.2: Digital Objects

2.2 Terminology

2.2.1 Digital Object

A digital object represents a discrete unit of information. It can be text, images,

videos or any other digital representation of information. In the context of

Digital Libraries a digital object can be defined as:

"An item as stored in a digital library, consisting of data, metadata, and

an identifier."[9]

In terms of access, we assume that each digital object can be uniquely dis-

tinguished using an identifier.

Digital objects can be represented in different formats (see Figure 2.2), and

– depending on the specific format – different extraction mechanisms can be

used to derive metadata from the digital objects. Conceptually, extracted meta-

data of a digital object can be embedded into or separated from the digital ob-

ject. In our discussion, the extracted metadata is not part of the digital object,

but a separate – albeit linked – representation, as seen in the following section.

2.2.2 Metadata

Metadata is data about a digital object. It characterizes the object it describes,

and can represent different types of information about the digital object, such

8 CHAPTER 2. BACKGROUND

as contextual or provenance information. In literature, metadata types can be

classified into two groups: (a) non-semantic and (b) semantic.

• Non-semantic metadata: Non-semantic metadata denotes the traditional

form of descriptive metadata, such as keywords or a summary extracted

from a text document.

• Semantic metadata: Semantic metadata enriches the information about a

digital object using machine-comprehensible approaches, e.g. by associ-

ating ontological concepts with the digital object.

Metadata is one of the main sources which digital documents can be searched

by. As this thesis is focused on semantic search, we will further outline relevant

semantic representations of metadata.

Semantic Representations of Metadata

Semantic metadata can be represented using different forms. The main tech-

niques to describe metadata in a semantic way are:

Categorizations via XML The most basic form of semantic representations is

plain XML, with an according XML Schema, that defines the basic semantics.

XML Schema is limited in a way that it only allows structuring of a document,

without implicit support for document relations. The semantics of XML docu-

ments (e.g. attribute values, existence of child nodes etc.) can be queried using

XQuery or XPath.

Taxonomies via RDF The Resource Description Framework (RDF)1 is a meta-

data model. The basic expression in RDF is a triple consisting of subject, pred-

icate and object. The subject denotes the resource, the predicate denotes aspects

of the resource, and expresses a relationship between the subject and the ob-

ject. The predominant query language is sparql
2, which is designed to query

collections of triples, and easily traverse relationships. The ability to represent

and traverse relationships based on RDF allows for greater expressibility than

pure XML-based representations.

1http://www.w3.org/RDF/
2http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/

2.2. TERMINOLOGY 9

Ontologies via OWL The Web Ontology Language (OWL)3 is a set of knowl-

edge representation languages for authoring ontologies. OWL is built atop

RDF, with several additional features, such as relations between classes, cardi-

nality, equality, more typing-of and characteristics-of properties, and enumer-

ated classes. OWL further facilitates greater machine interpretability of web

content than that supported by plain XML or RDF.

2.2.3 Social Concepts and Social Semantic Combination

Several search activities involve social interactions, such as finding an expert,

getting recommendations from a colleagues, and manually generating meta-

data. The relevant background for searching with respect to social interaction

lies on the concept of social networks, expert networks, and user participation.

Social Network

A social network [101] is a graph based social structure, consisting of individ-

uals as nodes, and connections between these nodes. Each connection between

nodes represents a relationship, which again can be associated with additional

information.

Expert Network An expert network is a special form of a social network.

Persons as nodes are being associated with certain topics, also represented as

nodes, the relationship between persons and topics is then used to assess the

expertise of a certain person for a specific topic.

Folksonomy

A folksonomy can be defined as the result of personal free tagging of digital

objects for one’s own retrieval. It can be further seen as the taxonomy-like

structure, that emerges when large communities of users collectively tag digital

objects [99; 89]. Figure 2.3 shows an example of a folksonomy. Folksonomies

can be searched and queried using graph based mechanisms, and are limited

in their accuracy to the expressibility of the tag. Different representations, like

Tag Clouds [65], can be used to visualize the results.

3http://www.w3.org/TR/owl-features/

http://www.w3.org/TR/owl-features/

10 CHAPTER 2. BACKGROUND

1 2 3 4 5

Digtial
Object

Tags

Content Creator

Figure 2.3: An example of a folksonomy

User Participation

User Participation is the process where a user actively augments the capability

of an existing system [49; 93]. This can be the tagging related to folksonomies,

or providing metadata for digital objects, as well as generating information for

semantic extraction. To evaluate which user, or when a user should participate,

social or expert networks can be used.

Social Semantic combination

A social semantic combination is the most advanced form of metadata repre-

sentation. It is not only able to link document to document, or document to

concept, or concept to concept, but introduces the ability to incorporate social

structures (mentioned below), and link them to documents and concepts.

2.2.4 Information retrieval systems

Foundation for the search of digital objects are concepts in information retrieval

systems, which are defined as

"Information retrieval (IR) is finding material (usually documents) of an

unstructured nature (usually text) that satisfies an information need from

within large collections (usually stored on computers)." [71]

2.2. TERMINOLOGY 11

An information retrieval system can therefore be seen similar to a Digi-

tal Library. Information retrieval relies upon a prior information extraction,

building the collection for the retrieval process.

Information Extraction

Information extraction (IE) can be defined as:

"IE may be seen as the activity of populating a structured information

source (or database) from an unstructured, or free text, information source.

This structured database is then used for some other purpose: for search-

ing or analysis using conventional data- base queries or data-mining tech-

niques; for generating a summary; for constructing indices into the source

texts." [44]

Semantic Extraction

Semantic extraction represents the enrichment of information extraction through

semantic concepts like ontologies and/or social structures. Semantic extraction

can be greatly improved, by utilizing user participation to overcome limitations

of purely machine based approaches.

Indexing

Indexing is used to facilitate fast and accurate information retrieval, by build-

ing a compact representation of the digital object corpus.

2.2.5 Digital Libraries

The delos Digital Library Reference Model [11] has defined a Digital Library

as follows:

"An organization, which might be virtual, that comprehensively collects,

manages and preserves for the long term rich digital content, and offers to

its user communities specialized functionality on that content, of measur-

able quality and according to codified policies." [11]

12 CHAPTER 2. BACKGROUND

Digital Library System

A digital library always incorporates a Digital Library System, which is defined

as:

"A software system that is based on a defined (possibly distributed) ar-

chitecture and provides all functionality required by a particular Digital

Library. Users interact with a Digital Library through the corresponding

Digital Library System." [11]

According to this conceptual definition, a digital library fulfills two main

functions:

• Management of digital objects, and

• Presentation of relevant digital objects to a consumer

Search and information retrieval activities are the core of the second function.

Classification of Digital Library Systems

Depending on how digital objects are managed and searched, different types

of digital libraries can be discriminated. They can be classified based on the

search mechanism (and as a consequence of the implementation of the search

mechanism, there are differences in indexing, annotation, meta-data represen-

tation). The classification is not orthogonal, and the following digital library

types can be derived:

• Typical digital library full-text index and keyword search.

• Semantic digital library digital objects are characterized by, indexed, and

searched through semantic information[64].

• Social-aware digital library based on collaborative tags, and therefore a

collaborative index, derived from social networks.

2.2.6 Search Capabilities of Digital Libraries

Search capabilities can be categorized into three main classes, namely keyword

search, semantic search, and social search.

2.2. TERMINOLOGY 13

Keyword Search

The most basic form of search is keyword based [12]. In this form of search a

keyword is matched against a text index of the document corpus.

Semantic Search

Semantic Search is widely used synonymical to concept-based search [91]. It

seeks to improve search accuracy by understanding searcher intent and the

contextual meaning of terms as they appear in the searchable data space,

whether on the Web or within a closed system, to generate more relevant re-

sults.

Social Search

Social search is a type of search method, that determines the relevance of

search results by considering the interactions or contributions of users uti-

lizing social or expert networks [3]. When applied to search, this user-based

approach to relevance is in contrast to established algorithmic or machine-

based approaches, where relevance is determined by analyzing the text of each

document, or the link structure of the documents.

2.2.7 Result Representation

The traditional presentation of retrieved digital objects, corresponding to a

query, is organized as a ranked list. Several approaches have since been ex-

plored to extend the presentation of results, in order to convey more infor-

mation, by displaying additional information or attributes for each of the re-

trieved documents, highlighting relationships between the documents and the

query terms [50], visualizing inter-document similarities, or clustering related

results [107].

3 State of the Art of existing Systems

In order to investigate how to complement and improve the results of domain-

specific digital library search, we will examine existing digital library, informa-

tion retrieval, and semantic search systems. The systems are chosen based on

their relevance for highly specialized domains, that share the same background

technologies.

The focus lies on the evaluation of the following characteristics, based on

the Search Process, introduced in Section 2.1, from a systems perspective:

• The process starts with Semantic extraction and annotation techniques,

• followed by relevant Storage mechanisms and concepts for the extracted

metadata.

• Indexing techniques are applied for efficient retrieval,

• Search capabilities cover basic search representations, as well as query con-

struction;

• Presentation of Search Results concludes the functional characteristics, fol-

lowed by

• Non functional aspects for search techniques, which will also be consid-

ered.

In the following sections, we will analyze existing approaches tackling the

topics mentioned above. First, however, we will discuss existing metadata

representations, as they are an important fundament of search processes in

general and concept search in particular.

15

16 CHAPTER 3. STATE OF THE ART OF EXISTING SYSTEMS

3.1 Metadata representations

3.1.1 Domain specific ontologies

For specialized domains several specific ontologies exists in this section we list

some of the more prominent ones for different domains.

SWEET for the Space Domain

The most apparent metadata representation for the space domain are the sweet
1

(Semantic Web for Earth and Environmental Terminology) ontologies, devel-

oped in nasa’s Jet Propulsion Laboratory. The provided ontologies form a

solid base-set of space-specific terminologies, and are suitable as semantic cat-

egorization of digital objects in a domain-specific digital library. However, the

sweet ontologies model only terminologies related to earth science data and

information. Hence, they are not suitable to represent general metadata, such

as document title, keywords, or creation date.

GALEN for the Medical Domain

galen is one of several medical ontologies. Its main intention was to enable a

key element for architecture for interworking between medical record, decision

support, information retrieval and natural language processing in healthcare 2

SEOntology for the Software Engineering Domain

SEOntology is an example of an ontology for the Software Engineering Do-

main. It main intention is to enable a communication foundation for software

engineering domain knowledge, by basically providing common software en-

gineering concepts.3

3.1.2 Dublin Core

The Dublin Core Metadata element set and metadata terms [58] define canon-

ical representations of common metadata attributes, such as title, author, cre-

ation/modification date, language and keywords. Hence, the Dublin Core
1http://sweet.jpl.nasa.gov
2http://www.openclinical.org/prj_galen.html
3http://www.seontology.org/

http://sweet.jpl.nasa.gov
http://www.openclinical.org/prj_galen.html
http://www.seontology.org/

3.1. METADATA REPRESENTATIONS 17

metadata elements are suitable for representing general metadata about a dig-

ital object. The representation of the author element, however, depends on

yet another metadata framework aimed specifically at describing persons, as

discussed in the following section.

3.1.3 FOAF

The foaf
4 (Friend of a Friend) vocabulary [20] defines a metadata represen-

tation to describe people, companies, documents, and a basic set of relations

between these concepts, such as name (of a person) or maker (of a document).

The foaf vocabulary is suitable for representing social structures, but it does

not include specialized relations modeling notions such as expertise informa-

tion, or granular topic relations between documents and topics.

3.1.4 SIOC

The Semantically Interlinked Online Community (sioc) addressed the prob-

lem that online communities are islands of people and topics that are not in-

terlinked. It’s goal was to enable efficient information dissemination across

communities by creating an ontology that models concepts identified in dis-

cussion methods [19].

3.1.5 SOAF

The Service of a Friend (soaf) network proposed the integration of services

into social networks. It enables the integration of services and humans into

a common network structure and discusses the required extensions to exist-

ing social network vocabulary. The main benefits of the soaf network are the

ability to create a dynamic ecosystem of services, the ability to track relations

between different stakeholders of web services as well as to provide informa-

tion about service dependencies and input for creating dependency graphs of

services [93].

4http://www.foaf-project.org

http://www.foaf-project.org

18 CHAPTER 3. STATE OF THE ART OF EXISTING SYSTEMS

3.2 Semantic extraction and annotation techniques

To make content and context of digital objects explicit, several tools and tech-

niques have been developed to generate and extract metadata, as surveyed

in [95]. The generated metadata can either be directly associated to seman-

tic concepts, or be used in later semantic extraction processes. In both cases,

the ultimate goal of the generated metadata is to support the identification of

digital objects.

3.2.1 User participation

Since not all kinds of metadata can be generated by automatic annotation

mechanisms, manual annotation through user participation plays an impor-

tant role in semantic extraction and annotation (see [95] for requirements on

annotation by users and annotation tools). In order to avoid bottlenecks, that

can be caused by excessive needs for manual annotation, it is crucial to provide

simple and intuitive interfaces for annotation, that can easily incorporate exist-

ing information sources, and be integrated in activities of users [see 95; 98].

User participation is not only used to generate additional metadata by man-

ual annotation, but also to provide information for semantic extraction. There

are numerous systems relying heavily on user participation to annotate con-

tent and generate folksonomies, commonly known as “Web 2.0 applications”,

such as Flickr5 and del.icio.us6. Several digital library systems also allow for

tagging and annotation of digital objects [64].

Furthermore, in order to ensure minimal invasion in terms of user interrup-

tion, and also to make certain that user participation takes place, the principles

of Luis v. Ahn [98] have shown to be feasible. Since time is limited for the

user of the system, Captchas provide an interesting opportunity to augment

the user participation process for semantic annotation.

3.2.2 Automatic Semantic Extraction

In addition to manual annotation discussed in Section 3.2.1, automation plays

a very important role in the semantic extraction and annotation process. It

5http://flickr.com
6http://del.icio.us

http://flickr.com
http://del.icio.us

3.2. SEMANTIC EXTRACTION AND ANNOTATION TECHNIQUES 19

is, therefore, important that automatic knowledge extraction technologies are

integrated into the annotation process.

Standard formats

The use of standard formats will foster the interoperability and future exten-

sions. Furthermore, they provide a very valuable bridging mechanism to share

existing semantic information and annotations. To date, two popular types of

standards used are OWL, for describing ontologies, and RDF, for annotations.

For example, they are used in e.g. Fedora [88] and JeromeDL [64].

Ontology support

Usually, there are multiple ontologies dealing with different aspects of the do-

main. In addition to supporting standard formats, it is important that multiple

ontologies are supported. Furthermore, as ontologies change over time, the

changes should be supported in the extraction process in order to ensure that

the extracted knowledge is up to date.

In the space domain, sweet
7 is one example for a highly modular domain

specific ontology with 4600 concepts in 150 modular ontologies, organized by

subject.

Support for heterogenous document formats and document evolution

Traditionally semantic web standards for annotation tend to assume that docu-

ments only exist in either HTML or XML formats, therefore neglecting a lot of

information stored in other formats. In order to be able to capture all relevant

information for the domain it is necessary to support heterogeneous infor-

mation types, like documents, images, audio and video as well as different

formats for each of these types. Regardless of the plethora of formats it is also

important to respect the fact that documents will change over time, therefore

a new extraction might be necessary in order to provide sustainable accuracy

for later retrieval.

7http://sweet.jpl.nasa.gov/ontology/

http://sweet.jpl.nasa.gov/ontology/

20 CHAPTER 3. STATE OF THE ART OF EXISTING SYSTEMS

Relevant tools and algorithms

Several tools and algorithms have been developed for semantic extraction and

annotation. Notable tool examples are KIM8, Rainbow Project9 and OntoMat10.

A detailed survey analyzing existing tools can be found in [95].

3.3 Storage mechanisms and concepts

The utilized storage mechanisms and concepts are important in any search

framework. Basically two storage models can be separated, namely the word

processor model [see 95] where annotations are stored with the document and

the semantic web model (see [see 95]) that assumes that annotations will be stored

separately from the original. Depending on the chosen model different storage

options can be applied.

When the word processor model is used, the document is implicitly linked to

its metadata (as the metadata is stored with the document, and thus the docu-

ment store also becomes the metadata store), but when the semantic web model

is preferred, an explicit link between digital object and derived metadata must

be established, i.e. by referencing the digital object’s identifier (as specified in

Section 2.2.1).

3.3.1 Metadata storage

As described in Chapter 2 metadata can be represented in many different for-

mats, the standard format – as discussed in Section 2.2.2 – for semantic repre-

sentations is RDF.

RDF Stores

RDF stores are storage solutions based on the concept of triple stores and pro-

vide facilities to efficiently store and retrieve RDF data. Despite this basic

functionality they incorporate sparql, a SQL like query language to extract in-

formation from the graph based RDF model. This enables sophisticated queries

on the extracted metadata beyond simple SQL queries, and therefore provides

8http://ontotext.com
9http://rainbow.vse.cz

10http://annotation.semanticweb.org/ontomat

http://ontotext.com
http://rainbow.vse.cz
http://annotation.semanticweb.org/ontomat

3.3. STORAGE MECHANISMS AND CONCEPTS 21

the fundament for later semantic retrieval. The most relevant requirement for

a RDF storage solution, besides non functional requirements like performance

and scalability, is the coverage of sparql. The coverage of the sparql stan-

dard clearly influences the expressibility of queries and therefore power of the

retrieval process.

Relevant Tools

The most common RDF storage solutions are Jena11[74], Sesame12[21], MPT-

Store13, and Mulgara14; a detailed evaluation of their performance can be

found in [68].

3.3.2 Digital object storage

Digital objects, as described in Section 2.2.1, can be represented in different

formats. Therefore, many different storage solutions exist. They can be sepa-

rated into three main categories, namely file system stores, relational stores, and

document stores.

The most flexible way to store digital objects is a document oriented stor-

age facility. Document stores revolve around the concepts of self contained

documents. This fits the word processor model described previously. The main

characteristics of document stores are:

• Being schema free, e.g., objects of any structure can be stored

• Data is self-contained

• Efficient data retrieval

• Horizontal scalability

Relevant Tools

Notable examples are CouchDB15 and MongoDB16.
11http://jena.sourceforge.net
12http://www.openrdf.org
13http://mptstore.sourceforge.net
14http://www.mulgara.org
15http://couchdb.apache.org/
16http://mongodb.org/

http://jena.sourceforge.net
http://www.openrdf.org
http://mptstore.sourceforge.net
http://www.mulgara.org
http://couchdb.apache.org/
http://mongodb.org/

22 CHAPTER 3. STATE OF THE ART OF EXISTING SYSTEMS

3.4 Indexing Techniques

For efficient retrieval of digital objects, indices are required. Indexing ap-

proaches can be divided into three classes, elementary indices, path look-up indices

and navigational indices [103].

3.4.1 Elementary indices

Elementary indices are the most basic form of index, and are based on tables.

They ignore the notion of a path or higher concepts, their exclusive structural

unit being the element or labelled node [103]. Examples for such elementary

indices are basic text indices, but are of minor importance for semantic search,

although they provide a necessary fundament.

3.4.2 Path look-up indices

Opposed to elementary indices, path look-up indices use entire document

paths, instead of nodes as their basic structural unit. They mainly differ from

elementary indices by storing each node’s structural context, therefore enabling

a solid fundament for semantic search. However, they are limited in a way, that

only atomic lookups are possible, meaning they only retrieve the label paths,

and possibly the IDs of all nodes where a given keyword occurs [103].

3.4.3 Navigational indices

Navigational indices provide the most sophisticated index representation, by

using directed graphs as their main data structure, therefore representing the

optimal indexing technique for RDF based metadata.

3.4.4 Relevant Algorithms and Tools

Notable algorithms are BitCube [106] (path-lookup), BUS [86] (navigational)

or T-Index [108] (navigational), for a detailed explanation and comparison see

[103].

3.5. SEARCH CAPABILITIES IN DIGITAL LIBRARIES 23

Notable tools for indexing are Lucene17, Lemur18, and Terrier19; the tools

are standard full text indexing solutions, and provide no specific support for

domain requirements, beyond full text indexing.

3.5 Search Capabilities in Digital Libraries

From a systems perspective, there are multiple search mechanisms. They are

non exclusive, and should be combined in an optimal scenario.

3.5.1 Keyword based search

Keyword based searches are the most basic form of search representations,

backed by a full text index. Keyword based search represents a quasi-standard,

and is part of every search system.

Special Domain Specific Keyword Search Systems Notable examples of key-

word based search systems are IDS and ESTree.

Query construction in keyword based searches

Traditionally, the system is able to process free text input, this can either be

limited to keywords, or, in more advanced systems, the use of natural language.

Beyond this basic form of query construction the system can provide several

operators like boolean operators or regular expression to enhance the express abil-

ity of the constructed query.

Matching in keyword based searches

Keyword based search uses syntactic matching of the query against a text index

(see Section 3.4.1)

3.5.2 Semantic – Ontology-based Search/Facet Search

Facet search and ontology-based search are basically identical. Faceted search,

also called faceted browsing, allows the user to explore information by faceted
17http://lucene.apache.org
18http://www.lemurproject.org
19http://terrier.org

http://lucene.apache.org
http://www.lemurproject.org
http://terrier.org

24 CHAPTER 3. STATE OF THE ART OF EXISTING SYSTEMS

classification, which allows the assignment of multiple classifications to an ob-

ject, enabling the classifications to be ordered in multiple ways, rather than a

single taxonomic order [40]. Faceted search allows users to navigate a mul-

tidimensional information space by combining basic keyword search with a

progressive narrowing of choices in each dimension. Notable realizations of

this concept are, for example MultiBeeBrowse [63]

Query construction in semantic searches

Query construction for semantic searches can be similar to keyword based

searches, by providing the facilities mentioned in Section 3.5.1, to identify

facets and combine facets. Despite this, there are graphical approaches like

TagClouds [65] and TileBars [12, p.292], that simplify the query construction.

Matching in semantic searches

Semantic search uses semantic matching in addition to syntactic matching. It

is used to further constrain or modify the result set by either utilizing graph

traversal, explicit use of thesauri relations and inferencing based on the formal

semantics of RDF, rdfs and OWL [54].

3.5.3 Social – Community enabled browsing

Community enabled browsing is based on the concept of folksonomies. It aug-

ments keyword based search approaches by utilizing social semantic concepts;

essentially the user is enabled to consume the knowledge collected by entities

in a community (e.g. a social network). A prominent algorithm to provide this

feature is Social Semantic Collaborative Filtering (sscf) [64].

Query construction in social searches

There is to the best of our knowledge currently no specific consideration of

social aspects in query construction, as the mechanism introduced in Section

3.5.1 and Section 3.5.2 have shown to be sufficient.

Matching in social searches

Social search uses semantic matching shown in Section 3.5.2, based on the gen-

erated folksonomies represented as a graph, taxonomy or ontology. A notable

3.6. RESULT PRESENTATION AND FEEDBACK FOR SEARCH AND
SEARCH RESULTS 25

example is del.icio.us20.

3.6 Result presentation and Feedback for Search and

Search Results

The basic result presentation is a list of eligible candidates matching the search

query. Each list item consists of a link to the retrieved digital object, and is or-

dered according to some score/rank. For ranking results, several algorithms

have emerged. However, the most prominent ones, which were adapted for

semantic and social searches, are PageRank[78] and HITS[61]. The visualiza-

tion for result presentations range from the most simple form as text, over

2-dimensional, to 3-dimensional representations.

Additionally, supported interfaces and devices play a valuable role. Cur-

rently, search can be conducted through webrowser, rich native client interfaces,

and mobile devices, like smart-phones and tablet devices. In addition to human-

centric interfaces, machine query able interfaces for robots are of relevance as

well. Table 3.1 shows an overview of existing interfaces and representations.

Actor Interface Representations

Human Web HTML, XHTML

Rich native WPF21, Cocoa22, Quartz23, Qt24

Mobile WML, Cocoa Touch25, Android26

Systems/

Robots

SOAP XML

REST[42] JSON27

XML-RPC XML

Table 3.1: Interfaces and used representations

20http://del.icio.us
21http://windowsclient.net/wpf/
22http://developer.apple.com/cocoa/
23http://developer.apple.com/graphicsimaging/quartz/quartzcomposer.

html
24http://qt.nokia.com/
25http://developer.apple.com/iphone/
26http://www.android.com/
27http://www.json.org/

http://del.icio.us
http://windowsclient.net/wpf/
http://developer.apple.com/cocoa/
http://developer.apple.com/graphicsimaging/quartz/quartzcomposer.html
http://developer.apple.com/graphicsimaging/quartz/quartzcomposer.html
http://qt.nokia.com/
http://developer.apple.com/iphone/
http://www.android.com/
http://www.json.org/

26 CHAPTER 3. STATE OF THE ART OF EXISTING SYSTEMS

3.7 Non-functional Aspects for Search Techniques

Beside functional aspects discussed above, it is also relevant how the search

techniques assess non-functional aspects, e.g. scalability, parallelization of in-

dex generation and querying, as well as their suitability for distributed com-

puting, since we are always concerned with distributed multi-user systems.

Index Storage Matters of concern

One One Storage will eventually be the bottleneck

One/Sharded Multiple Popular sharded index partition will eventu-
ally be the bottleneck

One/Replicated Multiple Memory intensive, complex update procedure

Multiple Multiple The more heterogeneous the environment the
higher the complexity

Table 3.2: Index/Storage scenarios

Organization model Running system Description

Centralized
Server Single Server

Cluster system Computing cluster with single
point of entry

Distributed
P2P system Multiple distinct sites able to

interoperate

Cloud system Multiple sites able to adjust to
varying loads

Table 3.3: Distribution scenarios

One of the main non-functional aspects of digital library systems is the

handling of distributed setups and parallel query and information extraction

processing, as shown in Table 3.2 and Table 3.3. In order to address the matters

of concern outlined in Table 3.2, several approaches have emerged. For exam-

ple, MapReduce was developed to handle the computations that process large

3.8. RELEVANT REFERENCE ARCHITECTURES 27

amounts of data, such as crawled documents [32]. Therefore, it represents a

very valuable concept for optimized indexing and extraction in information

retrieval and processing, and is also suitable for semantic annotations [66].

3.8 Relevant Reference Architectures

So far we only are aware of delos which is the EU Network of Excellence in

Digital Libraries and helps to conduct and share results of research on next

generation technologies for digital libraries28. delos aims at delivering re-

search and prototypes of DL technologies using P2P, Grid and SOA. The key

deliverable of delos is a reference model for (future) Digital Library Manage-

ment Systems. Currently, delos provides a stable prototype of Digital Library

Management System (dlms) representing the digital library management part

of the proposed reference architecture.

Delos is relevant as a reference architecture for Digital Library Solutions.

The main concepts introduced by the delos Digital Library Manifesto build

upon six orthogonal and complementary domains that together characterize

the Digital Library universe, these are:

• Content, representing the information made available

• User, representing the actors interacting with the system

• Functionality, representing the facilities supported

• Policy, representing the rules and conditions

• Quality and

• Architecture

Furthermore, it introduces different types of actors, and states that the ulti-

mate goal of the whole reference model activity is to clarify the Digital Library

universe to the different actors, by tailoring the representation to their specific

needs. Specific details can be found in [11].

28http://delos.info

http://delos.info

28 CHAPTER 3. STATE OF THE ART OF EXISTING SYSTEMS

3.9 Existing Systems as a Whole

3.9.1 FEDORA

The Flexible Extensible Digital Object Repository Architecture29 (fedora) en-

ables a wide array of different applications, like scholarly and scientific work-

benches, data curation, linking and publishing, as well as collaborative reposi-

tories and integrated knowledge spaces. It is based on a flexible digital object

model that can support documents, images, as well as complex multimedia

publications, and enables the creation of so called networks of objects using

RDF.

fedora provides a natural model for exposing repositories as a network

of objects, indexing based on a generalizable data model and extensible en-

richment of object descriptions. A fedora repository provides the following

features:

• Generic Digital Object Model

• Automatic content versioning and audit trail

• Web Service Interfaces (rest and soap)

• RDF based storage.

3.9.2 BRICKS

bricks
30 aims at establishing the organizational and technological foundations

for a digital library network in the cultural heritage domain. It provides

• A software infrastructure for building digital library networks

• A set of end-user applications

• A business model

From the architecture point of view, bricks has the following key charac-

teristics:

• A decentralized P2P network
29http://www.fedora-commons.org/
30http://www.brickscommunity.org

http://www.fedora-commons.org/
http://www.brickscommunity.org

3.9. EXISTING SYSTEMS AS A WHOLE 29

• Each P2P node is a set of SOA components as well as

• components for storing, accessing, searching and browsing digital ob-

jects.

3.9.3 JeromeDL

JeromeDL is – to the best of our knowledge – the only social semantic digital

library system available [64]. The main motivations of JeromeDL were the

integration and search of information from different bibliographical sources, as

well as to share and interconnect knowledge among people. Its main features

are

• interconnection of meaningful resource description of with social media

• enhanced personalized search facility

• integrated social networking with user profiling

• extensible access control based on social networks

• collaborative browsing and filtering

• dynamic collections

• integration with Web 2.0 services

3.9.4 Overview of the systems above

Table 3.4 summarizes features of the above-mentioned systems.

30 CHAPTER 3. STATE OF THE ART OF EXISTING SYSTEMS

System Semantic Ex-
traction and
Annotation

Storage
mechanism
and concepts

Distribution
techniques

Search Capa-
bilities

Fedora Own Middle-
ware compo-
nent for anno-
tations

RDBMS/
Mulgara

federation
via name re-
solver search
services; P2P

Field Search,
Ontology-
based, Full-
Text

BRICKS Own Middle-
ware compo-
nent for anno-
tations

Jena compli-
ant backend

Fully decen-
tralized (P2P)

Full-text,
Field-Search,
Ontology-
based

JeromeDL Free tag-
ging taxon-
omy based
(JOnto), SSCF

Sesame
compliant
backend

Distributed
searching
(P2P), ag-
gregated
browsing
(hierarchical)

Full-text,
Field-Search,
Ontology-
based, NL
Query Tem-
plates

Table 3.4: Overview of digital library systems

4 Problem Definition

In this chapter, we will discuss the problem to be tackled, justify that it has not

previously been answered, and state why it is worthwhile to provide a solution

for it.

4.1 Research Question and Approach

The discussion of the State of the Art of existing Systems in Chapter 3 clearly

shows that a distributed concept search framework, allowing to taylor each

part of the process to the requirements of the specific domain, as well as easily

enable the integration of new discoveries and algorithms for certain parts of

the process does not exist as of yet. Despite this, a combined semantic repre-

sentation that allows the connection of domain specific ontologies with social

and keyword is missing. Specifically shortcomings concerning the following

key factors have not been properly addressed:

• Combined social semantic representation able to incorporate any domain

specific ontology

• Design for easy adaptability of specific components

• Design for granular distributed computing

• Integration of advanced user interfaces, visualizations and user partici-

pation means

As presented in Section 3.1, there are several approaches to metadata rep-

resentation, each suitable for different areas or domains. To the best of our

knowledge, however, a combined representation of social semantic metadata,

enriching basic possessive associations by allowing the modeling of additional

31

32 CHAPTER 4. PROBLEM DEFINITION

information, such as expertise, and integrating any domain specific ontology

does not yet exist.

The systems presented in Section 3.9 were designed to serve as digital li-

brary systems for generic digital objects, and provide no explicit considerations

for the requirements of highly specialized domains, such as modeling of ex-

pertise or interest information, as well as specialized extraction and annotation

mechanisms respecting formats prevalent in particular domains.

In the discussion of the state of the art we present several approaches to

semantic extraction and annotation (Section 3.2), storage mechanisms and con-

cepts (Section 3.3), and indexing techniques (Section 3.4) that are reasonably

well suited for distributed computing. However, existing solutions do not pro-

vide means that allow for granular distribution of system aspects over process-

ing resources, but only offer ways to scale the solution by means of replicating

the whole system (with some allowing for the separate distribution of the stor-

age and/or indexing component as a whole) on multiple machines to facilitate

higher performance, scalability, and availability.

User interfaces of existing systems (see Section 3.9) are mostly realized as

more or less complex input forms [88; 62], representing the internal metadata

model, resulting in mediocre user experience at best, when trying to peruse

systems beyond basic keyword based search. In the field of digital library

systems, there is little research on improving the quality of user interaction

to facilitate complex queries and analysis tasks in an intuitive manner (see

Section 3.5). We will enable the easy dynamic integration of advanced Interface

mechanisms such as MultiBeeBrowse [63], tag clouds [65] or TileBars [12, p.292]

to assist users in intuitively constructing queries against the system, as well as

analyzing retrieved data sets.

— § —

We will develop a distributed, concept search framework for specialized do-

mains incorporating an extensible combined semantic representation address-

ing the shortcomings outlined above. Our goal is to create an easily extend-

able and adaptable component architecture for social semantic extraction and

search, that allows for each and every component to be exchanged. Further-

more, we will focus on the ability to easily distribute the system’s component

to facilitate high performance, scalability, and availability.

— § —

4.2. USE CASES 33

In order to develop a distributed concept search framework for specialized

domains we will first identify common use cases and requirements. Based

on them we will develop an extensible combined semantic representation and

data model that will serve as the foundation for our framework. The key point

for this representation is the ability to integrate multiple semantic represen-

tations, specifically different domain specific ontologies, which will enable a

truly adaptable concept search framework. After that we will design a dis-

tributed component based architecture that allows the simple adaption and

extensibility of each component in order to incorporate different specific solu-

tions for certain areas of the framework. This will ensure that certain parts of

the framework can be exchanged and evolve in order to adapt to the different

requirements for each domain.

4.2 Use Cases

In order to understand requirements, we focus on some common use cases,

which are relevant to the search activities in specialized domains.

4.2.1 Search Related Documents during Concurrent Domain Activity

Description

In the case of a concurrent domain activity, each participating party is respon-

sible for a different part of the process. In this process, the person responsible

(user) frequently consults the search system to find relevant documents related

to the task at hand, as well as experts related to the topic, and/or examined

documents that could be consulted in case further questions emerge. The user

searches the system by either specifying keywords or topic names to query the

system. Additionally, they can utilize the domain specific ontology (dso) to

browse by topic, and retrieve related documents, as well as to constrain the

browsing result with additional keywords. During the retrieval process the

user can also tag retrieved documents with existing topics from the dso or

define new tags that augment the dso.

34 CHAPTER 4. PROBLEM DEFINITION

Goal

Retrieving relevant documents, matching the specified keywords, and/or se-

lected topics from the domain ontology ordered by relevance, as well as the

associated experts/contributing persons.

Basic course of events

Figure 4.1 shows the activity diagram for the use case.

Concurrent Domain Activity

The system presents a visual
representation of an ontology

The user selects relevant parts of the
DSO or enters keywords

The systems presents results based on
the selection and or the keywords

User accepts results ?

YES

NO

User decides to annotate ?

NO

The user enters tags or selects
topics from the DSO to annotate the

results

Figure 4.1: Activity Diagram for Concurrent Domain Activity

4.2.2 Expert based Digital Object Retrieval

Description

In the case of expert based retrieval, the user knows which persons could pro-

vide information relevant for his current research topic. He wants to retrieve

4.2. USE CASES 35

digital objects that are related to his topic of interest, in conjunction with the

persons that will provide the most relevant results. The user searches the sys-

tem by either specifying keywords or topic names, as well as relevant persons

to constrain the results. During the retrieval process, the user can also annotate

if certain results provided by a person were relevant to the topic or not.

Goal

Retrieving relevant documents matching the specified topic and selected ex-

perts for the topic.

Basic course of events

Figure 4.2 shows the activity diagram for the use case.

Expert based Digital Object Retrieval

The system presents a visual
representation of an ontology as well

as an expert network

The user selects relevant parts of
the DSO as well as Persons from the

expert network that he deems relevant

The systems presents results based on
the selection

User accepts results?

YES

NO

User decides to annotate?

NO

The user rates the relevance of the
information provided by the expert

according to the topic

Figure 4.2: Activity Diagram for Expert based Digital Object Retrieval

36 CHAPTER 4. PROBLEM DEFINITION

4.2.3 Media Library search

In the case of media library search, the user participated, or is interested in a

presentation held in, or related to the specialized domain. He knows certain

keywords or persons related to the presentation, and/or images or videos he

has seen. He wants to retrieve digital objects, that are related to the speci-

fied keywords, or the person that held the presentation. During the retrieval

process, the user can also annotate and rank the retrieved digital objects.

Description

Goal

Retrieving relevant videos, images and presentations matching the specified

topic/keywords and/or specified persons.

Basic course of events

Figure 4.3 shows the activity diagram for the use case.

4.3 Requirements

The requirements are being derived from our research in Chapter 3, in align-

ment with the Use Cases and Research Question mentioned above. They cover

the areas of functional, non-functional and software engineering requirements,

and provide the fundament for our proposed social semantic digital library

framework.

• high: must be supported.

• medium: should be supported.

• low: not required but nice to have.

4.3.1 Functional Requirements

Functional requirements specify requirements related digital objects, metadata,

semantic extraction and annotation, search techniques, user interaction and

result presentation.

4.3. REQUIREMENTS 37

Media Library

The system presents recent
presentations, video and images

including annotations and related
creators

The user enters presenter/author and
or certain keywords

The systems presents results based on
the selection

User accepts results ?

YES

NO

User decides to annotate ?

NO

The user rates the relevance of the
information provided by the system

according to the topic

Figure 4.3: Activity Diagram for Media Library

Supported Digital Objects

Is concerned which formats and types are supported as possible input and

resource for the digital library. Table 4.1 shows the basic requirements for

supported digital objects. Table 4.2 shows the requirements for digital object

formats.

Type Requirement

Document High
Video High
Image High
Audio Low

Table 4.1: Supported Digital Objects

38 CHAPTER 4. PROBLEM DEFINITION

Type Format Requirement

Document

PDF High
Powerpoint High
Word High
Excel High

Image
PNG High
JPG Medium
TIFF Low

Video
mov High
h.264 Medium
mpeg2 Low

Audio
wav Medium
mp3 High
ogg Low

Table 4.2: Supported Digital Object Formats

Supported Extraction Mechanisms

The supported extraction mechanisms play a valuable role for ESA. Beyond

basic text extraction with all its flavors like stemming etc., which is a basic

requirement, it is necessary to regard the following requirements for semantic

extraction shown in Table 4.3.

Criteria Sub-criteria Requirement

Information Represen-
tation Social Semantic Representation High

Supported Standard
formats

RDF High

OWL High

User participation Incremental concept build up High

Annotation Storage word processor model Medium

semantic web model High

Ontology support for
metadata Multiple Ontology support High

Incorporation of existing Digital Object stores High

Table 4.3: Requirements for Semantic Extraction Mechanisms

4.3. REQUIREMENTS 39

Supported Annotation Mechanisms

In addition to the supported extraction mechanisms, the following annotation

requirements need to be respected as shown in Table 4.4.

Criteria Sub-criteria Requirement

User

Participation

Tagging High

Rating of results and semantic or social

annotations
High

Annotation

Storage

word processor model Medium

semantic web model High

Incorporation of existing systems for annotation High

Table 4.4: Requirements for Semantic Annotation Mechanisms

Supported Indices

In order to enable social semantic search and incorporate existing indices in a

minimal invasive way, certain requirements for supported indices have to be

met.

Criteria Sub-criteria Requirement

Supported index types

Elementary Indices Medium

Path look-up indices High

Navigational indices High

Incorporation of

existing indices

via direct access to database Low

via service based middle layer High

Distribution and

Recovery

Distributed Indices Medium

Ability to restore broken indices High

Table 4.5: Requirements for Indices

40 CHAPTER 4. PROBLEM DEFINITION

Supported Search Capabilities

Despite the basic requirements for keyword based search, social and semantic

search must also be taken into account, see Table 4.6.

Criteria Sub-criteria Sub-sub-criteria Requirement

Keyword based Query construction

Natural Language Medium

Boolean Operators Medium

Regular Expres-

sions
Low

Semantic

Search

Faceted Browsing - High

Ontology Search

and Browsing
- High

Social Search

Expert Network

support

The ability to

search for experts
High

Folksonomy Sup-

port
- High

Social Collabora-

tive Filtering
- High

Combined

Search

Semantically en-

riched keyword

search

- High

Socially enriched

keyword search
- High

Socially enriched

semantic browsing
- High

Table 4.6: Requirements for Search capabilities

4.3. REQUIREMENTS 41

Interfaces

Different requirements must be met, depending on whether a human or a

machine interfaces the system, as shown in Table 4.7.

Criteria Sub-criteria Requirement

HCI

Web Interface High

Native Client Low

Mobile Client Medium

Automation

SOAP Medium

REST High

XML-RPC Low

Table 4.7: Requirements for Interfaces and used representations

4.3.2 Non-functional Requirements

The Non-functional Requirements are concerned with the system’s capabilities

in terms of reusability, extensibility and interoperability, as shown in Table 4.8.

Criteria Sub-criteria Requirement

Reusability
Integration of existing systems and com-

ponents into the solutions
High

Service-oriented High

Extensibility
The system should provide API access to

its functionality
High

Modular architecture for easy functional

extensions
High

Interoperability
Ability to access and integrate web based

legacy systems
High

Continued on next page

42 CHAPTER 4. PROBLEM DEFINITION

Table 4.8 – continued from previous page

Criteria Sub-criteria Requirement

Ability to incorporate existing authentica-

tion solutions
High

Table 4.8: Engineering requirements

5 Specification of a distributed Concept

Search Framework for Specialized

Domains

In this chapter, we present the architecture of a concept search framework for

specialized domains, based on the requirements and research question spec-

ified in Chapter 4. We discuss a feasible implementation and an evaluation

roadmap for the proposed framework.

5.1 Linked Model for Representing Information in the Con-

cept Search Framework

In order to enable concept search for specialized domains, where the search is

related to not only digital objects, but also experts and domain specific ontolo-

gies, it is necessary to understand the influencing factors on a digital object. A

digital object searched and retrieved by the user is associated with keywords as

well as semantic concepts, and is further authored or known by several other

persons. Figure 5.1 illustrates this relation. These influencing factors must be

described in a linked model, so that the concept search can be performed.

Despite that concepts might be related to each other as well, expressing

the fact that they are associated or derived semantic representations. The last

relevant factor is the association between persons which is commonly known

as a social network.

For most of these associations, semantic representations already exist, how-

ever, what is missing is a way to link them together, in order to represent a

digital object in the desired way, suitable for the concept search framework in

specialized domains.

43

44 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

Keywords

wants to retrieve

User

Digital
Object

Concepts

Users

known by

associated with

associated with

Figure 5.1: Influencing factors

In order to cover relevant representations, as seen above, for digital objects,

we need to develop a semantic representation that is able to link all relevant

factors. Figure 5.2 shows the high-level view of our linked model.

Because several different semantic representations have been developed,

in our work, we utilize the following representations to generate our linked

model:

• FOAF: to model basic social relations and personal information

• DublinCore: providing a base set of metadata

• Thing: to incorporate domain-specific concepts, we refer to Thing and

therefore are able to incorporate any Domain Specific Ontology like SWEET,

GALEN or SEOntology etc..

By integrating domain specific ontologies via Thing we ensure that our

representation is extensible to any specific domain. Thing is the common base

class of all OWL classes and therefore allows us to integrate any domain spe-

cific ontology. It further allows us to utilize certain subsets of the ontology

(since they are all derived from Thing) or the whole ontology and therefore

enables an easily adaptable integration of domain specific ontologies for spe-

cialized domains. In the following, we will define the data model linking the

mentioned representations.

5.1. LINKED MODEL FOR REPRESENTING INFORMATION IN THE
CONCEPT SEARCH FRAMEWORK 45

Digital
Object

c1

c3

c4

c2

Domain specific ontology
(e.g. SWEET)

Social relations
(e.g. FOAF)

au
th

or
ed

 by

assigned to

interested in

kn
ow

s

expert in

Metadata
(e.g. Dublin Core)

Keywords

Figure 5.2: Semantic Representation

5.1.1 Data model

As existing representations do not cover all of the semantic information needed

for the realization of our approach, we propose an ontology, defining classes

and relations augmenting current approaches. Figure 5.3 shows a graphical

overview of the created ontology.

Specifically, we defined the following classes:

• Person: was introduced to model persons in specialized domains.

• Group: represents teams in specialized domains.

• DigitalObject: is the basic unit of information for the semantic digital

library.

46 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

⎯ expertIn

⎯ expertiseTopic ⎯ has subclass ⎯ hasExpertiseFactor⎯ hasInterestFactor

⎯ hasInterestIn ⎯ maker ⎯ topic

has subclass

maker
has subclass ex

pe
rti

se
To

pi
c hasInterestIn

expertIn

topic

hasExpertiseFactor

Figure 5.3: Concept Ontology

• TopicInterest: represents a persons weighted interest in a particular

topic.

• InterestFactor: represents the specific interest weight, enabling us to

express fuzzy relations.

• TopicExpertise: is a weighted expertise for a particular topic.

• ExpertiseFactor: represents the specific expertise weight, enabling us

to express fuzzy relations.

and relations:

• maker: DigitalObject ↔ Person, representing the author/creator of a

digital object

• topic: DigitalObject ↔ Thing, representing the main topic of a digital

object

• expertIn: Person ↔ TopicExpertise, representing if a person is an ex-

pert for a certain topic

5.1. LINKED MODEL FOR REPRESENTING INFORMATION IN THE
CONCEPT SEARCH FRAMEWORK 47

• hasInterestIn: Person ↔ TopicInterest, representing if a person is

interesting in a certain topic

These relations enable the combination of several semantic representations

as shown in Figure 5.2. The maker relation signifies that a Person is the author

or creator of a Digital Object. This information can be extracted in different

ways, depending on the format of the Digital Object, as mentioned in Section

4.2:

• PDF: As specified in the PDF reference, a PDF file contains a document

information dictionary containing the author name as text string [4, p.550],

shown in Listing 5.1.

1 0 obj
<< / T i t l e (Semantic Space Study)

/Author (H. L . Truong , J . Sch le i cher , C . Inzinger , S . Dustdar←↩
)

/Creator (LaTex with hyperref package)
/Producer (pdfTeX−1 . 4 0 . 9)
/CreationDate (D:20100502110347+02 ’00 ’)
/ModDate (D:20100503153925+02 ’00 ’)

>>
endobj

Listing 5.1: Sample PDF document information dictionary

• Office Open XML The Office Open XML standard [39] specifies, that doc-

ument core properties, including author information, are stored in a file

docProps/core.xml within the Office Open XML document package.

It uses the Dublin Core Metadata element set and metadata terms [58] to

store document properties in said XML file, as shown in Listing 5.2.

<?xml version=" 1 . 0 " encoding="UTF−8" standalone=" yes " ?>
< c p : c o r e P r o p e r t i e s

xmlns:cp=" h t t p : //schemas . openxmlformats . org/package /2006/←↩
metadata/core−p r o p e r t i e s "

xmlns:dc=" h t t p : //purl . org/dc/elements /1 .1/ "
xmlns:dcterms=" h t t p : //purl . org/dc/terms/"
xmlns :xs i=" h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e ">

< d c : t i t l e >Semantic Space Study</ d c : t i t l e >
< d c : c r e a t o r >Truong , Sch le i cher , Inzinger , Dustdar</ d c : c r e a t o r >
<dcterms :crea ted x s i : t y p e =" dcterms:W3CDTF ">2008−06−19 T20 :00 :00Z</←↩

dcterms :crea ted>
<dcterms:modif ied x s i : t y p e =" dcterms:W3CDTF ">2008−06−19 T20 :42 :00Z<←↩

/dcterms:modified>
</ c p : c o r e P r o p e r t i e s >

48 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

Listing 5.2: Sample Office Open XML document properties

• OASIS Open Document The OpenDocument specification [57], similar

to Open XML above, also defines that document metadata is stored in a

separate file, meta.xml, and also uses the Dublin Core term vocabulary,

as shown in Listing 5.3.

<?xml version=" 1 . 0 " encoding="UTF−8" ?>
<off ice :document−meta

x m l n s : o f f i c e =" u r n : o a s i s : n a m e s : t c : o p e n d o c u m e n t : x m l n s : o f f i c e : 1 . 0 "
xmlns :x l ink=" h t t p : //www. w3 . org /1999/ x l i n k "
xmlns:dc=" h t t p : //purl . org/dc/elements /1 .1/ "
xmlns:meta=" urn:oas is :names : tc :opendocument :xmlns :meta :1 . 0 "
xmlns:ooo=" h t t p : //openof f i ce . org /2004/ o f f i c e "
o f f i c e : v e r s i o n =" 1 . 0 ">
< o f f i c e : m e t a >

<meta :generator>OpenOffice . org /2 .0 [. . .] </meta :generator>
<meta :c rea t ion−date>2010−05−02 T 2 0 : 1 0 : 1 2</meta :crea t ion−date>
< d c : c r e a t o r >Truong , Sch le i cher , Inzinger , Dustdar</ d c : c r e a t o r >
<dc :date>2010−05−02 T 2 0 : 1 4 : 4 3</dc :date>
<dc: language>en−US</dc: language>

</ o f f i c e : m e t a >
</off ice :document−meta>

Listing 5.3: Sample OpenDocument metadata

The topic relation signifies, that a Digital Object is associated with certain

topics, that are elements of an ontology. The principal method of extracting

that kind of information is Named Entity Recognition [27; 109; 30; 76; 43; 48;

51; 60], which also is one of the primary topics of the Conference on Computa-

tional Natural Language Learning1. Named Entity Recognition using ontological

gazetteers is supported by the gate toolkit using the OntoGazetteer module of

the annie component.

As seen above, we also introduce classes to model weighted topic interest

and expertise. These concepts can be used to perform additional inference

processes, like shared interest discovery [84], expertise modeling [105], and

expert finding [35; 41; 14], but will not be primary topics of this thesis.

1http://www.cnts.ua.ac.be/conll/

http://www.cnts.ua.ac.be/conll/

5.1. LINKED MODEL FOR REPRESENTING INFORMATION IN THE
CONCEPT SEARCH FRAMEWORK 49

5.1.2 Utilizing the linked data model for different domains

In order to achieve the desired ability to link disparate semantic representa-

tions of digital objects, our data model is based on the RDF graph model.

The RDF model suits our purpose especially well, as the ability to inter-

connect semantic definitions from disparate sources is an integral part of the

specification.

To illustrate the proposed data model, we provide exemplary RDF rep-

resentation for a digital object showing the integration of two different spe-

cialized domains. Figure 5.4 shows an example for the space domain, and

Figure 5.5 shows an example for the medical domain.

<?xml version=" 1 . 0 " ?>

<rdf:RDF xmlns :rdf=" h t t p : //www. w3 . org/1999/02/22− rdf−←↩
syntax−ns# "

xmlns : foa f=" h t t p : //xmlns . com/ f o a f /0 .1 "

xmlns:dc=" h t t p : //purl . org/dc/elements /1 .1/ "

xmlns:phys=" h t t p : //sweet . j p l . nasa . gov/2 .0/ phys .←↩
owl "

xmlns:common_sense=" h t t p : //www. blackwhale . a t/←↩
o n t o l o g i e s /2010/06/common_sense . rdf ">

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //www. example . org/←↩
document1 ">

< d c : t i t l e >Report on Reports</ d c : t i t l e >

<common_sense:maker r d f : r e s o u r c e =" h t t p : //www. example .←↩
org/ s t a f f i d /123 "/>

< d c : d e s c r i p t i o n >A t e x t u a l a b s t r a c t could go here</←↩
d c : d e s c r i p t i o n >

</ r d f : D e s c r i p t i o n >

<common_sense:Person r d f : I D=" h t t p : //www. example . org/←↩
s t a f f i d /123 ">

<foaf:name>John J . Doe</foaf:name>

<foaf:homepage r d f : r e s o u r c e =" h t t p : //www. example . org/←↩
s t a f f /jdoe " />

</common_sense:Person>

50 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

< r d f : D e s c r i p t i o n r d f : a b o u t="&phys ; PhysicalPhenomena ">

<foaf :pr imaryTopicOf r d f : r e s o u r c e =" h t t p : //www.←↩
example . org/document1 " />

</ r d f : D e s c r i p t i o n >

</rdf:RDF>

Listing 5.4: Sample representation of a digital object, SWEET as domain

specific ontology

<?xml version=" 1 . 0 " ?>

<rdf:RDF xmlns :rdf=" h t t p : //www. w3 . org/1999/02/22− rdf−←↩
syntax−ns# "

xmlns : foa f=" h t t p : //xmlns . com/ f o a f /0 .1 "

xmlns:dc=" h t t p : //purl . org/dc/elements /1 .1/ "

xmlns:galen=" h t t p : //krono . a c t . u j i . es/Links/←↩
o n t o l o g i e s /galen . owl "

xmlns:common_sense=" h t t p : //www. blackwhale . a t/←↩
o n t o l o g i e s /2010/06/common_sense . rdf ">

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //www. example . org/←↩
document1 ">

< d c : t i t l e >Report on Medical Things</ d c : t i t l e >

<common_sense:maker r d f : r e s o u r c e =" h t t p : //www. example .←↩
org/ s t a f f i d /123 "/>

< d c : d e s c r i p t i o n >A t e x t u a l a b s t r a c t could go here</←↩
d c : d e s c r i p t i o n >

</ r d f : D e s c r i p t i o n >

<common_sense:Person r d f : I D=" h t t p : //www. example . org/←↩
s t a f f i d /123 ">

<foaf:name>John J . Doe</foaf:name>

<foaf:homepage r d f : r e s o u r c e =" h t t p : //www. example . org/←↩
s t a f f /jdoe " />

</common_sense:Person>

< r d f : D e s c r i p t i o n r d f : a b o u t="&galen ;←↩
AcuteAnterosepta lMyocardia l Infarc t ion ">

<foaf :pr imaryTopicOf r d f : r e s o u r c e =" h t t p : //www.←↩

5.1. LINKED MODEL FOR REPRESENTING INFORMATION IN THE
CONCEPT SEARCH FRAMEWORK 51

example . org/document1 " />

</ r d f : D e s c r i p t i o n >

</rdf:RDF>

Listing 5.5: Sample representation of a digital object, GALEN as domain

specific ontology

As seen in the examples above it is easy to incorporate any domain specific

ontology in the OWL format via our utilization of Thing as a common base

class. Further we do not specify any mandatory relationships so that only parts

of the model can be used, therefore enabling, for example, omission of social

information if not relevant for the specialized domain as shown in Figure 5.6.

<?xml version=" 1 . 0 " ?>

<rdf:RDF xmlns :rdf=" h t t p : //www. w3 . org/1999/02/22− rdf−←↩
syntax−ns# "

xmlns:dc=" h t t p : //purl . org/dc/elements /1 .1/ "

xmlns:phys=" h t t p : //sweet . j p l . nasa . gov/2 .0/ phys .←↩
owl "

xmlns:common_sense=" h t t p : //www. blackwhale . a t/←↩
o n t o l o g i e s /2010/06/common_sense . rdf ">

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //www. example . org/←↩
document1 ">

< d c : t i t l e >Report on Reports</ d c : t i t l e >

<common_sense:maker r d f : r e s o u r c e =" h t t p : //www. example .←↩
org/ s t a f f i d /123 "/>

<common_sense:topic r d f : r e s o u r c e ="&phys ;←↩
PhysicalPhenomena "/>

< d c : d e s c r i p t i o n >A t e x t u a l a b s t r a c t could go here</←↩
d c : d e s c r i p t i o n >

</ r d f : D e s c r i p t i o n >

</rdf:RDF>

Listing 5.6: Sample representation of a digital object, SWEET as domain

specific ontology, omitting social information

52 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

5.2 Architectural Design of the Concept Search Frame-

work

This section covers the specific conceptual architecture, based on our previ-

ous findings. It gives a brief overview, and introduces detailed component

and sequence diagrams, as well as different possible implementation scenar-

ios for each component and module. Furthermore, we provide a detailed API

description of each component.

5.2.1 Overview of The Proposed Concept Search Framework

Documents Pictures Videos

Semantic Extraction Component

Space Specific Ontology (e.g. SWEET)

User Profile
Component

Domain Specific Languages

Document
Storages

Digital Object Importer Component

Keyword
Indices

Concept
Indices

Concept
Candidates

Social Indices

Consumer Interface Component

Social Semantic Search Engine Component User Participation Component

Figure 5.4: Conceptual Architecture Overview

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 53

Figure 5.4 depicts the overview of the proposed concept search framework.

The framework is based on highly modular component/broker model, and

includes the following five core components:

• Digital Object Importer Component handles the import of digital objects

from various sources into the framework.

• Semantic Extraction Component is concerned with extracting semantic in-

formation from the imported digital objects

• Search Engine Component handles search and result aggregations

• Consumer Interface Component is an abstraction layer, providing the gen-

eral API for the framework as well as certain necessary conversions for

later visualization.

One of the main requirements for the concept search framework is that we

must provide high flexibility and extensibility in terms of specific componen-

t/module implementations, in order to adapt to the specific requirements of

the domain as well as to incorporate future developments. To enable this we

have to respect a plethora of different execution models. Our design, currently

supports different execution scenarios, execution models, distribution models, and

utilized broker modules.

• execution scenarios: meaning whether a component or model is an exe-

cutable, library or service

• execution models: concerned with how an execution is started, triggered

or batch processing

• distribution scenarios: concerned with how components and modules are

distributed

Execution Scenario

In the concept search framework, different execution scenarios exists in terms

of the behavior of a module or component

Executable The module itself can be an external executable or script of any

kind controlled by a list of parameters or other RPC-methods.

54 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

Library The module is written as part of the system, using 3
rd party libraries

but executed inside the system, and controlled by method calls.

Service The module is an external and autonomous service, accessed via a

service API like soap, rest or xml-rpc.

Execution Model

Batch Execution Module execution starts at a specified time, or is initiated

by a user.

Triggered Execution Modules register for events signifying addition, update,

and/or removal. Execution is triggered by these events.

Distribution scenarios

In addition to the different execution scenarios, there are a number of distribu-

tion scenarios suitable for modules and the according components:

Module: In-Process, Single-Threaded, Centralized Component All mod-

ules are executed in the same process context as the component. The com-

ponent sequentially wakes all modules to be started for batch execution after

the designated time, execution can be delayed due to the component having

to wait for a previous module to finish. Event based modules can only be in-

corporated in a single-threaded model if a signal handling method is used to

signify that a certain module should be executed.

Module: In-Process, Multi-Threaded, Centralized Component In a multi-

threaded component, batch-mode modules can be executed at their designated

times (or at least close to their designated times, depending on available system

resources), and event-based modules can automatically manage their execution

based on external triggers. In this scenario, multiple modules may access the

digital object importer API at (almost) the same time, hence concurrency is-

sues have to be taken into account in the component. To manage concurrent

access to a single resource, several approaches have been developed, from sim-

ple semaphores [34] to acid transactions [46] and multi-version concurrency

control [16].

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 55

Module: In-Process, Single-Threaded, Distributed Component Modules are

executed like in scenario Module: In-Process, Single-Threaded, Centralized Compo-

nent above, but multiple instances of the component are running concurrently.

In this scenario, the concurrently accessed resource is the component accessed

next in the framework, and concurrency issues are to be handled in that com-

ponent. The modules to be executed are distributed over the component in-

stances to be started. Additional instances can be added to a running system.

Module: In-Process, Multi-Threaded, Distributed Component This scenario

represents the distributed counterpart to scenario Module: In-Process, Multi-

Threaded, Centralized Component above, thus combining the multi-threaded sce-

nario with distributed instances of the component. The modules to be executed

are distributed over the component instances to be started, and additional in-

stances can be instantiated on-the-fly, should additional modules need to be

executed. In this case, concurrency issues have to be managed both at the

component API level, as well as at all other accessed components.

Module: Out-of-Process, Single-Threaded, Centralized Component In the

context of this description, out-of-process denotes a module running completely

separated from the component, i.e. the module accesses the component using

a service API like xml-rpc [67], rest [42], or soap [47]. In this scenario, the

component has only limited control over the execution behavior of the mod-

ules. To realize batch execution, modules can register a callback handle in the

component to be notified when a batch-run is to be performed. Event-based

modules are responsible to manage their own execution. The single-threaded,

centralized component will sequentially handle requests from the modules,

locking out others when a request is being processed. Performance-wise this

scenario will be similar to scenario Module: In-Process, Single-Threaded, Central-

ized Component.

Module: Out-of-Process, Multi-Threaded, Centralized Component This sce-

nario represents the combination of scenarios Module: In-Process, Multi-Threaded,

Centralized Component and Module: Out-of-Process, Single-Threaded, Centralized

Component. As described above, the component has only limited control over

the module’s execution behavior, and batch execution can be handled by mod-

ules registering callback handles in the component. The multi-threaded cen-

56 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

tralized component allows for multiple modules to access the importer API

concurrently.

Module: Out-of-Process, Single-Threaded, Distributed Component The com-

ponent in this scenario is distributed as in scenario Module: In-Process, Single-

Threaded, Distributed Component, i.e. multiple instances, capable of serving one

request at a time via the service API. The modules can contact any instance of

the component to fulfill their request, and can also try different instances to

facilitate load balancing or failover. However, as the component has effectively

no control over which module accesses which component-instance, it can only

provide recommendations on which modules access which instance to balance

the load as evenly as possible. These recommendations can of course only be

generated if the component instances are aware of each other, which is not

mandatory for the basic functionality of the scenario, but an optimizing exten-

sion.

Module: Out-of-Process, Multi-Threaded, Distributed Component This sce-

nario is similar to Module: In-Process, Multi-Threaded, Distributed Component, in

that multiple instances of the component are instantiated, capable of serving

multiple concurrent requests. As in scenario Module: Out-of-Process, Single-

Threaded, Distributed Component, the modules can contact any instance of the

component to serve their requests, and the instances can give recommenda-

tions on which instances best accessed in subsequent requests.

Module: In-Process & Out-of-Process In addition to the scenarios outlined

above, the component can also allow for a mixed model of in-process and out-

of-process modules.

Broker Module

The Broker module is responsible for the coordination and execution of mod-

ules, as well as holding and handing off received information to appropriate

sibling components. To facilitate the coordination of modules, the Broker also

acts as a module registry, where modules signal their availability for service,

and announce their functional and configuration capabilities.

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 57

Brokers of the different components will have different additional APIs, and

are described in detail with the respective component.

5.2.2 Digital Object Importer Component

The first component of consideration is the digital object importer (doic). Its

role is to import digital objects from different digital object stores for further

processing. The key design goal is to provide a defined and canonical abstrac-

tion of the gathered information for the system, so that components using the

imported digital objects (i.e. the Semantic Extraction Component) need not be

concerned about how to obtain digital objects from their digital object stores

(e.g. file system, web site, database).

Another design goal of this component is to allow easy extensibility, which

is realized by allowing the addition of new importer modules to support ad-

ditional data stores and digital object formats. By proposing this paradigm we

ensure to meet the requirements stated in Supported Digital Objects.

Component Architecture

The doic allows for executing Digital Object Importer Modules (doim), in order to

provide unified means for processing the available information, by converging

different input formats and channels into a canonical representation of the digital

objects.

Figure 5.5 shows an overview of the component and its interaction with the

doim. As mentioned above, the doic is responsible for handling the transition

of digital objects from an external data store (outlined as Document Storage

in the diagram) into the system, represented in a canonical format, ready for

processing.

The component provides the doims with a simple and easy to use Digital

Object Container API (see Section 5.2.2) for importing digital objects, as well as

storing state information for already imported documents, in order to mini-

mize successive imports of the same object. Furthermore, the doic implements

methods to manage the registering and discovery of modules. A more detailed

overview over the component’s API can be found in Section 5.2.2.

— § —

58 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

D
ig

ita
l O

bj
ec

t
Im

po
rt

er

C
om

po
ne

nt

Digital Object Container API

Digital Object Importer
Module

Digital Object Importer
Module

Digital Object Importer
Module

Document Storage

... ...

Document Storage Document Storage

Semantic Extraction
Component

Framework External

Digital Objects

Figure 5.5: Component diagram of the Digital Object Importer

The following paragraphs outline the structure of a Digital Object Importer Mod-

ule in greater detail:

Digital Object Importer Module A doim is responsible for retrieving digital

objects from their data store, in order to make them processable by the system.

The component diagram in Figure 5.6 shows an exemplary Web crawler mod-

ule. The digital object importer component’s Broker module provides a digital

object state store (via the Digital Object Container API), enabling importer mod-

ules to maintain information about the state of already processed digital objects

inside the system. The imported digital objects are handed off to the Semantic

Extraction Component.

• Input: As the digital object importer modules provide the entry-point

for information into the system, only few requirements exist for the input

side of a module: Support for importing one or more of the formats

identified in the requirements in Section 4.3.1 from a digital object store

such as file system, web site, or database, and an optional configuration

interface to modify the module’s behavior.

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 59

• Execution Model: Batch execution, as well as triggered execution are

suitable for importer modules. When a batch execution model is used,

it is important that the module does not unnecessarily import a digital

object multiple times. The doic provides a digital object state store for

modules, so that multiple imports of the same (unchanged) digital object

can be prevented. If the module is executed outside of the scope of the

digital object importer component, it can only use the digital object state

store, if the component exposes its interface via a service API.

• Output: An importer module should either provide the system with

a serialized version of the digital object, or provide a system-accessible

URI.

Framework External

DO Importer Module (Web Crawler)

Crawl Source Web Sites
for suitable Documents

Retrieve Identified
Resources

Digital Object SourcesSource Web Sites

Importer
Parameters

(URLs)

D
O

 Container Digital
Objects

Importer State
Datastore

Figure 5.6: Component diagram of a Digital Object Importer Module

A more detailed description of the interface required for doims can be

found in the following section.

Interface Description

In the context of the doic we have to examine two interfaces, the Digital Object

Container API, and the Document Importer Module Support API.

60 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

Digital Object Container API This interface represents the primary API of

the doic, and provides methods for registering and deregistering modules,

as well as adding, updating and deleting digital objects to/from the system.

Detailed descriptions of the methods can be found in Figures 5.7 and 5.8.

Operation name Description and comments

Module Lifecycle Management

Register Module This operation is used to register an importer mod-
ule with the component for later use. By register-
ing, a module signals availability for service.

Deregister Module This operation allows a module to disconnect from
the component, and gracefully stop its operations.

Digital Object Manipulation

Add Digital Object This operation is used by importer modules to add
a new digital object to the component’s digital ob-
ject container.

Update Digital Object This operation allows a module to mark an existing
digital object as updated.

Delete Digital Object This operation is used by importer modules to
mark a digital object for deletion.

Figure 5.7: Document Importer Component Interface overview

Importer Module Support API This interface allows importer modules to

store arbitrary state information about digital objects, to prevent them from

unnecessarily importing objects multiple times. Detailed descriptions can be

found in Figures 5.9 and 5.10.

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 61

Parameter name Type Direction Description and comments

Authorization Key String in The module’s authorization key

Module ID Integer out The handle to the module if
it was registered successfully,
null otherwise

(a) Operation Register Module

Parameter name Type Direction Description and comments

Authorization Key String in The module’s authorization key

Module ID Integer in The handle to the mod-
ule as obtained by a call to
registerModule

Status Boolean out true if module was deregistered
successfully, false otherwise

(b) Operation Deregister Module

Parameter name Type Direction Description and comments

Digital Object String
<XML>

in The serialized representation of
the digital object or a system-
accessible link to the digital ob-
ject to be added

Digital Obj. GUID String in The handle to the digital object
within the system

(c) Operation Add Digital Object

Parameter name Type Direction Description and comments

Digital Obj. GUID String in The handle to the digital object
to be marked as updated

Digital Object String
<XML>

in The serialized representation of
the digital object or a system-
accessible link to the updated
digital object

Status Boolean out true if updated successfully,
false otherwise

(d) Operation Update Digital Object

Figure 5.8: Document Importer Component Interface details

62 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

Parameter name Type Direction Description and comments

Digital Obj. GUID String in The handle to the digital object
to be marked for deletion

Status Boolean out true if digital object was deleted
successfully, false otherwise

(e) Operation Delete Digital Object

Figure 5.8: Document Importer Component Interface details (contd.)

Operation name Description and comments

Set Digital Object State This operation allows an importer module to store
arbitrary state information for the specified digital
object, in order to prevent unnecessary imports of
the object.

Get Digital Object State This operation allows an importer module to re-
trieve any stored state information about the spec-
ified digital object.

Figure 5.9: Document Importer Module Support Interface overview

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 63

Parameter name Type Direction Description and comments

Digital Obj. GUID String in The handle to the digital object
to set the state information for

State Information String<XML>in Arbitrary state information in
XML-serialized form

Status Boolean out true if state saved successfully,
false otherwise

(a) Operation Set Digital Object State

Parameter name Type Direction Description and comments

Digital Obj. GUID String in The handle to the digital object
to retrieve the state information
for

State Information String<XML>out Arbitrary state information in
XML-serialized form

Status Boolean out true if state retrieved success-
fully, false otherwise

(b) Operation Get Digital Object State

Figure 5.10: Document Importer Module Support Interface details

64 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

Sequence Diagram

module
:DO Importer

Module

initialize

:DO Importer
Component

check auth key
register(auth_key)

true

alt

[not yet registered?]

[else]

:Module Registry

add module(module_ref)

true

Collaboration "Register Digital Object Importer Module", Scenario "successful"

module_ref=module.getRef()

module_ref

update module(module_ref)

true

Figure 5.11: Sequence diagram showing a DO importer module successfully
registering with the component

Figure 5.11 shows an exemplary Sequence Diagram for a successful Digital

Object Importer Module registration.

5.2.3 Semantic Extraction Component

The Semantic Extraction Component (sxc) is responsible for processing the

digital objects imported by the Digital Object Importer Component, in order

to generate syntactic and semantic annotations for later retrieval, and is also

implemented as a Broker model. The component furthermore ensures that

the generated annotations are stored in an efficient manner, so that successive

retrieval processes can be completed in a performant manner.

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 65

Semantic Extraction Component

Semantic Extraction Component API

Semantic Extraction
Module

Semantic Extraction
Module

Keyword Extraction
Module

Document Storage

... ...

Digital Object Importer
Component

Digital
Objects

Keyword
Annotations

Semantic
Annotations

Digital
Objects Concept

Candidates

Search Engine Component

Digital
Objects

Semantic
Annotations

Digital
Objects

Semantic
Annotations

Digital
Objects

Keyword
Annotations

Figure 5.12: Component Diagram of the Semantic Extraction Component

Component Architecture

The Semantic Extraction Component processes the digital objects imported by

the Digital Object Importer Component, and feeds them to all registered semantic

extraction modules (sxm) capable of handling the specific digital object type.

It allows the execution of semantic extraction modules to provide syntactic and

semantic annotations for a digital object, and hand them off to the Search Engine

Component via the Broker’s API. The component diagram in Figure 5.12 shows

the interactions of the component with its modules. The component provides

sxms with an API for storing keyword annotations, concept annotations, and

concept candidates extracted from processed digital objects. A more detailed

description of the component’s APIs can be found in Section 5.2.3.

— § —

The following paragraphs outline the structure of a Semantic Extraction Module

in greater detail:

Semantic Extraction Module A Semantic Extraction Module is responsible for

extracting keyword annotations, concept annotations, or concept candidates

from imported digital objects, in order to feed the system’s indices for later

retrieval operations. The component diagrams in Figure 5.13 show exemplary

extraction modules.

In order to satisfy the requirement of a combined semantic representation

(see Figure 5.2 and Supported Extraction Mechanisms), which is necessary to

66 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

support specialized domains, the sxm is responsible for extracting the neces-

sary information, in order to fill the data model. Different sxms can extract

different parts of the model. Possible approaches to do so have been shown in

Section 5.1.1.

• Input: Depending on the execution model, the module either receives

a single digital object for processing, or a collection thereof. The digital

object can be represented in a serialized form, or as a canonical, system-

accessible URI ready for processing. If the module is not able to retrieve

the digital object by URI, it can instruct the Broker to do so by setting the

according option when registering with the component.

• Execution Model: Batch execution, as well as triggered execution are

suitable for sxms. Furthermore, as the extraction process is largely self-

contained, the modules can be executed in-process or out-of-process.

• Output: After processing a digital object, the semantic extraction mod-

ule can utilize the Broker’s API to create annotations related to the digital

object. It further ensures adherence to the necessary standard format for

the corresponding annotation class (keyword, semantic, social), to meet

the requirements specified in 4.3. Another approach could use a previ-

ously agreed-upon XML annotation format, returned by the extraction

module as result of its processing, which the broker then processes and

stores in the according indices via the Search Engine Component.

A more detailed description of the interface required for sxms can be found

in the following section.

Interface Description

In the context of the sxc we will examine two interfaces, the component API, as

well as the Semantic Extraction Module API.

Component API This interface represents the primary API of the sxc, and

provides methods for registering and deregistering modules, as well as storing

keyword annotations, concept annotations, and concept candidates. Detailed

descriptions can be found in Figures 5.14 and 5.15.

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 67

Framework External

Keyword Extraction Module

Named Entity
Detection Annotation

Keyword Index

Digital
Objects

Broker

Semantic Extraction Module

Named Entity
Detection

(Semantic Extraction)

Semantic Annotation
(Matching)

Concept Index

Ontologies

Digital
Objects

Broker

Figure 5.13: Exemplary Semantic Extraction Modules

Module API This interface describes the operations, that must be supported

by a Semantic Extraction Module. Detailed descriptions can be found in Fig-

ures 5.16 and 5.17.

Sequence Diagram

Figure 5.18 shows an exemplary Sequence diagram for the semantic annotation

of a DO using named entity detection and semantic matching.

68 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

Operation name Description and comments

Module Lifecycle Management

Register Module This operation is used to register an extraction
module with the component for later use. By reg-
istering, a module signals availability for service.

Deregister Module This operation allows a module to disconnect from
the component, and gracefully stop its operations.

Annotation Storage

Store Keyword
Annotation

The operation allows a module to store a keyword
annotation in the system’s keyword indices.

Store Concept
Annotation

The operation allows a module to store a concept
annotation in the system’s concept indices.

Store Concept
Candidate

The operation allows a module to store a concept
candidate in the system’s concept candidate store.

Figure 5.14: Semantic Extraction Component Interface overview

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 69

Parameter name Type Direction Description and comments

Authorization Key String in The module’s authorization key

Module ID Integer out The handle to the module if
it was registered successfully,
null otherwise

(a) Operation Register Module

Parameter name Type Direction Description and comments

Authorization Key String in The module’s authorization key

Module ID Integer in The handle to the mod-
ule as obtained by a call to
registerModule

Status Boolean out true if module was deregistered
successfully, false otherwise

(b) Operation Deregister Module

Parameter name Type Direction Description and comments

Keyword
Annotation

String
<XML>

in The keyword annotation to store
in an XML-serialized form.

Status Boolean out true if annotation was stored
successfully, false otherwise

(c) Operation Store Keyword Annotation

Parameter name Type Direction Description and comments

Concept Annotation RDF-XML in The concept annotation to store
in an XML-serialized form.

Status Boolean out true if annotation was stored
successfully, false otherwise

(d) Operation Store Concept Annotation

Figure 5.15: Semantic Extraction Component Interface details

70 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

Parameter name Type Direction Description and comments

Concept Candidate RDF-XML in The concept candidate to be
stored in XML-serialized form

Status Boolean out true if concept candidate was
stored successfully, false
otherwise

(e) Operation Store Concept Candidate

Figure 5.15: Semantic Extraction Component Interface details (contd.)

Operation name Description and comments

Process Digital Object This operation is invoked to queue a digital object
in the Semantic Extraction Module for processing

Figure 5.16: Semantic Extraction Module Interface overview

Parameter name Type Direction Description and comments

Digital Object String
<XML>

in The serialized representation of
the digital object to be processed

Status Boolean out true if the object was queued
successfully, false otherwise

(a) Operation Process Digital Object

Figure 5.17: Semantic Extraction Module Interface details

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 71

instance
:Semantic Extraction Module

extract(digital object)

:Semantic
Annotator

match(NE)

semantic annotation

:Named Entity Detector
:Semantic Extraction

Component

detectEntities(digital object)

found NEs

status

match against ontology(NE)

store concept annotation(semantic annotation)

no annotation

loop [for each semantic annotation]

alt [NE matches ontology?]

loop [for each NE]

Collaboration "Extract Concepts from Digital Object"

Figure 5.18: Sequence diagram showing semantic extraction of concepts from
a DO by a Semantic Extraction Module

72 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

5.2.4 Search Engine Component

Framework External

Search Engine Component

Broker

Social Search Module
Keyword Search

Module Concept Search Module

Query Search Results Query Search Results Query Search Results

Keyword Indices Concept Indices Concept Candidates

User Profile
Component

Social Indices

Result Aggregator
Module Query Analyzer Module

Query

Query

Search Results

Aggregated Search Results

Index Manager Module

Search Engine Component API

Se
ar

ch
 E

ng
in

e
C

om
po

ne
nt

 A
PI

Figure 5.19: Search Engine Component Overview

The search engine component is responsible for executing the search based

on a query, and is shown in Figure 5.19. A query is submitted into the Query

Analyzer Module via the Search Engine Component API (Section 5.24), which de-

termines the query type in accordance with registered Search modules from the

Broker. After that, the marked up query is transmitted to the Broker, which then

submits it to the according Search module. Search modules registered with the

Broker perform the search and return the results to the Broker, which in turn

submits the results to the Result Aggregator Module, which combines the results

from different search modules and returns them. Furthermore, the Search En-

gine Component is concerned with efficiently managing and distributing the

system’s indices via the Index Manager Module.

Despite the Execution Models mentioned above for each component,

the outlined Distribution Models mentioned in Section 5.2.1 apply for the com-

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 73

ponent and its modules, and play an important role for the Search Engine

component in terms of scalability and reliability.

Component Architecture

In the following paragraphs we will describe the principal modules composing

the component in greater detail.

Broker The search engine component’s Broker module provides APIs to man-

age Search modules, Query analyzers and Result aggregators, as well as to manage

indices and its capabilities are outlined in detail in the API description of the

component.

Query Analyzer Module The Query Analyzer module receives a query via the

Broker and analyzes it according to the registered Search modules in the Search

Engine Component. There are multiple possible input types for queries.

• Input: The Query Analyzer Module accepts the following input types:

– Keyword Query: A natural language keyword query, submitted as

plain text.

– Semantic Query: A set of concepts submitted as key/value pairs

– Social Query: A social query submitted as key/value pairs.

Despite the basic three outlined classes for input types, queries can gen-

erally be joined via a basic set of operators and regular expressions. A

query can also be partly Keyword, Semantic and Social

• Execution Model: The only reasonable execution model for the Query

Analyzer Module qam is a triggered execution.

• Output: The output of a Query Analyzer module is one or more normal-

ized queries, annotated with the type of the query. The type of a query

can be keyword, semantic or social, provided as a key/value pair.

74 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

Keyword Search Module A Keyword Search Module shown in Figure 5.20

receives a query, annotated as keyword query, from the Query Analyzer Mod-

ule through the broker. It then runs its internal Query Analyzer on the submit-

ted query, optimizes it accordingly, and performs syntactic matching against a

Keyword index via the Index Manager.

Keyword Search Module

Query Analyzer Syntactic Matching

Keyword Index

Query
Query Optimizer

Search Results

Figure 5.20: Keyword Search Module

• Input: The input of a Keyword Search Module is a query in form of a

string.

• Execution Model: As with every module participating in user trig-

gered interaction the only reasonable execution model is triggered exe-

cution.

• Output: The output of a Keyword Search Module is a ordered result set.

An element of a result set is a key/value pair, where the value is a link

to the retrieved document.

Concept Search Module A Concept Search Module shown in Figure 5.21, re-

ceives a query, annotated as semantic query, from the Query Analyzer Module

through the broker. It then runs its internal Query Analyzer on the submit-

ted query, optimizes it accordingly, and performs semantic matching against a

Concept index via the Index Manager. Previous research on concept search

discusses semantic queries to be submitted via natural language interfaces

[59; 79; 90], ontology driven search [17; 92; 87], and ranking [8].

• Input: The input of a Concept Search Module is a either a concept as

string, or multiple concepts as strings, separated by an agreed separa-

tor. Furthermore, sparql queries can also be an acceptable input for the

Concept Search Module, submitted as string.

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 75

Fram
ew

ork External

Concept Search Module

Query Analyzer Query Optimizer

Concept Index

Ontologies

Query
Semantic Matching

Concept Candidates Index

Search Results

Figure 5.21: Concept Search Module

• Execution Model: Also only triggered execution makes sense.

• Output: The output of a Concept Search Module is an ordered result set.

An element of a result set is a key/value pair, where the value is a link

to the retrieved document.

Social Search Module A social Search Module shown in Figure 5.22, receives

a query, annotated as social query, from the Query Analyzer Module via the

broker. It then runs its internal Query Analyzer on the submitted query, opti-

mizes it accordingly, and performs social matching against a Social index via

the Index Manager.

Framework External

Social Search Module

Query Analyzer Social Matching
Query

Query Optimizer User Profile
Component

Search Results

Figure 5.22: Social Search Module

• Input: The input of a Social Search Module is either a name or some

attribute of a Person, as identified by our Linked Model for Representing

Information in the Concept Search Framework submitted as string.

• Execution Model: As with all the other Search modules, the only rea-

sonable execution model is a triggered execution.

76 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

• Output: The output of a Social Search Module is an ordered result set.

An element of a result set is a key/value pair, where the value is a link

to the retrieved document.

Result Aggregator Module The main role of the Result Aggregator is the

ranking and combination of the results of each queried Search Module. Exist-

ing research includes [37], [77] and [25].

• Input: The Result Aggregator gets multiple result sets consisting of pre-

viously described key value pairs, as well as an internal ordering of the

result set based on the according query.

• Execution Model: Since the Result Aggregation Module is the last step

of a user triggered control flow in our architecture the only reasonable

execution model is triggered execution.

• Output: The output of the Result Aggregator is a ranked/ordered result

set.

Index Manager Module The Index Manager Module is part of the Broker,

and responsible for managing the indices. Moreover, it is concerned with ef-

ficient distribution of indices, as well as storage concerns for concepts and

concept indices. In terms of storage and related indices, two different mod-

els apply. Keyword indices, which can be handled like [75] by tools such as

Apache Lucene and Lemur, and concept as well as concept candidate indices,

which are handled via RDF Stores [7], using tools such as AllegroGraph or

Sesame. Distribution of indices can either be handled via replication or shard-

ing, as shown in [31].

• Input: The Index Manager receives Queries form the Search Modules,

as well as Annotations from the Semantic Extraction Component.

• Execution Model: For the Index Manager, both triggered and batch

execution are feasible for different tasks. Annotation storage can be ag-

gregated and processed in batches for optimization purposes. Retrieval

actions are best processed in a triggered manner.

• Output: The output of an Index Manager are result sets for a query by a

Search Module.

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 77

User Profile Component and Domain Specific Languages The User Profile

Component (upc) is considered an external resource from the framework and is

responsible for maintaining user and social data. Possible examples would be

ldap[23], or a social network via OpenSocial2. In addition, the upc is respon-

sible for storing and aggregating statistical information about the user, as well

as its interaction behavior with the framework, utilizing approaches like [54].

Inside the framework, social data is considered similar to concepts. as they are

practically identical.

The support of Domain Specific Languages dsl is on one hand ensured via

the Frameworks API, furthermore, external dsls can be easily incorporated via

framework-external mappers, and therefore need no further elaboration in this

report.

Interface Description

In the context of the sec we have to examine multiple interfaces, the Digital

Object Container API, and the Document Importer Module Support API.

Broker API This interface represents the primary API of the sec and pro-

vides methods for registering and deregistering modules to/from the system.

Detailed descriptions of the methods can be found in Figures 5.23 through 5.34.

Module API These interface describe the operations, that must be supported

by Query Analyzer Module, Keyword Search Module, Semantic Search Module, Social

Search Module as well as the Result Aggregator Module. Detailed descriptions can

be found in Figures 5.25 and 5.26.

2http://code.google.com/apis/opensocial/

http://code.google.com/apis/opensocial/

78 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

Operation name Description and comments

Module Lifecycle Management

Register Module This operation is used to register an importer mod-
ule with the component for later use. By register-
ing, a module signals availability for service.

Deregister Module This operation allows a module to disconnect from
the component, and gracefully stop its operations.

Search

Search This operation is used to submit a query to the
Search Engine Component and start the search
process.

Annotation Storage

Store Keyword
Annotation

The operation allows a module to store a keyword
annotation in the system’s keyword indices.

Store Concept
Annotation

The operation allows a module to store a concept
annotation in the system’s concept indices.

Store Concept
Candidate

The operation allows a module to store a concept
candidate in the system’s concept candidate store.

Figure 5.23: Search Engine Component Interface overview

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 79

Parameter name Type Direction Description and comments

Authorization Key String in The module’s authorization key

Module Type <String,
String>

in A key value pair consist-
ing of the type of module
being registered, allowed val-
ues are <search,concept>
for a Concept Search Mod-
ule, <search,keyword>
for a Keyword Search Mod-
ule, <search,social> for
a Social Search Module,
as well as <query,null>
for a Query Analyzer and
<aggregator,null> for a
Result Aggregator.

Module ID Integer out The handle to the module if
it was registered successfully,
null otherwise

(a) Operation Register Module

Parameter name Type Direction Description and comments

Authorization Key String in The module’s authorization key

Module ID Integer in The handle to the mod-
ule as obtained by a call to
registerModule

Status Boolean out true if module was deregistered
successfully, false otherwise

(b) Operation Deregister Module

Parameter name Type Direction Description and comments

Query String in The combined query in an xml
serialized form

(c) Operation Search

Figure 5.24: Search Engine Component Interface details

80 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

Parameter name Type Direction Description and comments

Keyword
Annotation

String
<XML>

in The keyword annotation to store
in an XML-serialized form.

Status Boolean out true if annotation was stored
successfully, false otherwise

(d) Operation Store Keyword Annotation

Parameter name Type Direction Description and comments

Concept Annotation String
<XML>

in The concept annotation to store
in an XML-serialized form.

Status Boolean out true if annotation was stored
successfully, false otherwise

(e) Operation Store Concept Annotation

Parameter name Type Direction Description and comments

Concept Candidate String<XML>in The concept candidate to be
stored in XML-serialized form

Status Boolean out true if concept candidate was
stored successfully, false
otherwise

(f) Operation Store Concept Candidate

Figure 5.24: Search Engine Component Interface details (contd.)

Operation name Description and comments

Analyze Query This operation is invoked to analyze an incoming
query

Figure 5.25: Query Analyzer Module Interface overview

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 81

Parameter name Type Direction Description and comments

Query String in The combined query to be an-
alyzed and split up and/or
annotated

Annotated Queries [<String,
String>]

out The annotated queries in an ar-
ray split into key/value pairs ac-
cording to query type.

(a) Operation Analyze Query

Figure 5.26: Query Module Interface details

Operation name Description and comments

Process Query This operation is invoked to process an incoming
keyword query

Figure 5.27: Keyword Search Module Interface overview

Parameter name Type Direction Description and comments

Query <String,
String>

in A query annotated as Key-
word Query in the form of
<keyword,query>

Result set [<String,
String>]

out The result set for the query in an
array split into key/value pairs
according to query type.

(a) Operation Process Query

Figure 5.28: Keyword Search Interface details

Operation name Description and comments

Process Query This operation is invoked to process an incoming
keyword query

Figure 5.29: Concept Search Module Interface overview

82 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

Parameter name Type Direction Description and comments

Query <String,
String>

in A query annotated as Con-
cept Query in the form of
<concept,query>

Result set [<String,
String>]

out The result set for the query in an
array split into key/value pairs
according to query type.

(a) Operation Process Query

Figure 5.30: Concept Search Interface details

Operation name Description and comments

Process Query This operation is invoked to process an incoming
keyword query

Figure 5.31: Social Search Module Interface overview

Parameter name Type Direction Description and comments

Query <String,
String>

in A query annotated as So-
cial Query in the form of
<social,query>

Result set [<String,
String>]

out The result set for the query in an
array split into key/value pairs
according to query type.

(a) Operation Process Query

Figure 5.32: Social Search Interface details

Operation name Description and comments

Aggregate Results This operation is invoked to combine results from
different Search Modules

Figure 5.33: Result Aggregator Module Interface overview

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 83

Parameter name Type Direction Description and comments

Results [<String,
String>]

in An array of results, where
each result is annotated as
either <keyword,result>,
<concept,result> or
<social,result>.

Result set [<String,
String>]

out The result set for the initial query
in an array split into key/value
pairs according to query type,
ranked and aggregated.

(a) Operation Aggregate Results

Figure 5.34: Result Aggregator Interface details

84 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

Sequence Diagram

Figure 5.35 shows the sequence diagram for the Search Engine Component.

Specifically, it presents a successful search by a combined keyword and concept

query, querying the respective indices and retrieving the found results.

:Search Engine

search(query, concepts)

indices
:Keyword Index

searchIndices(query)

found DOs

:Index Manager

presentable search results

* [all] searchIndex(query)

found DOs

merge results

indices
:Semantic Index

searchConcepts(concepts)

found DOs (semantic)

*[all] getDOsFor(concepts)

found DOs

merge results

Figure 5.35: Sequence Diagram for a successful search operation using a com-
bined query via the Search Engine Component

5.2.5 User Participation Component

The User Participation Component is responsible for handling all elements of

user participation in our Semantic search framework. Figure 5.36 shows an

overview of the component and its modules.

The main role of the component is to provide means for adapting and

adding semantic and social representations [53], as well as to enable feed-

back mechanisms like ranking, and the integration of alternative computation

models like human computation, or game based approaches, as shown in the

works of [98].

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 85

Fram
ew

ork External

User Participation Component

Broker

Search Engine Component

Concept Candidate
Module

Tags

User Profile
Component

Social Indices

Rankings Concepts

Rankings

Ontology Editor
Module

Concepts

Keyword Indices

Candidate Analyzer
Module

Ontologies

User Participation Component API

Tags

Figure 5.36: User Participation Component Overview

Component Architecture

In the following paragraphs we will describe the principal modules composing

the component in greater detail.

Candidate Analyzer Module The Candidate Analyzer is responsible for ana-

lyzing keywords from the Keyword indices, and mark them as possible can-

didates to modify or augment existing semantic representations. It does so by

utilizing statistical analysis over occurrence and usage patterns of keywords,

in order to mark them as possible concept candidates. Examples can be found

in [91].

• Input: The input of a Candidate Analyzer Module, are keywords from the

Keyword index, provided in a formerly agreed upon XML representa-

tions that contains, the keywords as well as statistical information like

occurrence usage patterns about those keywords.

• Execution Model: The Candidate Analyzer Module can be run as batch

execution in certain time intervals, or it can be triggered by a user action.

86 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

• Output: The output of a Candidate Analyzer Module, are keywords marked

as possible candidates for future concepts in the semantic representation,

in the form of a ranked list.

Concept Candidate Module The Concept Candidate Module is responsible for

handling possible candidates for concepts that might be introduced into the

semantic representation utilized by the framework. Its main role is to manage

possible candidates, and possibly introduce them as an element of the semantic

representation, which is commonly known as incremental ontology buildup.

• Input: The Concept Candidate Module receives concepts in the form of

strings (RDF or OWL), with additional context information like ranking

as well as usage statistics in a perviously agreed upon XML format.

• Execution Model: Concept Candidate Module run as a triggered execu-

tion initiated by the end of a run from the Concept Candidate Analyzer

or an user triggered action, like the submission of new concepts.

• Output: The Concept Candidate Module stores concept candidates that

might be introduced into the semantic representation of the framework

into the Concept Candidate indices via the Search Engine Component.

Ontology Editor Module The Ontology Editor Module (oem) is concerned with

managing the ontologies in their standard format forms of OWL/RDF repre-

sentations. It’s main purpose is to add, update or delete concepts. A prominent

example of a oem is Protege3.

• Input: The Ontology Editor receives concepts and concept operations in

a previously agreed upon XML format.

• Execution Model: Ontology Editor Modules run as a triggered execu-

tion.

• Output: Added, updated or deleted concepts and concept indices via

the Search Engine Component

3http://protege.stanford.edu/

http://protege.stanford.edu/

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 87

Operation name Description and comments

Module Lifecycle Management

Register Module This operation is used to register an importer mod-
ule with the component for later use. By register-
ing, a module signals availability for service.

Deregister Module This operation allows a module to disconnect from
the component, and gracefully stop its operations.

Ranking Management

Submit Ranking This operation is used to submit a ranking to the
User Participation Component

Retrieve Ranking This operation is used to retrieve ranking from the
User Participation Component

Concept Management

Submit Concept This operation is used to submit a concept to the
User Participation Component

Retrieve Concept This operation is used to retrieve concepts from the
User Participation Component

Submit Concept
Association

This operation is used to associate a concept with
one or many digital objects

Retrieve Concept
Association

This operation is used to retrieve concept
associations

Figure 5.37: User Participation Component Interface overview

Interface Description

Component API This interface represents the primary API of the upc De-

tailed descriptions of the methods can be found in Figures 5.37 and 5.38.

88 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

Parameter name Type Direction Description and comments

Authorization Key String in The module’s authorization key

Module Type <String,
String>

in A key value pair consisting
of the type of module being
registered, allowed values are
<concept,candidate> for
a Concept Candidate Mod-
ule, <concept,editor> for
a Ontology Editor Module,
<concept,analyzer> for a
Candidate Analyzer Module

Module ID Integer out The handle to the module if
it was registered successfully,
null otherwise

(a) Operation Register Module

Parameter name Type Direction Description and comments

Authorization Key String in The module’s authorization key

Module ID Integer in The handle to the mod-
ule as obtained by a call to
registerModule

Status Boolean out true if module was deregistered
successfully, false otherwise

(b) Operation Deregister Module

Parameter name Type Direction Description and comments

Rank Integer in The rank of a digital concept
association.

Type String in The type of the ranking, concept,
digital object, social.

Reference GUID String in The id of the ranked entity, be-
ing concept, digital object or so-
cial entity.

Ranking GUID String out The id of the ranking.

(c) Operation Submit Ranking

Figure 5.38: User Participation Component Interface details

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 89

Parameter name Type Direction Description and comments

Ranking GUID String in The id of the ranking.

Ranking String<XML>out The ranking in an XML-
serialized form.

(d) Operation Retrieve Ranking

Parameter name Type Direction Description and comments

Concept OWL,
String

in The concept and its relation to
existing concepts as OWL or
string.

Concept GUID String out The concept id.

(e) Operation Submit Concept

Parameter name Type Direction Description and comments

Concept GUID String in The concept id

Concept <String,
OWL>

out A key value pair with the
concept guid and its OWL
representation

(f) Operation Retrieve Concept

Parameter name Type Direction Description and comments

Concept GUID String in The id of the concept

Digital Object GUID String in The id of the digital object

Concept
Association GUID

String in The id of the concept association

(g) Operation Submit Concept association

Parameter name Type Direction Description and comments

Concept
Association GUID

String in The concept association guid

Concept
Association

<String,
String>

out A key value pair of the digi-
tal objects guid and the concepts
guid

(h) Operation Retrieve Concept association

Figure 5.38: User Participation Component Interface details (contd.)

90 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

Consumer Interface Component

Consumer Interface Component API

Visualization Module

Search Engine Component

Web Interface

User Participation Component

Command Line
Interface

Client Interface

Framework External

Figure 5.39: Overview of the Consumer Interface Component

5.2.6 Consumer Interface Component

The Consumer Interface Component’s main role is to act as an abstraction layer

for the Framework’s functionality. It provides the components’ functionality to

external participants like Web, Command Line or Client interfaces, via aggre-

gating the APIs of the components. Despite this, it provides the data structures

for graphical visualizations through the Visualization Module, an overview can

be seen in Figure 5.39.

Component Architecture

In the following paragraphs we will describe the principal modules composing

the component in greater detail.

Visualization Module The main role of the visualization module is to pro-

vide the necessary data structures that can be utilized by visualization algo-

rithms, in order to provide 2D or 3D visualization of concepts and concept

associations, as well as search results. Prominent examples are [54], [94], [52],

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 91

[63] and [85]. The main structure, these visualizations have in common, are

graph based representations of the data. Nodes in such a graph are digital

objects and/or concepts, Edges are relations between digital object, concepts,

social entities and digital objects and concepts. Despite this, there are sev-

eral statistical values that are relevant for the graph, like Eccentricity, Center

and Transitive Closure. These values are used to display distances in social or

concept networks accurately.

• Input The Input of the Visualization Module are Concept, Digital Ob-

jects, concept associations and search results from the Search Engine

Component and User Participation Component.

• Execution Model: The Execution Model is a combined triggered and

batched execution. Data aggregation and building the visualization mod-

els from the Search Engine Component and User Participation Compo-

nent can be run as batch jobs, as well as be triggered by an action from a

user interface.

• Output The Output of a Visualization Model, is a data representation

of search results in the graph form introduced previously, concepts and

concept to concept, as well as concept to digital object relations, in a

previously agreed upon XML-format.

Interface Description

Component API This interface represents the primary API of the Consumer

Interface Component uic Detailed descriptions of the methods can be found in

Figures 5.40 through 5.41. Beyond these methods it, as described, aggregates

the API methods introduced previously.

92 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

Operation name Description and comments

Module Lifecycle Management

Register Module This operation is used to register an importer mod-
ule with the component for later use. By register-
ing, a module signals availability for service.

Deregister Module This operation allows a module to disconnect from
the component, and gracefully stop its operations.

Visualization Management

Submit Graph This operation is used to submit a graph to the
Consumer Interface Component

Retrieve Graph This operation is used to retrieve a graph from the
Consumer Interface Component

Submit Concept Graph This operation is used to submit a concept graph
to the Consumer Interface Component

Retrieve Concept Graph This operation is used to retrieve a concept graph
from the Consumer Interface Component

Submit Concept
Association Graph

This operation is used to submit a concept associa-
tion graph to the Consumer Interface Component

Retrieve Concept
Association Graph

This operation is used to retrieve a concept
association graph from the Consumer Interface
Component

Figure 5.40: Consumer Interface Component Interface overview

5.2. ARCHITECTURAL DESIGN OF THE FRAMEWORK 93

Parameter name Type Direction Description and comments

Authorization Key String in The module’s authorization key

Module Type <String,
String>

in A key value pair consisting
of the type of module being
registered, allowed values are
<concept,candidate> for
a Concept Candidate Mod-
ule, <concept,editor> for
a Ontology Editor Module,
<concept,analyzer> for a
Candidate Analyzer Module

Module ID Integer out The handle to the module if
it was registered successfully,
null otherwise

(a) Operation Register Module

Parameter name Type Direction Description and comments

Authorization Key String in The module’s authorization key

Module ID Integer in The handle to the mod-
ule as obtained by a call to
registerModule

Status Boolean out true if module was deregistered
successfully, false otherwise

(b) Operation Deregister Module

Parameter name Type Direction Description and comments

Graph String<XML>,
dot

in The graph of concepts, persons
and the relation to digital objects.

Graph GUID String out The id of the graph.

(c) Operation Submit Graph

Parameter name Type Direction Description and comments

Graph GUID String in The id of the ranking.

Graph String<XML>,
dot

out The graph of concepts, persons
and the relation to digital objects.

(d) Operation Retrieve Graph

Figure 5.41: Consumer Interface Component Interface details

94 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

Parameter name Type Direction Description and comments

Concept Graph String<XML>,
dot

in The concept and its relation
to existing concepts as graph
string.

Concept Graph
GUID

String out The concept graph id.

(e) Operation Submit Concept Graph

Parameter name Type Direction Description and comments

Concept Graph
GUID

String in The concept graph id

Concept Graph String<XML>,
dot

out The concept graph in XML or dot
format

(f) Operation Retrieve Concept Graph

Parameter name Type Direction Description and comments

Concept
Association Graph

String<XML>,
dot

in The concept association graph,
showing the associations of con-
cepts to digital objects

Concept
Association Graph
GUID

String out The id of the concept association
graph

(g) Operation Submit Concept association Graph

Parameter name Type Direction Description and comments

Concept
Association Graph
GUID

String in The concept association graph
guid

Concept
Association Graph

String<XML>,
dot

out A concept association graph.

(h) Operation Retrieve Concept association Graph

Figure 5.41: Consumer Interface Component Interface details (contd.)

5.3. FEASIBILITY OF IMPLEMENTATION ANALYSIS 95

5.3 Feasibility of Implementation Analysis

In this section, we will provide guidelines for implementing our proposed con-

cept search framework, give recommendations on realizing the different com-

ponents, and how to handle issues like scalability, security and performance.

Due to the autonomous nature of the components of the proposed frame-

work, a service-based approach is most suitable for implementing the identi-

fied parts of the solution. We suggest the creation of the following decoupled

independent services:

• Digital Object Importer Service: Responsible for providing the system with

a canonical representation of every imported digital object.

• Semantic Extraction Service: Extracts relevant information from imported

digital objects, and fills the system’s indices.

• Search Engine Service: Performs the actual search operations, as requested

by user queries, aggregates and ranks results from the system’s indices.

• User Participation Service: Allows for the extension of the system’s seman-

tic models by means of feedback mechanisms.

• Consumer Interface Service: Provides an aggregated abstraction layer for

user interfaces to access all parts of the search framework.

In small-scale implementations, the Digital Object Importer Service could also

be realized as part of the Semantic Extraction Service. Furthermore, the Search

Engine, User Participation, and Consumer Interface services could be combined

into one service, to minimize deployment complexity, at the expense of some

flexibility in terms of scalability and distribution.

The services can be implemented using one or more of many available

technologies and programming languages. Notable programming languages

include Java [10], C] [38], and Ruby [73]. Several frameworks for implement-

ing services are available for each of the mentioned languages, as seen below.

When using Java, services can be built using the Spring Framework [100], ei-

ther as full-blown web services using Spring Web Service [2], or as xml-rpc

service [29; 18; 82]. When using C], the most prominent framework for build-

ing web services is asp.net [13; 96; 70]. Finally, when using Ruby, restful

services [80] can be implemented using Ruby on Rails [97; 72].

96 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

The choice of technology, however, is mainly a matter of preference (or

existing infrastructure), as the mentioned technologies are all perfectly capable

of providing the tools necessary to implement the proposed system, and the

architecture even allows for mixing technologies to be able to use the best tool

for each job.

— § —

In the following sections we will outline special considerations and implemen-

tation suggestions for each part of the proposed architecture:

5.3.1 Digital Object Importer Service

The Digital Object Importer Service is a simple, single-task service, responsible

for maintaining object identity. To perform this task, the service must provide

Importer Modules with a persistent datastore to hold object states, in order to

minimize multiple successive imports of the same digital object.

The digital object state store can be realized using a database system, whereby

both, rdbms, as well as document-oriented systems, are suitable.

Importer modules can either be designed to run in the scope of the service,

or — for an even more flexible, if not as tightly controllable approach — be

realized as service clients, accessing the importer service only via its API, thus

posing absolutely no limits on the implementation language and used tech-

nologies, except from the ability to provide digital objects via the provided

API.

5.3.2 Semantic Extraction Service

The Semantic Extraction Service is responsible for extracting the required infor-

mation from the imported digital objects. This is service much more complex

than the importer, it is therefore not feasible to create all functionality from

scratch. A viable approach would thus rely on known and proven tools, such

as gate, to perform the extraction tasks. The gate toolkit is a powerful text

engineering framework, and also includes an information extraction compo-

nent, called annie (A Nearly New Information Extraction System). The annie

system provides a multitude of components for information extraction and

named entity recognition, such as tokenizers, lemmatizers, gazetteers and sen-

tence splitters. Since the focus of the service at hand is semantic extraction, the

5.3. FEASIBILITY OF IMPLEMENTATION ANALYSIS 97

OntoGazetteer is of special interest for us, as it provides means for identifying

named entities using gazetteer lists linked to ontological concepts. An issue

not tackled by the gate toolkit is the generation of gazetteer lists for matching

ontological concepts. It would be desirable to build a tool capable of automat-

ically generating the necessary lists from the ontology, possibly using services

such as WordNet4 to incorporate synonyms.

There are several approaches to integrate a gate/annie application in the

semantic extraction service. One approach is the in-process execution of the

module, restricting the implementation language to that of gate, namely Java.

A simpler approach would be to use a simple configurable wrapper application

handling the execution of the gate application, which is executed by a wrapper

module (which in turn can either run in the service process or out-of-process),

that is responsible for the conversion of the application output into an RDF

format suitable for the service.

After the extraction stage is complete, the found concept annotations need

to be stored in an optimized RDF store for efficient subsequent retrieval. No-

table examples are Sesame [21], AllegroGraph5, Jena [74], and Virtuoso6, each

of which are capable of efficiently storing and retrieving RDF data.

The Semantic Extraction Service is also responsible for extracting keywords

from the imported digital objects. For this problem, it is also recommended to

use well known and proven tools such as Lucene7, Lemur8 or Apache Solr9, as

they perform their task in an optimized manner, and have been in use for a

long time (Lucene: 10 years, Lemur: 6 years).

For larger deployments it is important that the used tools implement a

scaling strategy to cope with rising loads. Creating distributed indices using

Lucene is supported by a number of tools, such as Katta10, Apache Solr, and

Distributed Lucene [22]. These tools allow for replication and sharding of indices

to balance load and increase performance. Katta and Distributed Lucene use

Apache Hadoop11 for the distributed processing of data, an implementation of

the Map/Reduce approach.
4http://wordnet.princeton.edu/
5http://agraph.franz.com/
6http://virtuoso.openlinksw.com/
7http://lucene.apache.org/
8http://lemurproject.org/lemur.php
9http://lucene.apache.org/solr/

10http://katta.sourceforge.net/
11http://hadoop.apache.org

http://wordnet.princeton.edu/
http://agraph.franz.com/
http://virtuoso.openlinksw.com/
http://lucene.apache.org/
http://lemurproject.org/lemur.php
http://lucene.apache.org/solr/
http://katta.sourceforge.net/
http://hadoop.apache.org

98 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

5.3.3 Search Engine Service

The search engine service is responsible for maintaining an up-to-date collec-

tion of the available indices, in order to be able to distribute incoming queries

to achieve maximum performance.

As discussed in the section above, there are several approaches to distribute

indices. The Semantic Extraction Service and the Search Engine Service both

access the indices, hence they have to support the same set of technologies.

This dependency, however, can mostly be encapsulated in an Index Manager

Module, which in turn can be shared by both services, in order to reduce main-

tenance overhead and code duplication.

Since the service will eventually send queries to multiple distinct indices, it

is responsible for combining the returned result sets, and ranking them accord-

ing to query priorities. Finally, the service shall return the aggregated result

set to the caller that provided the query.

To further support queries based on the combined semantic representation

(5.1) the Search Engine Service needs to be able to support keyword and con-

ceptual queries. In order to do so it needs to analyze whether a submitted

query is keyword or concept, and forward it to the according modules. For

Keyword based search the most viable tools are Lucene and Solr, which is a

search server on top of Lucene, that exposes its functionality via a Service in-

terface. and therefore fulfills the prior outlined requirements for the Search

Engine Service. For the concept search, which covers the semantic and so-

cial parts of the combined representation, the suggested approach is to utilize

Jena or Sesame, both providing service based interaction, as well as rich query

support via sparql, including the necessary support for distributed indices.

5.3.4 User Participation Service

The User Participation Service handles all forms of ranking and feedback, as

well as extensions of the concepts, either by allowing editing of the utilized

ontologies, or maintaining concept candidates, that will be later introduced

as part of the ontology, or as a new ontology. As we outlined previously,

user participation plays a vital role, but is also a time consuming task and

therefore often neglected by the users. To overcome this limitation, the game

based approaches by [98], as well as the use of Captchas in the Authentication

5.3. FEASIBILITY OF IMPLEMENTATION ANALYSIS 99

phase [6] provide feasible approaches to solve this problem. For the process

of augmenting concepts, the most feasible approach is Tagging, which has

been shown to provide a sufficiently accurate means for incremental ontology

buildup [53].

5.3.5 Consumer Interface Service

The main role of the Consumer Interface Service is to provide the functionality

of the Framework to external User Interface implementations by aggregating

the previously described APIs. Additionally to that, it can supply libraries

to speed up client development. Popular examples would be JavaScript for

web clients, as well as libraries for Java, C] and Ruby. Despite these basic fea-

tures, the Visualization Module can provide the necessary graph structures for

2D visualizations to simplify the process of displaying concepts, concept asso-

ciations as well as social associations. The most reasonable approach, despite

providing basic graph structures via json, is to utilize the popular DOT format

by GraphViz12.

Additionally, the Consumer Interface Service is responsible for transpar-

ently accessing multiple distributed instances of underlying services, as well

as to allow for multiple instances of this service, if it becomes a performance

bottleneck.

5.3.6 Nonfunctional considerations

The fact that the proposed architecture is purely component oriented enables

the easy introduction of aspects such as Authentication and Authorization.

The flexible nature of the architecture furthermore allows for realizing highly

performant and scalable systems, by parallelizing critical parts of the process.

The extraction processes can be easily executed in parallel, given that the doc-

ument corpus to be imported can be split according to available processing

resources. The used indices can be distributed by means of replication or

sharding, providing advantages in subsequent query operations, as the search

process can be realized using a Map/Reduce approach such as Apache Hadoop,

to optimize performance.

12http://www.graphviz.org/

http://www.graphviz.org/

100 CHAPTER 5. CONCEPT SEARCH FRAMEWORK SPECIFICATION

5.4 Evaluation of the Semantic Search Framework

In this section we evaluate the previously outlined framework according to the

introduced requirements shown in Section 4.3 on a conceptual level.

5.4.1 Functional Evaluation

In terms of Functional Requirements the evaluation concentrates on general as-

pects, since specific fulfillment of the evaluation condition is highly dependent

upon the implementation. The proposed Digital Object Importer Component

with its exchangeable and extensible Digital Object Importer Module enables the

support for multiple Digital Object Types and Formats despite this it delegates

concerns of Digital Object Size, Number of Digital Objects as well as Digital Ob-

ject update cycle to the relevant systems. The Semantic Extraction Component

provides to efficiently integrate different Extraction Mechanisms, clearly speci-

fying the use of Standard formats like RDF and OWL in its interface description.

Further User Participation and Incremental Ontology Buildup means are provided

by the User Participation Component which also covers the concerns in terms

of Semantic Annotation Mechanisms. Despite the capabilities of the Digital Ob-

ject Importer Component to incorporate a variety of Stores and Sources for the

Framework all Components provide a clear and simple API that allows for easy

Incorporation of existing systems. The Index Manager Module in the Search Engine

Component enables the Integration of existing indices and therefore also Path-

Lookup and Navigational Indices in terms of Index Model support. The modular

setup of the Search Engine Component further enables different Search Ca-

pabilities through integration of different Search Modules and according Result

Aggregation. This also is the fundamental for Combined Search. The Consumer

Interface Component concludes the Framework by aggregating all functional-

ity and additionally provides Visualization capabilities through its Visualization

Module.

5.4.2 Nonfunctional, Software Engineering and Deployment Evalua-

tion

The highly modular design of our framework allows, as explained previously

(see 5.2), the integration of different implementations for the components and

5.4. EVALUATION OF THE SEMANTIC SEARCH FRAMEWORK 101

modules. Furthermore, it allows for multiple distribution scenarios (see Sec-

tion 5.2.1), making it a perfect fit for a plethora of deployment scenarios. There-

fore, it supports concrete implementations to achieve the Scalability by selecting

the right deployment scenario. The fine granularity of the framework allows

to use the tools that are suited best for the specific step of the search process

and, therefore, it supports concrete implementations to achieve the Performance

and Accuracy by selecting the best possible tools. The service based nature of

the framework as well as the detailed API ensures Reusability, Extensibility and

Interoperability.

6 Prototype and Evaluation

6.1 Overview

In order to demonstrate the proposed concept search framework, we need to

conduct a concept demonstration. In this thesis, the concept demonstration

includes:

• a small-scale of the design of the proposed concept search

• functional and nonfunctional analysis of the prototype.

We have decided to use the Space domain as representative specialized

domain to test our concept demonstration.

6.2 Prototype of The Proposed Concept Search Frame-

work

6.2.1 General Architecture

The developed prototype takes the recommendations from the previous sec-

tions into account. Our prototype has included the following components:

• Digital Object Importer and Semantic Extraction Component

• Search Engine Service

• Consumer Interface Service

Our service access method of choice is rest, as it provides for low mainte-

nance overhead, and is supported by all relevant technologies. An overview of

the implemented components and their interactions according to our proposed

conceptual architecture can be seen in Figure 6.1.

103

104 CHAPTER 6. PROTOTYPE AND EVALUATION

Search Engine Service

R
uby/Sinatra R

EST
 Service

C
onsum

er Interface Service

R
uby/Sinatra R

EST
 Service

Sem
antic Extraction M

odule

R
uby Script w

rapping Java A
pplication

w
rapping G

AT
E A

pplication

K
eyw

ord Extraction M
odule

R
uby Script using Solr

Sem
antic Extraction C

om
ponent

C
oncept Index

Sesam
e R

D
F store

D
ocum

ents

K
eyw

ord Index
A

pache Solr

SW
EET

 O
ntology

C
om

bined Sem
antic

R
epresentation O

ntology

R
esult A

ggregation M
odule

R
uby in-process

Q
uery A

nalyzer M
odule

R
uby in-process

V
isualization Support M

odule

R
uby in-process

U
ser Interface

R
uby on R

ails W
eb A

pplication

U
ser Participation Service

R
uby/Sinatra R

EST
 Service

C
oncept C

andidates
Sesam

e R
D

F store

Figure
6.

1:C
oncept

D
em

onstration
A

rchitecture
O

verview

6.2. PROTOTYPE OF THE PROPOSED CONCEPT SEARCH FRAMEWORK105

6.2.2 Linked Data Model

The combined semantic representation, proposed in Section 5.1 has been fully

implemented in an ontology (see Listing B.1), enabling the desired linking of

digital object, human, semantic (domain specific ontologies), and social con-

cepts. Also, the sweet ontology has been integrated into the data model to

represent domain-specific concepts of our test domain. For the purposes of this

prototype, we are integrating only subclasses from the PhysicalPhenomena

and PlanetaryRealm classes. The data extracted from digital objects is rep-

resented as RDF triples, and persisted in a Sesame datastore.

6.2.3 Semantic Extraction

In our prototype, the semantic extraction component is an Executable, follow-

ing the Batch Execution model for the sake of simplicity, and includes two

modules: Semantic Extraction Module, and Keyword Extraction Module.

The Semantic Extraction Module acts as a wrapper around a gate application,

processing documents in batches. The instantiated gate app uses the annie

information extraction system to perform named entity recognition using an

OntoGazetteer module. To obtain a gazetteer list for the named entity recog-

nition to be performed, we implemented an automatic gazetteer list genera-

tor, transforming class names from the ontology into free text representations.

Within the Semantic Extraction Module, the batch-processing wrapper module is

a Java application, accepting a saved gate application and a set of documents

as parameters. An exemplary invocation is shown in Listing 6.1.

$ java BatchProcessApp −g gateApp . gapp document1 . pdf document2 . doc

Listing 6.1: Exemplary Semantic Extraction Module invocation

The application loads the provided gate application and processes each of

the passed documents, as seen in Listing 6.2.

Corpus corpus = Factory . newCorpus (" BatchProcessApp Corpus ") ;
a p p l i c a t i o n . setCorpus (corpus) ;

for (i n t i = f i r s t F i l e ; i < args . length ; i ++) {
F i l e i d F i l e = new F i l e (args [i]) ;
F i l e docF i le = new F i l e (workingDir + "/" +

new BufferedReader (new Fi leReader (i d F i l e)) .←↩
readLine ()) ;

Document doc = null ;

106 CHAPTER 6. PROTOTYPE AND EVALUATION

t r y {
doc = Factory . newDocument (docF i le . toURI () . toURL () , encoding) ;

} catch (Exception e) {
continue ;

}
corpus . add (doc) ;
a p p l i c a t i o n . execute () ;

}

Listing 6.2: Simplified internal process of the Semantic Extraction Module

The gate application uses the automatic gazetteer list generator to provide

a set of gazetteer lists for named entity recognition. The annotations generated

by the application are then stored in the attached Sesame RDF store, as shown

in Listing 6.3.

for (Annotation a : doc . getAnnotat ions (" onto ")) {
URI concept = f . createURI (a . ge tFea tures () . get (" ontology ") +" # "+a←↩

. ge tFea tures () . get (" c l a s s ")) ;
URI document = f . createURI (docF i le . g e t C a n o n i c a l F i l e () . toURI () .←↩

toURL () . t o S t r i n g ()) ;
URI t o p i c = f . createURI (" ht tp :// xmlns . com/ f o a f /0 .1/ primaryTopic←↩

") ;

t r y {
RepositoryConnection con = myRepository . getConnection () ;

t r y {
con . add (document , topic , concept) ;

} f i n a l l y {
con . c l o s e () ;

}
} catch (OpenRDFException e) {
}

}

Listing 6.3: Simplified internal process of the Semantic Extraction Module

The used gate application is shown in its entirety in Listing B.4. The com-

plete code of the wrapper module storing the extracted annotations, can be

found in Listing B.3, and the automatic gazetteer list generator can be found

in Listing B.2.

The Keyword Extraction Module acts as a wrapper around Apache Solr, pass-

ing imported documents to the Solr’s keyword extractor for further processing.

6.3. EXPERIMENTS 107

6.2.4 Social Semantic Search

The Social Semantic Search Service is implemented using Ruby and the Sinatra1

framework. It provides a rest service API. The service analyzes incoming

queries and performs the search operations on the attached indices. Keyword

queries are sent to the Lucene index, semantic and social queries are executed

using sparql against the Sesame RDF store. The principal interface of the

Search Module is shown in Listing 6.4.

get ’/documents/search /: query ’
get %r {^/ tags (? : \ . ([\w] +)) ? } |format|

Listing 6.4: Principal methods of Search Module API

6.2.5 Result aggregation and presentation

The results returned from the Lucene keyword index and the Sesame RDF store

are aggregated by only using documents contained in all result sets, ranked ac-

cording to the quality value from the keyword search engine. This approach is

only possible if the submitted query contains a semantic, as well as a keyword

query.

If the submitted query is purely keyword-based, the search service only

needs to consult the keyword index, and no result aggregation is performed.

Likewise, if the submitted query is purely semantic, the search service only

needs to consult the RDF store, and no result aggregation is performed.

6.2.6 User Participation/Incremental Ontology Buildup

The incremental ontology buildup component is realized as a Ruby/Sinatra-

based restful service. It stores concept candidate annotations derived from

user tags in the concept candidate Sesame RDF store.

6.3 Experiments

In this section we describe the experiments that were performed with the Pro-

totype, as well as the environment and the used test data.

1http://www.sinatrarb.com

http://www.sinatrarb.com

108 CHAPTER 6. PROTOTYPE AND EVALUATION

6.3.1 Document Corpora

The documents used for the experiments were extracted from the ESA general

studies programme2. We used only Executive Summaries.

This source provided 263 documents as pdf, doc and excel documents that

were used for the initial testing of the framework. Several documents had to be

neglected as their information was not extractable due to Digital Right restric-

tions. In order to simulate payload and test the specified performance criteria

established in Chapter 4, it was necessary to extend the amount of documents.

We did so by introducing a so called payload simulator (see B.6), that was

introduced in the document importer process and generated two Document

corpora based upon the 263 documents extracted from the site specified above.

Corpus A containing 1000 duplicated documents from the set.

Corpus B containing 25000 duplicated documents from the set.

The corpora included documents in all specified formats (pdf, doc, excel),

images and videos were not available and are skipped in our experiments since

the extraction process only depends on the specified metadata and is therefore

similar to documents. Certain documents had to be neglected due to the fact

that their information was marked as non extractable.

6.3.2 Functional Experiments

In this section we demonstrate the functional capabilities of our prototype, the

focus lies on demonstrating the capabilities in respect of semantic extraction,

semantic queries as well as the search and result presentation capabilities in

general.

Semantic Extraction

We utilize gate in our prototype to perform the semantic extraction from the

previously defined Document corpus. gate provides means for automatic as

well manual annotation.

For automatic semantic annotation we utilize the automatically generated

lists described in Section 6.2.3. This greatly reduces the time spent usually
2http://www.esa.int/SPECIALS/GSP/

http://www.esa.int/SPECIALS/GSP/

6.3. EXPERIMENTS 109

to generate this files and therefore significantly improves the value of gate

as a semantic extraction facility. Furthermore, the distribution of components

provides massive performance enhancements in terms of extraction shown in

Section 6.3.3.

Despite this gate gives the opportunity to manually annotate via the gate

GUI shown in Figure 6.2

Figure 6.2: gate annotation view

This ensures great flexibility for the semantic annotation process. If gate

isn’t suitable for the specific task, or a newer version should be integrated, this

is also easily manageable through our modular architecture.

Semantic Queries

Our framework allows the utilization of powerful semantic queries beyond

simple keyword search to retrieve concepts, inferred concepts as well as re-

lated documents. This enables more expressible search, for example when

searching for a concept you also retrieve the documents associated with in-

ferred concepts, therefore providing more accurate results. Sample Queries for

retrieving the domain specific ontology hierarchy as well as retrieving inferred

concepts can be seen in Listings 6.5 and 6.6 respectively.

110 CHAPTER 6. PROTOTYPE AND EVALUATION

PREFIX rdf : < ht tp ://www. w3 . org/1999/02/22− rdf−syntax−ns#>
PREFIX r d f s : < ht tp ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX phys : < http :// sweet . j p l . nasa . gov/2 .0/ phys . owl#>
PREFIX f o a f : < ht tp :// xmlns . com/ f o a f /0.1/ >
PREFIX owl : < http ://www. w3 . org /2002/07/owl#>
PREFIX a s t r o P l a n e t : < ht tp :// sweet . j p l . nasa . gov/2 .0/ a s t r o P l a n e t . owl←↩

#>
PREFIX sesame : < http ://www. openrdf . org/schema/sesame#>

SELECT DISTINCT ? c l a s s ? d i r e c t s u p e r c l a s s WHERE {
? c l a s s sesame : directSubClassOf ? d i r e c t s u p e r c l a s s .
{ ? d i r e c t s u p e r c l a s s r d f s : subClassOf a s t r o P l a n e t : PlanetaryRealm ←↩

} UNION
{ ? d i r e c t s u p e r c l a s s r d f s : subClassOf phys : PhysicalPhenomena }

}

Listing 6.5: Exemplary sparql Query to retrieve all concepts and their

superclasses

PREFIX rdf : < ht tp ://www. w3 . org/1999/02/22− rdf−syntax−ns#>
PREFIX r d f s : < ht tp ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX phys : < http :// sweet . j p l . nasa . gov/2 .0/ phys . owl#>
PREFIX f o a f : < ht tp :// xmlns . com/ f o a f /0.1/ >
PREFIX owl : < http ://www. w3 . org /2002/07/owl#>
PREFIX a s t r o P l a n e t : < ht tp :// sweet . j p l . nasa . gov/2 .0/ a s t r o P l a n e t . owl←↩

#>
PREFIX sesame : < http ://www. openrdf . org/schema/sesame#>

SELECT DISTINCT ? c l a s s WHERE { ? c l a s s r d f s : subClassOf
phys : PhysicalPhenomena . ? c l a s s rdf : type owl : Class }

Listing 6.6: Exemplary sparql Query to retrieve all subclasses for a specific

concept

Search Interface

Beyond the previously outlined usages, the main benefit lies in the sophisti-

cated results the framework can provide. Figure 6.3 shows the results of a

combined search for the concept “Ocean”. The combined data model, as well

as the expressive query support enables a far more detailed result presenta-

tion, showing not only the documents where the keyword was found, but also

documents that were annotated with the concept “Ocean”. Beyond this, the re-

sult also shows associated experts for the document and the concept, enabling

expert based faceted browsing. Results can be simply annotated via the Tag

6.3. EXPERIMENTS 111

Input seen on the right, which shows an intuitive and easy implementation of

the User Participation concept.

Figure 6.3: Results for a combined Search for the keyword and concept
“Ocean”

In addition to keyword based concept search, the Concept Demonstration

also provides easy faceted browsing, seen in Figure 6.4. The screenshot shows a

hierarchical listing of extracted concepts, clicking the link leads the user to the

associated documents, and is also capable of displaying documents associated

with inferred concepts; this is done via the Semantic Query capability outlined

above.

Despite the faceted browsing capability, it is also easy to provide additional

visualizations for concepts and related documents via the Visualization Com-

ponent, shown in Figure 6.5. The screenshot shows a directed graph rendered

using Graph.js3 of the concepts that allows for easy browsing of concepts and

associated documents via a common visual paradigm. Figure 6.6 shows a 3-

dimensional fully interactive representation.

All the outlined capabilities are easily exchangeable through our modu-

lar architecture and therefore enable superior extendability over existing ap-

proaches.
3http://ajaxian.com/archives/new-javascriptcanvas-graph-library

http://ajaxian.com/archives/new-javascriptcanvas-graph-library

112 CHAPTER 6. PROTOTYPE AND EVALUATION

Figure 6.4: Faceted Browsing domain hierarchy overview

6.3.3 Non-functional Experiments

In this section we test the performance of our Concept Demonstration in terms

of extraction and retrieval/search speeds. The criteria of precision and recall

were neglected due to the fact that it depends on the quality of the annotations

provided for gate, which have not been the main focus of this thesis.

6.3.4 Environment

The experiments were conducted both on a single machine as well as on a

XGrid Cluster.

The single machine utilized in the experiments was a MacBook Pro 2007

model with the following specifications:

Processor: 2.4 GHz Intel Core 2 Duo

Cores 2 (2 Processes in parallel)

RAM: 4GB 667 MHz DDR2 SDRAM

The cluster used in the experiments was an Apple XGrid Cluster with 4

cores and the following specifications.

6.3. EXPERIMENTS 113

Figure 6.5: Browsable graph representation of the domain specific ontology

Processor Machine 1: 2.4 GHz Intel Core 2 Duo

Processor Machine 2: 2.66 GHz Intel Core 2 Duo

Cores 4 (4 Processes in parallel)

RAM Machine 1: 4GB 667 MHz DDR2 SDRAM

RAM Machine 2: 4GB 1067 MHz DDR3 SDRAM

Nodes were connected via an 100Mbps Ethernet connection. The system

setup for extraction is shown in Figure 6.7 and Figure 6.8 shows the setup for

the search experiments.

6.3.5 Extraction

For the semantic extraction, we simulated with four different chunk sizes pro-

cessing 50, 100, 250 and 500 documents in a single batch, each batch being

executed sequentially. Those chunk sizes were run on the single machine, and

on the cluster in parallel both with 1000 and 25000 documents. Each test was

conducted three times and the weighted average was recorded. Figure 6.9

114 CHAPTER 6. PROTOTYPE AND EVALUATION

Figure 6.6: Browsable 3 dimensional representation of the domain specific in-
formation

and Figure 6.10 show the graph for the extraction times in seconds with 1000

documents on a single machine, as well as on the cluster. Bigger chunk sizes

tend to deliver better results, due to the fact that the gate process overhead is

minimized and reaches a saturation level, depending on the available Memory.

This stays true for distributed execution, where significant performance boosts

could be achieved.

To simulate a more significant payload we also ran the experiments with

25000 documents, getting the same result trend shown previously, the results

can be seen in Figure 6.11 and Figure 6.12. The experiments clearly show the

massive performance gains that can be achieved by utilizing the distribution of

components our architecture allows. Since the extraction and indexing times

are growing linearly, it further shows a very good performance trend for han-

dling massive document corpora.

6.3. EXPERIMENTS 115

Controller

Documents

XGRID

Concept Index Keyword Index

Retrieves Documents

Documents split into chunk sizes and distributed for parallel execution to XGRID

Figure 6.7: Setup of the test system for extraction

Machine 1 Machine 2
Sends Queries

Delivers Results

Concept Index

Keyword Index

Figure 6.8: Setup of the test system for search)

6.3.6 Search and Retrieval

To test the retrieval/search speed of the Concept Demonstration, we utilized

the two nodes of the previously described XGrid Cluster. Node One executing

the query, Node Two performing the search and sending the results back to

Node One, in order to respect the network delays as well. For the retrieval

tests, several different keyword and concept queries were performed, each of

them 3 times and again the weighted average was recorded. Each query was

measured with different concurrency levels simulating different load patterns.

Figure 6.13 shows the results for the Keyword Query. Since plain keyword

queries were not the main focus, we used an off the shelf Solr implementa-

116 CHAPTER 6. PROTOTYPE AND EVALUATION

260

272,5

285

297,5

310

1000 Documents
263

273

279

305

T
im

e
in

 s
ec

on
ds

Distributed Chunksize 50 Distributed Chunksize 100
Distributed Chunksize 250 Distributed Chunksize 500

Figure 6.9: Keyword and Semantic Extraction Time in seconds for 1000 docu-
ments

tion, with no performance optimizations, hence the rather slow response time

results for plain keyword search. However, this poses no problem since our

framework design allows for easy replacement of the specific implementation,

and therefore, for example, a Google Search Appliance integration would pro-

vide way better results in terms of response time.

Figure 6.14 shows the results for the Concept Query.

6.4 Comparison with Existing Systems

The digital library systems outlined in Section 3.9 have not been explicitly

designed or tested for specialized domains. From the design’s point of view,

our proposed concept search framework has several features that other systems

do not cover. Furthermore, our framework is specially designed to be able to

adapt to the specific needs of specialized domains.Table 6.1 summarizes the

comparison between our framework (csf) and Fedora, BRICKS and JeromeDL.

Compared with existing approaches, the main benefit of our approach lies

in the high extensibility of each part of the system, the combination of key-

6.4. COMPARISON WITH EXISTING SYSTEMS 117

0

200

400

600

800

1000 Documents

569570
634

750

T
im

e
in

 s
ec

on
ds

Single Chunksize 50 Single Chunksize 100
Single Chunksize 250 Single Chunksize 500

Figure 6.10: Keyword and Semantic Extraction Time in seconds for 1000 docu-
ments distributed

words, semantic and social search, as well as the possibility to incorporate any

domain specific ontology. The component based approach guarantees that spe-

cific parts of the system can be easily exchanged with newer or more advanced

implementations and, therefore, ensures a sustainable infrastructure for social

semantic search. Furthermore, it allows the distribution of components which

not only brings significant performance boosts, but also allows physical dis-

tribution of components over different sites. The simple API further enables

integration of existing systems and therefore can support the different Legacy

Infrastructures. The module necessary for the integration of said systems sim-

ply translates messages between these systems according to CSF’s API.

In terms of interfaces our service based solution also enables the future

integration of automated approaches, specifically it could be used for auto-

matic interactions with the framework, automated search and retrieval as well

as comparison. Another benefit of the service based approach is the easy ex-

tension to alternative platforms, examples would be mobile devices (like the

iPhone or Android platform), as well as novel devices like the iPad. This en-

ables the pervasive availability of our concept search framework as well as

118 CHAPTER 6. PROTOTYPE AND EVALUATION

0

4250

8500

12750

17000

25000 Documents

12958
13603

14784

16491
T

im
e

in
 s

ec
on

ds

Single Chunksize 50 Single Chunksize 100
Single Chunksize 250 Single Chunksize 500

Figure 6.11: Keyword and Semantic Extraction Time in seconds for 25000 doc-
uments

novel and highly effective user experience enabled by these devices.

6.4. COMPARISON WITH EXISTING SYSTEMS 119

6000

6500

7000

7500

8000

25000 Documents
6064

6274

6740

7229

T
im

e
in

 s
ec

on
ds

Distributed Chunksize 50 Distributed Chunksize 100
Distributed Chunksize 250 Distributed Chunksize 500

Figure 6.12: Keyword and Semantic Extraction Time in seconds for 25000 doc-
uments distributed

Figure 6.13: Keyword Query Performance

120 CHAPTER 6. PROTOTYPE AND EVALUATION

Figure 6.14: Concept Query Performance

6.4. COMPARISON WITH EXISTING SYSTEMS 121
C

ap
ab

ili
ti

es
Fe

do
ra

B
R

IC
K

S
Je

ro
m

eD
L

C
SF

D
ig

it
al

O
bj

ec
t

Su
pp

or
t

A
ny

A
ny

A
ny

A
ny

do
cu

m
en

t
in

an
y

fo
rm

at
,

im
ag

es
an

d
vi

de
os

if
m

et
ad

at
a

is
su

pp
lie

d
Se

m
an

ti
c

Ex
-

tr
ac

ti
on

an
d

A
nn

ot
at

io
n

M
id

dl
ew

ar
e;

Ex
te

rn
al

,
ou

tp
ut

m
us

t
co

m
pl

y
w

it
h

FO
X

M
L

fo
rm

at
an

d
A

PI

M
id

dl
ew

ar
e

co
m

po
ne

nt
Su

pp
or

ts
m

et
ad

at
a

fo
r-

m
at

s
D

ub
lin

C
or

e,
Bi

b-
Te

x,
M

A
R

C
2
1

g
a

t
e

,
K

IM
,

an
y

le
ga

cy
sy

st
em

or
cu

st
om

im
pl

e-
m

en
ta

ti
on

th
at

co
m

pl
ie

s
w

it
h

th
e

sp
ec

ifi
ed

A
PI

St
or

ag
e

Su
p-

po
rt

M
yS

Q
L,

Po
st

gr
es

,
O

r-
ac

le
,

M
cK

oi
;

K
ow

ar
i/

-
M

ul
ga

ra

A
ny

Je
na

-c
om

pl
ia

nt
ba

ck
en

d
A

ny
Se

sa
m

e-
or

R
D

F2
G

o-
co

m
pl

ia
nt

ba
ck

en
d

A
ny

(v
ia

St
or

ag
e

A
PI

)

Se
ar

ch
C

ap
a-

bi
li

ti
es

K
ey

w
or

d,
Se

m
an

ti
c

K
ey

w
or

d,
Se

m
an

ti
c

K
ey

w
or

d,
Se

m
an

ti
c,

So
-

ci
al

K
ey

w
or

d,
Se

m
an

ti
c,

So
-

ci
al

U
se

r
Pa

rt
ic

ip
a-

ti
on

Ta
gg

in
g

Ta
gg

in
g

K
no

w
le

dg
e

Sh
ar

in
g

vi
a

Bl
og

s,
Fr

ee
Ta

gg
in

g,
W

ik
is

In
cr

em
en

ta
l

O
nt

ol
og

y
Bu

ild
up

,
G

am
e

in
te

gr
a-

ti
on

,T
ag

gi
ng

In
te

rf
ac

es
h

t
t
p
,r

e
s
t
,s

o
a

p
,f

t
p

Ec
lip

se
ba

se
d

ri
ch

cl
ie

nt
in

te
rf

ac
e,

St
ru

ts
-b

as
ed

w
eb

in
te

rf
ac

e,
m

ap
vi

su
al

iz
at

io
ns

of
G

IS
-

m
et

ad
at

a

M
ul

ti
Be

eB
ro

w
se

,
Ta

gs
Tr

ee
M

ap
s,

Fa
ce

te
d

Fi
lt

er
in

g

V
is

ua
liz

at
io

ns
2
D

,
3

D
,

Se
rv

ic
e

In
te

rf
ac

e,
M

ul
ti

-
pl

e
C

lie
nt

in
te

rf
ac

es
.

D
is

tr
ib

ut
io

n
an

d
Pa

ra
ll

el
iz

a-
ti

on
M

od
el

s

Fe
de

ra
ti

on
vi

a
na

m
e

re
-

so
lv

er
se

ar
ch

se
rv

ic
es

,
A

lv
is

P2
P

Fu
lly

de
ce

nt
ra

liz
ed

(P
2

P)
D

is
tr

ib
ut

ed
se

ar
ch

-
in

g
(P

2
P)

,
ag

gr
eg

at
ed

br
ow

si
ng

(h
ie

ra
rc

hi
ca

l)

A
ny

C
on

si
de

ra
ti

on
s

of
sp

ec
ifi

c
ne

ed
s

fo
r

th
e

Sp
ec

ia
li

ze
d

D
om

ai
ns

N
on

e
N

on
e

N
on

e
In

cr
em

en
ta

l
O

nt
ol

og
y

Bu
ild

up
,

H
ig

hl
y

ad
ap

t-
ab

le
to

us
er

pr
oc

es
se

s
(e

.g
.C

D
F)

,I
nt

eg
ra

ti
on

of
an

y
le

ga
cy

sy
st

em
.

Ta
bl

e
6
.1

:C
om

pa
ri

so
n

of
ou

r
pr

op
os

ed
co

nc
ep

tu
al

se
ar

ch
fr

am
ew

or
k

(c
s
f
)

w
it

h
ex

is
ti

ng
di

gi
ta

ll
ib

ra
ry

sy
st

em
s

7 Conclusion and Future Plans

7.1 Thesis results

In this thesis, we have presented a distributed social semantic search frame-

work for specialized domains. We have discussed the state-of-the art on con-

cept search and digital libraries, in general, as well as their specific support

for specialized domains. Several tools and techniques have been examined.

Based on the state-of-the art analysis we have identified typical use cases and

a comprehensive list of requirements for the concept search framework.

Based on a critical analysis of use cases and requirements, a concept search

framework for specialized domains has been developed. In this framework, we

have analyzed and designed several components in an open flexible architec-

ture so that the framework can be implemented by utilizing different existing

techniques, on the one hand, and by incorporating new services and frame-

works, on the other hand. We further developed a combined semantic rep-

resentations that allows the integration of any Domain Specific Ontology and

therefore builds a unique fundament for social semantic search in specialized

domains. The proposed framework comes with a detailed feasibility study of

implementation and a small-scale prototype of the framework to illustrate our

concept search.

Techniques for concept search that combines semantic and social search in

general have increasingly been researched and mature techniques are increas-

ingly available. However, the exploitation of concept search for specialized

domains has just been started. Therefore, any proposed concept search frame-

work must be open enough to accommodate new developments in this domain.

The main benefit of our approach lies in the high extendability of each part of

the system. The component based approach guarantees that specific parts of

the system can be easily exchanged to ensure a sustainable infrastructure for

123

124 CHAPTER 7. CONCLUSION AND FUTURE PLANS

social semantic search. The simple API and service-based solution further en-

ables integration of existing systems as well as the possibility to utilize only

certain components of the system for specific tasks in specialized domains.

7.2 Future Work

In the case of Digital Objects current research as well as implementations are

mostly concerned with text documents and their various formats. Images and

Videos are reduced to the extractable or available metadata and by that means

treated similar to text documents. Recent research, however, provides interest-

ing new mechanism that could greatly change what is extractable and therefore

searchable in terms of images and video. For images the most interesting new

approach would be the broader adoption of compressive sensing technologies

shown in [15] and [36]. These technologies would reduce the effective data size

of images to an absolute minimum while being still providing an expressive

and distinctive representation. This representation could be effectively used

for search so that approaches where a user would identify certain objects in

an image and similar images could be provided. In the case of video there

is, on the one side, an emerging field of semantically enriched video storage

approaches (seen in [102]), which use ontologies to enhance the expressiveness

of video search solutions. On the other side, there is a possibility to utilize

similarity search approaches to find videos as shown in [26]. The utilization

of these new technologies would enable Images and Videos as first class cit-

izens for search frameworks and greatly improve what can be searched and

retrieved.

For Semantic Extraction the greatest room for future improvement lies in the

area of user participation. The utilization of game based approaches on a large

scale could greatly improve the accuracy of Semantic Extraction in general and

is basically outlined in the works of [98]. Furthermore, the move from batch

centered execution models like gate to service based ones (as outlined in our

architecture) would further enable cloud based Semantic Extraction Services

that could find a widely larger adoption than current approaches, and there-

fore initiate the move to generally available semantic annotations that could be

utilized. Another aspect of interest is the parallelization of the extraction pro-

cess by using highly distributed processing approaches such as Map/Reduce

7.2. FUTURE WORK 125

[32], enabling massively parallel execution of expensive extraction and annota-

tion tasks [66], greatly improving performance. Another aspect is that in order

to enable the accurate measurement of Precision and Recall for the space do-

main (which is currently not possible due to the lack of test data), a manually

annotated test data set known as the Golden Standard should be generated by

domain experts to accurately benchmark semantic extraction and search.

In terms of Storage the utilization of Document Oriented Storage solutions

like CouchDB1 (see Section 3.3.2) for Digital Object storage could greatly im-

prove the capabilities of Search Frameworks. Being schema free any format of

Digital Objects could be stored allowing greater dynamics for Digital Objects

integration. Furthermore, the efficient data retrieval and horizontal scalability

would greatly improve the overall performance of search and retrieval.

The area of Search and Indexing is undergoing constant improvement, and

a variety of novel algorithms [see 35]) as well as the improvement of existing

ones [see 81] will gradually improve the retrievable results. However, the most

pressing current limitation lies not in search itself but in the available metadata

to be searched, as well as the missing semantic annotations. This issue, how-

ever, will hopefully be addressed by the improvements taking place in the area

of Semantic Extraction. Similar to Semantic Extraction, the area Search and

Indexing can also greatly benefit from massively parallel computation using

Map/Reduce, distributing the generation of indices, as well as the execution of

index queries to multiple instances of replicated and shared indices to achieve

maximum performance and scalability.

We conclude our recommendations with the discussion of future extension

related to Interfaces and Visualizations. Despite the current approach of result

presentation as ranked lists, several additional visualizations 2D as well as 3D

have shown great potential, especially in the areas of concept and social search

[85; 63; 28; 104].

1http://couchdb.apache.org/

http://couchdb.apache.org/

A How to run the Concept

Demonstration

In this section we describe the environment that needs to be established in

order to run the Concept Demonstration.

The Concept Demonstration can be run under Unix / Linux / MacOS X

10.6.4, and the following software needs to be installed additionally:

Ruby Version 1.8.7p249

Java Version 6.0

Rubygems Version 1.3.7

Raptor RDF Parser toolkit Version 1.4.21

GATE Version 5.2.1 (http://gate.ac.uk/download/)

Solr Version 1.4.1 (http://mirror.deri.at/apache/lucene/solr/1.

4.1/)

Sesame Version 2.3.2 (http://sourceforge.net/projects/sesame/files/

Sesame%202/)

The following Rubygems need to be installed via gem install:

• sinatra

• activesupport

• rdf

• rdf-raptor

127

http://gate.ac.uk/download/
http://mirror.deri.at/apache/lucene/solr/1.4.1/
http://mirror.deri.at/apache/lucene/solr/1.4.1/
http://sourceforge.net/projects/sesame/files/Sesame%202/
http://sourceforge.net/projects/sesame/files/Sesame%202/

128 APPENDIX A. HOW TO RUN THE CONCEPT DEMONSTRATION

After installing Sesame, a new repository called ESA, using the template

native-rdfs-dt is to be created. A detailed explanation on how to create

the required repository can be found in [5].

Ensure that Sesame and Solr are started on their default ports. After that

execute the following scripts

• ruby importer.rb

• ruby extraction.rb

• ruby rest_server.rb

• ruby web_interface.rb

You can now access the Web Interface via http://localhost:3000

http://localhost:3000

B Experiment Sources

B.1 Data Model Ontology

1 <?xml version=" 1 . 0 " ?>

< !DOCTYPE rdf:RDF [
<!ENTITY f o a f " h t t p : //xmlns . com/ f o a f /0 .1# " >

6 < ! ENTITY owl " h t t p : //www. w3 . org /2002/07/owl# " >
< ! ENTITY dc " h t t p : //purl . org/dc/elements /1 .1/# " >
< ! ENTITY xsd " h t t p : //www. w3 . org /2001/XMLSchema# " >
< ! ENTITY r d f s " h t t p : //www. w3 . org /2000/01/ rdf−schema# " >
< ! ENTITY rdf " h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns# " >

11] >

<rdf:RDF xmlns=" h t t p : //www. blackwhale . a t/ o n t o l o g i e s /2010/06/←↩
common_sense . rdf # "

xml:base=" h t t p : //www. blackwhale . a t/o n t o l o g i e s /2010/06/common_sense←↩
. rdf "

16 xmlns:dc=" h t t p : //purl . org/dc/elements /1 .1/# "
xmlns : rdfs=" h t t p : //www. w3 . org /2000/01/ rdf−schema# "
xmlns : foa f=" h t t p : //xmlns . com/ f o a f /0 .1# "
xmlns:owl=" h t t p : //www. w3 . org /2002/07/owl# "
xmlns:xsd=" h t t p : //www. w3 . org /2001/XMLSchema# "

21 xmlns :rdf=" h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns# ">
<owl:Ontology r d f : a b o u t=" h t t p : //www. blackwhale . a t/ o n t o l o g i e s←↩

/2010/06/common_sense . rdf "/>

26 < !−−
/ /
/ /
/ / Annota t i on p r o p e r t i e s
/ /

31 /
−−>

<owl:AnnotationProperty r d f : a b o u t="&r d f s ; l a b e l "/>

129

130 APPENDIX B. EXPERIMENT SOURCES

<owl:AnnotationProperty r d f : a b o u t="&r d f s ; comment"/>
36

< !−−
/ /

41 / /
/ / O b j e c t P r o p e r t i e s
/ /
/ /
−−>

46

< !−− h t t p : / /www. b l a c k w h a l e . a t / o n t o l o g i e s / 2 0 1 0 / 0 6 / common_sense . r d f #←↩
a u t h o r −−>

51

<owl :ObjectProperty r d f : a b o u t=" h t t p : //www. blackwhale . a t/ o n t o l o g i e s←↩
/2010/06/common_sense . rdf # author ">
<rdfs : subPropertyOf r d f : r e s o u r c e ="&owl ; topObjectProperty "/>
<owl :equivalentProperty r d f : r e s o u r c e ="&f o a f ; maker "/>

</owl :ObjectProperty>
56

< !−− h t t p : / /www. b l a c k w h a l e . a t / o n t o l o g i e s / 2 0 1 0 / 0 6 / common_sense . r d f #←↩
e x p e r t I n −−>

61 <owl :ObjectProperty r d f : a b o u t=" h t t p : //www. blackwhale . a t/ o n t o l o g i e s←↩
/2010/06/common_sense . rdf # exper t In ">
<rdfs:domain r d f : r e s o u r c e =" h t t p : //www. blackwhale . a t/ o n t o l o g i e s←↩

/2010/06/common_sense . rdf # Person "/>
< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : //www. blackwhale . a t/ o n t o l o g i e s←↩

/2010/06/common_sense . rdf # TopicExper t i se "/>
<rdfs : subPropertyOf r d f : r e s o u r c e ="&owl ; topObjectProperty "/>

</owl :ObjectProperty>
66

< !−− h t t p : / /www. b l a c k w h a l e . a t / o n t o l o g i e s / 2 0 1 0 / 0 6 / common_sense . r d f #←↩
e x p e r t i s e T o p i c −−>

71 <owl :ObjectProperty r d f : a b o u t=" h t t p : //www. blackwhale . a t/ o n t o l o g i e s←↩
/2010/06/common_sense . rdf # e x p e r t i s e T o p i c ">
<rdfs:domain r d f : r e s o u r c e =" h t t p : //www. blackwhale . a t/ o n t o l o g i e s←↩

/2010/06/common_sense . rdf # TopicExper t i se "/>
< r d f s : r a n g e r d f : r e s o u r c e ="&owl ; Thing "/>
<rdfs : subPropertyOf r d f : r e s o u r c e ="&owl ; topObjectProperty "/>

</owl :ObjectProperty>
76

B.1. DATA MODEL ONTOLOGY 131

< !−− h t t p : / /www. b l a c k w h a l e . a t / o n t o l o g i e s / 2 0 1 0 / 0 6 / common_sense . r d f #←↩
h a s E x p e r t i s e F a c t o r −−>

81 <owl :ObjectProperty r d f : a b o u t=" h t t p : //www. blackwhale . a t/ o n t o l o g i e s←↩
/2010/06/common_sense . rdf # h a s E x p e r t i s e F a c t o r ">
< r d f : t y p e r d f : r e s o u r c e ="&owl ; Funct ionalProperty "/>
< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : //www. blackwhale . a t/ o n t o l o g i e s←↩

/2010/06/common_sense . rdf # E x p e r t i s e F a c t o r "/>
<rdfs:domain r d f : r e s o u r c e =" h t t p : //www. blackwhale . a t/ o n t o l o g i e s←↩

/2010/06/common_sense . rdf # TopicExper t i se "/>
<rdfs : subPropertyOf r d f : r e s o u r c e ="&owl ; topObjectProperty "/>

86 </owl :ObjectProperty>

< !−− h t t p : / /www. b l a c k w h a l e . a t / o n t o l o g i e s / 2 0 1 0 / 0 6 / common_sense . r d f #←↩
h a s I n t e r e s t F a c t o r −−>

91

<owl :ObjectProperty r d f : a b o u t=" h t t p : //www. blackwhale . a t/ o n t o l o g i e s←↩
/2010/06/common_sense . rdf # h a s I n t e r e s t F a c t o r ">
< r d f : t y p e r d f : r e s o u r c e ="&owl ; Funct ionalProperty "/>
< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : //www. blackwhale . a t/ o n t o l o g i e s←↩

/2010/06/common_sense . rdf # I n t e r e s t F a c t o r "/>
<rdfs:domain r d f : r e s o u r c e =" h t t p : //www. blackwhale . a t/ o n t o l o g i e s←↩

/2010/06/common_sense . rdf # T o p i c I n t e r e s t "/>
96 <rdfs : subPropertyOf r d f : r e s o u r c e ="&owl ; topObjectProperty "/>

</owl :ObjectProperty>

101 < !−− h t t p : / /www. b l a c k w h a l e . a t / o n t o l o g i e s / 2 0 1 0 / 0 6 / common_sense . r d f #←↩
h a s I n t e r e s t I n −−>

<owl :ObjectProperty r d f : a b o u t=" h t t p : //www. blackwhale . a t/ o n t o l o g i e s←↩
/2010/06/common_sense . rdf # h a s I n t e r e s t I n ">
<rdfs:domain r d f : r e s o u r c e =" h t t p : //www. blackwhale . a t/ o n t o l o g i e s←↩

/2010/06/common_sense . rdf # Person "/>
< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : //www. blackwhale . a t/ o n t o l o g i e s←↩

/2010/06/common_sense . rdf # T o p i c I n t e r e s t "/>
106 <rdfs : subPropertyOf r d f : r e s o u r c e ="&owl ; topObjectProperty "/>

</owl :ObjectProperty>

111 < !−− h t t p : / /www. b l a c k w h a l e . a t / o n t o l o g i e s / 2 0 1 0 / 0 6 / common_sense . r d f #←↩
t o p i c −−>

<owl :ObjectProperty r d f : a b o u t=" h t t p : //www. blackwhale . a t/ o n t o l o g i e s←↩
/2010/06/common_sense . rdf # t o p i c ">

132 APPENDIX B. EXPERIMENT SOURCES

<rdfs:domain r d f : r e s o u r c e =" h t t p : //www. blackwhale . a t/ o n t o l o g i e s←↩
/2010/06/common_sense . rdf # T o p i c I n t e r e s t "/>

< r d f s : r a n g e r d f : r e s o u r c e ="&owl ; Thing "/>
116 <rdfs : subPropertyOf r d f : r e s o u r c e ="&owl ; topObjectProperty "/>

</owl :ObjectProperty>

121 < !−− h t t p : / /www. w3 . o rg / 2 0 0 2 / 0 7 / owl # t o p O b j e c t P r o p e r t y −−>

<owl :ObjectProperty r d f : a b o u t="&owl ; topObjectProperty "/>

126

< !−− h t t p : / / xmlns . com / f o a f / 0 . 1 # maker −−>

<owl :ObjectProperty r d f : a b o u t="&f o a f ; maker "/>

131

< !−−
/ /
/ /

136 / / Data p r o p e r t i e s
/ /
/ /
−−>

141

< !−− h t t p : / / p u r l . o rg / dc / e l e m e n t s / 1 . 1 / # t i t l e −−>

146 <owl:DatatypeProperty r d f : a b o u t="&dc ; t i t l e "/>

< !−− h t t p : / /www. b l a c k w h a l e . a t / o n t o l o g i e s / 2 0 1 0 / 0 6 / common_sense . r d f #←↩
e x p e r t i s e F a c t o r −−>

151

<owl:DatatypeProperty r d f : a b o u t=" h t t p : //www. blackwhale . a t/←↩
o n t o l o g i e s /2010/06/common_sense . rdf # e x p e r t i s e F a c t o r ">
<rdfs:domain r d f : r e s o u r c e =" h t t p : //www. blackwhale . a t/ o n t o l o g i e s←↩

/2010/06/common_sense . rdf # E x p e r t i s e F a c t o r "/>
< r d f s : r a n g e r d f : r e s o u r c e ="&xsd ; i n t e g e r "/>
<rdfs : subPropertyOf r d f : r e s o u r c e ="&owl ; topDataProperty "/>

156 </owl:DatatypeProperty>

B.1. DATA MODEL ONTOLOGY 133

< !−− h t t p : / /www. b l a c k w h a l e . a t / o n t o l o g i e s / 2 0 1 0 / 0 6 / common_sense . r d f #←↩
i n t e r e s t F a c t o r −−>

161

<owl:DatatypeProperty r d f : a b o u t=" h t t p : //www. blackwhale . a t/←↩
o n t o l o g i e s /2010/06/common_sense . rdf # i n t e r e s t F a c t o r ">
<rdfs:domain r d f : r e s o u r c e =" h t t p : //www. blackwhale . a t/ o n t o l o g i e s←↩

/2010/06/common_sense . rdf # I n t e r e s t F a c t o r "/>
< r d f s : r a n g e r d f : r e s o u r c e ="&xsd ; i n t e g e r "/>
<rdfs : subPropertyOf r d f : r e s o u r c e ="&owl ; topDataProperty "/>

166 </owl:DatatypeProperty>

< !−− h t t p : / /www. w3 . o rg / 2 0 0 2 / 0 7 / owl # t o p D a t a P r o p e r t y −−>
171

<owl:DatatypeProperty r d f : a b o u t="&owl ; topDataProperty "/>

176 < !−−
/ /
/ /
/ / C l a s s e s
/ /

181 /
−−>

186

< !−− h t t p : / /www. b l a c k w h a l e . a t / o n t o l o g i e s / 2 0 1 0 / 0 6 / common_sense . r d f #←↩
D i g i t a l O b j e c t −−>

<owl :Class r d f : a b o u t=" h t t p : //www. blackwhale . a t/ o n t o l o g i e s /2010/06/←↩
common_sense . rdf # D i g i t a l O b j e c t ">
< r d f s : l a b e l xml:lang=" en "> d i g i t a l o b j e c t </ r d f s : l a b e l >

191 <rdfs : subClassOf r d f : r e s o u r c e ="&f o a f ; Document "/>
<rdfs : subClassOf>

< o w l : R e s t r i c t i o n >
<owl:onProperty r d f : r e s o u r c e ="&dc ; t i t l e "/>
<owl:minCardinal i ty r d f : d a t a t y p e ="&xsd ;←↩

nonNegativeInteger ">1</owl:minCardinal i ty>
196 </ o w l : R e s t r i c t i o n >

</rdfs : subClassOf>
<rdfs : subClassOf>

< o w l : R e s t r i c t i o n >
<owl:onProperty r d f : r e s o u r c e ="&f o a f ; maker "/>

201 <owl:minCardinal i ty r d f : d a t a t y p e ="&xsd ;←↩
nonNegativeInteger ">1</owl:minCardinal i ty>

</ o w l : R e s t r i c t i o n >
</rdfs : subClassOf>

134 APPENDIX B. EXPERIMENT SOURCES

<rdfs : subClassOf>
< o w l : R e s t r i c t i o n >

206 <owl:onProperty r d f : r e s o u r c e ="&f o a f ; maker "/>
<owl:al lValuesFrom r d f : r e s o u r c e =" h t t p : //www. blackwhale .←↩

a t/ o n t o l o g i e s /2010/06/common_sense . rdf # Person "/>
</ o w l : R e s t r i c t i o n >

</rdfs : subClassOf>
<rdfs:comment xml:lang=" en ">The b a s i c uni t of information . </←↩

rdfs:comment>
211 </owl :Class>

< !−− h t t p : / /www. b l a c k w h a l e . a t / o n t o l o g i e s / 2 0 1 0 / 0 6 / common_sense . r d f #←↩
E x p e r t i s e F a c t o r −−>

216

<owl :Class r d f : a b o u t=" h t t p : //www. blackwhale . a t/ o n t o l o g i e s /2010/06/←↩
common_sense . rdf # E x p e r t i s e F a c t o r "/>

221 < !−− h t t p : / /www. b l a c k w h a l e . a t / o n t o l o g i e s / 2 0 1 0 / 0 6 / common_sense . r d f #←↩
Group −−>

<owl :Class r d f : a b o u t=" h t t p : //www. blackwhale . a t/ o n t o l o g i e s /2010/06/←↩
common_sense . rdf #Group ">
<owl :equiva lentClass r d f : r e s o u r c e ="&f o a f ; Group "/>
<rdfs:comment xml:lang=" en ">The Group provides an ←↩

o r g a n i z a t i o n a l mechanism to aggregate mult ip le Persons in a ←↩
Team</rdfs:comment>

226 </owl :Class>

< !−− h t t p : / /www. b l a c k w h a l e . a t / o n t o l o g i e s / 2 0 1 0 / 0 6 / common_sense . r d f #←↩
I n t e r e s t F a c t o r −−>

231

<owl :Class r d f : a b o u t=" h t t p : //www. blackwhale . a t/ o n t o l o g i e s /2010/06/←↩
common_sense . rdf # I n t e r e s t F a c t o r "/>

236 < !−− h t t p : / /www. b l a c k w h a l e . a t / o n t o l o g i e s / 2 0 1 0 / 0 6 / common_sense . r d f #←↩
Person −−>

<owl :Class r d f : a b o u t=" h t t p : //www. blackwhale . a t/ o n t o l o g i e s /2010/06/←↩
common_sense . rdf # Person ">
<owl :equiva lentClass r d f : r e s o u r c e ="&f o a f ; Person "/>
<rdfs:comment xml:lang=" en ">A person i s e i t h e r d i r e c t l y ←↩

involved in the c r e a t i o n of d i g i t a l o b j e c t s , or , i s only ←↩
a s s o c i a t e d to DOs due to e x i s t i n g i n t e r e s t s . </rdfs:comment>

B.1. DATA MODEL ONTOLOGY 135

241 </owl :Class>

< !−− h t t p : / /www. b l a c k w h a l e . a t / o n t o l o g i e s / 2 0 1 0 / 0 6 / common_sense . r d f #←↩
T o p i c E x p e r t i s e −−>

246

<owl :Class r d f : a b o u t=" h t t p : //www. blackwhale . a t/ o n t o l o g i e s /2010/06/←↩
common_sense . rdf # TopicExper t i se ">
<rdfs : subClassOf>

< o w l : R e s t r i c t i o n >
<owl:onProperty r d f : r e s o u r c e =" h t t p : //www. blackwhale . a t/←↩

o n t o l o g i e s /2010/06/common_sense . rdf # e x p e r t i s e F a c t o r "←↩
/>

251 < o w l : c a r d i n a l i t y r d f : d a t a t y p e ="&xsd ; nonNegativeInteger "←↩
>1</ o w l : c a r d i n a l i t y >

</ o w l : R e s t r i c t i o n >
</rdfs : subClassOf>

</owl :Class>

256

< !−− h t t p : / /www. b l a c k w h a l e . a t / o n t o l o g i e s / 2 0 1 0 / 0 6 / common_sense . r d f #←↩
T o p i c I n t e r e s t −−>

<owl :Class r d f : a b o u t=" h t t p : //www. blackwhale . a t/ o n t o l o g i e s /2010/06/←↩
common_sense . rdf # T o p i c I n t e r e s t ">

261 <rdfs : subClassOf>
< o w l : R e s t r i c t i o n >

<owl:onProperty r d f : r e s o u r c e =" h t t p : //www. blackwhale . a t/←↩
o n t o l o g i e s /2010/06/common_sense . rdf # i n t e r e s t F a c t o r "/←↩
>

< o w l : c a r d i n a l i t y r d f : d a t a t y p e ="&xsd ; nonNegativeInteger "←↩
>1</ o w l : c a r d i n a l i t y >

</ o w l : R e s t r i c t i o n >
266 </rdfs : subClassOf>

</owl :Class>

271 < !−− h t t p : / /www. w3 . o rg / 2 0 0 2 / 0 7 / owl # Thing −−>

<owl :Class r d f : a b o u t="&owl ; Thing "/>

276

< !−− h t t p : / / xmlns . com / f o a f / 0 . 1 # Document −−>

<owl :Class r d f : a b o u t="&f o a f ; Document "/>

281

136 APPENDIX B. EXPERIMENT SOURCES

< !−− h t t p : / / xmlns . com / f o a f / 0 . 1 # Group −−>

<owl :Class r d f : a b o u t="&f o a f ; Group "/>
286

< !−− h t t p : / / xmlns . com / f o a f / 0 . 1 # Person −−>

291 <owl :Class r d f : a b o u t="&f o a f ; Person "/>
</rdf:RDF>

Listing B.1: Automatic Gazetteer List Generator

B.2 Automatic Gazetteer List Generator

1 # ! / usr / b in / env ruby −rubygems
2

begin
requi re ’ rdf ’
requi re ’ rdf/raptor ’
requi re ’ ac t ive_support ’

7 rescue LoadError
puts "One or more of the required gems could not be found ! "
puts " I n s t a l l required gems using\n\tgem i n s t a l l rdf rdf−raptor ←↩

ac t ive_support "
puts " Also , p lease make sure to i n s t a l l the ‘ raptor ‘ RDF parser . "
e x i t

12 end

dirname = F i l e . j o i n (F i l e . dirname (__FILE__) , " . . " , "SWEET")
path = F i l e . j o i n (dirname , " * . owl ")

17 $output_dir = output_dir = F i l e . j o i n (F i l e . dirname (__FILE__) , "←↩
g a z e t t e e r _ f i l e s ")

Dir . mkdir (output_dir) unless F i l e . e x i s t s ? (output_dir)

def f i n d _ s u b c l a s s e s _ o f (graph , c l a s s _ u r i)
s u b c l a s s e s = []

22 graph . query ([nil , RDF : : RDFS . subClassOf , c l a s s _ u r i]) do |stmt|
p r i n t " . " ; STDOUT. f l u s h
s u b c l a s s e s << stmt . s u b j e c t
s u b c l a s s e s << f i n d _ i n s t a n c e s _ o f (graph , stmt . s u b j e c t)
s u b c l a s s e s += f i n d _ s u b c l a s s e s _ o f (graph , stmt . s u b j e c t)

27 end
s u b c l a s s e s

end

B.2. AUTOMATIC GAZETTEER LIST GENERATOR 137

def f i n d _ a l l _ s u b c l a s s e s _ o f (graphs , c l a s s _ u r i)
32 graphs . c o l l e c t do |graph|

f i n d _ s u b c l a s s e s _ o f (graph , c l a s s _ u r i)
end . f l a t t e n . compact

end

37 def f i n d _ i n s t a n c e s _ o f (graph , c l a s s _ u r i)
graph . query ([nil , RDF. type , c l a s s _ u r i]) . c o l l e c t (&: s u b j e c t)

end

42 def load_graphs (path , format = : rdfxml)
Dir [path] . c o l l e c t do | f i l e |

RDF : : Graph . load (f i l e , : format => format)
end . compact

end
47

def f i l l _ l i s t _ f o r (concept , output_dir = $output_dir)
concept_name = concept . to_s . s p l i t (" # ") . l a s t
l i s t _ f i l e _ n a m e = concept_name . underscore + " _ l i s t "

52

For d e m o n s t r a t i o n purpos e s , add on ly a humanized v e r s i o n o f t h e ←↩
c o n c e p t

name t o t h e l i s t f i l e .
humanized_name = concept_name . underscore . humanize

57 puts " Wil l add ’ # { humanized_name } ’ to # { l i s t _ f i l e _ n a m e } "
F i l e . open (F i l e . j o i n (output_dir , l i s t _ f i l e _ n a m e) , "w") do | f i l e |

f i l e . puts humanized_name
end

62 l i s t _ f i l e _ n a m e
end

def write_mapping_def ini t ions (mapping_definit ions , output_dir = ←↩
$output_dir)

F i l e . open (F i l e . j o i n (output_dir , " mapping_definit ions . def ") , "w") do |←↩
f i l e |

67 f i l e . puts mapping_definit ions . j o i n ("\n")
end

end

P h y s i c a l phenomena u r l :
72 # h t t p : / / s w e e t . j p l . nasa . gov / 2 . 0 / phys . owl # Phys i ca lPhenomena

sweet_base_uri = " ht tp :// sweet . j p l . nasa . gov /2 .0 "
b a s e _ c l a s s e s = [

RDF : : URI . new(" # { sweet_base_uri }/ phys . owl#PhysicalPhenomena ") ,
RDF : : URI . new(" # { sweet_base_uri }/ a s t r o P l a n e t . owl# PlanetaryRealm ")

77]

138 APPENDIX B. EXPERIMENT SOURCES

puts " Loading Ontology . . . "
graphs = load_graphs (path)

82 s u b c l a s s e s = b a s e _ c l a s s e s . c o l l e c t do | b a s e _ c l a s s |
puts " Finding a l l s u b c l a s s e s of # { b a s e _ c l a s s } . . . "
f i n d _ a l l _ s u b c l a s s e s _ o f (graphs , b a s e _ c l a s s)

end . f l a t t e n . compact
puts

87

puts " Generating g a z e t t e e r l i s t f o r each i d e n t i f i e d concept . . . "
mapping_definit ions = []
s u b c l a s s e s . each do |concept|

F i l l G a z e t t e e r L i s t
92 l i s t _ f i l e _ n a m e = f i l l _ l i s t _ f o r (concept)

Entry in t h e mapping d e f i n i t i o n :
< l i s t _ f i l e _ n a m e >: < c o n c e p t _ u r i >
mapping_definit ions << " #{ l i s t _ f i l e _ n a m e } : # { concept . to_s . gsub (" # " , ←↩

" : ") }"
97 end

puts " Writing Mapping d e f i n i t o n s . . . "
wri te_mapping_def ini t ions (mapping_definit ions)

Listing B.2: Automatic Gazetteer List Generator

B.3 GATE Batch Process Wrapper

1 / *
* Gate Document Batch P r o c e s s o r

*
* Adapted from h t t p : / / d o i o p . com / Gat eBa t chProc e s sApp . j a v a

5 * /
import gate . Document ;
import gate . Corpus ;
import gate . CorpusControl ler ;
import gate . AnnotationSet ;

10 import gate . Annotation ;
import gate . Gate ;
import gate . Factory ;
import gate . u t i l . * ;
import gate . u t i l . p e r s i s t e n c e . PersistenceManager ;

15

import org . openrdf . OpenRDFException ;
import org . openrdf . model . URI ;
import org . openrdf . model . ValueFactory ;

20 import org . openrdf . model . vocabulary . RDF;

B.3. GATE BATCH PROCESS WRAPPER 139

import org . openrdf . model . vocabulary . RDFS ;
import org . openrdf . r e p o s i t o r y . Repository ;
import org . openrdf . r e p o s i t o r y . RepositoryConnection ;
import org . openrdf . r e p o s i t o r y . ht tp . HTTPRepository ;

25

import j ava . u t i l . Se t ;
import j ava . u t i l . HashSet ;
import j ava . u t i l . L i s t ;

30 import j ava . u t i l . ArrayLis t ;
import j ava . u t i l . I t e r a t o r ;

import j ava . io . F i l e ;
import j ava . io . FileOutputStream ;

35 import j ava . io . BufferedOutputStream ;
import j ava . io . OutputStreamWriter ;
import j ava . io . F i leReader ;
import j ava . io . BufferedReader ;

40

/ * *
* Th i s c l a s s l o a d s a GATE a p p l i c a t i o n and runs i t a g a i n s t t h e p r o v i d e d←↩

f i l e s .

* /
public c l a s s BatchProcessApp {

45 public s t a t i c void main (S t r i n g [] args) throws Exception {
parseCommandLine (args) ;

/ / i n i t i a l i s e GATE − t h i s must be done b e f o r e c a l l i n g any GATE APIs
Gate . i n i t () ;

50

Repository myRepository = new HTTPRepository (sesameServer , ←↩
repos i toryID) ;

myRepository . i n i t i a l i z e () ;

ValueFactory f = myRepository . getValueFactory () ;
55

/ / l o a d t h e s a v e d a p p l i c a t i o n
CorpusControl ler a p p l i c a t i o n =

(CorpusControl ler) PersistenceManager . loadObjectFromFile (gappFile)←↩
;

60

Corpus corpus = Factory . newCorpus (" BatchProcessApp Corpus ") ;
a p p l i c a t i o n . setCorpus (corpus) ;

for (i n t i = f i r s t F i l e ; i < args . length ; i ++) {
65 F i l e i d F i l e = new F i l e (args [i]) ;

F i l e docF i le = new F i l e (workingDir + "/" +
new BufferedReader (new Fi leReader (i d F i l e)) .←↩

readLine ()) ;

140 APPENDIX B. EXPERIMENT SOURCES

System . out . p r i n t (" Process ing document " + docFi le + " . . . ") ;
Document doc = null ;

70 t r y {
doc = Factory . newDocument (docF i le . toURI () . toURL () , encoding) ;

} catch (Exception e) {
System . out . p r i n t l n ("FAILED . ") ;
continue ;

75 }

/ / Add t h e document t o t h e corpus , run t h e a p p l i c a t i o n , and ←↩
f i n a l l y

/ / remove t h e document from t h e c o r p u s t o p r e p a r e i t f o r t h e nex t←↩
run .

corpus . add (doc) ;
80 a p p l i c a t i o n . execute () ;

corpus . c l e a r () ;

S t r i n g docXMLString = null ;

85 System . out . p r i n t l n (" Annotations : " + doc . getAnnotat ions (" onto ") .←↩
t o S t r i n g ()) ;

/ / S t o r e a l l g e n e r a t e d A n n o t a t i o n s in t h e Sesame RDF s t o r e .
for (Annotation a : doc . getAnnotat ions (" onto ")) {

URI concept = f . createURI (a . ge tFea tures () . get (" ontology ") +" # "+a←↩
. ge tFea tures () . get (" c l a s s ")) ;

90 URI document = f . createURI (docF i le . g e t C a n o n i c a l F i l e () . toURI () .←↩
toURL () . t o S t r i n g ()) ;

URI t o p i c = f . createURI (" ht tp :// xmlns . com/ f o a f /0 .1/ primaryTopic←↩
") ;

t r y {
RepositoryConnection con = myRepository . getConnection () ;

95

t r y {
con . add (document , topic , concept) ;

} f i n a l l y {
con . c l o s e () ;

100 }
} catch (OpenRDFException e) {

/ / h a n d l e e x c e p t i o n
}

}
105

Factory . deleteResource (doc) ;

System . out . p r i n t l n (" done ") ;
}

110

System . out . p r i n t l n (" Al l done ") ;
}

B.3. GATE BATCH PROCESS WRAPPER 141

115 private s t a t i c void parseCommandLine (S t r i n g [] args) throws Exception ←↩
{

System . out . p r i n t l n (" Process ing : " + args . t o S t r i n g ()) ;
i n t i ;
for (i = 0 ; i < args . length && args [i] . charAt (0) == ’− ’ ; i ++) {

switch (args [i] . charAt (1)) {
120 case ’ g ’ :

gappFile = new F i l e (args [++ i]) ;
break ;

case ’ s ’ :
sesameServer = args [++ i] ;

125 System . out . p r i n t l n (" Sesame Server : " + sesameServer) ;
break ;

case ’ r ’ :
repos i toryID = args [++ i] ;
System . out . p r i n t l n (" Repository ID : " + repos i toryID) ;

130 break ;
case ’w’ :

workingDir = args [++ i] ;
System . out . p r i n t l n (" Working Dir : " + workingDir) ;
break ;

135 default :
System . out . p r i n t l n (" Unrecognized option " + args [i]) ;
usage () ;

}
}

140

f i r s t F i l e = i ;

i f (gappFile == null) {
System . e r r . p r i n t l n ("No . gapp f i l e s p e c i f i e d ") ;

145 usage () ;
}

}

private s t a t i c f i n a l void usage () {
150 System . e r r . p r i n t l n (

" Usage :\n" +
" java BatchProcessApp −g <gappFile > f i l e 1 f i l e 2 . . . f i l e N \n" +
"\n" +
"−g gappFile\n" +

155 "−r r e p o s i t o r y I d \n" +
"−s sesameServer\n" +
"−w workingDir\n"

) ;

160 System . e x i t (1) ;
}

142 APPENDIX B. EXPERIMENT SOURCES

private s t a t i c i n t f i r s t F i l e = 0 ;
private s t a t i c F i l e gappFile = null ;

165 private s t a t i c S t r i n g encoding = null ;
/ / Sesame c o n f i g u r a t i o n
private s t a t i c S t r i n g sesameServer = " ht tp :// l o c a l h o s t :8080/ openrdf−←↩

sesame/" ;
private s t a t i c S t r i n g repos i toryID = "ESA" ;
private s t a t i c S t r i n g workingDir = "/tmp/esa " ;

170 }

Listing B.3: gate Batch Process Wrapper

B.4 GATE Application Skeleton for Semantic Extraction

1 <gate . u t i l . p e r s i s t e n c e . GateApplicat ion>
< a p p l i c a t i o n c l a s s =" gate . u t i l . p e r s i s t e n c e .←↩

S e r i a l A n a l y s e r C o n t r o l l e r P e r s i s t e n c e ">
< p r L i s t c l a s s =" gate . u t i l . p e r s i s t e n c e . C o l l e c t i o n P e r s i s t e n c e ">

< l o c a l L i s t >
5 <gate . u t i l . p e r s i s t e n c e . LanguageAnalyserPersistence>

<runtimeParams c l a s s =" gate . u t i l . p e r s i s t e n c e . MapPersistence ">
<mapType>gate . u t i l . SimpleFeatureMapImpl</mapType>
<localMap>

<entry>
10 < s t r i n g >annotationSetName</ s t r i n g >

< s t r i n g >onto</ s t r i n g >
</entry>
<entry>

< s t r i n g >document</ s t r i n g >
15 <n u l l/>

</entry>
</localMap>

</runtimeParams>
<resourceType>gate . c r e o l e . g a z e t t e e r . OntoGazetteerImpl</←↩

resourceType>
20 <resourceName>OntoGazetteer_000A8</resourceName>

<ini tParams c l a s s =" gate . u t i l . p e r s i s t e n c e . MapPersistence ">
<mapType>gate . u t i l . SimpleFeatureMapImpl</mapType>
<localMap>

<entry>
25 < s t r i n g >l is tsURL</ s t r i n g >

<gate . u t i l . p e r s i s t e n c e . PersistenceManager−URLHolder>
< u r l S t r i n g >$ r e l p a t h $ g a z _ d e f i n i t i o n s /←↩

mapping_definit ions . def</ u r l S t r i n g >
</gate . u t i l . p e r s i s t e n c e . PersistenceManager−URLHolder>

</entry>
30 <entry>

< s t r i n g >encoding</ s t r i n g >

B.5. ESA DOCUMENT IMPORTER 143

< s t r i n g >UTF−8</ s t r i n g >
</entry>
<entry>

35 < s t r i n g > c a s e S e n s i t i v e </ s t r i n g >
<boolean>true</boolean>

</entry>
<entry>

< s t r i n g >gazetteerName</ s t r i n g >
40 < s t r i n g >com . o n t o t e x t . gate . g a z e t t e e r . HashGazetteer</←↩

s t r i n g >
</entry>
<entry>

< s t r i n g >mappingURL</ s t r i n g >
<gate . u t i l . p e r s i s t e n c e . PersistenceManager−URLHolder>

45 < u r l S t r i n g >$ r e l p a t h $ g a z _ d e f i n i t i o n s /←↩
mapping_definit ions . def</ u r l S t r i n g >

</gate . u t i l . p e r s i s t e n c e . PersistenceManager−URLHolder>
</entry>

</localMap>
</ini tParams>

50 < f e a t u r e s c l a s s =" gate . u t i l . p e r s i s t e n c e . MapPersistence ">
<mapType>gate . u t i l . SimpleFeatureMapImpl</mapType>
<localMap/>

</ f e a t u r e s >
</gate . u t i l . p e r s i s t e n c e . LanguageAnalyserPersistence>

55 </ l o c a l L i s t >
<c o l l e c t i o n T y p e>java . u t i l . ArrayLis t</c o l l e c t i o n T y p e>

</ p r L i s t >
<resourceType>gate . c r e o l e . S e r i a l A n a l y s e r C o n t r o l l e r </resourceType>
<resourceName>ANNIE</resourceName>

60 <ini tParams c l a s s =" gate . u t i l . p e r s i s t e n c e . MapPersistence ">
<mapType>gate . u t i l . SimpleFeatureMapImpl</mapType>
<localMap/>

</ini tParams>
< f e a t u r e s c l a s s =" gate . u t i l . p e r s i s t e n c e . MapPersistence ">

65 <mapType>gate . u t i l . SimpleFeatureMapImpl</mapType>
<localMap/>

</ f e a t u r e s >
</ a p p l i c a t i o n >

</gate . u t i l . p e r s i s t e n c e . GateApplicat ion>

Listing B.4: gate Application Skeleton for Semantic Extraction

B.5 ESA Document Importer

1 # r e q u i r e ’ a p p s c r i p t ’
requi re ’ nokogir i ’
r equi re ’ open−u r i ’

144 APPENDIX B. EXPERIMENT SOURCES

4

module Commonsense
module Importer

c l a s s EsaImport
def s e l f . import

9

pla inUrl = " ht tp ://www. esa . i n t /SPECIALS/GSP/"
download = []
[

14 " ht tp ://www. esa . i n t /SPECIALS/GSP/SEMBHQYO4HD_0 . html " ,
" ht tp ://www. esa . i n t /SPECIALS/GSP/SEMJIQYO4HD_0 . html " ,
" ht tp ://www. esa . i n t /SPECIALS/GSP/SEMMHQYO4HD_0. html "

] . each do |u r l|
doc = Nokogiri : :HTML(open (u r l))

19

Get a l l l i n k s

l i n k s = doc . xpath ("//a ")
24 l i n k s . each do | l i n k |

i f l i n k . content =~ /^\d { 2 , } \ / . { 3 , } /
put s "\n #{ l i n k . c o n t e n t } : # { l i n k [’ h r e f ’] } "
summary = Nokogiri : :HTML(open (" # { p la inUrl } # { l i n k [’ hre f ’] }←↩

"))
summary_links = summary . xpath ("//a ")

29 summary_links . each do | s l i n k |

i f s l i n k . content == " Execut ive summary"
put s "\n #{ s l i n k . c o n t e n t } : # { s l i n k [’ h r e f ’] } "
download << s l i n k [’ hre f ’]

34 end
end

end
end

39 end

download . each do |download|
system (" cd #{ F i l e . dirname (__FILE__) }/ esa_corpus && c u r l −O ←↩

’ # { download } ’ ")

44 end

end
end

end
49 end

Listing B.5: ESA Document Importer

B.6. ESA LOAD SIMULATOR 145

B.6 ESA Load Simulator

1 module Commonsense
module Importer

c l a s s EsaLoadSimulator
def s e l f . import

6 source_dir = F i l e . j o i n (F i l e . dirname (__FILE__) , " esa_corpus ")
$ d e s t i n a t i o n _ d i r = F i l e . j o i n (F i l e . dirname (__FILE__) , "←↩

esa_load_corpus ")
source_path = F i l e . j o i n (source_dir , " * . pdf ")

d u p l i c a t i o n _ f a c t o r = 100

11

Dir [source_path] . each do | f i l e |
(1 . . d u p l i c a t i o n _ f a c t o r) . each do | i |

write_mapping_f i le (i . to_s+ F i l e . basename (f i l e) , f i l e)
end

16 end

end

def s e l f . wri te_mapping_f i le (mapped_file_name , fi le_name , ←↩
d e s t i n a t i o n _ d i r = $ d e s t i n a t i o n _ d i r)

21 F i l e . open (F i l e . j o i n (d e s t i n a t i o n _ d i r , " # { mapped_file_name } . t x t ")←↩
, "w") do | f i l e |

f i l e . puts f i le_name
end

end

26 end
end

end

Listing B.6: ESA Load Simulator

B.7 Rest Server / Search Module

1 requi re ’ s i n a t r a ’
2 requi re F i l e . j o i n (F i l e . dirname (__FILE__) , ’ commonsense ’)

inc lude Commonsense : : Core

c l a s s R e s t S e r v e r < S i n a t r a : : A p p l i c a t i o n
7

get %r { ^ / (? : s t a t s) ? (? : \ . ([\w] +)) ? $ } do |format|
format ||= " j son "
{

146 APPENDIX B. EXPERIMENT SOURCES

" id " => " common_sense " , " vers ion " => " 1 " ,
12 " s t a t s " => {

" documents " => Document . count ,
" tags " => Tag . count ,
" users " => User . count

}
17 } . send (" to_ #{ format } ")

end

get %r {^/documents (? : \ . ([\w] +)) ? $ } do |format|
format ||= " j son "

22 Document . a l l . send (" to_ #{ format } " , : methods => [: summary , : doc_type])
end

post %r {^/documents (? : \ . ([\w] +)) ? $ } do |format|
format ||= " j son "

27 d = Document . new(
: name => params [: name] ,
: document => params [: document] ,
: c r e a t e d _ a t => (DateTime . parse (params [: c r e a t e d _ a t]) rescue n i l)

)
32 i f d . save

" ok "
e lse

puts d . e r r o r s . fu l l_messages . i n s p e c t
h a l t 409 , d . e r r o r s . t o _ j s o n

37 end
end

get ’/documents/search /: query ’ do
u r i = Commonsense : : Config [: keyword_index]

42

response = eval (R e s t C l i e n t . get (u r i+" ?wt=ruby&f l =id+ t i t l e +score+←↩
content_type&hl=true&hl . f l = a t t r _ c o n t e n t&q=#{CGI . escape params [:←↩
query] } ") . body)

documents = response [" response "] [" docs "] . map do |doc|
doc . merge ({

: sn ippets => response [" h i g h l i g h t i n g "] [doc [" id "]] . c o l l e c t { |k , v| ←↩
v } . f l a t t e n ,

47 : summary => response [" h i g h l i g h t i n g "] [doc [" id "]] . c o l l e c t { |k , v| v←↩
} . j o i n (" . . . ") ,

: doc_type => doc [" content_type "] . f i r s t ,
: name => doc [" t i t l e "] && doc [" t i t l e "] . f i r s t || doc [" id "] ,
: u r i => doc [" id "]

})
52 end

documents . t o _ j s o n
end

get ’/documents /: id/tempora l ly_re la ted ’ do
57 d = Document . f ind (params [: id])

B.7. REST SERVER / SEARCH MODULE 147

d ||= Document . f ind_by_uri (params [: id])
params [: dt] ||= 5

dt = params [: dt] . t o _ i . days
from = d . c r e a t e d _ a t − dt

62 to = d . c r e a t e d _ a t + dt
opt ions = { : condi t ions => { : c r e a t e d _ a t => from . . to } }
dt_documents = Document . a l l (opt ions . merge (: l i m i t => 50))
dt_documents . t o _ j s o n (: methods => [: summary , : doc_type])

end
67

get %r {^/documents/by_name (? : \ . ([\w] +)) ? } do |format|
format ||= " j son "
Document . a l l (

: condi t ions => [’name LIKE ? ’ , " %#{params [: name]}% "] ,
72 : l i m i t => 25

) . t o _ j s o n (: methods => [: summary , : doc_type])
end

get %r {^/documents/by_uri (? : \ . ([\w] +)) ? } do |format|
77 format ||= " j son "

Document . a l l (
: condi t ions => [’ u r i LIKE ? ’ , " %#{params [: u r i]}% "] ,
: l i m i t => 25

) . t o _ j s o n (: methods => [: summary , : doc_type])
82 end

get ’/documents /: id ’ do
d = Document . f ind (params [: id])
d ||= Document . f ind_by_uri (params [: id])

87 methods = [: summary , : doc_type]
methods << : document i f params [: include_doc] == " t rue "
JSON . parse (d . t o _ j s o n (

: methods => methods ,
: inc lude => {

92 : outgoing_document_relat ions => {
: inc lude => [: d e s t i n a t i o n , : r a t i n g s]

} ,
: r a t i n g s => { }

}
97)) . merge ! (

: related_documents => d . r e l a t i o n s ,
: tags => d . tags

) . t o _ j s o n
end

102

post %r {^/ tags (? : \ . ([\w] +)) ? $ } do |format|
i f t = Tag . c r e a t e (: name => params [: name])

" ok "
e lse

107 h a l t 405 , t . e r r o r s . t o _ j s o n
end

148 APPENDIX B. EXPERIMENT SOURCES

end

get ’/tags/by_name /:name ’ do
112 Tag . a l l (: condi t ions => [’name LIKE ? ’ , " %#{params [: name]}% "]) . t o _ j s o n

end

get ’/tags/documents ’ do
u r i = Commonsense : : Config [: r d f _ s t o r e]

117

query = %Q{
PREFIX f o a f : < ht tp :// xmlns . com/ f o a f /0.1/ >
PREFIX r d f s : < ht tp ://www. w3 . org /2000/01/ rdf−schema#>

122 SELECT DISTINCT ?document WHERE {
?document f o a f : primaryTopic ? t o p i c .
? t o p i c r d f s : subClassOf <#{params [: id] } >

}
}

127

request = R e s t C l i e n t . get (u r i+" ? query="+CGI . escape (query) , : accept => ←↩
" a p p l i c a t i o n /sparql−r e s u l t s + j son ")

response = JSON . parse (request . body)
puts response . i n s p e c t
response [" r e s u l t s "] [" bindings "] . c o l l e c t { |b|

132 { : id => b [" document "] [" value "] }
} . t o _ j s o n

end

137 get %r {^/ tags (? : \ . ([\w] +)) ? } do |format|
u r i = Commonsense : : Config [: r d f _ s t o r e]

query = %q {
PREFIX rdf : < ht tp ://www. w3 . org/1999/02/22− rdf−syntax−ns#>

142 PREFIX r d f s : < ht tp ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX phys : < http :// sweet . j p l . nasa . gov/2 .0/ phys . owl#>
PREFIX f o a f : < ht tp :// xmlns . com/ f o a f /0.1/ >
PREFIX owl : < http ://www. w3 . org /2002/07/owl#>
PREFIX a s t r o P l a n e t : < ht tp :// sweet . j p l . nasa . gov/2 .0/ a s t r o P l a n e t . owl#>

147 PREFIX sesame : < http ://www. openrdf . org/schema/sesame#>

SELECT DISTINCT ? c l a s s ? d i r e c t s u p e r c l a s s WHERE {
? c l a s s sesame : directSubClassOf ? d i r e c t s u p e r c l a s s .
{ ? d i r e c t s u p e r c l a s s r d f s : subClassOf a s t r o P l a n e t : PlanetaryRealm } ←↩

UNION
152 { ? d i r e c t s u p e r c l a s s r d f s : subClassOf phys : PhysicalPhenomena }

}
}

request = R e s t C l i e n t . get (u r i+" ? query="+CGI . escape (query) , : accept => ←↩
" a p p l i c a t i o n /sparql−r e s u l t s + j son ")

B.7. REST SERVER / SEARCH MODULE 149

157 response = JSON . parse (request . body)
puts response . i n s p e c t
response [" r e s u l t s "] [" bindings "] . c o l l e c t { |b|

{ : name => b [" c l a s s "] [" value "] , : s u p e r c l a s s => b [" d i r e c t s u p e r c l a s s "←↩
] [" value "] }

} . t o _ j s o n
162 end

get %r {^/ document_relat ions (? : \ . ([\w] +)) ? $ } do |format|
format ||= " j son "

167 DocumentRelation . a l l . send (" to_ #{ format } ")
end

post %r {^/ document_relat ions (? : \ . ([\w] +)) ? $ } do |format|
format ||= " j son "

172 begin
DocumentRelation . c r ea te_ und i re c te d (Document . f ind (params [: one]) , ←↩

Document . f ind (params [: two]))
" ok "

rescue
h a l t 409 , $! . i n s p e c t

177 end
end

get %r {^/ tag_document_relat ions (? : \ . ([\w] +)) ? $ } do |format|
format ||= " j son "

182 TagDocumentRelation . a l l . send (" to_ #{ format } ")
end

post %r {^/ tag_document_relat ions (? : \ . ([\w] +)) ? $ } do |format|
format ||= " j son "

187 i f r = TagDocumentRelation . c r e a t e (: tag => Tag . f ind (params [: tag]) , :←↩
document => Document . f ind (params [: document]))

" ok "
e lse

h a l t 409 , r . e r r o r s . send (" to_ #{ format } ")
end

192 end

get ’/ t a g _ r e l a t i o n s ’ do
TagRelat ion . a l l . t o _ j s o n

end
197

post ’/ t a g _ r e l a t i o n s ’ do
i f r = TagRelat ion . c r ea t e_u ndi rec ted (Tag . f ind (params [: one]) , Tag . f ind←↩

(params [: two]))
" ok "

e lse
202 h a l t 409 , r . e r r o r s . t o _ j s o n

end

150 APPENDIX B. EXPERIMENT SOURCES

end

get %r {^/ r a t i n g s (? : \ . ([\w] +)) ? $ } do |format|
207 format ||= " j son "

Rating . a l l . send (" to_ #{ format } ")
end

post %r {^/ r a t i n g s (? : \ . ([\w] +)) ? $ } do |format|
212 format ||= " j son "

r = Rating . new (: name => params [: name] , : value => params [: value] , :←↩
r a t e a b l e _ i d => params [: r a t e a b l e _ i d] , : r a t e a b l e _ t y p e => params [:←↩
r a t e a b l e _ t y p e])

i f r . save
" ok "

e lse
217 h a l t 409 , r . e r r o r s . send (" to_ #{ format } ")

end
end

get %r {^/ users (? : \ . ([\w] +)) ? $ } do |format|
222 format ||= " j son "

User . a l l . send (" to_ #{ format } ")
end

get %r {^/ users/by_name (? : \ . ([\w] +)) ? $ } do |format|
227 format ||= " j son "

name = params [: name] . s p l i t
condi t ions = { : f i r s t_name => name . f i r s t , : last_name => name . l a s t }
User . a l l (: condi t ions => condi t ions) . send (" to_ #{ format } ")

end
232

get %r {^/ users /(\d+) (? : \ . ([\w] +)) ? $ } do |user_id , format|
format ||= " j son "
User . f ind (user_id) . send (" to_ #{ format } ")

end
237

get %r {^/ users /(\d+)/documents (? : \ . ([\w] +)) ? $ } do |user_id , format|
format ||= " j son "
User . f ind (user_id) . documents . send (" to_ #{ format } " , : methods => [:←↩

summary , : doc_type])
end

242

get ’/search/time ’ do
from = Date . parse (params [: from])
to = Date . parse (params [: to])

247 options = { : condi t ions => { : c r e a t e d _ a t => from . . to } }
{

: users => User . a l l (opt ions) ,
: documents => Document . a l l (opt ions) ,
: tags => Tag . a l l (opt ions) ,

B.7. REST SERVER / SEARCH MODULE 151

252 : document_relat ions => DocumentRelation . a l l ,
: t a g _ r e l a t i o n s => TagRelat ion . a l l ,
: tag_document_relat ions => TagDocumentRelation . a l l

}
end

257

get ’/graphs/documents ’ do
{

: documents => Document . a l l ,
262 : r e l a t i o n s => DocumentRelation . a l l

} . t o _ j s o n
end

get ’/graphs/tags ’ do
267 {

: tags => Tag . a l l ,
: r e l a t i o n s => TagRelat ion . a l l

} . t o _ j s o n
end

272

get ’/graphs/ f u l l ’ do
{

: users => User . a l l ,
: documents => Document . a l l ,

277 : t ags => Tag . a l l ,
: document_relat ions => DocumentRelation . a l l ,
: t a g _ r e l a t i o n s => TagRelat ion . a l l ,
: tag_document_relat ions => TagDocumentRelation . a l l

} . t o _ j s o n
282 end

get ’/graphs/tags/ t r e e /: id ’ do |tag_id|
tag = Tag . f ind (tag_id)

287

{
: id => tag . id ,
: name => tag . name ,
: ch i ldren => tag . documents . c o l l e c t {|d|

292 { : id => d . id , : name => d . name}
}

} . t o _ j s o n

end
297

end

Listing B.7: Rest Server / Search Module

Bibliography

[1] ESA, Statement of Work: Semantic Space Study, Reference = GSP-

10/001-04-B-01-SEM, Issue 1, Revision 0, Date: 10-12-2009. 2

[2] Spring web services, 2005–2010. http://static.springsource.

org/spring-ws/sites/1.5/. 5.3

[3] L Adamic and E Adar. How to search a social network. Social Networks,

Jan 2005. 2.2.6

[4] Adobe Systems Incorporated. Document management – Portable document

format – Part 1: PDF 1.7, 2008. 5.1.1

[5] Aduna B.V. User guide for sesame 2.3, chapter 7. sesame

console, 2010. http://www.openrdf.org/doc/sesame2/users/

ch07.html#section-console-repository-creation. A

[6] U Ai, L von Ahn, M Blum, and J Langford. Captcha: Using hard ai

problems for security. Proceedings of Eurocrypt, Jan 2003. 5.3.4

[7] B Aleman-Meza, U Bojārs, H Boley, J Breslin, M Mochol, L Nixon,

A Polleres, and A Zhdanova. Combining rdf vocabularies for expert

finding. The Semantic Web: Research and Applications, pages 235–250, 2007.

5.2.4

[8] Kemafor Anyanwu, Angela Maduko, and Amit Sheth. Semrank: ranking

complex relationship search results on the semantic web. In WWW ’05:

Proceedings of the 14th international conference on World Wide Web, pages

117–127, New York, NY, USA, 2005. ACM. 5.2.4

[9] W Arms. Digital libraries. books.google.com, Jan 2001. 2.2.1

[10] Ken Arnold, James Gosling, and David Holmes. Java(TM) Programming

Language, The (4th Edition). Addison-Wesley Professional, 2005. 5.3

153

http://static.springsource.org/spring-ws/sites/1.5/
http://static.springsource.org/spring-ws/sites/1.5/
http://www.openrdf.org/doc/sesame2/users/ch07.html##section-console-repository-creation
http://www.openrdf.org/doc/sesame2/users/ch07.html##section-console-repository-creation

154 BIBLIOGRAPHY

[11] G. Athanasopoulos, L. Candela, D. Castelli, P. Innocenti, Y. Ioannidis,

A. Katifori, A. Nika, G. Vullo, and S. Ross. DELOS digital library refer-

ence model. Jan 2010. 2.2.5, 2.2.5, 3.8

[12] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information

Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 1999. 2.2.6, 3.5.2, 4.1

[13] Keith Ballinger. .NET Web Services: Architecture and Implementation with

.NET. Pearson Education, 2002. 5.3

[14] Krisztian Balog, Leif Azzopardi, and Maarten de Rijke. Formal models

for expert finding in enterprise corpora. In SIGIR ’06: Proceedings of the

29th annual international ACM SIGIR conference on Research and development

in information retrieval, pages 43–50, New York, NY, USA, 2006. ACM.

5.1.1

[15] R Baraniuk, V Cevher, M Duarte, and C Hegde. Model-based compres-

sive sensing. preprint, Jan 2008. 7.2

[16] Philip A. Bernstein and Nathan Goodman. Multiversion concurrency

control—theory and algorithms. ACM Trans. Database Syst., 8(4):465–483,

1983. 5.2.1

[17] D. Bonino, F. Corno, L. Farinetti, and A. Bosca. Ontology driven semantic

search. 2004. 5.2.4

[18] Dejan Bosanac. Apache XML-RPC adapter for spring, March

2006. http://www.oreillynet.com/onjava/blog/2006/03/

apache_xmlrpc_adapter_for_spri.html. 5.3

[19] John G. Breslin, Stefan Decker, Andreas Harth, and Uldis Bojars.

Sioc: an approach to connect web-based communities. Int. J.

Web Based Communities, 2(2):133–142, 2006. 3.1.4

[20] D. Brickley and L. Miller. Foaf vocabulary specification 0.91. Jan 2007.

3.1.3

[21] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A

generic architecture for storing and querying rdf and rdf schema. The

Semantic Web — ISWC 2002, pages 54–68, Jan 2002. 3.3.1, 5.3.2

http://www.oreillynet.com/onjava/blog/2006/03/apache_xmlrpc_adapter_for_spri.html
http://www.oreillynet.com/onjava/blog/2006/03/apache_xmlrpc_adapter_for_spri.html

BIBLIOGRAPHY 155

[22] Mark H. Butler and James Rutherford. Distributed lucene: A distributed

free text index for hadoop. May 2008. http://www.hpl.hp.com/

techreports/2008/HPL-2008-64.pdf. 5.3.2

[23] D Byrne, C Murthy, S Shi, and C Shu. Lightweight directory access

protocol (ldap) directory server cache mechanism and method. US Patent

6,347,312, Jan 2002. 5.2.4

[24] Hsinchun Chen. Semantic research for digital libraries. D-Lib Magazine,

5(10), October 1999. 2

[25] Le Chen, Lei Zhang, Feng Jing, Ke-Feng Deng, and Wei-Ying Ma. Rank-

ing web objects from multiple communities. In CIKM ’06: Proceedings of

the 15th ACM international conference on Information and knowledge manage-

ment, pages 377–386, New York, NY, USA, 2006. ACM. 5.2.4

[26] S Cheung. Efficient video similarity measurement and search. Citeseer,

Jan 2002. 7.2

[27] Hai Leong Chieu and Hwee Tou Ng. Named entity recognition: a max-

imum entropy approach using global information. In Proceedings of the

19th international conference on Computational linguistics, pages 1–7, Mor-

ristown, NJ, USA, 2002. Association for Computational Linguistics. 5.1.1

[28] J Cugini, S Laskowski, and M Sebrechts. Design of 3d visualization of

search results: Evolution and evaluation. Proceedings of SPIE, 2000, Jan

2000. 7.2

[29] Steve Daly. Spring xmlrpcserviceexporter, February 2005.

http://blog.springsource.com/arjen/archives/2005/

02/12/spring-xmlrpcserviceexporter/. 5.3

[30] Fien De Meulder and Walter Daelemans. Memory-based named entity

recognition using unannotated data. In Proceedings of the seventh con-

ference on Natural language learning at HLT-NAACL 2003, pages 208–211,

Morristown, NJ, USA, 2003. Association for Computational Linguistics.

5.1.1

[31] Jeffrey Dean. Challenges in building large-scale information re-

trieval systems: invited talk. In Ricardo A. Baeza-Yates, Paolo

http://www.hpl.hp.com/techreports/2008/HPL-2008-64.pdf
http://www.hpl.hp.com/techreports/2008/HPL-2008-64.pdf
http://blog.springsource.com/arjen/archives/2005/02/12/spring-xmlrpcserviceexporter/
http://blog.springsource.com/arjen/archives/2005/02/12/spring-xmlrpcserviceexporter/

156 BIBLIOGRAPHY

Boldi, Berthier A. Ribeiro-Neto, and Berkant Barla Cambazoglu, edi-

tors, WSDM, page 1. ACM, 2009. http://research.google.com/

people/jeff/WSDM09-keynote.pdf. 1.1, 5.2.4

[32] Jeffrey Dean and Sanjay Ghemawat. Map reduce: Simplified data pro-

cessing on large clusters. Commun. ACM, 51(1):107–113, 2008. 3.7, 7.2

[33] H Dietze and M Schroeder. Goweb: a semantic search engine for the life

science web. BMC Bioinformatics, 10 Suppl 10, 2009. 2

[34] Edsger W. Dijkstra. The structure of the “the”-multiprogramming sys-

tem. In SOSP ’67: Proceedings of the first ACM symposium on Operating

System Principles, pages 10.1–10.6, New York, NY, USA, 1967. ACM. 5.2.1

[35] B Dom, I Eiron, A Cozzi, and Y Zhang. Graph-based ranking algorithms

for e-mail expertise analysis. Proceedings of the 8th ACM . . . , Jan 2003.

5.1.1, 7.2

[36] M Duarte, M Davenport, D Takhar, and J Laska. Single-pixel imaging via

compressive sampling. IEEE Signal Processing Magazine, Jan 2008. 7.2

[37] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank ag-

gregation methods for the web. In WWW ’01: Proceedings of the 10th

international conference on World Wide Web, pages 613–622, New York, NY,

USA, 2001. ACM. 5.2.4

[38] ECMA. ECMA-334: C# Language Specification. ECMA (European As-

sociation for Standardizing Information and Communication Systems),

Geneva, Switzerland, fourth edition, June 2006. 5.3

[39] ECMA. ECMA-376: Office Open XML File Formats. ECMA (European As-

sociation for Standardizing Information and Communication Systems),

Dec 2006. 5.1.1

[40] David Ellis and Ana Vasconcelos. Ranganathan and the net: using facet

analysis to search and organise the world wide web. Aslib proceedings,

51(1), Jan 1999. 3.5.2

[41] Hui Fang and ChengXiang Zhai. Probabilistic models for expert finding.

In ECIR’07: Proceedings of the 29th European conference on IR research, pages

418–430, Berlin, Heidelberg, 2007. Springer-Verlag. 5.1.1

http://research.google.com/people/jeff/WSDM09-keynote.pdf
http://research.google.com/people/jeff/WSDM09-keynote.pdf

BIBLIOGRAPHY 157

[42] Roy Thomas Fielding. Architectural styles and the design of network-based

software architectures. PhD thesis, 2000. Chair-Taylor, Richard N. 3.1, 5.2.1

[43] Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong Zhang. Named

entity recognition through classifier combination. In Proceedings of the

seventh conference on Natural language learning at HLT-NAACL 2003, pages

168–171, Morristown, NJ, USA, 2003. Association for Computational Lin-

guistics. 5.1.1

[44] R Gaizauskas and Y Wilks. Information extraction: Beyond document

retrieval. Journal of documentation, Jan 1998. 2.2.4

[45] Fausto Giunchiglia, Uladzimir Kharkevich, and Ilya Zaihrayeu. Concept

search. In ESWC 2009 Heraklion: Proceedings of the 6th European Semantic

Web Conference on The Semantic Web, pages 429–444, Berlin, Heidelberg,

2009. Springer-Verlag. 1.1

[46] Jim Gray. The transaction concept: virtues and limitations (invited pa-

per). In VLDB ’1981: Proceedings of the seventh international conference on

Very Large Data Bases, pages 144–154. VLDB Endowment, 1981. 5.2.1

[47] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jaques Moreau,

Henrik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon. SOAP ver-

sion 1.2 part 1: Messaging framework (second edition). 2007. http:

//www.w3.org/TR/soap12-part1/. 5.2.1

[48] James Hammerton. Named entity recognition with long short-term

memory. In Proceedings of the seventh conference on Natural language learn-

ing at HLT-NAACL 2003, pages 172–175, Morristown, NJ, USA, 2003. As-

sociation for Computational Linguistics. 5.1.1

[49] Jon Hartwick and Henri Barki. Explaining the role of user participation

in information system use. Manage. Sci., 40(4):440–465, 1994. 2.2.3

[50] Marti A. Hearst. Tilebars: visualization of term distribution information

in full text information access. In CHI ’95: Proceedings of the SIGCHI

conference on Human factors in computing systems, pages 59–66, New York,

NY, USA, 1995. ACM Press/Addison-Wesley Publishing Co. 2.2.7

http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/

158 BIBLIOGRAPHY

[51] Iris Hendrickx and Antal van den Bosch. Memory-based one-step

named-entity recognition: effects of seed list features, classifier stacking,

and unannotated data. In Proceedings of the seventh conference on Natural

language learning at HLT-NAACL 2003, pages 176–179, Morristown, NJ,

USA, 2003. Association for Computational Linguistics. 5.1.1

[52] I. Herman, G. Melancon, and M.S. Marshall. Graph visualization and

navigation in information visualization: A survey. Visualization and Com-

puter Graphics, IEEE Transactions on, 6(1):24 –43, jan-mar 2000. 5.2.6

[53] P Heymann and H Garcia-Molina. Can tagging organize human knowl-

edge? ilpubs.stanford.edu, Jan 2008. 5.2.5, 5.3.4

[54] M. Hildebrand, J. R. van Ossenbruggen, and L. Hardman. An Analy-

sis Of Search-Based User Interaction On The Semantic Web. Technical

Report INS-E0706, 2007. 3.5.2, 5.2.4, 5.2.6

[55] Christian H. Inzinger Schahram Dustdar Hong-Linh Truong, Johannes

M. Schleicher. Esa itt number rfq 3-13016/09/nl/cbi semantic space

study. Aug 2010. 1.4

[56] Andreas Hotho, Robert Jäschke, Christoph Schmitz, and Gerd Stumme.

Information retrieval in folksonomies: Search and ranking. In Proceedings

of the 3rd European Semantic Web Conference, volume 4011 of LNCS, pages

411–426, Budva, Montenegro, June 2006. Springer. 1.1

[57] ISO. ISO/IEC 26300:2006: Open Document Format for Office Applications

(OpenDocument) v1.0. 5.1.1

[58] ISO. ISO 15836:2009: The Dublin Core metadata element set. International

Organizations for Standardization, 2009. 3.1.2, 5.1.1

[59] Esther Kaufmann, Abraham Bernstein, and Renato Zumstein. Querix:

A natural language interface to query ontologies based on clarification

dialogs. In In: 5th ISWC, pages 980–981. Springer, 2006. 5.2.4

[60] Dan Klein, Joseph Smarr, Huy Nguyen, and Christopher D. Manning.

Named entity recognition with character-level models. In Proceedings of

the seventh conference on Natural language learning at HLT-NAACL 2003,

BIBLIOGRAPHY 159

pages 180–183, Morristown, NJ, USA, 2003. Association for Computa-

tional Linguistics. 5.1.1

[61] Jon Kleinberg. Authoritative sources in a hyperlinked environment. Jour-

nal of the ACM (JACM, 46(5), Sep 1999. 3.6

[62] S Kruk, M Cygan, A Gzella, and T Woroniecki. Jeromedl: The social

semantic digital library. Semantic Digital Libraries. 1.1, 4.1

[63] Sebastian Ryszard Kruk, Adam Gzella, Filip Czaja, WBultrowicz, and

Ewelina Kruk. Multibeebrowse: accessible browsing on unstructured

metadata. In OTM’07: Proceedings of the 2007 OTM Confederated inter-

national conference on On the move to meaningful internet systems, pages

1063–1080, Berlin, Heidelberg, 2007. Springer-Verlag. 3.5.2, 4.1, 5.2.6, 7.2

[64] Sebastian Ryszard Kruk and Bill McDaniel. Semantic Digital Libraries.

Springer Publishing Company, Incorporated, 2009. 2, 2.2.5, 3.2.1, 3.2.2,

3.5.3, 3.9.3

[65] Byron Y-L Kuo, Thomas Hentrich, Benjamin M . Good, and Mark D.

Wilkinson. Tag clouds for summarizing web search results. In WWW ’07:

Proceedings of the 16th international conference on World Wide Web, pages

1203–1204, New York, NY, USA, 2007. ACM. 2.2.3, 3.5.2, 4.1

[66] Michal Laclavik, Martin Seleng, and Ladislav Hluchý. Towards large

scale semantic annotation built on mapreduce architecture. In Marian

Bubak, G. Dick van Albada, Jack Dongarra, and Peter M. A. Sloot, ed-

itors, ICCS (3), volume 5103 of Lecture Notes in Computer Science, pages

331–338. Springer, 2008. 1.1, 3.7, 7.2

[67] Simon St. Laurent, Edd Dumbill, and Joe Johnston. Programming Web Ser-

vices with XML-RPC. O’Reilly & Associates, Inc., Sebastopol, CA, USA,

2001. 5.2.1

[68] R Lee. Scalability report on triple store applications. Massachusetts insti-

tute of technology, Jan 2004. 3.3.1

[69] Michael Lesk. Understanding digital libraries. page 424, Jan 2005. 2

160 BIBLIOGRAPHY

[70] Brian Loesgen, Andreas Eide, Mike Clark, Chris Miller, Matthew

Reynolds, Robert Eisenberg, Bill Sempf, Srinivasa Sivakumar, Mike Ba-

tongbacal, Brandon Bohling, Russ Basiura, and Don Lee. Professional

Asp.Net Web Services. Wrox Press Ltd., Birmingham, UK, UK, 2001. 5.3

[71] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. In-

troduction to Information Retrieval. Cambridge University Press, New York,

NY, USA, 2008. 2.2.4

[72] E. Michael Maximilien. Web services on rails: Using ruby and rails for

web services development and mashups. In SCC ’06: Proceedings of the

IEEE International Conference on Services Computing, page .39, Washington,

DC, USA, 2006. IEEE Computer Society. 5.3

[73] Jeremy McAnally and Assaf Arkin. Ruby in Practice. Manning Publica-

tions Co., Greenwich, CT, USA, 2008. 5.3

[74] B McBride. Jena: Implementing the rdf model and syntax specification.

Citeseer, Jan 2001. 3.3.1, 5.3.2

[75] C Middleton and R Baeza-Yates. A comparison of open source search

engines. Citeseer, Jan 2007. 5.2.4

[76] Andrei Mikheev, Marc Moens, and Claire Grover. Named entity recogni-

tion without gazetteers. In Proceedings of the ninth conference on European

chapter of the Association for Computational Linguistics, pages 1–8, Morris-

town, NJ, USA, 1999. Association for Computational Linguistics. 5.1.1

[77] Zaiqing Nie, Yuanzhi Zhang, Ji-Rong Wen, and Wei-Ying Ma. Object-

level ranking: bringing order to web objects. In WWW ’05: Proceedings of

the 14th international conference on World Wide Web, pages 567–574, New

York, NY, USA, 2005. ACM. 5.2.4

[78] L Page, S Brin, R Motwani, and T Winograd. The pagerank citation

ranking: Bringing order to the web. en.scientificcommons.org, Jan 1998. 3.6

[79] R Ramachandran, S Movva, and S Graves. Ontology-based semantic

search tool for atmospheric science. . . . Processing Systems for . . . , Jan

2005. 5.2.4

BIBLIOGRAPHY 161

[80] Leonard Richardson and Sam Ruby. Restful web services. O’Reilly, 2007.

5.3

[81] Cristiano Rocha, Daniel Schwabe, and Marcus Poggi Aragao. A hybrid

approach for searching in the semantic web. In WWW ’04: Proceedings of

the 13th international conference on World Wide Web, pages 374–383, New

York, NY, USA, 2004. ACM. 7.2

[82] Tomas Salfischberger. Exporting spring beans with XML-RPC,

March 2008. http://www.celerity.nl/blog/2008/03/

exporting-springbeans-with-xml-rpc/. 5.3

[83] Bruce Schatz, William Mischo, Timothy Cole, Ann Bishop, Susan Harum,

Eric Johnson, Laura Neumann, Hsinchun Chen, and Dorbin Ng. Feder-

ated search of scientific literature. Computer, 32:51–59, 1999. 2

[84] Michael F. Schwartz and David C. M. Wood. Discovering shared interests

using graph analysis. Commun. ACM, 36(8):78–89, 1993. 5.1.1

[85] Marc M. Sebrechts, John V. Cugini, Sharon J. Laskowski, Joanna Vasi-

lakis, and Michael S. Miller. Visualization of search results: a compar-

ative evaluation of text, 2d, and 3d interfaces. In SIGIR ’99: Proceedings

of the 22nd annual international ACM SIGIR conference on Research and de-

velopment in information retrieval, pages 3–10, New York, NY, USA, 1999.

ACM. 5.2.6, 7.2

[86] Dongwook Shin, Hyuncheol Jang, and Honglan Jin. Bus: an effective

indexing and retrieval scheme in structured documents. In DL ’98: Pro-

ceedings of the third ACM conference on Digital libraries, pages 235–243, New

York, NY, USA, 1998. ACM. 3.4.4

[87] Naveen Srinivasan, Massimo Paolucci, and Katia Sycara. An efficient

algorithm for OWL-S based semantic search in UDDI. In Semantic Web

Services and Web Process Composition, Lecture Notes in Computer Science,

pages 96–110. 2005. 5.2.4

[88] T Staples, R Wayland, and S Payette. The fedora project. D-Lib Magazine,

Jan 2003. 1.1, 3.2.2, 4.1

http://www.celerity.nl/blog/2008/03/exporting-springbeans-with-xml-rpc/
http://www.celerity.nl/blog/2008/03/exporting-springbeans-with-xml-rpc/

162 BIBLIOGRAPHY

[89] M Szomszor, C Cattuto, H Alani, and KO’Hara. Folksonomies, the se-

mantic web, and movie recommendation. Jan 2007. 2.2.3

[90] Valentin Tablan, Danica Damljanovic, and Kalina Bontcheva. A natural

language query interface to structured information. In ESWC’08: Pro-

ceedings of the 5th European semantic web conference on The semantic web,

pages 361–375, Berlin, Heidelberg, 2008. Springer-Verlag. 5.2.4

[91] T Tran, P Cimiano, S Rudolph, and R Studer. Ontology-based interpreta-

tion of keywords for semantic search. The Semantic Web, Jan 2008. 2.2.6,

5.2.5

[92] Thanh Tran, Philipp Cimiano, Sebastian Rudolph, and Rudi Studer.

Ontology-based interpretation of keywords for semantic search. The Se-

mantic Web, 4825:523–536, 2007. 5.2.4

[93] Martin Treiber, Hong-Linh Truong, and Schahram Dustdar. Soaf — de-

sign and implementation of a service-enriched social network. In ICWE

’9: Proceedings of the 9th International Conference on Web Engineering, pages

379–393, Berlin, Heidelberg, 2009. Springer-Verlag. 2.2.3, 3.1.5

[94] M Twidale and D Nichols. Collaborative browsing and visualization of

the search process. Aslib proceedings, Jan 1996. 5.2.6

[95] V Uren, P Cimiano, J Iria, and S Handschuh. Semantic annotation for

knowledge management: Requirements and a survey of the state of the

art. Web Semantics: Science, Services and Agents on the World Wide Web, Jan

2006. 3.2, 3.2.1, 3.2.2, 3.3

[96] Craig A. VanLengen and John D. Haney. Creating web services using

asp.net. J. Comput. Small Coll., 20(1):262–275, 2004. 5.3

[97] Viswa Viswanathan. Rapid web application development: A ruby on

rails tutorial. IEEE Software, 25:98–106, 2008. 5.3

[98] L von Ahn. Games with a purpose. Computer, 39(6):92 – 94, Jun 2006.

3.2.1, 5.2.5, 5.3.4, 7.2

[99] T Vander Wal. Folksonomy. Information Architecture Institute Members

Mailing . . . , Jan 2004. 2.2.3

BIBLIOGRAPHY 163

[100] Craig Walls and Ryan Breidenbach. Spring in action. Manning Publica-

tions Co., Greenwich, CT, USA, 2007. 5.3

[101] S. Wasserman and K. Faust. Social network analysis: Methods and applica-

tions. Cambridge Univ Pr, 1994. 2.2.3

[102] Xiao-Yong Wei and Chong-Wah Ngo. Ontology-enriched semantic space

for video search. In MULTIMEDIA ’07: Proceedings of the 15th international

conference on Multimedia, pages 981–990, New York, NY, USA, 2007. ACM.

7.2

[103] Felix Weigel. A survey of indexing techniques for semistructured docu-

ments. Jan 2002. 3.4, 3.4.1, 3.4.2, 3.4.4

[104] Wojciech Wiza, Krzysztof Walczak, and Wojciech Cellary. Periscope: a

system for adaptive 3d visualization of search results. In Web3D ’04:

Proceedings of the ninth international conference on 3D Web technology, pages

29–40, New York, NY, USA, 2004. ACM. 7.2

[105] Dawit Yimam and Alfred Kobsa. Demoir: A hybrid architecture for ex-

pertise modeling and recommender systems. Enabling Technologies, IEEE

International Workshops on, 0:67, 2000. 5.1.1

[106] J Yoon, V Raghavan, and V Chakilam. Bitcube: Clustering and statisti-

cal analysis for xml documents. Journal of Intelligent Information Systems,

2001. 3.4.4

[107] O. Zamir and O. Etzioni. Grouper: a dynamic clustering interface to Web

search results. Comput. Networks, 31(11):1361–1374, 1999. 2.2.7

[108] Alireza Zarghami, Soude Fazeli, Nima Dokoohaki, and Mihhail Matskin.

Social trust-aware recommendation system: A t-index approach. In WI-

IAT ’09: Proceedings of the 2009 IEEE/WIC/ACM International Joint Con-

ference on Web Intelligence and Intelligent Agent Technology, pages 85–90,

Washington, DC, USA, 2009. IEEE Computer Society. 3.4.4

[109] GuoDong Zhou and Jian Su. Named entity recognition using an HMM-

based chunk tagger. In ACL ’02: Proceedings of the 40th Annual Meeting on

Association for Computational Linguistics, pages 473–480, Morristown, NJ,

USA, 2002. Association for Computational Linguistics. 5.1.1

	Abstract
	Kurzfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Overview
	Motivation
	Contribution
	Organization of this Thesis

	Background
	Typical Search Process
	Terminology

	State of the Art of existing Systems
	Metadata representations
	Semantic extraction and annotation techniques
	Storage mechanisms and concepts
	Indexing Techniques
	Search Capabilities in Digital Libraries
	Result presentation and Feedback for Search and Search Results
	Non-functional Aspects for Search Techniques
	Relevant Reference Architectures
	Existing Systems as a Whole

	Problem Definition
	Research Question and Approach
	Use Cases
	Requirements

	Specification of a distributed Concept Search Framework for Specialized Domains
	Linked Model for Representing Information in the Concept Search Framework
	Architectural Design of the Concept Search Framework
	Feasibility of Implementation Analysis
	Evaluation of the Semantic Search Framework

	Prototype and Evaluation
	Overview
	Prototype of The Proposed Concept Search Framework
	Experiments
	Comparison with Existing Systems

	Conclusion and Future Plans
	Thesis results
	Future Work

	How to run the Concept Demonstration
	Experiment Sources
	Data Model Ontology
	Automatic Gazetteer List Generator
	GATE Batch Process Wrapper
	GATE Application Skeleton for Semantic Extraction
	ESA Document Importer
	ESA Load Simulator
	Rest Server / Search Module

	Bibliography

