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Kurzfassung

Diese Dissertation widmet sich der Untersuchung von Transaktionskosten in
zeitstetigen Finanzmarktmodellen und ihrem Einfluss auf bekannte Ergebnis-
se aus der Finanzmathematik. Abgesehen von der bloßen Tatsache, dass sie
in praktisch jedem existenten Finanzmarkt beobachtet werden können, ist die
Berücksichtigung von Transaktionskosten auch aus indirekten Gründen lohnens-
wert: Zum einen gibt es Modelle, die an sich Arbitrage zulassen, durch die
Hinzunahme von Transaktionskosten aber arbitragefrei werden. Auf diese Wei-
se erweitern Transaktionskosten also den Spielraum für die Modellierung von
Preisprozessen. Zum anderen verbieten sich besonders aufwändige Strategien,
die in der Praxis unmöglich umgesetzt werden können, durch Transaktionskos-
ten von selbst, was bei den üblichen Hedging- und Investitionsproblemen zu
realistischeren Lösungen führen kann.

Wir präsentieren ein Modell für den Handel auf mehrdimensionalen Märkten
mit proportionalen Transaktionskosten. Dieses Modell kann als Verallgemeine-
rung von eindimensionalen Modellen gesehen werden, die in den letzten Jahren
vorgeschlagen wurden. Der Preisprozess muss hierbei nur rechtsseitig stetig sein
und linke Grenzwerte aufweisen (càdlàg), aber kein Semimartingal sein. Wir
beweisen grundlegende Eigenschaften des Modells, beleuchten die Gemeinsam-
keiten mit alternativen Ansätzen und gelangen so zu einem Satz über Superrepli-
kation, der es erlaubt zu entscheiden, welche Contingent Claims trotz Transak-
tionskosten ohne Startkapital repliziert werden können. Wie bereits in früheren
Veröffentlichungen gezeigt wurde, spielen sogenannte Consistent Price Systems
hier eine zentrale Rolle.

Wir fahren mit dem Beweis einer mehrdimensionalen Version des soge-
nannten Face-lifting Theorem fort. Dieser Satz stellt eine Verbindung zwischen
Superreplikationspreisen pfadunabhängiger Optionen und der Gestalt der zu-
grundeliegenden Payoff-Funktion her. Abgesehen von einer Verallgemeinerung
eines entsprechenden eindimensionalen Ergebnisses sind wir in der Lage, dort
getroffene Annahmen an den Preisprozess und die Payoff-Funktion deutlich ab-
zuschwächen. Dieses Ergebnis verdeutlicht eine entscheidende Eigenschaft von
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Transaktionskostenmodellen: Auch wenn der Grad der Kosten gegen Null ten-
diert, wie es bei großen Marktteilnehmern auf besonders liquiden Märkten der
Fall ist, konvergieren manche Ergebnisse nicht gegen die entsprechenden trans-
aktionskostenfreien Ergebnisse.

Das wichtigste Resultat dieser Dissertation ist eine mehrdimensionale Versi-
on des Fundamental Theorem of Asset Pricing für zeitstetige Modelle mit klei-
nen, proportinalen Transaktionskosten. Wir zeigen, dass solche Modelle genau
dann für alle Kostenlevels arbitragefrei sind, wenn sie auch für alle Levels Con-
sistent Price Systems zulassen. Die dabei verwendete Arbitrage-Definition ist
explizit, also nicht von der Art eines free lunch.

Sowohl das Face-lifting- als auch das Fundamental Theorem werden im
Spezialfall eindimensionaler exponentieller Lévy-Prozesse noch genauer unter-
sucht. In diesem Fall ist nicht nur eine komplette Charakterisierung möglich,
welche Prozesse in Abhängigkeit von ihrem Lévy-Chintschin-Tripel welche Con-
sistent Price Systems zulassen, sondern es kann auch eine Version des Funda-
mental Theorem ohne die ”für alle”-Quantoren bewiesen werden.

Zuletzt wird noch eine Verallgemeinerung des Transaktionskostenmodells
vorgestellt, die sich hauptsächlich, aber nicht ausschließlich an Devisenmärkte
richtet: Hier ist ein direkter Kaptialtransfer zwischen den Assets möglich, anstatt
wie sonst das Kapital stets über ein Barkonto zu leiten. Auch können hier ver-
schiedene Kostenlevels für Kauf und Verkauf oder auch nur einseitige Transak-
tionskosten berücksichtigt werden. Das Fundamental Theorem of Asset Pricing
wird auf dieses Modell verallgemeinert.
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Abstract

This thesis is dedicated to the study of transaction costs in continuous-time fi-
nancial market models and their impact on well-known results from mathemat-
ical finance. Apart from the mere fact that they can be observed in virtually
every financial market, transaction costs deserve consideration also for indirect
reasons: First of all, certain models that allow for arbitrage in the frictionless
case become arbitrage-free through the introduction of costs, thus we can widen
the scope of processes to be considered in modelling. Furthermore, the presence
of costs disallows especially extensive trading strategies that can impossibly be
reproduced in practice, which can lead to more realistic solutions of common
hedging and investment problems.

We present a model for trading on multidimensional continuous-time mar-
kets under proportional transaction costs. This model can be seen as general-
ization of one-dimensional models proposed in recent years. Our model is open
for all right-continuous processes with finite left limits (càdlàg), hence does not
require semimartingales. We prove basic properties of our model, highlight the
parallels to other approaches and arrive at a crucial super-replication theorem,
that allows us to decide which contingent claims can be superhedged without
initial endowment by trading on the market under transaction costs. For this, the
notion of consistent price systems plays a crucial role, as was shown in several
earlier publications.

We resume by proving a multiasset version of the so-called face-lifting theo-
rem, a result that links superreplication prices of path-independent options to the
shape of the underlying payoff function. Apart from generalizing a predecessing
result to multiple dimensions, we are able to significantly weaken the assump-
tions made on the process as well as the payoff function. This result highlights
a critical feature of transaction costs models: Even if the level of costs tends to
zero, as is the case for very large traders on highly liquid markets, some results
do not converge to the corresponding results from the frictionless case.

The most important result of this thesis is a multidimensional version of
the Fundamental Theorem of Asset Pricing for continuous models under small
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proportional transaction costs. We prove that such a model is arbitrage-free for
all cost levels if and only if it admits consistent price systems for all levels. The
notion of arbitrage used here is explicit, i. e. not of free-lunch-type.

Both the face-lifting theorem and the Fundamental Theorem of Asset Pricing
are revisited in the special case of one-dimensional exponential Lévy processes.
In this case we can give a complete characterization of which processes admit
which consistent price systems, depending only on the Lévy-Khinchine triplet
of the process. We also prove a version of the Fundamental Theorem without
the “for all”-quantors.

Finally, we propose a generalized transaction costs regime for multiasset
models that is aimed mainly, but not exclusively towards currency markets:
Here, direct exchange of capital between the assets is possible instead of al-
ways funneling one’s capital through the cash account. The generalized model
furthermore allows to assign different cost levels to buying and selling or to con-
sider one-sided transaction costs. The Fundamental Theorem of Asset Pricing
is extended to our generalized model.
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Chapter 1

Introduction

As long as mathematical models have were established to describe and predict
real-world phenomena, they were criticized for being over-simplified and over-
idealized. While a certain degree of idealization lies in the nature of modelling
and a perfect model that considered each imaginable feature would be as useless
as a world map of scale 1:1, every such criticism is justified as long as it may
lead to an improvement of the model’s predictions without making it unfeasible.
In physics and engineering for instance, the incorporation of friction improves a
model’s prediction quality, but usually drastically complicates the model.

In continuous-time financial mathematics, this can be best observed in the
case of the Black-Scholes model, which has, since it was first proposed by
Samuelson [Sam65], established itself as the undoubted benchmark model and
changed the whole industry, as was pointed out in the justification of the Nobel
Foundation for awarding the 1997 Nobel prize in economics to F. Black and M.
Scholes, two of the main contributors (along with R. Merton) of the theory be-
hind the model [N98]. The model was the first to offer a convincing principle to
find unique option prices based on the argument of no arbitrage.

The standard criticisms on the Black-Scholes lie in its central assumptions:
Volatility is in practice neither deterministic nor constant, rather is it random
and depends on the stock price. Normally distributed logarithmic returns and
the absence of jumps were criticized for underestimating rare extreme events as
early as 1965 [F65]. To counteract these shortcomings, processes with jumps,
stochastic volatility and stochastic time change were proposed. However, fur-
ther development of the theory soon made it clear that any non-trivial extension
of Black-Scholes would mean to give up the crucial feature of completeness:
In no model with more degrees of freedom all options can be replicated by an
adequate trading strategy, hence there no more exist unique option prices, one
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of the main reasons for the success of Black-Scholes. However, the Fundamen-
tal Theorem of Asset Pricing (FTAP), first introduced in three seminal works of
Harrison, Kreps and Pliska ([HK79], [HP81], [Kr81]) and further refined and
generalized over the years (see [DS06]), still tells us exactly under which con-
ditions the absence of arbitrage can be retrieved – as sort of a minimal standard
for a reasonable market model.

Another set of criticism addresses not the way the price process is designed,
but rather the whole fashion in which trading is performed: In classical finance
one assumes that each market agent has the same information and can buy arbi-
trarily large and small amounts of the stock at each time at a fixed price, with-
out paying any kind of transaction costs. In practice, asymmetric information
and all kinds of trading restrictions are common. Prohibition of short sales,
the restriction to integer quantities of assets and time-lags in order processing
are common and can be ignored, if by anyone, only by large traders with the
adequate infrastructure, acting on large markets. Transaction costs, commonly
referred to as market friction due to their similarity to the corresponding physi-
cal phenomenon (as in: loss of energy/value caused by movement), are arguably
the most convincing restriction, for a whole set of reasons.

First, they affect virtually every financial market there is, be it equity, fixed
income, currencies or bonds. In every market, the trader faces not one fixed
price, but rather a bid-ask spread: a lower price that one revenues for selling,
and a higher price one has to pay for buying. This effect is smaller in highly
liquid markets and bigger in markets with fewer frequent transactions, but never
fully vanishes. Especially large agents that can neglect the restrictions on trading
small quantities face this problem when buying large portions: If the supply is
increasingly bought up, then the spread widens. The same happens when large
quantities are sold and the market is flooded. This effect is called impact or
liquidity costs.

Second, a typical trader also faces actual monetary costs of trading. Private
or small investors have to pay a fee to their broker, while institutional traders
still have to pay for their staff and the trading infrastructure, that they could
have avoided by trading less ot not at all. These costs may become very small
for large, highly automatized agents, but never really go down to zero.

A third source for transaction costs are all kinds of taxes on financial transac-
tions. These taxes, that were common worldwide throughout most of the twen-
tieth century, were successively reduced or abolished in most countries in the
1980s and 1990s, but never completely vanished and have even made a come-
back to several political agendas in times where many national economies face
severe budget crises. In particular, the idea of a transaction tax on the especially
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liquid currency market, coined Tobin tax after its most prominent advocate J.
Tobin [Tob78], gains popularity among scholars, non governmental organiza-
tions and also governments. It was proposed as early as 1936 by J. M. Keynes to
stabilize exchange rates and discourage undesired speculations [Ke36]. Such a
tax, once introduced to a market, would halt any argument that transaction costs
vanish for large traders and can therefore be neglected.

Apart from the mere fact that they exist in practice, there are other, rather
mathematical arguments that suggest considering transaction costs in financial
market models. As was pointed out by Magill and Constantinides [MC76], a
typical solution to a hedging or optimal investment problem in the Back-Scholes
or a similar continuous time model is a trading strategy of infinite variation. So
to follow this strategy, the trader would have to make infinitely many trades
and move around an infinite amount of money in each time interval – obviously
an absurd conclusion that would make continuous-time models unfeasible alto-
gether. By introducing even the smallest transaction costs, they conclude, one
can save these models, since infinite-variation strategies are automatically dis-
missed as they would bankrupt the trader immediately.

Another argument deals with processes that are candidates for price pro-
cesses because of favourable modelling properties but fail to be arbitrage free
and are therefore dismissed. The most prominent example is fractional Brow-
nian motion, proposed by Mandelbrot [Ma68]. The process fails to be a semi-
martingale and therefore admits free lunch [DS06, Theorem 9.7.2]. However, it
was shown by Guasoni [Gu06] that, if arbitrarily small transaction costs are in-
troduced, the arbitrage opportunity disappears and the process becomes eligible
for modelling.

More general: Outside the realm of semimartingales, there lacks a consis-
tent theory of stochastic integration, which is indispensable for mathematical
finance. But with transaction costs restricting us to finite variation strategies,
integration is possible even in a pathwise Lebesgue-Stieltjes sense.

As a related argument, it was pointed out by Guasoni et al. [GRS08a] that
without transaction costs, important issues like arbitrage and option hedging
depend critically on high frequency properties of the process such as quadratic
variation and other small scale path properties that can hardly be observed and
play no role in actual trading. Instead, coarse properties like supports become
more relevant, that can be properly observed and tested. So incorporation of
transaction costs can somehow decrease model risk, even to the extent that some
results become virtually model-independent, like our version of the face-lifting
theorem, see Chapter 3.
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Chapter 1. Introduction

1.1 Outline
Much effort has been put into translating fundamental results from frictionless
finance to markets with transaction costs. Originally the main focus was on
problems of optimal consumption and investment ([MC76], [DN90]) and option
hedging ([Le85], [DC94], [LS97]), while the question of no-arbitrage criteria
was not addressed until 1995, presumably for a simple reason: The Fundamental
Theorem of Asset Pricing [DS06] delivers the answer in the frictionless case, so
simply assuming an equivalent martingale measure leads to sufficient conditions
in the transaction costs case, which is enough to work with in most cases. This
way, the question of necessary conditions for a market to be arbitrage-free under
transaction costs remained unanswered. The first attempt by Jouini and Kallal
[JK95] relied heavily on an L2 framework and was limited to simple strategies,
while Schachermayer [Scha04] and Guasoni et al. [GRS08b] address the mul-
tidimensional case in discrete time and the one-dimensional case in continuous
time, respectively. One goal of this work is to establish a Fundamental Theorem
of Asset Pricing (that is: necessary and sufficient conditions for a model to be
arbitrage free) for continuous d-dimensional processes in continuous time.

Another subject that this work tries to cover originates in a conjecture made
by Davis and Clark [DC94] about the superreplication price of a European call
option. They suspected that under transaction costs, this price could not be lower
than the price of the stock. This conjecture has been proven in increasing gen-
erality ([CSS95], [LS97], [CPT99], [CK96]) and subsequently led to a general
pricing principle now known as face-lifting pricing. We attempt to generalize
the corresponding theorem from Guasoni et al. [GRS08a] to multiple dimen-
sions and additionally weaken the assumptions made to both the price process
and the option to be superreplicated.

More general, this work attempts to establish a uniform and consistent frame-
work for trading on multidimensional asset processes under proportional trans-
action costs in continuous time. We try to bring together models proposed so
far, highlight their parallels, but also the differences. We explicitly do not as-
sume the price process to be a semimartingale, therefore also covering fractional
Brownian motion and related processes.

This work is organized as follows: In Section 2 we present a simple multidimen-
sional trading framework, along with the basic definitions of trading, admissi-
bility and consistent price systems. We further highlight an alternative model
proposed by Kabanov [Ka99] and develop the connections between the models
necessary to translate a crucial superreplication theorem into our framework.

Section 3 is devoted to the above-mentioned face-lifting theorem. We prove
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a general multidimensional version and present some examples to illustrate its
implications, but also its limitations.

In Section 4 we highlight the special case of one-dimensional exponential
Lévy models. Here we present sufficient conditions for the face-lifting theorem
to hold and fully answer the question of the existence of consistent price systems
for these processes. This serves as preparatory work for a Lévy version of the
Fundamental Theorem of Asset Pricing.

Section 5 is devoted to a multidimensional version of the Fundamental The-
orem of Asset Pricing in the spirit of [GRS08b]. We present several notions of
arbitrage and prove the Fundamental Theorem both for d-dimensional continu-
ous and for one-dimensional exponential Lévy processes. As a side result, we
prove the equivalence between arbitrage and free lunch with bounded risk, as
was done in [GRS08b] in the one-dimensional case.

Finally, we extend our framework to a more general principle of transaction
costs, similar to [Ka99]. The Fundamental Theorem is also extended to this kind
of transaction costs.

A general result on the d-dimensional Esscher transform is proved in the
appendix. It is used for the proof of the Fundamental Theorem, but may also be
of independent interest.

1.2 Historical overview
In this section we want to give a short overview over the development of trans-
action cost models in finance. It is not possible to fully trace back the term
transaction costs to where it first evolved, but the idea seems to be present al-
ready in the earliest post-depression economics literature, where market friction
is used to explain why perfect-economy models fail to predict real-world out-
comes. One of the first backed sources where this phenomenon is studied is the
later Nobel laureate R. Coase, who described costs of using the price mechanism
[Co37] and later discussed costs of market transactions in greater detail [Co60].
In the analysis of the cash demand of economies, and in particular in the trans-
actions demand for money, transaction costs have played a major role since the
1950s, as seen in seminal works of W. Baumol and J. Tobin ([Bau52], [Tob56]).

The first in-depth analysis of a transaction costs model in a post-Black-
Scholes mathematical framework comes from Magill and Constantinides [MC76].
There the authors already mention that both a continuous-time market and the
absence of transaction costs alone can be justified, while the combination of
both leads to portfolio strategies that are unrealistic. They conjecture that once
transaction costs are introduced, rational traders will only change their portfolio

5



Chapter 1. Introduction

at finitely many random times. They consider an m-dimensional Black-Scholes
market with fixed correlation and cost rates χi, χi ∈ [0, 1) for buying/selling the
i-th asset. So the total costs for each rebalancing equal

T (v1, v2, . . . , vm) =
m∑
i=1

(χi1vi>0 + χi1vi<0)vi,

where vi denotes the change in the i-th asset, measured in cash rather than in
physical units. In this model, an optimal investment and consumption problem
(also called Merton problem [Me69]) is solved and the existence of a no-trade
region around Merton’s optimal proportion is proved. However, the restriction
to piecewise constant trading strategies is imposed rather than proved. The pos-
sibility of continuous-time, finite-variation trading is not mentioned.

Leland [Le85] addresses the hedging problem in the Black-Scholes model
under transaction costs by a heuristic discretization approach: If trading is only
allowed on a fixed equidistant time grid, then the problem of infinite transaction
costs vanishes and the transaction costs just contribute to the usual discretization
error. Here the costs are also proportional, indicated as round trip costs, i. e. for
buying and immediately selling a proportion k has to be paid. The transaction
costs for portfolio rebalancing therefore equal

TC =
k

2
|∆D(S + ∆S)|,

where S denotes the price of the stock and ∆D is the number of units purchased
or sold. By empirical studies the author concludes that while the total amount
of transaction costs paid is roughly proportional to k (i. e. higher transaction
costs to not prevent the trader from trading), they increase quadratically as the
distance between trades decreases. So a trade-off between good approximation
and small transaction costs has to be made.

The model used in this work is in the tradition of Davis and Norman [DN90]
who were among the first to offer a model that allowed for actual continuous-
time trading. Their work also premiered the notion of a solvency region, see Def-
initions 2.2.1 and 6.1.5. They revisit the Merton problem in a one-dimensional
Black-Scholes framework and introduce proportional transaction costs by pro-
portions λ, µ ≥ 0 for buying and selling. The trading strategy is modelled by
two separate increasing, right-continuous processes L,U counting the accumu-
lated purchases and sales, again measured in cash. The cash-account s0 therefore
has the dynamics

ds0(t) =
(
rs0(t)− c(t)

)
dt− (1 + λ)dLt + (1− µ)dUt,

6
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where r is the rate of interest and c the consumption function. Again, the exis-
tence of a no-trade region is proved. In a side remark, they also address the idea
of fixed transaction costs and link this approach to impulse control problems.

This model is reused (in the special case λ = µ) by Davis and Clark [DC94],
who are among the first to tackle the problem of superreplication under trans-
action costs in continuous time, and by Soner et al. [CSS95], Leventhal and
Skorohod [LS97] and Cvitanić et al. [CPT99], [CK96] for different diffusion
models.

The work of Jouini and Kallal [JK95] can be seen as pioneer in multiple
ways. Instead of modelling a price process and then wrapping it into a bid-ask
spread, they model the bid-ask spread directly via two different price processes
Z ′ ≤ Z. Then, they were the first to offer framework of no-arbitrage pricing,
thereby premiering what is today known as consistent price system (see our
Definitions 2.1.3 and 6.1.10), namely a process Z∗, which admits a martingale
measure equivalent to P and satisfies Z ′t ≤ Z∗t ≤ Zt almost surely for all t.

All the models in the tradition of [DN90] follow the classic post-Black-
Scholes literature in the sense that the investments in the risky assets are ac-
counted in stochastic processes, usually decomposed in two increasing pro-
cesses for purchase and sale, while the amount in the cash account follows
from stochastic integration, therefore trading strategies are automatically self-
financing. A different approach was introduced by Kabanov [Ka99]. Aimed
towards multi-currency-markets, the author does not assign a designated cash
account and allows for direct transactions between all assets by introducing a
costs matrix (λij)1≤i,j≤d. The accumulated transfers from asset i to asset j, mea-
sured in cash, is accounted in the increasing process Lij , such that the capital
invested in asset i held at time t equals

V i
t =

∫ t

0

V i
s−

Sis−
dSis +

d∑
i=1

Lijt −
d∑
j=1

(1 + λij)Lijt .

The author observes that the portfolio has to evolve inside the negative of the
solvency region at all times, in other words, each change in the portfolio must
be attainable at price zero. This idea has led to a new characterization of self-
financing portfolios in the successing literature ([KS02], [KRS02], [KL02], [CS06],
[Scha04]) both in discrete and continuous time. With this it is possible to con-
sider the portfolio process V directly and abandon the transfer processes Lij .

In this tradition, Schachermayer [Scha04] carries the idea to put the solvency
region (rather than the price process) into the center of consideration even further
by abolishing the asset price process altogether and directly modelling exchange
ratios (πij)1≤i,j≤d: To obtain one unit of asset j at time t, one has to give up πijt

7



Chapter 1. Introduction

units of asset i. These ratios uniquely imply the solvency region and the bis-ask
region.

Some of the results proved in the Kabanov framework are crucial to our
work, which is why we discuss the setting in greater detail in Section 2.2.

Over the years, strategies have sometimes been assumed right continuous
(e. g. [DN90], [LS97], [Ka99] ) and sometimes left continuous (e. g. [CSS95],
[CK96]), without one of them becoming standard. Campi and Schachermayer
[CS06] and Guasoni et al. [GRS08b], [GRS08a] dismiss both and allow for left
and right jumps. We follow this tradition by using a multidimensional counter-
part of their framework, which is presented in Chapter 2.

1.3 Notation
Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space satisfying the usual con-
ditions. Assume that F0 is trivial. Throughout this work, we we will most of the
time consider Rd

+-valued random variables and processes, where R+ =(0,∞).
To avoid confusions, we will denote the half line containing zero by R0+=[0,∞).
Random variables and processes are written in capital Roman letters, and there
the subscript index is always reserved for the time component. An exception is
made for stopping times, which are denoted by small Greek letters. For multidi-
mensional random variables and processes, single components are indicated by
superscript indices with brackets, e. g.

S = (S
(1)
t , S

(2)
t , . . . , S

(d)
t )t∈[0,T ].

Deterministic vectors are written with small bold letters, e.g.

x = (x(1), x(2), . . . , x(d)) ∈ Rd.

Especially we will have 0 = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1). We will often
use component-wise operations on vectors. Therefore we define component-
wise multiplication and division of x,y ∈ Rd

+ by

xy = (x(1)y(1), x(2)y(2), . . . , x(d)y(d))

x

y
=

(
x(1)

y(1)
,
x(2)

y(2)
, . . . ,

x(d)

y(d)

)
.

The product xy : Rd
+×Rd

+ → Rd
+ is not to be confused with the standard scalar

product on Rd, which we will denote by

x>y =
d∑
i=1

x(i)y(i).

8



1.3. Notation

Inequalities like x ≤ y or x ≤ εwith x,y ∈ Rd, ε ∈ R are also to be understood
component-wise. This will spare us much work on the indices.

For a Borel measure µ on Rd, the support of µ is a closed set supp(µ) ⊆ Rd

defined by

x ∈ supp(µ)⇔ µ(A) > 0 for all open A ⊂ Rd with x ∈ A.

For an Rd-valued random variable X on (Ω,F ,P), the push-forward measure
PX is a measure on Rd defined by

PX(A) = P(X ∈ A).

The support of X w. r. t. P is defined as suppP(X) = supp(PX). Note that
the support of X is invariant under equivalent change of measures. We will
therefore often omit P and just write supp(X).

Definition 1.3.1 For a d-dimensional process (Xt)t∈[0,T ], we distinguish right-
continuous jumps

∆−Xt = Xt −Xt− = Xt − lim
s↗t

Xs

and left-continuous jumps

∆+Xt = Xt+ −Xt = lim
s↘t

Xs −Xt.

Recall the usual definition of total variation of X:

VarXt = sup
0=τ0≤τ1≤...≤τn=t

n∑
i=1

‖Xτi −Xτi−1
‖,

where ‖ · ‖ denotes the Euclidean norm in Rd. If VarX is finite, then we can
decompose X into left and right jumps and a continuous part

X = Xc +Xr +X l,

where X l
t =

∑
s<t ∆+Xs and Xr

t =
∑

s≤t ∆−Xs.

If VarXt is a. s. finite for all t, then Xc can be represented as

Xc
t =

∫ t

0

X̊c
sdVarX

c

s ,

9



Chapter 1. Introduction

with a process X̊c taking values only in the d-dimensional unit sphere. Note that
usually (e.g. [KS02], [GRS08b]) the Radon-Nikodym derivative with respect to
VarX

c

is written as Ẋc rather than X̊c, but we chose this notation to improve
readability. X̊c is uniquely defined almost everywhere with respect to the ran-
dom measure induced by the incrasing function t 7→ VarX

c

t , so all statements on
X̊c are to be understood VarX

c

-a. e.
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Chapter 2

Proportional transaction costs

We are now ready to present a model for trading in multiasset models under
proportional transaction costs in continuous time. While the first section of
this chapter is devoted to the basic definitions and properties of our model, the
second one higights the parallels to an alternative model developed by Kabanov,
which was briefly discussed in Section 1.2. The main result of this chapter, apart
from the presentation of the model, is Theorem 2.2.9.

2.1 The model
As underlying, consider a càdlàg, Rd

+-valued price process

S = (S
(1)
t , S

(2)
t , . . . , S

(d)
t )t∈[0,T ]

adapted to the probability space (Ω,F , (Ft)t∈[0,T ],P). For buying or selling
α units of stock i at time t ∈ [0, T ], we have to pay the amount of εαS(i)

t as
transaction costs. Here the constant ε ∈ [0, 1) is the level of costs. This leads to
the following definition:

Definition 2.1.1 A predictable processH = (H
(1)
t , H

(2)
t , . . . , H

(d)
t )t∈[0,T ] is called

a trading strategy, if

1. the total variation process VarH
(i)

of each component H(i) is a. s. finite

2. H0 = HT = 0 a. s.

11



Chapter 2. Proportional transaction costs

For 0 ≤ ε < 1, the value of a trading strategy H with respect to S and ε is
defined as

Vε,S(H) =
d∑
i=1

∫ T

0

H
(i)
t dS

(i)
t − ε

∫ T

0

S
(i)
t dVarH

(i)

t .

Note that the existence of both integrals above in a pathwise Lebesgue-
Stieltjes sense is secured by H being of finite variation and S being càdlàg,
which in the second case can be seen by pathwise partial integration, see e. g.
[JS87]. While the first integral resembles the usual gains and losses accumu-
lated by trading on S, the second integral corresponds to the transaction costs
paid during trading. The condition H0 = HT = 0 means we must both establish
our initial position and liquidate our final position at maturity and take into ac-
count the corresponding transaction costs. This affects superreplication prices,
as we will see. Note furthermore that we are not allowed to swap assets, i. e. if
we sell one asset and buy another one at the same time, we pay the transaction
costs twice. This restriction will be weakened in Chapter 6
For all statements about trading in risky markets, it is crucial to choose a suit-
able notion of admissibility. Our notion hinges critically on the choice of the
underlying numeraire.

Definition 2.1.2 Consider an R+-valued process (Nt)t∈[0,T ]. For a ∈ R, we
call the strategy H (ε, a)-admissible with respect to the numeraire N , if for
all t ∈ (0, T ] we have

Vε,S(H1(0,t)) ≥ −aNt.

H is called ε-admissible with respect to N if it is (ε, a)-admissible w. r. t. N for
some a.

In this work, we will concentrate on two different numeraires. The most
intuitive choice is the constant process Nt = 1. Here, the downside risk of
every admissible strategy, measured in cash, is bounded from below, or, in other
words, for every admissible strategy there is a certain amount of cash such that
the trader, endowed with this amount, is guaranteed to be able to liquidate his
or her portfolio to a nonnegative amount of cash at any time point. However,
short static strategies, i. e. strategies that sell stocks at time 0 and rebuy them at
time T are not admissible if the underlying asset is unbounded. This will play a
major role in Chapter 3.
An obvious choice that renders all short static strategies admissible is

Nt = 1 +
d∑
i=1

S
(i)
t .

12
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Instead of a fixed initial endowment of cash, the trader is in this case equipped
with an initial portfolio consisting of a units of cash and each asset. This some-
what weaker notion of admissibility proves favourable for the proof of the Fun-
damental Theorem of Asset Pricing in Chapter 5, as it fits to the definition of an
admissible portfolio process in [CS06], see Definition 2.2.4 below. This enables
us to translate crucial results from this work to our setting.

It was first shown by [JK95] that when transaction costs are introduced, the
fundamental role that equivalent martingale measures play in duality theory is
inherited by what is now known as consistent price systems. Therefore the fol-
lowing definition is crucial:

Definition 2.1.3 For ε ∈ [0, 1), an ε-consistent price system (ε-CPS) to a pro-
cess S is a pair (M,Q) consisting of a probability measure Q ∼ P and an
Rd

+-valued Q-martingale (Mt)t∈[0,T ] such that for all t ∈ [0, T ]:

St(1− ε) ≤Mt ≤ St(1 + ε) Q− a.s.

We will use the shorthand notation (M,Q) ∼ε (S,P).
If, instead of Q ∼ P, we have Q � P, we call (M,Q) an absolutely con-
tinuous ε-consistent price system (ε-ACCPS) and use the shorthand notation
(M,Q)�ε (S,P).

Remark 2.1.4 1. The economic interpretation behind this definition is the
following: What really matters to the trader is not the process S, which
itself does not play any role in actual trading, but rather the bid-ask-spread
[(1 − ε)S, (1 + ε)S]. So instead of looking for an equivalent martingale
measure for S, one can replace S by any process M inside the bid-ask-
spread and look for an EMM for M .

2. Despite this obvious interpretation, CPS are sometimes defined using the
condition

1

1 + ε
St ≤Mt ≤ St(1 + ε),

see for instance [GRS08a]. Obviously this condition implies ours, more-
over it makes some calculations easier. Note that both conditions become
equivalent if ε→ 0, i. e. ε-CPS in our sense exist for all ε > 0 if and only
if they exist for all ε > 0 in this sense.

The following lemma delivers some insight in the nature of our transaction
costs setting and will be useful several times throughout this work.

13



Chapter 2. Proportional transaction costs

Lemma 2.1.5 Let two càdlàg price processes S and S̃ and constants ε, ε̃ ≥ 0
be given such that for all t ∈ [0, T ]

St(1 + ε) ≥ S̃t(1 + ε̃) ≥ S̃t(1− ε̃) ≥ St(1− ε)

holds P-a. s. Then we have for all trading strategies H:

Vε,S(H) ≤ Vε̃,S̃(H)

P-almost surely.

Proof: We consider only the one-dimensional case, the general case follows by
simply summing up the dimensions. Consider the standard decomposition

H = Hc +Hr +H l

form Definition 1.3.1. Furthermore we decompose Hc into two increasing con-
tinuous processes Hc+ = 1

2
(VarH

c

+Hc) and Hc− = 1
2
(VarH

c −Hc), such that
Hc+−Hc− = Hc andHc+ +Hc− = VarH

c

. Then we have by partial integration

Ic(ε, S) :=

∫ T

0

Hc
t dSt − ε

∫ T

0

StdVarH
c

t

=

∫ T

0

(Hc+
t −Hc−

t )dSt − ε
∫ T

0

Std(Hc+ +Hc−)t

=

∫ T

0

(1− ε)StdHc−
t −

∫ T

0

(1 + ε)StdH
c+
t +Hc

TST .

For the right-continuous jump part we have

Ir(ε, S) :=

∫ T

0

Hr
t dSt − ε

∫ T

0

StdVarH
r

t

=
∑
s≤T

∆−Hs

(
Ss(1− ε)1∆−Hs<0 − Ss(1 + ε)1∆−Hs>0

)
+Hr

TST

and the same is true for the left jumps, with Ir replaced by Il, Ss by Ss− and ∆−
by ∆+. If we take into account that

VarH = VarH
c

+ VarH
r

+ VarH
l

,

we have
Vε,S(H) = Ic(ε, S) + Ir(ε, S) + Il(ε, S),
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and using
Hc
TST +Hr

TST +H l
TST = HTST = 0,

we see that these values can be omitted. Now we just have to use the inequalities
St(1 + ε) ≥ S̃t(1 + ε̃) and S̃t(1− ε̃) ≥ St(1− ε) in all the above expressions to
see

Vε,S(H) = Ic(ε, S)+Ir(ε, S)+Il(ε, S) ≤ Ic(ε̃, S̃)+Ir(ε̃, S̃)+Il(ε̃, S̃) = Vε̃,S̃(H).

2

The economic interpretation of this lemma is that the narrower the bid-ask-
spread is, the better the trader is off, since we always buy lower and sell higher.

The following statements follow easily from Lemma 2.1.5. The first one will
play a role in our comparison of different concepts of arbitrage to come. The
second one treats the special case (S̃,Q) �ε (S,P) and will be important
throughout this work, as it serves as link to many well-known duality results
from frictionless finance, as every statement on the frictionless process S̃ im-
plies a statement on S with ε transaction costs. The third statement is used to
construct arbitrage out of free lunch with bounded risk, see Theorem 5.4.5.

Corollary 2.1.6 1. By replacing H with H1(0,t) we get

Vε,S(H1(0,t)) ≤ Vε̃,S̃(H1(0,t))

for all 0 ≤ t ≤ T . So if a strategy is ε-admissible on S, it is also
ε̃-admissible on S̃.

2. If (M,Q)�ε (S,P) for a pair (M,Q), then

Vε,S(H) ≤ V0,M(H)

holds Q-a.s for each trading strategy H .

3. Convex combinations of strategies yield a higher value than just the con-
vex combination of the single values: If the strategy G is a convex combi-
nation of two strategies, say, G = λ1H

1 + λ2H
2, then

dVarG ≤ λ1dVarH
1

+ λ2dVarH
2

,

meaning that VarG − λ1VarH
1 − λ2VarH

2

is a. s. increasing. Hence the
value of G satisfies

Vε,S(G) ≥ λ1Vε,S(H1) + λ2Vε,S(H2) a.s.

The same is true for convex combinations of countably many strategies.
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Chapter 2. Proportional transaction costs

Lemma 2.1.7 Let an ACCPS (M,Q) �ε (S,P) be given. Let the numeraire
process be either Nt = 1 or Nt = 1 +

∑d
i=1 S

(i)
t . Then for all ε-admissible

strategies H the process t 7→ V0,M(H1(0,t)) is a Q-supermartingale.

Proof: Using Corollary 2.1.6.2, we have Q-almost surely

V0,M(H1(0,t)) ≥ Vε,S(H1(0,t)) ≥ −aNt

for some a ∈ R. On the other hand

V0,M(H1(0,t)) =

∫ t

0

d∑
i=1

H(i)
s dM

(i)
s .

So if Nt = 1, the process t 7→ V0,M(H1(0,t)) is a stochastic integral with respect
to a Q-martingale and bounded from below by−a. Therefore by Fatou’s Lemma
and [JS87] it is a Q-supermartingale.
For the case Nt = 1 +

∑d
i=1 S

(i)
t , note that Q-almost surely

V0,M(H1(0,t)) ≥ −a(1 +
d∑
i=1

S
(i)
t ) ≥ −a

(
1 +

d∑
i=1

(1 + ε)M
(i)
t

)
⇒

V0,M(H1(0,t)) + a(1 + ε)
d∑
i=1

S
(i)
t =

∫ t

0

(
H(i)
s − a(1 + ε)

)
dM (i)

s ≥ −a,

so by the same argument as above

t 7→ V0,M(H1(0,t)) + a(1 + ε)
d∑
i=1

M
(i)
t

is a Q-supermartingale, and so t 7→ V0,M(H1(0,t)) is. 2
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2.2 Kabanov’s cone-setting and the superreplica-
tion theorem

In order to exploit results from [CS06] vital for our theorem, we recall an al-
ternative, more general framework different from the one established in Section
2.1. This framework, which is especially well-suited for multiasset models, was
first introduced by Y. Kabanov in [Ka99] and subsequently refined and gen-
eralized in the following years [KL02] [KS02]. It is based on a partial order
induced by a cone in Rd+1 which marks all solvent holdings. However, as we
will see, both frameworks are closely connected, allowing us to switch between
both systems in our proof of the Fundamental Theorem.

Definition 2.2.1 For 1 ≤ i ≤ d + 1, denote by ei the i-th unit vector of Rd+1.
For ε ≥ 0, we define the ε-solvency cone KSε,t at time t ∈ [0, T ] as the cone
spanned by ei, 1 ≤ i ≤ d+ 1 and the 2d vectors {Li+t , Li−t , 1 ≤ i ≤ d}, where

Li−t = (1 + ε)S
(i)
t e1 − ei+1

Li+t = −(1− ε)S(i)
t e1 + ei+1.

We furthermore define the dual ε-solvency cone KS∗ε,t as its dual cone, i. e.

KS∗ε,t = {y ∈ Rd+1 : x>y ≥ 0 for all x ∈ KSε,t}.

We will omit the process S and write Kε,t or K∗ε,t if the danger of confusion is
not given.

The interpretation of these objects is straightforward. Here a vector in Rd+1

represents a trader’s holdings in cash (first component) as well as all assets (com-
ponents 2 to d + 1). Li+ represents a holding of one unit of asset i and exactly
that amount of debt in the cash account such that it can be balanced by selling
the asset. Li− represents the opposite situation of a short position in stock i and
a positive amount of cash. So the holdings in Kε,t are exactly those which can,
at time t, be liquidated to a nonnegative amount of cash, i. e. the solvent ones.
On the other hand, −Kε,t contains all holdings that can be established without
initial endowment, possibly by throwing away money or stocks.

Note that if ε > 0, we have

e1 =
L1−
t + L1+

t

2εS
(1)
t

,
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thus KSε,t is equivalently generated by the vectors Li±t without the ei. If ε = 0,
then this is not the case, then Li±t span a d-dimensional linear subspace of Rd+1

while KSε,t is the corresponding half space containing 1. The polar cone, how-
ever, does not change by omitting the unit vectors, even if ε = 0.

It is immediately clear both from the mathematical representation and from
the interpretation that Rd+1

+ is a strict subset of Kε,t, and conversely K∗ε,t is a
subset of Rd+1

+ ∪ {0}. The following lemma, which is in the spirit of Lemma
2.1.5, is equally plausible: If the pair (S̃, ε̃) offers more favourable trading than
(S, ε), then its set of solvent holdings is greater.

Lemma 2.2.2 Let ε, S and ε̃, S̃ be as in Lemma 2.1.5. Then

KSε,t ⊆ KS̃ε̃,t
holds a. s. for all t ∈ [0, T ].

Proof: For 1 ≤ i ≤ d, define the vectors L̃i±t just like Li±t , but with ε and S
replaced by ε̃ and S̃. Then we have

Li−t = L̃i−t +
(
(1 + ε)S

(i)
t − (1 + ε̃)S̃

(i)
t

)
e1.

Since (1 + ε)S
(i)
t − (1 + ε̃)S̃

(i)
t ≥ 0 and e1 ∈ KS̃ε̃,t, this proves Li−t ∈ KS̃ε̃,t. By

the same argument we get Li+t ∈ KS̃ε̃,t, which completes the proof. 2

The dual cone, on the contrary, is linked to our concept of consistent price
systems, as the following lemma will show:

Lemma 2.2.3 1. Let Z = (Z
(1)
t , Z

(2)
t , . . . , Z

(d+1)
t )t∈[0,T ] be a P-martingale

satisfying Zt ∈ KS∗ε,t\{0} P-a. s. for all t. Then (M,Q) ∼ε (S,P), where

Q is defined by dQ
dP

=
Z

(1)
T

EP(Z
(1)
T )

and

M =

(
Z(2)

Z(1)
,
Z(3)

Z(1)
, . . . ,

Z(d+1)

Z(1)

)
.

2. If an ε-consistent price system (M,Q) ∼ε (S,P) is given, then Z is a
P-martingale taking values in KS∗ε,t\{0} a. s. for all t, where

Z
(1)
t = EP(

dQ

dP
|Ft),

Z(i) = Z(1)M (i−1), 2 ≤ i ≤ d+ 1.
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Proof: As we have seen, Zt ∈ KS∗ε,t\{0} implies Zt ∈ Rd+1
+ , so dividing by

Z
(1)
t is not a problem. We have Zt ∈ KS∗ε,t if and only if both Z>t L

i−
t ≥ 0 and

Z>t L
i+
t ≥ 0 hold for 1 ≤ i ≤ d. On the other hand, if Z is strictly positive, we

have both
Z>t L

i−
t ≥ 0⇔ (1 + ε)S

(i)
t ≥M

(i)
t

Z>t L
i+
t ≥ 0⇔ (1− ε)S(i)

t ≤M
(i)
t ,

hence we end up with

Mt

St
∈ [1− ε, 1 + ε]⇔ Zt ∈ KS∗ε,t\{0}.

Concerning the martingale property, it suffices to notice that EP(dQ
dP
|Ft) is by

its nature a P-martingale and that the usual change of measure formula for con-
ditional expectation yields

EQ(M
(i)
T |Ft) =

EP(dQ
dP
M

(i)
T |Ft)

EP(dQ/dP|Ft)

=
EP(

Z
(1)
T

EP(Z
(1)
T )

Z
(i+1)
T

Z
(1)
T

|Ft)

Z
(1)
t /EP(Z

(1)
T )

=
EP(Z

(i+1)
T |Ft)
Z

(1)
t

.

Hence M (i) is a Q-martingale if and only if Z(i+1) is a P-martingale. 2

For the remainder of this chapter assume S admits an ε-consistent price sys-
tem, hence a KS∗ε,· \{0}-valued P-martingale exists.

Definition 2.2.4 An Rd+1-valued process (Vt)t∈[0,T ] is called an ε-self-financing
portfolio process, if

1. P-almost every path starts at V0 = 0 and has finite total variation

2. V is predictable

3. for all stopping times 0 ≤ σ ≤ τ ≤ T we have

Vτ (ω)− Vσ(ω) ∈ −conv

 ⋃
t∈[σ(ω),τ(ω)]

Kε,t(ω)

 .
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Here conv denotes the closure of the convex hull with respect to the Euclidean
topology of Rd+1. Such a self-financing portfolio process is called (ε, a)-admissible,
if

1. VT + a1 ∈ Kε,T

2. for all stopping times τ ∈ [0, T ] and all K∗ε,·\{0}-valued P-martingales
Z as in Lemma 2.2.3 we have Z>τ (Vτ + a1) ≥ 0.

Again, V is called ε-admissible if it is (ε, a)-admissible for some a.

As the following lemma will show, VT + a1 ∈ Kε,T already implies the
admissibility constant. This, however, does not mean that the second consition
in the definition of admissibility can be omitted.

Lemma 2.2.5 Let an ε-admissible portfolio process V and a constant b be given
such that VT + b1 ∈ Kε,T almost surely. Then V is (ε, b)-admissible.

Proof: Assume that b is not a valid admissibility constant, i. e. there exists a
stopping time τ ∈ [0, T ] and a K∗ε,·\{0}-valued P-martingale Z such that

Z>τ Vτ < −bZ>τ 1

on some set A ∈ Fτ with positive probability. Z>1 is a P-martingale while
[CS06, Lemma 8] tells us that Z>V is a P-supermartingale. Thus on some
subset of A with positive probability, we have that

Z>T VT < −bZ>T 1.

But since ZT ∈ K∗ε,T a. s. we must have that VT + b1 /∈ Kε,T with positive
probability, in contradiction to our assumption. 2

Lemma 2.2.6 1. For each trading strategyH there exists an ε-self-financing
portfolio process V such that VT is a multiple of e1 (i. e. V holds no risky
assets in the end) and that V (1)

T = Vε,S(H) a. s.

2. Let V be an ε-self-financing portfolio process such that VT is a multiple of
e1. Then there exists a trading strategy H such that V (1)

T ≤ Vε,S(H) a. s.

Proof: (1): For 1 ≤ i ≤ d, consider the decomposition of the finite-variation
processH(i) into two a. s. increasing processesH(i+) andH(i−) like in the proof
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of Lemma 2.1.5, such that H(i) = H(i+) −H(i−) and VarH
(i)

= H(i+) + H(i−).
We define the processes

X i+
t =

∫ t

0

−Li−s dH(i+)
s

X i−
t =

∫ t

0

−Li+s dH(i−)
s

as well as the processes X i = X i+ +X i− and

V =
d∑
i=1

X i =
d∑
i=1

(X i+ +X i−).

Note that −Li− represents the holding established by buying one unit of asset i
at time t, thus X i+ counts all the changes in cash and assets caused by buying
asset i over time. The analogous is true for−Li+ andX i−, respectively. Observe
that

∆X i±
t = −Li∓∆H i±

t

holds true for both left and right jumps, as well as

X̊ i±c = − Li∓t
‖Li∓t ‖

VarH
(i±)c

-almost everywhere.
Now ∆+X

i+ and ∆+X
i− are never nonzero at the same time, and the same

holds true for ∆−X
i± and X̊ i±c (in other words: We never buy and sell the same

asset at the same time, neither in a right-jump, nor in a left-jump or continuous
way). So we have that ∆+X

i
t , ∆−X

i
t and X̊ i

t lie in ∂cone({−Li+t ,−Li−t }) a. s.
and VarH

(i)

-a.e. respectively. Now

{−Li+t ,−Li−t , 1 ≤ i ≤ d}

are a minimal spanning set and the cone they span is either identical to −Kε,t
or to its boundary, this means that ∆+Vt, ∆−Vt and V̊ c

t lie in −∂Kε,t, a. s. By
construction V is also a predictable process starting at 0, and thus an ε-self
financing portfolio process. One easily computes

dV
(i+1)
t = dH

(i+)
t − dH(i−)

t ⇒ V
(i+1)
T = H

(i)
T = 0

dV
(1)
t =

d∑
i=1

(
−(1 + ε)S

(i)
t dH

(i+)
t + (1− ε)S(i)

t dH
(i−)
t

)
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=
d∑
i=1

S
(i)
t (−dH(i)

t − εdVarH
(i)

t ) =
d∑
i=1

(
H

(i)
t dS

(i)
t − εS

(i)
t dVarH

(i)

t

)
,

where partial integration was applied in the last equation. This means that we
have VT = Vε,S(H)e1, as desired.

(2): Given the portfolio process V , define the strategy H by

H(i) = V (i+1), 1 ≤ i ≤ d.

Now consider the processes X(i±) and X(i) corresponding to H like in the first
part of the proof, and set

W =
d∑
i=1

X(i) =
d∑
i=1

(X(i+) +X(i−)).

Note that V and W coincide in dimensions 2 to d+1, so V −W is at every time
point a multiple of e1.
As we have seen in the first part of the proof, ∆+Wt, ∆−Wt and W̊t lie in
−∂Kε,t, a. s. So for V to be self-financing, we must have that ∆±(V −W )t and

˚(V c −W c)t lie in −Kε,t a. s. all the time. But since e1 /∈ −Kε,t, the process
V −W must be a decreasing process times e1, especially

Vε,S(H) = W
(1)
T ≥ V

(1)
T .

This proves that H has the desired properties.
2

Remark 2.2.7 1. Having learned that the portfolio process V = V (H) con-
structed in 2.2.6.1 is self-financing, we may interchange the V -notation
and the H-notation deliberately by identifying the dimensions 2 to d of
V by the process H and extending a strategy H to a portfolio process by
adding

V
(1)
t :=

d∑
i=1

∫ t

0

H(i)
s dS

(i)
s − ε

∫ t

0

S(i)
s dVarH

(i)

s

as first component. The next lemma will show that the two concepts of
admissibility are also consistent with each other.

2. In transaction cost models with continuous processes strategies that allow
right- as well as left-continuous jumps, it is possible to “throw away” an
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2.2. Kabanov’s cone-setting and the superreplication theorem

arbitrary amount of cash by buying stock immediately before some time
point t and selling it again immediately after t. Using this technique, we
would be able to satisfy 2.2.6.2 with equality if we were allowed one final
trade immediately after T . In the cone-framework, cash and stocks can be
thrown away without such trades, since −ei ∈ −Kε,t for 1 ≤ i ≤ d+ 1
(This corresponds to the fact that if ε = 0, the unit vectors have to be
added to the solvency cone and are not spanned by the vectors Li±). This
difference expresses itself by the discrepancy between the portfolio pro-
cesses V and W in the proof of Lemma 2.2.6.2. In the case of W , every
change in the cash account W (1) is explained exactly by some trades, i.
e. changes in W (2) to W (d+1), whereas in the case of V , the cash can
also be lower. The property of W that W (1) is always as high as pos-
sible considering the trades made was called being on the boundary in
[GRS08b, Definition 4.1], since its mathematical description is that W̊t

and ∆±Wt lie in the boundary of −Kε,t. Speaking in terms of financial
reporting, a trader whose portfolio is on the boundary can always explain
where all the money went.

Lemma 2.2.8 Let ε > 0 be given such that S admits a δ-consistent price system,
where

δ = 1− 1

1 + ε(1/3)
,

ε(1/3) = (1 + ε)1/3 − 1.

Let V be an ε-self-financing portfolio process (ε, a)-admissible in the sense of
Definition 2.2.4. Then the trading strategy H constructed in Lemma 2.2.6.2 is(
ε(1/3), a(1 + ε(1/3))

)
-admissible in the sense of Definition 2.1.2, with respect to

the sum numeraire Nt = 1 +
∑d

i=1 S
(i)
t .

Proof: Consider (M,Q) ∼δ (S,P) and the constant

ε(2/3) = (1 + ε)2/3 − 1,

thus (1+ ε(1/3))2 = 1+ ε(2/3) and (1+ ε(1/3))3 = 1+ ε. Note that 1− δ = 1
1+ε1/3

,
thus by straightforward computations the inequalities

St(1 + ε(1/3)) ≥Mt ≥
St

1 + ε(1/3)
⇔

St(1 + ε) ≥Mt(1 + ε(2/3)) ≥ Mt

1 + ε(2/3)
≥ St

1 + ε
⇒
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St(1 + ε) ≥Mt(1 + ε(2/3)) ≥Mt(1− ε(2/3)) ≥ St(1− ε)

hold. Now Lemma 2.2.2 tells us that

KSε,t ⊆ KMε(2/3),t ⇒ KS∗ε,t ⊇ KM∗ε(2/3),t.

This implies that V is in fact (ε(2/3), a)-admissible with respect to M . Now M
admits a martingale measure equivalent to P, namely Q. Then [CS06, Theorem 9]
tells us that V satisfies

Vτ + a1 ∈ KMε(2/3),τ

for all stopping times 0 ≤ τ ≤ T .
Just like before we have the inequalities

Mt(1 + ε(2/3)) ≥ St(1 + ε(1/3)) ≥ St(1− ε(1/3)) ≥Mt(1− ε(2/3)),

hence we get by Lemma 2.1.5,

Vε(1/3),S(H1(0,t)) ≥ Vε(2/3),M(H1(0,t)) ≥ Vε,S(H1(0,t))

so the portfolio process V̂ , induced by H using ε(1/3) and S, dominates V a. s.
for all t. Hence we get

V̂t + a1 ∈ KMε(2/3),t ⊆ KSε(1/3),t

for all t. So the liquidation value of V̂t + a1 w. r. t. ε(1/3) is nonnegative, but
smaller or equal to

Vε(1/3),S(H1(0,t)) + a+
d∑
i=1

a(1 + ε(1/3))S
(i)
t ,

which is thus nonnegative itself, and thereforeH is
(
ε(1/3), a(1+ε(1/3))

)
-admissible

with respect to S. 2

We are now ready to translate the super-replication theorem from [CS06]
into our setting. It will play a crucial role in our proof of the Fundamental
Theorem. There, necessary and sufficient conditions were given for a contingent
claim to be superreplicable by an admissible strategy without initial endowment.
However, we will limit ourselves to sufficient conditions.
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2.2. Kabanov’s cone-setting and the superreplication theorem

Theorem 2.2.9 Let ε > 0 and ε(1/3), δ be given as in Lemma 2.2.8 and assume
S admits a δ-consistent price system. Consider a random variableX ∈ L0(FT ,P)
satisfying

X ≥ −a(1 +
d∑
i=1

S
(i)
T )

for some constant a > 0. If for every (M,Q) ∼ε (S,P) we have

EQ(X) ≤ 0,

then there exists an
(
ε(1/3), a(1 + ε(1/3))(1 + ε)

)
-admissible trading strategy H

with respect to the sum numeraire satisfying Vε(1/3),S(H) ≥ X a. s.

Proof: First note that by definition we have δ ≥ ε, so an ε-consistent price
system (S,P) and by Lemma 2.2.3 a K∗ε,·\{0}-valued P-martingale Z do exist.
For these we have

0 ≥ EQ(X) = EP

(
Z

(1)
T

EP(Z
(1)
T )

X

)
=

1

EP(Z
(1)
T )

EP(Z>T Xe1).

Since we have chosen Z arbitrarily, we have

EP(Z>T Xe1) ≤ 0

for all K∗ε,·\{0}-valued P-martingales Z.
If we fix b = a

1−ε > a, the portfolio Xe1 + b1 has a terminal liquidation value
of

X + b+ b
d∑
i=1

(1− ε)S(i)
T ≥ −a(1 +

d∑
i=1

S
(i)
T ) + b+ a

d∑
i=1

S
(i)
T > 0,

thus Xe1 + b1 ∈ Kε,T and we can finally apply the superreplication theorem
[CS06, Theorem 15] to Xe1. This theorem states that there exists an ε-self-
financing ε-admissible portfolio process V satisfying VT ≥ Xe1. Note that

X ≥ −a(1 +
d∑
i=1

S
(i)
T )

implies
VT + a(1 + ε)1 ∈ Kε,T ,
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Chapter 2. Proportional transaction costs

thus by Lemma 2.2.5 we know that V is
(
ε, a(1 + ε)

)
-admissible. Now Lemma

2.2.6 and 2.2.8 tell us that there exists an
(
ε(1/3), a(1+ε(1/3))(1+ε)

)
-admissible

trading strategy H with

Vε(1/3),S(H) ≥ Vε,S(H) ≥ X.

2
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Chapter 3

The face-lifting theorem

3.1 Introduction
In this chapter, we study the impact of proportional transaction costs on the su-
perreplication price of path independent options. In discrete time, option hedg-
ing was proven to be possible under transaction costs in different frameworks
([BV92], [BLPS92], [ENU93]), but with the rather surprising result that super-
replication can in general be performed cheaper than exact hedging - in discrete
time, one cannot throw away money like in continuous time, see Remark 2.2.7.
In continuous time, it was first conjectured in [DC94] that the European call
cannot be superreplicated at a lower price than that of the stock, a phenomenon
which may even appear in frictionless incomplete markets, see e. g. [EJ97]. As
mentioned in the introduction, this was generalized to a superreplication prin-
ciple now known as face-lifting pricing. Notable versions of the face-lifting
theorem have been proved by Bouchard and Touzi [BT00] in a Kabanov-style
framework with a d-dimensional diffusion and by Guasoni et al. [GRS08a] for
general one-dimensional continuous processes. We present a generalization of
the latter to d-dimensional processes which are not necessarily semimartingales
nor continuous, but share the so-called conditional full support (CFS) property,
a property which is shared by virtually all models used in practice.

In what follows, assume that S takes values in a domain D ⊆ Rd
+ of the form

D =
d∏
i=1

(ai, bi)

with 0 ≤ ai < S
(i)
0 < bi ≤ ∞ for all 1 ≤ i ≤ d. Without loss of generality we

assume that there exists some b ∈ {0, 1, . . . , d} such that S(i) is unbounded for
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Chapter 3. The face-lifting theorem

1 ≤ i ≤ b and bounded for b < i ≤ d (if not so, just swap the dimensions). This
includes the special cases where all underlyings are unbounded (i. e. b = d) or
bounded (b = 0).
The (CFS) condition introduced in [GRS08a] will be crucial for our proof. How-
ever, we will alter the original notion slightly since we consider other domains
than justD = Rd

+, possibly discontinuous processes and a greater class of payoff
functions.

Definition 3.1.1 AD-valued adapted process (St)t∈[0,T ] satisfies the conditional
full support (CFS) property, if for all ε > 0, t ∈ (0, T ), and all continuous
functions f : [t, T ]→ D we have

P
(
‖St − f(t)‖ < ε

)
> 0

and on the set {‖St − f(t)‖ < ε} we have almost surely

P
(

sup
u∈[t,T ]

‖Su − f(u)‖ < ε|Ft
)
> 0.

S satisfies the extended conditional full support (ECFS) property, if for ε, f as
above and all Borel sets A contained in an ε-ball around f(T ) and satisfying
P(ST ∈ A) > 0, we have

P
(
‖St − f(t)‖ < ε

)
> 0

and on the set {‖St − f(t)‖ < ε} we have almost surely

P
(

sup
u∈[t,T ]

‖Su − f(u)‖ < ε and ST ∈ A|Ft
)
> 0.

The property (CFS) reads as follows: From any time point t ∈ [0, T ) on,
given any continuous path, S will run arbitrarily close to this path with positive
probability. This does, however, not imply S to be continuous itself. In fact,
even pure jump processes may have this property. The difference between (CFS)
and (ECFS) becomes crucial, at least if we want to drop the semicontinuity
assumption on the payoff function necessary in [GRS08a], as Example 3.3.8
will show.

Also see Example 3.3.6 for another process which fails to satisfy a single
aspect of the CPS property, which subsequently prevents the face-lifting from
holding.

The main result of this chapter, the extension of the face-lifting theorem proved
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3.1. Introduction

in [GRS08a] to multiple dimensions, will be split into two separate results. As
suggested there, we prove a formula for the superreplication price of a given
claim using a detour via the static superreplication price. The term “face-lifting”
is derived from the fact that the price formula usually involves some notion of
concave envelope of the payoff function, which visually lifts the function to a
smoother one. The notion we require is the following:

Definition 3.1.2 Let g : D → R be a Borel-measurable function and µ be a
Borel measure on D. Then the concave µ-envelope of g is defined as

C(g, µ) = inf{h : D → R, h ≥ g (µ−a.e.), h is concave.}

Note that the classical concave envelope of a functionD → R (see also Def-
inition 3.2.5) is equivalently generated when we replace the set of all concave
functions by the countable set of all functions of the form x 7→ a + cTx with
a ∈ Q and c ∈ Qd. So the same is true for the concave µ-envelope. So since
C(g, µ) is the infimum of only countably many functions which are all greater
or equal to g, µ-a. e., we have C(g, µ) ≥ g, µ-almost everywhere.

We discuss the initial endowment needed to superreplicate a given option while
paying ε-transaction costs as defined in Definition 2.1.1. Unless not noted oth-
erwise, we will only consider the constant numeraire Nt = 1 throughout this
chapter, with the exception of Theorem 3.2.4, which treats the sum numeraire.
The problem is split up into two parts. First, we only consider static trading
strategies, which are restricted to holding a constant position between 0 and T .
The resulting static superreplication price psε is then compared to the (dynamic)
superreplication price pε, which takes into account all admissible strategies.

Definition 3.1.3 Denote the set of all ε-admissible strategies by A. For a con-
tingent claim X ∈ L0(FT ,P), the superreplication price given ε is defined as

pε(X) := inf
(
x : x+ Vε,S(H) ≥ X for some H ∈ A

)
.

The static superreplication price given ε is defined as

psε(X) := inf
(
x : x+ Vε,S(H) ≥ X for some H = c1(0,T ) ∈ A, c ∈ Rd

)
.

In both cases we set inf ∅ = +∞.

The first consequence of this definition is the inequality

pε(X) ≤ psε(X),
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for each claim X , since the set of admissible static strategies is a subset A.
Even though the static superreplication price might be of independent interest,
we rather use it as a tool for computing the proper superreplication price as
ε→ 0. In the first part of the face-lifting theorem we find an explicit formula for
psε , which is of course a much easier task than computing pε straight away. In the
second part we prove the equivalence of both superreplication prices as ε → 0
and thereby solve the dynamic superreplication problem for small proportional
transaction costs. The main results, that sum up to the face-lifting theorem, are
as follows:

Theorem 3.1.4 (Face-lifting theorem, part one) Consider a contingent claim
of the form X = g(ST ) with a function g : D → R. Then the static superrepli-
cation price of X with respect to the transaction cost level ε is given by

psε(X) = sup
(
C(g,PST )(x),x ∈ Rε

)
,

where C(g,PST ) is the concave envelope of g with respect to the push-forward
measure PST and the rectangleRε is defined as

Rε =
b∏
i=1

(
0, S

(i)
0

1 + ε

1− ε

]
×

d∏
i=b+1

[
S

(i)
0

1− ε
1 + ε

, S
(i)
0

1 + ε

1− ε

]
.

Theorem 3.1.5 (Face-lifting theorem, part two) Let S satisfy (ECFS) and let
the claim X be of the form X = g(ST ). Then for the superreplication price
pε(X) and the static supereplication price psε(X) we have

p0+(X) := lim
ε↘0

pε(X) = ps0(X).

While 3.1.5 is essentially the same as in [GRS08a], 3.1.4 is hard to recognize
as analogue of the one-dimensional version. Note however that if ST has the
whole space Rd

+ as support and if furthermore g is bounded from below and
lower semicontinuous, which was all assumed there, then ps0(X) boils down to
the concave envelope of g evaluated at S0, as was the case in [GRS08a].

Remark 3.1.6 For an underlying S and a strategyH , define S̃ and H̃ by S̃t = St
S0

and H̃t = S0Ht. Then straightforward calculation yields Vε,S(H) = Vε,S̃(H̃).
Moreover, S and S̃ have the same set of admissible strategies. This simple
transformation can be used to reduce our problem to strategies starting at 1.
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3.2 Proof of the face-lifting theorem
Before we prove the first part of the face-lifting theorem, we analyze static
strategies in greater detail. Assume S0 = 1 and c ∈ Rd. The trading strat-
egy c1(0,T ) yields the final value

Vε,S(c1(0,T )) =
( ∑
i:c(i)<0

−c(i)(1− ε) + c(i)(1 + ε)S
(i)
T

)

+
∑

i:c(i)>0

(
−c(i)(1 + ε) + c(i)(1− ε)S(i)

T

)
,

which is bounded from below if and only if c(i) ≥ 0 for all i ≤ b. In other
words: Static admissible strategies are exactly those without short positions in
unbounded underlyings.
Note that for an initial endowment x ∈ R, the final wealth x+ Vε,S(c1(0,T )) is a
deterministic function of ST , which we will denote by hx,c. In fact,

hx,c(s) = a(0) +
d∑
i=1

a(i)s(i),

where
a(0) = x−

∑
i:c(i)<0

c(i)(1− ε)−
∑

i:c(i)>0

c(i)(1 + ε),

a(i) = c(i)
(

(1− ε)1c(i)<0 + (1 + ε)1c(i)>0

)
, 1 ≤ i ≤ d.

Since these equations can be inverted to recover x and c from a(0), a(1), . . . , a(d),
there exists a bijection between all static strategies with initial endowment and
all payoffs h(ST ), where h is an affine linear function Rd → R (i. e. a hyper-
plane).
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Proof of Theorem 3.1.4: Following 3.1.6, let us first assume that S0 = 1.
For given holdings c and an initial endowment x, note that x = hx,c(z), where
z = (z(1), z(2), . . . , z(d)) and

z(i) =
1 + ε

1− ε
1c(i)≥0 +

1− ε
1 + ε

1c(i)<0.

Since a(i) and c(i) have the same sign, hx,c is strictly increasing in those dimen-
sions where c(i) > 0 and strictly decreasing where c(i) < 0. This means that that

hx,c(z) ≥ hx,c(z
′) for all z′ ∈

{
1+ε
1−ε ,

1−ε
1+ε

}d
.

In other words, for a given hyperplane h, we may compute its price (i. e. the
initial endowment x ∈ R needed to generate the payoff h(ST )) by

x(h) = max

(
h(z), z ∈

{1− ε
1 + ε

,
1 + ε

1− ε

}d)

= max

(
h(z), z ∈

[1− ε
1 + ε

,
1 + ε

1− ε

]d)
,

since the second maximum is attained at one of the corners.
Recall that the µ-concave envelope is equivalently generated by

C(g, µ) = inf
(
h ≥ g(µ−a.e.), h is affine linear

)
,

thus superhedging g(ST ) or C(g,PST )(ST ) by static strategies are equivalent.
Assume for a moment that b = 0, i. e. all underlyings are bounded and all static
strategies are admissible. Then the static superhedging problem boils down to
solving

psε(X) = inf
(
x(h) : h ≥ C(g,PST ) is affine linear

)
.

Denote by x̂ the maximum of C(g,PST ) over Rε =
[

1−ε
1+ε

, 1+ε
1−ε

]d and by ŷ ∈ Rε

one point where this maximum is attained. Obviously

psε(X) ≥ x̂,

since h ≥ C(g,PST ) implies x(h) ≥ x̂. On the other hand, since C(g,PST ) is
concave, there exists a tangent hyperplane ĥ in ŷ that satisfies x(ĥ) = x̂. Thus
psε(X) = x̂.
In the general case (i. e. b > 0), we are limited to hyperplanes that represent
admissible strategies, i. e. that are are non-decreasing in the first b dimensions.
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Thus we may, instead of limiting the set of hyperplanes in consideration, find
the optimal tangent hyperplane to the function

inf
(
h ≥ g (PST−a.e.), h(y) = a(0) + a>y; a ∈ [0,∞)b × Rd−b

)
,

which is itself concave and non-decreasing in the first b dimensions. Once again
the minimal initial endowment is the maximum over the rectangle

[
1−ε
1+ε

, 1+ε
1−ε

]d,
which coincides with the maximum of C(g,PST ) over Rε. This proves the the-
orem for S0 = 1.

In case S0 6= 1, consider the transformed underlying S̃ introduced in 3.1.6,
as well as an equally scaled payoff function

g̃ : x 7→ g(S0x).

Using Vε,S(H) = Vε,S̃(H̃) and g(ST ) = g̃(S̃T ) and the fact that S̃0 = 1, we have

psε(X) = inf
(
x : x+ Vε,S̃(H̃) ≥ g̃(S̃T ) for some static H̃ ∈ A

)
= sup

(
C(g̃,PS̃T )(x),x ∈ R̃ε

)
,

where R̃ε =
(
0, 1+ε

1−ε

]b × [1−ε
1+ε

, 1+ε
1−ε

]d−b is the scaled version of Rε. This maxi-
mum clearly coincides with the maximum of C(g,PST ) over Rε, which proves
the general case. 2

Example 3.2.1 (Two-sided Poisson process) The following simple model sat-
isfies neither (CFS) nor (ECFS), but it demonstrates our idea behind the quite
technical proof of Theorem 3.1.5: Consider T = 1 and S = eX

(1)−X(2) , where
X(1) and X(2) are independent Poisson processes with intensities λ1, λ2 > 0
under P. S is a P-martingale if and only if

λ1(e− 1) = λ2(1− e−1).

Note that the intensities can be changed to arbitrary µ1, µ2 > 0 by the equivalent
measure change with density

dQ

dP
= exp(−µ1 − µ2 + λ1 + λ2)

(
µ1

λ1

)X(1)
1
(
µ2

λ2

)X(2)
1

.

It suffices to define the payoff function g on the grid

G = supp(S1) = {ek, k ∈ Z}.
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Assume the simplest case, where g is bounded from below and therefore

ps0
(
g(ST )

)
= C(g,PST )(1),

and that there is a tangent to g touching g at some points a, b ∈ G, a < 1 < b.
Hence 1 = θa+ (1− θ)b and

C(g,PST )(1) = θg(a) + (1− θ)g(b).

Define τ as the first time S hits either a or b. By increasing the intensities as
described above, we may find Qδ ∼ P such that S is still a Qδ-martingale and
Qδ(τ < 1) > 1− δ, for arbitrary δ > 0. Now consider the event A that S stays
constant between τ and T , which has positive probability. So under the measure
Rδ � P, defined by dRδ

dQδ
= 1A

Qδ(A)
, S is a martingale satisfying

Rδ(ST ∈ {a, b}) > 1− δ.

Now assume H superreplicates g(ST ) with initial endowment x, hence

g(ST ) ≤ x+ V0,S(H).

Taking expectations w. r. t. Rδ and minding Lemma 2.1.7, we get x ≥ ERδ

(
g(ST )

)
.

Now we have

lim
δ→0

ERδ

(
g(ST )

)
= g(a)Rδ(ST = a) + g(b)Rδ(ST = b),

and the probabilities of ST ending up in a or b tend to θ and 1 − θ as S is an
Rδ-martingale and therefore ERδ

(Sτ∧T ) = 1 for all δ, hence

x ≥ θg(a) + (1− θ)g(b) = ps0
(
g(ST )

)
.

Two cases were not covered yet: The first one is g(1) = C(g,PST )(1). There
we can argue with a measure R � P such that S is R-a. s. constant. The
second one arises when the tangent to C(g,PST ) in 1 touches g only once in
some a < 1. There we argue as in the general case and letting b→∞. Overall,
this proves the face-lifting theorem for S.

So the idea is to argue on tangents supporting C(g,PST ) in S0. In dimension
d and for arbitrary S, this of course becomes much more involved, as the tan-
gents there become hyperplanes and the two points a, b have to be replaced by
d + 1 sets of positive PST -measure. Moreover, S can in general not be turned
into a martingale with a suitable change of measure, which is why we need to
argue on a suitable CPS M instead. Most of the technicalities involved in this
approach are covered by the following lemma.
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3.2. Proof of the face-lifting theorem

Lemma 3.2.2 Let S satisfy (ECFS), with S0 = 1. Let ε, δ > 0 and vectors
x1,x2, . . . ,xd+1 ∈ D be given such that 1 lies in the interior of conv(x1,x2, . . . ,xd+1).
Let in addition Borel sets

Bm ⊆ xm

[
1

1 + ε
, 1 + ε

]d
, 1 ≤ m ≤ d+ 1

be given such that P(ST ∈ Bm) > 0 for all m. Then there exists a consistent
price system (M,Q)�ε (S,P) such that

1. Q
(
MT ∈ conv(x1,x2, . . . ,xd+1)

)
= 1

2. Q
(
MT ∈ {x1,x2, . . . ,xd+1}

)
≥ 1− δ

3. Q(ST ∈ Bm|MT = xm) = 1 for all 1 ≤ m ≤ d+ 1

Proof: In order to simplify calculations, we will construct a martingale that
satisfies the geometric condition

St
1 + ε

≤Mt ≤ St(1 + ε)

rather than the original CPS condition, see Remark 2.1.4.2. As 1
1+ε

> 1− ε, this
process will indeed be an ε-consistent price system.
Fix K,N ∈ N, the time grid t0, t1, . . . , tK by tk = kT

K
and vectors xnm ∈ D by

xnm = 1
N − n
N

+ xm
n

N
, 1 ≤ n ≤ N, 1 ≤ m ≤ d+ 1,

so we have x0
m = 1 and xNm = xm. The idea is to first construct M as discrete-

time Markov chain moving on the grid just defined and being absorbed at either
of the end points. To do so, fix µ, η > 0,x ∈ Rd

+ and define the set

Ak,x,η,µ =
{ x

1 + η
< Stk − Stk−1

< (1 + η)x
}⋂

{ Stk−1

1 + µ
< St < Stk−1

(1 + µ) ∀ t ∈ [tk−1, tk]
}
.

Now define the set

Ω0 =
d+1⋃
m=1

⋃
y1...,yK∈{0,±x1

m−1}

K⋂
k=1

Ak,yk,ηk,µ.
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Chapter 3. The face-lifting theorem

Note that the sets
⋂K
k=1 Ak,yk,ηk,µ are mutually disjoint if we choose η small

enough, which we will assume. On Ω0, we define a discrete time process M by
M0 = 1 and

Mtk+1
=

d+1∑
m=1

∑
y∈{0,±x1

m−1}

(Mtk + y)1A
k,y,ηk,µ

.

Right now, M is a random walk starting at 1 and running on an infinite grid
spanned by the vectors ±x1

m. Out of all these trajectories, we choose all paths
that satisfy for each k < K

(i) Mtk = xnm for some 1 ≤ n < N ⇒Mtk+1
∈ {xn−1

m ,xn+1
m }

(ii) Mtk = xNm ⇒Mtk+1
= xNm

(iii) MT = xk ⇒ ST ∈ Bk

and denote the corresponding subset of Ω0 by Ω1. So on Ω1, M runs only on the
set {xnm, 1 ≤ n ≤ N, 1 ≤ m ≤ d + 1} and is stopped whenever it reaches one
of the corners. Note that all the paths featured in Ω1 have positive probability
due to the ECFS property. The conditions 1 and 3 of our lemma are now already
satisfied.
By construction of Ω1, the conditional probability

P(Ak,x1
m−1,ηk,µ|Ftk−1

)

is a. s. positive on Ω1 ∩
{
Mtk−1

= 1
}

and Ω1 ∩
{
Mtk−1

∈ {x1
m . . . ,x

N−1
m }

}
while being zero on all other parts of Ω1. There exists therefore a probability
measure Q ∼ P|Ω1 satisfying

Q(Ak,x1
m,η

k,µ|Ftk−1
) = λm1{

Mtk−1
=1
} +

1

2
1{

Mtk−1
∈{x1

m,...,x
N−1
m }

}
Q(Ak,−x1

m,η
k,µ|Ftk−1

) =
1

2
1{

Mtk−1
∈{x1

m,...,x
N−1
m }

},
where x =

∑d+1
m=1 λmx

1
m is a representation of x as strict convex combination

of x1
1,x

1
2, . . . ,x

1
d+1. This makes M a time-homogeneous discrete-time Markov

chain as well as a martingale. Note that λ1, λ2, . . . , λd+1 and therefore the tran-
sition properties of the Markov chain do not depend on our choice of K or N .
We now extend M to a Q-martingale on the whole of [0, T ] by letting

Mt = EQ (Mtk | Ft)
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3.2. Proof of the face-lifting theorem

for tk−1 < t < tk and 1 ≤ i ≤ d. What is left to show is that 1
1+ε
≤ S

(i)
t

M
(i)
t

≤ 1 + ε

for all t ∈ [0, T ]. For t ∈ [tk, tk+1] we have

S
(i)
t

M
(i)
t

=
S

(i)
t

S
(i)
tk

S
(i)
tk

M
(i)
tk

M
(i)
tk

M
(i)
t

.

The first factor S
(i)
t

S
(i)
tk

is bounded by 1 + µ, whereas the second factor satisfies

S
(i)
tk

M
(i)
tk

≤
k∏
j=1

(1 + ηk) ≤ eη/(1−η) ≤ 1 + 2η

and for the third one, we have
M

(i)
tk

M
(i)
t

≤ M
(i)
tk

M
(i)
tk+1

, which can be bounded arbitrarily

close to 1 by choosing N large enough (and therefore all xnm and xn±1
m close

enough to each other). Summing up, since we are still free to choose µ, ν and

N freely, we can make sure that both S
(i)
t

M
(i)
t

≤ 1 + ε and by the same strategy,

M
(i)
t

S
(i)
t

≤ 1 + ε. Thus for sufficiently small µ and η and large enough N , we have

(M,Q)�ε (S,P).

Finally, consider once more the discrete-time Q-Markov chain M , whose
transition probabilities do not depend on our choice of K and where the absorb-
ing states are exactly {x1,x2, . . . ,xd+1} while all other states are transient. For
such a Markov chain with infinite time horizon, almost every path gets absorbed
in finite time, (see e. g. [Be00, Proposition 5.1]). Since the number K of time
steps was chosen arbitrarily, we may choose it large enough to ensure that the
Q-probability of being absorbed before tK = T is greater than 1 − δ. This
completes the proof. 2

Remark 3.2.3 Property (iii) in the above selection of the “good” paths justifies
the inclusion of the set A in the definition of extended conditional full support
in 3.1.1. Here the sets B1, B2, . . . , Bd+1 play the role of A. It will become clear
in the following proof why these sets are needed. Consider a tangent hyperplane
h to C(g,PST ) at 1. This hyperplane is supported by g (i. e. touches g at) such
sets B1, B2, . . . , Bd+1. If we, instead of trading on S, trade without transaction
costs on a CPS M ending up in one of those sets most likely, we can actually
forget about g and just try to hedge h. Since M is a martingale, this can’t be
done at a cheaper price than the value of h at S0, which results in the missing
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Chapter 3. The face-lifting theorem

inequality. This idea is carried out in the following proof. However, the notion
of h supporting g in some sets needs to be made rigorous, since in general a
tangent h need not be equal to g on a set of positive PST -measure.

Proof of Theorem 3.1.5: Once again, assume S0 = 1. Since pε(X) ≤ psε(X)
was clear and since ps0+(X) = ps0(X) by the continuity of C(g,PST ), what is
left to show is that p0+(X) ≥ ps0(X). Let x ∈ R and some H ∈ A be given
such that

x+ Vε,S(H) ≥ g(ST ) P-a.s

for some ε > 0. Recall that H ∈ A implies

C = essinfP
(
Vε,S(H)

)
to be finite. Thus the pair (x,H) also superreplicates g1(ST ), where

g1 = max(g, x+ C).

Assume first that ps0(X) = C(g,PST )(1). Fix some positive δ < ε. By
definition of the concave PST -envelope, there exist some η ∈ (0, ε), vectors
xm ∈ D and sets Bm ⊆ D, 1≤m≤ d + 1, such that P(ST ∈ Bm) > 0 for all
1 ≤ m ≤ d + 1 and such that for all b1 ∈ B1,b2 ∈ B2, . . . ,bd+1 ∈ Bd+1 we
have

1. 1− η ≤ xm
bm
≤ 1 + η for all m

2. 1 ∈ conv(b1,b2, . . . ,bd+1)

3. if 1 =
∑d+1

m=1 λmbm is the unique convex combination of 1 by
b1,b2, . . . ,bd+1, then

d+1∑
m=1

λmg(bm) ≥ C(g,PST )(1)− δ.

Now Lemma 3.2.2 secures the existence of (M,Q)�η (S,P) such that

Q
(
MT ∈ conv(x1,x2, . . . ,xd+1)

)
= 1

Q
(
MT ∈ {x1,x2, . . . ,xd+1}

)
≥ 1− δ

Q(ST ∈ Bm|MT = xm) = 1

for all m. Thus by Lemma 2.1.5

g1(ST ) ≤ x+ Vη,S(H) ≤ x+ V0,M(H).
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3.2. Proof of the face-lifting theorem

Now t 7→ V0,M(H1(0,t)) is a Q-supermartingale by Lemma 2.1.7, so

EQ

(
d∑
i=1

∫ T

0

H
(i)
t dM

(i)
t

)
≤ 0

so taking expectations with respect to Q yields

EQ

(
g1(ST )

)
≤ x.

Using the relations between MT and ST , we can estimate this by

EQ

(
g1(ST )

)
≥ (1− δ)

(
C(g,PST )(1)− δ

)
+ δ(C + x).

Since δ was chosen arbitrarily, we have

x ≥ C(g,PST )(1) = ps0(X),

which proves the theorem in this case.
For the case ps0(X) 6= C(g,PST )(1), which can only occur when b > 0, note
that since g1 is bounded from below, C(g1,P

ST ) is increasing in the first b com-
ponents and thus admits its maximum over R0 at 1. Hence we are back in the
first case and

x ≥ ps0
(
g1(ST )

)
≥ ps0

(
g(ST )

)
.

Now for general S0 6= 1, we already know that trading on S and S̃ yields the
same set of possible final values, and that g(ST ) = g̃(S̃T ). Thus replacing S and
g by S̃ and g̃ leaves pε as well as psε constant, while Rε is transformed likewise.
This reduces the general case to S0 = 1 which is already solved. 2

Having proved the face-lifting theorem for the numeraire process Nt = 1,
we can easily derive an analogous result for the sum numeraire

Nt = 1 +
d∑
i=1

S
(i)
t .

Assume again that S0 = 1. Revisiting the value of a static strategy H = c1(0,T ),
we see that

Vε,S(H1(0,t)) ≥ −
d∑
i=1

|c(i)|(1 + ε)−
d∑
i=1

|c(i)|(1 + ε)S
(i)
t
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≥ −(1 + ε)‖c‖∞
d∑
i=1

(1 + S
(i)
t ) ≥ −d(1 + ε)‖c‖∞Nt,

where ‖c‖∞ = max(|c(1)|, |c(2)|, . . . , |c(d)|). So for this choice of numeraire H
is
(
ε, d(1 + ε)‖c‖∞

)
-admissible. Clearly, admissibility does not change if we

let S start at an arbitrary point other than 1.

Theorem 3.2.4 (Face-lifting theorem for the sum numeraire) LetX = g(ST )
as in Theorem 3.1.4. Consider the admissibility condition imposed by the sum
numeraire Nt = 1 +

∑d
i=1 S

(i)
t . The the following hold:

1. the static superreplication price of X with respect to ε is given by

psε(X) = sup
(
C(g,PST )(x),x ∈ Rε

)
,

where the rectangleRε is defined as

Rε =
d∏

n=1

[
S

(n)
0

1− ε
1 + ε

, S
(n)
0

1 + ε

1− ε

]
.

2. If S satisfies (ECFS), then we have

p0+(X) := lim
ε↘0

pε(X) = ps0(X).

Proof: As we have seen, all static strategies are ε-admissible now. Thus the first
part of the proof of Theorem 3.1.4, where b = 0 was assumed, applies to this
case, for arbitrary b. This proves (1).
For (2), the first part of the proof of Theorem 3.1.5 applies, where we assumed
ps0(X) = C(g,PST )(1). Note that the proof uses Lemma 2.1.7, which works for
the sum numeraire, too. 2

There are two things about our version of the face-lifting theorem that make
it somewhat inconvenient and hard to recognize as multidimensional version of
the original theorem from [GRS08a]. The measure µ in Definition 3.1.2 and the
distinction between (CFS) and (ECFS) in Definition 3.1.1. These were put in
place to allow Theorem 3.1.4 to hold true without (CFS) or (ECFS) satisfied,
and to allow a greater variety of payoff functions. In most cases relevant in
practice, however, our results can be simplified.
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3.2. Proof of the face-lifting theorem

Definition 3.2.5 For a function g : D, we define the concave envelope of g as

C(g) = inf{h : D → R, h ≥ g, h is concave.}

Corollary 3.2.6 1. If g is in every point either lower semicontinuous, left
continuous or right continuous and supp(ST ) = D, then

psε(X) = sup
(
C(g)(x),x ∈ Rε

)
,

where Rε is as in Theorem 3.1.4 or Theorem 3.2.4, depending on the nu-
meraire considered.

2. If S is unbounded in every dimension and g is bounded from below PST -
almost everywhere, then for both numeraires

psε(X) = C(g,PST )

(
1 + ε

1− ε
S0

)
.

3. If both (1) and (2) are satisfied, then

psε(X) = C(g)

(
1 + ε

1− ε
S0

)
.

Proof: (1): It suffices to note that in this case C(g,PST ) and C(g) coincide.
(2): In this case C(g,PST ) is increasing in every component, hence the maxi-
mum of C(g,PST ) is admitted in the outermost corner ofRε.
(3) follows from (1) and (2). 2

Corollary 3.2.7 Assume g is in every point either lower semicontinuous, left
continuous or right continuous. Then Theorem 3.1.5 and 3.2.4 hold true with
(CFS) instead of (ECFS).

Proof: It suffices in this case to redo the proofs of Lemma 3.2.2 and Theo-
rem 3.1.5 with the sets Bm replaced by xm[ 1

1+ε
, 1 + ε]d and xm[1 − η, 1 + η]d,

respectively. 2

Remark 3.2.8 (Open problems) The evident explanation for the fact that un-
der small transaction costs, dynamic strategies are not superior to static ones is
that the friction discourages all trades, so strategies that trade less are favoured.
If this explanation is right, then the inequality should hold even more so the
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Chapter 3. The face-lifting theorem

higher the costs are, i.e. we should have pε(X) = psε(X) for all ε > 0 instead of
just p0+(X) = ps0+(X). In the mentioned predecessing works on the European
call and similar options, it was usually proved that pε(X) ≥ ps0+(X), which triv-
ially follows from our face-lifting theorem and the fact that pε is increasing in ε.
Our proof critically depends on the assumption that we may choose ε arbitrarily
small, so it cannot easily be extended to the case of fixed ε.

In a related issue it is still to be shown whether p0(X) = ps0(X). The iden-
tity ps0+(X) = ps0(X) is clear by Theorem 3.1.4 and the continuity of C(g,PST ).
Recall that for ε = 0, we formally still impose H to be of finite variation. But
the question if p0+(X) = p0(X) or not still needs to be addressed. If this is
the case, then one may argue that transaction costs affect the superreplication
price only indirectly in that they lock out strategies of infinite variation. So the
real source of market imperfection would be the variation constraint, not the
transaction costs.

3.3 Examples
This section presents some examples to clarify the implications, but also the
limitations of the face-lifting theorem. In all examples except for 3.3.8, it suf-
fices to assume (CFS) instead of (ECFS), since all considered payoff functions
qualify for Theorem 3.2.7. Example 3.3.8, however, is designed to highlight the
difference between (CFS) and (ECFS).

As Guasoni et al. point out [GRS08a, Section 4], (CFS) is satisfied for a va-
riety of Markov processes, while (ECFS) was not studied there. As the proof of
Theorem 3.1.5 has shown, the distinction between (CFS) and (ECFS) is crucial.
However, under fairly mild assumptions they are in fact equivalent:

Lemma 3.3.1 Let S be a Markov process that satisfies (CFS). If ST has a den-
sity, then (ECFS) holds.

Proof: For x ∈ Rd and δ > 0, denote by Bδ(x) the open δ-Ball around x with
radius δ. Let A, t, f and ε be given as in Definition 3.1.1. Then P(ST ∈ A) > 0
means that A has positive Lebesgue measure. For arbitrary s ∈ Bε

(
f(t)

)
and

x ∈ Bε

(
f(T )

)
and δ > 0 such that Bδ(x) ⊂ Bε

(
f(T )

)
, find a continuous

function g : [t, T ]→ D and η > 0 such that g(t) = s, and both

Bη

(
g(u)

)
⊂ Bε

(
f(u)

)
∀ u ∈ (0, T )

Bη

(
g(T )

)
⊂ Bδ

(
x
)
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hold true. Then (CFS), applied to g and η yields that

P
(

sup
u∈[t,T ]

‖Su − f(u)‖ ≤ ε and ST ∈ Bδ(x)|St = s
)
> 0,

at least for PSt-almost all s ∈ Bε

(
f(t)

)
. The Markov property now yields

P
(

sup
u∈[t,T ]

‖Su − f(u)‖ ≤ ε and ST ∈ Bδ(x)|Ft
)
> 0

a. s. on the set {St ∈ Bε

(
f(t)

)
}. The same is then true if we replace Bδ(x)

by any Borel subset of Bε

(
f(T )

)
of positive Lebesgue measure, e. g. A. This

proves (ECFS). 2

Example 3.3.2 (European standard options) The most-quoted results similar
to our face-lifting theorem are arguably European put and call options with strike
K > 0, represented by the payoff functions

Xc = gc(ST ) = max(ST −K, 0)

Xp = gp(ST ) = max(K − ST , 0).

It can easily be seen that the concave envelope of gc is the identity, independent
ofK, whereas the concave envelope of gp is constant atK. So for a price process
S starting at 1 with conditional full support on R+, such as in the Black-Scholes
model (it will be shown in Theorem 4.3.3 that (ECFS) holds true there), we
get p0+(Xc) = 1 for the call and p0+(Xp) = K for the put. The call is best
superhedged by buying the asset, whereas the put is best superreplicated by not
trading and keeping K on the cash account for the worst case. This holds true
for both numeraires considered.

Example 3.3.3 (European standard options in the Bachelier model) ˙
Although our model only treats strictly positive price processes, the ground-
breaking Bachelier model [Bac00] also deserves consideration. For simplicity
let St be a standard Brownian motion starting at 1. Our definitions of trading
strategies, values, admissibility, extended conditional full support and consistent
price systems can naturally be extended to this case, and S obviously satisfies
(ECFS), as the Black-Scholes model does. It is easily seen that for the numeraire
Nt = 1, no static strategy is ε-admissible but the trivial H = 0, even for ε = 0.
For Nt = 1 + St instead, every static strategy is ε-admissible, for every ε < 1.
But on the whole real line, both the concave envelope of gp and of gc are equal
to +∞, since there exists no concave function above any of the two. In other
words, puts and calls cannot be superreplicated in this model. The same holds
true for every unbounded payoff function.
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Example 3.3.4 (Power options) Similar to the last example, power call options
are in some cases not superreplicable under transaction costs, if the underlying
is unbounded. Consider a process S starting at 1 with conditional full support
on R+ and the contingent claim

Xα = gα(ST ) = max(ST −K, 0)α

for some strike K > 0 and an exponent α > 0. For α = 1 this equals the
standard European call. For α < 1 we get

C(gα,PST )(x) = qx1(0,p](x) + gα(x)1(p,∞)(x),

where p = K
1−α > K and q = α( αK

1−α)α−1 > 0. Hence we have

p0+(Xα) = q11≤p + (1−K)α11>p.

If on the other hand α > 1, then gα outgrows every concave function for
ST → ∞, hence C(gα,PST ) = ∞. So in this case, the option can not be
superreplicated for any ε > 0.

Example 3.3.5 (Rainbow forwards) Options depending on the maximum or
minimum of several stocks are frequently termed rainbow options by practition-
ers, see e. g. [OW06]. Assume a three-dimensional underlying S = (S(1), S(2), S(3))
with conditional full support on D = R3

+, starting at (1, 1, 1). Consider the fol-
lowing four claims:

Xmax = max(S
(1)
T , S

(2)
T , S

(3)
T )

Xmin = min(S
(1)
T , S

(2)
T , S

(3)
T )

Xmed =
3∑
i=1

S
(i)
T −Xmax −Xmin

Xmean =
1

3

3∑
i=1

S
(i)
T .

While Xmean can be perfectly replicated by buying 1
3

of each stock and
thus p0+(Xmean) = 1, The face-lifting theorem yields p0+(Xmax) = 3 and
p0+(Xmed) = 3

2
and finally p0+(Xmin) = 1. This means: The maximum cannot

be superhedged any better way than buying all three assets, Xmin is best hedged
by buying a third of each asset (just like Xmean, even though Xmean < Xmin a. s.),
and Xmed is best hedged by buying one half each.
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Example 3.3.6 (Piecewise, but no joint CFS) To illustrate how crucial the joint
CFS in all dimensions (and not only CFS for each single asset) is for our theo-
rem, consider the following two-dimensional example: Let

(S(1), S(2)) = (eL
(1)

, eL
(2)

),

where (L(1), L(2)) is a compound Poisson process whose jumps are i.i.d. uni-
formly distributed on the set(

[0, 1]× {1}
)
∪
(
{1} × [0, 1]

)
∪
(
[−1, 0]× {−1}

)
∪
(
{−1} × [−1, 0]

)
.

First of all, it is easily seen that both L(1) and L(2) are themselves compound
Poisson processes which jump measures consisting of a uniform distribution on
(−1, 1) plus two Dirac measures on each {−1} and {1}, hence by Theorem
4.3.3 both S(1) and S(2) satisfy the one-dimensional CFS property. Note further-
more that supp(LT ) = R2, since e. g. every point in [−1, 1]2 can be reached in
minimum three jumps. Hence supp(ST ) = R2

+.
Now consider the claim X = g(ST ), where g = 1( 3

2
,∞)2 , which pays 1 if both

assets gain more than 50%. Using Theorem 3.1.4 (which did not require ECFS),
the static superreplication price is easily computed to be

ps0(X) = C(g,PST )(1) =
2

3
,

where the optimal static strategy consists of holding 1
3

unit of each stock. Now
observe the following strategy for ε = 0: Start with a holding of a = 3e−2

3(e2−e−2)

in each asset and additionally b = 1− (1 + e)a of cash. The initial endowment
2a+ b ≈ 0.565 is smaller than ps0(X).
The constants a and b are designed to ensure a(1 + e) + b = 1, which is our
minimal wealth in case the first jump goes upwards. So in this case we imme-
diately sell and have therefore superreplicated X . If the first jump goes down,
we still own at least 2a

e
+ b = 2

3e
, which is enough to buy 2

3
of the one stock that

has fallen to 1
e
. If this stock should ever reach 3

2
(i. e. get in the money), we end

up with at least 1 and have once again superreplicated X . Thus for ε = 0, this
strategy beats the optimal static one.
For ε > 0, note that the total amount of transaction costs produced by our
strategy is bounded by εC, with some constant C. This means that for some
ε > 0 small enough, the strategy remains superior to the static strategy, hence
p0+(X) < ps0(X). This argument also holds true in the next examples.

Example 3.3.7 Example 3.3.6 did not satisfy (ECFS), for instance if A = {S0}
and f forces the process to move at least once. There is an easy example to
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Chapter 3. The face-lifting theorem

illustrate that the phenomenon highlighted there can also occur with an (ECFS)
process, and that jumps are not necessary, either: Consider a two-dimensional
geometric Brownian motion starting at (1, 1), conditioned on the event{

St /∈ {2} × [0, 4] ∀ t ∈ [0, T ]
}
.

Here both S(1) and S(2) satisfy (ECFS), while S does not. The payoff function
g = 1[3,∞)×R+ pays if the first asset gains at least 200%. For this to happen,
S(1) must first climb above 4 (denote the first time this happens by τ ), thus
H = (0, 1

4
)1(0,τ∧T ) superreplicates g(ST ) cheaper than the optimal static strat-

egy (1
3
, 0)1(0,T ).

Example 3.3.8 (The set A is essential in (ECFS)) The next is a pathological
example to to illustrate that the difference between (CFS) and (ECFS) is crucial
when considering non-semicontinuous payoff functions. Let a standard Brown-
ian motion W and countably many Brownian bridges (W (q))q∈Q be given, each
satisfying W (q)

T = q almost surely and all being independent of each other and
of W . Further consider a decomposition of Ω =

⋃
q∈QAq into disjoint sets Aq,

all having positive probability and being independent of W and all W (q). The
process

B =
∑
q∈Q

W (q)
1Aq

satisfies P(BT ∈ Q) = 1. Finally, define the stopping time

τ = inf(t ∈ [0, T ] : Wt = −1)

and the underlying price process

St = exp

(
Wt

(
1− t− τ

T − τ
1[τ,T ](t)

)
+Bt

t− τ
T − τ

1[τ,T ](t)

)
.

We will consider the filtration generated by S. By construction, S runs arbitrar-
ily close to any continuous function f with positive probability, i. e. it satisfies
CFS, since both W and B do. However, the part concerning the set A is not
fulfilled, take for example the constant function f = 1 and A = {1}: There we
have

P
(
|St − f(t)| < ε for all t ∈ [0, T ]

)
> 0

and P(ST = 1) > 0, but the intersection of both events has zero probability.
Since P(ST = 1) > 0, the claim generated by g = 1{1} yields ps0

(
g(ST )

)
= 1.

But S almost never ends up at 1 without moving down to e−1 before, thus we can
superhedge g(ST ) with an initial endowment of 1

e
and the strategy H = 1[τ,T ).

This beats the static strategy for ε = 0, thus also for some ε > 0 small enough.
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Chapter 4

Consistent price systems and CFS
for exponential Lévy processes

In this chapter we study the special case of one-dimensional exponential Lévy
processes. Over the last decades, exponential Lévy models have frequently been
proposed as alternative to the Black-Scholes model (which itself is an exponen-
tial Lévy model), either to introduce jumps to the market, or to increase freedom
in calibrating returns or implied volatility smiles. See [Scho03] or [R00] for an
overview. Lévy processes studied in finance include Brownian motion [BS73],
jump-diffusion models proposed by Merton [Me76] or Kou [Ko02], pure-jump
models like Normal Inverse Gaussian- the Variance Gamma-, the Meixner and
the CGMY-models, but also α-stable and the wide class of Generalized Hyper-
bolic processes ([B-N98], [MS90], [Scho01], [CGMY02], [Ma63], [B-N77])
were considered.
After recalling some basic properties of Lévy processes from standard literature,
we give a complete characterization of which processes admit ε-consistent price
systems for which ε. This can be seen as preliminary work to prove a version
of the Fundamental Theorem of Asset Pricing for Lévy models under small pro-
portional transaction costs, see Theorem 5.4.9, but may also be of independent
interest. The last part of the chapter tries to prove (ECFS) and therefore the face-
lifting Theorem 3.1.5 for as many Lévy models used in practice as possible. As
will turn out, this can be done for all of the above mentioned models.
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Chapter 4. Consistent price systems and CFS for exponential Lévy processes

4.1 Basic properties of Lévy processes
Let L = (Lt)t∈[0,T ] be a one-dimensional Lévy process with respect to P and let
the asset price process be given by S = eL. To avoid complications concerning
modifications, Lévy processes in law, Lévy vs. (Ft)-Lévy processes etc. (see e.
g. [Sat00], [Ch01]), we clarify that we impose L to be càdlàg and have incre-
ments Lt+h − Lt which are stationary (i. e. the distribution only depends of h)
and independent of Ft, both with respect to P. We begin our survey by quoting
some well-known results about Lévy processes, a standard source being [Sat00].

Theorem 4.1.1 (Lévy-Khinchine, see [Sat00, Thm. 8.1]) If L is a Lévy pro-
cess, then the characteristic function of L satisfies EP(eiuLt) = etψ(u) with the
characteristic exponent

ψ(u) = −σ
2

2
u2 + iuγ +

∫
R

(
eiux − 1− iux1[−1,1](x)

)
ν(dx)

with σ2 ≥ 0, γ ∈ R and a Borel measure ν on R satisfying ν({0}) = 0 and∫
R(x2 ∧ 1)ν(dx) <∞.

We call (σ2, γ, ν) characteristic triplet or Lévy-Khinchine-triplet of L.

Lemma 4.1.2 (see [Sat00, Thm. 21.9]) L (and therefore also S) is a. s. of finite
variation if and only if σ2 = 0 and

∫
[−1,1]

|x|ν(dx) < ∞. If not so, then L (and
therefore S) is a. s. of infinite variation.

If L is of finite variation, then we call

γ0 = γ −
∫

[−1,1]

xν(dx)

the drift of L. The following statements can be easily verified by comparing the
characteristic functions.

Lemma 4.1.3 Let L be a Lévy process with characteristic triplet (σ2, γ, ν).

1. IfL(2) is a Lévy process independent ofLwith characteristic triplet (σ2
2, γ2, ν2),

then L+ L(2) is a Lévy process with characteristic triplet

(σ2 + σ2
2, γ + γ2, ν + ν2).

2. For any λ 6= 0 the process λL is a Lévy process with characteristic triplet
(λ2σ2, λγ, ν̃), where ν̃ is given by

ν̃([a, b]) = ν

([
a

λ
,
b

λ

]
∪
[
b

λ
,
a

λ

])
, a ≤ b.
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4.2. Consistent price systems

3. For λ ∈ R, the process t 7→ Lt + λt is a Lévy process with characteristic
triplet (σ2, γ + λ, ν).

Lemma 4.1.4 (see [Sat00, Thms. 24.10 and 27.4 ff.]) Denote byL the Lebesgue
measure on R.

1. If L is of infinite variation, then supp(Lt) = R and PLt ∼ L for all t > 0.

2. If ν(R) =∞, then PLt � L for all t > 0

3. If ν
(
(−δ, 0)

)
> 0 and ν

(
(0, δ)

)
> 0 for all δ > 0, then supp(Lt) = R for

all t > 0.

4. If both (2) and (3) are satisfied, then PST ∼ L.

4.2 Consistent price systems
Not exclusively, but also because of their role in finance, the martingale property
(or lack thereof) of Lévy and exponential Lévy processes is a well-researched
topic. Since every martingale measure also implies a 0-consistent price system,
it is an easy task to completely characterize all exponential Lévy processes that
admit ε-consistent price systems. As it turns out, there is only a very subtle
difference between S admitting an equivalent martingale measure and S admit-
ting ε-consistent price systems for all ε > 0. The difference between these two
classes lies entirely in the class of monotone processes.

Lemma 4.2.1 Let L be a Lévy process with characteristic triplet (σ2, γ, ν).

1. L is a. s. increasing if and only if it is of finite variation and both γ0 ≥ 0
and ν

(
(−∞, 0)

)
= 0 hold.

2. L is a. s. decreasing if and only if it is of finite variation and both γ0 ≤ 0
and ν

(
(0,∞)

)
= 0 hold.

Proof: The first part is proved in [Sat00, Theorem 21.5], the second one follows
the first one and Lemma 4.1.3.2 with λ = −1. 2

The following theorem states exponential Lévy processes can be divided up
into two classes: monotone processes and martingales, with the only intersection
between the two being the constant process.
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Chapter 4. Consistent price systems and CFS for exponential Lévy processes

Proposition 4.2.2 Let S = eL be an exponential Lévy process. Assume S is not
a. s. constant. Then exactly one of the following holds

1. S is almost surely increasing

2. S is almost surely decreasing

3. S and L both admit martingale measures equivalent to P.

Proof: It was shown in [Ch01, Theorem 3.2], that S admits an equivalent mar-
tingale measure if it is neither increasing nor decreasing. This shows that at least
one of the three holds. Finally, note that if two out of the three properties are
met, then S is constant. 2

Remark 4.2.3 Cherny ([Ch01]) showed that we can even choose the martingale
measures for L and S in such a way that L stays a Lévy process. This, however,
plays no role in our survey.

Theorem 4.2.4 Let S = eL be a non-deterministic exponential Lévy process.

1. If S is increasing, then S admits ε-CPS for all ε > ε1 = eγ0T−1
eγ0T+1

, but no
ε1-CPS

2. If S is decreasing, then S admits ε-CPS for all ε > ε2 = 1−eγ0T

1+eγ0T
, but no

ε2-CPS

Proof: (1): Assume S is increasing and non-deterministic, hence

ν
(
(0,∞)

)
> 0.

We first show that there is no ε1-CPS. Therefore assume (M,Q) ∼ε1 (S,P)
exists. From Lemma 4.1.3.3 and Lemma 4.2.1 follows that Lt − γ0t has drift 0
and is still increasing, thus LT − γ0T ≥ 0. Since LT is not deterministic, this
means ST ≥ eγ0T a. s. and P(ST > eγ0T ) > 0. Now Mt

St
∈ [1− ε, 1 + ε] implies

M0 ≤ (1 + ε1) and MT ≥ (1− ε1)ST so combined we have

MT ≥ (1− ε1)ST ≥ (1− ε1)eγ0T = (1 + ε1) ≥M0

almost surely, while the second inequality is met strictly with positive probabil-
ity. Hence EQ(MT ) > EQ(M0), in contradiction to M being a Q-martingale.
So there is no ε1-CPS for (S,P).
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4.2. Consistent price systems

If on the other hand ε > ε1, then define c = log(1 + ε) and δ = − 1
T

log
(

1−ε
1+ε

)
.

It is easily verified that ε > ε1 implies δ > γ0. This means that Lt − δt has
negative drift and is therefore neither increasing nor decreasing (it still has up-
wards jumps). So by Proposition 4.2.2 eLt−δt is a martingale with respect to
some Q ∼ P, and thus Mt = ec+Lt−δt is also a Q-martingale. The way we have
chosen c and δ we find that

Mt

St
= ec−δt ∈ [ec−δT , ec] = [1− ε, 1 + ε]

for all t ∈ [0, T ], which shows (M,Q) ∼ε (S,P). This completes (1).

(2) is proved in the complete same fashion. This time, every ε2-CPS (M,Q)
has to meet the inequality

MT ≤ (1 + ε2)ST ≤ (1 + ε2)eγ0T = 1− ε2 ≤M0

almost surely and strictly with positive probability, soM cannot be a Q-martingale.
If on the other hand ε > ε2, we define c = log(1−ε) and δ = 1

T
log
(

1+ε
1−ε

)
> −γ0,

such that Mt = ec+Lt+δt admits an equivalent martingale measure and satisfies

Mt

St
∈ [ec, ec+δT ] = [1− ε, 1 + ε]

for all t. 2

Remark 4.2.5 1. Note especially the case γ0 = 0, where ε1 = ε2 = 0. These
are the only cases where S admits ε-CPS for all ε > 0, but no equivalent
martingale measure. These are the processes that are monotone, but only
barely. In terms of finance, an increasing process with γ0 = 0 would be
a product with no downside risk but also no guaranteed lower bound on
the return, other than 0. If buying into this product causes transaction
costs, then there is the risk of losing money, like in Example 5.2.8 later
on. This will play a role in the Fundamental Theorem of Asset Pricing,
see Theorem 5.4.9.

2. The only case we have not covered is the case of deterministic, non-
constant S, i. e. the case where σ2 = 0 = ν and γ0 6= 0. Reviewing
the proof of Theorem 4.2.4, it is easily seen that in this case the theorem
still holds, except that an ε1- resp. ε2-CPS also exists, the solution being
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Chapter 4. Consistent price systems and CFS for exponential Lévy processes

the constant process Mt = ec in both cases. But for smaller ε consis-
tent price systems still do not exist. So with this remark we have finished
a complete characterization of which one-dimensional exponential Lévy
processes admit which consistent price systems.

4.3 Conditional full support and the face-lifting the-
orem

We continue our survey of one-dimensional exponential Lévy models by deriv-
ing sufficient conditions for (CFS) and (ECFS) to hold. Unlike in the previous
section, we do not intend to give a full characterization, i. e. necessary and suf-
ficient conditions, but rather concentrate on properties that most models used in
practice share.
Introduce the process

Lηt = Lt −
∑

0≤s≤t

∆−Ls1|∆−Ls|≥η,

that arises from L by cancelling all jumps of absolute value greater or equal to
η. By Lemma 4.1.3 Lη is also a Lévy process with triplet(

σ2, γ −
∫

[−1,1]\(−η,η)

xν(dx), ν1(−η,η)

)
.

Lemma 4.3.1 Define the process L by

Lt = sup(|Ls|, s ∈ [0, t]).

IfL andLη admit equivalent martingale measures for all η > 0, then 0 ∈ supp(LT ).

Proof: Although technically L is only defined on [0, T ], we may assume without
loss of generality that L has infinite time horizon. For ε > 0, define τε as the
first time L leaves (−ε, ε). Then 0 ∈ supp(LT ) for all T > 0 is equivalent to τε
being unbounded for all ε > 0. So assume that there exists some ε > 0 such that

Tε = esssupP(τε)

is finite. Fix some small δ ∈ (0, Tε/3), where Tε/3 = esssupP(τε/3) < ∞.
Further define N = d Tε

Tε/3−δ
e+ 1 and η = ε

3dN/2e .

52



4.3. Conditional full support and the face-lifting theorem

Denote the martingale measures of L and Lη equivalent to P by Q and Qη.
Then the process

L̂t = Lt∧(Tε/3−δ) + (Lηt − LηTε/3−δ)1(Tε/3−δ,∞),

That arises from L by cancelling out all jumps greater or equal to η after Tε/3−δ.
L̂ is a martingale with respect to Q̂ ∼ P, defined by

dQ̂

dQη

= EQη

(
dQ

dQη

∣∣∣FTε/3−δ) .
Now consider the set

A =
{
Tε/3 − δ < τε/3 ≤ Tε/3

}
∩
{
|∆−Lt| < η ∀ t ∈ (Tε/3 − δ, Tε/3]

}
.

By definition of Tε/3, we have P(Tε/3 − δ < τε/3 ≤ Tε/3) > 0, and, since the

number of jumps ofL in (Tε/3−δ, Tε/3] greater or equal to η is is Poisson
(
δν
(
R\(−η, η)

))
-

distributed independent ofFTε/3−δ, we have P(A) > 0. Since L̂ is a Q̂-martingale,
we have both

Q̂(L̂τε/3 > 0|FTε/3−δ) > 0

Q̂(L̂τε/3 < 0|FTε/3−δ) > 0

on A. But since on A, L and L̂ coincide for all t ∈ [0, Tε/3] a. s., this means that
both

A+ = A ∩ {Lτε/3 > 0}

A− = A ∩ {Lτε/3 < 0}

have positive probability.
Define the sequence (τ (n))n∈N by τ (0) = 0 and

τ (n+1) = inf
(
t > τ (n) : |Lt − Lτ (n)| ≥

ε

3

)
.

Now consider the set of paths of L satisfying all of the following:

1. |∆−Lτ (n)| < η for all 1 ≤ n ≤ N

2. τ (n+1) − τ (n) > Tε/3 − δ for all 0 ≤ n < N

3. Lτ (n+1) > Lτ (n) for all even n ≤ N

4. Lτ (n+1) < Lτ (n) for all odd n ≤ N
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Due to the Lévy property of L, the probability of this set is at least

P(A+)dN/2eP(A
bN/2c
− ) > 0.

By construction, L does not leave (−ε, ε) on this set before

τ (N) ≥ N(Tε/3 − δ) > Tε,

in contradiction to the definition of Tε. This completes the proof. 2

Remark 4.3.2 All processes covered by Lemma 4.3.1 share the common prop-
erty supp(LT ) = R, but this property is neither necessary nor sufficient. For
instance, for a standard Poisson process we have supp(LT ) = N0, but still
P(LT = 0) > 0. On the other hand, consider

Lt = t+N
(1)
t − πN

(2)
t

with two independent Poisson processes N (1), N (2). While this process satisfies
supp(L1) = R, we have L1 ≥ 1 almost surely.

Theorem 4.3.3 Let L satisfy properties 1 or 4 from Lemma 4.1.4 Then S = eL

satisfies (ECFS). If only property 3 is satisfied, then (CFS) holds.

Proof: Assume property 1 or 3 are satisfied. Since (ST
St
|Ft) has the same distri-

bution as ST−t, we may assume t = 0 and f(0) = 1 and leave the conditioning
on Ft away. Define

η = log inf
s∈[0,T ]

(f(s) + ε

f(s)

)
> 0.

Since log(f) is uniformly continuous on [0, T ], we may find a grid

0 = t0 < t1 < . . . < tN = T

and a continuous polygonal function

p(x) =
N∑
n=1

(anx+ bn)1(tn−1,tn](x)

satisfying p(0) = 0 and

sups∈[0,T ]

(
| log

(
f(x)

)
− p(x)|

)
≤ η

2
.
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Not only does L satisfy the conditions of Lemma 4.3.1, but so does Ls + as for
all a ∈ R, by Lemma 4.1.3.3. By this and the independent stationary increment
property of L we know that the sets

An =
{

sup
s∈[tn−1,tn]

(
|Ls − Ltn−1 − an(s− tn−1)|

)
<

η

2n+2

}
, 1 ≤ n ≤ N

are independent of each other and have positive probability, and so has

{
sup
s∈[0,T ]

|Ls − log(f(s))| < η
}
⊇
{

sup
s∈[0,T ]

|Ls − p(s)| ≤
η

4

}
⊇

N⋂
n=1

An.

So with positive probability we have for all s ∈ [0, T ]:

log
(
f(s)

)
− η < Ls < log

(
f(s)

)
+ η ⇒

f(s)− ε ≤ f(s)e−η < Ss < f(s)eη ≤ f(s) + ε,

which secures (CFS). Now if property 1 or 4 is satisfied, then ST has a density
and Lemma 3.3.1 secures (ECFS).

2

Example 4.3.4 To see that only property 3 of Lemma 4.1.4 is not enough to
secure (EFCS), assume L is a compound Poisson process with normally dis-
tributed jumps. There ν is the normal distribution, so property 3 is satisfied and
(CFS) holds. But P(S1 = 1) > 0, so with T = 1,

f(x) = (1 + x)1[0, 1
2

)(x) + (1− x)1( 1
2
,1](x),

some small enough ε and A = {1} it can be seen that (ECFS) is not satisfied:
To stick close enough to f , S has to jump, but {S1 = 1} has zero probability
conditioned on the event that at least one jump occurs before 1.

Example 4.3.5 (Common models in finance) As we have seen, (ECFS) and
therefore Theorem 3.1.5 holds if L has an active Brownian part, i. e. σ2 > 0,
or if ν is infinite and two-sided. The first is true for the Black-Scholes-Model
and for the Jump-Diffusion models. The latter is true for the NIG- the Variance-
Gamma- the Meixner- the CGMY- (with parameter Y < 0) the α-stable (with
α ∈ (1, 2)) and the Generalized-Hyperbolic models. In all those cases ν is infi-
nite and has a strictly positive density on the whole real line, see [Scho03] and
[ST94] (α-stable processes) for explicit densities.
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Example 4.3.6 (3.2.1 revisited) Recall the model L = X(1) − X(2) from Ex-
ample 3.2.1. There we could manually prove the face-lifting theorem to be true,
even though (CFS) was not given. Now consider the similar caseL = X(1) − 2X(2),
with X(1) and X(2) still being independent Poisson processes. We will construct
a strategy that beats the static one for the digital option g = 1[ 1

4
, 1
2

], which is in

the money if and only if LT = −1. Start with a = 1−e−1

e−e−2 units of the stock and
b = 1− e−1

e−e−2 units of cash. This position costs

a+ b ≈ 0.58 < 1 = C(g,PST )(1) = ps0
(
g(ST )

)
.

If no jump occurs, then g(ST ) = 0 and we are done. If the first jump goes up to
e1, then we sell our stocks and have ae+b = 1 of cash, and have therefore super-
replicated g. If the first jump goes down to e−2, we still have ae−2 + b = e−1,
which is enough to buy e units of the stock. If then LT = −1, our terminal
wealth is 1 and we have once again superreplicated g. As in Example 3.3.6, it is
now clear that this strategy beats the static one for sufficiently small ε > 0.
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Chapter 5

The Fundamental Theorem of
Asset Pricing

5.1 Introduction
The idea of “no-arbitrage”-conditions has developed to be the central principle
in modern mathematical finance since its beginnings in the seventies. Introduced
by F. Black, M. Scholes and R. Merton in their groundbreaking 1973 papers
([BS73],[Me73]) as a means to determine unique option prices in one specific
market model, it has since then drastically increased its importance within the
whole mathematical theory of financial markets: In the seminal papers of M.
Harrison, D. Kreps and S. Pliska ([HK79], [HP81], [Kr81]) it was shown that
the the now-called Black-Scholes model is just a special case of a more general
framework and that the concept of no-arbitrage is closely connected to martin-
gales. This relation, often referred to as duality theory, has opened the gates to
various other applications of the powerful martingale theory in finance, for in-
stance superreplication in incomplete markets, portfolio optimization or optimal
consumption. The central piece of duality theory is arguably what is known as
the Fundamental Theorem of Asset Pricing. It states that a model is arbitrage-
free if and only if there exists some kind of riskless pricing functional, in most
cases an equivalent martingale measure. This theorem comes in countless ver-
sions, differing in the general framework of trading, the notion of arbitrage and
the notion of admissibility, see [DS06] for a more involved overview.

The theory of arbitrage-free markets under transaction costs is considerably
younger, with the most influential pioneering work by E. Jouini and H. Kallal
dating back to 1995 [JK95]. First it has been the main challenge to find the right
replacement for the concept of equivalent martingale measures, the weapon of
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choice now being the consistent price systems introduced in Section 2.1. In this
chapter this theory is used to derive a multidimensional analogue of a result by
Guasoni et al. [GRS08b] for one-dimensional continuous price processes. There
it was shown that a model is arbitrage-free with respect to arbitrarily small pro-
portional transaction costs if and only if it admits consistent price systems for
every level of costs. As was pointed out there, the concept of asymptotically
small transaction costs is of particular interest because of certain models, most
notably fractional Brownian motion, which admit arbitrage in the frictionless
case but become arbitrage-free as soon as transaction costs are introduced, how-
ever small they may be.

Theorem 5.1.1 (Fundamental Theorem of Asset Pricing) Let (St)t∈[0,T ] be an
Rd

+-valued, continuous process. Then there exists no ε-arbitrage for any ε > 0
if and only if (S,P) admits ε-consistent price systems for all ε > 0.

The proof is organized in the spirit of the original paper. Some crucial results
from [CS06] were translated into our setting in Section 2.2. In Section 5.3,
local consistent price systems are constructed with respect to some adequate
localizing sequence. These local CPS are shown to converge to a true CPS, or
otherwise there exists free lunch with bounded risk, which implies arbitrage.
This part of the proof is carried out in Section 5.4. Throughout this and the next
chapter, we limit ourselves to the sum numeraire Nt = 1 +

∑d
i=1 S

(i)
t , but refer

to [GRS08b, Section 5] for a discussion of the subtle difference between the
numeraires.

The following notation will help us to highlight the connection between sup-
ports and arbitrage. It is used int the rather technical construction of local con-
sistent price systems in Lemma 5.3.1 and the appendix, in which an important
result for this construction is derived.

Definition 5.1.2 For a bounded Rd-valued random variable X on a probability
space (Ω,F ,P), we define the set I(X) ⊆ Rd by

I(X) = relint
(
conv(suppPX)

)
,

where relint denotes the relative interior. If G is a sub-σ-algebra of F , then the
corresponding conditional version of I is defined as the set-valued G-measurable
random variable

I(X|G) = relint
(

conv
(
suppP(X|G)

))
,

where suppP(X|G) stands for the conditional support of X given G.
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It is easily seen that I(X) equals the set of all possible expected values EQ(X)
with respect to the set of all Q ∼ P.

5.2 Notions of arbitrage
Definition 5.2.1 1. A trading strategyH is called ε-arbitrage for some ε ≥ 0

if Vε,S(H) ≥ 0 a. s. and P
(
Vε,S(H) > 0

)
> 0.

2. If there is no ε-admissible ε-arbitrage, we say the property NA(ε) is satis-
fied.

3. The property NA(ε+) is satisfied if and only if NA(δ) is satisfied for all
δ > ε.

4. A trading strategy H is called simple strategy, if it is of the form

Ht = C1(σ,τ ]∩(0,T )(t)

with two stopping times 0 ≤ σ ≤ τ ≤ T and C ∈ L∞(Fσ,Rd).

5. The property NSA(ε) holds if there exists no ε-admissible simple ε-arbitrage
strategy. NSA(ε+) is defined respectively.

Remark 5.2.2 1. In classical stochastic analysis, sometimes processes of
the form 5.2.1.4 are called simple processes (e. g. [JS87]), sometimes the
term is used for predictable piecewise constant processes, i. e. linear com-
bination of our simple strategies (e. g. [P04]). In [GRS08b] our concept
of simple arbitrage as arbitrage that can be achieved with only two trades
was coined obvious arbitrage, but since we discuss the concept in greater
detail here it is therefore convenient to also define the class of underlying
strategies, and the name obvious process would not have made sense.

2. The indicator 1(σ,τ ]∩(0,T ) is designed that way because on the one hand,
1(σ,τ) need not be predictable if τ is not, and on the other hand 1(σ,τ ] is
predictable but not a valid strategy if P(τ = T ) > 0. These technicalities,
however, make no difference as we only argue on continuous processes
whenever assuming NSA.

Lemma 5.2.3 Assume that S is bounded. Then NSA(0+) implies that for each
two stopping times 0 ≤ σ ≤ τ ≤ T we have

Sσ ∈ I(Sτ |Fσ)

almost surely.
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Proof: We apply a separating hyperplane argument: Assume Sσ /∈ I(Sτ |Fσ) on
some Fσ-measurable set of positive probability. Then there exists a set A ∈ Fσ
of positive probability, an Fσ-measurable random variable C with ‖C‖ = 1 a.
s. and some δ > 0 such that

C>Sσ ≤ C>Sτ − δ

almost surely on A. The transaction costs caused by the strategy

H = (C1A)1(σ,τ ]∩(0,T )

are no greater than ε‖C‖>∞(Sσ + Sτ ) on A, which is bounded and therefore
smaller than δ for ε small enough. Hence H is simple ε-arbitrage for ε small
enough, in contradiction to NSA(0+). 2

Remark 5.2.4 In dimension one, it suffices to consider a subset of the set of
simple strategies: In fact, if H = C1(σ,τ ]∩(0,T ) is an ε-arbitrage, then C can
either be replaced by 1C>0 or −1C<0. Thus we could restrict us to processes of
the form

c1A1(σ,τ ]∩(0,T )(t)

with deterministic c ∈ {−1, 1} and A ∈ Fσ. In other words, once σ, τ and A
are fixed, there are only two strategies to be considered: long and short.
In multiple dimensions, the case is obviously not that simple, since there is a
d − 1-dimensional continuum of holdings C which are not scalar multiples of
each other.
The natural analogue of the one-dimensional case are processes of the form
c1A1[σ,τ ](t) with c ∈ Rd, ‖c‖ = 1 and A ∈ Fσ, which we will call simple
processes with fixed holdings. The following can be shown:

Proposition 5.2.5 Let a simple ε-arbitrage H be given for some ε > 0. Then,
for each ε̃ < ε, there exists a simple ε̃-arbitrage with fixed holdings.

Proof: Denote the simple ε-arbitrage by Ht = C1(σ,τ ]∩(0,T )(t) with some Fσ-
measurable C. Since, if C 6= 0, the absolute value of C does not matter, we
may and will assume that ‖C‖ ∈ {0, 1} almost surely. We furthermore assume,
without loss of generality, that there exist some δ1 > δ0 > 0 with Sσ ∈ (δ0, δ1)d

almost surely on {C 6= 0} : Just fix δ0 and δ1 to ensure

P
(
{Sσ ∈ (δ0, δ1)d} ∩ {C 6= 0}

)
> 0
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and set C to zero outside of this Fσ-measurable set. As a consequence, the
transaction costs to be paid forH are greater than εδ0 almost surely on {C 6= 0}.
Now Fix a positive constant

η <
(ε− ε̃)δ0

dδ1(1 + ε)
.

Then, for any Fσ-measurable [0, η]d-valued random variable D we have

Vε,S(D1(σ,τ ]∩(0,T )) = D>
(
(1− ε)Sτ − (1 + ε)Sσ

)
> −dη(1 + ε)δ1 > −(ε− ε̃)δ0

almost surely on {C 6= 0}. Fix some c ∈ Rd satisfying

P(c− C ∈ [0, η]d|C 6= 0) > 0

and define the Fσ-measurable set

A = {c− C ∈ [0, η]d} ∩ {C 6= 0}.

Then the ε̃-arbitrage is given by H̃ = c1A1(σ,τ ]∩(0,T ):

Vε̃,S(H̃) ≥ Vε̃,S(C1A1(σ,τ ]∩(0,T ))︸ ︷︷ ︸
>(ε−ε̃)δ0

+Vε̃,S
(
(c− C)1A1(σ,τ ]∩(0,T )

)︸ ︷︷ ︸
>−(ε−ε̃)δ0

> 0

on A. This completes the proof. 2

Remark 5.2.6 As a consequence of Proposition 5.2.5, the absence of simple
ε-arbitrage with fixed holdings for every ε > 0 implies NSA(0+), so both prop-
erties are equivalent. Obviously the theorem does not apply to the case ε = 0,
and, as the following example will show, simple 0-arbitrage does not imply any
simple arbitrage with fixed holdings

Example 5.2.7 (simple 0-arbitrage, but no simple arbitrage with fixed hold-
ings): Consider the function

f : x 7→
∑
k∈Z

(x− 2k)1[2k− 1
2
,2k+ 1

2
)(x) +

∑
k∈Z

(2k − 1− x)1[2k− 3
2
,2k− 1

2
)(x),

which is essentially a sawtooth function mapping R to [−1
2
,−1

2
]. Now consider

a two-dimensional Brownian motion W = (W (1),W (2)). The process

Xt =
f(‖Wt‖)
‖Wt‖

Wt
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behaves like W in the beginning, but is reflected off the circle around 0 with
radius 1

2
. Here we set 0

0
= 0. Finally consider the R2

+-valued process

(S
(1)
t , S

(2)
t ) = (1 +X

(1)
t , 1 +X

(2)
t ).

By construction S has conditional full support inside a circle around (1, 1) with
radius 1

2
, never leaves the circle and touches the edge of the circle at least once

before T = 1 with positive probability. Denote by σ the first time this happens.
Obviously this process admits a simple 0-arbitrage, the arbitrage strategy being
given by

H = (S0 − Sσ)1(σ,T )1σ<T .

By the nature of the Brownian motion, σ (or any other time S touches the edge
of the circle) is the only candidate the first trade. But since S0 − Sσ is the only
position that allows for arbitrage and since no value of S0− Sσ is admitted with
positive probability, there exists no 0-arbitrage with fixed holding.
With a similar construction the same can be shown for arbitrary ε > 0.

Example 5.2.8 The following easy example shows that NSA(0+) does in fact
not imply NSA(0), i. e. these properties are not equivalent. Let two independent
exponentially distributed random variables X and Y be given and let the filtra-
tion F be generated by the processes 1[0,X](t) and 1[0,X+Y ](t). Finally consider
the underlying

St = 1 +

∫ t

0

1[X,X+Y ](s)ds.

Obviously H = 1(0,T ) is an admissible 0-arbitrage, hence NSA(0) is not given.
In fact, since S is increasing, there is no other sensible candidate for arbitrage
than H . However, for no positive ε, it forms an ε-arbitrage, as

Vε,S(H) = −(1 + ε) + (1− ε)
(
1 + (Y ∧ T )− (X ∧ T )

)
becomes negative with positive probability, for all ε, 0. Hence NSA(0+) holds.
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5.3 Local consistent price systems
Following the example of [GRS08b], we start by localizing the problem, i. e. by
constructing an increasing sequence of stopping times, such that S, stopped at
each of the times, admits CPS. We therefore recall the notation

Sτ : t 7→ St∧τ

for a process S and a stopping time τ . As will turn out, NSA(0+) instead of
NA(0+) is already enough for such a localizing sequence to exist, and, even
better, the sequence can be chosen in such a way that it converges to T in a very
strong sense, namely stationary.

Proposition 5.3.1 Assume S is continuous. If S satisfies NSA(0+), then there
exists, for each ε > 0, a sequence (τn)n∈N0 of stopping times increasing station-
arily to T , i. e. τn is almost surely increasing and

lim
n→∞

P(τn = T ) = 1,

such that for each n ∈ N, the stopped process Sτn admits an ε-consistent price
system.

Proof: As in the proof of Lemma 3.2.2, we replace the original CPS condition
by the stronger one introduced in Remark 2.1.4.2. Therefore it is convenient to
define the geometric distance function ∆ : Rd

+ × Rd
+ → R0+ by

∆(x,y) = max

(
‖x
y
‖∞, ‖

y

x
‖∞
)
− 1.

Then we have the following triangular inequality:

∆(x, z) ≤ ∆(x,y) + ∆(y, z) + ∆(x,y)∆(y, z).

Define the stopping times τn recursively by setting τ0 = 0 and

τn+1 = inf
(
t > τn,∆(Sτn , St) =

ε

4

)
.

By Lemma 5.2.3, applied to the bounded process Sτ1 rather than S, we have that
S0 ∈ I(Sτ1). Thus for every δ > 0 we can find some vector λ ∈ ( 1

1+δ
, 1 + δ)d

such that S0

λ
∈ I(Sτ1), or equivalently, S0 ∈ I(Mτ1), where

Mτ1 = Sτ1λ.
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We choose δ smaller than ε
4
.

By Theorem A.5 we can find some Q1 ∼ P such that EQ1(Mτ1) = S0. On
[0, τ1], we define the process M by

Mt = EQ1(Mτ1|Ft),

so M is a Q1-martingale up to τ1. From ∆(S0, Sτ1) = ε
4

and ∆(Sτ1 ,Mτ1) ≤ δ
follows

∆(S0,Mτ1) ≤ δ +
ε

4
+
εδ

4
≤ ε

2
+
ε2

16
,

and since M0 = S0 and M is a martingale, the same bound holds for ∆(S0,Mt)
for t ≤ τ1. Finally, from this inequality and ∆(S0, St) ≤ ε

4
follows

∆(Mt, St) ≤
3ε

4
+

3ε2

16
+
ε3

64
,

which is smaller than ε for sufficiently small ε. This means

(M τ1 ,Q1) ∼ε (Sτ1 ,P).

Note that we can still choose δ arbitrarily small.
We now proceed inductively, assuming there exists some consistent price

system (M,Qn) ∼ε (Sτn ,P) satisfying ∆(Mτn , Sτn) ≤ η almost surely for
some small η > 0. Since, once again by Lemma 5.2.3,

Sτn ∈ I(Sτn+1|Fτn)

almost surely, we can find an Fτn-measurable
(

1
1+2−n

, 1 + 2−n
)d-valued random

variable Λ satisfying
Sτn
Λ
∈ I(Sτn+1|Fτn).

If we define
Mτn+1 = Sτn+1 Λ

Mτn

Sτn
,

we have Mτn ∈ I(Mτn+1) and by Corollary A.7 we can find a probability mea-
sure Qn+1 ∼ Qn coinciding with Qn on Fτn such that

EQn+1(Mτn+1 |Fτn) = Mτn

almost surely. We can now extend M to a martingale on [0, τn+1] by setting for
all t ∈ [τn, τn+1]:

Mt = EQn+1(Mτn+1|Ft)
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By construction we have ∆(Sτn , St) ≤ ε
4

and ∆(Sτn ,Mτn) ≤ η, thus for all
t ∈ [τn, τn+1]

∆(St,Mτn) ≤ ε

4
+ η +

ηε

4
≤ ε

2
+
ε2

16
,

for η ≤ ε
4
. Additionally

∆(Mτn ,Mτn+1) = ∆(Sτn , Sτn+1Λ) ≤ ε

4
(1 + 2−n),

and since M is a martingale, the same bound holds for ∆(Mτn ,Mt) for all
t ∈ [τn, τn+1]. The triangular inequality applied once more yields

∆(Mt, St) ≤ ε
3 + 2−n

4
+ ε2

3 + 2−n+1

16
+ ε3

1 + 2−n

64
,

which is smaller than ε for sufficiently small ε independent of n. Since ∆(Mt, St) ≤ ε
implies 1− ε ≤ Mt

St
≤ 1 + ε, this completes the proof. 2

The sequence (τn)n∈N just constructed depended on ε. But as the following
theorem will show, We can also choose it independent of ε.

Theorem 5.3.2 Assume S is continuous and let NSA(0+) be given. Then there
exists a sequence (τn)n∈N0 of stopping times (where τ0 = 0) increasing station-
arily to T such that for all n ∈ N and for each ε > 0, the process Sτn admits an
ε-consistent price system.

Proof: Let some α ∈ (0, 1) be given. For fixed ε > 0, denote by (τ
(ε)
n )n∈N

the sequence of stopping times constructed in the proof of 5.3.1. Since for each
ε > 0 this sequence converges stationarily to T , we may choose, for each k ∈ N,
a stopping time τ (α,k) ∈ {τ (α)

n , n ∈ N} satisfying

P(τ (α,k) < T ) < α2−k.

By construction, the stopping time σ(α) =
∧∞
k=1 τ

(α,k) admits ε-consistent price
systems for each ε > 0 while satisfying

P(σ(α) = T ) ≥ 1−
∞∑
k=1

P(τ (α,k) < T ) > 1− α.

Since αwas chosen arbitrarily, we may, by letting τn = σ(2−n), construct a whole
sequence (τn)n∈N of such stopping times such that each Sσn admits ε-CPS for
all ε > 0 and such that

lim
n→∞

P(τn = T ) = 1.
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Note furthermore that by choosing τ (2−(n+1),k) ≥ τ (2−(n),k) for all k and n, we
may ensure that τn is actually increasing. So this sequence has all the desired
properties. 2

Remark 5.3.3 Given the similarity of arbitrage and superreplication (arbitrage
is a non-perfect superreplication strategy for the trivial claim X = 0 with initial
endowment x = 0) and the lesson learned from the face-lifting theorem (that
is: under whatever small transaction costs, there is nothing dynamic strategies
can do that can’t be already done with static ones), one might wonder whether
NSA(0+) already implies NA(0+), that means, whether there even exists a model
that satisfies ε-arbitrage, but no simple ε-arbitrage. The answer is: Already in
the one-dimensional case NSA(0+) and NA(0+) are not the same, as was shown
in Proposition A.2 of [GRS08b]. The reason why we cannot limit ourselves to
static strategies (in this case Lemma 5.2.3 would deliver a satisfactory answer to
the question of arbitrage) is that this time, conditional full support is not given.

5.4 Proof of the Fundamental Theorem
For the rest of this chapter, we will assume S to be continuous and NSA(0+) to
hold true, such that Theorem 5.3.2 can be applied. We see the sequence (τn)n∈N
constructed in Theorem 5.3.2 as fixed from now on. Starting from this sequence,
we furthermore introduce the set of finite compositions of these stopping times:
Denote by S the set of all stopping times of the form

σ =
N∑
i=1

τni1Ai

with N, n1, n2, . . . , nN ∈ N and a decomposition of Ω into mutually disjoint
sets Ai ∈ Fτni . For such a σ ∈ S, denote by

c(σ, ε) = {(M,Q) : (M,Q) ∼ε (Sσ,P)}

the set of all ε-consistent price systems up to σ. Furthermore, we denote the
projection of c(σ, ε) to its second component by q(σ, ε), i. e.

q(σ, ε) = {Q ∼ P : (M,Q) ∈ c(σ, ε) for some M} .

Note that NSA(0+) implies that c(σ, ε) 6= ∅ for all σ ∈ S and ε > 0: Assume
σ =

∑N
i=1 τni1Ai and ni ≤ n̄ for all i, then Theorem 5.3.2 implies that there

exists (M,Q) ∈ c(τn̄, ε), hence (Mσ,Q) ∈ c(σ, ε).
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Definition 5.4.1 Let (M1,Q1) ∈ c(σ1, ε1) be given. For σ2 ∈ S, σ2 ≥ σ1, we
call a CPS (M2,Q2) ∈ c(σ2, ε2) a sequel of (M1,Q1), if all the following are
given:

1. M1
t = M2

t a. s. on {t ≤ σ1}, for all t

2. Q1|Fσ1
= Q2|Fσ1

3. dQ2

dQ1
= 1 a. s. on {σ1 = σ2}

We will try to construct a consistent price system for (S,P) as the limit of a
sequence of sequels. The following lemma will tell us that, given NSA(0+), such
sequels always exist for every choice of σ2 ≥ σ1, and (M1,Q1) ∈ c(σ1, ε1), as
long as ε2 > ε1.

Lemma 5.4.2 Let, for some σ1 ∈ S and ε > 0, a CPS (M,Q) ∈ c(σ1, ε) be
given. Consider, for some N ∈ N, another stopping time σ2 ∈ S, σ2 ≥ σ1 of the
form

σ2 =
N∑
i=1

τni1Bi ,

where Bi ∈ Fσ1 for i = 1, 2, . . . , N . For all i, let consistent price systems
(Ri,M

i) ∈ c(τni , δ), with some arbitrary δ > 0, be given. Then there exists a
sequel

(Q̃, M̃) ∈ c
(
σ2, f(ε, δ)

)
of (M1,Q1), where

f(ε, δ) = max

(
1 + δ

1− δ
(1 + ε)− 1, 1− 1− δ

1 + δ
(1− ε)

)
,

that satisfies
Q̃(B|Fσ1) = Ri(B|Fσ1)

almost surely for all 1 ≤ i ≤ N and B ∈ F , B ⊆ Bi.

Proof: Let

M̃ = M1[[0,σ1]] +
N∑
i=1

1Bi

Mσ1

M i
σ1

M i
1]]σ1,τni ]]

.

Note that from
1− ε ≤ Mσ1

Sσ1

≤ 1 + ε
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1− δ ≤ M i
t

St
≤ 1 + δ

on {t ≤ σ2} follows

1− δ
1 + δ

(1− ε) ≤ M̃t

St
≤ 1 + δ

1− δ
(1 + ε).

It can then be seen that if we then let

dQ̃

dQ
= 1σ1=σ2 +

N∑
k=1

1Bi

dRi/dQ

EQ(dRi/dQ|Fσ1)
1σ1<τni

,

then (M̃, Q̃) has the desired properties. 2

The only thing that matters about the function f is that

lim
δ→0

f(ε, δ) = ε.

This allows us to define the sequence (δk)k∈N as follows: For fixed ε > 0, start
with ε1 = ε

2
and then recursively define δk > 0 small enough to ensure

εk+1 = f(εk, δk) ≤ (1− 2−k−1)ε.

We want to construct, for some suitable sequence (σk)k∈N in S increasing
stationarily to T , an infinite sequence (Mk,Qk) ∈ c(σk, εk), each CPS being
a sequel of its predecessor. Lemma 5.4.2 alongside with the fact that under
NSA(0+), c(τn, δk) is never empty for any k, n ∈ N, tells us that such a se-
quence can always be extended ad infinitum independent of our choice of σk.
The question is, however, whether or not the sequence converges to a true CPS
(M,Q) ∈ c(T, ε), let alone how to define convergence in this context. Obvi-
ously, on sets of the form

⋃N
k=1{σk = T}, convergence is not a problem, since

dQk

dP
and Mk change at most N times here. But outside, we may run into singu-

larities, so we have to choose the sequels carefully. We therefore introduce the
process

Xt =
(

1 +
d∑
i=1

S
(i)
t

)
1t<T

And look for sequels that satisfy

EQk
(Xσk) ≤ 2−k
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for all k ∈ N. As we will see later, the existence of such a sequence implies
the existence of a real ε-consistent price system for (S,P), while the absence of
such a sequence leads to arbitrage. To separate these two cases, the following
lemma is crucial.

Lemma 5.4.3 Consider some k ∈ N, ε > 0 and a stopping time σk ∈ S of the
form

σk =
N∑
i=1

1Aiτni

and a consistent price system (Mk,Qk) ∈ c(σk, εk). Then one of the following
holds true:

1. There exists some σk+1 ∈ S a. s. greater or equal than
∑N

i=1 1Aiτni+1
and

a sequel (Mk+1,Qk+1) ∈ c(σk+1, εk+1) to (Mk,Qk) satisfying

EQk+1
(Xσk+1

) ≤ 2−(k+1)

2. There exists some n̄ ∈ N and a set A ∈ Fτn̄ with P(A) > 0 as well a
constant α > 0, such that

EQ(Xτn|Fτn̄) > α

almost surely on A for all n > n̄ and all Q ∈ q(τn, δk+1).

Proof: We set n̄ = max(n1, n2, . . . , nN) + 1. Consider the Fσk-measurable
random variable

Ξ = essinf
(
EQ(Xτn|Fτσk );Q ∈ q(τn, δk+1), n > n̄

)
i. e. Ξ is the largest random variable smaller or equal EQ(Xτn|Fτσk ) a. s. for all
n > n̄ and Q ∈ q(τn, δk+1).
If EQk

(Ξ) < 2−(k+1), then there exists a decomposition of Ω into mutually dis-
jointFσk-measurable setsB1, B2, . . . , BK and some integersm1,m2, . . . ,mK > n̄
as well as consistent price systems

(Ri, M̃
(i)) ∈ c(τmi , δk+1), 1 ≤ i ≤ K,

such that

EQk

(
min

1≤i≤K
ERi

(Xτmi
|Fσk)

)
= EQk

(
K∑
i=1

ERi
(Xτmi

|Fσk)1Bi

)
< 2−(k+1).
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If we concatenate these K consistent price systems with (Mk,Qk) as done in
Lemma 5.4.2, we end up with a sequel (Mk+1,Qk+1) ∈ c(σk+1, εk+1), where

σk+1 =
K∑
i=1

1Biτmi ≥
N∑
i=1

1Aiτni+1
,

almost surely such that

EQk+1
(Xσk+1

) = EQk+1

(
EQk+1

(Xσk+1
|Fσk)

)
= EQk+1

(
K∑
i=1

EQk+1
(Xτmi

|Fσk)1Bi

)

= EQk

(
K∑
i=1

ERi
(Xτmi

|Fσk)1Bi

)
< 2−(k+1),

thus we have found our sequel satisfying (1).
If, on the other hand, EQk

(Ξ) ≥ 2−(k+1), we may choose α = 1
2
EQk

(Ξ) and
A = {Ξ > α} to satisfy (2). 2

Proposition 5.4.4 Assume there exists a sequence (σk)k∈N in S, stationarily in-
creasing to T , and a sequence of consistent price systems (Mk,Qk) ∈ c(σk, εk),
each being a sequel of its predecessor, such that

lim
k→∞

EQk
(Xσk) = 0

holds true. Then (S,P) admits an ε-consistent price system.

Proof: Since (σk)k∈N becomes stationary P-almost surely, the sequence (dQk

dP
)k∈N

also becomes stationary a. s. Hence the limit dQ
dP

= limk→∞
dQk

dP
exists and is

strictly positive P-a. s. So we have defined a measure Q ∼ P on (Ω,F). Now
limk→∞ EQk

(Xσk) = 0 implies that especially

lim
k→∞

EQk
(1σk<T ) = 0,

Thus monotone convergence, thogether with the fact that {σk = T} ∈ Fσk
yields

Q(Ω) = Q
( ∞⋃
k=1

{σk = T}
)
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= lim
k→∞

Q(σk = T ) = lim
k→∞

Qk(σk = T ) = 1,

hence Q is in fact a probability measure.
For t ∈ [0, T ], the sequence (Mk

t )k∈N also has a P-a. s. stationary limit, which
we will denote by Mt. Since 1 − ε ≤ Mk

t

St
≤ 1 + ε Qk-a. s. on {t ≤ σk} for all

k, we also have 1− ε ≤ Mt

St
≤ 1 + εQ-a. s.

This, together with EQk
(Sσk1σk<T )→ 0 component-wise also implies

EQk
(Mσk)1σk<T ≤ (1 + ε)EQk

(Sσk1σk<T )→ 0

component-wise. Thus we have, again using monotone convergence,

EQ(MT |Ft) = EQ( lim
k→∞

MT1σk=T |Ft)

= lim
k→∞

EQ(MT1σk=T |Ft) = lim
k→∞

EQk
(Mk

σk
1σk=T |Ft)

= lim
k→∞

(
EQk

(Mk
σk
|Ft)− EQk

(Mk
σk
1σk<T |Ft)

)
= lim

k→∞
Mk

t∧σnk
− 0 = Mt

Thus M is a Q-martingale and hence we have (M,Q) ∼ε (S,P). This com-
pletes the proof.

2

In order to prove the Fundamental Theorem, we need to show the absence
of consistent price systems leads to arbitrage. We already know that if there is
no CPS, then 5.4.3.2 holds true for some α > 0. This leads to the situation that

EQ(Xτn|Fτn̄) > α

on some set A for all consistent price systems up to any stopping time τn, while
Xτn → 0 as n → ∞. This discrepancy on the set A can be used to construct
what is called free lunch with bounded risk in the literature, i. e. a series of
payoffs with bounded downside risk, which can all be superreplicated with ad-
missible strategies and which tend to some strictly nonnegative yet nontrivial
value. To bridge the gap between this notion and true arbitrage, we need the
following result, which is in spirit of the proof of [GRS08b, Theorem 1.11] and
[CS06, Proposition 13]. What this result shows is that the set of claims that
can be superreplicated by admissible strategies stopping no later than some τn is
Fatou-closed. This was shown to be true in [CS06, Proposition 14] for the case
that S admits ε-consistent price systems for all ε > 0 which is not the case here.
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Chapter 5. The Fundamental Theorem of Asset Pricing

But as long as NSA(0+) holds true, it is true for Sτn i. e. for strategies that end
at some fixed τn. Using a diagonal procedure, we show the same for the union
of all these sets.

Theorem 5.4.5 Assume ε > 0. Consider a sequence (Yn)n∈N of random vari-
ables such that

1. Yn is Fτn-measurable for all n ∈ N

2. there exists some a ∈ R such that Yn ≥ −a(1 +
∑d

i=1 S
(i)
τn ) a. s. for all

n ∈ N

3. EQ(Yn) ≤ 0 for all n ∈ N and Q ∈ q(ε, τn)

4. limn→∞ Yn = Y P-a. s. for some random variable Y ∈ L0(FT )

Then there exists some ε(1/3)-admissible strategy H satisfying

Vε(1/3),S(H) ≥ Y,

where ε(1/3) is as in Lemma 2.2.8.

Proof: Following the superreplication theorem 2.2.9, applied to Yn and Sτn ,
we find, for each n, some

(
ε(1/3), a(1 + ε(1/3))(1 + ε)

)
-admissible strategy Hn

satisfying
Vε(1/3),Sτn (Hn) ≥ Yn

almost surely. Since Sτn does not move after τn, we may choose Hn equal
to zero on [τn, T ]. It follows from Lemma 11 and Proposition 13 of [CS06],
applied to the sequence (Hn)n∈N (or rather their portfolio process counterparts
V (Hn), see Remark 2.2.7.1) and Sτ1 , that there exists a sequence (G1,n)n∈N of
processes, each one satisfying

G1,n ∈ conv(Hm,m ≥ n),

and a predictable, finite-variation process (G̃1
t )t∈[0,τ1] such that

P
(

(G1,n)τ1t → (G̃1)τ1t ∀ t ∈ [0, T ]
)

= 1.

We proceed inductively, now with (G1,n)n∈N instead of (Hn)n∈N and Sτ2 instead
of Sτ1 (note that the properties required to apply Lemma 11 and Proposition 13
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of [CS06] are inherited from Hn to G1,n), to find a sequence (G2,n)n∈N, each
one satisfying

G2,n ∈ conv(G1,m,m ≥ n),

and a predictable, finite-variation process (G̃2
t )t∈[0,τ2] such that

P
(

(G2,n)τ2t → (G̃2)τ2t ∀ t ∈ [0, T ]
)

= 1.

By construction, G̃1 and G̃2 coincide on [0, τ1] a. s. If we repeat this procedure,
we end up with a sequence of predictable, finite-variation processes (G̃n)n∈N,
each G̃n+1 coinciding with its predecessor on [0, τn]. Since τn → T stationarily,
the limiting process Ht = limn→∞ G̃

n
t is still predictable and of a. s. finite vari-

ation. Since all strategies Hn are
(
ε(1/3), a(1 + ε(1/3))(1 + ε)

)
-admissible, the

same is true for all convex combinations, and hence also for H .
Following Corollary 2.1.6.3 we have that

Vε(1/3),S(H) ∈ conv (Ym;m ≥ n) + L0
+(FT )

for all n ∈ N, where L0
+(FT ) denotes the set of all a. s. nonnegative FT -

measurable random variables. Hence Vε(1/3),S(H) ≥ Y almost surely. 2

We are now ready to complete the proof of the Fundamental Theorem of
Asset Pricing. So from now on, we do not assume NSA(0+) up front.

Proof of Theorem 5.1.1: Suppose NA(0+) holds true, then so does NSA(0+),
and so the sequence (τn)n∈N from Theorem 5.3.2 exists. If S does not admit an
ε-consistent price system for some fixed ε > 0, then we know from Proposition
5.4.4 that property 5.4.3.2 holds true for some α > 0, n̄ ∈ N and A ∈ Fτn̄ with
P(A) > 0. It follows that, for all n > n̄ and Q ∈ q(τn, δn̄+1):

EQ(Xτn)

Q(A)
> α,

or equivalently,
EQ(α1A −Xτn) < 0.

Now the sequence Yn = α1A − Xτn satisfies the conditions of Theorem 5.4.5
with a = 1. Hence there exists an η-admissible strategy H such that

Vη,S(H) ≥ Y = α1A

almost surely, where
η = (1 + δn̄+1)1/3 − 1 > 0.
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Chapter 5. The Fundamental Theorem of Asset Pricing

So H is an η-arbitrage, in contradiction to our assumption NA(0+). hence there
exists an ε-consistent price system.
On the contrary, note that if we have a CPS (M,Q) ∼ε (S,P), Lemma 2.1.5
tells us that for every ε-admissible strategy H we have

Vε,S(H) ≤ V0,M(H),

while on the other hand Lemma 2.1.7 tells us that the process t 7→ V0,M(H1(0,t))
is a Q-supermartingale. Therefore

EQ

(
Vε,S(H)

)
≤ EQ

(
V0,M(H)

)
≤ V0,M(0) = 0,

hence H is not an ε-arbitrage. This completes the proof. 2

Example 5.4.6 (Example 5.2.8 revisited) Consider once more the one-dimensional
Example 5.2.8. There S was shown to satisfy NA(0+), but since S is increasing
and not a. s. constant, no equivalent martingale measure exists. Here we can
construct ε-CPS explicitly for all ε > 0: As described in Example 3.2.1, we may
change the intensities of X and Y deliberately. So assume X has intensity 1

T
,

while Y given t ≥ X has intensity 1
ε

under some measure Q ∼ P. Define the
process M by

Mt = (1− εt
T

)1[0,X)+(1− εX
T

+ε+t−X)1[X,X+Y )+(1− εX
T

+Y −X)1(X+Y,T ].

So M decreases with drift − ε
T

and jumps up by ε at X . Then it moves parallel
to S until it jumps down by ε at X + Y . After that it stays constant, like S.
The way the Q-intensities were chosen, M is a Q-martingale, while satisfying
(1− ε)St ≤Mt ≤ (1 + ε)St in all three intervals. Therefore (M,Q) ∼ε (S,P).

In [GRS08a] it was shown that the CFS property for d-dimensional contin-
uous processes implies the existence of ε-CPS for all ε > 0. Obviously (CFS)
implies NSA(0+), so Proposition 5.3.1 holds in this case. The proof there fol-
lows the same strategy as our proof of Proposition 5.3.1, but, since (CFS) implies
P(τn+1 = T |Fτn) > 0 almost surely for each n ∈ N, the measure canges could
be performed in a way there that secures the local CPS to converge. Using this
result, the following important corollary is clear:

Corollary 5.4.7 Let S be continuous and satisfy (CFS). Then NA(0+) holds.

So all (CFS) processes are arbitrage free under small transaction costs. How-
ever, (CFS) does not imply absence of 0-arbitrage, as the following example
shows
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5.4. Proof of the Fundamental Theorem

Example 5.4.8 (CFS, but 0-arbitrage) It was shown in [GRS08a, Lemma 4.5]
that if a processX satisfies (CFS) on R instead of R+, then so does Yt =

∫ t
0
Xsds.

So if we choose X to be a standard Brownian motion, then

St = exp(

∫ t

0

Xsds)

satisfies (CFS) on R+, hence by Corollary 5.4.7 NSA(0+) holds. Now S is
continuously differentiable. If we define σ as the first time that dSt

dt
= 1 and τ to

be the first time after σ that dSt
dt

= 0, then

H = 1[σ,τ∧T )1σ<T

is simple 0-arbitrage.

Using the preparatory work done in Section 4.2, it is now an easy task to
derive an analogous result for one-dimensional Lévy processes.

Theorem 5.4.9 (FTAP for one-dimensional Lévy processes) Assume S = eL,
where L is a one-dimensional Lévy process with characteristic triplet (σ2, γ, ν).
Then S satisfies NA(0+) if and only if S admits ε-consistent price systems for all
ε > 0.

Proof: The proof that the existence of an ε-CPS implies NA(ε) from Theorem
5.1.1 can be used in this case as well, since there continuity of S was not used.
So if S admits ε-CPS for all ε > 0, then NA(0+) holds true.
Now assume that there exists ε > 0 such that S does not admit an ε-CPS. With
Theorems 4.2.2 and 4.2.4 it follows that S is either increasing with drift γ0 > 0
or decreasing with γ0 < 0. In the first case we have that ST ≥ eγ0T almost surely,
so the strategy H = 1(0,T ) yields Vδ,S(T ) > 0 a. s. for all δ ∈ [0, e

γ0T−1
eγ0T+1

). In the
second case, we have that S is bounded and ST ≤ eγ0 a. s. Then the strategy
H = −1(0,T ) is δ-admissible and yields Vδ,S(T ) > 0 a. s. for all δ ∈ [0, 1−eγ0T

1+eγ0T
).

So in both cases NA(0+) is not satisfied. 2

Remark 5.4.10 (Open problem) In the setting of Theorem 5.4.9, it proved pos-
sible to omit the for-all-quantifiers in our version of the FTAP. In both the con-
tinuous and the one-dimensional Lévy case, we were able to show not only that
the existence of ε-CPS for all ε > 0 implies NA(0+), but also that the existence
of an ε-CPS for some fixed ε > 0 implies NA(ε), a considerably stronger state-
ment.
In the Lévy case, we were also able to show the opposite direction: If no ε-CPS

75



Chapter 5. The Fundamental Theorem of Asset Pricing

exists, then ε-arbitrage is possible, or, equivalently, NA(ε) implies the existence
of an ε-CPS. In the continuous case, we are far away from such a statement. In
fact, even the existence of a function f : (0, 1)→ (0, 1) such that every contin-
uous process that satisfies NA(ε) admits an f(ε)-CPS, is not clear. But at least,
no counterexample disproving the existence of such a function (that would be a
family S of continuous processes such that for every pair (ε, δ) ∈ (0, 1)2 there
exists some S ∈ S satisfying NA(ε) but not admitting a δ-CPS) is known to the
author, either.
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Chapter 6

The FTAP for generalized
transaction costs

In the present framework, we assume the level of costs ε as equal for all d assets,
contrary to the observation that actual costs may vary, i. e. because of differences
in liquidity. Furthermore we do not allow swapping of assets: All transactions
have to go through the cash account, on which also the transaction costs are
registered. Therefore, transferring capital from asset i to asset j results in a pro-
portion of 2ε in transaction costs, rather than ε. This is a natural assumption for
example in equity markets, but seems unnatural for example in multi-currency
markets: While transaction costs may be higher if we exchange exotic, rarely
traded currencies into one another, direct trading should still be cheaper than
always funneling our capital through the same predetermined anchor currency,
which is in our case the cash account.
In this chapter, we propose a generalized model for trading in a d-dimensional
market with proportional transaction costs, along with the corresponding cone-
framework in the spirit of Section 2.2. We show that the model used in the
previous chapters is embedded as a special case and that most of the basic theo-
rems derived so far still hold true. The Fundamental Theorem of Asset Pricing
follows as corollary of Theorem 5.1.1 if the transaction costs are assumed to be
strictly positive. This assumption, however, is then weakened by introducing the
notion of efficient friction. With this property, also one-sided transaction csts are
allowed, for instance for products that one can buy without costs but that charge
a fee for selling.
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Chapter 6. The FTAP for generalized transaction costs

6.1 Transaction costs matrices
The aforementioned two aspects, varying costs for different assets and the pos-
sibility of direct asset swapping, are tackled by the following generalization of
our model: Instead of one single constant ε, consider a transaction costs matrix

C = (cij)i,j∈{0,1,...,d} ∈ [0, 1)(d+1)×(d+1),

where cij denotes the proportion to be paid when the i-th asset is exchanged
into the j-th one. Here the cash account is written as 0-th asset (S

(0)
t )t∈[0,T ],

which is assumed to be equal to 1 for all t. For this new framework we need
to renew our definitions of trading strategies, values and admissibility. The
d-dimensional strategy H is now replaced by a (d + 1)2-dimensional process
H = (H

(ij)
t )t∈[0,T ],0≤i,j≤d, where the processH(ij) counts the accumulated trans-

actions from asset i to asset j, but only in this direction.

Definition 6.1.1 For a price process S and a given transaction costs matrix
C ∈ [0, 1)(d+1)×(d+1), a predictable (d + 1)2-dimensional process H is called
trading strategy with respect to S and C, if for all i, j ∈ {0, 1, . . . , d}

1. H(ij)
0 = 0 a. s.

2. H(ii)
t = 0 a. s. for all t ∈ [0, T ]

3. H(ij) is almost surely increasing

4. H̃(i)
T = 0 a. s. for i ≥ 1, where the process H̃(i) is defined by

H̃
(i)
t =

d∑
j=0

H
(ji)
t −

d∑
j=0

∫ t

0

S
(j)
s

S
(i)
s

dH(ij)
s

The value of a trading strategy H is defined as

VC,S(H) =
d∑
i=1

∫ T

0

H̃
(i)
t dS

(i)
t −

d∑
i,j=0

cij

∫ T

0

S
(j)
t dH

(ij)
t .

For a ∈ R, we call H (C, a)-admissible with respect to a numeraire process N ,
if

VC,S

(
H t +

d∑
i=1

H̃
(i)
t S

(i)
t Mi01[t,T ]

)
≥ −aNt
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almost surely for all t ∈ [0, T ]. Here the matrix

Mi0 = (mkj)k,j∈{0,1,...,d} ∈ R(d+1)×(d+1)

is defined by mi0 = 1 and mkj = 0 otherwise.
H is called C-admissible with respect to N if it is (C, a)-admissible w. r. t. N
for some a.

Remark 6.1.2 1. In this definition, the process H̃(i) for i ≥ 1 indicates how
many units of asset i the trader holds at every time point. So property 4
states that all positions have to be liquidated by maturity, just like prop-
erty 2 in Definition 2.1.1. In fact, the following lemma shows that both
definitions are consistent with each other.

2. Note that, in contrast to Definition 2.1.1, the definition of a trading strat-
egy depends on S, i. e. a process which is a trading strategy w.r.t. some
process S need not be one w.r.t. some other process. The reason is that in
the current setting, it is not possible to determine the number of assets held
at a specific moment just by looking at the history of H , without knowing
the history of S, so we cannot know if H meets the liquidation property
6.1.1.4 without knowing S. The transaction costs matrix, however, plays
no role here.

3. Also, the notion of admissibility is more involved, compared to Definition
2.1.1. The process

H t +
d∑
i=1

H̃
(i)
t S

(i)
t Mi01[t,T ]

is the same as H until t and then liquidated by selling all assets (i. e.
increasing H(i0)), analogous to the liquidated process H1(0,t).

Lemma 6.1.3 For ε ∈ [0, 1), define the transaction costs matrix C by

Cε =


0 ε · · · · · · ε
ε 0 2ε · · · 2ε
... 2ε

. . . . . . ...
...

... . . . 0 2ε
ε 2ε · · · 2ε 0
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1. For a trading strategy H = (H(ij))0≤i,j≤d in the sense of Definition 6.1.1,
define the d-dimensional process H̃ = (H̃(i))1≤i≤d as in 6.1.1.4. Then H̃
is a trading strategy in the sense of Definition 2.1.1 and we have

VCε,S(H) = Vε,S(H̃)

almost surely. Furthermore H is (Cε, a)-admissible with respect to some
numeraire N in the sense of Definition 6.1.1 if and only if H̃ is (ε, a)-
admissible with respect to N for in the sense of Definition 2.1.2.

2. Let Ĥ = (Ĥ(i))1≤i≤d be a trading strategy in the sense of Definition 2.1.1
and define the increasing processes Ĥ(i+) and Ĥ(i−) as in Lemma 2.1.5.
Define the (d+ 1)2-dimensional process H = (H(ij))0≤i,j≤d by H(00) = 0
and

H(0i) = Ĥ(i+), 1 ≤ i ≤ d

H
(i0)
t =

∫ t

0

S(i)
s dĤ

(i−)
s , 1 ≤ i ≤ d

H(ij) = 0, 1 ≤ i, j ≤ d.

Then H is a trading strategy in the sense of 6.1.1 and the definitions of
value and admissibility coincide, as in the first part.

Proof: (1): Since H is increasing in each component, it is of finite variation.
Thus H̃ is by construction predictable and of finite variation. Since H̃0 = 0 by
construction and H̃T = 0 was imposed, H̃ is a trading strategy. Note that since
H(ji) and

∫ t
0
S

(j)
s

S
(i)
s

dH
(ij)
s are all increasing, we have

VarH̃
(i)

t =
d∑
j=0

H
(ji)
t +

d∑
j=0

∫ t

0

S
(j)
s

S
(i)
s

dH(ij)
s .

We therefore have

d∑
i=1

ε

∫ T

0

S
(i)
t dVarH̃

(i)

t =
d∑
i=1

ε

∫ T

0

S
(i)
t

d∑
j=0

(dH
(ji)
t +

S
(j)
t

S
(i)
t

dH ij
t )

=
d∑
i=1

d∑
j=0

ε

∫ T

0

(S
(i)
t dH

(ji)
t + S

(j)
t dH

(ij)
t )
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=
d∑

i,j=0

cij

∫ T

0

S
(j)
t dH

(ij)
t ,

Which proves VCε,S(H) = Vε,S(H̃). If we repeat this computation with the strat-
egyH liquidated at t instead ofH , we find that the corresponding d-dimensional
strategy equals H̃1(0,T ). This proves the equivalence of the notions of admissi-
bility.

(2): H trivially satisfies the first three properties of a (d + 1)2-dimensional
trading strategy by construction. For the last one, consider the process H̃ con-
structed out of H in 2.1.1.4. There we have

H̃
(i)
t =

d∑
j=0

H
(ji)
t −

d∑
j=0

∫ t

0

S
(j)
s

S
(i)
s

dH(ij)
s

= H
(0i)
t −

∫ t

0

S
(0)
t

S
(i)
s

dH(i0)
s = Ĥ

(i+)
t −

∫ t

0

dĤs
(i−)

= Ĥ
(i)
t ,

thus Ĥ = H̃ almost surely. This proves the fourth an last property for H , and,
by the first part of this lemma, the equivalence of values and admissibility. 2

Remark 6.1.4 A similar model was introduced in [Ka99] and refined in sub-
sequent papers ([KL02], [KS02], [CS06]). There the transaction costs matrix
Λ = (λij)1≤i,j≤d also indicates a proportion of wealth lost by transaction costs:
When transferring capital from asset i to asset j, the amount by which the hold-
ing in asset i decreases is (1 + λij) times what it would be in the frictionless
case. Therefore it is natural to impose the triangular inequality

(1 + λij) ≥ (1 + λik)(1 + λkj)

for 1 ≤ i, j, k ≤ d, which means that direct trade is always equal or more
favourable than indirect trade via a third asset. The main difference between
this and our model is that there the transaction costs are always accounted for in
the selling asset, whereas we always book the costs to the cash account and treat
the exchange ratios in the risky assets like in the frictionless case. Therefore our
triangular inequality is different, namely

cij ≤ cik + ckj

for 0 ≤ i, j, k ≤ d.
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In order to define an adequate notion of a C-consistent price system for a
given transaction costs matrix C, we recall the relation between ε-consistent
price systems and the solvency cone derived in Lemma 2.2.3. Generalizing the
notion of the solvency cone to our new setting is actually pretty straightfor-
ward: The analogous version of the vectors Li±t spanning Kε,t are now vectors
Lijt ∈ Rd+1 representing a long position in some asset i, a short position of equal
value in position j and the right amount of cash to pay the transaction costs when
these two positions are cancelled out against each other. This leads to the fol-
lowing definition:

Definition 6.1.5 For a transaction costs matrix C = (cij)i,j∈{0,1,...,d}, we define
the C-solvency cone KSC,t at time t as the d + 1-dimensional cone spanned by
ei, 1 ≤ i ≤ d+ 1 and the d(d+ 1) vectors {Lijt , 0 ≤ i 6= j ≤ d}, where

Lijt = ei+1 −
S

(i)
t

S
(j)
t

ej+1 + cijS
(i)
t e1.

The dual C-solvency cone KS∗C,t is defined as in Definition 2.2.1, i. e.

KS∗C,t = {y ∈ Rd+1 : x>y ≥ 0 for all x ∈ KSC,t}.

As in the case of uniform ε, the inclusion of the unit vectors ei, 1 ≤ i ≤ d+1
is only necessary if the transaction costs are not strictly positive, and does not
affect KS∗C,t at all.

As in Lemma 6.1.3, we show that this definition is consistent with the case
of fixed ε in Definition 2.2.1:

Lemma 6.1.6 For ε ∈ [0, 1), define the transaction costs matrixCε as in Lemma
6.1.3. Then the Cε-solvency cone KSCε,t and the ε-solvency cone KSε,t from Defi-
nition 2.2.1 coincide for all t ∈ [0, T ].

Proof: Recall the vectors Li±t from Definition 2.2.1. To see KSε,t ⊆ KSCε,t it
suffices to note that

Li+t = Li0t

Lj−t = S
(j)
t L0j

t .

On the other hand we have for i, j,≥ 1

Lijt = Li+t +
S

(i)
t

S
(j−)
t

Lj−t ,
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which proves KCε,t ⊆ Kε,t. 2

The following lemma is proven by straightforward calculation.

Lemma 6.1.7 For given S, C and a strategy H , define the d + 1-dimensional
process

V H
t = −

d∑
i,j=0

∫ t

0

S
(j)
s

S
(i)
s

Lijs dH
(ij)
s .

Then for all 1 ≤ i ≤ d the process H̃(i) equals the (i + 1)-st component of
V H , almost surely. Moreover, the first component of V H

T equals VC,S(H) almost
surely.

The process V H can be seen as analogue to the self-financing portfolio pro-
cess V (H) introduced in Remark 2.2.7. So we have found an alternative repre-
sentation of VC,S(H) that does not require H̃ explicitly.

Proposition 6.1.8 Consider two price processes S,M and two transaction costs
matrices C,D. Let H be a C-admissible trading strategy with respect to S. If
for all t ∈ [0, T ] we have

KSC,t ⊆ KMD,t,
then there exists a D-admissible trading strategy G with respect to M such that

VC,S(H) ≤ VD,M(G) a.s.

Proof: The R(d+1)×(d+1)-valued process G is given by

dG
(ij)
t = min

(
1,
S

(j)
t M

(i)
t

S
(i)
t M

(j)
t

)
dH

(ij)
t , 1 ≤ i, j ≤ d

dG
(0j)
t = dH

(0j)
t +

d∑
i=1

max

(
0, 1− S

(j)
t M

(i)
t

S
(i)
t M

(j)
t

)
dH

(ij)
t , 1 ≤ j ≤ d

dG
(i0)
t =

M
(i)
t

S
(i)
t

dH
(i0)
t +

d∑
j=1

max

(
0, (

S
(j)
t

S
(i)
t

− M
(j)
t

M
(i)
t

)M
(i)
t

)
dH

(ij)
t , 1 ≤ i ≤ d.

G is obviously a predictable, finite variation process starting at 0. Straightfor-
ward calculation yields for 1 ≤ i ≤ d

dG̃
(i)
t =

d∑
n=0

dG
(ni)
t −

d∑
n=0

M
(n)
t

M
(i)
t

dG
(in)
t
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=
d∑

n=0

dH
(ni)
t −

d∑
n=0

S
(n)
t

S
(i)
t

dH
(in)
t = dH̃

(i)
t ,

thus G̃ = H̃ , i. e. H and G hold the same amount of each asset at each time. So
G̃T = 0 and G is in fact an M -trading strategy.
Now recall the alternative representation of VC,S(H) from Lemma 6.1.7. There-
fore consider the portfolio processes induced by H and G given by

V H
t = −

d∑
i,j=1

∫ t

0

S
(j)
s

S
(i)
s

Lijs dH
(ij)
s

V G
t = −

d∑
i,j=1

∫ t

0

M
(j)
s

M
(i)
s

L̃ijs dG
(ij)
s ,

where L̃ijt denote the spanning vectors of KMD,t and Lijt those of KSC,t. By the
same argument as in Lemma 2.2.6 we see that ∆±V

G
t and V̊ G

t live on the bound-
ary of −KMD,t, while ∆±V

H
t and V̊ H

t live on the boundary of −KSC,t ⊆ −KMD,t.
But since V G and V H can only differ in the first component and since e1 /∈ −KMD,t,
this means that the first component of V G − V H must be increasing, hence

VD,M(G) = V G
T

>
e1 ≥ V H

T

>
e1 = VC,S(H).

Finally, note that the same argument also holds if we replace H by H liquidated
at t < T , and the corresponding M -strategy coincides with G liquidated at t.
This shows that the (C, a)-admissibility of H implies the (D, a)-admissibility
of G. 2

Remark 6.1.9 The idea behind the strategy G is the following: If S
(j)
t

S
(i)
t

>
M

(j)
t

M
(i)
t

,

then exchanging asset i into asset j is more lucrative on M than on S. If H(ij)

increases in this case, thenG(ij) increases at the same rate, i. e. the same number
of stocks j are purchased, but by giving up fewer units of stock i. The difference
is sold to the cash account, hence dG(ij)

t = dH
(ij)
t and

dG
(i0)
t = dH

(i0)
t +

S
(j)
t M

(i)
t

S
(i)
t M

(j)
t

dH
(ij)
t .

If on the other hand S
(j)
t

S
(i)
t

<
M

(j)
t

M
(i)
t

, then G gives up the same amount of stock i to
get less of stock j. The difference has to be bought out of the cash account. Note
especially that if S = M , then G = H . in this case KSC,t ⊆ KMD,t is equivalent to
D ≤ C, component-wise.
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The definition of a C-consistent price system now runs along the idea of
Lemma 2.2.3. A Q-martingale M is called C-CPS if the corresponding P-
martingale Z isKS∗C,·\{0}-valued. This makes it easy to see the consistence with
the original Definition 2.1.3, as the next lemma will show.

Definition 6.1.10 For a transaction costs matrixC, aC-consistent price system
to S is a pair (M,Q) consisting of a probability measure Q ∼ P and an Rd

+-
valued Q-martingale (Mt)t∈[0,T ] such that

M
(j)
t

S
(j)
t

≤ M
(i)
t

S
(i)
t

+ cij

Q-almost surely for all 0 ≤ i, j ≤ d and t ∈ [0, T ]. Here both M (0) and S(0) are
assumed to be equal to 1. We will use the shorthand notation (M,Q) ∼C (S,P).
For a given St ∈ Rd

+, the bid-ask region B(C, St) is the set of all Mt ∈ Rd
+ that

satisfy all of the above inequalities.

Lemma 6.1.11 1. Let a probability measure Q ∼ P and an Rd
+-valued

adapted process M be given. Then (M,Q) ∼C (S,P) if and only if
the process Z defined in Lemma 2.2.3.2 is a P-martingale and satisfies
Zt ∈ KS∗C,t\{0} a. s. for all t.

2. Consider ε ∈ [0, 1) and the corresponding transaction costs matrix Cε
from Lemma 6.1.3. Then we have (M,Q) ∼ε (S,P) for a pair (M,Q) if
and only if (M,Q) ∼Cε (S,P).

Proof: Like in the case of uniform ε, we haveKS∗C,t ∈ Rd+1
+ ∪{0} a.s., so dividing

by Z(1) is not a problem.
(1): Note that Zt ∈ KS∗C,t if and only if Z>t L

ij
t ≥ 0 for all 0 ≤ i, j ≤ d, and that

we have

Z>t L
ij
t ≥ 0⇔M

(i)
t Z

(1)
t +

S
(i)
t

S
(j)
t

M
(j)
t Z

(1)
t + cijS

(i)
t Z

(1)
t ≥ 0,

which itself is equivalent to

M
(i)
t

S
(i)
t

− M
(j)
t

S
(j)
t

+ cij ≥ 0.

The rest of the proof follows analogous to the proof of Lemma 2.2.3.
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(2): By Lemma 6.1.6 we know that Z is a KS∗ε,· \{0}-valued P-martingale if
and only if it is a KS∗Cε,·\{0}-valued P-martingale. This together with the first
part of the lemma completes the proof. 2

We are now ready to prove a first version of the Fundamental Theorem of As-
set Pricing for generalized transaction costs matrices. As we will see, it follows
rather simple from the original Theorem 5.1.1. For the sake of completeness we
re-define arbitrage for general C.

Definition 6.1.12 Let C be a transaction costs matrix. A C-admissible strategy
is called C-arbitrage if it satisfies VC,S(H) ≥ 0 almost surely and

P
(
VC,S(H) > 0

)
> 0.

Theorem 6.1.13 (FTAP for strictly positive C) Assume S is continuous. Con-
sider a transaction costs matrix C satisfying cij > 0 for all i 6= j. Then there
is no εC-arbitrage for any ε > 0 if and only if S admits εC-consistent price
systems, for all ε > 0.

Proof: Since C is strictly positive off the diagonal, both δ1 = 1
2

min
(
cij, i 6= j

)
and δ2 = max

(
cij, i 6= j

)
are positive. By construction we have

Cδ1 ≤ C ≤ Cδ2

component wise, whereCδ1 andCδ2 are defined as in Lemma 6.1.3. This implies

KSCδ2 ,t ⊆ K
S
C,t ⊆ KSCδ1 ,t

for all t ∈ [0, T ], and hence

VCδ2 ,S(H) ≤ VC,S(H) ≤ VCδ1 ,S(H)

a. s. for all S-strategies H . Hence S being εC-arbitrage free for all ε > 0 is
equivalent to NA(0+).
On the other hand, we have for every pair M,Q:

(M,Q) ∼Cδ1 (S,P)⇒ (M,Q) ∼C (S,P)⇒ (M,Q) ∼Cδ2 (S,P).

This means that S admitting εC-CPS for all ε > 0 is equivalent to S admitting
ε-CPS for all ε. Now Theorem 5.1.1 completes the proof. 2
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6.2 Efficient friction and one-sided transaction costs
There is one particularly interesting situation that Theorem 6.1.13 does not
cover, and that is one-sided transaction costs, i. e. the case cij = 0 and cji > 0.
In the one-dimensional case it was argued in [GRS08b, Remark 3.19] that the
Fundamental Theorem still holds true for this case. The approach suggested
there will be generalized to the multidimensional case and made more rigorous
in what follows. For this the concept of efficient friction will turn out helpful,
which was introduced by Kabanov et al. [KRS02] and has since then proven
to be crucial in the theory of markets with transaction costs. Revisiting the
analogy of transaction costs and physical friction once again, it means that fric-
tion must be present in every direction at all times, or otherwise the particle
would be able to move without friction if choosing the right path. In this case
we would have a frictionless model (possibly of smaller dimension) embedded
in our model, which would obviously undermine our whole framework. This
somewhat blurred motivation is made rigorous with the following definition and
results.

Definition 6.2.1 A transaction costs matrix C ∈ [0, 1)(d+1)×(d+1) is said to sat-
isfy efficient friction (EF), if for each subset {n1, n2, . . . , nk} ⊆ {0, 1, 2, . . . , d}
containing at least two elements we have

cn1n2 + cn2n3 + . . .+ cnk−1nk + cnkn1 > 0.

Remark 6.2.2 1. The theory of transport problems on finite graphs, such as
shortest path problems, offers another analogy to efficient friction. If C
is understood as distance matrix of a weighted directed graph (see e. g.
[Bu65]), then efficient friction is equivalent to the absence of circles of
zero length. A circle of length zero would correspond to a subgraph on
which one can travel without costs, i. e. frictionless.

2. Note that if C satisfies the triangular inequality cij ≤ cik + ckj mentioned
in Remark 6.1.4, then failing (EF) implies that there exist 0 ≤ i < j ≤ d
such that cij = cji = 0. So these two assets taken for themselves form a
frictionless model.

In the transaction costs literature in the tradition of Kabanov’s cone setting
(e. g. [CS06]) a different definition of EF is used. There a model is said to satisfy
(EF) if the interior of K∗C,t is a. s. nonempty for all t. As the following lemma
will show, the two definitions are equivalent.
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Proposition 6.2.3 Consider a transaction costs matrix C. the following are
equivalent:

1. C satisfies (EF)

2. The set B(C,1) has a nonempty interior.

3. the interior of K∗C,t is a. s. nonempty for all t ∈ [0, T ]

Proof: To show (1⇒ 2), we need to find a strict solution Mt to all inequalities
from Definition 2.1.3 for St = 1. Now x = 1 solves all inequalities, but not
necessarily strictly. Denote by I the set of all pairs (i, j) ∈ {0, 1, . . . , d}2 where
i 6= j and cij = 0. If I = ∅, then 1 is a strict solution, so assume this is not the
case.
Define the sets An, n ≥ 0 recursively by

A0 = {j : (i, j) /∈ I for all 0 ≤ i ≤ d}

An = {j : j /∈
n−1⋃
k=0

Ak and (i, j) /∈ I for all i /∈
n−1⋃
k=0

Ak}.

If (EF) is satisfied, then this gives us a finite partition of {0, 1, . . . , d} into finitely
many nonempty sets A0, A1, . . . AN . Now a strict solution to all inequalities in
I is given by

x = 1−
N∑
n=1

ε
2n − 1

2n−1

d∑
k=0

ek1k∈An ,

Where ε > 0 is chosen arbitrarily. For ε small enough, the inequalities not cor-
responding to pairs in I are still met strictly and x ∈ intB(C,1). If on the other
hand (EF) is not satisfied, there is a subset {n1, n2, . . . , nk} ⊆ {0, 1, 2, . . . , d}
such that

cn1n2 + cn2n3 + . . .+ cnk−1nk + cnkn1 = 0.

The inequalities corresponding to these indices read

x(n1) ≤ x(n2) ≤ . . . ≤ x(nk) ≤ x(n1),

which can obviously not be met strictly. This proves (1⇔ 2).
To show (2⇔ 3), note that xSt ∈ intB(C, St) for all t ∈ [0, T ]. Now Lemma
6.1.11 tells us that

xSt ∈ intB(C, St)⇔ (1, x(1)S
(1)
t , x(2)S

(2)
t , . . . x(d)S

(d)
t ) ∈ intKS∗C,t.

This proves (2⇔ 3). 2
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Remark 6.2.4 The set I offers another analogy to graph theory. Consider a
network consisting of the nodes 0, 1, 2, . . . , d such that flow from node j to node
i is possible if and only if (i, j) ∈ I . Here (EF) means that this network does not
allow any circles, therefore (see e. g. [Bu65]) it is possible to decompose the set
of nodes into different layers A0, A1, . . . , AN such that flows are only possible
from i ∈ An to j ∈ Am if n < m. This decomposition was demonstrated in the
proof.

Theorem 6.2.5 (FTAP for efficient friction matrices) Assume S is continu-
ous. Consider a transaction costs matrix C satisfying (EF). Then there is no
εC-arbitrage for any ε > 0 if and only if S admits εC-consistent price systems,
for all ε > 0.

Proof: Proposition 6.2.3 tells us that there exists x ∈ intB(C,1). Note that for
Cδ as in Lemma 6.1.3 we have

B(Cδ,x) = x[1− δ, 1 + δ]d.

Since B(C,1) is bounded, there exist δ1, δ2 > 0 such that

B(Cδ1 ,x) ⊆ B(C,1) ⊆ B(Cδ2 ,x),

and multiplying by St yields

B(Cδ1 ,xSt) ⊆ B(C, St) ⊆ B(Cδ2 ,xSt).

this implies on the one hand for every pair (M,Q)

(M,Q) ∼Cδ1 (xS,P)⇒ (M,Q) ∼C (S,P)⇒ (M,Q) ∼Cδ2 (xS,P),

so S admits εC-CPS for all ε > 0 if and only if xS admits ε-CPS for all ε. On
the other hand it implies

KxS∗
Cδ1 ,t
⊆ KS∗C,t ⊆ KxS∗

Cδ2 ,t
⇒

KxS
Cδ1 ,t
⊇ KSC,t ⊇ KxS

Cδ2 ,t
.

So by Proposition 6.1.8 we know that every Cδ2-arbitrage on xS implies C-
arbitrage on S, which itsef implies Cδ1-arbitrage on xS. This means that S does
not admit εC-arbitrage for any ε > 0 if and only if xS satisfies NA(0+).
As in the proof of Theorem 6.1.13, applying Theorem 5.1.1, this time to xS,
finishes the proof. 2
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Remark 6.2.6 (Open problem) The obvious next step to generalizing transac-
tion costs would be to consider random costs, i. e. a a strictly positive process
(εt)t∈[0,T ] or an R(d+1)×(d+1)-valued process (Ct)t∈[0,T ] such thatCt satisfies (EF)
almost surely for all t. If we assume ε to be bounded away from zero, i. e.

εt ≥ εmin > 0

almost surely for all t ∈ [0, T ] for some constant, εmin, one could apply the
same argument as in Theorem 6.1.13 and 6.2.5, arguing that ε-arbitrage implies
εmin-arbitrage and any εmin-CPS is an ε-CPS and then applying Theorem 5.1.1
once again. If on the other hand ε can become arbitrarily small, then we are
not only unable to use this argument, but also unable to construct an ε-CPS in an
analogous manner to Chapter 5. There we heavily exploited that ε is known from
the very beginning, especially in the crucial Propositions 5.3.1 and 5.4.4, where
we recursively constructed processes Mn increasingly distant from S. If now
the bid-ask region unexpectedly shrinks by εt getting smaller, this procedure
can not be continued. This problem cannot be avoided by localizing εt.
Regarding the case of a random matrix Ct, we would simply have to make the
vector x ∈ intB(C,1) from Proposition 6.2.3 random, since B(Ct,1) is now a
random set as well. Depending on what kind of processes are considered for C,
this seems much less of a problem than the aforementioned one.
So at this point, the Fundamental Theorem for random ε, let alone for random
C, remains open, at least in our framework.
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Appendix A

On the Esscher transform

The Esscher transform, first introduced by Esscher in 1932 [E32], defines a
parametrized family of measures equivalent to a given original measure. It has
found various applications mainly in actuarial science, but has also found its way
into mathematical finance, e. g. [GS94]. The simplicity of the Esscher transform
makes it tractable enough for our needs, but on the other hand the resulting fam-
ily of measures is sufficiently rich, meaning that it allows us to transform the
expectation of a given bounded random variable to any possible point.

Definition A.1 Consider an Rd-valued random variable X on a probability
space (Ω,F ,P). For arbitrary a ∈ Rd, the Esscher transform of P given a and
X is a probability measure Pa,X onF , defined by its Radon-Nikodym derivative

dPa,X

dP
=

ea
>X

EP(ea>X)
.

Pa,X is well-defined and equivalent to P if EP(ea
>X) is finite. In what fol-

lows, we will always assume X to be bounded, hence all Esscher transforms
exist.
We want to investigate the range of possible expectations of X with respect to
Esscher transformed measures. We therefore define the function φX : Rd → Rd

by

φX(a) = EPa,X
(X) =

EP(Xea
>X)

EP(ea>X)
.

Recall the operator I from Definition 5.1.2. Since Pa,X ∼ P we have

φX(Rd) = {EPa,X
(X), a ∈ Rd} ⊆ {EQ(X),Q ∼ P} = I(X).
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In this section, we will show that this inclusion is in fact satisfied with equality.

Lemma A.2 Let X be bounded.

(a) The function φX is continuously differentiable in a and its Jacobi matrix
∇φX(a) with respect to a equals the covariance matrix of X with respect
to Pa,X .

(b) If X has full dimension (i. e. supp(X) is not contained in any (d − 1)-
dimensional affine subspace of Rd), then ∇φX(a) is positive definite for
all a ∈ Rd.

Proof: Since X is bounded and the moment generating function

a 7→MX(a) = EP(ea
>X)

is analytic, Fubini’s theorem yields for its first and second derivative:

∇MX(a) = EP(∇ea>X) = EP(Xea
>X)

∇2MX(a) = EP

(
∇(Xea

>X)
)

= EP(XX>ea
>X).

Note that φX = ∇MX

MX
, hence φ is continuously differentiable with

∇φX(a) =
EP(XX>ea

>X)MX(a)− EP(Xea
>X)EP(Xea

>X)>

M2
X(a)

,

which simplifies to

∇φX(a) = EPa,X
(XX>)− EPa,X

(X)EPa,X
(X)>= VarPa,X

(X).

This proofs (a). To see the second part of the lemma, it suffices to notice that
there is no vector v ∈ Rd\{0} such that v>X is P-almost surely constant.
Hence for all v 6= 0:

v>∇φX(a)v = VarPa,X
(v>X) > 0.

2

Remark A.3 Note that since X is bounded, say, ‖X‖ ≤ c a. s., the Cauchy-
Schwarz inequality yields |v>X| ≤ c a. s. for all v ∈ Rd with ‖v‖ = 1. Thus

v>
(
∇φX(a)

)
v = VarPa,X

(v>X) ≤ c2

for all such v. In other words, the largest eigenvalue of ∇φX(a) possesses a
global upper bound independent of a, therefore φX is globally Lipschitz contin-
uous with Lipschitz constant c2.
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Lemma A.4 Let X be bounded and of full dimension. Let a sequence (an)n∈N
in Rd be given such that {‖an‖, n ∈ N} is unbounded. Then there exists a sub-
sequence (ank)k∈N of (an) such that the distance of φX(ank) and the boundary
of I(X) converges to zero as k →∞.

Proof: For n ∈ N, define λn = ‖an‖ and vn = an
λn

. Without loss of generality
we assume λn ≥ n for all n, otherwise pass to an adequate subsequence. Since
vn lives on the compact unit sphere of Rd, there exists a subsequence (vmk) of
(vn) converging to some v ∈ Rd with ‖v‖ = 1. Consider the constant

α = esssupP(v>X).

Since X is bounded, α is finite.
For ε > 0, consider some x ∈ Rd with v>x < α− ε. Then we have

P
(
v>(X − x) >

ε

2

)
> 0,

hence v>mk(X − x) > ε
4

for all k large enough on a set A ⊂ Ω of positive
probability. Since λmk →∞ as k →∞, we have

lim
k→∞

a>mk(X − x) =∞

on A. This means that

dPamk ,X

dP

∣∣∣
{X=x}

=
exp(a>mkx)

EP

(
exp(a>mkX)

) = EP

(
exp
(
a>mk(X − x)

))−1

tends to 0 for all x with v>x < α− ε. This means that

lim
k→∞

Pamk ,X
(v>X ≤ α− ε) = 0,

hence for all k large enough we find

v>φX(amk) = EPamk
(v>X) > α− 2ε.

Since ε was chosen arbitrarily, we can construct a subsequence (ank) satisfying

lim
k→∞

v>φX(ank) = α,

which means that φX(ank) approaches the boundary of I(X).
2
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Theorem A.5 Let X be bounded. Then the image of φX is I(X).

Proof: Assume first thatX has full dimension. We already know that φX(a) ∈ I(X)
for all a ∈ Rd and from Lemma A.2 that φ(X) is injective. Let v ∈ Rd with
‖v‖ = 1 be given. Consider the d-dimensional ordinary differential equation

∇a(t) = F
(
a(t)

)
v

with the Rd×d-valued function F (a) =
(
∇φX(a)

)−1 and the initial condition
a(0) = 0. From Lemma A.2 we know that F is well-defined and everywhere
continuous, thus by Peano’s existence theorem [He05, Theorem 11.1], there
exists some solution a up to some maximal time point T ∈ (0,∞]. Now the
curve t 7→ φX

(
a(t)

)
satisfies

d

dt
φX
(
a(t)

)
= ∇φX

(
a(t)

)
∇a(t) = v,

which means that its image equals

{φX(0) + tv, 0 ≤ t < T},

thus T is finite. This means that a must explode at T , so a is unbounded. With
Lemma A.4 it follows that there exists an increasing sequence (tn)n∈N in (0, T )
such that φX

(
a(tn)

)
approaches the boundary of I(X). This means that the

image of t 7→ φX
(
a(t)

)
must be

{φX(0) + tv; t ≥ 0} ∩ I(X).

Because v was chosen arbitrarily on the unit sphere and I(X) is convex, all of
I(X) is contained in the image of φ(X), which completes the proof for the full
dimensional case.
Assume now that supp(X) is contained in an n-dimensional affine subspace of
Rd, where n is assumed to be minimal, i. e. supp(X) is not contained in any
affine subspace of smaller dimension. Then by basic linear algebra X admits
the representation

X = v + AZ

with a Rn-valued random variable Z of full dimension, a full-ranked matrix
A ∈ Rn×d with A>A being the n-dimensional unit matrix and a vector v ∈ Rd

with A>v = 0. If x ∈ I(X), then x = v + Az with z ∈ I(Z), and since Z has
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full dimension, z = φZ(b) for some b ∈ Rn. If we define a = v + Ab, we end
up with

φX(a) = v + A
E(Zeb

>Z)

E(eb>Z)
= x

2

Remark A.6 We have shown that the derivative of φX is everywhere positive
definite if and only if X has full dimension. In this case, φX is a bijection
between Rd and I(X) and for all y ∈ I(X) the equation

EP(a)(X) = y

has a unique solution a ∈ Rd. If X lives on an affine subspace v + V with
a vector space V ⊂ Rd of minimal dimension, then φX is obviously constant
along any line orthogonal to V . From the projection argument used in Theorem
A.5 follows that φX is a bijection between V and I(X). In any case the above
equation admits a unique solution a of minimal norm ‖a‖. This allows us, via
an argument of measurable selection, to derive the following corollary:

Corollary A.7 Let two Rd-valued bounded random variablesX and Y be given
on a probability space (Ω,F ,P), such that Y is measurable w.r.t a sub-σ-
algebra G ⊆ F . If the conditional support of X given G satisfies

Y ∈ I(X|G)

almost surely, then there exists a probability measure Q ∼ P identical to P on
G, such that, almost surely,

EQ(X|G) = Y.

Proof: Conditional on G, we may treat Y and the set I(X|G) as constant.
For each pair of Y and I(X|G), choose the norm-minimal Esscher parameter
A(ω) = a satisfying EP(a)(X)(ω) = Y (ω). This defines a G-measurable ran-
dom variable A. Since X is bounded, say, ‖X‖ ≤ c a.s., we get by applying the
ordinary Cauchy-Schwarz inequality and monotone convergence

EP(eA
>X |G) ≤ EP(e‖A‖·‖X‖|G)

=
∞∑
k=0

1

k!
EP(‖A‖k‖X‖k|G) ≤

∞∑
k=0

‖A‖kck

k!
= e‖A‖c <∞
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and we may therefore define a measure Q ∼ P by

dQ

dP
=

exp(A>Y )

EP(eA>Y |G)
,

which has all the desired properties. 2

Remark A.8 A result equivalent to A.5 in the notion of exponential families
was derived by Barndorff-Nielsen [B-N78, Theorem 9.2], for the full-dimensional
case and without Remark A.6, which plays a crucial role in our corollary. There
it was shown that a necessary and sufficient condition for A.5 to hold true is
the so-called steepness of the family {Pa,X , a ∈ Rd}. The verification of this
property is more or less equivalent to the assertion of Lemma A.4.
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