

Technische Universität Wien
A‐1040 Wien � Karlsplatz 13 � Tel. +43‐1‐58801‐0 � www.tuwien.ac.at

Designing an Interface for a
Humanoid Robot

Master Work

As a partial satisfaction of the requirements

To obtain the academic degree

Magister/Magistra in Social and Economic Sciences

In

Informatics Management

By:

Jascha Nouri
Student number: 0204119

In the:
Faculty of Informatics at Vienna University of Technology

Advisor: Univ. Prof. Dr.techn. Dr.h.c.mult. Peter Kopacek
Co-Advisor: Dr. Ahmad Byagowi

Vienna, Mai 2010

 (Signature of Author) (Signature of Advisor)

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Declaration to the Constitution of the work

Jascha Nouri

Hereby, I declare that I have written this work independently, that I am completely

specify sources and aids and that I have indicated the bodies of work - including tables,

maps and illustrations - and other works, the internet in letter or sense are taken, have

given the full names sources.

Vienna, Mai 2010 ___________________________________

II

Abstract

In this work an interface is designed for a human robot. This master work is part of the

humanoid robot project called Archie. Archie’s project starts from 2004 in institute of

handling robotics and technology from Vienna University of Technology. The aim of this

project is building a robot who can imitate human’s movements like walking.

In this work the control concept of the robot is discussed slightly, later on the interface

necessity for such are robot is presented. The main focus of this work is on providing an

interface to prepare the necessary data for the robot’s joints. Since the whole robot

consists of multiple joints connected to each other, calibrating and setting the

parameters for each individual joint is a sophisticated phenomena. Therefore this

e whole robot. interface is prepared to simply the entire process for th

III

Declaration

I would like to thank my supervisor, Professor Peter Kopacek, for his support and efforts

for my diploma thesis. He inspired me to look into the field of mechatronics and

humanoid robots. Through his experiences and knowledge I learned a lot.

I would like to thank my student colleague and good friend Lukas Georg, who supported

me and designed with me the interface.

In addition, I would like to thank my colleague and good friend Dr. Ahmad Byagowi who

has accompanied me in my diploma working hours and always supported me. For his

willingness to help me, he motivated me to do my thesis.

Finally, my most profound thanks are to my father, Mag. Mohammed Reza Nouri who is

my inspiration model, supported me with his experience, wisdom and goodness in my

life. I hope he will be proud of me and hope one day I will be as strong as my father.

I want to thank my mother, Mag. Shahin Nouri who has always given me her love,

warmth and strength. I also want to thank my brother Dr. Alireza Nouri who has

supported me with his ambition and enforcement capability. He always points the way

forward. Also I want to thank my two uncles Shahrokh Assadi and Shahram Assadi,

who have supported me in my life ever.

Jascha Nouri

IV

Table of Contents

Declaration to the Constitution of the work .. II

Abstract .. III

Declaration ... IV

Problem formulation .. 1

1. Introduction ... 2

2. State of the Art .. 4

3. Archie ... 7

4. Robot’s requirements .. 10

4.1. Motion Controller ... 10

4.2. Motion planner .. 11

4.3. Motion controller’s hardware ... 11

4.4. Controller .. 11

4.5. Interface requirements .. 12

4.5.1. Velocity profile .. 12

4.5.2. Torque profile .. 13

5. Implementation and Functionality ... 15

5.1. Interface Functionality ... 15

5.1.1. Level 1 Functions .. 15

5.1.2. Level 2 Functions .. 20

5.1.3. Level 3 Functions .. 23

5.2. Interface Implementation ... 25

5.2.1. Main Implementation .. 25

5.2.2. Trapezoidal Implementation .. 28

5.2.3. Data Save/load and Action Implementation .. 35

5.2.4. Data Array List (DAL) .. 45

6. Tests and results .. 54

7. Summary and Outlook .. 58

8. References ... 59

V

VI

Figure 1: ARCHIE in press conference 2009 .. 3
Figure 2: Bioloid – Motion Editor ... 4
Figure 3: Robonova interface (Internet 2, 2010) ... 5
Figure 4: Acyut Interface (Internet 2, 2010) .. 6
Figure 5: Specifications of ARCHIE .. 7
Figure 6: Archie’s Mechanical Simulator overview (Byagowi, 2010) .. 8
Figure 7: Design of Archie (Byagowi, 2010) ... 8
Figure 8: Prototyping of a foot mechanism: a) Denavit Hartenberg (DH) model, b) Foot design
and simulation (Byagowi 2010) ... 9
Figure 9: Architecture Motion Controller (Erlendur K., 2009) .. 10
Figure 10: velocity profile consists of acceleration, traversing velocity and deceleration 12
Figure 11: block diagram of the motor’s consequence used for the joints of the robot (Byagowi,
2010) ... 13
Figure 12: Level 1, Setting the Acc, AccTime, Speed, Torque for the individual joints 15
Figure 13: frontal-, lateral-, isometric view and Joints from ARCHIE .. 17
Figure 14: Level 1: Setting the properties ... 18
Figure 15: Table of Scale .. 19
Figure 16: Level 2, Set for Angle Start and Angle End ... 20
Figure 17: Set the Start/end angles of a joint .. 21
Figure 18: Level 2: Save/Load of Steps and Motions ... 21
Figure 19: XML File of a step/motion .. 22
Figure 20: Start/Stop of saved Motions ... 23
Figure 21: Manual input of parameters ... 24
Figure 22: Set values for the trapezoid ... 54
Figure 23: Save/Load File ... 55
Figure 24: XML File with saved values ... 55
Figure 25: Test on brushed motor, Figure 26: Debug Console ... 56
Figure 27: Test on ARCHIE .. 57

Technische Universität Wien
A‐1040 Wien � Karlsplatz 13 � Tel. +43‐1‐58801‐0 � www.tuwien.ac.at

Problem formulation

The humanoid robot is a sophisticated mechatronic system. A huge number of

parameters are required to be set for this machine. For instance, the robot has a

minimum of 29 degrees of freedom (DOF). Each degree of freedom is realized by a

motor, a gear and a motion controller. On each motion controller, there are several

parameters to set for reaching an optimal control. There parameters are to set the

torque, velocity and the position sub controllers. All these sub controllers together are

used to control the motion of the joint. Since, each one of the joints faces different load

properties, setting the joints is a complicated task (i.e., multiple parameters should be

set from the joints). The Interface should be designed in a way to provide the

requirements for managing the parameters for the robot in a simple way.

1

1. Introduction

The human is one of the most extraordinary being in the nature. In the evolution from

Neanderthal to Homo sapiens, the human being had more developed in instrument,

more flexible and more efficient. Humans can be distinguished from animals is different

aspects such as the kind of think, to communicate and specially the walking gait.

(Burenhult G., 2000)

Over time, the goals of the people get higher and more complex. The design of man is

not enough to fulfill certain goals. To meet these goals human needs more tools,

machines, technical devices that facilitate the everyday life and make him operations

easier and faster.

For example, human uses:

• Cutlery to make them easier to eat food without effort,

• Cars and planes to travel to large, kilometer long distances to go quickly to a

target

• Calculators to solve complex mathematical calculations

• And one of the greatest achievements, to accomplish our everyday tasks faster

and easier, is the computer.

Computers are now found in all areas of everyday life: They are used in the processing

and issuance of information in business agencies, the calculation of statics of

structures, the control of machines and automobiles and many other things. Many

everyday devices from the mobile phone, clock, technical devices, are now controlled

by integrated micro-computers. The most powerful computers are used to simulate

complex processes like military tasks, such as the simulation of the use of nuclear

weapons. (White R., 2004)

With the increasing performance, we open up new fields of applications such as robots

which are programmed to work and support humans.

2

With the current technical condition, it is now possible to develop robots which derived

from the construction, human look, act and move like humans.

Building a human like machine who can imitate human’s movements was always a wish

for the mankind. History shows, from ancient time, human is looking to fulfill and

achieve this dream. Nowadays, the technology is going to give the mankind the ability to

start building a human like machine (Humanoid).

This work is as a part of the humanoid robot project, called ARCHIE. ARCHIE is a

humanoid robot project which starts at 2004, in Institute of Handling Devices and

Robots (IHRT) in Vienna University of Technology (TU Wien), under supervision of

Professor Peter Kopacek. Fig. 1 shows a photo from Archie during a press conference.

The robot is designed to assist people and imitate human like movements (like human

gait). The main goal is to walk with 2 legs (bipedal walking). The human gait is one of

the most complicated process in the nature, but the humanoid robot is more flexible and

has more possibilities, than other kind of robots, like robots with more than 2 legs or

robots with wheels, which they have restricted movements. In this work, the process for

designing and implementing an interface for ARCHIE, is presented.

Figure 1: ARCHIE in press conference 2009

3

http://en.wikipedia.org/w/index.php?title=Peter_Kopacek&action=edit&redlink=1

2. State of the Art

In this chapter some previous works are presented. Since there are many humanoid

robots designed around the world, each one of them uses a different type and structure

for their interface. Nonetheless, the aim and the idea behind all of them are based on an

identical basis (i.e., all of them are designed for the aim to collect the required

information for the robot in an appropriate way). The interface should provide the user a

hierarchical structure to ease the process and gives reasonable image of the robot. The

complexity of the robot should be simplified for the user to prevent and minimize the

user faults in the process of setting the robot.

2.1. Bioloid Interface – Motion Editor

The interface of Bioloid is a graphical interface (Fig. 2). The Motion Editor is a simple

design. It consists of a 3D simulation of Bioloid, a list of all the joints and their settings.

In the lower area, there are a number of stored positions of the joints.

Figure 2: Bioloid – Motion Editor

4

The velocity and the motion duration time can be assigned. The commands are sent

directly via the serial port on Bioloid. In general, the interface is prepared in an optimize

shape and has a good overview for optimize usage.

2.2. Interface of Robonova

Similarly to the interface to Bioloid, the Robonova interface is presented (Fig. 3). The

interface has a graphic model of Robonova. The individual parameters can be directly

entered and stored. There is also the function of the "capture and playback” method.

Using the capturing, the controller takes the angle value of all the joints and stores it as

a motion.

By using interpolation, the software calculates the required motion between the

captured values, in order to prepare smooth and even movement. In general, the

interface is compact and has a good overview of all functions.

Figure 3: Robonova Interface (Internet 1, 2010)

2.3. Interface of Acyut

The interface of Acyut is similar to the interface of Robonova (Fig. 4). The central part of

the interface consists of a graphical representation of Acyut. The positions of the motors

can be set, individually. In the left part of the interface, the motors can be set precisely,

for example, the speed, the acceleration on and acceleration time. In the right part,

5

there are the save settings which stored positions can be loaded and individual

positions can be saved.

igure 4: Acyut Interface (Internet 2, 2010)

lso, in this interface, the basic settings have a good overview and enables fast control

ost interfaces have similar features and overview, as the presented interfaces. The

• Good overview of all adjustable joints

e set parameters

F

A

of the robot.

M

following properties should include a user-friendly interface:

• Flexible input and set of parameters

• Flexible way of storing and loading th

6

3. Archie

This chapter presents some briefly descriptions about the robot ARCHIE. Some of the

technical specifications of ARCHIE presented in Fig. 5.

Height: 1,2m

Mass: Approximately 20kg

Operating time: Min. 60 minutes

Walking Speed: Min. 0.5 m/s

Degrees of freedom: Min. 29

On board intelligence

Dynamic Walking (ZMP)

Hierarchical, decentralized control structure

Reasonable low price

Figure 5: Specifications of ARCHIE

Lower body of Archie is designed and driven using brushless motors. In the joints there

are harmonic drives for decreasing the size of the design and increasing the efficiency

of the robot. Each joint is control individual and can provide a high performance motion

control. All joints are connecting to a central control unit using a customized high speed

network.

The following pictures present an overview of ARCHIE. In Fig. 6, a screenshot of the

simulation of ARCHIE is shown.

7

Figure 6: Archie’s Mechanical Simulator overview (Byagowi, 2010)

Fig. 7 shows the realization of the design of ARCHIE. The detailed images show the

motors of ARCHIE. ARCHIE has 16 motors, 9 of them are brushless motors and the

rest brushed motors.

Figure 7: Design of Archie (Byagowi, 2010)

8

As it is depict in Fig. 7, ARCHIE’s design is based on a teen size human shape. The

motors move the same way as the human joints.

Fig. 8 shows the prototype of foot mechanism with simulation. The foot mechanism

consists of ankle, heel and a toe. The ankle and the toe are for lateral movement, for

the foot and the fingers respectively. The heel is for frontal movement.

Figure 8: Prototyping of a foot mechanism: a) Denavit Hartenberg (DH) model

b) Foot design and simulation (Byagowi 2010)

9

4. Robot’s requirements

4.1. Motion Controller

The motion control is part which belongs to the field mechanics, automation and control.

The motion control in robotics is an important phenomenon. The control of a robot is

related to the motion controllers (servo). The motion controller handles the position and

velocity for each joint by controlling an electric motor as the actuator. The motion

controller is one of the most important requirements for the robot. (Tan K. K., 2008)

The architecture of a generic motion controller (Fig. 9):

Motion
Controller

System Host
Prozessor

I/O
System

Electro‐
Mechanical
System

Figure 9: Architecture Motion Controller (Erlendur K., 2009)

Motion controllers are used in many fields, such as in photography, Textile Industry and

medicine.

10

4.2. Motion planner

The motion planner schedules the controller for different velocity and position (as well

as torque) based on the time. The motion planner could have the ability to lead the

motion controllers of the robot in a way to provide the robot the ability for doing a certain

movement. As an instance, the motion planner can provide the robot different type of

walking (and rotation) to be used for playing soccer. In a lower level of the work, the

motion planner can provide different type of walking based on different speed and

walking type.

4.3. Motion controller’s hardware

In ARCHIE, the controlling hardware is designed based on distributed computer

architecture. In this structure, the joint controllers are connected by a data network to a

central controller. The central controller synchronises the joints to prepare

combinational movement for the robot (i.e., the central controller commands multiple

joints to provide the robot movements which are combinations from different joints an

appropriate way).

Each joint is based an individual motion controller. The motion controller is controlling

the velocity and position of the motor using a microprocessor.

4.4. Controller

Since the humanoid robot is a non-linear system, the joints of the robot are facing

different load properties regarding to the overall pose of the robot. Thus, the control of

the robot should be designed in order to provide appropriate performance for a multi-

variable system which changes the properties in the variation of time. Besides, the

interface of the robot should provide a user-friendly environment to fulfill all the required

necessities for tuning the control system of the robot.

11

4.5. Interface requirements

The interface should provide the requirements for tuning and setting the joints. Since

each joint is controlled by a motion controller, the interface should provide appropriate

setting ability for the velocity profile and velocity Scheduler to tune each joint properly.

In this section there profiles and schedulers are discussed.

4.5.1. Velocity profile

The position movement consists of the phases: acceleration, deceleration and the

traversing velocity. The traversing velocity could be based on a constant velocity or

coincide with acceleration or deceleration. For the sake of simplicity, in this section the

traversing velocity is mind with constant velocity. By this simplification, the joints starts a

movement by acceleration; on time of reaching the desired traversing velocity, the joint

controller tried to hold the velocity constantly. Once the motion controller sensed the

position of the joint close to the desired position (based on the demanded deceleration

value), it starts to decrease the velocity of the joint with the demanded rate (based on

the desired deceleration). Fig. 10 shows as example for the velocity profile.

Velocity/Speed

Traversing velocity

DecelerationAcceleration

Time

Figure 10: velocity profile consists of acceleration, traversing velocity and deceleration

12

4.5.2. Torque profile
The torque profile is for scheduling the applied torque to the joint based on the demand

of movement. Since the acceleration consists of the 2nd Newton’s law of motion, the

torque profile should be set on an appropriate value.

By the rotational movement, the mass factor is replaced by the moment of inertia (of the

load). The reflected moment of inertia on the joints of a humanoid robot is not stable

because it is related to the overall pose of the other joints and links of the robot. The

torque is generated by the current of the rotor of the motor. The relation between the

generated torque and the current of the motor is represented by the (Kt) value, which is

also called the motor constant. The motor current is caused by the applied voltage on

the motor form the motion controller. The voltage changes to current by the inverse of

the motor’s rotor inductance. Fig. 11 shows a block diagram of this consequence.

Figure 11: block diagram of the motor’s consequence used for the joints of the robot

(Byagowi, 2010)

13

As it is shown in Fig. 11, the motor applied voltage changes to current by the inverse of

the motor’s rotor inductance. The generated current reduces from the effective terminal

voltage with the rotor electrical resistance ratio. In addition the effective voltage of the

motor is reduced by the Back Electro Motive Force (BEMF) as it is shown in Fig. 11.

The resulted current in motor’s rotor provides the output torque. The effective output

torque is reduced by the damping factor which is related to the velocity of the robot and

the also the reflected gravitational effect on the joint. The effective output torque turns to

acceleration by the inverse of the reflected moment of inertia value. Finally using the

generated acceleration velocity and position is prepared.

14

5. Implementation and Functionality

In this chapter, the interface of ARCHIE is presented. The idea was to make a clear and

easily adjustable interface for ARCHIE. The interface consists of 3 levels, where in each

level, specific sequences, position, acceleration, speed, steps and movements are

stored in order to control the functionality of the robot.

5.1. Interface Functionality

5.1.1. Level 1 Functions
In the first level consists of setting the acceleration, acceleration time, speed and torque

for each joint. (Fig. 12).

Figure 12: Level 1, Setting the Acc, AccTime, Speed, Torque for the individual joints

15

By using the interface, the trapezoidal functions can be adjusted via a mouse. ARCHIE

has 16 joints (lower body), that means 16 trapezoids are necessary to control the

functionality for each joint. The interface stores the properties (Acc, Acc Time, Speed,

and Torque), for each individual.

The joints (Fig. 13) are divided into:

• Hip: consist of 8 joints (2 lateral, 3 frontal and 3 transversal)

• Knee: consists of 2 joints (2 lateral)

• Toe: consists of 6 joints (4 lateral und 2 frontal)

The trapezoids are labelled with:

• F-B (Front-Back) = Lateral (L1-L8)

• L-R (Left-Right) = Frontal (F1-F3)

• RL-RR (Rotate Left-Rotate Right) = Transversal (T1-T3)

The trapezoids are subdivided into:

• Left Leg

• Right Leg

• and Center

16

L8L4

F2 F3 F1

T2 T3 T1

L7

L6

L5

L3

L2

L1

T2 T1

F2 L1

L2

L4 F4

L3

Figure 13: frontal-, lateral-, isometric view and Joints from ARCHIE

Lateral

Frontal

F4 F5

T2 T3

F1

T1

F3
F2

L6

L7

L8

L5

L4

L2

L3

L1

Transversal

17

First, the properties will be set for each joint (Fig. 14), for example:

Figure 14: Level 1: Setting the properties

The decision was to use a 2-dimensional trapezoid to adjust the properties, the x axis

describes the time and the y axis describes the velocity. The 2 yellow points describes

the acceleration and deceleration. Needed for each 16 trapezoid the values are entered.

The values have limitations:

Velocity (Speed): 0-5.000 pulses/s

Acceleration: 0-20.000 pulses/s²

Acceleration Time: maximum torque* moment of inertia (rotational analog of mass)

Torque: 0-20 Nm (Newton meter)

Fig. 15 illustrates the conversion table which is used to translate degree (radiant to the

pulses used for the motor):

As an instance when the motor should be moved 45 degree (), the required

command (the required pulses) is calculated as follows:

4
160 362.25

2π 7245 /

18

Figure 15: Table of Scale

 Brushed DC Motor Based Joint
Brushless DC Motor Based

Joint

Gear Ratio 415 160

Encoder, Pulse per Revolution

on Motor
2048 362.25

Pulse per each revolution

Gear output
415 x 2048 160 x 362.25

Conversion value for radiant 415 2048
2π

160 362.25
2π

Conversion value for degree 415 2048
360

160 362.25
360

19

5.1.2. Level 2 Functions

In the second level (Fig. 16), the angle start/end will be set and the steps/motions will be

saved (Fig. 18).

Figure 16: Level 2, Set for Angle Start and Angle End

Similar to Level 1 the angles of each joint are divided into left leg, right leg and center.

The distributions of the individual joints to adjust the angles are the same as in Level 1.

First, the angles for all 16 joints will be set. For each joint there is a limitation, which is

described between the fields, since otherwise the engines will be overloaded. There are

20

2 fields that must be fill, the first field "start angle" is entered with the initial state of the

joint, and with "stop angle" the end state (Fig. 17).

Figure 17: Set the Start/end angles of a joint

After we set the angles for the joint, the next step is to save the settings for Level 1, the

settings of the trapezoids and Level 2, the settings of the angles. (Fig. 18)

Figure 18: Level 2: Save/Load of Steps and Motions

In the “time” field, the delay time can be filled in, between the steps. One Step is one

setting of the trapezoids and angles of all 16 joints. One motion consists of several

steps.

There are 2 frames, the motion and the save/load file frame. In the motion frame, it is

possible to edit each single step. With the save-button, the step can be saved and after

saving it will switch to the next step. The step-field displays, in which field is shown

currently and the digit after the field shows how much steps exists. The update-button,

updates the step, if any changes are made after one step is saved. With the delete-

21

button it is possible to delete one step. The next- and last-button are there to switch

between the steps, in addition, the next-button also saves the step and switch to the

next. The idea with the motion is to save several steps which are required to make just

a simple movement, like one gait with ARCHIE.

The save/load file frame is used to save/load single steps and several steps as a whole

motion in a XML file, which will save each single setting. (Fig. 19) The “ControlName”

describes one field name of the joint it was given in the implementation and

“ControlValue” describes the value it was set.

Figure 19: XML File of a step/motion

22

5.1.3. Level 3 Functions

At last the third level, in this level all steps/motions are listed (Fig. 20) and can be

played serially. With the start- and stop- button it is possible to play the current

step/motion list. The “SaveList”- and “LoadList”- button is required to save and load the

steps or motions, which will be elected to play. This function loads the standard motions

which are required, faster, like just make several steps with ARCHIE.

Figure 20: Start/Stop of saved Motions

In addition there is the function of the manual input, if the user wants to test/debugging

the interface program (Fig. 21). The user interface consists of manual input of

parameters and setting the ports. This part of the interface allows controlling one joint

individually.

23

Figure 21: Manual input of parameters

In the first step, it is necessary to set the right port to control a joint, for example

“COM3”. If no joint is connected to a port, it cannot be possible to control a joint. For

each joint is one port required. The “Open Port” button opens the port which was set.

The “Close Port”, which is not available yet, will close the port. The “Close Port” button

is only available, if a port is open. After the port is open, it is possible to set the

parameters. The first parameters are to turn on/off the motors with the appropriate

button (“Motor On”, “Motor Off”). The “Set Acc”-button takes the input parameters of the

acceleration and deceleration and sends it to the motor via the serial port. Alternatively,

the values have to be entered manually in the text fields. The position field is for setting

the position (angle) of the motor, for example, if the value 45 is entered, the motor will

rotate 45 degrees. The velocity field is required to enter the speed of the motor. The

“Initiate” button sends the given parameters of position and velocity to the port and

brings the motor in motion.

For each input parameter, there is a scale (see Fig. 11):

• Acceleration/Deceleration deg/sec

• Position deg

• Velocity deg/sec²

24

5.2. Interface Implementation

In this chapter, the implementation of the interface is described in detail. The interface

was programmed in C# with the help of the program, Microsoft Visual Studio 2005. This

program is a complex editor, which can be used for many other projects with other

programming languages.

5.2.1. Main Implementation

The main application is presented, which brings the interface start-up. First, it is

required to load the interface screen with Form1_Load.

private void Form1_Load(object sender, EventArgs e)
 {
 // creating a dataset
 myDAL.InitDAL(getTextBoxes4Col(this, null));

 // Focus put on the first PictureBox
 _myPB = pictureBox68;

 // draw all trapezoids
 getPicBoxes(this);
 }

The function creates a dataset for saving the values in the textboxes, for saving the set

trapezoids and all set configurations with the function myDAL.InitDAL(). Also, the

focus will be set on the first PictureBox and assign it to _myPB. getPicBoxes draws

all trapezoids. Later, there will be a further explanation, what these functions do exactly.

private void setTrapezoid(PictureBox pb, Color myColor)
 {
 bmpBack = new Bitmap(pb.Width, pb.Height);
 Graphics.FromImage(bmpBack).Clear(Color.Black);
 pb.Image = (Bitmap)bmpBack.Clone();

25

 // Filling the PictursBoxes with trapezoids
 try
 {
 // node 1
 MarkControl mark1 = new MarkControl(Color.Transparent);
 mark1.Location = new Point(0, pb.Height - 10);
 pb.Controls.Add(mark1);

 // node 2
 MarkControl mark2 = new MarkControl(myColor);
 mark2.Location = new Point((pb.Width - 10) / 3 - 10, 30);
 mark2.Tag = "2";
 pb.Controls.Add(mark2);

The function setTrapezoid is the main function for creating the trapezoids with the

parameters pb and mycolor. bmpBack is used to set the background. A class

System.Drawing.Bitmap is needed for the operation of images, which are defined

by the pixel data. The new point (node 1) is creating a node and for each trapezoid,

there are 4 nodes required.

 // node 3
 MarkControl mark3 = new MarkControl(myColor);
 mark3.Location = new Point(((pb.Width - 10) / 3) * 2 + 10, 30);
 mark3.Tag = "3";
 pb.Controls.Add(mark3);

 // Default values X+Y from nodes 2 and 3 from the trapezoid are
entered into the text boxes

 UpdateTextBox(mark2);
 UpdateTextBox(mark3);
 SAVEmark2 = mark2;
 SAVEmark3 = mark3;

 // node 4
 MarkControl mark4 = new MarkControl(Color.Transparent);
 mark4.Location = new Point(pb.Width - 10, pb.Height - 10);
 pb.Controls.Add(mark4);

In the function UpdateTextBox(), the default values for the node are entered into the

text boxes and save to SAVEmark for each trapezoid, which are shown in the text

boxes.

26

// All relevant nodes and other values of the trapezoidal object
passed

 Trapezoid trapezoid = new Trapezoid();
 trapezoid.mark1 = mark1;
 trapezoid.mark2 = mark2;
 trapezoid.mark3 = mark3;
 trapezoid.mark4 = mark4;
 trapezoid.Width = 1;
 trapezoid.Parent = pb;
 trapezoid.Color = myColor;

The trapezoid is created with new Trapezoid(), the nodes are assigned to this as

well as the width and color.

 // Events for the node movements add (Node 2)
 mark2.MouseUp += new
System.Windows.Forms.MouseEventHandler(this.Mark_MouseUp);
 mark2.MouseDown += new
System.Windows.Forms.MouseEventHandler(this.Mark_MouseDown);
 mark2.MouseMove += new
System.Windows.Forms.MouseEventHandler(this.Mark_MouseMove);

 // Events for the node movements add (Node 3)
 mark3.MouseUp += new
System.Windows.Forms.MouseEventHandler(this.Mark_MouseUp);
 mark3.MouseDown += new
System.Windows.Forms.MouseEventHandler(this.Mark_MouseDown);
 mark3.MouseMove += new
System.Windows.Forms.MouseEventHandler(this.Mark_MouseMove);

 // adds the newly created trapezoid object in an ArrayList
 Trapezoids.Add(trapezoid);
 Redraw();
 }

Mouse events are assigned to the nodes of the trapezoids, to react to drag and drop

with MouseEventHandler(), which is necessary for mouse event operations. The

newly created trapezoid is added to the array of trapezoidal. The Redraw() function is

used to redraw the trapezoid for updating, which is described in the next chapter in

more detail.

27

5.2.2. Trapezoidal Implementation

First, the implementation of the trapezoids is presented. It is required to draw the

trapezoid and the functions name is DrawTrapezoid(), which parameters

trapezoid and pb are taken.

private void DrawTrapezoid(Trapezoid trapezoid, PictureBox pb)
 {
 Graphics g = null;

 if (trapezoid.Parent == pb)
 {
 g = Graphics.FromImage(pb.Image);

 g.DrawLine(new Pen(trapezoid.Color,
(float)trapezoid.Width), trapezoid.mark1.Center.X,
trapezoid.mark1.Center.Y, trapezoid.mark2.Center.X,
trapezoid.mark2.Center.Y);

g.DrawLine(new Pen(trapezoid.Color,
(float)trapezoid.Width), trapezoid.mark2.Center.X,
trapezoid.mark2.Center.Y, trapezoid.mark3.Center.X,
trapezoid.mark3.Center.Y);

g.DrawLine(new Pen(trapezoid.Color,
(float)trapezoid.Width), trapezoid.mark3.Center.X,
trapezoid.mark3.Center.Y, trapezoid.mark4.Center.X,
trapezoid.mark4.Center.Y);

 g.Dispose();
 }
 }

In order to draw a trapezoidal figure, the parameters Trapezoid and PictureBox are

taken from the function DrawTrapezoid(). The function DrawTrapezoid() draws

the trapezoidal corresponding to the coordinates. The parent query ensures that the

trapezoid is drawn in the correct PictureBox. DrawLine will draw the line between

two points. new Pen initiate a new instance of System.Drawing.Pen–class which is

required to draw a line.

trapezoid.mark1.Center.X and trapezoid.mark1.Center.Y gives the

coordinates of the points to draw the line. Dispose() frees the used ressource from

graphics.

28

 private void RedrawTrapezoid(Trapezoid trapezoid, Point p, PictureBox pb)
 {

Graphics.FromImage(pb.Image).DrawImage(bmpBack, 0, 0,
pb.Image.Width, pb.Image.Height);

 // for each trapezoid of the trapezoidal array
 foreach (Trapezoid g in Trapezoids)
 {
 DrawTrapezoid(g, pb);
 }

// region which needs to be redrawn
 Region r = getRegionByTrapezoid(trapezoid, p);
 pb.Invalidate(r);
 pb.Update();
 }

RedrawTrapezoid() redraws the trapezoidal, that the movements of the graphs can

be shown. DrawImage() draws the specified area of the specified

System.Drawing.Image, by given size and position. The instruction foreach draws

each trapezoidal new in the array. Subsequently, the region is re-refreshed and the

PictureBox (pb) is updated.

private void Redraw()
 {
 // for each PictureBox
 foreach (PictureBox myPb in PictureBoxAL)
 {
 // set background
 if (bmpBack != null)
 myPb.Image = (Bitmap)bmpBack.Clone();
 else
 {
 myPb.Image = new Bitmap(myPb.Width, myPb.Height);
 Graphics.FromImage(myPb.Image).Clear(Color.Transparent);
 }
 // set trapezoidal
 foreach (Trapezoid g in Trapezoids)
 {
 DrawTrapezoid(g, myPb);
 }
 myPb.Refresh();
 }
 }

29

The function Redraw() draws all lines, backgrounds, also trapezoids in the array, new.

For each picture box, a background image and a trapezoidal will be set. The

corresponding picture box will be refreshed.

The function Mark_MouseDown() will be needed for setting the trapezoidal. When a

mouse button is pressed, it will set the appropriate variables. X and Y give the

coordinates of the mouse while isSelected only serves as a flag.

private void Mark_MouseDown(object sender, MouseEventArgs e)
 {
 this.SuspendLayout();
 isSelected = true;

 // remember coordinates
 _X = e.X;
 _Y = e.Y;
 }

private void Mark_MouseMove(object sender, MouseEventArgs e)
 {
 // when a node is moved
 if (isSelected)
 {
 // nodes identify
 MarkControl mc1 = (MarkControl)sender;

 // trapezoidal identify
 Trapezoid g = getTrapezoidByMark(mc1);

 // place of the node to compute
 Point p = new Point(e.X - _X + mc1.Left, e.Y - _Y + mc1.Top);

 // and set
 mc1.Location = p;

 // update values in the text boxes
 UpdateTextBox(mc1);

 // redraw tpezoidal
 RedrawTrapezoid(g, p, _myPB);
 }
 }

30

To bring more flexibility pure for quick and simple settings of the trapezoids, a code was

written for use and control over mouse.

When the mouse is moved and a key is pressed (isSelected), then the node which is

clicked has been identified (MarkControl), as the trapezoidal it belongs (Trapezoid).

Subsequently, the coordinates are reset, the text boxes filled with new values with the

function UpdateTextBox() and the trapezoidal redrawn with RedrawTrapezoid().

private void UpdateTextBox(MarkControl _mc)
 {
 foreach (Control contr in
((Panel)this.Controls.Find(((PictureBox)this.Controls.Find(_mc.Parent.Name,
true)[0]).Parent.Name, true)[0]).Controls)
 {
 if (contr is TextBox)
 {
 // X – coordinate of the first node to be moved
 if ((contr.Tag == "x1") && (_mc.Tag == "2"))
 {
 contr.Text = Convert.ToString((_mc.Location.X * 11));
 }
 // X - coordinate of the second node to be moved
 if ((contr.Tag == "x2") && (_mc.Tag == "3"))
 {
 contr.Text = Convert.ToString((_mc.Location.X * 11));
 }
 // Y - coordinate of the first node to be moved
 if ((contr.Tag == "y1") && (_mc.Tag == "2"))
 {

 contr.Text = Convert.ToString(((-1) *
 (_mc.Location.Y - 94)) * 22 + 44);

 }
 // Y - coordinate of the second node to be moved
 if ((contr.Tag == "y2") && (_mc.Tag == "3"))
 {
 contr.Text = Convert.ToString(((-1) *

(_mc.Location.Y - 94)) * 22 + 44);
 }
 }
 }
 }

The function UpdateTextBox()updates the values in text box. The foreach

instruction goes through each PictureBox and update them in the text box. The

coordinates of the text boxes are filled with the current values if the graph will be

31

changed. Depending on whether it is X- or Y- text box, the values are recalculated. The

if(contr is TextBox)- instruction includes the both nodes to be moved.

private void UpdateGraph(object sender, EventArgs e)
 {
 Trapezoid tp = new Trapezoid();
 try
 {
 foreach (Control contr in ((TextBox)sender).Parent.Controls)
 {
 // for each picture box
 if (contr is PictureBox)
 {
 tp = getTrapezoidByPicBox((PictureBox)contr);
 // identify the transmitter-textbox and corresponding trapezoid redraw
 if (((TextBox)sender).Tag == "x1")
 {
 Point p = new
Point(Convert.ToInt32(Convert.ToInt32(((TextBox)sender).Text) / 11),
tp.mark2.Location.Y);
 tp.mark2.Location = p;
 RedrawTrapezoid(tp, p, (PictureBox)contr);
 }
 // identify the transmitter-textbox and corresponding trapezoid redraw
 if (((TextBox)sender).Tag == "x2")
 {
 Point p = new
Point(Convert.ToInt32((Convert.ToInt32(((TextBox)sender).Text) + 26)/ 11),
tp.mark3.Location.Y);
 tp.mark3.Location = p;
 RedrawTrapezoid(tp, p, (PictureBox)contr);
 }
 // identify the transmitter-textbox and corresponding trapezoid redraw
 if (((TextBox)sender).Tag == "y1")
 {
 Point p = new Point(tp.mark2.Location.X,
(Convert.ToInt32(((TextBox)sender).Text) * -1) / 22 + 96);
 tp.mark2.Location = p;
 RedrawTrapezoid(tp, p, (PictureBox)contr);
 }
 // identify the transmitter-textbox and corresponding trapezoid redraw
 if (((TextBox)sender).Tag == "y2")
 {
 Point p = new Point(tp.mark3.Location.X,
(Convert.ToInt32(((TextBox)sender).Text) * -1) / 22 + 96);
 tp.mark3.Location = p;
 RedrawTrapezoid(tp, p, (PictureBox)contr);
 }
 }
 }
 }
 }

32

The function UpdateGraph() updates the graph, if a value is entered into the text

boxes. Each new point initiates a new instance of System.Drawing.Point - class

with the given coordinates. There is again calculated separately for X and Y and the

trapezoid will be adapted.

private void Mark_MouseUp(object sender, MouseEventArgs e)
 {
 isSelected = false;
 ResumeLayout();
 Redraw();
 }

Mark_MouseUp, release the mouse button pressed down and reset the flag.

ResumeLayout(), taking the usual layout logic and will force an immediate optional

layout for outstanding layout requirements. After that, as usual, everything again will be

redrawing.

private Trapezoid getTrapezoidByMark(MarkControl m)
 {
 foreach (Trapezoid g in Trapezoids)
 {
 if (g.mark2 == m || g.mark3 == m)
 return g;
 }
 }

getTrapezoidByMark(), provides a specific trapezoid object, depending on given

node, for each trapezoid.

private Trapezoid getTrapezoidByPicBox(PictureBox pb)
 {
 foreach (Trapezoid g in Trapezoids)
 {
 if (g.Parent == pb)
 return g;
 }
 }

33

getTrapezoidByPicBox(), provides a specific trapezoid object, depending on given

PictureBox, for each trapezoid.

private Region getRegionByTrapezoid(Trapezoid g, Point p)
 {
 GraphicsPath gp = new GraphicsPath();

gp.AddPolygon(new Point[] { g.mark1.Center, g.mark4.Center, p,
g.mark1.Center });

 RectangleF rf = gp.GetBounds();
 gp.Dispose();

 rf.Inflate(100f, 100f);

 return new Region(rf);
 }

getRegionByTrapezoid(), provides a specific region depending on given point and

trapezoid.

34

5.2.3. Data Save/load and Action Implementation

One of the most important functions is to store and load the settings of the trapezoid

and text boxes. As explained in chapter 5.1.2, the settings are stored in steps, which are

saved as an XML file. Furthermore, several steps saved as motion, this serves to re-use

of steps and motions for a more flexible and fast adjustment. Now, the Save/Load

implementation is described in more detail.

 private ArrayList getTextBoxes4Col(Control c, ArrayList l)
 {
 if (l == null) { l = new ArrayList(); }

 foreach (Control contr in c.Controls)
 {
 if (contr is TextBox)
 {
 l.Add(contr.Name.ToString());
 }
 // Recursion
 if (contr.Controls.Count != 0)
 getTextBoxes4Col(contr, l);
 }
 return l;
 }

The arraylist getTextBoxes4Col() is needed as an array list, because it contains

about 130 textboxes. The values of all text boxes are stored in a data set, and return

this, the whole procedure is done recursively for all the available text boxes of this form.

private void button1_Click(object sender, EventArgs e)
 {
 try
 {
 // Values of all text boxes stored in data set
 getTextBoxes(this);
 // Dataset stored in a file
 dlgSaveControls.FileName = "";
 dlgSaveControls.DefaultExt = ".xml";
 dlgSaveControls.Filter = "XML (.xml)|*.xml";
 if (dlgSaveControls.ShowDialog() == DialogResult.OK)
 {
 string filename = dlgSaveControls.FileName;
 mySaveDS.WriteXml(filename);
 }
 }

35

The function button1_click is the Save-button for saving steps. The values are

required from all text boxes with getTextBoxes().

dlgSaveControls.FileName gets a string that contains the file name selected in the

file dialog box or sets.

dlgSaveControls.DefaultExt gets the default file extension or sets.

dlgSaveControls.Filter gets the current filter string for file name, which is defined

in the dialog box "Save as" or "file type" displayed selection or sets.

WriteXML() writes, in the given System.Data.XMLWriteMode, the current data,

and in need the schematic for the System.Data.DataSet specified in the file.

private void getTextBoxes(Control c)
 {
 foreach (Control contr in c.Controls)
 {
 if (contr is TextBox)
 {

SaveDS.SaveTBDTRow mySaveDSrow =
mySaveDS.SaveTBDT.NewSaveTBDTRow();

 // write control name
 mySaveDSrow.ControlName = contr.Name.ToString();

 // write control value
 mySaveDSrow.ControlValue = contr.Text.ToString().Trim();

 // add data set
 mySaveDS.SaveTBDT.AddSaveTBDTRow(mySaveDSrow);
 }

 // Recursion
 if (contr.Controls.Count != 0)
 getTextBoxes(contr);
 }
 }

The function getTextBoxes() is storing values of all text boxes in a data set as a

step. In this data set, the control name and the control text will be written.

mySaveDSrow() stores the data in the record. Recursively, all text boxes will be

collected with getTextBoxes(contr).

36

For storing the values and textboxes, it is the same procedure, except that is required

an array list for several steps.

private void setTextBoxes4Motion(Control c, DataRow dr)
 {
 foreach (Control contr in c.Controls)
 {
 if (contr is TextBox)
 {
 contr.Text = dr[contr.Name.ToString()].ToString();
 UpdateGraph(contr, null);
 }

 // recursion
 if (contr.Controls.Count != 0)
 setTextBoxes4Motion(contr, dr);
 }
 }

The function setTextBoxes4Motion() is loading values of all text boxes from a data

set. The parameter dr is needed for loading the text in the text boxes, in addition, it is

required to update the trapezoids with the function UpdateGraph(). As in the storing

procedure, it runs again recursively.

private void resetTextBoxes(Control c)
 {
 foreach (Control contr in c.Controls)
 {
 if (contr is TextBox)
 {
 if (contr.Tag == "x1") { contr.Text = "495"; }
 else if (contr.Tag == "x2") { contr.Text = "1320"; }
 else if ((contr.Tag == "y1") || (contr.Tag == "y2")) {
contr.Text = "1452"; }
 else { contr.Text = ""; }
 }

 // recursion
 if (contr.Controls.Count != 0)
 resetTextBoxes(contr);
 }
 }

37

The function resetTextBoxes(), will be reset the text boxes will to default values, so

that the trapezoid is always properly placed back to its initial state. And there, the

procedure runs recursively.

private void getPicBoxes(Control c)
 {
 foreach (Control contr in c.Controls)
 {
 if (contr is PictureBox)
 {
 // add to array list
 PictureBoxAL.Add(contr);

 // create trapezoid
 setTrapeziod((PictureBox)contr, Color.Yellow);
 }

 // recursion
 if (contr.Controls.Count != 0)
 getPicBoxes(contr);
 }
 }

getPicBoxes() goes thru all the existing picture boxes by a form (recursively) and

generates the corresponding trapezoids. At this point, the line color of the trapezoids will

be specified.

private void button3_Click(object sender, EventArgs e)
 {
 try
 {
 dlgOpenControls.FileName = "";
 dlgOpenControls.DefaultExt = ".xml";
 dlgOpenControls.Filter = "XML (.xml)|*.xml";

 if (dlgOpenControls.ShowDialog() == DialogResult.OK)
 {
 string filename = dlgOpenControls.FileName;

 mySaveDS.ReadXml(filename);

38

 // for each data set
 foreach (SaveDS.SaveTBDTRow myLoadDSrow in mySaveDS.SaveTBDT)
 {

((TextBox)Controls.Find(myLoadDSrow.ControlName, true)[0]).Text =
myLoadDSrow.ControlValue;

 // search the corresponding text box control
 if (myLoadDSrow.ControlName.Contains("362"))
 {
 // set the values

GetPicBoxFromTextBox(((TextBox)Controls.Find(myLoadDSrow.ControlName,
true)[0]));
 }
 }
 }
 }

The function button3_Click() loads a step and fill the text boxes. Also, the

trapezoids will be adjusted. dlgOpenControls opens the standard dialog box for

loading the step. mySaveDS.ReadXML(“filename”), loads the XML file into the data

set. All values that are saved in the XML-file, will be entered in the corresponding text

box.

private void jumpToStep(string _name)
 {
 try
 {
 setTextBoxes4Motion(this, myDAL.ReadStep(_name));
 }
 catch (Exception ex)
 {
 MessageBox.Show("Step dosen’t exist");
 }
 }

The function jumpToStep(), like the name said is to jump to a step. By pressing the

enter key, it will load the data into the text box.

39

 private void MyKeyUp(object sender, KeyEventArgs e)
 {
 try
 {

 string tmp = ((TextBox)sender).Tag.ToString();
 if ((tmp.Contains("x")) && ((((TextBox)sender).Text) != ""))
 if (Convert.ToInt32(((TextBox)sender).Text) > 1800)
 {
 ((TextBox)sender).Text = "1800";
 e.Handled = true;
 }
 if ((tmp.Contains("y")) && ((((TextBox)sender).Text) != ""))
 if (Convert.ToInt32(((TextBox)sender).Text) > 2000)
 {
 ((TextBox)sender).Text = "2000";
 e.Handled = true;
 }

In function MyKeyUp(), the maximum value of the text boxes are set, depending on

what may stand in it. tmp.Contains(), returns a value indicating whether the

specified System.String - object is present in this string. Convert.ToInt32(),

converts the string representation of a number, with respect to a specified base in the

corresponding 32-bit signed integer. For the other text boxes, it is required the same

code with their maximum value.

private void btnNextStep_Click(object sender, EventArgs e)
 {
 int intAktuell = Convert.ToInt32(txtStep.Text.Trim()) + 1;
 int intMaximum = 0;
 string guid = "";

 if (myDAL.ReadStep(txtStep.Text.Trim()) == null)
 {
 myDAL.WriteStep(getTextBoxes4Motion(this, null));
 }

The function btnNextStep_Click(), is for the “Next Step” - button, which is required

to save the actual step and go to the next. If an actual data set is not available, it will be

saved as a new step.

40

else
 {
 myDAL.UpdateStep(getTextBoxes4Motion(this, null), txtStep.Text.Trim());
 }

Otherwise, the step will be updated with the function, UpdateStep() .

getTextBoxes4Motion(), values of all text boxes stored in a data set. Recursively,

the text boxes will be captured, for the motion.

 DataRow dr =
myDAL.ReadStep(Convert.ToString(Convert.ToInt32(txtStep.Text.Trim()) + 1));
 if (dr == null)
 {
 resetTextBoxes(this);
 intMaximum = myDAL.LastID() + 1;
 }

Here, it is required an if-instruction to see if the next data set is available. If there isn’t

any next data set, the function resetTextBoxes() reset the text boxes to default

values, so that the trapezoid is always reset correctly in the initial state.

 else
 {
 setTextBoxes4Motion(this, dr);
 intMaximum = myDAL.LastID();
 guid = dr[0].ToString();
 }

Otherwise, the setTextBoxes4Motion() load values of all text boxes from a data set

(recursive). LastID(), returns the maximum entries. For the last step-button it is

required the function btnLastStep_Click() and the same code like

btnNextStep_Click().

41

private void btnStepSave_Click(object sender, EventArgs e)
 {
 // data send to DAL
 myDAL.WriteStep(getTextBoxes4Motion(this, null));

 // reset text boxes
 resetTextBoxes(this);
 }

The function btnStepSave_Click() is for the “Save” - button to simply save one

step. The data will be sending to our data array list (DAL) to save the entries of the text

boxes. The resetTextBoxes(), reset text boxes, for setting the next step.

private void button7_Click(object sender, EventArgs e)
 {
 // data send to DAL
 myDAL.UpdateStep(getTextBoxes4Motion(this, null), "1");
 }

It is required to update the step when the "next" button is used, since changes can be

made. The data will be sending to DAL.

private void button8_Click(object sender, EventArgs e)
 {
 int intAktuell = 0;
 int intMaximum = 0;
 string guid = "";

 try
 {
 // data send to DAL
 myDAL.DeleteStep(txtStep.Text.Trim());
 intMaximum = myDAL.LastID();

 if (Convert.ToInt32(txtStep.Text.Trim()) <= myDAL.LastID())
 {
 DataRow dr = myDAL.ReadStep(txtStep.Text.Trim());
 setTextBoxes4Motion(this, dr);
 intAktuell = Convert.ToInt32(txtStep.Text.Trim()) - 1;
 guid = dr[0].ToString();
 }

42

 else
 {
 intAktuell = Convert.ToInt32(txtStep.Text.Trim()) - 1;
 DataRow dr = myDAL.ReadStep(intAktuell.ToString());
 setTextBoxes4Motion(this, dr);
 guid = dr[0].ToString();
 }
 }

The button8_Click() function is for deleting the step and again, the data will be

send to DAL. An if-instruction is required, if it is the last step of a motion. The last step

of a motion is simply subtracted by 1. If it is not the last step, it also subtracted by 1, as

are the next steps.

 private void button6_Click(object sender, EventArgs e)
 {
 try
 {
 // data set save in a file
 dlgSaveControls.FileName = "";
 dlgSaveControls.DefaultExt = ".xml";
 dlgSaveControls.Filter = "XML (.xml)|*.xml";
 if (dlgSaveControls.ShowDialog() == DialogResult.OK)
 {
 string filename = dlgSaveControls.FileName;
 myDAL.WriteXML(filename);
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

This function button6_Click() is for saving a motion. As it is required the storage for

the step, it is also required the storage of the motion. As a motion consists of several

steps, the implementation is not much different than to save steps. The motions also will

be saved as an XML file. Again, it is required the dlgSaveControls for the standard

windows dialog box. The XML file will be written in DAL.

43

 private void button5_Click(object sender, EventArgs e)
 {
 try
 {
 dlgOpenControls.FileName = "";
 dlgOpenControls.DefaultExt = ".xml";
 dlgOpenControls.Filter = "XML (.xml)|*.xml";

 if (dlgOpenControls.ShowDialog() == DialogResult.OK)
 {
 string filename = dlgOpenControls.FileName;
 myDAL.ReadXML(filename);

 DataRow dr = myDAL.ReadStep("1");
 if (dr == null)
 {
 // No -> New file
 resetTextBoxes(this);
 }

 else
 {
 // Yes -> load
 setTextBoxes4Motion(this, dr);
 SetStepInt(1, myDAL.LastID(), dr[0].ToString());
 }
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

The function button5_Click(), is responsible for loading the motion. The code is

similar to the motion save. It is required to check, if the DataRow is empty or not. So, if

the DataRow is empty the text boxes will be reset, otherwise the set boxes will be

loaded.

44

5.2.4. Data Array List (DAL)

In this chapter, the Data Array List (DAL) is presented in more detail. The DAL is

needed to save the settings of the steps and motions in an array list.

public DataSet InitDAL(ArrayList _TextBoxen)
 {
 // Tables for generating data set
 DataTable myStepDT = new DataTable();
 myMotionDS.Tables.Add(myStepDT);

 // Columns to create, for the tables
 myMotionDS.Tables[0].Columns.Add("GUID");
 myMotionDS.Tables[0].Columns.Add("ID");

 // Columns to create, for the text boxes
 for (int i = 0; i < _TextBoxen.Count; i++)
 {
 myMotionDS.Tables[0].Columns.Add(_TextBoxen[i].ToString());
 }
 // Set columns features
 myMotionDS.Tables[0].Columns[0].Unique = true;
 return myMotionDS;
 }

For the first step, the Data Array List (DAL) should be initiated, where the tables are

created. With new DataTable(), a new instance of System.Data.DataTable –

class is initialized without arguments. The generated data set (new DataSet()) are

assigned to myMotionDS. The command myMotionDS.Tables.Add(), creates a

new System.Data.DataTable - object with a default name and adds it to the list. The

next step, the columns of the tables and text boxes will be created. For creating the

columns of the text boxes, we require a loop. A condition which has to be met must be

the uniqueness of all the values in the rows of columns (Unique).

45

 public Boolean WriteStep(ArrayList _TextBoxen)
 {
 Boolean result = true;
 DataRow myRow = myMotionDS.Tables[0].NewRow();

 try
 {
 myRow[0] = System.Guid.NewGuid().ToString();

The function WriteStep(), saves a step in the dataset. NewRow(), creates a new

System.Data.DataRow with the scheme of the tables.

if (myMotionDS.Tables[0].Rows.Count > 0)
 {
 int tmp =
Convert.ToInt32(myMotionDS.Tables[0].Rows[myMotionDS.Tables[0].Rows.Count -
1][1]);
 myRow[1] = tmp + 1;
 }
 else
 {
 myRow[1] = 1;
 }

The instruction retrieves the total number of System.Data.DataRow - objects from the

list. Each row gets an ID, the else-instruction is for the beginning ID.

for (int i = 2; i < _TextBoxen.Count + 2; i++)
 {
 myRow[i] = _TextBoxen[i - 2].ToString();
 }

 myMotionDS.Tables[0].Rows.Add(myRow);

 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 result = false;
 }

 return result;
 }

46

This loop will paste the values of the text boxes. Add(myRow) creates a row with the

specified values and adds it to the System.Data.DataRowCollection.

Tables[0] gets the collection of tables contained in the System.Data.DataSet. At

the end the result of WriteStep() will be returned.

public Boolean UpdateStep(ArrayList _TextBoxen, string _name)
 {
 Boolean result = true;

try
 {
 // search data row

DataRow myRow = myMotionDS.Tables[0].Select("ID = '" +
Convert.ToInt32(_name) + "'")[0];

 // paste the values of the text boxes
 for (int i = 2; i < _TextBoxen.Count + 2; i++)
 {
 myRow[i] = _TextBoxen[i - 2].ToString();
 }

 myRow.AcceptChanges();
 }

 catch (Exception ex)
 {
 result = false;
 }

 return result;
 }

The function UpdateStep() will make an update of the step if any changes will be

made. myMotionDS.Tables[0].Select() gets an array of all

System.Data.DataRow - objects that meet the filter criteria in the sort order and fit the

specified state. The function AcceptChanges() performs a "commit" for all the

changes that have been made in this row, since the last call of
System.Data.DataRow.AcceptChanges().

47

public DataRow ReadStep(string _name)
 {
 DataRow myRow = null;
 try
 {
 // search data set

myRow = myMotionDS.Tables[0].Select("ID = '" +
Convert.ToInt32(_name) + "'")[0];

 }
 catch (Exception ex)
 {

 }
 return myRow;
 }

The ReadStep() function, loads the saved step, it works like UpdateStep(), except

that only the values in data set will be loaded in the text boxes.

public Boolean DeleteStep(string _name)
 {
 Boolean result = true;
 int intTmp = Convert.ToInt32(_name);

 try
 {
 // search data row

DataRow myRow = myMotionDS.Tables[0].Select("ID = '" +
Convert.ToInt32(_name) + "'")[0];

 // delete data row
 myMotionDS.Tables[0].Rows.Remove(myRow);

 // correct IDs/Names

 for (int i = 0; i < myMotionDS.Tables[0].Rows.Count; i++)
 {
 myMotionDS.Tables[0].Rows[i][1] = i + 1;
 }
 }
 catch (Exception ex)
 {
 result = false;
 }
 myMotionDS.AcceptChanges();
 return result;
 }

48

The function DeleteStep(), deletes a step which is processed, it works like

WriteStep() and ReadStep(). Remove(myRow) removes the specified

System.Data.DataRow from the collection. The loop will correct the ID’s and names

of the data sets.

public Boolean WriteXML(string _path)
 {
 Boolean result = true;
 try
 {
 myMotionDS.Tables[0].WriteXml(@_path);
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex.Message);
 result = false;
 }
 return result;
 }

The WriteXML() function creates a XML-File for saving steps or motions.

WriteXml(@_path) writes the specified file and the specified

System.Data.XmlWriteMode in the current data and requires the schema for

System.Data.DataTable.

 public Boolean ReadXML(string _path)
 {
 Boolean result = true;
 try
 {
 myMotionDS.Tables[0].ReadXml(@_path);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 result = false;
 }
 return result;
 }

The function ReadXML() is required to load the saved XML file. The code works like the

WriteXML() function and at the end, the results will be returned.

49

5.2.5. Implementation of Debugging Console

In this chapter the implementation of the debugging console will be presented, which is

used in LVL3 for manual input parameters for each joint.

private void buttonStart_Click(object sender, EventArgs e)
 {
 serialPort1.BaudRate = 19200;

 serialPort1.Open();
 if (serialPort1.IsOpen)
 {
 buttonStart.Enabled = false;
 buttonStop.Enabled = true;
 }

 }

The function buttonStart_Click() is required to open the ports for sending the

entered parameters. serialPort1.Baudrate sets the serial baud rate. In this case,

the velocity is 19200 bit/sec. serialPort1.Open() opens a new serial port

connection. The if-instruction will check whether the port is open or not. If the port is

open, the “Open Port”-button will be inactive and the “Close Port”-button will be active.

 private void buttonStop_Click(object sender, EventArgs e)
 {
 if (serialPort1.IsOpen)
 {
 serialPort1.Close();
 buttonStart.Enabled = true;
 buttonStop.Enabled = false;
 }

 }

Similar to buttonStart_Click(), the function buttonStop_Click() will close the

opened port. The if-instruction checks if the port is open and close it. The “Open Port”-

button will be active and the “Close Port”-button will be inactive.

50

private void Form1_FormClosing(object sender, FormClosingEventArgs e)
 {
 if (serialPort1.IsOpen) serialPort1.Close();
 }

Likewise the function buttonStop_Click(), it checks if the port is open or not. This

additional function is required if the program will be exit to disconnect the connection, in

case an open port is existing.

private void DisplayText(object sender, EventArgs e)
 {
 textBox1.AppendText(RxString);
 }

The function DisplayText() is required to add text to the current text in a text box.

RxString is a variable of type string, which saves the entered text for displaying in the

text box.

private void serialPort1_DataReceived(object sender,
System.IO.Ports.SerialDataReceivedEventArgs e)
 {
 RxString = serialPort1.ReadExisting();
 this.Invoke(new EventHandler(DisplayText));
 }

The function serialPort1_DataReceived() is required to save the entered

parameters to RxString and display it into the text box. ReadExisting() return all

immediately available bytes in both the stream and the input buffer.

private void button6_Click(object sender, EventArgs e)
 {
 string eingabe = textBox2.Text;
 int c = Convert.ToInt32(eingabe);
 c = (int)c * (160 * 360) / 360;
 string tempac = Convert.ToString(c);

51

 serialPort1.Write("AC=" + tempac + "\n\r");
 string eingabe1 = textBox4.Text;

 int d = Convert.ToInt32(eingabe1);
 d = (int)d * (160 * 360) / 360;

 string tempdc = Convert.ToString(d);
 serialPort1.Write("DC=" + tempdc + "\n\r");
 }

The button6_Click() function will be invoked when the button “Set Acc” is pressed.

The entered value in textBox2 (Acceleration) will be saved in the variable eingabe.

Convert.ToInt32(eingabe) converts the entered value from string to integer, to

calculate with that value which will be saved in variable c.

The calculation describes the converting from pulses to degree (radiant) as it shows in

Fig. 11. The variable c will be converted from integer to string, to send the result.

The function serialPort1.Write() causes to send via port. The same procedure is

required for textbox4 (Deceleration).

private void button7_Click(object sender, EventArgs e)
 {
 string eingabe2 = textBox5.Text;
 int a = Convert.ToInt32(eingabe2);
 a = (int)a * (160 * 360) / 360;

 string tempsp = Convert.ToString(a);
 serialPort1.Write("SP=" + tempsp + "\n\r");

 string eingabe3 = textBox3.Text;
 int b = Convert.ToInt32(eingabe3);
 b = (int)b * (160 * 360) / 360;

 string temppa = Convert.ToString(b);
 serialPort1.Write("PA=" + temppa + "\n\r");
 serialPort1.Write("BG\n\r");
 }

52

The function button7_Click() will be invoked when the button “initiate” is pressed

and sets the motor in motion. Likewise the function button6_Click(), conversions of

the values in this part are also carried out and sent via the port with the function

serialPort1.Write().

private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)
 {

 if (comboBox1.SelectedItem.ToString() == "COM 1")
 {
 serialPort1.PortName = "COM1";
 }

 else if (comboBox1.SelectedItem.ToString() == "COM 2")
 {
 serialPort1.PortName = "COM2";
 }

 else if (comboBox1.SelectedItem.ToString() == "COM 3")
 {
 serialPort1.PortName = "COM3";
 }

 else if (comboBox1.SelectedItem.ToString() == "COM 4")
 {
 serialPort1.PortName = "COM4";
 }
 }

The function comboBox1_SelectedIndexChanged(), is responsible for setting the

port. Each port is represented by a “COM” number and is connected to one port. The if-

instructions check if the selected item in the combo box is equal to the “COM” number.

serialPort1.Portname gets the port for communication, including all available COM

ports.

53

6. Tests and results

In this chapter the tests and results of the interface are presented. There have been

several tests performed on the interface as the interface control (set the trapezoids,

storage and loading the settings as a step or motion), the control of a single motor and

the control of ARCHIE.

6.1. Test of Interface Control

In this part, the results of the interface control are presented. The settings of the

trapezoid will be taken over by clicking and dragging.

igure 22: Set values for the trapezoid

The values in the text field will be taken over by the setting of the trapezoid. The

trapezoid can also be set by typing in the text boxes if exact parameters are needed

 store entered values. As it shows in Fig.

3, there is the choice to save as step or motion. The test will show that the storage of

F

(Fig. 22).

Another important function for the test was to

2

the entered data was successful and stored as XML file.

54

igure 23: Save/Load File

At least, there will be checked if the values of the entered value are saved as XML file.

Figure 24: XML File with saved values

F

The XML-files shows the values and the text box name where it is saved. So, if the file

is loaded they take over the values and insert it into the appropriate text box by the text

box name. Fig. 24 shows the XML-file.

55

6.2. Test of Interface on a brushed motor and on ARCHIE

In this part, the controlling of a brushed motor and on ARCHIE is tested. The first goal

was to put the brushed motor in movement by using the debug console. The

parameters are entered in the console to send the values via a COM port. In this test,

the motor is aimed to rotate 45 degrees and back (shown in Fig. 25).

Figure 25: Test on brushed motor Figure 26: Debug Console

The test on the brushed motor was successful, the parameters were sent and were

logged in the textbox. If no values were sent, it would not be logged. The text box notes

the entered value and actions (shown in Fig. 26).

The tests have also tried directly on ARCHIE. As with the brushed motor, a motor from

ARCHIE is connected to the computer through a serial port. For each motor, one port is

needed. Each motor were tested individually and two engines were simultaneously

connected to the computer. Again, parameters were entered and sent via the serial port.

56

igure 27: Test on ARCHIE

s shown in Fig. 27, the parameters were successfully sent to ARCHIE. This procedure

F

A

was carried out for all motors and achieved the same successful results.

57

7. Summary and Outlook

In this thesis, a flexible and user-friendly interface was designed for a humanoid robot.

Some interfaces were presented, that were used for humanoid robots, like the interface

of Bioloid, Robonova and Acyut. It has been shown that the essential characteristics

must be present in an interface, like the good overview of all the joints, flexible input of

parameters and flexible storage of parameters.

It was presented the humanoid robot ARCHIE that was used for testing the interface.

ARCHIE is about 120 cm tall and has 16 engines, which each can be individually

controlled.

Furthermore, the requirements of a humanoid robot were presented, for example, the

motion controller, the motion planner, motion controller's hardware and the interface

requirements in detail. The decision was to use a trapezoidal function, which the

velocity, time and acceleration could be set more flexibly.

The interface consists of three levels, in the first level, the trapezoids are set to control

the joints, in the second level, the angles of the joints will be set and storage and

loading operations can be made. In the third level the set parameters for the joints can

be tested or played.

The main work was focused on the implementation of the interface, it was described in

detail how the structure of the interface is.

It was necessary to test the application on a debug console. It was a program written for

a manual input to check whether the parameters are sent or not. The tests on the debug

console showed that the parameters were successfully sent and put ARCHIE in motion.

For level 2, it was planned to program a 3D simulation of ARCHIE, to provide for more

flexibility in settings of all parameters. A front view and a side view are available to

adjust the joints and to control over mouse. The joints and their initial and final states

will be set in the 3D simulation. The parameters are also incorporated in the text boxes.

Furthermore, it was also planned to control the humanoid robot in real time over the 3D

simulation. As an example, if a leg will be moved in the simulation by mouse, then the

robot will be moved at the same time without predetermined parameters.

58

59

8. References

Burenhult G. (2000), Die ersten Menschen - Die Ursprünge des Menschen bis 10.000

vor Christus

Byagowi, A. (2010), Control System for a Humanoid Robot, Vienna University of

Technology

Erlendur K. (2009), Performance Motion Devices

Tan K. K.., Lee T. H. and Huang S. (2008), Precision motion control: Design and

implementation

White R. (2004), So funktionieren Computer - Ein visueller Streifzug durch den

Computer & alles, was dazu gehört

Internet Links:

Internet 1 (2010), http://www.techtakeaway.com/articles_robonova1.php (Date:

05.05.2010, 13:00)

Internet 2 (2010), http://acyut.wordpress.com/2008/05/27/gui-graphical-user-interface-

upgrade/ , (Date: 05.05.2010, 13:00)

http://www.techtakeaway.com/articles_robonova1.php
http://acyut.wordpress.com/2008/05/27/gui-graphical-user-interface-upgrade/
http://acyut.wordpress.com/2008/05/27/gui-graphical-user-interface-upgrade/

	Declaration to the Constitution of the work
	Abstract
	Declaration
	Problem formulation
	1. Introduction
	2. State of the Art
	3. Archie
	4. Robot’s requirements
	Velocity profile
	4.5.2. Torque profile

	5. Implementation and Functionality
	Interface Functionality
	Level 1 Functions

	6. Tests and results
	7. Summary and Outlook
	8. References

