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Kurzfassung

In der vorliegenden Arbeit werden laminare, schallnahe, schwach dreidimensionale Ström-

ungen im hohen Reynoldszahlbereich in schmalen Kanälen, wie sie beispielsweise in

Micro-Überschalldüsen und in Turbomaschinen mikro-elektro-mechanischer Systeme

(MEMS) vorliegen, untersucht. Die Kanalhöhe sei dabei derart gering, dass die auftre-

tende Grenzschicht mit der reibungsfreien Kernströmung zu wechselwirken beginnt und

die klassische Grenzschichttheorie zusammenbricht. Das hieraus resultierende viskose -

reibungsfreie Wechselwirkungsproblem wird für ideale Gase formuliert. Die reibungs-

freie Kernregion und die viskose Grenzschicht im Interaktionsgebiet werden mit Hilfe

von angepassten asymptotischen Entwicklungen und der Triple-Deck Theorie gelöst. Als

Folge davon müssen die Grenzschicht und die Kernregion simultan berechnet werden.

Um einen ersten Einblick in die komplexe Struktur der schwach-dreidimensionalen,

schallnahen Strömung zu erhalten, wurde zunächst die Strömung über einen flachen an

der Kanalwand angebrachten Hügel betrachtet. Hierzu ist das linearisierte ”Lower-Deck”

Problem, welches analytisch gelöst wurde, betrachtet worden. Neben dem Strömungs-

verhalten selbst wurde weiters das asymptotische Verhalten weit strömabwärts nach dem

Hügel untersucht.

Zur Untersuchung nichtlinearer Effekte, wie beispielsweise Grenzschichtablösung und

dem Einfluss der Variation des schallnahen Ähnlichkeitsparameters auf die Strömung,

wurden die vollen nichtlinearen ”Lower-Deck-Gleichungen” mittels eines pseudo-spektralen

Verfahrens numerisch gelöst. Von besonderem Interesse war hierbei die Ausbildung von

Ablöseblasen an der Lee-Seite der Wanddeformation und deren Struktur.

Das Auftreten stromaufwärts wirkender Störungen sowohl unter Überschall- als auch

unter Unterschallrandbedingungen wurde bezüglich ihrer Existenz und in Folge auch

deren Abklingverhalten studiert. Zur Untersuchung von frei wechselwirkenden Gren-

zschichten, welche Eigenlösungen der Grundgleichungen darstellen, wurde die Strömung

weit stromabwärts durch eine Oberflächendeformation gestört und so versucht eine freie,

schwach dreidimensionale Wechselwirkung, ähnlich wie die der bekannten regularisierten

Stoßprofile im zweidimensionalen Fall, auszulösen.
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Abschließend wurde noch das Auftreten einer kritischen Grenzhöhe gefunden und es

konnte gezeigt werden, dass keine stationären Lösungen der Strömung für Hügelhöhen

über der Grenzhöhe existieren und es zu einer Lösungsverzweigung kommt. Durch die

Untersuchung des lokalen Verzweigungsverhaltens konnte die Stabilität der Lösungsäste

bestimmt werden. Weiters zeigte sich, dass es bei Änderung der Breite des Hügels zu

Änderungen auch im Verzweigungsverhalten kommt und im zweidimensionalen Grenzfall

die Verzweigungskurve vollständig degeneriert.
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Abstract

In the present work laminar transonic weakly three-dimensional flows for high Reynolds

numbers in slender channels, as they are found in micro supersonic nozzles and tur-

bomachines of micro-electro-mechanical-systems (MEMS), are considered. The channel

heights shall be so small that the viscous boundary layer starts to interact with the in-

viscid core flow and therefore the classical boundary layer approach fails. The resulting

viscous-inviscid interaction problem is formulated for perfect gases. The inviscid core

region and the viscous boundary layer are investigated by means of matched asymptotic

expansions and triple deck theory. As a consequence, the properties of the core region

and the boundary layer have to be calculated simultaneously in the interaction region.

To get a first insight into the complex structure of weakly three-dimensional transonic

flows the flow over a shallow surface mounted hump was studied. Hence the linearized

”Lower-Deck” problem, which was solved analytically, was investigated, Beside the flow

behavior the asymptotic structure far downstream after the hump was considered.

To study nonlinear effects, as for instance boundary layer separation and changes of the

flow field caused by variations of the transonic similarity parameter, the full nonlinear

”Lower-Deck equations” has to be solved using a pseudo-spectral numerical method. Of

special interest was the formation and topology of the separation bubbles at the lee side

of the channel wall deformation.

The occurrence of upstream acting perturbations under supersonic as well as under sub-

sonic flow conditions was studied with respect to their existence and consequently also

the decay of the perturbations. To investigate freely interacting boundary layers, which

are eigensolutions of the governing equations, the flow was perturbed by a surface de-

formation far downstream with the intention to trigger a weakly three-dimensional free

interaction similar to the well known regularized shock profiles in the two-dimensional

case.
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Finally the appearance of a critical limiting height of the hump was found and it could

be shown that there exists no steady solutions of the flow for hump heights larger than

this limiting height and the solution starts to bifurcate. The local analysis of the bi-

furcation point yielded the stability of the solution branches. Furthermore, a change

of the bifurcating behavior was found by changing the width of the hump and a fully

degeneration of the bifurcation curve occurs in the limiting case of a two-dimensional

wall deformation.
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1. Introduction

Figure 1.1.: MEMS turbine stage with 4mm diameter, A. H. Epstein, MIT Cambridge,

[17] (left hand side) and supersonic micro nozzle, S.W. Janson, H. Helvajian

and K. Breuer, The Aerospace Corporation, [24] (right hand side).

The rapidly expanding capability of micro machining technology has made feasible the

development of gas turbines as well as micro supersonic nozzles in the millimeter size

range, mainly based on semiconductor industry-derived processing of materials. Such

devices are known as micro-electro-mechanical systems (MEMS), which are usually rel-

evant to aerospace applications like the micro nozzles (thruster) for space propulsion

of satellites. But due to the demand of greatly improved compact power sources for

portable electronics also the development of MEMS gas turbine engines are of interest.

Beside the manufacturing constraints a principle challenge is to obtain a design which

also meets the requirements of fluid mechanics since the physics change also with scale.

Viscous effects become more dominant at these small scales.

Typically turbomachinery tip Mach numbers in the high subsonic or low supersonic

range are reached. Length scales of a few millimeters imply that a device with room
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temperature inflow, such as a compressor, will operate at Reynolds numbers of the order

Re ∼ 104, while turbines with higher gas temperatures will operate at a Reynolds num-

ber of a few thousands and thus in a laminar regime. Therefore, viscous losses are much

larger at these scales compared to large-scale turbomachinery. But viscous losses make

up only about a third of the total fluid loss in a high speed turbomachine. Typically

tip leakage and shock wave losses account for most of the rest. But also in large scale

devices such flow conditions are found. For instance, in the channels between two leafs

of a leaf seal in a large scale turbomachine, cf. [37], [23], similar conditions are found.

Another aspect on these small scales is the influence of surface roughness onto the flow,

which is known to be capable to trigger weak compression shocks. Hence, a region of

special interest is the transonic regime, where the Mach number is close to it’s critical

value M = 1 and the flow is very sensitive to perturbations.

Unless the channels in such devices are extremely small, the fluid behavior can still be

represented as continuum flow so that molecular kinetics and Knudsen number consid-

erations are not important.

Thus, steady viscous inviscid interactions taking place in transonic laminar continuum

flows through narrow channels shall be considered. Rapid changes of the flow field in the

streamwise direction, such as the formation of weak normal shocks or the presence of a

local channel wall deformation due to surface roughness, eventually in connection with

boundary layer separation, yield a breakdown of the classical boundary layer approach.

As a consequence, the properties of the inviscid core region and the viscous boundary

layer region has to be calculated simultaneously in the interaction region.

Previous work done in the context of viscous inviscid interaction in slender channels is

given by Kluwick [26], Kluwick and Gittler [29], Kluwick, Braun and Gittler [28] and

Kluwick and Meyer [30], who studied two-dimensional transonic laminar internal flows.

The extension to their work covers, in particular, weakly three-dimensional effects which

are to be included properly in the formulation of the interaction problem. In summary

the current thesis is concerned with the following objectives.

• Formulation of the weakly three-dimensional interaction problem as presented in

chapter 2.

• The investigation of the flow around sufficiently shallow wall deformations in the

limit of the linearized problem as performed in chapter 3. Furthermore, the asymp-

totic properties of the flow quantities far downstream are to be treated by analyzing

the linearized problem in spectral space for vanishing small values of the spectral
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variables k and l.

• Investigation of the effect of boundary layer separation, specially on the formation

and topography of separation bubbles using a pseudo spectral method for solving

the full nonlinear problem as done in chapter 4. To validate the results signifi-

cant values, like the separation angle, shall be compared to well known analytical

approximations. Another aspect to be discussed is the effect of the transonic simi-

larity parameter K on the flow behavior under supersonic as well as under subsonic

flow conditions and associated effects.

• The analytical study of the occurrence of upstream acting perturbations and the

calculation of their proper upstream decay as presented in section 5.1 to 5.2. Com-

pleted by a numerical investigation of the formation of weakly three-dimensional

freely interacting boundary layers similar to the compressive shock profiles regu-

larized by viscous inviscid interaction.

• The capability of three-dimensional transonic flows to bifurcate, the associated

problem of flow stability taking place in such narrow channel flows perturbed by

wall deformations and a local analysis of the bifurcation point shall be presented in

chapter 6. These stability problems are features frequently encountered in technical

applications and of major interest specially in the design of turbomachineries and

nozzles.

Two-dimensional CFD-simulations of viscous effects in supersonic micro nozzles can be

found in [2],[34],[21],[40], further related works on numerical simulations of shock waves

in micro nozzles e.g. in [57] and experimental studies on flow visualization and pressure

measurement in micro nozzles in [22], [42] among others.

Related analytical works on viscous inviscid interactions in internal purely supersonic

flows can be found in [44],[4] and works on purely subsonic viscous inviscid interactions

in [48] .
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2. Problem description

L̃

L̃

ũ0

Ỹ
−Z̃

X̃

H̃

ũr x̃

ỹ

2H̃

Figure 2.1.: Slender Laval nozzle with interaction region.

The transonic flow through a slender nozzle of height 2H̃, see figure 2.1, is considered.

Due to the symmetry in y-direction it is sufficient to study just one half of the channel.

The Reynolds number shall be large thus generating a two-dimensional boundary layer

at the channel walls, indicated by the dashed lines in figure 2.1, whose effect on the

global flow behavior is not negligible anymore due to the slenderness of the channel.

Specially we assume that this boundary layer starts to interact with the inviscid outer

flow at a length L̃ and therefore classical boundary layer theory, see L. Prandtl [41],

fails in this region. These rapid changes of the flow quantities in the viscous inviscid

interaction region can be caused by a shallow weakly three-dimensional surface mounted

obstacle or by the formation of a weak shock in the inviscid core region, respectively.

The breakdown of the hierarchical structure of the classical boundary layer theory can

be overcome by introducing a triple deck structure, first formulated by Stewartson,

Messiter and Neiland, cf. [50], [35], [38], and described by means of matched asymptotic

expansions, cf. M. VanDyke [54]. First the governing equations in non-dimensional form

are provided and then afterwards the order of magnitude of the various quantities will

be discussed from a physical point of view.
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2.1. GOVERNING EQUATIONS

2.1. Governing equations

The non-dimensional quantities are introduced in the following way

x = x̃

L̃
, H = H̃

L̃
, sh = S̃

L̃
, u = ũ

ũ0
,

p = p̃
ũ2

0
ρ̃0

, ρ = ρ̃
ρ̃0
, t = t̃L̃

ũ0
, θ = θ̃

θ̃0

,

h = h̃
ũ2

0

, s = s̃
c̃p0

, µ = µ̃
µ̃0
, kλ = k̃λ

k̃λ,0
,

c = c̃
c̃0
, τ = τ̃L̃

µ̃0ũ0

, q = q̃L̃

k̃λ,0θ̃0

,

(2.1)

where tilde denotes dimensional quantities and the subscript 0 indicates a reference state.

An adequate reference state for the problem is the state just upstream of the interaction

region at the position L̃ in the undisturbed core region.

In the listing 2.1 of the relevant physical quantities just above x̃ denotes the position

vector with the horizontal, vertical and lateral components (x̃, ỹ, z̃), H̃ the half height of

the channel, S̃ the vector describing the surface of the mounted obstacle, ũ the velocity

vector with the horizontal, vertical and lateral components (ũ, ṽ, w̃), p̃ the pressure, ρ̃

the density, t̃ the time, θ̃ the temperature, h̃ the specific enthalpy, s̃ the specific entropy,

c̃p0 the specific heat at constant pressure, µ̃ the dynamic viscosity, k̃λ the thermal con-

ductivity and c̃ the speed of sound.

The fluid motion is described by the Navier-Stokes equations for compressible flows, cf.

A. H. Shapiro [46], consisting of the continuity equation ensuring the conservation of

mass, the momentum equations in three spatial directions as well as the energy equation

ensuring the conservation of energy. This set of equations (neglecting the gravitational

forces) can be written in the following non-dimensional form

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.2a)

ρ

(
∂u

∂t
+ (u · ∇)u

)

= −∇p +
1

Re
∇ · τ , (2.2b)

ρ
Dh

Dt
− Dp

Dt
=

1

Re
[∇ · (τu) − u(∇ · τ )] − 1

PrReEc
∇ · q, (2.2c)

where τ is the viscous stress tensor and q the vector of the heat flux. The dimensionless

parameters entering the governing equations are the Reynolds number Re := ρ̃0ũ0L̃
µ̃0

, the

Prandtl number Pr :=
µ̃0 ˜cp0

k̃λ,0
and the Eckert number Ec :=

ũ2

0

˜cp0θ̃0

. Another important

dimensionless parameter appearing later is the Mach number M0 := ũ0

c̃0
. In the following

it will be assumed that the Reynolds number is large Re ≫ 1 and the Mach number is
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2.2. INSPECTIONS ANALYSIS - ORDERS OF MAGNITUDE

close to its critical value M0 = 1, while the Prandtl number Pr and the Eckert number

Ec are taken to be of O(1).

Due to the symmetry with respect to the centerline of the nozzle (Y = H) the boundary

conditions have to be specified for one half of the channel only. These are in general a

no-slip condition at the wall and a matching condition with the oncoming undisturbed

two-dimensional boundary layer. A detailed discussion of the boundary conditions is

carried out in the subsequent sections.

To close the problem we assume a Newtonian fluid defined by, cf. [43],

τ = µ

(

∇uT + (∇uT )T − 2

3
(∇ · u)I

)

, (2.3)

satisfying Fourier’s law for the heat conduction

q = −kλ∇θ, (2.4)

as well as caloric and thermal equations of state

h = h(p, s), p = p(ρ, θ). (2.5)

2.2. Inspections Analysis - Orders of Magnitude

Under the assumption that the interaction region exhibits a triple deck structure, con-

sisting of a viscous lower deck, a passive main deck and an irrotational inviscid upper

deck as sketched in figure 2.2, and taking into account the nature of these decks one

can derive relations for the order of magnitudes of the flow quantities as well as the

relevant length scales. Inspecting the governing equations and balancing the terms from

a physical point of view in the individual decks reveals the subsequent relations.

2.2.1. Lower Deck

The variations of the dimensionless lower deck quantities are defined as

ul =
ũl

ũ0

= ∆ul, vl =
ṽl

ũ0

= ∆vl, wl =
w̃l

ũ0

= ∆wl, (2.6a)

pl − p0 =
p̃l − p̃0

ũ2
0ρ̃0

= ∆pl, ρl =
ρ̃l

ρ̃0

= Rw + ∆ρl, (2.6b)

where the subscript w denotes quantities evaluated at the channel wall. Taking the

viscous character of the lower deck into account results in the following estimates:

6



2.2. INSPECTIONS ANALYSIS - ORDERS OF MAGNITUDE

upper deck

main deck

lower deck

S(X,Z)

L = 1

δm

H

δl

∆x

∆z

Y

−Z

X

u = 1

Figure 2.2.: Tripledeck structure of the viscous inviscid interaction region.

• Thin lower deck compared to the main deck

∆ul ∼ δlδ
−1
m . (2.7)

• Balance of inertia and pressure term in x-momentum equation

∆u2
l ∼ ∆pl. (2.8)

• Balance of inertia and viscous term in x-momentum equation

∆ul
∆ul

∆x
∼ 1

Re

∆ul

δ2
l

. (2.9)

• Balance of inertia and pressure term in z-momentum equation

∆ul
∆wl

∆x
∼ ∆pl

∆z
. (2.10)

• Non-degenerate continuity equation

∆ul

∆x
∼ ∆vl

δl
. (2.11)

• Pressure disturbance in lower deck imposed by outer flow

∆pl ∼ ∆pu. (2.12)
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2.2. INSPECTIONS ANALYSIS - ORDERS OF MAGNITUDE

2.2.2. Main Deck

The dimensionless main deck quantities

um =
ũm

ũ0
= U0 + ∆um, vm =

ṽm

ũ0
= ∆vm, wm =

w̃m

ũ0
= ∆wm, (2.13a)

pm − p0 =
p̃m − p̃0

ũ2
0ρ̃0

= ∆pm, ρm =
ρ̃m

ρ̃0
= R0 + ∆ρm (2.13b)

are split into a small deviation from the oncoming two-dimensional boundary layer and

the boundary layer flow itself, where U0 and R0 denote the velocity and the density

profile of the oncoming boundary layer, respectively. Taking the passive nature of the

main deck into account yields the following relations:

• Balance with the lower deck shift of the velocity profile

∆um ∼ ∆ul. (2.14)

• Displacement shifted to the upper deck

∆vm ∼ ∆vu. (2.15)

• Balance of inertia and pressure term in z-momentum equation

∆um
∆wm

∆x
∼ ∆pm

∆z
. (2.16)

• Non-degenerate continuity equation

∆um

∆x
∼ ∆vm

δm
. (2.17)

• Pressure disturbance in main deck imposed by outer flow

∆pm ∼ ∆pu. (2.18)

2.2.3. Upper Deck

The dimensionless upper deck quantities

uu =
ũu

ũ0

= 1 + ∆uu, vu =
ṽu

ũ0

= ∆vu, wu =
w̃u

ũ0

= ∆wu, (2.19a)

pu − p0 =
p̃u − p̃0

ũ2
0ρ̃0

= ∆pu, ρu =
ρ̃u

ρ̃0

= 1 + ∆ρu (2.19b)

8



2.2. INSPECTIONS ANALYSIS - ORDERS OF MAGNITUDE

are again split into a small deviation from the oncoming one-dimensional flow in the core

region and the flow in the core region itself. Taking the inviscid irrotational character

of the upper deck into account gives the following relations:

• Planar weakly disturbed flow in the upper deck

∆ρu ∼ ∆pu ∼ ∆uu. (2.20)

• Displacement effect shifted by main deck shall lead to a flow response at leading order

∆u2
u

∆x
∼ ∆vu

H
∼ ∆wu

∆z
. (2.21)

• Transonic flow

∆uu ∼| 1 −M2
0 |∼ ∆K. (2.22)

• Irrotational flow

∆wu

∆x
∼ ∆uu

∆z
, (2.23a)

∆uu

∆z
∼ ∆wu

∆x
, (2.23b)

∆wu

H
∼ ∆vu

∆z
, (2.23c)

where the y-depending terms will be discussed in detail in the next section.

The time scaling preserving the slowest timescales and therefore governing the longterm

behavior of the system can be estimated from a physical point of view by studying the

speed of an upstream propagating wave, which gives in the limit M0 → 1

∆x

∆t
∼ ∆uu. (2.24)

Another approach is to require, that the time must enter the analysis at the level of the

solvability condition, which will give exactly the same result as the earlier approach.

2.2.4. Calculation of the Orders of Magnitude of the Flow

Quantities

Combining the estimates (2.7) - (2.12), (2.14) - (2.18), (2.20) - (2.23) and introducing a

small expansion parameter ε≪ 1, measuring the perturbation of the streamwise velocity

component ∆uu, gives the following ansatz for the orders of magnitude of the changes

of the flow quantities in the three decks.

9



2.2. INSPECTIONS ANALYSIS - ORDERS OF MAGNITUDE

∆ul ∼ ε, ∆vl ∼ εlv , ∆wl ∼ εlw ,

∆um ∼ εmu , ∆vm ∼ εmv , ∆wm ∼ εmw ,

∆uu ∼ εnu, ∆vu ∼ εnv , ∆wu ∼ εnw , ∆ρu ∼ εnρ ,

∆x ∼ εkx, ∆z ∼ εkz , δ ∼ εkδ,l , H ∼ εkH ,

∆p ∼ ∆pl ∼ ∆pm ∼ ∆pu ∼ εnp, ∆K ∼ εkK .

Keeping in mind that the main deck contains the main part of the oncoming boundary

layer yields

Re−
1

2 ∼ εkδ,m.

Inserting the above ansatz into equation (2.7) to (2.23a) gives the following 15 relations

for the 16 unknowns

ε ∼ εkδ,l−kδ,m , ε2 ∼ εnp, ε2−kx ∼ ε1−2kδ,l+2kδ,m ,

ε1+lw−kx ∼ εnp−kz , ε1−kx ∼ εlv−kδ,l, ε ∼ εmu ,

εmv ∼ εnv , εmu+mw−kx ∼ εnp−kz , εmu−kx ∼ εmv−kδ,m ,

εnρ ∼ εnu , εnu ∼ εnp, ε2nu−kx ∼ εnv−kH ,

ε2nu−kx ∼ εnw−kz , εnu−kz ∼ εnw−kx, εkK ∼ εnu.

The flow in the upper deck shall be planar to the leading order and a y-dependency

of the quantities shall enter at the next higher order. This condition is enforced by

the shallowness of the channel, i.e. the requirement that the height of the channel is

sufficiently small. A more precise condition for the channel height is given at the end of

this section. Therefore the horizontal velocity component uu can be expanded as follows

uu = 1 + εnuu(1)
u (x, z) +

∑

i

εnu·iu(i)
u (x, yu, z)

and consequently the derivative with respect to y is found to be

(
∂u

∂y

)

u

∼
∑

i

εnu·i ∂

∂yu
u(i)

u (x, yu, z)
dyu

dy
.

Thus the expression for irrotational flow in the upper deck (2.23b) can be used to make

the following estimate1

ε2nu−kH ∼ εnv−kx.

1Another estimate is given by G. Meyer [36], assuming no y-dependency of the flow in the upper deck

also at higher orders.

10



2.3. FORMAL ASYMPTOTIC EXPANSIONS

Comparison of the exponents of ε in the stated expressions yields the following 16 linear

equations for 16 unknowns

kδ,l − kδ,m = 1, np = 2, kx − 2kδ,l + 2kδ,m = 1,

−lw + np − kx − kz = 1, lv + kx − kδ,l = 1, mu = 1,

mv − nv = 0, mu +mw − np − kx + kz = 0, mu −mv − kx − kδ,m = 0,

−nu + nρ = 0, nu − np = 0, 2nu − nv − kx + kH = 0,

2nu − nw − kx + kz = 0, nu − nw + kx − kz = 0, −nu + kK = 0,

−2nu + nv − kx + kH = 0

which have the solutions

lv = 5, lw = 2, mu = 1, mv = 4,

mw = 3, nu = 2, nv = 4, nw = 3,

nρ = 2, np = 2, kx = 3, kz = 2,

kδ,l = 7, kδ,m = 6, kH = 3, kK = 2.

And finally from δm ∼ Re−
1

2 the small perturbation parameter ε is found to be

ε = Re−
1

12 . (2.25)

The number of reflections of the characteristics n in the upper deck can be estimated by

n ∼ ∆x

H
√

M2
0 − 1

,

where for n → ∞ the y-dependence of the flow quantities become negligible small and

yields the following condition for the channel height

H = o

(
∆x

∆K

)

= o(ε2) = o(Re−1/6),

which is satisfied with the above stated length scales.

2.3. Formal Asymptotic Expansions

The inspection analysis carried out in the previous section suggests formal asymptotic

expansions for the flow quantities in the different decks of the interaction region charac-

terized by different length scales in horizontal, vertical and lateral direction. Substituting

in the governing equations and evaluating in leading order yields the distinguished lim-

its for each deck. Via matching of the different solutions of the neighboring asymptotic

11
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upper deck

main deck

lower deck

S(X,Z)

ts

x̃

ỹ

ũr

2H̃

L̃

L = 1

ε6

H ∼ ε3

ε7

ε3

ε2

Y

−Z

X

Re = ũ0L̃ρ̃0

µ̃0

≫ 1

ε = Re−
1

12

Figure 2.3.: Tripledeck structure and length scales of the interaction region.

regions an uniformly valid solution can be found, cf. [54]. Since the derivation of the

fundamental problem for the weakly three-dimensional case does not differ a lot from

the two-dimensional case studied by A. Kluwick and G. Meyer, cf. [30], as well as from

the standard triple deck theory for the lower deck and the main deck, see i.e. [26], [50],

these equations will be introduced without much further explanations.

The inspections analysis in section 2.2 suggests for the spatial scalings of the streamwise

and lateral coordinate

x = 1 + ε3X̄, (2.26a)

z = ε2Z̄, (2.26b)

which are, of course, the same in all three decks. The time scaling is found to be

t = εt̄. (2.27)
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2.3. FORMAL ASYMPTOTIC EXPANSIONS

2.3.1. Lower Deck

Inspection analysis in section 2.2.1 suggests for the spatial scalings in y-direction

yl = ε7Ȳl, (2.28)

and the following asymptotic expansions for the relevant quantities

ul = εŪl,1(X̄, Ȳl, Z̄, t̄) + O(ε2), (2.29a)

vl = ε5V̄l,1(X̄, Ȳl, Z̄, t̄) + O(ε6), (2.29b)

wl = ε2W̄l,1(X̄, Ȳl, Z̄, t̄) + O(ε3), (2.29c)

ρl = Rw + ε2ρ̄l,1(X̄, Ȳl, Z̄, t̄) + O(ε3), (2.29d)

pl = ε2P̄l,1(X̄, Z̄, t̄) + O(ε3), (2.29e)

and

µl = µw + O(ε3). (2.30)

The subscript w denotes quantities evaluated at the channel wall. The density evalu-

ated at the wall Rw can be considered constant over the horizontal length scale of the

interaction region of O(ε3) in case of an adiabatic wall.

Substituting the asymptotic expansions (2.29) in the governing equations yields to lead-

ing order the following set of equations,

the continuity equation
∂Ūl,1

∂X̄
+
∂V̄l,1

∂Ȳl

= 0, (2.31)

the x-momentum equation

Rw

(

Ūl,1
∂Ūl,1

∂X̄
+ V̄l,1

∂Ūl,1

∂Ȳl

)

= −∂P̄l,1

∂X̄
+ µw

∂2Ūl,1

∂Ȳl
2 , (2.32)

the y-momentum equation
∂P̄l,1

∂Ȳl

= 0 (2.33)

and the z-momentum equation

Rw

(

Ūl,1
∂W̄l,1

∂X̄
+ V̄l,1

∂W̄l,1

∂Ȳl

)

= −∂P̄l,1

∂Z̄
+ µw

∂2W̄l,1

∂Ȳl
2 . (2.34)

The no-slip condition at the wall yields the following boundary conditions

Ūl,1 = V̄l,1 = W̄l,1 = 0 at Ȳl = S(X̄, Z̄, t̄) (2.35)

13



2.3. FORMAL ASYMPTOTIC EXPANSIONS

with the scaled height sh = ε7S(X̄, Z̄) of a surface mounted obstacle, see figure 2.3.

Equations (2.31) to (2.34) are so far identical to Prandtl’s boundary layer equations

in incompressible form for weakly three-dimensional flows. However, new conditions

arise out of the matching of the asymptotic expressions for the flow quantities in the

lower deck with those in the undisturbed boundary layer upstream of the interaction

region and with those of the main deck, respectively. The matching procedure with the

undisturbed boundary layer gives

lim
X̄→−∞

P̄l,1(X̄, Z̄, t̄) = 0, (2.36a)

lim
X̄→−∞

Ūl,1(X̄, Ȳl, Z̄, t̄) = U ′
0(0)Ȳl, (2.36b)

lim
X̄→−∞

V̄l,1(X̄, Ȳl, Z̄, t̄) = 0, (2.36c)

lim
X̄→−∞

W̄l,1(X̄, Ȳl, Z̄, t̄) = 0. (2.36d)

The matching procedure with the main deck, using the results for the governing equations

in the main deck obtained in the following section, results in

lim
Ȳl→∞

[
Ūl,1(X̄, Ȳl, Z, t̄) − U ′

0(0)
(
Ȳl + Ā1(X̄, Z̄, t̄)

)]
= 0, (2.37a)

lim
Ȳl→∞

[

W̄l,1(X̄, Ȳl, Z, t̄) +
1

U0(0)R0(0)

∫ X̄

−∞

∂P̄l,1(ζ, Z̄, t̄)

∂Z̄, t̄
dζ

]

= 0, (2.37b)

P̄l,1(X̄, Z̄, t̄) = P̄m,1(X̄, Z̄, t̄). (2.37c)

Ā1 can be interpreted as the negative disturbance of the displacement thickness and is

part of the solution of the main deck equations.

2.3.2. Main Deck

The inspection analysis in section 2.2 suggests for the spatial scalings in y-direction

ym = ε6Ȳm = Re−
1

2 Ȳm. (2.38)

The scaling of the vertical coordinate in the main deck is the same as for the ”classical”

oncoming boundary layer indicating, as mentioned already earlier, that the main deck

comprises the main part of the oncoming boundary layer. The following formal asymp-

totic expansions for the flow quantities are determined by superimposing the undisturbed

boundary layer profile evaluated at the beginning of the interaction region L = 1 with

14



2.3. FORMAL ASYMPTOTIC EXPANSIONS

the perturbations of these quantities. Consequently the asymptotic expansions can be

written as

um = U0(Ȳm) + εŪm,1(X̄, Ȳm, Z̄, t̄) + O(ε2), (2.39a)

vm = ε4V̄m,1(X̄, Ȳm, Z̄, t̄) + O(ε5), (2.39b)

wm = ε3W̄m,1(X̄, Ȳm, Z̄, t̄) + O(ε4), (2.39c)

ρm = R0(Ȳm) + ερ̄m,1(X̄, Ȳm, Z̄, t̄) + O(ε2), (2.39d)

pm = ε2P̄m,1(X̄, Z̄, t̄) + O(ε3), (2.39e)

θm = Θ0(Ȳm) + εΘ̄m,1(X̄, Ȳm, Z̄, t̄) + O(ε2), (2.39f)

and

µl = µw + O(ε3). (2.40)

The leading order approximation of the governing equations can be obtained straightfor-

wardly just by inserting the asymptotic expansions into the main deck equations. Hence

the main deck equations are found to be

∂

∂X̄
(R0Ūm,1 + U0ρm,1) +

∂

∂Ȳm

(R0V̄m,1) = 0, (2.41a)

U0
∂Ūm,1

∂X̄
+ V̄m,1

∂U0

∂Ȳm

= 0, (2.41b)

∂P̄m,1

∂Ȳm

= 0, (2.41c)

W̄m,1 = − 1

R0U0

∫ X̄

−∞

∂P̄m,1(ζ, Z̄)

∂Z̄
dζ, (2.41d)

U0
∂ρ̄m,1

∂X̄
+ V̄m,1

dR0

dȲm

= 0, (2.41e)

the leading order representation of the continuity equation, the x-momentum equation,

the y-momentum equation, the z-momentum equation and the energy equation, respec-

tively. The passive nature of the main deck is highlighted by the fact, that no dissipative

terms enter the equations, which also can be observed from the general solution

Ūm,1 = Ā1(X̄, Z̄, t̄)U
′
0(Ȳm), (2.42a)

V̄m,1 = −∂Ā1(X̄, Z̄, t̄)

∂X̄
U0(Ȳm), (2.42b)

W̄m,1 = − 1

R0U0

∫ X̄

−∞

∂P̄m,1(ζ, Z̄, t̄)

∂Z̄
dζ, (2.42c)

ρ̄m,1 = Ā1(X̄, Z̄, t̄)R
′
0(Ȳm), (2.42d)

P̄m,1 = P̄m,1(X̄, Z̄, t̄), (2.42e)
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where the function Ā1 can be interpreted as the negative disturbance of the displacement

thickness of the undisturbed boundary layer as pointed out before. The matching with

the lower deck solutions has been performed in the previous subsection, cf. (2.37). And

the matching of the main deck solutions with the upper deck solutions yields

lim
Ȳm→∞

Ūm,1(X̄, Ȳm, Z̄, t̄) = lim
Ȳm→∞

ρ̄m,1(X̄, Ȳm, Z̄, t̄) = 0, (2.43a)

lim
Ȳm→∞

V̄m,1(X̄, Ȳm, Z̄, t̄) = −∂Ā1

∂X̄
, (2.43b)

lim
Ȳm→∞

W̄m,1(X̄, Ȳm, Z̄, t̄) = −
∫ X̄

−∞

∂P̄u,1(ζ, Z̄, t̄)

∂Z̄
dζ, (2.43c)

P̄m,1(X̄, Z̄, t̄) = P̄u,1(X̄, Z̄, t̄), (2.43d)

using limȲm→∞ U0(Ȳm) = 1, limȲm→∞ U ′
0(Ȳm) = 0 and limȲm→∞R0(Ȳm) = 1. Matching

with the undisturbed oncoming boundary layer results in

lim
X̄→−∞

P̄m,1 = 0, lim
X̄→−∞

Ūm,1 = 0, lim
X̄→−∞

V̄m,1 = 0, lim
X̄→−∞

W̄m,1 = 0. (2.44)

2.3.3. Upper Deck

Inspection analysis performed in section 2.2.3 suggests for the spatial scalings in y-

direction and the scaled height of the channel H

yu = ε3Ȳu, H = ε3H̄, (2.45)

and the subsequent formal asymptotic expansions for the flow quantities

uu = 1 + ε2Ūu,1(X̄, Z̄, t̄) + O(ε3), (2.46a)

vu = ε4V̄u,1(X̄, Ȳu, Z̄, t̄) + O(ε5), (2.46b)

wu = ε3W̄u,1(X̄, Z̄, t̄) + O(ε4), (2.46c)

ρu = 1 + ε2ρ̄u,1(X̄, Z̄, t̄) + O(ε3), (2.46d)

pu = ε2P̄u,1(X̄, Z̄, t̄) + O(ε3), (2.46e)

θu = 1 + ε2Θ̄u,1(X̄, Z̄, t̄) + O(ε3), (2.46f)

for the condition of transonic flow, introducing the transonic similarity parameter K,

(1 −M2
0 ) = ε2K. (2.47)
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Moreover,

µu = O(1). (2.48)

Continuity equation. The starting point for the formulation of the upper deck problem

is the continuity equation
∂ρ

∂t
+ ∇ · (ρu) = 0.

Insertion of the asymptotic expansions for the upper deck scaling and the appropriate

time scaling yields,

O(ε2) :
∂ρ̄u,1

∂X̄
+
∂Ūu,1

∂X̄
= 0, (2.49a)

O(ε4) :
∂ρ̄u,1

∂t̄
+

∂

∂X̄

(
ρ̄u,2 + Ūu,2

)
+

∂

∂X̄

(
ρ̄u,1Ūu,1

)
+
∂V̄u,1

∂Ȳu

+
∂W̄u,1

∂Z̄
= 0. (2.49b)

Integration of (2.49a) with respect to X̄ then leads to

ρ̄u,1 + Ūu,1 = 0. (2.50)

The integration constant entering (2.50) is found to be zero by matching with the undis-

turbed flow upstream,

lim
X̄→−∞

Ūu,1 = 0, lim
X̄→−∞

ρ̄u,1 = 0. (2.51)

Momentum equations. The leading order representation of the x-momentum equation

is

O(ε2) :
∂Ūu,1

∂X̄
= −∂P̄u,1

∂X̄
, (2.52a)

O(ε4) :
∂Ūu,1

∂t̄
+
∂Ūu,2

∂X̄
+ ρ̄u,1

∂Ūu,1

∂X̄
+ Ūu,1

∂Ūu,1

∂X̄
= −∂P̄u,2

∂X̄
, (2.52b)

which again can be integrated with respect to X̄ and yields

Ūu,1 = −P̄u,1. (2.53)

As before the integration constant is found to be zero using the upstream matching

conditions (2.51)

lim
X̄→−∞

P̄u,1 = 0. (2.54)

For the leading order term of the momentum equation in y-direction one again obtains

∂P̄u,1

∂Ȳu

= 0. (2.55)
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To leading order the z-momentum equation reduces to

∂W̄u,1

∂X̄
= −∂P̄u,1

∂Z̄
. (2.56)

Energy equation. In the limit Re→ ∞ the energy equation

ρ
Dh

Dt
− Dp

Dt
=

1

Re
τ : ∇u− 1

PrReEc
∇ · q (2.57)

assumes the inviscid adiabatic form

ρ
Dh

Dt
− Dp

Dt
= 0. (2.58)

Exploiting the expansion of the enthalpy, cf. A. Kluwick [25],

h = (ρ− 1) +
2Γ − 3

2
(ρ− 1)2 + ... (2.59)

yields

O(ε2) :
∂ρ̄u,1

∂X̄
− ∂P̄u,1

∂X̄
= 0, (2.60a)

O(ε4) :
∂

∂t̄
(ρ̄u,1 − P̄u,1) + Ūu,1

∂ρ̄u,1

∂X̄
+
∂Ūρu,2

∂X̄
+

∂

∂X̄

(
2Γ − 3

2
ρ̄2

u,1

)

=
∂P̄u,2

∂X̄
−K

∂P̄u,1

∂X̄
,

(2.60b)

where Γ := 1
c̃

∂(ρ̃c̃)
∂ρ̃

|s̃ is the fundamental derivative of gas dynamics.

Using (2.49), (2.52) and (2.60) the leading order approximation of the solvability condi-

tion

2
∂P̄u,1

∂t̄
+

∂

∂X̄
J(P̄u,1;K,Γ) +

∂V̄u,1

∂Ȳu

+
∂W̄u,1

∂Z̄
= 0 (2.61)

is found, where

J(P̄u,1;K,Γ) = −KP̄u,1 − ΓP̄ 2
u,1 (2.62)

is the density of the perturbation mass flux in case of a one-dimensional, isentropic,

inviscid and transonic flow of a perfect gas through a nozzle as in A. Kluwick [25].

Integrating equation (2.61) with respect to Ȳu results in an expression for V̄u,1 which

has to be matched to the main deck solution. Applying the matching conditions (2.43)

finally yields

2
∂P̄u,1

∂t̄
+

∂

∂X̄
J(P̄u,1;K,Γ) +

1

H̄

∂Ā1

∂X̄
+
∂W̄u,1

∂Z̄
= 0, (2.63)
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which closes the triple deck problem, since it relates the displacement effect caused by

the lower deck to a response of the pressure in the upper deck at leading order. The

role of the main deck is just a passive one. The pressure imposed by the outer flow

causes a de- or acceleration of the lower deck flow, which results in a displacement of

the streamlines in the boundary layer. This displacement effect causes immediately

a response of the pressure in the upper deck. Thus equation (2.63) is referred to as

interaction law, governing the viscous inviscid interaction of the lower and upper deck

flow, respectively.

2.4. Fundamental Lower Deck Problem

Since the role of the main deck is just a passive one, the problem of the viscous inviscid

interaction can be fully described by the equations of the lower deck and the interaction

law.

Gathering the results of the previous section, the fundamental lower deck problem in

non-canonical form is seen to be

∂Ūl,1

∂X̄
+
∂V̄l,1

∂Ȳl

=0, (2.64a)

Rw

(

Ūl,1
∂Ūl,1

∂X̄
+ V̄l,1

∂Ūl,1

∂Ȳl

)

= − ∂P̄l,1

∂X̄
+ µw

∂2Ūl,1

∂Ȳl
2 , (2.64b)

Rw

(

Ūl,1
∂W̄l,1

∂X̄
+ V̄l,1

∂W̄l,1

∂Ȳl

)

= − ∂P̄l,1

∂Z̄
+ µw

∂2W̄l,1

∂Ȳl
2 , (2.64c)

supplemented by the no slip condition at the channel wall

Ūl,1 = V̄l,1 = W̄l,1 = 0 at Ȳl = S(X̄, Z̄, t̄), (2.65)

the matching condition with the oncoming undisturbed boundary layer flow

lim
X̄→−∞

P̄l,1(X̄, Z̄, t̄) = 0, (2.66a)

lim
X̄→−∞

Ūl,1(X̄, Ȳl, Z̄, t̄) = U ′
0(0)Ȳl, (2.66b)

lim
X̄→−∞

V̄l,1(X̄, Ȳl, Z̄, t̄) = 0, (2.66c)

lim
X̄→−∞

W̄l,1(X̄, Ȳl, Z̄, t̄) = 0 (2.66d)
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and the matching conditions with the main deck

lim
Ȳl→∞

[
Ūl,1(X̄, Ȳl, Z, t̄) − U ′

0(0)
(
Ȳl + Ā1(X̄, Z̄, t̄)

)]
= 0, (2.67a)

lim
Ȳl→∞

[

W̄l,1(X̄, Ȳl, Z, t̄) +
1

U0(0)R0(0)

∫ X̄

−∞

∂P̄l,1(ζ, Z̄, t̄)

∂Z̄
dζ

]

= 0, (2.67b)

taking into account, that limȲl→∞ U0(0) = U ′
0(0)Ȳl. The lower deck problem is closed by

the interaction law in unsteady form

2
∂P̄u,1

∂t̄
+

∂

∂X̄
J(P̄u,1;K,Γ) +

1

H̄

∂Ā1

∂X̄
+
∂W̄u,1

∂Z̄
= 0. (2.68)

The interaction law governs the mutual reaction of the lower and upper deck flow. The

leading order perturbation of the pressure is generated by the outer flow and the same

in all three decks as in the classical boundary layer theory.

The fundamental lower deck problem depends on several parameters, e.g. fluid and

geometry properties like µw or H , which can be eliminated in all relationships except

the interaction law by introducing the affine transformations

X̄ = |K| 32 (2Γ)−
3

2R
− 1

2

W µ−1
W U ′

0(0)−2 ·X∗, (2.69a)

Ȳ = |K| 12 (2Γ)−
1

2R
− 1

2

W U ′
0(0)−1 · Y ∗, (2.69b)

Z̄ = |K| 32 (2Γ)−
3

2R
− 1

2

W µ−1
W U ′

0(0)−2 · Z∗, (2.69c)

t̄ = |K| 12 2−
1

2 (Γ)−
3

2R
− 1

2

W µ−1
W U ′

0(0)−2 · t∗, (2.69d)

Ūl,1 = |K| 12 (2Γ)−
1

2R
− 1

2

W · U∗, (2.69e)

V̄l,1 = |K|− 1

2 (2Γ)
1

2R
− 1

2

W µWU
′
0(0) · V ∗, (2.69f)

W̄l,1 = |K| 12 (2Γ)−
1

2R
− 1

2

W ·W ∗, (2.69g)

P̄1 = |K| (2Γ)−1 · P ∗, (2.69h)

Ā1 = |K| 12 (2Γ)−
1

2R
− 1

2

W U ′
0(0)−1 · A∗, (2.69i)

S̄ = |K| 12 (2Γ)−
1

2R
− 1

2

W U ′
0(0)−1 · S∗. (2.69j)

Here the subscripts l and u in the pressure terms have been omitted since the pressure

perturbation in leading order is constant with respect to y in all three decks. The result-

ing fundamental lower deck problem except the interaction law is free of any parameters.

The remaining parameters in the interaction law can be merged to

Λ ≡ |K|− 3

2 (2Γ)
1

2R
− 1

2

W U ′
0(0)−1H̄−1 > 0, (2.70a)

λ ≡2−
1

2 |K| 12 (Γ)−
1

2R
− 1

2

W U ′
0(0)−1H̄−1 > 0, (2.70b)
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2.4. FUNDAMENTAL LOWER DECK PROBLEM

where Λ and λ measure the intensity of the coupling between the lower and the upper

deck, respectively. A complete elimination of all parameters, even in the interaction law,

is not possible, which is somehow clear since the problem governing parameters must

somewhere enter the problem description.

Further, it is convenient to make use of Prandtl’s transposition theorem, cf. [41],

t = t∗, X = X∗, Y = Y ∗ − S(X,Z, t), S(X,Z, t) = S∗(X∗, Z∗, t∗), (2.71a)

U(X, Y, Z, t) = U∗(X∗, Y ∗, t∗), (2.71b)

V (X, Y, Z, t) = V ∗(X∗, Y ∗, t∗) − U
∂

∂X
S −W

∂

∂Z
S, (2.71c)

P (X,Z, t) = P ∗(X∗, Z∗, t∗), A(X,Z, t) = A∗(X∗, Z∗, t∗) + S(X,Z, t), (2.71d)

so that finally the fundamental lower deck problem for the two-dimensional oncoming

boundary layer flow in canonical form is given by

∂U

∂X
+
∂V

∂Y
= 0, (2.72a)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+
∂2U

∂Y 2
, (2.72b)

U
∂W

∂X
+ V

∂W

∂Y
= −∂P

∂Z
+
∂2W

∂Y 2
(2.72c)

with the no slip condition at the wall

U = V = W = 0 at Y = 0, (2.73)

the matching conditions with the oncoming undisturbed boundary layer

lim
X→−∞

P (X,Z, t) = 0, (2.74a)

lim
X→−∞

U(X, Y, Z, t) = Y, (2.74b)

lim
X→−∞

V (X, Y, Z, t) = 0, (2.74c)

lim
X→−∞

W (X, Y, Z, t) = 0 (2.74d)

and the matching condition with the main deck

lim
Y →∞

[U(X, Y, Z, t) − Y ] = A(X,Z, t), (2.75a)

lim
Y →∞

[W (X, Y, Z, t)] = − 1

Y

∫ X

−∞

∂P (ζ, Z, t)

∂Z
dζ. (2.75b)
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The lower deck problem is closed by the unsteady form of the interaction law

−∂P
∂t

+
∂

∂X
G(P ;K,Γ)− Λ

∂

∂X

(

A− S +
1

λ

∫ X

−∞

∂W̄u,1(ζ, Z, t)

∂Z
dζ

)

= 0, (2.76)

with
∂W̄u,1

∂X
= −|K|

2Γ

∂P

∂Z
. (2.77)

Rewritten just in terms of the pressure, i.e by eliminating the velocity term, yields

−∂P
∂t

+
∂

∂X
G(P ;K,Γ) = Λ

∂

∂X

(

A− S − 1

Λ |K|

∫ X

−∞

∫ ζ

−∞

∂2P (ξ, Z, t)

∂Z2
dξdζ

)

. (2.78)

The intensity of the coupling between lower and upper deck is measured by the parameter

Λ as defined in equation ( 2.70). The leading order approximation G, characterizing the

negative disturbance of the mass flux density2 associated with the upper deck flow, is

given by

G(P ;K,Γ) = sign(K)P +
1

2
sign(Γ)P 2. (2.79)

2.5. Fundamental Lower Deck Problem in Spectral

Space

For analytical as well as numerical considerations it is useful to consider an alternative

representation of the governing equations, which sometimes allows a more convenient

treatment of the problem.

To this end the problem is linearized about the undisturbed oncoming boundary layer

flow and mapped into spectral space. This results in a set of algebraic equations instead

of the original set of nonlinear partial differential equations, which is advantageous for

an analytical treatment.

2.5.1. Governing Equations in Spectral Space

In a first step the X-component of the velocity is split into its perturbed and unperturbed

parts

U = Y + Û . (2.80)

2The fundamental derivative of gas dynamics Γ is strictly positive for a perfect fluid, thus the term

sign(Γ) in the function G will be omitted in the subsequent sections.
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2.5. FUNDAMENTAL LOWER DECK PROBLEM IN SPECTRAL SPACE

To map the fundamental lower deck problem into spectral space use is made of the

double Fourier transform, denoted by a double asterisk

F2(Q) = Q∗∗ =

∫ ∞

−∞

∫ ∞

−∞
Q(X, Y, Z)e−ikX−ilZdXdZ, (2.81)

where Q denotes an arbitrary field quantity and k, l are the spectral variables corre-

sponding to the physical variables X and Z, respectively. Hence the governing equations

in spectral space read as follows

ikÛ∗∗ +
∂V ∗∗

∂Y
= 0, (2.82a)

ikY Û∗∗ + V ∗∗ + ikP ∗∗ − ∂2Û∗∗

∂Y 2
= F2

{

−Û ∂Û
∂X

− V
∂Û

∂Y

}

, (2.82b)

ikY W ∗∗ +
∂P ∗∗

∂Z
− ∂2W ∗∗

∂Y 2
= F2

{

−Û ∂W
∂X

− V
∂W

∂Y

}

, (2.82c)

−∂P
∗∗

∂t
+ sign(K) · ikP ∗∗ − ikΛ

(

A∗∗ − S∗∗ − l2

k2

1

Λ |K|P
∗∗
)

= F2

{
1

2
P 2

}

, (2.82d)

where the linearized problem is recovered by neglecting the right-hand-side of (2.82).

The boundary conditions become

Û∗∗ = V ∗∗ = W ∗∗ = 0 at Y = 0, (2.83a)

lim
X→−∞

(Û∗∗, V ∗∗,W ∗∗, P ∗∗) = 0, (2.83b)

lim
Y →∞

Û∗∗ = A∗∗, (2.83c)

lim
Y →∞

W ∗∗ = − 1

Y
F2

{∫ X

−∞

∂P (ζ, Z, t)

∂Z
dζ

}

. (2.83d)
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2.6. The Flow Structure

Studying the formal asymptotic expansions of the flow quantities and the governing

equations of the fundamental lower deck problem the following general statements are

derived:

• The most striking feature of the viscous flow in the lower deck is the large size of

the crossflow velocity component W in (2.29). This means that the secondary flow

(V ,W ) is basically one dimensional (W ≫ V ) in the lower deck.

• The cross flow velocity profile in the Y-direction must be jetlike, being zero at the

wall and an order of magnitude smaller at the edge to the main deck than in the

lower deck.

• The crossflow velocity component W neither enters the continuity nor the X-

momentum equation, which reflects the weakly three-dimensional behavior. Thus

the three-dimensionality enters the problem just in one additional term in the

interaction law.

• The crossflow is driven by the pressure gradient in Z-direction induced by the upper

deck flow, but there is no response of the upper deck flow due to the crossflow in the

lower deck in contrast to the interaction of the upper deck flow with the streamwise

flow in the lower deck.

• In the limit K → 0 the weakly three-dimensional problem passes into a pseudo

two-dimensional one since the term governing the three-dimensionality becomes

negligible small. Hence the horizontal and vertical flow quantities can be deter-

mined for each slice in the X-Y plane separately.
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3. Solutions of the Linearized Problem

If the height of the surface mounted obstacle is small and therefore the oncoming bound-

ary layer profile only slightly perturbed, the solutions can be described by the linearized

fundamental lower deck problem, which is obtained by neglecting the nonlinear terms

on the right hand side of equations (2.82). In the steady case this problem can be solved

analytically.

3.1. Derivation of the Linearized Solutions in Spectral

Space

For an analytical treatment of the fundamental lower deck problem it is valuable to

use the spectral representation of the governing equations, as described in section 2.5.1.

Thus the linearized steady fundamental lower deck problem in spectral space as stated

below is appropriate.

ikÛ∗∗ +
∂V ∗∗

∂Y
= 0, (3.1a)

ikY Û∗∗ + V ∗∗ = −ikP ∗∗ +
∂2Û∗∗

∂Y 2
, (3.1b)

ikY W ∗∗ = −P
∗∗

∂Z
+
∂2W ∗∗

∂Y 2
, (3.1c)

sign(K)P ∗∗ +
l2

k2

1

|K|P
∗∗ = Λ (A∗∗ − S∗∗) , (3.1d)

with the subsequent boundary conditions

Û∗∗ = V ∗∗ = W ∗∗ = 0 at Y = 0, (3.2a)

lim
X→−∞

(Û∗∗, V ∗∗,W ∗∗, P ∗∗) = 0, (3.2b)

lim
Y →∞

Û∗∗ = A∗∗, (3.2c)

lim
Y →∞

W ∗∗ = − 1

Y
F2

{∫ X

−∞

∂P (ζ, Z, t)

∂Z
dζ

}

. (3.2d)
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The solution for the crossflow velocity component W ∗∗ is obtained by evaluating the

Z-momentum equation (3.1c), which can be rewritten with r = (ik)1/3Z as follows

∂2W ∗∗

∂r2
− rW ∗∗ =

il

(ik)2/3
P ∗∗. (3.3)

Using the ansatz W ∗∗(k, l, r) = ϕ(k, l, r) · Ai(r) one obtains

ϕ′′Ai(r) + 2ϕ′Ai′(r) =
il

ik2/3
P ∗∗, (3.4)

where Ai(r) is the Airy function, cf. [1], ()′′ and ()′ denote the first and second partial

derivative with respect to r, respectively. After introducing the ansatz ψ = ϕ′Ai(r) the

problem finally reads

(ψAi(r))′ = Ai(r)
il

(ik)2/3
P ∗∗, (3.5)

which gives after integrating and considering the boundary conditions (3.2) the final

result

W ∗∗(k, l, r) = Ai(r)
il

(ik)2/3
P ∗∗(k, l)

∫ r

0

{

Ai2(̺)

∫ ̺

0

Ai(s) − 1

3
ds

}

d̺

︸ ︷︷ ︸

J (r)

, (3.6)

where J (r) can also be written in the form J (r) = − 2√
3

∫∞
0
sin(1

3
ζ3 + ζr − 1

6
π)dζ as

in F.T. Smith [48], [47]. Differentiating the X-momentum equation with respect to Y

yields
∂2τ̂ ∗∗

∂Y 2
− Y

∂τ̂ ∗∗

∂Y
= 0, (3.7)

which suggests the ansatz τ̂ ∗∗(r) = ∂Û∗∗

∂r
= B(k, l) ·Ai(r). Evaluating the X-momentum

equation at the wall and introducing this ansatz one obtains

B(k, l) · Ai′(0) = (ik)1/3P ∗∗. (3.8)

Integrating the streamwise shear stress perturbation τ̂ ∗∗ with respect to Y from 0 to ∞,

considering the matching condition (3.2c) gives 1
3
B(k, l) = A∗∗ and hence one obtains

(ik)1/3P ∗∗ = 3Ai′(0)A∗∗. (3.9)

Eliminating the displacement function A∗∗ by inserting the interaction law (3.1d) yields

the final solution for the pressure perturbation

(ik)1/3P ∗∗ = 3Ai′(0)

[

k2 + sign(K) |K|−1 l2

sign(K)Λk2
P ∗∗ + S∗∗

]

(3.10)
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or rewritten in a more convenient form

P ∗∗ =
sign(K)Λk2

−k2 − sign(K) |K|−1 l2 + γ−4/3sign(K)Λk2(ik)1/3
S∗∗, (3.11)

where γ = (−3Ai′(0))3/4. Consequently the streamwise wall shear stress perturbation is

found to be

τ̂ ∗∗(k, l, 0) =
∂Û∗∗

∂Y
|Y =0 =

∂Û∗∗

∂r
(ik)1/3 |r=0=

=
3Ai(0)sign(K)Λ(ik)2/3

(

− l2

9Ai2(0)
+ γ−4/3(k2 + l2)

)

k2 + sign(K) |K|−1 l2 + γ−4/3sign(K)Λ(k2 + l2)(ik)1/3
S∗∗,

(3.12)

and the crossflow wall shear stress perturbation

σ∗∗(k, l, 0) =
∂W ∗∗

∂Y
|Y =0 =

∂W ∗∗

∂r
(ik)1/3 |r=0=

=
sign(K)Λk2(ik)−1/3ilJ ′(0)

−k2 − sign(K) |K|−1 l2 − γ−4/3sign(K)Λ(k2 + l2)(ik)1/3
S∗∗,

(3.13)

where J ′(0) = −(3Ai(0))−1. Furthermore, the velocity perturbation in streamwise

direction Û∗∗ and the displacement function A∗∗ are

Û∗∗(k, l, r) = 3 · A∗∗
∫ r

0

Ai(s)ds (3.14)

and

A∗∗(k, l) = P ∗∗
(
sign(K)k2 + l2

|K|Λk2

)

+ S∗∗. (3.15)

Remark: Equation (3.6) and the shape function J (r) again reflects the wall jet shaped

profile of the crossflow velocity as suggested by the asymptotic expansions in section 2.3.
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3.2. Results of the Linearized Problem

Rather than to express the double inversion of the linearized solutions in a real closed

form, it is proved more flexible to use a Fast-Fourier-Transform numerical approach, cf.

[12]. Thus one is not restricted to particular hump geometries or other simplifications.

A quite common smooth surface deformation investigated also in related studies is the

cosine-squared hump geometry

S(X,Z) =







hhump · cos2(π
2

√
X2 + Z2), for

√
X2 + Z2 ≤ 1,

0, otherwise,

which will be used for the following studies and where hhump denotes the height of the

surface mounted obstacle.

The problem characterizing parameters Λ and K, the coupling parameter and the tran-

sonic similarity parameter, were chosen to be Λ = 1.25 and K = ±1 under sub- and

supersonic flow conditions, respectively, while the hump height hhump = 0.1.

3.2.1. Flow Structure under Subsonic Flow Conditions

The crossflow near the surface can be described by the crossflow wall shear stress σw,

where constant σw-curves in figure 3.1 are denoted by solid lines. First the whole lower

deck crossflow upstream the hump moves outwards from the peak line, as shown in

figure 3.1. Once the hump is encountered, the crossflow wall shear stress reverses sign,

reaching a minimum just beyond the hump’s peak, and then becomes positive again

immediately downstream the hump. Hence, near the surface the fluid is drawn towards

the region just leewards the obstacle, before drifting outwards further downstream. The

negative pressure gradient in the Z-direction, where constant −∂P
∂Z

curves in figure 3.1

are indicated by dashed lines, gives effectively the crossflow velocity at the edge to the

main deck. Consequently the crossflow velocity for Z > 0 is positive upstream and

changes sign near the peak of the hump and thereafter is negative. Thus, at the edge to

the main deck, fluid is driven away from the peak line upstream, to enable the fluid to

negotiate the obstacle, while downstream the effect is roughly the opposite.

Therefore we can distinguish four regions with a substantial different flow behavior, as

indicated on the right side of figure 3.1, which are also existent in the crossflow velocity

profiles in figure 3.2.
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Figure 3.1.: Flow structure under subsonic flow conditions (Λ = 1.25, K = 1).
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Figure 3.2.: Crossflow velocity profiles W in region I-IV,(Λ = 1.25, K = 1, hhump = 0.1).
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Figure 3.3.: Wall shear stress τw and pressure perturbation P along the centerline of the

hump (Z=0) for Λ = 1.25, K = 1 and and hhump = 0.1.

The simple source-like trend upstream in region I is followed by some major adjustment

of the crossflow velocity close to the surface near the hump in region II. First, fluid near

the surface starts to be drawn inwards near the peak of the hump, so that a vortex

motion appears. Then, over the back of the hump, the entire lower deck flow acquires

a sink-like form, in order that the fluid may encircle the obstacle. Finally, beyond the

hump, the displacement forces the surface fluid eventually to be expelled, while the fluid

above the lower deck is drawn in, and so another vortex motion is set up. This vortex

rotates in the opposite sense to the vortex near the rear of the hump. The vortex lines

of this vortex in region II must be stretched as they pass over and around the obstacle.

The vorticity is concentrated near the front of the hump, and a streamwise component

of the vorticity is induced as for the horseshoe shaped vortex, cf. R. Sedney [45], due to

the vortex transport equation

Dω

Dt
= (ω · ∇)u + ν∇2ω,

where ω = rot(u) is the vorticity.

In streamwise direction the flow is first slightly decelerated upstream the hump, accel-

erates with encountering the hump, reaching a maximum a the peak and is again highly

decelerated at the leeward side of the hump. Finally to attain an undisturbed state

downstream again the flow is slightly accelerated, as evident in the pressure perturba-

tion along the center line of the hump as shown in figure 3.3.

Consequently the wall shear stress τw first rises with the acceleration of the flow and
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drops with the deceleration at the lee-side of the hump. If the surface deformation is

large enough a local supersonic region in the upper deck flow due to the acceleration of

the flow followed by a region of separated flow caused by the following deceleration is

expected.

3.2.2. Flow Structure under Supersonic Flow Conditions

Under supersonic flow conditions similar results as under subsonic flow conditions are

obtained.

The fluid near the surface upstream the obstacle is moved outwards from the peak line

again, once the hump is encountered, the crossflow wall shear stress σw reverses sign

and then becomes positive for Z > 0 immediately downstream the hump. Therefore,

near the surface at the lee-side of the obstacle the fluid is drawn towards the peak line,

before drifting outwards further downstream. Near the peak of the hump the cross flow

velocity at the edge of the main deck changes sign as under subsonic flow conditions and

becomes negative for Z > 0 on the leeward side of the hump. Thus, at the edge to the

main deck, fluid is again driven away from the peak line upstream, while downstream

this motion is reversed.

Therefore we can distinguish again the four regions with a substantial different crossflow

behavior as under subsonic flow conditions, see figure 3.4, which are also existent in the

crossflow profiles shown in figure 3.5.

In streamwise direction the flow is again slightly decelerated upstream the hump and

accelerates with encountering the hump followed by a deceleration at the leeward side

of the hump. To attain an undisturbed state downstream again the flow is slightly

accelerated finally, as evident in the pressure perturbation along the center line of the

hump in figure 3.6.

Consequently the wall shear stress τw de- and increases with the de- and acceleration of

the flow, respectively. Again one might expect a subsonic region in the upper deck flow

in front of the hump caused by the deceleration if the deformation of the surface is large

enough. Also separation might be caused at the lee-side of the hump for sufficiently

large hump heights by the deceleration of the flow.

Moreover, the perturbation of the undisturbed flow quantities under supersonic flow

conditions is much larger than under subsonic flow conditions, obvious by comparing

figure 3.3 and figure 3.6.
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Figure 3.4.: Flow structure under supersonic flow conditions (Λ = 1.25, K = −1).
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Figure 3.5.: Crossflow velocity profiles W in region I-IV,(Λ = 1.25, K = −1, hhump =

0.1).
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Figure 3.6.: Wall shear stress τw and pressure perturbation P along the centerline of the

hump (Z=0) for Λ = 1.25, K = −1 and hhump = 0.1.
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3.3. ASYMPTOTIC BEHAVIOR FAR DOWNSTREAM (X ≫ 1)

3.3. Asymptotic Behavior far Downstream (X ≫ 1)

An approximation of the solution of the flow quantities far downstream can be attained

by truncating the spectral representation and considering just the main contributions.

Thus asymptotic solutions of the fundamental lower deck problem are obtainable in a

closed analytical form. Due to the decaying character of the flow quantities far down-

stream these asymptotic solutions are expected to be also a quite good approximation

of the solutions of the nonlinear problem far downstream.

The main contributions to the solutions far downstream (X ≫ 1) are found for the

spectral variable k ≪ 1, or more precisely for k = O( 1
X

). By neglecting terms of o(k) in

the spectral representation of the solutions and evaluating this truncated representation

via Inverse Fourier Transform the asymptotic behavior of the flow quantities is obtained.

3.3.1. Wall Shear Stress

The dominant contribution to the wall shear stress perturbation τ̂w near the X-axis,

in fact when Z = O(1), comes from small values of k, with l finite or more precisely

k = o

(

l√
|K|

)

, when

τ̂ ∗∗w (k ≪ 1, l) ∼ 3Ai(0) |K|Λ(ik)2/3

[

γ−4/3 − 1

9Ai2(0)

]

S∗∗(0, l). (3.16)

This gives

τ̂w(X → ∞, Z) ∼ 3
√

3Ai(0)Γ(5
3
) |K|Λ

4π2

[

γ−4/3 − 1

9Ai2(0)

]

X−5/3

∫ ∞

−∞
S(X,Z)dX,

(3.17)

which is valid in a region X ≫ 1 and Z ≪ X√
|K|

. Due to the Integral in (3.17) the

streamwise wall shear stress perturbation far downstream is confined to a region with

a lateral extension of the width of the hump and is zero outside this region matching

the condition of undisturbed flow quantities for Z → ∞, which is also confirmed by

numerical results. But a ’corridor’ phenomenon in the boundary layer displacement and

the streamwise wall shear stress as observed for three-dimensional subsonic flows by F.T.

Smith, R.I. Sykes and P.W.M. Brighton, c.f. [49], is not existent.

Similarly the main contribution for the crossflow wall shear stress σw again comes from

small values of k and l finite, when

σ∗∗
w (k ≪ 1, l) ∼ J ′(0) |K|Λk2(ik)−1/3 1

il
S∗∗(0, l), (3.18)
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3.3. ASYMPTOTIC BEHAVIOR FAR DOWNSTREAM (X ≫ 1)

yielding

σw(X → ∞, Z) ∼ 5J ′(0)Γ(5
3
) |K|Λ

4π2
√

3
·X−8/3 · Ξ(Z) (3.19)

with

Ξ(Z) =

∫ Z

−∞

∫ ∞

−∞
S(X, ζ)dXdζ −

∫ 0

−∞

∫ ∞

−∞
S(X, ζ)dXdζ, (3.20)

which is again valid in a region X ≫ 1 and Z ≪ X√
|K|

and referred as ’inner’ asymptotic

solution. For values of Z ≫ X√
|K|

one can find an ’outer’ asymptotic solution satisfying

vanishing perturbations for Z → ∞, which can be matched with the ’inner’ solution to

an uniformly valid solution in Z-direction. But since for X ≫ 1 also the region of the

’inner’ solution is valid for Z ≫ 1, the determination of the ’outer’ solution is omitted.

The shape function Ξ(Z) is obviously independent ofX, but in contrast to the streamwise

wall shear stress the crossflow wall shear stress distribution spreads with increasing values

of X due to the matching of the ’inner’ and ’outer’ solution. This is also indicated by

the wedge shape of region IV as sketched in figure 3.1 and figure 3.4

Moreover, both results, the streamwise and crossflow wall shear stress perturbation, are

independent of sign(K) and therefore stay the same under subsonic as well as under

supersonic flow conditions.

3.3.2. Pressure Perturbation

For the asymptotic representation of the pressure perturbation we have now to distin-

guish between sub- and supersonic flow conditions, respectively. In contrast to the case

of subsonic flow conditions there is a singularity at k = l caused by neglecting terms of

o(k) in the case of supersonic flow conditions, which is regularized by the full spectral

representation and therefore a closed analytical representation is not obtainable. But

numerical results gives the hint that the pressure perturbation under supersonic flow

conditions is more less similar to the solution under subsonic flow conditions just with

a reversed sign corresponding to the factor sign(K) in equation (3.11).

Thus, the dominant contribution to the pressure perturbation under subsonic flow con-

ditions far downstream comes again from small values of the spectral variables k and l,

or more precisely k = O
(

l√
|K|

)

, when

P ∗∗(k ≪ 1, l ≪ 1) ∼ − Λk2

k2 + |K|−1 l2
S∗∗(0, 0). (3.21)
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3.3. ASYMPTOTIC BEHAVIOR FAR DOWNSTREAM (X ≫ 1)

This gives

P (X → ∞, Z) ∼ Λ
√

|K|
4π2

∫ ∞

−∞

∫ ∞

−∞
S(X,Z)dXdZ ·X−2 1 − ξ2

(1 + ξ2)2
(3.22)

with ξ =
√

|K| Z
X

, which is valid in a region X2 + |K|Z2 ≫ 1.

The pressure distribution also spreads with increasing values of X, like the crossflow wall

shear stress, which somehow meets our expectations since the crossflow is just driven by

the pressure gradient in Z-direction and thus a spreading crossflow requires a spreading

pressure distribution.
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4. Nonlinear Effects

In the present chapter the effect of boundary layer separation at the lee side of a surface

mounted hump and the influence of variation of the transonic similarity parameter K

on the flow field will be discussed.

So far only the linearized solutions were obtained, valid for vanishingly small humps. If

the hump height becomes an O(1) quantity the full nonlinear problem has to be solved

and requires a numerical treatment of the fundamental lower deck equations.

To this end a pseudo spectral method, cf. [10], [15], [19], [3], is used, which requires much

less memory resources than standard numerical techniques (i.e. finite-difference schemes)

in particular for three-dimensional problems, for which finite-difference methods have

not proven successful. A major advantage of spectral methods is to capture regions of

reversed flow (i.e. boundary layer separation) without any additional approximations

(e.g. FLARE-approximation for finite-difference methods). The physical problem can be

solved very effectively and allows the usage of standard numerical algorithms (e.g. FFT-

algorithm) by mapping the unbounded physical domain X × Z ∈ [−∞,∞] × [−∞,∞]

onto a bounded domain xn × zn ∈ [0, π] × [0, π], cf. [5], [9]. A detailed discussion of the

used pseudo spectral method is given in appendix B.

4.1. Boundary layer separation

As already shown by the linearized results the fluid at the leeward side of the hump is

decelerated and thus the wall shear stress τw decreases, cf. figure 4.1. If the height of the

surface mounted hump is large enough the wall shear stress becomes negative locally.

Thus a region where the streamwise velocity component reverses sign, i.e. a region of

reversed flow, occurs. The velocity profiles of the streamwise velocity component U in

the region of reversed flow are shown in figure 4.3.
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Figure 4.1.: Wall shear stress τw and pressure perturbation P along the centerline of the

hump (Z=0) for Λ = 1.25, K = 1 and hhump = 2.25.

Therefore the boundary layer starts to separate from the wall exactly where τw becomes

negative and reattaches further downstream where the wall shear stress changes again

to positive values, as shown in figure 4.2.

The fluid inside the region of reversed flow forms a separation bubble. Since the cross

flow velocity component W is two orders of magnitude smaller than the streamwise ve-

locity component U the wall streamlines are almost parallel to the X-axis and a closed

separation bubble without fluid exchange with the outer flow might be expected.

Even though the crossflow velocity component is much smaller than the streamwise ve-

locity component it is not negligible since it plays a dominant role in regions of vanishing

shear stress τ and velocity V . Along these lines the fluid is drawn inwards to the cen-

terline Z = 0. Following Oswatitsch, [39], such a separation point at the centerline is

called point of weak convergence or separation node, when
σw,X

τw,X
< 1. The structure of

the streamlines in the vicinity of this point is sketched in figure 4.4.
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Figure 4.2.: Wall streamlines in the vicinity of the hump (left hand side) and streamlines

in a cross section Z = 0 with a separation bubble at the lee side of the hump

(right hand side), (hhump = 2.25,Λ = 1.25, K = 1).
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4.1. BOUNDARY LAYER SEPARATION
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Figure 4.4.: Wall streamlines with an appropriate scaled crossflow velocity component

in the vicinity of the hump and the point of weak convergence at X =

0.57, Z = 0 (left hand side) and the flow structure close to the point of weak

convergence with the angle of the separation streamline ϑSEP (right hand

side).

Further insight into the flow structure close to the separation node and the point of reat-

tachment is gained by studying the wall streamlines with an appropriate scaled crossflow

velocity component, such that this field quantity becomes of O(U). The singular points

at separation and reattachment are of special interest. These occur at the intersection

of the zero contours of the streamwise and cross flow wall shear stresses. For the cosine-

squared hump geometry there are only two such singularities both on the centerline

Z = 0.

These streamlines, as shown in figure 4.4, are not to scale, but illustrate nicely the type

of the singularity. Accordingly a separation node at X = 0.567 and a attachment saddle

point at X = 0.975 is found. The number of nodal points must exceed the number of

saddle points exactly by two for a finite closed surface geometry as shown by Lighthill

et al. [18]. Since the basic flow can be interpreted as a result of a source and a sink

like nodal point at X → ∓∞, respectively, the number of singularities above is seen to

satisfy this condition.

Thus each fluid particle in the separation bubble is seen to be transported slowly to the

sink like separation node. There the fluid starts to separate from the wall and moves

further on the surface of the bubble to the point of reattachment and back again to the

separation node on a closed streamline as shown on the right hand side in figure 4.2.
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4.1. BOUNDARY LAYER SEPARATION

Due to this mechanism fluid is continuously brought into the bubble and concentrated

at the center. The crossflow velocity component enters the continuity equation in the

higher order approximations, which effectively yields weakly diverging helical stream-

lines for ∂W
∂Z

< 0. Since the crossflow velocity and thus the mass flux into the bubble

is small these weakly opened streamlines are sufficient to generate a small outflow and

satisfy the continuity. Thus one finds a small open separation bubble with a mass flux

into the bubble from both sides and an outflow at the center.

This separation bubble topology is similar to the results found by Kluwick and Hackmüller,

[27], studying the wall streamline pattern on a swept wing. In contrast to these results,

where an open separation bubble with a mass flux into the bubble from the left and an

outflow at the right side occurs, the outflow mass flux in our case takes place on the

centerline.

Similar open separation bubbles are also observed in geophysical flows over sandy three-

dimensional elevations, see [20]. There the fluid is also concentrated at the centerline,

but the streamlines near the center are of a focusing type, and the release of fluid is

achieved through a helical flow out toward the Z-direction.
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Figure 4.5.: Streamlines in a cross section through the centerline Z=0 in the vicinity

of the separation point (dashed lines) with the separation streamline (solid

line) and separation angle ϑSEP .

To validate the numerical results in vicinity of the separation bubble the separation

streamline close to the wall, cf. [39],

ySEP = X · tan(ϑSEP ) (4.1)

with the separation angle

tan(ϑSEP ) = −3τw,X

PX
(4.2)

is determined, where the subscript X denotes the derivative with respect to X. Equation

(4.2) was originally obtained for planar flows but is also valid in the weakly three-

dimensional case since the crossflow quantities are small. The streamlines in vicinity

of the separation point are indicated by dashed lines and the separation streamline by

a solid line, respectively. Due to the discretization and the no-slip condition at the

wall reliable results of the streamline integration algorithm are obtained for Y ∗ ≥ 0.04.

Therefore the numerically found separation streamline obviously ”starts” at Y ∗ = 0.04

and not as physically exact at the wall. Evaluating equation (4.1) and (4.2) yields the

separation angle as well as a linear approximation of the separation streamline (dashed

dotted line) close to the wall. As shown in figure 4.5 the tangent of the numerically

found separation streamline at the wall coincides very well with the analytically obtained

approximation of the separation streamline and the corresponding separation angle.
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Figure 4.6.: Pressure perturbation P for various values of K under subsonic flow con-

ditions (left hand side) and under supersonic flow conditions (right hand

side), (hhump = 1.0,Λ = 1.25|K|−3/2).

4.2. Effects due to the transonic similarity parameter K

To study the influence of the transonic similarity parameter K on the flow behavior the

flow is perturbed by a surface mounted cosine-squared hump of constant height, while

the parameter K is varied. To avoid other nonlinear effects, such as boundary layer

separation, the hump height is taken to be hhump = 1. Since K is proportional to the

difference between the Mach number of the undisturbed flow M0 and its critical value

M = 1 small values of K describe a regime close to sonic conditions, whereas in the

limit K → ±∞ purely sub- and supersonic conditions are obtained.

A first insight is gained by analyzing the limiting cases K → 0 and |K| ≫ 1, respectively.

For K → 0 the weakly three-dimensional problem reduces to a pseudo two-dimensional

one since the term governing the three-dimensionality becomes negligible. Thus the

horizontal and vertical flow quantities can be determined for each slice in the X-Y plane

separately and the formulation of the linearized problem yields the solution

PK→0 =
γ4/3

4π2

∂2/3

∂X2/3

∫ X

−∞
S(ζ, Z)dζ.

As suggested by the above results the solution becomes independent of the coupling pa-

rameter Λ and obviously also of sign(K). Moreover, the pressure perturbation P (X,Z)

vanishes for S(X < −1, Z) = 0 and exhibits a minimum close to the maximum of

S(X,Z).
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4.2. EFFECTS DUE TO THE TRANSONIC SIMILARITY PARAMETER K

In the other limiting case, |K| ≫ 1, the interaction between the lower and the upper

deck disappears since the coupling parameter Λ ∼ |K|−3/2 → 0. Thus the upper deck

does not respond to changes in the lower deck and hence just the surface mounted hump

is ”seen” in the upper deck. This is seen also by inspection of the linearized solution of

the pressure perturbation, which yields

P|K|→∞ = −sign(K)ΛS(X,Z).

Thus the pressure perturbation reflects just the hump geometry scaled with the coupling

parameter Λ, while the sign of the perturbation only depends on the flow conditions; i.e.

whether sub- or supersonic flow conditions are present.

The numerical results for various values of |K|, as shown in figure 4.6 for the pressure

perturbation, confirm the analytical results of the linearized problem for the limiting

cases, even for K → 0 where |P | ∼ 1 and thus the linearization is formally not valid

anymore. In general, an increasing pressure perturbation is found for decreasing absolute

values of K. But one has to be careful by interpreting these results since all lower deck

quantities as well as the length scales and the hump geometry are suitable scaled and

the scaling depends on |K| also. Thus for different values of the transonic similarity

parameter the physical hump height differs even if the height is constant in the lower

deck representation.

Under subsonic flow conditions, if |K| is small enough, i.e. if the flow is close enough to

the point of transition P = 1, the flow exhibits a local supersonic region in the upper

deck. This local supersonic flow is shocked back to subsonic flow conditions via a pseudo

shock representing the regularization of the shock discontinuity predicted by the theory

of inviscid flows. As to be expected, therefore, the shock thickness tends to zero in the

limit Λ → 0 where the effect of boundary layer displacement becomes arbitrarily small.

There is no corresponding local subsonic region in the inviscid core region, i.e. a pressure

perturbation greater than P=1, under supersonic flow conditions for hhump = 1.0. By

increasing the hump height such a local subsonic region could be found. In the two-

dimensional case a regularized shock profile, where the flow is continuously decelerated

from super- to subsonic flow conditions, occurs for sufficiently large humps. Weakly

three-dimensional shock profiles are the topic of later discussions.
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4.2. EFFECTS DUE TO THE TRANSONIC SIMILARITY PARAMETER K

Another remarkable effect of the type of flows considered here is the phenomenon of up-

stream influence, i.e. perturbations of the flow field arise upstream the surface mounted

hump. This effect is common in the two-dimensional case under supersonic flow condi-

tions as well, but in contrast to the three-dimensional results there is strictly no such

effect under subsonic flow conditions, which was shown by Kluwick and Meyer [31].

A detailed discussion of the phenomenon of upstream influence under subsonic flow

conditions is given in the next chapter.
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5. Upstream Influence, Free

Interaction and Eigensolutions

One interesting property of laminar boundary layers is their capability, specially under

supersonic flow conditions, of spontaneously undergoing a radical change without any

locally operating external agent. This phenomenon is among others responsible for the

flow having a bifurcated, or lambda, shock structure and cause separation upstream of

the point of incidence of the main shock as shown in detail by Chapman et al. [11].

This effect contradicts the previously accepted mathematical account that both super-

sonic inviscid flow and conventional forward-moving compressible boundary layer flow

do not allow upstream propagation of disturbances. A first mathematical explanation

for supersonic flows without separation was given by Lighthill [33], while the resolu-

tion to this apparent paradox was delevoped by Stewartson and Williams [51], [52] to

give the first rational account of upstream influence. The structure of three-dimensional

free-interactions in external flows was studied by Smith et al. [16] and freely interacting

transonic boundary layers by Bodonyi and Kluwick [4].

For channel flows similar effects are observed. If the height of the channel becomes

sufficiently small, such that there is no variation of the pressure across the channel

P = P (X,Z), no upstream influence occurs under subsonic flow conditions for a two-

dimensional channel indentation as shown by Kluwick and Meyer [31]. Only under super-

sonic flow conditions an upstream propagation of disturbances in narrow two-dimensional

channels is observed. Furthermore, beside the trivial solution

P ≡ 0, A ≡ 0, U ≡ Y,

two eigensolutions are found, where the compressive eigensolution corresponds to the

internal structure of a weak normal shock in a channel. In contrast to these results

upstream propagating disturbances are found under subsonic as well as under supersonic

flow conditions in the weakly three-dimensional case.
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5.1. UPSTREAM PROPAGATING PERTURBATIONS

This effect is investigated in the subsequent sections by studying the linearized problem

in the two-dimensional case and afterwards by extending the formulation to the weakly

three-dimensional one.

5.1. Upstream Propagating Perturbations

5.1.1. Upstream Influence in the Two-Dimensional Case

To show the occurrence of the effect of upstream influence the linearized pressure per-

turbation in spectral space

P ∗∗ =
sign(K)Λk2

−k2 − sign(K) |K|−1 l2 + γ−4/3sign(K)Λk2(ik)1/3

︸ ︷︷ ︸

Ω(k,l)

S∗∗,

as stated in equation (3.11) is studied.

Inversion of the Fourier transform and Cauchy’s residual theorem yields an upstream

effect if there are poles placed in the lower complex plane (−i). By shifting the hump

geometry such that S(X,Z) ≡ 0 for X < 0 we ensure that there are no negative com-

plex poles due to the geometry and it is sufficient just to study the poles of the transfer

function Ω.

Thus the poles of Ω(k, 0) in the two-dimensional case are found by evaluating the de-

nominator function f(s)

f(s) = s6 + sign(K)Λγ−4/3s7 = 0, (5.1)

where s3 = ik.

Hence the position of the poles are given by

s1...6 = 0, s7 = −sign(K)γ4/3Λ−1 (5.2)

and respectively for the original problem

k1...6 = 0, k7 = −sign(K)γ4Λ−3i, (5.3)

where the term γ is associated with the two-dimensional eigenvalue found by Lighthill

[33] and Stewartson and Williams [51].

Since γ4Λ−3 > 0 the location of the poles only depend on sign(K). Therefore we re-

cover the well known observations for a two-dimensional channel wall deformation. An
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5.1. UPSTREAM PROPAGATING PERTURBATIONS

upstream influence occurs under supersonic flow conditions (K < 0) while perturba-

tions cannot make themselves felt upstream of the wall deformation under subsonic flow

conditions (K > 0).

5.1.2. Upstream Influence in the Weakly Three-Dimensional Case

In the weakly three-dimensional case a generalized denominator function is given by

f(s, l) = s6 + sign(K)Λγ−4/3(s)7 − sign(K)
1

|K| l
2 = 0, (5.4)

which differs from equation (5.1) just by −sign(K) 1
|K| l

2. This term can be interpreted

as a shift of f(s, l = 0) with respect to the spectral variable l. Since we are not inter-

ested in the exact location and numbers of poles but in the existence of at least one pole

in the lower complex plane it is sufficient to perform a qualitative analysis. Thus the

denominator function is studied graphically as shown in figure 5.1.

There the poles in the lower complex plane of the transfer function correspond to zeros

in the region s > 0 (yellow shaded region) and indicated by red circles. The denominator

function f(s, l = 0) is denoted by blue and red solid lines under supersonic and subsonic

flow conditions, respectively, while the generalized denominator function f(s, l) is found

by shifting the former one by an amount of l2|K|−1 upwards for K < 0 (supersonic con-

ditions, red dashed line) and downwards for K > 0 (subsonic conditions, blue dashed

line).

As shown in figure 5.1 the shift of the denominator functions results in a slight dis-

placement of the position of the poles pn(l = 0) with respect to l under supersonic flow

conditions. Thus the weakly three-dimensional upstream behavior for K < 0 is expected

to closely resemble the two-dimensional behavior.

Under subsonic flow conditions, however, this shift cause a new pole to appear in the

lower complex plane. Therefore an upstream influence also for K > 0 is observed even if

the channel is sufficiently slender, such that the pressure perturbation is constant across

the channel.
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Figure 5.1.: Zeros (circles) of the denominator function f(s, l) under supersonic flow

conditions (red lines) and subsonic flow conditions (blue lines).
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5.2. DECAY OF THE UPSTREAM PERTURBATIONS

5.2. Decay of the Upstream Perturbations

Since we have shown, that there is an upstream effect under supersonic as well as under

subsonic flow conditions indeed, the obvious consequence is to ask for the decay rate of

the upstream perturbation. This study is much more sophisticated than simply to show

the existence of this effect since one has to perform the whole inverse Fourier transform

and therefore consider more or less all poles and their exact position in the lower complex

plane.

This investigation can be simplified by evaluating the field quantities at the centerline

of the surface mounted hump Z = 0 and assuming symmetry with respect to Z. Thus

one obtains by applying the inverse Fourier transform, Cauchy’s residual theorem and

after exchange of the order of integration and summation the following relationship for

the upstream pressure perturbation

P (X, 0) = 2
∑

n

∫ ∞

0

an(l)eipn(l)X)dl, (5.5)

where an(l) denotes the residuals, pn(l) the corresponding poles and the subscript n the

numbering of the poles.

Up to now the problem formulation is simplified but still exact. Unfortunately, the

solution of this problem is still not feasible but the behavior far upstream, where −X ≫
1, can be approximated. With the same arguments as in chapter 3 the main contribution

to the flow quantities far upstream are associated with values k ≪ 1 and consequently

for a non-degeneration of the governing equations the spectral variable l must be rather

small also. Thus pn and an are expanded into a Taylor series about the two-dimensional

state l = 0.

an(l) = an(0) + a′n(0) · l + 1

2
a′′n(0) · l2 + ... (5.6a)

pn(l) = pn(0) + p′n(0) · l + 1

2
p′′n(0) · l2 + ... (5.6b)

Here the prime and double prime denotes the first and second derivative with respect

to l, respectively.

Substituting expansion (5.6) into equation (5.5) and evaluating the integral gives

P (−X ≫ 1, 0) ∼ 2
∑

n

[

eipn(0)X

(
an(0)

ip′n(0)X
− a′n(0)

p′n(0)2X2

)]

. (5.7)

Hence one has to sum up the contributions of the poles pn(0) in the lower complex
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Figure 5.2.: Poles, pole traces and zeros of the transfer function Ω under supersonic (left

hand side) and subsonic (right hand side) flow conditions.

plane. Figure 5.2 shows the poles pn(0) (red circles) and zeros (red crosses) of the

transfer function Ω under supersonic (left hand side) and subsonic flow conditions (right

hand side). The shift of the poles with respect to the spectral variable l is indicated by

blue lines and referred to as traces of the poles pn(0).

Under supersonic flow conditions the contribution of the pole traces leaving the origin

is negligible due to the presence of the zeros in the origin. The main contribution

results from the single pole trace leaving the pole p1(0) = −iγ4Λ−3. Under subsonic

flow conditions the only pole traces in the lower complex plane are those three leaving

the poles in the origin. The main contribution again results from a single pole trace

leaving the pole p1(0) along the negative imaginary axis. The other two pole traces are

negligible due to symmetry reasons (ℜ(p′2(0)) = −ℜ(p′3(0))) and the fact that ℑ(p′2(0)) =

ℑ(p′3(0)) = 0. Since we are considering just the pole trace along the imaginary axis

p′1(0) = i · C under supersonic as well as under subsonic flow conditions, where C is a

real constant, this finally yields

P (−X ≫ 1, 0) ∼ −eip1(0)X
( c1
X

− c2
X2

)

, (5.8)

where c1, c2 are real constants depending only on the residual a1(0) and the derivatives

a′1(0) and p′1(0).
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Thus the decay of the pressure perturbation far upstream a surface mounted hump under

supersonic flow conditions is given by

P (−X ≫ 1, 0) ∼ − 1

X
eγ4Λ−3X , (5.9)

where the exponent is the same as in the two-dimensional case. In the weakly three-

dimensional case an additional term occurs, which yields an algebraic-exponential de-

cay of the upstream perturbations. This is not surprising since we are studying a

weakly three-dimensional problem and the solution is expected to be close to the two-

dimensional one.

Comparison of this analytical result with numerical results show very good agreement

as represented in figure 5.3. The numerical evaluation of the pressure perturbation up-

stream a surface mounted hump is shown in a logarithmic plot, cf. figure 5.3, where

the results for a hump geometry with constant height in Z-direction (2D problem) are

denoted by blue circles and the results for the standard cosine-squared hump by blue

squares. The corresponding analytical results are indicated by solid lines. In the two-

dimensional case the exponential decay appears as a straight line in the logarithmic plot,

where the numerical result (blue circles) exactly coincides with the analytical found re-

sult (solid line) in the whole upstream region. The slope is determined by the eigenvalue

φ = γ4Λ−3 which gives the exact exponential decay of the upstream perturbation.

In the weakly three-dimensional case the analytical result (solid line) matches the nu-

merical one (blue boxes) quite well sufficiently far upstream. Obviously the dominant

contribution for large −X values is the exponential one associated with the exponen-

tial decay of the two-dimensional problem. This suggests a more or less purely two-

dimensional behavior far upstream even in the weakly three-dimensional case, which

will be discussed in detail in the next section.
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Under subsonic flow conditions the only poles, which are considered in the inverse Fourier

transform, are located at the origin p1(0) = 0. The residual a1(0) and therefore the

constant c1 is found to be zero due to fact that the zeros of the transfer function Ω

are located at the origin. Consequently, the decay of the upstream perturbations under

subsonic flow conditions is given by

P (−X ≫ 1, 0) ∼ 1

X2
. (5.10)

The algebraic X−2 decay is significant for the subsonic behavior of three-dimensional

perturbations. Figure 5.4 shows the numerical evaluation of the pressure perturbation

under subsonic flow conditions, which is denoted by blue crosses, and the analytically

predicted algebraic decay indicated by a solid line. The algebraic decay of the pertur-

bation appears as a straight line with a slope of two in the double logarithmic plot. As

shown in figure 5.4 the numerical results matches the analytical ones again very well

even quite close to surface mounted obstacle.
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Figure 5.3.: Algebraic-exponential decay of the upstream pressure perturbation under
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5.3. Asymptotic Structure of the Free Interaction

The motivation of studying the free interaction of the boundary layer is due to well known

two-dimensional eigensolutions and their extension to the weakly three-dimensional case

as well as to experimental observations.

Under supersonic flow conditions in two dimensions there exists beside the trivial undis-

turbed Blasius solution two further eigensolutions referred to as compressive and expan-

sive free interaction, cf. [51]. Such a compressive eigensolution for transonic flows in

nozzles corresponds to the internal shock structure of weak shocks. These regularized

shock profiles resulting from shock boundary layer interaction has to connect the undis-

turbed flow states before and after the shock.

For subsonic external flows past a high aspect ratio wing at a supercritical angle of

attack a number of authors have observed the existence of three-dimensional regions of

separated flow, so called stall-cells, cf. [56], [55].

Thus the focus of the present investigation is on weakly three-dimensional eigensolutions

under supersonic flow conditions, e.g. a regularized shock profile with a curved or wavy

shock front, and on the possible expected formation of stall-cell patterns under subsonic

flow conditions.

5.3.1. Free Interaction under Supersonic Flow Conditions

Based on the structure of the upstream influence, discussed in the previous section,

solutions, which depart from the undisturbed flow algebraic-exponentially are sought.

That is, we look for solutions of the form

U ∼ Y +
1

(X −X0)
eφ(X−X0)cos(β(X)(Z − Z0))Ũ(Y ), (5.11a)

V ∼ − 1

(X −X0)
eφ(X−X0)cos(β(X)(Z − Z0))Ṽ (Y ), (5.11b)

W ∼ 1

(X −X0)
eφ(X−X0)sin(β(X)(Z − Z0))W̃ (Y ), (5.11c)

P ∼ − 1

(X −X0)
eφ(X−X0)cos(β(X)(Z − Z0)), (5.11d)

A ∼ 1

(X −X0)
eφ(X−X0)cos(β(X)(Z − Z0))Ũ(∞), (5.11e)

where φ is again the eigenvalue of the two-dimensional problem and (X0, Z0) are ar-

bitrary shifts of the solution due to their invariance with respect to X and Z. For

simplicity the coordinate shift is chosen X0 = Z0 = 0 without loss of generality. Further
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we assume β(X) ≪ 1 and β(X)′ ≪ 1 for −X ≫ 1. These assumptions seems to be

arbitrarily, but it will be shown later that this conditions are satisfied indeed.

Introducing the ansatz (5.11) in the x-momentum equation (2.72b) and neglecting higher

order terms yields

Y Ũ

(

− 1

X
φ+

1

X2

)

+
1

X
Ṽ =

(
1

X2
− 1

X
φ

)

− 1

X
Ũ ′′, (5.12)

which gives after differentiation with respect to Y and considering the continuity equa-

tion (2.72a)

Ũ ′′′ − Y Ũ ′
(

φ− 1

X

)

= 0, (5.13)

where the prime denotes the derivative with respect to Y . Applying the transformation

η = Y
(
φ− 1

X

)1/3
and introducing the shear stress perturbation τ̃ = ∂

∂Y
Ũ the Airy

differential equation

¨̃τ(η) − ητ̃ (η) = 0 (5.14)

is obtained with the solution

τ̃ (η) = C · Ai(η) = ˙̃U(η), (5.15)

considering no exponential growth of τ̃(η) for Y → ∞. Rewritten in terms of Ũ equation

(5.15) gives
¨̃U(η) = C · Ȧi(η), (5.16)

where the dot denotes the derivative with respect to η. The integration constant C

is determined by considering Ũ ′′(0) = − (φ−X−1) = 0, which results from evaluating

equation (5.12) at the wall.

Thus the streamwise velocity perturbation is given by

Ũ(Y ) =
−
(
φ− 1

X

)2/3

Ai′(0)

∫ Y

0

Ai

([

φ− 1

X

]1/3

y

)

dy (5.17)

and in the limit Y → ∞ one obtaines

Ũ(Y → ∞) =
−
(
φ− 1

X

)1/3

Ai′(0)

∫ ∞

0

Ai(η)dη

︸ ︷︷ ︸

1/3

= −
(
φ− 1

X

)1/3

3Ai′(0)
. (5.18)
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A similar evaluation of the z-momentum equations yields the Airy differential equation
¨̃W (η)−ηW̃ (η) = −β for the crossflow velocity component with W̃ (0) = W̃ (Y → ∞) = 0.

As a result we obtain

W̃ (η) = βAi(η)J (η), (5.19)

where J (η) is defined in equation (3.6).

Finally, by introducing ansatz (5.11) into the linearized interaction law for K < 0

− ∂2P

∂X2
+ |K|−1∂

2P

∂Z2
= Λ

∂2A

∂X2
(5.20)

and considering the above derived relations, β is given by

β(X) =
√

|K|

√
√
√
√

(

φ2 − 2

X
φ

)(

−Λ

(
φ− 1

X

)1/3

3Ai′(0)
− 1

)

=

=
√

|K|

√
√
√
√

(

φ2 − 2

X
φ

)((
φ− 1

X

)1/3

φ1/3
− 1

)

,

(5.21)

where we used φ = −3Ai′(0)Λ−1.

Expanding this solution for −X ≫ 1 yields

β ∼ 1√
3

√

φ|K|
|X| . (5.22)

Thus one can see, that β as well as β ′ is rather small far upstream and therefore the

upstream perturbation becomes almost two-dimensional. This fact is also present in the

decay of the perturbations upstream of a surface mounted obstacle, as shown in figure

5.3, where for sufficiently large negative values of X the algebraic-exponential decay

tends to an exponential one as in the two-dimensional case.

We also note, that the found asymptotic structure of the upstream region (solid line),

cf. figure 5.5, matches the numerical results very well even for βZ ∼ O(1).
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Figure 5.5.: Asymptotic structure of the upstream perturbation of the pressure under

supersonic flow conditions (solid line) and numerical results for K = −1,

Λ = 1.25 (©...X = −11.5, 2...X = −16 and 3...X = −20).
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5.3.2. Free Interaction under Subsonic Flow Conditions

Similar to the case of supersonic flow conditions solutions describing the structure of the

upstream influence, which departure from the undisturbed flow algebraicly, are sought.

Thus we look for solutions of the form

U ∼ Y +
1

(X −X0)2
cos(β(X)(Z − Z0))Ũ(Y ), (5.23a)

V ∼ − 1

(X −X0)2
cos(β(X)(Z − Z0))Ṽ (Y ), (5.23b)

W ∼ − 1

(X −X0)2
sin(β(X)(Z − Z0))W̃ (Y ), (5.23c)

P ∼ − 1

(X −X0)2
cos(β(X)(Z − Z0)), (5.23d)

A ∼ 1

(X −X0)2
cos(β(X)(Z − Z0))Ũ(∞), (5.23e)

where (X0, Z0) is again an arbitrary shift of the solution due to the invariance with

respect to X and Z, which will be omitted in the subsequent calculations for simplicity.

As before β(X) and its derivative are assumed to be rather small for −X ≫ 1.

Applying the same arguments and procedure as for supersonic flow conditions the

streamwise velocity perturbation

Ũ(Y ) = −
(

2
X

)2/3

Ai′(0)

∫ Y

0

Ai

([
2

X

]1/3

y

)

dy (5.24)

and in the limit Y → ∞

Ũ(Y → ∞) = −
(

2
X

)1/3

Ai′(0)

∫ ∞

0

Ai(η)dη

︸ ︷︷ ︸

1/3

= −
(

2
X

)1/3

3Ai′(0)
(5.25)

is obtained. Similarly as for supersonic flows the crossflow velocity component is given

by

W̃ (η) = βAi(η)J (η), (5.26)

where J (η) is defined in equation (3.6) and η =
(

2
X

)1/3
Y .
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By introducing ansatz (5.11) into the linearized interaction law for K > 0

∂2P

∂X2
+ |K|−1∂

2P

∂Z2
= Λ

∂2A

∂X2
, (5.27)

finally yields the relation

β(X) =

√

6|K|
X

√
(

Λ · 22/3 · 44

92
X−1/3 + 1

)

(5.28)

for subsonic conditions. Far upstream, where −X ≫ 1, β is given by

β ∼ 1

X

√

6|K|. (5.29)

Similar as for supersonic flow conditions β as well as β ′ is rather small far upstream and

therefore the upstream perturbation becomes almost two-dimensional. The asymptotic

structure of the upstream region (solid line), cf. figure 5.6, matches the numerical results

very well even for βZ ∼ O(1).
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5.4. Eigensolutions and Internal Shock Structures

The asymptotic structure of the free interaction region, studied in the previous sec-

tion, suggests the occurrence of non-trivial eigensolutions similar to the well known

two-dimensional eigensolutions.

The compressive eigensolution of the two-dimensional problem corresponds to the sit-

uation of a weak normal shock in the channel. The flow field in the boundary layer is

subjected to an almost discontinuous pressure distribution, i.e. a rapid change of the

flow field, and a region of shock boundary layer interaction emerges around the position

of the shock. This transonic viscous inviscid interaction mechanism is different from the

thoroughly discussed effect of thermo-viscous regularization, cf. [13], [14] or [25], caused

by small effects of viscosity and heat conduction. The shock-boundary layer interaction

leads to a smooth transition from super- to subsonic flow in the core region connecting

the undisturbed supersonic state upstream P (X → −∞) = 0 and the subsonic state far

downstream P (X → ∞) = 2, where sonic conditions in the core region are obtained for

P = 1.

Such an eigensolution can be triggered for instance by a surface mounted hump far

downstream. Thus weakly three-dimensional shock profiles, e.g. shock profiles with a

curved shock front, similar to the two-dimensional profiles might be expected and maybe

also the formation of stall cells under subsonic flow conditions.

In the subsequent studies only the formation of weakly three-dimensional internal shock

profiles are investigated. First, solutions triggered by hump geometries deviating slightly

from constant geometries with respect to Z (2D geometry) are discussed followed by ob-

stacles with higher developed three-dimensionality.

5.4.1. Slightly Deformed Two-Dimensional Hump

In the two-dimensional case a compressive eigensolution can be triggered by perturbing

the flow with a surface mounted hump far downstream. By increasing the hump height

until a critical value is reached such an eigensolution emerges in front of the hump, which

is shifted upstream for increasing values of hhump and becomes invariant with respect to

the streamwise coordinate for hhump → hcrit.
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Figure 5.7.: Constant hump geometry with respect to Z (α = 0) (left hand side) and

deformed hump geometry (α = 0.5) (right hand side).
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To study the effect of a hump geometry deviating slightly from a two-dimensional one

on the three-dimensionality of the shock profile the geometry

S(X,Z) =







hhump · cos2

(

π
2

√

(0.1X)2 + (0.1Ẑ)2

)

, for
√

(0.1X)2 + (0.1Ẑ)2 ≤ 1,

0, otherwise,

is introduced, where Ẑ = α · cos( 2π
Zmax

Z) − 1. Here α is a deformation parameter, Zmax

denotes the width of the periodic domain and hhump < hcrit.

By mounting a hump with hhump = hcrit and α = 0 far downstream a two-dimensional

shock profile as shown in figure 5.8 is triggered. For hhump < hcrit the shock profile is

shifted downstream towards the wall deformation, but the emerging shock profile in front

of the hump is still recovered. To study the effect of increasing values of the deformation

parameter α on the shape of the regularized shock profile the hump height is taken as

hhump = 1.25 < hcrit.

For α = 0 the flow in front of the hump is decelerated such that subsonic flow conditions

in the upper deck (P > 1) are reached at X − 28. The pressure distribution, cf. figure

5.8, in front of the hump shows the characteristic shape of a regularized shock profile.

The exponential decay of this eigensolution is indicated by a dashed line.

By increasing the deformation parameter the pressure perturbation becomes weaker and

the front of the shock profile is shifted downstream towards the hump. Already for α = 1

the pressure perturbation becomes that weak, that a subsonic region in the upper deck

is not formed anymore. For α = 2 the front of the shock profile is shifted about two

hump length towards the hump.

Furthermore, it is observed that the flow becomes almost two-dimensional a few hump

lengths upstream independently of the size of the deformation parameter.

5.4.2. The Periodic Ridge

Since the flow field becomes two-dimensional a few hump lengths upstream the wavy

shaped surface deformation discussed in the previous section a higher three-dimensionality

of the hump may allow to trigger a weakly three-dimensional eigensolution. Thus the

periodic ridge as defined by

S(X,Z) =







hhump · cos2
(

π
2

√

(0.1X)2 + (0.1Z)2
)

, for |0.1X| ≤ 1,

0, otherwise
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Figure 5.9.: Periodic ridge with respect to Z (left hand side) and corresponding pressure

perturbation P (right hand side) for Λ = 1.25, K = 1 and hhump = 2.25.

is introduced. Before starting the discussion of the numerical results further insight is

gained by studying the linearized lower deck equations far upstream.

By assuming a non-degeneration of the linearized solutions with respect to the spectral

variable l this yields the condition l ∼ O(k7/6). Since the main contribution far upstream

results from values of k ≪ 1 the dominating values of l are rather small. Therefore the

flow far upstream just ’sees’ a two-dimensional surface deformation

S2D(X) =
1

2π

∫ ∞

−∞
S(X,Z)dZ,

which results from averaging the original three-dimensional obstacle in lateral direc-

tion. Hence the flow field upstream a three-dimensional surface deformation becomes

two-dimensional independent of the shape of the deformation and identically with the

flow field upstream of a two-dimensional obstacle resulting from averaging the original

obstacle in crossflow direction.

These analytical considerations are perfectly supported by the numerics. For the peri-

odic ridge as shown in figure 5.9 the pressure perturbation upstream the ridge along the

peak line P (X, 0) and exactly between two humps P (X, 10) is plotted. As suggested by

previous considerations the flow field becomes two-dimensional just a few hump lengths

upstream the surface deformation. Furthermore these analytical considerations, gained

from the linearized formulation, seem to be valid even for quite large perturbations of

the field quantities.
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Moreover, the flow field far upstream of the periodic ridge coincides perfectly with the

results found upstream a two-dimensional hump P2D(X) with a surface geometry ob-

tained by properly averaging the periodic ridge in lateral direction.

This finding also explains the results for various deformation parameters in the previous

section. Since the oncoming flow upstream just ’sees’ a two-dimensional surface defor-

mation and the height of the averaged geometry decreases with increasing values of the

deformation parameter the perturbation of the flow field upstream becomes weaker and

thus the emerging shock profile is shifted towards the hump.

The flow field far upstream of the obstacle becomes two-dimensional independently of

the shape of the wall deformation. Hence, it seems not possible to trigger a weakly

three-dimensional eigensolution by perturbing the flow with a three-dimensional surface

mounted obstacle far downstream.

5.4.3. The Single Cosine-Squared Hump

Since the analytical results of the previous section are gained by studying the linearized

problem a further attempt to trigger a weakly three-dimensional eigensolution is to

increase the height of the hump as well as to further increase the three-dimensionality

of the surface deformation. Therefore we study the flow field in front of a single cosine-

squared hump as defined in chapter 3.

By increasing the hump height one might expect a dominant role of the nonlinear terms

with respect to the linear ones and thus to trigger an eigensolution upstream the wall

deformation in contrast to the predictions of the linearized theory.

Indeed, for increasing values of hhump a three-dimensional upstream flow structure is

found, but just for rather small values of the hump height. Furthermore no steady

solutions for values of hhump larger than a critical value hc are found.

This effect is not only apparent under supersonic flow conditions but also under subsonic

conditions. These results are noteworthy since there is no obvious reason for such a

critical value. In the two-dimensional case a similar critical value of the height of the

wall deformation is found, which is associated with a blocking of the nozzle and chocked

flow. In contrast to the blocking in the two-dimensional case there must be another

physical reason for this critical hump height in the weakly three-dimensional case since

due to the additional degree of freedom the flow can always pass the obstacle.
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5.4. EIGENSOLUTIONS AND INTERNAL SHOCK STRUCTURES

2.586 2.5865 2.587 2.5875 2.588 2.5885 2.589

-0.2455

-0.245

-0.2445

-0.244

-0.2435

-0.243

hhump

P
(0

.8
5,

0)

Figure 5.10.: Pressure perturbation for various hump height at X = 0.85, Z = 0 under

subsonic flow conditions for Λ = 1.25 and K = 1.

Studying the flow field for various hump heights, as shown in figure 5.10 for the pressure

perturbation, indicates a singular behavior for hhump → hc. The local structure of the

flow field in vicinity of hc suggests a second, a lower branch and a non-uniqueness of the

solutions.

To gain further insight into this effect numerical solutions on the lower branch are sought

and a local analysis of the bifurcation (turning point) is performed, which is the topic

of the next chapter.
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6. Bifurcating Solutions and Local

Analysis of the Bifurcation Point

6.1. Bifurcating Solutions

Numerical results for the cosine-squared hump show, that the height of this hump cannot

be increased unlimited in the steady case for both supersonic as well as subsonic flow

conditions. There exists a critical height hc, where for hhump > hc no steady solutions

are found anymore. A singular behavior is indicated for hhump → hc, which suggests the

existence of a lower solution branch leading to non-unique solutions of the flow field.

For the subsequent studies only the behavior of the flow under subsonic conditions

(K > 0) is considered. To find further solutions also on the expected lower branch the

numerical algorithm is slightly modified. Instead of prescribing the hump height and

solving for the resulting flow field, one flow quantity is prescribed in a single point of the

calculation domain, e.g. the wall shear stress τw(0.85, 0) at the lee side of the hump, and

the corresponding height of the hump is part of the solution. For details see appendix

B. Furthermore a path-following strategy is applied to obtain reliable results also on the

unstable lower branch.

As shown in figure 6.1 there exists a lower solution branch and a turning point appears at

hhump = hc, which divides the solutions into an upper and a lower branch. Moreover, a

significant change in shape of the lower branch is found at hhump = 2.37, which suggests

some significant changes also in the flow behavior. The upper branch is expected to be

the stable one, while the lower branch consequently is an unstable one.

Due to this branching of the solutions a non-uniqueness is obtained. To each solution

on the upper branch in vicinity of the bifurcation point there exists a second solution

on the lower branch for the same hump height.

Evaluating the pressure perturbation (red lines) and the wall shear stress (blue lines)
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6.1. BIFURCATING SOLUTIONS
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Figure 6.1.: Bifurcation curve of the pressure perturbation P (X = 0.85, Z = 0) near the

bifurcation point hc = 2.588, Λ = 1.25, K = 1.
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Figure 6.2.: Pressure perturbation (red) and wall shear stress (blue) associated with

the upper branch (solid line) and the corresponding lower branch solution

(dashed) for hhump = 2.4 (left hand side) and hhump = 2.3 (right hand side).
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6.2. LOCAL ANALYSIS OF THE BIFURCATION POINT

for a fixed hump height as plotted in figure 6.2, shows that the upper branch (solid line)

and the lower branch (dashed line) solution differs in a small region at the lee side of the

hump only, while far upstream and downstream, respectively, both solutions coincide

again. Both solutions are seen to differ in a region, where also flow separation occurs.

This observation suggests, that the bifurcation is somehow associated with the flow

separation similar to the well studied problem of marginal separation, cf. S. Braun and

A. Kluwick [6] and Kluwick et al. [32], where similar effects are apparent. Furthermore,

a major change of the pressure perturbation and the wall shear stress in the reversed

flow region of the lower branch solution for hhump < 2.37 occurs, cf. figure 6.1. A new

minimum in the wall shear stress evolves, which yields a highly unstable flow structure.

This property is clearly visible also in figure 6.1 and responsible for the kink of the lower

branch at hhump = 2.37.

6.2. Local Analysis of the Bifurcation Point

To validate the numerical results summarized in figure 6.1 and figure 6.2 and to gain

further insight into the flow structure close to the bifurcation point a local analysis of

this turning point is performed, cf. [7]. The methods of bifurcation theory generally

indicate a strong dimension reduction in the vicinity of a bifurcation point. The spatial

structure is determined by critical modes and the evolution of the system and thus the

stability is given by a bifurcation equation for the other passive modes, cf. [53].

Starting point of the subsequent analysis is the Fundamental Lower Deck problem as

stated in the equations (2.72) and (2.78). Since we are studying the weakly three-

dimensional problem and thus the crossflow velocity component W neither enters the

continuity and x-momentum equation nor the interaction law the z-momentum equation

(2.72c) will be omitted in the subsequent analysis. Thus the Lower Deck problem can

be rewritten in the vector form

(0, 0, Ṗ , 0)T = N (r, hhump), (6.1)

where r = (U, V, P, A)T and the height hhump denotes the bifurcation parameter. The

studied cosine-squared wall deformation is defined as

S(X,Z) =







hhump · cos2(π
2

√
X2 + Z2) = hhump · Ŝ, for

√
X2 + Z2 ≤ 1,

0, otherwise.
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6.2. LOCAL ANALYSIS OF THE BIFURCATION POINT
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Figure 6.3.: Pressure perturbation with parabola approximation near the bifurcation

point.

To perform a local analysis about the turning point a small perturbation parameter

εh =
√

|hc − hhump| =
√

∆h, (6.2)

is introduced, which measures the distance from the critical point (turning point). Con-

sequently the hump height is given by hhump = hc − ε2
hsign(∆h). The parabolic shape

of the bifurcation curve, cf. figure 6.3, suggest the following asymptotic expansions of

the flow quantities

r = rc + εhr1 + ε2
hr2 + O(ε3

h). (6.3)

To ensure that the time dependency enters first in the second order approximation the

appropriate slow time variable is found to be

T = ε2
ht. (6.4)

Substitution of the expansions (6.3) and (6.4) into equation (6.1) yields in the leading

order approximation the solution of the problem N (r) = 0 evaluated at the critical

point hhump = hc
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6.2. LOCAL ANALYSIS OF THE BIFURCATION POINT

O(1):

N (rc) = 0 =









∂Uc

∂X
+ ∂Vc

∂Y

Uc
∂Uc

∂X
+ Vc

∂Uc

∂Y
+ ∂Pc

∂X
− ∂2Uc

∂Y 2

1
2
P 2

c + sign(K)Pc − ΛAc + hcŜ + 1
|K|
∫ X

−∞
∫ ζ

−∞
∂2Pc(ξ,Z,t)

∂Z2 dξdζ

limY →∞ [Uc − Y ] − Ac









(6.5)

and in higher orders

O(εh):

L(r1) = 0 =









∂U1

∂X
+ ∂V1

∂Y

U1
∂Uc

∂X
+ Uc

∂U1

∂X
+ V1

∂Uc

∂Y
+ +Vc

∂U1

∂Y
+ ∂P1

∂X
− ∂2U1

∂Y 2

∂
∂X

(

PcP1 + sign(K)P1 + 1
|K|
∫ X

−∞
∫ ζ

−∞
∂2P1(ξ,Z,T )

∂Z2 dξdζ − ΛA1

)

limY →∞ [U1] − A1









, (6.6)

O(ε2
h):

(0, 0, Ṗ1, 0)T − L(r2)+g(r1) = 0 =

=









0

0

Ṗ1

0









− L(r2) +









0

U1
∂U1

∂X
+ V1

∂U1

∂Y

∂
∂X

(

P 2
1 + ΛŜsign(∆h)

)

0









,
(6.7)

where ri = (Ui, Vi, Pi, Ai)
T is the vector of the asymptotic expansions of the flow quan-

tities.

Thus, we can conclude from the O(εh) equation

r1 = c(T )m(x, y, z) = c(T )









m1(x, y, z)

m2(x, y, z)

m3(x, z)

m4(x, z)









, (6.8)

where m(x, y, z) is the critical right eigenfunction of L to the corresponding critical

eigenvalue zero and c(T ) a time dependent shape function.

The O(ε2
h) equation can be rewritten in the form

L(r2) = (0, 0, Ṗ1, 0)T + g(r1)
︸ ︷︷ ︸

g

. (6.9)
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Figure 6.4.: Phase curve of the bifurcation equation with stable and unstable stationary

points corresponding to the upper and lower branch solution in the subcrit-

ical case (sign(∆h) > 0).

Applying Fredholms alternative, which states that the equation L(r) = g has a solution

if and only if the inner product < n, g >= 0 for every n in the nullspace of the adjoint

operator L†, yields the solvability condition

< n,L(r) >=< r,L†(n)
︸ ︷︷ ︸

0

>= 0, (6.10)

where n = (n1, n2, n3, n4)
T is obviously the left eigenfunction of L to the correspond-

ing critical eigenvalue and the inner product is defined as < n, g >=
∫∞
−∞
∫∞
0

∫∞
−∞ n ·

gdXdY dZ.

Therefore the bifurcation equation

< n3, m3 >
︸ ︷︷ ︸

α

ċ+ (< n3,
∂

∂X
(m2

3) > + < n2, m1
∂

∂X
m1 +m2

∂

∂Y
m1) >)

︸ ︷︷ ︸

β

c2+

+ sign(∆h)Λ< n3,
∂

∂X
(Ŝ) >

︸ ︷︷ ︸

γ

= 0.

(6.11)

is obtained, which finally yields

ċ+
β

α
c2 + sign(∆h)

Λγ

α
= 0. (6.12)

The stationary points in the subcritical case sign(∆h) > 0, where ċ = 0, are given by

cs = ±
√

−Λγ

β
, (6.13)
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Figure 6.5.: Right eigenfunction m3(X,Z) (left hand side) and approximation of the

pressure perturbation (P ∼ Pc +
√

∆h · csm3 + ∆h ·P2) close to the turning

point (hc, Pc) (right hand side).

where the two solutions correspond to the upper branch and lower branch solution,

respectively. The phase curve, as shown in figure 6.2, indicates that the positive value

of cs yields a stable stationary point corresponding to the upper branch solutions and

the negative value of cs gives an unstable stationary point corresponding to the lower

branch solutions. This instance is also confirmed by the numerical results of the previous

chapter.

Obviously there exists no real solution and thus no stationary points in the supercritical

case sign(∆h) < 0. The imaginary solutions of (6.12) suggests oscillatory solutions

for hhump > hc and a blow-up of the separation bubble as in the theory of marginal

separation, cf. [8]. Associated with this blow-up buffeting effects might be expected.
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Figure 6.6.: Bifurcation curve of the pressure perturbation for various values of the hump

width (Λ = 1.25, K = 1).

6.3. Dependence on the hump width

So far a cosine-squared wall deformation with fixed width was studied. The influence

of the hump width on the bifurcation behavior, specially in the limiting case of a two-

dimensional deformation, is of further interest and the topic of the subsequent studies.

In the two-dimensional case there appears no such turning point, but there exists as

well a critical hump height, such that no steady solutions exists for hhump > hc, cf. [36].

Very much alike the case of an ideal laval nozzle in classical theory this critical solution

leads to a transition from the sub- to a supersonic regime. Further downstream in the

divergent part of the nozzle the flow is shocked back by forming a pseudo shock due

to the viscous-inviscid interaction. This pseudo shock is invariant with respect to the

streamwise coordinate, which is reflected by the vertical branch at hhump = hc of the

bifurcation curve in figure 6.6 for b = 0.
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Figure 6.7.: Degeneration of the turning point bifurcation for increasing values of the

hump width bi.

This in turn suggest a degeneration of the bifurcation equation by increasing the hump

width. Therefore the dependence on the hump width is studied by introducing the sur-

face mounted obstacle

S(X,Z) =







hhump · cos2(π
2

√

X2 + (b · Z)2), for
√

X2 + (b · Z)2 ≤ 1,

0, otherwise,

where b is a stretching factor in Z-direction and a value of b = 0 corresponds to the

two-dimensional case.

A first numerical investigation for various hump widths, as shown in figure 6.6, shows

that the critical height hc decreases for increasing values of the width, while the pertur-

bation of the flow quantities increases. In the limiting case b = 0 the two-dimensional

results found by G. Meyer [36] are recovered and a degeneration of the saddle-node bi-

furcation is observed.

More insight into the transition between the weakly three-dimensional and the two-

hump width b 1st order approx. P1(1.3, 0) 2nd order approx. P2(1.3, 0)

1 0.0195 0.29

0.5 0.0212 0.38

0.33 0.0229 0.49

0.25 0.025 0.63

Table 6.1.: 1st and 2nd order approx. terms for various values of the hump width b
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6.4. FUTURE WORK

dimensional case is gained by studying the first and second order approximations of the

flow quantities in vicinity of the bifurcation point. As shown in table 6.1, the growth

rate of the approximations of the pressure perturbation indicates a much faster growth

of the second order approximation than of the first order one. That means, that for in-

creasing values of the hump width the parabola of the approximation is getting slimmer

and stepper. A behavior of the bifurcation curve, as sketched in figure 6.7, is suggested,

which meets the results of the two-dimensional case in the limit b → 0. The evolution

of the bifurcation curve furthermore suggests a breakdown of the asymptotic structure

(6.3) and thus a degeneration of the saddle-node bifurcation.

6.4. Future work

Further insight and a more general discussion of the degeneration of the saddle-node

bifurcation is expected to be gained by studying the left eigenfunction n and the bi-

furcation equation (6.12). From the present point of view it seems sufficient to focus

these studies on the investigation of the term γ =< n3,
∂

∂X
Ŝ > since this is the only

term, where the surface deformation Ŝ enters the equations. For γ = 0 the bifurcation

equation degenerates and thus a qualitative analysis of the symmetry of the left eigen-

function and Ŝ for b→ 0 might yield the expected result.

Another open question of interest in this context concerns the flow behavior in the su-

percritical region hhump > hc. The results of S. Braun and A. Kluwick, cf. [8], suggest a

growth of the separation bubble associated with a finite-time blow up similar to the blow

up in the theory of marginal separation. A first numerical investigation of this unsteady

effect performed with a time-explicit scheme, see appendix B, yields, as predicted by the

theory, an unbounded growth of the separation bubble. So far it is expected that this

problem can be overcome by introducing a new faster time scale, which is appropriate for

the bubble dynamic. A growth of the bubble followed by bubble bursting and emerging

of a new bubble leading to a periodic flow behavior is suggested. Associated with the

periodic formation of separation bubbles and the interaction with the upper deck flow

also pseudo shocks might appear yielding a so called buffeting effect.

76



7. Conclusions

In this thesis it has been shown, that the viscous inviscid interaction of weakly three-

dimensional transonic flows in slender channels in the high Reynolds number range, as

they appear for instance in supersonic micro nozzles and in turbomachines of micro-

electro-mechanical-systems (MEMS), can be described properly by means of matched

asymptotic expansions and the triple deck theory. Previous work done in this context by

Kluwick [26], Gittler and Kluwick [29] and Kluwick and Meyer [30] has been extended to

the weakly three-dimensional case to incorporate particularly the formation of upstream

acting perturbations and bifurcating solutions. The derived ”Lower Deck problem” has

been studied with the focus on three main topics. First the flow over shallow surface

mounted humps has been investigated by solving the linearized problem and afterwards

for larger hump heights and the associated nonlinear effects numerically. Secondly, the

occurrence and existence of upstream acting perturbations has been studied and finally

the appearance of bifurcating solutions.

In order to gain a first insight into the complex spacial structure of the flow, the linearized

problem has been studied under supersonic as well as under subsonic flow conditions.

A simple source-like trend upstream the hump was found followed by some major ad-

justment of the crossflow velocity close to the surface near the front side of the hump,

which yields a vortex motion. Then, over the back of the hump a sink-like form, in

order that the fluid may encircle the obstacle has been observed and finally, downstream

of the hump another vortex motion. It has been shown, that the two vortices rotate

in the opposite sense. Thus four regions with a substantial different flow behavior and

typically wall-jet like shaped crossflow velocity profiles were found.

The asymptotic behavior of the streamwise wall shear stress perturbation τw indicates a

decay of X−5/3, while the crossflow wall shear stress σw decays much faster with X−8/3.

Furthermore, the streamwise wall shear stress perturbation is confined to a region of

about the lateral extent of the hump, while the crossflow wall shear stress spreads,

which is also reflected in the wedge shaped region of the vortex motion downstream of
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the hump. The decay of the pressure perturbation under subsonic flow conditions was

found to be X−2, which is significant for the subsonic behavior of three-dimensional per-

turbations. Moreover, the pressure perturbation far downstream loses any information

about the geometry of the channel deformation and just keeps the information about

the hump volume.

For larger hump heights it has been shown that the boundary layer is capable to separate

at the lee side of the hump forming an open separation bubble with a mass flux into the

bubble from both sides and a helical outflow in vicinity of the centerline Z = 0. Very

good agreement of the angle of the separation streamline with the well known analyt-

ical result for the separation angle due to Oswatitsch [39] was found. The possibility

of an emerging local subsonic or supersonic region in the upper deck flow, respectively,

has been demonstrated by varying the transonic similarity parameter K, where in the

limiting cases K → 0 and |K| ≫ 1 analytical solutions have been provided. These first

general studies give an insight into the flow structure through slender channels as they

appear in micro devices, e.g. supersonic micro nozzles for propulsion (thruster) in space

applications and the channel wall deformations can be taken for instance as surface

roughness. The results presented and calculations of the length scales have shown, that

flow phenomena like the formation of separation bubbles, cf. chapter 4, the occurrence

of compressive shock solutions, cf. chapter 5, and the existence of a limiting height of

the wall deformation for steady solutions of the flow field, cf. chapter 6, should appear

in such applications. But it shall be pointed out, that in the current work the oncoming

boundary layer is a two-dimensional one, which might be a good approximation for noz-

zle flows, but which will be in general not the case for instance in micro turbomachines.

Another property of boundary layer flows considered here is the effect of upstream acting

perturbations in front of a surface mounted hump. In contrast to the two-dimensional

case, where such an upstream effect is observed only under supersonic flow conditions,

it has been shown analytically, that there exists such an upstream effect in the weakly

three-dimensional case under supersonic as well as under subsonic flow conditions. More-

over, the upstream behavior in the two-dimensional case has been recovered with the

well known result of strictly no upstream effect under subsonic flow conditions. A more

sophisticated study of the upstream behavior has been performed to gain the decay of the

upstream perturbations, which was found to be algebraic-exponential under supersonic

flow conditions and algebraic under subsonic flow conditions.
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Furthermore, it has been shown, that it is not possible to trigger a weakly three-

dimensional internal shock profile, for instance a shock profile with a curved shock front,

by perturbing the flow with a surface mounted obstacle far downstream. The flow far

upstream loses the information about the three-dimensionality of the hump and just

’sees’ a two-dimensional wall deformation resulting from averaging the hump geometry

with respect to the crossflow direction. This property has been shown analytically and

has been confirmed by the numerical calculations for various hump geometries with a

different three-dimensionality.

At this point it should be mentioned, that it is not possible to trigger such a weakly

three-dimensional internal shock profile by perturbing the flow far downstream. This

might be a hint that there exists no weakly three-dimensional eigensolutions, but ob-

viously this is just a hint and no proof. Possibly, the triggering mechanism is rather

different in the weakly three-dimensional case than in the two-dimensional one.

The most striking feature, which has been found is the appearance of bifurcating solu-

tions and the emergence of the associated problem of stability. It has been shown, that

there exists a critical hump height hc, where a saddle-node bifurcation occurs and the

solutions branch into a stable upper branch and an unstable lower branch. For larger

values of the hump heights than this critical value no steady solution has been found,

which has been confirmed by a local analysis of the bifurcation point. The solutions

on the upper and the lower branch at a given hump height have been found to deviate

just in vicinity of a region of reversed flow. From the present point of view the whole

bifurcation behavior seems to be associated with the occurrence of a separation bubble,

which is also suggested by the theory of marginal separation, cf. [7], since the bifurcation

behavior there is very similar to the one discussed above.

Moreover, a degeneration of the bifurcation curve for increasing hump widths was found,

which is conform with the two-dimensional result of G. Meyer [36], where no such saddle-

node bifurcation occurs. A study of the first and second order approximation of the

pressure perturbation in vicinity of the bifurcation point has also shown this degener-

ative behavior suggested by a breakdown of the asymptotic expansions for large hump

widths.
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Throughout the present work it has been found, that even small surface deformations

embedded in the viscous lower deck of the boundary layer, such as wall roughnesses

due to the manufacturing process, can considerably effect the flow structure globally for

instance by triggering weak normal shocks or leading to boundary layer separation and

unsteady flow structures. To avoid such effects is of vital importance in the engineering

practice of micro-turbomachines, since they are designed and optimized for specified

oncoming flow conditions and any perturbations lower their efficiency. On the other

hand these effects might be of interest for instance for leaf seal, where a high pressure

drop is aimed for.

Thus the results of this theoretical work gives some hints for an improved design of

micro-devices and a guideline for the manufacturing process, specially concerning the

surface roughness.
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A. List of Symbols

Latin Symbols

A negative perturbation of the displacement thickness (displacement function)

b stretching parameter of hump width

c speed of sound

c(T ) shape function in the bifurcation equation

cp specific heat at constant pressure

cv specific heat at constant volume

f spectral denominator function

G(P ;K,Γ) leading order term of the negative perturbation

of the upper deck mass flux density

H thickness of the upper deck, half channel height

h specific enthalpy

hhump height of a surface mounted hump

hc critical hump height

I Identity matrix

J(P ;K,Γ) leading order term of the perturbation of mass flux density

J (r) spectral shape function of the crossflow velocity profile

K transonic similarity parameter

k spectral variable corresponding to X

kλ thermal conductivity

L characteristic length of the channel

l spectral variable corresponding to Z

n number of reflections of the characteristics

p, P pressure perturbation

q heat flux vector

r flow quantity vector
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s thermodynamic entropy

sh,S position vector describing the surface mounted hump

t, T time

u velocity vector

u, U streamwise velocity component

v, V vertical velocity component

w,W crossflow velocity component

x positioning vector

x,X horizontal coordinate, streamwise direction

∆x horizontal length of the interaction region

y, Y vertical coordinate

z, Z lateral coordinate, crossflow direction

∆z width of the interaction region
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Greek Symbols

α stretching parameter

δl thickness of the lower deck subregion

δm thickness of the main deck subregion

ε small perturbation parameter for the interaction region

εh small perturbation parameter for the bifurcation

Γ Fundamental derivative of gas dynamics

∆h distance from the critical height hc

η mapped Y-coordinate

Λ coupling parameter in the interaction law

λ second coupling parameter in the interaction law

µ dynamic viscosity

ρ,R density

σ crossflow shear stress

θ,Θ temperature

ϑSEP separation angle

τ viscous stress tensor

τ streamwise shear stress

Ξ shape function of the shear stress

Ω spectral transfer function of the pressure perturbation

ω vorticity

Dimensionless Numbers

Ec Eckert number

M0 Mach number

Pr Prandtl number

Re Reynolds number
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Superscripts

ã dimensional form of quantity a

ā triple deck scaling of quantity a

a∗ quantity of fundamental lower deck problem before

Prandtl’s transposition theorem is applied

â perturbation of quantity a

Subscripts

0 reference state

1 first order approximation

2 second order approximation

c quantity evaluated at the critical (bifurcation) point

l lower deck

m main deck

u upper deck

s stationary solution

w quantity evaluated at the wall

Operators

∇ nabla operator

∇2 laplace operator

∇a gradient of a

∇ · a divergence of a

rot(a) rotation of a

F(a)2 = a∗∗ two-dimensional Fourier transform

L linear operator

N nonlinear operator

ℜ(a) real part of a

ℑ(a) imaginary part of a

aT transpose of a

L† adjoint operator of L
Da
Dt

= ∂a
∂t

+ u · ∇a substantial derivative
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B. Pseudo Spectral Method

To solve the full nonlinear fundamental lower deck problem (2.72) and (2.79) a pseudo

spectral method, cf. [10], [15], [19], [3], is used. This method requires much less memory

resources than standard numerical techniques (i.e. finite-difference schemes) in particular

for three-dimensional problems, for which the finite-difference methods have not proven

successful. However, a major advantage of spectral methods is to capture regions of

reversed flow (i.e. boundary layer separation) without any additional approximations

(e.g. FLARE-approximation for finite-difference methods). The physical problem can

be solved very effectively and allows the usage of standard numerical algorithms (e.g.

Fast Fourier Transform-algorithm, cf. [12]).

B.1. Preparation of the governing equations

To obtain an efficiently working numerical algorithm the governing equations are prop-

erly modified before a numerical method is applied.

First, the streamwise component of the velocity is split into its perturbed and unper-

turbed parts

U = Y + Û ,

where Û denotes the perturbation of velocity profile of the oncoming boundary layer.

After differentiating the x-momentum equation (2.72b) with respect to Y, the lower deck

problem reads

∂Û

∂X
+
∂V

∂Y
= 0, (B.1a)

Y
∂2Û

XY
− ∂3Û

Y 3
= −V ∂

2Û

Y 2
− Û

∂2Û

XY
, (B.1b)

Y
∂W

∂X
− ∂2W

∂Y 2
+
∂P

∂Z
= −Û ∂W

∂X
− V

∂W

∂Y
(B.1c)
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B.1. PREPARATION OF THE GOVERNING EQUATIONS

and the interaction law is found to be

∂P

∂t
− sign(K)

∂P

∂X
−Λ

∂

∂X

(

A− S − 1

Λ |K|

∫ X

−∞

∫ ζ

−∞

∂2P (ξ, Z, t)

∂Z2
dξdζ

)

=
1

2
P 2, (B.2)

where one recovers the linearized problem by neglecting the right-hand-side of (B.1) and

(B.2). Furthermore, the perturbation streamwise shear

τ̂ =
∂Û

∂Y

as well as a transformation in Y-direction

Y = f(η) =
η

1 − η
,

which is appropriate, given the decay of W indicated by (2.75) for Y → ∞, is introduced.

Hence, the governing equations in spectral space, considering the boundary condition

(2.83), become

ik

∫ η

0

τ ∗∗f ′(η)dη +
1

f ′(η)

∂V ∗∗

∂η
= 0, (B.3a)

ikf(η)τ ∗∗ − ∂2τ ∗∗

∂η2

1

[f ′(η)]2
+
∂τ ∗∗

∂η

f ′′(η)

[f ′(η)]3
= F2

{

− V

f ′(η)

∂τ

∂η
− τX

∫ η

0

τf ′(η)dη

}

,

(B.3b)

ikf(η)W ∗∗ − ∂2W ∗∗

∂η2

1

[f ′(η)]2
+
∂W ∗∗

∂η

f ′′(η)

[f ′(η)]3
+ ilP ∗∗ = F2

{

−WX

∫ η

0

τf ′(η)dη − VWη

f ′(η)

}

,

(B.3c)

∂P ∗∗

∂t
− sign(K)ikP ∗∗ − Λik

(∫ ∞

0

τ̂ (η′)
∗∗
dη′ − S∗∗ − 1

Λ |K|
l2

k2
P ∗∗
)

=
1

2
F2
{
P 2
}
,

(B.4)

where k and l denote the spectral variables corresponding to the physical variables X

and Z, respectively. The boundary conditions for this system are given by

V ∗∗ = W ∗∗ = 0 at Y = 0, (B.5a)

lim
X→−∞

(τ̂ ∗∗, V ∗∗,W ∗∗, P ∗∗) = 0, (B.5b)

lim
η→∞

W ∗∗ = 0. (B.5c)

One further boundary condition is required and arises from the x-momentum equation

evaluated at η = 0, which yields

1

f ′(0)

∂τ ∗∗(k, l, 0, t)

∂η
= ikP ∗∗(k, l, t). (B.6)
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B.2. DISCRETIZATION OF THE EQUATIONS

B.2. Discretization of the Equations

Since the flow variables are mapped into spectral space only in streamwise and cross

flow direction, respectively, the Y direction is discretized using conventional second

order finite differences. Moreover, the time derivative is discretized using a simple first

order differential quotient.

Discretization in η direction

The η-direction is discretized using a second order finite difference

∂τ̂ ∗∗(k, l, η, t)

∂η
=
τ̂ ∗∗(k, l, η + ∆η, t) − τ̂ ∗∗(k, l, η − ∆η, t)

2∆η
,

∂2τ̂ ∗∗(k, l, η, t)

∂η2
=
τ̂ ∗∗(k, l, η + ∆η, t) − 2τ̂ ∗∗(k, l, η, t) + τ̂ ∗∗(k, l, η − ∆η, t)

∆η2
,

(B.7)

where ∆η = η∞/Nmax. Only the boundary condition (B.6) is approximated by second

order backward differences to avoid the introduction of image points, to yield

τ̂ ∗∗(k, l, 0, t) = −2

3
∆ηikf ′(0)P ∗∗(k, l, t) − 1

3
τ̂ ∗∗(k, l, 2∆η, t) +

4

3
τ̂ ∗∗(k, l,∆η, t). (B.8)

The integral in equation (B.4) is approximated using the trapezoidal rule

∫ ∞

0

f ′(η)τ ∗∗dη =
f ′(0)τ ∗∗(0)

2
∆η + f ′(∆η)τ ∗∗(∆η)∆η + f ′(2∆η)τ ∗∗(2∆η)∆η + · · ·

+f ′(η∞ − ∆η)τ ∗∗(η∞ − ∆η)∆η +
f ′(η∞)τ ∗∗(η∞)

2
∆η.

(B.9)

Discretization of the time derivative

The time derivative is discretized using a first order differential quotient

∂P ∗∗(k, l, η, t)

∂t
=
P ∗∗(k, l, η, t+ ∆t) − P ∗∗(k, l, η, t)

∆t
. (B.10)

Formulating an explicit scheme for the unsteady interaction law yields

P ∗∗(k, l, t+ ∆t) = P ∗∗(k, l, t) + ∆t[sign(K)ikP ∗∗(l, k, t)+

+ Λik

(∫ ∞

0

τ̂(k, l, η′, t)
∗∗
dη′ − S∗∗ − 1

Λ |K|
l2

k2
P ∗∗(k, l, t)

)

+
1

2
F2
{
P 2(X,Z, t)

}
].

(B.11)
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B.3. NUMERICAL SCHEME

B.3. Numerical Scheme

Discretization of the equations (B.3) to (B.6) finally yields the nonlinear problem

G · ~x(k, l, η) = ~g, (B.12)

where G is the system matrix of the problem, ~x the solution vector in spectral space and

~g contains the nonlinear terms of (B.3) and (B.4). To avoid the calculation of convolution

terms in spectral space due to the nonlinear terms in ~g the problem is solved iteratively.

The nonlinear terms are evaluated in physical space and mapped back into spectral space

giving a new right hand side in (B.12). Thus, in a first step the linearized problem is

solved, which yields a first approximation of the flow field. In a second step equation

(B.12) is solved again, but now considering the nonlinear terms evaluated with the flow

quantities of the previous step. This procedure, see figure B.1, is repeated until a given

residuum is reached.

Calc. system matrix

Calculating      with
nonlinear terms = 0

Solving

Inverse FFT

Calc. remaining quantities Calculating
nonlinear terms in

FFT
of the nonlinear terms

S
p

e
c
tr

a
l 
s
p
a

c
e

G

G · ~x(k, l) = ~g

τ ∗∗,W ∗∗,P ∗∗

U ,V ,σ,A

~g

~g

Figure B.1.: Calculation scheme of the pseudo spectral method
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B.4. GRIDS AND COLLOCATION POINTS

If the hump height is fixed the calculation procedure is straight forward by solving the

problem as sketched in figure B.1. The surface deformation enters the systems matrix

G and remains constant. In case of studying bifurcating solutions for increasing values

of the hump height, as performed in chapter 6, instead of prescribing the hump height

and solving the resulting flow field one flow quantity is prescribed in a single point of

the calculation domain, e.g. the wall shear stress τw(Xp, Zp). The height of the hump

becomes part of the solution and an additional equation, e.g. the prescribed wall shear

stress in the flow field

τw(Xp, Zp) =
1

kmax · lmax

kmax−1∑

k=0

lmax−1∑

l=0

exp

(

2πi

[
Xp · k
kmax

+
Zp · l
lmax

])

has to be considered, where XP and ZP are the coordinates of the prescribed quantity,

kmax and lmax the number of spectral modes.

B.4. Grids and Collocation Points

To use standard numerical algorithms, e.g. Fast Fourier Transform Algorithms, [12], for

the Fourier Transform as well as for the inverse Fourier Transform uniformly distributed

collocation points in the physical domain are necessary. Thus the size of the calculation

domain is restricted by the maximum numbers of collocation points due to memory. But

since the problem can be solved for each spectral mode independently the size of the

system matrix is O(Nmax) and the number of collocation points and spectral modes can

be rather large.

For very slowly decaying solutions the calculation domain has to be increased and hence

an appropriate mapping has to be introduced. The idea is to map the unbounded phys-

ical domain onto a bounded domain with uniformly distributed collocation points.

The required mapping function should satisfy the following conditions:

• mapping from an infinite domain [−∞,∞] onto a finite domain

• clustering of the collocation points near the origin on the unbounded domain

• minimal number of spectral modes of the introduced new metric for a minimal trun-

cation error
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B.4. GRIDS AND COLLOCATION POINTS

An appropriate mapping function satisfying all of these requirement is the cotangent

function, cf. [5], [9]

X = h(χ) = −d · cotan(χ),

which maps the physical domain X ∈ [−∞,∞) onto the calculation domain χ ∈ [0, π).

Due to this mapping a new metric is introduced with the metric function

d

dX
f(X) =

1

h′
d

dχ
f(χ) with

1

h′
=

1

d
sin2(χ) =

1

2d

[

1 − e2πiχ + e−2πiχ

2

]

.

This results in a modal coupling and therefore the problem has to be solved for all modes

simultaneously. Thus the size of the system matrix is of O(kmax · lmax · Nmax) and the

number of spectral modes and collocations points has to be much smaller than in the

unmapped case. But due to the clustering near the origin and the associated higher

resolution of the solutions in this region even calculations with just about 100 modes in

each direction yields reasonable results.

Scheme with infinite domain Scheme with finite domain

kmax 128 1024

lmax 128 1024

Nmax 50 50

Xmax/Zmax - ±100/± 100

η∞ 0.98 0.98

d 4/2 -

Table B.1.: Parameters of the numerical scheme
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