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Abstract

Mathematical models of walking behaviour of pedestrians find application in numerous areas
including architecture, panic analysis, traffic control, urban design, retail industry or entertain-
ment. Pedestrian modelling evolved into a broad field of research with approaches following
various different base concepts. Commercial and prototypical software tools exist to enable
analysis and simulation of pedestrians in a given environment. In the context of IT security,
pedestrian simulation can support the evaluation of environmental design with respect to phys-
ical security and crime prevention.

Existing software solutions provide highly integrated components used to design simulation
scenarios, run simulations or calculations and visualize or analyse the results. Though this
application structure supports a consistent user experience, it prohibits the reuse of scenario
definitions with different simulation models due to proprietary interfaces or tightly coupled
implementations. This thesis follows an alternative approach of decoupled scenario creation,
attempting to develop a more flexible tooling framework for unified definition of pedestrian
scenarios.

The framework consists of two parts, first the specification of a generic interface used to de-
scribe the parameterization of scenarios expected by a simulation model and to specify scenario
instances following that parameterization, and second a software tool supporting the creation
of simulation scenarios conforming to that interface. The interface specification is developed
based on a generic model of scenario input data, which is derived from an analysis of exist-
ing models. A categorization of modelling approaches is given, followed by reviews of selected
proposals in literature providing a broad coverage of the problem field. The technical realiza-
tion of the interface in XML is discussed using UML class diagrams. A Java implementation,
the Scenario Builder, is presented as the second framework part, a software tool realizing user
interface concepts that enable practical adoption of the proposed interface.



Kurzfassung

Die mathematische Modellierung des Bewegungsverhaltens von Fußgängern findet vielfältige
Anwendung, unter anderem in den Bereichen Architektur, Panikanalyse, Verkehrskontrolle,
Stadtplanung, Einzelhandel und Unterhaltung. Fußgängermodellierung entwickelte sich zu
einem breiten Forschungsfeld mit einer Vielzahl unterschiedlicher Ansätze und Grundkonzepte.
Softwaretools zur Analyse und Simulation von Fußgängern in einer gegebenen örtlichen Umge-
bung sind kommerziell und prototypisch verfügbar. Im Zusammenhang mit IT-Sicherheit kann
Fußgängersimulation die Planung von Infrastruktur und Umfeld hinsichtlich physischer Sicher-
heit und Kriminalitätsvorbeugung unterstützen.

Bestehende Softwareprodukte bieten ganzheitliche und hochintegrierte Lösungen, die den Ent-
wurf von Simulationsszenarien, die Durchführung von Simulationen und Berechnungen, sowie
die Visualisierung und Analyse der Ergebnisse umfassen. Während diese Anwendungsstruk-
tur den Vorteil von konsistenter Benutzbarkeit einzelner Programme bringt, verhindert sie
die Wiederverwendung von Szenariodaten mit anderen Simulationsmodellen aufgrund von pro-
prietären Schnittstellen und eng gekoppelten Implementierungsteilen. Die vorliegende Arbeit
verfolgt einen alternativen Ansatz, bei dem die Erzeugung von Eingabedaten entkoppelt er-
folgt, um ein flexibleres Framework für eine vereinheitlichte Definition von Fußgängerszenarien
zu entwickeln.

Das Framework besteht aus zwei Teilen, erstens der Spezifikation einer generischen Schnitt-
stelle zur Beschreibung der von einem Simulationsmodell geforderten Parametrisierung sowie zur
Definition von Szenario-Instanzen die dieser Parametrisierung entsprechen, und zweitens einem
Softwarewerkzeug zur Erstellung von Simulationsszenarien gemäß dieser Schnittstelle. Die
Schnittstellenspezifikation basiert auf einem verallgemeinerten Modell von Szenario-Eingabe-
daten, das aus einer Analyse bestehender Modelle abgeleitet wird. Nach der Entwicklung
einer Kategorisierung von Modellierungsansätzen in der Literatur werden ausgewählte Mod-
elle vorgestellt und mit Schwerpunkt auf die Struktur der Ein- und Ausgabedaten verglichen.
Die Umsetzung der Schnittstelle in XML wird mit Hilfe von UML-Diagrammen erklärt. Als
zweiter Teil des Frameworks wird der Scenario Builder vorgestellt, eine Java-Implementierung
von Benutzerbarkeits-Konzepten für den praktischen Einsatz der entwickelten Schnittstelle.



Contents

1 Introduction 9
1.1 Software supported Pedestrian Simulation . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Development of Pedestrian Simulation Software . . . . . . . . . . . . . . . . . . . 9
1.3 Related Work - currently available Software Solutions . . . . . . . . . . . . . . . 10
1.4 Problem Statement - Unified Tooling . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.1 Interface Specification Methodology . . . . . . . . . . . . . . . . . . . . . 14
1.5.2 Tool Development and Validation Methodology . . . . . . . . . . . . . . . 15

2 Pedestrian Modelling 16
2.1 Application of Pedestrian Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Classification of Pedestrian Models . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Classification Criterions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Macroscopic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Microscopic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Mesoscopic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Input Model Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1 Environment Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.2 Environment Semanctics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.3 Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.4 Model Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.5 Reporting Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Generic Pedestrian Simulation Interface (GPSI) 38
3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 System Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Top-level Layering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Core Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.3 Static Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Interface Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1 Technology Choice - XML and XML Schema . . . . . . . . . . . . . . . . 45
3.4.2 Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.3 UML for the Documentation of XML Schema Definitions . . . . . . . . . 47
3.4.4 Interface Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4



4 Unified Scenario Definition Tool:
Scenario Builder 64
4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 Data Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.2 Data Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.3 Geometry Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.4 Look and Feel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Project Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 User Interface Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.2 Explorer Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.3 Element Inspector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.4 Toolbar Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.5 Layout Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.6 Infrastructure Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.7 OD-Map Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.8 Problems View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3.9 Problem Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Base Technologies and Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.1 Eclipse RCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.2 SWT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4.3 JFace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4.4 GEF and Draw2d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4.5 JAXB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.6 Commons Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.7 opencsv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.8 KTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.9 log4j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Implementation Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5.1 The root package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5.2 The domain package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5.3 The control package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5.4 The view package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.6 Tool Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.6.1 Workflow Example 1: Creating a Simulation Scenario from CAD data . . 116
4.6.2 Workflow Example 2: Comparing Microscopic, Mesoscopic and Macro-

scopic Simulation of a Scenario . . . . . . . . . . . . . . . . . . . . . . . . 116
4.6.3 Workflow Example 3: Evaluating Variations of an existing Scenario . . . . 117
4.6.4 Workflow Example 4: Migrating existing Scenario data to a changed Sim-

ulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 Conclusions and Future Work 119

5



List of Figures

1.1 General functional structure of software-supported pedestrian simulation . . . . . 9
1.2 Development process of simulation software . . . . . . . . . . . . . . . . . . . . . 10
1.3 Integrated architecture of simulation software . . . . . . . . . . . . . . . . . . . . 12
1.4 Simulation software architecture with unified tooling . . . . . . . . . . . . . . . . 13
1.5 Effects of unified scenario definition on the development process of simulation

software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Metamodel of pedestrian simulation . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Context of the generic input model . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Package diagram of the generic input model . . . . . . . . . . . . . . . . . . . . . 41
3.3 Overview class diagram of the generic input model . . . . . . . . . . . . . . . . . 42
3.4 Deployment diagram of unified tooling . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Versioning of GPSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6 Root structure of pedestrianScenario.xsd . . . . . . . . . . . . . . . . . . . . . . . 51
3.7 Items in pedestrianScenario.xsd . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.8 Sections in pedestrianScenario.xsd . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.9 Vector layouts in pedestrianScenario.xsd . . . . . . . . . . . . . . . . . . . . . . . 53
3.10 Grid-based layouts in pedestrianScenario.xsd . . . . . . . . . . . . . . . . . . . . 54
3.11 Graph-based layouts in pedestrianScenario.xsd . . . . . . . . . . . . . . . . . . . 55
3.12 Pedestrian types and OD-matrices in pedestrianScenario.xsd . . . . . . . . . . . 55
3.13 Parameterization in pedestrianScenario.xsd . . . . . . . . . . . . . . . . . . . . . 57
3.14 Parameterization in pedestrianScenario.xsd . . . . . . . . . . . . . . . . . . . . . 58
3.15 Root structure of pedestrianScenarioMetadata.xsd . . . . . . . . . . . . . . . . . 60
3.16 Abstract parameters in pedestrianScenarioMetadata.xsd . . . . . . . . . . . . . . 62
3.17 Element types in pedestrianScenarioMetadata.xsd . . . . . . . . . . . . . . . . . 63

4.1 Class diagram of the Scenario Project Model . . . . . . . . . . . . . . . . . . . . 67
4.2 Scenario overrides in the Scenario Project Model . . . . . . . . . . . . . . . . . . 68
4.3 Project Explorer (left) and Scenario Explorer (right) . . . . . . . . . . . . . . . . 72
4.4 Element Inspector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 Element Inspector, text field for string and numerical values . . . . . . . . . . . . 77
4.6 Element Inspector, selection box for enumeration values . . . . . . . . . . . . . . 78
4.7 Element Inspector, scenario scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.8 Element Inspector, problem indication . . . . . . . . . . . . . . . . . . . . . . . . 79
4.9 Element Inspector, custom distribution . . . . . . . . . . . . . . . . . . . . . . . . 80
4.10 Element Inspector, ordered discrete, ordered continuous and unordered uniform

distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.11 Element Inspector, substitute a parameter value by a probability distribution . . 81
4.12 Element Inspector, customize a probability distribution . . . . . . . . . . . . . . 81
4.13 Element Inspector, revert to the original distribution . . . . . . . . . . . . . . . . 81

6



4.14 Layout editor using a background image . . . . . . . . . . . . . . . . . . . . . . . 84
4.15 Vector Layout Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.16 Grid Layout Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.17 Grid Layout Editor, rotated grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.18 Graph Layout Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.19 Graph Layout Editor, manual link distances . . . . . . . . . . . . . . . . . . . . . 89
4.20 Infrastructure Editor, 3 sections on two floors . . . . . . . . . . . . . . . . . . . . 91
4.21 Infrastructure Editor, rotated section . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.22 OD-Map Editor, basins selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.23 OD-Map Editor, od-matrices definition . . . . . . . . . . . . . . . . . . . . . . . . 92
4.24 Problems View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.25 High-level structure of source packages . . . . . . . . . . . . . . . . . . . . . . . . 101
4.26 Domain base classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.27 Domain object duplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.28 Parameter bindings and problem annotations (1) . . . . . . . . . . . . . . . . . . 105
4.29 Parameter bindings and problem annotations (2) . . . . . . . . . . . . . . . . . . 105
4.30 Actions base hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.31 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7



List of Tables

1.1 Functional structure of available software solutions . . . . . . . . . . . . . . . . . 12

2.1 Comparison of classifications of pedestrian modelling in literature . . . . . . . . . 18
2.2 Notation and equations of [BSB07] . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Closed loop control interpretation of the showcase of [BSB07] . . . . . . . . . . . 33
2.4 Classification of reviewed models . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Examples of model concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 XSD-to-UML mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Built-in distribution types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 GEF model implementation by the vector layout editor . . . . . . . . . . . . . . 112
4.2 GEF model implementation by the grid layout editor . . . . . . . . . . . . . . . . 112
4.3 GEF model implementation by the graph layout editor . . . . . . . . . . . . . . . 113
4.4 GEF model implementation by the graph layout editor . . . . . . . . . . . . . . . 114

8



1 Introduction

1.1 Software supported Pedestrian Simulation

Mathematical formalization of behavioural aspects of pedestrians has been object of research

since the 1960s, originally emanating from knowledge about vehicular traffic flow. Different

approaches have been taken to develop models of pedestrian dynamics with the intention to

enable analysis and simulation of walking behavior in given spatial configurations.

This work focuses on pedestrian simulation models that are dedicated to be implemented as

computer programs, in contrast to purely analytical “hand-calculation” methods, see Section 2.2

for an overview of existing modelling approaches.

Software-supported application of a simulation model to real-world situations can generally

be structured into three subsystems, used in consecutive steps in the application workflow, as

indicated by Figure 1.1.

Figure 1.1: General functional structure of software-supported pedestrian simulation

First, the simulation scenario needs to be defined by the user. More precisely, the real-world

problem needs to be mapped to a software representation, inherently reducing information to

a well-defined finite data set. The simulation step addresses the actual execution of algorithms

specified by the simulation model. The result of the simulation is information about pedes-

trian behaviour, which is in turn presented to the user in the visualization/analysis step. This

structure presents a very abstract view, covering various possibilities for concrete implementa-

tions. For example, visualization and analysis could be realized using detailed 3-dimensional

animation as well as 2-dimensional density plots or numerical or graphical reports, among many

other possibilities. Also, with online or real-time simulation implementations, simulation and

visualization/analysis happen in parallel or looped in short time steps rather than strictly after

one another.

1.2 Development of Pedestrian Simulation Software

Figure 1.2 summarizes and refines the descriptions of the circular development process of pedes-

trian simulation software of [Kre07], [Klü03] and [Daa04].
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Figure 1.2: Development process of simulation software

Empirical data is gathered in controlled experiments or observations in practice using man-

ual or infrared-detector counting, GPS measurements, questionnaires or video analysis [Daa04].

Based on that data a theory is formulated that identifies parameters and expresses relation-

ships between parameters and various aspects of pedestrian behaviour. In the next step, a

model defining a mathematical representation of the simulation system is developed. Finally,

the simulation model, together with appropriate input, visualization and analysis functionality

according to Figure 1.1 are implemented as a computer program. There are two paths constitut-

ing feedback loops in the development process, making it a circular process. Verification means

checking whether the software is correctly implementing the model, i.e. whether the results

output by the program are consistent with theoretical results of the model. Validation com-

pares the simulation output to empirical data and therefore tests the realism of the simulation.

Negative verification requires implementation fixes, whereas unsatisfactory validation results

might lead to refinements at earlier stages of the development process, affecting all subsequent

steps. Calibration addresses the need of a simulation implementation to have a certain set of

fundamental parameter values adjusted to a given problem scope, usually based on empirical

data.

1.3 Related Work - currently available Software Solutions

There are numerous software packages available that address several use cases of pedestrian sim-

ulation. Comparisons and evaluations can be found in [Klü03], [SHST07], [Rai04] and [RSK07].

Examples are

• ASERI, based on research of Volker Schneider, by Integrierte Sicherheits-Technik GmbH

(Germany) [IST]

• CAST Terminal, an airport-centered, and CAST Pedestrian, a general-purpose simulation

environment, joint-developed by the Eurocontrol Experimental Centre (France) [EEC] and

10



the Airport Research Center GmbH (Germany) [ARC]

• Legion, various software solutions and consulting services offered by Legion International

Ltd. (UK) [Leg]

• the product line of Massive Software (US) [Mas]

• Myriad II, based on research of Keith Still [Sti00], by Crowd Dynamics Ltd. (UK) [Cro]

• NOMAD and SimPed, based on research of Winnie Daamen, Serge Hoogendoorn and

Piet Bovy [Daa02] [HB04], developed at the Delft University of Technology (Netherlands)

[DH03]

• PedGo, based on research of Hubert Klüpfel and Tim Meyer-König [KSMK05], by TraffGo

HT GmbH (Germany) [Tra]

• PEDROUTE, developed out of PAXPORT for airport terminals but no longer marketed,

by the Halcrow Group (UK) [Hal]

• SIMULEX, based on research of Peter Thompson [TM95a], part of the VE-PRO applica-

tion suite by Integrated Environmental Solutions Limited (UK) [IES]

• ShopSim [Sho], dedicated to shopping street and retail area scenarios, and SimWalk [Simb],

a general purpose simulation software, both developed by Savannah Simulations (Switzer-

land) [Sav]

• STEPS by the Mott McDonald Group (UK) [Mac]

• Urban Analytics Framework (UAF) [UAF] by Quadstone Paramics (UK) [Qua]

• VISSIM [VIS], a multi-modal simulation software based on Dirk Helbing’s social forces

model [HM95], developed by PTV Planung Transport Verkehr AG, (Germany) [PTV]

Further examination of related work regarding mathematical models is given by Chapter 2.

1.4 Problem Statement - Unified Tooling

Table 1.1 relates the products listed in Section 1.3 to the functional structure of Figure 1.1

according to available vendor information and literature.

It shows that all three subsystems are implemented by all of the solutions listed, either by a

single integrated application, or by a set of collaborating applications. Data exchange between

subsystems happens directly in runtime memory in the case of integrated programs, and via file

system using proprietary formats in the case of multiple tools. Some of the examples provide

additional flexibility for visualization and analysis by enabling exports of video-, 3d-rendering

or spreadsheet-data. However, scenario definition and simulation are tightly coupled in every

11



Product Scenario Definition Simulation Visualization/
Analysis

ASERI fully integrated

CAST fully integrated

Legion Legion Model
Builder

Legion Simulator Legion Analyzer
Legion Viewer
Legion 3D

Massive Jet fully integrated

Myriad fully integrated

SimPed SimInput,
SimControl

SimPed SimArchive
SimAnimation
SimAnalysis

PedGo PedGo Editor PedGo Sim PedGo Viewer

PEDROUTE Network Builder Simulation Module Graphics Module
Analysis Module

SIMULEX
(VE-PRO)

ModellT module SIMULEX module

SimWalk fully integrated

ShopSim fully integrated

STEPS fully integrated

UAF fully integrated

VISSIM fully integrated +
standalone Viewer

Table 1.1: Functional structure of available software solutions

example. A given simulation implementation requires its input data to be generated by its

corresponding scenario definition implementation. This system architecture, as depicted in

Figure 1.3, proves adequate for end-user oriented software, as the user expects and feels more

comfortable with a homogeneous solution optimized for the provided functional range.

Figure 1.3: Integrated architecture of simulation software

For this thesis, a different approach is taken. The central idea is to decouple scenario definition

from simulation as shown in Figure 1.4.

In contrast to the integrated architecture, scenario definition is not part of individual im-
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plementations, but instead addressed by an external dedicated component. That component

can be configured to be applicable for varying simulation implementations, potentially using

completely different underlying models, wherefore it is called unified. Data exchange between

scenario definition and simulation corresponds to some unified interface.

Figure 1.4: Simulation software architecture with unified tooling

This architecture clearly comes with the cost of additional complexity related to the con-

figurability of the scenario definition and the uniformity of the interface, but for benefits from

three perspectives. First and as the main motivation, this approach helps modellers and simula-

tion programmers to focus on their main concerns, the design and implementation of simulation

models. The unified scenario definition tool is a means to create input data already at an

early experimental and prototyping stage, and can easily be adopted to simulation model im-

provements via configuration. Figure 1.5 shows how simulation tool development is simplified

by replacing the implementation of the scenario definition component by much less laborious

configuration of the unified implementation in the development process of Figure 1.2.

Figure 1.5: Effects of unified scenario definition on the development process of simulation
software

Second, from the researcher’s perspective, the possibility to define test cases and key scenarios

once and let them be processed by any compatible simulation implementation is a means to

efficiently perform comparisons and evaluations.
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Third, from the point of view of end users, unified scenario definition allows for easier changing

between simulators, and given compatible configurations even simultaneaus use of multiple

simulators with a single scenario definition. The user is therefore designing simulation scenarios

in a more reusable way.

To the knowledge of the author, at the time of writing no implementation of this approach,

specialized on pedestian simulation, is available. This thesis is a study of the development of

1. a specification of a unified interface, the Generic Pedestrian Simulation Interface (GPSI)

and

2. a unified scenario definition software tool to create data corresponding to that interface,

called the Scenario Builder.

In the following, the conjunction of the interface and the tool is referenced to as the unified

tooling framework, or shortly the framework.

1.5 Methodology

As stated above, this work is broken down into the development of the interface specification

and of the software tool.

1.5.1 Interface Specification Methodology

The development of the GPSI is based on a literature study on pedestrian behaviour modelling

and simulation. The approach is to use existing findings in pedestrian simulation as a basis

for the concepts modelled by the generic interface, and achieve support for future and novel

simulation models by integrating some degrees of freedom. The result of the literature study is

a collection of input data requirements of the examined simulation models.

In the next step, a generic domain model for pedestrian simulation scenarios is constructed as

an abstraction of an appropiate range of input data structures provided by literature, and noted

using UML class diagrams. The critical requirement for unified scenario definition to meet the

motivation of Section 1.4 is adaptability to concrete modelling approaches. The range of possible

simulation models supported by the framework is directly related to the degree of abstraction

of the generic domain model. A higher abstraction level in turn increases the complexity of

the configuration task (Figure 1.5) and likely decreases usability of the scenario definition tool.

Balancing these attributes and finding an appropriate compromise is one important aspect of

this step.

Finally, an interface definition technology is chosen and the interface specification is formalized

as an implementation of the generic domain model.
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1.5.2 Tool Development and Validation Methodology

The Scenario Builder tool is developed following an incremental, object-oriented software devel-

opment process. Regular analysis, review and evaluation sessions were held with a researchers

team at the AIT1. Project documentation is based on UML, textual constraints and rationals,

and generated code documentation based on source annotations. The implementation consid-

eres recent open-source frameworks and libraries. Validation of the tooling framework is given

by considerations of its adoption to subsequent projects and workflow examples.

1AIT Austrian Institute of Technology GmbH, TECHbase Vienna, 1210 Wien
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2 Pedestrian Modelling

2.1 Application of Pedestrian Models

Pedestrian modelling has a wide area of application, including the following fields.

• Architecture, Facility Planning and Physical Security

Computer-aided simulation is a tool to estimate the effects of design decisions for buildings

and open space. It can be used to examine how a given architecture affects typical

situations and how it meets certain expectations and requirements. As thousands of

visitors per day were expected, planners and designers of the World Trade Center Memorial

site utilized simulation software to visualize and measure functionality of the site from a

pedestrian’s perspective and to evaluate the site’s physical design [MVCA08].

The “Physical Security” domain of the Certified Information Systems Security Profes-

sional (CISSP) certification [CIS] addresses the importance of environmental design to

information security. The concepts of Crime Prevention Through Environmental Design

(CPTED) provide guidelines to reduce crime by effects of the physical environment on

social behaviour [Har07], for example by avoiding optical barriers to doors of secured areas

to make intruders feel less comfortable in attempting to break in. Especially the Natural

Access Control strategy is capable of being supported by pedestrian simulation tools.

Another class of use cases that draws particular attention to pedestrian simulation in

spatial design is emergency analysis [HFMV02]. Evaluations in this field are typically

based on factors like crowd density and egress times, which are appropriate to be measured

in simulated environments, as experimental investigations would usually be very costly

and sometimes dangerous for human participants and numerical calculation models are

less pratical for complex scenarios. [TM95a] presents a simulation model for evacuation

analysis which is compared to standard calculation methods of evacuation performance by

[TM95b], and to real world evacuation data by [OR01]. Commercial Pedestrian simulation

software was used to improve renovating plans and the coordination of serving and security

staff of the main venue of the Beijing Olympic Games in 2008, the Beijing National

Stadium, with respect to security issues of pedestrian assembling and evacuation [ZWS08].

[Klü03] compares simulation results to evacuation exercises of passenger ships, a movie

theater and a primary school.

• Traffic Control and Urban Design

In urban infrastructure design, multimodal mobility is a crucial issue [Nob07]. Simulation
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of the interaction of pedestrian and vehicular traffic provides a means to improve effi-

ciency and security of public transport services. The authors of [BSB07] used pedestrian

simulation to develop and evaluate decision rules for an entry restriction system of a Vien-

nese surface subway station attached to a soccer stadium. [HD04] shows how pedestrian

simulation is used as an assessment tool supporting the decision for a new access gate sys-

tem for three railway stations in Lisbon. [Daa04] provides case studies of the Rotterdam

Central Station and the ferry-terminals in Vlissingen and Breskens. [KR07] describes the

simulation and comparison of two layout variants of the SBB railway station in Bern and

makes a prediction of the situation in 2030 based on assumptions of increasing passenger

amount, an additional track and another timetable.

• Retail Industry and Retail Policy

[Tim04] states three fields of business-related interest for pedestrian modelling.

– Applied to individual retail stores, spatial analysis can support marketing consider-

ations.

– At the level of shopping centers or shopping areas, behavioral models of shopping

pedestrians address the optimization of customer flows and the assessment of market

potentials of retail locations. [BT86] tests a model for multi-purpose shopping trips

against empirical data of the city center of Maastricht. [SLR07] presents simulations

of grocery shopping activities of the region of Ume̊a (Sweden) and validates the

underlying model using gathered population and store data.

– Pedestrian simulation proves useful in the development of governmental retail poli-

cies, for example to vitalize downtown areas.

• Entertainment

Concerning cinematic productions and computer games, pedestrian modelling occurs es-

pecially in terms of crowd simulation. Examples are the battlefield animations of the

“Lord of the Rings” movie trilogy [ASDB08] and virtual characters in the game “Splinter

Cell” [Zam07].

2.2 Classification of Pedestrian Models

[Klü03], [Daa04], [Kre07] and [SKK+08] identify similar classification categories of pedestrian

models as summarized in Table 2.1. Accordant categories are noted in the same row respectively.

[Daa04] lists the modelling approach as another classification category, which is not included in

the table as its characteristic is derived from combinations of other criterions. [TBM08] describe

a primary categorization of modelling density versus modelling individuals, which corresponds

to the traffic/population representation criterion to distinguish macroscopic and microscopic

models in Table 2.1, and a secondary categorization for models of individual behaviour con-

cerning the interaction of pedestrians. Regarding the latter, also a distinction of macroscopic,

17



[Klü03] [Daa04] [Kre07] [SKK+08]

discrete ↔
continuous

scale of independent
variables

discrete ↔
continuous

stochastic ↔
deterministic

uncertainty in the
process

stochastic ↔
deterministic

stochastic ↔
deterministic

macroscopic ↔
microscopic

traffic representation population
representation

macroscopic ↔
microscopic

estimation ↔
first principles

type of behavioural
rules

population
behaviour generation

rule based ↔
force based

numerical ↔
analytical

operationalization

specific ↔
general

area of application purpose

quantitative ↔
qualitative

space representation

hight ↔
low fidelity

Table 2.1: Comparison of classifications of pedestrian modelling in literature

microscopic and mesoscopic models is made, referring to the level of detail at which the influence

of individuals to other individuals is modelled.

In the following, these classifications are combined to a generic classification used for the

analysis of input data structures in subsequent sections.

2.2.1 Classification Criterions

Granularity

A basic characterization of simlation models is given by the concept of the modelled objects.

Microscopic models define representations of individual pedestrians, each with its own sepa-

rate state and set of properties. Macroscopic models do not consider single individuals but

are based on crowd dynamics, using concepts like flows, densities and averaged velocities. Mi-

croscopic models provide more accurate results as they process more detailed information, but

with the requirement of higher computational effort. The aggregation of individual parameters

into macroscopic concepts reduces numerical load for the downside of information loss. As a

compromise in between both classes mesoscopic models have been proposed, that deal with

groups of persons rather than single individuals ([FMT01]).

Interaction detail

A sub-classification of microscopic, macroscopic and mesoscopic models is possible for models of

microscopic granularity regaring how interaction between pedestrians is modelled, see [TBM08,

18



TM07]. Macroscopic interaction modelling is based on fundamental diagrams, i.e. flow-density

relationships. Modelling interaction microscopically incorporates detailled information about

the relative position, sensing capabilities and individual properties of pedestrians. Mesoscopic

models use some combination of the above concepts to model movement.

Scale types

Variables describing a simulated system are either discrete or continuous. The most important

variables for the classification of pedestrian models are time and location, their scale types

are fundamentally characterizing a model. A discrete time scale means model calculations and

updates are performed at certain time steps, models with continuous time scales are typically

purely analytical or use event-based or randomized state updates. Discrete space models sim-

plify location information using grids or graphs, modelling continuous space considers more

geometrical detail of the modelled scenario. Other possible model variables are velocity, accel-

eration, density, attraction, etc.

Determinateness

This category refers to the distinction between deterministic and stochastic models, as some

models consider uncertainty of pedestrian dynamics using probabilities and random variables,

whereas others are defining only fixed relationships.

Behavioural concepts

As [SKK+08] distinguishes between rule-based and force-based interaction implementations,

[Kre07] enumerates artificial-intelligence-based, functional, implicit and rule-based behaviour

generation and [Daa04] states individual and collective rules to be classes of behavioural rules,

in general a classification category addressing the behavioural concepts of model algorithms can

be identified, with a wide range of different characteristics proposed.

Application scope

A pedestrian model is either applicable to only a certain specific problem field (typically evac-

uation) or it is a general model designed for a wider application area.

Operationalization

The application of pedestrian models happens either analytically by finding solutions of sets

of equations or by simulation runs. As previously noted, this work concentrates on simulation

models.
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Behavioural level

[HB04] introduce a hierarchy of three layers at which pedestrian behaviour can be investigated:

• The strategic level addresses activity scheduling, i.e. pertains to which, in which order

and where pedestrians perform activities.

• The tactical level is concerned with higher-level navigation of pedestrians in a spatial

configuration, i.e. algorithms and data structures for choosing and describing paths,

commonly referred to as route choice models.

• The operational level is where walking and interaction bahaviour of pedestrians is actually

modelled.

This criterion can be used to observe which levels are covered by a particular model.

2.3 Model Analysis

At an abstract level, simulation models are structured as shown in Figure 2.1.

Figure 2.1: Metamodel of pedestrian simulation

The way real-world situations are presented within the model is defined by the Input Model,

likewise the Output Model is concerned with the structure of output data produced by the

simulation. The actual interpretation and processing of input and the computation of respective

output is defined by the Operational Model. Model definitions usually do not explicitly identify

their realizations of these three model parts, but rather describe the model as one formal system,

still implicitly defining input, operation and output. Therefore this structuring is applicable to

all investigated models, and for the purpose of a unification of simulation scenario definition,

basically the input model part is relevant.

In this section, representative simulation models of all classes for each classification crite-

rion of Subsection 2.2.1 are reviewed, with particular regard to the structure of the required

input data. Thereby, a collection of input model characteristics is derived from the classifi-

cation of simulation models. Granularity is used for primary ordering as the characterization
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as macroscopic, microscopic or mesoscopic model is apparently the most prominent classifi-

cation attribute. The selection of models is not intended to be exhaustive, but to enable an

examination of the essential distinctive characteristics of input models.

2.3.1 Macroscopic Models

Macroscopic models have mainly been developed in early pedestrian studies and emerged from

traffic flow theory [HCM85]. They are typically based on analogies with gas and fluid dynamics

and therefore formulated as partial differential equations, characterising them as rather analyti-

cal theories requiring difficult numerical solutions. The continuum model of [Hug02] is discussed

as one representative of this kind of models, as an efficient algorithmical application method for

it is given by [HWZ+09]. Other examples are the studies of [Hel92].

Dynamic Continuum Model for Pedestian Flow

[Hug02] presents a theory describing the motion of large, goal-directed crowds based on differ-

ential equations, and applies it to an example situation of pilgrims moving over the Jamarat

Bridge near Mecca. Crowds are treated as a continuum, pedestrian flow is described by its

density and velocity. Space and time are modelled by continuous independent variables.

Model review. The basic relationship of flow, density and velocity is given analogously to fluid

mechanics and other physical systems by interpreting the number of pedestrians in a crowd as

a conserved quantity requiring the continuity equation to hold,

∂ρ(x, y, t)

∂t
+∇ · ρ(x, y, t)~ν(x, y, t) = 0, (2.1)

where ρ is the pedestrian density and ν is the pedestrian flow velocity, each at location (x, y)

and time t, i.e. the temporal change of pedestrian density equals the spatial change of the time

rate of pedestrians flowing through a unit area.

Further characteristics of pedestrian motion are modelled based on three hypotheses, each

expressed as an additional equation. In the following, vector notation is used instead of the

original component notation and the walking direction unit vector is therefore noted explicit as

δ̂ instead of its components (the partial derivatives of the potential function).

1. Walking speed is a function of density, i.e. given the unit vector of the walking direction

δ̂(x, y, t),

~ν(x, y, t) = f(ρ(x, y, t))δ̂(x, y, t). (2.2)

f(ρ) corresponds to the relationship that is frequently referred to as the fundamental

diagram in literature [Daa04, DHB05]. There is no widely accepted agreement on the form

of the function, apparently it depends on factors like the psychological and physiological

state of pedestrians and local conditions. In his numerical examples, [Hug02] uses an

alternative form of a function for vehicular traffic proposed by [Gre35].

21



2. The movement directions of all pedestrians in a crowd are governed by a potential field

φ(x, y, t). At a given location, pedestrians move in the direction of decreasing potential,

perpendicular to the isopotential curve of φ at that location, thus the unit vector of the

walking direction introduced in hypothesis 1 is given as

δ̂(x, y, t) =
−∇φ(x, y, t)

||∇φ(x, y, t)||
. (2.3)

3. Pedestrians avoid extremely high densities, modelled by a tempering function g(ρ), such

that
1

||∇φ(x, y, t)||
= g(ρ(x, y, t)) · ||~ν(x, y, t)||. (2.4)

Combining Equations 2.1 - 2.4 in component notation yields a partial differential equation sys-

tem of Equations 2.5 and 2.6 ([Hug02]), of which numerical solutions for φ(x, y, t) and ρ(x, y, t)

describe pedestrian flow in particular situations:

−∂ρ
∂t

+
∂

∂x

(
ρg(ρ)f2(ρ)

∂φ

∂x

)
+

∂

∂y

(
ρg(ρ)f2(ρ)

∂φ

∂y

)
= 0 (2.5)

g(ρ)f(ρ) =
1√

(∂φ∂x )2 + (∂φ∂y )2
, (2.6)

Subsequently, the model is extended to support multiple pedestrian types, differing in their

respective destinations (and therefore potential fields φi) and velocity functions fi(ρ).

Input model analysis. Numerical solutions of Equations 2.5 and 2.6 require boundary condi-

tions, which are actually representing geometry and pedestrian appearance of a given scenario.

[Hug02] proposes any particular situation to be defined by its closed boundaries, entries and ex-

its in continuous space. Closed boundaries are specified by defining the normal derivative of the

potential, φ, to be zero at boundary locations, entrances are modelled by specifying pedestrian

density, ρ, at entrance locations. At exits, φ or φi for multiple pedestrian types respectively has

to be set to zero.

[HWZ+09] describes an efficient solution algorithm for the model equations that is based on

discretization of space and time. A uniformly spaced mesh is used to encode the geometry of

a scenario, aligned with the boundary of the domain such that walls, entrances and exits are

located at midpoints between two grid points. Regarding the input model, the arrangement

and the grid size, hence the resolution, of that mesh are required as explicit input information.
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2.3.2 Microscopic Models

Social Forces Model

[HM95] suggest the concept of “social forces” governing the motion of pedestrians, i.e. abstract

vectorial quantities in continuous space representing the effect of the environment on pedestri-

ans. Acceleration and deceleration of pedestrian movement are modelled as reactions to that

forces based on utility maximization. The [VIS] software tool is based on this model.

Model review. Four effects are considered in the formulation of [HM95]:

• A given pedestrian wants to reach a destination area on the shortest possible path walking

at a certain desired speed. The path is modelled as a polygon with the current location

as starting point and the nearest point of the destination area as end point. A deviation

of the current walking speed from the desired speed (in direction or magnitude) causes an

acceleration to reduce the deviation.

• Pedestrians want to keep a certain velocity-dependent distance from each other. This

effect is modelled by monotonic decreasing repulsive potentials originated by each pedes-

trian. The potential is assumed to have elliptical equipotential lines directed into the

walking direction to reflect the consideration of space required for the next step by other

pedestrians.

• Pedestrians want to keep a certain distance from borders of walls and obstacles, modelled

by monotonic decreasing repulsive potentials originated by the nearest points of each

border.

• Objects or other persons can attract pedestrians, possibly with decreasing interest for

the attraction with time. These attractive effects are modelled by monotonic increasing

attractive potentials, but not taken into account in consequent studies for simplicity.

• The above described attractive and repulsive effects are weakened by a constant factor if

they are originated outside an assumed angle of sight to model directed perception.

[HFV00] and [HFMV02] adapt the model to better reflect evacuation and panic situations

by redefining the repulsion forces of pedestrians and obstacles, and establish consistency to

Newton’s 2nd law of motion by considering the mass of pedestrians. The acceleration of a

pedestrian i is given by ([HFV00])

mi
d~vi
dt

= mi
v0i (t)~e

0
i (t)− ~vi(t)
τi

+
∑
j(6=i)

~fij +
∑
W

~fiW , (2.7)

where mi is the mass, ~vi the actual velocity, v0i the desired speed and ~e0i the desired direction

of pedestrian i. The relaxation time τi denotes how fast the actual velocity is adapted to the
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desired velocity ([HM95]). ~fij and ~fiW are the repulsive forces emanating from other pedestrians

and obstructions respectively. Without refinement for this study, fij is the vector sum of

three components, fsocial, describing the psychological tendency of two pedestrians to keep a

distance between each other, fpushing, a physical force describing body compression, and fsliding,

describing sliding friction impeding relative tangential motion.

[LKF05] propose further modifications to avoid spatial “overlapping” of simulated pedestrians

and to enable a recalibration of parameters to more intuitive values. The authors account

||fsocial|| to be dependent on the density of the crowd and the orientation of pedestrians (face-

to-face or face-to-back). Also, a software implementation of the model is presented, using a

relatively time-efficient explicit numerical integration algorithm. [PGM09] also approach the

issue of “overlapping”.

[HFMV02] compare simulation results of different situations to empirically observed collec-

tive phenomena and spatio-temporal patterns like lane formation, oscillations at bottlenecks,

crossing behaviour, “freezing by heating”, clogging or the “faster is slower” effect. The au-

thors claim that the proposed model, despite its relative simplicity, provides high realism and

performs well in reproducing the empirical findings. [PGM09] provide further comparisons to

published experimental data and state their modifications to make the model valid for the de-

scription of pedestrian dynamics in normal conditions. The simulated effects are not results of

explicit model rules or configuration, but actually consequences of dynamic interaction between

simulated pedestrians. [HBJW05] report on practical applications of the model and simulation

experiments used to develop suggestions for improvements of pedestrian facility designs.

Input model analysis. It is conspicuous that [LKF05] list and suggests values for a total of 24

parameters used to calibrate the model. Some values, namely the maximum attraction to an

exit Aexit and the “unsqueezing force” fOE are derived from other parameter values. The face-

to-face social repulsive magnitude F , the high-density correlation factor K1 and the preferred

isolated speed v0 are varied in experimental sets of simulation runs.

The model of [HM95] and its variations define equations with vector variables describing

locations of pedestrians, potentials and path points in continuous space, therefore vector-based

geometry information is adequate input.

Presented numerical examples are kept simple to focus on isolated collective effects mentioned

above. Notably the model lacks path planning capabilities, as it does not describe the calculation

of path polygons defining the local targets and therefore the desired walking direction ~e0i of a

pedestrian i. This means that simulations of scenarios with more complex geometry require an

additional route choice layer in turn possibly requiring navigation information as input. [VIS]

for example uses static routes defined by the user additionally to the environment plan.
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Cellular Automata Models

A large number of model proposals are based on a mathematical theory for modelling dy-

namical systems called cellular automata. Cellular automata were introduced by [Neu66] and

comprehensively studied by [Wol94]. In general, a cellular automaton consists of discrete sites,

organized as cells in a regular grid of some dimension, i.e. in a row, a plain lattice or a cube.

Each cell holds a discrete state value. Evolution of the system happens in discrete time steps

and is determined by local transition rules applied on each cell synchronously. At each update

step, the new state of a given cell depends exclusively on its current state and the current states

of the cells in its neighborhood, whereas different definitions of the neighborhood function are

possible and used depending on the modelled system.

[NS92, Nag96] developed a cellular automaton model for road traffic interpreting vehicles

as particles moving, i.e. hopping from cell to cell, in a 1-dimensional discrete road string.

Applied to pedestrian simulation, cellular automata are usually designed as 2-dimensional grids

representing the scenario space. Pedestrians are modelled by moving actors, frequently the

formalization of the model uses the agent-based simulation paradigm. [DT02] illustrate how

cellular automata and distributed artificial intelligence concepts are combined as a framework

for pedestrian simulation. An abstract framework for the development of multi-agent based

cellular crowd simulation models is proposed by [BFV07].

Floor Field Model

Model review. In the model proposal of [BKSZ01], interactions of pedestrians with other

pedestrians and scenario geometry over long distances (i.e. not within the local neighborhood)

are simulated using state variables of cells called floor fields in a 2-dimensional cellular automa-

ton. Pedestrians are modelled by particles with simple local transition rules, complex collective

effects are reproduced by self-organization. Each cell is occupied by at maximum one particle

at each time step. The movement velocity of all particles is fixed to one cell per turn. For

each particle, a preferred walking direction is assumed to be known, from which a 3× 3 matrix

of preferences representing the possibilities of a particle to move in the respective direction

is calculated based on average velocities and their fluctuations. At an update step, a desired

target cell is calculated for all particles in parallel, determined by the preference matrix and

the quantities of the floor fields in the neighborhood cells. Conflicts caused by identical target

cells of different particles are resolved such that all involved particles except one are required

to remain at their current location. Likewise, desired movement to occupied cells results in

waiting at the current cell.

Two location-dependent quantities are influencing the desired walking direction as originally

given by the matrix of preferences, the static floor field and the dynamic floor field. The static

floor field is time-independent and allows for the specification of the attractiveness of regions

of the scenario geometry. The dynamic floor field is time-dependent and constructed in a way
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to achieve an effect similar to chemotaxis of bacteria or ants following pheromone trails left

by other ants ([RFRA07, NSK+06]). Pedestrians are assumed to follow virtual trails of other

pedestrians walking some distance ahead, stored by the dynamic floor field, and diffusing and

decaying with time. This models empirically observed behaviour to optimize walking efficiency

in crowds, see [KS02, SKK+08] for overviews of collective phenomena of pedestrian crowds.

[BKSZ01] present a discrete and a continuous alternative for the formulation of the floor fields.

The realism of simulation results is furthermore improved by switching between two differ-

ent matrices of preferences for each pedestrian, enabling happy or unhappy mood. Particles in

unhappy mode move less directed, i.e. the matrix of preferences is constructed using greater

standard deviations and a reduced velocity. A particle switches to unhappy mode when move-

ment to the desired target cell has been blocked too many times in series, i.e. in situations of

high density, and switches back to happy mode when a certain number of unblocked timesteps

has been possible. By this means unrealistic clogging in front of obstacles is avoided.

[KS02] examine the characteristics of the model for a simple evacuation scenario and the

relation between model parameters and evacuation time. It is shown that the model is capable

of reproducing regular as well as panic behaviour by choosing appropriate parameter values.

Further Model applications are reported in [BKSZ01]. The authors deem the floor field model

to correctly capture the most important collective phenomena of pedestrian dynamics. [KS06]

compare simulation results to empirical data gathered at evacuation exercises in a primary

school and also find good agreement between both.

Input model analysis. The floor field model is dedicated to the operational layer as it expects

the desired walking direction of each particle to be known to calculate the matrix of preferences,

therefore an additional navigation or path specification layer is necessary with its respective

requirements on input data. The term species is used to describe subsets of the simulated

crowd with common desired walking directions, multiple species are simlpy possible by assigning

different preference matrices. As a possible extension, spatial structures could be modelled by

assigning preference matrices to grid cells instead of [or in addition to; note from the author]

matrices of particles. The model operates on a space representation as a regular grid which can

optionally be periodically closed in one or both paraxial directions. The cell size is expected to

correspond to the typical area occupied by one pedestrian. Each cell is either allowed (at free

space) or forbidden (at walls and obstructions), yielding the obstacle number used by [KS02].

The static floor field can be used to specify attractive regions of space like emergency exits

or shop windows, it is either precalculated and provided to the simulation or deduced from

geometry using methods like those of [TM07, TBM08].

Amanda Model

Model review. Amanda is a cellular automaton model prototypically presented by [DJT01]

and [DT02]. Pedestrians are represented by agents moving in 2- or 3-dimensional space modelled
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by a lattice of cells. The state of each cell consists of a static portion, indicating the type of the

cell as empty, wall or decision, and a dynamic portion given by an occupation flag and the density

of the cell. Empty and decision cells can be occupied by at most one agent, whereas wall cells

represent obstructions and boundaries. Though route choice algorithms are not included in the

model proposals, navigation is described to be based on a network of nodes and links overlying

the cellular grid with decision cells constituting the nodes of that graph-based representation of

the simulated environment. Each cell is either occupied or free. The density of a cell is defined

as the number of occupied cells in the neighborhood of some fixed radius in relation to the total

number of cells in that neighborhood.

In contrast to previously presented models, agents of the Amanda model can occupy more than

one cell, thus a smaller cell size and therefore finer spatial resolution are possible. Regarding the

temporal dimension it is distinguished between shorter time intervals for model updates, called

time-slice-steps and longer time intervals for visualization, called time-steps. The velocity of

agents is variable and defined as the number of cells crossed during a time-step. The time-slice-

step is chosen appropriate to the assumed maximum velocity, so that the maximum velocity

equals one cell per time-slice-step. Lower velocities are simulated by intermediate waiting steps

decreasing the speed average. The rule set applied to each agent at each time-slice-step is kept

very simple, though not fully explained. Essentially the walking direction is changed at decision

points, if the agent intends to move to an occupied cell, based on its current walking velocity

and movement direction, the cells targeted by a sidestep to the left or to the right are checked,

if they are also occupied, the agent waits for the next round.

Although not explicitly mentioned, the model seems to be restricted to paraxial navigation,

since it is not explained how the desired target cell for the next update step is determined in

general given the next target decision point and current walking speed, and the example of

[DT02] uses a navigation network graph containing only paraxial links. Also, the description

of the rule set does not refine the choice of the target cells for sidestepping. Other aspects left

at a rather conceptual level are the influence of density and agent behaviour on walking speed,

the treatment of conflicts in parallel updates and the discretization of walking speed. To the

knowledge of the author, no validation results based on comparisons to empirical data have

been reported.

Subsequent research based on the Amanda model concentrated on the strategic level (as

explained in Section 2.2.1). [DTdV09, DTdV07, DTdV05] studied activity scheduling and

route choice behaviour in shopping environments. A mathematical formalization of decision

processes in shopping trips is given and its parameters are estimated using collected data. The

scheduling model assigns each pedestrian a time-dependent activity agenda, i.e. a set of planned

activities with respective priorities. The agenda is adapted whenever activities are completed,

due to time pressure (considering e.g. opening hours of shops) or as a result of unplanned,

impulse behaviour, typically induced by advertising. Whether or not an agent schedules the

visit of a shop is decided by heuristics based on perceptual fields, distinguishing between leisure-
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and goal-oriented trip behaviour and taking into account the attractiveness and distance of the

shop, the experiences already made with that shop and if the view to the shop is interrupted.

Input model analysis. Though the model is described to support 3-dimensional cellular au-

tomaton representations of the scenario, only the 2-dimensional case is further discussed and

only 2-dimensional examples are provided. Environment geometry is specified by wall cells of

the regular lattice. Additionally, the navigation network and the coupling of its nodes to grid

cells need to be defined. Concerning activity scheduling and route choice, some decision points

in the navigation network need to define parameters like signalling intensity and flags indicating

the possibility to conduct activities ([DTdV05]). Also, for each individual simulated pedestrian

an activity agenda and other behavioural parameters need to be specified.

Route Choice Self-Organization Model

Model review. The proposal of [TBM08] places emphasis on the support of dynamic envi-

ronments, i.e. spatial configurations with dynamic elements like doors that can be opened or

closed or elevators that might be temporarily out of order. The model is based on a gereral-

ization of the cellular automata interpretation of previous examples. Pedestrians are modelled

by individual agents moving in a regular lattice. A cell of the lattice can be occupied by any

number of agents up to some maximum density. The movement rules of agents generate a more

sophisticated path finding behaviour, referred to as route-choice self organization (RCSO), than

that of simple static or shortest route algorithms.

Infrastructure geometry information is encoded into a binary matrix, that is an assignment

of a value representing free space or obstruction to every cell of the cellular automaton lattice.

Navigation information is provided by a navigation matrix, generated using the concept of sink

propagation value (SPV) explained below. The navigation matrix enables agents to determine

the direction to their target by examining only their local neighborhood. Dynamic environ-

ments are supported by precomputing a static (initial) navigation matrix (Qinitial) containing

“default” knowledge about the environment, and interferring it with a dynamically created cur-

rent navigation matrix (Qcurrent), using a smoothing parameter γ with 0 ≤ γ ≤ 1 to represent

the degree of information of agents about the current situation:

Q = (1− γ)Qinitial + γQcurrent (2.8)

The time required by an agent to walk across a cell is determined macroscopically by a speed-

density relationship function. Simulation proceeds in discrete time steps, at which another

matrix is calculated to represent the probability of each cell to be entered by an agent as a

function of the cell density, reflecting the preference of lower densities in the walking path. The

next cell to enter is decided by calculating the maximum entry in the Moore neighborhood of the

normalized entrywise product of the binary matrix, the navigation matrix and the interaction

matrix.
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The model is extended by [TBM08], where space representation is generalized to network

graphs, understanding the regular lattice of [TM07] as a special case of an undirected graph.

Also, different functions for interaction and navigation (i.e. the SPV) are used. The term basin

is defined as a set of (not necessarily connected) vertices composing the origin (source basin),

the destination (sink basin), or an intermediate location of particular activity (saddle basin) of

the movement of agents.

The sink propagation value of a cell in [TM07] or a vertex in [TBM08] is basically a measure

of the distance to a given agent’s sink basin. [TBM08] defines it to be a positive function that

is zero at vertices of the sink basin, infinite at vertices from which the sink basin is unreachable

and strictly monotonically increasing with increasing shortest distance to the sink basin. The

SPV is calculated using smoothing relaxation ([Win92]) by [TM07] and using Bellman flooding

([Bel58]) by [TBM08].

Simulation results of [TM07] show realistic patterns for simple dynamic environments, [TBM08]

illustrates how route choice of individuals is an output of the simulation trading off distance

minimization against congestion avoidance, and provides an egress time analysis of a simple

example using the generalized graph-based space representation of the model.

Input model analysis. The model as explained by [TBM08] is basically calibrated using 6

parameters of 3 cumulative distribution functions of the beta-distribution used for the speed-

density relationship, the interaction matrix and the sink propagation value. Spatial data is

provided using a regular grid of cells that are either free or impassable or by a network graph

of linked regions. For the generation of the navigation matrix, the set of cells or vertices

constituting the target basin of the simulation population (in the given simple examples a

homogeneous crowd heading towards a common target is assumed) needs to be specified.

Queueing Network Model

Model review. [Løv94, Løv95] propose a pedestrian model based on queueing network theory.

Simulated space is modelled by a network of nodes and undirected links. Nodes represent rooms

(or decision points in building sections in general) and links represent doors (or walkways).

Three node types are distinguished - source nodes, transportation nodes and destination nodes.

Nodes are assigned a maximum capacity and links an effective width. Pedestrians in the scenario

are modelled by seperate entities moving from source nodes to destination nodes, wherefore the

model is characterized to be of microscopic granularity.

Time is modelled continuous, the number of persons residing in each node of the network

as a function of time is formulated as a stochastic process. The model proposal includes an

activity scheduling layer similar to [DTdV09] presented above. Route choice is mentioned to

be a necessary step in the movement process and usually based on perceived shortest paths but

not specified in detail.

An analytical solution method is presented to calculate performance measures as expected val-

29



ues of stochastic variables. Each pedestrian is interpreted as a seperate customer of a queueing

system (see [GSTH08] on queueing theory). Also, the simulation method implemented by the

EVACSIM software of [DWS+92] is summarized. EVACSIM is dedicated to evacuation scenar-

ios. Time continuity is simulated using event-based updates of individual movement processes

of persons. Performance measures are determined using monte carlo analysis.

Input model analysis. Essentially, this model requires the queuing network graph representing

the simulation scenario as input, and additional information needed by the applied routing rules

about the targets of movement of individual pedestrians. The simulated population is either

predefinied by an assignment of pedestrians present at starting time to network nodes or a

specification of an external arrival process [or a combination of both, note from the author].

2.3.3 Mesoscopic Models

Mesoscopic pedestrian models have been developed inspired by the mesoscopic approach of

road traffic simulation ([FMT01]). Instead of describing behaviour of single pedestrians or the

flow of a crowd as a whole, the simulated entities are groups of pedestrians. This paradigm

appears to be especially practicable for real-time (also referred to as online) simulation for the

purpose of predictions of critical states, because modelled pedestrian groups usually correspond

to numbers of persons in particular areas such as rooms or train platforms, which in turn are

quantities suitable to be injected into simulations based on measurements obtained in real-time

by counters, visual estimation or image data analysis.

Models of [HTRS03] and [TA04]

Model review. [HTRS03] developed a mesoscopic discrete time and space modelling concept.

The spatial environment is simplified to a network of connected areas, formally represented as

a directed graph. Each node of the graph is of type source, sink or storage. Every pedestrian

group has its own behavioural rules, is generated at a scource node and leaves the network at a

sink node. Storage nodes represent resources in the environment like staircases and doors where

groups can be delayed, split and merged. One special type of storage nodes are stations, repre-

senting “server processes” like check-in or ticket purchase. For each storage node a throughput

capacity is specified.

The simulation calculates the quantity of pedestrians in every storage at discrete time steps.

Movement time between nodes is calculated based on a distribution function. Route choice is

not explained as a part of the model but seems to be addressed by the design of behavioural

rules of pedestrian groups, which in turn are not described in detail. This simulation model is

reported to be implemented as part of a prototypical real-time decision support system that

processes measured data and scheduled events to proactively forecast exceedings of thresholds

like maximum pedestrian counts in critical areas.
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[TA04] refined this approach. Network nodes are referred to as components of type source,

sink, service station or passageway. Grouping of pedestrians is modelled in terms of two dimen-

sions, logical and physical. Physical groups represent person quantities in particular areas as

calculated by the model of [HTRS03], whereas logical groups correspond to the actual groups

of [HTRS03]. In general, at each discrete time step, parts of logical groups are allocated to

multiple physical groups and physical groups are composed of parts of logical groups.

Logical groups aggregate individual persons with common intentions and route choice be-

haviour. The formation of logical groups is driven by an event schedule. Service station com-

ponents cause simple delays. Movement is essentially modelled by passageway components

based on dynamic route segmentation, that is a discrete approximation of velocity distribu-

tions achieved by a segmentation of passageways into virtual tracks of different specific velocity.

[TA04] also present a prototypical implementation of an early-warning system based on the

proposed mesoscopic model, yet simplifying logical group modelling by using static routing.

Input model analysis. [TA04] provide example input data for a simple scenario using XML,

specifying

• named elements, i.e. components of the infrastructure network

• arriving pedestrian quantities for source elements

• length and track speeds for passageways

• links between elements with their weight

• starttime, endtime and stepsize of the simulation

• units and reporting information

Model of [BSB07]

[BSB07] present a pedestrian model and its application to the design of an access control

system of a subway station. Macroscopic interaction simulation is used to assess decision rules

implemented by a door controller with the intention to avoid overcrowding on the train platform.

Model review. The proposed model uses a representation of space as weighted directed graph.

Regions of the scenario space are modelled as vertices Ri. If a region Rj is accessible from a

region Ri, there is a link Li,j from Ri to Rj , with an associated weight wi,j and a distance

di,j . wi,j equals to the length of the walkable part of the common border of Ri and Rj , di,j is

the shortest walking distance between the centers of gravity of the two regions. Some regions

are marked to be sink regions, where pedestrians leave the scenario. Sink regions are also the

possible targets of the movement of pedestrians. Source regions are used to model pedestrians

arriving at the scenario.
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The model defines equations yielding the crowd density in every region at discrete time steps

∆T . Given a region Ri, the number of direct successors Ki, the set of direct successors

Oi = {Rjk |k = 1, . . . ,Ki} and the set of direct predecessors Ii, at time t, the quantities and

equations used by the model can be summarized as in Table 2.2.

P space covered by one pedestrian, constant, usually 0.1 ≤ P ≤ 0.26

Pt,i crowd density in Ri
as ratio of area covered by pedestrians to total area of Ri

Di total distance of Ri to the aimed sink region

v(Pt,i, Ri) walking velocity in Ri
depending on density and type of the region, given by a fundamental diagram

β (im)patience factor (arbitrarily set by visual inspection for the case study)

Int,i, Outt,i number of persons entering / leaving Ri per time interval, nonzero only at source
/ sink regions.

ot,i indicator for entry restriction of Ri with 0 ≤ ot,i ≤ 1,
ot,i = 0 if entry to Ri is forbidden, ot,i = 1 if entry is fully permitted,
0 < ot,i < 1 for partial opening of doors

pt,i,jk attractiveness of Rjk to be walked to from Ri

pt,i,jk = exp(Djk −Di − βPt,jk) (2.9)

f̃t,i,jk one-directional pedestrian flow from Ri to Rjk

f̃t,i,jk = v(Pt,i, Ri)wi,jkPt,i∆T (2.10)

ft,i,jk total pedestrian flow from Ri to Rjk

ft,i,jk = f̃t,i,jk
pt,i,jk∑Ki

m=1 pt,i,jm
(2.11)

Table 2.2: Notation and equations of [BSB07]

The time evolution of crowd density in Ri is given as

P̃t+1,i = Pt,i + ot,i
∑
j∈Ii

ft,j,i −
∑
j∈Oi

ot,jft,i,j + (Int,i −Outt,i)P/Ai (2.12)

[BSB07] emphasize the strong dependence of simulation results on the choice of the graph

representation of the infrastructure. Manually defining the graph is claimed to be too laborious

even for simple examples, wherefore software automization is proposed. With the presented

approach, the nodes of the graph accord to cells of a regular grid overlaying a vector-based

representation of the infrastructure. Various issues arise with the mapping of vector-based

plans to regular grids, concerning the choice of grid orientation, placement and size and the

treatment of particular regions such as doors or bottlenecks. Therefore a fully automated grid
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mapping without any user interaction seems not to be reasonable, but instead a semi-automatic

workflow is proposed:

1. Import a CAD plan of the infrastructure into a software tool.

2. Postprocess the infrastructure layout to get an adequate level of detail and to add missing

information relevant for simulation.

3. Define a coarse partitioning of the infrastructure.

4. For each part of the precedent step define an appropriate grid.

5. Manually refine boundary regions, possibly by including smaller cells.

6. Let the links of the graph be created automatically as given by cell neighborhood.

7. Remove links between neighboring cells “devided” by obstructions represented as lines

between them.

8. Add additional links not already created by step 6, such as connections between different

floors by elevators or staircases.

9. Identify sink cells.

The showcase scenario is interpreted as a closed-loop control (see [DFT92] on feedback control

theory) with the following analogies:

control theory entity showcase instance

system under control subway station

system output number of people on the platform, measured, considering errors

reference value capacity of the next arriving train

controller implementation of rules when to open or close entrance doors

Table 2.3: Closed loop control interpretation of the showcase of [BSB07]

The authors explain the integration of the closed-loop control into the graph-based model

and present results of simulation experiments using SIMULINK and MATLAB [Sima].

Input model analysis. Spatial information of the proposed model is structured as a directed

graph. The links of the graph are assigned a weight (width) and a distance. For each node the

type of the corresponding region (as for example open space, upwards or downwards leading stair

or bottleneck) needs to be specified to enable the calculation of the walking velocity v(Pt,i, Ri).

Sink regions used for route-choice are identified as a set of nodes within the graph. Further-

more, the inflow and outflow of pedestrians is arranged by specifying Int,i and Outt,i, and the

function ot,i can be used for temporary entry restrictions. The main calibration parameter is

the (im)patience factor β.
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2.3.4 Overview

Table 2.4 classifies the models reviewed in this section according to Subsection 2.2.1, illustrating

a broad coverage of modelling approaches considered as the basis for the subsequent development

of a generalized input data model.
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2.4 Input Model Summary

To conclude the analysis of pedestrian simulation models, the following basic aspects of scenario

definitions can be identified:

2.4.1 Environment Geometry

As representation of the simulated space, essentially three alternatives and combinations of

these are used by the inspected models:

• Vector-based

([Hug02], [HFMV02], [HD04], [Hel92])

• Grid-based

([BKSZ01], [DT02], [HWZ+09], [BSB07], [TM07], [BA00])

• Graph-based

([TM07], [TBM08], [TA04], [BSB07], path planning)

2.4.2 Environment Semanctics

Any model requires the spatial data to be enhanced by some semantic information. In general,

parts of the space represent regions of particular interest, for the reviewed models the following

demarcations are necessary:

Dynamic continuum ([Hug02]): entrances and exits need to be identified to define boundary

conditions

Social forces ([HM95]): destination areas for path polygons

Floor field ([BKSZ01]): special regions for static floor field, navigation

Amanda ([DT02]): decision cells for navigation and scheduling

RCSO ([TM07, TBM08]): basins for the generation of the SPV

Queueing network ([Løv94]): source nodes and destination nodes

Mesoscopic model of [HTRS03] and [TA04]: node types and attributes

Mesoscopic model of [BSB07]: source and sink regions, region types

2.4.3 Population

The specification of the crowd populating a simulation scenario in general defines

• where pedestrians occur, where they leave the scenario and which intentions are directing

their movement,

• how many pedestrians are inserted into the simulation,

• when pedestrians are inserted into the simulation, and
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• how pedestrians are characterized.

Most example implementations use fixed numbers of pedestrians that are placed once in the

scenario or by strict schedules. It is also obvious to describe the occurence of people using

insertion rates and relative frequencies of fractions of the crowd. Some models support inho-

mogeneous crowds in terms of considering individual behavioural configurations of pedestrians,

usually at least to simulate different origins and targets of subsets of the pedestrians within a

simulation. For example [BKSZ01] distinguish different species, [DT02] use individual activity

agendas and behavioural parameters and the mesoscopic model of [TA04] organizes pedestrians

in logical groups. Most model reviews show a fundamental characterization of movement by

predefined origins and destinations, the choice of intermediate targets is the subject of tactical

modelling or static routing.

2.4.4 Model Calibration

Depending on the complexity of the relationships defined by a model, some number of constant

values or characteristic curves are assumed to calibrate the model. The most common subject

of calibration is the fundamental diagram, describing the basic dependence of walking speed

on crowd density. Further examples are the (im)patience factor β of [BSB07] or the 24 model

parameters of [LKF05].

2.4.5 Reporting Configuration

There are various possible kinds of results generated by simulation models, like animated movie

clips, curves of characteristic values, density or trajectory plots and statistical data. In some

cases, simulation results are related to particular parts of the scenario, such as the density

progression within a given area or the egress time of a given group of pedestrians. Therefore

simulation models in general require information about the desired output calculation.
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3 Generic Pedestrian Simulation Interface

(GPSI)

In this chapter, the insight into the various input models gathered by the foregoing analysis is

utilized to construct the first part of the framework, the generic input model, that is an ab-

stract model of pedestrian scenarios. As stated in the methodology section (Subsection 1.5.1),

a key criterion here is to find an appropriate abstraction level to cover a broad scope of sim-

ulation models and at the same time provide for efficient configuration and tooling support.

Subsequently the generic input model is implemented as an XML schema definition.

3.1 Requirements

The attributes deciding the degree of adaptability of the interface as motivated in Section 1.4

can be identified as follows:

• Generality,

the interface enables data exchange suitable for a wide range of simulation models.

• Stability,

the interface is intended to remain structurally unchanged despite changes of simulation

models and implementations.

• Accessibility,

the implementation of interface adaption takes a minor effort within the implementation

of a simulation model.

• Platform independence,

the choice of programming environments and operating systems is free to the simulation

implementation.

Generality and stability are mainly concerns of the model underlying the interface, whereas

accessibility and platform independence are related to technological choices and implementation

specifics.
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3.2 System Metamodel

Figure 3.1 shows how the generic input model explained in this section is situated in the context

of unified tooling and pedestrian simulation.

Figure 3.1: Context of the generic input model

The Simulation Model on the right side depicts any concrete pedestrian model, the structuring

of Input Model, Operational Model and Output Model is explained in Section 2.3. The Simulation

Model represents a theory, provided either by mathematical formalization or possibly in a

more informal way, whereas the Simulator Implementation Model is a representation of that

theory using concepts of a particular programming paradigm, such as object-orientation. The

Simulator constitutes the executable implementation of the Simulator Implementation Model,

i.e. the simulator program accepting input corresponding to the Input Model and producing

output corresponding to the Output Model.

Scenario Builder stands for the unified scenario definition software tool introduced in Sec-

tion 1.4, specified by its own implementation model (Scenario Builder Implementation Model),

which in turn is based on some understanding of the problem field, referred to as the Scenario

Builder Domain Model. That problem field is given by the purpose of the tool to create simula-

tion scenarios using the Unified Interface of Figure 1.4, wherefore the domain model consists of

the Generic Input Model and a model describing the organization of scenario data within the
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tool, referred to as Scenario Project Model.

The emphasis of this presentation lies on the structure of the Generic Input Model, namely

the distinction of a Core Model and a Customization Model part. Abstractly spoken, in a given

generic input model, there are some characteristics of scenarios that are commonly assumed by

all supported simulation models, like for example the fact that “there are one or more types of

pedestrians” or “a regular grid has a defined number of columns and rows”. All these common

concepts constitute the Core Model. (Note that Core Model and Customization Model are terms

for abstractions, which exist as concepts but not necessarily with a simple equivalence to parts

of the GPSI specification.) In contrast there are peculiarities of several models that are not

unified but rather enabled to be expressed using interface customizations. For this purpose, the

Customization Model part is provided as suitable abstraction of a customizable portion of the

input model of supported simulation models (the Customized Model).

As mentioned above, a higher degree of abstraction extends the range of supported simulation

models but complicates tool support. That abstraction level is determined by the portion of the

Core Model and the depth of the Customization Model. Consider for example the specification

of a fixed set of possible types of “service stations” as used by [TA04] with fixed parameters

versus the abstract specification “special regions” with customizable parameter lists.

Figure 3.1 points out that the Customization Model decides the degree of freedom of concrete

models. Variations of input models are possible without any change of the interface and the

tool implementation as long as they concern the customizable portion. However, the design of

the Core Model is critical to the stability of the interface.

Some example concepts of the discussed models are listed in Table 3.1 to support understand-

ing:

model example concept

Core Model pedestrian type, infrastructure graph, polygon

Customization Model parameter type, region type

Customized Model age of pedestrian, simulation time interval

Simulation Model potential field, force, attractiveness

Table 3.1: Examples of model concepts

3.3 Model Architecture

3.3.1 Top-level Layering

The generic input model is discussed top-down, starting with the package diagram of Figure 3.2

that shows the base layers of the model.

The item package contains entities that represent logical or physical parts of the simulated

environment with some semantics for the simulation, and that are typically related to regions in

space. The layout package addresses the representation of simulation space and is subdivided
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Figure 3.2: Package diagram of the generic input model

into vectorLayout, gridLayout and graphLayout, each subpackage corresponds to the possible

types of spatial modelling listed in Subsection 2.4.1. The term “layout” relates to a plan or

spatial design in general. Instances of the item package are referenced by instances of the lay-

out package, which complies with the need for semantic enhancement of spatial information

explained in Subsection 2.4.2. Global scenario information such as about population (Subsec-

tion 2.4.3), and calibration and configuration data (Subsections 2.4.4 and 2.4.5) is contained

in the scenario package. As such data can be related to elements of the scenario, for example

pedestrian occurrences are defined based on entries and exits, a direct dependency of scenario

on item exists in addition to that on layout. The parameter package provides means to enhance

elements of the model dynamically (at instance level) with attributes and relationships to other

model elements. This approach allows for flexible adaptions to data requirements of individual

simulation models without changing the static structure of the generic model. The main use of

the parameter package will be the realization of the Customization Model of Section 3.2. Dy-

namic parameterization is a cross-cutting issue wherefore all other top-level packages depend on

it and vice versa. The colors used in Figure 3.2 introduce a color encoding that will susequently

be used for member elements of the respective packages.

3.3.2 Core Concepts

Literature analysis (Subsection 2.4.2) shows, that a broadly required type of semantic enhance-

ment of space data is related to navigation, simply put to a specification of entrances, exits and

in some cases intermediate locations. For the generic input model, the generalized concept of

basins, as introduced by [TM07, TBM08] is adopted to represent reference entities for pedestrian

movement.
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Figure 3.3: Overview class diagram of the generic input model
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Another type of demarcation is needed for regions of some particular meaning for the move-

ment behaviour of pedestrians, like special regions of the floor field of [BKSZ01], region types

of [BSB07], shops in Amanda [DT02] or service stations of [TA04]. Entities encapsulating the

semantics of this kind of simulated objects are subsequently called facilities.

Finally, configuration data for reporting purposes is in general related to regions in space, for

example if density progressions of selected rooms or transition counts of a certain passageway

are requested. Therefore a third type of spatial marking is dedicated to reporting and analysis

in the following more generally referred to as tooling region.

The main commonality of basins, facilities and tooling regions, therefore generalized as items,

is that they represent physical or logical entities that can have spatial occurrences in layouts.

Note that the assignment to spatial concepts is decoupled from the identity of the respective

item, similar to classes that exist within a UML model and are optionally represented in one

or more diagrams. This reflects the consistency of semantics of multiple occurrences of a single

item.

The proposed generic model considers simulated space to be partitioned into interconnected

sections. This approach is not directly resulting from the model analysis of Section 2.3 but

a feature to increase flexibility and improve support of more complex scenarios, and does not

impose any limitations as yet simple scenarios with a single section are also possible instances.

Actually, the section concept might match the idea of submodels of [BSB07].

Space within sections is specified by layouts. Different types of layouts exist for the respective

spatial models. An important point in the design of spatial representation is the decision to

enable multiple layouts of different types to be specified for a section, which is based on two

reasons. First, as stated in Section 1.4, efficient comparison of different models is one of the

motivations for the unified tooling approach. Allowing for space definition using multiple layout

models enables a single scenario definition to be compatible to a wider range of simulation mod-

els. Second, “hybrid” models operating on multiple space representations are not yet strongly

represented in literature, but still make an interesting and promising attempt. [GSN04] propose

such a model that combines the social forces model with the floor field model and a graph-based

model, and accordingly uses multiple types of spatial data in parallel.

All of the reviewed models except the graph-based ones are specified and demonstrated using

2-dimensional space representations, some of them with possible enhancements to the third

dimension. For this thesis, a “pseudo-3d” approach is taken. Sections represent parts of the

investigated space, like floors of a building or separate areas of a park etc. The spatial arrange-

ment of sections is given by absolute (world) coordinates defining the origin and expansion

in three dimensions, and the rotation around the z-axis for each section. Layouts of sections

use 2-dimensional spatial models. The xy-projection of a section defines a rectangular area

that bounds any layouts for that section. Layouts in turn use coordinates that are relative

to the containing section’s absolute origin. Therfore sections can easily be rearranged without

changing any layouts.
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Connections between sections as established for example by staircases, elevators or simply

open space need endpoint locations within sections to be specified. As the geometry of sections

is defined by means of the contained layouts, endpoint locations need to be marked within

layouts. Furthermore, as introduced above, multible layouts can be defined for one section, in

which case a given connection endpoint needs to be consistently represented in each involved

layout. Connection endpoints therefore have the same characteristics as items, and since they

are structurally related to navigation and path planning, it is natural to use basin entities as

endpoints of connections between sections. This in turn requires the spatial representations of

a basin to be restricted to a single section, otherwise put every basin is part of one section.

The basins of a scenario and the connections between them constitude a network graph

referred to as infrastructure. The infrastructure therefore is a graph-based spatial representation

of the scenario superimposing the layouts of its sections. In contrast to graph-based layouts of

sections, the infrastructure graph is 3-dimensional, as sections are arranged by 3-dimensional,

absolute coordinates.

In traffic research, commonly used structures for the specification or estimation of traffic

volume are trip matrices, or origin/destination matrices, shortly OD-matrices, see [MSCCJ10,

LC07]. OD-matrices define quantities for origin-destination pairs. This concept is adopted for

pedestrians by the proposed model. As introduced above, entrances and exits, therefore origins

and destinations of pedestrian movement are represented by basins. Basins are nodes in the

infrastructure graph, which therefore can be used by navigation models for path planning or by

3-dimensional graph-based models for high-level simulation.

3.3.3 Static Structure

The architecture of Figure 3.2 is refined by the class diagram of Figure 3.3, to formalize the

preceding concepts by an object-oriented model.

Scenario is the root container element of the model, i.e. all scenario data is directly or

indirectly aggregated by a Scenario instance. The scenario’s Infrastructure contains its spatial

information and consists of Sections and BasinConnections. The population of the scenario is

specified by its PedestrianTypes and the respective Trips. The latter are equivalent to entries

of the OD-matrix, that is the total of all Trips of a PedestrianType builds the OD-matrix of

that pedestrian type. Simulations are intended to insert pedestrians of the respective types,

interpreting the quantity attribute of Trip either as absolute or relative value, depending on

the model and additional parameterization. A Layout corresponds to one of the three spatial

models stated in Subsection 2.4.1, therefore it is of one of the types VectorLayout, GridLayout

and GraphLayout. Each Section can be assigned at maximum one Layout per layout type,

denoted by the quantifying attribute layoutType. The sets of Items referenced by each Layout

of one Section can be checked to be identical in order to assert consistent data for the involved

simulation models. BasinConnections are connections between basins of different sections, i.e.

links of the infrastructure graph of the scenario.
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Items exist in the context of a Scenario. They may be referenced by Layouts of different

Sections and types with the restriction that a given Basin may only be referenced by Layouts

of one and the same Section. There are three types of Items: Basins, Facilities and Tooling-

Regions. Each Basin is either source, sink or both to specify whether it can be the origin or

destination of pedestrian trips. Facilities are generic items corresponding to an AbstractFacility.

An AbstractFacility defines the appearance and the structure of a kind of facility. Facilities may

contain Basins. A facility can appear in layouts of different sections (e.g. an elevator). The

BasinInclusion composition is qualified by a Section attribute, to model the restriction of basins

to a single section, and that facilities contain different basins per section. minNumBasins and

maxNumBasins define the range of the number of basins contained per section. connectBasins

indicates whether basins of different sections contained by the facility are connected per default

or not. facilityParams is the set of AbstractParameters (discussed below in Section 3.4.4) that

can be bound to the Facility, basinParams is the set of AbstractParameters that can be bound

to each placement of a Basin within the Facility. ToolingRegions are assigned a set of Tools,

each corresponding to one AbstractTool, which in turn defines the AbstractParameters for the

Tool. A Tool represents a configurable element of report generation, like counters or density

meters.

Customization aspects are addressed by members of the parameter package, i.e. elements

of gray fill color. AbstractFacilities and AbstractTools are used to dynamically define types of

facilities and tools. The Parameterized interface implemented by most of the model classes

(note, also by Basin, Facility and ToolingRegion via their common parent class Item) enables

the dynamic association of parameters with model instances, see Section 3.4.4.

3.4 Interface Implementation

In this section, a data format that implements the proposed model, the Generic Pedestrian

Simulation Interface (GPSI), is presented. First, the choice of XML and XSD as interface

technologies and the involved data formats are explained. Next, the way UML is used for the

documentation of XML Schema Definitions in the following is introduced. Finally, the interface

is specified in detail.

3.4.1 Technology Choice - XML and XML Schema

The GPSI is an XML-based interface, as XML ([BPSM+08]) is a de-facto standard for electronic

data representation and exchange. The strength of XML related to the specification of software

interfaces lies in the adaptability to domain-specific needs. Although there is also wide use of

XML without associated structural definitions (as summarized by [NM09]), a schema language

is required to define document types which associated instance documents can be validated

against. Apart from various historical alternatives [LC00, CEM03], the most important stan-

dards for XML metadata are the W3C recommendations Document Type Definition (DTD),
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included in the original XML specification [BPSM+08], and the younger XML Schema stan-

dard of [FW04, TBMM04, BM04, CEM03]. [BNdB04, BMNS05] show that at an abstract level,

i.e. considering expressiveness, XML Schema is actually an extension of DTD, wherefore XML

Schema is preferred for the specification of the GPSI. While XML Schema definitions in many

existing cases do not exceed the expressive scope of DTDs [BMNS05], the GPSI specification

makes extensive use of the distinctive features, especially those related to typing and inheritance

due to the object-oriented modelling approach, and to the enhancements of keys and foreign

keys.

The interface specification satisfies the implementation-related requirements of Section 3.1,

as it is

• accessible, because rich framework or library support is available for any important pro-

gramming environment to enable efficient implementation of XML-based data input and

output, especially for modern object-oriented languages, and

• platform independent, as interoperability is an inherent quality of XML.

3.4.2 Data Formats

Section 1.4 explains the unified interface specified in the following to support data exchange

in two directions. Customization and configuration data is provided as input to the unified

scenario definition tool and scenario data is generated as output, both conforming to respective

parts of the interface specification.

Figure 3.4 shows the software components and data artifacts involved by the concrete real-

ization of the GPSI using XML and XML Schema. The highlighted parts constitute the actual

interface specification and realize the equally colored model parts of Figure 3.1.

The interface is implemented by two XML Schema definitions (XSDs). Scenario data, i.e.

output of the Scenario Builder and input of simulators, is contained in XML documents con-

forming to pedestrianScenario.xsd. These XML documents, called scenario files in the

following, are per convention named with the extension .scen. Input data of the Scenario

Builder concerns model customization and tooling configuration, and defines abstract con-

cepts of scenario descriptions, wherefore that data is provided by XML documents called

metadata files using the extension .scen-meta and the corresponding schema file is called

pedestrianScenarioMetadata.xsd.

The file metadataInstance.scen-meta is one exemplary metadata file, that needs to be pro-

vided to the Scenario Builder application in order to design corresponding pedestrian scenarios,

scenarioInstance.scen is one exemplary scenario file, created as output by the Scenario

Builder. projectInstance.sbp is a project file (more thoroughly discussed in Chapter 4),

created and used by the tool to persist working data in an internal (non-XML) format.

Note that there are two dimensions of abstraction. First, XSDs are meta-definitions of XML

instance documents, and second, customizable aspects of scenario files are defined on an ab-
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Figure 3.4: Deployment diagram of unified tooling

stract level by metadata files (that are in turn instance documents of an XSD). Because the

scenario definition tool statically implements the structure and semantics of the schema defini-

tions, pedestrianScenario.xsd and pedestrianScenarioMetadata.xsd are hard-wired with

the Scenario Builder implementation. Therefore a given version of Scenario Builder supports

only the associated version and backwards compatible later versions of the XSDs. At the same

time, a wide range of different input requirements of simulation models is supported without

changing the tool implementation by providing appropriate metadata files.

3.4.3 UML for the Documentation of XML Schema Definitions

In Subsection 3.4.4, the XSDs of the interface are presented in detail. One disadvantage of

XML Schema compared to DTD is that because XSDs are themselves XML documents, they

contain a lot of syntactic overhead that makes them rather hard to read for humans (as XML

is designed for machine-to-machine communication). For this reason, a graphical, UML-based

notation is preferred for the documentation of the interface.

For the mapping of XSD constructs to UML diagram fragments, decisions about the level

of detail need to be made. Complete conservation of schema information in UML representa-

tions enables exact reverse engineering, but results in verbose and complicated diagrams. The

approach of [SPKI04] is to waive such roundtrip support and instead focus on the clarity of

UML diagrams and use existing UML constructs for simplification and better understanding.

These principles also apply for this chapter, as the emphasis lies on clear documentation and

additional fully detailed specification is provided by the XSD listings in the appendix (?), for

which in turn cross-linked HTML-based documentation can easily be auto-generated by various
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available tools.

[SPKI04] define a set of XSD-to-UML transformation rules, which inspire the method used

for this thesis, but are not exactly applied. Table 3.2 shows the rules applied to the interface

XSDs for the UML documentation of this chapter. These are the main differences to [SPKI04]:

• Local element definitions with complex types are mapped to classes instead of attributes.

• Identity constraints are noted by attribute stereotypes instead of association qualifiers.

• [SPKI04] does not define a mapping for unique elements.

• Attribute defaults are not noted.

• Constructs not occurring in the interface implementation are neglected.

Classes that represent anonymous types need artificial names that are generated by capital-

izing the corresponding element name. Deviance from this rule is possible to avoid naming

conflicts. Additionally, that classes get assigned the stereotype <<anonymous>>.

3.4.4 Interface Specification

Section 3.3 explains the top-level architecture and the core concepts of the generic input model.

The refinement of that concepts is illustrated accompanying the documentation of the GPSI

implementation. In other words, the details of the model are discussed by means of UML

diagrams, which at the same time reflect the XML-based implementation by following the rules

of Subsection 3.4.3.

Each of the two XSDs introduced in Subsection 3.4.2 uses its own namespace. As XSD names-

paces are mapped to UML packages, this results in two packages, pedestrianScenario for

scenario definitions and pedestrianScenarioMetadata for parameterization definitions. The

conceptual package structure used for the architecture layering of Section 3.3 is preserved by

the coloring of classes in the following diagrams.

Versioning

Given the multidimensional abstraction structure of Subsection 3.4.2, versioning is an important

and non-trivial issue. Two possible application scenarios need to be considered regarding the

version mechanism of schemas and instance documents. First, each scenario file is constructed

based on the parameterization definition of one particular metadata file. As for the generic

design, multiple metadata files might exist and as simulation models evolve, also multiple ver-

sions of one metadata definition are likely. For a given scenario file, it needs to be possible to

identify the corresponding metadata file and its version. Second the framework itself, that is the

generic input model might evolve, resulting in new versions of the schema definitions. Therefore

both scenario files and metadata files should contain information about the corresponding XSD

versions.
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XML Schema construct UML constructs

namespace package, named after the last
path segment of URL-style
namespaces

element declaration
global element class, <<root>> stereotype

for the root element of the
schema

local element class, related via composition
to the class of the containing
element or type

occurrence constraints
(minOccurs, minOccurs)

multiplicity of composition
ends

attribute declaration
local attribute attribute
optional constraint multipicity [0..1]

required constraint multipicity [1]

simple type definition
global restriction simple
type

class, generalized by a
built-in stereotyped class
for the base type

local list simple type attribute with multiplicity
local enumeration simple
type

enumeration, drawn overlap-
ping the class of the contain-
ing element or type

complex type definition
sequence compositor composition relationship to

classes representing the con-
tained elements

derived by extension class generalized by the class
for the base type

identity constraint definition

stereotype of the attribute selected by the selector and field
elements, the scope given by the containing element is not
noted
key element <<key>> stereotype
keyref element <<ref>> stereotype and de-

pendency relationship
unique element <<unique>> stereotype

Table 3.2: XSD-to-UML mapping
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Both cases are addressed by the solution shown by Figure 3.5. XML Schema defines an op-

tional string-typed version attribute of the root schema element. This attribute is used by

the XSD implementations of the GPSI and is referred to by schemaVersion attributes of the

instance document roots (which are in turn specified by the corresponding XSDs). The associ-

ation of scenario files to metadata files is supported by obligate name and version attributes

of metadata root elements and respective metadataName and metadataVersion attributes of

scenario root elements, that can be matched with the available metadata definitions. All of

these attributes are typed as string, so that any user-defined naming and versioning policy is

supported.

Figure 3.5: Versioning of GPSI

Scenario Definition Schema

This section presents the detailled realization of the design of Figure 3.3 and documents the

schema of pedestrianScenario.xsd.

Dynamic parameterization. The Parameterizable interface of Section 3.3 is implemented by

an abstract XSD type called ParameterHolder. This is mentioned beforehand though the

parameterization part of the schema is discussed in detail in a later paragraph (Section 3.4.4),

because many types of the scenario schema use ParameterHolder as base type to implement the

ability to have parameter values assigned corresponding to the abstract definition of a metadata

file.

Root structure. Figure 3.6 is the UML representation of the root scenario element. At min-

imum, a scenario needs to contain sections, optional elements are items, basinConnections
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and pedestrianTypes. scenario contains the version attributes explained in Section 3.4.4.

Figure 3.6: Root structure of pedestrianScenario.xsd

Items. Figure 3.7 shows the first two components of the scenario definition, the items and

the basinConnections sets.

Each item is a ParameterHolder and has an integer identifier as entity key and a unique name.

According to Section 3.3, there are three types of items: Basin, Facility and ToolingRegion.

Basins refer to the Section they belong to by the section’s id and are typed as source, sink

or source-sink, that is both. The type of a basin determines its parameterization by the

metadata definition. The possible types of facilities are not statically known, but also part of

metadata definitions. A facility instance refers to its abstract type by the type attribute,

which holds the unique name of a facility element in the pedestrianScenarioMetadata

package (i.e. in the metadata file). The assignment of a basin to a facility is possible by an

intermediate basinInclusion element. This indirection enables the basin and its association

with a facility to be parameterized independently from each other, as basinInclusion is also

a subtype of ParameterHolder.

Inter-section-connections are realized by directed connections of basins of different sections,

which are implemented by basinConnections. A BasinConnection contains a sourceRef

attribute referring to the id of the source basin and a sinkRef attribute for the sink basin of

the connection. .

Sections. The partitioning of simulation space into sections is explained in Section 3.3. The

sections element of a scenario contains one section element with a key identifier and a unique
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Figure 3.7: Items in pedestrianScenario.xsd

name for each section of the scenario, see Figure 3.8. The absolute positioning of sections within

the simulated space is implemented by absoluteOrigin, size and rotation. The geometry of

sections is specified by layouts, a maximum of one layout of each model type can be contained

by a section, implemented by vectorLayout, gridLayout and graphLayout. .

A VectorLayout (Figure 3.9) consists of a walkableRegion defining the boundary of the space

reachable for pedestrians and lists of obstructionRegions and itemRegions. Obstruction

regions define areas of impassable space, item regions implement the assignment of items to

spatial regions. All of these region types are specified by VectorShapes, which is the abstract

base type of Polygons and PolyLines, both 2-dimensional shapes given by lists of Points.

A GridLayout (Figure 3.10) is defined by the alignment and meshing of the grid and sets

of cells marked as obstruction or having items assigned. The former is given by gridOrigin,

rotation and cellSize, specifying the origin relative to the section’s origin, the dimension of

the grid cells and the clockwise xy-rotation of the grid around its origin in degree, relative to

the section’s rotation. The latter are defined by itemRegions, listing references to items with

corresponding sets of cells, and a list of impassable obstruction’s cells.
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Figure 3.8: Sections in pedestrianScenario.xsd

Figure 3.9: Vector layouts in pedestrianScenario.xsd
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Figure 3.10: Grid-based layouts in pedestrianScenario.xsd

GraphLayouts (Figure 3.11) define networks of nodes and links, with each link referencing by

id its adjacent nodes. A node has a location given by its x and y coordinates and can optionally

have items assigned. Links contain a distance value and can additionally be dynamically

parameterized as Link is subtyping ParameterHolder.

Pedestrian types and OD-matrices. The simulated types of pedestrians and where they en-

ter and leave the simulation is modelled by the pedestrianTypes element. PedestrianType

is abstract with three concrete subtypes, every PedestrianType has a name and an identifier

attribute. An AtomPedestrianType defines the type of a simple person, the remaining two sub-

types are composite elements. PedestrianDistributionTypes compose inhomogeneous popu-

lations by defining child types and their relative occurrence frequencies and PedestrianGroup-

Type represents groups of pedestrians somehow belonging to each other like families or tourist

parties . The number of occurrences of group members is modelled by a ParameterValue rather

than a simple attribute to enable optional specification by probability distributions instead of

numerical values, numOccurrences is constrained to the types IntegerParameterValue and

DiscreteDistributedParameterValue with IntegerParameterValues as support.

The name of pedestrian types is constrained to uniqueness within their composition level, i.e.

within the root types and the direct members of any PedestrianGroupType and Pedestrian-

DistributionType. The id attribute is a global key and unique within all pedestrian types.

As PedestrianType is a subtype of ParameterHolder, all concrete types can be parameterized

by the user.
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Figure 3.11: Graph-based layouts in pedestrianScenario.xsd

Figure 3.12: Pedestrian types and OD-matrices in pedestrianScenario.xsd
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Pedestrian types are instantiated at simulation runtime. Pedestrians usually enter the sce-

nario at source basins and ultimately leave it at sink basins. More general behaviour is also

supported by the framework due to the generic parameterization of pedestrian type structures,

but the core concept of OD-matrices is dedicated to support that pattern. An ODMatrix can

be assigned to a PedestrianType to define the trip structure of that type. An ODMatrix con-

sists of ODEntries, which implement Trips of Subsection 3.3.3. The attributes originBasinRef

and destinationBasinRef reference source and sink basins and numOccurs defines the corre-

sponding relative or absolute amount. Additional trip behaviour information, like for example

intended intermediate tasks, can be added using the ParameterHolder base type.

Parameterization. This paragraph refines the abstract ParameterHolder type. Parameter

holders are able to carry values for simulation parameters as specified at an abstract level by

a metadata definition. That abstract definition is presented below in Section 3.4.4, basically a

parameter is specified by its name, type and multiplicity. The association of a value reflecting

the abstract parameter specification at instance level is realized by a concept referred to as

parameter binding.

Figure 3.13 shows the implementation of parameter bindings. A ParameterBinding refers to

its abstract definition by the name attribute. Depending on the multiplicity of the parameter,

the parameter binding contains one or more parameterValues. The type hierarchy of param-

eter values reflects that of abstract parameter definitions (Section 3.4.4). Types of numerical

parameter values are IntegerParameterValue and RealParameterValue, boolean values are

assigned by BooleanParameterValues and strings by StringParameterValues. Choices of

enumerations are represented by EnumerationParameterValues. Other scenario entities can

be referenced by ReferenceParameterValues, which specify the id of the referenced instance.

Unspecified values are modelled as EmptyParameterValues.

A special role is fulfilled by CompositeParameterValue, as it enables the instantiation of

complex structured types. A CompositeParameterValue is a container of nested parameter

bindings (childBindings).

A substantial part of the parameterization model is dedicated to a feature allowing parameter

values to be substituted by probability distributions, which provides comprehensive flexibility

for the integration of stochastics in simulations. Random variables may be inherent to a model

or used for input data generation. An example for the first case is a randomized resolution of

conflicting cell occupations in a cellular automaton model. A scenario of the second case might

define its population using statistical data about physics and intentions of pedestrians. Both

cases are addressed by the generic approach of enabling probability distributions to be used

instead of fixed parameter values.

As the the type of a parameter determines the type of applicable probability distributions, an

additional type hierarchy of DistributedParameterValue is specified, see Figure 3.14. A basic

distinction is made between distributions of ordered (like integer) and unordered (like string)

support types.
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Figure 3.13: Parameterization in pedestrianScenario.xsd

Discrete uniform distributions with unordered support are modelled by UnorderedUniform-

DistributedParameterValue that contains a list of values of equal possibility. An Unordered-

DistributedParameterValue assigns relative frequencies to value categories.

Distributions for ordered support are by themselves subject to abstract parameterization,

that is they are modelled generically as defining a support range and a parameter set. A set

of well-known distributions is built into the specification, see Table 3.3, but due to the generic

structure, additional user-defined distributions can be added by metadata definition. The type

attribute of OrderedDistributedParameterValue identifies either one of the built-in types or

references an abstractly defined distribution of a metadata file.

Metadata Definition Schema

In the following, the implementation of the (grey-colored) parameter package of Figure 3.2

is explained and the schema of pedestrianScenarioMetadata.xsd is documented. Instance

documents of this schema, i.e. metadata files, basically contain information about

• named types of facilities and tools,

• parameterization and

• custom distributions.
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Figure 3.14: Parameterization in pedestrianScenario.xsd

distribution type parameter name parameter type

Ordered Uniform Distribution -

Binomial Distribution
n integer, n ≥ 2
p real, 0 ≤ p

Poisson Distribution gamma real, gamma > 0

Geometric Distribution p real, 0 ≤ p ≤ 1

Hypergeometric Distribution

m integer, 1 ≤ m

nPopulation integer, 1 ≤ nPopulation

nSample integer, 1 ≤ nSample

Cauchy Distribution
s real, 0 < s

t real

Gaussian Distribution
sigma real, 0 < sigma

gamma real

Table 3.3: Built-in distribution types
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Multiplicity bounds. Two global simple types are defined by the schema to be used for multi-

plicity bounds. LowerBound is simply a XSD built-in nonNegativeInteger, UpperBound is an

integer with an inclusive minimum of -1 to indicate “unlimited”.

Root structure. The root structure of pedestrianScenarioMetadata.xsd is shown in Fig-

ure 3.15. For intuitive understanding of the schema it is important to have in mind that the

naming of elements is related to the abstract context of the metadata definition. For exam-

ple, facility elements of pedestrianScenarioMetadata.xsd abstractly define named types

of Facility elements of pedestrianScenarioMetadata.xsd.

The root scenarioMetadata element contains the version attributes explained in Section 3.4.4.

Its first child element facilities contains the abovementioned facility type definitions. The

facility element, together with parameterSets explained below, implements the AbstractFa-

cility concept of Subsection 3.3.2. An abstract facility is identified by its name and defines the

possible range of the number of associated basins by minNumBasins and maxNumBasins. The

attribute autoConnectBasin is a flag indicating whether infrastructural connections should

be automatically generated between basins of a facility instance, i.e. if the facility in general

connects sections.

The second child element tools is a list of tool elements, corresponding to AbstractTool of

Subsection 3.3.2. Each tool has a unique name used to select it as part of a tooling region.

Dynamic parameterization of scenario entities is specified by the elementParameters list,

that contains parameterSets. A parameterSet is an assignment of parameters to subject entity

types. Parameters are specified by AbstractParameter elements, entity types are identified by

ElementType elements. (Note that the term entity is used here for objects of a scenario instance

to avoid confusion with XML elements. Though within pedestrianScenarioMetadata.xsd,

element[..] is used for names of XML elements representing that notion of entities.) A

parameterSet is an m:n association of ElementTypes and AbstractParameters, i.e. any num-

ber of subjects can be assigned any number of parameters by one parameterSet, and the

metadata definition contains any number of parameterSets. This allows for flexible reuse of

parameters and sets of related parameters. Actually, parameters elements can be understood

as type definintions and the assignment to element types as subtyping by multi-inheritance.

Finally, distributions specifies custom types of probability distributions. A distribution

has a unique name attribute and a type attribute indicating the distribution to be either

continuous or descrete, and contains a list of AbstractParameters.

Parameterization. The above descriptions refer the AbstractParameter element type for the

purpose of parameterization of scenario entities and distributions. As explained for the scenario

definition schema, all elements with ParameterHolder as base type can contain Parameter-

Bindings, which in turn define values for named parameters. The set of applicable parameters

and their names, structures and constraints in turn are specified by the metadata definition cur-

rently examined, see Figure 3.16. An AbstractParameter defines such a parameter by name,
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Figure 3.15: Root structure of pedestrianScenarioMetadata.xsd
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multiplicity and type. The name is unique within composition levels, precisely within the root pa-

rameters of all parameterSets, the root parameters of any distribution and the direct childs

of any CompositeParameterType. Multiplicity bounds are realized by lowerMultBound and

upperMultBound. The parameterType child element has the complex type ParameterType with

the type hierarchy of Figure 3.16. Inner structures of parameters, that is CompositeParameter-

Values at instance level are possible using CompositeParameterTypes which contain their

child AbstractParameters in the childParameters list. RealParameterType and Integer-

ParameterType are numerical types with optional range bounds. An EnumerationParameter-

Type defines a list of strings as possible literal values for a parameter. StringParameterTypes

can be constrained by a length range and a regular expression pattern (see [Fri06] on regular

expressions). ReferenceParameterTypes enable parameters to hold references to scenario enti-

ties, usually to express some semantical relationship. The list of elementTypes child elements

constrains the possible types of entities referenced by the parameter.

Element types. The schema of the metadata definition reflects on entity types of scenarios, i.e.

element types of scenario definitions. It therefore requires to use that types as first-class objects,

concretely to define subjects in parameter sets and type restrictions of reference parameter types.

The type hierarchy is implemented based on the abstract ElementType type as documented by

Figure 3.17.

Most of the subtypes are self-explanatory. The subtypeRestriction elements of Tool-

ElementType and FacilityElementType are used to reference named types of tools or facilities

respectively to provide parameters of (or references to) specific user-defined types. The same

applies for subtypeRestriction of BasinInclusionElementType, where only pedestrian-

Scenario:BasinInclusions contained by facilities of the specified type are selected. Basin-

ElementTypes can be refined by including the required basin type of source, sink or source-

sink. If no type is defined for a BasinElementType, any pedestrianScenario:Basin, regard-

less of its type is selected.
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Figure 3.16: Abstract parameters in pedestrianScenarioMetadata.xsd
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Figure 3.17: Element types in pedestrianScenarioMetadata.xsd
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4 Unified Scenario Definition Tool:

Scenario Builder

The second part of the realization of the generic tooling approach concerns the development of

the Scenario Builder, a software tool that enables the creation and maintenance of simulation

scenarios conforming to the generic interface. This chapter surveys requirements analysis, design

and implementation of the Scenario Builder, and closes with examinations of workflow examples

and pratical adoption.

4.1 Requirements

Essentially, the concepts and structures modelled by the data interface need to be reflected by

the user interface, and appropriate means need to be provided by the tool for the creation and

manipulation of the model elements. A substantial part of the requirements analysis for the

Scenario Builder is therefore covered by the design of the generic interface (Chapter 3). On

that structural basis, additional workflow-related functional requirements are identified. The

following subsections explain the requirement fields at a coarse level, refinement is given in

Section 4.2 and Section 4.3 by means of more detailed specifications of data structures and user

interface functionality.

4.1.1 Data Organization

A feature not addressed by the interface specification is the support of efficient comparison of

different, but somehow related simulation scenarios. Obvious use cases reasoning this require-

ment are the evaluation of design alternatives or changes, e.g. the replacement of a swinging

door by a revolving door, or the estimation of the effects of changing exterior conditions, like

overcrowding or panic versus normal conditions.

GPSI defines data structures aggregated by the simulation scenario as the topmost concept.

To support multi-scenario comparisons, the project concept is proposed to be superimposed

by the Scenario Builder, with multiple scenarios being manageable within a single project.

The scenarios of a project should be enabled to share common resources but define individual

variations of spatial and logical configuration.
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4.1.2 Data Input and Output

Naturally, scenario data processed and produced by the tool needs to correctly conform to the

interface specification of Chapter 3. This applies for input and output; as shown by Figure 1.3

configuration data, i.e. metadata definitions need to be accepted as specified to generate GPSI-

conform scenario definitions as output. Given the XML-based implementation of the interface

this requirement demands the correct validation of input and output XML data against the

schema definitions of pedestrianScenario.xsd and pedestrianScenarioMetadata.xsd.

Besides XML-based scenario data specified by the GPSI, the tool needs to persist user data

storing the projects that are created and maintained by the application. That data is strongly

implementation-specific and constrained by only few functional user requirements. Application

data should be persisted on a per-project basis, in a way that enables easy import and export

of single projects into different working environments, and easy backups of project states.

4.1.3 Geometry Prototyping

The construction of geometry (vector-, grid- or graph-based) is a laborious part of the scenario

definition workflow. Scenario Builder can improve efficiency and aid the user by offering the

following features:

• CAD-Import. Practical simulation projects usually examine environments with geometry

data available beforehand in the form of CAD plans, which provide a proper basis for

vector-based scenario layouts. Scenario Builder should therefore be able to automatically

generate vector layouts from selected layers of files of the popular and industry-standard

DXF-format (Drawing Interchange File Format [DXF]).

• Layout transformation. Designing scenarios for simulations using different layout types

involves the construction of multiple layouts for single sections. This suggests special

tool support to derive new layouts from existing layouts. Especially, the assumably most

frequent case of a grid-based layout being based on an existing vector-based layout needs

to be addressed by features that allow to map parts of or complete vector layouts into

grid representations.

• Templating. In cases where neither CAD-import nor layout transformation are applicable,

the user should be enabled to use arbitrary graphics, e.g. scanned sketches or photographs

as templates for layout creation. When editing vector-, grid- or graph-based layouts, a

background image of a common graphics format should be selectable.

4.1.4 Look and Feel

Section 1.4 explains benefits of the unified tooling approach for both scientific professionals and

end users. The Scenario Builder application is developed focusing on the former, expert user
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type. It is therefore designed as a tool mainly handled by power users [Rei03], allowing to waive

some comfort functionality in favour of more flexibility and less development effort respectively.

Nonetheless, Scenario Builder is required to offer the usage experience of modern rich client

applications, using standard features such as customizable multi-view interfaces, tabbed editors,

multi-monitor support, tree views for structured data, context-sensitive property sheets, undo-

and redo-support, drag and drop, copy/cut and paste, and keyboard shortcuts. Graphical

editors should provide commonly expected functionality like zooming, snapping and graphical

feedback.

4.2 Project Model

The Scenario Builder Domain Model has been introduced by Figure 3.1 in Section 3.2. It is

defined as the conceptual structure of the domain-related data used by the application. The

part of the domain model that is related to output data generation is the Generic Input Model

explained in Chapter 3. The other part of the domain model, the Scenario Project Model, is

treated in this section. The Scenario Project Model describes how scenario data is structured

by the tool implementation. This organization differs in some aspects from the GPSI model

to enable user-oriented tool support and to provide the additional functionality explained in

Section 4.1, but the same core concepts apply. Note that the Scenario Project Model also

differs from the implementation data structure, as the implementation model is derived by (not

containing) the domain model, see Figure 3.1, that is the concept presented in this section is

subsequently implemented using a programming language, refining the structure and adding

implementation specific features.

Figures 4.1 and 4.2 show class diagrams of the Project Model. The main difference to the

interface model (Figure 3.3) is the Project being the root container of scenario data. Instead

of a simple set of Scenarios containing their own data the Project is a repository of elements

which are referenced by any number of Scenarios. This way of data structuring, together with

the concept of scenario overrides discussed below, allows for a flexible mapping of similarities

and variations between scenarios claimed in Subsection 4.1.1.

A Project contains Scenarios, Items, PedestrianTypes, ODMaps and one Infrastructure.

The Infrastructure of a Project defines the high-level spatial configuration for all Scenarios

of that Project. It consists of Sections and BasinConnections that are organized analagous to

Subsection 3.3.2, that is Sections are 3-dimensionally located and sized, with Layouts defining

the 2-dimensional geometry of the xy-projection, and BasinConnections describing ways for

pedestrians to move from one section to another by referencing endpoint Basins (which in turn

are spacially associated within Layouts). In contrast to the interface model, any number of

Layouts of each type may exist within one Section. Still, the limitation to a maximum of one

layout per type and section is applied to the context of a single scenario by the ScenarioLayout

- every Scenario owns a ScenarioLayout, a ScenarioSectionLayout references zero or one Layout

66



Figure 4.1: Class diagram of the Scenario Project Model
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Figure 4.2: Scenario overrides in the Scenario Project Model

for each layout type, noted by the layoutType quantifier. The sets of Items referenced by

each Layout of one ScenarioSectionLayout can be checked to be the same in order to assert

consistent data for the involved simulation models. This set of Items therefore defines the set of

Items referenced by the ScenarioSectionLayout itself, explicitly depicted as associations between

ScenarioSectionLayout and Basin, Facility and ToolingRegion respectively. Different Scenarios

may reference different subsets of the Project’s Basins, while only a single Infrastructure with

BasinConnections exists within a Project. The Project Model’s Infrastructure is mapped to

the GPSI model’s Infrastructure by considering only BasinConnections of Basins occuring

in Layouts referenced by the exported Scenario. An alternative approach of multiple named

infrastructure elements similar to ODMaps has been considered but discarded in favour of

simplicity as related use cases are assumably rare.

Items exist in the context of a Project. They may be referenced by Layouts of different Sections

and types with the restriction that a given Basin may only be referenced by Layouts of one

and the same Section. Therefore within one ScenarioLayout a Basin can only be referenced by

Layouts of a single ScenarioSectionLayout. Like with the GPSI model, Facilities are defined by

AbstractFacilities, but the Project Model uses an additional indirection by FacilityTypings. In

addition to the Project’s typing of a Facility, each Scenario may contain its own FacilityTyping

for each Facility of the Project, see the projectTyping and scenarioOverrideTyping associations

in Figure 4.2. This enables the variation of the type of a Facility within different simulation

scenarios.

A Project’s collection of PedestrianTypes specifies the types of pedestrians available in any

Scenario of that Project. It provides the building blocks of the simulation population config-

urable per scenario by means of ODMaps. ODMaps do not exist in the GPSI specification,

as at scenario level the OD-matrices of pedestrian types are directly defined by a collection of
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trips for each pedestrian type. With the Project Model, ODMaps as an intermediate element

of indirection are conceptually interchangable named collections of OD-matrices for a given set

of pedestrian types. An ODMap assigns Trips to PedestrianTypes, again the quantity attribute

of Trip is intended to be interpreted by simulation implementations in a proper way, either as

absolute or relative value. A Project may hold any number of ODMaps, but exactly one ODMap

is required to be referenced by every Scenario to define its population.

Elements that realize Parameterized can be customized using AbstractParameters and Param-

eterBindings, see Subsection 3.4.4. The complete set of ParameterBindings for any element of a

Project is associated with that Project (Figure 4.2, projectParameterBindings). An additional

set of ParameterBindings can be associated with each Scenario of the Project (Figure 4.2, sce-

narioOverrideBindings), meaning that these ParameterBindings overrule ParameterBindings

to the same AbstractParameter for the same subject element. This concept enables the use of

project-level default configurations, combined with per-scenario variations (e.g. the speed of

an escalator might usually be x, but for a certain scenario it shall be y to examine the effects

of that variation). The features of Scenario-based FacilityTypings and ParameterBindings are

summarized as scenario overrides.

Further descriptions of the detailled structure of Layouts, PedestrianTypes, AbstractParame-

ters and ParameterBindings can be given identical to the GPSI model, wherefore with reference

to Chapter 3 they are not repeated here.

4.3 User Interface Model

4.3.1 Overview

The user interface of the Scenario Builder basically enables the application user to create, ma-

nipulate and maintain data corresponding to the Project Model (Section 4.2). The complexity

of the Project Model, considering e.g. multiple layout types, custom data types, scenario over-

rides, consistency constraints etc. suggests a rich client application concept based on a set of

flexibly arrangable view panes each providing a dedicated part of the overall functionality.

As structured data is commonly presented and manipulated using collapsible and expandable

trees, a tree view pane (the Project Explorer, Section 4.3.2) is used to expose the repositories

of elements provided by projects. The multi-scenario capability of projects requires further

support by the user interface, as with increasing complexity of projects the user will likely

prefer to concentrate on a single scenario at a time instead of being overburdened by a growing

total number of project elements. Therefore a second type of tree view panes (the Scenario

Explorer, Section 4.3.2) is used to provide a filtered view on those parts of the domain that are

referenced by given scenarios respectively.

Different graphical editing capabilities are needed for each of the three layout types, therefore

three types of layout editor panes are required. The analogy of project elements associated

with layout elements to UML classes represented in class diagrams has already been mentioned
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in Subsection 3.3.2, concerning the user interface the inspiration by UML tools also leads to a

combination of tree- or list-based logical views and graphical editors. According to the layout

types of the Project Model, this section introduces the Vector Layout Editor (Section 4.3.5),

the Grid Layout Editor (Section 4.3.5) and the Graph Layout Editor (Section 4.3.5).

The high-level spatial configuration of a project is given by its infrastructure as defined in

Section 4.2. The arrangement of sections and the configuration of basin connections between

sections can intuitively be done using graphical editing, addressed by the Infrastructure Editor

(Subsection 4.3.6).

OD-maps are project elements with an inner structure that cannot be mapped by a simple

property sheet or a dialog form. They are therefore subject to another, non-graphical dedicated

editor (the OD-Map Editor, Subsection 4.3.7), used to select origin and destination basins of

the contained OD-matrices and to fill the OD-matrices of pedestrian types with values.

The above user interface parts visualize project elements and some of their properties. Beyond

that, project elements generally have characteristics that are not visible or editable in the

respective views. A commonly accepted solution are context-sensitive property sheets, presenting

attributes of currently selected objects in a table of names and values. The Element Inspector

(Subsection 4.3.3) is accompanying all other views as a feature-added, flexible property sheet

view enabling comprehensive manipulation of project elements.

The Project Model imposes several kinds of constraints for project instances to be valid,

amongst others multiplicity bounds of abstract parameters or layout consistency within sce-

narios. The scenario definition tool must not block the user’s work by forcing her to resolve

constraint violations instantaneous and assert every project to be in a valid state at any time,

but instead bundle information about existing problems for subsequent handling. This is a

solution similar to modern IDEs that allow compile-time errors and warnings to exist but mark

them within program code and collect them in lists linked with the related source. This concept

is realized by the Problems View (Subsection 4.3.8).

4.3.2 Explorer Views

There are two types of explorer views, the Project Explorer and the Scenario Explorer, providing

tree-structured presentations of project elements.

As explained in Section 4.2, a project may contain multiple scenarios, each of which using a

subset of the elements the project contains. The Project Explorer enables the user to browse

all project elements without any scenario-related information. It is therefore an overview of the

repository of project elements available for any scenario of the project. The Scenario Explorer

allows browsing scenario-related information.

In the following, the term element nodes is used for nodes of an explorer tree that represent

project elements. Element nodes can more specifically be referenced by prefixing the type of

the associated element, e.g. a layout node is a tree node representing a Layout in terms of

the Project Model (or a subtype of Layout). For a clearer structure of the explorer views,
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intermediate tree levels are used to separate child nodes by their type or semantic category.

These intermediate levels contain so-called category nodes that act as simple container nodes,

wherefore they don‘’t have project-related properties by themselves. Category nodes can more

specifically be referenced by prefixing the name of the category – e.g. sections category node.

Each node is labeled using a small icon marking its type. Thus for example a vector layout

node can easily be distinguished from a grid layout node. Element nodes are labeled using the

name attribute of the associated project element. Child nodes are in general ordered alphabet-

ically, section nodes are ordered by the index of the associated sections within the project. The

explorer trees support multiple selection of tree nodes, right-clicking a node displays a context

menu with actions applicable to the selected nodes. Double-clicking a layout node or an od-map

node opens an appropriate editor for the associated project element.

Project Explorer

Multiple Projects are accessible simultaneously within a Scenario Builder program instance. The

project explorer presents every project of the workspace as a single tree as shown in Figure 4.3,

using the following node types:

• Project nodes

Project nodes are the root nodes of project trees. Projects are either open or closed. The

open/closed-state is depicted by the node icon. Project nodes for closed projects do not

contain child nodes. Selecting a project node or one of its direct or indirect child nodes

focuses the Scenario Explorer on the associated project.

The accessible actions for project nodes within the Project Explorer are:

– Open project

Opening a project means exposing its content to user interface, i.e. the project

node contains child nodes to constitute the project tree, the scenario explorer can

show scenarios of the project, editors for elements of the project can be opened and

the Problems View (Subsection 4.3.8) lists problems and errors associated with the

project.

– Close project

Discards parts of the user interface corresponding to the project, i.e. closes editors of

elements contained by the project and removes the child nodes of the the project node.

Also, the Problems View does not contain entries associated with closed projects.

– Remove project

Removes a project from the Scenario Builder and moves its contents to a garbage

directory in the file system.

• Sections category nodes, contain child nodes for the sections of a project and provide an

action to create a new section.
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Figure 4.3: Project Explorer (left) and Scenario Explorer (right)
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• Section nodes, represent sections, contain category nodes for layouts and basins of a section

and provide actions to delete, rename and reorder a section and to create new layouts and

basins.

• Layouts category nodes, contain layout nodes for all layouts in the containing section and

provide actions to create new vector-, grid- and graph-based layouts.

• Layout nodes, allow to open a layout editor and provide actions to delete, rename and

duplicate the associated layout.

• Basins category nodes,

occur as a child nodes of section nodes and directly within project nodes. They contain

basin nodes for all basins placed in the containing section in the first case or for all basins of

the project in the second case. Basins that are associated with facilities are also included.

Basins category nodes provide an action to create a new basin.

• Basin nodes, represent basins and occur as child nodes of facility nodes for basins that

are part of a facility, and of basin category nodes for all basins of a project. Context

information, i.e. the containing section and optionally facility, which is not given by the

parent node is contained in the node labels. A basin node provides actions to delete and

rename the basin, and to select the node of the associated facility in the project explorer

as a navigation shortcut.

• Facilities category nodes, contain child nodes for the facilities of a project and provide an

action to create a new facility.

• Facility nodes to represent facilities. A facility node contains child nodes for basins as-

sociated with the facility and provides actions to delete and rename the facility, and to

create a new basin associated with the facility.

• Tooling regions category nodes, contain child nodes for the tooling regions of a project

and provide an action to create a new tooling region.

• Tooling region nodes, represent tooling regions, contain child nodes for associated tools

and provide actions to delete and rename the represented tooling region, and to add a

tool to the tooling region.

• Tool nodes, represent tools within a tooling region and provide an action to remove a tool

from the containing tooling region.

• Pedestrian types category nodes, contain child nodes for the pedestrian types of a project,

provide actions to create new atom, group or distribution pedestrian types.

• Atom pedestrian type, pedestrian group type and pedestrian distribution type nodes, rep-

resent pedestrian types and provide actions to rename and remove the pedestrian type
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from the type structure.

If the presented pedestrian type is part of a pedestrian group type, the number of occur-

rences or the minimum and maximum of its distribution support respectively are added

in brackets to the node label. If it is part of a pedestrian distribution, the relative oc-

currence frequency is added in brackets. Group type and distribution type nodes contain

child nodes for the contained pedestrian types and provide an action to add new child

types.

• OD-maps category nodes, contain child nodes for the od-maps of a project and provide

an action to create a new od-map.

• OD-map nodes, represent od-maps, allow to open an od-map editor and provide actions

to delete, rename and duplicate the associated od-map.

The project explorer furthermore contains buttons triggering actions to

• open an infrastructure editor for the selected project,

• create a new project,

• create new project elements of respective types, depending on the current selection in the

project tree, and

• collapse or expand all tree nodes.

Scenario Explorer

Projects can contain multiple scenarios. The scenario explorer consists of a tabbed panel with

every scenario of one selected project being presented within a tab as a scenario tree as illus-

trated in Figure 4.3. The content of the scenario explorer is swapped whenever the project

focused by the project explorer (Section 4.3.2) changes, i.e. a node of a different project tree

gets selected. The scenario explorer uses the types of element and category nodes similar to

the Project Explorer. Element nodes in general provide actions to change the selection of the

Project Explorer to the related element nodes in a project tree.

• Section nodes, represent sections of the project. As sections are defined per project, every

scenario node contains section nodes for the same set of sections. Section nodes provide

an action to select layouts, that is let the user select the vector layout, grid layout and

graph layout to be used for the section in the selected scenario. At most one layout per

type can be chosen from the complete list of project layouts.

• Layout nodes for vector layouts, grid layouts and graph layouts used by the selected

scenario in the containing section. Layout nodes allow to open appropriate layout editors

and also provide an action to change the scenario’s layout set.

74



• Facilities category nodes, contain child nodes for the facilities referenced by any layout of

the containing scenario.

• Facility nodes, represent facilities that are referenced by one or more layouts of the sce-

nario.

• Basin nodes, represent basins and occur as child nodes of facility nodes for basins that

are part of a facility, and of basin category nodes for all basins of a scenario. Context

information, i.e. the containing section and optionally facility, which is not given by the

parent node is contained in the node labels.

• Tooling regions category nodes contain child nodes for the tooling regions referenced by

any layout of the containing scenario.

• Tooling region nodes, represent tooling regions that are referenced by one or more layouts

of the containing scenario and have child nodes for the tools of the tooling region.

• Tool nodes for the tools of a tooling region.

• Basins category nodes, contain child nodes for basins referenced by any layout of the

containing scenario.

• Pedestrian types category nodes, contain child nodes for all pedestrian types of the project.

Pedestrian types that do not have an od-matrix associated by the od-map of the scenario

are displayed faded to indicate that they are currently not relevant for the scenario. Still

they are displayed, because od-matrices could be inserted for nested pedestrian types.

• Pedestrian type nodes, represent pedestrian types (atom, group or distribution) of the

project.

• OD-map category nodes, contain at most one child node for the od-map used in the

scenario and provide an action to select the scenario’s od-map from the list of od-maps of

the project.

• OD-map nodes. At most one od-map node is contained in a scenario tree to represent

the od-map selected for the scenario. OD-map nodes allow to open an od-map editor and

provide actions to select another od-map for the scenario and to change the od-map to a

newly created duplicate of the current one.

The scenario explorer also contains buttons for the following actions related to the scenario

represented by the currently active scenario tab:

• Export scenario

Generates XML-data corresponding to the GPSI specification for the scenario and saves

it in a file specified by the user.
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• Focus Element Inspector on scenario

As scenarios are not represented by nodes but by tabs containing scenario trees, this action

is used to let the Element Inspector (Subsection 4.3.3) focus on the active scenario.

• Collapse / expand all tree nodes

• Create new scenario

• Duplicate scenario

Creates a new scenario as a duplicate of the active one as a starting point for alternative

simulation configurations.

• Rename scenario

• Reorder scenario

Scenarios are presented in a user-defined ordering within the scenario explorer. There are

actions to move the active scenario to the left and to the right.

• Delete scenario

• Open infrastructure editor

Opens an Infrastructure Editor (Subsection 4.3.6) that shows only basins and basin con-

nections that are relevant for the active scenario.

4.3.3 Element Inspector

The element inspector is a generic view that switches its content to support the currently active

part of the user interface. It enables the user to view and edit properties and inner structures

of project elements selected in the active view. The property sheets of the Element Inspector

are not plain name-value tables, but structured as trees of nested elements and properties. In

general, the Element Inspector supports multi-selection, i.e. every selected element of the active

view is displayed as the root of a property tree.

Figure 4.4 shows a screenshot of the Element Inspector with a facility and a section selected

(for instance in the Project Explorer as currently active view). In the example, all nodes of

the properties sheet are expanded. The structure of the property trees depends on the type

of the inspected element and the parameterization applied by the metadata definition used for

the project. The nesting of tree nodes is visualized in the left column of a 2-column table. The

right column shows property values and content descriptions for some nodes that are roots of

a subtree (e.g. List[2] for a value list with 2 entries or Composite Parameter Value for the

container node of a parameter binding with a composite parameter value).

When a changable value entry in the right column is clicked, an appropriate input control gets

activated to enable the user to edit the value. String values and numerical values are input using

a textfield (see Figure 4.5). Input validation is performed in real-time while the value is typed,

based on the required data type and value constraints (e.g. min, max of IntegerParameterType
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Figure 4.4: Element Inspector

or minLength, maxLength and pattern of StringParameterType, see Section 3.4.4). Boolean

and enumeration values are specified using a selection box (see Figure 4.6). Hovering over entries

of metadata-defined parameters shows the related type information. The Element inspector

also makes comprehensive use of a right-click context menu to enable further manipulation

of properties, especially values of non-primitive types like of composite parameters, reference

parameters, value lists and probability distributions, see Section 4.3.3.

Figure 4.5: Element Inspector, text field for string and numerical values
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Figure 4.6: Element Inspector, selection box for enumeration values

View Scopes

Section 4.2 explains how element parameter values can be overridden in scenarios. The means

to view and edit parameter values is the Element Inspector. As a project element can have

multiple values assigned for the same parameter – one base value defined by the project and at

most one override value for each scenario – Scenario Builder uses the concept of view scopes to

define the context the Element Inspector displays parameterization for. The Element Inspector

is either set to project scope to display project-defined parameter values , or to scenario scope of

one certain scenario to display scenario-defined variations. The colored bar above the property

sheet (Figure 4.4) shows the current scope - light red means project scope, green means scenario

scope with the name of the scenario also displayed. The switch button can be pushed to change

the view scope. When an editor view is active, a selection box in a global toolbar enables the

choice of either project scope or a scenario to set scenario scope for the editor. The scope button

of the Element Inspector is only enabled if the selection for the Element Inspector belongs to

the Scenario Explorer (and therefore a certain scenario), or to a scenario-scoped editor.

Figure 4.7 shows an example of the Element Inspector switched to scenario scope. Overridden

values are marked with a small green square in the right column. Tree nodes with overridden

values for any child in their subtrees are marked with small green striped squares with white

background.

Problem Indication

Problems (see also Subsection 4.3.8 associated with elements and values displayed by the El-

ement Inspector are indicated by red problem markers in the left column. Tree nodes with

nested problems, i.e. problem entries in their subtrees are marked with problem markers with

white background. Hovering over entries with problem markers shows information about the

indicated problems, see Figure 4.8.

Probability Distributions

The GPSI specification allows values of metadata-defined parameters to be substituted by ap-

propriate probability distributions (Section 3.4.4). The user interface support for that feature
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Figure 4.7: Element Inspector, scenario scope

Figure 4.8: Element Inspector, problem indication

is provided by the Element Inspector. The context menu (Section 4.3.3) of a distributable value

offers a list of applicable distribution types to use as replacement for the value, see Figure 4.11.

Distributed values are displayed in the Element Inspector using subentries to define

• the lower and upper bounds of the distribution support and the distribution parameters

for distributions with ordered support (Figure 4.10, anIntegerParameter and aReal-

Parameter),

• the list of support values for uniform distributions of unordered support (Figure 4.10,

aStringParameter) , and

• the list of support values and the respective relative frequencies for unordered custom

distributions (Figure 4.9)

The Element Inspector includes a feature to manually fine-tune distributions based on well-

known distributions specified by the GPSI, see Table 3.3. An example workflow is illustrated

by Figure 4.11, Figure 4.12 and Figure 4.13, where an integer list entry (123) is replaced

by a binomial distribution. Subsequently, the distributed value is transformed to a custom

distribution, i.e. the relative frequencies are calculated in the range of the specified distribution
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Figure 4.9: Element Inspector, custom distribution

Figure 4.10: Element Inspector, ordered discrete, ordered continuous and unordered uniform
distributions

support. This is only possible for discrete distributions and some maximum support range, see

Section 4.3.3. Finally, the value of the entry is “reverted” to the originally applied distribution

(which is remembered when a distribution is “customized”).

Context Menu Actions

The context menu of the Element Inspector provides actions related to the following functional

categories.

Navigation. Select a project element in the Project Explorer, center the currently active Lay-

out Editor on a project element, open appropriate editors for project elements.

Layout-Item assignment. Assign/unassign an item to/from layout elements currently selected

in an the active layout editor (see Subsection 4.3.5), unassign a certain item or all items of a

type from a layout element.
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Figure 4.11: Element Inspector, substitute a parameter value by a probability distribution

Figure 4.12: Element Inspector, customize a probability distribution

Figure 4.13: Element Inspector, revert to the original distribution
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Layout geometry manipulation. Scale, rotate, convert and reorder shapes; delete vertices or

shapes. Layout manipulation using the Element Inspector can also efficiently be done by editing

vertex coordinates in the property sheet.

Probability distributions. Distribute values and remove distributions; customize and revert

distributions (see Section 4.3.3).

List manipulation. Append, insert and delete list entries; delete all / all empty list entries.

Scenario overrides. Override a value in scenario scope; remove an override value.

Special functionality for certain entry types. Assign reference values; select background lay-

outs and background images of layouts (Subsection 4.3.5).

4.3.4 Toolbar Actions

The Element Inspector also contains some common view-related toolbar actions:

• Pin view, prevents the current property sheet from being changed by a new selection.

• Expand scenario overrides, expands property trees to expose all overridden values in sce-

nario scope.

• Expand problems, expands property trees to expose all problem entries.

• Expand all, collapse all nodes.

4.3.5 Layout Editors

Layout editors are used to design the geometry of layouts within sections. There are three types

of layout editors, addressing vector-, grid- and graph-based layouts respectively. Though they

mainly implement functionality dedicated to the respective layout type, the different types of

layout editors share some commonalities.

All types of layouts contain layout elements – shapes, cells or nodes – that are presented

graphically in 2-dimensional space. Layouts are located in sections by defining an offset relative

to the section origin and the dimension of a bounding rectangle, referred to as the layout bounds.

The coordinate system of a layout is constituted by the section bounds, i.e. layout definition

happens relative to sections. Layout editors display the layout’s coordinate system aligned

paraxial to the screen. Therefore, rotating a section does not affect the visualization of layout

editors (section rotations are visible only in the Infrastructure Editor, Subsection 4.3.6).

Layout elements basically define parts of the simulation space, that are given their relevance

for simulations by being marked as obstruction or linked to facilities, basins or tooling regions.

These options can generally be combined. Linking and unlinking items and layout elements is
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referred to as assigning and unassigning items and is done using the Project Explorer or the

Scenario Explorer, via drag and drop or context menu. Layout editors are aware of selections

within other views and show feedback in terms of highlighting layout parts that correspond to

selected project elements. Also, layout editors can be centered on layout elements that have

selected project elements assigned. All types of layout editors allow zooming

• in and out,

• to fit the layout bounds,

• to fit the section bounds,

• to fit the current selection, and

• to a default zoom level.

Layout editors use two supportive views that can be arranged the same way as the other view

parts explained in this section, the Tools Palette and the Editor Properties view. The specific

content of the supportive views depends on the type of the currently active layout editor. The

Tools Palette enables the user to select the tool to be used for layout editing as it is common

for graphical editors. The Editor Properties view presents information and options related to

the active editor like absolute and relative position coordinates and snapping options.

The requirement of geometry prototyping was stated in Subsection 4.1.3. It is met by the

capability of all layout editors to optionally display the edited layout against a selectable back-

ground image or another layout of the same project (of any type). The background image or

background layout are selectable in the Element Inspector. The background image can further-

more be located and scaled using the Element Inspector, see Figure 4.14. A background layout

is always located using the project’s world coordinate system.

Vector Layout Editor

The layout elements of vector layouts are called regions. Possible shape types of regions are

rectangles, polygons and polylines, for each of which a tool exists in the tools palette together

with a selection tool. A small example layout is shown in Figure 4.15.

A Vector Layout defines one bounding region, that is a polygon or a rectangle defining the

bounds of the walkable space of the layout. The bounding region cannot be deleted and is

visualized as a white shape below the layout elements.

Facilities and tooling regions assigned to regions occupy the whole filling area of a polygonal

or rectangular shape or all line segments of a polyline shape respectively, whereas basins are

assigned to a set of line segments of the bounding of polygons or rectangles or parts of a polyline.

The obstruction state of a region can be changed using the context menu of the selection tool

or by using the Element Inspector.
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Figure 4.14: Layout editor using a background image
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Figure 4.15: Vector Layout Editor

A newly created region is filled yellow, meaning has not assigned any items nor is it an

obstruction. Regions with items assigned are colored blue, obstruction regions are colored gray

or grayblue if they have items assigned. Line segments with basins assigned are bold and dark

blue. The filling of a region uses transparency to indicate overlapping parts of shapes by darker

fill areas. Item assignments are also indicated by labels of shapes showing a type icon and the

item name.

The section bounds (the xy-projection of the section containing the edited layout) are visu-

alized as a rectangle in lighter gray below the bounding region, in a fresh layout the bounding

region exactly covers the section bounds.

The Element Inspector of a vector layout contains entries to define a background grid to

support layout construction (not to be confused with the grid of a grid layout, Section 4.3.5).

The shape creation tools support snapping of the pointer to that grid as well as to line segments

and vertices of shapes, and movement constraining to multiples of 45◦.

The selection tool is used to

• manipulate existing layout regions, i.e. move shapes and parts of shapes; add or remove

vertices to polygons and polylines; resize rectangles; delete, cut, copy and paste regions;

change item assignments; change obstruction state; change the z-order of shapes; scale
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and rotate shapes; and to

• change the viewport’s location and zoom factor, using marquee zoom and panning.

Grid Layout Editor

A grid-based layout is basically created by defining for each cell of the grid

• whether it represents an obstruction, and

• the set of assigned items.

The placement of the grid is defined relative to the containing section’s bounds specifying the

origin location, the cell size, the number of cells in horizontal and vertical direction and the grid

rotation. The section bounds are visualized as a rectangle in lighter gray below the grid. The

grid is always displayed paraxial to the screen, so if a non-zero grid rotation is set, the inverse

rotation is applied to the section bound’s rectangle in the Grid Layout Editor.

The Grid Layout Editor uses the same color encoding as the Vector Layout Editor to visualize

obstruction state and item assignments but item labels are not used. Basin cells are bordered

dark blue.

The tools palette of the Grid Layout Editor contains a selection tool and four drawing tools:

free draw, line draw, filled rectangle and rectangular outline. The drawing tools allow to change

cells in the grid. The Editor Properties view is used to choose between drawing obstruction

or items currently selected in the Project Explorer. The selection tool is used to select and

manipulate cells in the grid. Rectangular selections are possible by clicking and dragging,

flood-select is available via context-menu to recursively select similar neighbor cells (exactly, a

neighbor cell is added to the selection, if the starting cell is an obstruction cell and the neighbor

cell is an obstruction, or if the neighbor cell references at least one item that is also referenced

by the starting cell). Multiple selections can be combined additive and subtractive, configurable

in the Editor Properties View. Selected cells can be manipulated using the context menu.

Layout transformation. If a vector layout is set as background layout for the edited grid layout,

actions are available in the Grid Layout Editor to perform layout transformation (introduced

in Subsection 4.1.3). Full transformation is possible to completely recreate the cell states based

on the background layout and the relative grid location and orientation, see Figure 4.17 Partial

transformation is available for selected cells to apply the transformation algorithm only on the

selected cells.

Graph Layout Editor

Graph layouts are linked graphs with optionally items assigned to its nodes and a distance

property and arbitrary user-defined properties of its edges, called links as they represent links

for pedestrian movement between locations defined by nodes. The default distance property
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Figure 4.16: Grid Layout Editor

of a link is calculated by the Graph Layout Editor, but it is possible to define a manual value

using the Element Inspector to be used within scenario export data instead (see Figure 4.19).

Nodes can have facilities, tooling regions and basins assigned using the Project Explorer or the

Scenario Explorer via drag and drop or context menu. Nodes are visualized using the same

encoding of the fill color as the Vector Layout Editor (Section 4.3.5).

The Tools Palette of the Graph Layout Editor contains a selection tool to manipulate parts

of the layout’s graph and an edit tool to create new nodes and links.

The graph of a graph layout does not define spatial boundaries of the layout, instead these can

optionally be added by selecting a bounding region of a vector layout in the Element Inspector

to be used for the visualization of the layout editor.

4.3.6 Infrastructure Editor

The Infrastructure Editor provides a top-level view on the simulation’s space. An Infrastructure

Editor instance is opened with a selection of layouts, with at most one layout per section. The

selected layouts provide the spatial information for the Infrastructure Editor’s view on the

project’s sections. It is not necessary to include layouts of all sections, selecting only layouts of

a subset of the project’s sections possibly provides a clearer view on the infrastructure. Opening

an Infrastructure Editor from within the Scenario Explorer pre-selects layouts assigned to the

scenario.

The Infrastructure Editor uses a two-dimensional presentation of the sections. As sections

are arranged in three dimensions (by absolute origin and dimension), the z-coordinate is en-

coded using so-called z-panes. Z-panes are rectangular two-dimensional areas containing layout

visualizations of sections with equal origin z-coordinates. All z-panes of one Infrastructure Ed-

itor instance are of equal size, resulting from merging the bounds of the xy-projection of all
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Figure 4.17: Grid Layout Editor, rotated grid
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Figure 4.18: Graph Layout Editor

Figure 4.19: Graph Layout Editor, manual link distances
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presented Sections (i.e. the bounds of the z-panes are the bounds of the part of the simulation

space defined by the presented sections). The z-panes are arranged vertically or horizontally

(selectable in the Editor Properties view), so that the z-dimension is visualized by the assign-

ment of each Layout to the z-pane corresponding to its section’s z-coordinate. Figure 4.20 shows

the Infrastructure Editor with three sections in two z-panes (presenting two floors). Figure 4.21

shows the Infrastructure Editor with a corridor between two rooms modelled as its own section

and rotated within the simulation space.

Within z-panes, section bounds are presented as dark-gray, possibly rotated (if the Section

has a rotation angle set) rectangles. Bounding regions and grid bounds are visualized as shapes

with white filling. Layout content is displayed using the same coloring as within Layout Editors.

Basins referenced by layout elements are indicated by green nodes. If multiple basins are

referenced by a layout using identical spatial configuration (the same line segments in vector

layouts, the same cells in grid layouts, the same node in graph layouts), they are consolidated

within one single node in Infrastructure Editors. The display of basin names next to nodes can

be toggled in the Editor Properties view.

Connections between nodes represent inter-section-connections of basins. As one node can

represent multiple Basins and as basin connections are directed, one connection can represent

multiple basin connections. Double-clicking a connection or using the context menu opens a

dialog enabling the configuration of basin connections possible for the connection. Also, selecting

a connection in the Infrastructure Editor lets the Element Inspector list the represented basin

connections.

If nodes are selected, unselected nodes already connected to one or more of the selected nodes

are highlighted light blue and unselected nodes not connected but connectable to any of the

selected nodes (i.e. there are basins represented by a node that are connectable to basins of the

selected nodes), are highlighted light red. If two nodes are selected, the context menu offers an

action to configure basin connections, bringing up the above mentioned dialog.

4.3.7 OD-Map Editor

The OD-Map Editor is used to

• define the dimensions of od-matrices by selecting origin and destination basins,

• assign od-matrices to pedestrian types, and

• select od-matrices to edit their properties in the Element Inspector.

The OD-Map Editor is organized using two pages, selectable by tabs below the editor area.

The basins page of the OD-Map Editor (Figure 4.22) lists available source- and sink-basins

on the left side and basins already chosen to be part of the od-map’s matrices on the right side.

Buttons between the ”available”- and ”included”-tables are used to add, remove and reorder

Basins. Multiple selections are possible in each of the tables. The od-matrices page of the
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Figure 4.20: Infrastructure Editor, 3 sections on two floors

Figure 4.21: Infrastructure Editor, rotated section
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Figure 4.22: OD-Map Editor, basins selection

Figure 4.23: OD-Map Editor, od-matrices definition
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OD-Map Editor (Figure 4.23 displays the hierarchy of pedestrian types using bold entries for

types with assigned od-matrices. New od-matrices can be created and imported from CSV-

files for selected entries in the type hierarchy. Selecting a pedestrian type focuses the Element

Inspector on the assigned od-matrix to edit the matrice’s metadata-defined properties, e.g.

timing information.

4.3.8 Problems View

The Problems View lists all validation problems detected in projects that are not closed. The

columns of the problems table can be rearranged and selected for sorting. Double-clicking a

table row focuses the Project Explorer or the Scenario Explorer, depending on the problem’s

scope, on the problem source. Hovering on a problem entry shows detailed information about

the problem in a tooltip.

Figure 4.24: Problems View

4.3.9 Problem Categories

Problems within Scenario Builder projects are categorized as follows.

• Parameter problems

Missing parameter values or values violating constraints defined in metadata currently

used by the project.

• Basin assignment problems

Invalid number of basin assignments per section for a facility (as defined by the minNumBasins

and maxNumBasins attributes of facility in metadata files)

• OD-map / infrastructure problems

A scenario has no od-map assigned or the od-map cannot be satisfied by the scenario’s

infrastructure.
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• Layout consistency problems

The layouts of a acenario do not reference a consistent set of items.

• Type problems

The project’s metadata definition does not define the type of a facility or tool. This type

of problem can occur when metadata has been switched for a project.

The problems table contains the following columns.

• Source, the project element causing the problem

• Description, a description of the problem

• Full source path, the fully qualified path to the problem source, useful e.g. for nested

parameter values or pedestrian types in deep hierarchies

• Scope, the scope of the problem (project or scenario)

• Category, the problem category

The buttons in the Problems View’s toolbar are used to filter the content of the problems

table. Problems can be filtered by category and by scope.
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4.4 Base Technologies and Libraries

This section lists the frameworks and third-party libraries the Scenario Builder implementation

depends on. The most essential decision is to base the application on the Eclipse Rich Client

Platform framework [RCP, ML05] due to its well-suited application model, feature-rich and

extensible component library, flexible license restrictions and inherent platform independence.

Java (JDK Version 6) [Javb] is therefore chosen as programming language.

4.4.1 Eclipse RCP

[Rub06] gives an overview of the issues addressed by the Eclipse Rich Client Platform, an exten-

sible open source framework for general-purpose desktop applications. Eclipse RCP provides the

infrastructure of the Eclipse Integrated Development Environment (IDE), which is presumably

its most popular application example. Other examples besides a large number of further soft-

ware development tools are the Maestro program of NASA used to operate Mars rovers [ML05],

the commercial office productivity suite Lotus Symphony [Lot] or the open source BitTorrent

client Vuze [Vuz].

The platform’s Workbench component provides means for structuring the user interface of

an application using the metaphor of a Workbench presented in a Workbench Window. The

Workbench Window contains

• a Menu Bar with menu entries that can change depending on the active Editor and View,

• a Tool Bar with tool buttons that can change depending on the active Editor,

• an Editor Area containing Editors,

• several View Areas surrounding the Editor Area containing any number of Views and

• a Status Line at the bottom.

Views and Editors can be flexibly stacked, tiled and detached by the user. Perspectives can

be used to persist visual arrangements of Views and Editors suitable for particular funcionality.

Besides the user interface model, the RCP imposes an architecture of loosely coupled software

modules called plug-ins defining dependencies by extension points. The extensibility of RCP

based applications facilitated by plug-ins accounts for one of the most important strengthes

of the Eclipse IDE - the wide selection of commerial and non-commercial, community-driven

enhancements of the core functionality. As the Scenario Builder is a tool of very special purpose,

no higher level plug-ins can be reused to build the application but only plug-ins providing

the core funcionality of the platform are incorporated. Also, the conception as stand-alone

integrated application does not require the Scenario Builder to define extension points for other

plug-ins. Scenario Builder builds on the Eclipse RCP version 3.4.1, bundled with SWT, JFace

and GEF (see below), all using the same version number.

95



4.4.2 SWT

The Standard Widget Toolkit (SWT) [SWT, NW04] is a thin layer between native graphical

user interface platforms of operating systems and Java software, providing a lightweight GUI

toolkit that enables native performance and look and feel accessible via a common API for Java

programmers. In contrast to Swing, SWT uses native widgets whenever possible and emulates

user interface elements only in cases where the underlying operating system lacks an appropriate

implementation.

SWT sessions are modelled by a Display that provides a connection to the underlying GUI

platform. Within a Display, Shell Widgets reflect windows - Root Shells model main application

windows, Secondary Shells are created as childs of other Shells and model windows that exist in

the context of other windows, like dialogs. A Shell is the root of a tree of Widgets, that represents

the GUI elements inside the window. All Widgets except top-level Shells are instantiated with

a reference to its parent Widget, imposing a strict hierarchical structure following the composite

pattern. The arrangement of widgets can be controlled by configurable Layouts. User interaction

with the widget tree is achieved by running an Event dispatching loop handled by the Display,

i.e. user interface events are queued by the operating system and dispatched to a Widget by

the Display. Applications can connect to event handling by registering Listeners for specified

Event types at Widgets.

The user interface framework of the RCP is implemented using SWT, wherefore Scenario

Builder like most RCP applications and plug-ins is also based on SWT for a consistent user

experience, although Swing or AWT could alternatively be used. Using the Eclipse RCP as

a framework providing a base hierarchy of widgets constituting the workbench, application-

specific user interface parts are usually hooked in by implementing IWorkbenchPart.create-

PartControl(Composite parent) in views and editors or creating dialog shells in action han-

dlers as childs of IWorkbenchWindow.getShell().

4.4.3 JFace

JFace is a user interface library built on top of SWT. It does not hide the SWT API but adds

higher level concepts used by the RCP workbench and most RCP plug-ins.

• Viewers provide a higher level of abstraction upon interactive SWT widgets to allow user

interfaces to be programmed at a more domain related level. JFace Viewers are adapters

of data-contained controls, such as lists, tables and trees. They mediate between domain

models and SWT controls. Viewers populate and update their content data using content

providers and render labels as advised by label providers, both provided by the application

implementation. Certain subtypes of viewers furthermore allow sorting and filtering by

means of viewer sorters and viewer filters.

• Actions are application events that are triggered by the user performing some kind of

input like selecting a menu entry, clicking a toolbar button or typing a key. One Action
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may be able to be invoked in multiple ways, e.g. a document can be opened in an Editor

by double-clicking a node in a tree view or by using an entry of a context menu.

• Dialogs are windows that are popped up on top of the main application window. Their

content can be structured using navigation trees or tabbed panes.

• Wizards are Dialogs that guide the user through a sequenced set of tasks.

• Registries of images and fonts provide clean management of UI resources of the operating

system.

4.4.4 GEF and Draw2d

Originally developed for graphical modelling tools, especially UML-tools, the Graphical Edit-

ing Framework (GEF) [HSW08, GEFa] is an Eclipse-based framework that supports graphical

displaying and editing of user data corresponding to conceptually any model. GEF builds on

SWT in that it either paints on an SWT Control (usually a Canvas), or handles an SWT Tree

widget.

GEF depends on the Draw2d plug-in [GEFb], a toolkit that provides a mapping of “lightweight”

(in terms of not being associated with operating system resources), composable Figure objects

to a graphical representation on an SWT Canvas, including

• painting of figures, using SWT’s Graphical Context (GC class), considering z-order and

clipping

• dispatching of SWT events (like mouse clicks and drags) to figures,

• deferred graphics updates to avoid flicker caused by displaying intermediate states,

• layout management and

• hit testing.

With Draw2d enabling an efficient figure-based model on top of SWT, GEF adds data map-

ping and visual editing capabilities on top of Draw2d. Draw2d IFigures or SWT TreeItems,

contained in GEF viewers constitute the view component of an MVC-Pattern implementation

by the GEF framework (Model-View-Controller, [GHJV95]). The model component is not part

of the framework and its structure is completely left to the application, i.e. in GEF (domain)

model objects occur as plain Java Objects. The controller of a GEF editor is realized by a hier-

archical composition of objects called editparts. Editparts associate domain objects (the model

in MVC) with graphical objects (the view in MVC, figures or tree items). The information flow

along this association, provided by editparts, is bidirectional:

• figures on the viewer’s canvas are initialized and refreshed by editparts to reflect the state

of domain objects, and
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• domain objects are manipulated by editparts triggered by user interaction with figures on

the viewer’s canvas

The containment hierarchies of editparts and figures are usually designed to parallel the domain

model, though the actual factorization is up to the application programmer. To achieve the

updating behaviour of the first mentioned situation but keep the domain model independent of

the controller, GEF suggests loose coupling by registering editparts as change listeners with the

respective domain objects (see the Observer Pattern, [GHJV95]). In the realization of the second

case, concerning user interaction, further framework concepts are involved. The user interacts

with the editpart viewer by means of editing modes called tools, usually visualized as icons in a

tools palette. Tools are basically state machines that accept SWT events as input. As explained,

Draw2d includes dispatching of SWT events to figures. Using GEF, this feature is actually

replaced1 by forwarding events to an edit domain instead. An edit domain defines a set of tool

palette entries of a graphical editor and knows the currently active tool. SWT events received

by an edit domain are passed to the active tool, which in turn translates them into requests that

represent user interaction at the level of editparts. In general, tools determine source and a target

editparts to be addressed by requests, either based on the viewer’s selection or by asking the

viewer for the editpart at the current location of the mouse pointer. The targeting mechanism

of the latter ultimately involves the hit testing capabilities of Draw2d. Moreover, editparts can

decline responsiveness for requests or designate another editpart. Request handling is delegated

by editparts to edit policies for better localization of behaviour related to different request

types. Requests are used to ask editparts to show graphical feedback while an interaction is in

progress and to query editparts for appropriate commands. Commands encapsulate undo- and

redoable domain model operations, i.e. instead of an editpart invoking domain logic directly,

commands are executed by a command stack held by the edit domain to support an undoable

history of operations. Note that in Scenario Builder, GEF commands are actually translated

into a similar concept offered by Eclipse RCP with IUndoableOperations to achieve one single

global command stack, see Section 4.5.3.

GEF is used and customized for the Scenario Builder’s implementation of layout editors and

the infrastructure editor as explained in Subsection 4.5.3.

Version 3.4.1

4.4.5 JAXB

Java Architecture for XML Binding (JAXB) [JAXb] is an API that enables object oriented

creation of and access to XML documents. This Java Community Process standard is part

of the Java Platform, Enterprise Edition [Java] since version 5 as a base technology for the

platform’s support of web services [MP02], and the Standard Edition since version 6. It is

1Concretely, Draw2d event dispatching happens in SWTEventDispatcher, which is overridden by
DomainEventDispatcher in GEF, which in turn is set on the LightweighSystem in GraphicalViewerImpl.

98



applicable for general purpose applications as a standalone API. Scenario Builder uses the

JAXB Reference Implementation of the Glassfish community [JAXa], version 2.1.8.

The JAXB implementation includes a binding compiler, xjc, that takes XML schemas as input

and generates a set of Java classes used for marshalling and unmarshalling corresponding XML

instance documents. Scenario Builder takes instances of pedestrianScenarioMetadata.xsd as

input and produces instances of pedestrianScenario.xsd as output (Subsection 3.4.4), both

schemas are compiled into classes of the domain.meta and domain.export packages.

The XSD schema compilation is integrated into the build process, so that the mapped classes

are kept consistent with the xsd resources. This ensures compatibility of the Java implementa-

tion with the interface specification when either of both evolve, as static incompatibilities due

to changed model structures result in compile time errors.

4.4.6 Commons Math

Commons Math is a mathematics and statistics library of the Apache Software Foundation

[Mat]. It is used (in version 1.2) by the domain.meta.abstractDistributions package to cal-

culate probabilities when parameter bindings using well-known distributions are “customized”,

see Section 4.3.3.

4.4.7 opencsv

opencsv [ope] is a simple open-source library for reading and writing CSV data in Java programs.

opencsv version 1.8 is used to import od-matrices into the OD-Map Editor (Subsection 4.3.7).

4.4.8 KTable

KTable [KTa] is a custom SWT widget by Friederich Kupzog and Lorenz Maierhofer, providing

a grid-structured control with more flexibility than SWT Tables. It implements a spreadsheet-

like user interface model suitable for the presentation of od-matrices by the OD-Map Editor

(Subsection 4.3.7). Scenario Builder uses KTable version 2.1.3.

4.4.9 log4j

Logging information of the application is sent to log4j [log], version 1.2.15, configured by a

properties file to use two logging appenders, a rotating file appender writing to a dedicated log

directory to support reconstruction of production faults, and a custom appender implemented

by the logging.LogViewAppender to display logging output in a viewer in the workbench.
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4.5 Implementation Architecture

4.5.1 The root package

Figure 4.25 shows the high level package structure of the Scenario Builder source code. The

implementation comprises a total of 1245 Java classes (including 92 JAXB-generated classes)

and about 70k computed lines of code (including 3k lines of JAXB-generated code), measured

by the Eclipse Metrics plugin [Met]. In the following discussion the common root package part

is discarded from package paths.

The key top-level packages are domain, view and control. They to some extent reflect the

MVC-pattern [GHJV95] at a coarse level, though actually some of the subpackages of view have

themselves an inner structure following MVC. This applies especially for GEF-based graphical

editors with editparts as controller components residing within a view package. Still that kind of

view-side controller functionality always bridges to the top-level controller mechanism explained

in Subsection 4.5.3 by effectively triggering actions of the control package.

The remaining top-level packages, event, exception, logging and util deal with cross-

cutting concerns also discussed below.

Few classes are directly contained by the root package, namely those hooking into the RCP

application lifecycle to handle workspace loading and shutdown, and initialize global properties,

actions and the default perspective. There is also some static helper funcionality implemented

to enable access to application resources like data files and images.

4.5.2 The domain package

The classes in the domain package model the actual project data the user works on (often referred

to as the model). Classes of anything that is persisted to outlast program execution are located

directly in model. That base set of domain classes essentially reflects the Scenario Project Model

discussed in Section 4.2. The export subpackage exclusively contains classes generated by

JAXB to map the scenario export XML schema defined by pedestrianScenario.xsd (Subsec-

tion 3.4.4). The meta subpackage contains the JAXB-generated classes mapping pedestrian-

ScenarioMetadata.xsd, together with helper classes2 that encapsulate initialization and higher-

level access to metadata provided by raw XSD element wrappers. It also contains the Binding-

Validator interface and its implementation classes that are used for validation of parameter

values based on metadata constraints. Nested inside meta is the abstractDistributions pack-

age with implementations of well-known and user-defined distribution types (see Section 3.4.4).

Additional classes and subpackages of model support functional requirements like object dupli-

cation (for copy & paste), problem annotation and layout transformation.
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Figure 4.25: High-level structure of source packages
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Figure 4.26: Domain base classes
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Base hierarchy

Figure 4.26 shows the root hierarchy of domain objects. Notably all domain classes extend a class

of the control package, PropertyHolder, which realizes the observer pattern ([GHJV95]) using

the PropertyChangeSupport of Java Beans to enable controller and view objects to register as

listeners with the domain object for relevant properties. The abstract DomainObject class adds

actual domain characteristics, mainly by implementing Serializable, wherefore all subclasses

are warned to specify a serialVersionUID and need to able to be persisted using Java Ob-

ject Serialization ([JOS]). Note that the PropertyHolder superclass holds only transient state.

Moreover DomainObject implements Reproducable that specifies an interface used by cut/copy

& paste operations as explained below. DomainObject provides a default implementation of

Reproducible based on Object.clone(). Further specialization in the domain type hierarchy

is given by ProjectElement. ProjectElements are DomainObjects that are able to hold pa-

rameter bindings to specify values for user-defined parameters (as introduced in Section 3.4.4),

and can be sources of domain problems (to be reported by the Problems View). These capa-

bilities are exposed by the RootParameterHolder and ProblemsSource interface respectively

and implemented using delegate classes as explained below. A ProjectElement belongs to

zero or one Project which is answered by the getProject() method. ProjectElements of a

Project are organized by a containment hierarchy reflected by getChildProjectElements()

and preorderTraversal(). This hierarchy is used for recursive cleanup and refresh of parame-

ter bindings and domain problems. Finally, project elements that are identified by user-definied

names subclass NamedProjectElement, which provides a name space mechanism. Depending

on the domain object type, the name of a NamedProjectElement in general is constrained to

be unique within some context. To localize this behaviour, NamingDomains are used to vali-

date changed and new names and to suggest new names for duplicated project elements. The

domain.naming package contains all specific NamingDomain subclasses.

Direct concrete subclasses of all of the explained top level classes exist in the Scenario Builder

implementation, i.e. there are no “empty” intermediate abstraction levels.

Domain object duplication

The ability to copy, cut and paste domain objects is a general requirement supported by a

set of interfaces and implementations paralleling the domain object hierarchy. When the user

invokes a copy or cut action, snapshots of the selected domain objects need to be retained in

memory. Their current state needs to be preserved independently from future manipulations of

the originals. Associated objects are either recursively duplicated or remembered by reference.

When an insertion action is invoked, new domain objects need to be created accordingly and

inserted into a project hierarchy. This is a non-trivial process in general, as duplicates can be

inserted into different contexts, possibly incompatible regarding the associated domain objects.

2In the development configuration, JAXB uses its own dedicated source folder in the project directory to avoid
mixing up generated and programmed code, but both contribute to the domain.meta package.
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The class diagram in Figure 4.27 refines the realization of Reproducible by DomainObject.

Reproducibles implement getIngredients() to provide their ReproducibleIngredients,

which hold the state information required to create new instances at a later time. The ac-

tual reproduction happens in the getNewInstance() method implementation that takes a

ReproducableReferenceResolver as input parameter. The reference resolver is queried for ob-

jects to be associated with the new instance to reflect the original association. IdentityResolver

is a default implementation answering the same object instance, ProjectElementReference-

Resolver interposes a check for the associated object to reside in the same project as the new

instance. More sophisticated policies are implemented by layout editor actions. It is up to the

subclasses of DomainObject to implement adequate reproduction behaviour by providing their

own ReproducibleIngredients implementations, usually as inner classes.

Figure 4.27: Domain object duplication

Parameter bindings and problem annotations

Apart from ProjectElement as already outlined, there are further object types able to bind

parameter values to abstract parameter definitions, and to be associated with domain problems.

Without examining structural details of the domain implementation, these behavioural cate-

gories are not exactly aligned. Therefore code reuse is obvious, but not possible via subclassing

because of structural differences and Java not supporting multi-inheritance. Figure 4.28 and

Figure 4.29 outline the solution using interfaces and delegation.
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By means of distribution support values and child values of composite parameter values,

nested ParameterHolders create a containment hierarchy that is traversed when project ele-

ments are validated to update their problems or check compatibility with abstract parameter

definitions, and passed through upwards to notify project elements about value changes. The

root objects of parameter holder hierarchies (ProjectElements or instances of the Member as-

sociation class of composite pedestrian types) implement RootParameterHolder, intermediate

levels implement ParameterHolder.

ProblemSources can be queried for their Problems, using a technical categorization provided

by ProblemInternalCategorys. Problem instances moreover reference a display category, the

ProblemUserCategory, and know a string representation of a path locating them within a

project (using ProjectElement.getPathParent(), see Figure 4.26), a problem description and

the project element to be focused in the user interface related to the problem. All concrete

Problem subclasses are located in the domain.problem package.

Figure 4.28: Parameter bindings and problem annotations (1)

Figure 4.29: Parameter bindings and problem annotations (2)
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4.5.3 The control package

Actions and operations

Actions are a workbench concept that encapsulates commands issued by the user and decouples

them from different possible representations in the user interface. RCP uses IActions of JFace

to represent the “non-UI side of a command” (from source documentation of IAction).

Most of the action classes of Scenario Builder inherit their base functionality from Contextual-

Action, see Figure 4.30. The diagramed class hierarchy starts with the JFace Action, ex-

tended by GEF with WorkbenchPartAction and SelectionAction to add knowledge about

the action’s context and a selection-sensitive update mechanism. ContextualAction special-

izes this behaviour by interpreting selections and deciding about enabling the action based on

the type of selected objects. It also provides comfort methods to access selected domain objects.

Three selection modes are supported - SelectionMode.SINGLE enables an action for single se-

lected matched objects, SelectionMode.MULTIPLE ALL enables multi-selection but requires all

selected objects to meet the type criterions and SelectionMode.MULTIPLE ANY allows multi-

selection with at least one matching selected object. The object type matching is configured

by specifying a set of Class objects, either to be directly selected, or via an indirection us-

ing SelectableRepresentatives that are asked for a represented object (such as tree nodes

mapping to domain objects).

Actions of the Scenario Builder application are typically instanciated by WorkbenchParts

when the part control is created. They are enabled and disabled based on the current selec-

tion and invoked by the platform when associated user interaction occurs, i.e. a menu entry

is selected, a toolbar button is pushed or an accelerator key is pressed. Some actions are

purely user interface related, like actions for zooming, list filtering or tree folding, though most

actions result in manipulation of domain objects. The latter require an intermediate layer

of command handling to support undo and redo commands. This layer is basically provided

by the platform’s operation history (IOperationHistory) that associates undoable operations

(IUndoableOperations) with undo contexts (IUndoContexts). Undo contexts are used to define

application scopes operations belong to. Scenario Builder, see Figure 4.31, manages undoable

operations using the global operation history of the workbench, that is all user actions affecting

opened projects of an application instance are strictly serialized in one single command stack,

still operations are tagged with undo contexts of the respective projects defined to be “matched”

by the global context. When a project gets closed or deleted (see Section 4.3.2), the operations

of its undo context are disposed from the global undo history. The control.operation package

contains the CompositeOperation class that allows to reuse operations by nesting them inside

more complex operations. It also provides the OperationService singleton that administers

project contexts, accesses to the global operation history and localizes operation error han-

dling. The OperationService therefore bridges user interface actions to domain operations.

As mentioned in Subsection 4.4.4, GEF contains its own command stack framework, which is

integrated into the global history by a wrapper class, DomainOperationCommand.
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Figure 4.30: Actions base hierarchy

Metadata definitions

When Scenario Builder is launched, available metadata definitions are loaded from .scen-meta-

files residing in a predefined directory within the Eclipse workspace into memory. The javax.-

xml.validation.Validator of the Java runtime library is used to assert the conformance with

pedestrianScenarioMetadata.xsd before the JAXB Unmarshaller deserializes the XML data

into instances of domain.meta classes.

Metadata definitions are identified by their name and version, see Section 3.4.4. A Project

specifies the metadata definition it is based on using that name and version strings. Projects

and metadata definitions are loosely coupled, i.e. no domain.meta objects are referenced by

(and therefore persisted with, see the next paragraph) domain objects. Instead, a single instance

of MetaDataService in the control package provides access to ScenarioMetadataHelpers for

each available metadata version, which in turn can be asked for abstract definitions of facilities,

tools and propability distributions, and for abstract parameters of a given ParameterHolder.

Parameter bindings of domain objects are implemented by mapping abstract parameter names

to parameter values, so that AbstractParameters are referenced by their name string, not

directly by an object association.

When projects are loaded at application startup, Scenario Builder checks whether the specified
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Figure 4.31: Operations

metadata definitions exist in the workspace. If no .scen-meta file can be matched by name

and version, the project is loaded anyway with a user warning, and an alternative metadata

definition can be selected. If a matching metadata definition is found when a project is loaded

or when metadata is changed at any time, the parameter bindings of the project are validated

against its abstract definitions. Incompatible parameter bindings are reported to the user and

not ultimately dropped but kept within an invisible context (actually implemented by a class

named SilentParameterHolderDelegate). They can be reapplied to the visible context when

incompatibilities are resolved at a later time. This allows flexible switching between different

(versions of) metadata definitions without information loss and a best-effort policy for partially

compatible simulation models.

Domain data persistence

The specification of Subsection 4.1.2 requires domain data to be persisted per project and in a

way that enables import and export of projects into and from workspaces of different Scenario

Builder installations. As the most straightforward solution, Java Object Serialization [JOS] is
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utilized to persist domain object trees in the file system. The root object of serialization is a

Project instance. Therefore special care needs to be taken regarding the association graph of

directly and recursively referenced classes of Project. All project-related information needs to

be held by serializable objects, actually DomainObjects, ultimately accessible from a Project.

Fields containing derived data or references to non-domain objects, especially property change

listeners, need to be marked as transient, and (re-)initialized after deserialization as needed

by implementing readObject(ObjectInputStream ois).

The control.DomainDataService class handles

• synchronization states of projects, indicating whether the current in-memory state reflects

the persisted state, used for a “changed” decoration of the project label in the user interface

and enabling the save action, aware of the operation history

• saving, renaming and deletion of projects

• opening and closing of projects

• initialization and re-validation of metadata associations

Scenario export

The output of XML data conforming to pedestrianScenario.xsd of the GPSI (Subsection 3.4.4)

for a selected scenario is done by the ExportService class in three steps. First, the internal rep-

resentation of the scenario made up of objects of the domain package (implementing the Scenario

Project Model) is mapped to an in-memory instance of the Generic Input Model implemented

by the JAXB generated classes of the domain.export package. The result of this step is an

object tree with a domain.export.Scenario as root. Second, the domain.export.Scenario is

translated to its XML representation and written to the file system by a JAXB Marshaller. Fi-

nally, the generated XML output is validated using javax.xml.validation.Validator against

the GPSI XSD.

Layout transformation

Scenario Builder supports layout transformation from vector layouts to grid layouts as pro-

posed in Section 4.3.5, see also the screenshot of Figure 4.17. This feature basically involves

discretization of vector shapes. As items can be assigned to fill areas and line segments of

polygonal regions, cell representations of both are required.

Line segments are transformed into grid cells using the fast voxel traversal algorithm for

ray tracing of [AW87]. Fill area discretization is implemented as follows. For every vector

region, the cellular bounding rectangle of its shape is determined by finding the minimum and

maximum coordinate values of the shape vertices and translating them into the specified grid

coordinate system. Subsequently, all cells of the bounding rectangle are iterated and checked
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for containment of vector coordinates in the vector shape using Figure.containsPoint() of

Draw2d.

CAD import

CAD plans in DXF ([DXF]) format can be imported into projects as new vector layouts. After

selecting a .dxf file, its data is analyzed to determine the names of the contained layers and the

overall dimensions of the plan. The user is asked to select a set of drawing layers to be included

and to input a scale factor and an origin offset used to interpret measures of the geometric data.

The import is performed by classes of the control.cadImport package. DXF data is read line by

line and interpreted by a state machine algorithm implemented by DXFLayoutInterpreter that

adds shapes to a newly created vector layout. Its abstract base class, DXFInterpreter, manages

a set of active triggers, defined by group codes and values that are looked for when proceeding

through DXF data elements. When trigger conditions are detected, a handler method is called

that updates the internal state and adopts the trigger set to the new state

The DXF specification features supported by the underlying version of Scenario Builder are

lines, polylines, circles, circular arcs, hatches with boundary path types of the above and block

insertions.

4.5.4 The view package

This section gives a brief overview of the implementation of the view package that implements

the user interface concepts illustrated in Section 4.3.

Explorer Views

The Project Explorer and the Scenario Explorer view parts are based on TreeViewers of JFace

that provide tree-structured views of a model accessed by a content provider (IContentProvider)

and described by a label provider (IBaseLabelProvider). To decouple the structure of view

trees from the structure of domain elements, the latter are wrapped by ExplorerNodes to

constitute the viewer’s model. Subclasses of ExplorerNode exist for all types of tree nodes.

A single domain element type can be wrapped by multiple node classes as for example a

basin is listed as a child of a section node and of a facility node. The tree node registers

itself as a listener for changes of the wrapped domain object and translates domain events

to notifications of a centralized event service dedicated to explorer views implemented by

control.EventService. These node events are received by the explorer’s content provider

(view.explorerView.ExplorerContentProvider) to reflect structural changes in the hierar-

chy of tree nodes. The EventService is also used to broadcast ProjectActivationEvents,

events that signal the change of the project the workbench focuses on, particularly needed by

the Scenario Explorer to swap its content to the scenario tabs of the new active project.

The root content object of the Project Explorer is a WorkspaceNode. The WorkspaceNode
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does not have a visual representation as a single tree node but provides the root ProjectNodes

of the viewer using the DomainDataService (Section 4.5.3). The tabs of the Scenario Ex-

plorer are managed by the ScenarioExplorerView by mapping Projects to collections of

ScenarioPresentation objects, that in turn associate scenarios, tree viewers and tab items

of an SWT TabFolder.

Layout Editors

Layout editors are used to view and edit geometric data of project sections. A dedicated editor

type exists for vector, grid and graph layouts respectively, each based on GEF (Subsection 4.4.4).

The default base behaviour of GEF is modified at several points:

• The GraphicalEditor of GEF is overridden and customized by view.layoutEditor.-

GraphicalEditor that supports editor scopes (see Section 4.3.3), global undo and redo,

and modified zooming using view.layoutEditor.MetricZoomManager instead of GEF’s

default ZoomManager.

• FreeformViewport is extended to forgo automatic contraction of the edit area when draw-

ing tools are used outside existing figure’s bounds. Furthermore, a custom Autoexpose-

Helper implementation is used to allow tools to expand the edit area by scrolling out of

its current bounds.

• AbstractLayoutEditorTool adds to AbstractTool zoom-enabled graphical feedback and

convenience methods for scale translation between domain coordinates and viewer coor-

dinates.

• AbstractGraphicalEditPart is extended to also support zoom-enabled graphical feed-

back and implement SelectableRepresentative (see Section 4.5.3).

• RoundingScalingRootEditPart is a root edit part that replaces the scaling pane of the

default root edit part’s graphical layer stack to incorporate its own ScaledGraphics sub-

class, RoundingScaledGraphics, which in principle modifies the display of zoomed figures

by applying Math.round() instead of Math.floor() to scaled coordinates.

• GraphicalEditDomain overrides GEF’s DefaultEditDomain. It reports the current pointer

location to PropertyChangeListeners of the graphical viewer and allows to temporarily

suppress the editor’s context menu as needed by some drawing tools.

• ScopeContributionItem is a JFace ControlContribution that implements a scope se-

lection box as toolbar contribution of an active layout editor.

With this shared basis, the different layout editor types further specialize their behaviour

by subclassing and implementing context menu providers, zoom managers, edit part factories

and graphical viewers. They realize the editing model imposed by the GEF framework to meet
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the respective part of the domain and user interface model. The following paragraphs list the

concrete implementations of edit parts, edit policies and tools for all layout editor types.

Vector Layout Editor GEF framework model implementation:

edit parts layout, bounding, region, vertex

connection
edit parts

vector line, bounding line

edit policies layout, reference location, region as component, vertex as component, re-
gion item assignment, snap to line feedback, snap to vertex feedback, vector
line restructuring, polygonal shape editing, rectangle editing, vertex drag

tools selection (with marquee, move shape and move vertex drag tracker), create
polygon, create polyline, create rectangle

Table 4.1: GEF model implementation by the vector layout editor

Creation and update of figures by edit parts of the vector layout editor is handled by delegate

classes, subclasses of VectorShapeFigureDelegate, that map domain shapes to Draw2d figures.

Snapping, that is the automatic alignment of the current editing location with well-defined

locations in the layout, is supported by GEF by means of SnapToHelpers used by tools. This

base implementation operates on presentation data, i.e. viewer coordinates. Scenario Builder

provides its own SnapToHelpers based on domain coordinates to assure exact locations without

precision loss due to zooming, namely SnapToGrid for snapping to a user-defined drawing grid

(specified by Section 4.3.5), SnapToLine for line segments of shapes and SnapToVertex for

shape vertices.

Grid Layout Editor GEF framework model implementation:

edit parts grid layout

connection
edit parts

-

edit policies -

tools selection, free draw, line draw, rectangular outline draw, rectangle draw

Table 4.2: GEF model implementation by the grid layout editor

The Grid Layout Editor follows a monolithic design, a single edit part representing the grid

layout provides presentation logic and is the target for tools. This layout edit part draws and

updates

• a grid figure,

• a collection of cell figures, organized in a map indexed by cell locations, and

• a collection of cell feedback figures, organized in a map indexed by cell locations.

112



The grid figure paints the background for cell figures and cell feedback figures. It is imple-

mented efficiently using Draw2d’s FigureUtilities.paintGrid() with parameters reflecting

the cell size and the number of columns and rows of the grid layout. Cell figures are filled

rectangles of the size of one grid cell that collectively reflect the current state of the layout

domain object. A grid cell is overlayed by a cell figure if it is defined to be obstructive and/or

has items assigned. The layout edit part is registered as a change listener with the grid layout

to keep its grid figure and cell figures synchronized with the domain state. Cell feedback figures

are also cell-sized rectangles that are inserted and removed as reaction to requests issued by

tools.

Graph Layout Editor GEF framework model implementation:

edit parts layout, bounding region, node

connection
edit parts

link

edit policies layout, link, link endpoint, node as component, node as connection node,
node item assignment, node drag

tools selection (with move node drag tracker), draw

Table 4.3: GEF model implementation by the graph layout editor

Graph layouts show conceptually higher compatibility with GEF concepts than the other

layout types wherefore the implementation of the Graph Layout Editor is very straightforward

following GEF examples. Some complexity is added to the selection tool to enable marquee

zooming. Moreover, the drawing tool is a dedicated implementation. The same snapping

mechanisms are applied as to the Vector Layout Editor.

Infrastructure Editor

The Infrastructure Editor provides a pseudo-3d view on a selection of sections and layouts as

explained in Subsection 4.3.6. The geometric information of the selected layouts is schemati-

cally displayed within the sections (and therefore translated into world coordinates). The sole

editable objects in the editor are inter-section-connections of basins, so the main information to

be displayed are basin locations and connections between them. In difference to layout editors,

the Infrastructure Editor does not directly present and manipulate objects of the domain pack-

age, but uses an intermediate model residing in its own domain subpackage to encapsulate the

treatment of multiple basins at identical locations. Identical location has a dedicated interpre-

tation for each layout type. Considering vector layouts, it means the same set of line segments,

in grid layouts the same set of cell locations and in graph layouts simply an assignment to

one and the same node. The Infrastructure Editor displays multiple occurrences of basins at

identical locations as one single node for editing inter-section-connections, called infrastructure

node, connected by infrastructure links. The per-basin configuration of connections between
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infrastructure nodes is enabled by a dialog with a selectable structured list of possible basin

connections, also considering basin types (i.e. allowing connections only from sources to sinks).

The GEF concepts are applied by the Infrastructure editor as listed in Table 4.4.

edit parts infrastructure, layout, layout content, layout background image, infrastruc-
ture node

connection
edit parts

infrastructure link

edit policies selection, infrastructure link

tools selection

Table 4.4: GEF model implementation by the graph layout editor

Element Inspector

The Element Inspector is basically an Eclipse PropertySheet, but uses a customized version

of the PropertySheetPage to remove unwanted action buttons, support parameter scopes and

include the scope bar shown in the screenshot of Figure 4.7.

Domain objects are represented by trees of property sources implementing IElementInspector-

PropertySource, an interface extending IPropertySource, adding parameter scope and do-

main problems support. The base implementation, ElementInspectorPropertySource im-

plements getPropertyDescriptors() to answer property descriptors of tree childs enhanced

by parameter scope and problems information. Property descriptors are either Container-

PropertyDescriptors to describe nested property sources, or leaf descriptors. Customized

types of the latter exist for combo boxes and text fields. Property sources exist for all types

of project elements, ParameterHolderPropertySources contain binding hierarchies to user-

defined parameters, including distributions and composite parameters. A HoverHelper is

hooked at the property sheet control to provide tooltips with domain specific information. The

ElementInspectorPropertySheetEntry exposes scope and problems information of property

descriptors to the user interface by specifying icon images of the name and value fields, in turn as-

signed to tree items by an overridden PropertySheetViewer of the custom PropertySheetPage.

The action subpackage of elementInspector contains action classes used exclusively by the

context menu of the Element Inspector. Their common base class is ElementInspectorAction.

ElementInspectorAction manages the enabled state of an action by letting the subclass define

the types of supported property sources, similar to the ContextualAction (Section 4.5.3).

OD-Map Editor

The OD-Map Editor consists of two parts in a tabbed view, implemented as a MultiPageEditorPart

with an ODMapBasinsEditor and an ODMapMatricesEditor as editor parts.

The ODMapBasinsEditor (see Figure 4.22) is used to select origin and destination basins

included in od-matrices of the od-map. Both parts of the editor page, origin and destination,
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use a BasinsPageTablesProvider instance to handle the controls and event listeners of the

available list, the included list and the buttons in between. The lists are implemented as SWT

Tables.

The ODMapMatricesEditor (see Figure 4.23) lets the user select a pedestrian type to view

and edit the od-matrix for. The pedestrian type hierarchy is rendered by a JFace TreeViewer.

The matrix control uses KTable [KTa]. The import of matrix values from CSV files uses the

OpenCSV [ope] library.

Synchronization between the domain model state and an OD-Map Editor instance is achieved

by both editor parts being registered as change listeners with related domain objects.

Problems View

The problems table is a JFace TreeViewer using a content provider, a label provider, a viewer

sorter and a viewer filter.

The model of the viewer is provided by a class called ProblemsService that holds a collection

of workspace problems, containing all domain problems of currently opened projects in the

workspace. The ProblemsService receives events from the DomainService (Section 4.5.3)

and the opened Projects to keep the problems collection consistent with the domain state. A

ProblemsContentProvider in turn is registered as a change listener with the ProblemsService

to mediate between the workspace problems collection and the viewer.

A ProblemsLabelProvider answers the displayed content of each column of the problems

table for a given problem. It subclasses StyledCellLabelProvider to be able to use Styled-

Strings to display element types paler than element names. Styling policies for labels are

encapsulated in the StringPolicy class. Icons are used to indicate whether a problem is

related to project scope or a scenario scope, see the screenshot of Figure 4.24.

The sorting algorithm of the problems list is implemented by the view.MultiSorter imple-

mentation of ViewerSorter. The MultiSorter contains a ProblemsSorter for every column

and manages a priority list of sort columns and directions, controlled by column click events.

Filtering is handled by ViewerFilters for each of the categories listed in Subsection 4.3.9.

4.6 Tool Validation

The proposed framework is in use as part of a current research project at the AIT3, concerned

with the development of visualized, multi-model simulation software to support complex large-

scale public transport planning.

The Scenario Builder software tool provides adequate flexibility to support various work-

flows and problem statements. Some examples are reported in the following to illustrate the

improvement in efficiency gained by the tool.

3AIT Austrian Institute of Technology GmbH, TECHbase Vienna, 1210 Wien
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4.6.1 Workflow Example 1: Creating a Simulation Scenario from CAD data

The CAD import feature allows for easy prototyping of scenario geometry. As CAD plans often

contain a large amount of detail-scale information irrelevant for pedestrian simulation, some

pre-editing of the available CAD data might be necessary. Still, information filtering based on

a selection of the imported plan layers is possible directly within Scenario Builder.

CAD imports create vector layouts available in a Scenario Builder project. The shapes of

imported layouts are not marked as obstructions and do not have any items assigned, therefore

they are initially “invisible” to the simulation (i.e. they are not included in GPSI output data).

The semantics assignment needs to be done in an extra step by selecting shapes and setting

them to be obstructive or represent items. Additional item occurrences or layout details can be

created by drawing shapes manually.

For example, if appropriate CAD data is available, in the imported plan all shapes can be se-

lected and marked to be walls using the context menu’s “make obstruction” action. Afterwards,

special regions and objects like waiting queues, ticket machines or elevators can be created in

the Project Explorer and dragged into shapes manually drawn in the layout.

Even if no CAD plans but instead scans of sketches or photographies are available, Sce-

nario Builder supports geometry generation by letting the user select any image as a drawing

background of the layout editor.

4.6.2 Workflow Example 2: Comparing Microscopic, Mesoscopic and Macroscopic

Simulation of a Scenario

Though layouts of any type can be created from scratch and stand alone, a typical workflow

involves deriving a grid layout from a vector layout, and creating a graph layout based on any

of the two above mentioned. This is for example the case when simulation models of different

granularity (see Subsection 2.2.1) should be applied for comparison or hybrid simulation.

Once a vector layout of a scenario exists, either manually drawn or imported from CAD data,

a corresponding grid layout can be developed following these steps:

• Create a new grid layout in the Project Explorer.

• Open the Layout Editor for the new grid layout.

• Select the base vector layout as background layout using the Element Inspector.

• Adjust cell size, grid size and grid orientation using the Element Inspector.

• Select all cells or the cells of required areas.

• Perform layout transformation for the selected cells using a toolbar action.

• Manually perform partial corrections or beautifications as needed.

116



A graph layout based on an existing vector layout or grid layout can be created as follows.

• Create a new graph layout in the Project Explorer.

• Open the Layout Editor for the new graph layout.

• Select the base layout as background layout using the Element Inspector.

• Draw nodes and links superimposing the background layout.

This workflow results in a stack of compatible layouts of different types for one scenario

section, representing consistent semantics because of identical items assigned by reference to

spatial occurrences. The integrated solution allows for centralized management of layout data

instead of inhomogeneos artifacts maintained using different tools that are likely to drift apart

related to common simulation parameters.

4.6.3 Workflow Example 3: Evaluating Variations of an existing Scenario

A typical use case of pedestrian simulation is the estimation of effects of environmental design

alternatives. Scenario Builder addresses this problem category by means of scenario overrides,

a concept allowing multiple scenarios of a project to share common data but define particular

per-scenario variations. Scenario overrides can be applied for the following object types.

• values of user-defined simulation parameters,

e.g. to define a different elevator acceleration or maximum walking speed

• facility types, and therefore facility parameterization

e.g. to use a different elevator type or replace a conventional door by a sliding door

• layouts,

e.g. to change the width of a corridor or add obstacles

• od-maps, and therefore the simulation population,

e.g. to examine overcrowded situations or alternative flows

Without explicit tool support, scenario variations would require branched versions, and there-

fore error-prone redundancy, or frequent reconfiguration of simulation data.

4.6.4 Workflow Example 4: Migrating existing Scenario data to a changed

Simulation Model

When new versions of simulation models evolve, their input data models possibly also change.

Therefore existing input data needs to be updated to migrate scenarios to changed model

versions. Also, existing scenarios might be intended to be simulated using completely different

or new models.
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The input data model of a simulation model is reflected by a metadata definition file inter-

preted by Scenario Builder. The tool allows to switch metadata definitions of a project at any

time. Metadata switching therefore implements model migration and is not a trivial feature.

Project data needs to be revalidated and decisions need to be made about elements and pa-

rameter values that become incompatible with the new metadata definition. Scenario Builder

provides a best-effort strategy that maintains parameterization wherever possible and remem-

bers elements and values that need to be dropped for any potential future use or stepping back

to a previous metadata definition. After a metadata switch, missing values or validation prob-

lems are marked and reported by the Problems View to guide the user through the necessary

manual steps of model migration.

Without the proposed tool-supported model migration policy, simulation scenario data needs

to be manually reworked to meet the requirements of changed simulation models. Stepping

back to the original version means losing all intermediate changes to the input data or doing

the cumbersome manual metadata switch again backwards.
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5 Conclusions and Future Work

In this thesis, a categorization of existing pedestrian modelling approaches is given and rep-

resentatives of different characteristics are reviewed. Based on an analysis of the their data

models, a generic input data model and its implementation in XML schemas is presented. The

Generic Pedestrian Simulation Interface supports vector-, grid- and graph-based spatial spec-

ification of multi-section simulation environments, and a flexible structure of logical concepts

used to enhance spatial regions with model-specific data. A rich parametrization layer provides

adaptability to a broad range of concrete models. The population of simulation scenarios is

modelled by a type hierarchy of individuals, pedestrian groups and frequency distributions,

annotated with trip information.

The second part of the framework proposal addresses application support of model input gen-

eration conforming to the generic interface. Atop of structural conditions imposed by the data

model, a set of workflow-related requirements is identified, covering multi-scenario management

and comparison, data formats and geometry prototyping. A user interface concept meeting

the requirement analysis is illustrated, a decomposition of the overall functionality into main

application parts is given and features are listed at a more detailled level.

The user interface concept has been implemented by a production level desktop application

called Scenario Builder, which is discussed in the final part of the work. An overview of the base

frameworks and libraries and their integration is given, before the implementation architecture

is explained. Scenario Builder is an Eclipse Rich Client Platform standalone application, using

the Eclipse Graphical Editing Framework for graphical editors of the simulation infrastructure.

Object-to-XML mapping is realized using the JAXB architecture. Selected design specifics are

discussed for each of the main components - domain model, view and controller.

This work attempts to unify input generation for pedestrian simulation models by provid-

ing a generic data interface and software tool support. It focuses on benefits emerging for

simulation model developers and researchers by enabling early prototyping, relieving model im-

plementations from common parts required to design scenarios, and therefore alleviating the

focus on the actual pedestrian model. Future work should address the development of code

libraries implemented in various programming languages that mediate between GPSI data and

in-memory representations of concrete simulation models. Taken a step further, that library

could be designed as a pluggable runtime framework that provides infrastructure functionality

for higher-level model implementations. Finally, the ideas of reuse, decoupling and platform in-

dependence also apply to visualization and analysis, see Figure 1.4, wherefore a similar approach

or an extension of GPSI should be considered for that component.
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[TA04] Juri Tolujew and Felix Alcalá. A Mesoscopic Approach to Modeling and Simulation

of Pedestrian Traffic Flows. Proceedings 18th European Simulation Multiconference,

2004.

[TBM08] Kardi Teknomo, Dietmar Bauer, and Thomas Matyus. Pedestrian Route Choice

Self-Organization. 3rd International Symposium of Transportation Simulation,

2008.

[TBMM04] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. XML

Schema Part 1: Structures (Second Edition). W3C Recommendation, 2004.

[Tim04] Harry Timmermans. Retail location and consumer spatial choice behavior, chap-

ter 7, pages 133–147. Kluwer Academic Publishers, 2004.

[TM95a] Peter A. Thompson and Eric W. Marchant. A computer model for the evacuation

of large building populations. Fire Safety Journal, 24(2):131–148, 1995.

[TM95b] Peter A. Thompson and Eric W. Marchant. Testing and application of the com-

puter model ‘SIMULEX’. Fire Safety Journal, 24(2):149–166, 1995.

[TM07] Kardi Teknomo and Alexandra Millonig. A Navigation Algorithm for Pedestrian

Simulation in Dynamic Environments. Proceeding of the 11th World Conference

on Transportation Research (WCTR), 2007.

[Tra] TraffGo HT GmbH homepage, http://www.traffgo-ht.com, accessed in November

2009.

[UAF] Urban Analytics Framework homepage, http://www.pedestrian-simulation.com,

accessed in November 2009.

128



[VIS] VISSIM homepage, http://www.ptvag.com/software/transportation-planning-

traffic-engineering/software-system-solutions/vissim, accessed in November 2009.

[Vuz] Vuze homepage, http://www.vuze.com, accessed in October 2010.

[Win92] Patrick Henry Winston. Artificial Intelligence. Addison-Wesley, 3rd edition, 1992.

[Wol94] Stephen Wolfram. Cellular Automata and Complexity: Collected Papers. Addison-

Wesley, 1994.

[Zam07] Fabio Zambetta. Simulating sensory perception in 3D game characters. In IE ’07:

Proceedings of the 4th Australasian conference on Interactive entertainment, pages

1–3, Melbourne, Australia, Australia, 2007. RMIT University.

[ZWS08] Nana Zhu, Jiangyan Wang, and Jiangang Shi. Application of Pedestrian Sim-

ulation in Olympic Games. Journal of Transportation Systems Engineering and

Information Technology, 8(6):85–90, December 2008.

129


	Introduction
	Software supported Pedestrian Simulation
	Development of Pedestrian Simulation Software
	Related Work - currently available Software Solutions
	Problem Statement - Unified Tooling
	Methodology
	Interface Specification Methodology
	Tool Development and Validation Methodology


	Pedestrian Modelling
	Application of Pedestrian Models
	Classification of Pedestrian Models
	Classification Criterions

	Model Analysis
	Macroscopic Models
	Microscopic Models
	Mesoscopic Models
	Overview

	Input Model Summary
	Environment Geometry
	Environment Semanctics
	Population
	Model Calibration
	Reporting Configuration


	Generic Pedestrian Simulation Interface (GPSI)
	Requirements
	System Metamodel
	Model Architecture
	Top-level Layering
	Core Concepts
	Static Structure

	Interface Implementation
	Technology Choice - XML and XML Schema
	Data Formats
	UML for the Documentation of XML Schema Definitions
	Interface Specification


	Unified Scenario Definition Tool:Scenario Builder
	Requirements
	Data Organization
	Data Input and Output
	Geometry Prototyping
	Look and Feel

	Project Model
	User Interface Model
	Overview
	Explorer Views
	Element Inspector
	Toolbar Actions
	Layout Editors
	Infrastructure Editor
	OD-Map Editor
	Problems View
	Problem Categories

	Base Technologies and Libraries
	Eclipse RCP
	SWT
	JFace
	GEF and Draw2d
	JAXB
	Commons Math
	opencsv
	KTable
	log4j

	Implementation Architecture
	The root package
	The domain package
	The control package
	The view  package

	Tool Validation
	Workflow Example 1: Creating a Simulation Scenario from CAD data
	Workflow Example 2: Comparing Microscopic, Mesoscopic and Macroscopic Simulation of a Scenario
	Workflow Example 3: Evaluating Variations of an existing Scenario
	Workflow Example 4: Migrating existing Scenario data to a changed Simulation Model


	Conclusions and Future Work

