
Model-Based Development of
Distributed Embedded Systems

by the Example of the
Scicos/SynDEx Framework

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

BERNHARD FISCHER

bernhard.fischer@gmx.at

Matrikelnummer 0126057

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuer:
PRIVATDOZ. DI DR. WILFRIED ELMENREICH

Wien, 12.09.2010
(Unterschrift Bernhard Fischer) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

Die Erstellung eingebetteter Systeme wird mit erhöhten funktionellen
Anforderungen, der raschen Weiterentwicklung von Komponenten, und
verkürzten Lieferzeiten konfrontiert. Entwicklungsmethoden, die sowohl
eine schnelle Anpassung an Veränderungen und fehlerfreies Design, als auch
die Minimierung von Kosten und die Möglichkeit einer zeitgerechten Pro-
duktauslieferung bieten, werden benötigt. Eine Antwort auf erhöhte An-
forderungen und Komplexität sind Entwicklungsmethoden basierend auf
Modellen. Die modellbasierte Entwicklung trennt fachliche und technische
Belange auf verschiedenen Ebenen, und unterstützt dabei die konzeptuelle
Erfassung von Systemen, automatisierte Codegenerierung, formale Veri-
fikation, und Zertifizierung.

Diese Arbeit demonstriert den modellbasierten Entwurf von eingebet-
teten Systemen mit dem Scicos/SynDEx Framework. Scicos ist ein
Modellierungs- und Simulationswerkzeug für hybride Systeme. SynDEx
ist eine integrierte Entwicklungsumgebung für die Prototypenerstellung
verteilter Systeme. Die Umsetzung des modellbasierten Ansatzes wird mit
zwei konkreten Beispielen aus dem Bereich der Regelungstechnik auf einer
Entwicklungsplattform bestehend aus vernetzten Mikrokontrollern, Sen-
soren, und Aktuatoren durchgeführt. Resultierende Ergebnisse helfen für
mittelgroße eingebettete Systeme Vor- und Nachteile des modellbasierten
Ansatzes gegenüber handgeschriebenen Ansätzen abzuwiegen.

Einprozessoranwendungen zeigten einen erhöhten dynamischen und statis-
chen Speicherverbrauch im Vergleich zu handgeschriebenen Ansätzen –
dagegen steht der von Werkzeugen gebotene Komfort durch Simulation,
Verifikation und automatischer Codegenerierung. Der Einsatz des Frame-
works ist für einzelne Applikationen unökonomisch, dies wurde durch
den nötigen Aufwand für die Erstellung eines nahtlosen Modellierungs-
Frameworks und den erhöhten Entwicklungsaufwand bezeugt. Ein weiterer
Nachteil bestand darin, dass der mittels SynDEx generierte Code nicht an
Mikrokontroller angepasst werden konnte ohne das Zeitverhalten der Ap-
plikation signifikant zu verändern. Das Scicos/SynDEx Framework bietet
vielversprechende Ansätze, da jedoch noch viele Verbesserungen ausstehen,
wird es derzeit nur für experimentelle Zwecke empfohlen.

Abstract

The embedded systems engineering industry faces increasing demands for
more functionality, rapidly evolving components, and shrinking schedules.
Abilities to quickly adapt to changes, develop products with safe design,
minimize project costs, and deliver timely are needed. A response to
the broader range of requirements and the problems brought along with
system complexity are development methods based on models. Model-
based development (MBD) follows a separation of concerns by abstracting
systems with an appropriate intensity, such as the separation of func-
tional requirements and specification from implementation details. MBD
promises higher comprehension by modeling on several abstraction-levels,
formal verification, automated code generation, and certification.

This thesis demonstrates MBD with the Scicos/SynDEx framework on
a distributed embedded system. Scicos is a modeling and simulation
environment for hybrid systems. SynDEx is a rapid prototyping integrated
development environment for distributed systems. Performed examples
implement well-known control algorithms on a target system containing
several networked microcontrollers, sensors, and actuators. Results of
these demonstrations support the decision-making process of either prefer-
ring MBD or classical, hand-written approaches. The addressed research
question tackles the feasibility of MBD for medium-sized embedded
systems.

In the case of single-processor applications experiments show that the
comforts of tool-provided simulation, verification, and code-generation
have to be weighed against an additional memory consumption in dynamic
and static memory compared to a hand-written approach. Expenses for
establishing a near-seamless modeling-framework with Scicos/SynDEx
and an increased development effort indicate a high price for developing
single applications, but might pay off for product families. A further
drawback was that the distributed code generated with SynDEx could
not be adapted to microcontrollers without a significant alteration of the
scheduling tables. The Scicos/SynDEx framework forms a valuable tool
set that, however, still needs many improvements. Therefore, its usage is
only recommended for experimental purposes.

Contents

List of Figures . iii
List of Tables . vi

1 Introduction 1
1.1 Outline . 4

2 Concepts and Related Work 5
2.1 Basic Concepts in Systems Engineering 5

2.1.1 A Brief Glimpse on Control Theory 9
2.2 System Development Using Models 11

2.2.1 Model-Based Development 18

3 Modeling Tools 25
3.1 Scicos . 26
3.2 SynDEx . 36
3.3 Scicos-SynDEx Interface . 51

4 Demonstrations: MBD with Scicos/SynDEx 55
4.1 Hardware Architecture . 56

4.1.1 Target Platform Components 56
4.2 Example Monoprocessor . 61

4.2.1 Hardware Architecture 62
4.2.2 Software Architecture . 63

4.3 Example Multiprocessor . 78
4.3.1 Hardware Architecture 78
4.3.2 Software Architecture . 79

4.4 Results . 86
4.4.1 Code Size . 86
4.4.2 Code Structure . 87
4.4.3 Effort . 89
4.4.4 Model versus Reality . 91
4.4.5 Systems Design with Scicos/SynDEx 92

5 Conclusion 95
5.1 Outlook . 100

Bibliography 103

Acronyms 107

i

A Notes 109
A.1 Scicos/SynDEx - Configuration 110
A.2 Scicos/SynDEx - Documentation 114

B Listings 125
B.1 SynDEx PID-Example, Node3.m4 125
B.2 SynDEx PID-Example, Scicos-Syndex Gain Block 126
B.3 Atmel ATmega128 macro expansion definitions file 126
B.4 SynDEx PID-Example, final C code 127
B.5 SynDEx PID-Example, GNUMakefile 129
B.6 SynDEx PID-Example, .mk Makefile 130
B.7 Scicos Block Struct, .h Header 132
B.8 Textual SynDEx PID algorithm, pidFan.sdx 133

ii

List of Figures

2.1 Single, closed-loop control structure. 10
2.2 PT1: first-order delay element. 11
2.3 Uncertainty and risk. 14
2.4 Scheme of a hybrid system. 15
2.5 Model and meta-model relationships 20
2.6 Models and DSLs . 20
2.7 MDA - Overview. 21
2.8 Dependencies in the Model Driven Architecture. 22
2.9 The MDA Pattern . 22

3.1 Scicos - Model abstraction and simulation 29
3.2 Simple Scicos diagram . 29
3.3 Scicos Block . 30
3.4 Scicos - Activation time dynamics 32
3.5 Scicos - Activations - Hierarchy. 33
3.6 Scicos activation inheritance . 34
3.7 Scicos synchronism concepts. 35
3.8 Scicos - Register block . 35
3.9 SynDEx: models and abstraction. 39
3.10 SynDEx formalism - Algorithm, architecture and communica-

tion models . 40
3.11 SynDEx syntax . 40
3.12 SynDEx syntax - Superblock internals 40
3.13 A SynDEx block. 42
3.14 SynDEx block - editor view . 42
3.15 SynDEx architecture model . 44
3.16 Design flow with SynDEx. 45
3.17 SynDEx - Scheduling table with two processors and two com-

munication media. 47
3.18 SynDEx - Scheduling with tasks of varying execution times . . . 48
3.19 SynDEx - Synchronizing a task with a timing operator. 49
3.20 SynDEx - Model versus a real execution instance 50
3.21 Scicos/SynDEx SDLC and V-Model ’97 52
3.22 SDLC with Scicos/SynDEx . 53
3.23 Scicos/SynDEx gateway . 53

iii

4.1 ESE-Board - Simplified layout. 57
4.2 ESE-Board - Photography . 58
4.3 ESE-Board - Node0. 59
4.4 ESE-Board - Node1. 59
4.5 ESE-Board - Node2. 60
4.6 ESE-Board - Node3. 60
4.7 PID-Example. A PID algorithm placed on Node3 61
4.8 PID-Example. A hybrid system 65
4.9 Cooling fan behavior. 65
4.10 PID-Example. Fan, function approximation 66
4.11 PID-Example. Fan, Scicos behavior model 66
4.12 Fan, Scicos model simulation . 67
4.13 PID controller, Scicos model . 68
4.14 Scicos hybrid system model . 68
4.15 PID control algorithm, parameters. 69
4.16 Scicos hybrid system simulation 69
4.17 PID-Example. Partial development process. 70
4.18 Node3, SynDEx architecture model. 71
4.19 PID-Example. Top-level SynDEx model 72
4.20 PID-Example. Interfaces . 72
4.21 PID-Example. PID SynDEx model 73
4.22 PID-Example. SynDEx scheduling after algorithm adequation . 74
4.23 PID-Example. Live data . 77
4.24 PID-Example. Model redesign. 77
4.25 Multiprocessor-Example. Distribution and display of tempera-

ture information. 78
4.26 Multiprocessor-Example. SynDEx architecture model 80
4.27 Multiprocessor-Example. A SynDEx algorithm model with four

operators . 80
4.28 Multiprocessor-Example. SynDEx scheduling. 81
4.29 Re-structuring of the SynDEx M4 code. 82
4.30 Scicos/SynDEx vs. hand-written code structure. 89

5.1 Scicos/SynDEx vs. hand-written solution 98

A.1 Screenshot of Scilab with the installed SynDEx gateway module. 112
A.2 Screenshot of Scicos with the installed SynDEx gateway module. 113
A.3 SynDEx parameter-window screenshot 116
A.4 Demo - diagram used for the demonstration of the Sci-

cos2SynDExGateway. 118
A.5 Demo - diagram transformed to a Scicos Superblock. 118
A.6 Scicos2SynDEx - Generated artifacts. 119

iv

A.7 SynDEx - Screenshot, the test diagram. 119
A.8 SynDEx - Screenshot, choosing the target architecture. 120
A.9 SynDEx - Opening of an example application. 121

v

List of Tables

2.1 Reasons for project cancellations. 13

3.1 Scicos - Basic Block Interfaces. 31

4.1 Memory usage measured in the monoprocessor examples. 86
4.2 Code structure comparison. 88
4.3 Development effort with an already working tool-chain: model-

driven vs. hand-written approach. 90
4.4 Scicos/SynDEx on a microcontroller based distributed embed-

ded system. 93

5.1 Fitness of the model-driven approach compared to a hand-
written solution. 98

vi

1 Introduction

Embedded systems engineering combines the fields of software, hardware
and control engineering. The main characteristic which separates embedded
development from plain software development is its intrinsic link to the
physical world, often in a safety-critical environment. Embedded systems
usually realize a set of requirements for precise control of electromechanical
devices (e.g. MEMs1).

Advancements in microfabrication lead to cheaper and more powerful em-
bedded components which come along with higher customer demands and
tighter schedules. The increasing number of system functionalities implies
higher complexity and diminished perceptibility especially when it comes to
simultaneity: Systems that might appear as being simple at a first glance are
in fact hard combinatorial problems, the limits of the conceptual landscape in
the human mind are easily reached: the number of states in an automaton
explodes with every additional degree of freedom.

Current development methods for embedded systems incorporate plan-driven
and agile characteristics to a certain degree. Document-centric plan-driven
methods provide less flexibility to requirement and specification changes than
agile methods which focus on interaction with customers and adaptability.
Development methods are responsible for the successes of IT-projects of which
about 20% failed according to studies between 2002 and 2006 [EK08]. Main
reasons include over-budget, too many scope changes and the management
being not sufficiently involved. These reasons are based on two common
denominators, namely uncertainty and risk. At project start the possible
solution space is blurred, estimations about costs and project time are vague.

A response to all these issues are model-based development (MBD) paradigms.
In MBD concerns are separated by their importance for the current activity
in the development process, such as the separation of implementation details
from requirements specifications. Centering the development process around
models allows a higher flexibility to change requests by automation, reduces
risks by enabling simulation and verification in early project phases, and
supports the management in planning project costs and time. Low costs,
timely delivery and safe design are the driving forces of systems engineering.

1Micro-Electro-Mechanical Systems

1

INTRODUCTION

Introducing models has a price and many aspects have to be considered when
shifting to a model-based design culture [SPF07]. Educating stakeholders
with new modeling techniques and tools might be expensive, requires time,
and adopting already established processes or legacy systems is costly.
These investments increase the development effort in the scope of short-term
planning. Embedded systems are often restricted by computational power,
memory and disk space. Are model-based solutions efficient? This thesis pre-
pares information that helps to weigh costs against gain in the context of MBD.

Models act as a base for consistent, automatic artifact generation. Imple-
mentation (code generation) and verification can be carried out with trusted,
standardized tools which are usually based on synchronous languages and
are current research topics in computer science. Mathworks’ MATLAB and
Esterel Technologies’ SCADE are well-established, commercial tool-sets on the
market and specialized inside the domain of safety-critical embedded systems.
An overall, generally applicable modeling theory does not exist, but modeling
techniques and scientific tools provide research opportunities, such as the
non-commercial Scicos/SynDEx framework. This framework combines hybrid
systems modeling with Scicos and discrete temporal, distributed modeling,
optimization and code-generation with SynDEx.

This thesis evaluated the benefits and costs of a MBD-based development
process with the Scicos/SynDEx framework on a distributed target-platform.
Capabilities of the framework were explored and MBD compared to classic,
hand-written development. Development effort, executable code size, code
structure (perceptibility), and memory consumption were compared. In liter-
ature there are no such examples of using Scicos/SynDEx on an distributed
architecture with microcontrollers.

Objectives of this work are to exercise and analyze the outcomes of
well-known control and data observation algorithms following a model-based
development process. Examples are PID control algorithms, and a data
observation application carried out on a scientific target-platform consisting of
several microcontrollers and peripherals including sensors and actuators.

Algorithms in the discrete domain are modeled together with continu-
ous environment peripherals. The demonstrations include a single- and a
multi-processor example. In the single-processor application a PID algorithm
controlling a cooling fan is realized. In the multi-processor example, temper-
ature data is observed at one node, displayed on an LCD on another, and
forwarded to the development workstation via an embedded gateway node.

2

INTRODUCTION

Implemented applications are hybrid systems which are designed, simulated
and verified with Scicos. Temporal design, scheduling, optimization, distribu-
tion and code-generation of transformed Scicos models are performed with the
help of SynDEx. A seamless modeling environment is approached by adapting
the Scicos/SynDEx tool-chain.

The research in this thesis is limited to a multi-processor target-platform
and the Scicos/SynDEx framework. Several other tools require research, but
the results in this thesis can be used to compare this framework’s performance
to tool-sets incorporating other modeling techniques. The research shows
strengths and weaknesses of the framework with respects to scheduling, mod-
eled versus real behavior, code metrics and resource allocation. Estimations for
the development effort of MBD and classic development are not quantitative,
they are only based on a few examples.

Results of this thesis demonstrate how control algorithms can be mod-
eled with this particular model-based development toolset. Problems and
pressing issues were identified and contribute information for enhancing
the Scicos/SynDEx framework. The data gained by comparing classical
development to MBD eases the decision of migrating model-based paradigms
into the development process. With model-based development the possible
solution space is narrowed down in early stages by rapid prototyping and
design faults are detected easier. However, all this comes with the price of
extra development effort, program size and memory consumption.

3

INTRODUCTION

1.1 Outline

The thesis is divided into five chapters: (1) Introduction, (2) Concepts
and Related Work, (3) Modeling Tools, (4) Demonstrations: MBD with Sci-
cos/SynDEx, and (5) Conclusion.

Chapter 1 introduces the background, scope of research, applied methods,
the objectives and relevance of this thesis.

Chapter 2 encapsulates important terms and definitions. Control theory
relevant for the examples is introduced briefly. Basic concepts in modeling
systems are presented, including model-based and model-driven development
and approaches.

Chapter 3 explains the modeling tools Scicos and SynDEx in a detail neces-
sary for understanding the examples. Syntax, semantics, underlying modeling
techniques, and modeling with the used tools are surveyed. Strengths and
weaknesses of temporal design with SynDEx is given special consideration to.

Chapter 4 shows the methods and realized experimental designs. The design
of PID algorithms with Scicos and modeling hardware, communication, and
software architectures with SynDEx is presented and discussed. Finally, this
chapter summarizes the examples’ results.

Chapter 5 reviews the results from the previous chapter. Advantages and
drawbacks of systems design by modeling are discussed based on development
effort and designs. Improvements are proposed for the SynDEx tool, as well
as concepts for establishing a working modeling tool-chain.

4

2 Concepts and Related Work

Model-based and model-driven development have been emerging terms in em-
bedded systems development. Demonstrations in this thesis require the defini-
tion of concepts in control theory, modeling theory, and development method-
ologies. The following definitions resulted from a literature study to build a
conceptual base for this thesis. Since the topic of this thesis derives from dif-
ferent disciplines such as computer science, control engineering, and embedded
systems, the existing nomenclatures are often not clearly defined in literature,
have ambiguous meaning, are used freely, and often depend strongly on their
context.

2.1 Basic Concepts in Systems Engineering

This section defines general methods and concepts needed in the following
chapters of this thesis. The model-based development demonstrations require
definitions in the fields of software, systems, models and control theory.

Software Engineering
First defined in a NATO1 conference in 1968 [NR68], Software Engineering
has been a term not easy to describe in a way that satisfies the whole IT -
community. Even though there is no complete consensus, the IEEE2 offers a
standardized definition:

”(1) The application of a systematic, disciplined, quantifiable ap-
proach to the development, operation, and maintenance of software;
that is, the application of engineering to software. (2) The study of
approaches as in (1).” [IEE90]

System

”A collection of components organized to accomplish a specific func-
tion or set of functions.” [IEE00b]

1North Atlantic Treaty Organization
2Institute of Electrical and Electronics Engineers, Inc.

5

CONCEPTS AND RELATED WORK

Distributed System
In a distributed system the components are distributed in space and are con-
tributing functionality to the whole system. A similar definition by IEEE:

”A computer system in which several inter-connected computers
share the computing tasks assigned to the system.” [IEE00a]

Reactive System
A reactive system is a system which reacts to stimuli, outputs are set depen-
dent on the input and the system function. Such a system is in a continuous
interaction with its environment.

Hybrid System
The combination of a system operating at discrete time instants and a corre-
sponding environment located in a continuous time domain, can be called a
hybrid system.

Systems Engineering

”Systems engineering is an interdisciplinary engineering manage-
ment process that evolves and verifies an integrated, life-cycle bal-
anced set of system solutions that satisfy customer needs.” [Col01]

Architecture

”The fundamental organization of a system embodied in its com-
ponents, their relationships to each other, and to the environment,
and the principles guiding its design and evolution.” [IEE00b]

Life Cycle Model

”A framework containing the processes, activities, and tasks in-
volved in the development, operation, and maintenance of a soft-
ware product, which spans the life of the system from the definition
of its requirements to the termination of its use.” [IEE00b]

Software Process
A set of activities and its following results building a software product is called
a Software Process (sometimes also called a Software Life Cycle or Software
Development Process) which is an instance of a Software Development
Methodology. Today, almost every software process contains following four
basic process activities [Som04]:

6

CONCEPTS AND RELATED WORK

• Software Specification - Customer and developer define how the soft-
ware is developed within specified constraints.

• Software Development - Design and development of the software.

• Software Validation - Software test and check against the require-
ments/specification.

• Software Evolution - Adaption of the software to fulfill new customer
requirements.

Development Process
This term is often set in relation to a software process, but a brief stand-alone
definition looks as follows. A Development Process consists of . . .

Phases and corresponding activities.

Activities carried out by developers.

Artifacts as results of activities.

Software Process Models
A Software Process Model presents a simplified, abstracted view of a Software
Process. Those models can contain activities as part of the software process,
roles of persons, products and scheduling. Most of them build on following
universal paradigms [Som04]:

• Waterfall Model. In this paradigm each software process activity is
seen as its own development phase with an strictly defined start and end
of the phase. The software process proceeds with a close of the preceding
phase to the next phase. The concept of the Waterfall Model was initially
created by Winston W. Royce in 1970. [Roy70]. This paradigm should
be used if the requirements are fixed and no major changes are foreseen
until the end of the project, otherwise, due to the inflexible partition of
the phases, the development effort will rise tremendously.

• Evolutionary Development. Specification, Development and Valida-
tion are proceeding parallel and with close cooperation with the cus-
tomers. Information gained in each activity is shared to each other. The
practice of building prototypes can help to get more knowledge about the
customers’ requirements.
This paradigm is good for a stepwise refinement of the specification but
in the view of the management it is hard to measure the advancement
of the project since it is not cost-effective to document each intermediate
product. Another possible drawback is a bad structure of the system

7

CONCEPTS AND RELATED WORK

architecture due to the ongoing refining of the specification, which makes
this paradigm not well-suited for very large projects (> 500 000 LOC3).

• Component Based Software Engineering. This approach is focused
on reusing and adapting software components.

Software Life Cycle

”The period of time that begins when a software product is con-
ceived and ends when the software is no longer available for use. The
life cycle typically includes a concept phase, requirements phase,
design phase, implementation phase, test phase, installation and
checkout phase, operation and maintenance phase, and sometimes,
retirement phase. These phases may overlap or be performed it-
eratively, depending on the software development approach used.”
[IEE90]

Process Iterations
A way to handle requests for changes in the software product is to re-
peat the software process completely or partially. A Process Iteration is
either a repetition of the whole software process or single/several process
activities. If an activity is repeated, all successors have also to be handled
to avoid inconsistencies between specification, design, code and documentation.

• Incremental Development
Incremental Development is a combination of the Waterfall Model and
Evolutionary Development: The specification and the design of the sys-
tem and subsystems are defined once followed by the subsequent develop-
ment, integration and validation of subsystems. Subsystems are delivered
stepwise to the customers, starting with the most important functionali-
ties.

• Spiral Model
Process activities are visualized using a spiral. Each loop of the spiral
describes a process phase. Starting in the inner phase with a feasibility
study, ensued by the definition of the specification, design, development
etc. One main feature of this paradigm is a risk analysis embedded in each
loop providing valuable information for the project management. [Boe88]

Rational Unified Process (RUP)
The Rational Unified Process is a phase-oriented model spawned of the Unified

3Lines of Code

8

CONCEPTS AND RELATED WORK

Software Development Process . RUP applies UML4 notations and combines
parts of several software process models. In contrast to the other mentioned
software processes, RUP supports three different views to the Software Process:

• a dynamic perspective showing all model phases timely ordered.

• a static perspective visualizing process activities.

• a perspective proposing further procedures for the process.

Software Development Methodology
In literature the term Software Development Methodology has ambiguous
meanings and strongly depends on the context it is used in (e.g. some authors
identify a methodology with a process). A software development methodology
is a framework for solving a technical challenge. In a general point of view a
software development methodology is an orchestration of:

• Software process (software process model) which provides fragmentation
and schedule of the software development in several phases.

• Notations and techniques (e.g. object-oriented, prototyping) which are
established for the documentation of products and intermediate products.

• Management methods for the analysis and transformation of documents.

2.1.1 A Brief Glimpse on Control Theory

Every technical process intriniscally comprises reaction delays and distur-
bances. Imagine a fan-cooling system of a computer-chip has to provide the
correct amount of air-flow to ensure a certain operation-temperature that
does not damage the chip. Just setting a reference speed will usually not
result in the fan moving as desired due to disturbances. Reasons for this are
characteristics of physical processes involved such as friction, acceleration
time, inertia and many more. Not all fans will behave the same way because
of production tolerances, and in the case of digital systems the references
provided to the fan are of a discrete nature which is per se a reason for
diverging behavior. Such dynamical systems require an automated control
component that keeps it in a desired state such as following a pre-defined
function. Control Theory deals with mathematical approaches for the control
of a system.

A basic control structure is set up by a controller P providing inputs u(t)
to the system under control (process) P that is interfered with by d(t). The

4Unified Modeling Language

9

CONCEPTS AND RELATED WORK

output y(t) of the system is fed back and the error e(t) between reference value
r(t) and y(t) calculated (figure 2.1.1).

Figure 2.1: Single, closed-loop control structure.

The behavior of the process P (t) is determined with standardized test-
functions and characterized by the resulting step responses. This technique is
often used to gain an approximate description of the process instead a com-
plete mathematical model. A widely used control algorithm C(t) is the PID
(Proportional Integral Derivative) controller. Controllers are set-up and tuned
with the goals of appropriate rise time, minimal overshoot and no steady-state
errors. PID algorithms are tuned with several approaches such as the Ziegler-
Nichols, Cohen-Coon, or the Chien-Hrones-Reswick formula. Fine-tuning of
the algorithm might be required.

PID Algorithms

The output of a PID algorithm is composed by a proportional KP , integral KI

and derivative KD part, with the integral time Tn and the derivative time Tv

in the standard form :

u(t) = KP ∗
(
e(t) +

1

Tn

∫ t

0

e(τ)dτ + Tv
de(t)

dt

)

. . . which is equivalent to the ideal parallel form:

u(t) = KP e(t) +KI

∫ t

0

e(τ)dτ +KD
de(t)

dt

An implementation on a discrete controller requires a differential representation
with sample period TS:

u(i) = KP

(
ei +

1

Tn

i∑
v=0

ev TS + Tv
ei − ei−1

TS

)

10

CONCEPTS AND RELATED WORK

Systems Under Control

Dynamic system responses are mainly classified into P (proportional), I (inte-
grational), first-order PT1 and second-order lag elements PT2. PT1 elements
approximate direct-current motor behavior (figure 2.1.1):

T0 y
′(t) + y(t) = KP u(t)

. . . and the Laplace-transformed form:

FS(s) =
Y (s)

U(s)
=

KP

1 + s T0

Figure 2.2: PT1: first-order delay element.

Going into more detail would exceed the limits of this thesis – further in-
formation is found in literature [SK98,Elm09].

2.2 System Development Using Models

Classical system development methodologies are mostly plan-driven where the
results of each development phase are prerequisites for others. Changes in
one phase affect the immediatly surrounding phases directly, they receive new
development artifacts and pass them on to their subsequent following phase. In
this way, deviations from the original design are handed on while every phase
represents a potential source for additional errors in the solution.
The idea of introducing models into the development process counteracts error-
chains by centering the process around a model. A model acts as a reference
that is consistent to all phases in the cycle. The term model was manifoldly
defined in literature and in the following two definitions are presented:

”Models provide abstractions of a physical system that allow en-
gineers to reason about that system by ignoring extraneous details
while focusing on the relevant ones.” [Bro04]

11

CONCEPTS AND RELATED WORK

”Engineering models aim to reduce risk by helping us better un-
derstand both a complex problem and its potential solutions
before undertaking the expense and effort of a full implementa-
tion.” [Sel03]

These definitions emphasize:

• Abstraction that enhances understanding.

• Representation of the problem domain on an appropriate level of abstrac-
tion that hides distracting details.

• Reduction of risks by acquiring solution information early.

• Minimize costs.

Introducing models in the development process requires extra effort spent
on establishing a working infrastructure. Several tools already exist which
provide a tool-chain reaching from requirements specification to implementa-
tion or at least assist in this process. Such tools are mostly proprietary and
the question if the expenses are worth it is reasoned.

IT projects are very sensitive due to their per se complex nature, which
makes it hard to imagine a possible solution for a given problem. Why IT
projects fail has been studied for decades, for example in the large-field stud-
ies/roadmaps of the Standish-Group5. Emam and Koru [EK08] identify the
reasons of IT project failures (table 2.1). The four largest entries have one
common characteristic: They strongly depend on flexibility and system rep-
resentation. Senior management is not sufficiently involved because projects
could not be presented in an appropriate abstraction level, scope/requirement
changes impact on the whole inflexible chain of development phases resulting
in over budget.

All the mentioned reasons for IT project failures are related to the com-
bination of risk and uncertainty - the less information and the less clear the
envisioned concept of the product is, the higher are the costs for necessary
changes in later development stages. The concepts of uncertainty and risk in
software engineering can have the following reasons:

• Customers may not exactly know what they want.

• Requirements can be ambiguous and interpreted diversely by customer
and contractor.

• Technical and management risks.

• Development efforts are over- or underestimated.

5http://www.standishgroup.com

12

http://www.standishgroup.com

CONCEPTS AND RELATED WORK

Reason for cancellation Percentage of respondents
Senior management not sufficiently involved 33
Too many requirements and scope changes 33
Lack of necessary management skills 28
Over budget 28
Lack of necessary technical skills 22
No more need for the system to be developed 22
Over schedule 17
Technology too new; did not work as expected 17
Insufficient staff 11
Critical quality problems with software 11
End users not sufficiently involved 6

Table 2.1: Reasons for project cancellations 2007, source: [EK08]

• Changes of methodologies and priorities during the project.

The relation between risk and uncertainty during an iterative software
project are depicted in figure 2.3. The project starts with the definition of
a the product accompanied by a high uncertainty about the real solution. The
earlier the project time, the more unclear is the deviation from the defined end-
product. Of course, requirements and specifications were defined under collab-
oration with the customer, however, there are always unknown characteristics
(for example if a new technology could not perform as well as expected). These
unknowns make a qualified prediction about the future outcomes hardly possi-
ble. With elapsing project time more information about development process
and product is gathered - resulting in a reduction of uncertainty. According to
the figure, an increased adaptability and flexibility to direction changes during
the development is desirable. In this way the uncertainty is effectively narrowed
and the development costs significantly decreased.

Efforts to master the system engineering task and the related pressing
issues were usually pointing to the increase of manpower - which did not
lead to satisfying results. Since then, a period of creating formalized system
development methodologies was started: System development using models.
Depending on the special use of models in the development cycle, the terms
model-based development, with a model as pure reference, and model-driven
development, with the focus on automatically artifact generation, are defined.

13

CONCEPTS AND RELATED WORK

Decision-making

margin

Intermediate result

Moving target

Planned solution at

project start

Uncertainty of solution

Final solution

at project end

Start of Project

Optimal project path

Project progress

Current target

solution

Figure 2.3: Uncertainty and Risk, source: [iGfiSm03], modified illustration

14

CONCEPTS AND RELATED WORK

Models and Systems

Generally, it is desirable to describe systems with models. Integrating models
can establish several advantages leading from improving the software develop-
ment life cycle to estimations of project costs and formal verification of the
system design.
A major concern in the development of embedded systems is to design systems
and subsystems represented by different mathematical approaches: Controlled
objects residing in a data and time domain with continuous nature have to
be interfaced with controlling, discrete information systems. For example, a
continuous systems might be described by an ordinary or partial differential
equation, while discrete systems, such as a controller, could be described via a
discrete event system. Shorty said, the composition of continuous and discrete
dynamics is referred to as a hybrid system. A formal definition of a hybrid
system follows.

Hybrid System

A hybrid system has a continuously evolving nature including casual jumps.
These jumps can either be caused by the continuously evolving system or a
change of states in a controlling system. An example of a hybrid system would
be a plant controlled by a discrete controller system interfaced by an interface-
model (see figure 2.4). Since hybrid systems are in the focus of this work, a
formal definition of hybrid systems is being described.

Figure 2.4: Scheme of a hybrid system.

Hybrid System - Formal Definition
A literature research about the definition of a hybrid system ended with the
work of Carloni, Passerone, Pinto and Sangiovanni-Vincentelli who gave a
formal definition of a hybrid system [CPPSV06]. The following definition

15

CONCEPTS AND RELATED WORK

is essentially their work - recapitulations were made where it was possible
without losing essential information.
Formally defining a hybrid system, requires some notations to be introduced
beforehand. X,U, V shall be vector fields over subclasses of continuous
dynamical systems:

X. . . Continuous state.
U . . . Input.
V . . . Disturbance.
UC. . . Class of measurable input functions u : R→ U .
Ud. . . Class of measurable disturbance functions δ : R→ V .
SC(X,U, V). . . is the class of continuous time dynamical systems which is defined by:

ẋ(t) = f(x(t), u(t), δ(t))t ∈ Rx(t) ∈ X
f is a function such that for all u ∈ UC and for all δ ∈ Ud, the solution x(t)
exists and is unique for a given initial condition.

Definition 1 Hybrid System. A continuous time hybrid system is a tuple
H = (Q,UD, E,X, U, V, S, Inv,R,G) where:

• Q . . . set of states.

• UD . . . set of discrete inputs.

• E ⊂ Q×UD ×Q . . . set of discrete transitions.

• X,U, V . . . continuous state, input, disturbance.

• S : Q → SC(X,U, V) . . . mapping associating to each discrete state a
continuous time dynamical system (in terms of differential equations).

• Inv : Q→ 2X×UD×U×V . . . mapping called invariant.

• R : E ×X × U × V → 2X . . . reset mapping (the initial conditions upon
entering a state).

• G : E → 2X×U×V . . . guard mapping.

A discrete time hybrid system could similarly be defined by replacing R with Z
for the independent variable, and by considering classes of discrete dynamical
systems underlying each state.

The tuple (Q,UD, E) might be seen as the definition of an automaton
characterizing a discrete transition structure:

16

CONCEPTS AND RELATED WORK

Q . . . state set.
UD . . . inputs.
E . . . transitions.

This automaton can change the states if either a discrete input event occurs or
the invariant in Inv is not satisfied.

The dynamical behavior of a hybrid system is described by executions. An
execution is a set of functions over time for the evolution of the continuous
state as the system transitions through its discrete structure. The notation
of a Hybrid Time Basis is needed beforehand the definition of the a hybrid
systems execution:

Definition 2 A Hybrid Time Basis τ is a finite or an infinite sequence of
intervals:

Ij = {t ∈ R : tj ≤ t ≤ t́j}, j ≥ 0 where tj ≤ t́j and t́j = tj+1.

Definition 3 Hybrid System Execution. T is considered to be the set of all
hybrid time bases.

An execution X of a hybrid system H, with initial state q̂ ∈ Q and
initial condition x0 ∈ X, is a collection X = (q̂, x0, τ, σ, q, u, δ, ξ)
where τ ∈ T , σ : τ → UD, q : τ → Q, u ∈ UC, δ ∈ Ud and
ξ : R× N→ X satisfying:

1. Discrete evolution:

• q(I0) = q̂;
• for all j, ej = (q(Ij), σ(Ij+1, q(Ij+1)) ∈ E;

2. Continuous evolution: the function ξ satisfies the conditions

• ξ(to, 0) = x0;.
• for all j and for all t ∈ Ij,

ξ(t, j) = x(t)
where x(t) is the solution at time t of the dynamical system
S(q(Ij)), with initial condition x(tj) = ξ(tj, j), given the
input function u ∈ UC and disturbance function δ ∈ Ud.
• for all j, ξ(tj+1, j + 1) ∈ R(ej, ξ(t́j, j), u(t́j), v(t́j)).
• for all j and for all t ∈ [tj, t́j],

17

CONCEPTS AND RELATED WORK

(ξ(t, j), σ(Ij), u(t), v(t)) ∈ Inv(q(Ij)).
• if τ is a finite sequence of length L+ 1, and t́j 6= t́L,

then

(ξ(t́j, j), u(t́j), v(t́j)) ∈ G(ej).

In their work they state, that the behavior of a hybrid system consists of
all the executions that satisfy the Hybrid System Execution definition:

• Discrete Evolution Constraint. The transitions (according to the transi-
tion relation E) of the system throughout its discrete states is constrained.

• Continuous Evolution Constraint. The execution must satisfy the system
for each state and the invariant condition. If a invariant condition is vio-
lated, the system takes a transition to another state where the condition
is satisfied. This constraint means, that a matching discrete input has to
be supplied to the system.

An Hybrid System Execution is classified by its Hybrid Time Basis (defini-
tion 4).

Definition 4 ”A hybrid system execution is said to be (i) trivial if τ = {Io}
and t0 = t́0; (ii) finite if τ is a finite sequence; (iii) infinite if τ is an infinite
sequence and

∑∞
j=0 t́j−tj =∞; (iv) Zeno, if τ is infinite but

∑∞
j=0 t́j−tj <∞.”

In this model of a hybrid system, an single input can lead to several valid
executions - in that case, the system is non-deterministic (e.g. for incomplete
systems or choice models). Defining priorities among the transitions can create
a deterministic hybrid system.

2.2.1 Model-Based Development (MBD)

In model-based development the development process is centered around
a model. This model has the purpose of pure documentation – there is
only a mental connection between model and system implementation. This
model should in the best case be consistent in any state of the development
process, but this might be an impossible task since every process phase may
adapt the model without a process-wide modification doctrine. Advantages
to the classical plan-driven methods without models exist, however errros
may still be introduced if the models are not evolved by well-defined guidelines.

18

CONCEPTS AND RELATED WORK

The term model-driven development (MDD) is incorporated in the concept
of model-based development. In this paradigm the model is not just pure doc-
umentation, it acts as specification and implemenation at the same time. The
focus lies on the automatically generation of artifacts ensuring a system-wide
model consistency: the generated code is always up-to-date. Several definitions
of model-driven development can be found in literature, a pertinent definition
for this thesis is given by Stahl:

”Model-Driven Software Development is a generic name for tech-
niques which automatically generate runnable software based on
formal models.” [SVEH07]

A sub-variant of model-driven development is Architecture-Centric model-
driven development : Models are only used to generate the basic system infras-
tructure (e.g. skelleton components) which is enhanced manually by hand.

In this thesis the term model-based development is set equal to, or incor-
porates model-driven development depending on the context the term is used
in. Note that in literature, abbreviations relating to model-based development
and model-driven development exist, their meaning changes with the context.
MBSD can stand for model-based system development or model-based software
development - same case for MDSD. The terms MBE (model-based engineering)
and MDE (model-driven engineering) are used when models meet system engi-
neering issues (e.g. costs, risks, realization time). They relate to an approach
of abstracting systems with the means of models and transform these system-
atically, with increasing concretization, until the level of executable models is
reached.

Models in MDD

In the context of MDD models describe contents of a domain. This description
has to be done formalized, otherwise a partial automation of the software
process is hardly possible. It is not enough to go straight forward into
the design of the model, first of all, the structure of the domain has to be
understood and on base of that an abstract meta-model developed. Once
a domain specific language (DSL), a synonym for meta-model, is created,
it is possible to build a formal model within all the characteristics given by
the meta-model. Figure 2.5 depicts a graphical overview of the relationship
between formal models and meta-models.

A meta-model describes how a model (or a modeling language) can be
structured and defines constraints, validity and modeling rules. As it is the
case in the MOF6 2.0, instances are described by a model, which itself is

6Meta Object Facility

19

CONCEPTS AND RELATED WORK

Real World
Elements

Model
Elements

Meta-Model
Elements

Domain Model Meta-Model

describes describes

Figure 2.5: Model and meta-model relationships, source: [SVEH07], modified
illustration.

described by an UML 2.0 model, which is in turn described by the MOF
2.0 (this is a meta-meta-model for an instance). Automated actions, like
generations of code or model-to-model transformations are based on the
meta-model holding the abstract syntax and static semantics of a modeling
language (see figure 2.6). Formal models do not have to be graphical, a textual
representation is also possible.

Domain Meta-Model Abstract Syntax Static Semantics

Concrete Syntax
DSL

(Modeling Language)

SemanticsFormal Model

0..*

Sub - Domains

Describes concepts
of

Expressed with the
means of

Respects …

<<instanceof>>

Expressed with the means of ...

Gets meaning by ...

Figure 2.6: Models and DSLs, source: [SVEH07], modified illustration.

MDD and Approaches to MDD

This section gives an overview of some selected, already existing approaches to
the model-driven development paradigms. The concepts of the popular MDA7

approach are focused.

Model Driven Architecture (MDA)

MDA is the specialized approach to model-driven development by the
OMG8 which aims for a high portability (platform independence) and interop-

7Model Driven Architecture
8Object Management Group

20

CONCEPTS AND RELATED WORK

erability (neutral to manufacturers) of software systems. In contrary to GSD,
MDA is not explicitly focused on system-families.
MDA is an approach to link various technologies together by using formal
models (MOF, UML, etc.) describing their relations and configurations.
Based on these formal descriptions models can be technology and platform
independently used, allowing the building of functionalities and services by
model design.
The three primary goals of MDA are portability, interoperability and re-
usability through the architectural separation of concerns [OMG03].

Figure 2.7: MDA - Overview, source: [Gro01]

In MDA, three different default models emerged from three different
corresponding viewpoints.
The first model is the Computation Independent Model (CIM). The CIM
describes the system in a less detailed manner, omitting details about internal
processes, behavior and dependencies within the system. The Platform
Independent Model (PIM) specifies the architecture of the underlying system
without implementation (platform specific) details. Hence, the model should
be suitable for different platforms that are described by a Platform Specific
Model (PSM). PSMs are platform dependent views that use the platform
specifications described by the PIM. Lastly, working code (or at least pseudo-
code) will be generated from the PSM.
A Platform Model provides a set of technical concepts, representing the
different kinds of parts that make up a platform and the services provided by
that platform. It also provides concepts representing the different kinds of
elements in specifying the use of the platform by an application. [OMG03]

21

CONCEPTS AND RELATED WORK

CIM
(Computation Independent

Model)

PIM
(Platform Independent

Model)

PSM
(Platform Specific Model)

Figure 2.8: Dependencies in the Model Driven Architecture.

The key concept of MDA is the Model Transformation. In the Model Driven
Architecture, additional information is added to a given PIM resulting in a
PSM. These transformations are held as generic as possible. Any model can
be transformed into another one in combination with a proper transformation
specification. This transformation is also called the MDA Pattern (see 2.9).
The types of transformations can be done manually, by using Profiles (UML),
by using patterns or markings, or automatically. In the latter case, the design
of PSMs becomes obsolete - all information for PIM to PSM transformations
are already included in the PIM. The MDA pattern is not a one step process - it
can be used in an incremental manner, meaning that a PIM can be transformed
into various different PIMs before the generation of the PSM occurs.

Figure 2.9: The MDA Pattern, source: [OMG03], modified illustration

Other Approaches

MDA might be the first thought when it comes to model-driven develop-
ment, but other approaches exist which are not of lesser significance.

22

CONCEPTS AND RELATED WORK

Software Factories

A software factory pattern faciliates the creation of individual software by
assembling components. Software factories are primarily used for interoper-
ability while focusing more on productivity in contrary to MDA. [GS03]

Generative Programming

Generative Programming (GP) gained popularity with the release of the
book ”Generative Programming” [CE00] which defines GP as follows:

”Generative Programming is a software engineering paradigm based
on modeling software system families such that, given a particular
requirements specification, a highly customized and optimized in-
termediate or end-product can be automatically manufactured on
demand from elementary, reusable implementation components by
means of configuration knowledge.”

Model-integrated Computing

In embedded systems, it is crucial to incorporate methods for a fast, secure
and reliable real-time environment. Model-integrated Computing (MIC) sets
its task to support development in this area, by providing an architecture for
model-driven design - comparable to MDA. MIC is described on the ISIS page:

”MIC focuses on the formal representation, composition, anal-
ysis, and manipulation of models during the design process. It
places models in the center of the entire life-cycle of systems, in-
cluding specification, design, development, verification, integration,
and maintenance.”9

9http://www.isis.vanderbilt.edu/research/MIC

23

http://www.isis.vanderbilt.edu/research/MIC

CONCEPTS AND RELATED WORK

24

3 Modeling Tools

Product requirements have been raising in parallel with cheaper embedded
hardware. The complexity introduced by more demands and tight schedules
require special techniques and tools to meet systems engineering requirements:

• Minimized Costs. The development effort should be kept as low as
possible.

• Reduced Risks. System complexity should be understood as early as
possible, changes in late project phases and resulting costs avoided.

• Timely Delivery. Time-to-market should be minimized and long over-
dues of deadlines prohibited.

• Safe Design. Safety and reliability standards are of importance in safety-
critical embedded systems.

Modeling Techniques, including domain-architectures, domain-specific
languages and best practices, provide ways for designing embedded systems
with models. These techniques are utilized by modeling tools such as the
commercial tool-set SCADE and Mathworks MATLAB, or the scientific
prototyping software SynDEx and the hybrid system simulation environment
Scicos.

Formal techniques abstract the characteristics of embedded systems by
models. Such models can be viewed in different ways to support the under-
standing of the system. Formal models have the advantage of being verifiable
with formal verification techniques (theorem provers, model checkers, tests)
and the possiblity of automatic code generation. In some cases it is possible
to obtain qualification/certification for code-generators (for example the KCG
code generator in the SCADE suite).

This thesis investigates the Scics/SynDEx framework capabilities for model-
based development. Scicos is based on a Signal-like formalism. Signal is a
synchronous language. SynDEx is a tool for the distribution and temporal
design of distributed systems and implements the AAA-Methodology that op-
timizes/distributes a given algorithm onto a target-architecture.

25

MODELING TOOLS

3.1 Scicos

Scicos (Scilab Connected Object Simulator) is a simulator toolbox and
graphical system modeler and focuses on the design and simulation of hybrid
systems (section 2.2) and a variety of DAE hybrid systems. Furthermore,
a C code generator is included. Scicos finds its purpose in several physical
and biological domains like signal processing and systems control. The
cornerstone for designing continuous dynamics is a Simulink-like language ex-
tending a synchronous language. The main features of Scicos (Version 4.2) are1:

• Graphical models, simulation and compilation of dynamical systems.

• Combination of continuous and discrete-time behaviors in the same
model.

• Selection of model elements from palettes of standard blocks.

• Programming of new blocks in C, Fortran, or Scilab language.

• Run simulations in batch mode from the Scilab environment.

• Generate C code from Scicos model using a code generator.

• Run simulations in real-time with and real devices using Scicos-HIL.

• Generate hard real-time control executables with Scicos-RTAI and Scicos-
FLEX.

• Simulate digital communications systems with Scicos-ModNum.

• Use implicit blocks developed in the Modelica language.

• Discover new Scicos capabilities using additional toolboxes.

Scicos is a toolbox of the scientific laboratory software Scilab, a scientific
open source software package for numerical computation which has been
distributed freely since 1994. INRIA2 and ENPC3 have been developing Scilab
with commitments of the Scilab Consortium, which was established in 2003
(16.03.2003) and is holding 25 members4. Signs for the popularity of Scilab are
some notable companies and organizations like Axs Ingénierie, Cril Technology,
CEA, CNES, Dassault Aviation, EDF, ENPC, Esterel Technologies, INRIA,
PSA Peugeot Citroën, Renault and Thales being members of the consortium
as well as about 10.000 downloads of the Scilab package per month [fRiCSC03].

1Features are listed on http://www.scicos.org
2Institut National De Recherche En Informatique Et En Automatique
3ENPC - École nationale des ponts et chaussées, Engineering Institute University Paris-Est.
4June, 2007. See http://www.scilab.org.

26

http://www.scicos.org

MODELING TOOLS

Since this software is used for some research in following sections of this
thesis, more pages were spent to introduce this software in a little more detail.
In literature, the book ”Modeling and Simulation in Scilab/Scicos” [CNC06] is
devoted to Scilab and Scicos - this section’s work is leaned strongly towards it,
equations and examples are taken from the book.

Scilab/Scicos Models

Scicos provides several ways of building models with different mathematical
approaches, such as ordinary differential equations, boundary value problems,
difference equations, and differential algebraic equations - they are described
briefly in the following.

Ordinary Differential Equations. Scilab always assumes that an ordinary
differential equation (ODE) is written in first-order (3.1). An ODE is is a
differential equation with one independent variable (usually the time). ODEs
of higher orders can be rewritten into ODEs of first-order by introducing new
variables (see equation 3.2).

y = f(t, y) (3.1)

The second-order ODE:

ÿ1 = ẏ1 − y2 + sin(t),

ÿ2 = 3ẏ1 + y1 − 4y2

can be written as:

ẏ1 = y3,

ẏ2 = y4,

ẏ3 = y3 − y2 + sin(t),

ẏ4 = 3y3 + y1 − 4y2.

(3.2)

Boundary Value Problems. A boundary value problem (BVP) is a differen-
tial equation with boundary conditions. A two-point boundary value problem
has the general form of equation 3.3.

ẏ = f(t, y), t0 ≤ t ≤ tf , 0 = B(y(t0), y(tf)). (3.3)

27

MODELING TOOLS

Difference Equations. Difference equations find their utilization in problems
with discrete data - data values change only at discrete points in time. Dif-
ference equations can often be approximated by numerical computations of
differential equations. A solution solving a difference equation is a sequence
y(k) (equation 3.4).

y(k + 1) = f(k, y(k)), y(k0) = y0. (3.4)

Differential Algebraic Equations. Differential Algebraic Equations (DAEs)
are a general form of differential equations for vector-valued functions composed
of differential and algebraic equations (equation 3.5). A characteristic of DAEs
is that they might only be solvable for certain initial conditions (so called
consistent initial conditions). Scicos is able to solve index-one DAE systems.
If a DAE model is given there are two ways: Rewrite the DAE model into a
simpler DAE or an ODE.

F (t, y, ẏ) = 0 (3.5)

Scicos Model Abstraction and Simulation

Subsystems are modeled for the control algorithms residing in the discrete
domain and the environment located in the continuous domain. These two
models are interfaced to each other, date and time discretized which enables
the simulation of the complete system (see figure 3.1).

Scicos Formalism

The formalisms used in Scicos are based on Signal and its extension to
continuous-time systems [NAN03]. The simulator of Scicos uses two standard
ODE/DAE numerical solvers which handle the continuous and discrete parts
of the diagrams. A Scicos diagram is made by combining blocks connected
via signals while single blocks offer a good opportunity to distribute the
development to several teams.

Scicos Syntax

Blocks are connected via regular signals and activation signals. In that way
a data precedence (regular signal) between computational functions (blocks)
is achieved and the activation time of blocks (activation signal) is modeled.
Figure 3.2 depicts a simple Scicos diagram: An event generation block (clock

28

MODELING TOOLS

Figure 3.1: Scicos - Model abstraction and simulation.

block “Event at time t”) evolves the activation signal (signal between clock
and ”Source”). The activation signal triggers the functional block “Source”.
The two regular blocks “Source” and “Func. 1” have a data signal (black)
connecting them. The data signal models the passing of data between blocks
and shows the “Source” block preceding the “Func. 1” block.

Figure 3.2: A simple Scicos diagram, source: [CNC06]

29

MODELING TOOLS

Scicos Blocks

A Scicos Block is a graphical representation of a simulation function. In
general, there are two types of representing blocks: basic blocks and super
blocks. The purpose of super blocks is to contain Scicos sub-diagrams and
super blocks in a single block. Thus, a design-hierarchy is created which
supports the readability of low-level diagrams. Scicos is delivered with a
library of several standard blocks for building algorithms.

If customized blocks are needed, the Scifunc block can be used to define
an algorithm by Scilab expressions, or new basic blocks can be constructed
by implementing an interfacing function and a computational function. The
interfacing function handles the graphical behavior in Scicos, input/output port
definitions and the initialization states of the block, while the computational
function specifies the behavior of the block during the simulation. How an
example basic block can be constructed is briefly described in the appendix
(A.2). Blocks may take parameters for defining initial and behavioral values.
Parameters can be immediate values or symbolic parameters defined in the
Scicos diagram context.

Figure 3.3: A Scicos Block. [CNC06]

A Scicos block comprises several components (figure 3.3):

• Regular inputs and outputs. Vector input are passed through regular
paths to the vector outputs.

• Input and output activations. Activation paths link input event sig-
nals to output activation signals.

30

MODELING TOOLS

R
eg

u
la

r
In

p
u
t

R
eg

u
la

r
O

u
tp

u
t

D
is

cr
et

e
S
ta

te

C
on

ti
n
u
ou

s
S
ta

te

A
ct

iv
at

io
n

O
u
tp

u
t

A
ct

iv
at

io
n

In
p
u
t

CBB
√ √ √ √ √ √

DBB
√ √ √

∅
√

≥ 1
ZCBB

√
∅ ∅ ∅

√
∅

SBB 1 ∅ ∅ ∅ ≥ 2 1

Table 3.1: Scicos - Basic Block Interfaces.

• Continuous-time vector state. The continuous time state of the
block.

• Discrete-time vector state. The discrete time state of the block.

• Zero crossing surfaces and Mode vector. Inside Scicos the numerical
integrator has problems with functions being not continuously differen-
tiable. A mode can be defined to make sure that the numerical integrator
never reaches such points of discontinuity inside an integration interval.

• State derivative.

Depending on the combination of the simultaneously included features and
how a block is activated, Scicos blocks can be classified into four different
groups: Continuous Blocks, Discrete Blocks, Zero-Crossing Blocks and
Synchro-Blocks [CPPSV06].

A Continuous Basic Block (CBB) continuously monitors its input ports and
updates its output ports and states. A Discrete Basic Block (DBB) is activated
only if it receives an event on its activation input. A Zero-Crossing Basic Block
(ZCBB) is activated only if one of its regular inputs crosses a not differentiable
point (e.g. crossing zero in an absolute value function). Synchro Basic Blocks
(SBB) can generate output activation signals that are synchronized with their
input events - these blocks are the ”event select block” and the ”if-then-else
block” represented in C code as ”switch” and ”if then else” respectively. These
blocks can for example be used for a frequency division of an activation signal.
A summary of the block types with their corresponding features is listed in
table 3.1.

31

MODELING TOOLS

Scicos Semantics

In the following a summarized view about the behavior of blocks and signals
in Scicos is presented.

Scicos Signals

Scicos activates blocks by activation signals. Such activations can make the
block updating its respective in-/outputs, updating its states, and computing
its state derivative. When such a block is activated depends on the activation
type which can either be continuous or discrete. Continuous activation allows
a signal to evolve permanently, while an event triggers a block to update itself.
Inbetween two events the regular signal remains unchanged (see figure 3.4).
These concepts provide a certain amount of time-control for the design of hybrid
systems.

Figure 3.4: Scicos - Activation time dynamics, source: [CNC06].

Scicos blocks are activated in three different ways - External Activation,
Always Activation and Internal Zero-Crossing (figure 3.5).

• External Activation. A Block is activated when it either receives an
activation signal on its activation input port, or inherits activation (3.1).

– Event Activation. An event triggers the update of the block’s out-

32

MODELING TOOLS

Figure 3.5: Scicos - Activations - Hierarchy.

put.

y(te) = f1(te, x(tē), z(tē), u(te), µ(te)).

y(te) . . .Vector-outputs.

u(te) . . .Vector-inputs.

te . . .Event time.

x(tē) . . .Continuous-time state.

z(tē) . . .Discrete-time state.

A blocks can also implement its own activation outputs and provide
thus a delay function:

tevo = f3(te, x(tē), z(tē), u(te), µ(te)).

Updates of internal states are associated to following update-
function:

[z(te), x(te)] = f2(te, x(tē), z(tē), u(te), µ(te)).

– Continuous-Time Activation. If a block is defined as always active
then it is activated at specified time intervals instead of events. The
output depends on a continuous time activation period:

y(t) = f1(t, x(t), z(t), u(t), µ(t)).

– Mode and Zero-Crossing. If a function is not continuously differen-
tiable (smooth) then the numerical integrator cannot post a solution.
The mode is used to avoid the integrator reaching such points in-
side an integration interval (the interval depends on the step size of

33

MODELING TOOLS

the solver) by defining an integration start period. A Zero-Crossing
Surface is introduced to make sure the integration stops at points
of discontinuity inside an integration interval.

• Always Activation. The block is defined to be always active (e.g. the
Scicos sine-generator block). This is a special case of a continuous-time
activation with a fictitious activation in put port.

• Internal Zero-Crossing. The internal state of the block is updated if
a zero-crossing occurs inside the block. Internal zero-crossing events are
not predictable.

Scicos Activation Inheritance

Not all the Scicos blocks may have activation input ports. If a block does
not, the activation is inherited through its regular input port. In figure 3.6 a
simple diagram is shown where block ”Func. 1” inherits the activation from
the block ”Source” after the Scicos pre-compilation phase.

Figure 3.6: Scicos activation inheritance, before and after pre-compilation
phase [CNC06].

Scicos Synchronism

Scicos blocks are synchronized if they are activated by the same activation
source (e.g. the Event Clock block). If two blocks are connected together,
Scicos executes them in the correct order. A design pitfall might be choosing
two Event Clocks with the same activation period to induce synchronism: This
will not execute blocks synchronized - they might be activated by Scicos in any
arbitrary order (see figure 3.7).

Memory Blocks Modeling a discrete delay in Scicos can be done with the
Register block: When it is activated it copies its internal state on the output

34

MODELING TOOLS

Figure 3.7: Scicos synchronism concepts. Asynchronous and synchronous dia-
grams, source: [CNC06].

and the input is copied into the internal state (see figure 3.8 for a simple Scicos
diagram with a discrete delay).

Figure 3.8: Scicos - Register block, source: [CNC06].

35

MODELING TOOLS

3.2 SynDEx

SynDEx (Synchronized Distributed Executive) is a system level CAD software
based on the Algorithm Architecture Adequation (AAA) [Sor94] and has been
designed at INRIA in the Rocquencourt Research Unit France, by the AOSTE
team. Its goals are to provide a tool for rapid prototyping and the optimization
of distributed real-time embedded applications on multi-component architec-
tures.

The key features of SynDEx are5:

• Rapid prototyping of complex distributed real-time embedded appli-
cations including automatic code generation.

• Automatic generation of safe and optimized distributed real-
time code. Formal verification of possible implementations can be done
manually or automatically using the optimization heuristics based on
multi-periodic distributed real-time scheduling analysis.

• Hardware/Software co-design through multi-component archi-
tecture if some parts of the application must be implemented by software
and run on processors, while others must be implemented by hardware
and run on specific integrated circuits.

• Interface with domain specific languages such as synchronous lan-
guages (Esterel, SyncCharts, Signal) providing formal verifications, AIL
[PCM01] (a language for automobile), Scicos a Simulink-like language,
CamlFlow6 a functional data-flow language, UML2.0 with the MARTE
profile, etc.

• System level CAD tool. SynDEx offers a software environment reach-
ing from the specification level (functional specifications, distributed
hardware specifications, real-time and embedding constraints specifica-
tions) to the distributed real-time embedded code level, through (multi-
ple) workstation functional and timing simulations.

• Interface with the integrated circuit level CAD tool SynDEx-IC
which allows the implementation of a function (operation) onto a specific
integrated circuit that can be used as a non-programmable component in
the multi-component architecture.

• SynDEx is freeware - free of charge for non-commercial applications.

5as listed on http://www.syndex.org/scicosSyndexGateway/index.htm
6CamlFlow is a Caml to data-flow graph translator. Caml is a general-purpose programming

language, designed with program safety and reliability in mind.

36

http://www.syndex.org/scicosSyndexGateway/index.htm

MODELING TOOLS

SynDEx Models

SynDEx leads the two fields of software and hardware development closer
together by combining software algorithms (algorithm models) and highly
abstracted target hardware (architecture model). The main focus of SynDEx
lies in optimizing, scheduling and distributing algorithms under constraints
(e.g. given by the capabilities of the target hardware). Thus a hardware
architecture model in SynDEx is a high level abstraction of the execution
environment and is merely more than a pure description, while the algorithm
models are abstracted at a level of the developer’s desire, matched to con-
straints, computed and optimized.

In SynDEx models, information is transferred between the targets by a
communication medium. A communication medium definition (e.g. a bus)
contributes twofold: to the architecture model by defining the connections
between the target processors, and the algorithm model, through the definition
of durations for information transfers.

Summarizing, SynDEx combines three models covering several aspects
in system development: An algorithm model for the representation of com-
putational functions, a medium model defining the communication medium
between the execution environments and an architecture model describing
the hardware structure and capabilities. With these models available, Syn-
DEx performs an optimization of the computational function by algorithm
adequation (adequation is the seeking for an optimized implementation of
an algorithm onto a distributed architecture by the execution of heuristics).
The algorithm model is thus partitioned into several computational units, and
these units are distributed onto the execution targets. Under consideration of
hardware constraints (algorithm parts restraint to an execution environment)
and timing properties of algorithm execution and communication media (du-
rations), the optimization is performed by a greedy algorithm. This algorithm
takes advantage of potential parallel structures, thus optimizes the execution
time of the final executive. The result of the algorithm adequation is an
algorithm distributed in portions over the whole hardware architecture, that
has a total order for communication and algorithm actions and is guaranteed
to be deadlock free.
This generated, distributed algorithm model can then be transformed into
a macro code model (MCM) based on a M4 implementation of the UNIX
macro processor. The target-independent MCM can then be translated into
a target-dependent model (such as a programming language like C) with the
use of customized M4 definitions. The resulting target-dependent model can
then be translated into an executable model (e.g. by using a C compiler).

37

MODELING TOOLS

SynDEx Model Abstractions

All SynDEx models reside in the discrete time and data domain. They are
thought to be used for modeling discrete computation algorithms executed
on a discrete hardware (e.g. microprocessors). Computational functions are
interfaced to each other by: defined discrete data types, execution periods and
durations. Algorithm portions, residing on different operators, communicate
via the communication medium which is an abstract representation of a
synchronized communication channel.

An algorithm model is conceptually a platform independent model (PIM),
while the platform description model (PDM) contains the hardware architec-
ture information. Applying the algorithm adequation on these two models
results in a partitioned algorithm that is dependent on the hardware in re-
spect of timings and target placements. At this stage the algorithm represents
a platform specific model (PSM) - more precisely, a target-language indepen-
dent PSM (TLI-PSM). The development-chain finishes with the transformation
into a MCM, its expansion to a target-language dependent PSM (TLD-PSM),
followed by a transformation into the executable (EM) - see figure 3.9.

SynDEx Formalism

An algorithm model is a (preferably) graphically specified directed, acyclic
graph (DAG). The DAG consists of blocks representing a sequence of opera-
tions, and signals representing dependencies between operations.

An architecture model describes the heterogeneous multiprocessor execu-
tion environment by a non-oriented hypergraph of operators. Operators in
the architecture model are connected by a communication model, also called a
communication medium (see figure 3.10).

SynDEx, as seen as a DSL, is basically defined by a graphical syntax with
semantics and corresponding meta-models defined by the AAA-Methodology.
SynDEx’s formal models are meant to describe a subset of the real-time em-
bedded distributed systems domain.

38

MODELING TOOLS

Figure 3.9: SynDEx: models and abstraction.

SynDEx Syntax

In the DSL of SynDEx, graphically represented models (concrete syntax)
are instances of the AAA-Methodology’s DAGs (abstract syntax). Model cor-
responding semantics are defined by the AAA-Methodology. SynDEx-models
can also be designed in a textual way, of course with the drawback of reduced
cognitivity.

A simple, graphical overview of an algorithm model is depicted in figure 3.11.
A constant and a sensor block (e.g. temperature sensor) are providing data
to the following functions function1 and function2 with the data types uint16

39

MODELING TOOLS

Figure 3.10: SynDEx formalism - Algorithm, architecture and communication
models, source: [GLS99].

(16-bit unsigned integer) and uint8 respectively. After termination of function1
and function2 the data is forwarded to superblock1 (a block containing a sub-
model). The results of this block are delayed by delay1, computed in function3
(which takes a double data type as input, and provides an uint8 output) and
finally passed to actuator1 (which could be e.g. an electric motor).

Figure 3.11: SynDEx syntax - graphically represented algorithm model con-
taining all types of blocks.

Figure 3.12: SynDEx syntax - Internals of the superblock in figure 3.11.

40

MODELING TOOLS

SynDEx Blocks (Algorithm model)

A SynDEx block references an algorithm definition. A reference corre-
sponds to exactly one algorithm definition, while a given algorithm definition
may correspond to several references (a 1:n relationship). An algorithm
definition is a platform-independent representation of a sequence of atomic
operations, that means SynDEx considers all modeled blocks (except hierar-
chical blocks) to be not interruptable.

The characteristics of an algorithm definition are:

• An algorithm definition name.

• Input / Output port definitions with corresponding data-types.

• Precedence dependencies setting the logical execution orders between
blocks.

• Data dependencies stipulating the order of the data flow between blocks.

• Execution durations. An integer value specifying the time this algorithm
requires on a corresponding execution environment (e.g. the WCET7 in
processor clock cycles).

• Operation Period setting the periodically execution of the algorithm.

• Allocation constraints unchangeably pre-defining the allocation of the
algorithm onto an execution environment.

Depending on the type of the algorithm definition, appropriate input and
output ports are declared (figure 3.11 holds an example of each type):

• Sensor. A sensor block defines an input operation to the algorithm. In
the algorithm model these are the first blocks called.

• Actuator. Actuators are outputs of the algorithm and thus the last op-
erations called.

• Function. Function blocks represent a computational operation.

• Constant. These blocks act as a fixed value input to the algorithm and
are also part of the first blocks called.

• Delay. Delay blocks act as discrete memory blocks.

The scheme of a function-block can be obtained in figure 3.13. Precedence
dependencies determine the order of block executions, thus they define if the
block precedes or succeeds other blocks. Data dependencies (in SynDEx so
called strong precedence dependencies assign the order of data-flows between

7Worst-Case Execution Time

41

MODELING TOOLS

Figure 3.13: A SynDEx block.

blocks and by that also imply precedences. Input-ports and output-ports can
be arbitrarily edited: Several ports can be declared with data types assigned
to. Allocation constraints are used to force SynDEx placing an algorithm on
a desired target. For example this would be useful if special hardware func-
tionalities are only available for one type of targets. If an algorithm shall be
periodically called, the period parameter of the block allows specifying execu-
tion periods. Before assigning periods or durations, a time-representation for
the model has to be chosen: a relation between the time representation of the
execution environment and the time representation in the SynDEx modeling
environment. Durations of algorithms can be defined manifold, for each op-
erator (target) a duration has to be defined; SynDEx needs that information
to perform the optimization and distribution of the algorithms. Figure 3.14
depicts the general scheme of a SynDEx blocks appearance in the graphical
SynDEx editor.

Figure 3.14: A SynDEx block as viewed in the graphical SynDEx editor with
two inputs and one output port.

SynDEx Model Hierarchy and Conditions

Superblocks (the ”superblock1”, figure 3.11 and its contents in figure 3.12)
can represent a set of blocks which lie on a lower level of the abstraction hierar-
chy. Finite automatons can be realized by superblocks with conditioned ports,
that means an input port of the superblock realizes the state of the automatons
like a switch statement (not only superblocks, but every block could be seen

42

MODELING TOOLS

as a finite automaton). Additionally, the introduction of superblocks inside an
algorithm model can increase the readability of the model. This kind of a block
is not considered to be atomic, that means the set of connected blocks (a algo-
rithm sub-model) beneath it might be partitioned by the AAA-Methodology.

SynDEx Blocks (Architecture and Communication Model)

An architecture model is built by operator blocks, memory blocks (with or
without arbiter) and bus/mux/demux blocks (with or without arbiter) con-
nected by communication blocks. Operators execute operations sequentially,
communicators execute communications sequentially.

The most important characteristics of an operator block (e.g. node0 in
figure 3.15) are:

• Operator Name. An identification.

• Operator Type. The type of the operator, e.g. an Atmel ATmega128
microprocessor.

• Communication Gates. They are used to specify full-duplex ports which
may be used for the connection to communication blocks.

A communication block is a model of a communication medium, which can
be one of the two types: Sequential Access Memory (SAM) and Random Access
Memory (RAM). SAM can be defined as a point-to-point medium where only
two operators are connected to each other, or a multipoint medium that allows
several operators to be connected to each other via the communication medium.

An exemplary architecture model of a hardware setup containing four mi-
crocontrollers connected by a bus via the communication model comA, and a
desktop pc connected to target node0 via comB is depicted in figure 3.15.

SynDEx Semantic (Algorithm model)

SynDEx blocks are connected via signals. Signals have the purpose of
modeling data-flow and control-flow. Pure control-flow connections define
rules for the ordering of the blocks in the final optimized SynDEx model while
data-flow connections define data-flow (and imply control-flow) precedence
dependencies. Blocks can only be connected, if all involved input and
output ports are of the same data-type. This circumstance makes it clear
how operations have to interface each other and therefore eliminates some is-
sues of the error-prone process in data passing during the development process.

43

MODELING TOOLS

comB (COM/COMB)

node1 (Atmel/ATmega128)
c

e

node3 (Atmel/ATmega128)
c

e

node2 (Atmel/ATmega128)
c

e

node0 (Atmel/ATmega128) (main)
c

e

pc (Linux/Workstation)
e

comA (COM/COMA)

Figure 3.15: SynDEx architecture model. Four nodes (ATmega128 microcon-
trollers) and a desktop PC (Linux workstation) are connected via
communication gates ”c” and ”e”.

An algorithm model runs in a forever-loop, thus actuator blocks represent
the last instances of a current iteration of the algorithm, while sensors and
constant blocks stand for entry points at each iteration.

SynDEx Modeling

Software development methodologies with SynDEx have strong similarities to
rapid application development and prototyping. The design flow with SynDEx
can be imagined as follows (figure 3.16):

1. Algorithm model design. The application is modeled with blocks and
corresponding dependencies. For each block periods, durations (depend-
ing on the type of the target operator) and allocation constraints (the
placement of a block onto a specific target) are defined.

2. Architecture and medium model design. The architecture is modeled
with operators connected by communication media.

3. Algorithm adequation execution. SynDEx’ algorithm adequation pro-
cesses the models - the result is a synchronized executive having partitions
of the algorithm distributed among the targets.

4. Assessment of the timing and scheduling model. Blocks and their dis-
tribution onto the targets, timings and dependencies are graphically dis-
played. If the results are not satisfying the algorithm model has to be
redesigned.

44

MODELING TOOLS

Figure 3.16: Design flow with SynDEx.

If the resulting SynDEx model is schedulable and satisfying the require-
ments, a MCM can be transformed from SynDEx model. The macro code
itself might then be transformed into an executive model by customized code
generation definitions.

SynDEx Scheduling

The following paragraphs start with a brief description of the SynDEx
scheduling, especially the SynDEx scheduling tables. Later on a comparison of
scheduling tables to real-world scheduling accompanied by a small discussion
and proposals for the identified problems follows. Scheduling tables are results
of the AAA methodology and presented graphically inside SynDEx. In general,
time representations of a scheduling table in SynDEx include:

• Medium Channels in multiprocessor architectures - Communication pro-
cesses require channel resources, e.g. sending a data packet from one
processor to another via an UART protocol.

• Communication processes. Transfer of information from one processor to
another.

• Processors - Atomic tasks are executed on the processor with their periods
and durations.

• Tasks. Stateless, simple tasks with a duration and period. A simple task
is a task that is executed until it’s termination is reached without being

45

MODELING TOOLS

interrupted [Kop97].

Data is sent/received between targets by sender/receiver tasks connected
by medium channels. In SynDEx every target is realized with its own com-
munication thread running concurrently to the main routine, that means that
the time consumption of a communication job includes two targets exchanging
data (the sender and the receiver task). In fact there could be more targets
involved that are simultaneously listening to the bus but discarding unintended
packages.

The scheduling table does not hold the behavior of the algorithm during the
init phase of the blocks. The scheduling table represents the timely behavior of
the algorithm during the cyclic / periodic phases of the respective blocks, while
init and end phases are not included. As depicted in figure 3.17, an algorithm
is repeated after the Inter-repetition Period. Every action in the distributed
executive is synchronized. Synchronization can be thought of a token, or more
tokens, being passed around from finished jobs to others. Preventing data-
depending jobs being executed too early is done by creating communication
threads and main loops on each target controlled by semaphores in such a way
that tasks will be called in a correct execution order. Intra-repetition Synchros
order the execution of tasks within one whole execution of the algorithm, while
Inter-repetition Synchros delay the execution of tasks, in the scope of two
successive repetitions of the whole algorithm, until their execution is needed.

SynDEx Scheduling - Model versus Reality

SynDEx creates a scheduling which resides conceptually in an ideal world.
In the ideal world, execution durations of tasks are constant, therefore the same
is valid for the periods of tasks. In a SynDEx multiprocessor architecture, all
processors have a synchronized start-up and do not have clock drifts. All these
characteristics have to be assumed to keep a scheduling model simple, and in
cases of higher complexity even calculable.

Every task requires the definition of durations (for the internal sequential
calculations). In a general point of view, tasks can have various execution
durations which are not preliminary known. Choosing the worst case execution
time (WCET) for the task duration might be common practice because it is
used to layout the system in the case of maximal load. Even though this sounds
fairly reasonable, there are several issues arising when it comes to the realization
of a scheduling model in the real world (see figure 3.18). The tasks in this figure
shall be seen as stateless, simple tasks which are just executed after another
without any external synchronization (e.g. a timer unit that ensures the tasks
exactly being executed at modeled times). Modeling task durations and fitting

46

MODELING TOOLS

Figure 3.17: SynDEx - Scheduling table with two processors and two commu-
nication media.

those to the real world, requires a stronger way of modeling which considers
various possible execution times of tasks - in SynDEx this is for sure a deviation
between the model and the real world. The problem of tasks terminating at
unknown times is not just relating to SynDEx models, but rather a general
issue.

Period violations occur if there are no synchronizing units responsible
for the regular execution of the task. In a pure event-driven task model
there is no guarantee that the tasks will be executed exactly in their defined
period, but might rather be executed earlier. Information are pushed in
this kind of system. In a best-effort application these circumstances might
be acceptable, but if an application with fault-tolerance is needed, e.g.
taking sensor samples at fixed time periods, this kind of model might not be
sufficient. Early execution of the tasks might even lead to some tasks being ex-
ecuted more times inside a time interval if there is no synchronization available.

If timer peripherals are provided on a target hardware, tasks with fixed
periods can be realized, but still with the introduction of a deviation between
model and reality. A fixed-period task has to include a hardware timer unit,
which fires the task at desired time intervals and has to be blocking until the

47

MODELING TOOLS

LO
O

P
(D

is
cr

et
e

T
im

e) Wait

Wait

a) The perfect world:
Perfect timings, task
executing times are

constant. P(B)>>P(A) .

b) Early task termination:
D(A)<WCET(A).

Wait

Wait

Wait

Wait

Wait

Wait

c) Task A period
violation.

Task B
Job #1

Task B
Job #2

Task B
Job #3

Task B
Job #4

Task B
Job #5

Task B
Job #6

Task B
Job #7

Task B
Job #8

Task B
Job #9

Init

End

Task A
Job #1

Task A
Job #2

Task A
Job #3-2

Task A, Job #3-1

Task A
Job #4-1Wait

Gap

Figure 3.18: SynDEx - Scheduling with tasks of varying execution times. a)
In the perfect (modeled) world, all task durations and periods are
exactly known and do not change during execution. The period of
Task A P(A) is much smaller than the period of Task B P(B). b)
Executed on the target hardware, Task A terminates earlier than
its WCET (duration of Task A D(A) < WCET (A)). Therefore a
gap in the scheduling occurs, which makes Task A being executed
earlier in the next repetition of the loop. c) Due to (b), the period
of Task A is violated.

activation time is reached. Blocking is necessary to compensate in time for the
early task terminations - this is not actually seen in the scheduling model, but
is a method of realizing a fixed-period task (see figure 3.20).

Another way of synchronizing tasks is by introducing more operators into
the hardware architecture model of SynDEx. These operators could model

48

MODELING TOOLS

LO
O

P
(D

is
cr

et
e

T
im

e)

INIT

END

a) Synchronized Task B. b) Time reference.

Wait

Synchronization

Wait Inter-repetition
Synchronization

Task B
Job #1

Task Timer

Processor
A

Processor
Timer Synchronization Unit

Communication Medium
Synchronization

Figure 3.19: SynDEx - Synchronizing a task with a timing operator.

a timer unit on the processor itself and thus, by synchronization operations,
maintain a fixed period of a task (see figure 3.19). This is possible in the
model, but the macro code generation part of SynDEx at the current version
used in this thesis (7.0.0) is not fit for this issue - this solution would require
additional customized model transformation and code generation programs.
In the case of a multi-processor architecture, meaning several targets have
to communicate and work collaboratively, the varying task durations will
tend to average out since synchronization calls are done between the targets
(synchronization and communication).

49

MODELING TOOLS

LO
O

P
(D

is
cr

et
e

T
im

e)

Wait

Wait

a) Scheduling model. b) Real scheduling.

Wait

Wait

Init

End

W
C

E
T

P
(B

)
C

on
st

an
t E

T

R
ea

l E
T

R
ea

l E
T

 a
nd

 b
lo

ck
in

g
B

lo
ck

in
g

E
T

 =
 W

C
E

T

Timed task A
Job #1

Timed task B
Job #1

Timed task B
Job #2

Timed task A
Job #1

Timed task B
Job #1

Task B
Job #2

Wait Wait

Timed task B
Job #3

Task B
Job #3

Figure 3.20: SynDEx - Model versus a real execution instance. a) In the Syn-
DEx model execution times are constant, while b) at a real execu-
tion tasks may terminate earlier which is compensated by blocking
timed tasks.

50

MODELING TOOLS

3.3 Scicos-SynDEx Interface

The model-based character of the Scicos/SynDEx framework can improve the
system development process. The Scicos/SynDEx framework System does not
only enhance the interaction between several phases, but also reduces the num-
ber of phases in the process model in a sense of aggregating several phases in
a single phase where a great deal is done by the used model-based framework.
Consider the software development sub-model of the V-Model 97 (figure 3.21)
which provides a good example of showing the impact of introducing mod-
els in the system development process. This figure acts as an example how
the model-based Scicos/SynDEx framework is applied to a document-centric,
waterfall-model based software development model.

Scicos and SynDEx models are used as a formalized system representation
in almost every phase of the process and thus providing a consistent view of the
product throughout the whole software development life cycle. For example,
a Scicos model might be used in meetings with project stakeholders and users
in order to determine the requirements. The same model is also used in the
system design phases and the verification phases in the development life cycle.
As it might have been already noticed by the reader, a system process model
like the one in figure 3.21 can not be executed as is with Scicos/SynDEx: A
classical plan-driven, step-by-step proceeding is not what is happening when
designing models, because during the design of a Scicos/SynDEx model, many
phases are advanced at the same time, since the models contribute to all phases
simultaneously: directly (model is the immediate representation of the system)
or indirectly (Scicos provides the model for the SynDEx model which generates
code in the implementation phase).

These circumstances lead to a new software development life cycle with
Scicos/SynDEx (see figure 3.22). At the start of this SDLC hybrid system
models are defined in the Scicos context, simulated and models refined. If the
simulation results are satisfactory, the model (specification part modeled in
Scicos) can be model-to-model (Scicos-to-SynDEx) transformed and be part of
the system specification represented by SynDEx models, which is, in the next
phase of the SDLC, formal verified and treated with temporal simulation by the
SynDEx software. In case of failing the requirements, the hybrid system part
might have to be redesigned, that means the Scicos model has to be edited
again, a model-to-model transformation done and the resulting model used
again for the simulations in SynDEx. Automatic implementation, code gener-
ation, for different execution environments after successful simulation can be
done by the SynDEx software and the results be validated afterwards. Instead
of transcending from the executable code to integration and system integration
verification phases, the validation phase is directly hit. The simulations and

51

MODELING TOOLS

verifications done in the previous phases make it possible to skip, a now already
integrated, additional verification phase (provided that there is enough trust
in the software development tools). In case the results are positively validated
the cycle can stop, otherwise the models have to be worked on again in the
modeling phase.

Models (Scicos/SynDEx)

Temporal Simulation,
Formal Verification
(SynDEx)

Automatic Implementation
(SynDEx)

System
Requirements

Analysis

System
Design

SW/HW
Requirements

Analysis

Preliminary
Design

Implementation

Integration

System
Integration

Transition to
Utilization

Detailed Design

Validation

Modeling
Hybrid Systems

(Scicos)

Verification

Verification

Simulation
Hybrid System

(Scicos)

Figure 3.21: A Software Development Lifecycle (V-Model ’97) with the Sci-
cos/SynDEx framework.

Scicos-SynDEx Gateway

As mentioned above, the SDLC with the Scicos/SynDEx framework requires
an intermediate step translating a Scicos model into a SynDEx model. This
model-to-model transformation is done via the Scicos-SynDEx Gateway - an
add-on tool-box of Scicos. With this gateway the hybrid system model designed
in Scicos is transformed into a SynDEx model which can then be combined with
other SynDEx models (see figure 3.23).

52

MODELING TOOLS

Figure 3.22: The software development lifecycle with the Scicos/SynDEx
framework, source: [KS04] - modified illustration

Figure 3.23: Scicos/SynDEx gateway.

53

MODELING TOOLS

54

4 Demonstrations of MBD with
the Scicos/SynDEx Framework

Mapping the real world onto a model that retains all information of interest
and represents models in a resource-friendly (memory, time) fashion should
be the aim of any modeling software. The Scicos/SynDEx framework, Scicos
for the modeling and simulation of discrete/continuous systems and SynDEx
for the distribution and scheduling of models on a distributed system, might
show a good way for modeling hybrid systems, simulation, optimization and
scheduling (AAA Methodology) on a multi-processor system. How far and in
which ways this framework can be applied to a distributed embedded system
is shown by the implementation of two examples on a customized embedded
system development board. One example implements a fan speed PID
control circuit on a monoprocessor, using both, the Scicos and the SynDEx
software tools, in combination. The second example implements a simple
observer pattern on a multiprocessor system, where two observer nodes are
notified about the temperature values from a sensor node. The architecture
of the target hardware used for these examples is described in section 4.1,
information about the software architecture of the examples can be found
in sections 4.2 and 4.3 along with the corresponding Scicos and SynDEx models.

Measuring the capabilities of a model-based framework is not an easy task.
Sufficiently understanding of the modeling software is a prerequisite for as-
sessments. What kinds of requirements and specification can successfully be
modeled with this specific model-based development framework? In which
ways should the application be distributed among all the resources? What is
an efficient solution? How is the scheduling of the algorithms done? How can
one visualize the resource allocation (time and data) of the possible solution?
What code metrics can be applied to measure the quality of the produced code?
These are just a couple of questions which will at least partially be answered
by the implementation of the two examples following in this section.

55

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

4.1 Hardware Architecture

The hardware used for the evaluation of the Scicos/SynDEx modeling capabil-
ities is a development and educational printing circuit board with sensor/actu-
ator peripherals (from now on to be referred as the ”ESE-Board” - Embedded
Systems Engineering Board) created by Kössler at the Technical University of
Vienna (complete information regarding the board can be found in the creator’s
master thesis [Koe09]). Basically, this board consists of four 8-bit ATmega128
microcontrollers (Node0 - Node3) where each controller node is interconnected
to the others by a bus. Furthermore, there are various Input/Output periph-
erals assigned to each microcontroller, such as light intensity and temperature
sensors, as well as actuators like a fan, liquid crystal displays, LEDs and LED
bar-graphs. The programming of the microcontrollers is done by an USB inter-
face via an USB-to-Serial circuit. Thus, this PCB is a good evaluation board
for hybrid systems. The microcontrollers realize the control part of the system,
while the controlled peripherals implement a real-world plant (dense time, con-
tinuous data values). A very simplified layout of the board is shown in figure 4.1
and a real-world photography in figure 4.2. Note that only for the examples’
most relevant ESE-Board parts are depicted.

4.1.1 The components of the ESE-Board

The nodes with their attached peripherals form a distributed embedded
system, which can be accessed by a PC workstation through an USB interface.
Several peripherals are connected to the microcontrollers, that includes two
LEDs for each node. An LCD, a light bulb, a temperature sensor and a fan
are connected to one specific microcontroller. Every node (Node0-Node3) is
an ATmega1281 microcontroller holding following basic characteristics (only
the most important ones are listed):

• 8-bit microcontroller.

• 32 x 8 General Purpose Working Registers + Peripheral Control Regis-
ters.

• Fully Static Operation.

• Advanced RISC Architecture.

• 128KB In-System Programmable Flash Memory.

• 4KB EEPROM.

1The Atmel Corporation, http://www.atmel.com

56

http://www.atmel.com

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

Node0
ATmega128

Desktop-PC

P
er

ip
he

ra
ls

LCD

1-
w

ire
 b

us
USB

Node1
ATmega128

Node2
ATmega128

Node3
ATmega128

Bulb

Fan / Fan RPM Index

Temperature Sensor

2 LEDs

2 LEDs

2 LEDs

USB-Bridge

2 LEDs

Figure 4.1: ESE-Board - Simplified layout.

• 4KB Internal SRAM.

• 133 Instructions, most of them take a single clock cycle for the execution.

• JTAG (IEEE std. 1149.1 Compliant) Interface.

• Two 8-bit Timer/Counters with separate prescalers and Compare Modes.

• Two Expanded 16-bit Timer/Counters with separate prescaler, Compare
Mode and Capture Mode.

• Two 8-bit PWM Channels.

• 8-channel, 10-bit ADC.

• Dual Programmable Serial USARTs.

• Master/Slave SPI Serial Interface.

• 53 Programmable I/O Lines.

The time-source for the microcontrollers is an external clock block running
with 14.745600 MHz. Every node is connected to the bus via a HW- or SW-
USART (Hardware- or Software- Universal Synchronous and Asynchronous

57

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

Figure 4.2: ESE-Board - Photography, source: [Koe09], modified illustration.

Receiver Transmitter). These USARTs are fully compatible with the AVR
[Atm06] UART regarding baud rate generation, transmitter operation, transmit
buffer functionality and receiver operation. The examples in this thesis, realized
with the AVR tools, will only use the asynchronous mode of the USART,
therefore they are depicted as UART. Following paragraphs describe only the
parts of the nodes used for the examples in this thesis.

Node0

Node0 acts as the connector between the ESE-Board and an external de-
vice (usually an USB-wired desktop PC) and is connected to two LEDs. The
UART1 block of the microcontroller is connected to the ”USB to Serial” IC
interfacing a possible external device.

58

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

1-
w

ire
 b

us

H
W

-U
A

R
T

0
S

W
-U

A
R

T
0

Green LED

Red LED

USB to Serial IC
(FD2232D)

HW-UART1

Figure 4.3: ESE-Board - Node0.

Node1

Node1 is responsible for controlling an LCD2 device and a light bulb. The
background light of the LCD is adjusted by PWM3, the data I/O handled by
SPI4.

Node1
(ATmega128)

1-
w

ire
 b

us

H
W

-U
A

R
T

0
S

W
-U

A
R

T
0

Green LED

Red LED

P
W

M
S

er
ia

l I
/O

LCD Display
(EA DIP204B-4NLW)

Light Bulb

Figure 4.4: ESE-Board - Node1.

Node2

Node2 is connected to two LEDs.

Node3

Node3 controls a DC5 fan (DA04010B12S-017), two LEDs, and acquires
data from a temperature sensor (temperature sensitive Zener diode, National

2Liquid Crystal Display
3Pulse Width Modulation
4Serial Peripheral Interface
5Direct Current

59

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

1-
w

ire
 b

us

H
W

-U
A

R
T

0
S

W
-U

A
R

T
0

Green LED

Red LED

Figure 4.5: ESE-Board - Node2.

Semiconductor, LM135). The speed of the fan is controlled using PWM, the
current RPM6 are measured by observing the frequency generator output sup-
plied by the fan (emitting two pulses per round). Temperature data values are
converted via the ADC7 unit of the microcontroller.

Node3
(ATmega128)

1-
w

ire
 b

us

H
W

-U
A

R
T

0
S

W
-U

A
R

T
0

Green LED

Red LED

PWM0
IC

Fan
Fan-RPM Index

Temperature SensorADC

Figure 4.6: ESE-Board - Node3.

6Rounds per Minute
7Analog Digital Converter

60

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

4.2 Example Monoprocessor - A PID Controller
with Scicos and SynDEx

This example exercises a development process with the combination of Scicos
and SynDEx. A simple application is designed and run on a monoprocessor
target. Node3 of the ESE-board will act as the execution environment of a
digital PID control algorithm with anti-windup (confer to [Elm09, section
5.4.2]) that regulates the connected peripheral air fan. The fan (the plant)
resides in the continuous domain (figure 4.7). The PID algorithm and the fan
will be modeled and simulated with Scicos. After simulations, we demonstrate
the temporal design of the PID algorithm and model it in SynDEx in order to
support code generation for the hardware target.

PWM0
IC

Fan
Fan-RPM Index

PID
control algorithm

D
riv

er
s

Figure 4.7: PID-Example: A PID algorithm placed on Node3 controlling the
fan.

The peripherals connected to Node3 (an ATmega128 microcontroller) pro-
vide an excellent target to evaluate a PID control algorithm: The speed of the
fan can be controlled by the PID algorithm through a customized fan driver,
while speed data is obtained by a fan speed measurement driver.

The topic of designing a digital PID algorithm was chosen for several
reasons: PID algorithms are very widely used control algorithms, have basic
mathematics operations included, enforce the use of memory blocks for
calculations, touch the topic of discrete PID implementation and their relation
to continuous domain PID algorithms. Furthermore, the PID algorithm
requires reading data from a sensor, the calculation of depending data, and
writing of control values to an actuator. Through simulations of algorithm
and architecture designs possible solution candidates for software algorithms
and target hardware designs can be found. Latter is already realized by the
ESE-Board hence the focus of this work lies mostly on software design.
Details about the target hardware architecture is found in section 4.2.1, while
the software architecture, including a short requirements description and

61

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

the design of the models with their simulation and model transformations,
is located in section 4.2.2. These sections include several comments and
considerations which were posed during the development process.

The results of the example are helpful to reasonably answer following ques-
tions:

• How well is the Scicos/SynDEx framework suited to contribute to the
development of a simple control algorithm?

• How much memory will the generated application use on the embedded
target?

• How much effort is necessary (e.g. person hours) to develop such an ap-
plication with the framework? Is the time spent reasonable? Does it need
considerable time for a developer to understand/setup the framework?

The presented experiment will provide data allowing a reasonable statement
about code size and quality for a typical embedded application.

4.2.1 Hardware Architecture (Execution Environment)

The chosen execution environment - plant and controller- consists of several
ESE-Board components with following parts playing major roles:

• Controller device: Node3 (depicted in 4.7 and section 4.1.1).

• Controlled peripherals: The air fan connected to Node3 (actuator)
takes the set fan speed as argument, and the fan sensor provides fan
speed data. The air fan’s input line is connected to the PWM0 output of
the microcontroller, the speed index line to an input pin (IC - interrupt
capture) of the microcontroller.

Note that this section contains the physical description of a target execution
environment (hardware architecture), while the formally modeled hardware ar-
chitecture is designed with SynDEx (following in this example). The hardware
description could be done in more detail on the physical level, for example by
modeling the hardware based on the blueprints of the board, but this is not
intended for the design of the models at the chosen design abstraction level
(keep the models simple). Simple models, dislodged from a very low level rep-
resentation, are easier to understand and design, but at the same time they
might hide details which could be crucial for designing a model representing
the real world in adequate details.

62

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

4.2.2 Software Architecture

A digital PID control algorithm with anti-windup is designed in a generic way.
This makes it possible to compare the results to other frameworks. For instance,
the same algorithm could be implemented with the SCADE software in order
to compare the results to this example with Scicos and SynDEx. Focusing on a
simple example with only a PID algorithm leads to the idea of following rough
requirements that just demand an air fan to be operated at a given speed.

Requirements

A fan (with a maximum of 10 000 RPM) is regulated by a digital PID
control algorithm on a single processor. At system start, the speed of the fan
is supplied with a constant percent value, for example a value of 100% results
in 10 000RPM , 50 % in 5 000RPM , 0 % in 0RPM . A speed tolerance of 15 %
is acceptable, thus a speed input value of 50 % may result in 5 000±750RPM .

Considerations

Before going into solving the algorithmic problems, some economic factors
have to be considered. Imagine oneself being in the role of the software com-
pany reading these requirements. Following thoughts could occur: There is a
large variety of fans and control electronics available on the market. Which
electronics equipment is the cheapest? How can such electronic components
be evaluated in a fast way - is it possible to create a solution using these com-
ponents? If necessary, would it be easily possible to replace a component by
another model (e.g. the fan of choice could not be delivered anymore)?

A top-down model design approach using Scicos and SynDEx might lead to
a working prototype. Scicos can be used to simulate the PID algorithm with a
model of some different hardware fans in question. If the fan models used in the
evaluation phase are considered to be accurate, the PID algorithm can be de-
signed and simulated. Thus, the feasibility of a prototype can be confirmed or
denied. Furthermore, information about necessary hardware components and
algorithm designs can be gathered by including SynDEx in the design process.
SynDEx can handle the temporal design of the application and automatically
generate code for an electronic control logic of choice (e.g. an embedded mi-
crocontroller in this case).

63

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

Hybrid System Design and Verification

Obviously, the requirements describe a hybrid system: The fan is located
in the real world with its continuous time and data characteristics. The design
of the functional PID model and the fan model are implemented with Scicos.
If the model of the real-world fan is implemented with sufficient accuracy, the
parameters of the PID algorithm (that are located in a discrete data and time
domain) can be calculated.

Scicos is a domain specific language and is used for modeling during the
development and simulation phase. Scicos, as an internal DSL (which is based
on Scilab), provides the means for hybrid systems modeling. Scicos models are
meant to be platform-independent, thus their generic nature makes it possible
to transform them into other artifacts or even executable models. Platform
independence pertains mostly the controller algorithm part of the Scicos models
- they are a part of the development which should be portable to different target
hardware architectures. Whereas for the model of the plant (air fan) hardware
independence is an issue which might not be realized easily. Every plant has
different characteristics which need to be modeled in a sufficient level of detail
- if only a very abstract representation of the plant is required, then the plant
model could be considered to have some degree of platform independence -
a real hardware fan could then be replaced by another model (or just a fan
of the same model) without changing the plant model. The term platform
independence might be seen not adequate for a plant model where no code
will be executed on. Nevertheless, such models are needed for the simulation
and verification of the controller part and moreover, their reuse in combination
with various other plant instantiations would be of advantage.

PID Algorithm - Scicos Model

The Scicos model consists basically of two main components, the fan (plant) and
the PID control algorithm (discrete controller). Both domains are connected via
interface components (figure 4.8). Interface components are necessary since the
drivers implemented on the microcontroller take integer values as arguments.

Before going towards the modeling of the plant and controller, some fun-
damental assumptions have to be made. In which detail should the fan be
modeled? An ideal solution would be a model that represents real-world be-
havior. It might be common sense that an ideal solution is hardly possible, for
several reasons, such as the fact that memory space and computation power
are limited. This example does not focus on a sophisticated model, but on the
methods and concepts in designing models with the Scicos/SynDEx framework.

64

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

Figure 4.8: PID-Example - a hybrid system.

Plant Modeling

The behavior of the fan is modeled based on the dynamic and static behavior
of the real hardware. The step response function (figure 4.9(a)) has to be
combined with the PWM-RPM curve function (figure 4.9(b)).

(a) Step response. (b) Static behavior.

Figure 4.9: Cooling fan behavior.

The PT1 behavior is approximately characterized by x(s) = KS

1+s·Ta
with

Ta = 330 ms and KS = 0.925 %
%

(figure 4.10). The controller input is
modeled as percentage of the maximum PWM input to the fan motor. The
controller output is modeled as a percentage of the nominal maximum fan
speed (10 000 RPM). Additionally, there is a deadtime of about Tu = 75 ms,

65

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

modeled with x(s) = 1
1+s·Tu

. The static behavior is a function correlating the
set PWM duty-cycle (dc) and the fan’s RPM (the signal dampening of about
7.75 % is already considered in the dynamic behavior):

f(xdc)RPM =

{
0 if xdc < 28%
PWM · 9 250 if xdc ≥ 28%

The corresponding Scicos model is depicted in (figure 4.11).

Figure 4.10: PID-Example - Approximation of the fan’s PT1 and dead-time
behavior.

ScicosFanBehavior

den(s)
num(s)
den(s)
num(s)

28002800 Fix Delay
Continuous
Fix Delay
Continuous

Op : >=
Relational
Op : >=
Relational

11

11

Figure 4.11: PID-Example - fan behavior Scicos model.

These characteristics are combined into a single Scicos model. The simula-
tion results of the path are shown in figure 4.12.

Controller Modeling

The modeled controller is a typical discrete PID controller with anti-windup
(figure 4.13). The anti-windup feature is necessary in order to avoid negative

66

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

Figure 4.12: Fan, simulated Scicos model, Ta = 330 ms, Tu = 78 ms, KS =

0.925%
%

.

effects from the integrator component when the control output from the PID
algorithm is pruned to the maximum output. The additional 1/Z block (mem-
ory) is inserted to avoid algebraic loops - it is triggered with a higher frequency
than the rest of the algorithm.

Hybrid System Simulation

Controller and path are modeled as a closed loop and simulated. A top-level
model shows the combination of discrete and continuous domain (figure 4.14).
The PID controller takes the set point as argument and provides set values
between 0 and 100. These values are quantized since the modular fan drivers
take integers as arguments. The fan driver outputs PWM duty-cycle values that
control the fan between 0 and 10 000 RPM (this is depicted by the following
gain block). Now, in the continuous domain, calculated in Scicos with double
values, the fan speed is measured with a fan sensor driver. The resulting RPM
values are quantized since the modularly designed drivers provide only integer
values. These values are scaled down by the factor 100 and forwarded to the
modularly designed PID control block.

The system is simulated with the parameters KP , KI , KS tuned according
to the rules of Chien, Hrones and Reswick without overshoot (figure 4.15).

The simulation results, input/output values for the fan PID controller are

67

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

PID−anti−windup

KPKP

1/z1/z KD*(1/Ts)KD*(1/Ts)−1−1

KI*TsKI*Ts

error(n)
u(n)

error(n−1)

+
+
+

+
+
+

+

+

+

+

1/z1/z

11

22

11

11

−1−1

Op : >=
Relational
Op : >=
Relational100100

00 Op : >=
Relational
Op : >=
Relational

1/z1/zfreq_divfreq_div

Figure 4.13: PID controller, Scicos model.

FanSpeedControlTopLevel

8080

1/z1/z 0.010.01100100 FanSensorDriverFanSensorDriverFanDriverFanDriver

Fan QuantizationQuantization

PIDSet Point

Set Value

Path Value [0, 100]

[0, 10000]

[0, 100]

[0, 100][0, 10000][0, 100]

Figure 4.14: Plant and controller modeled in Scicos.

depicted in diagram 4.16). The differential weight factor is responsible for the
abrupt changes in the set value.

PID Algorithm - Temporal Design and Automatic Implementation

After the Scicos simulation results were assumed being right, the Scicos

68

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

Ta . . . effective compenstation time = 330ms
Tu . . . deadtime = 78ms

KS . . . gain = 0.925 %
%

KP = 0.6·Ta

KS ·Tu
= 2.74 %

%

KI = KP

Tn
= 0.00832 %

%

KD = KP · Tv = 107.02703 %
%

Tn = Ta = 330ms
Tv = 0.5 · Tu = 39ms

SP . . . set-point = 80%
%

TS . . . sampling time = 5ms

Figure 4.15: PID control algorithm, parameters.

Figure 4.16: Plant and controller simulated in Scicos, Input/Output of the fan
(continuous domain).

model is transformed to a SynDEx model via the Scicos-To-SynDEx gateway (a
model-to-model transformation). SynDEx is then used to design the temporal
requirements (the PID control algorithm is triggered every 5 ms), model the
hardware architecture (and execution environment), simulate these together
with the PID algorithm model and then automatically generate a macro code
representation of the model (see figure 4.17). After that, the macro code model
is expanded into an AVR-GCC compliant C code by the usage of the GNU M4
macro processor8 in conjunction with the target-dependent macro expansion

8http://www.gnu.org/software/m4

69

http://www.gnu.org/software/m4

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

files, which are consisting of rule-sets for expanding the macro code to C.

Figure 4.17: Partial software development process, PID-Example. The Scicos
model is transformed into a SynDEx model acting as system spec-
ification followed by temporal simulations, formal verification, and
automated code generation.

The SynDEx set of models for this example consists basically of two main
models, the hardware architecture defining a model of the target hardware,
and the algorithm defining a model of the PID algorithm in connection with
the fan drivers.

Designing a SynDEx hardware architecture model. SynDEx requires a
target hardware architecture being described by a model, for this purpose an
ATmega128 microcontroller SynDEx block is constructed. The ATmega128
block is part of a customized Atmel SynDEx-library. Since a microcontroller on
the target hardware can be connected to the bus and enable a communication
line to the other nodes on the ESE-board, a communication gate (c) is added
to the model. A node could also be connected to an external PC device via
a Serial-To-USB circuit, therefore an additional communication gate (e) was

70

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

added. Since this is a monoprocessor example, the gates will not be used here.
The model is depicted in figure 4.18 and the corresponding SynDEx code is
listed here (file Atmel.sdx):

1 syndex ver s i on : ” 7 . 0 . 0 ”
app l i c a t i on d e s c r i p t i o n : ””

L i b r a r i e s

6 # Algorithms

de f operator ATmega128 :
gate COMA c ;
gate COMB e ;

11 code phases : l oopseq i n i t s e q endseq ;

Main Algorithm / Main Arch i t e c tu re

Extra durat ions
16

Software components

Const ra int s

Listing 4.1: ESE-Board - ATmega128 Node - SynDEx-Architecture

node3 (Atmel/ATmega128) (main)
c

e

Figure 4.18: Node3, SynDEx architecture model.

Design and parametrization of the SynDEx algorithm model. The top-
level SynDEx algorithm model is depicted in figure 4.19. The figure depicts
a block for the control of the timer2 unit of the ATmega128 microcontroller.
This block takes parameters that determine when to fire a timer event and
activates the following top-level hierarchy block. Latter contains the PID con-
troller algorithm connected to the fan drivers. One reason for choosing this
solution was the lack of sufficient computation power of the used development
system: If the period of a task is much higher than that of other tasks, the re-
sulting scheduling table will be too large to display, too large to be sufficiently
readable by the developer, and additionally tricky scheduling algorithms need
to be added to the code generation part if such a scheduling needs to be imple-
mented in the product. This solution, using the timer2 controller block and the
following top-level time-triggered (confer to [EBK03]) block burns time every
micro-period for the sake of scheduling. The price for improved scheduling,
readability and an implementation without high effort scheduling code, is thus
spending periodic time. A second reason, of no lesser importance, is the fact,

71

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

that a constant time instance for a periodic task is needed. If there was no
timer, there would be a, more or less random, shift of the execution of the
time-critical blocks earlier in time, because all time blocks in SynDEx are con-
sidered to be atomic and WCET - in fact, tasks may be finished before their
specified WCET, pulling the execution of the periodic task forward in time.

Figure 4.19: PID-Example. Top-Level SynDEx model.

The timer2 (time-triggered) block activates the fan sensor block, the PID
controller block and the fan driver (see figure 4.20). The PID block was con-
verted from the Scicos model into the SynDEx model and therefore its data
types are double. Fan driver and fan sensor driver blocks are of the types uint8
and uint16 leading to the need of an intermediate interface layer wrapping the
types: S2SWrapper-blocks convert double to uint8, uint8 to double and uint16
to double data types, which could mean a loss of information, but since the
Scicos model was implemented by using quantization blocks (thus interfacing
the real fans with integer values), these conversions make sense.

PIDController

w_i
y_i

u_i

fanSensorDriver

rpm

fanMotorDriver

speed

S2SDataWrapper

d uint8

S2sDataWrapperW

uint16 d

FanSpeed

cst

S2SWrapperCst

uint8 d

fire

Figure 4.20: PID-Example. SynDEx model, Scicos-transformed PID algorithm
interfacing fan sensor and fan drivers.

Finally, on the bottom level of the hierarchy, the PID algorithm, which was
converted from a Scicos model into a SynDEx model, is shown in figure 4.21.
The algorithm takes the set point wi and the set value yi as inputs and outputs
the path value ui. Note that all the blocks contained in this PID controller
are bearing the data structure overhead from the Scicos model: The ability
to simulate and change, automatically transform models between Scicos and

72

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

SynDEx introduces additional data memory costs on the target platform.

dollar4_18_1

in_1 out_1

summation_13_1

in_1
in_2

out_1

gainblk_5_1

in_1 out_1

gainblk_7_1

in_1 out_1

relationalop_20_1

in_1
in_2

out_1

cstblk4_19_1

out_1

cstblk4_18_1

out_1

relationalop_17_1

in_1
in_2

out_1

plusblk_8_1

in_1
in_2

out_1

gainblk_9_1

in_1 out_1y_i

w_i

dollar4_4_1

in_1 out_1

gainblk_6_1

in_1 out_1

plusblk_3_1

in_1
in_2

out_1

gainblk_2_1

in_1 out_1
summation_12_1

in_1
in_2
in_3

out_1

satur_10_1

in_1 out_1 u_i

prod_21_1

in_1
in_2

out_1

prod_22_1

in_1
in_2

out_1

rem_1

in_1 out_1

Figure 4.21: PID-Example. SynDEx model of the PID controller transformed
from the Scicos PID model.

PID Algorithm - Scheduling of the SynDEx model

SynDEx takes the algorithm model and schedules the blocks by using a
greedy algorithm under provided time constraints. The entire algorithm is
supposed to be triggered about every 5 ms (even a Sampling Time of 8.5 ms
was calculated, however the real-world properties make the fine-tuning of
a PID almost always necessary) and this is accomplished basically in two steps:

• Define the periods of each task (similar to the Liu and Layland task
model).
The ATmega128 is clocked with a frequency of 14.745 6MHz , that means
1 ms takes 14745.6 CPU cycles, 5 ms take 73 728 CPU cycles. The
question raised now is how exactly the period must be chosen to meet
the requirements, since this is a single periodic example. A period chosen
of 74 STU will not interfere with the schedulability of other tasks (since
there are no other tasks which periods would have to be n-times the
period of this task). To keep it simple, the trigger time of the algorithm
is modeled with 80 STU = 5.42 ms, however the STUs are chosen, they
will mostly imply an inaccuracy between model and real world (depends
also on the clock of the MCU).

73

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

• Define the durations of each task.
To keep the model human-readable, a standardized, constant duration
for each block is chosen: 1 000 cycles of the ATmega128 shall represent
1 STU (SynDEx Time Unit in the model - this unit is made up for a
better nomenclature). All the blocks in this example are executed a lot
faster than that time (WCET), leading into an investment of resources
into safety.

After SynDEx runs through the algorithm using the AAA methodology, a
resulting scheduling table can be investigated (see figure 4.22). On the left
hand side on the processor schedule, there is the timed controller running at
the start of each CPU-period, followed by the main algorithm. After that, a
wait statement is inserted to fill up the intended period of 80 STU . The right
hand side is a time reservation slot which will be executed if the timer controller
has not fired. If a task has to be executed every 3s and another one every 5ms,
the costs for the calculation of the scheduling will be enormous, resulting in an
obfuscated model (provided the calculating time of the model is smaller than
the developers patience/time available). Therefore, we reserve time (wait the
WCET of the whole algorithm) whenever the timer does not fire in this CPU
period.

Figure 4.22: PID-Example. SynDEx scheduling after algorithm adequation.

74

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

PID Algorithm - Macro Code and Executive Code Generation

At this step the development process is at a stage where it is possible to
generate a target language-independent macro code file for each involved node.
Using target language-dependent macro definitions these macro code files are
then translated into avr-gcc compliant C code which afterwards can finally be
compiled, downloaded and executed on the hardware.

A look at the generated macro code explains what is needed to realize these
last steps (node3.m4, listing B.1). In this file, after allocating global memory
for variables, the main function tag is immediately followed by an proc init
tag. Latter tag is used to switch a flag in the macro code - this way a macro is
then expanded to its corresponding section in the target-dependent definition
file, thus the C code for the initialization for the block (if there is any) is
inserted. An example of a macro expansion definition for the pid gainblock
is listed in the appendix (see listing B.2): The generated C code depends on
the code phase in the node3.m4 algorithm file. After all initializations of the
blocks are handled, the main loop of the algorithm expands to an infinite loop
(by using the definition in a processor (ATmega128) specific language macro
definition file, see listing B.3). In this main loop all the blocks are expanded
by their corresponding main loop phase. After finishing the main loop, blocks
are expanded according to an end phase. For example, the latter can be used
to free resources. The resulting C code is listed in the appendix B.4 which
can then be compiled by using the generated makefiles (see listing B.5 and
listing B.6). The executable was downloaded onto the ESE-Board and the fan
run approximately at the set speed.

A note about data types. It is possible to automatically map the data types
to compiler conforming ones by adding rules to the target language expansion
file (e.g. ATmega128.m4x). For example, the type int is mapped to int16 t
without a redesign of the model. This is useful to support the use of different
compilers or libraries, and adds value to the re-usability of models.

The interface data types of the modeled SynDEx blocks are defined by an
identifier and the data type size (bytes):

typedef_(‘uint16’,2)

New data types can be defined:

typedef_(‘uint16_t’, 2)

75

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

The new data types can be mapped (note that also those which are not mapped
to a new type need a mapping definition):

define(‘uint16_map’,‘uint16_t’)

SynDEx will create all data types with a ” map” appendix when the ”basicAl-
loc ” definition is edited as follows:

define(‘basicAlloc_’,‘_($1_type_()_map() $1[$1_size_];)’)

PID Algorithm Example - Validation

Simulations of the hybrid system, temporal design and algorithm optimiza-
tion were done. The question at this point in the development process, is if
the models and simulations are a good representation of the life behavior. The
algorithm was deployed onto the target architecture and some monitoring code
inserted. The velocity data of the fan was sent via UART to node0, which
itself forwards all the communication data via USB to the development PC.
The collection of velocity data on the target did not interfere with the PID
code running on it, since the UART baud rate and communication calls were
designed carefully with the help of the SynDEx scheduling model: The Wait
time interval in the scheduling model was used for communication purposes.

Figure 4.23 shows the real behavior of the PID controlling the fan. The
fan was running approximately at a speed of 80 % for some seconds. The life
behavior differs from the simulated behavior - there might be several reasons
for that, however, they are no object of further investigations right here. A PI
controller might be more suitable for this situation.

Comparing these live data (figure 4.23) to the Scicos simulation results
(figure 4.16) shows different behavior of model and real world. Because of the
simple plant model, as well as its roughly calculated parameters, the live data
differs. The high fluctuations are explained by the KD factor and the small
fan speed spikes provided by the sensor. If the model was required to be more
accurate, a re-modeling with Scicos/SynDEx would be necessary (figure 4.24).
This example escapes the software development cycle with Scicos/SynDEx at
this point.

76

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

10
0

R
P

M

t ms

Process Value
Set Value

Figure 4.23: PID-Example. Live data diagram of the PID controller and the
fan.

Figure 4.24: PID-Example. Model redesign and new parameters in case of un-
satisfying results.

77

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

4.3 Example Multiprocessor - Data Observation
and Communication with SynDEx

The aim of this example is to model a multiprocessor application in SynDEx
with the ESE-Board as target hardware. Temperature values are periodically
acquired at node3. These temperature values will be sent to node1 and dis-
played on its LCD peripheral. Furthermore, the temperature data is sent via
node0 (acting as a repeater) to the development PC and displayed there (fig-
ure 4.25).

Plant

Node3
(ATmega128)

Temperature
Sensor

Data Acquisition
Algorithm

D
riv

er
s

Node1
(ATmega128)

LCD Display
Algorithm

D
ri

ve
rs

Node0
(ATmega128)

Repeater
Algorithm

C
O

M
B

PC

Display
Algorithm

D
riv

er
s

PC Display

C
O

M
-I

nt
er

fa
ce

B

C
O

M
A

C
O

M
A

C
O

M
A

LCD

Communication Protocol B

C
om

m
un

ic
at

io
n

P
ro

to
co

l A

Figure 4.25: Multiprocessor-Example. Distribution and display of temperature
information.

Expected results of this example are statements about the feasibility and
scope of using SynDEx models on a microcontroller multiprocessor architecture.

4.3.1 Hardware Architecture (Execution Environment)

The execution environment consists of several ESE-Board components:

• Microcontroller device: Node0 - Receive temperature data and for-
ward it to the Desktop PC.

• Microcontroller device: Node1 - Receive temperature data and control
LCD peripheral.

• Microcontroller device: Node3 - Sample temperature data and send
it to Node0 and Node1.

78

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

• Microcontroller peripheral Node1: The liquid crystal display for pre-
senting temperature values.

• Microcontroller peripheral Node3: The temperature sensor for data
sampling.

• Desktop computer device: PC - display temperature data received.

4.3.2 Software Architecture

The principle of this example is to realize an application where information
is gathered periodically and distributed within a pre-determined timespan to
other targets. In terms of an industrial application, this example could be
described like a car-application: The break pedal state is checked regularly
and its state sent to the brake system within one millisecond.

Requirements

Temperature values are measured periodically with 20 STU and displayed
by the LCD display on Node1. Furthermore the measured data is sent to the
PC at the same time period. The temperature data measured has to be sent
to the LCD within a time of 15 STU .

SynDEx - Hardware architecture model

The hardware architecture model designed for this example includes four mi-
crocontroller nodes (node0, node1, node2, node3) connected by communication
medium ”comA”, and one desktop PC connected to node0 by communication
medium ”comB” (figure 4.26). Every communication medium is defined as
SAM multipoint without broadcast.

SynDEx - Algorithm model

The algorithm model (figure 4.27) consists of several interacting blocks.
Located on Node3, a timer block (TemperatureTimer2Controller) periodically
triggers the temperature acquisition blocks (TTTTemperature; returns 0 when
not fired, otherwise the temperature) is the first instance in the algorithm.
After the temperature data is gathered, it is sent to the Repeater block on
Node0 which forwards it to the PCDisplay block. The data returned from the
TTTTemperature block is passed to the LCDShow block located on Node1.
NoSpeedValue is supplied to the LCDShow block if there are no data available.

79

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

comB (COM/COMB)

node1 (Atmel/ATmega128)
c

e

node3 (Atmel/ATmega128)
c

e

node2 (Atmel/ATmega128)
c

e

node0 (Atmel/ATmega128) (main)
c

e

pc (Linux/Workstation)
e

comA (COM/COMA)

Figure 4.26: SynDEx architecture model.

Figure 4.27: A SynDEx algorithm model with four operators.

All blocks in the model have a defined period of 20STU , the durations of the
operator-blocks were defined with very high values for the sake of the readabil-
ity of the model (otherwise the fraction of communication-durations/operator-
block-durations might be very high). The resulting SynDEx scheduling of the
algorithm can be found in figure 4.28 and a brief explanation what happens in
this scheduling table is given here:

• node0 (a). The Repeater block is executed after the temperature data
from block CondO0 arrived via communication medium comA.

• node1 (b). Initially a no-value block is executed followed by a wait
statement until temperature data is received on comA from CondO0 on
node3. With the data available, information is displayed on the LCDShow
block. This node holds also the conceptual trigger for the next inter-
repetition synchronization (b1) - it is supposed to hold an additional
wait statement to fill out the period of 20 STU (note: in the generated
m4 macro code no such statements could be found).

• node2. This node is not used for this example.

• node3. The timer controller block triggers the temperature sensor block

80

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

on time.

• pc (c). The PCDisplay block gets data from the Repeater block via
comB.

• comA. The occupation of the communication channel is displayed. First,
data is sent from CondO0 (node3) to Repeater (node0). Second, tem-
perature data from CondO0 (node3) is sent to PCDisplay (PC).

• comB. The Repeater (node0) sends data to the PCDisplay (PC) using
communication protocol B.

Figure 4.28: SynDEx scheduling for the multiprocessor example.

SynDEx - Macro Code Structure and Communication

The generated M4 macro code consists of a main loop surrounded by ini-
tialize and finalize placeholders for each block. Every communication medium
is realized with a separate thread running concurrently to the main loop. The
challenge here is to make this code structure fit for a target without supported
threads. Therefore a customized program is built (M4-Builder) to transform
these threads to send/receive functions which can be called from within the
main-loop blocks (figure 4.29).

81

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

Figure 4.29: Re-structuring of the SynDEx M4 code.

Consider listing 4.2 which is a portion of the M4 code generated
for node0. A thread is assigned to every communication medium:
thread (COMA,c,node0,node1,node2,node3) for communication medium comA
and thread (COMB, e, node0, PC) for comB: The parameters defined are the
communication medium name, the communication gate (c, e) and the nodes
connected by it (e.g. node0 and the PC are connected by comB). Each commu-
nication thread holds some semaphores responsible for maintaining the right
order of the block execution (Pre0, Suc0, Pre1, Suc1). For example, node0
might only send data to the PC if the repeater block is filled with data.

1 thread (COMA, c , node0 , node1 , node2 , node3)
l oop

Suc1 (comMultiProcessor TTTTemperature CondO0 o node0 c empty , ,
comMultiProcessor TTTTemperature CondO0 o , empty)

r e cv (comMultiProcessor TTTTemperature CondO0 o , ATmega128 , node3 , node0)
Pre0 (comMultiProcessor TTTTemperature CondO0 o node0 c ful l , ,

comMultiProcessor TTTTemperature CondO0 o , f u l l)
6 endloop

endthread

thread (COMB, e , node0 , pc)
Pre0 (comMult iProcessor Repeater out node0 e empty , , comMult iProcessor Repeater out ,

empty)
11 l oop

Suc1 (comMul t iProce s so r Repeate r out node0 e fu l l , , comMult iProcessor Repeater out ,
f u l l)

send (comMult iProcessor Repeater out , ATmega128 , node0 , pc)
Pre0 (comMult iProcessor Repeater out node0 e empty , , comMult iProcessor Repeater out ,

empty)
endloop

16 endthread

main
p r o c i n i t

spawn thread (c)
21 spawn thread (e)

eBoardDrivers eRepeater (comMultiProcessor TTTTemperature CondO0 o ,
comMult iProcessor Repeater out)

Pre1 (comMultiProcessor TTTTemperature CondO0 o node0 c empty , c ,
comMultiProcessor TTTTemperature CondO0 o , empty)

l oop
Suc0 (comMultiProcessor TTTTemperature CondO0 o node0 c ful l , c ,

comMultiProcessor TTTTemperature CondO0 o , f u l l)

82

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

26 Suc0 (comMult iProcessor Repeater out node0 e empty , e , comMult iProcessor Repeater out ,
empty)

eBoardDrivers eRepeater (comMultiProcessor TTTTemperature CondO0 o ,
comMult iProcessor Repeater out)

Pre1 (comMul t iProce s so r Repeate r out node0 e fu l l , e , comMult iProcessor Repeater out ,
f u l l)

Pre1 (comMultiProcessor TTTTemperature CondO0 o node0 c empty , c ,
comMultiProcessor TTTTemperature CondO0 o , empty)

endloop
31 eBoardDrivers eRepeater (comMultiProcessor TTTTemperature CondO0 o ,

comMult iProcessor Repeater out)
wa i t endthread (Semaphore Thread c)
wa i t endthread (Semaphore Thread e)
proc end

endmain

Listing 4.2: SynDEx communication threads

With the m4Builder the communication threads are transformed to com-
munication calls (see listing 4.3 for the transformed node0 macro code) while
the blocking behavior (e.g. block until data was received or sent) lies in the
responsibility of the communication protocol design. The blocking behavior is
necessary to maintain the synchronization within the whole algorithm. With-
out it, data packets would most probably be missed and the display of the
scheduling would differ more from the real-world execution. As seen, every
communication medium thread becomes a function with a switch block pro-
viding the choice of operation to be done. Semaphores were removed and in
the main loop replaced by appropriate communication functions calls. Note
that this transformation changes the scheduling table and is only allowed
if there are no subsequent operations following on the processors during the
communication duration.

#define comMul t iProce s so r Repea t e r ou t node0 e fu l l 0
#define comMultiProcessor TTTTemperature CondO0 o node0 c ful l 1

4 a l l o c (uint16 , comMultiProcessor TTTTemperature CondO0 o , 1)
a l l o c (uint16 , comMult iProcessor Repeater out , 1)

void comCOMA(u in t 8 t comActions){
switch (comActions){

9 case comMultiProcessor TTTTemperature CondO0 o node0 c ful l :
r e cv (comMultiProcessor TTTTemperature CondO0 o , ATmega128 , node3 , node0)

break ;
default :

/∗ never reached ∗/
14 break ;

} /∗ end Swi tch ∗/
} /∗ end comNAME ∗/

void comCOMB(u in t 8 t comActions){
19 switch (comActions){

case comMul t iProce s so r Repea t e r ou t node0 e fu l l :
send (comMult iProcessor Repeater out , ATmega128 , node0 , pc)

break ;
default :

24 /∗ never reached ∗/
break ;
} /∗ end Swi tch ∗/

} /∗ end comNAME ∗/

29 main
p r o c i n i t
eBoardDrivers eRepeater (comMultiProcessor TTTTemperature CondO0 o ,

comMult iProcessor Repeater out)
l oop

comCOMA(comMultiProcessor TTTTemperature CondO0 o node0 c ful l)
34 eBoardDrivers eRepeater (comMultiProcessor TTTTemperature CondO0 o ,

comMult iProcessor Repeater out)
comCOMB(comMul t iProce s so r Repea t e r ou t node0 e fu l l)

endloop

83

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

eBoardDrivers eRepeater (comMultiProcessor TTTTemperature CondO0 o ,
comMult iProcessor Repeater out)

proc end
39 endmain

Listing 4.3: SynDEx communication functions

SynDEx - Communication Protocol Design

The nature of the macro code allows the realization and the replacement
of communication protocols. A protocol which does not violate the visualized
scheduling model too much needs certain characteristics. Every send or receive
operation must be blocking to maintain the synchronized integrity of the
whole algorithm. If it was not blocking, communication would occur randomly
and the data integrity would not be given. For example, if node1 is busy
with executing the display operations and node 3 sends data to node1 at the
same moment, the data would be lost. Another model violation would be a
phase shift of the single scheduling between the nodes - that might even be
acceptable for some applications. How the communication protocol works
internally, like using handshakes or checksums is free of choice. One thing the
protocol does need is an acknowledge mechanism telling the sender that the
data was successfully received and it can proceed with its next operation.

Each communication transmission must contain an addressing part. There-
fore it is possible for the receiving node to verify if the packet is meant to be
read from the communication medium. Again, this is necessary because of pos-
sible early executions of tasks which could result in two nodes trying to send
at the same time which could result in data collisions. Depending if and how
bus collisions are handled in this case determines which packet arrives first at
the receiver. Imagine two nodes sending temperature values at the same time
to the same node and a bus arbitration decides which temperature data will
arrive before the other one. If all blocks would have the same real-world behav-
ior as modeled, then addressing would not be necessary leading to a slimmer
protocol.

Necessary characteristics of the protocol:

• Blocking. Send and Receive operations must block to maintain synchro-
nization within the algorithm.

• Finished transmission notification. Terminate the communication proce-
dure by acknowledging a successfully received transmission - the sender
may continue on its schedule.

• Addressing. Identify receiving and sending nodes, validation of the re-
ceived data.

84

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

Next to the mandatory characteristics of the protocol, a good time repre-
sentation has to be found. Since it has been pointed out that it is hard to
maintain a good cognitivity of the model if the execution times of the blocks
differ by a magnitude of 102, it might be hard to combine fast executed blocks,
which take for example just 50 microcontroller cycles, with a protocol having
a baud rate of 57 600 bits/sec. An approach to handle this is to reserve more
time for every fast block for the price of performance.

85

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

4.4 Results

Several aspects about this conceptually model-driven development method re-
sulted from the examples: How a development process is performed by concrete
examples, how much space this particular model-driven approach requires on
the ESE-Board target architecture in comparison to hand-written code, state-
ments about the complexity and cognitivity of the macro code structure, and
the Scicos/SynDEx models with their differences to real behavior. These re-
sults are presented and some statements about modeling with Scicos/SynDEx
in combination with a microcontroller-based distributed embedded system are
given.

4.4.1 Code Size

The executable code (an ELF file) was analyzed with avr-objdump, avr-size
and a memory evaluation library (MemEval) [Elm10] for an approximation
of the used dynamic memory: At program start, a bit-pattern is written
onto the SRAM between the end of the .bss-section and the stack-pointer.
After dynamic memory allocations, the SRAM area is searched for the largest
untouched bit-pattern and its size returned/displayed. The focus of the
measurement lies on the overhead produced by Scicos blocks - therefore the
heap and stack memory consumptions before the main-loop are of interest.
The main-loop consists basically just of Scicos block calls which have a clear
structure and are comparable to hand-written code calling components.

A pseudo-code clarification how the dynamic memory was estimated is listed
in algorithm 1, while the memory usage is found in table 4.1 (note: The listed
dynamic memory usage applies not for the dynamic memory consumption of the
whole algorithm - it describes only the dynamic memory usage of the introduced
Scicos blocks). For comparison, a rough, hand-written PID algorithm which
uses modularly designed drivers like in the SynDEx example, could use about
5 000 bytes Flash and 200 bytes static memory.

Memory type Memory total (bytes) Memory used (bytes)
Scicos/SynDEx Hand-written

Flash 131 072 34 796 4 922
SRAM (static) 4 096 976 226
SRAM (dynamic) 1 596

Table 4.1: Memory usage measured in the monoprocessor examples.

The ELF file was produced by avr-gcc (version 4.2.2) and avr-ld (version
2.17) with the optimization for code size flag (CFLAGS= -Os). The static

86

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

Algorithm 1 The concept of memory measurement

1: Includes, Defines.
2: Prototypes, Functions, Globals.
3: main(){
4: MemEval → Initialize memory.
5: Allocate Scicos blocks (includes dynamic memory allocations).
6: MemEval → Analyze memory.
7: MemEval → Return largest unused memory area.
8: loop
9: run PID algorithm.

10: end loop
11: }

memory usage is calculated by adding the .data and .bss section sizes (e.g.
displayed by an avr-objdump of the ELF file), while the dynamic memory
usage is determined by subtracting the unused memory and static memory
from the total SRAM capacity.

Flash = .text+ .data

= 34 024 + 772 = 34 796 bytes.

SRAM(static) = .data+ .bss

= 772 + 204 = 976 bytes.

SRAM(dynamic) = SRAM(total)−MemEval(unused area)− SRAM(static)

= 4 096− 1 524− 976 = 1 596 bytes.

4.4.2 Code Structure - Differences between automatically
generated and hand-written code

In general, hand-written code can have any structure possible. Latter was
constructed here in respect to reusability and modular design of the compo-
nents: Every functionality is designed by a module with appropriate interfaces
including at least an init, main, and a end (finalize) function. These modules
are used for automatically generated and hand-written applications.

Three different situations for implementing applications are compared: Sci-
cos/SynDEx, only SynDEx, and a pure hand-written implementation. A design

87

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

Development setup S
ci

co
s

b
lo

ck
s

S
y
n
D

E
x

au
x
il
ia

ry
fu

n
ct

io
n
s/

gl
ob

al
s

C
y
cl

om
at

ic
co

m
p
le

x
it

y

In
cl

u
d
e

cu
st

om
iz

ed
m

o
d
u
le

s
(d

ri
ve

rs
)

Scicos/SynDEx
√ √

ccSynDEx

√

SynDEx ¬
√

ccSynDEx = ccHW + ccAuxF

√

Hand-written ¬ ¬ ccHW

√

Table 4.2: Code structure comparison.

with Scicos/SynDEx results in a scicos block structure generated for every de-
signed block (see listing B.7). This is necessary to maintain the simulation
capability in Scicos. Furthermore SynDEx generates a global variable for each
output of the blocks in SynDEx and additionally, customized helper code is
needed for designing period-true tasks (e.g. auxiliary code for blocking, timed
tasks). This is the case for designing with Scicos/SynDEx and SynDEx only.
In the case of hand-written code, no global variables might be necessary in
the main module, which they are not in this comparison. In the main-loop of
the application, the blocks are first called by their init functions (e.g. resource
allocations), then their main functionality is called, followed by a finalization
function call (e.g. free resources) - these steps are part of every situation,
with/without Scicos/SynDEx or SynDEx (see figure 4.30).

Code complexity and cognitivity
Scicos and SynDEx do not add any extra complexity compared to hand-written
code, but some complexity is caused by needed auxiliary functions. The cy-
clomatic complexity is the same for the Scicos/SynDEx and SynDEx situation
but differs when compared to a hand-written solution by the extra auxiliary
functions needed for SynDEx (ccAuxF , see table 4.2). The Scicos PID example
model remains human-readable, as well as the SynDEx model. A scheduling
table provides a visual representation of all tasks, including their dependencies
to each other (successors, predecessors) and this makes it possible to spot un-
used resources and to optimize the design. Problems occur, if real durations
for the tasks are modeled - they are resulting in a scheduling table which is
hard to perceive due to optical proportions.

88

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

Figure 4.30: Scicos/SynDEx vs. hand-written code structure.

4.4.3 Effort

The effort for designing a PID algorithm with Scicos/SynDEx is broken down
into several key actions (see table 4.3). The person hours (ph) listed are
estimates made during development and are based on following presumptions:
The developer is familiar with the working environment, and has expert
knowledge about the problem domain. Additionally, the complete tool-chain
is prepared and in working condition.

Before the Scicos/SynDEx framework can be used in combination with a
customized hardware (ESE-Board), several scripts, programs and adaptions of
the framework have to be done. The activities in the hereinafter given list
require a great manifold of the time required implementing the examples in
table 4.3. This list does not claim to be complete, several minor workarounds
are not included and only issues encountered during the examples are taken into
consideration. Note that stating the effort for these steps is difficult for several
reasons: a comprehensive documentation for the framework was only partially
found, new documentation was published during this work, the requirements
for changing the structure of the macro code is dependent on the targets, and
many more.

89

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

Development tasks M
o
d
el

-d
ri

ve
n

H
an

d
-w

ri
tt

en

E
ff

or
t

(p
h

)

1 Design Scicos PID model and simulation
√
¬ 3

2 Design SynDEx model and temporal design
√
¬ 3

3 Implement driver modules (target language code)
√ √

30
4 Implement Scicos libraries (simulation blocks)

√
¬ 5

5 Implement SynDEx libraries (code generation)
√
¬ 10

6 Implement SynDEx libraries (algorithm & architecture)
√
¬ 5

7 Implement PID algorithm by hand ¬
√

2

Table 4.3: Development effort with an already working tool-chain: model-
driven vs. hand-written approach.

Clarifications:

1. Design and simulation of the hybrid system in Scicos until the results
were satisfying.

2. Integration of the PID model in the SynDEx top-model, application of
timer blocks for periodic tasks, determination of a proper time resolution,
definition of constraints, obtaining and validating the scheduling.

3. These drivers are the same used for the hand-written and model-driven
solution. The effort contains testing and modular design of timers, fan
speed and sensor drivers.

4. Special blocks modeling real-world items, like the environment fan (en-
vFan) and the environment fan sensor (evnFanSensor), have to be imple-
mented.

5. Implementation of macro expansion files to generate C code (the target
language definition): Timers, drivers, auxiliary blocks/functions, type
mappings. In this case this is quite a fast to accomplish task since Syn-
DEx is delivered with a C operator target language definition which was
adapted for the ATmega128 microcontroller (the resulting target lan-
guage was not optimized nor complete, and only implemented as needed
for the examples).

6. Interface design (formal) for every additional SynDEx block which could
not be automatically integrated from Scicos: Timers, type conversions,
etc. Design the architecture model library.

7. A solution without Scicos/SynDEx, modular designed drivers are used,
the algorithm is written by hand in a source file without intense testing.

90

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

1. Installation of the framework. Install the software framework on a
development PC (this point is mentioned because the installation of the
framework turned out to be sophisticated where critical information for a
working framework was only given in a French description - the appendix
of this work includes additional information about that).

2. Become familiar with Scicos/SynDEx. Understand how it works
(from the GUI to the underlying scripts), what it can and can not do,
search for documentation.

3. Implement a m4x builder. The macro code generated by SynDEx
might be not directly useful for the given target hardware, e.g. threads
for communication, semaphores and download labels. The m4x builder
changes and cleans the structure of the macro code (depicted in fig-
ure 4.29).

4. Implement a m4 builder. Some strengths of a model-driven approach
can only apply if components can be reused in several designs. Combining
several Scicos-to-SynDEx transformed designs and integrating them into
SynDEx is not possible. A m4 builder for combining several models is
most probably be necessary (originally the PID example of this thesis
consisted of several Scicos-to-SynDEx transformed components and a m4
builder was provisionally implemented).

5. Adapt SynDEx templates. Some of the generic templates of SynDEx
might not be appropriate - therefore they need to be arranged even if it is
not recommended by the SynDEx authors (e.g. the Makefile templates).

4.4.4 Model versus Reality

1. Scicos PID model and real fan behavior. The fan model was de-
signed in Scicos with a PT1 behavior which turned out to be similar
(according to the shape of the function) to the real fan behavior after
a manual adaption of the PID parameters (compare figures 4.16 and
4.23). One reason contributing to this problem is for sure the large time
base chosen (80 STU instead of 74 STU - even the 74 STU are already
a rounded value). Creating a fitting model could turn out to be very
sophisticated - extra effort and expert knowledge would be required. An-
other reason are the data types chosen - differences occur due to the
quantification of the plant behavior (the model of the plant behavior is
an estimated interpolation of the measured real plant behavior). The
fan driver was implemented based on software pulse-width-modulation.
A timer is regularly causing interrupts based on the set duty-cycle - no
possibilities of modeling such a circumstance were found.

91

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

2. Scheduling and time representation. There were two choices for a
representation of time in the models.

First, a time base represented by operator cycles brings the advantage of
a more precise model, but introduces following disadvantages: It requires
more effort to model, the cognitivity of the scheduling table in SynDEx
is reduced. Therefore, to scale the model in time, a virtual unit (STU
- SynDEx Time Unit) representing n cycles had to be introduced - the
price for this is the reservation of additional time-intervals which are
not consumed, and the extra differences between model and real-world
behavior. If 1 STU = 1 cycle then the modeled WCET times of blocks
would only differ by the clock drift of the real operator.

Second, a natural time base, e.g. microseconds, could be chosen as time
base. In this case blocks with a WCET smaller than the time base will be
modeled as being too time consuming, which leads to differences between
model and reality. For both cases, a maximal block execution time can be
modeled, but an operator might not be able to realize what was required
by the application. For example, imagine a task should be executed
every 4ms, the time is translated to discrete SynDEx time units, and the
algorithm is executed on the target platform. What was modeled might
not be feasible on a discrete-time microcontroller target that calculates
time based on a clock source and prescalers.

3. Periodic tasks. Durations and periods of tasks can be designed in Syn-
DEx. Just entering the corresponding parameters in an algorithm block
results in a task that will be called at least with this period - periods
modeled are worst-case. However on the average case, due to the mod-
eled WCET durations of prior called algorithms which terminate earlier
than it can be seen in the scheduling, the period of the task will be
smaller. This might be desired if a task has to be executed at a given
period or better. If true-period tasks are desired, the proposed work-
around for timed-execution of tasks is required (details are found in the
monoprocessor example). Latter modeling method also introduces dif-
ferences between the visual presentation of the model and the real-world
execution where the timed task has blocking behavior to compensate for
the early execution of prior tasks.

4.4.5 Scicos/SynDEx and a distributed embedded system
with microcontrollers

During the design of the examples some key differences about what can be mod-
eled with Scicos/SynDEx and what would be needed for designing distributed

92

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

embedded systems emerged. Of course, there are probably many more require-
ments - discoveries by the examples are mentioned.

Design requirement
Directly supported
by Scicos/SynDEx Proposed solution

Type mappings model re-design required
add rules to target language definition
(see PID example, 4.2).

Best effort period tasks
√

-

True-period tasks ¬ proposed algorithm design with block-
ing behavior (section 4.2).

Communication (macro code) communication threads transform via m4x-Builder (section
4.3).

Component reusability
(SynDEx) simple blocks only hierarchical blocks have to be hard-

coded.
(no parameters) -

Component reusability
(combine transformed
Scicos models)

¬ combination by a m4-Builder.

Fault tolerance (redundancy) samples by broadcast com-medium modeled as broadcast.

Communication protocol theoretically replaceable
blocking, synchronization and address-
ing (see section 4.3).

Table 4.4: Scicos/SynDEx on a microcontroller based distributed embedded
system.

Some additional comments clarify the contents of table 4.4:

Type mappings. Blocks are designed with particular input/output types.
If they had to be changed afterwards, e.g. include another math-library with
different data types, the model would have to be redesigned.

Component reusability. In SynDEx, only simple blocks can be designed
and reused in other models. Parameters, e.g. periods are not saved. The
nesting of blocks is not supported directly, therefore hierarchical components
can only be hard-coded and then be reused in other models/designs. Scicos-
to-SynDEx transformed models need to be treated if two or more are required
in a SynDEx model. An solution is a customized M4 builder which combines
these files through previously inserted section tags.

Fault tolerance. A setup: three different temperature sensors take a
synchronized snapshot by a broadcast communication medium. The data is
then sent to a microcontroller containing a voter unit.

93

DEMONSTRATIONS: MBD WITH SCICOS/SYNDEX

94

5 Conclusion

In this work, theoretical foundations for modeling embedded systems were
presented and a modeling-framework (Scicos/SynDEx) was examined and
evaluated. The fitness of this particular model-driven approach for a dis-
tributed embedded system with microcontroller targets depends on individual
needs and requirements. Required design characteristics, priorities, tool
support and many more aspects in systems development are depending very
much on the particular problem domains. Thus, it is hardly possible to create
a fitness reference covering all thinkable required aspects, however an attempt
of creating some valuable statements about advantages and disadvantages of
using a model-driven approach in this particular case follows.

The combined use of Scicos/SynDEx results in a high demand on dynamic
memory introduced by the Scicos block structures. These results (table 4.1)
cover only the dynamic memory consumption by the Scicos blocks. A
comparison of the overall dynamic memory consumption between Scicos/Syn-
DEx and hand-written code is hard to qualify for the general case, since
hand-written solutions can be carried out in many variations. A suggestion for
an approximate comparison is to assume that the hand-written solution uses
the same libraries (drivers) like the model-driven solution - therefore this part
of the used memory should be the same for both solutions. A malicious fact
playing against a good comparison of the code size is the nature of compilers
- the optimization abilities and differences of several compilers might diffuse
results. Thus, the results can only be considered with caution. In the case
of developing with Scicos/SynDEx, the static memory consumption of the
model-driven approach is significantly higher than that of the hand-written
solution, while in the case of using only SynDEx, the memory consumption
can be considered as equal to the hand-written solution.

Next to the code size, the cognitivity of the designed models is of im-
portance - the better the representation of the model the earlier aspects like
bad designs or unused resources can be spotted. The code generated by
Scicos/SynDEx is not downgrading the readability of the code structure in
comparison to hand-written code. Additional structures are inserted by the
framework, they are consuming memory, but they do not include obfuscating

95

CONCLUSION

characteristics, e.g. deep nestings of functions or confusing variable/function
names.

The development effort of using the Scicos/SynDEx framework is signiffi-
cantly higher than that one caused by a hand-written solution, but this might
be only valid for the simple one-time applications (which are in fact not that
simple, as seen in the examples) made in this thesis. The installation and
adaption work necessary for a working, automated framework must not be
underestimated - especially the additional scripts and tools for model trans-
formations have to be carefully designed and in the case of designing a critical
embedded system these tasks should only be accomplished by experts. Next
to establishing a working framework, the design process with a ready-to-use
framework requires much more time than the hand-written approach (table
4.3): 56personhours versus 32personhours (handwritten). Latter results are,
of course, not quantitative statements, since these numbers represent a unique
case and depend on the skill and preferences of the developer. Advantages of
the model-driven approach might show up for designing complicated systems,
product families, and when the price for setting up the framework could be
neglected and components reused. The communication macro code structure
generated by SynDEx in the case of a multiprocessor application opens an
unanswered, fundamental question: Why are there communication threads
created, if the characteristics of the designed models are atomic and the
scheduling is non-preemptive? Threads imply the presence of a scheduler,
context switches and additional resource consumption. Even a decoupling of
the communication unit from the processor requires coordination resources.
These aspects seem to be missing in the models.

Building models of real-world entities with a discrete machine causes
always differences in the behavior, diminishing these differences results usually
in more complex models. Creating an adequate model of the fan behavior did
not turn out to be an easy task - the chosen design was not powerful enough to
ensure an adequate execution of the simulated models on the target hardware
- manual adaptions had to be made for a satisfying PID controller. Since
the focus of this thesis was not about model construction, the fan and plant
model were kept simple and were redesigned just one time. Expert knowledge
and re-modeling of the fan is required to sharpen models. The design process
would be improved if manufacturers/vendors included Scicos models within
the delivery of the hardware - such models could be integrated in Scicos by the
developer - instead of worrying about a customized design and its adequacy
(this would also encourage the use of the free Scicos software). The differences
between models and real applications seem to be mainly depending on: the

96

CONCLUSION

chosen representation of time (only a representation of n · cycles was possible,
due to representation problems of the scheduling), the real execution time of
tasks (they were modeled with WCET), and the introduction of true-period
tasks. The modeling of true-period tasks is only possible with work-arounds -
adding differences between model and real application.

A major advantage of the model-driven approach (and the idea of Sci-
cos/SynDEx) is the safety of the design concerning deadlocks and resource
allocations/optimizations. Such tasks can be error-prone and very complicated
if done manually. Another benefit of the framework is that free resources
can be easily spotted by the visual representation of the models - this could
lead to several benefits as, for example, reduced hardware costs, space for
additional features, or just reserved resources for an ongoing evolution of the
software. The possibility of model simulation has shown to be of great value
during the design of the first PID algorithm (velocity PID). The wrong design
was detected early and a redesign started - in the case of a hand-written
solution, the parameters of the wrong design could in some cases be refined
until a solution for this single version of the application is doable - this could
be disastrous if the software requires minor changes, for example if the fan
was replaced by another model. This would be followed by confusion and
uncertainty about the previously designed solution. Simulation capabilities
narrow the path of possible project advancements towards expected solutions
earlier than a traditional hand-written approach (figure 5.1). This might lead
to reduced costs, development time, and risks.

Working with Scicos/SynDEx shows some characteristics of agile devel-
opment. Models and simulation results are represented visually and system
changes, e.g. system enhancements or product evolution, can often be realized
faster than with a handwritten solution (which might require additional
tests and design checks). Customer collaboration is supported by the models
contributing to, or being part of, the specification (this is the idea, but an
accurate model is not easy to accomplish, as the examples have shown) - this
fact might reduce the need for exhaustive project documentation and reduced
contract negotiations.

In which scenarios should Scicos/SynDEx be preferred to a hand-written
solution? Based on the comparisons made (table 5.1) it should be valid to
say that the Scicos/SynDEx framework can unfold its strengths in product
families when a basic platform is established and the effort for modeling
the components pays off (components are reused). SynDEx, as software, is
supposedly meant for rapid prototyping. In the case of the combined use with

97

CONCLUSION

Decision-making

margin

Intermediate result

Moving target

Planned solution at

project start

Uncertainty of

solution

Final solution

at project end

Start of Project

Optimal project path

Project progress

Current target

solution

Deviation

Project Path B

Project Path A

C
he

ck
p

oi
nt

n

C
h

ec
kp

oi
n

t
n

+
1

Figure 5.1: Scicos/SynDEx vs. hand-written solution. Simulation and model-
ing capabilities (Project Path B) decrease the size of the detour in
comparison to hand-written projects (Project Path A). The uncer-
tainty about the solution is reduced earlier, the deviation from the
optimal project path diminished.

Comparison Model-driven solution Hand-written solution
Code size 34 796 bytes 4 922 bytes
Memory consumption
(static) 976 bytes 226 bytes

(dynamic - Scicos) ≈ 100 bytes
1 block

-
Code structure extra variables/functions -
Code cognitivity human-readable human-readable
Effort
(PID, development) 56 person hours 32 person hours
(establish tools) high effort -
Simulation early detection of mistakes ¬
Optimization automatically, safe by hand
Resources (display) visual representation source code only
Respond to changes lower effort, quick higher effort
Documentation model as specification formless

Table 5.1: Fitness of the model-driven approach compared to a hand-written
solution.

98

CONCLUSION

Scicos on the ESE-Board, this can only be true, if the effort for setting up
the tool and the underlying automated build process is neglected. Designing
the libraries might still take more time for simple applications than the
hand-written approach, but has the advantage of reuse and supports an easy
redesign of the application. For instance, if the hardware fan, like the one
in the PID example, should be replaced by another model it should be quite
comfortable to build the model and then just compare these two models by
the simulation results (with the assumption of accurate models). Additionally,
models and simulation results might be directly discussed with the customer.
Scicos/SynDEx should only be used if there is no shortage of memory capacity
on the target platform. SynDEx itself does basically not introduce extra
memory costs, however SynDEx does not support hybrid system simulation
and modeling of hybrid systems.

Designing systems with the framework has shown that it is not only crucial
to determine WCETs of tasks, of even the same importance are models which
consider the minimal and possible durations of tasks. As seen in this thesis, an
early termination of a task leads to gaps in the scheduling model, which might
throw over the real behavior of the system. An approach to handle this would
be to time-trigger all critical tasks, this would require either a lot of timers or a
customized scheduler which can not be modeled with the framework. It might
be, that this is not the idea of a synchronized distributed executive, it seems
that best-effort applications are lying in the focus of the framework. Modeling
time characteristics of a critical, distributed system might be better done with
a time-triggered architecture where the problems of early task terminations are
diminished (confer to [Pau04]).

The idea of a framework for model-driven development of distributed em-
bedded systems with the support of hybrid system design and resource alloca-
tion/optimization sounds promising. Scicos/SynDEx introduces extra memory
costs but can pay off in complex systems design. SynDEx itself handles the tem-
poral design and algorithm allocations automatically for distributed systems
while basically not requiring extra memory space nor increasing the complexity
of the model. The framework is not of a commercial nature, which might be the
reason for its immaturity concerning the usability (see the appendix for hints) -
the implementation focus lies clearly on applying the underlying concepts of the
AAA-Methodology. Implementing a complete model-driven development envi-
ronment from scratch is an interdisciplinary challenge. Expert knowledge in
several fields like model building, formal methods, scheduling, code generation,
compiler design, DSL design, dependable system design, communication pro-
tocol design, hardware knowledge, software architectures in general, and many
more are required. The effort for creating a model-driven development environ-

99

CONCLUSION

ment can therefore be labeled very demanding. Adapting the Scicos/SynDEx
framework requires also a relatively high effort. Thus, it might be reasonable to
consider the use of commercial software with already provided hardware/soft-
ware libraries. The support for the Scicos/SynDEx framework seems to have
stopped since no updates for the Scicos-to-SynDEx-Gateway working with the
latest Scicos distributions could be found. SynDEx is still under development
and with its evolution, based on the fundamental AAA approach for embedded
system design, it might turn out to be a very valuable asset in the future.

5.1 Outlook

In this thesis we have seen that the real behavior of systems deviates in differ-
ent shapes from the modeled systems. First, time and data were abstracted
which lead to deviations. Second, tasks were modeled with WCET, but in
reality the real task durations can not be predicted. It might be possible
to classify the errors caused by discretization and use this information for a
better predictability in systems modeling, that means drawing a connection
from hybrid systems timings to distributed systems scheduling. Furthermore
it would be of interest if there are advantages if several task duration param-
eters, such as worst-case execution time and best-case execution time, are
considered in a scheduling model. In that way the running-away of tasks,
as it is the case in single-processor applications in SynDEx, might be prevented.

Building a seamless modeling tool-chain with the Scicos/SynDEx frame-
work and the implementation of some examples have shown some potential
improvements for the concepts realized in the SynDEx software:

• The scheduling for communication calls could be integrated into the op-
erator scheduling and thus serving the generation of code for microcon-
trollers (only one sequencer for the operator scheduling).

• Support the realization of fixed-period tasks rather than only best-effort
tasks.

• Include code-size indications and constraints which allow a prediction of
the code-size for a given hardware target.

• Support of automatic type-mappings within the graphical tool.

• Automatic implementation of a small static-scheduler that provides a a
way of combining long and short period tasks effectively.

Regarding component-based development the effort for design could be re-
duced by a great deal if manufacturers would supply standardized models for
simulation and implementation for their products. This might already be true

100

CONCLUSION

for some suppliers in combination with certain tool-chains, but still, a com-
monly accepted format for models is required.

101

CONCLUSION

102

Bibliography

[Atm06] Atmel Corporation. ATmega128, 2006. Rev. 2467N–AVR–03/06.
Available online at http://www.atmel.com/products/avr/.

[Boe88] Barry Boehm. A Spiral Model of Software Development and En-
hancement. Computer, 21(5):61–72, May 1988.

[Bro04] Alan W. Brown. Model Driven Architecture: Principles and
Practice. Software and Systems Modeling, 3:314–327, 2004.
10.1007/s10270-004-0061-2.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Genera-
tive Programming: Methods, Tools, and Applications. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 2000.

[CNC06] Stephen Campbell, Ramine Nikoukhah, and Jean-Philippe
Chancelier. Modeling and Simulation in Scilab/Scicos. Springer
Science+Business Media, Inc., 2006.

[Col01] Defense Systems Management College. Systems Engineering Fun-
damentals : Supplementary Text / Prepared by the Defense Acqui-
sition University Press . The Press, Fort Belvoir, Va. :, 2001.

[CPPSV06] Luca Carloni, Roberto Passerone, Alessandro Pinto, and Alberto
Sangiovanni-Vincentelli. Languages and Tools for Hybrid Systems
Design. Foundations and Trends in Design Automation, 1(1):1–
204, 2006.

[EBK03] W. Elmenreich, G. Bauer, and H. Kopetz. The Time-Triggered
Paradigm. In Proccedings of the Workshop on Time-Triggered and
Real-Time Communication Systems, 2003.

[EK08] Khaled El Emam and Akif Günes Koru. A Replicated Survey of
IT Software Project Failures. IEEE Software, 25:84–90, 2008.

[Elm09] W. Elmenreich, editor. Embedded Systems Engineering. Vienna
University of Technology, Austria, Vienna, Austria, 2009. ISBN
978-3-902463-08-1.

[Elm10] W. Elmenreich. Evaluating the static and dynamic memory con-
sumption for AVR microcontroller programs. Networking Embed-
ded Systems Blog, October 2010. Available at http://netwerkt.
wordpress.com/2010/10/06/memeval.

103

http://www.atmel.com/products/avr/
http://netwerkt.wordpress.com/2010/10/06/memeval
http://netwerkt.wordpress.com/2010/10/06/memeval

Bibliography

[Fau06] Cyril Faure. Traducteur Scicos/SynDEx - Installation et Utilisa-
tion, v2.2.2, April 2006. INRIA, Project Eclipse.

[fRiCSC03] INRIA The French National Institute for Research in Com-
puter Science and Control. Launch of the Scilab Consor-
tium Dedicated to Scientific Computing, May 2003. Available
online at http://www.scilab.org/aboutus/pressroom/press_

release/pr_20030522.

[GLS99] Thierry Grandpierre, Christophe Lavarenne, and Yves Sorel. Op-
timized Rapid Prototyping For Real-Time Embedded Heteroge-
neous Multiprocessors. In Proceedings of 7th International Work-
shop on Hardware/Software Co-Design, CODES’99, pages 74–78,
Rome, Italy, May 1999.

[Gro01] Object Management Group. Model Driven Architecture (MDA),
July 2001. Rev. ormsc/2001-07-01. Available online at http://

www.omg.org/cgi-bin/doc?ormsc/2001-07-01.

[GS03] Jack Greenfield and Keith Short. Software Factories: Assembling
Applications with Patterns, Models, Frameworks and Tools. In
OOPSLA ’03: Companion of the 18th annual ACM SIGPLAN
Conference on Object-oriented programming, systems, languages,
and applications, pages 16–27, New York, NY, USA, October 2003.
ACM.

[IEE90] IEEE. Standard Glossary of Software Engineering Terminology.
IEEE Std 610.12-1990. Technical report, IEEE Computer Society
Press, 1990.

[IEE00a] IEEE. IEEE 100 The Authoritative Dictionary of IEEE Standards
Terms Seventh Edition. IEEE Std 100-2000, 2000.

[IEE00b] IEEE. IEEE 1471-2000 Recommended Practice for Architec-
tural Description for Software-Intensive Systems. Technical re-
port, IEEE Computer Society, 2000. Available online at http:

//ieeexplore.ieee.org/servlet/opac?punumber=7040.

[iGfiSm03] iteratec Gesellschaft für iterative Softwaretechnologien mbH.
Kurzbeschreibung iteratec Vorgehensmodell, March 2003.
Available online at www.iteratec.de/download/iteratec_

Vorgehensmodell.pdf.

[Koe09] Alexander Koessler. A Platform for Teaching and Research on
Distributed Real-Time Systems. Master’s thesis, Technical Uni-
versity of Vienna, Institute for Computer Engineering, Treitlstr.
3/2/182-2, 1040 Vienna, Austria, March 2009.

104

http://www.scilab.org/aboutus/pressroom/press_release/pr_20030522
http://www.scilab.org/aboutus/pressroom/press_release/pr_20030522
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01
http://ieeexplore.ieee.org/servlet/opac?punumber=7040
http://ieeexplore.ieee.org/servlet/opac?punumber=7040
www.iteratec.de/download/iteratec_Vorgehensmodell.pdf
www.iteratec.de/download/iteratec_Vorgehensmodell.pdf

Bibliography

[Kop97] Hermann Kopetz. Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[KS04] Rémy Kocik and Yves Sorel. A Methodology to Reduce the Design
Lifecycle of Real-Time Embedded Control Systems. In Proceedings
of European Simulation and Modelling Conference, ESM’04, Paris,
France, October 2004.

[NAN03] Masoud Najafi, Azzedine Azil, and Ramine Nikoukhah. Implemen-
tation of Continuous-Time Dynamics in Scicos. In 15TH European
Simulation Symposium and Exhibition, Delft, The Netherlands,
October 2003.

[NR68] Peter Naur and Brian Randell. Software Engineering: Report of a
conference sponsored by the NATO Science Committee, Garmisch,
Germany, Brussels, Scientific Affairs Division, NATO, October
1968. Available online at http://homepages.cs.ncl.ac.uk/

brian.randell/NATO/.

[OMG03] OMG. MDA Guide Version 1.0.1. Technical Report omg/2003-06-
1, OMG, June 2003. Available online at http://www.omg.org/

cgi-bin/doc?omg/03-06-01.

[Pau04] Christian Paukovits. Modellierung und Scheduling von flexiblen,
zeitgesteuerten Kommunikationsprotokollen. Bachelor’s thesis,
Technische Universität Wien, Institut für Technische Informatik,
Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2004.

[PCM01] Arjun Panday, Damien Couderc, and Simon Marichalar. AIL: De-
scription of a Global Electronic Architecture at the Vehicle Scale.
In DATE ’01: Proceedings of the Conference on Design, Automa-
tion and Test in Europe, page 112, Piscataway, NJ, USA, 2001.
IEEE Press.

[Roy70] Winston W. Royce. Managing the Development of Large Soft-
ware Systems: Concepts and Techniques. In Technical Papers of
Western Electronic Show and Convention (WesCon), 1970.

[Sci10] Scilab Manual, April 2010. Rev. 5.2.2. Available online at http:

//www.scilab.org/product/man/index.html.

[Sel03] Bran Selic. The pragmatics of model-driven development. IEEE
Software, 20:19–25, 2003.

[SK98] Gerhard-Helge Schildt and Wolfgang Kastner. Prozeßautoma-
tisierung. Springer, Wien, 1998. ISBN 3-211-82999-7.

[Som04] Ian Sommerville. Software Engineering. Addison-Wesley, Harlow,
England, 7 edition, May 2004. ISBN 0-321-21026-3.

105

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.scilab.org/product/man/index.html
http://www.scilab.org/product/man/index.html

Bibliography

[Sor94] Yves Sorel. Massively Parallel Systems with Real Time Con-
straints, the Algorithm Architecture Adequation Methodology. In
Proceedings of Conference on Massively Parallel Computing Sys-
tems, MPCS’94, Ischia, Italy, May 1994.

[SPF07] Paul F. Smith, Sameer M. Prabhu, and Jonathon Friedman. Best
Practices for Establishing a Model-Based Design Culture. Techni-
cal report, The Mathworks, 2007.

[SVEH07] Thomas Stahl, Markus Völter, Sven Efftinge, and Arno Haase.
Modellgetriebene Softwareentwicklung. dpunkt.verlag, May 2007.

106

Acronyms

ADC Analog Digital Converter. An ADC is an IC that quantifies analog to
digital values.

AIL Architecture Implementation Language. The AIL is a description
language that allows for an internal representation of the architecture and
acts as a connection with tools to simplify the construction, planning,
verification, capitalization, and documentation of an architecture.

AOSTE is one of INRIA’s research teams focusing on high-level modeling,
transformation and analysis and implementation onto embedded platforms

CAD Computer Aided Design

DC Direct Current

DSL Domain-Specific Language. A DSL is a language well suited to describe
a specific domain.

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers, Inc. IEEE is a
non-profit organization and the world’s leading professional association for
the advancement of technology.

INRIA Institut National De Recherche En Informatique Et En Automatique.
INRIA stands for the French National Institute for Research in Computer
Science and Control.

LCD Liquid Crystal Display. A LCD is a display based on liquid crystal
technology.

LOC Lines of Code

MARTE UML Profile for Modeling and Analysis of Real-time and
Embedded Systems. MARTE is the specification of an UML profile adding
model-driven development capabilities for real-time and embedded systems
to UML.

MDA Model Driven Architecture

MEM Micro-Electro-Mechanical System

MOF Meta Object Facility. The MOF is the meta-meta-model and core of
the MDA defined by the OMG.

107

Acronyms

NATO North Atlantic Treaty Organization. The NATO is an alliance of 26
countries from North America and Europe fulfilling the goals of the North
Atlantic Treaty signed on 4 April 1949.

OMG Object Management Group. The OMG is an open consortium for
improving interoperability and portability of software systems by defining
manufacturer - neutral standards.

PWM Pulse Width Modulation. PWM is a signal modification technique
based on the adjustment of ratio between high-/low- time of the signal line.

RPM Rounds per Minute. RPM stands for the cycles per minute of a
rotating device.

SPI Serial Peripheral Interface. The SPI bus is a full duplex, synchronous
serial data link standard.

UML Unified Modeling Language. The UML is a modeling language based
on the OMG’s MOF.

UNIX Unix is a computer operating system originally developed in 1969 by a
group of AT&T employees at Bell Labs.

WCET Worst-Case Execution Time

108

A Notes

109

Appendix A

A.1 Scicos/SynDEx - Configuration

The setup for exercising the examples as well as important Scicos/SynDEx
installation notes are discussed as follows in this section.

Scicos is a toolbox of the Scilab package and its development lies in the
responsibility of the ”Scilab Consortium”. Initially it was developed and
maintained by INRIA 1. It’s distributed freely, including the source code.
Scilab - Version: 4.1.1

SynDEx has been developed by INRIA in the Rocquencourt Research Unit
France by the AOSTE team. It’s free for non-commercial use.
SynDEx - Version: 7.0.0

The avr-gcc compiler packet and tools.
avr-gcc - Version: 4.2.2-1
binutils - Version: 2.17
avr-libc - Version: 1:1.4.7-1

A debugging/programming tool interfacing the GDB and JTAG.
avarice - Version: 2.6

Experiment (ESE-Board) Monitor.
JTagZeusProg - Version: 0.2

Scilab and Scicos-SynDEx Installation Notes

First of all, it is important to only use the specified versions of the software.
Up to the date this thesis was written, the only setup of software versions
listed above seemed to allow Scicos working together with SynDEx via the
Scicos-SynDEx interface.

Scicos
Necessary files:
scilab-4.1.1-src.tar.gz - Only the source version of the scilab-4.1.1 package
provides the necessary resources for the Scicos-SynDEx gateway.

1INRIA - The French National Institute for Research in Computer Science and Control

110

Appendix A

Compilation notes:
For the compilation there is, amongst others, a Fortran compiler necessary
- here, the ”GNU Fortran - 4.2.4” compiler was used. Additionally some ”-
dev” packages might also be required: libXext-dev, libxmu-dev, libxmuu-dev,
linux-libc-dev, xutils-dev.

SynDEx
Necessary files:
syndex-7.0.1-linux-i586.tar.gz

Extract the contents of ”syndex-6.8.5-linux.tgz” and start. ”GNU m4” has
to be installed to execute the GNUmakefile generated by SynDEx.

Scicos-SynDEx Gateway
Necessary files:
ScicosToSynDEx.tar
s2s scicosFiles.tar

The integration of the Scicos-SynDEx Gateway requires some script file
editing and files moved into the right directories:

• Create a folder named ”SCICOS SYNDEX” in the Scilab-install direc-
tory.

• Extract ”ScicosToSyndex.tar” into the ”<Scilab-install-
dir>/SCICOS SYNDEX”.

• Edit the file ”scilab.star” in the <Scilab-install-dir>: Attach the line
”exec SCI/SCICOS SYNDEX/dot.scilab” at the end of the file. Scilab
will now prompt about the loaded SynDEx module (see figure A.1). With
the installation of the Scicos-Syndex Gateway an additional entry inside
the graphical interface of Scicos is added: Object→To SynDEx (see figure
A.2).

• Extract ”s2s scicosFiles.tar” into the ”<SynDEx-install-dir>”.

111

Appendix A

Figure A.1: Screenshot of Scilab with the installed SynDEx gateway module.

112

Appendix A

Figure A.2: Screenshot of Scicos with the installed SynDEx gateway module.

113

Appendix A

A.2 Scicos/SynDEx - Documentation

Scicos

Creating new blocks in Scicos

The basic steps of creating blocks for Scicos are documented in this section
(see also [CNC06]). Each Scicos-Block consists of two parts: an ”interfacing
function” and a ”computational function”. The interfacing function handles
the interaction with the graphical editor. The computational function defines
the behavior of the block during the simulation. Both have to be designed,
compiled and ”linked” to the Scicos software. Following procedure is suggested:

1. Implement the computational function, e.g. IO LEDBar 8bit.c. In
general, the structure of a block’s computation function coded in C looks
like the following:

#include "scicos_block.h"

#include <math.h>

void my_block(scicos_block *block, int flag){

...

}

Examples for computational functions can be obtained in the <Scilab-
installation-directory>/routines/scicos (e.g. summation.c).

2. Implement the interfacing function, e.g. IO LEDBar 8bit.sci. Exam-
ples for interfacing functions can be obtained in the <Scilab-installation-
directory>/macros/scicos blocks (e.g. SUMMATION.sci).

3. For the compilation of the files, several Scilab commands have to be ex-
ecuted. The man pages of Scilab should also be checked out [Sci10]. To
make the job easier, generate a builder file named ”builder.sce” with fol-
lowing (example of building the library ”ESE” with a 8 bit LED bargraph)
content:

comp_fun_lst=[’IO_LEDBar_8bit’]; // [’foo1’,’foo2’,...]
c_prog_lst=listfiles(’*.c’); // c files in directory
prog_lst=strsubst(c_prog_lst,’.c’,’.o’);

// generate loader and compile
ilib_for_link(comp_fun_lst,prog_lst,[],’c’,’Makelib’,’loader.sce’,’ESE’);
genlib(’lib_ESE’,pwd()); // compile macros and generate lib

Execute this script by starting Scilab, change to the directory where
the files are stored (use the command ”cd”) and execute the script

114

Appendix A

(”exec builder.sce”). Several files are generated: <some library files>,
loader.sce, Makelib (a makefile), lib, and some more.

4. (Optional Step) Create a local scilab script file in the directory of the
library files: <myScilabScript>.scilab. It can be useful for customizing
commands for the treatment of the libs and shall at least contain the call
of the loader.sce file, e.g.:

// this file loads the library functions with appropriate path

exec /home/exa/DA/code/scicos/eBoardEnv/eBoardEnv.scilab;

5. Load the library into Scicos. To make Scicos load the new
blocks at start-up the line ”exec <PATH>/<MYSCRIPT>.scilab”
(e.g. ”/home/exa/DA/code/scicos/eBoardEnv/eBoardEnv.scilab”) shall
be appended to the file <Scilab-Installation-Directory>/scilab.star. If no
<myScilabScript>.scilab is used, just call the loader.sce directly.

6. The new block is now ready to be used. Start Scicos, in the menu click
”edit”→”Add new block” and enter the name of the block in the popped
up dialog field. Now the block can be placed into the Scicos diagram.

Creating new palettes in Scicos

Creating a new palette makes the editing process of diagrams more com-
fortable. To do this, use Scicos to create a new palette.

1. Create the palette, e.g:

create_palette(’/home/exa/DA/code/scicos/eBoardEnv’)

This will create the palette eBoardEnv.cosf in the chosen directory (which
must contain all the necessary interfacing functions).

2. Add the new palette to Scicos, e.g:

load(’<lib file absolute>’);
scicos_pal($+1,1)=’<Name of the Palette>’;
scicos_pal($+1,2)=strcat(<Path to the library files>,’<the palette>.cosf’);

For the sake of some working comfort, these lines should be attached to
a Scicos script, e.g. to eBoardEnv.scilab:

eBoardEnvPath=’/home/exa/DA/code/scicos/eBoardEnv’;

eBoardEnvLoader=eBoardEnvPath+’/’+’loader.sce’;

eBoardEnvLib=eBoardEnvPath+’/’+’lib’;

eBoardEnvPal=eBoardEnvPath+’/’+’eBoardEnv.cosf’;

// this file loads the library functions with appropriate path

exec(eBoardEnvLoader);

115

Appendix A

// load the palette and add it to the Scicos’ palette menu

load(eBoardEnvLib);

scicos_pal($+1,1)=’eBoardEnv’;

scicos_pal($+1,2)=eBoardEnvPal;

Scicos-SynDEx Gateway

The full documentation, publications and tutorials can be found on the
SynDEx homepage 2. For starters, with Scicos and SynDEx, the gateway
documentation [Fau06] is recommended.

After the design of an synchronous diagram in Scicos, this diagram can
be translated into a SynDEx conform diagram (Note: An asynchronous scicos
diagram can’t be translated to SynDEx - trying that causes an ”error 10000”
(something like a clkRoot error)). This is done by making a superblock of the
Scicos diagram and then translate it to SynDEx by choosing following entries
in the menu: Object→To SynDEx. This will start the translation process with
the pop-up of a parameter window (see figure A.3).

Figure A.3: SynDEx parameter-window screenshot of the Scicos-to-SynDEx
gateway.

2http://www.syndex.org/scicosSyndexGateway/index.htm

116

http://www.syndex.org/scicosSyndexGateway/index.htm

Appendix A

The parameters are explained as described on the SynDEx homepage:

• Absolute application path: the path where the SynDEx files will be gen-
erated.

• Application name (without suffix): the application name.

• SynDEx macro path: the path where the SynDEx macros are located
(usually the path to SynDEx + ”/macros”).

• Number of iterations: the number of steps the final application has to
process.

• Discrete step: the discrete step value (useful when continuous blocks are
present).

• Continuous step: the integration step value (useful when continuous blocs
are present).

• Scicos C functions path: the path where the Scicos C functions are lo-
cated.

If the Scicos-SynDEx gateway has successfully translated the diagram, the
generated files were stored in the <Absolute Application path>. Following files
were created using a simple test-diagram (A.4, Scicos Superblock: A.5):

• demo.sdx - Contains the transformed graph which is readable by SynDEx.

• demo.m4x - Structures and functions for the mechanism of the Scicos-
SynDEx macros.

• demo.m4 - Contains architecture properties, for example rootOperator
and processor-architecture.

• demo.m4m - Contains the definition of the ”rootOperator hostname”
property.

• RootOperator.m4x - Defines the root operator (for example the
microcontroller-application).In a single processor application, like in this
demonstration application, the demo.m4m is included inside this file.

• GNUMakefile - ””

The relationship of the tools and generated artifacts is given in figure A.6.

SynDEx

Notes for the first tries with SynDEx are found in the Scicos-SynDEx
gateway documentation [Fau06]. This paragraph describes how to use SynDEx
to generate code for a mono-processor setup which was already described in

117

Appendix A

Figure A.4: Demo - diagram used for the demonstration of the Sci-
cos2SynDExGateway.

Figure A.5: Demo - diagram transformed to a Scicos Superblock.

french [Fau06, section 1.4.1], however some additional notes are required for a
successful usage.

Section 1.4.4, Pts. 1-3
When SynDEx is started via command-line, it is mandatory to pass the -
libs parameter, otherwise SynDEx will not find even the libraries inside its
own distribution: ”syndex -libs <SynDEx-install-dir>/libs”. Now it should be

118

Appendix A

Figure A.6: Scicos2SynDEx - Generated artifacts.

possible to open a *.sdx file within SynDEx. For a first start of SynDEx, a test
diagram translated by the Scicos-SynDEx Gateway was used (see figure A.4).
After starting SynDEx the demonstration file ”demo.sdx” was opened using
the context menu (see figure A.7).

Figure A.7: SynDEx - Screenshot, the test diagram.

Generating code requires, first of all, the target-architecture to be chosen.
For test purposes the ”U” processor type (within the libs of the distribution)
was chosen: ”Architecture”⇒”Edit Operator Definition”, see figure A.8. The
automated code generation of SynDEx should generate code for the init and

119

Appendix A

loop phase of the algorithm. The cscope block is not defined in SynDEx, for a
successful code generation libraries for this block have to be implemented.

Figure A.8: SynDEx - Screenshot, choosing the target architecture.

Section 1.4.4, Pt. 4
Start the Adequation, for example: ”Adequation”→”No Flatten”.
Start the code generation by: ”Code”→”Generate Executive”. Enter-
ing this command will produce an intermediate artifact, not the finished
target-architecture code. The file ”rootOperator.m4” is created and the file
”demo.mk” is changed (in this case a line with ”dnl” after the ”include...” is
inserted, as well as an ”endarchitecture ” at the end of the file; additionally
the SynDEx version used for the code generation is inserted).
Another note: If the diagram is saved in SynDEx, a demo.sdc file is created -
it contains just some miscellaneous version information.

Section 1.4.4, Pts. 6-7
Changing the name of the target machine in demo.m4m is necessary for the
”rsh” connecting to the localhost. The ”GNUmakefile” might need some
editing, for example to set the right m4 macroprocessor installed on the
develop-pc, or to set some path variables. Executing the GNUmakefile will
create the demo.mk file, which is included at the end of the GNUmakefile
itself. The demo.mk file in this example is used for two things. First, to
create (macro-expand) the rootOperator.c file. Second, to compile, link and
generate the executive. Note: Anything related to the ”rsh” command inside
the makefiles can be discarded, since their only purpose is to automate the
compilation of the sources on a different target machine.

120

Appendix A

Files created by the GNUmakefile (+ demo.mk) are demo.mk, rootOperator.c,
rootOperator.rootOperator.o, rootOperator.

Scicos-SynDEx Gateway developer notes on the PID Controller example

Consider the PID superblock from the mono-processor example (figure 4.14
in section 4.2). This block is now converted using the Scicos-to-SynDEx gate-
way resulting in the following files: FSC.m4, FSC.m4m, FSC.m4x, FSC.sdx,
GNUmakefile, rootOperator.m4x. The FSC.sdx file can now be opened in Syn-
DEx (see figure A.9).

Figure A.9: SynDEx - Opening of an example application.

After rearranging the blocks in a human-readable way, following steps will
make the algorithm ready to be used in another SynDEx diagram. Only the
FSC.sdx file is needed by SynDEx, and the macro-expansion file FSC.m4x is
needed for future steps. The FSC.sdx is edited by a text editor (that’s more
convenient than fighting with the SynDEx bugs in the graphical editor) and
all the architecture dependencies and durations removed or commented with
”#”. After that the real durations on the target architecture may be inserted
(don’t forget to include the necessary files if needed). The PID should be able
to take two inputs of the type ”double”: Setpoint (w i), Actual Input(y i).
Additionally the PID will need one ”double” output: Actual Output(u i).
To do this, following lines need to be inserted (the next line right after ”def
algorithm pidFanController :”):

? double[1] w_i 1;\\

121

Appendix A

? double[1] y_i 2;\\

! double[1] u_i 1;\\

Now the file is renamed to ”pidFan.sdx” since this algorithm will be a PID
block suitable for the fan (RPM - scaling is included in the block, this
is necessary for a more comfortable automated edit- and build-process).
Additionally, the algorithm is baptized by replacing the ”def algorithm
clk root...” tag by a name of choice. Now either copy the new algorithm in
the ”<SYNDEXHOME>/libs” or make a symbolic link to it in that directory.
The PID controller block is now ready to be used in SynDEx.
The next step proposed is to create a new project folder. If there are some
home-made development scripts, then copy these files in the project folder
(that could be m4x-builder scripts, a customized GNUMakefile or something
else).
Start a new SynDEx project. The new library is found in the SynDEx menu:
”File”→”Included Libraries”→”pidFan”. Start the design process with the
use of the new PID algorithm. In the PID example all the blocks have
to be called with equal periods. To do this, click on EVERY single block
and enter the period. Note: If at least one is forgotten and the algorithm
adequation called, a ”division by zero” error message occurs: In this case close
all files and SynDEx, reopen it (it is good NOT to save after entering periods,
because the file will be malformed, not readable, and a start from scratch is
required) and do everything again from the last saved point (hopefully before
any periods were entered); all blocks previously shifted from one hierarchy
level into another must be re-edited as well as all the lost block parameters...
Double/Tripple/Multi-check all periods before adequation (don’t forget to
handle all switch-blocks branches)!
After the design of the algorithm, chose the target architecture (e.g. the
home-made ”eBoard”→”monoProcNode3”) in the ”Architecture” menu. Now
it should be possible to successfully call the algorithm adequation, obtain the
scheduling and generate macro-executive code. Note: Even though it seems
that everything was done in the right way, a new message might occur when
starting the adequation: ”Uncaught exception: File ”algorithm/transform.ml”,
line 287, characters 7-13: Assertion failed” - Why, where, what is wrong?
SynDEx won’t tell. After some tests it was figured out that a connection
the new I/O ports within the block (they were hidden behind a block) had
been forgotten - well, let’s start from the last saved point again and enter all
periods, move hierarchical blocks and re-enter parameters in the previously
inter-hierarchy-level moved blocks). The adequation might require some extra
durations for some blocks to be entered and don’t bother(!?) if the adequation
seems to stop half way, or seems not to start or finish. With a diminished
trust in adequation results, keep trying some times and it might start / finish

122

Appendix A

or ask for further block durations.
If the scheduling is satisfying, macro code can be generated:
”Code”→”Generate Executive(s)”. This will generate the files FSC-
MonoProcessorStage03.m4 and node3.m4, both containing macro code.
The next step is the macro code into C code expansion phase. Therefore the
GNUmakefile has to be adjusted properly to your needs. Note: Don’t forget
to touch at least an empty <ApplicationName>.m4m file - SynDEx does not
provide conclusive error messages!
In order to successfully expand to C code, self-made m4 definitions files
are needed (for this example macro expansion files for the ESE-board,
task-timings and the ATmega128 were written). To automatically gener-
ate customized Makefiles a customized syndex.m4m is needed. With the
customized GNUmakefile in a Unix shell type: ”make expand”. That will
generate the customized Makefile for node3 (FSCMonoProcessor.mk). ”make
node3.c” will finally generate C code, but things have to be considered. The
macro-expansion file (.m4x) generated by the Scicos-to-SynDEx gateway is
needed since it holds macro-expansion rules for most of the needed blocks
(remember to remove the default sensor, actuator and maybe other example .c
includes in this file - otherwise they will be included in the generated C code
file). Replace the m4-include calls with C includes, e.g.: Replace...

include(/home/exa/DA/syndex-6.8.5/SCICOS_FILES/s2s_common.c)\\

include(/home/exa/DA/syndex-6.8.5/SCICOS_FILES/gainblk.c)\\

include(/home/exa/DA/syndex-6.8.5/SCICOS_FILES/plusblk.c)\\

include(/home/exa/DA/syndex-6.8.5/SCICOS_FILES/dollar4.c)\\

include(/home/exa/DA/syndex-6.8.5/SCICOS_FILES/satur.c)\\

include(/home/exa/DA/syndex-6.8.5/SCICOS_FILES/summation.c)\\

with...

#include "s2s_common.h"\\

#include "gainblk.h"\\

#include "plusblk.h"\\

#include "dollar4.h"\\

#include "satur.h"\\

#include "summation.h".\\

Note: Before the macros can be expanded, they might need a rename in
a way that already written .m4x macro expansion rule definitions match (use
scripts for that, e.g. monoclean.sh). Another note: Be careful when including

123

Appendix A

more than one Scicos-to-SynDEx generated file since some declarations (param-
eters) will mix up (for this sense I used a self-made m4x-builder java-program).
Yet another note: Remove the line

"enum flag_type {

flag_init = 4, flag_updateOutputs = 1,

flag_updateZstates = 2, flag_updateSstates = 0,

flag_reinit = 6, flag_end = 5};"

and the line

"#include <stdio.h>"

from the pidFan.sdx file. Additionally, a remark about memory blocks:
Dollar blocks have to be defined with double in this example (otherwise
mismatching data-types): e.g. replace alloc (int,dollar4 4 1 buf,1) with al-
loc (double,dollar4 4 1 buf,1). About the number of iterations in the main-
loop: In the pidFan.m4x file the number of iterations in the main-loop can
be changed to forever by removing the ”NBITERATIONS” definition. When
doing this, maybe also remove the other comment macros:

dnl define(‘NOTRACEDEF’)

dnl define(‘NBITERATIONS’,‘‘1000’’)

dnl define(‘dnldnl’,‘‘// ’’)

dnl define(‘ # ’,‘‘// ’’)

Now it should be possible to compile it using avr-gcc: ”make”.

124

B Listings

B.1 SynDEx PID-Example, Node3.m4

i n c lude (syndex .m4x) dnl
s i n c l ude (TaskTiming .m4x) dnl
s i n c l ude (eBoard .m4x) dnl
dnl

5 p r o c e s s o r (ATmega128 , node3 , f s cF ina l6b ,
SynDEx−7.0.0 (C) INRIA 2001−2009 , 2010−10−03 03 : 0 2 : 0 2)

a l l o c (int , T ime r2Cont ro l l e r f i r e , 1)
a l l o c (uint16 , fanSensorDriver rpm , 1)

10 a l l o c (double , S2sDataWrapperW d , 1)
a l l o c (double , g a inb lk 9 1 out 1 , 1)
a l l o c (uint8 , FanSpeed cst , 1)
======================= Snip =================================
. . .

15 ======================= Snip =================================
a l i a s (d o l l a r 4 4 1 ou t 1 , d o l l a r 4 4 1 bu f , 0 , 1)
a l i a s (do l l a r 4 18 1 ou t 1 , do l l a r 4 18 1 bu f , 0 , 1)
a l i a s (rem 1 out 1 , rem 1 buf , 0 , 1)

20 main
p r o c i n i t
HWTimer2Controller (1000 ,25 , T ime r2Con t r o l l e r f i r e)
eFanSensorDr iver 1 (fanSensorDriver rpm)
TTTaskReservation (1)

25 eUint16ToDouble (fanSensorDriver rpm , S2sDataWrapperW d)
ga i nb l k 1 1 (11 , 4 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 5 , 0 , 0 , 0 , 0 , 1 , 1 , S2sDataWrapperW d , ga i nb l k 9 1 ou t 1)
eConstantUint8 (50 , FanSpeed cst)
eUint8ToDouble (FanSpeed cst , S2SWrapperCst d)
p l u s b l k 1 1 1 (12 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 5 , 0 , 0 , 0 , 0 , 2 , 1 , ga inb lk 9 1 out 1 , S2SWrapperCst d ,

p l u s b l k 8 1 ou t 1)
30 ga i nb l k 1 1 (16 , 4 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , p l u sb l k 8 1 ou t 1 , g a i nb l k 2 1 ou t 1)

======================= Snip =================================
. . .

======================= Snip =================================
loop

35 HWTimer2Controller (1000 ,25 , T ime r2Con t r o l l e r f i r e)
sw i t ch (T ime r2Con t r o l l e r f i r e)

c a s e (0)
TTTaskReservation (1)

endcase
40 ca s e (1)

eFanSensorDr iver 1 (fanSensorDriver rpm)
eUint16ToDouble (fanSensorDriver rpm , S2sDataWrapperW d)
ga i nb l k 1 1 (11 , 4 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 5 , 0 , 0 , 0 , 0 , 1 , 1 , S2sDataWrapperW d , ga i nb l k 9 1 ou t 1

)
======================= Snip =================================

45 . . .
======================= Snip =================================

endcase
endswitch
wai t (54)

50 endloop
HWTimer2Controller (1000 ,25 , T ime r2Con t r o l l e r f i r e)
eFanSensorDr iver 1 (fanSensorDriver rpm)
TTTaskReservation (1)
eUint16ToDouble (fanSensorDriver rpm , S2sDataWrapperW d)

55 ga i nb l k 1 1 (11 , 4 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 5 , 0 , 0 , 0 , 0 , 1 , 1 , S2sDataWrapperW d , ga i nb l k 9 1 ou t 1)
eConstantUint8 (50 , FanSpeed cst)
eUint8ToDouble (FanSpeed cst , S2SWrapperCst d)

======================= Snip =================================
. . .

60 ======================= Snip =================================
proc end

endmain

endproce s so r

125

Appendix B

Listing B.1: Node3 - SynDEx macro code

B.2 SynDEx PID-Example, Scicos-Syndex Gain
Block

1 de f i n e (‘ g a i nb l k 1 1 ’ , ‘ i f e l s e (
MGC, ‘MGC’ , ‘ ‘ ’ ’ ,
MGC, ‘ INIT ’ , ‘ ‘ /∗ i n i t phase f o r block ga i nb l k 1 1 ∗/
pidBlocks [$1−1] . type = $2 ;
pidBlocks [$1−1] . ztyp = $3 ;

6 pidBlocks [$1−1] . ng = $4 ;
pidBlocks [$1−1] . nz = $5 ;
pidBlocks [$1−1] . nrpar = $6 ;
pidBlocks [$1−1] . n ipar = $7 ;
pidBlocks [$1−1] . nevout = $8 ;

11 pidBlocks [$1−1] .nmode = $9 ;
pidBlocks [$1−1] . z = &(pidz [$10]) ;
p idBlocks [$1−1] . rpar = &pidRPAR1 [$11] ;
p idBlocks [$1−1] . i pa r = &pidIPAR1 [$12] ;
p idBlocks [$1−1] . x = &(pidxt [$13]) ;

16 pidBlocks [$1−1] . xd = &(pidxtd [$14]) ;
p idBlocks [$1−1] . nx = $15 ;
pidBlocks [$1−1] . nin = $16 ;
pidBlocks [$1−1] . nout = $17 ;
pidBlocks [$1−1] . nevprt = 0 ;

21 i f ((p idBlocks [$1−1] . evout = c a l l o c (pidBlocks [$1−1] . nevout , s i z e o f (double)))== NULL) return
0 ;

i f ((p idBlocks [$1−1] . i n s z = malloc (s i z e o f (i n t) ∗ pidBlocks [$1−1] . nin))== NULL) return 0 ;
i f ((p idBlocks [$1−1] . i np t r = malloc (s i z e o f (double ∗) ∗ pidBlocks [$1−1] . nin))== NULL) return

0 ;
i f ((p idBlocks [$1−1] . outsz = malloc (s i z e o f (i n t) ∗ pidBlocks [$1−1] . nout))== NULL) return 0 ;
i f ((p idBlocks [$1−1] . outptr = malloc (s i z e o f (double ∗) ∗ pidBlocks [$1−1] . nout))== NULL)

return 0 ;
26 pidBlocks [$1−1] . work=NULL;

pidBlocks [$1−1] . i np t r [0] = $18 ;
p idBlocks [$1−1] . i n s z [0] = ’ $ 18 s i z e ‘ ;
p idBlocks [$1−1] . outptr [0] = $19 ;
p idBlocks [$1−1] . outsz [0] = ’ $ 19 s i z e ‘ ;

31 ga inb lk (&pidBlocks [$1−1] , f l a g i n i t) ;
ga inb lk (&pidBlocks [$1−1] , f l a g r e i n i t) ;
’ ’ ,
MGC, ‘LOOP’ , ‘ ‘ /∗ l o op phase f o r b l o c k g a i n b l k 1 1 ∗/
pidBlocks [$1−1] . i np t r [0] = $18 ;

36 pidBlocks [$1−1] . outptr [0] = $19 ;
ga inb lk (&pidBlocks [$1−1] , f lag updateOutputs) ;
ga inb lk (&pidBlocks [$1−1] , f l a g upda t eZ s t a t e s) ;
’ ’ ,
MGC, ‘END’ , ‘ ‘ /∗ end phase f o r block ga i nb l k 1 1 ∗/

41 pidBlocks [$1−1] . i np t r [0] = $18 ;
p idBlocks [$1−1] . outptr [0] = $19 ;
ga inb lk (&pidBlocks [$1−1] , f l a g end) ;
’ ’) ’)

Listing B.2: SynDEx Gain Block macro code

B.3 Atmel ATmega128 macro expansion
definitions file

/∗ =====> ATmega128 .m4x ∗/
dnl ATmega128 .
dnl Purpose : Macro Expansion F i l e for the Atmel ’ s ATmega128 with data type mapping .

5 ======================= Snip =================================
. . .

126

Appendix B

======================= Snip =================================

#de f i n e (‘ l ang ’ , ‘C ’)
10

############
DATA TYPES

−−−−−−−−
15 # typede f (name , s i z e) d e f i n e s a new type with i t s s i z e in address un i t s :

i n t e r f a c i n g data−types :
typede f (‘ bool ’ , 1) # MUST be de f ined
typede f (‘double ’ , 4)
typede f (‘ i n t ’ , 2)

20 typede f (‘ u int8 ’ ,1)
typede f (‘ u int16 ’ ,2)

mapped ta rg e t data−types :
typede f (‘ u i n t 8 t ’ , 1)

25 typede f (‘ u i n t 16 t ’ , 2)
typede f (‘ i n t 8 t ’ , 1)
typede f (‘ i n t 1 6 t ’ , 2)

MAPPING
30 # −−−−−−−−

a l s o types which aren ’ t mapped have to be de f ined :
d e f i n e (‘ double map ’ , ‘ double ’)
d e f i n e (‘ bool map ’ , ‘ bool ’)

35 ## the types to be mapped to d i f f e r e n t ones :
d e f i n e (‘ int map ’ , ‘ i n t 1 6 t ’)
d e f i n e (‘ uint8 map ’ , ‘ u i n t 8 t ’)
d e f i n e (‘ uint16 map ’ , ‘ u i n t 16 t ’)
d e f i n e (‘ int8 map ’ , ‘ i n t 8 t ’)

40 de f i n e (‘ int16 map ’ , ‘ i n t 1 6 t ’)

###################
MEMORY ALLOCATION

45 ## −−−−−−−−−−−
ba s i cA l l o c (l abe l , memoryBank)
#define (‘ b a s i cA l l o c ’ , ‘ ($1 type $1 [$ 1 s i z e] ;) ’)
d e f i n e (‘ b a s i cA l l o c ’ , ‘ ($1 type () map () $1 [$ 1 s i z e] ;) ’)

50 # −−−−−−−−−−−
ba s i cA l i a s (newLabel , o ldLabe l [, o f f s e t =0])
d e f i n e (‘ b a s i cA l i a s ’ , ‘ d e f i n e (‘ $1 base ’ , $2 base) dnl for ‘ basicCopy ’
‘#de f i n e ’ $1 i f e l s e ($3 , , ‘ $2 ’ , ‘ ($2+$3) ’) ’)

55
####################
CONTROL STRUCTURES

−−−−−−−−
60 ## b a s i c I f (bu f f e r , value , tag forE l seOrEndi f)

d e f i n e (‘ b a s i c I f ’ , ‘ (i f ($1 [0]==$2) { /∗ $3 ∗/) ’)

======================= Snip =================================
. . .

65 ======================= Snip =================================

d iv e r t
d iver t ‘ ’ dnl −−−−−−−−−−−−−−−−−−−−−− End o f f i l e −−−−−−−−−−−−−−−−−−−−−−−−−

Listing B.3: SynDEx ATmega128 macro expansion definition file

B.4 SynDEx PID-Example, final C code

1 /∗ =====> eBoard .m4x ∗/

#include ” eFanDriver . h”
#include ” eFanSensorDriver . h”
======================= Snip =================================

6 . . .
======================= Snip =================================

/∗∗∗/
/∗∗∗∗∗ ADDITIONAL GLOBALS ∗∗/

11 /∗∗∗/

127

Appendix B

u in t 8 t HWTimer0Fire ;
u i n t 8 t HWTimer1Fire ;
u i n t 8 t HWTimer2Fire ;

16 u i n t 8 t HWTimer3Fire ;

/∗∗∗/
/∗∗∗∗∗ ADDITIONAL COMPUTATIONAL FUNCTIONS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗∗∗/

21
/∗ Ca l l e d when Timer reached d e s t i n a t i o n Time (n ∗ OC−I) ∗/
void HWTimer2Handler (void){

HWTimer2Fire = 1 ;
}

26
/∗ Reset t h e Fire−g l o b a l a f t e r 1 r e p e t i t i o n ∗/
u in t 8 t HWTimer2ResetFire (u i n t 8 t f i r e){

stat ic u in t 8 t fireMem ;
31

i f (f i r e==1&&fireMem==1){
HWTimer2Fire=0;
fireMem=0;

}
36 i f (f i r e==1&&fireMem==0){

fireMem=1;
return 1 ;
}

41 i f (f i r e ==0){
return 0 ;
}

/∗ never reached ∗/
46 return 0 ;
}

======================= Snip =================================
. . .

51 ======================= Snip =================================

/∗ SynDEx−7.0.0 (C) INRIA 2001−2009 , 2010−10−03 03 : 02 : 02 ,
a p p l i c a t i o n f s cF ina l 6 b , p r o c e s s o r node3 t ype=ATmega128 ∗/

56 /∗ =====> ATmega128 .m4x ∗/

/∗ ‘ a l l o c (in t , T ime r 2Con t r o l l e r f i r e , 1) ’ ∗/
i n t 1 6 t T ime r2Con t r o l l e r f i r e [1] ;
/∗ ‘ a l l o c (u int16 , fanSensorDriver rpm , 1) ’ ∗/

61 u in t16 t fanSensorDriver rpm [1] ;
/∗ ‘ a l l o c (doub le , S2sDataWrapperW d , 1) ’ ∗/
double S2sDataWrapperW d [1] ;
/∗ ‘ a l l o c (doub le , g a i n b l k 9 1 o u t 1 , 1) ’ ∗/
double ga i nb l k 9 1 ou t 1 [1] ;

66 ======================= Snip =================================
. . .

======================= Snip =================================

/∗ ‘ main () ’ ∗/
71 int main (int argc , char∗ argv []) { /∗ f o r l i n k w i th C runt ime boo t ∗/

======================= Snip =================================
. . .

======================= Snip =================================
76

/∗ i n i t phase f o r b l o c k g a i n b l k 1 1 ∗/
b locks [11−1] . type = 4 ;
b locks [11−1] . ztyp = 0 ;
b locks [11−1] . ng = 0 ;

81 b locks [11−1] . nz = 0 ;
b locks [11−1] . nrpar = 1 ;
b locks [11−1] . n ipar = 0 ;
b locks [11−1] . nevout = 0 ;
b locks [11−1] . nmode = 0 ;

86 b locks [11−1] . z = &(z [1]) ;
b locks [11−1] . rpar = &RPAR1 [5] ;
b locks [11−1] . i pa r = &IPAR1 [0] ;
b locks [11−1] . x = &(xt [0]) ;
b locks [11−1] . xd = &(xtd [0]) ;

91 b locks [11−1] . nx = 0 ;
b locks [11−1] . nin = 1 ;
b locks [11−1] . nout = 1 ;
b locks [11−1] . nevprt = 0 ;
i f ((b locks [11−1] . evout = c a l l o c (b locks [11−1] . nevout , s izeof (double)))== NULL) return 0 ;

96 i f ((b locks [11−1] . i n s z = malloc (s izeof (int) ∗ b locks [11−1] . nin))== NULL) return 0 ;
i f ((b locks [11−1] . i np t r = malloc (s izeof (double∗) ∗ b locks [11−1] . nin))== NULL) return 0 ;

128

Appendix B

i f ((b locks [11−1] . outsz = malloc (s izeof (int) ∗ b locks [11−1] . nout))== NULL) return 0 ;
i f ((b locks [11−1] . outptr = malloc (s izeof (double∗) ∗ b locks [11−1] . nout))== NULL) return 0 ;
b locks [11−1] . work=NULL;

101 b locks [11−1] . i np t r [0] = S2sDataWrapperW d ;
b locks [11−1] . i n s z [0] = 1 ;
b locks [11−1] . outptr [0] = ga i nb l k 9 1 ou t 1 ;
b locks [11−1] . outsz [0] = 1 ;
ga inb lk (&blocks [11−1] , f l a g i n i t) ;

106 ga inb lk (&blocks [11−1] , f l a g r e i n i t) ;
======================= Snip =================================
. . .

======================= Snip =================================

111 /∗ ‘ l o o p () ’ ∗/
for (; ;) { /∗ l o o p 2 ∗/
{ int i ; for (i =0; i <1; i++) rem 1 out 1 [i] = prod 22 1 out 1 [i] ; }

Time r2Con t r o l l e r f i r e [0]= HWTimer2ResetFire (HWTimer2Fire) ;
/∗ ‘ s w i t c h (T ime r 2Con t r o l l e r f i r e) ’ ∗/

116 switch (T ime r2Con t r o l l e r f i r e [0]) { /∗ sw i t c h 3 ∗/
/∗ ‘ c a s e (0) ’ ∗/
case 0 : /∗ ca s e 4 ∗/

eNOP(26) ; //1
/∗ ‘ endcase () ’ ∗/

121 break ; /∗ ca s e 4 ∗/
/∗ ‘ c a s e (1) ’ ∗/
case 1 : /∗ ca s e 5 ∗/

/∗ l o op phase f o r b l o c k eFanSensorDr ive r 1 ∗/
eFanSensorDriver (fanSensorDriver rpm) ;

126 /∗ l o op phase f o r b l o c k eUint16ToDouble ∗/
S2sDataWrapperW d [0] = (double) fanSensorDriver rpm [0] ;

/∗ l o op phase f o r b l o c k g a i n b l k 1 1 ∗/
b locks [11−1] . i np t r [0] = S2sDataWrapperW d ;
b locks [11−1] . outptr [0] = ga i nb l k 9 1 ou t 1 ;

131 ga inb lk (&blocks [11−1] , f lag updateOutputs) ;
ga inb lk (&blocks [11−1] , f l a g upda t eZ s t a t e s) ;
======================= Snip =================================
. . .

======================= Snip =================================
136 /∗ ‘ endcase () ’ ∗/

break ; /∗ ca s e 5 ∗/
/∗ ‘ e nd sw i t c h () ’ ∗/
} /∗ sw i t c h 3 ∗/

eNOP(54) ;
141 /∗ ‘ end l oop () ’ ∗/

} /∗ end l o o p 2 ∗/

/∗ end phase f o r b l o c k g a i n b l k 1 1 ∗/
b locks [11−1] . i np t r [0] = S2sDataWrapperW d ;

146 b locks [11−1] . outptr [0] = ga i nb l k 9 1 ou t 1 ;
ga inb lk (&blocks [11−1] , f l a g end) ;

======================= Snip =================================
. . .

151 ======================= Snip =================================
/∗ ‘ endmain () ’ ∗/

return 0 ;
} /∗ end o f main ∗/

156 /∗ ‘ e ndp ro c e s s o r () ’ ∗/

Listing B.4: SynDEx PID-Example C code

B.5 SynDEx PID-Example, GNUMakefile

A=fanSpeedControlMonoProcessorStage03
M4=m4

4 # these paths have to be modi f ied by user
sdx MACRO PATH=/home/exa/DA/syndex −7.0.0/ macros

eBoard MACROS PATH=/home/exa/DA/code/ syndex/macros
eBoard MACROS ALGORITHMS PATH=$ (eBoard MACROS PATH)/ a lgor i thms

9 eBoard MACROS ARCHITECTURES PATH=$ (eBoard MACROS PATH)/ a r c h i t e c t u r e s
eBoard BUILDENV PATH=/home/exa/DA/code/eBoardBuildEnv
eBoard DRIVERS SRC PATH=$ (eBoard BUILDENV PATH)/ d r i v e r s / s r c / syndex
eBoard DRIVERS INC PATH=$ (eBoard BUILDENV PATH)/ d r i v e r s / inc lude / syndex
eBoard CONFIG PATH=$ (eBoard BUILDENV PATH)/ con f i g

14

129

Appendix B

Inc lude gene ra l p r op e r t i e s for the environment
inc lude $ (eBoard BUILDENV PATH)/ Makef i l e . s e t

Algo Macros Path : Path o f the a lgor i thm s p e c i f i c a t i o n f i l e s (.m4x and .m4m) .
19 # Archi Macros Path : Path o f the a r ch i t e c t u r e s p e c i f i c a t i o n f i l e s (.m4x and .m4m) .

S2s F i l e s Path : User−made Sc i c o s b locks must be copied in here (. c) .
eBoard Dr ivers Src Path : User−made Sc i c o s /Syndex computational func t i on b locks (. c and . h

) .

export syndex Macros Algorithms Path=$ (sdx MACRO PATH)/ a l g o l i b r a r i e s
24 export syndex Macros Arch i tectures Path=$ (sdx MACRO PATH)/ a r c h i l i b r a r i e s

export eBoard Macros Algorithms Path=$ (eBoard MACROS ALGORITHMS PATH)
export eBoard Macros Architectures Path=$ (eBoard MACROS ARCHITECTURES PATH)
export eBoard Dr ivers Src Path=$ (eBoard DRIVERS SRC PATH)

29
export S2 s F i l e s Path=/home/exa/DA/syndex −6.8.5/SCICOS FILES

export M4PATH=$ (syndex Macros Algorithms Path) : $ (syndex Macros Arch i tectures Path) : $ (
S2 s F i l e s Path) : $ (eBoard Macros Algorithms Path) : $ (eBoard Macros Architectures Path)

34 VPATH=$ (M4PATH)

#CFLAGS = −DDEBUG −lm −Wall −pedant ic

.PHONY: a l l expand c l e a n a l l c l e a n i t c l eanc
39

r ep l a c e rootOperator . c by $ (A) . run in order to run the app l i c a t i on with a s imple make
c a l l

#a l l : node3 . c
a l l : expand

44 #c l ean : :
$ (RM) \#∗ ∗˜ ∗ . o ∗ . a ∗ .mnt node3 $ (A) .mk

expand : $ (A) .mk

49 node : node3 . c

debugPaths :
@echo ”M4PATH=”$ (M4PATH)

54 c l e a n i t : c l eanc
$ (RM) $ (A) .mk

c l e a n a l l :
$ (RM) node3 .m4

59
c l eanc :

$ (RM) node3 . c

$ (A) .mk : $ (A) .m4 syndex .m4m ATmega128 .m4m $ (A) .m4m
64 $ (M4) $< >$@

node3 . l i b s = $ (eBoard DRIVERS SRC PATH)/ c s tb lk4 . o \
$ (eBoard DRIVERS SRC PATH)/ eFanDriver . o \

69 ======================= Snip =================================
. . .

======================= Snip =================================

node3 . inc = $ (eBoard DRIVERS INC PATH)
74

the $ (A) .mk f i l e i s generated by the make f i l e process , do not ed i t /modify un l e s s you know
exac t l y what you are doing

s i n c l ude $ (A) .mk

Listing B.5: SynDEx PID-Example GNUMakefile

B.6 SynDEx PID-Example, .mk Makefile

SynDEx−7.0.0 (C) INRIA 2001−2009 , 2009−10−13 03 : 54 : 51
Makef i l e for app l i c a t i on fanSpeedControlMonoProcessorStage03

4 # $ (M4) must be the GNU macroprocessor m4
$ (Archi Macros Path) must be the path to the g ene r i c ∗ .m4? macro− f i l e s
$ (VPATH) i s searched by make for dependent f i l e s not found in $ (PWD)
VPATH = $ (Archi Macros Path)

130

Appendix B

9 .PHONY: fanSpeedControlMonoProcessorStage03 . a l l fanSpeedControlMonoProcessorStage03 . run
c l ean

fanSpeedControlMonoProcessorStage03 . run : fanSpeedControlMonoProcessorStage03 . a l l # load
and run fanSpeedControlMonoProcessorStage03 :

(command args = pro c e s s o r s in load ing order)
. / $ (fanSpeedControlMonoProcessorStage03 . root)

14
proce s so r node3 type=ATmega128 :
fanSpeedControlMonoProcessorStage03 . a l l : node3
fanSpeedControlMonoProcessorStage03 . root += node3

19 #START−procr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− START OF PROCESSOR MAKEFILE
ATmega128 .m4m
Author : exa
Purpose : Macro expansion f i l e for Atmel ’ s ATmega128 .
Desc r ip t i on : Generates the a r c h i t e c t u r e s p e c i f i c make f i l e .

24
node3 . c : node3 .m4 syndex .m4x ATmega128 .m4x eBoard .m4x

$ (M4) $< >$@

node3 .OBJS = node3 . o
29 node3 .SUBOBJS = $ (node3 . l i b s)

define va r i a b l e s conta in ing the names o f the hex & eep f i l e
node3 . FLASH FILE = node3 . hex
node3 . EEP FILE = node3 . eep

34 node3 . ELF FILE = node3 . e l f

======================= Snip =================================
. . .

======================= Snip =================================
39

procr SUBDIRS = $ (d i r $ (node3 .SUBOBJS)) # ju s t the d i r s ”Sub1/ Sub2/ . . . ”

======================= Snip =================================
. . .

44 ======================= Snip =================================
l i s t o f a l l non− f i l e t a r g e t s
.PHONY: a l l makesub l c lmc c l ean most lyc lean d i s t c l e a n i n s t a l l debug

49 # 1 s t the main ta rg e t
a l l : $ (DREQUIRED) makesub node3 . hex node3 . eep

include j u s t e x i s t i n g D− f i l e s
54 i f n eq ”$ (s t r i p $ (DFILES)) ” ””

inc lude $ (DFILES)
end i f

59 # dec l a r e imp l i c i t r u l e s
%.hex : %. e l f

$ (OBJCOPY) −O $(FORMAT) $< $@

%.eep : %. e l f
64 −$ (OBJCOPY) $ (EEPFLAGS) −O $(FORMAT) $< $@

%. e l f : $ (node3 .OBJS) $ (node3 .SUBOBJS)
$ (CC) −Wl,−Map=$ ∗ .m $ (LDFLAGS) −o $@ $ (node3 .OBJS) $ (node3 .SUBOBJS) $ (LIBOPT)

69 ======================= Snip =================================
. . .

======================= Snip =================================

%.o : %.c
74 $ (CC) −I$ (node3 . inc) $ (CFLAGS) −Wall −c −o $@ $<

%.o : %.S
$ (CC) −I$ (node3 . inc) $ (CFLAGS) −Wall −c −o $@ $<

79 %. i : %.c
$ (CC) −I$ (node3 . inc) $ (CFLAGS) −E −o $@ $<

%.s : %.c
$ (CC) −I$ (node3 . inc) $ (CFLAGS) −S −o $@ $<

84
======================= Snip =================================
. . .

======================= Snip =================================
inc lude $ (eBoard CONFIG PATH)/node3 . deploy

89 #END−procr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− END OF PROCESSOR MAKEFILE

131

Appendix B

Listing B.6: SynDEx PID-Example .mk Makefile

B.7 Scicos Block Struct, .h Header

#ifndef SCICOS BLOCK H
#define SCICOS BLOCK H

#include <s t d i n t . h>
5 #include <s t d l i b . h>

typedef void (∗ voidg) (void) ;

typedef struct {
10 i n t 1 6 t nevprt ;

voidg funpt ;
i n t 1 6 t type ;
i n t 1 6 t s c sp t r ;
i n t 1 6 t nz ;

15 double ∗z ;
i n t 1 6 t nx ;
double ∗x ;
double ∗xd ;
double ∗ r e s ;

20 i n t 1 6 t nin ;
i n t 1 6 t ∗ i n s z ;
double ∗∗ i np t r ;
i n t 1 6 t nout ;
i n t 1 6 t ∗ outsz ;

25 double ∗∗ outptr ;
i n t 1 6 t nevout ;
double ∗ evout ;
i n t 1 6 t nrpar ;
double ∗ rpar ;

30 i n t 1 6 t n ipar ;
i n t 1 6 t ∗ i pa r ;
i n t 1 6 t ng ;
double ∗g ;
i n t 1 6 t ztyp ;

35 i n t 1 6 t ∗ j r o o t ;
char ∗ l a b e l ;
void ∗∗work ;
i n t 1 6 t nmode ;
i n t 1 6 t ∗mode ;

40 } s c i c o s b l o c k ;

/∗ e x t e rn vo i d d o c o l d r e s t a r t () ;
45 i n t g e t p h a s e s imu l a t i o n (vo i d){ r e t u rn 1 ;}

doub l e g e t s c i c o s t i m e () ;
i n t 1 6 t g e t b l o c k numbe r () ;
vo i d s e t b l o c k e r r o r (i n t 1 6 t) ;
vo i d s e t p o i n t 1 6 t e r x p r o p e r t y (i n t 1 6 t ∗ p o i n t 1 6 t e r) ;

50
vo i d ∗ s c i c o s ma l l o c (s i z e t) ;
v o i d s c i c o s f r e e (vo i d ∗p) ;
∗/

55 #define max(a , b) ((a) >= (b) ? (a) : (b))
#define min(a , b) ((a) <= (b) ? (a) : (b))

/∗
e x t e rn i n t 1 6 t s copy () ;

60 e x t e rn i n t 1 6 t s cmp () ;
∗/
enum f l a g t yp e { f l a g i n i t = 4 , f lag updateOutputs = 1 , f l a g upda t eZ s t a t e s = 2 ,

f l a g upda t eS s t a t e s = 0 , f l a g r e i n i t = 6 , f l a g end = 5} ;

#endif /∗ SCICOS BLOCK H ∗/

Listing B.7: Scicos Block Structure .h Headerfile

132

Appendix B

B.8 Textual SynDEx PID algorithm, pidFan.sdx

1 syndex ver s i on : ” 7 . 0 . 0 ”
app l i c a t i on d e s c r i p t i o n : ”Algorithm generated by the Sc i c o s To SynDEx t r an s l a t o r ”

L i b r a r i e s
inc lude ”Atmel . sdx” ;

6 inc lude ”TaskTiming . sdx” ;
i nc lude ”eBoard . sdx” ;
i nc lude ”pid . sdx” ;
i nc lude ” eBoardDrivers . sdx” ;

11 # Algorithms
de f a lgor i thm FanSpeedControlMonoProcessor :
c ond i t i on s : t rue ;
r e f e r e n c e s :
eBoardDrivers / eFanSensorDr iver 1 fanSensorDr iver @−188 ,133;

16 eBoardDrivers / eFanDriver 1 <0> fanMotorDriver @379 , 7 1 ;
eBoardDrivers /eDoubleToUint8 S2SDataWrapper @242 , 7 1 ;
eBoardDrivers /eUint16ToDouble S2sDataWrapperW @−44 ,133;
eBoardDrivers / eConstantUint8 <50> FanSpeed @−135 ,38;
eBoardDrivers /eUint8ToDouble S2SWrapperCst @−7 ,38;

21 TaskTiming/TTTaskContainer TTSpeedControl @193 ,−39;
TaskTiming/HWTimer2Controller <1000;25> Timer2Contro l ler @−21,−39;
pid / p idCont ro l l e rF ina l PID @135 , 6 6 ;

dependences :
s t rong precedence data fanSensorDr iver . rpm −> S2sDataWrapperW . uint16 ;

26 s t rong precedence data S2SDataWrapper . u int8 −> fanMotorDriver . speed ;
s t rong precedence data S2sDataWrapperW . d −> PID . y i ;
s t r ong precedence data FanSpeed . c s t −> S2SWrapperCst . u int8 ;
s t rong precedence data S2SWrapperCst . d −> PID . w i ;
s t rong precedence data Timer2Contro l ler . f i r e −> TTSpeedControl . f i r e ;

31 s t rong precedence data PID . u i −> S2SDataWrapper . d ;
code phases : l oopseq ;

Arch i t e c tu r e s
36

Main Algorithm / Main Arch i t e c tu re
main algor i thm FanSpeedControlMonoProcessor ;
main a r c h i t e c t u r e eBoard/monoProcNode3 ;

41 # Extra durat ions

Operation groups , p r ev i ou s l y c a l l e d Software components

Const ra int s

Listing B.8: Textual SynDEx algorithm

133

Appendix B

134

