

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

A Native Temporal Relation
Database for Haskell

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Lukas Maczejka
Matrikelnummer 0426085

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: O.Univ.Prof. Dipl.-Ing. Dr.techn. A. U. Frank

Wien, __,__,____

 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

A Native Temporal Relation Database for Haskell

Lukas Maczejka

2009-2010

Matr.# 0426085

Correspondence ID 4658

lukas.maczejka@compucare.at

December 6, 2010

Abstract

Representation of time-specific data is a widely discussed issue in modern database

management systems. After a brief introduction to database basics, this work ex-

plains the currently accepted concepts related to time-specific terminology, differ-

ences in representation of time, and the storage of temporal data in detail. Further-

more, the basics behind functional programming in general and Haskell in particular

are briefly discussed. Using both technologies mentioned above, a native temporal

database management system for Haskell is introduced. The prototype developed

from these specifications is described both from the developer’s and the user’s point

of view. Finally, a critical evaluation of the proposed system and the prototype is

given, and possible further work is discussed.

Contents

1 Introduction 7

1.1 Goals . 7

1.2 Previous Work . 7

1.3 Development . 8

1.4 Requirements . 8

1.5 Restrictions . 9

1.6 Structure . 9

2 Database Design 11

2.1 Database Systems . 11

2.2 Database Management Systems . 12

2.3 Database Models . 12

2.3.1 The Relational Model . 13

2.3.2 Object Databases . 14

2.3.3 Object/Relational Databases - The Third Generation 16

2.3.4 The Logic-Based Approach . 18

2.3.5 Semistructured Data and XML 19

2.4 A Fitting Approach? . 20

3 Persistence and Temporal Data 21

3.1 Persistence . 21

3.2 Persistent Data Structures . 21

3.3 Time . 22

3.4 Classification . 23

3.4.1 Data structures . 23

4 Functional Programming and Haskell 25

4.1 History . 25

4.2 Definition . 25

4.3 Functional Programming from an Imperative Programmer’s Point of View 26

4.4 Haskell . 27

3

4.5 Database access in Haskell . 27

4.5.1 HaskellDB . 27

5 A Temporal Relation Database in Haskell 30

5.1 Binary Relations . 30

5.2 Data Model . 31

5.2.1 Values . 31

5.2.2 Relations . 32

5.2.3 Temporalising the Database . 32

5.2.4 Transactions . 33

5.3 Data Storage and Manipulation . 33

5.3.1 The Physical Database . 34

5.3.2 The Main Memory Database . 35

5.3.3 Database Aspects and Temporal Aspects 36

5.4 The Database Model . 36

5.5 Data Structures . 36

5.5.1 Balanced Binary Search Trees . 37

5.6 Database Operations . 37

5.7 Data Access and Relational Algebra . 38

5.8 Data Manipulation on Disk . 39

5.8.1 Future Enhancements . 40

6 Implementation 41

6.1 Basic Types and Data Structures . 41

6.1.1 Values . 41

6.1.2 Database Structures . 42

6.1.3 Index Trees . 42

6.1.4 Database manipulation and retrieval 43

6.1.5 Conditions and Joins . 44

6.2 Database Access . 45

6.2.1 Database I/O . 45

6.2.2 Basic Statements, delete and select 45

4

6.2.3 Persistence module . 46

6.2.4 Data Retrieval with SELECT . 46

6.2.5 Data Extraction and Output . 47

6.3 Time and Temporal Joins . 47

6.3.1 Time-specific Functionality . 47

6.3.2 Temporal Joins . 48

6.4 Temporal Aspects . 49

6.4.1 Transaction Time . 50

6.4.2 Valid Time . 50

6.5 Database Manipulation . 51

6.5.1 Database Creation . 51

6.5.2 Relation Definition . 51

6.5.3 Data Insertion . 52

6.5.4 Deletion . 52

6.6 Data Retrieval . 53

6.7 Data representation . 54

6.7.1 The physical database . 54

6.7.2 The main memory database . 55

6.7.3 Conversion . 56

7 Conclusion 57

7.1 Achieved Goals . 57

7.2 Difficulties . 57

7.3 Ties to Literature . 58

7.4 Further Development . 58

7.5 Evaluation . 59

7.6 Personal Evaluation . 60

7.7 Acknowledgements . 60

References 61

List of Figures 64

5

List of Tables 65

A Haskell Source 66

A.1 BasicTypes . 66

A.2 Data . 67

A.3 Indices . 69

A.4 IO . 70

A.5 Print . 72

A.6 Relations . 76

A.7 Time . 83

A.8 Tools . 87

A.9 Transactions . 88

A.10 Tree . 94

A.11 Persistent Transactions . 97

6

1 Introduction

This section describes the goals this work is trying to achieve, as well as the motivation to

do so. Existing restrictions are discussed and a short overview of relevant fields of study

is given. Finally, this section will provide a brief description of the structure of this work.

1.1 Goals

Existing software modules, developed in Haskell, represent and store data as binary rela-

tions. The current method of data storage used by these modules is inadequate consider-

ing efficiency and the scope of data. This work aims to propose a new, better method of

storing relations in Haskell. The goal is not only to increase ease of access and efficiency,

but to further expand the scope of such a system by the time dimension, allowing the state

of data to be stored and retrieved for any given point in the past or future as well as to

restore the state of the entire database to any point in history. A prototype is developed

to show the application of the proposed methodology and algorithms and to evaluate

them considering the task at hand. This prototype is meant for real-life application as a

method of data management for existing software modules.

1.2 Previous Work

This work covers large portions of various fields of study, aiming to apply the most appro-

priate methods to a very specific problem. The first part will concentrate on highlighting

the basic concepts behind the terminology used in this paper in accordance to its usage

in previous works. An overview of historic and current database design and development

paradigms will be given, followed by a more specific description of the concepts behind

temporal databases in general and time-specific data in particular. Since the prototype is

to be developed in Haskell, this work will also cover the basic concepts behind functional

programming in general and Haskell in particular.

7

1.3 Development

Since a large part of this work consists of the development of a working prototype, the

methods used to develop this application will be discussed in detail. Parts of the text will

be concerned not with the particular results of research, but the problems and difficulties

in achieving these results.

1.4 Requirements

The proposed system must, at least, provide the following functionalities.

• Haskell. The system is to be written in Haskell for seamless integration into

existing software. Further restrictions concerning system environment and third-

party software might also apply and will be discussed in detail at the time of their

occurrence.

• Relations. The database must be able to store various types of data within a set

of defined relations, forming a database.

• Database Access. Haskell functions for access and manipulation of the database

must be provided. This includes basic data manipulation as well as more complex

database queries. To provide a maximum ease of usage, access functionality should

resemble well known database query languages (SQL).

• Temporalisation. The system must support the time dimension and be able to

retrieve its contents for any given point in time, if data exists in the database which

is valid for that particular point in time. Additionally, the database must be able

to restore itself to any state it had at any point in the past since its initialisation.

• Extensibility. The goal is to develop the database system as flexible as possible,

to make future enhancements as simple as possible.

8

1.5 Restrictions

Different restrictions apply concerning the desired results, specific technologies to be used,

and the scope of this work.

• Specialisation. The proposed system must fulfill all the requirements, but must

do so in an efficient manner. Existing database technologies are to be considered

and, if applicable, integrated into the design. However, functionality beyond the

scope of this work is not to be implemented, even though the system might provide

possibilities for further enhancement.

• Binary relations. A database system with the ability to manage binary relations

is not necessarily a relational database management system. The distinction be-

tween relation database and relational database is important in this context, though

binary relations might not suffice for describing all the necessary data structures,

as will be evident in later sections.

• Query language. Access to the database management system’s functionality is

provided with specifically designed Haskell functions. No established or newly de-

veloped query language is to be implemented. However, to make access to these

functions as simple as possible, statements can be expressed closely resembling

SQL-statements.

• Performance. Though important in any database system, performance will ini-

tially only be a secondary goal. Performance issues will be discussed during the

remainder of this work, however, optimising the system’s performance will be left

for future development.

1.6 Structure

Section 2 will cover the state of the art in database development, relevant terminology,

and current database design paradigms. Section 3 is concerned with data persistence

and temporal data as well as the terminology and classification of time-specific database

9

systems. Section 4 will give an overview of functional programming in general and Haskell

in particular, as well as currently existing technologies for database access in Haskell.

After evaluating the available technologies, the most appropriate are chosen to specify a

database system meeting all the requirements for this work. This will be covered in section

5. The system is then developed in Haskell, detailing the specifics of the implementation.

Finally, in section 7, the resulting prototype is evaluated against the initial requirements

and possible further development is discussed.

10

2 Database Design

This section will give an overview of accepted database models, design, and application.

The applicability of existing database systems to the problem at hand will be evaluated.

2.1 Database Systems

A database system is nothing more than a computerised record-keeping system (Date

2004). The goal is to store and retrieve different types of information as efficiently as

possible. The main benefits of storing information in a database system can be sum-

marised as follows (Date 2004):

• Sharing of data

• Reduction of redundancy

• Avoiding of Inconsistencies

• Transaction Support

• Maintaining Integrity

• Security

• Balancing Requirements

• Enforcing of Standards

• Data Independence

To explain the benefits of database systems in more detail would go beyond the scope of

this work. However, there is ample literature available for the interested reader.

The most widely used database systems today are relational database management sys-

tems (Hellerstein, Stonebraker & Hamilton 2007). Data is stored in tables of records of

various formats, representing relations between such records.

11

In almost all commonly used database systems two types of information are stored sep-

arately. On one hand there is the data itself, containing raw, coherent information. On

the other hand relations are defined as links between parts of these coherent data sets.

Thus, related data can be stored efficiently.

2.2 Database Management Systems

A database management system is the layer of software between the physical database

(the data physically stored) and the user (Date 2004). All data access and manipula-

tion are handled by the Database Management System (DBMS). The DBMS acts as

an abstraction layer between actual data and processed data, shielding the user from

hardware-level details.

What is generally referred to when talking about databases is the database management

system, not the database itself. Thus, the goal of this work is not only to create a relation

database for Haskell (the model), but also a DBMS to manage such a database in Haskell.

2.3 Database Models

The vast majority of research into database systems in the past 30 years has been based

on the relational model. As a result, relational database systems (and SQL Systems

in general) have come to dominate the market (Date 2004).

Other approaches include inverted lists, hierarchic, and network systems, as well

as object, object-relational, multi-dimensional, logic-based and semistructured

approaches.

C.F. Codd, the inventor of the relational model (Date 2004), defines a data model as the

combination of three components (Codd 1980):

• A collection of data structure types

• A collection of operators or inferencing rules

12

• A collection of general integrity rules

The following sections will briefly describe the most common database models.

2.3.1 The Relational Model

Relational Database Management Systems (RDBMS) are based on the relational model

of data first put forward by C.F. Codd (Codd 1970), which can be described by the

following three aspects (Date 2004):

Structural aspect. The data is perceived by the user as nothing but tables.

Integrity aspect. Those tables satisfy certain integrity constraints.

Manipulative aspect. Operators for manipulating tables derive tables from tables.

Tables, however, are only the logical structure of the database. The actual physical

storage can be managed by the RDBMS in any way, provided it can map it to the logical

table structure. All Information is stored in column positions in rows in tables (as a

collection of relational variables, or relvars), on the logical level there are no pointers or

any other additional information.

In the context of relational databases, a relation is nothing more than the mathematical

term for a table of specific kind (Date 2004).

In 1970, Codd suggested the internal organisation of large databases must be transparent

to its users. Tree-structured files or network data models are inadequate (Codd 1970).

Nowadays, the overwhelming majority of database systems are based on the model put

forward by Codd, reinforcing his views on the subject.

There is no way around the relational model in almost all modern databases, partly due

to superior performance and the technology’s unrivaled market position. It also needs to

be considered as a solution for the problem at hand, be it at a slightly modified point of

view. However, in order to choose the ideal technology, a closer look at other models is

required.

13

2.3.2 Object Databases

According to Atkinson et. al. an object oriented database system (OODBS) must possess

all of the following thirteen features to be classified as both a database management

system and as an object-oriented system (Atkinson, Bancilhon, DeWitt, Dittrich, Maier

& Zdonik 1989):

Complex Objects. The system must support complex objects by applying constructors

such as tuples, sets or lists to simple objects such as integers or strings.

Object Identity. An object has an existence which is independent of its value. Thus,

two objects can be considered as equal having the same value, or identical being the

same object. Objects can be shared, and any changes to one object are seen by any other

related object.

Encapsulation. An object consists of an interface and an implementation part. The

interface part is the set of operations that can be performed by the object and therefore

the only visible part of the object. The implementation part consists of the data store

and the procedure part. The object encapsulates both program and data.

Types and Classes. Types are abstract data types, summarising the common fea-

tures of a set of objects, while classes also contain an object warehouse providing the

option of manipulating all objects of one class. Same as in the world of object oriented

programming, an OODBS can support either approach.

Class or Type Hierarchies. The keyword here is inheritance. Types should be able

to inherit from other types. Which style of inheritance is supported and to which degree

it is supported is not relevant to the definition.

Overriding, overloading and late binding. Objects of different types should be able

to share methods of the same name (overriding). This results in different programs with

a single name (overloading). To provide this functionality, operation names cannot be

mapped to programs at compile time, but must be resolved at runtime (late binding).

Computational Completeness. The Database system must be able to express any

14

computable function.

Extensibility. There has to be a way to define new types, and the handling of these

types must be no different than that of predefined types.

Persistence. Data must implicitly survive the execution of a process in order to even-

tually use it in another process.

Secondary storage management. This includes performance features such as index

management, data clustering or query optimisation.

Concurrency. Multiple users must be able to concurrently interact with the system.

Recovery. The system should be able to recover from software or hardware failures,

being able to return to some coherent state of data.

Ad Hoc Query Facility. The system must provide the user with an easy way to

ask simple queries. This does not necessarily mean the system needs to provide a fully

functional query language.

In conclusion, an OODBS must contain the five features attributed to database systems

and the eight features attributed to object oriented languages mentioned above. For

further detail and a list of optional features see (Atkinson et al. 1989).

C.J. Date (Date 2004) argues that

The sole good idea of object systems in general is proper data type sup-

port; everything else - including in particular the notion of user-defined op-

erators - follows from that one idea. But that idea is hardly new!

This again highlights the dominance of the relational model, partly due to the strong

opinions within the database community. While possibly a fitting solution for specific

database tasks, the characteristics of object databases do not overlap with the require-

ments of the prototype to be developed.

15

2.3.3 Object/Relational Databases - The Third Generation

Relational systems should evolve to incorporate the (good) features of objects (Date

2004).

As a counterproposal to the Object-Oriented Database System Manifesto (Atkinson et al.

1989) (see section 2.3.2), the Committee for Advanced DBMS Function published the

Third-Generation Database Management System Manifesto (Stonebraker, Rowe, Lindsay,

Gray, Carey, Brodie, Bernstein & Beech 1990), describing an Object/Relational Database

Model.

According to Stonebraker et. al. the three basic principles defining a third generation

DBMS are (Stonebraker et al. 1990):

• Support for richer object structures and rules

• Sub-summation of second generation DBMSs (Defined as the current collection of

relational systems)

• Third generation DBMSs must be open to other subsystems

What this means in detail is explained by another set of thirteen propositions:

Rich type system. A third generation DBMS must support various type constructors,

an abstract data type system, functions as a type, and a recursive composition of type

constructors.

Inheritance. The system must allow types to be organised in a multiple inheritance

hierarchy.

Functions and encapsulation. Encapsulated functions provide performance and struc-

turing benefits. Functions should be written in a higher level language.

Optional system-assigned record IDs. If no user-defined primary key is available,

the system should provide the record with a generated unique identifier.

16

Rules, not tied to specific objects. Rules should not be implemented in functions,

but be enforced by the DBMS itself.

Navigation only as a last resort. The expressive power of a query language must be

present in every programmatic interface and it should be used for essentially all access

to data.

Automatically and user-maintained collections. There should be two ways to

specify collections. The first being extensionally, through a collection of pointers, the

second being intensionally, or automatic, through expressions.

Updateable views. Support for update-able virtual collections (views) is required.

Hidden performance modules. Data clustering, indices and other performance-

related indicators have little to do with data models and must be hidden from the user.

Multiple Language Support. A third generation DBMS must be accessible from

multiple higher level languages.

Persistence regardless of type system. Compiler extensions and a complex run time

system will ensure programming language and DBMS independence.

SQL support. SQL is the universal way of expressing queries, and therefore the system

must support SQL or an extended version of SQL.

Queries and results as the lowest level of communication. Queries, even if ex-

pressed in a function, must be the lowest level of communication. Remote procedure calls

and SQL queries provide an appropriate interface.

In conclusion, Object/Relational databases are nothing more than relational systems that

allow users to define their own types (Date 2004).

17

2.3.4 The Logic-Based Approach

Another completely different approach are database systems based on logic. New facts can

be derived from facts already explicitly introduced to the database (Gallaire, Minker &

Nicolas 1984). The distinction between traditional database systems and the alternative,

logic-based systems can be described as the difference between model-theoretic and

proof-theoretic systems (Reiter 1984). The difference can be explained as follows (Date

2004):

Model-theoretic database systems. The database is a set of explicit relations, each

containing a set of explicit tuples. Executing a query means evaluating an expression of

those relations and tuples.

Proof-theoretic database systems. The database is a set of axioms. Executing a

query means proving a formula as the logical consequence of the database, proving it as

a theorem.

There is a number of features inherent to deductive database management systems

(DBMSs implementing the proof-theoretic approach) that provide certain advantages

(Date 2004):

Representational uniformity. Everything in a database language, from values and

relations to queries and integrity constraints can be represented in the same uniform way.

Operational uniformity. Query optimisation, constraint enforcement, database design,

and other seemingly independent problems can be tackled on the same basis.

Semantic modeling. The basic model can be extended by a variety of semantic features.

Extended application. Certain issues, such as disjunctive information, that model-

theoretic systems have trouble coping with can be dealt with by proof-theoretic systems.

Logic-based database systems have the possibility of bridging the gap between databases

and general-purpose programming languages (Date 2004). Contrary to the “sub-language”

approach taken by SQL systems, deductive databases could be seamlessly integrated into

18

programming languages, no more distinction made between shared data and data local

to the program.

2.3.5 Semistructured Data and XML

With the advent of the world wide web and hypertext came the need for semantically

structured documents. The most widespread approach to this problem currently is XML

(Extensible Markup Language), with a variety of added features from definition to trans-

formation available. This work will not delve deeper into the features of XML, however,

even if such approaches to database systems are viewed as an exercise in futility by some

(Date 2004), its use as a database system will be briefly discussed in this section.

There are different methods of representing data structured in an XML document in

database terms, from shredding and storing the data in a conventional database to storing

the entire document as part of an attribute-value tuple (Date 2004). For this work, native

XML databases are of interest.

Though it is possible to use an XML document by itself as a database (in the strictest

sense of the word) in a low-requirement environment it will certainly fail in a real world

production environment (Bourret 2005). A native XML database system can be defined

as a DBMS that represents data using the XML model. This, as with relational database

systems, does not mean that the physical data storage must be XML.

Native XML databases can be classified as one of the following (Bourret 2005):

Text-based native XML databases. XML is stored as text, be it in a file, in a field

in a relational database, or in any other text format. The XML document is indexed for

ease of access to any point in the document. This is a far more efficient method than

restoring separately stored XML fragments in a classic relational database or in some

model-based XMLDBMS. Thus, text-based XML databases bear a striking resemblance

to hierarchical databases.

Model-based native XML databases. An internal object model is created from the

19

XML document, and this model is stored in the database. The method of storage is not

of importance. Model-based systems are usually built on other database models.

There is a number of working examples of XML databases, a large portion of which are

developed by the open source community. While there is potential for this technology to

find a market, it is not suitable for achieving the goal of this work.

2.4 A Fitting Approach?

All of the models mentioned above cover a broad spectrum of functionality. Support for

the time dimension is also needed, and most of the models discussed can theoretically

provide this support. Some of the points of argument, such as the need for a complex

type system, can be easily solved within a Haskell environment. Other described features,

though highly relevant in generalised DBMS, add levels of complexity not needed for this

database management system.

Due to the specifics and restrictions of the problem at hand, a specialised new system must

be developed, resembling in functionality some of the approaches described above. The

following sections will discuss the addition of the temporal aspect to database models and

give an overview of functional programming. Finally, the new system will be proposed.

20

3 Persistence and Temporal Data

This section will briefly explain the concept of data persistence, temporal databases, the

concepts behind data actuality and various approaches to solve these problems. Further-

more data structures for storing temporal data will be discussed.

3.1 Persistence

C.J. Date describes persistence in databases as follows (Date 2004):

It is customary to refer to the data in a database as “persistent” (though it

might not actually persist for very long!). ... once it has been accepted by

the DBMS for entry into the database in the first place, it can subsequently

be removed from the database only by some explicit request to the DBMS,

not as a mere side effect ...

Thus, any data stored in a persistent database is stored until it is removed by the DBMS.

No additional explicit command is necessary to store the data, it is available for the

duration of the DBMS’ existence, though this does not necessarily mean only for or

beyond the runtime of a program using the database.

3.2 Persistent Data Structures

In contrast to ephemeral data structures, where every change results in the destruction

of the old structure in favour of the new changed structure, persistent data structures

allow access to different versions (Driscoll, Sarnak, Sleator & Tarjan 1989). Further

subcategorising, one speaks of partially persistent data structures if all versions can be

accessed but modification is only possible on the current structure, and fully persistent

data structures if all manifestations can both be accessed and modified.

21

Common to both definitions is the requirement of retaining any and all previous versions

of the data structure within itself.

The method of data storage proposed in this paper (see section 5.3) fits this requirement,

and is therefore at least a partially persistent data structure. Additionally manipulation

is also possible after accessing a previous version of the database, however this does not

affect the current (newest) version. By loading a previous version in the proposed system,

all newer modifications are discarded and the previous version becomes, for the purpose

of this instance, the current (newest) version. This data structure can then be modified,

without affecting the previously discarded modifications.

3.3 Time

Temporal database systems include special support for the time dimension (Date, Dar-

wen & Lorentzos 2003). They must provide special facilities for storing and querying

historical and future data. Almost all conventional Database Management Systems are

not temporal in this sense. However, for a number of reasons, from cheap disk storage

to incorporation of temporal features into widespread standards, this is likely to change

soon.

There are a number of possible ways to incorporate the time dimension into a database,

as well as a number of different classes of resulting database systems, according to the

type of time implemented in these systems. The most basic distinction is to be made be-

tween transaction time, valid time and user defined time (Snodgrass & Ahn 1985).

Transaction time denotes the time at which data was stored in the database (Snodgrass

& Ahn 1986). Every database transaction is marked at the time of its occurrence. It is

thus possible to retrieve the state of the entire database at any point in (real) time. Valid

time applies not to the transaction of data, but to data itself. A historical state is stored

for each relation, representing the time at which the relationship was valid in the modeled

world (Snodgrass & Ahn 1986). Finally, the term user-defined time is used for additional

time-specific information not covered by transaction time or valid time. This information

is application-specific (Snodgrass & Ahn 1985) and thus not interpreted by the database

22

management system. Support for user-defined time can be provided by simply adding an

internal representation of time (Snodgrass & Ahn 1985).

3.4 Classification

According to the level of support of the time dimension as discussed earlier, database

systems can be classified as follows (Snodgrass & Ahn 1985):

Snapshot databases, or static databases, represent a model at its current state. No

time-specific information is stored, it is therefore impossible to directly access the time

dimension. If the application requires this, time-specific support must be separately

implemented (Snodgrass & Ahn 1986).

Rollback databases include the concept of transaction time, and adds a third dimen-

sion to the stored relations. It is possible to derive a snapshot database by selecting a

specific historical state and retrieving the according data. This process is called rollback

(Snodgrass & Ahn 1986).

Historical databases do not support transaction time, but valid time. Contrary to

rollback databases, it is impossible to view the database as it was in the past (Snodgrass

& Ahn 1986), as changes are not recorded. However, historical information is stored for

each relation and each relation can assume different states over time. Historical databases

closely model reality in this respect (Snodgrass & Ahn 1986).

Temporal databases denote a combination of both rollback and historical paradigms.

Both valid time and transaction time are supported, adding a fourth dimension and full

support for all temporal information (Snodgrass & Ahn 1986), as well as an increasing

level of complexity.

3.4.1 Data structures

This section will describe some data structures capable of storing and organising time-

specific data. Special attention is given to binary search trees as the method of choice

23

for this work.

Relational databases.The problem can be, in its simplest form, easily solved in a

relational environment by simply adding timestamp attributes (from date and to date

or intervals to represent valid time, or transaction timestamps to represent transaction

time) to the data model (Date 2004). After applying the appropriate constraints, special

query facilities can retrieve the relevant data.

Binary search trees. One of the most self-evident methods of temporalising data. A

binary search tree, built with (timestamp, value) tuples for each piece of information in

the database can represent both valid and transaction time. Access to data is hindered

by another dimension. For each data retrieval operation the tree has to be searched, and

for each update operation the tree has to be modified.

Red-Black trees. Due to performance issues with simple binary search trees, a more

efficient approach is needed. Approximately balancing the tree can greatly improve both

search and manipulation performance on ordered data. Red-black trees are among the

most popular balanced binary search trees and work very well on ordered data (Okasaki

2008), which clearly applies here. Red-Black trees are used to represent data in the system

proposed in this work and will be described in more detail in the following sections.

24

4 Functional Programming and Haskell

This section will give a short introduction into the world of functional programming with

emphasis on the Haskell programming language and closely related topics and theories,

and will elaborate on currently used database technologies available for Haskell.

4.1 History

The starting point for the evolution of functional programming was Alonzo Church’s de-

velopment of a method for describing arbitrary functions, the Lambda Calculus. Any

computable function can be expressed and evaluated using the λ calculus. It is compu-

tationally universal, and thus equivalent to Turing machines. (Rojas 1998).

Generally regarded as the first functional programming language, John McCarthy devel-

oped LISP (List Processor) in 1958. Though having some influences from the λ-calculus,

variable assignments where still at the core of the language (Hutton 2007).

ISWIM, the first pure functional programming language, was developed by Peter Landin

in 1966.

Various programming languages are built on the principles of the λ calculus, from ML to

Lisp, Erlang, and especially important for this work, Haskell.

4.2 Definition

Functional programming can be viewed as a style of programming in which the ba-

sic method of computation is the application of functions to arguments (Hutton 2007).

Functional programming reflects a mathematical way of thinking, rather than reflecting

the underlying machine (Goldberg 1994).

The key to functional programming’s power is greatly improved modularisation as com-

pared to common structured programming languages. Modularity leads to successful

25

programming (Hughes 1984), and thus functional programs have a great advantage over

their structured counterparts.

4.3 Functional Programming from an Imperative Programmer’s

Point of View

Before delving deeper into the mathematical background of functional programming and

the programming language this work is concerned with, this section will try to make

the concept of functional programs more accessible to the average developer used to

imperative languages. Over the past years, the author himself was, with a few exceptions,

almost exclusively engaged in systems developed in widespread imperative programming

languages. Since almost everyone concerned with functional programming is coming

from that school of thought, it seems important to accentuate the transition involved in

developing a functional program.

The most basic distinction might be that while an imperative program describes how

something is computed, a functional program merely describes what is to be computed.

This obviously leads to a higher level of abstraction.

Imperative programs rely heavily on order of execution. Modules are executed in a strict,

predefined order. Moreover, the execution of these modules can (and often will) have an

influence on the execution of other pieces of code. Memory is manipulated, values are

assigned, manipulated, and reassigned.

Functional programming works in a very different manner. Variables, once given a value,

never change, since functional programs, contrary to imperative programs, contain no

assignment statements at all. In fact, functional programs contain no side-effects at all.

By calling a function nothing else but that functions result is computed, with no influence

on the rest of the program whatsoever (Hughes 1984).

Thus the order of execution becomes irrelevant, and programs become mathematically

more traceable (Hughes 1984).

26

The crucial difference in thought is, as mentioned earlier, not trying to write a program

that comes to a solution in a certain way, but trying to define the solution itself in a

declarative manner.

4.4 Haskell

In the late 1980 dozens of lazy functional languages were being worked on. In 1990 a

committee, formed to design a common language, published the Haskell 1.0 specifications,

naming the language after Haskell Curry, an influential logician (O’Sullivan, Stewart &

Goerzen 2008).

This section will give an overview of Haskell’s functions and facilities and is not meant to

cover the language as a whole. Basics as well as concepts which seem the most important

to the author, considering the task at hand, are briefly described, while other seemingly

important features might be omitted.

4.5 Database access in Haskell

This section will describe and evaluate existing approaches to connect Haskell to common

databases.

4.5.1 HaskellDB

Originally proposed by Daan Leijen and Erik Meijer (Leijen & Meijer 1999), HaskellDB

is a library for expressing queries and operations on relational databases in a type safe

and declarative way (Bringert & Höckersten 2004). It is a domain-specific library for

programming against relational data (Meijer 2007). The original HaskellDB concept was

developed to work with several requirements, creating a number of version conflicts. It

was redesigned and improved in 2004 (Bringert & Höckersten 2004) to make it a more

practical and usable database library.

27

Though a number of SQL-based database interfaces to Haskell exists (see the follow-

ing sections for a short overview), the method put forward with HaskellDB has several

advantages (Bringert & Höckersten 2004):

• Syntactically or semantically invalid queries are detected before execution.

• No string manipulation avoids security issues such as SQL injections.

• No language disparity. The programmer does not have to work in two separate

languages.

Even though the goal of this work is not to create a database interface but a native

solution, being the most widespread solution to database interfacing with Haskell, it is

worth to take a closer look at HaskellDB’s features and functionality.

Bringert and HÃ¶ckersten define the advantages of HaskellDB as follows (Bringert &

Höckersten 2004):

Query correctness. All database operations are checked by the Haskell compiler at

compile time rather than by the database system at runtime. SQL injections are prevented

by automatic quoting of supplied constants.

Ease of programming. Query errors are caught at compile time rather than at runtime,

greatly improving the speed of the program/debug cycle. Knowledge of SQL is not

required.

Expressive power. Abstraction of common patterns can be achieved by utilising all of

Haskell’s features since queries are written in Haskell, not in SQL.

Platform independence. By changing the connection function, HaskellDB can be used

in any environment.

HaskellDB is an interface between Haskell and the relational model. The interesting

aspect is that, from the programmer’s point of view, it can be handled solely in Haskell.

No knowledge of the actual DBMS behind HaskellDB or the used query language (SQL)

28

is needed. It is therefore a suitable solution to the problem, though probably far to

powerful for the task at hand.

29

5 A Temporal Relation Database in Haskell

This section discusses the theoretical basics behind the proposed database system, the

data model, modes of storage and data representations and any design decisions. A more

detailed insight into the specific implementation and usage will be given in section 6.

5.1 Binary Relations

Initial requirements proposed a system managing binary relations, as the system is meant

to be applied in an environment where all the relevant data can be expressed by binary

relations. A relation is, non-mathematically, defined as a list of interrelated values.

Binary relations form the special case of always interrelating two values, as compared

to the more general definition of n-ary relations. Restricting the number of relvars in a

relation simplifies operations on the relation, but also limits its functionality.

A Composition creates a new binary relation by combining two previous binary relations

over a common property. This property, however, is lost by the composition and not

present in the newly created binary relation. Join operations known from relational

database systems are a generalised form of composition applying to n-ary relations.

The proposed system supports n-ary relations. This includes the possibility of managing

binary relations. The difference in operation can primarily be found by examining the

difference between a binary composition and an n-ary join. The following tables define

two example relations R and S:

First Name Last Name
Haskell Curry
Mary Wheatley

Table 1: Relation R

First Name Middle Name
Haskell Brooks
Mary Virginia

Table 2: Relation S

Forming a binary composition over the FirstName value creates a new binary relation

relating MiddleName to LastName. The information contained in FirstName is no

longer present in the newly created relation.

30

Middle Name Last Name
Brooks Curry
Virginia Wheatley

Table 3: R ◦ S

A natural join over FirstName would create the relation seen in the following table.

This is no longer a binary relation.

First Name Middle Name Last Name
Haskell Brooks Curry
Mary Virginia Wheatley

Table 4: R on S

5.2 Data Model

This section will propose a data model for a native temporal relation database for Haskell.

Data is to be stored in relations with support for Haskell’s powerful type system. Rela-

tions must be defined as flexible as possible to meet any application-specific requirements.

Since a temporal database, by definition, supports both transaction time and valid time,

facilities for both must be available within the data model. The main memory database

structure may differ from the physical structure and both will be discussed in the following

sections in addition to the representation of basic database concepts.

5.2.1 Values

Values within relations are represented by the Haskell type RDBo (for Relation Database

Object) and can contain any Haskell type implementing the necessary functionality. Thus,

the database is able to store almost any data which can be defined as a Haskell type, as

well as support mixed-type values within one relation. For physical representation and

manipulation of values within the database management system’s index structure some

restrictions apply, and the stored Haskell types must support ordering and equality tests

as well as implement read and show.

31

5.2.2 Relations

Relations hold a fixed number of values for each data set and are identified by an integer

within the main memory database structure.

(Identifier, Index) (1)

Within the relation index, value sets (rows) are identified by a textual representation of

the row’s content. Considering a relation for the storage of employee personal data, a

relation R might contain indices for first name and last name. Internally, these indices

are built within a tree structure, as will be discussed in detail in section 6.1.2. A main

memory database consists of any number of relations.

Mathematically, a relation R on a set is defined as a collection of related tuples of that

set. Thus, if the set (x, y)εR, x is R-related to y.

5.2.3 Temporalising the Database

Both transaction time and valid time must be existent in the database system. However,

due to the difference between the physical and main memory database the two temporal

aspects are stored in different manners.

Timespans. Time can be stored as the number of seconds since January 1, 1970 (com-

monly known as Unix time). This allows for storage within an Integer, as well as for simple

manipulation and computation of time values. The database system handles timespans

as tuples of two Unix time integers, the first denoting the begin of the timespan, while the

second marks the end. Additionally, the system provides the special timespan ALWAYS

as a shortcut to the user, which is still represented as a tuple of Unix timestamps within

the physical and main memory databases.

Transaction time. Every data manipulation is timestamped, and thus any operation

can be traced to the time it occurred. Transaction time is, in this sense, not user-specific

32

but automatic, and there is no need for user transparency or even representation in the

main memory database. As will be discussed in section 5.3.1, the physical database

consists of a list of transactions. Each of these is marked with a timestamp, and since no

information can be removed from the physical database, it can be restored to its state

at any point in time since its creation. Since a transaction happens at a specific point in

time, a single Unix timestamp is used instead of a timespan.

Valid time. Any data set is labelled with a timespan marking its valid period. Query

facilities allowing for definition and selection of time periods are provided to the user. The

indexing subsystem allows for multiple entries identified by the same value but differing

in valid time, representing user-specific data change over time.

5.2.4 Transactions

As the method of physical storage, any manipulation of the database is defined by a

transaction. The system supports the following three major types of operations:

• Defining relations

• Inserting data sets

• Deleting data sets

With these three transaction types, the prototype supports almost all possible data ma-

nipulations.

5.3 Data Storage and Manipulation

This work proposes a twofold method of data storage. The system distinguishes between

data stored on disk (the database file, in following called the physical database) and the

data preprocessed for access and manipulation stored in main memory (the main memory

database).

33

In order to represent any historical state of the database, every transaction with an effect

on actual data (namely insertions and deletions) is stored within the physical database.

The physical database therefore is represented as a file consisting of a list of transactions.

Only changes to the database are stored, and the actual database can be built from this

list of changes.

Once the physical database is loaded into memory it ceases to contain all historical data

and furthermore only represent the current state of the database. Additionally the data

is moved into more efficient data structures to allow for better access. After transferring

the physical database to these data structures in main memory it is referred to as the

main memory database.

Further transactions are also kept within the main memory. By storing the current main

memory database to disk, this list of transactions appended to the initially loaded physical

database depicts the new physical database.

Additional facilities are provided for direct manipulation of the physical database. Func-

tion from within this automated persistence module automatically apply changes to both

manifestations of the database, and manual storage to disk is no longer necessary.

5.3.1 The Physical Database

Due to the restrictions of this work, enough memory for the representation of the entire

database can be assumed to exist. Therefore, loading the entire database into memory

at the beginning of the session and storing the entire database to disk at the end of the

session is a sufficient implementation. The physical database is only accessed by direct

request, and no database operation has a side effect manipulating the physical database

unless that manipulation is specifically executed, or unless the manipulation is executed

using the automated storage module.

The DBMS’ historical aspect requires the system to be able to revert to any state it had

at any point in time since it’s existence. Since the entire database is loaded into memory,

the main memory database can be rebuilt to any historic state during that time. By

34

managing the physical database as a list of data manipulating transactions, that is any

transaction that has an effect on the state of the main memory database, and executing

these transactions in order of occurrence, the main memory database can be built from

the physical database.

Additionally, tagging each transaction with a Unix timestamp enables the rollback feature

of the DBMS. During the process of rebuilding the main memory database transactions

tagged with a timestamp after a specified time, newer transactions can be omitted from

the rebuild process and the database will resemble its state at the specified time.

Thus, the physical database is stored in a file as a list of timestamped transactions.

5.3.2 The Main Memory Database

Contrary to the physical database, the main memory database must aim to provide

efficient access to the stored data sets in order to enable data extraction and further

computation. Additionally, to allow for the representation of valid time and the full

functionality of a temporal database, each data set is tagged with a timespan denoting

its validity.

To enable efficient access, indices are built for each relational variable within each relation.

These indices are stored as red-black binary search trees, where each tree node represents

one data set. Tree ordering is based primarily on each particular relational variable,

the data set’s corresponding valid time, and additionally on a database-internal unique

identifier to allow for duplicate entries. Each relation contains a number of indices equal

to its arity, one for each relational variable.

Accordingly, the main memory database consists of a list of relations, each of which

consists of a list of index trees.

35

5.3.3 Database Aspects and Temporal Aspects

The separation of a physical and a main memory database also allows for a clean sepa-

ration of the two time aspects.

Transaction time is only relevant when the database is to be restored to a previous state

in time. Thus, by linking transaction time directly to the physical database, the full

functionality of a rollback database can be achieved. A timestamp is stored with each

transaction in the physical database. By transforming only the transactions prior to a

certain time into the main memory database, a historical database state can be rebuilt.

Valid time is represented as an aspect of a data set and is interweaved into the main

memory database index trees to allow for temporal queries and joins. The two different

time aspects are therefore handled by different aspects of the database.

5.4 The Database Model

Combining both the physical and main memory database models, the DBMS manages

the data contained within a database as a tuple of these two data structures. Operations

are applied immediately to the main memory database and the triggering transaction is

added to the physical database for later or immedeate storage to disk.

5.5 Data Structures

Apart from the basic data management facilities of Haskell, wherein value and relation

data will be stored in tuples, lists, or lists of tuples, the internal representation of relation

indices, and therefore of the entire database, will me managed with binary search trees.

36

5.5.1 Balanced Binary Search Trees

Within an index, relation data can be uniquely identified with the addition of an internal

identification tag. Instead of simply storing a list of data sets, a much faster approach

was chosen. The object and relation indices are represented as balanced binary search

trees, limiting the operation time significantly.

A certain kind of balanced binary search tree will be used to implement most data struc-

tures for the proposed system: red-black trees. The tree’s balance can be ensured by

applying specific rules to the structure of the search tree. In addition to any application-

specific data every node contains colouring information, marking the node either as red or

as black. If the following rules are considered in every tree operation, it remains balanced.

• No red node has a red child

• Every path from the root to an empty node has the same number of black nodes

Thus, the longest possible path is no more than twice as long as the shortest possible

path, and no individual operation takes more than O(logn) time (Okasaki 2008). It

therefore provides a significant increase in performance on ordered data as compared to

regular binary search trees (Okasaki 2008).

Implementation of efficient binary search trees in functional programming languages is

comparatively simple. Thus, the relation indices can be elegantly and effectively repre-

sented using red-black trees. Even considering the expected amount of data to be rela-

tively small, a fast implementation of such a data structure still seems the right choice

for the problem at hand.

5.6 Database Operations

Specified as Haskell types resembling common SQL statements, the following functions

for data manipulation and retrieval are offered to the user:

37

Database creation. A blank database is returned, presented as a tuple of an empty list

of relations and an empty list of transactions.

Relation definition. Adds a new relation with a specified relation identifier and a

corresponding list of relational variable identifiers to the database. All further operations

are based on relations, which are therefore the main target of computation within the

database management system.

Insertion of data sets. Adds a data set consisting of a list of (relvar, value) tuples to

the specified relation. All index trees are updated accordingly.

Deletion of data sets. Creates a list of delete transactions for each data set meeting

the provided condition. Each of these transactions is then applied to the main memory

database and added to the physical database.

Updating data sets. No facilities for changing data sets directly are provided. SQL-like

update operations can be achieved by sequential deletion of the deprecated data set and

insertion of the new data set.

Data retrieval. Contrary to the operations mentioned above, retrieval operations have

no effect on the database. Data sets from multiple relations are selected according to

specified value conditions, join operations and temporal conditions. The resulting data

sets are combined within a newly, non-persistent relation which is returned for further

computation. The following section will describe the retrieval capabilities in detail.

5.7 Data Access and Relational Algebra

The database management system allows for several restrictions for the specification of

data sets to be retrieved. This section describes these constraints in detail.

Relational variables. A list of relvar identifiers is provided by the user to specify the

requested data. All information not stored within these variables is omitted in the result.

Relations. The list of relations which the retrieval constraints are applied to.

38

Value conditions. On each data set a specified function of a relvar and a comparison

value is applied. If the result is positive the data set is included, otherwise it is omitted.

Temporal conditions. Similar to value conditions, a function of a valid time timestamp

and a comparison timestamp is applied to each data set to determine its relevance to the

query.

Temporal Joins. Two relations are reduced to one by applying to every dataset a

specified function of two relvars, one from each relation. If the result is positive, the two

datasets are joined over the two relvars into a new dataset within the result relation.

This has to be done considering any temporal constraints, which might lead to a number

of different result data sets for different periods of valid time caused by overlapping or

distinct valid time of the source data sets.

5.8 Data Manipulation on Disk

The prototype described in the following sections seperates data manipulation and storage

clearly. Even though the system distinguishes the physical database as the format of disk

storage from the main memory database as the data structure for queries, any changes

made to the database during runtime are lost if the physical database is not explicitly

stored to a file. However, an additional persistence module is implemented which executes

automatic updates of the physical database upon each manipulating transaction.

To achieve persistence in the common sense (as mentioned by C.J. Date, see section 3.1),

the database management system must implicitly store all transactions in the database

file. As of now the prototype supports a usage mode that does not achieve this as all

transactions are processed in main memory, as well as a mode that automatically stores all

changes to both database manifestations. Additionaly, functions are provided that allow

for easy storage of the physical database. There are several advantages and disadvantages

to this method, and this section will highlight them as well as provide reasons for the

chosen model.

Direct data manipulation on disk introduces an additional layer of complexity. Data

39

has to be stored efficiently and in a structured manner on disk to avoid unnecessary

performance losses during access and manipulation operations. Additional concerns such

as concurrency and data integrity also apply. For non-large databases representation of

the entire database in main memory can increase performance as compared to continuing

disk operations. By excluding issues such as concurrency and adding an automatic update

of the physical database upon each manipulation a solution was chosen that can achieve

the requirement of automatic persistence.

Resource conservation while handling large databases is the main advantage of data

manipulation on disk. Only the parts of the database currently needed have to reside

in main memory, providing a scalable database system. Mapping the entire database in

main memory restricts its extent to the available resources.

The prototype developed for this work manages the entire database both in main memory

and on disk. This method was chosen to provide the necessary functionality while at the

same time avoiding the distraction of the additional complexities introduced by direct

manipulation on disk.

5.8.1 Future Enhancements

With additional indexing and structuring of the physical database, the system might

be modified to load only the relations required for a specific operation into memory.

Considering these factors, the prototype can be refined into a database management

system manipulating databases directly on disk.

40

6 Implementation

This section will describe the process of implementing the database prototype in de-

tail, the techniques used and highlight functionality and access in order to integrate the

prototype into other Haskell programs.

6.1 Basic Types and Data Structures

The following sections will elaborate on the selected types and structures for the repre-

sentation of data within the system.

6.1.1 Values

The value of a relational variable can be any type of the form

data RDBo = RInt Integer
| RFloat Float
| RChar Char
| RString String
| RList [RDBo]
| RNull
| RForeign RDBo
deriving (Show,Read ,Ord ,Eq)

Figure 1: Basic data types

By amending the type RDBo with additional arbitrary Haskell types, the database sys-

tem is capable of storing any data implementing the required instances. The value RNull

is reserved for requests specifically not returning any results for a given data set. How-

ever, due to the design of the main memory database and the omission of missing values

in non-affected indices, the value is not used in the current system. RForeign is used to

avoid conflicts during the combination of two relations and possible duplicate values.

41

6.1.2 Database Structures

The internal representation of any database consists of the tuple

(LogicalDB, PhysicalDB) (2)

where PhysicalDB consists of a list of timestamped transactions and LogicalDB of a

list of (Identifier, Relation) tuples, and LogicalDB denotes the main memory database.

The relations are further subdivided into

Relation = [([String], IndexTree)] (3)

which is a list of (RelvarIdentifier, Index) tuples. All actual data sets within the main

memory database are stored within these indices.

6.1.3 Index Trees

Index trees within relations are defined as trees of the type

type RDIndexTree = IVTree (RDBo, Timespan , Integer) [([String] ,RDBo)]

Figure 2: Index trees

which defines red-black id-value (IV Tree) trees where each tree node is identified by the

triple (Indexrelvar, validtime, identifier) and holds a list of relvars not indexed in this

tree. Since every tree node must be uniquely identified to guarantee correct operation,

the additional internal identifier is used to avoid conflicts with duplicate data sets which

might arise from temporal joins or other complex operations on the relation.

42

6.1.4 Database manipulation and retrieval

A database statement describing any of the three major operations is defined in pseudo-

SQL as follows:

data RDStatement = CREATE_TABLE Integer [String]
| INSERT Integer [([String] ,RDBo)] Timespan
| DEL Integer [String] (RDBo, Timespan)
deriving (Show,Read)

Figure 3: Statements

The CREATE_TABLE statement is used to define a new relation with the specified

identifier and variable list, INSERT adds a new data set with a specified valid time to

a relation, and DEL removes a dataset from a relation.

For storage within the physical database a (Integer, RDStatement) tuple is used, amend-

ing the statement with a timestamp representing transaction time.

In addition to these statements, the type RDSelect is used to define operations which

have no direct influence on the database:

data RDSelect = SELECT [[String]] [Integer] [Condit ion] [Join] [
TempCondition]

| DELETE Integer Condit ion

Figure 4: Database operations

DELETE statements are not executed immediately, but rather subdivided into DEL

statements which can be applied to both the main memory and physical database.

The more complex SELECT statement stores a number of arguments required for the

retrieval of data sets. Its functionality will be described in detail in section 6.2.4.

43

6.1.5 Conditions and Joins

The system manages three types of conditions, each applying to a different aspect of a

relation and the data sets within.

Value conditions. Being of the type ([String], (RDBo− > RDBo− > Bool), RDBo),

value conditions apply a specified function to a relvar and a static value. If the function

returns True, the condition is met and the operation is allowed to continue. For example,

the condition

([”LastName”], (==), (RString”Curry”)) (4)

would apply to all data sets where the relvar LastName is equal to ”Curry”.

Temporal Conditions of the type (String, (Integer− > Timespan− > Bool), Integer)

apply to the valid time of each data set within a relation. A relvar identifier is provided

to select the index tree upon which the condition will be applied. A function of a times-

pan and a timestamp on the corresponding data set is provided to specify the temporal

condition. The temporal condition

(”Student”, before, 638928000) (5)

would apply to all Student data sets with a valid time before April 1990.

Joins are used to combine two relations according to a specified condition. A join defined

as ((Integer, String), (RDBo− > RDBo− > Bool), (Integer, String)) will combine the

two relations specified by their according identifier on each data set where the specified

relvars meet the condition. For example, the join condition

((0, ”LastName”), (==), (1, ”MaidenName”)) (6)

44

would create a new relation combining all data sets where LastName andMaidenName

are equal. By allowing arbitrary join conditions, the system is able to express a variety

of different join operations.

6.2 Database Access

The system provides various functions for database input/output as well as for applying

the statements mentioned above to a database. This section will describe these functions

in detail.

6.2.1 Database I/O

In addition to the basic function createDatabase, which returns an empty tuple, the

system provides a function for storing the database to disk and two functions for restoring

the main memory database from the physical database.

Unlike the functions storeToDisk and loadFromDisk, which read or write the entire

physical database to disk, the function loadFromDiskHist also takes a timestamp as

a parameter to allow for the implementation of rollback database features. The list of

statements composing the physical database are only read and executed up to the point

in time given by the timestamp.

6.2.2 Basic Statements, delete and select

In order to apply the available statements to the database, three functions are provided

by the system.

query applies the statements described in section 6.1.4 to a database. Since the DEL

statement is usually generated and not expressed by the user, query will be mainly used

for CREATE_TABLE and INSERT statements.

delete is a helper function for DELETE statements, executing the deletion condition

45

and separating the original statement into a list of DEL transactions capable of being

handled by query.

select applies a SELECT statement to a database. However, contrary to query and

delete this function does not return the changed database structure, since it has no

manipulating effect on the database whatsoever. Instead, the resulting relation is returned

for further computation or data extraction.

6.2.3 Persistence module

In addition to the functions mentioned above, the persisence module provides the follow-

ing functions:

• persistentQuery

• persistentDelete

These functions have the same purpose as their common counterparts, with the difference

of automatic storage to disk. For this purpose the structure of a RDQuery is modified

to a RDPersistentQuery :

type RDPersistentQuery = (RDatabase , String , RDStatement)

Figure 5: RDPersistentQuery type

The String denotes the filename of the physical database to which the transactions are

to be stored.

6.2.4 Data Retrieval with SELECT

Revisiting section 6.1.4, the SELECT statement is of the form

containing five parameter lists for the select function. The first list defines the relvars

to be included in the result relation, the second list contains the source relations for the

46

SELECT [[String]] [Integer] [Condit ion] [Join] [TempCondition]

Figure 6: SELECT type

select statement. The final three parameters describe the value and temporal conditions

to be applied, as well as any join operations on the source relations.

6.2.5 Data Extraction and Output

The system provides basic functionality for database and relation output on screen as

can be seen in the Print module.

6.3 Time and Temporal Joins

Using Haskell’s System.T ime module the database system is able to create current Unix

timestamps on the executing machine. These timestamps, stored either as single integers

or as tuples of the Timespan format form the basis for all temporal calculations within

the system. Timespans also provide the shortcut ALWAY S, which is internally stored

as a timespan from the minimum to the maximum 32-bit integer. This can be easily

adapted to avoid future time overflow problems.

6.3.1 Time-specific Functionality

Apart from the retrieval of the current Unix timestamp and basic time types, the system

also provides functionality for more complex timespan arithmetic. The following com-

parison functions are implemented to assist in specifying temporal conditions. These are

always functions of an integer and a timespan to a boolean value.

• contains returns True if the provided timestamp is within the boundary of the

timespan.

• before computes if a timestamp denotes a point in time before the start of the

47

timespan.

• after computes if a timestamp denotes a point in time after the end point of the

timespan.

• from and to are used to describe a second timespan, and return True if the two

provided timespans overlap.

6.3.2 Temporal Joins

The additional dimension added to relations by valid time is also relevant to join arith-

metic. Considering the following example relations

ID Last Name
1 Curry
2 Wheatley

Table 5: Relation A

ID First Name Middle Name
1 Haskell Brooks
2 Mary Virginia

Table 6: Relation B

a natural join over the corresponding identifiers would yield the following relation:

ID First Name Middle Name Last Name
1 Haskell Brooks Curry
2 Mary Virginia Wheatley

Table 7: A onIDA=IDB
B

By adding overlapping valid time to the two original relations the resulting joined relation

becomes more complex. Considering the following nonsensical example for the demon-

stration of temporal joins:

ID Last Name Valid
1 Curry 1900-1982

Table 8: Relation A1

ID First Name Middle Name Valid
1 Haskell Brooks 1910-1990

Table 9: Relation B1

48

Joining these relations considering valid time will not result in one data set in the joined

relation, but three.

ID First Name Middle Name Last Name Valid
1 Haskell Brooks Curry 1910-1982
1 - - Curry 1900-1910
1 Haskell Brooks - 1982-1990

Table 10: A1 onIDA1
=IDB1

B1

This does not only allow for temporally restricted validity of data sets, but for different

combinations of data for different time periods. Considering the following example source

relations and the corresponding joined relation, the application of temporal joins becomes

evident.

ID Last Name Valid
2 Wheatley 1903-1928
2 Curry 1928-

Table 11: Relation A2

ID First Name Middle Name Valid
2 Mary Virginia 1903-

Table 12: Relation B2

ID First Name Middle Name Last Name Valid
2 Mary Virginia Wheatley 1903-1928
2 Mary Virginia Curry 1928-

Table 13: A2 onIDA2
=IDB2

B2

By adding a temporal condition to the query, the database system would provide different

results for different periods of valid time.

6.4 Temporal Aspects

As described in section 5.3.3, support transaction time and valid time are implemented

separately within the physical and main memory database manifestations. This section

will describe in detail the methods of implementation.

49

6.4.1 Transaction Time

As mentioned earlier, the physical database consists of a list of timestamped statements,

each of which manipulating the database.

[(1253960971 ,CREATE_TABLE 0 ["ID" , " F i r s t ␣Name" , "Middle␣Name"]) ,
(1257071212 ,INSERT 0 [(["ID"] , RInt 0) , ([" F i r s t ␣Name"] , RString "Haske l l ") , ([

"Middle␣Name"] , RString "Brooks")] (VALID (−2147483648 ,2147483647)))]

Figure 7: Physical DB excerpt

Figure 7 shows a small excerpt from the physical database, containing two statements.

Each of these statements contains a timestamp denoting the point in time at which the

statement was processed by the system. The first transaction creates a new relation

identified by 0 on September 26th, 2009, while the second transaction adds a data set

to that relation on November 1st, 2009. Since all modifications of the database are

expressed by appending additional transaction to the physical database transaction list,

the list is automatically ordered by transaction time. A previous state can be computed

by sequentially executing all transactions up to a specified timestamp.

6.4.2 Valid Time

Valid time is represented both within the physical database and the main memory

database, but functionality utilising valid time applies only to the main memory database.

Considering the second transaction in figure 7, we see that the newly created data set

contains a valid timespan. That timespan defines the valid time of the data set, in this

example starting from December 13th, 1901 up to January 19th, 2038. Each data set

contains such a timespan, expressing valid time within the entire database.

The index tree structures that make up the main memory database contain this valid time

timespan at each node (each node representing a data set). These trees are secondarily

indexed by valid time (and primarily index by the corresponding relvar). Data sets that

contain different manifestations over time are therefore ordered together within the search

tree. For a detailed description of the implementation of the main memory database see

50

section 6.7.2.

6.5 Database Manipulation

As mentioned above, the system allows for three kinds of data manipulation within a

database and provides a function for initialising a blank database.

6.5.1 Database Creation

Calling the function

let db <− createDatabase

Figure 8: Database creation

stores an empty (LogicalDB, PhysicalDB) tuple within db. All further operations will

be computed on this database object.

6.5.2 Relation Definition

The statement in figure 9 adds a new relation with the identifier 0 and three specified

relational variables to the database db and replaces the old database object.

db <− query (db , (CREATE_TABLE 0 ["ID" , " F i r s t ␣Name" , "Middle␣Name"]))

Figure 9: Relation definition

Further on accessed by its identifier 0, this relation can now be used for data insertion

and extraction.

51

6.5.3 Data Insertion

Data Insertion is achieved by executing an INSERT statement. The following example

would add two data sets consisting of one integer and two strings to the correspond-

ing relvars within relation 0. No specific valid time is given for this data set, instead

ALWAY S is used to define unrestricted validity.

db <− query (db , (INSERT 0 [(["ID"] , RInt 1) , ([" F i r s t ␣Name"] , RString "
Haske l l ") , (["Middle␣Name"] , RString "Brooks")] ALWAYS))

db <− query (db , (INSERT 0 [(["ID"] , RInt 2) , ([" F i r s t ␣Name"] , RString "
Mary") , (["Middle␣Name"] , RString " V i r g i n i a ")] ALWAYS))

Figure 10: Relation definition

Examining the examples above, the relation 0 would hold the following data:

ID First Name Middle Name Valid
RInt 1 RString "Haskell" RString "Brooks" ALWAYS
RInt 2 RString "Mary" RString "Virginia" ALWAYS

Table 14: Example Relation 0

6.5.4 Deletion

Due to its conditional nature, the DELETE statement is stored differently within the

physical database than it is available to the user. The DELETE statement

db <− delete db (DELETE 0 ([" F i r s t ␣Name"] , (l i k e) , (RString " k e l l ")))

Figure 11: Conditional Deletion

contains a condition requiring all data sets where FirstName contains the string ”kell”

to be deleted from relation 0. Since this might affect more than one data set, the state-

ment must first be translated into a list of DEL operations which can be applied to the

52

main memory database and added to the physical database. Thus, the following opera-

tion is created by applying the original DELETE statement to the database:

DEL 0 [" F i r s t ␣Name"] (RString "Haske l l " , ALWAYS)

Figure 12: Deletion

After executing this operation, the example relation will hold the following data:

ID First Name Middle Name Valid
RInt 2 RString "Mary" RString "Virgina" ALWAYS

Table 15: Example Relation 0 after deletion

6.6 Data Retrieval

Revisiting the SELECT type described in section 6.2.4, this section will describe the

functionality of data retrieval in detail. The following SELECT statements incorporate

most of the functionality available for data retrieval:

let r e s u l t 1 = s e l e c t db (SELECT [["ID"] , ["Last ␣Name"]] [0] [(["Last ␣Name"
] ,(==) , (RString "Curry"))] [] [])

let r e s u l t 2 = s e l e c t db (SELECT [["ID" , "ID"] , [" F i r s t ␣Name"] , ["Last ␣Name"
]] [0 , 1] [] [(0 , "ID") ,(==) , (1 , "ID"))] [("ID" , from ,1940)])

Figure 13: Data Retrieval

The first statement selects a data set from a single relation, restricted by a value condition

ruling out all data sets where LastName does not equal ”Curry”. The second statement

forces a temporal join on two relations over the relvar ID and adds a temporal restriction

ruling out all data sets not valid after 1940.

Considering the example relations A2 and B2 as described in tables 7 and 8, the two

results computed by the specified SELECT statements would appear as follows:

53

ID Last Name Valid
RInt 2 RString "Curry" 1928-

Table 16: result1

ID,ID First Name Last Name Valid
RInt 2 RString "Mary" RString "Curry" 1928-

Table 17: result2

The first statement simply returns all data sets that meet the specified requirements.

Since there is only one data set with the last name valued "Curry", only one row is

returned. The join in the second statement produces a temporary relation containing

two result rows with different values and different valid time. However, after applying

the temporal condition, only one of these data sets remains.

6.7 Data representation

This section will describe in detail the methods of representation for both the physical

and the main memory aspect of the database.

6.7.1 The physical database

The physical database is defined as seen in figure 14.

type PhysicalDB = [RDTransaction]
type RDTransaction = (Integer , RDStatement)

data RDStatement = CREATE_TABLE Integer [String]
| INSERT Integer [([String] ,RDBo)] Timespan
| DEL Integer [String] (RDBo, Timespan)
deriving (Show,Read)

Figure 14: Physical database

A transaction is therefore defined as a data manipulating statement (namely relation

definition, insertion and deletion) amended with a timestamp. The physical database is

54

a list of such timestamped statements. The database is manipulated by adding additional

transactions to this list.

6.7.2 The main memory database

The main memory database is defined as:

type LogicalDB = [(Integer , RDRelation)]
type RDRelation = [RDIndex]
type RDIndex = ([String] , RDIndexTree)
type RDIndexTree = IVTree (RDBo, Timespan , Integer) RDRelationType
type RDRelationType = [([String] ,RDBo)]

Figure 15: Main memory database

In order to explain the tree structures behind the main memory database properly each

of these definitions will be discussed.

RDIndexTree describes the type of nodes within a red black id-value tree that are to

be used to represent the data. The identifier consists of a triple of the form (RDBo,

Timespan, Integer). Each node is therefore identified by the indexed column object

(RDBo), its corresponding valid time (the Timespan) as well as an internal identifier

used to distinguish the data set for join operations. The value of each tree node consists

of a RDRelationType, which is a list of tuples containing value objects and their

corresponding column identifiers. For each column within a relation such an index tree

is built and stored within the RDIndex type in a tuple with its corresponding column

identifier. The sum of all index trees within a relation defines the relation itself, and

a RDRelation is therefore a list of RDIndex types. The main memory database type

(LogicalDB) amends these relation index trees with a relation identifier and stores them

as a list of tuples.

Thus there is an index for each relvar of each relation. The correct indices are chosen for

data retrieval and join operations to allow for efficient access.

55

type RDatabase = (LogicalDB , PhysicalDB)

Figure 16: Combining main memory and physical DB

6.7.3 Conversion

While active, both the main memory and the physical database are managed by the

database system. Whenever a data manipulating transaction occurs, the transaction

list within the physical database is amended and the index trees of the main memory

database are updated accordingly. It is not necessary to recreate the physical database

from main memory as it is also stored there. However, after execution of the system only

the physical database remains, if stored on disk. The main memory database can then be

restored from the database file by applying the list of transactions to an initially empty

main memory database. By executing each transaction stored in the physical database

the index trees are rebuilt to their former state.

56

7 Conclusion

This section will reflect on the work done on the proposed system and the prototype. The

functionality of the prototype will be evaluated against the goals set at the beginning of

the work, difficulties during research and development will be highlighted, and possibilities

for improvement and further development will be discussed. Finally, the author will give

a critical evaluation of the work as a whole from his point of view.

7.1 Achieved Goals

This work’s goal was not to provide an exhaustive description of all involved technolo-

gies, but to give an overview of the basics behind database design, temporal data, and

functional programming. The literature review presented in sections 2 through 4 not

only provided that overview, but presented an extensive list of possible solutions to the

problem at hand. Merits and demerits where discussed in order to establish the basis for

an informed decision concerning the selection of methods for the proposal of the system

and the implementation of the prototype.

Section 5 describes the proposed system in detail without concerning itself with specific

issues of implementation. A system was proposed that meets all the requirements within

the scope of this work.

Both the prototype itself and its detailed description in section 6 form the main part of

this thesis. Specific methods of implementation as well as usage within other systems are

discussed in detail.

7.2 Difficulties

Apart from the author’s habitual difficulties with non-imperative programming languages

discussed in section 4.3 some difficulties arose during the creation of this work and espe-

cially during the development of the prototype.

57

Initial requirements stated the need for a binary relation database system, however,

during the development of the system it became apparent that such a system would not be

powerful enough to handle the complex join operations. The system had to be redesigned

to support n-ary relations in order to allow for these computations. Its proposed field of

use is still concerned with binary relations, however, reducing the result relations to such

data structures can be achieved by the applications utilising the prototype.

The system utilises a minimal number of Haskell libraries without, to the best knowl-

edge of the author, implementing features that are already available. This leads to a

large number of required basic functionality, for which optimal implementation is not

guaranteed.

Finally, since the prototype constitutes the main part of this work, choosing the correct

amount of literature to be documented and the detail thereof proved difficult to the

author.

7.3 Ties to Literature

The structure of this work is clearly separated between the literature review in sections

2 through 4 and the author’s proposal and documentation in sections 5 and 6. The

literature review lays the groundwork for any further design decisions and ties this thesis

strongly to previous works in the field of database management systems. The later

sections contain few references to literature since, to the best knowledge of the author,

few of the implemented features can be tied to a specific previous work.

The developed prototype is no reimplementation of any previous work, and any decision

basis and terminology has been tied to its original source within the literature review.

7.4 Further Development

Even though the thesis covers all of the requirements, there are many starting points for

further development. Optimisation of the prototype is an issue, especially concerning

58

performance-related optimisation. One example would be the optimisation of the tree-

deletion algorithm, which is not optimal.

Additionally, interfaces for ease of access to the functionality might be added to allow

a broader field of possible users to apply this database management system to Haskell

software.

7.5 Evaluation

Expected results of this work, apart from the main parts concerning system definition

and prototype implementation, included a detailed description of the problem at hand

and an overview of possible solutions present in current literature. Both sections 2 and

4 are concerned with possible solutions to achieving the task of creating a database

management system. Due to the specific requirements, mainly the implementation in a

functional programming language and the inclusion of temporal aspects, no approaches

found in the reviewed literature could be applied directly to the problem at hand. The

specific design choices and corresponding reasoning as well as a detailed analysis of the

problem and its possible solution can be found in the later sections describing the system

solution and implementation.

Two design choices specifically vary as compared to the initially proposed design, and are

worth a more detailed look.

Binary relations. As described in detail in section 5.1, binary relations suffice for

representation of the target data sets. Binary relations and the corresponding simple

compositions of these relations were replaced by a system managing more powerful yet far

more complex n-ary relations and corresponding complex joins. This was done primarily

to allow for more complete join operations, especially temporal joins.

Data manipulation on disk. Though not mentioned explicitly in the initial proposal,

the capability of handling large databases was discussed. The developed prototype has a

different data structure for storage on disk (the physical database) than for data access

and manipulation (the main memory manifestation of the database).

59

Two operation modes are available in the implemented system, one managing the database

only in memory. The persistent operation mode is based on the same operations, but

stores changes to the database not only in memory but also automatically within a

specified database file on disk. Any state of the database, current or historical, can be

extracted from this file.

7.6 Personal Evaluation

During the first months of working on this thesis it became apparent that it would be far

more complex that initially assumed. Due to my lack of experience with both Haskell and

database theory and the resulting misunderstandings of requirements, the entire scope

of this work only became clear after some time. However, concerning myself with these

topics and gaining the required knowledge to start design and implementation, I was

able to create a work that meets or exceeds the initial requirements, includes multiple

features, and was able to rouse further interest in the concerned topics.

7.7 Acknowledgements

First, I would like to thank my parents, without whom I would have never been able to

achieve my academic goals. I would also like to thank Dr. A. Frank for introducing me

to the subject and for his supervision of this work, and Andreas Bolka, Viktor Pavlu and

Christian Seidl, without whom I would not have attempted a masters degree. Special

thanks go to Nora Rosmann for her continuous support during the writing of this work.

60

References

Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D. & Zdonik, S. (1989),

‘The object-oriented database system manifesto’.

Bourret, R. (2005), ‘Xml and databases’, http: // www. rpbourret. com/ xml/

XMLAndDatabases. htm .

Bringert, B. & Höckersten, A. (2004), ‘Student paper: Haskelldb improved’.

Codd, E. F. (1970), ‘A relational model of data for large shared data banks’, Commun.

ACM 13(6), 377–387.

Codd, E. F. (1980), Data models in database management, in ‘Proceedings of the 1980

workshop on Data abstraction, databases and conceptual modeling’, ACM, New

York, NY, USA, pp. 112–114.

Date, C. (2004), An Introduction to Database Systems, 8th edn, Addison Wesley.

Date, C., Darwen, H. & Lorentzos, N. A. (2003), Temporal Data and the Relational Model,

Morgan Kaufmann.

Driscoll, J. R., Sarnak, N., Sleator, D. D. & Tarjan, R. E. (1989), ‘Making data structures

persistent’, Journal of Computer and System Sciences 38.

Evans, D. (2008), Computational Thinking, http://www.cs.virginia.edu/~evans/

ctbook/.

Gallaire, H., Minker, J. & Nicolas, J.-M. (1984), ‘Logic and databases: A deductive

approach’, Computing Surveys 16(2).

Goldberg, B. (1994), ‘Functional programming languages’.

Hellerstein, J. M., Stonebraker, M. & Hamilton, J. (2007), ‘Architecture of a database

system’.

Hudak, P., Hughes, J., Jones, S. P. & Wadler, P. (2007), ‘A history of haskell: Being lazy

with class’.

61

http://www.rpbourret.com/xml/XMLAndDatabases.htm
http://www.rpbourret.com/xml/XMLAndDatabases.htm
http://www.cs.virginia.edu/~evans/ctbook/
http://www.cs.virginia.edu/~evans/ctbook/

Hughes, J. (1984), ‘Why functional programming matters’.

Hutton, G. (2007), Programming in Haskell, Cambridge University Press.

Jensen, C., Clifford, J., Dyreson, C., Gadia, S., i, F., Jajodia, S., Kline, N., Montanari,

A., Nonen, D., Peressi, E., Pernici, B., Roddick, J., Sarda, N., lal L, Scalas, M.,

Segev, A., Snodgrass, R., Soo, M., Tansel, A. & Tiberio, P. (1993a), Addendum to

"proposed temporal database concepts - may 1993".

Jensen, C., Clifford, J., Dyreson, C., Gadia, S., i, F., Jajodia, S., Kline, N., Montanari, A.,

Nonen, D., Peressi, E., Pernici, B., Roddick, J., Sarda, N., lal L, Scalas, M., Segev,

A., Snodgrass, R., Soo, M., Tansel, A. & Tiberio, P. (1993b), Proposed temporal

database concepts - may 1993.

Jones, S. P. (2003), Haskell 98 Language and Libraries: The Revised Report, Cambridge

University Press.

Jones, S. P. (2009), ‘Tackling the awkward squad: monadic input/output, concurrency,

exceptions, and foreign-language calls in haskell’.

Jung, A. (2004), ‘A short introduction to the lambda calculus’.

Klinger, S. (2005), ‘The haskell programmer’s gudie to the io monad’.

Leijen, D. & Meijer, E. (1999), Domain specific embedded compilers, in ‘Proceedings of

DSL’99: The 2nd Conference on Domain-Specific Languages’.

Meijer, E. (2007), Confessions of a used programming language salesman, in ‘OOPSLA

’07: Proceedings of the 22nd annual ACM SIGPLAN conference on Object oriented

programming systems and applications’, ACM, New York, NY, USA, pp. 677–694.

Okasaki, C. (2008), Purely Functional Data Structures, Cambridge University Press.

O’Sullivan, B., Stewart, D. & Goerzen, J. (2008), Real World Haskell, O’Reilly Media,

Inc.

Ozsoyoglu, G. & Snodgrass, R. T. (1995), ‘Temporal and real-time databases: A survey’,

IEEE Transactions on Knowledge and Data Engineering 7(4), 513–532.

62

Reiter, R. (1984), ‘Towards a logical reconstruction of relational database theory’.

Rojas, R. (1998), ‘A tutorial introduction to the lambda calculus’.

Snodgrass, R. (1990), ‘Temporal databases status and research directions’, SIGMOD Rec.

19(4), 83–89.

Snodgrass, R. T. & Ahn, I. (1985), A taxonomy of time in databases, in S. B. Navathe, ed.,

‘Proceedings of the 1985 ACM SIGMOD International Conference on Management

of Data, Austin, Texas, May 28-31, 1985’, ACM Press, pp. 236–246.

Snodgrass, R. T. & Ahn, I. (1986), ‘Temporal databases’, IEEE Computer 19(9) pp. 35–

42.

Stonebraker, M., Rowe, L. A., Lindsay, B., Gray, J., Carey, M., Brodie, M., Bernstein,

P. & Beech, D. (1990), ‘Third-generation database system manifesto’.

Sun (2008), ‘The java tutorials’, http://java.sun.com/docs/books/tutorial/java/

concepts/object.html.

63

http://java.sun.com/docs/books/tutorial/java/concepts/object.html
http://java.sun.com/docs/books/tutorial/java/concepts/object.html

List of Figures

1 Basic data types . 41

2 Index trees . 42

3 Statements . 43

4 Database operations . 43

5 RDPersistentQuery type . 46

6 SELECT type . 47

7 Physical DB excerpt . 50

8 Database creation . 51

9 Relation definition . 51

10 Relation definition . 52

11 Conditional Deletion . 52

12 Deletion . 53

13 Data Retrieval . 53

14 Physical database . 54

15 Main memory database . 55

16 Combining main memory and physical DB 56

64

List of Tables

1 Relation R . 30

2 Relation S . 30

3 R ◦ S . 31

4 R on S . 31

5 Relation A . 48

6 Relation B . 48

7 A onIDA=IDB
B . 48

8 Relation A1 . 48

9 Relation B1 . 48

10 A1 onIDA1
=IDB1

B1 . 49

11 Relation A2 . 49

12 Relation B2 . 49

13 A2 onIDA2
=IDB2

B2 . 49

14 Example Relation 0 . 52

15 Example Relation 0 after deletion . 53

16 result1 . 54

17 result2 . 54

65

A Haskell Source

A.1 BasicTypes

module TempDB. BasicTypes where

{−

ba s i c data t ype s

pro to type deve loped as a par t o f
"A Native Temporal Re la t ion Database f o r Haske l l "

Lukas Maczejka , 2009−2010

−}

−− va lues , can be any type meeting the requirements
data RDBo = RInt Integer

| RFloat Float
| RChar Char
| RString String
| RList [RDBo]
| RNull
| RForeign RDBo
deriving (Show,Read ,Ord ,Eq)

66

A.2 Data

module TempDB. Data where

{−

t ype s

pro to type deve loped as a par t o f
"A Native Temporal Re la t ion Database f o r Haske l l "

Lukas Maczejka , 2009−2010

−}

import TempDB. Tree
import TempDB. BasicTypes
import TempDB. Time

−− query engine

−− s e l e c t (column names) (from r e l a t i o n s) (where) (j o i n s) (temporal
cond i t i on s)

data RDSelect = SELECT [[String]] [Integer] [Condit ion] [Join] [
TempCondition]

| DELETE Integer Condit ion

−− column name , funcion , va lue
type Condit ion = ([String] , (RDBo −> RDBo −> Bool) ,RDBo)

−− column name , funcion , column name
type Join = ((Integer , String) , (RDBo −> RDBo −> Bool) , (Integer , String))

−− func t ion , va lue
type TempCondition = (String , (Integer −> Timespan −> Bool) , Integer)

−− database manipulat ion

67

data RDStatement = CREATE_TABLE Integer [String] −−
r e l a t i o n id

| INSERT Integer [([String] ,RDBo)] Timespan −−
r e l a t i o n id , ob j ec t1 , o b j e c t 2 , v a l i d time

| DEL Integer [String] (RDBo, Timespan) −−
r e l a t i o n id , c o l name , o b j e c t id to d e l e t e

deriving (Show,Read)

−− a query i s a s ta tement on a database
type RDQuery = (RDatabase , RDStatement)

−− a query t ha t s t o r e s any changes immedeately to the db f i l e
type RDPersistentQuery = (RDatabase , String , RDStatement)

−− t r an sa c t i on s are timestamped s ta tements (no db in f o) , t r an sac t i on time
l e v e l

type RDTransaction = (Integer , RDStatement)

−− database

−− database i s l o g i c a l db and ph y s i c a l db
type RDatabase = (LogicalDB , PhysicalDB)

−− r e l a t i o n type s
type RDRelationType = [([String] ,RDBo)]

−− index t r e e
type RDIndexTree = IVTree (RDBo, Timespan , Integer) RDRelationType

−− index
type RDIndex = ([String] , RDIndexTree)

−− r e l a t i o n s are repre sen t ed by a l i s t o f index t r e e s
type RDRelation = [RDIndex]

−− l o g i c a l db i s l i s t o f r e l a t i o n s wi th r e l a t i o n i d s
type LogicalDB = [(Integer , RDRelation)]

−− database i s s t o r ed as a l i s t o f t r an sa c t i on s
type PhysicalDB = [RDTransaction]

68

A.3 Indices

module TempDB. Ind i c e s where

{−

common index manipulat ion (r e l a t i on s , t r an sa c t i on s)

pro to type deve loped as a par t o f
"A Native Temporal Re la t ion Database f o r Haske l l "

Lukas Maczejka , 2009−2010

−}

import TempDB. Data
import TempDB. BasicTypes
import TempDB. Time
import TempDB. Tree

−− i n s e r t va lue / timespan in to a l l i n d i c e s
i n s e r t I n d i c e s : : [RDIndex] −> [([String] ,RDBo)] −> Timespan −> [RDIndex]
i n s e r t I n d i c e s [] _ _ = []
i n s e r t I n d i c e s (h : t) obs t s = [i n s e r t I ndex h obs obs t s] ++ i n s e r t I n d i c e s t

obs t s

−− i n s e r t va lue / timespan in to index
i n s e r t I ndex : : RDIndex −> [([String] ,RDBo)] −> [([String] ,RDBo)] −>

Timespan −> RDIndex
in s e r t I ndex idx [] _ _ = idx
in s e r t I ndex idx@ (iname , t r e e) ((oname , o) : t) oos t s | oname == iname = (iname

, i v t I n s e r t t r e e (o , ts , (ivtNextId t r e e)) (excludeOs oos oname))
| otherwise = in s e r t I ndex idx t oos t s

−− ge t o b j e c t l i s t w i thout s p e c i f i e d id
excludeOs : : [([String] ,RDBo)] −> [String] −> [([String] ,RDBo)]
excludeOs [] _ = []
excludeOs ((nm, o) : t) ex | nm == ex = excludeOs t ex

| otherwise = [(nm, o)] ++ excludeOs t ex

69

A.4 IO

module TempDB.IO where

{−

d i s k i /o

pro to type deve loped as a par t o f
"A Native Temporal Re la t ion Database f o r Haske l l "

Lukas Maczejka , 2009−2010

−}

import TempDB. Data
import TempDB. Transact ions
import System .IO (openFile , hClose , hPrint , hGetContents , IOMode(ReadMode,

WriteMode)) −− f i l e opera t i ons
import Control . P a r a l l e l . S t r a t e g i e s (rn f) −− r e qu i r ed f o r l a z y hGetContents

−− f i l e output

s t o r eToF i l e : : RDatabase −> String −> IO ()
s t o r eToF i l e (_, pdb) f i l ename = do

fh <− openFile f i l ename WriteMode
hPrint fh pdb
hClose fh

−− f i l e input

loadFromFile : : String −> IO RDatabase
loadFromFile f i l ename = do

fh <− openFile f i l ename ReadMode
cont <− hGetContents fh
rn f cont ‘ seq ‘ hClose fh
let pdb = (read cont) : : PhysicalDB
ldb <− executeTransact ions pdb ([] , [])
return (ldb , pdb)

−− l oad r o l l b a c k

70

loadFromFi leHist : : String −> Integer −> IO RDatabase
loadFromFi leHist f i l ename r o l l b a ck = do

fh <− openFile f i l ename ReadMode
cont <− hGetContents fh
rn f cont ‘ seq ‘ hClose fh
let pdb = truncHis t ((read cont) : : PhysicalDB) r o l l b a ck
ldb <− executeTransact ions pdb ([] , [])
return (ldb , pdb)

t runcHis t : : PhysicalDB −> Integer −> PhysicalDB
truncHis t [] _ = []
t runcHis t ((ts , s t a t e) : t) r o l l b a ck | t s < ro l l b a ck = [(ts , s t a t e)] ++

truncHis t t r o l l b a c k
| otherwise = truncHis t t r o l l b a ck

−− execu te t r an sac t i on l i s t

executeTransact ions : : PhysicalDB −> RDatabase −> IO LogicalDB
executeTransact ions [] (ldb ,_) = return ldb
executeTransact ions ((ts , statement) : t l) db = do

db <− (query (db , statement))
executeTransact ions t l db

71

A.5 Print

module TempDB. Pr int where

{−

screen output , p r in t ing , debug

pro to type deve loped as a par t o f
"A Native Temporal Re la t ion Database f o r Haske l l "

Lukas Maczejka , 2009−2010

−}

import TempDB. Data
import TempDB. BasicTypes
import TempDB. Tree
import TempDB. Re la t i on s
import TempDB. Time

{−

−}

−− p r i n t l i s t o f r e l a t i o n s
p r i n tRe l a t i on s [] = putStr ""
p r i n tRe l a t i on s ((i , h) : t) = do

putStr (show i)
putStr "\n"
p r i n tRe l a t i on h
putStr "\n"
p r i n tRe l a t i on s t

−− p r i n t s i n g l e r e l a t i o n
pr in tRe l a t i on [] = do

putStr "" ;

p r i n tRe l a t i on r@(r e l : t) = do

72

pr intRelHeader r
l et (nm, idx) = r e l
putStr (" index ␣ f o r ␣" ++ (show nm) ++ "\n\n")
printRows idx (g e tRe lCo lT i t l e s idx [])
putStr "\n\n"
pr i n tRe l a t i on t

−− p r i n t r e l a t i o n header
pr intRelHeader r e l = do

putStr "\n"
pr in tRe lCo l s (getRe lCol s (head r e l))
putStr "VALID"
putStr "\n\n"

−− p r i n t r e l a t i o n columns (header i d s)
pr in tRe lCo l s : : [[String]] −> IO ()
pr in tRe lCo l s [] = do

putStr ""
pr in tRe lCo l s (h : t) = do

pr intRe lCo l h
putStr " , "
pr in tRe lCo l s t

−− p r i n t r e l a t i o n column id
pr intRe lCo l : : [String] −> IO ()
pr intRe lCo l l = putStr (show (concat l))

−− p r i n t r e l a t i o n va l u e s (rows)
printRows : : RDIndexTree −> [[String]] −> IO ()
printRows IVEmpty _ = putStr ""
printRows (IVNode _ l (i , ts , i i d) cont r) l s t = do

printO i
printOrderedElements cont l s t
putStr "\ t "
printTimespan t s
putStr "\ t ("
putStr (show i i d)
putStr ") \n"
printRows l l s t
printRows r l s t

73

−− p r i n t va l u e s in co r r e c t order
printOrderedElements : : [([String] ,RDBo)] −> [[String]] −> IO ()
pr intOrderedElements cont [] = putStr ""
printOrderedElements cont (h : t) = do

printElement h cont
printOrderedElements cont t

−− p r i n t s i n g l e va lue
printElement : : [String] −> [([String] ,RDBo)] −> IO ()
pr intElement l [] = putStr " , ␣−"
printElement l ((ht , e l) : t) | l == ht = do

putStr " , ␣"
printO e l

| otherwise = printElement l t

−− p r i n t timespan
printTimespan : : Timespan −> IO ()
printTimespan ALWAYS = putStr "ALWAYS"
printTimespan (VALID (f , t)) = putStr ((show f) ++ "␣ to ␣" ++ (show t))

−− p r i n t RDBo type
printO : : RDBo −> IO ()
printO (RInt i) = putStr (show i)
printO (RFloat f) = putStr (show f)
printO (RChar c) = putStr (" ’ " ++ [c] ++ " ’ ")
printO (RString s) = putStr s
printO (RList (h : t)) = do

printO h
putStr " , "
printO (RList t)

printO (RList []) = putStr ""
printO _ = putStr "?" −− unknown

−− p r i n t db to screen
printDB : : RDatabase −> IO ()
printDB (ldb , pdb) = do

p r i n tL i s t ldb
p r i n tL i s t pdb

74

p r i n tL i s t : : (Show a) => [a] −> IO ()
p r i n tL i s t (h : t) = do

print h
p r i n tL i s t t

p r i n tL i s t [] = putStrLn ""

75

A.6 Relations

module TempDB. Re la t i on s where

{−

r e l a t i o n s

pro to type deve loped as a par t o f
"A Native Temporal Re la t ion Database f o r Haske l l "

Lukas Maczejka , 2009−2010

−}

import TempDB. Data
import TempDB. BasicTypes
import TempDB. Tree
import TempDB. Tools
import TempDB. Time
import TempDB. Ind i c e s
import Data . List (i s I n f i xO f) −− s t r i n g comparions cond i t i on : ’ l i k e ’

−− ge t column names o f index
getRe lCol s : : RDIndex −> [[String]]
getRe lCol s (s , idx) = xAdd (ge tRe lCo lT i t l e s idx []) [s]

−− b u i l d l i s t o f column names f o r index t r e e
ge tRe lCo lT i t l e s : : RDIndexTree −> [[String]] −> [[String]]
g e tRe lCo lT i t l e s IVEmpty l s t = l s t
g e tRe lCo lT i t l e s (IVNode _ l (i ,_,_) cont r) l s t = ge tRe lCo lT i t l e s r (

g e tRe lCo lT i t l e s l (xAdd l s t (r e l IndexCo lF la t t en cont)))

−− b u i l d l i s t o f i d s from t r e e node content
r e l IndexCo lF la t t en : : [([String] ,RDBo)] −> [[String]]
r e l IndexCo lF la t t en [] = []
r e l IndexCo lF la t t en ((s ,_) : t) = [s] ++ re l IndexCo lF la t t en t

−− combine mu l t i p l e r e l a t i o n s to one
f l a t t e nRe l s : : [([Integer] , RDRelation)] −> RDRelation
f l a t t e nRe l s [] = [([""] , IVEmpty)]

76

f l a t t e nRe l s rel@ ((i , h) : t) | (length r e l) == 1 = h
| (length r e l) == 2 = fCombine h (f l a t t enRe lC (t ! ! 0))
| otherwise = fCombine h (f l a t t e nRe l s t)

−− combine f i r s t index o f two r e l a t i on s , r e p r e s e n t a t i v e s ince a l l i n d i c e s
conta in a l l data

fCombine : : RDRelation −> RDRelation −> RDRelation
fCombine r e l 1 r e l 2 = [fComb (r e l 1 ! ! 1) (r e l 2 ! ! 1)]

−− combine two i nd i c e s
fComb : : RDIndex −> RDIndex −> RDIndex
fComb (s1 , i 1) (s2 , i 2) = (s2 , idxCombine i 1 i 2 s1)

−− combine index t r ee s , add va l u e s o f second index t r e e as RForeign to
avoid c o n f l i c t s

idxCombine : : RDIndexTree −> RDIndexTree −> [String] −> RDIndexTree
idxCombine IVEmpty t r e e t i x = t r e e
idxCombine (IVNode _ l (h , ts , i i d) t r) t r e e t i x = i v t I n s e r t (idxCombine l (

idxCombine r t r e e t i x) t i x) (RForeign h , ts , i i d) (t ++ [(t ix , h)])

−− remove i d e n t i f i e r from r e l a t i o n
f l a t t enRe lC : : ([Integer] , RDRelation) −> RDRelation
f l a t t enRe lC (_, r) = r

−− f i n d index

getIndexTree : : RDRelation −> [String] −> IVTree (RDBo, Timespan , Integer)
RDRelationType

getIndexTree ((i i d , idx) : t) [""] = idx
getIndexTree [] _ = IVEmpty
getIndexTree ((i i d , idx) : t) s i d | s i d == i i d = idx

| otherwise = getIndexTree t s i d

getIndexTree3 : : RDRelation −> String −> IVTree (RDBo, Timespan , Integer)
RDRelationType

getIndexTree3 ((i i d , idx) : t) "" = idx
getIndexTree3 [] _ = IVEmpty
getIndexTree3 ((i i d , idx) : t) s i d | s i d ‘elem ‘ i i d = idx

| otherwise = getIndexTree3 t s i d

−− remove index

77

cutIndexTree : : RDRelation −> [String] −> RDRelation
cutIndexTree [] _ = []
cutIndexTree (i@ (i i d , idx) : t) s i d | s i d == i i d = cutIndexTree t s i d

| otherwise = [i] ++ cutIndexTree t s i d

−− f i n d index wi th err
getIndexTree2 : : RDRelation −> [String] −> Maybe (IVTree (RDBo, Timespan ,

Integer) RDRelationType)
getIndexTree2 [] _ = Nothing
getIndexTree2 ((i i d , idx) : t) s i d | s i d == i i d = Just idx

| otherwise = getIndexTree2 t s i d

−− ge t r e l a t i o n by id
ge tRe la t i on : : RDatabase −> Integer −> RDRelation
ge tRe la t i on (ldb ,_) x = getRel ldb x

getRel : : LogicalDB −> Integer −> RDRelation
getRel [] _ = []
getRel ((i , r e l) : t) x | i == x = r e l

| otherwise = getRel t x

getRe lLst : : [([Integer] , RDRelation)] −> Integer −> RDRelation
getRe lLst [] _ = []
getRe lLst ((i , r e l) : t) x | x ‘elem ‘ i = r e l

| otherwise = getRelLst t x

−− r e l a t i o n to l i s t
r e lToL i s t : : RDRelation −> [(Timespan , [RDBo])]
r e lToL i s t ((_, idx) :_) = re l IndexToLi s t idx

re l IndexToLi s t : : IVTree (RDBo, Timespan , Integer) RDRelationType −> [(
Timespan , [RDBo])]

r e l IndexToLi s t IVEmpty = []
r e l IndexToLi s t (IVNode _ l (o1 , t ,_) o2 r) = [(t , [o1] ++

re l IndexContentF lat ten o2)] ++ re l IndexToLi s t l ++ re l IndexToLi s t r

re l IndexContentF lat ten : : [([String] ,RDBo)] −> [RDBo]
re l IndexContentF lat ten [] = []
r e l IndexContentF lat ten ((_, o) : t) = [o] ++ re l IndexContentF lat ten t

78

−− add i t i o n a l comparison func t i on s / cond i t i on s
l i k e : : RDBo −> RDBo −> Bool
l i k e (RString x) (RString y) = i s I n f i xO f y x
l i k e x y = x == y

−− app ly condid ion
applyCondit ion : : RDRelation −> ([String] , (RDBo −> RDBo −> Bool) ,RDBo) −>

RDRelation
applyCondit ion r e l (s idx , func , comp) | (getIndexTree r e l s idx) == IVEmpty =

r e l
| otherwise = indexGuard (jo inBu i ld Index [(s idx , (applyConditionToIndex (

getIndexTree r e l s idx) (func , comp) IVEmpty))] [])

−− make sure an index i s returned , even i f empty
indexGuard : : RDRelation −> RDRelation
indexGuard [] = [([""] , IVEmpty)]
indexGuard r = r

−− b u i l d new index tree , on ly wi th va l u e s meeting the cond i t i on
applyConditionToIndex : : RDIndexTree −> ((RDBo −> RDBo −> Bool) ,RDBo) −>

RDIndexTree −> RDIndexTree
applyConditionToIndex IVEmpty _ c t r e e = c t r e e
−− op t im i sa t i on s
−−applyCondit ionToIndex t r e e f@((==) ,comp) c t r e e = applyConditionToIndexOp

t r e e f c t r e e
−−applyCondit ionToIndex t r e e f@((>=) ,comp) c t r e e = applyConditionToIndexOp

t r e e f c t r e e
−−applyCondit ionToIndex t r e e f@((<=) ,comp) c t r e e = applyConditionToIndexOp

t r e e f c t r e e
−−applyCondit ionToIndex t r e e f@((>) ,comp) c t r e e = applyConditionToIndexOp

t r e e f c t r e e
−−applyCondit ionToIndex t r e e f@((<) ,comp) c t r e e = applyConditionToIndexOp

t r e e f c t r e e
−− genera l c ond i t i on s

79

applyConditionToIndex (IVNode _ l idx@ (i , ts ,_) cont r) (func , comp) c t r e e |
func i comp = i v t I n s e r t (applyConditionToIndex l (func , comp) (
applyConditionToIndex r (func , comp) c t r e e)) idx cont

| otherwise = applyConditionToIndex l (func , comp) (applyConditionToIndex
r (func , comp) c t r e e)

−−opt imised t r e e search
applyConditionToIndexOp : : RDIndexTree −> ((RDBo −> RDBo −> Bool) ,RDBo) −>

RDIndexTree −> RDIndexTree
applyConditionToIndexOp (IVNode _ l idx@ (i , ts ,_) cont r) (func , comp) c t r e e

| func i comp = i v t I n s e r t (applyConditionToIndexOp l (func , comp) (
applyConditionToIndexOp r (func , comp) c t r e e)) idx cont −−a l l sub t r ee s ,
due to mu l t i p l e timestamped i d s

| i < comp = applyConditionToIndexOp l (func , comp) c t r e e −− only l e f t
s u b t r e e

| i > comp = applyConditionToIndexOp r (func , comp) c t r e e −− only r i g h t
su b t r e e

−− temporal cond i t i on s
applyTCondition : : RDRelation −> (String , (Integer −> Timespan −> Bool) ,

Integer) −> RDRelation
applyTCondition r e l (s idx , func , comp) | (getIndexTree3 r e l s idx) == IVEmpty

= r e l
| otherwise = indexGuard (jo inBu i ld Index [([s idx] , (

applyTConditionToIndex (getIndexTree3 r e l s idx) (func , comp) IVEmpty))
] [])

applyTConditionToIndex : : RDIndexTree −> ((Integer −> Timespan −> Bool) ,
Integer) −> RDIndexTree −> RDIndexTree

applyTConditionToIndex IVEmpty _ c t r e e = c t r e e
applyTConditionToIndex (IVNode _ l idx@ (i , ts ,_) cont r) (func , comp) c t r e e |

func comp t s = i v t I n s e r t (applyTConditionToIndex l (func , comp) (
applyTConditionToIndex r (func , comp) c t r e e)) idx cont

| otherwise = applyTConditionToIndex l (func , comp) (
applyTConditionToIndex r (func , comp) c t r e e)

80

−− he l p e r f unc t i on s to r ep re s en t temporal cond i t i on s

−− po in t conta ined in timespan
conta in s : : Integer −> Timespan −> Bool
conta in s _ ALWAYS = True
conta in s i (VALID (f , t)) = f <= i && i <= t

−− po in t a f t e r timespan
a f t e r : : Integer −> Timespan −> Bool
a f t e r _ ALWAYS = False
a f t e r i (VALID (f , t)) = i > t

−− po in t b e f o r e timespan
be f o r e : : Integer −> Timespan −> Bool
be f o r e _ ALWAYS = False
be f o r e i (VALID (f , t)) = i < f

−− from/ to cond i t i on s : a l l t imespans ove r l app ing the from/ to po in t s
from : : Integer −> Timespan −> Bool
from _ ALWAYS = False
from i (VALID (f , t)) = f >= i | | t >= i

to : : Integer −> Timespan −> Bool
to _ ALWAYS = False
to i (VALID (f , t)) = f <= i | | t <= i

−− temporal c ond i t i ona l jo in , wi th r e s p e c t to timespanned dup l i c a t e keys (
v a l i d time)

t j o i n : : RDRelation −> RDRelation −> (String , String) −> (RDBo −> RDBo −>
Bool) −> RDRelation

t j o i n r1 r2 (id1 , id2) cond = indexGuard (jo inBu i ld Index [([id1 , id2] , (
t j o i n Index (getIndexTree r1 [id1]) (getIndexTree r2 [id2]) IVEmpty cond)
)] [])

t j o i n Index : : RDIndexTree −> RDIndexTree −> RDIndexTree −> (RDBo −> RDBo −>
Bool) −> RDIndexTree

t j o i n Index (IVNode _ l (i , ts ,_) cont r) other j t r e e cond = tjo inCombInsert
i (tjoinGetComb (i , t s) other cont [] cond) (t j o i n Index l other (

t j o i n Index r other j t r e e cond) cond)
t j o i n Index IVEmpty _ j t r e e cond = j t r e e

81

tjoinGetComb : : (RDBo, Timespan) −> RDIndexTree −> [([String] ,RDBo)] −> [(
Timespan , [([String] ,RDBo)])] −> (RDBo −> RDBo −> Bool) −> [(Timespan , [([
String] ,RDBo)])] −− [([S t r ing]) ,RDBo)

tjoinGetComb (_, t s) IVEmpty mcont c l i s t cond = c l i s t
tjoinGetComb (i , t s) (IVNode _ l (oi , ots ,_) cont r) mcont c l i s t cond | cond

o i i = tjoinGetComb (i , t s) r mcont (tjoinGetComb (i , t s) l mcont (tsocadd
(tsoCombine (ts , mcont) (ots , cont)) c l i s t) cond) cond

| otherwise = tjoinGetComb (i , t s) r mcont (tjoinGetComb (i , t s) l mcont
c l i s t cond) cond

tjo inCombInsert : : RDBo −> [(Timespan , [([String] ,RDBo)])] −> RDIndexTree −>
RDIndexTree

t jo inCombInsert _ [] j t r e e = j t r e e
t jo inCombInsert i ((ts , cont) : t) j t r e e = tjo inCombInsert i t (i v t I n s e r t

j t r e e (i , ts , (ivtNextId j t r e e)) cont)

jo inBu i ld Index : : RDRelation −> RDRelation −> RDRelation
jo inBu i ld Index ((nm, (IVNode _ l (nmo, ts ,_) l s t r)) :_) r e l = jo inBu i ld Index

[(nm, l)] (j o inBu i ld Index [(nm, r)] (j o inBu i ld Index2 r e l ([(nm,nmo)] ++
l s t) ([(nm,nmo)] ++ l s t) t s))

j o inBu i ld Index (i@ (_, IVEmpty) :_) r e l = r e l

j o inBu i ld Index2 : : RDRelation −> [([String] ,RDBo)] −> [([String] ,RDBo)] −>
Timespan −> RDRelation

jo inBui ld Index2 r e l [] oos _ = r e l
j o inBu i ld Index2 r e l ((i , o) : t) oos t s = case getIndexTree2 r e l i of

Just idx −> jo inBu i ld Index2 ((cutIndexTree r e l i) ++ [(i n s e r t I ndex (i , idx
) oos oos t s)]) t oos t s

Nothing −> jo inBu i ld Index2 (r e l ++ [(i n s e r t I ndex (i , IVEmpty) oos oos t s)
]) t oos t s

82

A.7 Time

module TempDB. Time where

{−

t ime r e l a t e d f unc t i on s

pro to type deve loped as a par t o f
"A Native Temporal Re la t ion Database f o r Haske l l "

Lukas Maczejka , 2009−2010

−}

import TempDB. BasicTypes
import System . Time (getClockTime , ClockTime (TOD)) −− unix timestamp

crea t i on

−− timespan , v a l i d time l e v e l
data Timespan = VALID (Integer , Integer) −− v a l i d from/ u n t i l timestamp

| ALWAYS
deriving (Show,Read ,Ord ,Eq)

−− ge t current timestamp
timestamp : : IO Integer
timestamp = getClockTime >>= (\(TOD sec _) −> return s ec)

−− t imespans

inTimespan : : Integer −> Timespan −> Bool
inTimespan _ ALWAYS = True
inTimespan i (VALID (f , t)) = (i >= f) && (i <= t)

−− t imespans wi th o b j e c t l i s t s

83

tsoAdd : : [([String] ,RDBo)] −> [([String] ,RDBo)] −> [([String] ,RDBo)]
tsoAdd l [] = l
tsoAdd l (h : t) | h ‘elem ‘ l = tsoAdd l t

| otherwise = [h] ++ tsoAdd l t

−− do two timespans ove r l ap ? i f not , they are s ep e ra t e s
t soSepe ra t e : : (Timespan , [([String] ,RDBo)]) −> (Timespan , [([String] ,RDBo)])

−> Bool
t soSepe ra t e ((VALID (f1 , t1)) ,_) ((VALID (f2 , t2)) ,_) | f 1 > t2 | | f 2 > t1 =

True
| otherwise = False

t s o epe r a t e _ _ = False −− ALWAYS always ov e r l ap s

tsoOver lap : : (Timespan , [([String] ,RDBo)]) −> (Timespan , [([String] ,RDBo)])
−> Bool

tsoOver lap t s1 t s2 = not (t soSepe ra t e t s1 t s2)

−− b u i l d timespan/ o b j e c t l i s t from two timespan/ o b j e c t l i s t s wi th r e s p e c t
to ove r l app ing v a l i d i t y

tsoCombine : : (Timespan , [([String] ,RDBo)]) −> (Timespan , [([String] ,RDBo)])
−> [(Timespan , [([String] ,RDBo)])]

tsoCombine tso1@ (ts1@ (VALID (f1 , t1)) , o1) tso2@ (ts2@ (VALID (f2 , t2)) , o2) |
t soSepe ra t e t so1 t so2 = [tso1 , t so2]

| t s1 == ts2 = [(ts1 , tsoAdd o1 o2)]
| f 1 < f2 && t2 > t1 = [((VALID (f1 , f2−1)) , o1) , ((VALID (f2 , t1)) ,

tsoAdd o1 o2) , ((VALID (t1+1, t2)) , o2)]
| f 1 < f2 && t2 < t1 = [((VALID (f1 , f2−1)) , o1) , ((VALID (f2 , t2)) ,

tsoAdd o1 o2) , ((VALID (t2+1, t1)) , o1)]
| f 1 < f2 && t2 == t1 = [((VALID (f1 , f2−1)) , o1) , ((VALID (f2 , t1)) ,

tsoAdd o1 o2)]
| f 1 > f2 && t2 < t1 = [((VALID (f2 , f1−1)) , o2) , ((VALID (f1 , t2)) ,

tsoAdd o1 o2) , ((VALID (t2+1, t1)) , o1)]
| f 1 > f2 && t2 > t1 = [((VALID (f2 , f1−1)) , o2) , ((VALID (f1 , t1)) ,

tsoAdd o1 o2) , ((VALID (t1+1, t2)) , o2)]
| f 1 > f2 && t2 == t1 = [((VALID (f2 , f1−1)) , o2) , ((VALID (f1 , t2)) ,

tsoAdd o1 o2)]
| f 1 == f2 && t1 < t2 = [((VALID (f1 , t1)) , tsoAdd o1 o2) , ((VALID (t1+1,

t2)) , o2)]
| f 1 == f2 && t1 > t2 = [((VALID (f1 , t2)) , tsoAdd o1 o2) , ((VALID (t2+1,

t1)) , o1)]

84

| otherwise = []

−− any over l ap over l i s t ?
t s oOve r l ap sL i s t : : (Timespan , [([String] ,RDBo)]) −> [(Timespan , [([String] ,

RDBo)])] −> Bool
t s oOve r l ap sL i s t t s [] = False
t s oOve r l ap sL i s t t s (h : t) = tsoOver lap t s h | | t s oOve r l ap sL i s t t s t

t soOver l apL i s t : : (Timespan , [([String] ,RDBo)]) −> [(Timespan , [([String] ,
RDBo)])] −> [(Timespan , [([String] ,RDBo)])]

t soOver l apL i s t t s [] = []
t soOver l apL i s t t s (h : t) | tsoOver lap t s h = [h] ++ tsoOver l apL i s t t s t

| otherwise = tsoOver l apL i s t t s t

t s oS ep e r a t eL i s t : : (Timespan , [([String] ,RDBo)]) −> [(Timespan , [([String] ,
RDBo)])] −> [(Timespan , [([String] ,RDBo)])]

t s oS ep e r a t eL i s t t s [] = []
t s oS ep e r a t eL i s t t s (h : t) | t s oSepe ra t e t s h = [h] ++ t soSepe r a t eL i s t t s t

| otherwise = tsoSep e r a t eL i s t t s t

tsoCom : : [(Timespan , [([String] ,RDBo)])] −> [(Timespan , [([String] ,RDBo)])]
tsoCom t = tsoc t []

t s o c : : [(Timespan , [([String] ,RDBo)])] −> [(Timespan , [([String] ,RDBo)])] −>
[(Timespan , [([String] ,RDBo)])]

t s o c [] l = l
t s o c (h : t) l = t soc t (t s o c c h t l)

t s o c c : : (Timespan , [([String] ,RDBo)]) −> [(Timespan , [([String] ,RDBo)])] −>
[(Timespan , [([String] ,RDBo)])] −> [(Timespan , [([String] ,RDBo)])]

t s o c c t s [] l = l
t s o c c t s (h : t) l = t so c c t s t (tsocadd (tsoCombine t s h) l)

tsocadd : : [(Timespan , [([String] ,RDBo)])] −> [(Timespan , [([String] ,RDBo)])]
−> [(Timespan , [([String] ,RDBo)])]

tsocadd [] l = l
tsocadd (h : t) l | tsoTSElement h l = tsocadd t (tsoaddTSElement h l)

| t s oOve r l ap sL i s t h l = tsocadd t (t s oS ep e r a t eL i s t h l ++ tsoCom ([h] ++
tsoOver l apL i s t h l))

| otherwise = [h] ++ tsocadd t l

85

tsoTSElement : : (Timespan , [([String] ,RDBo)]) −> [(Timespan , [([String] ,RDBo)
])] −> Bool

tsoTSElement t s [] = False
tsoTSElement a@(ts ,_) ((h ,_) : t) | t s == h = True

| otherwise = tsoTSElement a t

tsoaddTSElement : : (Timespan , [([String] ,RDBo)]) −> [(Timespan , [([String] ,
RDBo)])] −> [(Timespan , [([String] ,RDBo)])]

tsoaddTSElement t s [] = []
tsoaddTSElement a@(ts , o1) (b@(h , o2) : t) | t s == h = [(ts , tsoAdd o1 o2)] ++

tsoaddTSElement a t
| otherwise = [b] ++ tsoaddTSElement a t

86

A.8 Tools

module TempDB. Tools where

{−

misc . t o o l s

p ro to t ype deve loped as a par t o f
"A Native Temporal Re la t ion Database f o r Haske l l "

Lukas Maczejka , 2009−2010

−}

−− e x c l u s i v e add
−− concat l i s t e lements o f l i s t 2 to l i s t 1 on ly i f not a l r eady par t o f

l i s t 1
xAdd : : Eq a => [a] −> [a] −> [a]
xAdd l [] = l
xAdd l (h : t) | h ‘elem ‘ l = xAdd l t

| otherwise = [h] ++ xAdd l t

−− maximum signed 32 b i t i n t e g e r
maxInt : : Integer
maxInt = 2147483647

−− minimum signed 32 b i t i n t e g e r
minInt : : Integer
minInt = −2147483648

87

A.9 Transactions

module TempDB. Transact ions where

{−

db t r an sa c t i on s

pro to type deve loped as a par t o f
"A Native Temporal Re la t ion Database f o r Haske l l "

Lukas Maczejka , 2009−2010

−}

import TempDB. Data
import TempDB. BasicTypes
import TempDB. Tools
import TempDB. Time
import TempDB. Tree
import TempDB. Re la t i on s
import TempDB. Ind i c e s

−− app ly query to database
−− conver t to t ransac t ion , c a l l r e s p e c t i v e f unc t i on s
−−
−− c r ea t e t a b l e
−− i n s e r t
−− d e l e t e

query : : RDQuery −> IO RDatabase
query ((ldb , pdb) , s@(CREATE_TABLE i nms)) = do

nt <− toTransact ion s
return (ldb ++ [createTab le i nms] , pdb ++[nt])

query (db , (INSERT i obs ALWAYS)) = query (db , INSERT i obs (VALID (minInt ,
maxInt)))

query ((ldb , pdb) , s@(INSERT i obs tm@(VALID (from , to)))) = do
nt <− toTransact ion s
return (insert ldb i obs tm , pdb ++[nt])

query (db , del@ (DEL _ _ _)) = applyDelete db [de l]

88

−− add timestamp to s ta tement
toTransact ion : : RDStatement −> IO RDTransaction
toTransact ion s = timestamp >>= \ t s −> return (ts , s)

−− c r ea t e new empty database
createDatabase : : IO RDatabase
createDatabase = return ([] , [])

−− c r ea t e new r e l a t i o n
createTable : : Integer −> [String] −> (Integer , RDRelation)
createTable i rows = (i , c r e a t e I nd i c e s rows)

−− b u i l d empty i n d i c e s wi th column names
c r e a t e I nd i c e s : : [String] −> [RDIndex]
c r e a t e I nd i c e s [] = []
c r e a t e I nd i c e s (h : t) = [([h] , IVEmpty)] ++ c r e a t e I nd i c e s t

−− i n s e r t i n t o l o g i c a l db
insert : : LogicalDB −> Integer −> [([String] ,RDBo)] −> Timespan −>

LogicalDB
insert [] _ _ _ = []
insert (h : t) x obs tm = [i n s e r tRe l a t i o n h x obs tm] ++ insert t x obs tm

−− i n s e r t i n t o r e l a t i o n
i n s e r tRe l a t i o n : : (Integer , RDRelation) −> Integer −> [([String] ,RDBo)] −>

Timespan −> (Integer , RDRelation)
i n s e r tRe l a t i o n (n , r e l) x obs t s | n == x = (n , (i n s e r t I n d i c e s r e l obs t s

))
| otherwise = (n , r e l)

89

−− d e l e t e s ta tement (RDSelect because the r e i s no DELETE in the p h y s i c a l DB
− i t i s r e s o l v e d in to a l i s t o f DEL sta tements)

delete : : RDatabase −> RDSelect −> IO RDatabase
delete db (DELETE i cond@(sidx ,_,_)) = (applyDelete db (deleteCond i (

getIndexTree (ge tRe la t i on db i) s idx) cond))
delete db _ = return db

−− c r ea t e t r an sac t i on from DEL, app ly to database
applyDelete : : RDatabase −> [RDStatement] −> IO RDatabase
applyDelete db [] = return db
applyDelete (ldb , pdb) (h : t) = do

nt <− toTransact ion h
applyDelete (deleteFromLdb ldb h , pdb ++[nt]) t

−− d e l e t e from l o g i c a l db
deleteFromLdb : : LogicalDB −> RDStatement −> LogicalDB
deleteFromLdb ldb (DEL i s idx ob) = [(i , indexGuard (jo inBu i ld Index [(s idx ,

deleteFromLdb2 (getIndexTree (getRel ldb i) s idx) ob IVEmpty)] []))] ++
exc ludeIdx ldb i

deleteFromLdb ldb _ = ldb

−− ge t r e l a t i o n l i s t w i thou t s p e c i f i e d r e l a t i o n id
exc ludeIdx : : LogicalDB −> Integer −> LogicalDB
exc ludeIdx [] i = []
exc ludeIdx (h@(i i ,_) : t) i | i i == i = exc ludeIdx t i

| otherwise = exc ludeIdx t i ++ [h]

−− d e l e t e from index t r e e
deleteFromLdb2 : : RDIndexTree −> (RDBo, Timespan) −> RDIndexTree −>

RDIndexTree
deleteFromLdb2 IVEmpty _ dtree = dtree
deleteFromLdb2 (IVNode _ l ob@(oo , ot , o i) cont r) o dt ree | (oo , ot) == o =

deleteFromLdb2 l o (deleteFromLdb2 r o dt ree)
| otherwise = i v t I n s e r t (deleteFromLdb2 l o (deleteFromLdb2 r o dt ree))

ob cont

90

−− r e s o l v e d e l e t e condi t ion , c r ea t e DEL sta tements
deleteCond : : Integer −> RDIndexTree −> Condit ion −> [RDStatement]
deleteCond _ IVEmpty _ = []
deleteCond i (IVNode _ l (oi , ots , i i d) cont r) cond@(sidx , func , comp) | func

o i comp = [(DEL i s idx (oi , o t s))] ++ deleteCond i l cond ++ deleteCond i
r cond

| otherwise = deleteCond i l cond ++ deleteCond i r cond

−− b u i l d new r e l a t i o n meeting s e l e c t cond i t i on s
s e l e c t : : RDatabase −> RDSelect −> RDRelation
s e l e c t db (SELECT co l s r e l s cond join tcond) = s e l e c tCo l s (f l a t t e nRe l s (

selectTCond (s e l e c t Jn (se lectCond db r e l s cond) join) tcond)) c o l s

−− remove a l l but s p e c i f i e d columns
s e l e c tCo l s : : RDRelation −> [[String]] −> RDRelation
s e l e c tCo l s r e l [] = r e l
s e l e c tCo l s r e l l s t = s e l e c tS t r i pCon t en t (s e l e c tGetCo l s r e l l s t) l s t

−− remove column from r e l a t i o n
s e l e c tS t r i pCon t en t : : RDRelation −> [[String]] −> RDRelation
s e l e c tS t r i pCon t en t [] _ = []
s e l e c tS t r i pCon t en t ((s , i) : t) l s t = [(s , s e l e c t S t r i p I nd e x i l s t)] ++

se l e c tS t r i pCon t en t t l s t

−− remove column from index t r e e
s e l e c t S t r i p I nd e x : : RDIndexTree −> [[String]] −> RDIndexTree
s e l e c t S t r i p I nd e x IVEmpty _ = IVEmpty
s e l e c t S t r i p I nd e x (IVNode c l ob cont r) l s t = (IVNode c (s e l e c t S t r i p I nd e x l

l s t) ob (s e l e c tS t r ip IndexContent cont l s t) (s e l e c t S t r i p I nd e x r l s t))

−− remove column from va lue l i s t
s e l e c tS t r ip IndexConten t : : [([String] ,RDBo)] −> [[String]] −> [([String] ,

RDBo)]
s e l e c tS t r ip IndexConten t [] _ = []
s e l e c tS t r ip IndexConten t (h@(s ,_) : t) l s t | s ‘elem ‘ l s t = [h] ++

se l e c tS t r ip IndexConten t t l s t
| otherwise = se l e c tS t r ip IndexConten t t l s t

−− remove index t r e e s o f not s e l e c t e d columns

91

s e l e c tGetCo l s : : RDRelation −> [[String]] −> RDRelation
s e l e c tGetCo l s [] _ = []
s e l e c tGetCo l s (rel@ (s ,_) : t) l s t | s ‘elem ‘ l s t = [r e l] ++ se l e c tGetCo l s t

l s t
| otherwise = se l e c tGetCo l s t l s t

−− app ly j o i n s from s e l e c t cond i t i on
s e l e c t Jn : : [([Integer] , RDRelation)] −> [Join] −> [([Integer] , RDRelation)]
s e l e c t Jn r e l s [] = r e l s
s e l e c t Jn r e l s (h : t) = s e l e c t Jn (se lectJnApply h r e l s) t

−− app ly s i n g l e j o i n to r e l a t i o n l i s t
se l ectJnApply : : Jo in −> [([Integer] , RDRelation)] −> [([Integer] , RDRelation

)]
se l ectJnApply _ [] = []
se l ectJnApply jn@((id1 ,_) , _, (id2 ,_)) r e l s = s e l e c t J n S t r i p J r e l jn r e l s

++ [(se lectJnApplyRel jn (getRe lLst r e l s id1) (getRe lLst r e l s id2))]

−− app ly s i n g l e temporal j o i n to r e l a t i o n (see tempdb . r e l a t i o n s)
se lectJnApplyRel : : Jo in −> RDRelation −> RDRelation −> ([Integer] ,

RDRelation)
se lectJnApplyRel ((id1 , c o l s 1) , func , (id2 , c o l s 2)) r1 r2 = ([id1] ++ [id2

] , t j o i n r1 r2 (co l s1 , c o l s 2) func)

−− remove r e l a t i o n s not needed f o r t h i s j o i n (f o r l a t e r r e b u i l d wi th new
jo ined r e l a t i o n)

s e l e c t J n S t r i p J r e l : : Jo in −> [([Integer] , RDRelation)] −> [([Integer] ,
RDRelation)]

s e l e c t J n S t r i p J r e l _ [] = []
s e l e c t J n S t r i p J r e l jn@((id1 , c o l s 1) , func , (id2 , c o l s 2)) rel@ ((i ,_) : t) | id1

‘elem ‘ i | | id2 ‘elem ‘ i = s e l e c t J n S t r i p J r e l jn t
| otherwise = r e l ++ s e l e c t J n S t r i p J r e l jn t

92

−− app ly cond i t i on s from s e l e c t
se lectCond : : RDatabase −> [Integer] −> [Condit ion] −> [([Integer] ,

RDRelation)]
se lectCond _ [] _ = []
se lectCond db (h : t) cond = [([h] , (selectCondApply (ge tRe la t i on db h) cond))

] ++ se lectCond db t cond

−− app ly cond i t i on l i s t to r e l a t i o n
selectCondApply : : RDRelation −> [Condit ion] −> RDRelation
selectCondApply r e l [] = r e l
selectCondApply r e l (h : t) = applyCondit ion (selectCondApply r e l t) h

−− app ly temporal cond i t i on s from s e l e c t
selectTCond : : [([Integer] , RDRelation)] −> [TempCondition] −> [([Integer] ,

RDRelation)]
selectTCond [] _ = []
selectTCond (h : t) cond = [selectTCondApply h cond] ++ selectTCond t cond

−− app ly l i s t o f temporal cond i t i on s to s i n g l e r e l a t i o n
selectTCondApply : : ([Integer] , RDRelation) −> [TempCondition] −> ([Integer

] , RDRelation)
selectTCondApply r e l [] = r e l
selectTCondApply rel@ (i , r) (h : t) = (i , applyTCondition (f l a t t enRe lC (

selectTCondApply r e l t)) h)

93

A.10 Tree

module TempDB. Tree where

{−

red/ b l a c k ba lanced b inary search t r e e
based on (okasaki , 2008)

pro to type deve loped as a par t o f
"A Native Temporal Re la t ion Database f o r Haske l l "

Lukas Maczejka , 2009−2010

−}

import TempDB. BasicTypes
import TempDB. Time

−−−−−−−−−−−− red b l a c k id / va lue t r e e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

data Color = R | B deriving (Show,Eq)
data IVTree a b = IVEmpty | IVNode Color (IVTree a b) a b (IVTree a b)

deriving (Show,Eq)

−− p r i n t t r e e to s t r i n g
ivtShow : : (Show a , Show b) => IVTree a b −> String
ivtShow (IVEmpty) = "−"
ivtShow (IVNode c l x v r) = show x ++ show c ++ "=" ++ show v ++ " (" ++

ivtShow l ++ " , " ++ ivtShow r ++ ") "

−− member func t i on
ivtMember : : Ord a => IVTree a b −> a −> Bool
ivtMember (IVEmpty) x = False
ivtMember (IVNode _ l y _ r) x | x < y = ivtMember l x

| x > y = ivtMember r x
| otherwise = True

94

−− i n s e r t new node in to t r e e
i v t I n s e r t : : Ord a => IVTree a b −> a −> b −> IVTree a b
i v t I n s e r t s x v = IVNode B l z w r

where
IVNode _ l z w r = i v t I n s s
i v t I n s IVEmpty = IVNode R IVEmpty x v IVEmpty
i v t I n s (IVNode B a y q b) | x < y = ivtBa lance (i v t I n s a) y q b

| x > y = ivtBa lance a y q (i v t I n s b)
| otherwise = IVNode B a y q b

i v t I n s (IVNode R a y q b) | x < y = IVNode R (i v t I n s a) y q b
| x > y = IVNode R a y q (i v t I n s b)
| otherwise = IVNode R a y q b

−− ba lance t r e e / i n s e r t i o n
i v tBa lance : : IVTree a b −> a −> b −> IVTree a b −> IVTree a b

ivtBa lance (IVNode R a x xv b) y yv (IVNode R c z zv d) = IVNode R (IVNode
B a x xv b) y yv (IVNode B c z zv d)

ivtBa lance (IVNode R (IVNode R a x xv b) y yv c) z zv d = IVNode R (IVNode
B a x xv b) y yv (IVNode B c z zv d)

ivtBa lance (IVNode R a x xv (IVNode R b y yv c)) z zv d = IVNode R (IVNode
B a x xv b) y yv (IVNode B c z zv d)

ivtBa lance a x xv (IVNode R b y yv (IVNode R c z zv d)) = IVNode R (IVNode
B a x xv b) y yv (IVNode B c z zv d)

ivtBa lance a x xv (IVNode R (IVNode R b y yv c) z zv d) = IVNode R (IVNode
B a x xv b) y yv (IVNode B c z zv d)

ivtBa lance a x xv b = IVNode B a x xv b

−− d e l e t e node from t r e e
i v tDe l e t e : : Ord a => IVTree a b −> a −> IVTree a b
i v tDe l e t e t i = iv tS imp leDe l e t e t i

−− s imple d e l e t e f unc t i on : b u i l d new t r e e wi thou t e lement to d e l e t e
i v tS imp l eDe l e t e : : Ord a => IVTree a b −> a −> IVTree a b
iv tS imp leDe l e t e IVEmpty x = IVEmpty
iv tS imp leDe l e t e t x = ivtSDel t x IVEmpty

where
i v tSDel (IVNode c IVEmpty y yv IVEmpty) x nt | x == y = nt

| otherwise = i v t I n s e r t nt y yv
ivtSDel (IVNode _ IVEmpty y yv r) x nt | x == y = ivtSDel r x nt

95

| otherwise = i v t I n s e r t (ivtSDel r x nt) y yv
ivtSDel (IVNode _ l y yv IVEmpty) x nt | x == y = ivtSDel l x nt

| otherwise = i v t I n s e r t (ivtSDel l x nt) y yv
ivtSDel (IVNode _ l y yv r) x nt | x == y = (ivtSDel l x (ivtSDel r x nt)

)
| otherwise = i v t I n s e r t (ivtSDel l x (ivtSDel r x nt)) y yv

−− ge t h i g h e s t id in index t r e e
ivtMaxId : : IVTree (RDBo, Timespan , Integer) [([String] ,RDBo)] −> Integer
ivtMaxId IVEmpty = 0
ivtMaxId (IVNode _ _ (_,_, x) _ IVEmpty) = x
ivtMaxId (IVNode _ _ _ _ r) = ivtMaxId r

−− ge t next id in index t r e e (ivtMaxId + 1)
ivtNextId : : IVTree (RDBo, Timespan , Integer) [([String] ,RDBo)] −> Integer
ivtNextId t = succ (ivtMaxId t)

96

A.11 Persistent Transactions

module TempDB. Pe r s i s t en tTran sa c t i on s where

{−

p e r s i s t e n t db t r an sa c t i on s
a f t e r each db manipulat ion the i n d i c e s are updated on d i s k

pro to type deve loped as a par t o f
"A Native Temporal Re la t ion Database f o r Haske l l "

Lukas Maczejka , 2009−2010

−}

import TempDB. Data
import TempDB. BasicTypes
import TempDB. Tools
import TempDB. Time
import TempDB. Tree
import TempDB. Re la t i on s
import TempDB. Ind i c e s
import TempDB. Transact ions
import TempDB.IO

−− execu te a query and immedeately s t o r e i t to d i s k
per s i s t entQuery : : RDPersistentQuery −> IO RDatabase
per s i s t entQuery (db , dbname , s) = do

ndb <− query (db , s)
s t o r eToF i l e ndb dbname
return ndb

−− r e s o l v e a d e l e t e and immedeately s t o r e i t to d i s k
p e r s i s t e n tDe l e t e : : (RDatabase , String) −> RDSelect −> IO RDatabase
p e r s i s t e n tDe l e t e (db , dbname) s = do
ndb <− delete db s
s to r eToF i l e ndb dbname
return ndb

97

	Introduction
	Goals
	Previous Work
	Development
	Requirements
	Restrictions
	Structure

	Database Design
	Database Systems
	Database Management Systems
	Database Models
	The Relational Model
	Object Databases
	Object/Relational Databases - The Third Generation
	The Logic-Based Approach
	Semistructured Data and XML

	A Fitting Approach?

	Persistence and Temporal Data
	Persistence
	Persistent Data Structures
	Time
	Classification
	Data structures

	Functional Programming and Haskell
	History
	Definition
	Functional Programming from an Imperative Programmer's Point of View
	Haskell
	Database access in Haskell
	HaskellDB

	A Temporal Relation Database in Haskell
	Binary Relations
	Data Model
	Values
	Relations
	Temporalising the Database
	Transactions

	Data Storage and Manipulation
	The Physical Database
	The Main Memory Database
	Database Aspects and Temporal Aspects

	The Database Model
	Data Structures
	Balanced Binary Search Trees

	Database Operations
	Data Access and Relational Algebra
	Data Manipulation on Disk
	Future Enhancements

	Implementation
	Basic Types and Data Structures
	Values
	Database Structures
	Index Trees
	Database manipulation and retrieval
	Conditions and Joins

	Database Access
	Database I/O
	Basic Statements, delete and select
	Persistence module
	Data Retrieval with SELECT
	Data Extraction and Output

	Time and Temporal Joins
	Time-specific Functionality
	Temporal Joins

	Temporal Aspects
	Transaction Time
	Valid Time

	Database Manipulation
	Database Creation
	Relation Definition
	Data Insertion
	Deletion

	Data Retrieval
	Data representation
	The physical database
	The main memory database
	Conversion

	Conclusion
	Achieved Goals
	Difficulties
	Ties to Literature
	Further Development
	Evaluation
	Personal Evaluation
	Acknowledgements

	References
	List of Figures
	List of Tables
	Haskell Source
	BasicTypes
	Data
	Indices
	IO
	Print
	Relations
	Time
	Tools
	Transactions
	Tree
	Persistent Transactions

