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Zusammenfassung

Ein wesentlicher Trend der Mensch-Computer-Interaktion der letzten Jahre beschäftigt
sich mit der Entwicklung großer, berührungsempfindlicher Interaktionsflächen zur si-
multanen Benützung durch mehrere Anwender. Ein Forschungsschwerpunkt liegt hier-
bei auf dem Aufbau einer entsprechenden Schnittstelle, die den Benutzern die direkte
Manipulation von digitalen Inhalten ermöglichen soll. Besonders relevant sind hierfür
das Design der interaktiven Oberfläche sowie die automatische Erkennung von Finger-
spitzen die sich auf und über dieser Fläche bewegen.

Allgemein verbreitete Technologien zur Erkennung von Fingerspitzen und Ober-
flächenkontakten beruhen entweder auf der optischen Ablenkung von Lichtstrahlen in
einer kontrollierten Umgebung oder auf kapazitiver Oberflächentechnologie. Aufgrund
des für solche Techniken speziell benötigten Hardware-Aufbaus, meist bestehend aus
individuell angefertigten Komponenten, sind entsprechende Interaktionssyteme in der
Regel teuer und zumeist auch eingeschränkt in ihrer Portabilität und Skalierbarkeit.
Etliche Forscher im Bereich der „Multi-Touch“-Interaktion arbeiten daher an der Ent-
wicklung alternativer Schnittstellen, welche einzig und allein auf herkömmlicher und
kostengünstiger Video-Hardware beruhen. Zur Erkennung von Fingerspitzen auf meist
natürlichen Oberflächen bedient man sich hier moderner Algorithmen des Maschinellen
Sehens.

Die vorliegende Arbeit widmet sich zunächst der Beschreibung, Diskussion und
Evaluierung gängiger berührungsempfindlicher Oberflächentechnologien sowie relevan-
ten Ansätzen beruhend auf Maschinellem Sehen. Das Hauptaugenmerk liegt dann auf
der Auswahl geeigneter Bildverarbeitungs- und Mustererkennungsalgorithmen und der
Entwicklung einer einfachen Software-Applikation zum Tracking einer rechteckigen,
bewegbaren Oberfläche sowie zur Erkennung von Fingerspitzen die sich über diese Flä-
che hinweg bewegen. Die Arbeit wird abgerundet durch die Präsentation relevanter em-
pirischer Resultate bezüglich des Erkennens von rechteckigen Flächen sowie Finger-
spitzen in einem natürlichen Innenraum anhand von visueller Bildinformation.
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Abstract

Multi-touch sensing on interactive tabletops and other flat surfaces has become a major
trend in the field of human-computer interaction over the past years. The main objective
is to provide a touch interface for the direct manipulation of digital content by multiple
users at the same time. Within these terms the appropriate design of the interactive
surface as well as the automatic detection and tracking of fingertips are crucial.

Popular techniques for fingertip and touch detection use specific contact-sensitive
computer hardware that is either relying on optical sensing in a controlled environment
or capacitive surface technology. Since such hardware is usually custom-made, those
interaction systems are mostly expensive, inconvenient to move, install and operate and
not scalable. To overcome these drawbacks, a number of multi-touch researchers strive
for alternative techniques to provide more adjustable interfaces. Here, everyday surfaces
shall be augmented with the functionality of touch-based user interfaces, while using
none but off-the-shelf and affordable vision hardware and relying on state-of-the-art
computer vision methods and algorithms.

This work starts off with the description, discussion and evaluation of common sur-
face hardware technologies as well as existing techniques based on simple video hard-
ware. After that, a set of straightforward computer vision algorithms is selected in order
to develop a stand-alone software application. The application is capable of continu-
ously tracking a rectangular surface as well as detecting multiple fingertips that hover
above its top. This work is concluded by providing relevant empirical results on com-
puter vision-based rectangle and fingertip detection in natural indoor environments.
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CHAPTER 1
Motivation & Problem Statement

Multi-touch interaction on tabletops and other flat surfaces has become a major trend in
human-computer interaction research over the past years. The objective of this field is
to provide an interface based on an interactive surface for the detection of manual user
input. For this purpose, no further input device, such as a computer mouse, keyboard
or stylus, is intended. Each manipulation is performed by the user directly by hand.
Basically, the multi-touch interface needs to be capable of recognizing finger touches
on physical surfaces. In comparison to standard input devices, multi-touch interfaces
provide a basic advantage in usability and interactivity. Generally, the direct form of
manipulation is considered to be more natural and intuitive to the user. This is promis-
ing for application domains, where pointing at and selecting and dragging of digital
content by multiple users is requested. Corresponding fields of application are found in
computer-supported collaborative work environments and large kiosk terminals.

Over the years, numerous multi-touch interfaces have been presented to the public
and currently both commercial and non-commercial interaction systems are available.
Those systems usually consist of special hardware setups that provide touch-sensitive
interactive surfaces. The most popular technologies used here, amongst others, are
optical-based solutions, such as Frustrated Total Internal Reflection, Diffused Illumi-
nation (e.g. Front Diffused Illumination and Rear Diffused Illumination), Light Plane
illumination (e.g. Laser-Light Plane and LED-Light Plane illumination), Diffused Sur-
face Illumination and capacitive surface technology. Consisting of non-standard com-
puter hardware (e.g. infrared light sources and cameras, radio-frequency transmitters,
etc.), those setups are usually expensive, complicated to build and in the majority of all
cases rather bulky and heavy. Typically, once such an interaction system is built up, it
is limited to a certain size. Hence, it cannot easily be rescaled to specific application
needs. Portability of the final system is affected as well. Therefore, such systems are
inconvenient to use, especially when trying to operate large interactive surfaces.
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2 CHAPTER 1. MOTIVATION & PROBLEM STATEMENT

That is why alternative methods, which are totally based on simple vision hardware,
have become more and more popular among multi-touch researchers. Here, all of the
detection and tracking tasks are performed by software algorithms applied to images
obtained by computer video cameras. Those approaches do usually not require bulky
hardware setups or specially equipped surfaces. Generally, standard video cameras are
sufficient. This leads to many advantages. For example, the interactive surface may be
sized individually (e.g. different interactive surfaces may be used with the same appli-
cation) and even relocated dynamically at runtime (e.g. interactive surfaces may be used
as portable control panels for other applications). Furthermore, such systems can be set
up in a much shorter amount of time and used almost everywhere, if lighting conditions
do allow for it. Altogether, a major advantage in both scalability and portability of the
final multi-touch interaction system is recorded. Basically, any arbitrarily shaped sheet,
panel, table or even a regular computer display may be used as an interactive surface.
Unfortunately, these approaches do have disadvantages as well. Due to the use of vi-
sion hardware and relying on digital images, illumination issues have to be regarded
wisely. The main problem is, in contrast to the previously mentioned hardware-based
approaches, that environmental conditions cannot be controlled as in, for example, a
self-contained rear projection tabletop system. Different light sources at varying spatial
positions, shadows and other visual artifacts need to be regarded. The segmentation of
the scene is more complex than in hardware-based setups, where these conditions are
generally consistent over time. Moreover, many computer vision algorithms are rather
complex and computational performance is an issue as well. Robustness, autonomy and
usability of the final interaction system are affected.

The vision-based1 system presented in this work shall be capable of detecting and
tracking an individually designed and dynamically moving, rectangular interactive sur-
face as well as fingertips that hover above the surface’s top. Any detection and tracking
tasks should be performed under indoor lighting conditions and altogether the system
should be a convenient alternative to heavy and bulky approaches, which use specific
touch-sensitive hardware. Especially for large interactive surfaces and when portability,
scalability and cost are important. The final multi-touch interaction system should per-
form autonomous to a large extent, while demanding only a few parameter changes at
runtime.

1For the sake of simplicity in this work, the phrase vision-based refers to setups that are exclusively
based on standard computer vision hardware. This does not include optical-based touch-sensitive hard-
ware technologies, although those are relying on (more elaborated) vision hardware as well.



CHAPTER 2
Introduction

Ever since humans (i.e. users) utilize information processing machines (i.e. computers)
in order to accomplish various tasks, interfaces need to be provided at which the inter-
action process between users and computers may occur. These interfaces are generally
based on both software components (i.e. user interfaces) and peripheral computer hard-
ware (i.e. input devices). Human-computer interaction (HCI) research strives to study
this process and is often regarded as an intersection of computer science and behav-
ioral science. HCI is sometimes also referred to as computer-human interaction (CHI)
or man-machine interaction (MMI). Due to the fact that HCI interfaces are software-
and hardware-based, generally both software and hardware design principles need to
be considered in conjunction when thinking about HCI interfaces. On the human side
of HCI, this includes social sciences, cognitive psychology, communication theory and
linguistics. Whereby on the technology side, electronics, electro-technics, computer
science, interaction design and industrial design are regarded. [Wik10c]

This work focuses on the examination and comparison of popular multi-touch tech-
nologies based on specific touch-sensitive hardware, the presentation of a vision-based
alternative and its implementation by the use of modern computer vision algorithms.
Concerns belonging to the adequate design of user interface software components are
not part of this work.

In the following, the multi-touch interface for HCI is introduced in section 2.1 and
the corresponding field of application is pointed out (section 2.2). After explaining nec-
essary requirements, restrictions and constraints in section 2.3, the current state of the
art of multi-touch interaction systems is presented in section 2.4. Chapter 3 is dedicated
to the description of related work and theoretical foundations, where commonly used
technologies for multi-touch interaction on tabletops and other large, flat surfaces are
discussed in detail. After that, a multi-touch HCI interface based on standard vision
hardware is presented in chapter 4 and implementation details, including the introduc-

3



4 CHAPTER 2. INTRODUCTION

tion of computer vision approaches for surface tracking and fingertip detection, are ex-
plained extensively. Moreover, experimental and practical results are discussed later
on. This work is then completed by chapter 5 and providing final conclusions and an
outlook on possible future work.

2.1 The Multi-Touch Interface
Generally, computer input devices enable users to provide data and control signals to
computers for the purpose of entering various kinds of information and controlling
graphical user interface (GUI) components. Input devices may be distinguished ac-
cording to:

• the modality of the provided data (e.g. audio/video data, etc.),

• the continuity of the provided control signal (i.e. discrete or continuous signal)
and

• the degree of freedom (i.e. the dimensionality of the provided data). [Wik10d]

For the understanding of touch-based systems (i.e. touch systems) within the context of
computer input devices, the knowledge of computer keyboards, pointing devices (e.g.
computer mice) and video input devices (e.g. webcams) is beneficial. Touch systems
are commonly operated by using a stylus or one or more fingertips for providing manual
user input on a so-called interactive surface.

Computer Keyboards

Computer keyboards (or simply keyboards) are basic hardware components, where me-
chanical keys are used for entering one-dimensional input data and providing discrete
control signals to the computer. Moreover, physical response is provided to the user
(e.g. if a key is pressed or released).

For the purpose of entering data on interactive surfaces, so-called virtual keys and
projected keyboards have been presented during the past years. Virtual keys are GUI
components (cp. figure 2.1), which simulate regular computer keyboards on-screen.
By the use of a pointing device, virtual keys may be utilized just as their mechanical
equivalents. Projected keyboards are visual artifacts (cp. figure 2.2), which are projected
onto flat surfaces, such as tabletops, for example. Those usually take part in a vision-
based system, which is watching for manual user input along the projected region. It can
be easily understood that a major advantage of both virtual keys and projected keyboards
is that they do not actually require any physical space and may be faded in and out,
whenever they are needed or not. Due to their virtual nature, character layouts and
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Figure 2.1: The term virtual keys refers to simple GUI components that simulate the
mechanical keyboard on-screen.

graphical designs can be switched quickly, whereas regular computer keyboards are
initially predefined and are not meant to be converted afterwards. A big disadvantage of
virtual keys and projected keyboards is the lack of physical response, which may result
in bad usability.

Pointing Devices

Pointing devices (e.g. computer mice, trackpads, trackballs, etc.) are hardware compo-
nents, which provide multi-dimensional (i.e. spatial) input data and continuous control
signals to the computer. These signals are widely used for controlling computer soft-
ware via GUI components. Here, HCI is mostly performed by using simple manual
gestures, such as pointing, clicking and dragging, which are directly delegated to the
cursor, virtually representing the spatial position of the pointing device within the GUI.
Pointing devices may be classified according to:

• the kind of input (i.e. direct or indirect input) and

• the type of the provided spatial data (i.e. absolute or relative spatial position).
[Wik10d]



6 CHAPTER 2. INTRODUCTION

Figure 2.2: Projected keyboards are artificial visual artifacts that are typically
front-projected onto tabletops or similar flat surfaces. Source:
http://www.netlingo.com/imagearchive/5650_
virtualkeyboard_word_large.jpg

Conventional pointing devices, such as computer mice (or simply mice), provide in-
direct input. Here, the physical device is not spatially collocated with the display device
and may even be moved, while not receiving any input signals (e.g. when a mouse is
lifted and moved to another position without sensing the ground). The actual position
of the pointing device does not coincide with the position of the cursor and the corre-
sponding spatial information is considered as relative. In comparison to that, manual
interaction with touch systems provides direct user input. The established spatial posi-
tion of the stylus or fingertip coincides with the actual position of the cursor within the
GUI. Therefore, the corresponding spatial information is absolute.

Over the years, so-called multi-touch types have evolved from touch interfaces,
which allow two or more simultaneous manual input. Those systems usually take fin-
gertips rather than multiple styluses in order to offer more complex and intuitive ma-
nipulations. To this end, elaborated manual gestures (e.g. for scrolling, zooming in/out,
etc.) have been developed. Figure 2.3 illustrates some examples from the multi-touch
trackpad used in Apple’s MacBook laptop computer. The movement of the fingertips is
analyzed by gesture detection algorithms, which are situated at the software side of the
HCI interface and hand over adequate signals to the GUI. Nowadays, so-called multi-
touch gestures are pretty much common in modern HCI interfaces, such as trackpads
and multi-touch displays or tabletop systems. In this work, only multi-touch systems
based on fingertip input are regarded. It has to be mentioned that the term multi-touch
may either refer to systems taking multi-touch gestures by one user or others allowing
such gestures from multiple users (i.e. multi-user interaction).

http://www.netlingo.com/imagearchive/5650_virtualkeyboard_word_large.jpg
http://www.netlingo.com/imagearchive/5650_virtualkeyboard_word_large.jpg
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Figure 2.3: Multi-finger gestures supported by the Apple multi-touch trackpad.
Source: http://www.appleiguide.co.uk/iGuide/Tips,
_Tricks_&_News/Entries/2010/5/3_Multi-Touch_your_
MacBook_files/Gestures.png

Video Input Devices

Video input devices, such as (infrared) video cameras, stereo vision pairs and since
recently time-of-flight (TOF) cameras, provide continuous visual data. In the terms of
touch-based interaction systems, video cameras may be used for processing images of
the scene for the purpose of visually detecting and tracking various physical objects
(e.g. fingertips, visual markers).

Many popular multi-touch setups that rely on optical sensing use special infrared
cameras in conjunction with infrared light sources. Usually, the infrared spectrum of
light is blocked to the lense of the camera, so that only visible light can pass. For the
purpose of object tracking under infrared lighting conditions, exactly the opposite is
required. Infrared-pass filters are used in front of the lense to block all but infrared
light. This leads to further image segmentation and object detection opportunities. A
number of relevant techniques based on infrared lighting are described in the following
chapter 3 to common touch technologies.

Computer stereo vision, similar to human binocular vision, provides two different
views of the scene at the same time. The two views are brought into correspondence
by calculating a certain epipolar geometry that is used for obtaining depth information
of the scene. A number of vision-based techniques use stereo matching for detecting
surface touch and hover events. A selection is described in the following chapter.

http://www.appleiguide.co.uk/iGuide/Tips,_Tricks_&_News/Entries/2010/5/3_Multi-Touch_your_MacBook_files/Gestures.png
http://www.appleiguide.co.uk/iGuide/Tips,_Tricks_&_News/Entries/2010/5/3_Multi-Touch_your_MacBook_files/Gestures.png
http://www.appleiguide.co.uk/iGuide/Tips,_Tricks_&_News/Entries/2010/5/3_Multi-Touch_your_MacBook_files/Gestures.png
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TOF cameras are generally based on the measurement of time it takes for a certain
object (e.g. light wave) to travel a distance through a medium (e.g. air). Here, the scene
is illuminated by light (e.g. laser) impulses and the time delay that occurs until light rays
are being reflected by nearby objects is measured. This delay is directly proportional to
the actual object distance in space. TOF cameras generally provide low resolution (e.g.
320-by-240 pixels or lower) but rather high frame rates of up to 100 frames per second
(abbr.: fps). [Wik10h] To this end, there is no popular vision-based multi-touch sensing
approach using TOF cameras.

Multi-Touch Interface – Summary

Multi-touch interaction systems are hardware-based interfaces for HCI, where multi-
touch gestures by a single user or simultaneous input by multiple users are allowed.
The main objective of multi-touch interaction systems on tabletops or other flat surfaces
is to provide space for collaborative work, together with allowing direct manual user
input on large interactive surfaces. Artificial visual artifacts, such as virtual keys or
projected keyboards, support this task.

2.2 Applications

Over the past years, multi-touch interaction systems have become more and more robust
and accurate on the one hand and less error-prone on the other hand. Due to the support
of multi-user interaction, such systems are nowadays widely used for collaborative work
assignments in business and research situations. That is why many applications may be
found in the domains of computer-supported collaborative work (CSCW). In the terms
of CSCW, multi-touch tabletop systems are used for enhancing interaction processes
between co-workers and improving communication. Generally, this means viewing and
manipulating digital content on an interactive surface, where multiple users are allowed
to perform various tasks simultaneously. For instance, this can be showing content (e.g.
images, videos, etc.) to colleagues or working together on the same task (e.g. collabo-
ratively sorting images according to a certain scheme). Another field of application for
multi-touch interaction systems are kiosk and terminal applications and also multi-user
computer games and tangible user interfaces.

Multi-touch interaction systems are often used when digital content is presented to
a large amount of people and manipulated by one or more of them at the same time. In-
teractive surfaces are increasingly common for presentational purposes, including news,
weather and sport broadcasts.
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2.3 Requirements & Constraints

When designing multi-touch interaction systems consisting of relatively large interac-
tive surfaces, such as tabletops or any other large, flat surfaces, there are certain re-
quirements and restrictions to the hardware setup and used materials. In the following,
basic preliminaries are examined by providing a brief outlook on touch-sensitive surface
hardware. After that, relevant constraints are introduced.

2.3.1 Interactive Surface

The interactive surface of a touch-based interaction system represents the basic interface
for detecting manual user input. In setups based on touch-sensitive hardware, the sur-
face is typically made out of many layers of special materials, like acrylic and silicone,
whereas each fulfills a specific purpose. In many cases, the materials are expensive and
need to be specially prepared. Especially when building large interactive surfaces, such
as tabletop systems or multi-touch walls, there are limitations to the configuration. For
example, the acrylic material, which is typically used for the main panel of the interac-
tive surface, needs to provide a certain thickness not to get bent when users are touching
and pressing against it. Furthermore, the acrylic panel needs to be very clear not to
inhibit the incidence of light beams, as it is crucial in optical-based hardware setups,
for example. Commonly, once such a system is built-up, it is limited to a certain size
and cannot be rescaled by any means. This generally affects the scalability of the whole
system. Another important issue of hardware-based setups is their heaviness and bulk-
iness. Usually, a special frame is used to hold the surface structure and other hardware
components. Portability of the interaction system is limited. Moreover, many optical-
based systems use back projection for providing visual feedback to the user(s). Back
projection either requires a certain depth behind (or below) the interactive surface or
wide angle lenses for the projector and camera devices.

Vision-based techniques that rely on standard video cameras and computer vision
algorithms instead of touch-sensitive hardware commonly allow more scalable and as
well more portable systems. Basically, any flat surface or even a regular computer dis-
play may be used as an interactive surface and does not necessarily have to be specially
prepared. For example, a regular panel, tabletop or wall may be used, as visual feedback
is typically front-projected. Nevertheless, there are restrictions to the interactive surface
here as well. Basically, the surface needs to be designed in a way that it can be easily
segmented from the distracting background in the scene. Quite often, a rectangular, flat,
white sheet or panel or the bright surface of a tabletop is used. The size of the interactive
surface can be restricted as well, due to the limited viewing angle of the camera. Com-
monly, the interactive surface is fixated and may not be moved during runtime, because
most systems are not able to track a moving surface.
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2.3.2 Constraints
In order to describe, evaluate and compare different approaches, significant constraints
have to be defined. Below, some relevant specifications for failure assessment and us-
ability in multi-touch interaction systems are provided.

Accuracy

Accuracy generally describes a system’s degree of closeness to the actual result, which
is expected in a perfect system under perfect conditions [Wik10a]. As touch-based inter-
faces provide two-dimensional spatial positions of manual user manipulations, accuracy
in this context may be regarded as the difference between the actual and the detected
position of the object that is used to perform the input. Here, accuracy can be expressed
in millimeters (abbr.: mm). Optimal values depend on the size of the interactive surface
as well as the size of the single GUI elements. Typically, touch-based interfaces need
to provide accuracy at level of a few millimeters, because otherwise the usability of the
system may be affected.

Other reasonable measurements for accuracy, regarding correct and incorrect user
input detection are described in the following:

• True positive (TP): A user input that is correctly detected as such.

• False positive (FP): A detection, while no user input actually occurs.

Robustness

In the terms of software and hardware design, robustness describes the ability of a sys-
tem to withstand upcoming errors and discontinuities at runtime [Wik10g]. In multi-
touch interaction, robustness usually describes the capability of the system to sustain
a certain continuity against varying conditions. These may either refer to general con-
ditions affecting usually all multi-touch systems (e.g. different fingertip or hand sizes,
variable skin color, hand occlusions, etc.) or specific types, such as varying lighting
conditions and shadows, that primarily affect optical- and vision-based approaches.

Latency

Typically, the term latency refers to a measurement of time delay perceived in a system
and is measured in milliseconds (abbr.: ms) [Wik10e]. In the context of multi-touch
interaction systems, latency describes the delay of time between the occurrence of a user
manipulation at the hardware interface and the actual receiving of the corresponding
control signal at the software side of the interface. Small values represent good, whereas
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great values denote bad latency of the system. In multi-touch interfaces, latency should
not be higher than 50 ms in order to provide good usability [WB94].

Usability

Whether the usability of an interface is considered to be good or bad is a matter of the
system’s capabilities and depends on both software and hardware components as well as
the ability of the user herself [Wik10i]. The term usability basically describes how intu-
itive the interaction process of the HCI interface is. In multi-touch systems, interaction
is commonly performed by using one hand but bi-manual interaction may be used as
well. Due to the lack of other peripheral devices, multi-touch interaction on large inter-
active surfaces is considered to be natural and intuitive. Usability is generally influenced
by the previously mentioned parameters (i.e. accuracy, robustness and latency).

Autonomy

Autonomy describes the ability of a system to perform without any further parameter
adaptation at runtime required by the user. In multi-touch systems, this refers to auto-
matic parameter estimation approaches. If a system performs well (i.e. with a certain
amount of accuracy) under various conditions, it may be considered autonomous.

2.4 State of the Art
Over the past years, numerous different multi-touch interfaces and stand-alone interac-
tion systems have been presented to the public and by now a number of both commer-
cial and non-commercial systems are available. In the following, the current state of
the art of proprietary multi-touch tracking devices, multi-user interaction systems and
open technologies for multi-touch sensing in tabletop-like environments is presented.
Furthermore, a collection of relevant scientific approaches is mentioned.

2.4.1 Proprietary Systems
When the Apple iPhone was initially launched in 2007 [Hon07], multi-touch interfaces
gained popularity among the broad public and virtually immediately many other manu-
facturers of mobile phones and smartphones, such as Samsung and HTC, redesigned the
idea and presented own multi-touch interfaces. Even though Apple often describes itself
as being the inventor of multi-touch technology, the term multi-touch already occurred
back in the early eighties, when relevant research initially began [Bux09].

The first touchpad for laptop computers allowing multi-touch gestures has been in-
troduced with the launch of the Apple MacBook Air in 2008 [Blo08]. Today, many
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Figure 2.4: Multiple views of the Apple iPad. Courtesy of Apple.com [App10a].

different manufacturers provide proprietary multi-touch interfaces in smartphones and
portable computer systems like the Apple iPad (cp. figure 2.4) [App10a] and the Linux-
based WeTab (previously known as WePad) by the German Manufacturer Neofonie (cp.
figure 2.5) [Wet10]. In 2010, Apple introduced a peripheral input device called the
Magic Trackpad (cp. figure 2.6) [App10b], which allows multi-touch gestures on Mac-
intosh desktop computers.

Commercial systems for multi-user interaction on tabletops commonly consist of
ready-made hardware setups, which can be purchased and used out-of-the-box. Here,
the interactive surface, which is mostly based on a display or rear projection device,
is mounted on a table or frame to enable multiple users to interact in a collaborative
manner. Popular manufacturers of such systems are Microsoft (e.g. Microsoft Surface),
GestureTek (e.g. GestureTek Illuminate Multi-Touch Table) and Circle Twelve Incorpo-
rated (e.g. DiamondTouch).

2.4.1.1 Microsoft Surface

Microsoft Surface (cp. figure 2.7) is a stand-alone, fully functional computer system for
simultaneous multi-user interaction. The hardware interface is based on a 30 inch dis-
play device, which is horizontally mounted on an enclosed rack. Special Infrared cam-
eras and image recognition in the infrared spectrum are used to recognize fingertips that
are touching or moving above the display surface. The system allows visually tagged
objects for software manipulation as well (using bit code patterns). Interaction results
are rear-projected from the bottom of the rack, so that no occlusion of the projected im-
age by the user(s) occurs. Microsoft Surface uses a special hardware technology called
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Figure 2.5: Product image of the WeTab by the German manufacturer Neofonie (with
optional stand and external hard drive). Courtesy of Wetab.mobi [Wet10].

Figure 2.6: Product image of the Apple Magic Trackpad for multi-touch tracking on
Macintosh desktop computers. Courtesy of Apple.com [App10b].

Rear Diffused Illumination, which is explained in section 3.2 and furthermore in 3.2.2.
Microsoft distributes a collection of applications known as the Microsoft Touch

Pack, which includes a map-exploration and a collage tool for manipulating digital maps
and images, respectively. The system is said to provide a fundamental change in the way
people interact with digital content as well as tremendous potential for improving com-
munication in business situations [Mic10].

2.4.1.2 GestureTek Illuminate Multi-Touch Table

Basically, the GestureTek Illuminate Multi-Touch Table (cp. figure 2.8) offers similar
interaction to Microsoft Surface, whereby it does not support other objects for manipu-
lation than human hands. Again, the configuration is based on a display (30, 40 or 50
inch) and consists of a video camera for image recognition and a projector device for
rear projection. GestureTek uses its patented hand tracking technology, where a thin
curtain of infrared light is projected along the display surface. When a fingertip or hand
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Figure 2.7: Product image of the Microsoft Surface rear projection multi-touch table.
Courtesy of Microsoft.com [Mic10].

is illuminated by the infrared light source, the camera instantly determines its position
on the surface. This technique is similar to the Light-Plane illumination technology,
which is described in 3.3. According to GestureTek, the Illuminate Multi-Touch Table
supports nearby pointing in front of the screen as well, where actually no physical touch
is required (i.e. hovering of fingertips). [Ges10]

2.4.1.3 DiamondTouch

DiamondTouch is a multi-user touch technology, which has been initially presented by
the Mitsubishi Electric Research Laboratories (MERL) and was later commercialized by
Circle Twelve Inc. [Mer10, Cir10]. In comparison to Microsoft Surface and the Illumi-
nate Multi-Touch Table by GestureTek, DiamondTouch does neither use video cameras
nor rely on the sensing of light. The recognition of user input is obtained by capacitive
surface technology instead, which is explained in section 3.5. Figure 2.9 highlights the
basic hardware setup and working principle. As it can be understood from the figure,
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Figure 2.8: Illustration of the GestureTek Illuminate Multi-Touch Table. Courtesy of
Gesturetek.com [Ges10].

the DiamondTouch technology requires the user(s) to wear cables and receivers, which
results in bad usability. Nevertheless, the system is able to distinguish between input
from different users by retracing the signals back to their (unique) receivers. Diamond-
Touch uses overhead projection. Visual occlusions of the projected content by the users
are unavoidable.

2.4.2 Open Systems & Scientific Approaches
Important work on multi-touch hardware technology is known by Jefferson Y. Han and
the NUI Group. Furthermore, two relevant vision-based approaches for multi-touch
sensing in tabletop environments are described. This includes the Microsoft PlayAny-
where system and another vision-based approach by Microsoft Research for high preci-
sion multi-touch sensing.

2.4.2.1 Multi-Touch Interaction Experiments by Jeff Han

Being consulting research scientist at the New York University Department of Computer
Science [Han06], Jefferson Y. Han (shortly called Jeff Han) presented his approach for
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Figure 2.9: A schematic diagram of the MERL DiamondTouch hardware setup and ba-
sic working principle. The tabletop system uses capacitive surface technol-
ogy based on electronics for touch detection. Overhead projection provides
visual feedback to the user(s). Courtesy of P. Dietz and D. Leigh [DL01].

multi-touch sensing hardware at the 18th annual ACM Symposium on User Interface
Software and Technology in 2005. According to Han, the Frustrated Total Internal
Reflection-based technology should lead to scalable and, above all, affordable multi-
touch interfaces [Han05]. By publishing videos of his work and presenting his multi-
touch table at the TED conference in 2006 [Ted06], Jeff Han soon became a major
expert for multi-touch research across all over the world. The Frustrated Total Inter-
nal Reflection technology for multi-touch detection may be found in a number of both
proprietary and open systems and is explained in detail in section 3.1.

2.4.2.2 NUI Group

The NUI Group describes itself as a global open source research community focused on
the development of Natural User Interfaces, hence the name, and has been established
in 2006. Throughout its existence, the NUI Group made important contributions to
the field of HCI by providing the NUI Group Community Wiki [Nui10c] and the first
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open book for multi-touch technologies: NUI Group Community Book - Multi-Touch
Technologies, which can be retrieved at [Nui10b] and is available for free download
in the portable document format as well. The group currently consists of more than
10.000 members, which are widely spread across all over the world, and is open to new
members for free registering [Nui10a].

Popular multi-touch hardware technologies, such as the Rear Diffused Illumination
approach, which is used in Microsoft Surface, or Laser-Light illumination, which is
used in the Microsoft LaserTouch prototype [Nui10a, Gre08], and LED-Light Plane
illumination have been or are being developed and enhanced within the community. As
the efforts of the NUI Group are of major importance for state-of-the-art multi-touch
interaction systems, the Diffused Illumination technology with its different forms and
the different Light Plane illumination techniques are explained in sections 3.2 and 3.3.
Furthermore, another recent technology called Diffused Surface Illumination, which is
developed within the community of the NUI Group as well, is explained in section 3.4.

2.4.2.3 Microsoft PlayAnywhere

PlayAnywhere is a front-projected interactive tabletop system, which has been pre-
sented by Andrew D. Wilson from Microsoft Research in Redmond in 2005. Generally,
PlayAnywhere consists of a rather compact hardware setup, where an infrared light
source and a camera are mounted on a portable projector device, as it is illustrated in
figure 2.10. The unit is positioned on a table, whereby the interactive surface is pro-
jected on the tabletop in front of the projector to allow bimanual interaction to the user.
The surface is illuminated by the infrared light source, which is mounted off-axis from
the camera to generate shadows of incoming objects (e.g. hands). Touch detection is
performed by analyzing these shadows. [Wil05] The working principle of the approach
is explained in detail in 3.7.1).

2.4.2.4 Microsoft Vision-Based Approach

Another relevant multi-touch sensing approach has been presented by the Cambridge
Microsoft Research Group in 2007. Ankur Agarwal et al. use a stereo camera pair,
which is mounted overhead on a stand, viewing the interactive surface (i.e. a tablet dis-
play) from above (cp. figure 2.11). The system uses a novel approach, where machine
learning strategies and a geometric finger model are combined in order to train the sys-
tem to work under different physical conditions (e.g. variable lighting, various hand
sizes, etc.). [AICB07] The function of the approach is described in 3.7.2).
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Figure 2.10: Microsoft PlayAnywhere refers to a compact hardware setup, consisting
of a portable projector device with an infrared light source and camera
attached to it. Visual feedback is projected in front of the system and
touches on the interactive tabletop surface are detected by analyzing the
shadows of incoming objects (e.g. hands). Courtesy of A. Wilson [Wil05].

Figure 2.11: Microsoft vision-based approach, which consists of a stereo camera pair
mounted on a stand that views the scene. The interactive surface (i.e.
a tablet display) is fixated at the bottom of the stand. Courtesy of A.
Agarwal et al. [AICB07].



CHAPTER 3
Related Work & Theoretical

Foundations

In this chapter, popular technologies for multi-touch sensing on tabletops and other
large, flat surfaces are explained. This includes a number of optical-based (i.e. light
sensing) solutions and a capacitive surface technology for providing touch-sensitive
computer hardware. In addition, relevant computer vision and machine learning ap-
proaches for the detection of fingertips are described at the end of this chapter.

Optical-based solutions basically consist of a special surface structure that is repre-
senting the interactive surface, various light sources, optical sensors (e.g. video cameras)
and either a projector or LCD display device for providing visual feedback. Typically,
infrared (IR) light is used to illuminate the structure. When objects (e.g. fingertips)
are touching or hovering above the interactive surface, light beams are deflected and
scattered or diffused light is sensed by the video camera. Usually, the video stream is
processed by image recognition software. Hovering and touching produces either bright
or dark blobs in the video frames, depending on the specific technique. Blob detection
algorithms are used to obtain the two-dimensional positions of the spots, which corre-
spond to their absolute positions on the interactive surface.

Generally, the surface structure is mounted on a frame, usually having the propor-
tions of a regular table. This allows multiple users to gather around the setup and interact
with each other as well as with the system. Different setups are categorized according
to the configuration of the surface structure that consists of various layers and different
materials and furthermore according to the kind and position of the light sources. Three
basic hardware setups are observed:

• Frustrated Total Internal Reflection (FTIR)

• Diffused Illumination (DI)

19



20 CHAPTER 3. RELATED WORK & THEORETICAL FOUNDATIONS

• Light Plane (LP) illumination

FTIR (section 3.1) is very popular and widely used for multi-touch sensing in tabletop
systems. Here, the interactive surface consists of a main panel, a compliant layer and
an optional diffuser. The main panel is illuminated internally by a frame of IR light-
emitting diodes (LEDs). In DI (section 3.2), the main panel is equipped with a diffuser
and is illuminated by multiple light sources from either above or below. Basically, two
forms of DI are distinguished: Front and Rear DI (3.2.1 and 3.2.2), where Rear DI is
the more common approach. LP illumination technology (section 3.3) again requires
a diffuser layer and IR light sources are used to generate a so-called plane of light
just above the surface structure. According to the light source, two different types are
distinguished: Laser-Light Plane (LLP) and LED-Light Plane (LED-LP) illumination
(3.3.1 and 3.3.2). [Nui10b]

Another technique, similar to both FTIR and DI, is called Diffused Surface Illumi-
nation (DSI), which is explained in section 3.4. Here, the configuration of the surface
structure and the illumination technique are analog to FTIR but the basic working prin-
ciple is similar to DI. [Nui10b]

Another popular approach for multi-touch sensing on flat surfaces is capacitive sur-
face technology (section 3.5). The underlying principle of capacitive coupling has al-
ready been used for a number of years for touch detection in computer trackpads and
mobile devices (e.g. smartphones, MP3 players, etc.). Here, a grid of capacitors is in-
stalled right underneath the touch surface and the coupling of electrical signals is used
to obtain the surface touch positions.

Section 3.6 provides a summary of the common hardware technologies by point-
ing out important pros and cons. At the end of this chapter, alternative vision-based
techniques for the detection of fingertips are presented in section 3.7. This includes
state-of-the-art computer vision and machine learning algorithms to process digital im-
ages obtained by standard video cameras. This work is widely based on the paper by
Letessier and Bérard (subsection 3.7.3), which provides a straightforward approach.

3.1 Frustrated Total Internal Reflection (FTIR)
A multi-touch setup based on Frustrated Total Internal Reflection has been introduced
by Jeff Han in 2005 at the 18th annual ACM Symposium on User Interface Software
and Technology (UIST ’05). Since then, the term multi-touch is commonly used by the
community of HCI researchers. [Han05]

The phrase actually refers to the underlying optical principle. In optics, a certain
phenomenon occurs when light beams travel from one material into another, while the
two materials do not share the same refractive index. In this case, light beams are
deflected in a specific angle, which can be calculated mathematically and depends on
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the materials’ refractive indices. The refractive index refers to the ratio the speed of
light travels in vacuum, relative to its velocity in a corresponding medium (i.e. material)
[Wik10f]. When light travels from a material with a specific refractive index into another
with a lower one, the light beams are totally reflected if the angle of deflection is greater
than the previously calculated one [Nui10b, Han05]. The effect may be observed when
sunlight enters water, for example. FTIR setups rely on this optical phenomenon.

Figure 3.1 shows a schematic diagram of a typical FTIR setup. Basically, a plexi-
glass (i.e. acrylic) panel is installed in front of a camera. Due to the use of IR light, the
camera needs to be equipped with an IR-pass filter allowing only light in the infrared
spectrum to the lense. IR LEDs are installed at the sides of the panel, so that light beams
can enter the acrylic and illuminate it internally. As visualized in figure 3.1, the light
beams are completely trapped inside the acrylic, due to the principle of total internal
reflection. If the user touches the surface, light beams are no longer totally reflected at
the points of contact and can pass through into the contact material (e.g. skin). The light
beams are then said to be frustrated, hence the name [Nui10b]. Being reflected from the
contact material, light scatters downwards towards the lense of the camera.

The acrylic panel needs to provide a certain thickness not to get bent, like it has
been initially mentioned in 2.3.1. For large interactive surfaces a thickness of 10 mm is
recommended, whereas the minimal thickness is 6 mm [Han05]. This constraint may
be generalized to the other optical-based techniques described in this work as well. The
sides of the acrylic need to be polished with very fine sandpaper or even wet sandpaper
in order to be very clear, so that light beams can enter the material smoothly and without
any disturbances. FTIR setups use a diffuser to remove visual noise (e.g. darker objects
in the back of the scene). Only bright objects (i.e. touches) are allowed by the diffuser.
Generally, touch detection in FTIR works better when the fingertips are wet or greasy,
because in that case the contact to the surface is better and light beams get frustrated
easier [Nui10b]. For that reason, a compliant layer (e.g. made of silicone) is installed
on top of the acrylic. This makes the interactive surface physically sensitive to variable
touch pressures as well. Compliant layers are only used in FTIR setups. Figure 3.2
shows some examples of Jeff Han’s multi-touch experiments.

An advantage of FTIR is that the final interaction system does not necessarily have
to be enclosed. No self-contained box is needed. Another advantage of FTIR is that the
detected blobs provide strong contrast and even different blobs produced by variable
touch pressures are recognized by the system. Furthermore, FTIR is able to recognize
objects as small as styluses and pen tips. On the other hand, FTIR is not able to rec-
ognize visual markers (e.g. fiducials). The installation of the LED frame is difficult,
because it requires complex soldering work. Moreover, FTIR calls for a compliant sur-
face. Obviously, neither glass nor acrylic can be used here. Hovering above the surface
is not detected. [Nui10b]
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Figure 3.1: In FTIR setups, the acrylic panel is illuminated internally by multiple LEDs
positioned at the sides. Light beams are trapped inside the material, due to
the principle of total internal reflection, and scatter downwards towards the
camera lense, if a contact material (e.g. skin) touches the top of the surface.
Courtesy of J. Han [Han05].

3.2 Diffused Illumination (DI)
Diffused Illumination requires a hardware setup similar to FTIR but the basic working
principle is different. The main panel of the interactive surface is usually made out of
acrylic or even glass. Basically, any transparent material can be used. Unlike FTIR,
DI does not require a compliant surface, which makes the surface physically insensitive
to variable touch pressures. The scene is illuminated by one or more (mostly) IR light
sources installed either above or below the surface. Basically, the contrast between a
known image and the images produced when objects are touching or hovering above
the surface is regarded for touch detection. [Nui10b]

In the following, two basic forms of DI are explained: Front and Rear Diffused
Illumination. Both techniques are based on the same working principle but use slightly
different hardware configurations.

3.2.1 Front Diffused Illumination (Front DI)

The hardware configuration for the Front Diffused Illumination technology is compara-
tively simple. In comparison to the other optical-based solutions explained in this work,
Front DI does not exclusively rely on built-in IR light sources. The surface structure is
illuminated by both ambient light from the surroundings and multiple IR light sources
positioned above the interactive surface. An IR video camera is mounted below the
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Figure 3.2: The FTIR multi-touch technology is able to recognize simultaneous touches
and rear-projects visual feedback on the semi-transparent contact surface.
Courtesy of J. Han [Han05].

surface. Either above or below the main panel a diffuser layer is installed to prevent
background objects from disturbing the scene. When fingertips are moving near the
interactive surface, shadows are sensed by the camera and their corresponding positions
are obtained by blob detection algorithms. Figure 3.4(a) shows a typical detection im-
age produced by the Front DI technology. Here, the image is bright, whereas touches
are presented as dark blobs. Other optical-based techniques obtain inverted detection
images.

A major advantage of the Front DI technology is its simple hardware setup. Similar
to FTIR, no enclosed box is required to surround the bottom of the setup. Furthermore,
the interactive surface does not need to be equipped with a special compliant layer
and standard IR light sources and cameras are sufficient. Nevertheless, Front DI has
a lot of drawbacks. Due to the use of ambient light, lighting conditions are hardly
controllable, which affects the system’s robustness. Small illumination changes may
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have great impact on the detection results. Furthermore, constant illumination on the
whole surface is difficult and touches may not be detected equally on the whole area of
the interactive surface. Due to the lack of a compliant layer, Front DI is not pressure-
sensitive. Like FTIR, Front DI is not able to detect visual markers. It mainly depends
on the diffuser layer if hovering of fingertips is detected. [Nui10b]

3.2.2 Rear Diffused Illumination (Rear DI)
Figure 3.3 shows a schematic diagram of the basic Rear DI hardware setup. Unlike in
Front DI, the interactive surface is lighted by multiple IR illuminants installed below
the surface in an enclosed box that surrounds the bottom of the setup. Either on top of
or underneath the transparent main panel a diffuser layer is installed. The choice of the
diffuser material is critical. On the one hand, it needs to allow as much light, so that near
fingertips are illuminated brightly, while the background stays dark. On the other hand,
the diffuser layer needs to inhibit strong reflections from nearby objects in the back.
Generally, strong contrast between nearby objects and the distracting environment is
important. This makes later blob detection much more successful. In contrast to Front
DI, Rear DI obtains dark detection images, whereas touches are presented as bright
blobs (cp. figure 3.4(b)). A popular example for the Rear DI technology is the Microsoft
Surface multi-touch table, which has been initially described in 2.4.1.1.

Rear DI is very popular for multi-touch sensing interfaces, because the hardware
setup is relatively simple, in comparison to FTIR, for example. No complex IR LED
frame is required and standard IR illuminants are sufficient. Depending on the diffuser
hovering of fingertips is detected. Furthermore, Rear DI systems are able to detect
visual markers such as fiducials and other visual bit-code patterns. Like in Front DI,
constant illumination over the whole surface is difficult, because the IR light sources do
not provide lighting with even intensity over the whole light cone. This may result in
bad detection results, especially at the corners of the surface. Rear DI systems are not
pressure-sensitive. [Nui10b]

3.3 Light Plane (LP) Illumination
Like DI, Light Plane setups use transparent acrylic or glass for the main panel of the
interactive surface and the video camera is mounted below the surface structure. The
LP setup does not require an enclosed box. Basically, multiple IR light sources are
installed on top of the panel to generate a plane of light just above its surface. Whenever
objects break through this plane, light beams are deflected and sensed by the camera as
bright spots in the corresponding detection images. LP uses a diffuser layer to suppress
visual noise in the back of the scene. According to the kind of the light source, two
forms of LP are distinguished: Laser-Light Plane and LED-Light Plane illumination.
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Figure 3.3: In Rear DI, the panel is illuminated from below, while light beams are de-
flected by fingers that are touching the top of the surface. Diffused light is
sensed by the camera, which is mounted below the surface structure. Cour-
tesy of the NUI Group [Nui10b].

(a) (b)

Figure 3.4: Example detection images for Front DI (a) and Rear DI (b). In Front DI,
the background of the scene is bright, whereas touches are presented as
dark blobs. Rear DI obtains inverted detection images, as it is shown in (a).
Other optical-based technologies show similar results. Courtesy of the NUI
Group [Nui10c].
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Both techniques have been pioneered within the community of the NUI Group by Alex
Popovich and Nima Motamedi, respectively. [Nui10c, Nui10b]

3.3.1 Laser-Light Plane (LLP) Illumination
In the case of Laser-Light Plane illumination, one or more laser devices are used for il-
lumination. Those are usually installed at the corners of the interactive surface to spread
an equal plane of light just above the surface structure. Specific line lenses are used to
provide a certain angle of horizontal illumination. Both the kind of the line lenses and
the position of the laser devices need to be chosen wisely, so that the interactive surface
is illuminated equally and the system is affordable. Commonly, about 120◦ line lenses
and 2–4 laser devices are used in LLP setups. The laser plane is typically about 1 mm
thick. [Nui10b] On the lower side of the panel, a diffuser is installed to prevent from
visual noise (e.g. other bright objects in the back). When fingertips are moving very
close to the interactive surface, light beams are deflected and strive downwards to the
lense of the IR camera. As in FTIR and Rear DI, the detection images are mainly dark,
whereby scattered light is presented as bright blobs. Figure 3.5 shows the basic setup
and working principle of the LLP technology.

Due to the use of lasers, safety is a great issue in LLP setups. IR lasers cannot be
perceived by the human eye and serious damage can occur to the retina when laser light
is used inappropriately. It is common to use laser devices of 5–25 milliwatt (abbr.: mW)
of power [Nui10b].

A major advantage of LLP is its comparatively simple hardware setup. No enclosed
box has to be prepared and IR laser devices and line lenses are widely available and can
be used out-of-the-box. Furthermore, no complex IR LED frame is required. Like in
DI setups, the main panel is made out of relatively cheap glass or acrylic and does not
have to be specially equipped with a compliant layer. Only a diffuser layer is used. On
the other hand, LLP is not able to detect visual markers and the interactive surface is
not pressure-sensitive. Light intensity does not change with different touch pressures.
Moreover, LLP comes with a specific drawback. If too few laser devices are used (e.g.
just one or two lasers), occlusions can occur. For example, if laser beams are deflected
by one object, another object in the back of the first object is not illuminated anymore.
In that case, the second object would not be detected. [Nui10b]

3.3.2 LED-Light Plane (LED-LP) Illumination
Generally, the LED-Light Plane illumination technology relies on the same working
principle as LLP illumination, namely the establishment of a light plane on top of the
interactive surface. Nevertheless, the basic hardware setup is similar to FTIR. A frame
of IR LEDs is used to illuminate the scene. In contrast to FTIR, the main panel is not
illuminated internally. In the case of LED-LP, the LED frame is installed right on top of
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Figure 3.5: The LLP illumination technology uses infrared laser devices to generate a
plane of light just above the top of the surface. When fingertips are touching
the surface, light beams are deflected and scatter downwards towards the
lense of the camera. Courtesy of the NUI Group [Nui10b].

the surface structure and the LEDs are pointed to the inside of the surface. Thus, a plane
of IR light is generated over the surface, just like it is in the LLP approach. Since the
light of LEDs is conical and not flat (like laser light), a bezel is used on top of the LED
frame to narrow the spread of the light beams in the vertical direction. This effectively
prevents further objects from being illuminated as well.

As LLP, LED-LP illumination does not require an enclosed setup and transparent
acrylic or glass can be used for the main panel. Again, no compliant layer is required.
On the other hand, LED-LP illumination requires a complex LED frame with a bezel
on top. Furthermore, both visual markers and hovering of fingertips are not detected.
LED-LP setups do not provide touch pressure sensitivity.

3.4 Diffused Surface Illumination (DSI)

Diffused Surface Illumination has been developed within the NUI Group community
and is primarily inspired by the work of Tim Roth [Nui10b]. DSI is based on the FTIR
setup, while the acrylic is replaced with another, slightly different type. The material
used here is called EndLighten and refers to a special type of plexiglass. EndLighten
consists of very small particles acting like thousands of tiny mirrors inside the structure.
If IR light is sent into the material from the panel’s sides, like it is in FTIR by using a
frame of IR LEDs, the light beams are reflected by the particles and forced to diffuse out
of the panel in every possible direction. This effectively produces constant illumination
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Figure 3.6: In the DSI hardware setup, the acrylic is illuminated internally, just like in
FTIR, but small particles inside the material force light beams to diffuse
out of the panel, which is similar to DI. Scattered light at the bottom of the
surface is sensed by the camera below the surface structure. Courtesy of
the NUI Group [Nui10b].

of the whole panel surface. Altogether, this effect is similar to DI. Figure 3.6 shows a
schematic diagram of the basic DSI hardware setup.

DSI setups do not require a compliant surface but are pressure-sensitive. Because of
the constant illumination, different touch pressures are recognized via varying intensity
of the diffused light beams. By replacing the acrylic panel, the system can be switched
easily from DSI to FTIR and back. Furthermore, DSI is able to detect visual markers and
hovering of fingertips. Unfortunately, EndLighten is much more expensive than regular
plexiglass and a complex LED frame is required as well. Despite constant illumination
on the touch surface, DSI provides lower contrast blobs than, for example, FTIR and
LLP. DSI setups require an enclosed box. [Nui10b]

3.5 Capacitive Surface Technology

Capacitive surface technology is based on the effect of capacitive coupling, which is
commonly known in electronics [Wik10b]. In comparison to the previously described
techniques, capacitive surface technology (or capacitive sensing) does not rely on the
sensing of light beams in any kind of way. Instead, signals in the form of electrical
impulses are regarded.
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Basically, a grid of capacitors is installed right underneath the touch surface. If
a conductive object (e.g. a fingertip) comes near the surface, an electrical impulse is
transmitted from the object to the near capacitor(s). The system is then able to recog-
nize the two-dimensional position of the impulse’s origin on the surface. Commonly,
two types of capacitive sensing are distinguished: mutual and self (or absolute) ca-
pacitance. In mutual capacitance, driving lines (containing current) and sensing lines
(detecting current) are placed crosswise on two distinctive layers (cp. figure 3.7(a)).
Self (or absolute) capacitance uses just one layer consisting of individual electrodes
connected with capacitance-sensing circuitry (cp. figure 3.7(b)). [Wil10] Both methods
are commonly used in small mobile devices like smartphones (e.g. Apple iPhone) and
mobile phones.

A popular example for capacitive sensing in tabletop environments is the Diamond-
Touch table by MERL, which has initially been mentioned in 2.4.1.3. Generally, Dia-
mondTouch (cp. figure 2.9) is a front projection system, whereby the projector device
is installed above the interactive surface. The multi-touch functionality is provided by
using a specific type of capacitive sensing. Here, an array of antennas is embedded right
underneath the top layer of the surface that transmit very small radio-frequency signals.
Each one of the users is connected to a specific receiver, which is typically mounted on
the users’ chairs. If a user touches the surface, a small amount of the signal from a num-
ber of antennas is coupled to the user’s receiver. Since every participant is connected
to a unique receiver, the system is able to assign multiple manipulations to the different
users. In comparison to optical-based touch-sensitive hardware setups and other vision-
based approaches, this is a major advantage, since the assignment of multiple input to
various users is not trivial in that case. Figure 3.8 shows a schematic diagram of the
surface structure.

3.6 Hardware-Based Techniques – Summary
As a matter of fact, neither an ideal touch-sensitive hardware setup nor the best multi-
touch surface technology can be presented. Each of the previously described techniques
has specific pros and cons, which are summarized in the tables 3.1 and 3.2. Searching
for an optimal technique is not trivial. One needs to understand the field of application
and the expected performance (i.e. autonomy, usability, robustness, etc.) of the system.

In tabletop-like environments, it is commonly desirable to have a simple and com-
pact hardware setup, which can be set up and moved easily and performs equally well
in different locations and under varying environmental conditions. Usability, scalabil-
ity, portability and robustness are important specifications here. Moreover, cost and
computational performance can be issues as well. In the following, relevant vision-
based techniques for multi-touch sensing on large interactive surfaces, addressing these
requirements, are described.
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Frustrated Total Internal Reflection (FTIR)

Pros Cons

• Pressure-sensitive due to different
blobs resulting from variable touch
pressures

• Detection images provide strong
contrast blobs

• Requires a specially prepared
acrylic panel

• No enclosed box is required

• A compliant layer (e.g. silicone) is
required

• A complex frame of LEDs is re-
quired

• Visual markers (e.g. fiducials) are
not detected

• Hovering is not detected

(a)

Front Diffused Illumination (Front DI)

Pros Cons

• Simple hardware setup

• No compliant layer is required

• No complex frame of LEDs is re-
quired

• No enclosed box is required

• Hovering is detected

• Constant illumination is difficult

• Robustness depends on ambient
lighting conditions

• Visual markers (e.g. fiducials) are
not detected

• Not pressure-sensitive

(b)

Table 3.1: Pros and cons of the FTIR (a), Front DI (b), Rear DI (c), LLP illumination
(d), LED-LP illumination (e) and DSI (f) multi-touch technologies [Nui10b].
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Rear Diffused Illumination (Rear DI)

Pros Cons

• Visual markers (e.g. fiducials) are
detected

• No compliant layer is required

• No complex frame of LEDs is re-
quired

• An enclosed box is required

• Constant illumination is difficult

• Detection images provide low con-
trast blobs

• Not pressure-sensitive

(c)

Laser-Light Plane (LLP) illumination)

Pros Cons

• Simple hardware setup

• No compliant layer is required

• No complex frame of LEDs is re-
quired

• No enclosed box is required

• Visual markers (e.g. fiducials) are
not detected

• Hovering is not detected

• Not pressure-sensitive

• Occlusions might occur

(d)

Table 3.1: (continued)
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LED-Light Plane (LED-LP) illumination)

Pros Cons

• No compliant layer is required

• No enclosed box is required

• A complex frame of LEDs is re-
quired

• Visual markers (e.g. fiducials) are
not detected

• Hovering is not detected

• Not pressure-sensitive

(e)

Diffused Surface Illumination (DSI))

Pros Cons

• Possibility to switch from DSI to
FTIR

• Pressure-sensitive

• Visual markers (e.g. fiducials) are
detected

• Hovering is detected

• Constant illumination

• No compliant layer is required

• Expensive EndLighten plexiglass is
required

• Detection images provide low con-
trast blobs

(f)

Table 3.1: (continued)
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(a) (b)

Figure 3.7: Mutual (a) and self (or absolute) capacitance (b) used in popular mobile
devices such as the Apple iPhone. Courtesy of Howstuffworks.com [Wil10]

3.7 Vision-Based Techniques

Over the past years, systems that are primarily based on computer vision have become
more and more popular among multi-touch researchers. The effort is to abandon com-
plex touch-sensitive hardware panels that mostly provide expensive, non-scalable and
non-portable interfaces and go for the use of everyday surfaces (e.g. sheets of paper or
cardboard, tabletops, walls, etc.) instead.

Obviously, such natural artifacts cannot provide interactivity in the first place. A
simple panel made out of cardboard or a tabletop is by no means able to detect finger
touches and deliver the corresponding spatial position to a computer system. That is
where computer vision approaches come in. Interactive functionality is simply added
to the regular surface by the combination of computer vision hardware and software.
The scene is watched by video cameras that obtain digital images of both the surface
and incoming objects (e.g. fingertips, visual markers, etc.). Those images are then pre-
processed by different low-level computer vision algorithms in order to detect features
(e.g. different shapes, connected components, etc.) for further image recognition. In
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Figure 3.8: The surface structure of the DiamondTouch system consists of a number of
antennas installed right underneath an insulating layer that transmit very
small radio-frequency signals. If a conductive object (e.g. a fingertip)
touches the surface, signals from near antennas are coupled between the
surface and a receiver, which is situated at the object. Courtesy of P. Dietz
and D. Leigh [DL01].

Capacitive Surface Technology

Pros Cons

• Fast detection

• Not affected by lighting conditions

• Pressure-sensitivity depends on
software

• Easy assignment of multiple input
to various users (if unique receivers
are used)

• Complex hardware setup

• Non-conductive objects (e.g. sty-
luses, pens, etc.) are not detected

• Visual markers (e.g. fiducials) are
not detected

• Not convenient for large interactive
surfaces

Table 3.2: The table summarizes pros and cons of the capacitive surface technology for
multi-touch detection on large interactive surfaces.
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some cases, machine learning strategies are used to train the system to work under
variable conditions, such as varying lighting and finger widths, for example. As video
cameras are commonly available and environmental lighting is used, the required hard-
ware setup is inexpensive and comparatively simple, in contrast to custom-made touch-
sensitive hardware. On the other hand, illumination is crucial for the performance of the
system and needs to be considered predominantly.

A major task in vision-based approaches is the segmentation of the scene. Desired
foreground (e.g. hands, markers, etc.) needs to be segmented from the distracting back-
ground (e.g. camera noise, other objects residing on the interactive surface, projected
visual feedback, etc.). Image segmentation is rather difficult here, because illumina-
tion conditions change over time and can make parameterized approaches inefficient.
Furthermore in natural settings, the image background typically contains a lot of visual
clutter.

Due to the variety of computer vision and machine learning algorithms, a number of
different approaches on vision-based multi-touch sensing can be found in the literature.
In the following, some relevant and representative techniques are described. This in-
cludes the underlying working principle of the PlayAnywhere interaction system using
infrared lighting [AICB07], a stereo-vision approach for multi-touch sensing [AICB07]
and last but not least a straightforward computer vision approach for the detection of
bare fingers [LB04].

3.7.1 Wilson / PlayAnywhere
As explained in 2.4.2.3, PlayAnywhere refers to the front-projected interactive table-
top system developed by Andrew D. Wilson from Microsoft Research (cp. figure 2.10).
Wilson’s prototype of a compact interaction system basically addresses installation, cal-
ibration and portability issues, which are all relevant in tabletop systems. Its underlying
computer vision technique provides a number of contributions to the field of image
recognition, including a shadow-based touch detection algorithm and the continuous
tracking of sheets of paper [Wil05]. Relevant parts of the basic working principle (i.e.
image rectification, fingertip detection, page tracking) are described in the following:

1. Image rectification. As an initial calibration step, barrel and projective distortions,
imparting from the specific camera lense and slightly oblique position of the cam-
era, respectively, are removed from the image by standard bilinear interpolation.
Figure 3.9 shows the initial input and corrected (rectified) output images. This
step does not have to be performed again if the projector unit is moved to a dif-
ferent location, since the position of the camera on the unit and the distance and
angle between the lense and the surface are constant. Generally, image rectifi-
cation is used to bring spatial two-dimensional coordinates into correspondence.
A certain object on the table will have the same (scaled) dimensions in the rec-
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tified image gathered by the camera. A minor drawback here is that, due to the
oblique camera view, objects in the back will have lower resolution than objects
in the front. Image rectification is used in this work as well and is furthermore
explained in 4.3.2.

2. Fingertip detection, touching and hovering. With PlayAnywhere, Wilson pro-
poses a modern computer vision approach based on the analysis of shadow shapes.
Due to the hardware configuration, where an IR illuminant is mounted on the pro-
jector unit (off-axis from the camera), objects (e.g. hands) that are moving along
the tabletop will produce shadows on its surface. Figure 3.10 shows how the shape
of these shadows change when the fingertip actually touches the surface. In this
case, the corresponding shape is completely covered by the fingertip. The distance
between the actual fingertip and its shadow on the surface is used to determine the
actual height of the fingertip above the tabletop. According to [Wil05], this height
can be calculated exactly, due to the constant angle between the surface and the
camera lense, and may be effectively used for hovering detection. The shadow
images are produced by a simple thresholding operation performed on the recti-
fied input image. The fingertips themselves are detected by finding the one point
on each of the distinctive shadows that is closest to the projector unit, while as-
suming that hands enter the scene from the bottom of the projected image and
move towards the unit. The positions of these points are obtained by the use of
a connected-component analysis. It has to be said that only one point (i.e. one
fingertip) per shadow is detected, which prevents the system from recognizing
multi-finger gestures with one hand.

3. Page tracking. PlayAnywhere offers functionality for continuously tracking sheets
of paper of known dimensions. This is obtained by applying an edge detection
algorithm on the rectified image and using the Hough transform to build up a his-
togram over orientation and perpendicular distance to the origin of strong lines in
the image, commonly known as the Hough space. The Hough space is searched
for appropriate pairs or parallel lines with a certain distance and angle. Figure
3.11 shows a detection example of the page tracking approach. Both edge detec-
tion and the principle of the Hough transform are furthermore explained in 4.3.1
to the surface tracking approach that is provided by this work.

A major advantage of the system is its portability. Hence the name, PlayAnywhere is
meant to be used in virtually any environment, if lighting conditions are appropriate. For
good segmentation, the projected image is completely blocked to the camera lense, due
to the use of an infrared-pass filter. On the other hand, tracking results depend on how
infrared light beams are reflected by natural objects in the scene. Stray infrared light
in the environment can be an issue. Since computer vision algorithms are comparably
complex, computational cost is important. Moreover, the detection of just one fingertip
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(a) (b)

Figure 3.9: Before (a) and after (b) image rectification via bilinear interpolation. Cour-
tesy of A. Wilson [Wil05].

per hand is a major drawback and the robustness of the detected position cannot match
touch-sensitive surface technology. False positive detections are frequent, due to the
loose shape filtering approach (e.g. if not the index finger but another hand part is the
topmost point). Moreover, PlayAnywhere uses front projection, so that occlusions of the
projected image by the hands of the users are unavoidable and may disturb the user(s).

3.7.2 Agarwal et al.
Agarwal et al. choose a different hardware setup to Wilson’s PlayAnywhere. Here, a
standard tablet display is used instead of a projector system for providing visual feed-
back. This shall prevent from occlusions but provide enough space for bimanual in-
teraction. In this approach, only light in the visible spectrum is regarded and neither
IR illuminants nor infrared-pass filters are required. Instead, a stereo camera pair is
mounted on a stand, viewing the scene from above (cp. figure 2.11) and providing two
different views of the interactive surface. Agarwal et al. present a novel technique
for multi-touch sensing based on machine learning and a geometric finger model. The
system is said to provide high precision touch sensing that matches the accuracy of
touch-sensitive hardware [AICB07]. In the following, the basic function of the tech-
nique is explained, including the prime tasks calibration, image segmentation, fingertip,
touch and hover detection:

1. Calibration. At the beginning of the main algorithm, the camera views are brought
into correspondence. For this purpose, straightforward edge detection is used to
detect the corners of the tablet display in both of the stereo pair’s images. Af-
terwards, both the homographic transform and depth plane equation (necessary
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(a) (b)

Figure 3.10: Detection examples of the PlayAnywhere’s shadow analysis approach.
The rectified input image (a) illustrates the change in distance between
the actual fingertip and the corresponding shadow on the surface when the
finger touches the tabletop. After thresholding, shadows are processed by
a connected-component analysis in order to determine the topmost point
in the shapes (b). Courtesy of A. Wilson [Wil05].

Figure 3.11: A page tracking example of the PlayAnywhere interaction system. White
sheets of paper of known dimensions are recognized by the system, even
if partly overlapping occurs. Courtesy of A. Wilson [Wil05].
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for stereo matching) are calculated and stored for later usage during the further
procedures. As the interactive surface is fixated at the bottom of the stand, this
calibration step only needs to be performed if the whole system configuration is
arranged newly. Image rectification (similar to PlayAnywhere) is not required,
because of the straight angle of the cameras, which prevents from perspective
distortion.

2. Image segmentation. Due to the use of an LCD display device, segmentation of
the background is comparably simple. Basically, light emitted by LCD devices
is polarized and appropriate polarizing filters for the camera allow all but polar-
ized light. This effectively removes the LCD image from the scene, leaving just
foreground objects (i.e. foreground pixels) behind. Furthermore, the view of both
cameras is narrowed to the non-moving interactive tablet in order to remove visual
clutter in the background of the scene.

3. Fingertip detection. In contrast to the shadow shape analysis approach by Wilson,
which is based on a relatively simple computer vision heuristic, Agarwal et al.
propose a complex machine learning strategy for the detection of fingertips. Here,
machine learning shall provide a robust classifier for the identification of points
(i.e. tip points) that have high probability of belonging to a fingertip. Probability
is calculated by shape and appearance cues, which are used in combination to
provide significant probability values. Generally, many input images are used
as a training set for the classifier, where tip points and non-tip points have been
predefined manually. These images are encoded using local image patches of 8-
by-8 pixels, which are initially normalized with respect to rotation and intensity,
and are then raster-scanned into 64-dimensional feature vectors (cp. figure 3.12).
This effectively produces a specific signature vector for each of the patches, which
are handed over to a linear decision rule that is in that case a Support Vector
Machine. The machine learning approach is able to classify any new patch to
match a tip or non-tip point according to the previously learned data. Multiple tip
points form pixel clusters, which are further used for recognizing multiple touches
on the surface.

4. Touching and hovering. A second Support Vector Machine is used to recognize
touching and hovering of fingertips on and above the interactive surface. For this
purpose, Agarwal et al. propose the calculation of a plane equation, whereby
that plane slices the fingertip as it is illustrated in figure 3.13. At each point
Xi = (xi, yi) on the boundary of the tip point cluster from step 3, a disparity
measure is expressed as di = αTXi + β, where α and β are the parameters of
the desired plane and α = [α1α2]

T . The points Xi are measured directly from
the local coordinate system attached to the finger tip and di is obtained by the
stereo matching technique. A discriminative classifier, providing a decision rule
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Figure 3.12: Scheme of the encoding process that converts 8-by-8 image patches into
64-dimensional signature vectors to be used with the Support Vector Ma-
chine. Courtesy of A. Agarwal et el. [AICB07].

on the parameters α and β of the equation, is learned by the second Support Vector
Machine from manually labeled training data. The machine learning approach is
said to provide robust touch and hovering detections by regarding the centroid of
the calculated elliptical shape [AICB07].

According to [AICB07], the system provides touch sensing with a precision of 2–3
mm, which is similar to the accuracy of touch-sensitive surface hardware and a very
good result for systems based on stereo vision. Another advantage of the proposed
system is its portability. It can be moved to another location without the need for re-
calibration. On the other hand, due to the use of a tablet display, scalability to other
surfaces is limited. Agarwal et al. propose that other interactive surfaces than dis-
play devices may be used but in that case the image segmentation approach needs to
be revised. Like other techniques based on Support Vector Machines, training is very
important. Only if the training data is significant, good results can be expected. Once
more, computational cost is an issue. According to [AICB07] the system provides 20
fps on a 3.4 GHz processor.

3.7.3 Letessier and Bérard
Letessier and Bérard presented their novel approach for visual tracking of bare fingers at
the 17th annual ACM Symposium on User Interface Software and Technology in 2004
[LB04]. In contrast to the previously described vision-based techniques, the work by
Letessier and Bérard does not propose an explicit physical prototype but a collection
of straightforward computer vision algorithms to be used in a simple vision hardware
setup. According to [LB04], off-the-shelf and inexpensive computer cameras, a stan-
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Figure 3.13: The figure illustrates the geometrical approximation of the fingertip by
establishing a plane that slices the finger. The height of the ellipsoid’s
centroid formed by the fingertip shape is regarded for touch and hover
detection. Courtesy of A. Agarwal et el. [AICB07].

dard projector device and a recent computer system (e.g. a portable laptop computer) are
sufficient. It is recommended to assemble both camera and projector in a specific unit
(similar to PlayAnywhere), so that the system can be mounted on the ceiling, for exam-
ple. In the following, the prime stages (i.e. foreground extraction, automatic threshold-
ing, shape filtering and event association) of the main algorithm are explained:

1. Foreground extraction. At first, similar to the other vision-based techniques, the
camera image is segmented in order to provide an extraction of the desired fore-
ground (i.e. hands) and remove distracting background from the scene. For this
purpose, the approach makes use of an Image Differencing Segmentation (IDS)
technique. IDS generally obtains a similarity map that yields a certain value of
similarity for each of the pixels, when comparing the actual camera image (or
frame) with a predefined (still) model of the background. If the similarity be-
tween two compared pixels is low, the probability that the actual pixel belongs to
the foreground is high. The proposed foreground extraction procedure contains
three steps:

• Background model. For setting up the background model, typically pixel
variations are regarded. Since relevant variations are mostly due to camera
and lighting noise, Letessier and Bérard propose to model the background as
an average image, where each of the pixels is the mean over time of recent
pixel values measured at the corresponding position.

• Comparison metric. In order to calculate the similarity of two pixels, an ap-
propriate comparison metric need to be used. The approach suggests the use
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of the Euclidean distance between the pixels in the (r, g)-normalized chro-
maticity plane, named the Chrominance Euclidean Distance (CED). Accord-
ing to [LB04], this should effectively remove shadows from the scene and
save computational performance at the same time, due to the metric’s math-
ematical simplicity. The segmentation of shadows is crucial, since hand
shapes could be extended and no longer used for accurate shape filtering in
the following [LB04]. The Euclidean distance d of the pixel p in the current
frame and p′ in the background model is computed as follows:

p = [R,G,B] (3.1)
[r, g] = [R/(R +G+B), G/(R +G+B)] (3.2)

d(p, p′) = ‖[r, g]− [r′, g′]‖ (3.3)

Figure 3.14 shows a typical similarity map obtained by the CED. It has to
be said that the projected image is removed from the scene by causing over-
exposure on the camera image during the segmentation procedure.

• Background maintenance. Since the background of the scene may change
over time (e.g. when objects pause in the view of the camera for a longer
period of time), the background model needs to be updated constantly. As
mentioned before, the pixels of the background image (Bg) are computed
by averaging recent pixel values. The model at the time t + 1 is calculated
according to:

Bgt+1
(x,y) = αt

(x,y) · Imt
(x,y) + (1− αt

(x,y)) ·Bgt(x,y) (3.4)

Where Im denotes the current image and the value of α (i.e. the learning
rate) is constantly updated during the computations and being influenced
by the results of the IDS procedure. If a pixel is successfully detected as
foreground in the actual IDS step, it influences the learning rate to be com-
paratively high in the following computation of the background model.

2. Automatic thresholding. To use the similarity map for further shape filtering it
is converted to a binary map. Since manual thresholding is not desired, this is
performed by an automatic thresholding approach. Here, a certain threshold θt

is defined by regarding the similarity map’s grayscale histogram. The histogram
typically exhibits two modes. According to [LB04], the lower mode contains
approximately 80% of the pixels, corresponding to background noise. Basically,
θt should be chosen at each step to eliminate this mode, while preserving the rest
of the data. This is achieved by approximating the median m0 and the median
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absolute deviation m1 of the corresponding mode:

m0 = median(x,y)d
t(x, y) (3.5)

m1 = median(x,y)

∣∣m0 − dt(x, y)
∣∣ (3.6)

θt = m0 + 4 ·m1 (3.7)

The automatic threshold is said to be stable and empirically close to manually
chosen thresholds [LB04]. The binary map is then handed over to a shape filtering
approach.

3. Shape filtering. The main idea here is to define a simple geometric model that
describes the appearance of a typical fingertip (cp. figure 3.15). This model
is basically presented as a set of characteristics (or criteria): c1, ..., cn, where
ck(x, y) ∈ 0, 1. In order to get accepted as being part of a fingertip, each pixel
has to verify all of the characteristics, one after the other. Generally, these criteria
are ordered according to their cost in performance and number of pixels they sort
out. Low-cost characteristics that sort out many pixels are likely to be positioned
at front of the serial shape filtering procedure in order to minimize the necessary
computational effort. If a pixel does not verify a certain criteria, it is rejected.
Hence, the procedure is called Fast Rejection Filter (FRF). The basic function of
the FRF algorithm is further illustrated in pseudocode 3.1. Letessier and Bérard
propose the following characteristics. To be accepted as part of a fingertip, a pixel
p needs to be:

• c1: classified as foreground in the binary map,

• c2: within a region of connected pixels that is large enough to fit the dimen-
sions of a hand (approx. 20 cm2),

• c3: surrounded by a fully segmented disc of 9 mm,

• c4: part of exactly one connected component, while scanning the contour C
and

• c5: the distanceAB has to be coherent with the width of a finger (9–20 mm).

Figure 3.16 shows a typical detection image. Pixels that are not rejected are clus-
tered into connected components and the centroid of each cluster is stored in a list
of coordinates, which simply corresponds to an array of fingertip positions.

4. Association. For recognizing touches on the surface, the actual fingertip positions
from the previous step are handed over to an association (or tracking) routine.
Here, an ID is generated for every detected fingertip position, whereas a simple
closest neighbor algorithm checks for three possible events:
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• Appearance. If no fingertip has been detected in the previous frame, within
a certain range of the current fingertip position (using a threshold), an appear
event is recognized and a new ID is associated with the position.

• Motion. If the current fingertip position is further away to a previously de-
tected position than a fixed motion threshold, a motion event is detected and
the ID is associated with the new position.

• Disappearance. IDs that cannot be matched to any of the new positions
generate a disappear event.

Since the approach is not able to detect actual surface touches, a spatiotemporal
filter is included. If a fingertip does not move for a certain period of time (e.g.
300 ms), a touch (e.g. click) event is recognized.

Basically, the approach provides the software side of a state-of-the-art computer vision
multi-touch interface and the possibility to easily build up a compact and portable inter-
action system. The final system is meant to be set up in a small amount of time and in
almost any natural indoor environment, such as an office or meeting room, for example.

The proposed system mostly satisfies the requirements of HCI in tabletop environ-
ments. It allows about 4 users at the same time to interact at a frame rate of 25 fps on
a 1.4 GHz portable Apple Macintosh computer. Finger detection is said to be stable,
while robustness strictly depends on environmental lighting conditions, which have to
be controlled. Latency of the system is 80 ms with a deviation of approximately 18 ms.
This is not ideal, considering the initially mentioned maximum value of 50 ms. Further-
more, the overhead projection produces occlusions of the projected image by the hands
of the users. [LB04]



3.7. VISION-BASED TECHNIQUES 45

Figure 3.14: Typical segmentation result of the CED metric. The background model
can be seen in the top left image, whereas the bottom left image shows the
actual frame. The similarity map on the right hand side indicates a lot of
visual noise but provides high resolution hand segmentation. Courtesy of
J. Letessier and F. Bérard [LB04].

Figure 3.15: The diagram shows the simple geometric model of a regular fingertip. The
observed finger shape (gray) is limited by the smallest and largest possible
finger widths (dashed circles), spanning betweenA andB. C indicates the
scanned contour. Courtesy of J. Letessier and F. Bérard [LB04].
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Pseudocode 3.1 Fast Rejection Filter. Courtesy of J. Letessier and F. Bérard [LB04].
1:
2: for each pixel (x, y) do
3: for each k do
4: if ck = 0 then
5: skip pixel
6: end if
7: end for
8: mark pixel as a candidate
9: end for

10: return map of candidates
11:

(a) (b)

Figure 3.16: A typical detection image (a) of the approach with the detailed output (b)
of the Fast Rejection Filter. (b) indicates what pixels have been rejected
by which filter characteristic. Grey pixels have either been rejected by c1
or c2, black by criteria c3, pink by c4 and blue by c5. Pixels that have not
been rejected are marked with white pixels, forming the detection clusters.
Courtesy of J. Letessier and F. Bérard [LB04].



CHAPTER 4
Implementation Details & Practical

Results

This chapter focuses on presenting the proposed vision-based system for the detection
of fingertips on variable and dynamic interactive surfaces. In the following, important
implementation details as well as practical results are explained.

The underlying approach is based on a specific pipeline of computer vision software
algorithms processing images obtained by a video camera. Similar to related finger
tracking approaches, such as [Wil05], [AICB07] and [LB04], the presented system is
capable of recognizing fingertips that hover above a predefined surface. Generally, the
system is meant to perform under regular indoor lighting conditions, where the camera
is viewing the scene from an overhead-like position. Custom-made hardware compo-
nents are not required. Basically, the intended configuration is designed to be prefer-
ably simple, light and cheap. The system should be easily portable to various locations
and it should be possible to arrange the setup in a small amount of time. In contrast
to the hardware-based touch technologies described at the beginning of chapter 3, the
presented system supports variably sized surfaces, which should improve scalability.
Furthermore, in addition to similar vision-based approaches, the system is capable of
tracking the interactive surface continuously, so that the touch area does not necessarily
have to be fixated in any kind of way and can be moved dynamically during runtime.
Altogether, this should allow more flexible interfaces, where the interactive surface may
be replaced easily with other types of different size or even shape to support multiple
applications with the same basic system (e.g. supporting large tabletop interactions and
small control panel applications by simply switching the interactive surface). General
hardware and software design issues are presented in section 4.1.

It has to be mentioned that this work does not propose an explicit physical hardware
prototype, as it is in [Wil05] and [AICB07]. Instead, it focuses on the selection of ap-
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propriate computer vision algorithms and their implementation on the basis of a simple,
cross-platform software application that is presented in section 4.2. The so-called multi-
touch application is designed to take the video stream of the camera and automatically
perform the main algorithm on the single frames. Moreover, each step can be applied
separately and the corresponding results are visualized in an expressive manner.

The main algorithm of the presented approach consists of a series of computer vision
methods and algorithms that are applied to the input images of the camera or the output
of a preceding step, respectively. The three main parts of the algorithm are:

1. surface tracking based on rectangle detection and a vertex tracking algorithm (also
called vertex tracker),

2. image rectification and calibration and

3. fingertip detection, including foreground extraction and shape filtering.

Initially, the interactive surface is detected in the scene by a geometrical rectangle de-
tection technique, relying on straightforward edge detection and a Hough transform,
similar to the page tracking functionality in [Wil05]. In short, straight lines in the cam-
era view’s edge image are transformed into a Hough space, which is then searched for
pairs of parallel lines that match certain characteristics defining the geometrical shape
of the interactive surface (section 4.3.1). The calculated surface vertices are further pro-
cessed by a vertex tracker in order to obtain stable output before being handed over to
image rectification and calibration routines that are explained in 4.3.2. Here, the image
is rectified by removing the perspective distortion, resulting from the angle enclosed by
the surface plane and the view of the camera, and narrowed to the region of the surface.
The rectified image region is then calibrated according to the dimensions of the actual
interactive surface. The fingertip detection algorithm, which is described in 4.3.3, takes
the rectified image region from the previous step and performs a series of sub algorithms
on the pixels. Initially, a foreground extraction technique is applied to the region to re-
move distracting background from the scene. The foreground is then processed by a
shape filtering approach, similar to the one proposed in [LB04], in order to detect pixels
that are likely to belong to a fingertip. Fingertip pixels are finally clustered into groups
and their centroid is stored for further processing. In this approach, event detection (i.e.
touch detection) is optional. In 4.3.4, some potential techniques for detecting physical
surface touches are briefly presented to support future work.

At the end of this chapter, important experimental and practical results are explained
in section 4.4. The section provides a basic overview of the prime contributions of this
work to the field of computer vision-based surface tracking and fingertip detection in
natural indoor environments.
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4.1 Design Considerations
Generally, this work addresses both hardware and software needs of a modern multi-
touch interface. The presented system basically consists of a recommended hardware
configuration and a software component, managing the hardware input and providing a
GUI to the user.

Concerning the hardware side, only off-the-shelf computer vision components are
used for viewing the scene. Additional illumination is not intended and the interactive
surface itself does not have to be specially prepared in any kind of way. Specific rec-
ommendations and hardware preliminaries are provided in the following. The software
side of the interface is implemented using state-of-the-art open source programming
libraries to provide cross-platform software scalability and portability.

4.1.1 Hardware Preliminaries
The proposed system uses commonly available hardware components, which makes
the setup easy to configure. Figure 4.1 shows an image of a typical hardware setup.
Basically, a standard camera device, an optional stand, a regular computer system and
an everyday surface are sufficient. It has to be mentioned that the proposed system
does not provide visual feedback that is superimposing the interactive surface. Thus, no
projector device or additional LCD display is required in the first place. Visual feedback
is exclusively provided at the GUI of the later described multi-touch application. Due
to the fact that the system is meant to perform under indoor lighting conditions, the
basic configuration does neither require special light sources, such as IR illuminants,
nor infrared-pass filters for the camera.

Interactive Surface

For the interactive surface, basically any flat panel (also a tabletop) may be used. Due
to the use of image rectification and a surface tracking approach, the panel does not
have to be fixated and can be moved (e.g. translated, tilted, etc.) almost freely within
the view of the camera. The freedom of movement is limited by the surface tracking.
For example, the surface cannot be tilted for more than a certain amount of degrees.
More information on that is provided in subsection 4.3.1. Moreover, since the surface
tracking algorithm is actually expecting rectangular shapes, the interactive surface needs
to provide a rectangular appearance of certain proportions (i.e. DIN format). However,
the algorithm can be easily extended to support other than DIN proportions as well.
Dimensions do not really matter, as long as at least one long enough part of each surface
edge is visible within the camera view.

Generally, it is recommended to use a high contrast, homogeneous surface that can
be easily detected in a natural environment. In case of a smaller, dynamically mov-



50 CHAPTER 4. IMPLEMENTATION DETAILS & PRACTICAL RESULTS

Figure 4.1: A typical hardware setup for the proposed vision-based system on the basis
of the multi-touch application. A standard webcam is viewing the scene
from an overhead-like position. The interactive surface, in that case, con-
sists of a simple sheet of paper bonded to a panel made of cardboard that
prevents from bending. Visual feedback is provided at the GUI of the multi-
touch application.

ing surface (e.g. a control panel), a simple white sheet of paper bonded to a piece of
cardboard that prevents from bending is sufficient. When working on a table, either
the tabletop surface itself (e.g. if the camera view contains high contrast background)
or a bright or dark panel can be used, respectively. The recommended color depends
on the background of the scene. It has to be mentioned that the presented foreground
extraction technique (during fingertip detection) regards the color of skin. Thus, the
interactive surface should feature different color.

Webcam

For viewing the scene, a single color video camera, such as a regular webcam, is suffi-
cient. The proposed technique has been developed and tested with a standard 1.3 mega
pixels TerraTec TerraCam X2 (USB 2.0), which generally provides a video frame rate
of 15 fps at 1280-by-1024 pixels. In order to sustain a decent frame rate during the
main algorithm and keeping computational efforts low, images of 320-by-240 pixels at
a rate of approximately 60 fps were used for testing and evaluation. Nevertheless, this
resolution is common in similar vision-based finger tracking approaches [LB04].

Just as the interactive surface, the webcam does not have to be fixated and can be
moved and positioned freely during runtime, as long as the interactive surface stays
within the camera view. It is recommended to mount the webcam on a stand (e.g. a
regular tripod) in order to provide a wide angle view of the scene. The used webcam
does not obtain barrel distortion, so that initial camera calibration is not required.
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Optional Hardware

The recommended hardware setup can be extended in several ways. In the following, a
couple of ideas for optional hardware components are presented:

• A FireWire camera can be used [LB04] instead of the USB 2.0 device to improve
data transfer rates. If required, higher resolution images can be processed (e.g. in
large tabletop environments, where the proposed resolution of 320-by-240 pixels
is not accurate enough).

• A wide angle camera can be used to support large tabletop environments. In that
case, probably initial camera calibration is required.

• In order to improve the performance of the computer system, a graphic card with
Computer Unified Device Architecture (CUDA) support (cp. subsection 4.1.2)
can be used. In that case, the program code needs to be adapted to use CUDA
functions.

4.1.2 Implementation
The software side of the proposed interface is implemented using the object-oriented
programming language C++. This includes the GUI of the multi-touch application as
well as the implementation and integration of the required computer vision methods
and algorithms. For rapid developing and cross-platform portability, the GUI is en-
tirely based on openFrameworks, a novel open source toolkit for scalable and portable
computer software [Ope10b]. OpenCV is utilized for fast computer vision-related im-
age processing (e.g. image conversion, filtering, edge detection, Hough transform, etc.)
[Ope10a].

OpenFrameworks

OpenFrameworks is a novel C++ programming library by Zach Lieberman, Theodore
Watson and Arturo Castro that provides a coherent software interface to several multi-
media APIs such as OpenCV, OpenGL [Ope10c], RtAudio [Sca10], FreeType [Lem10],
FreeImage [Dro10] and more. Generally, openFrameworks provides a simple and in-
tuitive base for experimentation, creative coding and rapid software prototyping. It is
open source software, so that any computer programming enthusiast may contribute to
the community by implementing and sending in own extensions (i.e. add-ons) that are
usually carrying the preamble ofx. The framework is strongly inspired by the Pro-
cessing development environment, which is based on the Java programming language.
OpenFrameworks generally implements the basic working principle of Processing in
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C++. Here, applications basically consist of three main methods that are executed seri-
ally:

• Setup()

• Update()

• Draw()

Setup() is only run once, at the time when the application is started. Here, all of
the initialization work should be done. Update() and Draw() are infinitely looped
until the program is terminated. It is common to do processing during the Update()
routine, which is executed one step before Draw(). The Draw() method is simply
used to show the results on the screen. [Ope10b]

The general abilities of the openFrameworks environment are limited and cannot
be compared to optimized C++ program code. Nevertheless, the library provides func-
tions for fast and robust GUI implementation and supports various useful extensions,
including a simple built-in video grabbing tool.

OpenCV

OpenCV describes a well-known open source programming library for real-time com-
puter vision-related image processing. Generally, OpenCV is based on the proprietary
Image Processing Library by Intel. The free library contains hundreds of optimized al-
gorithms for, amongst others, image processing and machine learning. [Ope10a, BK08]
OpenCV code is by default included in openFrameworks (i.e. ofxOpenCV), so that
corresponding functions may be used out-of-the-box within the program code.

Optional Software

Since geometrical calculations, such as the later presented surface tracking approach,
take a lot of computational performance, the requirements to the computer system are
relatively high, especially when using high resolution in real-time processing. For that
reason, it is generally preferable to source out these calculations to an additional pro-
cessing unit. Computer Unified Device Architecture (CUDA) describes a novel tech-
nique that provides a special graphical processing unit situated at the computer graphic
card [Nvi10]. Concerning real-time computer vision applications, CUDA is relevant for
speeding up computations.
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4.2 The Multi-Touch Application

A prime contribution of this work is the implementation of a multi-touch application,
which provides a simple and beneficial experimental basis for successively applying
related computer vision algorithms to a stream of live images obtained by one or more
computer video cameras.

Generally, the application is designed to be easily portable across multiple platforms,
including Microsoft Windows, Apple Macintosh and Linux distributions. The algorith-
mic part of the application is sourced out to form an openFrameworks add-on, named
ofxMultitouchRecognition. Here, all of the image processing is performed by
combining self-implemented algorithms and standard OpenCV functions. The applica-
tion’s GUI is implemented separately to provide a useful demonstration tool to other
programmers that are trying to reuse and enhance the software. Figure 4.2 shows the
main window of the GUI. In the following simple user manual, the basic functions are
described briefly.

User Manual

The unprocessed webcam image (<in>) is shown on the bottom left of the window. The
output of the actually selected algorithm is shown in the middle image on the bottom
(<out>). The large and small workspaces above the two images and on the bottom
right of the window are used to display intermediate steps of the single algorithm parts.
On the right hand side, the user can make a couple of adjustments to the program by
pressing the corresponding key on the keyboard. Key a, A sets the application mode to
automatic, which means that the main algorithm is automatically performed on the input
images of the webcam and the output is displayed in the middle image on the bottom
of the main window. By pressing s, S on the keyboard, the user can set the actual size
of the interactive surface, which is important for calibration and shape filtering. The
user can choose between a number of standard DIN proportions (A0–A5). Key d, D
adjusts the general self-estimated brightness level of the input images. Here, the user
may choose between bright, regular and dark. The selected level is used within the code
to adjust the parameters of the single algorithms to the actual lighting conditions. By
pressing and holding F2, the user can set points for image rectification in the input image
(<in>). This is requested to manually mark the vertices of the interactive surface and
to tell the surface tracker the default vertices to follow. Pressing and holding F3 simply
augments the mouse cursor with a color picker function that is executed on the output
image (<out>). By pressing m, M on the keyboard, the input image can be mirrored
as an initial image processing step, so that overhead viewing issues may be corrected.
Each single step of the main algorithm may be executed by pressing the corresponding
key (1–8). It has to be mentioned that most of the steps require that the previous step
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Figure 4.2: The main window of the multi-touch application GUI is split up in three
parts. On the bottom of the window, the input and processed output image
streams are displayed. In workspaces above and next to the images (i.e.
empty gray spaces), intermediate results are provided. On the right hand
side, the user can make various adjustments to the application.

is enabled. For instance, all further image processing steps can only be applied if the
surface is rectified and calibrated first.

4.3 Computer Vision Pipeline
In the following, the computer vision pipeline of the main algorithm is explained in de-
tail and the working principle of the single components is demonstrated by pseudocodes
as well as illustrated by example images. All of the images have been established by the
previously described multi-touch application.

4.3.1 Surface Tracking

The vision-based tracking of objects through a series of natural images is a challeng-
ing task. Typically, the process involves detecting object features in a single frame and
following them to their new positions in the subsequent frame. The tracking proce-
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dure is heavily influenced by the quality of the features, which means in this case their
robustness against varying lighting conditions and visual occlusions. [LA97]

Since the interactive surface provides a specific rectangular shape, it is suitable to use
geometrical information as a main feature for tracking. A major advantage here is that
geometrical constraints usually do not change under varying illumination, in contrast
to other object features like color or texture information, for example. Furthermore,
occlusions are indeed a major problem here. When the interactive surface is used for
manipulation, it is partially occluded by the users’ hands, which makes the tracking of
the surface itself difficult.

To address these problems, a number of rectangle tracking techniques, such as
[Wil05], [HPM03] and [JS04], propose to use edge images together with the Hough
transform for feature tracking. Typically, straight lines are found in edge images pro-
duced by a straightforward edge detection algorithm (e.g. Canny, Sobel, etc.). The lines
are basically represented by their offset (i.e. distance from the origin) and angle in the
two-dimensional image plane. The Hough transform establishes an accumulator plane
in which for each combination of the two parameters an individual value is stored. The
value represents the probability of the presence of a single feature that matches the pa-
rameters of the cell [HPM03]. The accumulator plane is commonly referred to as Hough
space. This Hough space is later searched for lines that fit certain criteria that match the
appearance of the desired shape. In the case of a rectangular surface to be searched,
criteria are the edge lengths and angles between two pairs of parallel lines, for example.
Generally, the Hough transform is computationally expensive and its use for real-time
computer vision processing is critical. An optimized version of the Hough transform is
included in the OpenCV library.

This approach is not based on matching criteria directly in the accumulator plane, as
it is proposed in [HPM03] and [JS04]. Because for this purpose, the Hough transform
needs to be implemented manually and this did not seem feasible in the terms of this
work. Instead, the pre-implemented OpenCV version of the Hough transform is used
to obtain Hough lines from the edge images and using these lines for a geometrical line
and rectangle detection technique, similar to [LA97]. In the following, the proposed
surface tracking approach, including a geometrical rectangle detection technique and a
vertex tracker, is explained in detail.

4.3.1.1 Rectangle Detection

The proposed rectangle detection is based on the following single steps:

1. Image conversion and blur. The unprocessed color image obtained by the web-
cam is initially converted to grayscales, using cvCvtColor(), and blurred with
a Gaussian filter, using cvSmooth(), to remove visual noise. This is very im-
portant for the later edge detection and Hough transform. The more the image is



56 CHAPTER 4. IMPLEMENTATION DETAILS & PRACTICAL RESULTS

blurred, the viewer edges are detected and the less computational expensive the
Hough transform gets. On the other hand, it is important not to eliminate too
much edges in the image. The size of the filter kernel needs to depend on the
global image luminosity level (i.e. general image brightness). As explained be-
fore, the actual level needs to be estimated by the user at runtime and is entered
within the GUI before being handed over to the surface tracking routine. If the im-
age is generally bright, the filter kernel needs to be comparatively large to remove
enough noise (i.e. weak edges). On the other hand, a dark image requires the
filter kernel to be small, not to loose too much edge information. Generally, filter
kernels between 13-by-13 and 21-by-21 have proven to suit regular indoor envi-
ronments. Figure 4.3 shows the starting point of the surface tracking approach:
a typical input image and the result of the image conversion. The blurred image
can be seen in figure 4.4(a).

2. Edge detection. The well-known Canny algorithm is used for edge detection in-
stead of the Sobel operator that is used in [HPM03]. Empirical experimentation
showed that in this approach Canny simply removes noisy edges more successful
than the Sobel algorithm. The parameters of the OpenCV function cvCanny()
need to be adapted to the choice of the previously used Gaussian filter kernel.
More information on that is provided during the later presentation of practical
results in section 4.4. Figure 4.4(b) shows a typical result of the edge detection
step. The output is a binary image, where detected lines (i.e. strong edges) are
presented as white pixels.

3. Hough transform. The Hough transform, which is executed by calling the corre-
sponding OpenCV function cvHoughLines2(), is applied to the binary edge
image from the previous step to retrieve an array of detected Hough lines. For
each of the lines, the orthogonal distance to a parallel line, intersecting the origin,
length and slope are stored in a separate feature space. Figure 4.5 shows the input
image with detected Hough lines. The second thin line in image 4.5(b) indicates
the orthogonal distance of the line to the origin, which is situated at the top left
corner of the image.

4. Geometrical rectangle detection. The feature space of straight Hough lines is
then searched for pairs of almost parallel lines. Therefore, the angle distance of
the two lines needs to be smaller than a certain threshold in order to get accepted
as a parallel pair. The recommended threshold of 30◦, as proposed in [LA97],
is further restricted to 10◦ to eliminate more false positive detections. Neverthe-
less, this restricts the tilting of the interactive surface as well. Furthermore, the
two lines must not be closer than a manually predefined threshold of 10 pixels in
order to reduce the amount of possible pairs. The parallel line pairs are further
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sorted into another feature space, which is then searched for two almost orthogo-
nal pairs. Here, the angle of the two pairs does not have to be lower or greater than
a specified deviation (i.e. 5◦) from the optimal value of 90◦. A third feature space
of possible rectangle candidates is filled with the detected orthogonal line pairs.
Pseudocode 4.1 furthermore demonstrates the working principle of the geometri-
cal approach and the corresponding result is shown in figure 4.6(a). Here, white
circles indicate possible surface vertices that belong to a set of two orthogonal
line pairs, matching the previously described criteria. For each of the candidates a
probability value is established. The candidates are further analyzed according to
certain characteristics that define the interactive surface. Proposed characteristics
are as follows:

• The rectangle enclosed by the two pairs of parallel lines needs to provide a
certain aspect ratio (i.e. DIN format).

• The length difference of two parallel edges has to be smaller than a prede-
fined threshold of 10 pixels.

• The rectangle area has to be greater than a predefined value of 5 percent of
the image area.

The output of the geometrical rectangle detection technique is defined by the ver-
tices of the one rectangle with the highest probability. It has to be mentioned that,
due to the many possible combinations of parallel line pairs, the algorithm obtains
duplicate rectangle detections that are at the almost same position and basically
overlap each other.

The first found surface vertices are finally handed over to the vertex tracking algorithm
that is described in the following.

4.3.1.2 Vertex Tracker

The vertex tracker should provide smooth tracking without flickering, even if the previ-
ous detection algorithm fails to detect the surface for one or more frames. Here, at each
frame, the actual vertices are compared to a combination of two separate buffers. If a
surface is successfully detected, its vertices are stored in a primary buffer (in relation
to previously buffered vertices). If the surface is currently not detected, the vertices
from the primary buffer are used. For convenient results, the desired surface needs to
be initially marked by the user via the multi-touch application GUI. The tracker stores
these vertices in a secondary buffer so that later detections may be analyzed according
to those. New detections are only considered if they are spatially near the predefined
vertices. Pseudocode 4.2 demonstrates the exact working principle of the tracking pro-
cedure.
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(a) (b)

Figure 4.3: The figure shows a typical input image (a) and the initial conversion to
grayscales (b).

(a) (b)

Figure 4.4: Result of the Gaussian blur filter with a filter kernel of 13-by-13 (a) and the
application of the Canny edge detector on the blur image (b).
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(a) (b)

Figure 4.5: The result of the Hough transform on the edge image (a). A single line ex-
ample is depicted in (b). The shorter line indicates the orthogonal distance
to the image origin (i.e. top left image corner).

(a) (b)

Figure 4.6: The figure shows the general output of the geometrical rectangle detection
approach (a). The pairs of parallel lines are indicated by thick white lines
and the sets of possible rectangle candidates are presented as thick white
circles. The final result of the vertex tracker is indicated by the green rect-
angle, which is overlaying the initial input image (b).
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Pseudocode 4.1 Geometrical rectangle detection.
1:
2: fspacelines, fspacepairs, fspaceorthogonal pairs {line, pair, orthogonal pair feature spaces}
3:
4: for each line in Hough space do
5: store orthogonal distance, length and slope
6: end for
7: return fspacelines {containing straight lines}
8:
9: for each line in fspacelines do

10: find parallel lines
11: end for
12: return fspacepairs {containing pairs of parallel lines}
13:
14: for each pair of parallel lines in fspacepairs do
15: find orthogonal pairs of parallel lines
16: end for
17: return fspaceorthogonal pairs {containing sets of two orthogonal line pairs}
18:
19: for each element in fspaceorthogonal pairs do
20: calculate probability
21: end for
22: return list of possible rectangles
23:

Figure 4.6(b) shows the output of the vertex tracker. It can be seen that the interactive
surface is successfully recognized in a natural environment. The surface vertices and
the corresponding image region are further processed by the following rectification and
calibration procedures.

4.3.2 Image Rectification & Calibration

Generally, image rectification is required to bring spatial two-dimensional coordinates
into correspondence, as it has been already mentioned in subsection 3.7.1 to the expla-
nation of the vision-based approach by Wilson.

Basically, there are two image planes to cope with. The plane in which the physical
interactive surface resides and the image plane of the scene established by the camera
view. Points within the coordinate system of the interactive surface need to be mapped
to their scaled equivalents in the on-screen coordinate system. Usually, this procedure
is referred to as homography and the mapping can be expressed by a 3-by-3 orthogonal
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Pseudocode 4.2 Vertex tracker.
1:
2: verticesactual, verticespredefined, verticesdefault, verticestracker {actual, predefined, de-

fault, tracker vertices}
3: buffer1, buffer2 {vertex buffers}
4:
5: if surface has been predefined then
6: buffer2 = verticespredefined

7: end if
8:
9: if surface is currently detected then

10: if surface has been detected during the previous frames then
11: if surface has been predefined then
12: if surface is near predefined surface then
13: buffer1 = buffer2 = verticesactual

14: else
15: buffer1 = buffer2

16: end if
17: else
18: buffer1 = verticesactual

19: end if
20: else
21: if surface has been predefined then
22: if surface is near predefined surface then
23: buffer1 = buffer2 = verticesactual

24: else
25: buffer1 = buffer2

26: end if
27: else
28: buffer1 = verticesactual

29: end if
30: end if
31: else
32: if surface was visible during the previous frames then
33: verticestracker = buffer1

34: else
35: if surface has been predefined then
36: verticestracker = buffer2

37: else
38: verticestracker = verticesdefault

39: end if
40: end if
41: end if
42:
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matrix, also described as warp matrix [BK08].

Due to the freedom of movement of both the interactive surface and the camera,
the angle between the camera lense and the surface changes over time, so that the im-
age rectification procedure needs to be continuously applied to the input image at each
frame. Generally, known points in the image are established and the orthogonal matrix
is computed for the later transformation of the whole image.

In this approach, the vertices of the interactive surface are used for image rectifi-
cation. These can either be manually set points, directly obtained by the user within
the GUI, or automatically determined vertices resulting from the previous surface track-
ing. Initially, the top left, top right, bottom left and bottom right points are determined
by a straightforward algorithm. After that, the warp matrix is calculated by using the
cvGetPerspectiveTransform() function that matches the original vertices in
the surface plane to their new positions in the on-screen image plane. The matrix is
then used for calling cvWarpPerspective() in order to rectify the whole image
according to the calculated perspective transform. Figure 4.7 shows the result of the
image rectification procedure on simple test patterns. The figure shows that only the
area of the patterns (i.e. in that case, the interactive surface) is visualized, which is over-
lapping the original image. The area is internally also called the region of interest (ROI)
and used for further processing. Any later algorithms are exclusively processing this
ROI in order to save computation time and to remove visual noise, residing alongside
the physical interactive surface.

For calibrating the system, the user has to simply choose the current size of the
used surface from a selection of common DIN formats. The conversion factors between
the actual dimensions of the surface and the ROI are obtained by a straightforward
calculation and stored in a conversion table for later usage.

4.3.3 Fingertip Detection

The fingertip detection algorithm presented in this work focuses on analyzing geometri-
cal shapes in binary images. For that purpose, the rectified ROI provided by the previous
surface tracking and image rectification is initially segmented into desired foreground
(i.e. hands) and distracting background. As mentioned before, the segmentation process
is critical, as it predetermines the results of the further procedures.

In the following, a suitable technique based on skin detection is presented and com-
pared to the results of the adaptive background model proposed in [LB04]. The fore-
ground pixels are later processed by a specific shape filtering technique that obtains
fingertip pixel clusters.
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(a) (b)

Figure 4.7: The figure shows an example input image with two test patterns (a) and the
corresponding output of the image rectification approach (b). The image
region detected by the previous surface tracking approach is rectified and
used for further processing.

4.3.3.1 Foreground Extraction

Foreground extraction here refers to the process of segmenting pixels that belong to the
hands of the user(s) from the rest of the scene. The background generally includes other
objects that are residing on the interactive surface as well as visual feedback that may be
projected onto the surface. In this approach, visual feedback is not present and therefore
not interfering with the segmentation process. In a real application setup, projections
can be removed from the scene by causing overexposure, as it is proposed in [LB04].

The main problem throughout segmentation are shadows resulting from the ambient
lighting. Shadows may extend hand shapes and make these inappropriate for the later
shape filtering. That is why the required foreground extraction technique needs to be
robust against shadows. The suggestion of Letessier and Bérard to use an adaptive
background model has been the starting point of this work. Unfortunately, the self-
implemented version of the IDS technique did not show the same results as proposed in
[LB04]. Figure 4.14(b) shows the application of the algorithm to the input image shown
in figure 4.8(a). As it can be seen, only the outer shape of the hand region is detected
as foreground, leaving the inner side without enough texture information for the later
shape filtering. Moreover, the segmentation is noisy and fails to detect the whole outer
shape. This may be lead back to an erroneous implementation or inappropriate lighting
conditions. More on the performance of IDS may be found in the following subsection
4.4.2.

For that reason, another extraction technique that is naturally robust against shadows
has been chosen, namely the detection of skin. As proposed in [ATD01], it is suitable to
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(a) (b)

Figure 4.8: A typical input image (a) and a visualization of its conversion to the HSV
color space (b).

perform skin detection in the HSV color space. In comparison to RGB, the HSV space
provides hue, saturation and value (i.e. lightness) for each pixel. The range of elements
in the image that are likely to be equivalent to the color of skin can easily be detected by
the standard OpenCV function cvInRangeS(), as proposed in [And10]. The func-
tion compares each pixel to a three-dimensional range of values. If the desired pixel
color lies in the range of skin color, the function returns a white pixel at the position.
Otherwise, a black pixel is returned. This leads to a binary image where regions that
show similar color to skin are segmented. Figure 4.9(a) shows the application of the
skin detection technique to the typical input image from 4.8(a). A visualization of the
corresponding HSV image is shown in 4.8(b). Appropriate parameters for the OpenCV
function have been chosen similar to the ones proposed in [And10] and [ATD01]. Nev-
ertheless, the parameters strictly depend on the actual lighting situation and need to be
adapted to the globally estimated luminosity level as well.

To remove holes and obtain a dense segmentation, a small median filter for smooth-
ing (i.e. 3-by-3 filter kernel) is further applied to the ROI, using the cvSmooth()
function. Figure 4.9(b) shows the result of the hand segmentation after median smooth-
ing. The output image is handed over to the shape filtering algorithm.

4.3.3.2 Shape Filtering

The proposed shape filtering technique is very similar to the approach by Letessier and
Bérard but uses different filter characteristics and another working principle. The im-
plementation is exclusively based on standard OpenCV functions.

Generally, the shape filtering approach uses a specific dual template matching tech-
nique. Template matching basically refers to an image processing method, where a cer-



4.3. COMPUTER VISION PIPELINE 65

(a) (b)

Figure 4.9: The application of the skin detection technique to the detected and rectified
image region (a). The final image segmentation result after applying a 3-
by-3 median filter for smoothing is shown in (b).

tain shape (i.e. a template or image patch) is moved over the input image and matched
with the underlying image region, according to a comparison metric. The process results
in a grayscale map, where for each pixel a value is given that describes the similarity
between the region around the pixel with the predefined image patch. [BK08]

In this approach, the two two-dimensional templates are designed to match the
smallest and largest possible fingertip sizes (12.5–22.5 mm) in the binary segmenta-
tion image. The shapes are continuously rescaled before each computation step (i.e. at
each frame), as the actual conversion factor from physical to on-screen coordinates may
change at runtime, when the interactive surface moves further away from or nearer to
the camera. It can be said that the size of the two template matching shapes depends on
the predefined thresholds as well as the actual size of the interactive surface. The shape
filtering procedure is described in the following:

• Initial connected-component analysis. At first, the segmentation image is pro-
cessed by a connected-component analysis that searches for connected groups
of pixels by applying cvFindContours(). The area of the connected region
needs to be within low and high thresholds, corresponding to the actual size of a
human hand, which is approximately preset between 10–25 cm2.

• Dual template matching. For each of the found components (i.e. hand regions),
the dual template matching is performed, using the standard OpenCV function
cvMatchTemplate(). Initially, the region is matched with the small shape
and after that with the large shape. The process leads to two different template
matching maps. Examples are shown in figure 4.10. As it can be seen from figure
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4.10(a), the matching with the smaller shape segments the outer hand shape. In
fact, it produces large values in the matching map for all of the pixels that are
not further to the edge of the hand shape than the half of the smallest possible
fingertip size (i.e. the size of the smaller template matching shape). Furthermore,
the figure shows the effect of a small hole in the previous segmentation image to
the template matching map. Figure 4.10(b) shows the application of the larger
shape. Here, especially the finger regions themselves return large values in the
matching map, as they almost exactly match the larger shape.

• Shape filtering. In order to get accepted as a fingertip pixel, a pixel needs to verify
all of the following characteristics. The pixel needs to:

– be detected as foreground in the binary segmentation image,

– provide a strong value in the first template matching map and

– provide a very strong value in the second template matching map.

The accepted values are defined by manually selected thresholds that have been
obtained by empirical testing. Finally, the shape filtering approach leads to a
so-called detection map in which possible fingertip pixels are presented. Figure
4.11(a) shows the detection map of the actual example. If a pixel verifies all of
the conditions, a white pixel is returned at the position. Otherwise, a black pixel
is returned. As it can be seen in the figure, there are some noisy pixels on the right
side of the hand. To remove such noise, another connected-component analysis is
performed on the detection map.

• Final connected-component analysis. Another connected-component analysis is
used to find actual fingertip pixel clusters (i.e. pixel clusters that are large enough
to belong to a fingertip). The centroid of each cluster (cp. figure 4.11(b)) is
returned in a list of fingertip positions.

The accuracy of the detected positions is estimated at millimeter level (i.e. approxi-
mately 2–10 mm). The results of the technique primarily depend on the image seg-
mentation and the correct adaptation of the template sizes. Holes in the segmentation
may produce many FPs. If two hands overlap each other or strive near each other, they
are commonly grouped into one connected-component. This does not affect the shape
filtering approach as long as the two hand shapes are clearly segmented.

4.3.4 Event Detection – Potential Techniques
As initially mentioned, this work does not propose an explicit approach for event detec-
tion, referring to the detection of physical surface touches. In the following, a couple of
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(a) (b)

Figure 4.10: The shape filtering approach is based on a dual template matching tech-
nique, including both small and large image patches that are roughly rep-
resenting the minimum and maximum sizes of typical fingertips. The re-
sulting template matching maps are shown in (a) and (b), whereas the
corresponding patches are displayed in the top left of the two images.

(a) (b)

Figure 4.11: The detection map consists of fingertip pixel clusters (a). The cluster cen-
troids are augmenting the rectified input image (b).
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suitable techniques are presented that would basically fit the constraints of the proposed
vision-based system:

• Shadow shape analysis. A technique similar to the one proposed in [Wil05] and
described in 3.7.1 could be used for touch detection. However, the original ap-
proach by Wilson uses infrared lighting conditions, so its adaption to natural light-
ing conditions is not straightforward, because the orientation of shadows typically
changes in natural environments. Moreover, shadow intensities may change as
well. An appropriate technique would be to mount a specific light source to the
camera, so that the angle of the incoming light and the shadow intensities are al-
most constant during runtime. The angle of light could be calculated according to
the previously determined viewing angle, for instance during calibration.

• Stereo matching. Regarding a very accurate vision-based detection of physical
surface touches, a technique similar to [AICB07] that uses a stereo vision pair
could be suitable. In that case, the surface tracking approach would have to be re-
vised. Under stereo vision conditions, the surface tracking needs to be performed
in one of the camera views and the corresponding surface vertices in the second
camera view are found by using the epipolar geometry. As the interactive surface
is movable and the epipolar geometry changes continuously, the reconstruction
of the three-dimensional fingertip position for surface touch detection would not
be straightforward to implement. Altogether, such an approach would make the
system more complicated to implement, bulky and expensive.

• Depth analysis. If available, a TOF camera could be a potential alternative to
the previously described touch detection approaches, since both surface tracking
and fingertip detection could be managed by a single device. In that case, the
depth image obtained by the TOF camera could be searched for a certain area
of equal distance to the camera, which indicates the existence and position of
the interactive surface. Moreover, the difference in distance from the surface and
the users’ hands could be used for obtaining touch positions. Nevertheless, the
segmentation of the hand region would not be trivial. As TOF cameras are non-
standard computer hardware, the system would get more expensive and bulky as
well. Moreover, TOF devices provide comparatively poor resolution (i.e. mostly
lower than 320-by-240 pixels) on the one hand but very high frame rates on the
other hand. However, the latter would be practical for real-time image processing.

4.4 Experimental & Practical Results
This section provides essential experimental and practical results that have been estab-
lished throughout the experimentation with computer vision algorithms in the terms of
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tracking rectangular shapes and detecting fingertips in natural indoor environments.
Generally, the presented multi-touch application performs at a frame rate of approx-

imately 20–40 fps, when both surface tracking and fingertip detection are enabled. For
testing and evaluation, a portable Sony Vaio laptop computer has been used, which is
based on a quad-core Intel i7 1.73 GHz processor with 6 GB of RAM. The used op-
erating system is Windows 7 64-bit. The frame rate mainly depends on the number of
lines that are considered during the rectangle detection technique and the number of
connected components that need to be processed by the shape filtering approach, which
corresponds to the number of visible hands hovering the interactive surface. Generally,
the performance of the system is similar to the approaches by Letessier and Bérard and
Agarwal et al. that function at 25 and 20 fps, respectively. It has to be mentioned that
the rate alludes to the selected region of interest and not the whole image of 320-by-240
pixels. The performance can partly be optimized, considering that the rendering of the
GUI takes some computation time as well. However, the maintained frame rate is at the
bottom end of appropriate values for good usability. In the following, important results
are categorized according to the corresponding part of the main algorithm.

4.4.1 Surface Tracking
Regarding the surface tracking approach, experimentation showed that the standard
OpenCV function for the Hough transform obtains robust detection of straight lines
in the edge images. The function can be widely adapted to the specific purpose by
choosing the number of points in the accumulator plane cell that a certain line needs to
provide to be returned by the function. This is used to effectively filter out very short or
very long lines in order to suppress unneeded lines for the later search for parallel line
pairs. Generally, the search for orthogonal pairs of parallel lines is rather straightfor-
ward but produces many almost duplicate orthogonal line pairs. It can be the case that
several orthogonal line pairs are detected at almost the same position, since usually a
couple of parallel line pairs are found in a certain region. Those produce possible rect-
angle matches with exactly the same probability of being a good match, as appropriate
filter characteristics for rectangles are of course limited. This results in slight flicker-
ing of the detected rectangle, as it may jump from one of the possible rectangles to the
other during the frames. At each step, simply the first found rectangle is used, since it
is difficult to sort out almost duplicate detections at this stage. To this end, the proposed
algorithm does not include elimination of duplicates. A suitable technique here would
be to include a nearest neighbor search, considering the previous frame, so that only the
nearest rectangle with the highest probability is regarded.

Generally, the proposed rectangle detection is a tradeoff between adjusting the Hough
transform to returning shorter or longer lines. Short lines will massively increase the
necessary computational effort during later comparison and will produce a lot of detec-
tion noise, as the number of possible rectangles increases massively. Accepting long
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lines will reduce the systems ability to detect partly overlapped interactive surfaces, as
surface edges are indeed disconnected by the hands of the user(s). For this reason, the
initial blurring needs to be adapted accordingly to eliminate weaker edges in the im-
age before the Hough transform is applied. The choice of the filter kernel for Gaussian
filtering is critical, because it mainly depends on the current lighting condition. If the
image is generally dark, the filter kernel needs to be small not to eliminate strong edges
(i.e. high contrast changes) in the image. On the other hand, if the image is generally
bright, the filter kernel needs to be large in order to suppress weak edges (i.e. small con-
trast changes). Figure 4.12 shows two more examples of blurring the input image from
figure 4.3(b) with different Gaussian filter kernels. The corresponding edge images in
figure 4.13 show how various edges are lost, due to the stronger initial blur. It has to
be said that the optimal Gaussian filter kernel in the case of the presented example is
13-by-13. Figures 4.12(a) and (b) have been blurred with kernel sizes of 17-by-17 and
21-by-21.

The parameters of the OpenCV Canny function need to be adapted to the Gaussian
kernel size as well, respectively to the global image luminosity level. The larger the
Gaussian kernel is, the lower the parameters of the Canny algorithm need to be. The
function generally takes two relevant input arguments (i.e. a low and a high threshold).
If the pixel gradient is below the lower threshold, it is rejected. On the other hand, if the
pixel gradient is larger than the higher threshold, it is accepted as an edge pixel. If the
gradient lies between the two thresholds, it is only accepted if it is connected to a pixel
that is accepted as an edge pixel. According to [BK08], both should provide a ratio of
1:2 to 1:3. Experimentation showed that low thresholds of 50–100 and high thresholds
of 150–200 are appropriate.

4.4.2 Fingertip Detection
Concerning fingertip detection, the results generally depend on the foreground extrac-
tion procedure (i.e. the image segmentation). Experimentation showed that the skin
detection approach is efficient in producing a dense segmentation of the hand region,
which is essential for the performance of the whole approach. The self-implemented
version of the adaptive background model proposed by Letessier and Bérard (cp. fig-
ures 4.9(b) and 4.14(b)) did not provide comparable results by any means. Even by
extensive empirical testing of various thresholds, instead of the automatic thresholding
approach, the obtained similarity map could not be prepared to fit the requirements of
the later shape filtering algorithm. As it can be seen from figure 4.14(b), the resulting
hand segmentation is not dense and does not obtain texture information at the inner side
of the hand region, which is a major problem for the later shape filtering. This is due
to the fact that homogeneous regions have very low influence on the background model
during the algorithm as the difference of the color values between the actual frame and
the background model is not very large. Nevertheless, the adaptive background model
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(a) (b)

Figure 4.12: Two examples of blurring figure 4.3(b). Gaussian filter kernel sizes 17-by-
17 (a) and 21-by-21 (b) have been used. The corresponding edge images
are shown in figure 4.13.

(a) (b)

Figure 4.13: Edge detection examples. As it can be seen, some of the relevant edges
are eliminated, due to the stronger initial blur.

is very efficient for masking objects that do not move, as they rapidly become part of the
background during the adaptation of the background model. This is very suitable for in-
teractive surfaces on tabletops, where other objects than hands are visible to the camera.
Moreover, the adaptive background model suppresses the effect of varying backgrounds
on interactive surfaces, such as projected images or the image of display device. On the
other hand, this effect is critical for event detection, since the segmentation suddenly
disappears, if the hand stays still for just a moment. To use slower adaptation of the
background model by adjusting the learning rate during the algorithm, the IDS tech-



72 CHAPTER 4. IMPLEMENTATION DETAILS & PRACTICAL RESULTS

(a) (b)

Figure 4.14: The result of the self-implemented version of the adaptive background
model (a) and the later thresholding (b), as proposed in [LB04]. It can be
seen that only the contour of the hand is detected as foreground and that
the binary image is noisy. This is inappropriate for the later shape filter-
ing, since the inner side of the hand region does not provide any texture
information. Furthermore, if the hand stays still for a moment, the seg-
mentation completely disappears, which makes event detection critical.

nique produces ghost regions, which are inappropriate for further processing as hand
shapes are widely distorted.

Median smoothing and morphological operations, such as erode and dilate with a
structuring element, are suitable to improve the segmentation results (i.e. remove noise
and create a more dense segmentation, respectively). Due to the use of skin detection,
shadows do not interfere with the segmentation process, as long as the parameters of the
skin detection approach are correctly adapted to the ambient lighting conditions.

The shape filtering algorithm, consisting of the dual template matching approach,
primarily depends on the quality of the previous image segmentation. If there are holes
in the hand region, the algorithm may produce many FPs. To this end, there is no
method to prevent from misclassifications, as there is currently no geometrical hand
model included. Here, fingertip detections should further be analyzed, if they are at
plausible positions within the hand region. Therefore, the whole hand region needs to
be included in the shape filtering and fingers need to be detected as well. Generally, the
shape filtering approach is fast and rather straightforward. Nevertheless, it is not very
robust, as false positive detections are rather frequent.



CHAPTER 5
Conclusion & Future Work

The last chapter focuses on completing this work by discussing the application of com-
puter vision for multi-touch recognition in tabletop environments. The actual perfor-
mance of the presented software component and its underlying computer vision ap-
proach is once more pointed out and summarized. Main contributions and important
final conclusions of this work are provided in the following section 5.1. Further ideas
for future work are presented at the end of this chapter in section 5.2.

5.1 Discussion & Final Conclusions
The main contribution of this work is the presentation of a pipeline of OpenCV functions
and self-implemented computer vision algorithms for real-time surface tracking and fin-
gertip detection in natural indoor environments. The pipeline includes a geometrical
rectangle detection approach and a vertex tracker for detecting and following a high-
contrast rectangular surface, even when it is partly overlapped or outside of the camera
view, and obtaining the corresponding surface vertices. Furthermore, the pipeline con-
tains an approach for segmenting natural images and extracting hand shapes from the
distracting background. A specific shape filtering approach processes those hand shapes
in order to detect fingertips that hover above the tracked surface and to provide their
two-dimensional on-screen coordinates. Another major contribution of this work is the
implementation of an easily extendable, cross-platform openFrameworks add-on for the
fast and easy experimentation with computer vision methods and algorithms for real-
time multi-touch recognition. The add-on includes the presented pipeline of algorithms
as well as a simple and easy-to-understand GUI to support future programmers that are
trying to reuse or enhance the add-on. A further contribution is the selection, explana-
tion and comparison of relevant state-of-the-art technologies for multi-touch interaction
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in tabletop environments. This includes optical-sensing techniques, a capacitive surface
technology and novel vision-based approaches.

In fact, multi-touch interaction is increasingly common in the field of HCI research.
In comparison to conventional input devices, multi-touch interfaces provide a basic ad-
vantage in usability, due to the direct and intuitive form of manipulation. Commonly
used interaction systems based on touch-sensitive hardware offer accurate fingertip de-
tections and robustness against varying lighting conditions. Nevertheless, cost and lim-
itations in scalability and portability are prime drawbacks of such technologies. Vision-
based systems are a suitable alternative, since computer vision algorithms have become
more and more efficient over the past years and video hardware is widely available.
Vision-based approaches generally offer more adjustable interfaces for situations in
which low-cost, scalability and portability are demanded. However, one of the main
issues in computer vision are varying lighting conditions, together with the adaptation
of the algorithms to the specific task. Especially image segmentation is crucial. As
expected, the presented system provides similar results to related vision-based attempts
that can be found in the literature.

The proposed surface tracking approach generally obtains continuous detection of
the interactive surface, even if it is partly overlapped by the hands of the user(s) or out-
side of the camera view. Here, results mainly depend on the number of lines returned
by the Hough transform, the contrast between the surface and the scene background and
the geometrical conditions for rectangle detection. Basically, false detections are elim-
inated by appropriate blurring in the beginning of the algorithm and tight geometrical
conditions. The lack of removing duplicate rectangles is a problem but does not affect
the approach in the first place. It results in slight flickering of the detected region of
interest. On the other hand, occlusions are a major problem, since the detection may
fail completely. There is no really suitable method to prevent from occlusions except
from using larger interactive surfaces (i.e. A3 and greater). Moreover, lines detected on
the hands or other objects in the background may interfere and produce false detections.
This effect is reduced by manually defining the desired surface that should be tracked.
The vertex tracker is then able to effectively prevent from false positive detections.

The presented approach for fingertip detection widely depends on the initial im-
age segmentation procedure. Skin detection lead to better segmentation than the self-
implemented version of the adaptive background model proposed by Letessier and
Bérard. The segmented region is much more dense and does usually not contain large
holes, which are a major problem for the later shape filtering. Small holes are filled by
intermediate median filtering. However, skin detection is of course heavily affected by
illumination changes. Visual artifacts, such as bright spots (i.e. reflections), are a major
problem here. Moreover, the approach is limited to the Caucasian type of humans.

Altogether, the presented vision-based system cannot be considered robust in natural
indoor environments, where illumination is uncontrolled to a large extent. Due to the
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many static parameters, the approach is virtually unable to automatically handle varying
lighting conditions. Small changes have a major effect on the general detection results,
equally affecting both surface tracking and fingertip detection. The included method for
manually predefining the global image luminosity level provides a minor improvement
but it is simply too rough to fit the continuous range of illumination changes. The system
obtains best results if lighting is initially predefined and does not change over time,
as is in a shaded indoor environment, for example. Generally, overhead illumination
works best, when the interactive surface resides on a tabletop and the camera is mounted
overhead as well. Light reflections should generally be avoided.

5.2 Future Work
The presented vision-based system can be improved in several ways. Recommenda-
tions concerning the practical setup and optional hardware components, have already
been provided in subsection 4.1.1. On the theoretical side, it is very important to find
an adequate technique for automatically estimating parameters, preferably directly from
the input images. It is commonly known that OpenCV is a powerful instrument for effi-
cient computer vision processing but its algorithms are only as good as their parameters
are adapted to the actual purpose and precise situation. In this work, it is essential to
adapt thresholds, filter kernel sizes, etc. to the actual lighting conditions in the scene,
which usually change over time in a natural indoor environment. Therefore, a major task
for future work should be the development of a superior image description approach that
evaluates the incoming images from the camera stream and automatically estimates rel-
evant parameters for the specific algorithms. The approach should furthermore be able
to control the camera autonomously, so that the frames can be initially prepared (e.g.
automatically adapting white balance, aperture size, luminosity level, etc.) before being
handed over to the computer vision routines. The appropriate preparation of the camera
stream is essential.

The presented surface tracking approach should be enhanced by self-implementing
the Hough transform. The matching of the shape characteristics should be performed in
the Hough space, which seems to be more accurate and possibly less computational ex-
pensive as well, if the implementation is optimized. Furthermore, other than rectangular
shapes can be tracked easily by simply adapting the shape characteristics.

Fingertip detection should be improved by including a geometrical finger or even
hand model, so that the whole hand movement can be analyzed for more robust fin-
gertip detection and further gesture recognition. Moreover, multiple fingertips could be
assigned to different hands and users. For the foreground extraction process, a com-
bination of the adaptive background model and an enhanced skin detection technique
should be implemented to improve segmentation and to adapt the approach to various
situations (i.e. different skin color, other objects with similar color).
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Regarding touch detection, one of the proposed techniques that have been described
in subsection 4.3.4 should be implemented. It depends on further experimentation which
technique is the most suitable for the approach.

For fast real-time processing, CUDA should be considered when revising existing
algorithms or implementing further techniques. CUDA optimized program code should
bring a relevant speed-up in applications, where many geometrical calculations need
to be performed. This is especially relevant for the geometrical rectangle detection
approach and the implementation of the Hough transform.
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