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Abstract

One main aim of modern physics is the description of nature by models. These mod-
els, with the exception of gravity, are quantum theory models. A motivation for the
work in noncommutative spaces arises from the common opinion that gravity should
be quantized and that at very small scales continuous space-time will be noncommu-
tative. A possible representation of this noncommutative space-time is the so-called
Moyal-Weyl star product. The introduction of this star product goes hand in hand
with the main problem of any noncommutative quantum field theory: UV /IR mixing.
Basic quantum field theories suffer from ultraviolet (UV) divergences which can be
absorbed by a renormalization procedure while in noncommutative theories the UV
divergences are reflected by new singularities in the infrared (IR). The aim of this
diploma thesis under the inclusion of the IR divergences, is to compute Feynman
rules, results for the vacuum polarization and the one-loop renormalization of the
gauge boson propagator, based on a special gauge theory model.



ii
Kurzfassung

FEine wesentliche Hauptaufgabe der modernen Physik ist es, die physikalische Na-
tur der beobachtbaren Welt durch Modelle zu beschreiben. Diese Modelle sind mit
Ausnahme der Gravitation Quantenfeldtheorien (Eichfeldtheorien). Aus der im all-
gemeinen {iblichen Vorstellung, dass die Gravitation quantisiert werden muss und
der Tatsache, dass bei kleinen Skalen die kontinuierliche Raumzeit in eine quanti-
sierte iibergeht, kann die Motivation fiir eine Beschéftigung mit nichtkommutativen
Feldtheorien hergeleitet werden, wenn die Quantisierung als ein Nichtkommutieren
der Raumzeit interpretiert wird. Eine mogliche Darstellung bietet die Einfiihrung des
sogenannten Moyal-Weyl Sternprodukts, bei welchem das Produkt von Funktionen
durch eben jenes Sternprodukt ersetzt wird und somit eine Implementierung im nicht-
kommutativen (verzerrten) Raum moglich wird. Diese nichtkommutative Behandlung
geht jedoch Hand in Hand mit einem Problem, innewohnend jeder nichtkommutativen
Feldtheorie: Das Mischen von ultravioletten mit infraroten Divergenzen. Klassische
Feldtheorien zeigen Divergenzen im ultravioletten Bereich, die jedoch durch geeig-
nete Regularisierungsmafinahmen zu einer renormierbaren Theorie fithren, wihrend
in nichtkommutativen Theorien Divergenzen im ultravioletten Betreich von infraro-
ten begleitet werden. Das Ziel dieser Diplomarbeit, unter Einbeziehung eben jener
infraroten Divergenzen, ist die Berechnung von Korrekturen auf Einschleifen-Niveau
und die explizite Angabe eines renormierten Eichfeldpropagators im Rahmen eines
speziellen Eichmodelles.
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Chapter 1

Introduction

The first chapter of this diploma thesis brings light into the motivation for studying
noncommutative quantum field theories. We give a short overview of models from the
noncommutative 'universe’, leading over to the fundament of this work: The BRSW
model.

1.1 Motivation

For the description of the universe, as known up to now we have two basic theories:
Einstein’s theory of general relativity (GRT) for the macroscopic world and quantum
field theories (QFT) for the microscopic one.

It is assumed that at very small scales (or very high energy), the description of the
physical world will be a combination of GRT and QFT. At this small scale, QFT
with continuous space-time and Lorentz symmetry are considered inappropriate for
the description of the universe [[I].

Four dimensional QFT suffers from infrared (IR), ultraviolet (UV) divergences and
from the divergence of the renormalized perturbation expansion. W. Heisenberg
suggested to introduce a fundamental length [2], to handle the UV divergences. In [B,
4] H. Snyder formulated these ideas mathematically and introduced noncommutative
geometry. Considering the quantization of gravity, the usual commutative space-time
seems inappropriate and therefore space-time has to be noncommutative [5].
According to the statements above, the road’ of gravity and the 'road’ of quantum
field theory intersect at the crosspoint of noncommutative geometry.

1.2 Models

In noncommutative quantum field theories, the algebra is defined by commutation
relations

2, 29] = 09 (%), (1.1)

where the coordinates are operators #¢ on some Hilbert space H and ©% (%) might
be any function of the generators with ©% = —©7" satisfying the Jacobi identity.
Usually, the commutator relations () are chosen to be constant, linear or quadratic

1
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in the generators. The constant relations
[2%,47] = i©Y = constant, (1.2)

represent the canonical case. From () and (I2), one can see the collapse of com-
mutative space concepts, hence leading to noncommutative space.

1.2.1 Scalar Models

The first models on deformed space were scalar models, where the pointwise product
of fields was replaced by the Groenewold-Moyal product [B, 7], corresponding to the
commutation relation ().

A noncommutative extension to the scalar ¢* model is given by

S—/d4x<8ﬂ¢*8"¢+m2¢*¢+$¢*¢*¢*¢>. (1.3)

In noncommutative Euclidean space, the propagator is exactly the same as in com-
mutative space [R], while the vertex functions gain phase factors in the momenta. The
Feynman graphs, known from commutative space (called planar graphs), exhibit the
usual UV divergence, which can be handled by a renormalization procedure.
Explicit one-loop calculations [, 00, I, T2, T3], showed that in addition to the planar
graphs, so called non-planar graphs appear, which are regularized by phases in their
UV section but become singular for small external momenta.

For example, the two-point tadpole graph (in Euclidean space) is given by

2 + cos(kp)

e = () + ), (1)

TI(A, p) A/d‘*k
where

Dy = Oupy. (1.5)

As mentioned above the planar part is quadratically divergent in the UV cutoff A,

P (A) ~ A2, (1.6)
while the non-planar part shows
" = 1.7

presenting a new IR divergence when p — 0. This effect, known as 'UV/IR mixing’
is the main problem of any noncommutative quantum field theory.

Singularities of arbitrary inverse power can be generated if we insert the non-planar
contributions into higher order graphs, hence the theory seems to be non-renormalizable
[14].

One of the main aims of noncommutative field theories is now to modify the La-
grangian in order to obtain a damping mechanism in the IR region. The first renor-
malizable noncommutative scalar field model (in Euclidean space) was introduced by
H. Grosse and R. Wulkenhaar [I5] by adding an oscillator-like term with parameter
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Q) into the Lagrangian. This model suffers from a broken translation invariance.

Another renormalizable model, in the literature referred to as the 1% model was

presented by the Orsay group around V. Rivasseau [I6]. It preserves translation
invariance. A non-local term

a?

Gzj * ¢(z), (1.8)

Snloc = /d4$¢(I) *
is added to the action (IZ3), where a is a dimensionless constant. The addition of
such a term provides a counter term for the expected quadratic IR divergence in the
external momentum [[7]. The interpretation of the operator é‘ in coordinate space is
difficult because one is confronted with the inverse of a derivative, while in momentum
space the operator represents the well known inverse of the scalar function k2. The
new operator is interpreted as the 'Green operator’ of J = 9,,0,. The propagator is
given by

1

Gk)=——7—, 1.9
0= (1.9)
k2
showing a finite behaviour in the IR region as well as in the UV:
’iin%) G(k) = klim G(k) =0, Va#0, (1.10)

approving the motivation for the added term (IR).

Naturally a generalization of these models to noncommutative gauge models must be
done.

1.2.2 Gauge Models

For the the Grosse-Wulkenhaar model and its extension to gauge theories, we refer

to [IR].

Different ways of implementing the damping behaviour from the 1% model have been
advertised. The quadratic divergence of a noncommutative U(1) gauge theory is of
the form

~ Pup
e~ 22 (1.11)
2 (5%)2
where
15# = ®,uz/k1/-

One possible implementation of such a term as (II) in order to accommodate the
IR divergences in the vacuum polarization in a gauge invariant way, is given by [I9]:

1
Snioc = /d4$Fuu*l~)2D2*Fum (1.12)
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where F),, represents the field strength and D,e = 0, @ —ig[A, % e] denotes the
noncommutative covariant derivative. The introduction of the inverse of covariant
derivatives (including the gauge field) leads to a power counting non-renormalizable
theory, due to the fact that they can only be interpreted in terms of infinite series.

However, non-localized terms can be presented ’localized’ by coupling them to un-

physical auxiliary fields. One example is given by [I9]

1 a2
l 4
S;ngcz/d ${4<FUV*FUV+FNV*W*FMV>}
1 .
Sploc _, gloe /d4x{4 (FW * Fy + aBx F,, — Bx D*D? *3> } (1.13)

where a is a dimensionless constant and B represents an auxiliary real-valued anti-
symmetric field.

It turned out that the auxiliary field has not been introduced in a physically invariant
way [20], hence additional ghosts are required to rebuild the original physical content.
Vilar et al [21] replaced the field B by two pairs of complex conjugated fields (B, B
and x, X), assigned to appropriate ghost fields. The localized term reads

Sloc = Sloc,[) + Sbreakv (114)

where Sjoc 0 represents a BRST invariant part. Following the approaches of Zwanziger
[22], the additional degrees of freedom can be eliminated by adding a ghost field for
each auxiliary field. As a consequence, BRST doublet structures are formed, resulting
in a trivial BRST cohomology for Sj,o:

SSloc,O = 07 (115)

which means that the part of the action depending on the auxiliary fields and their
associated ghosts can be written as a BRST transformation itself.

The term Spyeqr does not show this property but can be constructed in such a way
that the mass dimension of the part depending on the gauge field is smaller than the
dimension of the underlying Euclidean space, i.e. Rg with dim = 4. Constructed
as mentioned, the breaking term is referred to as ’soft’ [23] and does not destroy
renormalizability [24]. Moreover, the term Sp.eqr is able to suppress the UV/IR
mixing by modifying the IR sector while the UV part is not affected. This soft
breaking "technique’ leads straight to the next model.

The BRSW Model
The following heavily relies on the work of [20, 25, 26].

To avoid the problems discussed above and achieve renormalizability, the action has
to be modified. The main ideas for modification are recapitulated from [20]. The
model should achieve the following properties:

e A counter term of the form of (1) should appear in the tree level action.
e All relevant propagators should be finite in the IR as well as in the UV.
e Auxiliary fields and related ghosts should be decoupled from the gauge sector.
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According to [27], it is desirable to remove any explicit appearance of parameters with
diMmpmqss < 0 from the action to avoid (or restrict) the appearance of dimensionless
derivative operators. This is impossible, since the UV /IR mixing leads to divergences
(contracted with ©,,,) which enter the action in the form of counter terms. One
possible solution to this problem is to split ©,,, into a dimensionless tensor structure

0,,, = —0,,, and a dimensionful scalar parameter e:
O — €y, (1.16)
with
dimmass(0) =0,  dimpass(€) = —2. (1.17)

Therefore, the appearance of the parameter € in the tree level action is reduced by
modification of the contractions, given by

0 := 00500,050, (1.18)
and
ky = 0k, (1.19)

As a result, the dimensionful parameter € only appears in the phase factors associated
with the star product, while the bilinear parts are unaffected. The field strength tensor
F,, in the soft breaking term can be reduced to its bilinear part

fuw = 04A, — DA, F=0fuw. (1.20)

The soft breaking term, implementing the IR damping mechanism, can now be writ-
ten with ordinary derivatives. The gauge field in the breaking term is completely
decoupled from new fields (B,,, By, and associated ghosts ¥, ) which imple-
ment the IR damping and BRST invariance. In order to restore the BRST invariance
in the UV additional sources Q,Q,J,J are needed. Those sources vanish or take
constant values in the IR. The breaking term is given by [20]

Sbreak =

:/d4x{(<],u,1/a,6*BuV+J,uua,@*Bw/)* = (fa,@+a f)
Quyaﬁ*wuu* = (fa,8+a f)

- (Quuaﬁ * Buu + Q,uzza,@ * B}LV) 2 S(faﬁ + U f)} (121)
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Chapter 2

Noncommutative Quantum Field
Theory (NCQFT)

In the second chapter, we try to show the principal points of constructing a noncom-
mutative field theory. Based on the hypothesis that at very short distances [, B, B, 2J],
the space coordinates do not commute any more and the aim to use fields which are
functions and not operator valued objects, we will introduce the star product.

2.1 Conventions

In this work, we consider an Euclidean space R

We use natural units which means
h=c=1, (2.1)

and use the Einstein summation convention
4
> VW, = VW, = VI, (2.2)
pn=1

Furthermore, whenever a vector V,, is multiplied with another vector W, in an expo-
nential we will omit the indices

VW — VW, {Vu, W, } € R, (2.3)

as long as we will not underline the mathematical aspects.

2.2 The Algebra of NCQFT

There are three steps to create a satisfying base for NCQFT.

In the first step we replace the ordinary coordinates x, by operators &, which are
self-adjoint.
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The next step is to define the algebra (if we do this, R* will be modified to Rj):

(&, L)) = Ty — Ty @y = 1€6,,, (2.4)
(€6, 5] = 0. (2.5)
Notice that we have €, constant: The antisymmetric matrix 6,, of mass dimension
zero is multiplied with a real factor € of mass dimension minus two. For our purpose,
we will use a 6, of the form:

0 1 0 0
-1 0 0 O

)=y o o 1 (2.6)
0 0 -1 0

We must mention that there are many approaches to noncommutativity, leading to a
different variety of Eq. (24). For details the work of [29] is suggested.

The last step is to find a multiplication law for commutative functions because we
want to use fields and not operator valued objects.

2.3 The Star Product

This new multiplication law is deduced from (E) through the so called Moyal-Weyl
correspondence [B, [7]:

9() = 6(a), 2.7)

with ¢(&) as an arbitrary operator valued object.! To define the product of two
operator valued objects we use the Fourier-Integral theorem

~ 4 1A~
@) = [ e o) 28)

where k is a four dimensional real variable?.

The product of two operator valued objects then reads

~ ~

A A 1 k1 ikod T 7
61(2) 2 () = (27T)8/d4k:1/d4k26 M ekl ) (k) (k). (2.9)
Using the Baker-Campbell-Hausdorff-formula,

¢AeB = A+Bo3[AB] if [A,[A,B]] = [B,[A,B]] =0, (2.10)

In this work the operator valued objects are fields and sources.
?Equation (Z8) already represents the Moyal-Weyl correspondence.
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which is applicable due to (Z3):

[A,[A,B]] =[A,e0] = [B,[A,B]] = [B, ef] =0,

we receive
$1(8)da () = (2;)8 / ity / Ry ) )
= Garye [ i [ ket )
_ (2711-)8 /d4kl/d4k26ik1,u@u+ik2,my6;[z‘kl,u@,zkzm]&l(kl)%(kz)
= G / @ty [ dthae b el s g (1) o)
AUk [ dihoel Btk e shucOukan G (1) by (k).

Introducing the abbreviation
kiﬁakj = k‘weﬁwkj,l,, i,j = 1, 2, 3, 4, ceey (2.11)

we get a compact representation of the product made up by two operator valued
objects:

(ﬁl(‘%)é?(i) = (2711_)8/d4kl/d4k26i(k1+k2)j6;kleeb(;;l(kl)(;g(kg). (2.12)

If we now define the star product of two functions as:

$1(x) * do(x) = 3D G, () o (y)

r=y

69;“,(9 oY d4k2€i(k1$+k2y)($1(kl)QBQ(kQ)

d*ky

—e2

r=y

d*ky (1 + %GQWaﬁag + > e B2 R0 by (oy ) o (o)

=y

d*ksy (1 - %eeuyklﬂl@,y + > ! ®174k20) & (k1) o (ko)

a=y
d4/€2€i(k1+k2)x€_%k169k2¢~51(kl)ﬁgz(lﬁ)a (2.13)

we find an expression which looks very similar to Eq. (EZ12). The only difference
is that (Z12) has operator valued space coordinates in the exponent and Eq. (EZI3)
not, but the introduction of the star product ensures that the functions on the left
hand side of (E13) are no longer operator valued objects, hence leading to the corre-
spondence (7).

To find a correspondence for () we use the definition of the star product (EI3)
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applied to the product of two vectors:

ie , ,0%,0Y
Ty x Ty =e2 Vo,

=y

l
= (1 + §€9NIV/8ﬁ/ag/ + > xuy,,

=y

1
=x,T, + §€9M/V'5MM'5VV/

= 2, + Sl (2.14)

Interchanging indices (pu < v):

)
Ty * Ty = TyXy + 5691,#

and combining the last two results will deliver our desired result:
1 ]
Ty * Ty — Ty * Ty = TpZy + 569#,/ — Xy — 569,/#
i .
= 56(0,“, +0,) = i€l
= [z, ¥ 2. (2.15)

Summary of the Moyal-Weyl correspondence:

(
$1(2)po(8) <= ¢1(x) * ha(), (2.16)

with

le(ﬁj)ﬁgg(i‘) = (271r)8 /d4k1/d4k2€i(k1+k2)i€_;k“ekzél(kl)ggg(k‘g),

P1(@) x P2() = (271r)8 /d4k1/d4k2ei(k1+k2)x€_;k169k2¢~51(7€1)<52(k2)-

The most important thing is that on the left side (Z718) we have noncommuting
operator valued objects while the right side shows non operator valued objects.
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2.3.1 Properties of the Star Product

For practical calculations it will prove wise to have some properties of the star prod-
uct at hand.

1. The Star Product of two Exponentials:

The definition of the star product (2I3) can be applied to the product of two expo-
nentials:

ikx ik'x z

Y S 1./
e *e — 6269‘“’6#6” ezkxezk y

=y

. L -
_ (1 + %69m,8ﬁ8}j + 5(%)2eeuya§ageegpa§ag + ) ehe ik'y

=y
1.4
25
= 0 (L RO 4 PO ) = R )

= lkHH)o _ %EGMVkukl’,ei(Hk/)x + = (5) Ok, 0o pko ke FHHIT 4

2. Integral of Bilinear Expressions:

We find an important feature of the star product, if we integrate a bilinear term, for
example

/d4x¢1($) * ¢o(x),

and use Definition (ET3):

/ dh2n () * da(x) =

= (27108/d49€/d4k1/d4/€2€i(k1+k2)x€_;k160k2¢~51(k1)<52(k2)
= (271_‘_)4 /d4k1/d4k254(k1+k2)6_;k160k2¢~51(k1)<52(k2)

1 ~ ~
~ 2t / d*k11(k1)d2(=k1).

The inverse Fourier transformation of ¢y (k1)d2(—k1) shows disappearance of the star
product, which means that we can skip the star for bilinear expressions,

/d4x¢1(96) * pa(w) =
=yt [ @ [ dte [ a0 @)on(a)
_ / e / '’ 5@ — 2') 1 (2) o)
- /d4$¢1($)¢2(9€)- (2.18)
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3. Associativity:

We will introduce the short notation:

execute the star product,

o1(2) wonle) = [ dk [ dadr(B)da(a)e™ »

/dk/dq¢1 ¢2 k+q $—lk69q
and show associativity given by

[(¢1 % p2) * @3] = [p1 * (P2 % $3)].

For the left hand side of the last equation we have:
/dk/dtﬂih Yo (q)e!FTOT=akela 4 g () —
/%/@/@@ )oa(a)Balp)e™ (e o v
/ dk / dq / dpdy (k) da(q)ds(p)e2redacilratp)e =5 (kta)eop
= [an [ da [ dpbr(0ydula)a(pye st sk sactoeiiraroe

while the right hand side shows the same result:

2y« [ da [ dpda(a)antp)eio e boet -
= / dk / dq / dpor1 (k) 3o (q) bs (p) ™™™ 5 e~ 390 ilap)e
= [k [ dq [ apis16a(0)d(p)e 200 w00
= /dk/dQ/dp@l(@éz(é])és(p)e_;qeepei(kﬂ“’)xe‘5’“59(‘1+P)

— [k [ da [ dpbr(wyiaa)a(pye o shetr—sucitraroe

4. Star Product of higher Orders:

(2.19)

(2.20)

(2.21)

The star product can be generalized to higher order if we keep the results of associa-

tivity (ZT9-2220) in mind,

P1(2) * P2 () * .o x dm () =

1 szl x Zk€0k3~
= n /d4k1/d4k2.../d4k¢ et e 5 G1(k1) b (ks)...bm (km

)4m

(2.22)

).
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Additionally, we have to say that according to (ZI8), we can skip one star under the
integral

/d4$¢1(ac)*¢2(x)*...*¢m(m) _ /d4xq§1(m)* <¢2(x)*...*¢m(x)>
_ / A2 (2) <¢2(x) - qu(:v)> C 223)

5. Cyclic Permutation under the Integral:

The property of cyclic permutation reads:

/d4x¢1(:c)*¢2(:c)*...*gi)m(x) = /d4x(:|:qbg(x)*...*qu(x)*gbl(x)). (2.24)

The plus or minus sign may occur if we permutate the fields or sources due to the
fact that fermions are Grassmann valued object which means:

AB = —BA, (2.25)

for two arbitrary Grassmann valued objects A and B. In Appendix AT is shown
the emergence of the plus or minus sign for our model.

However we will show the property of cyclic permutation for m = 3, while all other
cases follow through generalization:

/d4:r¢1 (@) % pa(x) % p3(x) =

1
()u/#f/fh/&@/#@x

pilk1+katks)z ,— 5 (k1eOko+kieOks+kaelks) <51 (k?1)¢~)2 (k‘z)ég:s (k3)

/d4k1/d4k2/d4k354(k1 + ko + k3) x

¢~ 3 (hieOhathacObathacdha) 3, (k) 6o (ko) s (ks)

1
- o7 / 'y / sy / A6 by + ke + k)

% < + 6;(k1€9k2+k166k3+k2€9k3)&2([{;2)&3(1{33)&1(kl)) .

2
1
(2m)®

With a renaming of the k-indices:

kl - k37
kQ - kl)
k3 — ko,
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follows

/d4$¢1(9€) * Pa(z) * P3() =

1
— W/d4k3/d4k1/d4k254(1f3 + k1 + k2)
% (:I:e—;(k’3€0k21+k366k2+k’169k52)(52(]{1)&3(]{‘2)(51(kg)).

If we keep in mind that we can use the following relations (based on the delta function
§*(k1 + ko + k3), which we will use to get the exponent in the right “star order”):

k1= —ky—ks, ko= —ki—ks, ks=—ki—ko,

we get
/d45'3</51(1’) * Pa(z) * g3(x) =

1
= /d4k3/d4k1/d4k254(/~c1 + ko + k3)
(2m)®
X ( + e‘é(k169k2+k169k3+k269k3)q32(kl)<133(k2)¢31(k3>)

_ /d%( + o) % () *¢1(:c)>,
which is what we wanted to show.
So we conclude that that every time we want to change the position of a field under
the integral (this is absolutely necessary for the functional derivative as we will see

later on), we must cyclicly permute and have an eye on the statistic nature of the

fields.



Chapter 3

BRSW Model

In this chapter we put forward an action for a noncommutative U, (1)-gauge theory,
introduce the BRST transformation and talk about symmetries which will arise from
the action. Especially the action and the following definitions are based on the work
of [0, 25, 24].

3.1 Definitions

We introduce definitions which are the base of our whole work.
The field strength tensor for U,(1)-gauge group:
F =0,A,—0,A, —ig[A, T A (3.1)
The covariant derivative (the fat dot represents a placeholder):
D, e =0, e—ig[A, % e]. (3.2)

The bilinear part of our field strength tensor:

fap = Oadg — 954, (3.3)
and
f = 005(0aAs — 95As). (3.4)
The square of Gu,,m:
0% = 005045 (3.5)
The definition of [J:
O = 0,04 = 0,10000,805 = 0,00,50003 (3.6)

= 000,060 = —(—005)0008 = 000 = O = 0.

'The special choice of 6, in the form of Eq. (£Z8) will lead to 6% = 045005 = daa = 4. This
result will not be inserted to keep calculations more general.

15
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Definitions (B4) and (BW) show the fact that every time a tilde object appears we
have our matrix 6, involved, in summary:

Wy =0,W,, W, €{0,,D,, A, k,}. (3.7)

3.2 Equivalences

Here we will show some important equivalences for our calculations.

The square of a tilde vector:

k= kuky = 0u0ka0,5ks = 0,400,5kaks = —00,0,5kaks
= —(—0up)kaks = dupkakp = kake = K*. (3.8)

Taking a closer look at (84) and renaming (o < [3) the first term we receive:

[ =008(00As — 03An) = 08003A0 — 0030344
= —bap03Aa — 0ap0pAa = —20003Aa. (3.9)

The last equivalence is deduced from the abbreviation (2ZIT):

kl,,uee,ul/klu = kl,yeeuyk?,u = kl,qu,ueeuu
= kZ’Mkljyegyu = k27u60V#k171,
= _k2,u€0uuk1,u- (310)

For a fluent reading of the work some of the equivalences will be recapitulated for our
calculations without equation numbers.

The interval of an integral is defined by the following short notation:

+00 +o0 “+o0 +o00 +00
/d%[(k): /dkg / dky / dkz/dkzgl(k) =: /d‘%[(k). (3.11)

Last we have to mention that we use this notation (BT for integrals if we perform
a substitution k — —k:

/d%](k) ok _/m(—dko)... _/m(—dkg)l(—kg, ooy —k3)
+oo +oo
= 14 d*kI(—k) :/d4kI(—k),

= / dkI(k) P / d*kI(—F). (3.12)
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3.3 Functional Derivative

Next we will introduce the functional derivative defined by

()
6vp(y)

for two arbitrary fields v, 15. As we will see later on this definition will be extended
to sources associated with their fields.

1= Sapdt(z — y), (3.13)

If we use this definition we must also investigate the consequences of using the func-
tional derivative for our star product. For example, let us take a closer look at the
product of three arbitrary fields:

d 4 * T) % T)=
5%(3/) /d Lo () 1/15( ) gpw( ) (3.14)
5 4
57/&1(@)/ ( Pale) > or(2) + gel )>

= / d4x< + 65,0% (x — y) gy (2) x qsa(x)) = £y <sow(y) * %(y))-

The occurring plus or minus sign generated through cyclic permutation depends on
the statistic nature of the fields.

We conclude that there are two steps for practical calculation: First cyclic permuta-
tion and after this execution of the functional derivative.

The proof of Eq. (B14) is shown in Appendix BT

3.4 Partial Integration

In most cases, we use partial integration if we want to swap the derivative from one
field to another.

For bilinear expressions we have:

/d4xA($) * OBy (r) = —/d4a:3MA(x) * By (x). (3.15)

Clearly the star can be skipped and so no problems are expected. But now the
question arises: What consequences has the star product or expressions like £+ for
partial integration? The answer is we can use partial integration without restrictions

/ d%A(x)*éB(m) _ / d%éA(m)*B(x), (3.16)
and
/d4xA(x) * B(z) % 0,C,(x) = —/d4x0”(A(3:) * B(z)) % Cp(z). (3.17)

Note that all surface terms are assumed to disappear in coordinate space (natural
boundary conditions).

The proof of Egs. (B13)-(B11) can be found in Appendix B=2T1.
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3.5 The Action

The action of the BRSW Model is given by:
S = Sim; + Sghost + ng + Saum + Sbreak + Sezt- (3-18)

Each term has the detailed expression [20]:
1
Sinv = /d4$4FMV * F/M/;
Sghost = /d%(—é*aﬂDMc),
4 «o
Sgf = | d°x(bx 0, A, — gb*b),
Suse == [ a0 x Bu) = [ @'o(-Buux B+ B i), (319)
4 A > 1 eaﬁ 3
Sbreak = d xs{(Qw/aﬁ * B/LV + Q,ul/aﬁ * B,ul/) * T(faﬁ + Uif)}
= /d4x{(jwaﬂ * By + Juvap * B/w) (faﬁ + U f)
Quuaﬂ*q/),uu* ~(faﬂ+0 f)
_ _ 1 Oop -
- (Qm/a,@ * B/u/ + Q,ul/aﬂ * B,uV) * Es(faﬁ + UTf)}7
Segt = /al‘laz:s(—Q;i1 * A, +Q%c) = /d%(Qﬁ * sA, 4+ Q° x sc).

The noncommutative generalization of a U, (1) gauge field is denoted by A,, ¢ and ¢
are the (anti-)ghosts and the multiplier field b implements the Landau gauge fixing
OuA, = 0, with « denoted as a real gauge fixing parameter and o is a new real
parameter. Both parameters are dimensionless. QZ‘ and Q¢ are external sources
introduced for the non-linear BRST transformations sA, and sc (with the BRST
operator s?), which will be defined in the next sections. The complex field B, and
its conjugate BW as well as associated ghosts 1), and @Z_JW have been introduced
into the bilinear part of the action in order to implement the infrared (IR) damping.
These new unphysical fields do not interact with the gauge field A,,.

The additional sources Q, @, J, J are needed in order to ensure BRST transformation
invariance of Spcqr in the ultraviolet (UV).

In the infrared, these sources take their “physical values”

Quuaﬁ = 07 Quyaﬁ = O, (320)

phys phys

and

72
= Z(émdyﬁ — 5uﬁ5ya)7 (3.21)

72
= Z((Sﬂadl’ﬁ - 5uﬁdua)7 JMVQ/B

J, uraf

phys phys

2The BRST operator s and transformations will be introduced in the Section B2, Eqs. (B27)
and (B223).
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implementing a ’soft breaking’ [30, 22, 24], of BRST transformation, where 7 is a new
real parameter of the theory of mass dimension one.

The following table (B70) shows all appearing fields and sources of this work.

Fields: [ A, [ ¢ [ ¢ b | By | Buw | Y [ ¥w
Sources: Ql‘:‘ Q| Quuas | Quuas | Juwas | Juvas

Table 3.1: Fields and sources.

3.5.1 The Landau Gauge

After defining the action let us concentrate on the gauge fixing. The sum of Sypost
and S, r may be combined to Sy (from now on we will use this notation for the rest
of our work):

Sghost + Sgp = Sqp (3.22)

which leads to
Syt = /d%(b*BMA# — % 0uDyc — %b* b)
_ / ds(ex (DA — S0). (3.23)

Finally we take a closer look at the equation of motion for the field b by using the
functional derivative:

1) 1) o
— S /:/d4mb*8A —e*0,D,c— =bxb
5b(y) gf 5b(y) ( wip wp 9 )

- /d4x(au‘4u - O‘b)‘54($ —y) = (auAu - ab)(y) =0,

0, A, (3.24)

Note that the field b represents an unphysical field and so it is allowed to set the
external source® j° equal zero and use the free equation of motion.

If we now take the limit
a — 0, (3.25)
we get the Landau gauge:

8 A, = 0. (3.26)

3The external source j° will become clear in the next sections.
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3.5.2 BRST Transformation
From now on we will omit the stars between the product of fields/fields or fields /sources?

but keep always in mind that the star product is still present.

The obvious gauge invariance of the gauge theory is lost by the introduction of the
gauge-fixing term. However, a symmetry of the Lagrangian can be defined again by
an extension of the gauge transformation to the ghost fields. The extended gauge
transformation is the Becchi-Rouet-Stora-Tyutin (BRST) or BRST transformation

[31].
The product rule with s as the fermionic BRST operator reads:
s(AB) = (sA)B £ AsB, (3.27)

where the minus sign occurs if A is a fermionic field or source.

In our work the transformations are given by [20]:

sA, = Dyc, sc = 1igce,

sc=b, sb =0,

sV = By, sBy, =0,

$Bu, = Y, sy =0, (3.28)
SQWOcﬂ = j;wocﬁv sTap =0,

$Quvap = Juvap, 8Jyvap = 0,

sQﬁ =0, sQ° = 0.

Dimensions, statistic behaviour and ghost numbers gy of our fields and sources are
summarised in the following tables.

] Field ‘ Statistic ‘ gy ‘ Mass dim.
A, b 0 1
¢ f -1 1
c f 1 0
b b 0 2
B, b 0 2
B, b 0 2
Yy f —1 2
Y f 1 2

Table 3.2: Statistic behaviour of fields. Fermions are denoted by f while bosons are
denoted by b.

The BRST operator s is nilpotent:
s(sA) = s?’A =0, (3.29)
Ae {A,ua ¢, G, b, B,uuy B,uzza @Z_}uua wul/a Qﬁv Qca Q,uuozﬁv Quuaﬁa juua,@a J,U,VOéB}'

“Sometimes the star will be written to emphasise the noncommutativity.

)
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] Source ‘ Statistic ‘ gy ‘ Mass dim.

Q; f —1 3
Qc b —2 4
Quv f -1 2
Quv f -1 2
Juvas b 0 2
Juvas b 0 2

Table 3.3: Statistic behaviour of sources.

Taking a closer look at Eqs. (819) and (8Z3) we see that all action terms are
BRST transformations except the S;,, term. Nilpotency is not fulfilled for the whole
Lagrangian (sS # [d'zs®A, S = [d'zL = [d'zsA) because of the term Sjp,,
but we must point out that we can nevertheless receive s5 = 0, which means BRST
invariance for the given action. For details take a closer look at Appendix B=3l.

For the sake of completeness we give the expression of the term s(fu3 + 00”‘7[’ f ) from
Shreak:

(fos + 022 f) = (3.30)

= (rigHle, (fas + 0 2 ) + [Bac, Ag] — [0p¢, Aa] — 0oBsl e, A}

This term plays an important role in the calculation of the symmetries.

The detailed calculation of (B330) can be found in Appendix B=32.

3.5.3 Symmetries

There are relations between a symmetry of the classical Lagrangian, currents and
charge conservation. If we extend these considerations to the path-integral repre-
sentation of quantum field theory the results will be the so called Ward identities
for Green functions. These identities are relations between Green functions resulting
from a symmetry of the action [32]. Transferring these considerations to BRST sym-
metry gives the Ward identities for the generating functional of the Green functions
of a non-abelian gauge theory, the so called Slavnov-Taylor identities [33], which are
essential for the proof of the renormalizability of gauge theories.

The Slavnov-Taylor identity describing the BRST symmetry content of the model is
given by [20]

4
B(S) /d v (;Q‘ 0A 00 de b(;C J Vaﬁ(SQ/wag (3 3 )

0S 0S ~ oS

+ Juyaﬁm
pro
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from which one derives the linearized Slavnov-Taylor operator [20]:

0S8 6 0S8 6 0S8 & 68 0 0
= [d ——t — b—|. 32
Bs / x[éQ{}éA#+5Auéﬂfj+6Qcéc+ T ERT: (3:32)
Furthermore we have the gauge fixing condition (o — 0)
08
the ghost equation
08 oS
— R .34
Gg(S) 8“69ﬁ+66 0, (3.34)
with the ghost operator
1) )
g .= @Lm + 5o (3.35)
The antighost equation
- 08
_ 4 _
G(S) = / dlazts =0, (3.36)
with the antighost operator
G = /d4w d (3.37)
' de(z) '
We also have the symmetry U(.S):
Uapuw(S) =0, (3.38)
with the symmetry operator U given by
0 _ o 0 - )
Unppr = | d*|Bap=5— — Buv=s— + Japop=—— — Jyvpo == 3.39
B / |: ﬂ(ng, K 5Ba,8 + B p(SJ/u/pU nvp 5Jaﬁpcr ( )

) . ) 1) - )
+ %wm - ¢uum + Qaﬁpam - Quupam .
v o vpo aBpo

The trace of U is connected to the reality of the action, and is hence denoted ‘reality
charge* Q [1]):

Q= 6au55uuaﬁuu = (340)
0 _ 0 0 . 0

= [ d"|Bap=o— — Bap==— + Japoper— — Jappo

/ |: OZB 5B(Xﬁ aﬂ 5BO¢ﬂ + Oéﬁ pée]aﬁpo’ O‘ﬂp (St]aﬂpc'

1) - ) ) ~ )
+ waﬁ 5¢a,8 - waﬁ (51;@5 + Qaﬁpa 5Qaﬂpa' - Q/ﬂ/pa (5Q7a5po— .

Obviously Q(S) also generates a symmetry of the action (BIR):
Uapun(S) = 0= Q(S) = 0. (3.41)
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Having defined the operators Bg,G and Q we may derive the following graded com-
mutators and anticommutators:

{6.G} =0, {Bs,Bs} =0, {G,Bs} =0, (3.42)
G, Q] =0, [Q,Q] =0, [Bs, Q] = 0.

which means that these symmetry operators form a closed algebra.

The detailed calculation of all (anti-)commutators (except the ones involving the
linearized Slavnov Taylor operator Bg) and the proof of Eqs. (8234, B238) and (B=38)
can be found in Appendix B4.



24

CHAPTER 3. BRSW MODEL



Chapter 4

Feynman Rules

After having introduced the action (B7IR), we want to find out which parts give rise to
propagators and which to vertices. In a first step we divide the action S into a bilinear
part S’ containing only products of two fields and a part which consists of products of
more than two fields. The bilinear of the action describes the free propagation of the
fields without any interaction and therefore produces propagators. The non-bilinear
terms contain interactions of the fields and will therefore be the source for vertices.

4.1 Propagators

The content of the following section represents a summary of [34, B5] .

4.1.1 Technical Remarks on the Calculation of Propagators

The free propagator in Minkowski space is defined as the time ordered expectation
value of the free fields

Aap(x —y) = (0]TWa(2)Ws(y)|0)(0)- (4.1)

Arbitrary fields are denoted by ¥,, ¥;,. The index (0) denotes that we are looking at
free fields and T stands for the time ordering operator. This operator is defined by

TWa(x)Ws(y) = O(te — ty)Va(2)Ws(y) + Oty — 1) Vp(y) Va(z). (4.2)
In contrast to Minkowski space the propagator in Euclidean space reads

Agp(z —y) = (0] Wa () ¥ (y)[0)(0)- (4.3)

Next we introduce the generating functional for all Green functions in an FEuclidean
space as the vacuum to vacuum transition amplitude

— [d*zLp)— [ d*za(z)a(z)
(Ol [ @ va) g, _ ] Plle
Z[J] = (0le 0) [ DljeT#2 . (4.4)

The field ¥, (x) represents the full field operator with all quantum corrections while
1a(z) represents the classical field.

25
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Z[J] can be expanded as a power series in the sources J,(z),

Z[J] =1+ Z (—nl!)" /d4x1.../d4a}nJa1 (71)...Ja, (2n)Gay.an (T1, oy 2n)  (4.5)

n=1

At this point we have introduced the classical sources (i.e. not quantized) J(x) =
{Ja(z);a0 = 1,..,n} of the field (z) = {¢o(x);a = 1,..,n}. The correspondence is
shown in Tab. EZD. Note that all fields and their sources commute, except of the

Fields: [¢o€ [ Ay [ ¢ [ c [ b [ Bu [ Bu [ Y |
Sources: | J% € jf ge 1 4¢ 1 4° B jfl, j:fu j}fu

Table 4.1: Correspondence of fields and sources.

ghost fields ¢, ¢ and their sources 4¢,j¢ and the associated ghosts v, @Z_)W and their
sources j}fl,, j,’fl,.

A general n-point Green function Gy, . a4, (Z1,...,2y) is then obtained from Z[.J] by
functional derivation with respect to the sources J,(x),

" Z1J]
0Ja, (21)...0Ja, () | j_o
The contribution of a connected graph to a Green function is called a connected Green

function. The generating functional Z¢[J] of connected Green functions G¢ is related
to Z[J] via

Ga1...an (xla ceey xn) = (71)”‘

(4.6)

Z[J] = e %V, (4.7)
Its expansion with respect to the sources J,(x) reads
> -1 n—1
2] = Z(n)'/d4x1.../d4ana1(xl)...Jan(mn)(O\wal (21). b, () |0)°.
n=1 )

(4.8)

The connected n-point Green functions are given by functional derivation of Z¢[J]
with respect to the sources J, (),

VAN
04, (21)...0 04, (x1)

G¢ (:L'l,...,l'n) = (_1)71—1

al...an

(4.9)

J=0

A connected graph with amputated external legs which remains connected after cut-
ting an arbitrary internal line is called an one-particle irreducible (1PI) graph. The
contribution of an 1PI graph to an amputated connected Green function is called a
n-point vertex function,

3 3" [1p]
0 (1) 09k (n) | = ypper
= (Ofthay (1) Y, () ]0) 7,

Fal.l.an(xlv--wxn) = (410)
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where the classical field 1< () is defined as

o) = v ) = 57 (111)
with
cl.
Ie) = Al l) = 5, (112)

where the minus sign occurs for bosons (denoted by the index b) and the plus sign
for fermions (denoted by the index f).

The generating functional of the n-point vertex functions, the vertex functional is
defined by the Legendre transformation

. (4.13)
Ja=Jale)(2)

rlyet] = 2°0J] - / dh2.Jy () (2)

With the definition of the vertex functional I'[¢)?"], the proof of (E-I2) can be shown:

ST[p] 8Z°[J] 6Ju(y) 0p(y)  a.
/ d4y6Jb<y> Syt (o) _/ d4y<6w5f-<x) v

Sapel- () () :Fl]: Sap6*(y — x)Jb(y)>

(4.14)

_ [ (02 e YO g
_/d y(M(y) {3 (y)> 50 (2) +] Ju ().

With the help of (B21), the integrand vanishes and in the end we get Eq. (E12):
STl
g (w)

Additionally, we have to say that the two point vertex functions represent the in-
verse of the two-point connected Green functions in the following sense (for bosonic
statistic)

=+ J.(2).

¢ _ ST §2Z°[J]
/d4yrac($, y)Gcb(y7 Z) = /d4y5¢3l(:c)51/1§l(y) 6Jc(y)(5Jb(z)

_ 8 Je(y) oP-(2)
=~ [t sy = e,

The pertubative expansion of the Green functions can be ordered according to the
number of loops of the corresponding Feynman graphs which correspond to a formal
power series in A

(4.15)

n=0

where T'™ is the contribution of the n-loop 1PI graphs to the vertex functional.
S[p“] equals the zeroth order vertex functional T [pch],

T O[yet] = S[pet]. (4.17)
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The explicit calculation of the propagators read
8z
6Ja(2)0Jb(y) Ja=Jp=0

_ o) (4.18)

dJq ()

Aab(x - y) = Gab(xa y) = ng(‘ray) =

which means that we first have to find an expression for the field wl‘jl'(y) in terms of
sources by using Eq. (E12),

5F[1/1d] _ :tJa(a;) tree level 5S[¢d]

opeh(x) g ()

and then differentiate the field ¢ (y) with respect to the source J, ().

= +£J,(2), (4.19)

The proof of (B2I8) can be found in Appendix T,

For the model of this work, Eqs. (B11) and (B132) have the appearance

TR 5?42(0; =
c (0) _
55@2@) = (=) gcr(x) —
c (0)
afcz(x) =@ gf(x) R
S = ng(i)) =),
= Bute) go) — @), (@20)
(e = Ve g«rz)f) )

Note that if we calculate propagators we only look at bilinear terms of the action and
insert the 'physical values’ given from (820, B=21) for our additional sources.

Next we will introduce the following abbreviation for the bilinear part of the action
Sbilinear =g (4 21)
(2 - 19 .
with

i =inv, gf, aux, break, ext.
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Due to bilinearity our star product disappears under the integral (ZI8), which means
in our mathematical formalism (for two arbitrary fields A and B):

535@) / d'2(A * B) = 535@) / d'2(AB) = 5135(@,) / d%;(i (BA)> (4.22)
_ /d4x< + 5 (2 — y)A(x)) _ /d%;( + A(2)dM e — y)> — L A(y).

Before we start with the calculation of the propagators we must say a few words
about notation. The formal notation in this work is given by:

0 1)
12 _ c

4.1.2 The Photon Propagator G4
The first propagator will be calculated in detail to show the mathematical techniques.

According to Egs. (I8) and (2-19), the photon propagator has the general form of:

"y - §27¢ B _(5Ae(y)
God (0:9) = =502~  0jA()
A

Looking at this expression we see that we have to express the field A.(y) in terms of

sources. Therefore we must eliminate all other remaining fields.

First we try to find the functional derivative of the whole bilinear action by using Eq.

(B19):
isbilinear — (

0A, 0A,

and next we take a closer look at each term.

Sém) + S;f + S(/zua: + Sllareak + Sézt) = _jéA? (425)

/ .
For 5], we have:

1
Sim; = /d4$4FHVF#V7
1
= Si = [ @30, - 0,404, - 0,4,
= / d4x%(a,AAy —0,A,)9,A, — i(é)MAV _0,4)0,A,

1
_ / A0 0y — Dy A4,) (D).

Using partial integration we receive a more compact representation
1 1
S,va = _/d4$2a#(8ﬂAV - al/A,u)Al/ = _/d4$2 ((aaaaduy - aual’)Au) Az/

- / d%;% <(auay - D&,W)AM) A,. (4.26)
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The functional derivative yields:

i = s ] s )}
i _ a2l 2 (9,0, — 06,)A, ) 4, Y (@
§Ac(y)  0A(y) 2 (O ) A (@)
_ / iy @(aﬂa,, 06,0)8,6 (@ — y) Ay + %(auay 08,) A, 6,05 @ — y)>

1
= - ((a,ﬁy — 00,0)0uc Ay + (0,0, — Dém,)AM@E) (y).

2
If we now rename the first term (@ < v) we get:

557{7’“} _
5 A (y) = [(868u - Déeu)Au] (y). (4.27)

For a fluent reading, we will omit the space coordinates as long as we will not point
out the mathematical techniques.

Next we look at the term Sy .
Sy = / d* (b0, A, — %zﬂ — &9, Dyc) = / d*2(~0,bA, — %zﬁ — 9, Dyc).
The bilinear parts reads:
= d4:v< by~ 0 cmc> (2). (4.28)

Executing the functional derivative gives:

éi;(’; = / d4x( Db — y)> = (— c‘)ﬂbé,“) (y) = —0by).  (4.29)

For the other action terms we receive

552” =0, S =0, (4.30)

and finally Speqr gives:

7 1 0.5 -
Streak | prys = /d4x((*]uvaﬁ Buu)E(faﬁ + (;251")>

2
’)/ _
_ / . (4((%% — §,36,0) By + (64605 — 65800) B
1

By + Jywap

phys phys

X

[

005 =
oa+a"52D))

2 ~
— [ @ta(% B+ Bos) 2o+ 0 52)) =
72
[l

= 0O

(Bag + Bag) = (E)QAB - 8@_/4& - 0’90[,@9/“/8,/14“)) . (4.31)

O
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If we keep in mind that the following equations (remember the Section B2ZTl) are
valid,

1 1 1 1
/d4$A~B = /d4$~AB, 8@T = Taa,
] U O O

we get

551/7& —
5A(y)
2 1 _ 1 =
= % /d4x< — 8aE(Baﬂ + Baﬁ)éeﬁ54($ - y) + aﬂE(BOéﬁ + Baﬂ)5€a54(:€ - y)

1
+ 00050016 (. — y)Dy = (Bap + Ba5)>

I:I

2

2o |3

1 _ _
< - 8&5(3046 + Baﬁ)éeﬁ + aﬁE(Baﬁ + Baﬁ)éea

1 _
+ 00030000y = (Bag + Ba ))(y)

9 ~

- 72( - a“E(B“ + Bae) + 8 ( ap + Ba5)> (y). (4.32)

—_

Therefore, follows for the bilinear part of the action (BIR):

55’ 1
(57/16 == (868M - DéEU)AM - 8€ab
1 — 0up = _
+7°[~Bai= (Bac + Bac) + Tﬂa (Bap + Bag)] = —j2". (4.33)

Next step is to find an expression for the fields b, B, and BW in terms of A,,.

We start with the field b,

05!,
5?;[ /d4$ (auAu - ab> 54(95 —y) = (8;%4# - ab) (y) = _jb(y)v
1
= b= a(jb + 0, A,). (4.34)
The fields B,,, and BW are antisymmetric (B, = —B,,,), which influences the func-

tional derivative in the following sense:

0Bag(x 1

57 ﬁéy)) 5 (B0 — So03,)8% (x — ), (4.35a)
1%

dB.s3(x 1

7 ﬁéy; 5 (Gonb — 0 3)8" (2 = ). (4.35b)
1%
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Again we try to find the functional derivative for each action term (BT9), involving
those fields:

5Sll)reak _ 72 4 1 A 1 Hoéﬁ 3
m - ? /d T 5(50[0'5/3;7 - (504/)(550)5 ($ — y)E(faﬂ + 0.7]0)

9
Y 1 1 9(13 e
== <2(5ao5ﬂp - 5ap5ﬁo)5(faﬁ + U7f) (y)

2
21 Oop =
= 2i<fap+02 >(y),
and
— = B vy oOvp — vo - - _BO' .
5By (y) /d 33( % 2<5u Svp = Opupduo)d” (@ y)) p(¥)

The sum of the last two equations leads to:

65’ _ 71 Oyp =
=-B —= 222 F)y = —jB ().

6Bop(y) oot g gler t057) = o)

Due to the same structure of B, given in the action (BT) we calculate the source

jfp in the same way,

1 Osp = .
E(fap +U% )= _]aBp~

58 7
6B,y 2

So we arrive at:

= . 21 Oy =

By = [, + %E(fap + aff)], (4.36a)
5 71 Oy =

B,y = []Ep + %E(fap + U7pf)]~ (4.36b)

Inserting Eq. (£234) and the last two equations in (B=33) using the known identities:

f=0uwfuw =0,.(0,A, —0,A,) =-20,,0,A,,
é,u = Q,uuau;

leads to the following expression for the source jf:
A = (00— Db Ay — O (0 + 9,4 4
Je = (0 W e,u) " ea(] + 0y M) (4.37)
2 2
.B v 1 One = . 71 Oae =
+ ’72{ - a(lT ([jfe + ?E(fcxe + O—‘2 f)] + [.]56 + 7T(fae + 042 f)]

904 3 .B 2 ga I3 . 2 001 3
+ 02201 (i + T 2+ o LI+ Uy + 5 5 o+ o221 .
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Algebraic manipulation gives:
_j? = (868” - Déeu)Au - ael(jb + 8 A )
1 Oup
2
- 8 e + (673 + 78 ~\Ja + «
¥ D(] iB) +4%0 D(Jﬁ 75
- 74804 = (fae UgocseuuauAu) + 740%/656@(]0&6 - Uea,é’e,uuayAu)
L 4 2 9 ﬂ
= (&8,1 - Déeu)Au - ae*(J + 3uAu) -7 {aafseﬁ — 0= (Jaﬁ + Jaﬁ)
- ’y46a = (OaAc = Ao — 000b, 0, Ay)
HQB
+ 07866(004145 — 0gAa — 00030,,0,4A,,).
The next step is to use the identities:
eaeaoz = _geaaoz = _567
0/1,1/81/ = é}u
00p(00As — DpAn) = —200305A0 = —204Au,
in order to obtain
_J? = (aeau - D(seu)A - 3 (] + 8 A )
9a
- '72[80456ﬁ - ﬂa } (Jaﬁ + .704,8)
1
— 745(5,46 — 000 A0 — 000e000,,0,A,,)
4 _ba
++'0 58 =5 (BaAAs — OpAa — 0BasBiuduAy)
= (0.0, DéeM)A — Oc— (j +0,A,)
O,
~1*[Ondes — 0 5m<mﬁhm
1 -~
— 74§(DA6 — 0.0, A, + 00.0,A,)
1 L (Cobbute— 2L 8.5,
+7§(_Uea a_o'?eu u)
’74 L4
= (1 + @)(866}L - D(Se,u)Au - (95(&(] + 8#‘4#))
9a
- '72[80c55,8 - ﬁa } (]a,@ + ]aﬂ)
120 + 2(3 )292] - a A, (4.38)

Looking at the last equation we see that we have to express:

Ay, OaAa,
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in terms of the sources.

Keeping in mind
OnOo = 0ap0ads = 0, (4.39)

we start with the calculation of 9,4, by differentiating the source §A:

: ! | 1 : N
- 5724 =1+ %)(Dau — 00u) Ay — EDJb - aDauAu - ’YQEaaaﬁ(]fﬂ + Jfﬁ)-

Rearranging gives

(0}

8},LA/,L = Eaeje - .] - 'Y 8 aﬁ(]a,@ +]aﬁ) (440)

D
The following expression d,A, will be calculated in the same way,

N 4 N - 9 - _
~0 = (4 1)(-00.4) — 1210uds — e “LO = (15 + i)

|:|1

o 1~
- ’}/4[20' + 2(5)292]58QAQ
We rearrange and obtain™:

I R s v ) +yaﬁ>]_ o
(14 2)(-0) — 7420 + 2(2)02) L]

Inserting Eqgs. (B20) and (B41) into (E=38) leads to:

4
. 2
=0 Dp(&[ 0ui — 1 =1 53 0u05(i%, + i)

’Y b
—(1+ = DAE——O6
(1+=) e
Clpap a4 aaly o p g
9a
- 72[80456ﬂ - ﬂa ] (]aﬂ + Jaﬁ)

1 5{[ s +7*(0ads — oL 0) L (Jaﬁ+]a5)]}

2n2
— 2o +23)°0)=; (14 2)(-0) — 7420 + 2 )2

A

!To shorten expressions we introduce (...00) "' A oo
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which means for the field A.:

A@w:(1)&A+u+vﬁ(afﬁjA<ﬁ—%alaauB+fﬂ0
6 1+ 0/ o2/ \ "o og e as T Jap
(4.42)
1. .
_*ejb
(6%
1

- af)[ Osjs —i* — = °1y 35(Ja,a+9a@)]

9a
— ¥*[0abes — 58 e = (]aﬁ +35)

[=0374 +7*(Pads — o "L TNE(E, +
(14 25)(—0) — v4(20 + 2(%)62)

ug

= .

~ 1
V20 +2(Z- )92}85{

%ﬂ}}w.

The functional derivative of A, with respect to the source j& (B=24) finally leads to

GAA.

1 ¥\ 1

fo(x,y) = - <M> {5ae — <1 —a(l+ ﬂ2)> iaeaﬁ(sﬁa
D2

Ve 20+ 2(2)62)(—0.030 40 ) Ay o
! EQ{[(1+%z)(—D)—74(20+2(Cf)92)é]}}6 w=2)

2

L RordRICAR) VN
PYDQ{[O*‘%L;)(—D)—’Y(U—I- 2(%)62 )1]}} (v —2)

To get a more descriptive illustration of this propagator we perform a Fourier trans-

Dl\

(L

formation while using:

5y — pePv=2), (4.44)

This leads to (keep in mind: 0 = 0, and 0. = 8ye)

GoMa,y) = — <[1+1”]D> {606 - (1 a1+ %;) %aoae

e 20 + 2(%)6%)(—8,0.) 1 4 inlv)
7 i2{[(1+ 2y (—0) — 44(2 (3)92)]}}(%)4/6”9

R
{ <1 —all+ 4)plz> (ipo)(ip.)  (4.45)
ipe)

Chl—

(
_7;%/&41+% >

L1 Ro+ 25— (i5)5)) )
a 4tu+ )2 @a+% 6%) (— n}} o
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The propagator GfEA has now already the presentation of a Fourier transformation.
The factor (1/27)* in front of the integral and the exponent are already chosen. So
the factor and exponent for the inverse Fourier transformation is fixed.

Due to the fact that our propagator only depends on the difference of (y — z), G?GA
is translation invariant, thus we can write:

Golx,y) = Gy (2), z=y-—uz. (4.46)
The proof of this equation can be found in Appendix T3

Hence we have:

2/ d4p<[1+1;i1p?> "

{5‘" - <1 Toll+ p) p;§€ - 741514{ [(1+2 54[)2: :i( (2270?926?0 2)92) %] }}ew'

G4 is now given by:

Goll(2) =

The Fourier transform

Gol(k) = /d4ze‘ikzag‘;‘(z) .
d4p<1+1ﬁp?) X

R it e e
- /d4p([1_i_1giw>x

{5 (1_a(1+ ))p;;;a_%{ 41+ 2 [2)(;12(7 (f]ﬁf&) )ﬁ]}}54(p_k)
ke

d*z

1 koke 20 + 2(%) 6%k
e L e T e DL LT il
[1+ 5k k [(1‘*‘,74)"? ¥4 (20 +2(%)0 )7s)
If we now introduce the abbreviation:
4 e
7t =2[c+ ZQ e, (4.48)
and use the Landau gauge (o — 0) we receive:
~ 1 koke o kal‘%e
GoME) = ———— | — ~05° — 7 (4.49)

4 g 2 = 1 _ =
[1+ L]k? k (k2 + 5)k2 + 5] k2

Behaviour of G44 in the IR/UV-Limit

Of special interest is the behaviour of G4 in the IR-and UV-limit precisely because
divergences will arise from these limits.
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We start with the IR-limit (given by k> — 0) and take a closer look at the overall
factor outside the big square brackets and the factor of the third term inside the big
brackets of Eq. (E29). Both factors involve the variable k in the denominator and
hence possibly influence the nature of divergence.

The first one leads to

(4.50)
1 k2 -
= ~— k-0
4 4 4 9 )
1+ L]k [R2+5] 7
the second one can be approximated by
(4.51)
ot ot -
— ~ — k> — 0.
(k2 +5)k2 +54 b+ o]
Therefore, in the IR-limit the propagator reads
- k2 kck ot kek
AA evg eho
k)~ — [05c — - = 4.52
Go’e ( ) 74 2 [,74 n 5_4] 72 ( 5 )
The UV-limit (given by k% — oo) shows for the first factor
1 1 ~
LT o k? — oo, (4.53)
1+ %]
for the second one
o’ 0 k2 — o0 (4.54)
- ~ 0, — 00, .
(k2 + 5)k2 + 5]
and finally leads to
~ 1 keko
GﬁeA(k) ~ ﬁ |:5€O' - ]{32 :| (4.55)

The last approximation will play an important role in this work. As we will discuss
sufficiently in the next chapters all divergences at one-loop arise from the limit k — oo
and therefore (E003) represents the adequate candidate for calculations involving the
photon propagator.

4.1.3 The Ghost Propagators G and G

The ghost fields ¢ und ¢ are fermionic.

The bilinear part of the action term

Syp = / G N )
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reads
’ dz(ee — Zp? 4.56
of = (cOec 5 ). (4.56)
The source j¢ is given by:
55/ dé(x)
_g d*z /d4:n54 = [—0Oc|(y
= 5 =-0dW)
= +j(y)
1.

The propagator G is now calculated in the typical way

027 oy 1y
5@y ~ o) oo W) (4.58)
1

4 7 T 4 ) T
— ( ) /d p—e p(y—z) _ ( ) /d p(_i)ep(y )

Introducing z = y — x gives:

G*(z,y) = —

G(z) =
Hence the Fourier transform reads

1
cc 4 4 'sz k) _ 4 4
G = 27r /d /d /d p(—p—z)é (p—k)

kQ

(4.59)

The calculation of G¢¢ is done in the same way but we have to pay attention to the
fermionic character of the fields which shows a special property of propagators derived
by fermionic fields,

5s!
of — /d%éc(x) Oc = /d4:c54(x —y)0e = Oe(y)

de(y) dc(y)
— _|_j5(y)
1
=c=5J (4.60)

The functional derivative of ¢(y) gives the propagator,

w20 ey 1
G = e w0 T
1 1 s
= G /d4 pa =
_ 1 40 1 eP(y—2)
(27r)4/d () . (4.61)
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Introducing z = y — x leads to
_ 1 1 .
Gee _ d4 & ipz
()= Gt [ d'r=ge™

and the Fourier transform finally reads
. 1 1 . 1
CL) = d4 d4 = iz(p—k) — /d4 7(54 k—
G“(k) (2ﬂ)4/ Z/ P5° P (k—p)
1

Therefore, the fermionic character leads to a minus sign for the propagator generated
through the interchange of the sources (they obey the same statistic as their assigned
fields) in Eq. (E5R), i.e.

(4.62)

G (k) = —G(k). (4.63)
Note that G®(k) and G°(k) are quadratically divergent in the IR.

4.1.4 Remaining Propagators

This section is intended to state the remaining propagators which can be deduced
from the action (BOR, B19), but will not contribute to physical results. As we will
see from the next section non bilinear terms of the given action give rise to vertices.
The non bilinear terms involve only the fields A, ¢ and c.

However, for the sake of completeness, we give the respective expressions for the
remaining propagators and their relatives. Relatives means that for example if the

propagator GAP exists, obviously GBA exists too and therefore is a relative of GAB .
First of all we have

~T 1 s

Gy (k) = —5(Ouadup — dusia) = ~Gob (k). (4.64)

For the next propagator GBB it will be wise to think about the general structure
which leads to this propagator. If we recall Eqs. (E=36d) and (E-36H):

2
_ ) 0% 1 90_ ~
Bsp = [prﬂL?E(fap‘FU?p )]
2
.B v 1 Osp 7
Bap: []fp+35(fap+a 2Pf)]’

the detailed calculation given in Appendix T4 shows that the general structure will
consist of

BUP = [jaBp + (-“)ap,aﬁ(jgg + jfﬁ)], (4.65&)
Bop =112, + (- Jopap(ils + i) (4.65b)

Due to the fact that the term (...)s) qpg in front of (jfﬁ —i—jfﬁ) is the same for the field
Bap and B, the derivation of ng with respect to the source jfﬁ will be equal to the
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derivation of B,, with respect to the source ] . Additionally, we have to mention

that the structure of B,, and Bap will lead to two new propagators GBB and GB.B
which are not obvious at first sight from the action (BZI9). These new propagators
are given by

_ 62z¢ :_5B0p(y) _ 9 B

Ny 570 5Boply) 6 5
GBE (z,y) = ——= = opapil . (4.67
= G55€7p(x7 y) G'yé O'p(x y) (468)

Knowing these propagators, GBB and GBPB read
52z¢ dBsp(y) 1) B

Gl y) =~ =~ = [+ (apasiagl (4)
e 6iB(@)0iE(y)  6iB(x)  8iB(x)" " paries
A
= - GED (@), (4.69)
il () "
and
52z¢ 0By (y) 0 .. B
G () = —— S = s = g bap T (Jopapiapl (¥)
e 6B (@)0iE ) 05 0i5() paples
5j¢§p(y) BB
— +G o (‘/an)’ (470)
055 () T T
= G'yﬁo’p(x y) G'y(So'p(x y) (471)
The explicit expression of the Fourier transform is given by
BB (k) = 7 ! X (4.72)
ot =y i 4 2 R2

{kgk,y(spg — kgk(g(;pfy — kpk7505 + kpk(séo-'y

+ 00.5(kpko — koky) + 005y (ksky — kyks) 4+ 0205505k

5.4

BEPTy-re——
k2[(k* + 55)k* + ]

<kpkvl§:,,l;:5 — kpkskoky + kokskpky — kokyk,ks

+ 00.5(kokp — kpko)k* + 000,(kyks — ksky)k? — 029@975/}4) } GBE (k).
The calculation of GE® finally leads to the expression of GBB

G ¥4, O'p(k) nyé ap(k) (473)

1
4, O‘p(k) = _5(57055[) - 55067,0) G

where we have used the analogon of Eqs. (E=35a) and (E=35H) applied to the sources
i7"
Jop()
AN

1 _
= 5(57055;) — 850070 (z = ), Y € {B,B}. (4.74)
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Finally éfaf‘e reads
GBA (k) = in? <4> X (4.75)
e 2(k? + ;]k?
- G kokek, — kpkcky + 00,0k k?
{[kpéw—kg(ssp—aapakg]jt 7 lkokeky ~ kphehs + of, ]}
k2[(k* + 55)k* + 0]
_ ABA _ ~AB _ ~AB
- Gpo—,e(k) - _Ge,pa(k) - _Ge,pa(k)'

At the very end we state, that the calculation of G will lead to zero and therefore
matches the unphysical character of the field b. The calculation of G shows

G* =0. (4.76)

The detailed calculations can be found in Appendix (CI3,CT4CTHCTH,CT73
and CT3).

4.2 Vertices

4.2.1 Technical Remarks on the Calculation of Vertices

As we have mentioned in the previous sections only non bilinear terms contain inter-
actions of the fields and will therefore be the source for vertices. We will recapitulate
from Section BT that the n-point vertex function is given by Eq. (EI0):

5nr[wcl.]
Looking at our action (BIX) we see that only Sy and Sin, will give rise to three,
respectively four-point vertex functions.

Fal...an (7517 ceey xn) =

The formal notation of this section is given by:

Sabc... .— Sonly non bilinear terms made up by abc..’ a, b, ce {E, ¢, AM}

and (for example a three-point vertex function):
B °S[y]
(SAa(l‘l)(SBﬁ(.%Q)(SO»Y(QS‘g).

The last equation shows the consequence that at zeroth order the vertex functional

I'[y] equals S[yp].

VP (w1, 9, 23) =

(4.77)

Now the procedure of calculation is clear: First find the relevant part of the given
action, use the definition of the star product and then perform the functional deriva-
tive of S with respect to the considered fields.

Note that if we will transform the vertex function (again we will look at a three-point
vertex function) into momentum space?, given by:

6*S[Y]
0 Aa(—k1)6Bg(—k2)5Cy(—ks)’

VABC(klv k27 k3) = _(27T)12

Ab (4.78)

The transformation into momentum space implies the transformation of S[t)] — S[¢] which is
automatically ensured by the definition of the star product (ZZI3).
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a factor (27)* for each field arises. The minus sign in front of the variable k in the
denominator of the functional derivative ensures that the momentum at each vertex
points inwards. We must underline that this is only a convention.

4.2.2 The Two-Ghost One-Photon Vertex V4

The first vertex will be calculated in detail and is made up by the fields ¢, Ay, c
represented by V;Aé(ql, k2,q3). The part of the action, which will give rise to this
Vertex is given by (o — 0)

Syp = / d*z (b, A, — ¢8,Dyc),
= 5T = / o {+ige, Ay, o]} = / da{—igd,elA,, d}
= /d4x{—igc?uc* Ay *c+igducxcx AL} (4.79)
Inserting the definition of the star product (213), the last expression reads

Sepc = e / d'x / d'qy / d'ky / d'qsx

(= g)zqw &) Ay (KY)E(gh)e™ 301 PR =5 RheOd = 50305 pi(a ot ai)e
+(ig)'q \E(dh)E(qs) A (K)o 3900~ 3050k = 501 O oila +Rpbai)z )
e / do [ [ [ et - oihony
X {(—ig)ig)  E(d;) Ay (k) e(qy) e 2Ok 303085 il Hhota)ry,
The use of the identity

kieekj = —kjeeki,

leads to
sede — e /d4 /d4 /d4ké/d4qé[e+§k’250qé S
(i i 18(dh) Ay ()2 gy e 3 AeOs— il i(0i thkat o
e / d*z / d*q, / d*k / d*q}2isin] kgequ]
X {(+ig)ig) 1 E(d;) Ay (k) E( gy ) e~ 3Ok 30305 il Hhota)ry, (4.80)

The integration over the space coordinate brings

cAc

So° = diq, | d'khy | d*hot (g} + Ky + ¢b)

/ i/ / ].
{(+zg)zq;mc(q1)A (k3)é(ds)e” 2‘“69’“2*5"169"322’sin[ik’zeﬁqé]}'



4.2. VERTICES 43

As usual we use the delta function, pick out k4%, (kb = —¢} — ¢3) and hence get for
the exponential function

i I_d / A Nl /
e 2NN () + k) + gf) = e 2B ATR) TN 5 (g 4 kY + gf)
= 2 NeO—a5)—5aie0as 54 (or 4 | 4 gl

= FRNIBSBOh (g 4 K+ gh) = 64 (a) + K + db).
and for the sine function

o1 . 1
81n[§k:§69q§] = sm[i(—qi — ¢5)efqs] = — sin[=q}e0qs].

2

Therefore we have

cAc _

Sepr = dqy | d*Ky | d*¢ho*(d) + Ky + ¢b) (4.81)

. . = ~ . . 1
X {(_ZQ)ZQM’,IC(Q/I)A#’(ké)c(qé)m sin[5 g1 03]}
The expression of the vertex is now given by

1) 1) )
06(—q1) A, (—ka) 0¢(—g3)
- (97 12 6 5 5
= O S ) 64, (i) 083

( /d4 /d4k2/d4q 5 (q) + K+ b)

. . ~ "t ~ . . 1
i)t ) A ()i 20l ]

5 5
=~ S 5A (—ks) / /d4k2/d4q O+ K + dh)
-

. P _ 1
X ((—zg)qu/,154(Q’1 + q3) Ay (k5)e(q5)2i Sm[queeqé])

V:Aé(ql’ ko, QS) — _(27_[_)12 SEAC

3In this case the selection of kb is arbitrary.
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P 1
=— 27r4~/d4 /d4k /d4 L6 (g + Kb + ¢4)2isin[=q|ef
(2m) 5e—a1) 2 (¢4 43) [2611 ¢]
xQﬁm@“&@+%mwﬁ%+@ﬁ%ﬁ
—(2m) /d4 ’/d4k2/d4q 5*(q} +k2+q3)2zsm[1q169q3]
x(ewn@u#@3+%wwd%%+kg&@3+m0
1
— —(27r)4/d4q1 /d4k§(54(q/1 + ké —q1)2i sm[iqiee(—ql)]
X ((—ig)iQL/,154(qi + q3) 0,06 (K + k2))
o]
——(2n)" [ alio s — b — an)2isinlgied(—n)
. - 4 /
X ((—29)19%15 (@1 +q3)5wf>

= ()18 (—as — bz — )2 sinl (—as) b)) (i) (~igus).

Algebraic manipulation finally leads to

~ cAe . -
Viele(qu, ko, q3) = —2ig(2m)*6" (g1 + k2 + ¢3)qpu3 sinf; q1edgs]- (4.82)

4.2.3 The Three-Photon Vertex V.

The next vertex we have to calculate arises from
Siny = / d%iFWFW
= /d4$1{(8w41/ — Oy A, — ig[AM, A,,])(@HA,, — Oy Ay, — ig[A“, Av))}
/ ot {0 WA, —igALA, +igALAL) (0uAL — Oy A, —igAL A, +igAL AL}
The part which contains the product of three A, fields reads
s34 — /d4xiig{—AuA,,8uA,, +A,A,0,A, +ALAO0A, — AVALOLA,
- 0 AVALAL + 0, ALALA, + 0, A AVA, — 0, A A ALY
= /d4xiig{(A,,AM - A A0 AL+ (ALA, — AVA) DA,
+ 0, A (A A, — AVAL) + 0, AL(AVA, — ALAL) )
If we use the property of cyclic rotation we get

1
S84 — / d'eSig{(Av Ay = AuAy)9u Ay + (A Ay = AA)D, ALY,
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The second term will be renamed (u < v) and therefore we have

s34 — / d*rig{(A A, — A, A0, ALY (4.83)

The definition of the star product (E13) yields
s34 — ng / d*k} / d*i / Ak / dipetFitko k)
x LA, (k) A, (Kh)ikl, 5 Ay (K e~ 3Fie0Ra— 3 RaeOks — ki cOk
— A () Ay (k) )ik, 5 A, (Kp)e™ sFoe0ki—3h <Ok = RocOki )
(%1)12@ / d*K, / d*K / d* K / diwe’Fithatha)T 4, (k1) A, (K)ik!, 5 A, (KS)
X

— LKL eOkl— Lk Ok, [e—gkgeakg _ 6—%k’250k/1]'

e

The square brackets will give a sine function

[e—%k’leek; _ e—gkgeekg] _ He—gk’leek; _ e+%k'leekg] _ _[egkgeekg _ e—%k'leekg]

1
= —2i sm[ 1e0K].

This means for Sf’rﬁ)
Sia = W)lg 9 / 'k} / d'kh / d' / dipe!Fithaths)e (4.84)

x Ay (K9) Ay (KG)ik, 5 A, (Ky)e ™ 2kacORh =5k Ok, sm[ ! Ok)).
The evaluation of the coordinate space integral leads to the delta function which we
can use to modify the exponential function
O (K + Ky + Ky) — Ky = —k{ — K,
e—gkgeekg—gkgeekgé4( LR+ k) = e—g(—k’l—kg)eekg—gk;eek554(k/1 K+ kL)
— et REOR MO S (kL k) kL) = 4K + k) + KS).
Therefore we have

2
s34 — @’ / d*k} / d*i / AL (K, 4 Ky 4 KS) (4.85)

X fly(k’l)flu(ké)z‘k’ 34, (k3)sm[1 Al

The Fourier transform V (k:l, k2, k3) is now given by

] B ] 5 ] ) g
§An(—k1) 6 Ag(—ka) 6A,(—ks) ™"

1
= —2ig(2m)* 6% (k1 + ko + k3) sin[ k1 e0ks] x
{0ar (k1 — k3)p + Oap(k2 — K1)y + 0py (k3 — ka)a}- (4.86)
The detailed calculation can be found in Appendix CZ2T.

V33 (K, ko, kg) = —(2m)"
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4.2.4 The Four-Photon Vertex V4 o

The vertex V§5‘7 s comes from

Siht = /d4le(—ig)2[AH,Ay][Au,Ay] = /d4xi(—ig)2(A“Ay — A A)[AL A
The second term will be renamed (u < v):

—A A AL A = —-AA A A =+ALA[AL A

This leads to

Spi = /d4 —ig)*{ A Au[Au, AL)} = /d4 —ig)*{A A (AuA, — AVAL)}

= /d4x2(—ig) {AAVALA, — ALALA ALY (4.87)

The star product (EZ13) gives

S@47;4y (2 lg /d4 /d4k//d4k2/d4k3/d4k/ zk/+k/2+k/+k")

% {Au(ki)‘i (ké) ( ) llc ekl — ’k’ €Okl — ’k’ ekl — lk’ €Okl — ’k’ Lek) — ’k’seekg

()121
d

— Lk €Okl — Lk, Okl — L] Okl — L kb eOkly, — L kycOk), — L k) Ok, 3

(k5)e
kll/d4k/ /d4k3/d4k/ Zk/+k2+k3+k4)

« (A’u(k )A (kQ)A (ké)fi”(ki)ef%k’lwk’zf%k’leakéf%k’leekflf%kéwkgf%k’ze@kg

{e—gkgeekzg _ o skhebky }> .

With

(e SkheOK, _ o= SRIORGY _ g SKGOR) _ o shoeORL) _ o sin[%kée&kg],
we get,
SiA — 16 —ig) /d4 /d%’ /d4k2/d4k3/d4k4x

x A (k: )A (k2) (k3)A UAL i(K) G+ kKT, — 5 Ry €Ok — 5 K] ekl — 5 K Ok — 5k eOk’y — S kh ek

—2i s1n[ khe0k))

lﬁzg / dtax / d*k, / d*k / d*k} / dk x

A (k‘,)A (k‘g)A (k‘3)A ( k'+k'+k'+ki)x — LK, €Okl — Lk, €Okl — L k! Ok} — L kL eOk, — L Ky ek,

X sin[§ khe0kl).
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Integration of the space coordinate leads to

S — ng / d*k} / d*i / d*k, / ALK, 4 Ky 4 K+ K))

< A (kl)A )A (k )A (K})e™ Lk €Okl — LK\ eOkl— L k{ eOk — LK) eOkl— L k) e0k),

X sin[ikgeﬂkﬁl]. (4.88)
Next we use the delta function to eliminate k%
/ / / /
k3 = —ky — ky — Ky,
and hence get for the exponential function
ef%k’leekéf%k’leekgf%kie@kﬁlf%k’za‘)kgf%k’zeekg54(k/1 Ty AN . A
— o skieOky— gk eO(—k] —ky—k])— 5 k] eOk)— 1kgee(—k;—kg—kg)—gk;eekg54(k/1 R+ K+ k)

B N Y N N Y N B WA N T W .Y N T I WA W N Y N W .Y N / / / /
—¢ 5 k1 €0ky+ 5k eOkg+ 5 k) €0k — 5 k1 eOky+ S kyeOk) + 5 kgeOky 2k269k4(54(1€1+k2+k3+k4)

= ¢ 2MORa A (I 4 K+ K + KS).

~ig /d%’ /d4k2/d4k3/d4k454 b4 kb + K

)
[1 W) Ay (KY) A (k) A, (K e 2ki<0k sm[ khedk)). (4.89)

Finally we have

4A
Sznv -

The calculation of V44 aBys gives

5 5 5 b A
0Aa(—h1) 6As(—ky) 6Ay(—ks) 6As(—ka) ™
(2m)* 4926 (k1 + ko + ks + k) X

Vééyd(kla k27 k3a k4) = _(27T)16

1
{ (0ar085 — 0030~5) sin[ikleﬁlm] sin[§k269k3]
 (BasBay — B335 sin[%klerg] sm[%kgem]
1 1
+ (5a55,6’7 - 504,3575) Sin[§k2€9k4] Sin[2k169k3]}. (490)

The detailed calculation can be found in Appendix CZ272.

4.3 Superficial Degree of Divergence d,

Before we start to calculate one-loop corrections to the propagators we must discuss
the question whether the algebraic expression of a Feynman graph will diverge or not.
Several factors need to be considered. Every integral over four dimensional space
coordinates gives a contribution of four powers of k in the numerator and therefore
raises the degree of divergence. Additionally, the two-ghost one-photon vertex and
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the three-photon vertex each rise the degree of divergence by one. On the contrary,
propagators reduce the degree of divergence. The photon propagator and the ghost
propagator each give a contribution of two powers of £ to the denominator. In other
words we only count the powers (=power counting) of k.

Table 3.2 shows the superficial degree of divergence for the relevant factors? of a

Factor in Graph ‘ Divergence d

Loop integration +4
V34 +1
vid 0
VCAE +1
G -2
G -2

Table 4.2: Superficial degree of divergence.

given Feynman graph®. Therefore we can derive the so-called superficial degree of
divergence d., for an amputated Feynman graph:

dy = AL — 214 — 2Tz + Vi + Vias, (4.91)

where L denotes the number of loop integrations, 14, Iz are the numbers of internal
photon and ghost lines and V34, V4, Voaz are the number of 3-photon, 4-photon and
ghost-photon vertices, respectively. Since there is overall momentum conservation
and momentum conservation at each vertex and I internal momenta, the number of
independent momenta (represented by L) is given by

L=1Ia+Isc— (Veac+ Vaa+ Via — 1). (4.92)

Finally we need a relation between the number of vertices and the number of external
lines. External legs are denoted by Fg., F4 for the external ghost and photon lines,
respectively. External lines count once whereas internal lines count twice because
internal lines are always connected to two vertices. Therefore we have the relations

EEC + 2IEC - 2‘/&46’ (493)
Ep+214=3V3a+4Via + Vese.

In order to get an expression for d, without internal lines we eliminate those internal
lines.

dy =4L — 214 — 21z + Vaa + Veae
=4(Ia + Tee — (Veag + Vaa+Via — 1)) — 214 — 2Ize + Vaa + Veae
=21, + 2z — 3Vepz — 3V34 —4Vis +4
= (3Vaa +4Via + Veae — Ea) + (2Veaec — Fee) — 3Veae — 3Vaa — 4Via + 4
—4—FE,— E... (4.94)

4The relavant factors are algebraic expressions of propagators and vertices, usually stated as
Feynman rules.
SFeynman graphs are explained in the next chapter.
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Note that d, is an upper limit for the strength of the divergence. The real divergence
of a graph can at most be d,. The following table shows d, for our arising graphs
(only one-loop graphs). Feynman graphs with d, = 0,1,2,,... are called logarithmic,

’ Graph ‘ Ey ‘ Fa ‘ Divergence d,
Ghost-tadpole 1 0 3
Photon-tadpole 1 0 3

Ghost-loop 2 0 2
Photon-loop 2 0 2
2pt.-Photon-tadpole | 2 0 2

Table 4.3: Superficial degree of divergence for Feynman graphs.

linear, quadratic, ... UV divergent.
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Chapter 5

One-loop Calculations

This chapter is dedicated to the one-loop correction in the Feynman gauge. We have
all the ingredients to do loop calculations. The main difference of the Feynman rules
in noncommutative field theory compared to the ones of classical field theory is the
existence of additional phases. In this work (BRSW model), the additional phases
are sine terms. These terms will only appear in vertices and naturally will enter the
Feynman amplitudes of the one-loop graphs. As we will see the sine terms can be
written as exponentials and divided into a so called planar and non planar part.

The rules for associating analytic expressions to pieces of diagrams are called Feyn-
man rules. These rules are now the building blocks for Feynman graphs. Since
G(z,y) = G(y,x), the following propagators are translation invariant, the direction
of the momentum is arbitrary while the momentum at each vertex is drawn inwards
according to the momentum conservation represented by positive arguments of the
delta functions.

The BRSW model gives rise to two one-point one-loop and three two-point one-loop
graphs. Figure B at the next page shows schematically all possible graphs which
contribute to the self-energy of the photon propagator.

o1
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a) Ghost — loop b) Photon — loop
we
¢) Two — point d) Ghost — tadpole

photon — tadpole

e) Photon — tadpole

Figure 5.1: One-loop Feynman graphs of the BRSW model.
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5.1 Feynman Rules

This section will list all necessary Feynman rules and their corresponding analytic

expressions. We start in order of appearance up to now".

The photon propagator G?GA:

o k €
Figure 5.2: Photon propagator.
with (o — 0)
- 1 koke 5t koke
GoAR) = ——— |00 — —05- — d . (5.1)

4 o€ 2 =~ 4 _ >
[1+ T7]k? k (k2 + 55)k2 + 54 k2

The ghost propagator G°:

Figure 5.3: Ghost propagator.
with
G(k) = ——. (5.2)

The ghost propagator G<:

Figure 5.4: Ghost propagator.
with

G(k) = % (5.3)

!The following expressions equal Eqgs. (B29, B89, B2, E=2, B=A) and (E90) from the previous
chapter.
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The two-ghost one-photon vertex f//fAE:

q3

AVAVAVAVAVAVAY.S = VA qu, b, g3)

k27u

q1

Figure 5.5: Two-ghost one-photon vertex.

with
~ Az . .l
V;Ac(qh ko, q3) = —2ig(2m)6% (g1 + ko + 43)qu,3 sin [§Q169Q3]. (5.4)

The three-photon vertex ‘70%47:

Figure 5.6: Three-photon vertex.

with

i 1
Vi (k. o, kg) = —2ig(2m)' 8 (ky + by + ) sim [ SR ck] (5.5)

X {5«17(7‘61 — k3)p + 6ap(k2 — k1)y + 9y (k3 — k2)a}-



5.2. COMBINATORIC FACTOR C 95

The four-photon vertex Vég‘w:

kQ,B kg o

)

= ‘N/ziBAvd(kl; ko, ks, ky)

kl,a k4.5

Figure 5.7: Four-photon vertex.
with
 74A _ 44,254
Vaﬁ'yé(kla ko, ks, ka) = (2m) 49°0% (k1 + ko + ks + k4) X (5.6)
X { ((5047(555 — (Saﬁé,ﬂs) sin [%kleﬂlﬂ] sin [%k269k3]
+ ((5a555,y — 5a’y5ﬁ5) sin [%kleekg] sin [%kgeekzd

1 1
+ (0a508y — 0apdys) sin [§k2€0k4] sin [ikleﬁkg] }

All Feynman graphs given by Fig. b can be generated through those rules.

5.2 Combinatoric Factor C

There are several possibilities to combine the Feynman rules which all should lead to
a given Feynman graph. For example we could have calculated the Vertex V4¢ in
the way of

53 ScAE
§E(—k1)0 Ay (—ko)6&(—ks)

VEAC — —(27‘1’)12

. 1
= —2ig(2m)*6*(q1 + k2 + ¢3)qu1 sin[ 5 q1egs),

differentiate the vertex 173547 s(k1, ko, k3, k4) in such a way that we get a vertex denoted
by Vggw(kl, k4, k3, ka) or use the propagator GCE(k) instead of G’Ec(k), let the momen-
tum point outwards/inwards and connect the propagator to the vertex in multiple
ways.

We pick out one vertex and one propagator, draw the Feynman graph and multiply it
with the combinatoric factor C'. This factor pays attention to the way of connecting
vertices with propagators and is defined as:

M.

C; = §:, i=a,b,cd,e, (5.7)
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where a, b, ¢, d, e denotes the possible Feynman graphs given in the introduction of
this chapter, M the multiplicity factor and S the symmetry factor. In order to get
the multiplicity factor and the symmetry factor, we give the procedure which leads
to the right combinatoric factor.

Step 1:

Start with a given graph. Separate all elements of this graph and draw them in the
right position with respect to the graph we started from. This leads to a so called
pre-graph.

Step 2:

Count the number of ways the first vertex (we start from the left side) can be con-
nected to the external legs. Now one external leg is connected to the first vertex.

Step 3:

Count the number of ways the next external leg can be connected to the remaining
vertices. Connect this leg to the vertex and change to the next external leg. Repeat
this until all external legs are connected to vertices.

Step 4:

Take a free leg of a vertex and count the ways to connect it to other vertices. Do this
until all internal legs are connected.

The product of all possibilities from step one up to step four gives the multiplicity
M.

To get the symmetry factor S we take a closer look at the inner symmetry of the
Vertices.

Step 5:

For s identical vertices, we get a factor s! for S.

Step 6:

For a given vertex denoted by the number of s, , 5y, , ..., sy, different fields 11,9, ..., 9,
we have a factor sy, !sy,!...sy,! for each vertex.

The product of step five and step six gives the symmetry factor S.
The formal notation of Eq. (B=4) can now be written as
M M;

Si [(S') X (Swllswz!”'siﬂn!)}i.

C;

To demonstrate this procedure we use the photon-loop as an example. The Feynman
graph is given by Fig. b=R.
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Figure 5.8: Photon-loop with external legs.

mmit}ww

Figure 5.9: Pre-photon-loop.

Step 1:

Step 2:

Figure 5.10: All possible connections for the left external line.

o7



58 CHAPTER 5. ONE-LOOP CALCULATIONS

e

Figure 5.11: All possible connections for the right external line.

Step 3:

Step four is now divided into step 4a and step 4b to make things more transparent.

Step 4a:

Figure 5.12: All possible connections for one of the left internal lines.

Step 4b:

Figure 5.13: All possible connections for the last left internal line.

Step 5:

We have two identical vertices which give a factor 2! for the symmetry factor S.

Step 6:

Each vertex is made up by three identical fields and hence leads to a factor 3! x 3! for

S.
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Therefore we get

M, (6x3)Fx2x1)V 1
S, (@2hx(3'x3) 2

Cy =
where the superscript P, V' shall denote the relevant propagator to vertex and vertex
to vertex connection.

This procedure is valid for all Feynman graphs in this work. The following table shows
each combinatoric factor for a given graph. Before we start the explicit calculation a

’ Feynman Graph ‘ M ‘ S ‘ C ‘
Ghost-tadpole 17 x 1V 1! Cyg=1
Photon-tadpole 3P x 1V 3! C. = %
Ghost-loop | (2 x )P x (1 x 1)V 2! C,=1
Photon-loop | (6 x 3)7 x (2 x 1)V [ 21 x 31 x 3! | C, = 3
2pt.-Photon-tadpole (4 x3)F x1V 1! x 4! Ce=5

Table 5.1: Combinatoric factors.

few words about the notation concerning Feynman graphs. The figure representing
a Feynman graph is drawn with the incoming external momentum from the right
side, the inner momentum is drawn clockwise and finally the external momentum
goes out at the left side?. Contrary the explicit propagator and vertex calculations
which represent the factors of a given Feynman graph start from the left side, follow
the external momentum until it arrives at the left vertex and follow the internal
momentum via propagator clockwise to the right vertex® and close the internal loop
via propagator clockwise. We must underline that this notation is only convention.

Three important points are left to mention:

i) Feynman graphs with a closed ghost loop line will receive an extra overall minus
sign.
ii) The following calculations are done with amputated external legs.

iii) It will turn out to be wise not to insert the full analytical expressions for the
needed photon-propagators.

5.3 One-Point Loops

We start with the calculation of the one-point tadpoles. As we will see, all those tad-
poles will vanish due to momentum conservation. Note that the external momentum
is drawn inwards.

2A special case are the one-point tadpoles, where the external momentum is drawn from the left
side.

30bviously the one-point tadpoles have no second vertex. The internal momentum goes straight
back via propagator to the first vertex.
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5.3.1 Ghost-Tadpole

The first one-point tadpole we consider is the ghost-tadpole.

Figure 5.14: Ghost-tadpole.

Refering to Fig. B4 the expression for ﬁﬁ(p) is given by:

i (p) = —Cy / ARV, p) G (). (5.8)

(2m)*

The building blocks for the depicted graph are given by Eqgs. (B2, b4) and denoted
with the right momentum description®:

VE(k.p) = —2ig(2m) 6%k + p — £)(—ky) sin [Sked(—h)].

and
~ee . 1 B 1
CW =T =R
Therefore we have
15} (p) =
! ) ! 1
- —Cd(zn)4 /d4k{ —2ig(2m)*6*(k + p — k)(—k,) sin [ikee(—k)] ( — k:2>}
= —Cy(2ig) /d4k{54(1€ +p—k)k,sin [%ke@k‘] ];} (5.9)

The last equation shows the correlation of external and internal momentum in the
sense of:

1
Hhk+p-k)=>p=k—k=0, sin[gkeﬂk] =0,

*The direction of the momentum will not change G4 (k) and G°(k).
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hence the momentum conservation is the reason of a vanishing ghost-tadpole

I (p) = 0. (5.10)

5.3.2 Photon-Tadpole

The calculation of the photon tadpole is done in the same way as the previous tadpole.

S AA
G

Py

Figure 5.15: Photon-tadpole.

The required Feynman rules are represented by Eqgs. (50) and (6H). We connect the
first leg k1, and third leg k3,3, hence receive k1 = k3 = k according to momentum
conservation. Considering Fig. bTH, the vertex and propagator are given by

~ . . 1
Vo?;fﬁ(kvp) = — 2ig(2m)*0%(k + p — k) sin [ikeep] X

% {Bar(k + k)5 + Sap(p — k)y + 63y (—k — p)a},
and
Goa(—k) = Gl (k)

where we use the fact that the photon propagator, represented by Eq. (B1) is sym-
metric.

This leads to

M0,(0) = Coggrr [ AV (D) GA )
= —C.(2ig) /d4k{54(k +p — k) sin [%ke@p] Ghal (k) (5.11)

X (6ay(2k)5 + 6ap(p — k)y + 0y (—k — p)a) }
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The last equation implies
Mk+p—k)=p=k—k=0, sin[%ke@p}zo,
which gives
I (p) = 0. (5.12)

We conclude:

All tadpoles of our model vanish due to momentum conservation.

5.4 Two-Point Loops

5.4.1 Ghost-Loop

As usual, the first two-point loop will be calculated in detail. To get rid of the
delta functions inherent in the vertex expressions we introduce a so-called auxiliary®
Feynman graph.

c

Figure 5.16: Auxiliary ghost-loop graph.

®The descriptions auziliary and final stand for explicit expressions with/without delta functions
(auxiliary /final) representing the Feynman graphs.
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According to Fig. B8, the necessary building blocks arise from Eqs. (62) and (634):

YWeAl(k,p k) = (—2ig)(2m)*0* (k — p’ — K')(—k],) sin [%ke@(—k')],

N 1 1
ZGCC(]{? ) — _W — _ﬁv
SV p k) = (—2ig)(2m)*6* (K + p — k)(—ky) sin [%k’e@(—k)] :
- 1 1
4Gcc(k) — _(_k)g — _ﬁ'

Therefore, we have

17, (p) =

1
(JaW / d*k / d*K / d*p’ x
Y

% {1‘7:146(]{;’])/’ k/)QéEc(kJ/)g‘?lfAé(kl,p, k)4é«:0(k)}
1 / /
Caw/d4k/d4k /d4p X
{(—2ig)(27r)454(k —p = K)(—k,)sin [%M(—k’)} (—@)
x (—2ig)(2m)*6* (K + p — k)(—k,) sin [%k”e&(—k}] (—)}

Caw/d4k/d4k’/d4p/x

k‘ ky 1 1
{(2ig)2(54(k —p = KNS (K 4+ p— k)L sin [fkeﬁk'] Sin[§k"60k] }

k2k2
/d4 /d4k Ak +p— k){ (Zzg) I]:’Qiz sin [;keﬁk’]}
= a(;ﬁﬂ /d‘*k{m sin? [leep] } (5.13)
If we now perform the variable shift
k—k+ g,

it will not bother the sine function since

sin? [%(k} + B)e@p] = sin? [%ke@p],

2
and hence we get a symmetric expression given by
- 42 [ u [E=5)uk+5) . 51
e =—-Cy-—— | d*k —kelp| ;. 5.14
s (P) (2r)4 / { (k— )2k + )2 sin [2 efp) (5.14)

The last equation may be interpreted as the following so-called final ghost-loop graph
(Fig. 5I7).
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Figure 5.17: Final ghost-loop graph.

5.4.2 Photon-Loop

The following calculations belong to the photon-loop.

(G

4éAA(k)

pa

Figure 5.18: Auxiliary photon-loop graph.

Figure BI8 equals the analytic expression given by

0 1 iy [ 4
1L, (p) = wa d'k | d'K' | d'p'x (5.15)

(VTR b PG PTG 0 .
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which is with the right modification of (B, bH):

~ ) .ol
1Vof’lf‘7(k,p', K = —219(27r)454(k —p' —K)sin [ikEG(—p')] X
(B4 Ky G = Ry + 6+ ) )
2GIAK,
N 1
SVAAK p, k) = —2ig(2m)*6* (K + p — k) sin [Qk/cﬂp] X

evp
X <5€p(k’ +k)y 4+ ba(p—K)p+ 0up(—k — p)6>,
LG (k).
If we now use the last two vertex identities and use the delta functions, we receive:

44>
(2m)*
X {(%(% = P)u+ Sap(—k = P)y + 0y(2p — K)a)

_ | ~ ~
I, (p) = Cb / d*k sin® [ikeep] G2k — p) G (k) (5.16)

X (5€p(2/<: — D)+ 00 (2p — k) p + 0pp(—k — p)e)}.

With a variable shift £ — &k + £, we get the expression

- 4g° . P\ A p
HZu(p> - Cb g 4 /d4kAZu,'yepa(k7p)G’Y€(k - 7)Gﬂa(k + 7)7 (5'17)
(27) 2 2
where AZV,’yepa(k? p) is given by

‘AZV,'yepa (k7 p)

. 1 3 3
= sin? [§k€0p} { (20aqky + 5au(—§p —k)y + 5#7(517 —k)a)

(5.18)

3 3
X (28epky + (561,(519 —k),+ 5l,p(—§p —k)e) }
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The following graph may be interpreted as the graphical expression of Eq. (5T4):

(k+1%)

Figure 5.19: Final photon-loop graph.

5.4.3 Two-Point Photon-Tadpole

The next graph is the two-point photon-tadpole.

ks

Vil (0 k,p)

npyv

Figure 5.20: Auxiliary two-point photon-tadpole graph.

The Feynman rules (61, 50), modified according to the depicted graph given by Fig.
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read:
Vg, 0 k) = 49°(2m)*6* (—p' — k + k + p) X
x {(%% ~ Buby)sin [ (~p)ebp] sim [ (—k)eb]
(B3, — 805, sin [%(—p')e@(—k)] sin [%keep}
(8,005, — 8450, sin [%(—k)er] sin [%(—p')e@k] }

and

Therefore, we have

I, /d4 /d4 ’{ (0 ke p) G (K )}

d‘*k d'pAg* st (—p — k + k + p) G (k) x

X {((Lwém — 0u~0py) sin [%p’e@k] sin [%ke@p]

+ (003 — 0,30~,) Sin [%ke@p} sin [%p’eﬂk} }

67

The delta function 6*(—p’ — k + k + p) with p’ = p solves the integral over p’ and

hence we have

49° 4 1
2] /d k sin? [§k6«9p]><

X {(5HV5/37 - 5#75611) + (%V‘Sﬂv - 5#[357'/)}@27%1(]‘:)

I, (p) = =Ce s 57

4g°
(2m)?

(k,p) is given by

= —C,

/ d4k"4,u1/ ﬂ'y(ka p)ég'f(k)v

while AW Gy

c 1
A, gy (k; p) = sin [ikeep] {(5uv5ﬁv — OuyOpv) + (0 0y — 5#6571/)}'

(5.19)

(5.20)
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The final Feynman graph may look like Fig. b=l

Figure 5.21: Final two-point photon-tadpole graph.
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5.5 General Structure of the Remaining Integrals
5.5.1 Introduction to the UV /IR Mixing-Problem
We give a short recapitulation about the findings so far.

The explicit analytic expressions of one-loop level, representing the Feynman graphs
of the BRSW model, read (the following expressions equal Eqs. (614, 616, 519, 59)
and (B1) from Sections b3 and b4):

14 — 492 4 (k - p)uku .92 1
HW(p) = Ca7(27r)4 /d k{(k‘ mpnETE sin [ikGGP] , (5.21a)
- 44 1 - .
b _ g 47, i 2 AA AA
I, (0) = Crgy / a*hsin? [ help] G4 (k — p)GAMR) (5.21b)

X {(5a7(2k — D)+ Oap(—k —p)y + 6, (20 — k)a)

X (5ep(2k - p)u + 561/(217 - k)p + 51’9(_k - p)e)}’

¢ (p) = -C 4¢° /d4k sin® [lkeﬁp] X (5.21c)
w “(2m)4 2 '
X {(fm% — 8uy00) + (B0, — 5Hﬁ5w)}ég;‘(k),
= o, (5.21d)
¢ =0, (5.21e)

where Tab. B™ depicts the Feynman graph. The main aim is now to solve the

Graph ‘ " ‘
Ghost-loop I
Photon-loop II°

2pt.-Photon-tadpole | II¢
Ghost-tadpole ¢
Photon-tadpole 11°

Table 5.2: Summary of Feynman graphs.

remaining integral over k. Obviously the given expressions are complicated functions
of internal and external momentum % and p and can not be evaluated in a straight
forward way. To get some information about the behaviour of divergence we use
power counting as a possibility of information.

Referring to Section B=3, all Feynman graphs show a divergent behaviour for the region
of large momentum (k — £00). As we have mentioned in the previous sections, the
sine term (often called phase factor) will lead to a damping mechanism for this region
but leads to a divergence for the region of small external momentum p. This effect
inherent in all noncommutative theories with the star product introduced in Section
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23, Eq. (E13) is known as the UV/IR mixing-problem [36, 37, B¥].
For details we give a short introduction to this problem.

To bring light into the UV /IR mixing-problem we use the easiest possible expression
occurring in our work. Therefore we will work with the two-point photon-tadpole
expression given by Eq. (B2Id):

rrc 49 4 1
I, (p) = 700(27r) /d k sin® [51%9;0] X

X {(5,“,567 — 8,,080) + (6,03, — 5u65w)}é§;4(k)
49 4y o2l
= —Cc(2ﬂ)4 /d k sin [gkeﬁp] X

{6 = G0 + GGl — Gt

8g> 1 ~ ~
= —C,—2— ) / d*k sin? [2166«9;0]{5#1,6??5‘(1{:) —Gﬁf(k)}, (5.22)

where we have used
~AA _ AA
G/u/ (k) - Guu (k)

Keeping in mind that all divergences arise from the limit of large internal momenta
Ek [@, 17], it will be wise to use the expression of the propagator Géj(k) in the limit
k — oo, given by Eq. (E53):

11, (p) =

~ —Cc(;i; /d4ks1n ~ ketp] {5“%2 [%B - kzl;g] B ]:2[ » k;;l;:,,]}

- —00(27952 /d4ksln ~ketp) {k2 [%5% } - ]{;12[% kzécy]}

= —Cc(;gr; /d4 sin? k69p { [ L kuky ]}

- —00(2237952 /d4l{:sln B k;egp}{g(gwl; k;;{fu}’ (5.23)

where we have used the representation of the Kronecker delta in four dimensions

(Opr) = = dgg = 4. (5.24)

o O O
o O = O
o= O O
— o O O
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The first term of this expression is now used as a concrete example (the pre-factors
and Kronecker delta are omitted to avoid confusion) for the mixing-problem and
hence denoted by:

1 (p /d4/~c sin? ke@p] I1¢% = [evample, (5.25)

Before we start the explicit calculation of I1°*(p) we must admit that we are only
interested in the final results which show satisfactorily the occurring problems in a
noncommutative theory. The detailed method of evaluation of such integrals (includ-
ing new concepts like parametrization of integrals, cutoffs, etc.) will be the topic of
Section BA.

We obtain

1% (p) = /d4kk52 sin [lkEQp]

/d‘lka <1[ e“’“ep]). (5.26)

The analytic expression I1°*(p) is now divided into a so-called planar and non-planar
part:

ﬁem(p) — qIexpl + el (p), (5.27)

where T1¢%?! and I1¢*"P!(p) are given by

~ 1 1

fTezpl — 5 / d4k—k2 , (5.28a)
rrex,npl 1 4 1 +ikeOp
Mo (p) = =3 [ d'kget ™. (5.28b)

Note that from now on the occurring parameter « is introduced to solve parameter
integrals and must not be mixed with the gauge fixing parameter « from the previous
chapters. As long as we work till the end of this chapter with the photon propagator
(E11), there should not be any confusion.

The detailed calculation of both parts shows:

1) The planar part:

For the planar part, we obtain
2
~ 1
fTezpl — 7; / do—s. (5.29)
0

Obviously the last expression will cause problems because of the divergent structure
given in the limit of @ — 0. Therefore we introduce an ultaviolet cutoff A which leads
to

rrex,pl __ 12 2
meor = A2 (5.30)
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The planar part shows the usual divergent structure in the limit of large A:
2

fTeerl = %AQ. (5.31)
2) The non-planar part:
The non-planar part reads
~ 272
mesmpl(p) = — () (5.32)

The last equation shows the main problem:

Although, all divergences arise from large internal momenta k, the non-planar part
generated through the noncommutative treatment shows divergence in the limit of
small external momenta p,

272
(eOp)?

However, we will show in the next chapter that we can treat this problem in a satis-

ﬁem,npl (p) - _ —00, p— 0. (5.33)

fying way.

After this introduction into the UV/IR mixing-problem, the observation of the ex-
pressions given by Eqs. (b21a, E2TH) and (622Id) shows that the general structure
is given by

=M, /d4kH“ (k,p) sin %k:e@p],

. 1
H/bw(p) = Mb/d4kﬂfjl,(k:,p) sin® [ﬁkzeé’p], (5.34)
r7c c . 1
I, (p) = Mo [ d*RIT;, (k) sin® [ ketp],
with
492
MJ CJ (27_‘_)4 ’ J a, ¢,
4g2
My =+Cy (271')4’
and
(k — p)ukv
e SESA o) .
uu(kvp) (k - p)2k2 ) (5 35&)
1}, (k,p) = G4k — p)Gog (k) (5.35b)

{28 = 1)y G = )y + 81 20~ )
X (56p(2k - p)u + 561/(2]9 - k)p + 51/p(_k - p)e)}a

¢, (k) = {(%% — 8,7080) + (8,05, — 5u55w)}ég‘§‘(k). (5.35¢)
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5.5.2 Expansion of f[fw(p)

As mentioned above we are mainly interested in the divergence structure of these
expressions in the limit of small external momenta p — 0. Therefore the analytic ex-
pressions IIf, (p) and HZV (p) are expanded for small momenta p according to (i=a,b):

=M; /d%ﬂl (k,p) sin [%ke@p]
:Mi/d“ksin [gk‘e@p]x (5.36)

i i PsPs i
o |10 0.0 1 00, 130 0500+ 5 009 T3 1)) + O,

while (B235d) stays unmodified according to the p independence of IT¢(k). The phase
factors are not expanded in order to loose not the damping effect of the highly oscil-
lating functions at large momenta k°.

First of all we introduce the abbreviations:

i — 77i,(0
H/J,I/(kﬂ 0) = Hlu,zg )(k70)7 (5373)
Do [Op, T (k)] = TN (K, ), (5.37b)

62 [aptiapo'nﬂl/(k7p)i| == Hu’£2) (kap)7 (537C)

p—0

representing the zeroth, first and second order ((0), (1) and (2)) of the expansion
(53G). Secondly if any IT),, (k, p) contains the the propagator G44 we will use the
Landau gauge and the expression of GA4
Eq. (E355):

in the limits of large momentum k given by

Therefore (6-35d) reads

(k - p)uklf
e (k.p) = — 2w
~ 150 (k,0) + 53 (k,p) + O(p?)
k. k, ksk, o kuk, ko ksk,k,
= {—2pup5 26 4papakg“} +0(%),  (5.38)

5This point we be discussed in detail in the next section.
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for the ghost-loop, while (6=35H) related to the photon-loop gives
b _ AA ~AA
H,u,y(kvp) - G'ye (k - p)Gpa (k‘)X

X {(%(% — D)y + Sap(—k = p)y + 0, (2p — )a)

X (6ep(2k - p)z/ + 561/(2p - k)P + 51’.0(_k - p)f)}

~ 7750 b,(2 3
~ 1150 (k, 0) + 5 (k, p) + O(p?)

ku.ky 1
=12 '}24 + { - 5pupl/ﬁ - 8po¢py

Kok, Kok
e Sl

k, k., kakgk,ky
— 16p? “6 + 52pap5%
k k
1 ko k
+ 8p25uuﬁ - 8papﬁ(s,uuk6/8} + O(pg)' (5'39)

Note that the first order always contains an odd number of the variable k and therefore
the symmetric integral over the variable k leads to zero,

/ ARV (k,p) =0, i=a,b. (5.40)

For the two-point photon-tadpole we use the calculations already derived from Section
651, Egs. (B22) and (6223):

~ - 1 kuk
c AA AA v
15, (k) = {5,“,(}55 (k) — G (k)} ~ {25“”1# + 24 } (5.41)
The full analytic expressions for the Feynman graphs are now given by
rTa 492 47, 302 1
1T, (p) = —C, G /d k sin [§k:69p] (5.42a)
k, ks ksk, kK koksk, Ky
X{ Tt [—217#195 ;i —p’ 5 +4p5paks“} +0(p3)},
M ()~ 4y 20 / e sin?[ - kebp) (5.42D)
v \P b 2m) 2 '
kuk, 1 kok kaky
X {12 24 + |:_ 5pupuﬁ — 8paPy kGM - 8po¢pu?
k. k., kokgkky
1 kok
+ 8p26HVﬁ — 8papﬂ5“yk6ﬁ:| + O(p3)}7
. 8> | 1 kuk
Hl“’(p) =~ 7CCW /d k sin [5]{369])] 25uyﬁ + k4 , (542C)

where the first term inside the curly brackets of ﬁfw,i = a, b represents the zeroth

order of the expansion, while the second order is inside the square brackets.

The detailed calculations of f[iw can be found in Appendix [E.
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5.6 Evaluation of the Remaining Integrals

5.6.1 General Structure

Taking a closer look at the expressions of Eq. (E4Za, B42H) and (b2Zd), we can
conclude that the remaining integrals have the general form of:

A)

I p) = / kL sin? [lkeﬂ (5.43a)

k2 9 '

- 1 1

2 4 s 2 ~

I°(p) = /d kg sin® [Skep], (5.43b)
B)

- kuky . o1

73,(p) = / d%ZT sin? [gkep], (5.43c)

. kuky . 501

Iﬁy(p) = /d4k 26 sin? [ﬁk:ep], (5.43d)

T kak k kl/ . 1 ~

Lopu(0) = / d4k‘% sin” [§k€p]’ (5.43¢)

where we have omitted the prefactors and used the abbreviation:

p = Op.

Those expressions are divided into a part A and part B because the two integrals of
part A will cover all arising solutions: The ones with modified Bessel functions and
the ones without.

Obviously the integrals show the same structure:

- 1
T'p) = /d4sk:z'l(k:) sin? [ik‘qﬁ], 1=1,2,3,4,5. (5.44)
The sine function can be decomposited in the following way:
s 2 L. 1 ~ 1 1 +ikep —ikep
sin [ikep] =3 [1 — cos(kep)] =3 [1 — 5(6 +e )], (5.45)
leading to
. 1 1. . oo
I(p) = / d4/<;ﬂ(k)5 [1- 5(&“@ +e )], (5.46)

The second exponential function can be written as (remember the short notation
B12):

+oo —0o0
/ d kI (ke thep F =k / A kI (—k)etikep, (5.47)
—00 “+o00
“+oo
= / d'kI'(k)e TP, I'(k) = I'(—k).

—0o0
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Therefore we have

. 1 I
T p) = / d4kll(k:)§[1 — eTihep], (5.48)
The whole expression can be divided into a so-called planar and non-planar part.
IH(p) = TPt + TH7P) (p) (5.49)
1 b 1
=3 / d1 (k) — 3 / Al (k)et ke,

We start with the first expression of part A given by Eq. (b233):

- 1 1
THp) = /d4k:k2 sin [fkeﬁ]

/d4/<;k2 (1[ e”keﬁ]). (5.50)

The analytic expression 71 (p) is now divided into the planar and non-planar part:

I'(p) =T + 14" (p), (5.51)
where Z'7! and Z1"P!(p) are given by
ThPl = / d4kﬁ, (5.52a)
- 1
z—l,npl<p) 2 /d4kk -erp (5.52b)

The parametrization and integration formulae used in the following context can be
found in Appendix D.

1) The planar part:

The Schwinger parametrization of 1/k? is now given by Formula (I2):
1
—2 F/doze ak /dae O"“Z,
0

71,pl a1 4 ak?

I’p:2 dk:— d°k | doe™

o0

) 2
= / dov / d'ke " = / doz—

=~ [ da—. (5.53)

which leads to
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where we have evaluated the integral over the variable k£ with Formula (D).

As we have discussed in Section BEal, the last expression will cause problems because
of the divergent structure given in the limit of & — 0. Therefore we introduce an
ultaviolet cutoff A to regularize the integral, evaluate this parameter integral with
Formula (ID77H) and use the definition of the gamma function I'(N) given by Formula
(W), which together lead to

Sipl T 1 .+ 1
7 = ) /daaze Ao = =) ') <A2)

= A% (5.54)
The planar part shows the usual divergent structure in the limit of large A

~ 772

Zhpl = 71\2 — 00, A — . (5.55)

2) The non-planar part:

The non-planar part reads

~ 1 1 7 L
Il,npl (p) - _ /d4kk2 +ikep _ 5 /d4k/da6ak2+zk6p.
0

First of all we bring the exponent into quadratic form:

~\ 2 ~
& (ep)?
ak? + ikep = a(zk‘ + 204) o (5.56)

This leads to

1—1 npl

5)2
/da/d4 |:azk+2a ] e (5.57)
Next, we try to bring the following expression
/d4k[ea(ik+§§)2] _ /d4k[6a(—k2+ikf+(§£)2)]
= /d4k[e o(k? %14%)2] = /d4k[e°‘(ki§f¢)2]7

into the form of a Gaussian integral

2
410 —ak? T
/dke =2

We substitute with new variables:

l\D\H
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thus we have
d*k = d*K,

and now the integral has the desired form and can be evaluated with Formula (ID8):

_ 2 2
/ d' k[ +32)"] = / die o =T T (5.58)

Therefore only the integral over the parameter « is still left and leads to (evaluation
with (DZ7H))

2 2 2 27 —1
7" (p) 5 daa26 1 5 ') 4
0
272
= ——. 5.59
(ep)? (5.59)

Note that there is no need for a ultraviolet cutoff A because the exponential function
(=phase factor) leads to a natural damping mechanism for values of small a.

As discussed in the previous section the noncommutative treatment shows divergence
for the limit of small external momenta p.

i—l,npl@) _ — —00, p— 0. (5.60)

The second part of A given by Eq. (B43H) can be written as

- 1 i )
IQ( ) = /d4k/€4 sin Pkeﬁ} — 727 +1-2,npl(p)

= ;{/d‘lkk4 - /d4kk “’“p}. (5.61)

The parametrization and integration formulae used in the following context can be
found in Appendix D.

1) The planar part:

The Schwinger parametrization of 1/k* is now given by

[e.¢] o0

1 k2
_ ak (0% . 2
—4 O /daae /daae , (5.62)

0
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which leads to

2P — /d4kz - /d4 /daae ak?
< 2
= /daa/d4k6_ak2 /da
«
0
_ /
2
0

As distinguished from the planar part of A.1 (5554), the second one shows a divergent
structure not only for the limit of & — 0 but also for the limit & — oco. Therefore
we introduce an ultaviolet cutoff A and an infrared cutoff u to regularize the integral
and evaluate this parameter integral with Formula (ID77d):

o0
- 2 1 1 2 2 ,u2
72l T Zeaza e = D (o En .64
5 /daae A 5 0( A2>’ (5.64)
0

where K represents the modified Bessel function of second kind (IDZ9H).

(5.63)

Q\*—‘

2) The non-planar part:

The non-planar part reads

j2,npl(p) 2/d4kk +ikep _ 1/d4k/daae—ak2+ikeﬁ

52
:_/daa/d4 [am ] g (5.65)

The evaluation of the Gaussian integral (B258) leaves us with the integral over the
parameter @ and hence leads to

~ (e 5)2
7%l (p :—/da e % fa :—7r2K0<2 (Ei)u2>

:—ﬁm((@wﬁ, (5.66)

where we have used Formula (ID77d). Again we have a damping mechanism for small
a.

The noncommutative treatment also shows divergence in the limit of small external
momenta p.

220 (g) = ko (VP2 ) = . p=o. (5.67)
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B:

In the following we will give a methodology for calculating the integrals appearing in
part B.

1.

The integrals are of the general form
~ kp ookp, ol
Lyt (P) = / d' k=t sin® [ kep]

1 4, kb, tikep
:2/d klkT[l—C ZEp]7 (568)
where we have splitted the integral explicitly into the planar and non-planar part.
The given integrals of part B (b-43d, b-43d) and (5438) generate the following possible
combinations, given in Tab. B33.

’ Integral ‘ N ‘ m ‘
13, 2 | 2
Ty 3|2

L2 5 4 | 4

Table 5.3: Possible combinations of N and m.

2.

For the momenta in the numerator we can write

ky = [— iﬁzneikz]zzo = ky, . Ky, = (—i)™0,, ...0 eikz‘

Zny T 2nm

(5.69)

z=0’
while the Schwinger parametrization of the denominator is given by

o0

1 1 N-1) —ak?
]{727]\[ = m/d@a( )6 s
0

together leading to

~—

z:0‘
(5.70)

Ly () = é;g;v [ a0, 0., [ d4k(6_ak2+ikz - e—ak2+ik<eﬁ+z>)
0
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3.

The quadratic form of the exponential is given by

2 2
—ak? +ikz = a(ik + 220[> — Z—a, planar, (5.71a)
~ 2 ~ 2
—ak® +ik(ep+2) = @ (zk + L * Z> — (ep4+z)’ non-planar. (5.71b)
« Q@

With application of Formula (D), the evaluation of the integral over k leads to a
factor 72/a? for the planar and non-planar part (the detailed procedure can be seen
in Egs. (650, b57) and (658)). Therefore we have

(5.72)

~ —i)mg? 7 _ _ 22 _ (ep+2)?
Ty (D) = (QF)(N) /daa(N 3)82771"'8277m <e a — e da ) )
0 2=

4.

The derivations for the non-planar part are given by (according to Tab. B3, we have
m=2, 4)%:

9. 8 e,<eﬁ;z)2 _ { O (6ﬁ+z)u(eﬁ+z)y}e(eﬁg>2, 9

R 2 (2a)?
(5.73a)
(eh+2)?
0:,0,0,,05,¢ 10 =
_ [ 9apOuw + daudpy + Ipuday
(2a)?
~ Oap(ep + 2)u(€p + 2)u + dau(ep + 2)p(ep + 2)u + dpu(€p + 2)alep + 2),
(20)?
B S (€p+ 2)3(eD + 2)p + 00 (€D + 2)a (€D + 2) + 6 (€D + 2)a(€P + 2)
(20)?
n (P + 2)a(eP+ 2)p(eD + 2)uleP + 2)y | -~ toee? m—d (5.73b)
(2a)*
while the derivations for the planar part can be found similar if we set p = 0.
5.
The integrals 7%, 7* (523@, 543d) can now be written in the form of
I(p) =" + 1" (p) (5.74)

m, 2

_(=)mw 7 (N=3—(m—1)) 70 (N=3—k) —
= 72F(N) A1 | daa - Z A | dao e
0 0

(ep)? }
4o s

k=m—1m

"In the following context we use the notation (€f + 2), = €, + 2.
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while the integral Z° (543d) reads

I(p) =T+ I (p) (5.75)

. 2 0 00 ~
_ m{ A / N I / do(N—3—k) ,— 22 }
0 0

k=m—2m—1m

where the prefactors A,,, representing expressions not involving the parameter o can
be deduced from Egs. (6-73d) and (E7Z3H).

6.

Evaluation of the integrals: Insertion of N, m given from Tab. bZ3 and deducing the
right prefactors leads to four types of integrals:

A
ZZ,plN/dae s ho i=45, (5.76a)
(0%
0
Finl / dot e~ ih= i—3 (5.76b)
a? ’ ’
0
~ y 1 €p 2
Fimpl /dae(j;)/ﬁa’ i=4,5, (5.76¢)
(0%
0
~. i ]_ 5)2
Finl N/daaje(fi , =2, i=34,5, (5.764)
0

where A and p represent the already introduced UV-and IR-cutoff. The integrals
(6764 -676d) can be evaluated with Formula (D7) and (D-7H). In Appendix E=2T,
we give the explicit calculation of Z3(p) as an example.

The analytic expressions for the Feynman graphs are now given by

A

(2m)*
T3, 0) + | - 20,578 (6) — 1220 (0) + Apapo 2 oW

X uu(p)+ PuPs (Sy(p) p uu(p)+ DPsPo 05uy(p) + (p) )

ﬁa (p) ~ _Ca

v (577&)
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2

~ 4
b ~ 9

x {12ij’;y (p) + [ — 5pupv () — 8PaPv Loy (P) — 8PaPuZey (P)
— 16p°Z,,,,(p) + 52PapsL0 5, (P)

+ 800, 2%(p) — 8papsdunLag (p)] +0(p’) }
e 89° =1 =3
Huy(p) ~ _00(27)4 2(5;1,1/1' (p) + Im,(p) . (577C)

5.6.2 Explicit Evaluation

The detailed outcome of each Integral Z¢ can be found in Appendix EZZ9, and inserted
into (A-77a-6774) leads to:

1, (p) & —Cag®x (5.78)

1 ) (0)
()
1 [ 2 1 112 (2)7pl
- <487T2p 0 Ko <2 A2> + WPMPVKO (2\/ A2

1 5;w 1 ﬁuﬁu (0) . (2)
(- st pridyy) o+ ((hite termsy

+ <1pupVK0<\/W> +4£7T2p25wK0<\/W>>(2Tpl

2472

I (p) ~ +Chg? x (5.79)

50 12 ) 56 e (2)7pl
(o2 e o — a2/ s o

5 (0) ()
+ [(6 Pubv 3 5’“’2> + <(ﬁnite terms)")

72 (ep?)? 72 (ep)

50 —\ 56 _ ()7 met
— ( Ko( u2(6p)2>p v — W%(vﬁ(ep)?)pum) ]

4872

+ 0(1)3)},

- 5 "ors g 1 By ™

5, (p) ~ —Ceg®S | =50 A?| — | s — — s : 5.80
Note that the superscript (0), (2) represents the order of our expansion and that we
have devided each wa(p) into the planar and non-planar part. The expression finite
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terms refers to all finite terms which will not contribute to the divergent structure in
the limit of small p. They are given by

(finite terms) =

_ [ 1 pupsbsby | 1 P*Puby | 1 Pspobubuisbo

8w p? 16mw2  p? 1272 pt

1 L. L L
- m (5,uzzp5pap(5pa + PuPoDvPo + PoPvDuPo

o o oo 1
+ PsPuPvPs + PsPvPuPs + pzpupu) ]52:| s (5.81)

(finite terms)” =

_ 1 papppadys s n ip pupu o L PoPubaPy 1 PapvPaDy
2772 ]32 [ p 272 ﬁQ 72 132
26

4872

(D*Bubv + PupsBsby + PoPubaby + PvDaPaD,

52 DPaPpPubv
4872 ph

. oo 1
+ PaPuDabv + 5uupapﬁpapﬁ)]? + (5.82)

The detailed calculations can be found in Appendix E"Z3.

5.7 One-Loop Correction

The full one-loop correction of the photon propagator is now given by the sum of all
analytic expressions II7,, (p), representing the particular Feynman graph,

IT'(p) =118, (p) + 100, (p) + 1IS,, (p) + 11 (p) + 115, (p) (5.83)
= Il (p), j=a,b,c d,e.

We have approximated the photon propagator in the limit of large momenta k. Since
the one-point tadpoles vanished (II%(p) = II%(p) = 0), and each T1%2¢(p) contains
a planar and non-planar part which are expanded up to the second order (except
117, (p)), we may write

Z [ Z Z H”Jk —|—H”( )| + finite terms, (5.84)

i=plnpl - j=a,bk= (2)
where finite terms will contain all finite expressions which appear in our calculations
and is explained later on in detail.

Aside from this formal expression it will be wise to take a closer look at each part,
collect all (non)-planar parts, seperate each order and bring together the prefactors.
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Therefore we get for the planar part of 1:[“,, (p):

2
F1(0),00 () ~ g 2 -
IO+ (p) ~ —WA 8, (Ca — 12C, + 10C,) = 0, (5.85)
)" (p) ~
2 2
g H 2
~ Ko 24/ v+ 2(Cy —2 V
_ 26g° \//72 9
_3(47'(')2 Ky <2 A2 (p 5#1/ _p,upu)a (5.86)
and for the non-planar part:
0 ) ~
2
g 1 o _
A — —12 1 v —2(Cy — 12 2C. v
(271—)2 (6]32)2 {(Ca Cp + 10C,)p O (C, Cp + 2C, )pup }
. 29215u]5u
- 7T2(€]52)2’ (587)
fion () ~
2
~ _3(227_‘_)21{0( (625)2/12> {(Ca + 500())])2(5/“, + Z(Ca - 28Cb)pupu}

+ (finite terms)’ 4 (finite terms)” + O(p®)
264>

_3(47T)2K0< (eﬁ)2u2> (p26w, — pupv) + (finite terms)” + O(p?’), (5.88)

where we have used
(finite terms)”’ = (finite terms)’ + (finite terms)”,

and the expressions of higher orders caused by the expansion added to the term
ﬁl(fy)mp : (p). In the face of calculating a sum the final expression will not be affected.
The sum of all expressions with the combinatoric factors C, = 1,Cp = %,C’c = %
given from Section B2, Tab. B leads to:

ﬁW(P) ~
292 ﬁuﬁu 2692 MQ ~ 2
R — Ko(2\/—= ) — K 22 Oy — v
2 (€p~2)2 + 3(47‘(’)2 0 A2 0 (Ep) 1% (p 1z bup )
+ (finite terms)” 4+ O(p?)
" 2792 Pubv | 139
Tor2 (ep?)? | 24m?

In(A)(p*0, — pupy) + finite terms. (5.89)

This result exhibits a quadratic IR divergence.

In the last expression we have used the expansion of the modified Bessel function
of second kind given by Eq. (DIId). The expression finite terms now contains all
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non-relevant terms which will not contribute to the divergent structure in the limits
of u — 0, A — oo and in the light of small external momenta p:

finite terms = (finite terms)” + (finite terms)’" (5.90)
+{0(a") + O }p* — pupv) +O(°),

2
— o, M
a=2 F,
b= V2,

while the term (finite terms)’" contains finite expressions for small p caused by the
expansion of the Bessel function Ky(1/(ep)2u?). For the sake of completeness we give

the analytic expression of this term

2,2

(finite terms)!V = { <1 + ((e;ﬁ)j)u) In(ep) — ln(2)}(p2(5,w — Pubv)- (5.91)

We also have to mention that each expansion of Ky(a) and Ky(b) leads to a term
1/21n(p?) which cancel each other. For details take a closer look at Appendix EZ31.

Finally, the Feynman graph which represents the analytic expression ﬁuv (p) may look
like the following figure (Fig. 522).

Pu

Figure 5.22: Feynman graph representing the sum of one-loop corrections to the
photon propagator.



Chapter 6

Renormalization

The last chapter is dedicated to the topic of Renormalization. In general renormal-
ization means that the parameters of a given theory will be replaced by renormalized
parameters which can absorb the occurring divergences. In the special case of this
work, the parameters v,o will be replaced by the renormalized parameters ~,, o,.
The procedure of renormalization will be discussed step by step.

We start with the one-loop correction (589), given by”

- 2¢% kuk, 132 ,
O, (k) ~ == & In(A)(k%8,, — k,k,) + finite t
o 72 (ek2)2 242 n(A) (k70 uky) + finite terms,

and analyse each term separately.

Before we start the renormalization procedure we underline that the limit A — oo
must be considered at the very end.

a) Limit of small momenta k:

As we have mentioned in the previous chapter, the first term is quadratic IR divergent
while the second one is finite. The Lagrangian of our BRSW model was constructed
in such a way that the soft breaking term will lead to a damping mechanism in the
IR region. This can be understood if we take a closer look at the complete or in other
words ’dressed’ propagator G,’:‘VA dress “This dressed propagator represents all possible
combinations of propagators and one-loop corrections 1:[,“,. The essential part of the
dressed propagator will be the expression (we give schematic statements, the detailed

ones can be found in the next section):

5 21

GIIG ~ k ﬁk , (6.1)
which is finite in the limit of small momenta k.

b) Limit of A — oo:

The second term of Eq. (589) shows a logarithmic divergence in the limit of A — oo.

!The external momenta p is now denoted by k.

87
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This can be treated satisfyingly if we introduce the renormalized parameter 7, which
absorbs the divergences.

¢) Limit € — 0:

The predication ‘Limit of ¢ — 0 makes only sense we if consider that € can not reach
the value € = 0, since € represents the deformation parameter. This parameter must
be understood in the way that it can be arbitrarily close to zero and therefore exhibits
a quadratic divergence. To underline this aspect we recall Eq. (24):

[:%u,:i"l,] = 1€,
where the noncommutativity is only given for € # 0.

As we will see in the next sections this parameter will be included in the renormalized
O

A few words about notation: In the following renormalized quantities are denoted by
the the index r or the superscript ren. Any occurring propagator without explicit
superscript denotation represents the tree-level two point Green function

Gat(k) = Gagbree (k). (6.2)
Any expansion in terms of the coupling constant g is done under the assumption
g> < 1.
6.1 Renormalization of the Photon Propagator

6.1.1 General Remarks

For the dressed propagator GﬁyA dress e can give a representation in terms of Feyn-

man graphs (Fig. B1) while the analytic expression reads:

éAAdress(k) f[(k)

:«/\/\/wm‘vv LO(gh
GA4(k) GAA(k) GAA(K)

Figure 6.1: Dressed Photon Propagator at one-loop level.

G e (k) = Gt (k) + Gt (k)L (k) Gt () + O(g"). (6.3)

Since the dressed propagator represents a sum of tree-level photon propagators él‘:‘lf‘

in combination with the one-loop correction l:IW, we try to show that GAAdress can be
written as a geometric series in the way of (the indices, superscript and the argument
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k are omitted to avoid confusion):

Gdress — 3 4 [1G + GUGIIG + 0(96)

+ 2

6 4 IGTE + o<g6‘)}

- éﬁ;ﬁl,dress(k) _ o — _ )
(GMV (k)) - HI»W(k)

To apply this series we must imply two important requirements:

1.

The expansion of this series is only valid for g?> < 1 which is obviously fulfilled since
we have postulated this requirement in the introduction. Nevertheless in the light
of vanishing momenta % (at this time the parameter A must be treated as a finite
quantity) the expression IIG will not diverge. Due to the fact that we were mainly
interested in expressions depending on small k, we approximated f[ul,(kr) for small
values of k£ and therefore the occurring quadratic IR divergence can now be absorbed
by éﬁlf‘(k:) in the limit of small k:

ﬁpa(k)éff(k‘) = finite expression,

- 29% kk,
H%St ferm () o % P~7_ . dominant for small k
T (ek?)?
. k2 kok at  kok
AA ~ oy oy
Go, (k) = A Oov — PG e 2 for small k.

However the dressed propagator should cover the full range from IR to UV. The next
section shows that we must use a more generalized propagator to find an inverse.

2.
The inverse of the propagator C:’Z‘lf‘ must be understood in the way of

Gop (G = (G TGt = O (6.6)

If we now recall that the inverse of the connected two-point Green function which
represents the photon propagator Gﬁ‘,f‘(k) at tree level, equals the two-point vertex

function T2 (k)2, then Eq. (63) becomes

EAress () = A (k) — T, (K), (6.7)

2The superscript tree emphasises the fact that the two-point vertex function represents the
inverse of the tree-level two-point Green function in the way of (Ga ")~ = T/ with
GAA — é«AA,tree

pr = iz .

(IH).

For details take a closer look in Chapter 4, Section BT and especially Eq.
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with
1 -
_ — GA:X,dress k ’
Fﬁf,dTESS(k) w ( )
1 -
——— = GA4(k), 6.8
FﬁVA,tree(k) H ( ) ( )
1 1

(GAAR)) ™" =T (k) T (k) — M (k)

The inverse of the last expression also has an interpretation in the sense of Eq. (E8):
-1
<(foA,tree _ ﬁ),up) <fAA,t7"ee o ﬁ)py) _ 5MV' (6.9)

6.1.2 The Inverse Propagator

The task is now to find the inverse of éﬁ;“(k:), subtract it from the one-loop correction

I, (k) to obtain the expression Iy " *** (k) and invert the latter once again to get

the dressed propagator éﬁ;‘ ’dress(k)-

So far we have worked with the propagator given by Eq. (1), where we have used the
Landau gauge (o — 0). Since the inverse of this propagator does not exist [25, PG|,
we will use the more generalized form (« # 0) given by:

- 1 K,k kK
AA _ wnhvy %
G/U/ (k) = % |:6MV — (1 — OJD) kz - F ];2 :|7 (610)
where we have introduced the abbreviations
4
D(k) = <1 + (122)2>, (6.11)
1 a4

F(k) = (6.12)

ﬁ - .
<k2 + (6% + W4)]~€12>

Note that Eq. (6d0) equals (E24). It has to be remarked that the quadratic IR
divergence and the result of the renormalization must be independent of the gauge
fixing [39, 40]. In the end we will consider the Landau gauge again.

To get our inverse propagator we make the following ansatz according to Eq. (68):

~ 1 =
S = (Gip' (k)™ Gy (k) (6.13)

kyk kuk,] 1 kpk kpk

_ 7.2 nkp ukp phv phv

=k*D |0y, + a1 12 + asy ]22}]{:22)[691,—(1—047)) 12 —.7-"12:2 ,
from which we obtain the coefficients a1, as by comparison
1

=—-1 6.14
ai aD ) ( )
4= (6.15)

1-F
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Therefore the two-point vertex function at tree level reads

DALree (k) = (GAA(K)) ™' =

1 kk gt kuk
_ 1.2 - phv phy
=k D[(SW + <a 1) 12 + 2iep 2 | (6.16)

The detailed calculation of the inverse of the tree level propagator can be found in
Appendix ET.

Before we insert the last equation in Eq. (BZ1), we once again stress that we are
mainly interested in expressions depending on small values of k and hence introduce
the following abbreviation:

Do (k) = My (k) , (6.17)
without finite terms
leading to
AA.corr I%ulgu 2
Adeor () — 1, it (K25, — k), (6.18)
with
2g°
1342
1, = In(A 2
b 2472 n( )7 (6 0)

involving the parameters € and A.

6.1.3 Explicit Renormalization

Using the findings so far, the dressed vertex function can now be written as®

nAA,d _ TAA¢ mnAA.
Fuy ress(k) -7 ree(k) _ F/u/ corr(k,)

pv

1 kyk ot — I, kuk
=kK(D-1I [5V+< —1)’”+ = L v 6.21
The detailed calculation can be found in Appendix ET2.
Before we try to find the inverse fﬁ,f‘ ’dress(k), representing the dressed propagator

which will lead in rapid succession to the renormalized propagator, we must mention
some fundamental aspects of renormalization.

i)
The comparison of the tree level two-point vertex function (618) with the dressed
vertex function (62201) shows that the latter one differs from the first one by additional

3 At this point the two point vertex function (EI8) diverges for the Landau gauge (o — 0) but
firstly the propagator represents the inverse of this expression and secondly the limit o — 0 will
considered at the end.
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terms. These terms contain the divergent structure.

ii
)

The task is now to renormalize the given parameters (7, ) in such a way that the
renormalized parameters (which must be independent of the variable k) absorb the
divergences and that finally the now renormalized vertex function can be rewritten
in the same form as the tree level expression.

iii)

If this can be achieved, the rewritten renormalized vertex function (and propa-
gator!) shows stability of the theory with respect to the one-loop corrections. The
postulated stability means that the renormalized propagator must have the same
form as the dressed propagator. This allows us to compare the factors of the dressed
propagator and of the renormalized one.

Once again we take a closer look at Eq. (6220) and find that the first term of the
dressed vertex function is given by?:

fﬁfvdreSS(k)ﬁrst term __ ]{32 (D _ Hb)éuy-

At first sight the expression D — II}, looks like a candidate for a renormalized Df(fyﬁ)
in the way of

Ds(v}) = D(v*') — IIy,

but as we will see the renormalized parameter equals the non renormalized one under
the constraint I1,=0:

4 4
4y _ roN g _
Df(’}/f) = <1+ k‘2];;2 = 1"‘@ —Hb—D—Hb,

Obviously the last expression makes no sense. A way out of this dilemma is to in-
troduce a wave function renormalization A, — A, = Z4Aj,. This implies for the
renormalized propagator, already modified with renormalized parameters a multi-
plication with Zi. The square represents the fact that in general a propagator is
represented by a quadratic term in the Langrangian. Therefore we multiply (6221)
with the wave function parameter ZZ2 (which should incorporate IT;). According to
the announcements ii) and iii) we demand that the renormalized vertex function is
cast into the same form as the tree level one:

- ~ D
Fﬁfiree(k)ﬁrst term __ k2(D . Hb)fs;w — Fﬁ;‘\,ren(k)ﬁrst term __ k27;6MV (6.22)
A

Under the aspect of stability, we define

4y ._ T
Dr(vy) = (1 + k;2152)’ (6.23)

“The superscript f emphasises the fact that this renormalized propagator will no be the final
result (f stands for false).
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and inserting the explicit expressions, we obtain

Dy(vy) = (D — 1) Z3,

4 4
Vr o i _ 2
= <1 + k2];2> = {(1 + k:2l;:2> Hb}ZA

—(1— II,)Z% + kz; Z2. (6.24)
Comparing the coefficients we get
v =723, (6.25)
while the wave function parameter reads
Tp= (6.26)
1—1II,

Now the conditional equation (E23) for v; reads
1
Y =723 =" (1+ 511 + O(g")
13¢°
_ A4 It 4
=1+ 152 In(A) + O(g%)). (6.27)

The treatment of the first term determines the second one under the assumption of
the Landau gauge. The approach to renormalize the parameter ¢ in the third term
of Eq. (E2Z0) proceeds in the same way as the first term:

5 . kg, - : o kuk
AA third term __ /=4 puv  RAA, third term __ pnvv
FMV ree(k) ¢ — (0 - Ha) ];4 - FMV Ten(k) ¢ — 7% %4 ) (628)
= (6" -11,)7% = &}
If we define
92
ohi= Q(O'T + 403) v, (6.29)
we get with the help of Eq. (EZ23):
6° 2\ .42 ~4 2

leading to the conditional equation for o,.:

2 0 \? 4262

The detailed calculation of the last equation can be found in Appendix ET3.

The renormalized vertex function is now given by

. k2D 72 k. k 5t k,k
FAA,ren k) = o=r 5 L A 1 pv o ,lf v ) 32
o) = S22 (-1 ) Bt 2B e
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To get the renormalized propagator we apply the same ansatz as in Eq. (B13):
O = (Tpgrem (k) " T tren (i) (6.33)

72 Bukp kukp} k2D, [@V ( 7z 1) koky 6 ko,

= — (5 b = = =
k2D, up 01 k2 2 2 sz oD, k2 k2k2D, k2

I

from which we obtain the coefficients b1, b2 by comparison

b1=—< B ) (6.34)

1+ B,
By
by = — 6.35
2 (1 + BQ>’ (6.35)
where we have introduced the abbreviations
22
By =24 1 6.36
1 OJDT ) ( )
By— Ot
k2k2D,.

After recasting the coefficients, the renormalized propagator in Landau gauge (o — 0)
becomes

~ Z2 kuk k,k
AA,ren o A nhy uhv
Guy (k) - k2DT |:(5,u,1/ - ]{32 - Fr ];;2 :| 9 (637)

with the abbreviation F,

—4
r : (6.38)

S
k2 _
<k2 +(of+ 7#),;2)
and the following already named quantities:
1
1—1IIy
W =723,

4
_ r
D, = <1+k2]~€2>,
~4 0 5\ 4
o, =2 ar—i-zar Yy -

The detailed calculation of the renormalized propagator (6237) is shown in Appendix
ET4.

Fr(k) =

75 =

6.1.4 Renormalization Conditions

In the last section of this work, we provide renormalization conditions for the tree
level two-point vertex function given by Eq. (618):

_ kuky n kjkuk,, 5’74143“/@,
k2 a k2 B2 k2

rabiree (k) = K*D (%
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The last equation can be divided into a transversal (7), longitudinal (L) and non-
commutative part (NC'). The motivation for the following separation can be seen if
we multiply (EI8) with a vector k,. The first part gives

kky,
k*D (5,W — @) k, = k*D(k, — k,) =0, (6.39)
leading to the identification
rAAT = 12D, (6.40)
The second term
k? kyk, k2
— = —ky, 41
(a k2 )k” a b (641)
motivates
- k2
rAAaLl = — (6.42)

Q
The last term involves the matrix 6, in the way of
ot kk, -
ﬁ? kﬂ/ - 0, kukﬂ == kueuykl, == 0, (643)
and hence explains the superscript NC' in the identification
- o4
rAANG = — (6.44)
i2
With respect to the introduced identifications, the tree level two-point vertex function
reads

~ . Kk caapkaky | - ek
F;};X,tree(k,) — FAA,T (5!“/ o ZQV) + I—\AA,L }];21/ + FAA,NC’ ,Lli2z/7 (645)
and allows us to formulate renormalization conditions given by
(k*)°
e [AAT =4, (6.46a)
k2=0
1 (kT AAT
—2(72) =1, (6.46b)
2k ok 2—0
k2rAANe =51, (6.46¢)
k2=0
raaL =0, (6.46d)
k2=0
orAML 1
—_— = —. (6.46¢)
6k2 k2=0 «

With these renormalization conditions, one can in principle determine the qualitative
form of the propagator to all loop orders (provided the theory is renormalizable).
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Chapter 7

Conclusion

7.1 Summary

The main aim of this work, which is based on the BRSW model, was to compute
Feynman rules, results for the vacuum polarization and the one-loop renormaliza-
tion of the gauge boson propagator. In the first chapter (), a short overview about
the motivation for noncommutative space and a brief review about the main models
was presented. The following chapter (B) was dedicated to the algebra and the star
product. In the next chapter (B), the action of the gauge field model was stated.
The complex fields, as well as the ghost fields, introduced into the bilinear part of
the action implement the IR damping. In order to ensure BRST transformations in
the UV, additional sources are needed. Those sources implement a soft breaking of
BRST in the IR. The computation of the Feynman rules was the main part of chapter
four (@). According to the Section B4, only the photon propagator and the ghost
propagator contribute to physical results. In the IR limit, the photon propagator
shows the appearance of a term of the same type as the appearing divergent terms in
one-loop results. The noncommutativity of the theory entered the vertex functions
via phase factors, while the propagators showed the same form as the commutative
ones. One-loop calculations of the next chapter (H) showed that from five one-loop
Feynman graphs (Fig. 50) only three graphs were non-vanishing: The ghost-tadpole
and the photon-tadpole vanished due to momentum conservation, pointing out one
advantage of the - model. Explicit calculations under the premise that one-loop
corrections to the ghost-loop and photon-loop could be expanded in the limit of small
external momenta, exhibited the known quadratic IR divergence in the external mo-
mentum and a logarithmic UV divergence in the cutoff A of the one-loop corrections
of the vacuum polarization. The last chapter (B) pointed straight to the heart of any
quantum field theory: Renormalization. Since the dressed propagator contains the
product of the tree-level propagator and the one-loop correction, it was shown that as
postulated by construction of the action, the inherent quadratic IR divergence could
be cured. In the end, the renormalized propagator shows the same form as the tree
level expression providing stability of the theory. The renormalized parameters are
able to absorb the logarithmic UV divergence given by the cutoff A.
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7.2 Outlook

The BRSW model may be the first renormalizable noncommutative gauge theory
model. Although, only renormalization up to one-loop level was proven, there are
strong indications [20] that this can be achieved up to all orders by using Multiscale
Analysis. However, aside from this model the soft breaking ’technique’ promises to
be a powerful tool for other noncommutative quantum field theory models.



Appendix A

Noncommutative Quantum Field
Theory

A.1 The Star Product

A.1.1 Cyclic Permutation

First of all we will omit the stars because we only want to show which algebraic sign
will occur.

We only look at the product of fermions/bosons and fermions/fermions with the
abbreviation f for fermions and b for bosons.

1) Two Fields:

Permutations of 12 are 21; we have

/ =+ / dz(f*h), (A1)
/ dz(fl1f?) = / dz(f

2) Three Fields:

Permutations of 123 are 312 and 231; we have
[t =+ [ dasi ) =+ [atues
/d4x(f1f2b3) /d4 (B3 fLf?) /d% (f203 f1 (A.2)
/ d'z(f'0*f°) = / d'z(f2 ') = / dz(b?f3 f1
/d4 (' f2f3) = /d4 (2! f2 —|—/d4m F2£30h.
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3) Four Fields:

Permutations of 1234 are 4123, 3412 and 2341; we have
/d4x(f1b2f3b4) = +/d4m(b4f1b2f3)
= - / d*z (3t f1v?) (A.3)
= [,
and
[dtaris = [ dta(ssie )
= / dz (b3 £ £10%) (A.4)
= —/d4m(b2b3f4f1).

All those combinations will arise in our work.



Appendix B

BRSW Model

B.1 Functional Derivative

B.1.1 Functional Derivative and Star Product

We want to calculate

/ A 2ldo() * P5(z) * 90 (2)]

4 * 0o (T) * (T
5oty | ) * or ) )
1) 1

d41}‘ d4]{31 d4k32 d4k,3ei(k1+k2+k3)xe—%kleek‘g—%kgeakg—%/ﬂe@kg
oPu(y) (2m)2 / / /

X ( + 125(/{71)@7(]{32)&&(]{53)) .

where we have a plus sign for bosons and a minus sign for fermions.

The derivation gives

1)
51%(9

~—

/ d*z[pa () * Ys(x) * oy (2)] =

_ iz [ dky [ diks d4k,3€i(k’1+k2+k3)me—%kleekg— LkoeOks—Lkieks
(2ﬂ)12

1

— /d4k1/d4k,2/d4k354(k,1+k,2+k,3)e—;kleekg—;kzeek‘g—ék’lsek_g
(2m)®

(k1) ~
(2 52 )a ). B.1)

The calculation of the term including a variation leads to:

Sk - '
;Zi((yl)) N /d4$elklxm N /d4xek1x5ﬁu54<$ —y) = ‘5,8#671]“1/' (B.2)

—_
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Inserting the last expression into (BI) leads to

J

51%(1/)
1

/ d*z[pa(x) * Ys(x) * @r(2)] =

kl/d4k2/d4]€354 k1+k2+k3)€ 21€169k‘2—*k269/€3 *k‘1€9k3

(G5 (1)) ).

The use of §*(k1 + ko + k3) for elimination of ki (k; = —ko — k3) brings

_9
57/% (y)

[ dalouta) « af) « o @) =

d*ks

d'ks < + 56#61'(’“2%3)%%kzeeksgav(@)&a(kg))

= +pu (%(y) * %(y)) ) (B-3)

which was the desired result.

B.2 Partial Integration

B.2.1 Partial Integration and Star Product

The first expression is given by (BIH) from the main text. Since it represents a
bilinear expression, we can omit the star and have

/d4xA(a;)*8uBu($) = /d4:vA(a:)8MBM(:E)

- / d*zd), (A(x)Bu(x)> —~ / 'z, A(z) By().

Due to the fact that the first term of the last expression represents a surface term,
we get,

/d4xA ) % 0, B( /d4x6A( )0, B, ()

—/d4x8uA(x) * OBy (). (B.4)

The second expression is given by Eq. (B8):

/ d4a;A(x)*éB(m) _ / d%éA(x)*B(m).

At this point we will stop and restart using new definitions
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and

arg
Il
—_

(B.6)

Therefore, we write for Eq. (BI8):
/ Az A(z)* ~B(z) =
o) =
_ / do0IA (1) B () = / P800 A (2) B ()

/d%@ (a A'(z)B'(z > /d4 <8 A (2)0a B (x )>

The first term of the last expression represents a surface term and hence vanishes.
The second one reads

—/d4x ((%A’(m)éaB'(m)) =
/d4:1:0 (A'( )0aB'( > /d4:nA' )0a0aB' (z).
The surface term vanishes and the insertion of (B3) leads to
/ Az A(z) * ~B(z) =
= =
_ / P A (2)3nda B (z)) = / Ao A (2)OB ()

1 1
:/d4x@A(x)B(x):/d4xDA( ) x B(x)

And finally the last expression is given by Eq. (B11):
/d4xA(x) * B(x) % 0,C,(z) = /d4x <A($) * B(m)) 0,C(z)

= / d*zd), (A(x)*B(x))CM(:B) = / d*zd, (A(:n)*B(:n)) * C ().

B.3 BRST Transformation

B.3.1 BRST Transformation and Invariance

We want to show the BRST invariance for our action S. If we can show that our
action can be written like:

sS = s/d4xﬁ = s/d4st = /d4x52A =0, (B.7)
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it is easy to show invariance by nilpotency (s2 = 0):

58 = S(Sinv + Sghost + ng + Sau:(: + Sb'reak + Sext)
= S(Sinv + ng’ + Sauz + Sbreak + Seact)
= $Sinv + Sng’ + 8Squz + 5Spreak + $Sext- (BS)

Taking a closer look at each term of (B-TU), we will see that only the term .S;;,, remains

1
5Sinw :/d4$4S(FMV*FMV)a

(07

5Sgp = /d4$52(5* (OpAy — §b)) =0,

$Sque = — / d*z5* (Y * Buy) = 0, (B.9)
. _ Ous -
SSbreak - /d4x32{(Quyaﬂ * B,u,l/ + Q,uuaﬁ * Buu) * E(faﬂ + UTﬂf)} = 07
8Sext = /alA‘:UsQ(—Q;;l * Ay + Q%) =0.

As we have mentioned above, we must act with the BRST operator s on the term
Siny to make sure that this transformation leads to zero,

1
$Siny = s/d4a:FWFW

/d r—(sFuwFu + FusFu). (B.10)
First of all we calculate the expression:
sk, =
= 5(0u Ay — —ig[Au, Av])
= 0usA, — 0, sA zg[sA Ay —ig[A,, sA)]
= 0,Dyc — 0,Dyc —ig[Dyc, Ay] —ig[Au, Dyc|
= 0u(0y —iglAv, c]) = 0,(0, — ig[Ay, c])

— ig[(Ouc —iglAy, c]), A] —ig[Ay, (Ovc — ig[Ay, )]
= —igOu[Ay, ] + zga [Ay, c]
= 19([Ouc, Ay] = HA;MCLAV]) = ig([Ap, el = ig[Ay, [Av, c]])
= —igOu[Ay, c] +igdy[Ay, o] — ig[Ouc, A)] — ig[Ay, D]
= Pl[Aus o], Al = g°[Ay, [Au, €]
= —~ig[duAv, o] +igldu A, o] = g°[[Au, ], Au] = *[Ap, [Av, o],
introduce the Jacobi-identity:
[[A4,B],C]+[[B,C], Al + [[C, A], B] = (B.11)
=[AB - BA,C]+[BC — CB, A+ [CA — AC, B]
=[AB,C] - [BA,C]+ [BC,A] - [CB, Al + [CA, B] — [AC, B]
= ABC - CAB - BAC+(CBA+ BCA—-ABC —(CBA+ ACB
+CAB — BCA—- ACB + BAC =0,
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use this identity for the term
_92[[Au7 C]’ Al/] = 92[[0’ A,/], A,u] + 92[[AV7 A,u]v C]'
Therefore we have

sk, =
= —igl0,Av, ] +igld, Ay, o] + g7 [[c, Aul, Al + P [[Av, Ayl o] — g7[A, [Ay, d]]
= _ig[a,uAI/v C] + ig[aVAﬂa C] + 92[[AV7 A#]v C]
= —ig[0, A, — 0, A, c] + 92[[Al,, Al
2

= —igl0, A, — 0, A, + —T—[A,, A,),d]

(—ig)
= _ig[aMAV - 81/14# +ig[Ay, AM]? |
= _ig[aMAV - &,AM - ig[AlM A,,], C]
= —ig[Fl,c|. (B.12)

Inserting the last expression into Eq. (BI0) we get

1
8Siny = /d4x4(3FlluFﬂy + FMVSFMV)
1, . .
= /d4$4(_19[Fwa | Fuy — igF [ Fluw, c])

1,
= /d4x4(—zg)(FWcFHV —cFuwFu + FuFuce—FycFy)

=0, (B.13)

which shows that the BRST invariance is fulfilled for the whole action.
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B.3.2 Calculation of s(f.5 + 0(9"7‘3 ~)

O =
S(fozﬁ + UTﬁf) =
— 5(0aAp — 03An + J%ﬂew(au/xy —9,A,))

= 5(0aAg — D3Aa + 090‘76(0,,#8,,14# — 0,,0,A,)) =
= 5(0nAp — 0gAa — 00480,,0,A,,) =
= 008Apg — 03sAq — 00030,,0,54,, =
= 0aDgc — 03Doc — 00430,,,0,D,.c =
= 0n(0gc —ig[Ag, c]) — 03(0nc — ig[Aa, c]) — 0080,,0,(0uc — ig[A,u, c]) =
= (—1g)0a(Agc — cAg) + (ig)0g(Aac — cAn) + (19)00030,,0,(Auc — cAy) =
= (+ig){(cOnAg — OnApgc — cOgAn + 03Anc) + (0acAg — Aglac — OgcAn + Andse)
— 00030, (cO, Ay — 0, Apc+ 0,cAy — Aydye)}

= (+ig)le, BaAg] + (—ig)le, Do Aa] + (+i9)[Bac, Ag] + (~ig)[Ope, A

+ (—ig)obasbuilc, v Au] + [Ove, Al =

Ou

= (4ig)[c, OnAp — O3Aq] + (+¢g)07%w e, 0 A, — 8,A,]

+ (4+i9)[0ac, Ag] + (—ig)[0s¢c, Aa] + (—19) 00030, [0vc, Ayl =

= (rig)le, (fap + 0 22 )]
+ (+i9)[0nc, Ag] + (~i9)103e Aa] + (~i9)0Busbuldhe, 4] =

= (rig)le. (fop + 0 22 )
+ [Gac, Aﬁ] — [850, Aa] — O'@aﬁelw [8VC, AM]} (B.14)

B.4 Symmetries

At first we introduce the definitions:

S ::Sonly terms with a Sab . Sonly terms including the product of ab, (B15)

b
where

a? b G{A7 b7 C? E’ w? z7Z_}7 B7 B? J’ j? Q7 Q? (SA)7 Qﬁ? QC}'

B.4.1 Calculation of the Ghost Equation
We start with (833d) and insert Eq. (BIX). In the next step it will be wise to use
only the relevant part of the action under the use of (BI3).
5S 68 . 88 §se
S)=0——+—=0—5 +—
98 =503 T 5 = %5ar T s
= 0u(sAy,) + (—=0,Dyc) = 0uDyc — 0, Dyc = 0. (B.16)
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B.4.2 Calculation of the Antighost Equation

The antighost equation is given by Eq. (BZ38) from the main text:

G(S) = /d4xéf(i) =0.

This means for our action (B19) that we have to look at

S¢ = / d*y [ —c0uDyc+ QZ‘DHC +1gQ°%c — (QWQBBW + QWQBBW) (B.17)

x ((Hg){[c, (s + 022 )] + 0uc, A) — [, Aol — 0Bl Do, Aﬂ}ﬂ 7

where we have used Eq. (B4).

Therefore we have

5°—
_ / iy [ — &0, (Oyc — ig[Ay, c]) + QA (e — ig[Ay, d]) + igQfec

~ (QuvapBuv + QuvapByuv)

(i el + 0 52 1) = o + 075 P+ Bucily — Al

— 0gcAq + AnOpc — 00450, (0ycA, — AH(?VC)})]

= /d4y [ — €0, (0uc —ig(Auc — cAy)) + Qf}(@uc —ig(Auc —cAy)) +1igQc
- (QuuaﬁBuu + Q,uzlaﬁB;U/)
9a r3 004 r
X ((+ig){c(fa,8 + UTﬁf) - (fozﬂ + 0'7ﬁf)6 + aaCAﬁ - Aﬁaac
— 0gcAq + An0gc — 00,50, (0, cA, — AM&,C)})]
= /d4y { — e+ iged, (Aue — cAy) + Qﬁaﬂc — z'gQ;‘(A“c —cA,) +1gQc
- (Quua,BBuu + Q/,Ll/aﬁBl,U/)
Oap = Oap =
X (("i'ig){c(faﬁ + UTﬁf) - (faﬁ + UTBf)C + 8aCAﬁ - Aﬁaac

— 0gcAa + AnOgc — 00,50, (0ycAy — AM&,C)}>] .
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The next step involves partial integration and cyclic permutation:

S =

= /d4y |:C|:|C —igccOu Ay + 190y (CAy) — iged, (Auc) + iged,Ayc
+ C@HQ;‘ + igchAH — igcA”Q’:1 + igcefd©
(i9) % (elas + 05 1)@ By + Quus By

— Quus By + Quus By + 02

— Caa(AB(C?;waﬁBuu + Q,LWQBBMV)) a((@ VaﬁBuV + quaﬁBuy)A )
+ Caﬂ(AOc(QuuaﬁB;w + QuuaﬁBuu ) - Caﬁ((Q Va,BB/U/ + Q;waﬁB/u/)A )
+ Ueaﬁe,uuca ( (QuuaﬁB/ﬂ/ + Q,uuaﬁB l/))
- Ugaﬁeuucau((QuuaﬁB/w + Q,uuaﬁBuV)Au)>:| (B'lg)
So we will get for the functional derivative
057 _ [ aty(Ce+ 0,005 = (9,(0,c+ Q2 B.19
56(:1:)_ y( c+ 12 u) (y_x)_ u( NC+ u) (x)7 ( . )
and finally have for the antighost equation
G(S) = / diz (aﬂ(aua + Qf})) . (B.20)

To make sure the last equation leads to zero we must find an expression for Qf}. Due
to the fact that Qf} is the external source for sA, we will make the ansatz:

=0, (B.21)

which is the equation of motion for the “field“ (sA,) and shows the unphysical char-
acter of (sA,), given by

s(sA,) = s*A, = 0. (B.22)
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With
SsA — / dyl — e0u(sAu) + Q1 (sA,)

- (Q,uuaﬂB;w + Qm/a )
1

a(a wsAg — 955 Aq — 00050,505(sA,))]
_ / d*y[0, E(sA )+ QA (5A,) + 00 = (Quuas By + QuuapBun) (sAg)
— aﬁ (Q,uyozﬁBuu + QuuasBuw) (54a)
— 00050, 5367@“,@3“” + QuvapBuv)(sA,))]
= [ — (5402~ (54,000 = Qs By + Quuas By
+ (sAu )C% (QuvapBuv + QuuapBuv)
+ Ueaﬁewé(SAv)aSE(QumﬁBuv + QuvopBuv))- (B.23)

The functional derivative gives

5554 R )
5(8A ) — [ - aeC — Q€ — 8047(@“,/&63“” —+ Q,U«Z/QEB,UJ/)

+ 36 (QuvesBuv + QuuesBuv)
+ UaaﬁedaJE(Q;waﬁB;w + Quuaﬂéyu)](w) =0. (B24)
This leads to
A _ 1 5 3
Qe = —866 — 8QE(QMVQGBNV + Q;wanB;u/)
+ aﬂ (Q;weﬁB;w + Q,uzzeﬁB;u/) + Ueaﬁeeéaé = (Qm/aﬂBuV + QuuaﬁBuu) (B-25)

The antighost equation can now be written as

Gg(9) = /d4a:<86(8ec+9‘64)> = /d4x<Dc— Dc) =0 (B.26)

B.4.3 Calculation of the Symmetry U/(5)
The symmetry Uug,,,(S) is given by Eq. (B38) from the main text:

08 _ S 08 - 0S
Uaﬁ;w(S) = /d4:v I:Baﬁ(SBp - Bwjﬁ + Jaﬁap 5<]u ) lepaﬁ
v «@ vpo appo
0S - 48 0S ~ 08

v afbpo vpo == 0
R T o 1o B L To Y

laeaon/,Luae - 07 M,u,uae S {Qp.uoza Q,uz/aé} and 9668585 =0.
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We look at a renamed action, with the renamed terms given by Eq. (BT9), use the
Landau gauge (a — 0):

1 _ _

_ B 0.

+ (JyserBys + Jm;e,\BM;) (for + gff)
_ 1 65

- Qwex%aa(fex + 07]”)

A — 1 Oy ~
- (Q'yée)\Bm/ + nygg)\B,y(;)Ts(fe/\ + 07)‘.]0)
] 2

+ Qi?sAW + Q¢sc|,

and insert the following expression into (BZ38).

The explicit calculation starts with a closer look at each term of Eq. (B3R).

1)

6P 6
0B, () N OB, ()
4 >, T 1 06)\ s A 1 96)\ 3
d Yyl — B'y(SBW(S + J’y&e)\Bv(SE(fe)\ + J?f) - deeAB'y(SES(fe)\ + U?f) (y)
N 0By (x)
4 > 1 96)\ e 1 9
d*y| — BysBys + Bvda(fe)\ + O’*f)steA + Bys= S(feA +o0—= f)QmssA (v)

1 O
= /d4y [ - *(57;1551/ - 5w56u) vt g (5w551/ - ‘5w56u) (fox +o—= 9
1

f) j’y5e)\

1 O
(5’yu661/ (5vu56u) = S(fe)\ + U?f)@'yée/\ 4(y - x)

[\

= [ B;w + = (fe/\ + 092 f)J,uye)\ + } S(fe)\ + U f)Q,uue/\]( ) (B'27)
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2)
o058 8§
dBag(x)  0Bas(x)
4 [ D = 1 06)\ r = 1 96)\ N
d Yyl — B’yéB'yzS + J’y5eAB’y6E(f6A + U?f) - Qvée)\B'yﬁES(fe)\ + U?f) (y)
5 _
~ 0Bap(2)
[ Oc 1 O 1
/d - B~/6B7(5 + Bvd = (fe)\ +o— f)Jvzie)\ + Bw& = S(feA +o— f)Q”/éeA (y)
L . J
= /d4y|: 5vu561/ 57V56;L)B'y5 + < (5w1551/ 57V55,u)5(fe)\ + O'TAf)J’ytse)\
1 1 B 5
+ 5(5'yu661/ 5w1/56u) = S(fe)\ +o— > f)Q’yzSe/\ (y - .%')
Oex O
= (B + 2o+ 072 Dagor + Z5(for + 072 )Qus (@) (B.23)
3)
For the third term
087 _ g /d4 JyserB 1(f +096—Af) (B.29)
(SJHVPO-(:L') - 6J#Upg(x) y ’Y(SG)\ 75 ~ e 2 9 .

Juvpe must be viewed accuratly due to the fact that the source J,,,,s is antisymmetric

in two indices, which means

J;uzpa =

_Juupa = +J1/,uo'p =

_J,ul/opa

and influences the functional derivative in the following sense

5J’y5e/\(y)

1
6 Jpe () 5 (Omder =

This leads to

557 _
5JW00(55)

1
= /d4y |:(57/4551/ - 571/56;4)(5@5)\0 - 5605Ap>54(y

— (B + 02F) = (fr

= (B = (e + 0 2 ).

1
0y 054) 5 (OepOro

— ) Bs = (
0

o2 )] ()

- 5606)\p)54(y - x)

(B.30)
(B.31)
Oer
5 27)
(B.32)
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4)
57§ , ] s -
5ja5pa(.r) - 5jaﬁpg /d y[Jvée)\B'yé =(fer +07f)
- / v [i(%‘s‘w = 8,30a) (OepOro — Oerdp)"(y — 35)375 L(fa 02 )
1 0., -

= [Baﬂa(fpa + U%f)](;p) (BSS)

5)
05¥ — g a |7 = 1 Ocr ~
(@) Oy () / o [WW = Qyierto g (for + %f)]
0 0oy

= (MV({L')/ [ %6%5 +77b'y§ = (fe)\ + o— 5 f)Q'yzSe)\:|

= /d4y[— %(57#651, O 05, )05 + 1(5w56,/ 5w56ﬂ) (£ +092 f)Q'yée)\:|

x 5 (y — x)

= [_T/_J;w (feA + O‘ f)Q;uxe/\]( ). (B.34)
6)

58 5 _
b =7 d' = Yap(). B.35
Vap(®)  Yap(®) / YhrsPrs = Yap(T) ( )

7)

059 - g 4 _ 1 Oy ~

0Q v po N 0Q v po /d y|:_ deeAB'y(SEs(feA + 02f):|

= [aty| = 6085 = 0,005,)tne — 80O = D Bsz s+ 05 )
= (B =5l + 0 L (@), (8.36)
9
(ESQ = — /d4y [ - Qwewwi(fex + U(gﬂf) - QweABwsiS(feA + Ueﬂf)
0QaBpo 5Qaﬂp0 O 2 0 2

6

0 o s
= [a= o + 022 0) — Bag=s(hpo + 02 )0) (B.37)
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According to (BZ38) and (B4, B28, B=32, B33, B34, B35, B30, B=37), we get
Uopyw (5) =
O 1
- /d4$ |:Bozﬁ[ B,uu+ (feA"‘U 2 f)J/we/\ + ljs(fe)\ +U f)Q;we)\]

_Buu[ Baﬁ+ (feA+00 f)JaﬂeA+ }S(fe)\""o'e f)Qaﬁe)\]

2
1 00 - 0po
+ Jappo B ;W~(fpa J%f)] Juvpo[Ba (fpcr+0 g f)]
+ waﬁ[_wuu |:| (fe/\ + O’ f)Q,uue)\] wuuwaﬂ
1 9 -
+ Qaﬁpa[_BuVES(pr + U%f)]
~ Quiprl Vs = (fr + 0 )~ Bagzs(fpo + 022D (B39)
uvpo aﬁlj poc T O 9 aﬁljs poc T O 9 .
=0.

For the last expression we have used the property of cyclic permutation.
Obviously follows from the last result (B=38) that
Q(S) = 6apdslhapu (S) =0, (B.39)

which is equal to (B2 from the main text.

B.4.4 Anticommutator {G,G}

First of all a few words about the calculation of terms like {A, B}, where A, B are
some (symmetric) operators. Such a term makes only sense if {4, B} can act on the
action S

{4, B}(S) = AB(S) + BA(S). (B.40)
If the operators fulfil the symmetry:
A(S)=0, B(S)=0, (B.41)
we get for the anticommutator
{A, B}(S) = AB(S) + BA(S) = A(0) + B(0) = 0. (B.42)
With the help of Eq. (B238), the calculation of {G,G} shows

d%(scfm /d yéc? Js=
52(a) e S+/d4 /d4y56

1)
<6c<x> 5ely)  dela) 5c<y>>s
GG(S) =0. (B.43)
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B.4.5 Commutators [G, Q],[Q, Q]

We start with the commutator [G, Q] and use the already known results (B238) and
(8m). Therefore we have

[G,Q]S =GQ(S) — QG(S) = 0. (B.44)
The next commutator will give the same result

[Q,Q](S) = QQ(S) — QQ(S) = 0. (B.45)



Appendix C

Feynman Rules

C.1 Propagators

C.1.1 Variation of the Transition Amplitude
We try to show that Eq. (E8) is fulfilled if we use

(52Z[J]
_— = (0|tpg(x 0)(0),
6Ja($)5=]b(y) o < W} ( )¢b(y)| >(0)
in which we will insert
Z[J] = e %V, (C.1)
This leads to
§2Z1J]
Ap(x —y) = ———— C.2
W= Y) = 5@ |y (©2)
62€—ZC[J]
B 5Ja($)5<]b(y) J—0
_ 5 (_ 6ZC[J] e_zc[J])
5Ja(37) 5Jb(y) J—0
_ 62ZC e_ZC[J] (SZC[J] 5ZC[J] e_ZC[J] .
5Ja($)5‘]b(y) J—0 5Ja(m) 5Jb(y) J—0

The last term in this expression would correspond to one-point Green functions, which
are called tadpoles. These unphysical parts are dropped at this point. The first factor
reduces due to the normalisation of Z¢ to
2r7c
¢z —y) = ez
6Ja($)5']b(y)

. (C.3)
J—0

C.1.2 Translation Invariance of Propagators

We want to show that an arbitrary Propagator G(z,y) can be presented translation
invariant. A typical propagator of this work looks like

1
G(z,y) ~ —554@ — ), G(2,y) & —0ayd*(y — ).
Y

115
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Two representatives of these propagators are defined by (we will omit the minus sign
to avoid confusion):

Giley) = 50' 0w —2),  Galwy) = a8y — ) ()

Now the question arises what G(x,y) means. To solve this question we will omit the
space coordinate dependency and introduce possible combinations of (C4).

Will
1
G| = D—y54(x —y), Gy = Oayd*(z —y), (C.5)
1
- 554(33 —y), GY = 0o u0*(x — ), (C.6)
or
1
1= 5754(9 — ), 5 = 8a,z(54(y - ), (C.7)

give the same results as in Eq. (C4)?7

To solve this problem we start with G (z,y):

Dlya‘*(y—x) _ (2;)4 / d4k(—ki2)eik<y*m>. (C.8)

On the other hand G/, with the use of (B12) shows

Gl(xay) =

)eik(y_m) = Gi(z,y) (C.9)

% -

1
N (2m)4 /d4k(_

We do the same procedure for Ga(z,y):

Ga(T,Y) = Baydt(y — z) = / d*k(ikg)e* V=), (C.10)

1
(2m)*
and G,

1 : ik(z—
Gy = O ybt(z —y) = @) / Ak (—iky)et@=Y)

1 [ -
ko -G / (kg e iHEY)
i
+oo

= (271r)4 /d%(ika)eik(y_x) = Ga(z,vy). (C.11)
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The remaining propagators are calculated in the same way and show:

GT = +Gi(2,y), 1 =+Gi(z,y) (C.12)
,2/: —G2($,y), G,Q//: —Gg(l’,y)

At the end we can conclude that the notation G(x,y) only means that the coordinates
x and y are involved and is therefore only the notation and nothing more. We must
look at the right side of the equation where we discover that the propagator will only
depend on the difference of (x — y) and therefore is translation invariant.

C.1.3 Calculation of the Propagator Gaﬁ v

We start with the propagator ng uv( y). The fields 9, and 1/_1#1, are antisymmetric

(Y = —1byy) and fermionic. The relevant part of the action (BIU) reads

Sauz = /d4$(_Bm/BuV + &MV¢MV)7 (013)
Sauae = S,

aux*®

As usual we start our procedure for calculating of the propagators.

!
5Saux :/d4 6waﬁ( >1/}o¢
() Mw( )
— [ @t} Gabs — 8198,0)5" (2 = 1)ty = o)
= +j}fu(y),
= Y =+, (C.14)
The calculation of the propagator leads to
62Zz¢ St
nguu( ’y) = ) ) - 1/}15 (y)
0o ()85 (y)  iap(@)
1
5 Buadus — u36,)0"(y — ). (C.15)

With the transformation:
z=y—u,

we get

oy 1 .
i _ 4 ipz
Ga,@,py(z) - _2(27'(')4 /d p((s,ua(szz,b’ - 5u[35ua)€ P

So the Fourier transform reads
1 .
iy _ 4 4 . iz(p—k)
o (F) = 2(2n)* /d Z/d P(6uadup — Oupdva)e’™
T2 /d4p(6#015143 - 5u651/a)54(p — k)

= —5((5,“151,5 — 0u30ua)- (C.16)

N —
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The next propagator to calculate is ng ;w( x,y):

! )
5Sau:c __/d4x¢aﬁ T/’aﬂ(x)

(5wa( ) &p,uu(y)
-1 _
[ @05 Gunis ~ )6~ 1) = T )
=+l (v).
= Py = —j},- (C.17)

The calculation of the propagator shows

ng ( y) - 5°Z° _ _&Zgu(y)
: 5]25(1’)5];%(9) 5]33(@

1
= 5 (Ouadus = 0usdua)(y — ),
_ 1 '
G%)W(Z) = m /d4p(5,ua5yﬁ _ 5Mﬂ5ya)elpz,
- 1 o
Gaun(F) = 551 / d4z/ A'p(Buadug — Buadya) 0

1
) / d*p(8uadyp — u50ua)d" (p — k)

1
5(6;10161/,8 - 6;;661/04)- (018)
Therefore we have
Gfg,uu(k’) —Gf}f () (C.19)

C.1.4 Calculation of the Propagator GWS op

The calculation of G'y6 »p(T,Y) is given by

N 0Boply) _6[(...)Up7aﬁjfﬁ...]
G'yzs o‘p( y) 5]’%(%') - 5]’%(.7;) (CQO)

= —[(- )ap ozﬁ (5a'y6ﬁ6 50456ﬁ7)"']54(y — ).

The field B,, reads

2
5, 1 O5p =
Bap = [jop ?E(fap 7/3‘]0)]
_ 72 1
=[5, + 5 5054 = 0pAs = 000,00,0,4,)]: (C.21)
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Looking at the last equation we see that we must find expressions for the terms 0,A4,,
0,A, und 0,A,,. We start with d,A,. The derivative of Eq. (B23) leads to

1 . A4 a, . .
90 t0) = (s ) 2ot 0 ot Eg0s3d v 0u00GTy + D
(C.22)
1 . 1 [ . qa 1 B B
- aaaap]b - aaaap[iaﬂ]ﬁ —Jb =7 iﬁaaaﬁ(]aﬂ + ]a,@)]

0046 ~ .1 .B .B
UTap]E(]aﬁ + Jag)

1{[ il +7*(Oads — o0 & (]aﬁ+]aﬁ)]}}( )
02U [+ Z)(-0) — 420 + 2(5)62) &) '

- ’7285 [8a5pﬂ -

[20+2( )92]8 d,

Furthermore we keep an eye only on the sources jfﬁ of the field A,(y), use the Landau
Gauge (o — 0) and introduce the abbreviation X to shorten calculations:

X1=[a+ i)(—D) —74(20+2(U—2)92)i]_1 (C.23a)
2 4 0 ’ ’
4 2
X = [0+ )0y -0+ 2(‘1)02%11 gt [ e
e [ 90+ T+ o+ 2P T e, ()
4
X=[1+ Z?)p2 20 + 22 )92)p ! (C.23¢)

Therefore we have

1 1 0 1
Opd, = [ —————— )42 —20,0,000852; — ¥205[0ab,5 — 0-2L.0,] =B
" <[1+§]D>{7 o5 7 0p0a0sdas = [0abps 5 ]ng

1 4[((9 W05 — o O) LB ] }}

L9
"’ {[(1 +)(-0) - 7420 + 25 ]

1 1(1 . Oap 5
- (M)’V2a{uaaap3aawfﬁ ~ Orladn -
2

420 + 2( )92]5) dp

B .B
078/)]]045

5 bas ™\ 1 B
[(0a05 — =5 00) 55
B [20+2( )92]8 api{ o X2 -of }} (C.24)
The other terms can be found by renaming: ¢ — p,p — o
1 1 Oas =
A, = —— )22 aaaa — 0,[0a05s — 0-2L3,)55
90 — gl iB
[2a+2( )92]8 By = {[( 0 X2 ezt) }} (C.25)
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and via 0 — v, p — u:

1 1(1 Ons ~
oA, = (—— 2~{a,,a 0003555 — 0,[0a0,5 — 0-22.5,)52
~ ([ngm)w Wiy~ s = 5 Dl

(C.26)

[(Oads — aj:mgjfﬁ] }}

— [20+2( )92]8 aﬂm{

Inserting these terms, we get for (C21):

4
B vy 1 1
BUp :|:j£p—|—<4>~x
2 [1 + H;ﬂz]m 02

1 . Oag = 1.
H Eagapaaaﬁgfﬁ — D500, — 07%,,] i5

(9a0s — o2 ) L5 5]}}

— 420 +2(2- )02]86 { <

1 . eaﬁ 5 7.
_ {D@@U&a@mfﬂ — 6p[8a50—ﬁ — 0730]](%

(903 — a;af%jfﬁ] }}

V420 + 2( )02]8 By = {

1 . ea a .
— UQUPH#V{D&,(?#(?Q(%]O% — 31,[6,1%5 — 07,68#]-70](36

2o +2(7 16%10,5, L {[(aaéﬁ - Ujfﬁﬂ)éjfﬂ] }}” (C.27)

Next we introduce

4
A= % (14) 1 (C.28a)

7! 1 1 ip(y—2)
SR - — ) C.28b
2(277)4/ Pg2(;52+;g;2*) ( )
3 4
i=-T {1] (C.28¢)
2P+ 3)
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and &% given by (E28) and insert them into (C=27):

9
Bap(y) |:]c7p + A |:{ Oy [8a5pﬁ - 2/68 ]]a,@

- t,0, L {100 o EOUIIN )

X

Oap = .
_ { ~ Oyl0bop — o-228,)i5,

50,5, {[(a o0 — XfD)yaﬁ]}}

AT

50,5, {[(8 a0 —;fi)yfg} }}”(y)

aeopaw{ 0,0,0a05555 — 0,100, —

If we collect the source jfﬂ, we get

Bop(y) =

0a8 - =
= %0

. aa— fos )
[g(,p+A[ 05000 ,5 + & a2 )}

Oupg . = 4o = 1 (aaﬁ 0—’8)
+apaa50ﬁ—a2‘50pag+a4apag~2{ e }

{ 00,0005 — 0,04 m;maaﬁaa
1

59,3, {”ﬁ‘“ﬁ )}}]jfﬁ@)] (C.29)
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According to (C20), the calculation of G p,ﬂ;(:v y) can be started

G’yé Up(m y)

A[ ) 5pﬁ+aeaﬁa 8, — 50,0,=

0B - = _ ~ 1
+ 0,00053 — 0'78,085 + 0'43an = {

- aegpew{lauauaaag — 0,000, + a%ﬁaﬁu
. (0a0s — o220 111
— 700, = 2{ < 5 (0ar055 = 0as03,)0" (y — )

A ~

2

5.4

— @(aaépa,yég — 950,050, — 70,50,0,01)
+ 0p04056 — 0p0505y — 70,50,05

,4 _ _ _ N
+ |j0 (800055 — 8,05050 — 70-50,0,L))
— 00450, [0,050 1) — Dy 00,15 + 760,59,,0,,

~4

g

- W(al/éua’yéé - auguaééfy — 0975&,5“@)] 54(y — 1')

The Fourier transformation of the delta function leads to

Glimp(T,y) =
A

— —5 — 00875,;5 + 30065;)7 + Ue’yéaaép
4

- %(aﬁ@ﬁa — 050,050y — 00,505,0,00)

+ 0p0055 — 0p0505- — 00-50,05

=4

0' ~ ~ ~ ~ ~ ~
+ @(0,;808785 — 8p80—8587 — O'H»ygapag—[l)

— 0000, 01,0501, — Dy 00,15 + 70,50,,0,,

5.4

) 2 ) ) 3 1 ip(y—x
- W(auauayaa — 0,0,050y — aewayaum)@ @) /d4pe ply—z)
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Executing the derivatives brings

G'?&Bap(x y)

pAx

pop'yém - papédp'y - O'O'yépaﬁp

4

g S g
TR — = (PaDpPyPs — PoPpPsDy — 06~5PaPpD")
- ppp7506 + pppzSéow + U‘g'yéppﬁa
' . 9
+— = X (PpPoPyPs — PpPoPsDy — 0b~5PpDoD”)
- Ueape;w [pl/pvéué - pz/pzS(S,uy - Ug’yépvﬁu
~4
o ~ ~ ~ i _
s —— (pubupyPs — PubuPsby — 005puDup”)] [PV, (C.30)

As we have mentioned in the Section -4, the propagator GBB gives the same result:

53,,)(3/)

— . C.31
3j%5() (€31

G'y(s Up(*jC y) G'y5 0'p( y) ==

Finally the Fourier transform reads

~“BB ( Cl4Z

yd,0p d4pf~1(k) X

pap'y5p6 - papé(;pfy - 0'975170]5/1
74
X
= PpPr00s + PpPs0o~ + 005D pPo
74
+—= e (PpPoDyDs — PpboDsDy — T0~5DpPoD")
- Ueapeuu [pup’ydué - pzzpd(s,u'y - U‘gvépuﬁu
—~4
g

- ;5475((]9”]5 uDDs = PuBupshy — 005pupp”)] | 2P0,

——= (PoPpPyDs — PoDpPsDy — TO~sPeDpD”)
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The integration brings an expression equal to (EZ72) from the main text

A(k)
2

kok8p5 — koksdpy — a0 5kok,

=4

0’ ~ ~ ~ ~ ~ o~
— ————(kokpkyks — kokpksky — 00.5kok,k?

k4X(k)( phyve phvéhy Y6 P )

— kpko 05 + kpksOon + 00,5k ko

=4

0‘ ~ ~ ~ ~ ~ ~
+ m(kpkgk,ykg — kpkoksky — 00,5k ko k?)
— 00050 [k ke 85 — Kykis0yy — 005k Ky,

=4

0‘ ~ ~ ~ ~ ~ ~
_ m(k‘ykukvké — kykuksky — 00,5k, K k?)]

vy 1

4
[t )
F2(k2 + L)k

{k‘akzyépg — kigksOpy — kpkiyGs + kpkisOon

+ 00.5(kpko — kokp) + 005 p(ksky — kyks) + 020505k
=4
g

+ = 1
k(K% + 5)k? + 07

<k'pk7;u‘g%5 — kokskoky + koksk ke — kokk ks

00,5y — hploo VB2 + 00 (s — s, )2 — 0290,1975154) } (C.32)
leading to
éﬁfop(k) = éf?dj,gap(k)' (033)

C.1.5 Calculation of the Propagator foap

The calculation of this propagator is given by

B Ba’ (y)
Goip(@,y) = =2 (C.34)
T 3325 ()
According to Eq. (EZ70) we have
_ 1 _
G'?(;,Bcrp(xa y) = _5(6wa55p - 56057;))54(3/ — )+ G55€Tp(x7 y). (C.35)

Finally the Fourier transform reads

- 1 o o
G’ly;(sl,gap(k) = _5(670'55/3 - 5505’#’) + G’?(S,Bop(k;) = G’?dl,gap(k)‘ (036)
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125
C.1.6 Calculation of the Propagator éf&i
The calculation of éfg‘?e(:n, y) proceeds along the usual way:
0A(y) 5[('--)5@5]'5/3(3/)}
GO y) = -5 = —— = .37
el V) = 758 (2 5E) (€37

= —[(.-.)e,agé(éapaga — 80005,)]0% (y — ).

We use our well known abbreviations (CZ23a-C°23d), the Landau gauge (v — 0) and

derive the field A (y) given by Eq. (B222) with respect to the source jﬁ,. This leads
to

1
GBaAe(xay>:< )X
re 1+ 20
2
Y 004,6’ =, 1
{ — ?[8a(56ﬁ — 0'766]5((5043(550 — 5a0’5ﬁp)

i g 1
- 20+ 2000y 3 0ud 0520 E G — Baabin ][54 — )

2 2
_r LY R bop 5,1
{ 5 [0p0ec — O 5 8€]ﬁ 5 [—050cp + 0 5 8€]i
4 2
_7 TN L 28 8. — o e
9 [20+2(4)9 )]ae~3X[7 (aﬁacr o 9 D)]
4 o? 1
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The Fourier transformation brings

“ (i zm)
O

2J 1 - Opo 571
v {[2(80'56[7 8p550') +o 9 86]|j
20+ 2T L (0,05 — 88,) - 9/”@]} L [ty
4 [(1BX 2 2 (27)
5 ()
= dp( ———— ) x
(2m)* 1+ %ﬁzﬂ
2. )1 Opr 1
v Z{ [i(ppéea - paéep) - U%pe]ﬁ
2 1 1 B O 21\ (y—2)
- [20+2( )0 ]pe 6X[2(ppp0 papp) O'Tp ] Py .

Introducing z = y — x gives

] 1
oo - o ().
oD Tt | o
2.1
'72 { [pp(sea - paésp - O'Hpape]?

o2 1 - -
- 74[20' + 2(7)9 ]pe 6 [(pppa papp) - 09p0p2] }6
4 D 6 X

Therefore the Fourier transform reads

al4 < >><
L
;54

Y {[ppéea paéep Uepape] p~2

ipz

~BA
pae

d4

1 ~ ~ 1z(p—
o+ 2(% >e2]pep. (s - pam—aepap?]}e -5

1
- 2 4
o o)
2(1 4 Z]p?

.1
{[pp(sea - pdéep - Jepape}?

[20 + 2( )02]17513 1X [(pppa poﬁp) - Uepaﬁz] }54 (p - k)

L1 >
iy ( x (C.38)
2[k2 + L ]k2

A kokeky — kpkcko + 00 p5kck?] }
R2[(R? + L)k2 + 5] '

{[kpaw — kybep — 00,0kc] +

The last expression equals (A=73) from the main text.



C.1. PROPAGATORS 127

C.1.7 Calculation of the Propagator G5

€,00

At first sight we may think that the calculation of the propagator G6 “o will give the

same result as foﬁ but as we will see afterwards the difference will be a minus sign.

The two-point Green function is given by
62z¢ B, (y)
GAB (1,4) = —— _ = P27 C.39
2O = SR 6 (w) (C.39)

The expression of B, reads (CZZ1):

_ 2

. 1
Bpa(y) = [jiy + %E(&DAU - 8UA,0 - U‘gpaew/al/Au)](y)'

Obviously we must find an expression for terms like 9,A,. We have already calculated
such terms in the Section CT4. Naturally we only concentrate on terms involving
the source j4. The explicit expression is deduced from Eq. (C22) with o — 0:

1 . 1 a .
8pAa(y) = <W> {8;;]34 - aapaa(iaﬁjé) (C.40)
DQ

) ) (—9pi3)
720 + 2 {[<1+§><—D> o +2(F >92>~1}}(y)

o
4
A
1 4 a1l s
> { — 5090505 + 0—4@8,08585;}(?;)-

Therefore we get

21 1
= T 1),

5.4

{ap5eg - 80-66p - O'ngau&u + ‘jT
The Fourier transform then gives
1
GAB (k) = _w2<~> Y (C.41)
r 2[k2 + L)k

54 kokcky — kpkeky + 00 0 kck?] }
R2[(R? + 3)k2 + 64) '

{[k;p(sw — kobep — 00poke] +

It is important to say that if we would have calculated the propagator in the way of

§27z¢ 0B, ()
GA% y L) = =+ - = - .pO' )
) = AR @) T i)

the final calculation would read

GAB( , L) = —GfB (z,y), (C.42)
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because the propagator GAB (z,y) shows the structure of

GAB(2,y) ~ 0ay6*(y — 2), (C.43)
while the propagator GAZ(y, z) shows

GAB(y,x) ~ 0a 0 (x — 1), (C.44)

and therefore the plus or minus sign will depend on how we perform the functional
derivative. For more details take a closer look in Appendix CT2.

C.1.8 Calculation of the Propagator G

The calculation of G (z,y) is given by

I 1)
G = ) ) .

The expression of b is known from the main text (E=34):
1 b

Obviously we must find an expression for d,A4,, in terms of the source 4. Equation
(B20) containing the sources of j° reads

O = 202~y - fgéaaaﬁ(jfﬁ +45,). (C.46)
Therefore we have
b= l(38 G — gy — 72gi8a85(j§5 +35) + 4%
a0 Ug
— (B0~ 5 0u0aiT + i85,
= OW(z,y) = _5ii((?éc)) — (C.47)

The outcome shows the unphysical character of b.
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C.2 Vertices

C.2.1 Calculation of V3}

We start with (=88) from the main text, where we insert (E=83):

V3 b o, by) = —(2m) >0 i
5o () A Fa) 5 k)

5 A
b 5 5
o) 34k n 8g/d4k:' /d4k2/d4k3x

0A(—k1) 6 A4
x 64 (kY + Kb+ k3)Ay(k3)AM(/€2)zk’ 3 A, (L) sin[; kleek:’]

_ _(27{_)12

~ ~ 1
(k/)Au(ké)ikﬁ,sAu(kzls)Sin[§ 159k2]

5

ST g/d4k'1/d4k’2/d4kg54(k’1+k’2+kg)
{05,0(K) +k:3)f1 (K3)iky, 5 Ay (k3)+A (K1)63u0 (K5 + k3)iky, 3 Ay (K3)+
Ay(kll)Au(ké)Zk;hg(smﬂ,(S(k'g =+ kg)} Sin[§k169k‘2].

A,

1)
—2(2m

( ) R

The last derivative leads to

V35 (k. ko, ks) =
= —2(27 )4&46 /d4k/ /d4k2/d4k354 (K} +k2+k3)sm[ Ky ebkS)

{0400 (k1 + k3)5ﬁu5(k2 + ko )ik, 5 Ay (K3) + 63,0 (kY + k) Ay (K5)iky, 05,0 (K5 + k)
+ 500 (kY + k)08 (K + ka)iky, 3 Ay (K3) + Ay (K1) 85,0 (k) + k3 )ik), 565,0 (k5 + ko)

+ 000 (kY + ko) A (Ky)ik), 36,6 (kS + ks) + Ay (k] )53#5(14 + ka)ik], 305, 0 (Ky + ks)}
= —2(2n)* / d*k, / d*kh / d b6t (k) + Ky + kg)sm[Qk’leekg]

{05,0(k) + k3)0p,0 (K + ka)ik;, 3000 (ks + k1)

+ 8300 (K + k3)0and (kb + h)zk’ 3% (k5 + k2)
+ 03, 0(K) + k2)0y,0(k5 + k3 )ik, O (ky + k1)
+ a0 (K + k1)0,0 (ks + k3 )ik, 35ﬁu (K5 + ko)
+5/3,, ( +k2)(5au(5( 2+k1)2 5( 3+k3)
+ SO (ky + k1)05,0(ky + ko)ik;, 305,0(ks + k3)}.

k!
k
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The integration brings

Vaﬁry(kb k27 k3

= —2(2m)4 / d*k} / d*k 281n 1ebk))

{800 (K| + k3)d(K) + ko) (—ikg 1 )54(l<:’ + Ky — k)

+ 05,0k} + k3)S (K + k1) (—ikao)d* (K| + Ky — ko)
+ Gapd(Ky + ka)O(kh + k3)(—iky1)6" (K + Ky — ki)
+ S0 (k) 4 k1)S (K 4 k3) (—iky 2) 6% (K] + Ky — k2)
+ 85,0 (k1 + ko) S (k) + k1) (—ika,3) 0% (k] + k) — k3)
+ Oarn O (K) + K1)d (kg + kZ)(—ikﬁ,3)54( 1+ ky —k3)}

= —2(2m) g6t (—ky — ko — k3) (C.48)
1 1
{(50(7(—7:]{571) Sin[§k369/€2] + (557(—1']{!0472) Sin[ékgﬁgkl]

1 1
+ 5a5(—ik771) Sin[§k2€9k3] + (Sag(—ik‘%z) Sin[iklegkg]

1 1
+ 557(—Z'/€a73) Sin[§k‘2€9k§1] + 5a7(—ik‘573) sin[ikrle@k‘g]}.
Elimination of k3, ks = —kj — ko gives for each of the above terms (1-6):

L sin[hsebhs] = —sin[_ kaedka),
2. sin[%l@,e@kl] =+ sin[%kleﬁk‘g],
3, sin[%kzgeekg] _ sin[%kleﬁkg], (C.49)
4. Sin[%kleﬁkg] =— Sin[%kleekz]a
5. sin[%kzge@kl] = — sin[%kleekg],

1 1
6. sin[§k169k2] = —l—sin[ikle@kg].
Therefore, we have

V33 (K, ko, ks) = —2g(2m)*0* (—k1 — ko — ks) sin[%kleOkg]

{0ar (+iks,1) + gy (—ika,2) + dap(—iky,1) + dap(+iky2) + 0py(+1ka3) + day(—ikps)}
— _2gi(2m) 6" (kr + ko + k) sin[%kle%g] (C.50)
{0ar (k1 — k3)p + dap(ke — k1)y + 6py (k3 — k2)a -

The last expression equals the second line of (E=88) from the main text.
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C.2.2 Calculation of V4 %

The calculation of the Fourier transform 170%475 starts with

(C.51)

~ 1)
Viigh sk, ko, kg, ky) = —(2m) "0 — i _ o Spa.
0 Ao (—k1) 6Ag(—kz) 6 A (—ks) 6A5(—ky)

The structure of V44 e 5(k1, ko, k3, k4) shows that the functional derivative will lead to
4! permutations.

If we now insert Eq. (E=89) we get for the first derivative:

VA (R, ko, ks, k) = (C.52)

—(2n)%ig /d4k’ /d4k2/d4k3/d4k454 |k KL+ K

e~ Bk1e0k; sm[ kse0k)]

5A( k‘l)Mﬁ( kz)M( ks)
{050" (k1 +1€4) v (k) Ay (k) Ay (K)) + Ay (k')56u54(k2+k4) k5) A, (K))
+ A (k) Ay (k) 058" (K + k) Ay (K5) + A (kD) Ay (K5) Ay ( é)55u54(k4+k4)}

The second one leads to

Vilans(k, ko, ks, ky) =

—(2m)ig? / d*k; / d*k / d*kl / d kLo Ky + kY 4 KL+ K

) 5

5 Ao (—k1) 6Ag(—Fk)
{05u0* (kY + k)0 6" (S + ka) Ay (k) Ay (k) + 050" (k) + ka) Ay (5)0-,,6 (5 + ks) A, (k‘i)
+ 65,0 (K} 4 k) Ay (Kh) A, (k3)(5w(54(k4 + k3) + 0,0 (k) + k3)05,0% (Kb + ka) A, (K5) A, (K))
+ AL (k) 86, 0% (K 4 Fa)0,0% (K 4 k3) Ay (k) + A, (K1) 65,6 (K + ka) Ay, (k:3)5w54(k4 + k3)
+ 0 (K A+ K3) Ay (K5)85,0™ (kS + ka) Ay (K)) + A (K1) 04,0 (Kb + k3) 05,6 (K + k) Ay (K))
+ AL (k) Ay (k) 05,0 (kY + ka )0y 6% (K + ks) + 57M54(k’ + k3) A, (k) A, (k355,04 (k) + ka)
+ A (k)03 0" (K + k) Ay (k5) 85,0 (k) + k) + A (k) Ay (k) 85,0* (kS + k3)35,0* (k) + ka) }.

— g k0K, Sln[ khe0k))

N N
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The third to

Vaﬂryé(kla k2a k;37 k4

/ d*k} / d*k / d*kl / A0 (K 4 Ky + Ky -+ K))

- k’69k2 Sll’l[ k360k4]m
1

{050" (kY + Ka) 06" (b + k3)65,6™ (K + ko) A, (k)
+ 85,0t (K 4 Ka) 0,04 (K + K3) A, (k3)5ﬁ,,54(k4 + ko)
+ 85,00 (K + Ka) 05,04 (K + ko)., 0% (K + k3) A, (K))
+ 85,0 (kY + a) Ay (K))3y,0% (Kb + k3)05,0 (k) + k2)
+ 85,00 (K + Ka)05,0% (K + ko) A, (K5)5,, 6% (K + k3)
+ 85,0 (kY + ka) Ay (K)) 35,0 (K + k2) 60,0 (k) + k3)
80t (K + k3) 05,00 (K + ka)05,0" (kS + ko) A, (K))
+ 8 04 (K + k3) 05,04 (K + ka) A, (kg)aﬁyé‘*(@ + ko)
+ 80" (KY + k)35, 0% (Kb + ka) 6,07 (K + kes) Ay (K})
+ A (K05, 0% (K 4 ka) 0,04 (K 4 k3)05,0% (K + ko)
3)
)

\/\_/\/\/

+ 83,04 (K + Ka) 85,01 (K + ka) A (K5) 5,6 (K + k
+ AL (K} 85,6 (K 4 Ka)35,0 (K + k2) 04,0 (k) + k3
00t (K 4 Ke3) 05,04 (K + ko) d5,,0™ (Kb + ka) A, (K})

+ 8,0t (K A+ K3) Ay (K5) 85,0 (K, + l<:4)65,,54(k:4 + ko)
+ 83,04 (K + K2) 8, 0% (Kb + k3)05,0% (K5 + Ka) Ay (KY)
+ A (k)840 (K + K3) 35,0 (Kb + ka) 05,0 (K + ko)
+ 85,0 (K 4 ko) Ay (Kb) 35,0 (K + ka) 60,0 (k) + k3)
+ A, (k) 05,00 (K + k) d5,0™ (Kb + ka0, 6% (K + k3)
001 (K5 4 Ke3) 05,00 (K 4 ko) A, (K5 ) 55,0 (K + k)

+ 3,0t (K + k3) A, (14:2)5,3#54%3 + k)05, 04 (K + ky)
+ 050" (K] + k2) 008" (kg + k) Apu(K3)05,0" (k) + ka)
+ A (/ﬁ)(swé‘*(/-e2 + k3) 03,0 (K + k) d5,6* (K + ka)
+ 850" (K + k) Ay (5) 856" (K5 + ks )35,6 (K] + ka)
+ Ay (K1) 85, 8" () + K2)8y,8" (K5 + K3)d5,07 (K} + ka)},
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The last derivative brings

‘7(;1[{{475(]{:17 k27 k37 k4) =

—(2m)4ig? / d*k} / d*k / d*kl / T (R Ay Ty

e~ 2Ok sin[%kée@kﬁl]

{06,6* (K} + ka) 60, 0% (K + K3) 05,6 (K + k2)San 0™ (K + k1)
+ 85,0t (K] + K1) 030 (Kb + k3)0apd* (K + k1)85,0% (K + ko)
+ 85,0t (K + K1) 85,04 (K + K2) 8,0 (Kl + K3) S0 0% (K + K1)
+ 05,08 (k) + Ka) 0o 0" (k) + k1)5w54(kzg + ks)0pu 0" (Kf + ko)
+ 85,0t (K + K1) 05,0 (K + K2) S0y (Kh + k1)0, 0% (K + k3)
+ 05,0 (kY + Ka)Oow 6 (Kb + K1)05,6™ (Kb + K2)d,, 0% (K + k3)
06 (K1 + K3)05,8" (K + ka)85,,0" (K + k2)00w 6™ (K] + K1)

+ 8 04 (K 4 k3) 5,0 (K 4 ka) a0 (K + K1)05,0% (K + k2)
+ 85,0t (K + K2)05, 0% (K + K1) 0y, 0% (K + Ke3) 00w 6* (K + K1)
+ Gap6* (K + K1)36,6* (Kb + ka)0r,0* (K + k3)0,0% (K + k2)
+ 85,04 (K + K2) 05,0 (K + Ka) S0y (K + k1)8, 0% (K + k3)
+ Sapdt (K] + K1) 85, 0% (K + ka)05,6™ (Kh + k2)d, 0% (K + ks)
86 (K + K3)05,0* (Kb + ko) 35,0 (K + Ka)San 0™ (K + K1)
+ 80 (K + K3)00 0% (Kb + K1) 0s,0% (K + ka)d5,0% (K + ko)
+ 850" (K] 4 k2) 85,8 (K + k3)85,8" (K5 + ka)Sawd” () + k1)
+ Sapdt (K] + K1)05,0 (Kb + k3)0s,0% (K + ka) 65,0 (K + ko)
+ 85,00 (k] + k2)0an 0 (K + K1) 85,6 (K + ka) 8, 0% (K + k3)
+ Sapdt (K] + Kk1)05,0% (K + K2)ds,,6* (Kb + ka) 0, 0% (K + ks3)
86 (K + K3) 05,0 (Kb + ko) 00,0 (K + F1)65,0% (K + Fa)
+ 6’7#‘54( + k3)5a1/54( + k1)56u54(k3 + k2)551,54(k4 + k4)
+ 85,00 (k] + 2)0,6" (Kb + k3)0au 0 (K + F1)ds, 0% (K + ka)
+ Saud™ (K] + k1)0,0,6" (K + k3)0p,0* (kS + ka)6s,6" (K + ka)
+ 050" (K + k)0, 0" () + k1)05,,0 (K + k3)d5,0™ (k) + ka)
+ Gapd® (K1 + k1)65,0" (Kb + ko )80 (K5 + k3) 85,0 ( )

+ k3)05, 04 (K + k) ).

133

(C.53)

Next step is to solve the integrals with the help of the delta functions under the
following relations:

and

o3 (—ki)eb(=kj) _ ,—5ki bk; i,j=1,2,3,

1 1 1 1
sm[i(—kz)eH(—k:])] = sm[iklet%]] = sin[—ikjeﬁki] = —sin[ikjeﬁki].
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Therefore, we get

Virlba (K1, k2, ks, ka) =
= —(2m)Yig? 0 (—ky — ko — k3 — ky)

i 1 i 1

{5a75ﬁ56+5k369k4 (-1 sin[§k160k2]) + 5,155576*5]“369’“4 (+1 sin[ikleﬁkg])
i 1 i 1

+ 8apdyse a0k sin[ikleﬁkg]) + SapdysetaROks( Sin[§k2€9k3])
i 1 i 1

+ 5a55576+5k266k4 (+1 sin[ik‘leﬁkg]) + 5a7555€+§k169k4(+1 SiH[ngGQk‘g])
i 1 i 1

+ SasOp e 2m0ki( 1 sin[ k1 e0ks]) + SorOpse” 2R3 (11 sin[; k1 0ka])
i 1 i 1

+ 5@5@6_5]“26%4(—1 Sin[ik‘leé’kg]) + 50‘75,@6_5]“6%4(—1 sin[§k269k‘3])
i 1 i 1

+ 8apdsye” 2ROk (11 sin[ Ky efks]) + O 05e~ 2M1 <0k (11 sin[; kaetks))
i 1 i 1

+ 5ag5756+5k269k3 (-1 sin[§k160k4]) + 5@5756*51“59’“3 (-1 sin[§k269k4])
i 1 i 1

+ 5,175556_5]“269’“3(—1 Sin[§k1€9k4]) + (50455576_5]“59’“3(—1 sin[§k269k4])
i 1 i 1

+ 5a75556+5k169k2(—1 Sin[§k3€9k4]) + 5a55g76_5k169k2 (-1 sin[§k369k‘4])
i 1 i 1

+ Sary0pse T 2m20ks (11 sin[ 2 k1ekal) + S50 et 2R10ks (1] sin[ haefka))
i 1 i 1

+ 8apdyse” 2R20ks (11 sin[ Ky eOka]) + S 056 2M1<0ks (11 sin[ 2 kaetka])

i 1 i 1
+ asdp e ROk (1 sin[ kseOka]) + OorOpse” 2R10R2 (1] sin[ o kselka])}. (C.54)
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Next we sum up the Kronecker deltas

Vaio (k1. ko, ks, ka) = —(2m)Yig?8" (k1 + k2 + k3 + ka)

{5M555(e+%k1€0k4 sin[%k2€9k3] — etakacOka Sin[%kleOkQ}
+ e~ 5hacOka sin[%lﬂe@kg] _ e~ zkiebka sin[%kg«EGkg]
_ e~ sk2ebks sin[%kleﬁlm] _ e tikieks sin[%k;:,eﬁlm]
4 eTakactks sin[%kleelm] 1 e gkictks sin[%kgeﬁkd)
+ 5a5557(+e+%k369k4 sin[%kleﬁkg] + et akactka sin[%kleOkg]
— ¢~ kactks sin[%kleekg] _ ¢~ kaetks sin[%kleﬁkg]
— e~ 3kiebks sin[%k:geekq] — e akietkz sin[%kgeek:zl]
1 e~ zkiebks sin[%kzeel@;] 1 et akicth: sin[%k369k4])
+ 5a[3575(—e+%k2€9k4 sin[%kleﬁkg] — etakiedhs sin[%kgeekg]
+ ¢~ 3k2ebka sin[%kleekg] + e~ sk1eOk Sin[%k‘gerg]
_ e+ ihactks sin[%kzleﬁkq] _ e+ikietks sin[%k‘geﬁkzd

i 1 i 1
4 g akactks sin[§k:160k:2] + e zkredks sin[§k269k4]}. (C.55)
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Collecting the sine functions leads to

VsﬁAf}/J(kla k?) k3a k4) =
= —(2m)ig?0% (ky + ko + k3 + k)

{5a7555{(e+5k169k4 — e_%k“ek‘*) sin[%kgeﬁkg]
+ (e_%k359k4 - e+%k369k4) sin[%kleﬁkg]
+ (e+%k260k3 - e_%k%m“”) sin[%k‘leﬁkz;]
+ (6—%’“159’“2 — e+%k159k2) sin[%k369k4]}
+ (5a5557{(e+%k369k4 — 6—%%354%4) sin[%kleﬁkg]
+ (e%’mm€4 — e*%kﬁgk‘*) sin[%kleﬁkg]
+ (e+%k159k3 - e_%kleek?’) sin[%l@e@l@;]
L (et _ otk sin[%k‘geal&;]}
b Galos{ (e B2k _ ot Shacth) sin[%k‘ler:g]
+ (6—%'1415%4 - e+%k169k4) sin[%kge@l{:g]
+ (ezh2eOks _ ot gkacths) sin[%k169k4]

i i 1
i (€_§k159k3 N e+§k169k3) Sin[2k2€9k4]}}'
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Again we sum up the exponential function and therefore find a sine function. Each

sine function gives a factor (2i) but we have each sinus function twice. Hence we have
an overall factor (4i):

Viihs(k, ko, kg, ky) = —(2m)" (40)ig?0" (ky + ko + k3 + k) (C.56)
{50475&5 { + sin[%kzlte@d Sin[%kzeekg,] - Sin[%]ﬁe@kg] sin[%k;;e@kﬂ}

+ 5&5567{ + sin[%kleﬁkg] Sin[%kgeel@] + sin[%kgemm] Sin[%kleek;g]}

1 1 1 1

+ 0apbys{ — sin[ik‘leﬁk’g] sin[§k260k4] - sin[§k160k4] Sin[2]{7260k3]}}

= (2m)"4g°6" (k1 + k2 + ks + ka)
{ (Bury 335 — Buyds) sin[%klemm] sin[%/@e@kg]

+ (5565, — 6ar335) sin[%kleﬁkg] sm[%kgem]

1 1
+ (6a608y — 0030+s) sin[ik‘geﬁlm] sin[2k‘169k’3]}.

The last expression represents (2-90).
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Appendix D

Useful Formulae

D.1 Schwinger Parametrization

With the Gamma function I'(NV):

one gets

11 7dm
k2N T(N)
0

The general form reads

1 —
(k2 + BN

1 12
Nleak

D.2 Integration Formulae

N>0,neN

VN € N, Re(k?) > 0.

1 I N—-1_—a(k*+03) 2
V) /daa e , VN € N, Re(k* + ) > 0.
0

D.2.1 Quadratic Form and Gaussian Integral

The integration of quadratic forms ([35], p.179 (5A.3)) is given by:

—+00

/ drel—aa®+Bz+7) — (

—0o0

™
0%

leading to the Gaussian integral with 3 =~v =10

in one dimension and

for four dimensions.

139

i),

(D.3)

(D.4)

(D.5)
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D.2.2 Parameter Integrals

Parameter integrals ([A1] 3.471; K, are the modified Bessel functions of second kind):

/d;m:”_le_z_w = 2<ﬁ> 2K1/(2\/ 37), (D.7a)
3 Y
o2
/d:rle_w =T(v—1)(a?)), v>1,02>0. (D.7b)

D.2.3 Modified Bessel Functions

The modified Bessel differential equation is given by
d’y(x) | dy(x)
2
T A e dx
where a defines the order of the equation. Two linearly independent solutions of this

equation deliver the modified Bessel functions of first kind I,(x) and second kind
Kq(x):

— (2% + a®)y(x) =0, a,x € C, (D.8)

e}

1 T\ 2m+a
fal) = z:: miT(m +a+ 1) (3" (D-9a)
Kao(z) = gw (D.9b)

In this work only the second kind with «, beeing an integer will be of interest, i.e.
K, (z),n € Z. These functions are exponentially decaying and singular at the origin.

From equation (DZ9H) follows:
Ky(z) = K_p(x). (D.10)

D.2.4 Expansion of the modified Bessel Function

The modified Bessel functions of second kind can be expanded for small arguments
in the following form:

Ko(x) =~ ln% —YE — f(’yE -1+ ln;> + O(z), (D.11a)
Ki(z) ~ % + g(wg - % +1n 92”) + i(w - Z +1n 2) + 0@, (D.11b)
Ks(x) =~ % — % - a;;(”yE - Z +1In ;) + O(zh), (D.11c)
Ks(z) ~ ;—i+:8”+z;<m—g+ln;) + O(az%), (D.11d)
Ki(z) ~ g % + i _ Z; +O0EY, (D.11e)

where yg = 0,57721... represents the Euler-Mascheroni constant.



Appendix E

One-Loop Calculations

E.1 Expansion of Il (p)

I?efore we start the explicit calculations, we have to mention that the expansion of
IT},,(p) must be understood in the way of (6=38), together with the abbreviations
(b337a-63374).

E.1.1 Expansion of l:[fw(p)

The analytic expression for the ghost-loop is given by (522Id) from the main text

i) = ~Caryly [ k{i’;_p;’;smq;ke@]}

4g2
—Cy—— 2 /d k sin? ke&p}

4q2
—c, /d4ksm k:eep}{na 1O (k,0) + 115 (k, p) +0(p3)},

(2m)4
with
(k —p)uky
s, (k,p) = —5—- E.1

,LLl/( ap) (k—p)2k2 ( )
The zeroth order I1%()(k,0)
According to (B337d), the zeroth order reads

" kK,
1O (k, 0) = et (E.2)

The second order Uﬁ,’,(z)(k,p)

141
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With (B=37d), The second order reads

20 = "5 03,05, 115, 1.
PsPo (k—p)u
== apaapa (k — p)2k2:|p_)0
_ DPspo | ( Sopky(k — p)2k? +2(k — p) ko (k —p)gk‘zﬂ
== s (k — p)ik? -
PsPo -a <_6cr,ukz/(k —p)? + 2(k — p) ko (k — p)a>]
2 |” (k — p)ik? p—0
_ PsPo [ 200k (k — p)s(k — p)*k® — 205, (k — p)oky (k — p)*k?
2 | (k —p)Bk4
L =25k (k = p)uk = p)*k* — 460,k (k — p)*(k — p)sk®
(k —p)Bk4
8(k —p)u(k — p)oku(k — p)*(k - p)akT
(k —p)Bk4
_ DPspo |:260,uku(k7 —p)s — 205, (k — p)oky
2 (k — p)*k?
= 2aghy(k — )y — Ao,k (k — p)s
(k — p)*k?
8(k — p)u(k — p)oky(k — p)akz]
(k — p)Sk? p0

_ Popo [25 kv ks Kok, Kk kv ks k‘ukgk‘yk’g]

p—0

+
p—0

onp5 — 2005 — 2o rg” — Agurge + 8

ky ks k. kok,ks
[M %4( PoDo k6 2p5p,uF + 4p5pcruk8:|

k. kyks kukokyk
— 2V 6
= |:—p k —2 5p.“ ]{}6 +4 PsD, g-k8:|. (E3)

Therefore we have

= 4g° 4 1
e, (p) = —Cy—r [ d*k keb E.4
10) = ~Cuggsy [ atksin®(gketpl (E.4)
Kk ksk, kK, koksk,k,
X { 24 + [ 2puPs ,‘Z —p’ 26 PsP 7]‘28“ } +O(p3)},

equal to (B2Z3).
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E.1.2 Expansion of ﬁfw(p)

Before we start with the expansion of HZV (p) given by Eq. (B1H) we have to insert
expressions for propagators and vertices,

~ 1
I, (p) = CbW / d*k / d*k / d*p’ x
(T el PG PTG 0 .
with
~ . .ol
1VO§MAV(k,p’, K = —2ig(2n)46%(k — p' — k') sin [ikGH(—p’)] X (E.5)
X <(5aw(k + k) 4 ap(—p" — )y + Oy (=K +p')a),
)
- 1
37734 . 454 .
Vo, (K p, k) = =2ig(2m)*6* (k' + p — k) sin [ikz'eep} X
X <(6ep(k, + k)u + 561/(]7 - k/)p + 5l/p(7k - p)e)a
4 ~AA
G (K).

If we now insert (E3) into fIZV (p), we get
1, (p) = Cb(%l)m / d*k / d*k’ / d*p’x (E.6)
X [— 2ig(2m)*0*(k — p' — k') sin [%k‘e@(—p')]
(G4 R ! = Ry + 8 (312G
X [ — 2ig(2n)* 6 (K’ + p — k) sin [%kz’e@p]
X <(5Ep(k' + k) + S (p — K)p + 0yp(—k — p)e)@,ﬁ‘f(k)] :
The delta functions imply the correlation of p and p’ in the following sense

k—p —K)—=p =k—K,
S +p—k)—p=k-F,

leading to

p=k—-FK =p.
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Next we solve the integral over p’ and receive

- —2ig)?
HZV(p) = Cb((2 g)

/ s / KGR + p — K)GAAK)GAA (k) x
x [sin [Gheb(— + )

X ((5a7(k + k) + Sap(—2k + k' )y + 0,y (2K + k)a>]
X [ — 2ig(2m)6 (K + p — k) sin [%k’eep]

(B 4 0+ 8= K1)y + 8=, ) |,

while the delta function 6*(k’ + p — k) leads to k' = k — p for the integral over &’

2 -
Zg / dRGAM (& — p) G (k) x

X [sin [ﬁkeﬁ(—p)}
X <(5a'y(k Tk —p)u+ bap(—2k + k — p)y + 6y (—2k + 2p + k)@z)}
X {sin [%(k — p)edp]

X <(5€p(k: —p+k)y+0ap—k+p),+d,(—k— p)ﬁﬂ

24 ~

_ cb((%f) [ G = Gt
o1

X |:S111 [ikee(—p)} <(5a7(2k — D)y + ap(=k —p)y + 0pry (—k + 217)04)]

9 [sm S ke (@p(% D)ot B (2D — Ry + Bl mﬂ

24 / d*k sin? [%ke@p] G2k — p)Gadt(k)x
X {(6047(2145 = Py + Oapu(—k = D)y + 6,7 (2p — k)a)
< (Bl =l + 20— Ky + Bk = 1)) | (E7)

The last result represents (5-21H).

The expansion of IT b(k p) reads

Hb L(p ):C’b ) /d4ksm [ k:e@p] (k. p) (E.8)

492
271')4

/ k sin? ke@p] { (0)(k, 0) + Hﬁ,’,@)(k,p) + O(P?))}a
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with sz(k:,p) given by
b ~NAA ~NAA
Huu(k7p) - G’ye (k _p)Gpa (k)X
{2 = D)2 = )+ B2 )20~ ),
+ 50/75147 2k — p),u(_k - p)e + 50&/15611(_]{3 - p)’y(Qk - p)l/
+ Sapder (—k — ) (20 — k)p + Sapdup(—k — p)y(—k — p)e
+ 5#75@(217 —k)a(2k —p)y + 5#756V(2p —k)a(2p — k)p
T GBn(20— K)ok p>e}
- {éﬁ;‘w )G (k) 2k — P2k — p),
+ Gall k= p)God (k) (2k — p)u(2p — k),
+ GAA (k — p)Goit (k) (2k — p)u(—k — p)e
+ G2k — p)Got(k) (—k — p)y(2k — p),
+ GOk = p) Gt (k) (—k — p)y(2p — k),
+ GLA (k= )Gt (k) (—k = p)y(—k — p).
+ Gtk — p)God (k) (2p — k)a(2k — p),
+ Gtk — p)God (k) (2p — k)a(2p — k),
T GAA G — p)GAA (k) (2D — K)ol —m} (£.9)
b,(0)
The zeroth order 1., (k,0)
If we look at p =0 in Eq. (EX), we get
b,(0 _
159 (k,0) = (E.10)

= {4 G RIGHI ) = 2h b GG 20, GG )

— 2k ky G2 (R) GO (k) + kykpGogt (k)G (k) + ky kG2 (R) Gt ()

— 2kaky Gyl (k)G (k) + kak,Gigt (k)G (k) + kakeéﬁf(k)éj‘f(k)}.

As we have discussed in the main text, we insert in the last equation the expression
of GA4(k) in the limit of large internal momenta k and use the Landau gauge:

~ 1 kok
G ~ g3 s = 2252 |

k?

k— o0,a — 0.

The expression of 11, %0)(& 0) is made up by nine terms and we look at each term

separately.
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The first term:

The first one reads
Al ke, GA2 (k)G (k) =

1 kak,] 1 kpka
bz oo 522 oo = 5]}

_ 4{ [ koka  kaka n kakakpkp}}

k2 k2 k4

[ kuks
{kkk44—1—1+1]}— o (E.11)

As we will see the remaining eight terms will disappear because of their given struc-
ture. However, we will show this for the fourth term as an example.

The fourth term:

The fourth one reads

—2k ke, G2 (k)G () =

1 kyk,] 1 Kok,
S Sl 5

1 kyk kK krkpkyk
- —2/-4:7]4:1,{]#[5795‘,“_ 1 T S u]}

—_2[%{,1( Fy, — /{L/+%k/] =0. (E.12)

At the end we can give the zeroth order expansion:

Kk

b,(0 _
159 (k,0) = 12 .

(E.13)
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The second order II, (2)(k,p)

The second order reads

b, _ p5p0' b
HHV(2) (l{?,p) == 7 [ap(;apﬂﬂp,l/(k’p)]pﬂo

2
+ GaJl k= p)God (k) (2k — p)u(2p — k),
+ GLA (k= p) Gt (k) (2k — p) u(—k —
+ GOk — p) G (k) (—k — p) (2K —
+ Gk — p) G (k) (—k — p)o(2p — k),
+ Gk — p) Gt (k) (—k — p)
+ Gt (k= p)Goat (k) (2p — k)a(2k — p
+ Gk — p) Gt (R)(

:%{%apa [ééﬂk PIGoal (k) (2k = p)u(2k — p)y

147

(E.14)

The first term of the last expression is used to bring light into the structure of the

calculation.

The first term:

The first one reads

2

bsPo 2 3
= 00 0,0, G = P)GAR) 26— ) (28— ),

— 0ou0ps Gitit (k — p) Gt (k) (2k — p

)G e (F)( )
— G0y Gttt (k — p) Gt (k) (2K — p)
— GsuDp, Giny (k= p) Gt (k) (2k — p)
— 6500p, Gig (k — p) G (k) (2K — p)
+ 050 Gt (k — p) Gt
+ 05000 Gt (ke — p)GAA} .
p—0

PsPo { Os [(;g;é(k: — )G (k) (2k — p)u(2k — p)y] }

(E.15)

We conclude that each term produces seven new terms and therefore we have as
whole an expression containing 63 terms. The best approach to calculate such terms
which show the same structure but only differ in the indices, is to use a calculation

programm like MATHEMATICA®.
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The detailed outcome shows

by(2 _
H,uzs )(kvp) -
1 kok koky k. ky
= { = SPuPvig — 8papy?“ = 8Pabp=r5 — 16p* ’];6 (E.16)
kakgk,ky 1 kaks
+ 52pap5TM + 8]725;11/@ - 8pap,85;uzk6}-

Therefore we have

ﬁfw(p) ~ —Cy 4" /d4k: sin2[1k‘69p] (E.17)
(2m)4 2
x {12]“;?” + [— w5 — P o 8pap,
— 16p° ;;f” + 52papg Lké’;“k”
+ 8p25,w% — 8papg5uyk(;;§ﬁ] + O(p3)}
equal to (B42H).
E.2 Evaluation of the remaining Integrals
E.2.1 Calculation of the Example Z°(p)
The integral Z3(p) is given by Eq. (6234d) from the main text
3(p) = /d4kk2{fy sin? [ékzeﬁ]. (E.18)

The use of expression (B=74) with the correct prefactors deduced from (5-73d) and
N =2,m = 2 gives

[e.9] [e.9]

~ —i)2n2 1 1 5)2

(p) = (=) {— 2/daa_25m,+ z/daa_Q(Sﬂl,e_(fa) (E.19)
0
)

The planar part reads
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where we have introduced a UV-cutoff A to regularize the integral. Evaluation of the
last expression by using Formula (ID-78) leads to

73,pl i 1\ 1 2 2
1P = 4F(2)6WF(1) 2 = ZW O A=, (E.20)

The non-planar part yields (evaluation with Formula (ID-7H):

[e¢] [o¢]
22 2 25 = 9
T - 1 (ep) (ep)
I3 (p) = (212)(27; {2 /daa_Zéwe_zﬁx _ EPuby p:p,, /daoz_?)e_fa}
0 0

(i) ()*\ ' (—i)?a? _((ep)?\ 7
T ar() F(1)5””< 4 ) T 8T(2) F(Q)ezp“pl,< 4 )

Cof by
= - o 2 (21
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E.2.2 Detailed Outcome of the Integrals 7'

We give a list of the detailed outcome of the integrals appearing in Section b6, Eqgs.

(623a-643d). The outcome is divided into the planar and non-planar part.

A)
)= [ d*h sin? [Tkep
(p) = ﬁsm [5 ep]
2
= —I—%AQ, planar
2
= —2(7;W, non — planar
€

- | BTN R
%(p) = /d4kk4 sin’ [ikep]

112
= +72K <2 A2>’ planar

= %K, <\/u2(eﬁ)2>, non — planar

B)
- kuky, . o1,
Iiy(p) = /d4/<: ’];4 sin? [§kep]
2
= +%5WA2, planar

Opv Pubv
— e ol
(ep)?  (ep?)?

-~ k kl/ . 1 ~
Iﬁy(p) = /d4k: /]:;6 sin? [ik‘ep]

}, non — planar

2 2
= +7;5WK0<\/ XQ)’ planar

7T2{ Pup
= - 5 I/KO< 2 6ﬁ 2> - lﬁ Y

}, non — planar

(E.22a)

(E.22b)

(E.22¢)

(E.22d)

(E.22e)

(E.22f)

(E.22¢)

(E.22h)
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- kokgkuky, . o1
725 (p) = /d4k6“ sin? [ikep]

afuv kS
2 12
— 4 51 KO( 1/ A2> [5@65;“/ + 0audpy + 53115&4 , planar (E.221)
2
= 24 {Ko( (6}3)2> [(5aﬂ(5uu + (5(1#5@/ + (Sgu(sm,] (E.22j)

1 _ . . . oo
- Z? [6aﬂpupu + 5aupﬁpzx + 6/3upapu + 5aupﬁpu

, non — planar.

PaPpPubv
+ (5[3Vpapu + 5lwpap5] + QIB#}
E.2.3 Explicit Evaluation of flfw(p)
Evaluation of I1¢,(p)

We start with Eq. (B277d) from the main text

492 "
(2m)*

x {ffiy (p) + [ — 2pupsZs, (p) — P*I, (p) + 4papaf3(sw(p)] + (9(1?3)},

I, (p) = =Ca

insert the outcome for each Z7(p), j = 3,4, 5 (the list can be found in Appendix E-2Z3),
divide into the (non)-planar part and get

rTa,pl _ 2
I (p) = —Cag™x (E.23)

1 11 1 1, 2
X{16772 5“”+[<(127r2 a2 Pube G0 — g5 P 5“”>K0<2 A2>]}’

II5:77 (p) & —Cag®x

11 1 pupv

X 4 — — O, ®

{ a2 ()2 T 2 ()2

(s = o + (g — )20, ) Koo [ /12(eD) (E.24)
Sn2  Top2/Pulv (g T o /P O | o €p '

o ipupapapu + 1 pgﬁ,uﬁu 1 pépaﬁuﬁuﬁéﬁa

8wz p? 1672 p? 1272 pt

1

(6uup§paﬁ5ﬁa + pupaﬁuﬁa + papuﬁuﬁa

1 finite
+ PsPuPvPs + PsPvPuPs + pzﬁ,uﬁV)ﬁg]

g2
+ 0(193)},

where the first term inside the curly brackets represents the zeroth (0) order, while
the second order (2) is represented by the square brackets. Additionally we have a
so-called finite term which was generated by the second order but will give a finite
expression in the limit of small external momenta p. If we split explicitly into the
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(non)-planar terms and the order of expansion we find

115, (p) = —Cag®x (E.25)

(0)

(et
(oS BT
(-l ) )

1 _ ) _\\ @7
T

+ O(p3)}7

where we have

1 ps 1 p*pup 1 By DsD
(ﬁnite terms)’ _ 7pup(ip6pu i p Zzupu p&pap,u:pl/p(spa (E.26)
8w p? 16w2  p2? 1272 pt
1 - L L.
- m((guupc?papcspa + PuPoDvDo + PoDvDuPlo

1 finite
+ pép,uﬁuﬁé + p6pvﬁuﬁ5 + p%iuﬁu) ]? ,

equal to (B78) and (BXT).

Evaluation of l:[fu, (p)

In order to start our calculation, we require Eq. (EZ77H) from the main text:

2
Ay
(2m)*
X {12qu (p) + [ — 5pupI2(p) — 8papu L, (p) — 8PapuZa, (p)
— 16p”Z,, (p) + 52PapsLopu, (P)

+ 8p25w/i2 (p) - 8pap[35uuj§5(p):| + O(p3)}a

ﬁfu/ (p) ~ Cp
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insert the outcome for each integral Z7(p), j = 2,3,4,5 (Appendix EZZ2), divide into
the (non)-planar part and get

~ 3
b,pl _ 2 2
H,ug (p) = Cug {47T2A 5#1/ (E27)

2% 11, 529 12
= e )P0 Ko 2455 8,
* {<(7r2+487r2 om0t (g 47r2)p“p> °< A2
77 (p) & Chg® % (E.28)
WL 6 By
2 (6]3)2 Hv 2 (6]32)2

+[<(1—22— o+ 1) 25W+(1 +% g;)pup,,)f(o( u2(6ﬁ)2>]

22 7 4872
1 papﬁpapﬁ(s + ip PuDv n ipapupapu 4 ipapuﬁalﬁu
27r2 ﬁ2 Hv p2 22 152 72 252

26 .. . . . .
~ 15,2 (P°Pubv + PuppPaby + PaPpbaby + PuPaPaDy
o o 1 52 D pppy finite

+ PaPubaly + duPaPsbabs) = + J5 gL

+ O(ps)}-

p

The explicit (non)-planar parts depending on the order of expansion reads

] 2 (E.29)

50 12\ o 56 2 (2)7pl

= (0) (2)
+ [(6 Pubv 3 O ) + ((ﬁnite terms)”)

(PP ()
(2)7 npl
50 = 56 =
(oY ST )

where we have

(finite terms)” = (E.30)

_ 1 papﬂpapﬂ(s i DuDy i Lpapuﬁaﬁu + ipapvﬁaﬁu
27.‘-2 ]52 T2 132 2772 132 2972 }52
26

4872

(pQﬁuﬁu + pupﬁﬁﬁﬁu + papuﬁaﬁu + pupﬁﬁﬂﬁu
1 52 papspupy |’

+ pap,uﬁaﬁu + 5uupapﬁﬁaﬁﬁ)ﬁ + 1872 ]54

which equal expressions (679) and (532).
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Evaluation of f[fw (p)
We start with Eq. (B277d) from the main text

~ 2 ~ ~
e, (p) ~ —cc(s;‘jyl{zwl () + 23, <p>},

insert Z7(p),j = 1,3 (Appendix E=Z2) and get

~ 5
c,pl ~ 2 2
H,uze (p) ~ —Ceg {87’1’2A 5uu}; (E?)l)

1 By 5 (nw}

w2 (ep?)2 272 (ep)?

e (p) ~ —cch{

leading to

i 5 o (5 6w 1 fub ™
fe ~_C, 9 N VA2 I e e ¢ 2 .4 E.32
)~ Cet{ | Zpoun?| - |- ST e

which is equal to expression (5=0).

E.3 Omne-Loop Correction

E.3.1 Calculation of ﬁm,(p)

The calculation of IT,,,(p) starts with the first line of expression (689) given by:
[ (p) =
29213#131/ 2692 /L2 ~ 2
~ Kol 24/ | — K| 212 O —
7T2(6]52)2 + 3(47’1’)2 0 A2 0 (Ep) H (p Hy pﬂpl/)

+ (finite terms)"” + O(p?). (E.33)

Keeping in mind that we can expand the Bessel function of second kind for small
arguments in the way of:

2 x? T 4
Ko(x)wln;—WE—Z WE—1+ln§ + O(z%), (E.34)

which equals Eq. (DIT4), we have to observe each relevant Ky from fIW and define

primarily
2
— o, /M

b=+/(ep)?u?. (E.36)
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1. Ko(a):

If we now apply (EZ34) we receive
AW
2
2 2 2\/ %
~ In —VE—'M— v —1+1n A + O(a%)
9./ 12 A? 2
A2

A2 2 2
:ln<1/u2>—VE—/'L;{WE—l—l—ln(\/KQ)}—i—O(aZL
n(p

1 1 2 2 1
= S I(A%) — S () — (1+ Eoye + £ -

A2 AZ 2
+ O(at).

g

)
/Lél ( 2)+;jéln(A2) (E.37)

In the limits: u? — 0,A? — oo, Ko(a) reads

2

Ky (2 “) ~ %m(A?) - %m(,ﬁ) — e+ O(a), (E.38)

2. Ko(b)
We apply (EZ34) and get

Ko ( (613)2M2> ~

%ln( (;)2M2> g — ((6’55“2)2{%— 1+ln< (6};)2“2)}+0(b4)

D 2,,2\2 e 2 92\2
I, (p) = In(2) — %ln((eﬁ)%ﬂ) o p)4ﬂ LN p)4u )
- ((6]5)?2)2 In((ep)?p?) + ((eﬁzﬂz)? In(2) + O(b%)

— n(2) — hn(ep) — S1n?) g — (PDEL (PP
- W ln(Eﬁ) — W 111(,&2) + ((615);#2)2 + O(b4) (E39)

In the limit: u? — 0, Ko(b) reads

o VIGPE ) % 1n(2) = ) s - (14
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Therefore we have

1+ @?LQ)Q) In(ep) + O(a*) + O(b4)}(p25uv = Pubv)

~ {; In(A%) + O(a*) + 0(54)}(p25mz = pupy) + (finite terms)™, - (E.41)

where the IR-cutoff p cancels, and the expression (finite terms)lv represents finite
terms in the limit of small external momenta p:

12212
(finite terms)lv = { <1 + ((ep)4,u)> In(ep) — ln(2)}(p25W — Pubv)
At the end we have the final expression which represents Eq. (B89) from the main
text:

- 2¢%p P 13¢>
Huy( )N g p,U«pl/ g ln

T or(ep?)? | 24n? (A)(p*y, — pupy) + finite terms,

where

finite terms = (finite terms)” + (finite terms)!" (E.42)
+{0(a") + 0"} (P*0 — pup) + O(%),

contains all finite expressions.
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Renormalization

F.1 Renormalization of the Photon Propagator

F.1.1 Calculation of fﬁj‘

Before we start the explicit calculations, we once again must mention that the two-
point vertex function at tree level F,’?VA ’tree(kz) represents the inverse of the two-point
Green function at tree level G;‘;‘(k) in the way of:

DAMree () = (G2 (k) 7,

which is explained in detail in the main text (see (E13) and (67)).

The calculation of this inverse starts with the photon propagator in the form of (E10)
with « # 0:

@m_f@h

~AA

1

where we have introduced the abbreviations:

157
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To get the inverse we make the ansatz (E13):

O = (G () T G ()

= k*D [(ﬂw + ap k::];p + as %gfp] k:21D [5py — (1 —aD) kZ];V - ]__/;:g:ljl,
S [5,w — (1 —aD) kz’j - szf]
e
b2 5,, - o —am) il hole]
=6 — (1 —aD) k;f — ]—"k’élj”
+a k’,ﬁ —a;(1 - aD) k;’;” - 1J:k":;’]£2 v
+a E’f% —az(1 —aD) kagé;“ —ag Eu%gfpkya
(F.1)

where the marked terms vanish through the following fact:

koky = kpbpaka = kalapky = kpbapka = —kpbpaka = —kpky,
= kyk, = 0.

This leads to

kK, k,k,
i+ {aa(1 = F) - P,

8w =6+ {a1 —a1(1 —aD) — (1 —aD)} o

where the expressions inside the curly brackets must obey the equation

{a1 —a1(1—aD) - (1 -aD)} =0,
= a1 = $ — 1, (FZ)

and

= a2 = ——= (F3)
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The inverse now reads

DALtree (k) = (GAA(K)) ™ =

k. k k. k
:]4;22)_5up+a1%+a2 22”]
I 1 k,k F \ k,k
— 1.2 - uhy uhy
_m_(sW(aD 1) ut +(1_f) k]
I 1 k,k 7\ k,k
=k*D|6,, — 1| _ pv F.4
s +(Oﬂ> ) k2 +<k2k2D> 2 } (F-4)

where we have written F/(1 — F) in a term depending on D:

4

F k4+(g4+’y4) at a*
1-7 1 2t T Rt 2D (£5)
BRG] !

The inverse propagator (E-4) equals Eq. (B18).
F.1.2 Calculation of f‘f};‘vdmss

The dressed vertex function is given by the first line of Eq. (6221), where we insert
Egs. (BI7-620) from the main text

nAA,dress _ mAAjree rnAA.corr
Fuu (k) - Fw/ (k) - F[,LV (k (FG)
1 k. k 4 \ k.k
2 uhv iy
= k*D |5, -1 . 2
i {" +(oﬂ> > k? +<k2/-c22>) k2 ]
.k,
— 11, fQ = yk*S,, + Ik, kK,
(k2) o
— WD = 110 + A D = 1) + 11, Uy + {54 — 17, LR
- b)Cuw oD byt ¢ (k2)2
1 k. k gt — I, k,k
(D11 [ay+<_1) phy 0 =1l }
( 0) |9 o(D — II,) k2 k2k2(D — II,) k2

The last expression equals the second line from Eq. (EZZ1).

F.1.3 Calculation of o,

The calculation of o, starts with Eq. (6229) from the main text:

02
2 <ar + 402>fy4z§ = (a* - 11,) 73,
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where we insert Eq. (619) leading to
(m—i—faf) ={<J+04202> —71_2?}/2462}7
— o +042 042{< +042 2)—71'2’9)/2462}20’
co—me | (2) 4 () - )
2922{‘11\/@*2")2‘%}’ (F.7)

which equals Eq. (B231).

F.1.4 Calculation of fo””en
We start with Eq. (6233):

. ren -1 ren
O = (T ™" ()~ T (k)

kQ; {&w +b kk]; + by ];%fp] k;gr [5py + <aZng - > kZ/;?u kggfp k;’;y
ot <0<Z§ - 1) szy i k?izu k;;l;
e (s
R i
e Kféi (s (Zh )]
[kQZ;D +b2<1+ k2l§Dr>] szy (F-8)

By comparison, we obtain for the coefficients by, bo

z3 1
by = —(“DT), (F.9a)
ot
by = — <1+D> (F.9b)

k2k2D,.
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For the first coefficient by we consider the Landau gauge (o — 0) and get

Z2
_— . .
1+ aZTf‘ — 1/ la—0 oD, Z3 a—0
The second one by can be written as
a;
@__(’92/52177-) :_6—;} (F.11)
Lt gy ) (PRD+ )
With the help of D,, given by Eq. (E223):
4
B Yy
Dr = ( + kz;}z)’
the coefficient reads
—4 1 ~4
b=~ = = i . (F.12)
( +7 +07) (k2 G+ 7;1)}}2)
Therefore the renormalized propagator has the form of
~NAA,ren nAAren -1
Gy " (k) = (T (k)
z2 kk kk
- k2gr {5’“’ +h Zzp + b2 %zp}
73 Kk, Kk,
= ]{;2']_)7"|:6HV_]<;2_FT 1;2 5 (F13)
with the abbreviation F,
1 —4
Folk) = o (F.14)

: |
(k2+ @+ 00 )

The last two equations equal (6237) and (B=38), respectively.
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