
DISSERTATION

On statistical simulation and
robust statistics with application
to Laeken indicators and quality

of life research

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines

Doktors der technischen Wissenschaften unter der Leitung von

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Peter Filzmoser

E107 – Institut für Statistik und Wahrscheinlichkeitstheorie

eingereicht an der Technischen Universität Wien

Fakultät für Mathematik und Geoinformation

von

Dipl.-Ing. Andreas Alfons

Matrikelnummer: 0125322

Schlüsselgasse 2/16, 1040 Wien

Wien, am 20. Oktober 2010

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Acknowledgments

First of all, I would like to thank my advisor Peter Filzmoser for his academic guidance
and motivation. In addition, I am obliged to Matthias Templ for giving me the oppor-
tunity to do this research. Moreover, I am indebted to both of them, and of course to
the other coauthors of my publications, Wolfgang E. Baaske, Josef Holzer, Stefan Kraft,
Wolfgang Mader and Roland Wieser, for their contributions in our successful collabora-
tions. To Josef Holzer, Stefan Kraft, Angelika Meraner and Stefan Zechner, with all of
whom I shared an office at times, I am grateful for the friendly working environment.

Furthermore, I would like to thank my family for always believing in me. Special
thanks go to Vanessa Troiano for always being there for me, even in times of great
geographical distance between us, and for understanding the stress that this dissertation
has frequently caused me.

The research for this dissertation was partly funded by the European Union (repre-
sented by the European Commission) within the 7th Framework Programme for Research
(Theme 8, Socio-Economic Sciences and Humanities, Project AMELI, Grant Agreement
No. 217322), and by a grant of the Austrian Research Promotion Agency (FFG), Project
ErfolgsVision (Ref. No. 813000/10345).

Andreas Alfons

i

Abstract

Due to the complexity of modern statistical methods, in particular in robust statistics,
obtaining analytical results about their properties is often virtually impossible. Conse-
quently, simulation studies are widely used by statisticians to gain insight into the quality
of developed methods. In addition, research projects commonly involve many scientists,
often from different institutions, each focusing on different aspects of the project. Hence
precise guidelines regarding the design of simulation studies are necessary in order to
draw meaningful conclusions. As a remedy, a general framework for statistical simula-
tion designed to simplify obtaining comparable results in collaborative research projects
has been implemented in the R package simFrame.

Simulation studies in survey statistics are typically performed by repeatedly drawing
samples from a finite population. However, real population data are only in exceptions
available to researchers. Therefore, suitable population data need to be generated syn-
thetically. The simulated data need to be as realistic as possible, while at the same
time ensuring data confidentiality. A method for generating close-to-reality population
data for complex household surveys has thus been developed and implemented in the
R package simPopulation. Furthermore, data confidentiality issues are analyzed using
several different worst case scenarios.

The Laeken indicators are a set of indicators defined by the European Union for
measuring poverty and social cohesion in Europe. However, some of these indicators are
highly influenced by outliers in the upper tail of the income distribution. In order to
reduce the influence of outlying observations, the use of robust Pareto tail modeling is
investigated in a simulation setting. Selected Laeken indicators and methods for Pareto
tail modeling have been implemented in the R package laeken.

Statistical models in the social sciences need to be limited to a small number of
explanatory variables with low interdependencies for better interpretability. To achieve
these goals, a robust model selection method, combined with a strategy to reduce the
number of selected predictor variables to a necessary minimum, has been developed. In
addition, the proposed method is applied to obtain responsible factors describing the
cognition of quality of life in smaller municipalities.

ii

Kurzzusammenfassung

Durch die Komplexität moderner statistischer Methoden, insbesondere in der robusten
Statistik, ist es oftmals nahezu unmöglich, analytische Resultate über ihre Eigenschaf-
ten zu erzielen. Folglich ist der Einsatz von Simulationsstudien um einen Einblick in
die Qualität der entwickelten Methoden zu gewinnen unter Statistikern weit verbreitet.
Des Weiteren sind an Forschungsprojekten üblicherweise viele Wissenschafter beteiligt,
oftmals von verschiedenen Institutionen, von denen sich jeder auf andere Aufgaben inner-
halb des Projekts konzentriert. Deswegen sind genaue Richtlinien bezüglich des Designs
der Simulationsstudien notwendig, um aussagekräftige Schlussfolgerungen ziehen zu kön-
nen. Als Abhilfe wurde ein Framework für statistische Simulation entworfen und in dem
R Paket simFrame implementiert, welches es in gemeinschaftlichen Forschungsprojekten
erleichtert, vergleichbare Resultate zu erlangen.

Simulationsstudien in der offiziellen Statistik werden üblicherweise durchgeführt, in-
dem wiederholt Stichproben aus einer endlichen Grundgesamtheit gezogen werden. Al-
lerdings stehen Forschern echte Populationsdaten nur in Ausnahmefällen zur Verfügung,
daher muss eine geeignete Grundgesamtheit künstlich erzeugt werden. Die simulierten
Daten müssen so realistisch wie möglich sein, aber zugleich darf die statistische Geheim-
haltung nicht verletzt sein. Dementsprechend wurde eine Methode zur Erzeugung von
realitätsnahen Populationsdaten entwickelt und in dem R Paket simPopulation imple-
mentiert. Zusätzlich wird die statistische Geheimhaltung anhand verschiedener Worst
Case Szenarien untersucht.

Die sogenannten Laeken Indikatoren sind eine Reihe von Indikatoren, die von der
Europäischen Union zusammengestellt wurden, um Armutsgefährdung und sozialen Zu-
sammenhalt innerhalb Europas zu messen. Jedoch sind einige dieser Indikatoren stark
von Ausreißern am oberen Ende der Einkommensverteilung beeinflusst. Um den Einfluss
solcher Ausreißer zu verringern, wird die robuste Modellierung des oberen Endes der
Verteilung durch eine Pareto Verteilung mittels Simulationen untersucht. Ausgewählte
Laeken Indikatoren und Methoden zur Modellierung einer Pareto Verteilung wurden in
dem R Paket laeken implementiert.

iii

Kurzzusammenfassung

Statistische Modelle in den Sozialwissenschaften müssen auf eine sehr kleine Anzahl
von erklärenden Variablen mit geringen gegenseitigen Abhängigkeiten beschränkt sein,
um eine bessere Interpretierbarkeit zu gewährleisten. Um diese Ziele zu erreichen, wurde
ein Verfahren entwickelt, das robuste Modellselektion mit einer Strategie zur Reduktion
der Anzahl an ausgewählten Variablen auf ein nötiges Minimum kombiniert. Zudem
wird das entwickelte Verfahren angewendet, um jene hauptverantwortlichen Faktoren zu
finden, welche die Wahrnehmung von Lebensqualität in kleineren Gemeinden erklären.

iv

Contents

Acknowledgments i

Abstract ii

Kurzzusammenfassung iii

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Project AMELI . 2

1.1.1 Selected Laeken indicators . 3

1.2 Project ErfolgsVision . 5

1.3 Robust statistics . 5

1.3.1 Breakdown point . 6

1.3.2 Influence function . 7

1.3.3 Example: Covariance matrix estimation 7

1.3.4 Outliers in survey statistics . 8

1.4 Statistical simulation . 9

1.4.1 Random number generation . 10

1.4.2 General design of simulation studies in survey statistics 10

1.4.3 Finite population sampling and weighting 13

1.4.4 Contamination models . 14

1.4.5 Missing data models . 14

1.4.6 Parallel computing . 18

1.5 Outline of the remaining chapters . 19

1.5.1 Overview of the remaining chapters 20

v

CONTENTS

2 An object-oriented framework for statistical simulation 22

2.1 Introduction . 23

2.2 Object-oriented programming and S4 . 24

2.3 Design of the framework . 25

2.3.1 UML class diagram . 27

2.3.2 Naming conventions . 27

2.3.3 Accessor and mutator methods . 29

2.4 Implementation . 29

2.4.1 Data handling . 30

2.4.2 Sampling . 32

2.4.3 Contamination . 35

2.4.4 Insertion of missing values . 38

2.4.5 Running simulations . 40

2.4.6 Visualization . 44

2.5 Parallel computing . 44

2.6 Using the framework . 45

2.6.1 Design-based simulation . 45

2.6.2 Model-based simulation . 48

2.6.3 Parallel computing . 51

2.7 Extending the framework . 53

2.7.1 Model-based data . 54

2.7.2 Sampling . 54

2.7.3 Contamination . 56

2.7.4 Insertion of missing values . 56

2.8 Conclusions and outlook . 57

3 Applications of statistical simulation in the case of EU-SILC 59

3.1 Introduction . 60

3.2 Application of different simulation designs to EU-SILC 60

3.2.1 Basic simulation design . 61

3.2.2 Using stratified sampling . 62

3.2.3 Adding contamination . 64

3.2.4 Performing simulations separately on different domains 66

3.2.5 Using multiple contamination levels 67

3.2.6 Inserting missing values . 69

3.2.7 Parallel computing . 71

3.3 Conclusions . 73

vi

CONTENTS

4 Contamination models in the R package simFrame 76

4.1 Introduction . 76

4.2 Contamination models in simFrame . 77

4.3 Example: Outlier detection . 78

4.4 Conclusions . 79

5 Simulation of close-to-reality population data 81

5.1 Introduction . 82

5.2 Simulation of synthetic populations . 83

5.2.1 Setup of the household structure 85

5.2.2 Simulation of categorical variables 85

5.2.3 Simulation of continuous variables 87

5.2.4 Splitting continuous variables into components 91

5.2.5 Software . 92

5.3 Application to EU-SILC . 92

5.3.1 Diagnostic plots for a single simulation 93

5.3.2 Average results from multiple simulations 99

5.3.3 Influence of sample size and sampling design 102

5.4 Conclusions . 106

6 Disclosure risk of synthetic population data 108

6.1 Introduction . 109

6.2 Generation of synthetic population data 110

6.3 Synthetic EU-SILC population data . 112

6.4 A global disclosure risk measure for survey data 114

6.5 Confidentiality of synthetic population data 115

6.6 Disclosure scenarios for synthetic population data 116

6.6.1 Scenario 1 . 117

6.6.2 Scenario 2 . 117

6.6.3 Scenario 3 . 118

6.6.4 Scenario 4 . 118

6.6.5 Scenario 5 . 118

6.7 Results . 119

6.8 Conclusions . 120

7 A comparison of robust methods for Pareto tail modeling 122

7.1 Introduction . 122

7.2 Selected Laeken indicators . 123

vii

CONTENTS

7.2.1 Quintile share ratio . 123
7.2.2 Gini coefficient . 124

7.3 Pareto tail modeling . 124
7.3.1 Hill estimator . 125
7.3.2 Weighted maximum likelihood (WML) estimator 125
7.3.3 Partial density component (PDC) estimator 126

7.4 Simulation study . 127
7.5 Conclusions and outlook . 129

8 Robust variable selection 130

8.1 Introduction . 131
8.2 Context-sensitive model selection . 133

8.2.1 Description of the algorithm . 133
8.2.2 Summary of the algorithm . 135
8.2.3 Diagnostics . 136
8.2.4 Implementation . 137

8.3 Example: Driving factors behind quality of life 138
8.3.1 Results . 138
8.3.2 CPU times . 143

8.4 Simulations . 143
8.5 Conclusions and discussion . 147

References 149

Index 162

Curriculum vitae 165

viii

List of Tables

5.1 Variables selected for the simulation of the Austrian EU-SILC population
data. 94

5.2 Categorized variables created for use as predictors during the simulation. 95
5.3 Pairwise contingency coefficients of the categorical variables. 101
5.4 Evaluation of personal net income. Values from the sample data are com-

pared to average results from 100 simulated populations. 102
5.5 Analysis of empty cells in the contingency tables of the categorical variables.103
5.6 Pairwise contingency coefficients of the categorical variables for the initial

population, as well as average results from 250 simulated populations for
each of the four sampling scenarios. 105

5.7 Evaluation of personal net income. Values from the initial population are
compared to average results from 250 simulated populations for each of
the four sampling scenarios. 106

6.1 Variables of the synthetic EU-SILC population data. 112
6.2 Results for Scenarios 1-5. 119

8.1 Explanation of important variables. 138
8.2 MM-regression results for the RCS model for quality of life. 140
8.3 MM-regression results for the B-RLARS model for quality of life. 140
8.4 Average results from 100 simulation runs with contamination level ε = 0.1. 146

ix

List of Figures

1.1 Lorenz curve. 5

1.2 Covariance matrix estimation in the two-dimensional case using classical
and robust methods. 8

1.3 Outline of the most realistic design for simulation studies in survey statistics. 11

1.4 Outline of a more practical approach for the simulation studies in survey
statistics. 12

1.5 Simulated bivariate data set with high correlation. 16

1.6 Simulated bivariate data set without correlation. 17

2.1 Slightly simplified UML class diagram of simFrame. 28

2.2 Simulation results from the simple illustrative example. 44

2.3 Default plot of results from a simulation study with one contamination
level and different domains . 48

2.4 Left : Default plot of results from a simulation study with one missing
value rate. Right : Kernel density plots of the simulation results. 51

2.5 Left : Default plot of results from a simulation study with multiple missing
value rates. Right : Kernel density plots of the simulation results for a
specified missing value rate. 54

2.6 Top: Code skeleton for a user-defined data generation method. Bottom:
Code skeleton for extending model-based data generation. 55

2.7 Top: User-defined function for Poisson sampling. Bottom: Code skeleton
for user-defined setup of multiple samples. 56

2.8 Code skeleton for user-defined contamination. 57

2.9 Code skeleton for user-defined insertion of missing values. 57

3.1 Simulation results for the basic simulation design. 63

3.2 Simulation results for the simulation design with stratified sampling. . . . 64

3.3 Simulation results for the simulation design with stratified sampling and
contamination. 65

x

LIST OF FIGURES

3.4 Simulation results for the simulation design with stratified sampling, con-
tamination and performing the simulations separately for each gender. . . 67

3.5 Simulation results for the simulation design with stratified sampling, mul-
tiple contamination levels and performing the simulations separately for
each gender. 69

3.6 Simulation results for the simulation design with stratified sampling, mul-
tiple contamination levels, multiple missing value rates and performing
the simulations separately for each gender. 72

3.7 Simulation results obtained by parallel computing for the simulation de-
sign with stratified sampling, multiple contamination levels, multiple miss-
ing value rates and performing the simulations separately for each gender. 74

4.1 Average proportions of false negatives (left) and false positives (right). . . 80

5.1 Top: Mosaic plots of gender, region and household size. Bottom: Mosaic
plots of gender, economic status and citizenship. 96

5.2 Left : Cumulative distribution functions of personal net income. Right:
Box plots of personal net income. 97

5.3 Box plots of personal net income split by gender (top left), citizenship (top
right), region (bottom left) and economic status (bottom right). 98

5.4 Box plots of the income components. 99

6.1 Mosaic plots of gender, region and household size of the Austrian EU-SILC
sample from 2006 and the resulting synthetic population. 113

6.2 Personal net income in the Austrian EU-SILC sample from 2006 and the
resulting synthetic population. 113

7.1 Simulation results for the quintile share ratio (left) and the Gini coefficient
(right) without contamination. 128

7.2 Simulation results for the quintile share ratio (left) and the Gini coefficient
(right) with 0.25% contamination. 128

8.1 Learning curve for the B-RLARS sequence (left). Densities of the RTMSEP
(right). 141

8.2 Dendrogram of the initial B-RLARS sequence of candidate predictors for
quality of life. 142

xi

Chapter 1

Introduction

This dissertation has been written in the course of two research projects: the project
AMELI (Advanced Methodology of the European Laeken Indicators), funded by the Eu-
ropean Union within the 7th Framework Programme for Research (FP7), and the project
ErfolgsVision, funded by the Austrian Research Promotion Agency (FFG). Both projects
are based on applications of statistics in socioeconomics and are focused on related topics.
While the aim of AMELI is to improve the estimation of European Union indicators
of risk-of-poverty and social cohesion, ErfolgsVision tries to explain success factors of
smaller municipalities. In a way, AMELI is directed at monitoring quality of life from
a monetary perspective, whereas ErfolgsVision is interested in the cognition of quality
of life. Moreover, robustness against outliers in the data is an important issue in both
research projects, and the developed methods are evaluated by means of simulation stud-
ies. These two topics, statistical simulation and robust statistics, therefore are the main
focus of this thesis.

The remaining chapters constitute a collection of papers, almost all of which are al-
ready published or have been accepted for publication (see Section 1.5.1). A broad range
of topics is treated these papers: (i) development of a software framework for simulation
studies in statistics, (ii) simulation of synthetic population data using statistical models
and evaluation of the generated data with respect to data confidentiality issues, (iii)
robust modeling of the upper tail of income data with a Pareto distribution in order to
reduce the influence of outlying observations on inequality indicators, and (iv) robust
model selection for applications in the social sciences. Even though the range of these
topics is quite broad, they are closely linked together as outlined in the following.

Modern statistical methods, in particular in robust statistics, are highly complex and
are thus frequently evaluated by simulation. When a research project is based on ex-
tensive simulation studies, precise guidelines for the simulations are required. Otherwise
the results obtained different researchers may not be comparable, which in turn makes

1

1.1 Project AMELI

it impossible to draw meaningful conclusions from the project. Hence the developed
framework for statistical simulation is designed to facilitate the coordination of simula-
tion studies in such research projects. Special emphasis is thereby given to applications
in survey statistics and robust estimation.

In survey statistics, simulation studies are typically performed by repeatedly drawing
samples from a finite population (see Section 1.4.2). Nevertheless, suitable population
data need to be synthetically generated in practice, since real population data are only
in exceptions available to researchers. If such synthetic data are released to the public,
which is important to allow for reproducibility of the simulation results by other scientists,
data confidentiality must not be violated. With the developed methodology, it is possible
to simulate population data for complex household surveys that are both of high quality
and confidential.

Based on such synthetic population data, the estimation of social inclusion indicators
is evaluated in an application of the proposed simulation framework. As mentioned above,
Pareto distributions are fitted to the upper tail of income data by robust estimation in
order to reduce the influence of outlying observations on inequality indicators.

Since the distribution of income is related to quality of life, it is also of interest to
find statistical models that explain notions such as the cognition of quality of life. For
better interpretability in the social sciences, the models need to be limited to a small
number of explanatory variables with low interdependencies. Therefore, a robust model
selection method, combined with a strategy to reduce the number of selected predictor
variables to a necessary minimum, has been developed.

It is also important to note that all software developed for this thesis is freely avail-
able for the open-source statistical environment R (R Development Core Team 2010).
Availability of open-source software is highly important in research so that scientists are
able to use or even modify the latest state-of-the-art methods for their own work.

The rest of this introduction is organized as follows. In Section 1.1 and 1.2, the
two research projects mentioned above are described in more detail. Section 1.3 gives a
brief introduction on robust statistics. Basic concepts of statistical simulation are then
discussed in Section 1.4. Finally, Section 1.5 gives an overview of the remaining chapters
of this dissertation.

1.1 Project AMELI

In order to monitor risk-of-poverty and social cohesion in Europe for policy analysis
purposes, the European Union introduced a set of indicators called the Laeken indicators.
The EU-SILC (European Union Statistics on Income and Living Conditions) survey

2

1.1 Project AMELI

thereby serves as data basis for most of these indicators. EU-SILC is an annual panel
survey conducted in European Union member states and other European countries. As
indicated by its name, EU-SILC contains detailed information about the income of the
sampled households. Most notably, the total disposable household income is equivalized
with respect to the number of household members, and each person in the same household
is assigned the same equivalized disposable income (for details on its computation, see
EU-SILC 2004).

The project acronym AMELI stands for Advanced Methodology of the European
Laeken Indicators. The aim of the project is not only to improve the estimation of the
Laeken indicators directly, e.g., by applying robust methods, but also by enhancing the
data quality with, e.g., appropriate imputation or outlier detection methods. Extensive
simulation studies are thereby used to evaluate the developed methodology. Since many
partners from different institutions across Europe are involved in the AMELI project,
the simulation studies need to be well coordinated.

1.1.1 Selected Laeken indicators

Concerning robustness, the inequality indicators quintile share ratio (QSR) and Gini
coefficient are of particular interest (see Chapter 7). However, due to its importance,
the at-risk-of-poverty rate (ARPR) is mentioned here, too. The complete list of Laeken
indicators based on EU-SILC along with their definitions can be found in EU-SILC
(2004).

For the following definitions, let x := (x1, . . . , xn)′ be the equivalized disposable
income with x1 ≤ . . . ≤ xn and let w := (wi, . . . , wn)′ be the corresponding personal
sample weights, where n denotes the number of observations. Furthermore, let qα with
0 ≤ α ≤ 1 denote the weighted α quantile of x with weights w, and define the following
index sets for a certain threshold t:

I<t := {i ∈ {1, . . . , n} : xi < t}, (1.1)

I≤t := {i ∈ {1, . . . , n} : xi ≤ t}, (1.2)

I>t := {i ∈ {1, . . . , n} : xi > t}. (1.3)

At-risk-of-poverty rate (ARPR)

For the definition of the at-risk-of-poverty rate (ARPR), the at-risk-of-poverty threshold
(ARPT) needs to be introduced first, which is defined as 60% of the median equivalized
disposable income:

ARPT := 0.6 · q0.5. (1.4)

3

1.1 Project AMELI

Using this definition of the at-risk-of-poverty threshold, the at-risk-of-poverty rate is
defined as the percentage of persons (over the total population) with an equivalised dis-
posable income below the at-risk-of-poverty threshold (EU-SILC 2004). In mathematical
terms, it is estimated by

ARPR := 100 ·
∑

i∈I<ARPT wi∑n
i=1wi

, (1.5)

where I<ARPT is an index set as defined in (1.1).

Quintile share ratio (QSR)

The income quintile share ratio (QSR) is defined as the ratio of the sum of equivalized
disposable income received by the 20% of the population with the highest equivalized
disposable income to that received by the 20% of the population with the lowest equiv-
alized disposable income (EU-SILC 2004). Using index sets I≤q0.2 and I>q0.8 as defined
in (1.2) and (1.3), respectively, the quintile share ratio is estimated by

QSR :=

∑
i∈I>q0.8

wixi∑
i∈I≤q0.2

wixi
. (1.6)

Gini coefficient

The Gini coefficient is defined as the relationship of cumulative shares of the population
arranged according to the level of equivalized disposable income, to the cumulative share
of the equivalized total disposable income received by them (EU-SILC 2004). Mathe-
matically speaking, the Gini coefficient is estimated by

Gini := 100

2
∑n

i=1

(
wixi

∑i
j=1wj

)
−
∑n

i=1w
2
i xi

(
∑n

i=1wi)
∑n

i=1 (wixi)
− 1

 . (1.7)

For a visual explanation of the Gini coefficient, consider the Lorenz curve (Lorenz
1905). It is obtained by plotting the cumulative share of the population against the cu-
mulative share of income after sorting the observations according to income in ascending
order. An example is shown in Figure 1.1. If the income would be distributed in perfect
equality, i.e., each person receives the same income, the Lorenz curve would be a straight
line from (0, 0) to (1, 1). In any case, the Gini coefficient is given by

Gini = 100 · 2A, (1.8)

where A denotes the area between the Lorenz curve and the line of perfect equality.

4

1.2 Project ErfolgsVision

Cumulative % of population

C
um

ul
at

iv
e

%
 o

f i
nc

om
e

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

A

Line of perfect equality
Lorenz curve

Figure 1.1: Lorenz curve.

1.2 Project ErfolgsVision

The research project ErfolgsVision was a cooperation with the regional developer SPES
Academy and the applied social research center STUDIA-Schlierbach. The aim of the
project was to find statistical models for success factors of smaller municipalities, in
particular for the cognition of quality of life. An important requirement was that the
resulting models should be highly interpretable in the context of the social sciences,
therefore they should contain only very few key predictor variables and the dependencies
between those predictors should be low.

In order to be able to conduct this research, a large database containing socioeconomic
data from 60 communities in Austria and Germany together with data from official
statistical institutes about these communities has been built. The socioeconomic data
were thereby collected from 18 748 questionnaires filled out by inhabitants of the involved
municipalities, which corresponds to an average of 312 questionnaires per municipality.

1.3 Robust statistics

Statistical methods frequently make some assumptions about the data such as a normal
distribution. The fundamental principle of robust statistics is to allow certain parts

5

1.3 Robust statistics

of the data to deviate from the underlying assumptions. The parts of the data that
deviate from the main part are thereby referred to as contamination and the respective
observations as outliers. Consequently, in robust statistics the distribution F of such
contaminated data is typically modeled as a mixture of distributions

F = (1− ε)G+ εH, (1.9)

where ε denotes the contamination level , G is the distribution of the main part of the
data and H is the distribution of the contamination (e.g., Maronna et al. 2006).

The aim of robust statistical methods is to obtain estimates that are representative
for the majority of the data. Note that robust methods therefore are in general less
efficient than their classical counterparts, since they do not use all information from
all observations, i.e., by leaving out observations, or better, by downweighting suspi-
cious observations. In practice, it is thus often important to find a compromise between
robustness and efficiency.

1.3.1 Breakdown point

Classical methods such as maximum likelihood estimators use information from all ob-
served data points and are thus highly efficient if the underlying assumptions hold. How-
ever, if there are data points that deviate from these assumptions, the obtained results
may not reflect the majority of the data anymore or may even be completely arbitrary.
As an example, consider the sample mean x̄n := 1

n

∑n
i=1 xi, where n is the number of

observations and x = (x1 . . . , xn)′ denotes the observed vales. If only a single observation
xk with k ∈ {1, . . . , n} fixed is replaced by some other value x′k, then x̄n can be moved
arbitrarily far away from its original value by moving x′k away from the rest of the data.
To formalize this issue, Hampel (1971) introduced the notion of the breakdown point of
an estimator, which has been further refined in the literature on robust statistics.

Let θ̂n = θ̂n(X) be an estimate for the parameter θ given a sample X with n ob-
servations, and let the range of θ be denoted by the set Θ. Donoho and Huber (1983)
defined the replacement finite-sample breakdown point ε∗n(θ̂n,X) as the largest propor-
tion of data points that can be replaced by outliers such that θ̂n remains bounded and
also bounded away from the boundary ∂Θ of the parameter range Θ. For a more formal
definition, let Xm be the set of all data sets with n observations that result from arbi-
trarily replacing m observations in X. Then the replacement finite-sample breakdown

6

1.3 Robust statistics

point can be written as

ε∗n(θ̂n,X) := max
0≤m≤n

{m
n

: θ̂n(Y) bounded and bounded away from ∂Θ ∀Y ∈ Xm
}
.

(1.10)
In addition, the asymptotic breakdown point ε∗ is given by limn→∞ ε

∗
n, which exists in

most cases of interest (see Maronna et al. 2006). Thus the sample mean has an asymptotic
breakdown point of 0, as a single outlier can distort the result to an arbitrary extent.
It should be noted that ε∗ ≤ 1

2 holds for any estimator, as there must be more typical
than atypical data points. For further details on the breakdown point, including a formal
proof of the last statement, the reader is referred to Maronna et al. (2006).

1.3.2 Influence function

Another important concept in robust statistics is the influence function of an estimator
(Hampel 1974). As the name suggests, it is a measure for the influence of a small fraction
of identical outliers on the asymptotic behavior of an estimator. In order for an estimator
to be robust, its influence function must be bounded.

Let θ̂n = θ̂n(X) again be an estimate for the parameter θ given a sample X with n

i.i.d. observations coming from a distribution F . When n → ∞, there exists a value
θ̂∞ = θ̂∞(F) in most cases of practical interest such that θ̂n →p θ̂∞, which is called
the asymptotic value of the estimate at F (see Maronna et al. 2006). To continue the
example from the previous section, the asymptotic value of the sample mean x̄n is given
by the distribution mean EF (x). In any case, the influence function of an estimator θ̂ at
distribution F is defined as

IF (x, θ̂, F) := lim
ε→0+

θ̂∞ ((1− ε)F + εδx)− θ̂∞(F)
ε

, (1.11)

where δx is a probability distribution that assigns mass 1 to point x. A more detailed
discussion on the influence function can be found in Maronna et al. (2006).

1.3.3 Example: Covariance matrix estimation

As a further example for the necessity of robust statistics, consider covariance matrix
estimation in the two-dimensional case. In this motivational example, the classical sample
covariance matrix is compared to the robust minimum covariance determinant (MCD)
estimator (Rousseeuw and Van Driessen 1999) using simulated bivariate data. For a
given fraction α of data points, 1

2 ≤ α ≤ 1, the MCD seeks the subset of points for which
the determinant of the covariance matrix is minimal. The mean and covariance matrix of
this subset then constitute robust estimates of location and scatter with an asymptotic

7

1.3 Robust statistics

−2

0

2

4

−4 −2 0 2 4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●● ● ●

●
●●

classical
robust

Figure 1.2: Covariance matrix estimation in the two-dimensional case using classical and
robust methods.

breakdown point of 1− α. Improved estimates are obtained by applying a finite sample
correction factor and an asymptotic consistency factor. In practice, a suitable value for α
needs to be chosen. Setting α = 1

2 leads to the maximum breakdown point any estimator
can attain. If the proportion of outliers in the data is assumed to be smaller, increasing
the value of α results in higher efficiency.

Figure 1.2 show data from a bivariate normal distribution with a group of outliers
that are drawn from a normal distribution with a shifted mean and a deflated covariance
matrix. In addition, 97.5% tolerance ellipses for the classical covariance matrix and the
MCD with α = 3

4 are displayed. Clearly, the shape of the classical covariance matrix is
distorted by the outlier group, while the MCD represents the covariance structure of the
majority of the data very well.

1.3.4 Outliers in survey statistics

In survey statistics, Chambers (1986) introduced the notion of representative and non-
representative outliers. When samples are drawn from a finite population, each sampled
observation is assigned a weight and therefore represents a number of observations in
the population. Unless a basic sampling procedure such as simple random sampling is

8

1.4 Statistical simulation

used, the weights are in general not equal for all sampled observations and need to be
considered when quantities of interest such as indicators are estimated, otherwise the
obtained estimates will be biased.

Representative outliers in a sample are observations whose values have been recorded
correctly and cannot be regarded as unique in the population. Therefore, these observa-
tions contain some relevant information for estimating quantities of interest. Nonrepre-
sentative outliers, on the other hand, contain values that are either incorrect or unique
to the specific population element. In the first case, they need to be corrected in the
data editing process. If they are correct but can be considered unique in the population,
they need to be downweighted for the estimation of quantities of interest in order not to
corrupt the estimates.

1.4 Statistical simulation

In this section, some general principles of statistical simulation with special emphasis on
survey statistics are discussed. Monte Carlo simulation is widely used in statistics as a
computer-intensive method to gain insight into the behavior of developed methods or to
compare the performance of different methods in a controlled setting. The idea behind
Monte Carlo simulation studies is to perform identical computations on a sufficiently
large number of independent samples from the same population. Two main categories of
simulation studies are thereby distinguished in the literature: model-based and design-
based simulation.

In model-based simulation, samples are generated repeatedly from an infinite popu-
lation given by a certain distributional model. In every iteration, certain methods are
applied and quantities of interest are computed for comparison. Reference values can be
obtained from the underlying theoretical distribution where appropriate. This type of
simulation is typically performed when the methods of interest make certain assumptions
about the distribution of the data. An example is the comparison of outlier detection
methods, which typically assume a multivariate normal distribution. For an outline of
some general issues in the generation of random numbers, see Section 1.4.1.

Design-based simulation is popular in survey statistics, as samples are drawn re-
peatedly from a finite population. The close-to-reality approach thereby aims to be as
realistic as possible, e.g., using the sampling designs applied in real-life for specific sur-
veys such as EU-SILC (European Union Statistics on Income and Living Conditions).
In every iteration, certain estimators such as indicators are computed, or other proce-
dures such as imputation are applied. The obtained values can then be compared to
the true population values where appropriate. Nevertheless, since real population data

9

1.4 Statistical simulation

are in general not available to researchers, synthetic populations need to be generated
from existing samples (see Chapter 5). An example for design-based simulation is the
comparison of different methods for point- and variance estimation of social inclusion
indicators, as performed in the AMELI project (see Section 1.1). The general design of
such simulation studies is further discussed in Section 1.4.2

The two approaches described above are also frequently combined. In these so-called
mixed simulation designs, samples are drawn repeatedly from each generated data set.

1.4.1 Random number generation

The main problem in the generation of random numbers is that computers behave com-
pletely deterministic. Nevertheless, many strategies for the generation of pseudorandom
numbers have been developed to date. Uniform pseudorandom number generators aim
to be best possible approximations of a uniform distribution. An important example
for such random number generators is the Mersenne Twister introduced by Matsumoto
and Nishimura (1998). These uniform pseudorandom numbers can then be further trans-
formed in order to obtain pseudorandom numbers from other distributions. Introductions
to random number generation and statistical simulation can be found in, e.g., Morgan
(1984), Ripley (1987), Johnson (1987) and Jones et al. (2009).

Real random numbers can be generated based on atmospheric noise (see Haahr 2010).
For statistics research, however, reproducibility of the results is a necessity. Results
based on real random numbers of course cannot be reproduced. Pseudorandom number
generators, on the other hand, can be set to a certain state at any time. Identical
computations starting from the same state always produce identical results. Therefore,
pseudorandom number generators are in fact favorable for statistical computing.

1.4.2 General design of simulation studies in survey statistics

Close-to-reality simulation studies aim to be as realistic as possible, but they should
also be practical with respect to the best possible evaluation of statistical methods.
Starting from (synthetic) population data, samples are drawn repeatedly using the real-
life sampling methods and weighting schemes. In each simulation run, estimates for
certain quantities of interest such as indicators or the associated variance estimates are
computed from the corresponding sample. The results of all simulation runs are then
combined to form a distribution and are compared to the true values. See also Alfons
et al. (2009) for a more detailed discussion on the topic.

Concerning outliers and nonresponse, the most realistic perception of the world is that
they exist on the population level. Whether a person has an extremely high income or is
not willing to respond to certain questions of a survey does not depend on whether that

10

1.4 Statistical simulation

Figure 1.3: Outline of the most realistic design for simulation studies in survey statistics
(cf. Münnich et al. 2003b).

person is actually in the sample. Hence the most realistic simulation design is to apply
modifications such as contamination and nonresponse to the population, as proposed by
Münnich et al. (2003b). A diagram depicting this process is shown in Figure 1.3. It is
important to note that this approach results in an unpredictable amount of outliers or
missing values in the samples, which is a clear disadvantage.

If robustness properties of the considered estimators are the main focus of a simula-
tion, or if outlier detection methods are investigated, maximum control over the amount
of contaminated observations is necessary for a thorough evaluation. The same principle
applies with respect to the amount of missing values if the treatment of incomplete data
is the main interest. In order to solve this problem, Alfons et al. (2009) proposed to
add contamination and nonresponse to the samples instead of the population. While
this approach may not truly reflect the real processes, it may be more practical from a
statistician’s point of view. Nevertheless, it should be noted that adding contamination
and nonresponse to samples comes with increasing computational costs for an increasing
number of simulation runs. Figure 1.4 visualizes the general outline of such a simulation
design.

11

1.4 Statistical simulation

Figure 1.4: Outline of a more practical approach for the simulation studies in survey
statistics.

Since real population data are in most cases not available to researchers, synthetic
population data usually need to be generated to be able to perform close-to-reality sim-
ulation studies in survey statistics. These simulated data are generated from an original
sample such that the properties of the underlying sample are reflected (see Chapter 5
for details). Hence also nonresponse in the population may be generated with a model
from the underlying sample (see Section 1.4.5). However, the situation is much more
complicated with contamination. While nonresponse is clearly visible in a sample, the
contaminated observations are not known beforehand. Outlier detection methods may
be applied, but the results still leave some uncertainty. Even if outliers are detected, it
is still necessary to find a model for their distribution, which may or may not depend
on the majority of the observations. Simply experimenting with different proportions
of outliers and different distributions for the contamination might be a more practical
approach. In any case, the design of simulation studies should not be confined to only the
most realistic contamination and missing data models. The better the behavior of the
developed methodology is known, the better recommendations for its use can be given.

12

1.4 Statistical simulation

1.4.3 Finite population sampling and weighting

In survey statistics, the observations in the population are considered to contain fixed
values that do not vary. Randomness and uncertainty are introduced by the sampling
process. As a consequence, many different sampling algorithms from finite populations
have been proposed in the literature.

The most basic sampling method is simple random sampling , where each element in
the population is included in the sample with the same probability. However, often the
behavior of different subpopulations is of interest in a survey. In order to ensure that
all subpopulations are represented by a sufficient number of observations in the sample,
stratified sampling , i.e., drawing samples separately from the different subpopulations,
may be applied. If the subgroups are relatively homogeneous but there are strong het-
erogeneities between the subpopulations, stratified sampling reduces the variance of the
obtained estimates (see, e.g., Cochran 1977). It is therefore important that variables
with strong correlations to the variables of interest are used for stratification. Another
important technique frequently applied in practice, mostly for reasons of cost minimiza-
tion, is cluster sampling . Again, the population is divided into different subgroups, but
then a sample of the groups is selected and all individuals from the selected groups are
included in the sample. Cluster sampling is highly efficient if the inclusion probabilities
are approximately proportional to the cluster sizes and there is little variation between
the clusters (e.g., Särndal et al. 2003). This idea can be further generalized to multi-stage
sampling designs, where secondary sampling units are then drawn from the primary sam-
pling units, etc. For more information on such sampling techniques, the reader is referred
to Cochran (1977) and Särndal et al. (2003).

For doing statistical analysis with survey samples, it is often desirable that certain
(smaller) population subgroups are overrepresented. Consequently, many different algo-
rithms for taking samples from a finite population with unequal probabilities have been
introduced in the literature. Important examples are Midzuno sampling (Midzuno 1952),
Poisson sampling (Hájek 1964), Sampford sampling (Sampford 1967), maximum entropy
sampling (Chen et al. 1994) and Tillé sampling (Tillé 1996, Deville and Tillé 1998). An
overview of a large collection of sampling algorithms is given in Tillé (2006).

When samples are taken from a finite population, each observation in the sample
represents a number of observations in the population, as indicated by the sample weights.
The initial design weights are thereby given by 1

πi
, i = 1, . . . , n, where πi denotes the

inclusion probabilities and n is the number of sampled observations. These initial weights
are often modified by calibration (e.g., Deville et al. 1993) to obtain a set of weights that
for certain subgroups sum up to known marginal population totals. In the case of simple
random sampling, calibration is performed after poststratification (e.g., Cochran 1977).

13

1.4 Statistical simulation

A different approach is balanced sampling , which already in the sampling process ensures
that certain marginal totals are respected. Deville and Tillé (2004) and Chauvet and
Tillé (2006) fairly recently developed a fast algorithm for balanced sampling called the
cube method.

In close-to-reality simulation studies, the sampling designs and weighting schemes
used in real life should certainly be considered. Nevertheless, also other methods should
be investigated to see if improvements are possible, e.g., for variance estimation.

1.4.4 Contamination models

When evaluating robust statistical methods in simulation studies, a certain part of the
data needs to be contaminated, so that the influence of these outliers on the robust
estimators (and possibly their classical counterparts) can be studied. In robust statistics,
the distribution of contaminated data is typically modeled as a mixture of distributions as
given in (1.9). Consequently, outliers may be modeled by a two-step process in simulation
studies (Béguin and Hulliger 2008, Hulliger and Schoch 2009a):

1. Select the observations to be contaminated. If the probabilities of selection do not
depend on any information in the data set, the outliers may be called outlying
completely at random (OCAR), otherwise they may be called outlying at random
(OAR).

2. Model the distribution of the outliers. If the distribution does not depend on
the original values of the selected observations, the contamination may be called
distributed completely at random (DCAR) or contaminated completely at random
(CCAR), otherwise it may be called distributed at random (DAR) or contaminated
at random (CAR).

A more detailed mathematical notation of this process is given in Chapter 4, therefore
it is omitted here.

1.4.5 Missing data models

This section discusses the use of missing data models in Monte Carlo simulation studies.
Missing values are included in many data sets, in particular survey data hardly ever
contain complete information. In practice, missing values often need to be imputed,
which results in additional uncertainty in further statistical analysis (e.g., Little and
Rubin 2002). This additional variability needs to be considered when computing variance
estimates or confidence intervals. In simulation studies, it may therefore be of interest
to study the properties of different imputation methods or to investigate the influence of
missing values on point and variance estimates.

14

1.4 Statistical simulation

First, the theorectical concepts of different missing data mechanisms are presented.
Afterwards, a brief outline on how to incorporate such missing data mechanisms in
simulations is given.

Missing data mechanisms

In the missing data literature, three important cases of processes generating missing
values are commonly distinguished, based on ideas by Rubin (1976). For a more detailed
discussion on these missing data mechanisms, the reader is referred to Little and Rubin
(2002).

Let X = (xij)1≤i≤n,1≤j≤p denote the data, where n is the number of observations
and p the number of variables, and let M = (Mij)1≤i≤n,1≤j≤p be an indicator whether
an observation is missing (Mij = 1) or not (Mij = 0). Furthermore, let the observed and
missing parts of the data be denoted by Xobs and Xmiss, respectively. The missing data
mechanism is then characterized by the conditional distribution of M given X, denoted
by f(M |X,φ), where φ denotes unknown parameters (see Little and Rubin 2002).

The missing values are missing completely at random (MCAR) if the missingness
does not depend on the data X, i.e., if

f(M |X,φ) = f(M |φ). (1.12)

Note that there may still be a certain pattern in the missing values, depending on the un-
known parameters φ, but such a pattern will be independent of the actual data. A more
general scenario is given if the missingness depends on the observed information Xobs.
In this case, the missing values are missing at random (MAR), which translates to the
equation

f(M |X,φ) = f(M |Xobs,φ). (1.13)

On the other hand, the missing values are said to be missing not at random (MNAR) if
Equation (1.13) is violated. This can be written as

f(M |X,φ) = f(M |(Xobs,Xmiss),φ). (1.14)

Hence, in the latter case, the missing values cannot be fully explained by the observed
part of the data.

A motivational example for the different missing data mechanisms is given in Little
and Rubin (2002). Consider two variables age and income, with missing values in income.
If the probability of missingness is the same for all individuals, regardless of their age
or income, then the data are MCAR. If the probability that income is missing varies

15

1.4 Statistical simulation

Complete data
y

Chosen mechanism: MNAR

x

User knowledge

Figure 1.5: Simulated bivariate data set with high correlation. Left : Complete data.
Center : Red points are chosen as missing in y, depending on the value of y (MNAR).
Right : Information is only available for x-values in practice.

according to the age of the respondent, but does not vary according to the income of
respondents with the same age, then the data are MAR. If the probability that income
is recorded varies according to income for those with the same age, then the data are
MNAR. Note that MNAR cannot be detected in practice, as this would require knowledge
of the missing values themselves. This problem is further illustrated in Figures 1.5 and 1.6
using simulated bivariate data sets.

Figure 1.5 shows a highly correlated bivariate data set with variables x and y. From
the complete data (left), the y-part of some observations are marked as missing depending
on the value of y (center). The probability of missingness is higher for larger values in
y, hence the missing values in this example are constructed as MNAR. Nevertheless, in
practice only the x-part of the observations with missing values in y are known (right),
i.e., it is only observable that the amount of missing values increases for increasing x-
values. Therefore, a MAR situation would be assumed knowing that this could also be
an MNAR situation. In other words, it is impossible to distinguish between MAR and
MNAR due to the high correlation between x and y.

A similar picture is displayed in Figure 1.6, but with uncorrelated variables. Again,
the y-part of some observations is marked as missing depending on the value of y
(MNAR). In practice, however, the probability of missingness seems to be completely in-
dependent from the data values, therefore an MCAR situation would be detected. Since
an MNAR situation cannot be confirmed or ruled out, it is impossible to distinguish
between MCAR and MNAR in the case of uncorrelated variables.

The performance of imputation methods usually depends, among other things, on the
multivariate structure of the missing values. In simulation studies in survey statistics,
realistic missing data scenarios should be investigated. Therefore, the existing real-life

16

1.4 Statistical simulation

Complete data
y

Chosen mechanism: MNAR

x

User knowledge

Figure 1.6: Simulated bivariate data set without correlation. Left : Complete data.
Center : Red points are chosen as missing in y, depending on the value of y (MNAR).
Right : Information is only available for x-values in practice.

samples of the survey of interest need to be studied. The R package VIM (Templ and
Filzmoser 2008, Templ et al. 2010a) contains visualization tools for exploring incomplete
data that allow not only to detect the missing value mechanisms (MAR or MCAR), but
also to gain insight into the quality and various other aspects of the data at the same
time.

Adding missing data in simulations

Choosing variables in which missing values should be inserted is the first step of adding
missing data in a simulation study. These variables will in the following be referred to
as target variables.

Random insertion of missing values: MCAR situations can be generated by select-
ing observations for every target variable with simple random sampling. Using unequal
probability sampling makes it possible to account for MAR or MNAR situations. The
inclusion probabilities may thereby be derived from one or more variables. In any case,
different missing value rates may be used for the different target variables. More diffi-
cult situations require special treatment, though. An important example is that missing
values in one variable may only occur for observations with missing values in another
variable.

Response propensity models: In simulation studies in survey statistics, a com-
pletely different approach for generating MAR situations is to use a logit model, which
can be obtained from the simulation’s underlying real-life sample. With the imputed
original sample, even MNAR situations may be generated. More details on response

17

1.4 Statistical simulation

propensity models with several applications can be found in Münnich et al. (2003a).
The advantage of this method is that it is a more analytical approach for generating
realistic nonresponse scenarios. However, the resulting number of missing values is not
predictable. Thus response propensity models are more suitable for adding nonresponse
to population data than to samples, as having maximum control over the number of
missing values is the motivation for the latter.

1.4.6 Parallel computing

Monte Carlo simulation is based on carrying out identical computations on a sufficiently
large number of independent samples from the same population (either an infinite pop-
ulation given by a certain theoretical distribution or a finite population). Hence such
simulations are an embarrassingly parallel process, i.e., computational performance can
be increased by parallel computing. As nowadays nearly every computer in use has multi-
ple processor cores or even CPUs, parallel computing is an ever growing field of research.
Nevertheless, there are some issues regarding the random number generator that need
to be considered when using parallel computing for simulation studies in statistics.

If computations are spread out over a number of parallel processes and standard
sequential random number generators are used, there may be overlaps in the produced
sequences of random numbers. In the worst case, the sequential random number gen-
erators are initialized with the same seed and identical sequences are generated in each
of the parallel processes, which for Monte Carlo simulation means that identical results
are produced. Combining the simulation results from the different processes in order to
form a distribution then clearly suffers from a loss of efficiency compared to producing
the same number of results in a single process. This loss of efficiency is due to the fact
that the samples are no longer independent of each other. However, simply initializing
the sequential random number generators with a different or random seed is not enough
to avoid this problem. One generator may at some point reach a certain state that
another generator was in at a previous step. Then the remaining sequence of random
numbers produced by the first generator has also been produced by the second one, thus
the requirement of independence is again violated.

As a remedy, parallel random number generators that produce multiple independent
streams of random numbers have been developed. Important examples are the gener-
ators developed by L’Ecuyer et al. (2002) and Mascagni and Srinivasan (2000). When
performing statistical simulation by parallel computing, it is thus absolutely essential
that such parallel random number streams are used.

18

1.5 Outline of the remaining chapters

1.5 Outline of the remaining chapters

Chapters 2–4 introduce a general framework for statistical simulation that has been im-
plemented in the statistical environment R (R Development Core Team 2010) as the
add-on package simFrame (Alfons 2010). In particular, Chapter 2 discusses the im-
plementation in great detail and has been accepted for publication in the Journal of
Statistical Software (Alfons et al. 2010e). Chapter 3 is supplementary material to the
paper from Chapter 2 and will be available on the website of the Journal of Statis-
tical Software. It contains additional code examples demonstrating the strengths and
usefulness of the developed framework. In Chapter 4, which has been published in the
conference proceedings Computer Data Analysis and Modeling: Complex Stochastic Data
and Systems (Alfons et al. 2010d), the contamination models implemented in simFrame

for the evaluation of robust statistical methods are described in more detail.

For close-to-reality simulation studies in survey statistics, synthetic population data
are necessary. Therefore, a method for the simulation of population data for complex
household surveys such as EU-SILC has been developed and implemented in the R pack-
age simPopulation (Alfons and Kraft 2010). The statistical methodology is described
in detail in Chapter 5, which has been submitted to the journal Statistical Methods &
Applications. An earlier version of the paper is available as technical report (Alfons et al.
2010c). Data confidentiality issues of such synthetic population data are then discussed
in Chapter 6, which has been published in Privacy in Statistical Databases, volume 6344
of Lecture Notes in Computer Science (Templ and Alfons 2010).

Chapter 7 applies the simulation methodology from the previous chapters to investi-
gate the use of robust Pareto tail modeling to reduce the influence of outliers on selected
Laeken indicators. It is a slightly corrected version of a paper published in Combin-
ing Soft Computing and Statistical Methods in Data Analysis, volume 77 of Advances
in Intelligent and Soft Computing (Alfons et al. 2010f). The selected Laeken indicators
and methods for Pareto tail modeling have been implemented in the R package laeken

(Alfons et al. 2010b).

Another application of robust statistics in a related topic is presented in Chapter 8,
which has been accepted for publication in the journal Statistical Methods & Applica-
tions (Alfons et al. 2010a). More precisely, a robust variable selection procedure for
applications in the social sciences has been developed and demonstrated in an applica-
tion to quality of life research. The R code for the procedure is freely available from
http://www.statistik.tuwien.ac.at/public/filz/programs.html. It could not be
published as a package, as it requires code by Khan et al. (2007b) that is only available
from the website of these authors as well.

19

http://www.statistik.tuwien.ac.at/public/filz/programs.html

1.5 Outline of the remaining chapters

1.5.1 Overview of the remaining chapters

To summarize the contents of this thesis, this section provides a short overview of the
remaining chapters. In addition, it is indicated whether or where they have already been
published.

Chapter 2

A. Alfons, M. Templ, and P. Filzmoser. An object-oriented framework for statistical
simulation: The R package simFrame. Journal of Statistical Software. Accepted
for publication.

Chapter 3

A. Alfons, M. Templ, and P. Filzmoser. Applications of statistical simulation in the
case of EU-SILC: Using the R package simFrame. Journal of Statistical Software.
Supplementary material to the paper from Chapter 2.

Chapter 4

A. Alfons, M. Templ, and P. Filzmoser. Contamination models in the R package
simFrame for statistical simulation. In S. Aivazian, P. Filzmoser, and Y. Kharin
(editors), Computer Data Analysis and Modeling: Complex Stochastic Data and
Systems, volume 2, pages 178–181, Minsk, 2010. ISBN 978-985-476-848-9.

Chapter 5

A. Alfons, S. Kraft, M. Templ, and P. Filzmoser. Simulation of close-to-reality
population data for household surveys with application to EU-SILC. Revision sub-
mitted to Statistical Methods & Applications.

Chapter 6

M. Templ and A. Alfons. Disclosure risk of synthetic population data with applica-
tion in the case of EU-SILC. In J. Domingo-Ferrer and E. Magkos (editors), Privacy
in Statistical Databases, volume 6344 of Lecture Notes in Computer Science, pages
174–186. Springer, Heidelberg, 2010. ISBN 978-3-642-15837-7.

Chapter 7

A. Alfons, M. Templ, P. Filzmoser, and J. Holzer. A comparison of robust meth-
ods for Pareto tail modeling in the case of Laeken indicators. In C. Borgelt,
G. González-Rodŕıguez, W. Trutschnig, M.A. Lubiano, M.A. Gil, P. Grzegorzewski,
and O. Hryniewicz (editors), Combining Soft Computing and Statistical Methods
in Data Analysis, volume 77 of Advances in Intelligent and Soft Computing, pages
17–24. Springer, Heidelberg, 2010. ISBN 978-3-642-14745-6.

20

1.5 Outline of the remaining chapters

Chapter 8

A. Alfons, W.E. Baaske, P. Filzmoser, W. Mader, and R. Wieser. Robust variable
selection with application to quality of life research. Statistical Methods & Ap-
plications, pages 1–18, 2010. http://dx.doi.org/10.1007/s10260-010-0151-y.
DOI 10.1007/s10260-010-0151-y, to appear.

21

http://dx.doi.org/10.1007/s10260-010-0151-y

Chapter 2

An object-oriented framework for

statistical simulation: The R

package simFrame

Accepted for publication in the Journal of Statistical Software (Alfons et al. 2010e).

Andreas Alfonsa, Matthias Templa,b, Peter Filzmosera

a Department of Statistics and Probability Theory, Vienna University of Technology
b Methods Unit, Statistics Austria

Abstract Simulation studies are widely used by statisticians to gain insight into the
quality of developed methods. Usually some guidelines regarding, e.g., simulation de-
signs, contamination, missing data models or evaluation criteria are necessary in order
to draw meaningful conclusions. The R package simFrame is an object-oriented frame-
work for statistical simulation, which allows researchers to make use of a wide range of
simulation designs with a minimal effort of programming. Its object-oriented implemen-
tation provides clear interfaces for extensions by the user. Since statistical simulation
is an embarrassingly parallel process, the framework supports parallel computing to in-
crease computational performance. Furthermore, an appropriate plot method is selected
automatically depending on the structure of the simulation results. In this paper, the
implementation of simFrame is discussed in great detail and the functionality of the
framework is demonstrated in examples for different simulation designs.

Keywords R, statistical simulation, outliers, missing values, parallel computing

22

2.1 Introduction

2.1 Introduction

Due to the complexity of modern statistical methods, obtaining analytical results about
their properties is often virtually impossible. Therefore, simulation studies are widely
used by statisticians as data-based, computer-intensive alternatives for gaining insight
into the quality of developed methods. However, research projects commonly involve
many scientists, often from different institutions, each focusing on different aspects of
the project. If these researchers use different simulation designs, the results may be
incomparable, which in turn makes it impossible to draw meaningful conclusions. Hence
simulation studies in such research projects require a precise outline.

The R package simFrame (Alfons 2010) is an object-oriented framework for statis-
tical simulation addressing this problem. Its implementation follows an object-oriented
approach based on S4 classes and methods (Chambers 1998, 2008). A key feature is
that statisticians can make use of a wide range of simulation designs with a minimal
effort of programming. The object-oriented implementation gives maximum control over
input and output, while at the same time providing clear interfaces for extensions by
user-defined classes and methods.

Comprehensive literature exists on statistical simulation, but is mainly focused on
technical aspects (e.g., Morgan 1984, Ripley 1987, Johnson 1987). Unfortunately, hardly
any publications are available regarding the conceptual elements and general design of
modern simulation experiments. To name some examples, Münnich et al. (2003b) and
Alfons et al. (2009) describe how close-to-reality simulations may be performed in survey
statistics, while Burton et al. (2006) address applications in medical statistics. Fur-
thermore, while simulation studies are widely used in scientific articles, they are often
described only briefly and without sufficient details on all the processes involved. Having
a framework with different simulation designs ready at hand may help statisticians to
plan simulation studies for their needs.

Statistical simulation is frequently divided into two categories: design-based and
model-based simulation. Design-based simulation is popular in survey statistics, as sam-
ples are drawn repeatedly from a finite population. The close-to-reality approach thereby
uses the true sampling designs for real-life surveys such as EU-SILC (European Union
Statistics on Income and Living Conditions). In every iteration, certain estimators such
as indicators are computed or other statistical procedures such as imputation are applied.
The obtained values can then be compared to the true population values where appropri-
ate. Nevertheless, since real population data is only in few cases available to researchers,
synthetic populations may be generated from existing samples (see, e.g., Münnich et al.
2003b, Münnich and Schürle 2003, Raghunathan et al. 2003, Alfons et al. 2010c). Such
synthetic populations must reflect the structure of the underlying sample regarding de-

23

2.2 Object-oriented programming and S4

pendencies among the variables and heterogeneity. For household surveys, population
data can be generated using the R package simPopulation (Alfons and Kraft 2010). In
model-based simulation, on the other hand, data sets are generated repeatedly from a
distributional model or a mixture of distributions. In every iteration, certain methods
are applied and quantities of interest are computed for comparison. Where appropriate,
reference values can be obtained from the underlying theoretical distribution. Mixed
simulation designs constitute a combination of the two approaches, in which samples are
drawn repeatedly from each generated data set.

The package simFrame is intended to be as general as possible, but has initially
been developed for close-to-reality simulation studies in survey statistics. Moreover, it
is focused on simulations involving typical data problems such as outliers and missing
values. Therefore, certain proportions of the data may be contaminated or set as missing
in order to investigate the quality and behavior of, e.g., robust estimators or imputation
methods. In addition, an appropriate plot method for the simulation results is selected
automatically depending on their structure. Note that statistical simulation is a very
loose concept, though, and that the application of simFrame may be subject to limitations
in certain scenarios.

Section 2.2 gives a brief introduction to the basic concepts of object-oriented pro-
gramming and the S4 system. In Section 2.3, the design of the framework is motivated
and Section 2.4 describes the implementation in great detail. Section 2.5 then provides
details about parallel computing with simFrame. The use of the package for different
simulation designs is demonstrated in Section 2.6. Additional examples for design-based
simulation are given in a supplementary paper. How to extend the framework is outlined
in Section 2.7. Finally, Section 2.8 contains concluding remarks and gives an outlook on
future developments.

2.2 Object-oriented programming and S4

The object-oriented paradigm states that problems are formulated using interacting ob-
jects rather than a set of functions. The properties of these objects are defined by classes
and their behavior and interactions are modeled with generic functions and methods.
One of the most important concepts of object-oriented programming is class inheri-
tance, i.e., subclasses inherit properties and behavior from their superclasses. Thus code
can be shared for related classes, which is the main advantage of inheritance. In addi-
tion, subclasses may have additional properties and behavior, so in this sense they extend
their superclasses. In S4 (Chambers 1998, 2008), properties of objects are stored in slots
and can be accessed or modified with the @ operator or the slot() function. However,

24

2.3 Design of the framework

accessor and mutator methods are supposed to be used to access or modify properties
of objects in simFrame (see Section 2.3.3). Virtual classes are special classes from which
no objects can be created. They exist for the sole reason of sharing code. Furthermore,
class unions are special virtual classes with no slots.

Generic functions define the formal arguments that are evaluated in a function call
in order to select the actual method to be used. These methods are defined by their sig-
natures, which assign classes to the formal arguments. In short, generic functions define
what should be done and methods define how this should be done for different (combi-
nations of) classes. As an example, the generic function setNA() is used in simFrame to
insert missing values into a data set. These are the available methods:

R> showMethods("setNA")

Function: setNA (package simFrame)

x="data.frame", control="character"

x="data.frame", control="missing"

x="data.frame", control="NAControl"

Even though a simple object-oriented mechanism was introduced in S3 (Chambers
and Hastie 1992), it is not sufficient for the purpose of implementing a flexible framework
for statistical simulation. Only S4 offers consequent implementations of advanced object-
oriented techniques such as inheritance, object validation and method signatures. In S3,
inheritance is realized by simply using a vector for the class attribute, hence there
is no way to guarantee that the subclass contains all properties of the superclass. It
should be noted that the tradeoff of these advanced programming techniques is a slightly
increased computational overhead. Nevertheless, with modern computing power, this is
not a substantial issue.

2.3 Design of the framework

Statistical simulation in R (R Development Core Team 2010) is often done using bespoke
use-once-and-throw-away scripts, which is perfectly fine when only a handful of simula-
tion studies need to be done for a specific purpose such as a paper. But when a research
project is based on extensive simulation studies with many different simulation designs,
this approach has its limitations since substantial changes may need to be applied to the
R scripts for each design. In addition, if many partners are involved in the project and
each of them writes their own scripts, they need to be very well coordinated so that the
implemented simulation designs are similar, otherwise the obtained results may not be
comparable.

25

2.3 Design of the framework

The fundamental design principle of simFrame is that the behavior of functions is
determined by control objects. A collection of such control objects, including a function
to be applied in each iteration, is simply plugged into a generic function called runSimu-

lation(), which then performs the simulation experiment. This allows to easily switch
from one simulation design to another by just plugging in different control objects. Note
that the user does not have to program any loops for iterations or collect the results in
a suitable data structure, the framework takes care of this. Furthermore, by using the
package as a common framework for simulation in research projects, guidelines for simu-
lation studies may be defined by selecting specific control classes and parameter settings.
If the researchers decide on a set of control objects to be used in the simulation stud-
ies, this ensures comparability of the obtained results and avoids problems with drawing
conclusions from the project. Defining control objects thereby requires only a few lines
of code, and storing them as RData files in order to distribute them among partners is
much easier than ensuring that a large number of R scripts with big chunks of bespoke
code are comparable.

As a motivational example, consider a research project in which researchers A and B
investigate a specific survey such as EU-SILC (European Union Statistics on Income
and Living Conditions). Researcher A focuses on robust estimation of certain indicators,
while researcher B tries to improve the data quality with more suitable imputation and
outlier detection methods. The aim of the project is to evaluate the developed methods
with extensive simulation studies. In order to be as realistic as possible, design-based
simulation studies are performed, where samples are drawn repeatedly from (synthetic)
population data. Let the survey of interest in real life be conducted in many countries
with different sampling designs. Then A and B could each define some control objects
for the most common sampling designs and exchange them so that they can plug each
of them into the function runSimulation() along with the population data.

Since imputation methods and outlier detection methods typically make some the-
oretical assumptions about the data, B could also carry out model-based simulation
studies, in which the data are repeatedly generated from a certain theoretical distribu-
tion. All B needs to change is to define a control object to generate the data and supply it
to runSimulation() instead of the population data and the control object for sampling.

Both researchers in this example investigate robust methods. It may be of interest to
explore the behavior of these methods under different contamination models (the term
contamination is used in a technical sense in this paper, see Section 2.4.3 for a definition).
This can again be done by defining and exchanging a set of control objects. In addition,
B can define various control objects for inserting missing values into the data in order
to study the performance of imputation methods. Switching from one contamination

26

2.3 Design of the framework

model or missing data mechanism to another is simply done by replacing the respective
control object in the call to runSimulation(). B could also supply a control object
for inserting contamination and one for inserting missing values to investigate robust
imputation methods or outlier detection methods for incomplete data.

One example for such research projects is the project AMELI (Advanced Methodology
of European Laeken Indicators, http://ameli.surveystatistics.net), in the course
of which the package simFrame has been developed.

2.3.1 UML class diagram

The Unified Modeling Language (UML) (Fowler 2003) is a standardized modeling lan-
guage used in software engineering. It provides a set of graphical tools to model object-
oriented programs. A class diagram visualizes the structure of a software system by
showing classes, attributes, and relationships between the classes. Figure 2.1 shows a
slightly simplified UML class diagram of simFrame.

In this example, classes are represented by boxes with two parts. The top part
contains the name of the class and the bottom part lists its slots. Class names in italics
thereby indicate virtual classes. Furthermore, each slot is followed by the name of its
class, which can be a basic R data type such as numeric, character, logical, list or
function, but also an S4 class.

Lines or arrows of different forms represent class relationships. Inheritance is denoted
by an arrow with an empty triangular head pointing to the superclass. Composition, i.e.,
a class having another class as a slot, is depicted by an arrow with a solid black diamond
on the side of the composed class. A solid line indicates an association between two
classes. Here an association signals that there is a method with one class as primary input
and the other class as output. Last but not least, a dashed line denotes an association
class, which in the case of simFrame is a control class that is not the primary input of
the corresponding method but nevertheless determines its behavior.

2.3.2 Naming conventions

In order to facilitate the usage of the framework, the following naming rules are intro-
duced:

• Names of classes, slots, functions and methods are alphanumeric in mixed case,
where the first letter of each internal word is capitalized.

• Class names start with an uppercase letter.

27

http://ameli.surveystatistics.net

2.3 Design of the framework

Figure 2.1: Slightly simplified UML class diagram of simFrame.

28

2.4 Implementation

• Functions, methods and slots start with a lowercase letter. Exceptions are functions
that initialize a class, which are called constructors and have the same name as the
class.

• Violate the above rules whenever necessary to maintain compatibility.

These rules are based on code conventions for the programming language Java (e.g.,
Arnold et al. 2005), see http://java.sun.com/docs/codeconv/. Some R packages,
e.g., rrcov (Todorov and Filzmoser 2009, Todorov 2010), use similar rules.

2.3.3 Accessor and mutator methods

In object-oriented programming languages, accessor and mutator methods are typically
used to retrieve and change the properties of a class, respectively. The idea behind this
concept is to hide information about the actual implementation of a class (e.g., what
data structures are used) from the user. In simFrame, accessors are named getFoo()

and mutators are named setFoo(), where foo is the name of the corresponding slot.
This naming convention is common in Java and is also used in some R packages (e.g.,
rrcov).

The use of accessor and mutator methods in simFrame is illustrated with the class
NAControl, which handles the insertion of missing values into a data set (see Sec-
tion 2.4.4). Its slot NArate controls the proportion of missing values to be inserted.

R> nc <- NAControl(NArate = 0.05)

R> getNArate(nc)

[1] 0.05

R> setNArate(nc, c(0.01, 0.03, 0.05, 0.07, 0.09))

R> getNArate(nc)

[1] 0.01 0.03 0.05 0.07 0.09

Note that if no method setFoo() is available, the slot is not supposed to be changed
by the user. However, as already mentioned in Section 2.2, R allows every slot to be
modified with the @ operator or the slot() function.

2.4 Implementation

The open-source statistical environment R has become the main framework for computing
in statistics research. One of its main advantages is that it includes a well-developed

29

http://java.sun.com/docs/codeconv/

2.4 Implementation

programming language and provides interfaces to many others, including the fast low-
level languages C and Fortran. The S4 system (Chambers 1998, 2008) complies with all
requirements for an object-oriented framework for statistical simulation. Thus most of
simFrame is implemented as S4 classes and methods, except some utility functions and
some C code.

Method selection for generic functions is based on control classes, which in most
cases provides the interfaces for extensions by developers (see Section 2.7). Most of these
generic functions are not expected to be called by the user directly. The idea of the
framework is rather to define a number of control objects and to supply them to the
function runSimulation(), which performs the whole simulation experiment and calls
the other functions internally (see Section 2.4.5 or the examples in Section 2.6).

2.4.1 Data handling

In R, data are typically stored in a data.frame, and simFrame is no exception. However,
when samples are taken from a finite population in design-based simulation studies, each
observation in the sample represents a number of observations in the population, given by
the sample weights. Unless a basic sampling procedure such as simple random sampling
is used, the weights are in general not equal for all sampled observations and need to
be considered to obtain unbiased estimates. But even if the weights are equal for all
observations, they may be needed for the estimation of population totals (e.g., the total
turnover of all businesses in a country). In practice, the initial weights are also frequently
modified by calibration (e.g., Deville et al. 1993), which for simple random sampling is
done after post-stratification (e.g., Cochran 1977). Therefore, the sample weights need
to be stored.

In addition, the package has been designed with special emphasis on simulations in-
volving typical data problems such as outliers and missing values. It offers mechanisms
to contaminate the data and insert missing values so that the influence of these data
problems on statistical methods can be investigated, or that outlier detection or imputa-
tion methods can be evaluated. The term contamination is used in a technical sense here
(see Section 2.4.3 for a definition). Information on which observations are contaminated
is often required, both for the user running simulations and for internal use. Since it
cannot be retrieved from the data otherwise, it needs to be saved.

As a result, additional variables are added to the data set in these situations. The
names of the additional variables are ".weight" and ".contaminated", respectively.
Hence these column names should be avoided (which is why they start with a dot), or
else the corresponding columns will be overwritten.

30

2.4 Implementation

Statistical methods often make assumptions about the distribution of the data, e.g.,
outlier detection methods in multivariate statistics usually assume that the majority
of the data follow a multivariate normal distribution. Consequently, such methods are
typically tested in simulations on data coming from a certain theoretical distribution. The
generation of data from a distributional model is handled by control classes inheriting
from the class union (which is a special virtual class with no slots) VirtualDataControl.
This virtual class is available so that the framework can be extended by the user (see
Section 2.7.1). A simple control class already implemented in simFrame is DataControl.
It consists of the following slots (see also Figure 2.1):

size: The number of observations to be generated.

distribution: A function for generating the data, e.g., rmvnorm in package mvtnorm

(Genz and Bretz 2009, Genz et al. 2010) for data following a multivariate normal
distribution. It should take a positive integer as its first argument (the slot size

will be passed) and return an object that can be coerced to a data.frame.

dots: Additional arguments to be passed to distribution.

The following example demonstrates how to define a control object for generating
data from a multivariate normal distribution.

R> library("mvtnorm")

R> dc <- DataControl(size = 10, distribution = rmvnorm, dots =

+ list(mean = rep(0, 2), sigma = matrix(c(1, 0.5, 0.5, 1), 2, 2)))

In a model-based simulation study, such a control object is then used by the framework
in repeated internal calls of the generic function generate(control, ...).

R> foo <- generate(dc)

R> foo

V1 V2

1 -1.289442540 -0.77334436

2 0.009574644 -0.89256328

3 0.846580448 -0.46912965

4 -2.249086822 -0.54484880

5 0.662837956 1.03786573

6 0.460268469 0.02444930

7 -0.687415163 -0.64235093

8 -0.763840555 -1.02162592

31

2.4 Implementation

9 -0.761894738 -0.95473667

10 -0.234446371 2.10315885

While the function generate() is designed to be called internally by the simulation
framework, it is possible to use it as a general wrapper function for data generation in
other contexts. For convenience, the name of the control class may then also be passed
to generate() as a character string (the default is "DataControl"), in which case the
slots may be supplied as arguments. Nevertheless, it might be simpler for the user to
call the underlying function from the slot distribution directly in such applications.

Memory-efficient storage of data frames has recently been added to package ff (Adler
et al. 2010), which might be useful for design-based simulation with large population data.
The incorporation into simFrame may therefore be investigated as a future task.

2.4.2 Sampling

A fundamental design principle of simFrame in the case of design-based simulation studies
is that the sampling procedure is separated from the simulation procedure. Two main
advantages arise from setting up all samples in advance.

First, the repeated sampling reduces overall computation time dramatically in certain
situations, since computer-intensive tasks like stratification need to be performed only
once. This is particularly relevant for large population data. As an example, consider the
AMELI project that has been mentioned in Section 2.3. In the close-to-reality simulation
studies carried out in this project, up to 10 000 samples are drawn from a population of
more than 8 000 000 individuals with stratified sampling or even more complex sampling
designs. For such large data sets, stratification takes a considerable amount of time
and is a very memory-intensive task. If the samples are taken on-the-fly, i.e., in every
simulation run one sample is drawn, the function to take the stratified sample would
typically split the population into the different strata in each of the 10 000 iterations. If
all samples are drawn in advance, on the other hand, the population data need to be
split only once and all 10 000 samples can be taken from the respective strata together.

Second, the samples can be stored permanently, which simplifies the reproduction
of simulation results and may help to maximize comparability of results obtained by
different partners in a research project. Consider again the AMELI project, where one
group of researchers investigates robust semiparametric approaches to improve the esti-
mation of certain indicators (i.e., a distribution is fitted to parts of the data; see Alfons
et al. 2010f), while another group is focused on nonparametric methods (e.g., trimming
or M-estimators; see Hulliger and Schoch 2009b). The aim of this project is to evaluate
these methods in realistic settings, therefore the most commonly used sampling designs

32

2.4 Implementation

in real life are applied in the simulation studies. If the two groups use not only the same
population data, but also the same previously set up samples, their results are highly
comparable. In addition, the same samples may be used for other close-to-reality simula-
tion studies within the project, e.g., in order to evaluate imputation or outlier detection
methods. This is useful in particular for large population data, when complex sampling
techniques may be very time-consuming.

In simFrame, the generic function setup(x, control, ...) is available to set up
multiple samples. It returns an object of class SampleSetup, which contains the following
slots (among others, all slots are shown in Figure 2.1):

indices: A list containing the indices of the sampled observations.

prob: A numeric vector giving the inclusion probabilities for every observation of the
population. These are necessary to compute the sample weights.

seed: A list containing the seeds of the random number generator before and after setting
up the samples, respectively.

The function setup() may be called by the user to permanently store the samples, but
it may also be called internally by the framework if this is not necessary. In any case,
methods are selected according to control classes extending VirtualSampleControl,
which is a virtual class whose only slot k specifies the number of samples to be set up.
This virtual class provides the interface for extensions by the user (see Section 2.7.2).
The implemented control class SampleControl is highly flexible and covers the most
frequently used sampling designs in survey statistics:

• Sampling of individual observations with a basic sampling method such as simple
random sampling or unequal probability sampling.

• Sampling of whole groups (e.g., households) with a specified sampling method.
There are two common approaches towards sampling of groups:

– Groups are sampled directly. This is usually referred to as cluster sampling.
However, here the term cluster is avoided in the context of sampling to prevent
confusion with computer clusters for parallel computing (see Section 2.5 and
the example in Section 2.6.3).

– In a first step, individuals are sampled. Then all individuals that belong to
the same group as any of the sampled individuals are collected and added to
the sample.

• Stratified sampling using one of the above procedures in each stratum.

33

2.4 Implementation

In addition to the inherited slot k, the class SampleControl consists of the following
slots (see also Figure 2.1):

design: A vector specifying variables to be used for stratification.

grouping: A character string, single integer or logical vector specifying a variable to be
used for grouping.

collect: A logical indicating whether groups should be collected after sampling indi-
viduals or sampled directly. The default is to sample groups directly.

fun: A function to be used for sampling (the default is simple random sampling). For
stratified sampling, this function is applied to each stratum.

size: The sample size. For stratified sampling, this should be a numeric vector.

prob: A numeric vector giving probability weights.

dots: Additional arguments to be passed to fun.

Currently, the functions srs and ups are implemented in simFrame for simple random
sampling and unequal probability sampling, respectively, but this can easily be extended
with user-defined sampling methods (see Section 2.7.2). Note that the sampling method
is evaluated using try(). Hence, if an error occurs in obtaining one sample, the others are
not lost. This is particularly useful for complex and time-consuming sampling procedures,
as the whole process of setting up all samples does not have to be repeated.

The control class for setup() may be specified as a character string (the default is,
of course, "SampleControl"), which allows the slots to be supplied as arguments. Fur-
thermore, simSample() is a convenience wrapper for setup() with control class Sam-

pleControl.
To actually draw one of the previously set up samples from the population, the generic

function draw(x, setup, ...) is used internally by the framework in the simulation
runs. It is important to note that the column ".weight", which contains the sample
weights, is added to the resulting data set. When sampling from finite populations,
storing the sample weights is essential. In general, the weights are not equal for all
sampled observations, depending on the inclusion probabilities. Hence the sample weights
need to be considered in order to obtain unbiased estimates. But even for simple random
sampling, when all weights are equal, each observation in the sample represents a number
of observations in the population. For the estimation of population totals (e.g., the total
turnover of all businesses in a country), the sample weights are thus still necessary.
Moreover, the initial sample weights are in practice often modified by calibration (e.g.,

34

2.4 Implementation

Deville et al. 1993). In the case of simple random sampling, this is done after post-
stratification (e.g., Cochran 1977).

In the following illustrative example, two samples from synthetic EU-SILC population
data are set up and stored in an object of class SampleSetup. EU-SILC is a well-
known survey on income and living conditions conducted in European countries (see
Section 2.6.1 for more information and a more detailed example). Afterwards, the first
of the two set up samples is drawn from the population.

R> data("eusilcP")

R> set <- setup(eusilcP, size = 10, k = 2)

R> summary(set)

2 samples of size 10 are set up

R> set

Indices of observations for each of the 2 samples:

[[1]]

[1] 32456 37914 18290 36471 19342 29442 39711 28444 14306 44891

[[2]]

[1] 4328 18165 42070 29593 8974 29556 28970 44056 10243 49754

R> draw(eusilcP[, c("id", "eqIncome")], set, i = 1)

id eqIncome .weight

33670 1376802 17760.93 5865.4

10460 1611302 13603.65 5865.4

48757 0782302 13910.35 5865.4

33719 1549903 14641.86 5865.4

55360 0825101 12463.90 5865.4

35123 1251602 27331.19 5865.4

29673 1686001 27981.36 5865.4

26985 1210302 7247.55 5865.4

38182 0611002 19968.32 5865.4

6448 1913501 18091.90 5865.4

2.4.3 Contamination

When evaluating robust statistical methods in simulation studies, a certain part of the
data needs to be contaminated, so that the influence of these outliers on the robust

35

2.4 Implementation

estimators (and possibly their classical counterparts) can be studied. The term con-
tamination is thereby used in a technical sense in this paper. In robust statistics, the
distribution F of contaminated data is typically modeled as a mixture of distributions

F = (1− ε)G+ εH, (2.1)

where ε denotes the contamination level , G is the distribution of the non-contaminated
part of the data and H is the distribution of the contamination (e.g., Maronna et al.
2006). Consequently, outliers may be modeled by a two-step process in simulation studies
(Béguin and Hulliger 2008, Hulliger and Schoch 2009a):

1. Select the observations to be contaminated. The probabilities of selection may or
may not depend on any other information in the data set.

2. Model the distribution of the outliers. The distribution may or may not depend
on the original values of the selected observations.

A more detailed mathematical notation of this process with respect to the implementation
in simFrame can be found in Alfons et al. (2010d).

Even though this is a rather simple concept, taking advantage of object-oriented pro-
gramming techniques such as inheritance allows for a flexible implementation that can
be extended by the user with custom contamination models. In simFrame, contamina-
tion is implemented based on control classes inheriting from VirtualContControl. For
extensions of the framework, the user may define subclasses of this virtual class (see
Section 2.7.3). Figure 2.1 displays the full hierarchy of the available control classes for
contamination. The basic virtual class contains the following slots:

target: A character vector defining the variables to be contaminated, or NULL to con-
taminate all variables (except the additional ones generated internally).

epsilon: A numeric vector giving the contamination levels to be used in the simulation.

With the contamination control classes available in simFrame, it is possible to contam-
inate whole groups (e.g., households) rather than individual observations. In addition,
the probabilities for selecting items to be contaminated may depend on an auxiliary
variable. In order to share these properties, another virtual class called ContControl is
implemented. These are the additional slots:

grouping: A character string specifying a variable to be used for grouping.

aux: A character string specifying an auxiliary variable whose values are used as proba-
bility weights for selecting the items (observations or groups) to be contaminated.

36

2.4 Implementation

The distribution of the contaminated data in simulation experiments may or may
not depend on the original values. Similar to model-based data generation (see Sec-
tion 2.4.1), the control class DCARContControl supports specifying a distribution function
for generating the contamination. DCAR stands for distributed completely at random
and corresponds to contamination independent of the original data. If a variable for
grouping is specified, the same values are used for all observations in the same group.
DCARContControl extends ContControl by the following slots:

distribution: A function for generating the data for the contamination, e.g., rmvnorm
in package mvtnorm for a multivariate normal distribution.

dots: Additional arguments to be passed to distribution.

On the other hand, contamination based on the original values is realized by the
control class DARContControl. DAR thereby stands for distributed at random. An
arbitrary function may be used to modify the data. To do so, the original values of the
observations to be contaminated are passed as its first argument. Thus the following
slots are available in addition to those from ContControl:

fun: A function generating the values of the contaminated data based on the original
values.

dots: Additional arguments to be passed to fun.

In the following example, a control object of class DARContControl is defined. The
contamination level is set to 20% and the specified function multiplies the original values
from variable "V2" of the observations to be contaminated by a factor 100.

R> cc <- DARContControl(target = "V2", epsilon = 0.2,

+ fun = function(x) x * 100)

If a control object for contamination is supplied, the framework calls the generic
function contaminate(x, control, ...) in the simulation runs internally to add the
contamination. In many applications, it is necessary to know which observations were
contaminated, e.g., to evaluate outlier detection methods. Hence a logical variable, which
is called ".contaminated" and indicates the contaminated observations, is added to the
resulting data set. As an example, the data generated in Section 2.4.1 is contaminated
below.

R> bar <- contaminate(foo, cc)

R> bar

37

2.4 Implementation

V1 V2 .contaminated

1 -1.289442540 -77.33443574 TRUE

2 0.009574644 -0.89256328 FALSE

3 0.846580448 -0.46912965 FALSE

4 -2.249086822 -0.54484880 FALSE

5 0.662837956 1.03786573 FALSE

6 0.460268469 0.02444930 FALSE

7 -0.687415163 -0.64235093 FALSE

8 -0.763840555 -1.02162592 FALSE

9 -0.761894738 -95.47366744 TRUE

10 -0.234446371 2.10315885 FALSE

Despite being designed for internal use in the simulation procedure, contaminate()
also allows the control class to be specified as a character string (with "DCARContCon-

trol" being the default). In this case the slots may be supplied as arguments.

2.4.4 Insertion of missing values

Missing values are included in many data sets, in particular survey data hardly ever
contain complete information. In practice, missing values often need to be imputed,
which results in additional uncertainty in further statistical analysis (e.g., Little and
Rubin 2002). This additional variability needs to be considered when computing variance
estimates or confidence intervals. In simulation studies, it may therefore be of interest
to study the properties of different imputation methods or to investigate the influence of
missing values on point and variance estimates.

Three mechanisms generating missing values are commonly distinguished in the lit-
erature addressing missing data (e.g., Little and Rubin 2002):

• Missing completely at random (MCAR): The probability of missingness does not
depend on any observed or missing information.

• Missing at random (MAR): The probability of missingness depends on the observed
information.

• Missing not at random (MNAR): The probability of missingness depends on the
missing information itself and may also depend on the observed information.

Similar to the implementation of the functionality for contamination, the insertion of
missing data is handled by control classes extending VirtualNAControl (the hierarchy
of the control classes is shown in Figure 2.1). This virtual class is the basis for extensions
by the user (see Section 2.7.4). It consists of the following slots:

38

2.4 Implementation

target: A character vector specifying the variables into which missing values should be
inserted, or NULL to insert missing values into all variables (except the additional
ones generated internally).

NArate: A numeric vector or matrix giving the missing value rates to be used in the
simulation.

It should be noted that missing value rates may be selected individually for the
target variables. The same missing value rates are used for all target variables if they
are specified as a vector. If a matrix is supplied, on the other hand, the missing value
rates to be used for each target variable are given by the respective column.

Extending VirtualNAControl, the control class NAControl allows whole groups to
be set as missing rather than individual values. To account for MAR or MNAR situ-
ations instead of MCAR, an auxiliary variable of probability weights may be specified
for each target variable. Furthermore, when studying robust methods for the analysis
or imputation of incomplete data, it is sometimes desired to insert missing values only
into non-contaminated observations. In other situations, a more realistic scenario in
which missing values are also inserted into contaminated observations may be preferred.
Both scenarios are implemented in the framework. These are the additional slots of
NAControl:

grouping: A character string specifying a variable to be used for grouping.

aux: A character vector specifying auxiliary variables whose values are used as proba-
bility weights for selecting the values to be set as missing in the respective target
variables.

intoContamination: A logical indicating whether missing values should also be inserted
into contaminated observations. The default is to insert missings only into non-
contaminated observations.

The following example shows how to define a control object of class NAControl that
corresponds to an MCAR situation. For all variables, 30% of the values will be set as
missing. However, missing values will only be inserted into non-contaminated observa-
tions.

R> nc <- NAControl(NArate = 0.3)

If a control object for missing data is supplied, the generic function setNA(x, con-

trol, ...) is called internally by the framework in the simulation runs to set the
missing values. Below, missing values are inserted into the contaminated data from the
previous section.

39

2.4 Implementation

R> setNA(bar, nc)

V1 V2 .contaminated

1 -1.2894425 -77.33443574 TRUE

2 NA -0.89256328 FALSE

3 NA -0.46912965 FALSE

4 NA NA FALSE

5 0.6628380 NA FALSE

6 0.4602685 0.02444930 FALSE

7 -0.6874152 NA FALSE

8 -0.7638406 -1.02162592 FALSE

9 -0.7618947 -95.47366744 TRUE

10 -0.2344464 2.10315885 FALSE

As contaminate(), the function setNA() is designed for internal use in the simulation
procedure. Nevertheless, it is possible to supply the name of the control class as a
character string (the default is "NAControl"), which allows the slots to be supplied as
arguments.

2.4.5 Running simulations

The central component of the simulation framework is the generic function runSimula-

tion(), which combines all the elements of the package into one convenient interface for
running simulation studies. Based on a collection of control objects, it allows to perform
even complex simulation experiments with just a few lines of code. Switching between
simulation designs is possible with minimal programming effort as well, only some con-
trol objects need to be defined or modified. For design-based simulation, population
data and a control object for sampling or previously set up samples may be passed to
runSimulation(). For model-based simulation, on the other hand, a control object for
data generation and the number of replications may be supplied.

In addition, the control class SimControl determines how the simulation runs are
performed. These are the slots of SimControl (see also Figure 2.1):

contControl: A control object for contamination.

NAControl: A control object for inserting missing values.

design: A character vector specifying variables to be used for splitting the data into
domains and performing the simulations on every domain.

fun: The function to be applied in the simulation runs.

40

2.4 Implementation

dots: Additional arguments to be passed to fun.

SAE: A logical indicating whether small area estimation (see, e.g., Rao 2003) will be used
in the simulation.

Most importantly, the function to be applied in the simulation runs needs to be
defined. There are some requirements for the function:

• It must return a numeric vector, or a list with the two components values (a
numeric vector) and add (additional results of any class, e.g., statistical models).
Note that the latter is computationally slightly more expensive.

• A data.frame is passed to fun in every simulation run. The corresponding argu-
ment must be called x.

• If comparisons with the original data need to be made, e.g., for evaluating the
quality of imputation methods, the function should have an argument called orig.

• If different domains are used in the simulation, the indices of the current domain
can be passed to the function via an argument called domain.

One of the most important features of simFrame is that the supplied function is
evaluated using try(). Therefore, if computations fail in one of the simulation runs,
runSimulation() simply continues with the next run. The results from previous runs
are not lost and the computation time has not been spent in vain.

Furthermore, control classes for adding contamination and missing values may be
specified. In design-based simulations, contamination and nonresponse are added to the
samples rather than the population, for maximum control over the amount of outliers or
missing values (cf. Alfons et al. 2009). Another useful feature is that the data may be
split into different domains. The simulations, including contamination and the insertion
of missing values, are then performed on every domain separately, unless small area
estimation is used.

Concerning small area estimation, the following points have to be kept in mind. The
design for splitting the data must be supplied and SAE must be set to TRUE. However,
the data are not actually split into the specified domains. Instead, the whole data set is
passed to the specified function. Also contamination and missing values are added to the
whole data. Last, but not least, the function for the simulation runs must have a domain

argument so that the current domain can be extracted from the whole data. In any case,
small area estimation is not a main focus of the current version of simFrame and will
therefore not be discussed further in this paper. Improving the support for small area
estimation is future work.

41

2.4 Implementation

For user convenience, the slots of the SimControl object may also be supplied as
arguments. After running the simulations, the results of the individual simulation runs
are combined and packed into an object of class SimResults. The most important slots
are (see Figure 2.1 for a complete list):

values: A data.frame containing the simulation results.

add: A list containing additional simulation results, e.g., statistical models.

epsilon: The contamination levels used in the simulation.

NArate: The missing value rates used in the simulation.

seed: A list containing the seeds of the random number generator before and after the
simulation, respectively.

An illustrative example for the use of runSimulation() is given in the following
design-based simulation experiment. The synthetic EU-SILC example data of the pack-
age is thereby used as population data. It contains information about household income,
but data is also available on the personal level (see Section 2.6.1 for more information
on the data). From this data set, 50 samples of 500 persons are drawn with simple
random sampling. In addition, the equivalized income of 2% of the sampled persons
are multiplied by a factor 25. In every simulation run, the population mean income is
estimated with the mean and the 2% trimmed mean of the sample. With the following
commands, control objects for sampling and contamination are defined, along with the
function for the simulation. Before calling runSimulation(), the seed of the random
number generator is set for reproducibility of the results.

R> data("eusilcP")

R> sc <- SampleControl(size = 500, k = 50)

R> cc <- DARContControl(target = "eqIncome", epsilon = 0.02,

+ fun = function(x) x * 25)

R> sim <- function(x) {

+ c(mean = mean(x$eqIncome), trimmed = mean(x$eqIncome, trim = 0.02))

+ }

R> set.seed(12345)

R> results <- runSimulation(eusilcP, sc, contControl = cc, fun = sim)

Methods for several frequently used generic functions are available to inspect the
simulation results. Besides head(), tail() and summary() methods, a method for
aggregate() is implemented. The latter can be used to calculate summary statistics

42

2.4 Implementation

of the results. By default, the mean is used as summary statistic. Depending on the
simulation design, the summary statistics are are computed for different subsets of the
results. These subsets are thereby given by the different combinations of contamination
levels (if contamination is used), missing value rates (if missing values are inserted) and
domains (if the simulations are performed on different domains of the data).

Below, the first parts of the simulation results are returned using head() and the
average results are computed with aggregate(). For comparison, the true population
mean is computed afterwards.

R> head(results)

Run Sample Epsilon mean trimmed

1 1 1 0.02 29609.10 20737.05

2 2 2 0.02 28834.87 20023.74

3 3 3 0.02 29819.41 20410.12

4 4 4 0.02 28840.16 20438.05

5 5 5 0.02 27323.11 19298.89

6 6 6 0.02 29614.79 20442.76

R> aggregate(results)

Epsilon mean trimmed

1 0.02 29697.64 20361.22

R> tv <- mean(eusilcP$eqIncome)

R> tv

[1] 20162.8

Various plots for simulation results are implemented in the framework, as discussed in
the following section. In Figure 2.2, the results for this illustrative example are displayed
by box plots and kernel density plots. The plots show the well-known fact that the
mean is highly influenced by outliers. While the trimmed mean is not influenced by the
contamination and has much smaller variance, there is still some bias. Since the outliers
in this example are only in the upper tail of the data, the remaining bias results from
trimming lower part as well.

Section 2.6 contains more elaborate examples for design-based and model-based sim-
ulation with detailed step-by-step instructions, as well as some motivation and interpre-
tation.

43

2.5 Parallel computing

mean

trimmed

20000 25000 30000

●

●●

D
en

si
ty

0e+00

2e−04

4e−04

6e−04

8e−04

20000 25000 30000

●● ●●● ● ●● ●●●●● ● ● ●●●● ● ●●● ●● ●●● ●●●● ●●● ●● ●●● ●● ● ● ●● ●● ● ●●●●●● ●●●●●●●● ●●●●●●● ●●●●●●●●●● ●●●●● ●●●●●●● ●●●●●● ●●

mean
trimmed

●

●

Figure 2.2: Simulation results from the simple illustrative example. Left : Default plot of
results from a simulation study with one contamination level, in this example obtained
by plot(results, true = tv). Right : Kernel density plots of the simulation results,
obtained by simDensityplot(results, true = tv).

2.4.6 Visualization

Visualization methods for the simulation results are based on lattice graphics (Sarkar
2008, 2010). If the simulation study has been divided into several domains, the results
for each domain are displayed in a separate panel. Box plots and kernel density plots are
implemented in the functions simBwplot() and simDensityplot(), respectively. For
simulations involving different contamination levels or missing value rates, simXyplot()
plots the average results against the contamination levels or missing value rates. In all
of these plots, reference lines for the true values can be added. Moreover, the plot()

method for the class SimResults selects a suitable graphical representation of the sim-
ulation results automatically.

Figure 2.2 shows the default plot and kernel density plots for the simulation results
from the simple illustrative example in the previous section. Further examples for the
visualization of simulation results are given in Section 2.6.

2.5 Parallel computing

Statistical simulation is embarrassingly parallel , hence computational performance can be
increased by parallel computing. In simFrame, parallel computing is implemented using
the R package snow (Rossini et al. 2007, Tierney et al. 2008, 2009), which is recommended

44

2.6 Using the framework

by Schmidberger et al. (2009) in an analysis of the state-of-the-art in parallel computing
with R. For setting up multiple samples and running simulations on a cluster, the
functions clusterSetup() and clusterRunSimulation() are implemented. Note that
all objects and packages required for the computations (including simFrame) need to be
made available on every worker process. An example for parallel computing is presented
in Section 2.6.3.

In order to ensure reproducibility of the simulation results, random number streams
should be used. The R packages rlecuyer (L’Ecuyer et al. 2002, Sevcikova and Rossini
2009) and rsprng (Mascagni and Srinivasan 2000, Li 2010) for creating random num-
ber streams are supported by snow via the function clusterSetupRNG(). It should be
noted that the package rstream (L’Ecuyer and Leydold 2005, Leydold 2010) provides a
faster connection to the C library by L’Ecuyer et al. (2002) than rlecuyer. Support in
simFrame may thus be beneficial and may be added as a future task.

The R package multicore (Urbanek 2009) offers parallel computing on machines
with multiple cores or CPUs. No data or code needs to be initialized and no additional R

instances need to be started, hence spawning parallel processes is very fast. In addition,
worker processes share memory and no network traffic is required, which allows fast
computations on machines with a sufficient number of cores. However, multicore is
not available for Microsoft Windows operating systems and it does not support random
number streams out-of-the-box (as snow does). The incorporation of multicore into
simFrame may be investigated in the future.

2.6 Using the framework

In this section, the use of simFrame is demonstrated on examples for design-based and
model-based simulation. An example for parallel computing is included as well. Note
that the only purpose of these examples is to illustrate the use of the package. It is not
the aim of this section to provide a thorough analysis of the presented methodology, as
this is beyond the scope of this paper.

2.6.1 Design-based simulation

The Laeken indicators are a set of indicators used to measure social cohesion in member
states of the European Union and other European countries (cf. Atkinson et al. 2002).
Most of the Laeken indicators are computed from EU-SILC (European Union Statis-
tics on Income and Living Conditions) survey data. Synthetic EU-SILC data based on
the Austrian sample from 2006 is included in simFrame. This data set was generated
using the synthetic data generation framework by Alfons et al. (2010c) from package

45

2.6 Using the framework

simPopulation (Alfons and Kraft 2010). It consists of 25 000 households with data
available on the personal level, and is used as population data in this example. Note
that this is an illustrative example, as the data set does not represent the true population
sizes of Austria and its regions.

While only being a secondary Laeken indicator, the Gini coefficient is a frequently
used measure of inequality and is widely studied in the literature. In the case of EU-SILC,
the Gini coefficient is calculated based on an equivalized household income. In this exam-
ple, the standard estimation method (EU-SILC 2004) is compared to two semiparametric
approaches, which fit a Pareto distribution (e.g., Kleiber and Kotz 2003) to the upper
tail of the data. Hill (1975) introduced the maximum-likelihood estimator, which is thus
referred to as Hill estimator. The partial density component (PDC) estimator (Vande-
walle et al. 2007), on the other hand, follows a robust approach. These methods are
available in the R package laeken (Alfons et al. 2010b). A more detailed discussion
on Pareto tail modeling with application to selected Laeken indicators can be found in
Alfons et al. (2010f).

First, the required package and the data set need to be loaded. Furthermore, the
seed of the random number generator is set for reproducibility of the results.

R> library("laeken")

R> data("eusilcP")

R> set.seed(12345)

Next, 100 samples of 1500 households are set up. Stratified sampling by regions combined
with sampling of whole households rather than individuals can be achieved with one
command.

R> set <- setup(eusilcP, design = "region", grouping = "hid",

+ size = c(75, 250, 250, 125, 200, 225, 125, 150, 100),

+ k = 100)

Since a robust method is going to be compared to two classical ones, a control object for
contamination is defined. EU-SILC data typically contain a very low amount of outliers,
therefore the equivalized household income of 0.5% of the households is contaminated.
In addition, the contamination is generated by a normal distribution N (µ, σ2) with mean
µ = 500 000 and standard deviation σ = 10 000.

R> cc <- DCARContControl(target = "eqIncome", epsilon = 0.005,

+ grouping = "hid", dots = list(mean = 5e+05, sd = 10000))

The function for the simulation runs is quite simple as well. Its argument k determines
the number of households whose income is modeled by a Pareto distribution.

46

2.6 Using the framework

R> sim <- function(x, k) {

+ g <- gini(x$eqIncome, x$.weight)$value

+ eqIncHill <- fitPareto(x$eqIncome, k = k, method = "thetaHill",

+ groups = x$hid)

+ gHill <- gini(eqIncHill, x$.weight)$value

+ eqIncPDC <- fitPareto(x$eqIncome, k = k, method = "thetaPDC",

+ groups = x$hid)

+ gPDC <- gini(eqIncPDC, x$.weight)$value

+ c(standard = g, Hill = gHill, PDC = gPDC)

+ }

With all necessary objects available, running the simulation experiment is only one more
command. Note that simulations are performed separately for each gender. The value
of k for the Pareto distribution is thereby set to 125.

R> results <- runSimulation(eusilcP, set, contControl = cc,

+ design = "gender", fun = sim, k = 125)

The head() and aggregate() methods are used to take a look at the simulation results.
In this case, aggregate() computes the average results for each subset.

R> head(results)

Run Sample Epsilon gender standard Hill PDC

1 1 1 0.005 male 34.58446 29.96658 26.61415

2 1 1 0.005 female 38.82356 33.93700 28.82045

3 2 2 0.005 male 34.34853 29.09325 27.66380

4 2 2 0.005 female 36.38429 30.06097 27.42663

5 3 3 0.005 male 33.39992 30.54211 23.96698

6 3 3 0.005 female 35.12883 30.51336 26.06518

R> aggregate(results)

Epsilon gender standard Hill PDC

1 0.005 male 33.18580 29.00265 26.21119

2 0.005 female 35.61341 31.28984 27.69054

For comparison with the simulation results, the true values of the Gini coefficient need to
be computed. These can be added as reference lines to the plot of the simulation results
(see Figure 2.3).

R> tv <- simSapply(eusilcP, "gender", function(x) gini(x$eqIncome)$value)

47

2.6 Using the framework

Gini coefficient

standard

Hill

PDC

25 30 35 40

●

●

●

●

●●●

●●●●●●

male

25 30 35 40

●

●

●

●

●

●

female

Figure 2.3: Default plot of results from a simulation study with one contamination level
and different domains, in this example obtained by plot(results, true = tv, xlab
= "Gini coefficient").

Figure 2.3 shows that even a small proportion of outliers completely corrupts the
standard estimation of the Gini coefficient. Also fitting the Pareto distribution with the
Hill estimator is highly influenced by contamination, whereas the robust PDC estimator
leads to excellent results. But most importantly, this example shows that even complex
simulation designs require only a few lines of code.

Further examples for design-based simulation that demonstrate the strengths of the
framework can be found in a supplementary paper. This supplementary paper is also
included in simFrame as a package vignette (Leisch 2003).

2.6.2 Model-based simulation

In this section, model-based simulation is demonstrated using an example for composi-
tional data. An observation x = (x1, . . . , xD) is by definition a D-part composition if,
and only if, xi > 0, i = 1, . . . , D, and all relevant information is contained in the ratios
between the components (Aitchison 1986). Consequently, compositional data contain
only relative information. The information is essentially the same if an observation is
multiplied with a positive constant. But if the value of one component changes, the
other components need to change accordingly. Examples for compositional data are el-
ement concentrations in chemical analysis of a sample material or monthly household
expenditures on different spending categories such as housing, food or leisure activities.

48

2.6 Using the framework

It is important to note that compositional data have no direct representation in
the Euclidean space and that their geometry is entirely different (see Aitchison 1986).
The sample space of D-part compositions is called the simplex and a suitable distance
measure is the Aitchison distance dA (Aitchison 1992, Aitchison et al. 2000). Fortunately,
there exists an isometric transformation from the D-dimensional simplex to RD−1, which
is called the isometric logratio (ilr) transformation (Egozcue et al. 2003). With this
transformation, the Aitchison distance can be expressed as

dA(x,y) = dE(ilr(x), ilr(y)), (2.2)

where dE denotes the Euclidean distance.

Hron et al. (2010) introduced imputation methods for compositional data, which are
implemented in the R package robCompositions (Templ et al. 2009, 2010b). While the
package is focused on robust methods, only classical imputation methods are used in
this example. The first method is a modification of k-nearest neighbor (knn) imputation
(Troyanskaya et al. 2001), the second follows an iterative model-based approach using
least squares (LS) regression.

Before any computations are performed, the required packages are loaded and the
seed of the random number generator is set for reproducibility.

R> library("robCompositions")

R> library("mvtnorm")

R> set.seed(12345)

The data in this example are generated by a normal distribution on the simplex, denoted
by ND

S (µ,Σ) (e.g., Mateu-Figueras et al. 2008). A random composition x = (x1, . . . , xD)
follows this distribution if, and only if, the vector of ilr transformed variables follows a
multivariate normal distribution on RD−1 with mean vector µ and covariance matrix
Σ. The following commands create a control object for generating 150 realizations of a
random variable X ∼ N 4

S(µ,Σ) with

µ =

 0
2
3

 and Σ =

 1 −0.5 1.4
−0.5 1 −0.6
1.4 −0.6 2

 .

R> crnorm <- function(n, mean, sigma) invilr(rmvnorm(n, mean, sigma))

R> sigma <- matrix(c(1, -0.5, 1.4, -0.5, 1, -0.6, 1.4, -0.6, 2), 3, 3)

R> dc <- DataControl(size = 150, distribution = crnorm,

+ dots = list(mean = c(0, 2, 3), sigma = sigma))

49

2.6 Using the framework

Furthermore, a control object for inserting missing values needs to be created. In every
variable, 5% of the observations are set as missing completely at random.

R> nc <- NAControl(NArate = 0.05)

For the two selected imputation methods, the relative Aitchison distance between the
original and the imputed data (cf. the simulation study in Hron et al. 2010) is computed
in every simulation run.

R> sim <- function(x, orig) {

+ i <- apply(x, 1, function(x) any(is.na(x)))

+ ni <- length(which(i))

+ xKNNa <- impKNNa(x)$xImp

+ xLS <- impCoda(x, method = "lm")$xImp

+ c(knn = aDist(xKNNa, orig)/ni, LS = aDist(xLS, orig)/ni)

+ }

The simulation can then be run with the following command:

R> results <- runSimulation(dc, nrep = 100, NAControl = nc,

+ fun = sim)

As in the previous example, the results are inspected using head() and aggregate().

R> head(results)

Run Rep NArate knn LS

1 1 1 0.05 0.3438037 0.2880082

2 2 2 0.05 0.2812875 0.1792722

3 3 3 0.05 0.4211458 0.2680063

4 4 4 0.05 0.3004898 0.2259575

5 5 5 0.05 0.3317538 0.2011256

6 6 6 0.05 0.4174775 0.3070453

R> aggregate(results)

NArate knn LS

1 0.05 0.4379644 0.3007417

Box plots and kernel density plots of the simulation results are presented in Figure 2.4.
Since the imputation methods in this example are evaluated in terms of a relative distance
measure, values closer to 0 indicate better performance. Clearly, the iterative model-
based procedure leads to better results than the modified knn approach with respect

50

2.6 Using the framework

Relative Aitchison distance

knn

LS

0.2 0.3 0.4 0.5 0.6

●

● ●● ●● ●

Relative Aitchison distance

D
en

si
ty

0

2

4

6

0.2 0.4 0.6

knn
LS

●

●

Figure 2.4: Left : Default plot of results from a simulation study with one missing value
rate, in this example obtained by plot(results, xlab = "Relative Aitchison dis-
tance"). Right : Kernel density plots of the simulation results, obtained by simDensi-
typlot(results, alpha = 0.6, xlab = "Relative Aitchison distance").

to the relative Aitchison distance. This is not a surprising result, as the latter is used
as a starting point in the iterative procedure. For serious evaluation of the imputation
methods, however, also other criteria need to be taken into account (e.g., how well the
variability of the multivariate data is reflected; see Hron et al. 2010).

2.6.3 Parallel computing

Using parallel computing, computation time may be significantly decreased in statisti-
cal simulation. In this section, the example for model-based simulation from before is
extended to more than one missing value rate. Hence some of the objects are already
defined above, but in order to provide a complete description on how to perform parallel
computing with simFrame, these definitions are repeated here.

The first step is to start a snow cluster. In this example, four parallel worker processes
on the local machine are initialized.

R> cl <- makeCluster(4, type = "SOCK")

All the functions and packages required for the computations (including simFrame) need
to be loaded on the worker processes.

R> clusterEvalQ(cl, {

+ library("simFrame")

51

2.6 Using the framework

+ library("robCompositions")

+ library("mvtnorm")

+ })

For reproducibility of the results, a random number stream is generated.

R> clusterSetupRNG(cl, seed = 12345)

Control objects for data generation and the insertion of missing values, as well as the
function for the simulation runs are defined as in the previous section. The only difference
is that multiple missing value rates (1%, 3%, 5%, 7% and 9%) are used in this example.

R> crnorm <- function(n, mean, sigma) invilr(rmvnorm(n, mean, sigma))

R> sigma <- matrix(c(1, -0.5, 1.4, -0.5, 1, -0.6, 1.4, -0.6, 2), 3, 3)

R> dc <- DataControl(size = 150, distribution = crnorm,

+ dots = list(mean = c(0, 2, 3), sigma = sigma))

R> nc <- NAControl(NArate = c(0.01, 0.03, 0.05, 0.07, 0.09))

R> sim <- function(x, orig) {

+ i <- apply(x, 1, function(x) any(is.na(x)))

+ ni <- length(which(i))

+ xKNNa <- impKNNa(x)$xImp

+ xLS <- impCoda(x, method = "lm")$xImp

+ c(knn = aDist(xKNNa, orig)/ni, LS = aDist(xLS, orig)/ni)

+ }

These objects need to be made available on the worker processes. Since they are small
in size, they are exported. Note that large objects, e.g., data sets for design-based
simulation, should rather be constructed on the worker processes, as computation is
much faster than network communication (Schmidberger et al. 2009).

R> clusterExport(cl, c("crnorm", "sigma", "dc", "nc", "sim"))

Then only one more command is needed to run the simulation.

R> results <- clusterRunSimulation(cl, dc, nrep = 100, NAControl = nc,

+ fun = sim)

Last, the cluster needs to be stopped after carrying out the simulation study in order to
ensure that the worker processes are properly shut down.

R> stopCluster(cl)

52

2.7 Extending the framework

After the parallel computations have finished, the simulation results can be inspected
as usual. In this example, the aggregate() method returns the average results of the
relative distances for each missing value rate.

R> head(results)

Run Rep NArate knn LS

1 1 1 0.01 0.3651501 0.2572328

2 2 1 0.03 0.4699935 0.3629816

3 3 1 0.05 0.3950942 0.1858227

4 4 1 0.07 0.4145427 0.4004828

5 5 1 0.09 0.4455230 0.3474315

6 6 2 0.01 0.3189354 0.1451337

R> aggregate(results)

NArate knn LS

1 0.01 0.3869185 0.2553123

2 0.03 0.4169886 0.2902240

3 0.05 0.4480634 0.3064850

4 0.07 0.4865589 0.3442564

5 0.09 0.5024330 0.3568477

Figure 2.5 visualizes the simulation results. On the left hand side, the average relative
Aitchison distances are plotted against the missing value rates. On the right hand side,
kernel density plots for a specified missing value rate (7%) is shown. The results are not
much different from those in the previous section. Note that the difference of the average
results for the two methods remains quite constant in this simulation example.

2.7 Extending the framework

One of the main advantages of the S4 implementation of simFrame is that it provides
clear interfaces for user-defined extensions. With the available control classes for data
generation, sampling, contamination and the insertion of missing data, the framework
is highly flexible and can be used for a wide range of simulation designs. Nevertheless,
extensions may sometimes be desired for specialized functionality. In order to extend
the framework, developers can implement custom control classes and the corresponding
methods.

53

2.7 Extending the framework

NArate

R
el

at
iv

e
A

itc
hi

so
n

di
st

an
ce

0.25

0.30

0.35

0.40

0.45

0.50

0.02 0.04 0.06 0.08

knn
LS

Relative Aitchison distance

D
en

si
ty

0

1

2

3

4

5

0.2 0.4 0.6 0.8

knn
LS

●

●

Figure 2.5: Left : Default plot of results from a simulation study with multiple missing
value rates, in this example obtained by plot(results, ylab = "Relative Aitchison
distance"). Right : Kernel density plots of the simulation results for a specified missing
value rate (7%), obtained by simDensityplot(results, NArate=0.07, alpha = 0.6,
xlab = "Relative Aitchison distance").

2.7.1 Model-based data

The control class DataControl available in simFrame is quite simple but general. For
user-defined data generation models, it often suffices to implement a function and use
it as the distribution slot in the DataControl object. This function should have
the number of observations to be generated as its first argument, as illustrated in the
code skeleton in Figure 2.6 (top). The name of the argument is thereby not important.
Furthermore, the function should return an object that can be coerced to a data.frame.

However, if more specialized data generation models are required, the framework
can be extended by defining a control class extending VirtualDataControl and the
corresponding method for the generic function generate(). If, e.g., a specific distribution
or mixture of distributions is frequently used in simulation experiments, a distinct control
class may be more convenient for the user. Figure 2.6 (bottom) contains the code skeleton
for such an extension.

2.7.2 Sampling

In simFrame, the control class SampleControl is highly flexible and allows stratified
sampling as well as sampling of whole groups rather than individuals with a specified
sampling method. Hence it is often sufficient to implement the desired sampling method

54

2.7 Extending the framework

myDataGeneration <- function(size , ...) {

computations

}

setClass (" MyDataControl",

class definition

contains = "VirtualDataControl ")

setMethod (" generate",

signature(control = "MyDataControl "),

function(control) {

method definition

})

Figure 2.6: Top: Code skeleton for a user-defined data generation method. Bottom:
Code skeleton for extending model-based data generation with a custom control class
and the corresponding method for generate().

for the simple non-stratified case to extend the existing framework. However, there are
some restrictions on the argument names of the function, which should return a vector
containing the indices of the sampled observations.

• If the sampling method needs population data as input, the corresponding argu-
ment should be called x and should expect a data.frame.

• If it only needs the population size as input, the argument should be called N.

• If necessary, the argument for the sample size should be called size.

• If necessary, the argument for the probability weights should be called prob.

Note that the function is not expected to have both x and N as arguments, and
that the latter is much faster for stratified sampling or group sampling. Furthermore, a
function with prob as its only argument is perfectly valid (for probability proportional
to size sampling). Figure 2.7 (top) shows an example for Poisson sampling using the
implementation in package sampling (Tillé and Matei 2009).

Nevertheless, for very complex sampling procedures, it is possible to define a control
class extending VirtualSampleControl and the corresponding setup() method. The
code skeleton for such an extension is shown in Figure 2.7 (bottom). In order to optimize
computational performance, it is necessary to efficiently set up multiple samples. Thereby
the slot k of VirtualSampleControl needs to be used to control the number of samples,
and the resulting object must be of class SampleSetup. For using parallel computing to
set up samples with a self-defined control class, a method for clusterSetup() may be
defined.

55

2.7 Extending the framework

myPoisson <- function(prob) {

require(sampling)

which(as.logical(UPpoisson(prob)))

}

setClass (" MySampleControl",

definition of additional properties

contains = "VirtualSampleControl ")

setMethod ("setup",

signature(x = "data.frame", control = "MySampleControl "),

function(x, control) {

method definition

})

setMethod (" clusterSetup",

signature(x = "data.frame", control = "MySampleControl "),

function(cl, x, control) {

method definition

})

Figure 2.7: Top: User-defined function for Poisson sampling. Bottom: Code skeleton for
user-defined setup of multiple samples with a custom control class and the corresponding
methods for setup() and clusterSetup().

2.7.3 Contamination

A wide range of contamination models is covered by the control classes DCARContControl
and DARContControl. However, other contamination models can be added by defining
a control class inheriting from VirtualContControl and the corresponding method for
contaminate() (see the code skeleton in Figure 2.8). Note that VirtualContControl

contains the slots target and epsilon for selecting the target variable(s) and contami-
nation level(s), respectively. In case the contaminated observations need to be identified
at a later stage of the simulation, e.g., if conflicts with inserting missing values should be
avoided, a logical indicator variable ".contaminated" should be added to the returned
data set.

2.7.4 Insertion of missing values

Similar to extending the framework for model-based data generation and contamination,
user-defined missing value models can be added by defining a control class extending
the virtual class VirtualNAControl and the corresponding method for the generic func-
tion setNA() (see the code skeleton in Figure 2.9). The slots target and NArate for
selecting the target variable(s) and missing value rate(s), respectively, are inherited from
VirtualNAControl.

56

2.8 Conclusions and outlook

setClass (" MyContControl",

definition of additional properties

contains = "VirtualContControl ")

setMethod (" contaminate",

signature(x = "data.frame", control = "MyContControl "),

function(x, control , i) {

method definition

})

Figure 2.8: Code skeleton for a user-defined control class for contamination and the
corresponding method for contamintate().

setClass (" MyNAControl",

definition of additional properties

contains = "VirtualNAControl ")

setMethod ("setNA",

signature(x = "data.frame", control = "MyNAControl "),

function(x, control , i) {

method definition

})

Figure 2.9: Code skeleton for a user-defined control class for the insertion of missing
values and the corresponding method for setNA().

2.8 Conclusions and outlook

The flexible, object-oriented implementation of simFrame allows researchers to make use
of a wide range of simulation designs with a minimal effort of programming. Control
classes are used to handle data generation, sampling, contamination and the insertion of
missing values. Due to the use of control objects, switching from one simulation design
to another requires only minimal programming effort. Developers can easily extend the
existing framework with user-defined classes and methods. Guidelines for simulation
studies in research projects can therefore be established by selecting or implementing
control classes and agreeing upon parameter values, thus ensuring comparable results
from different researchers. Based on the structure of the simulation results, an appro-
priate plot method is selected automatically. Hence simFrame is widely applicable for
gaining insight into the quality of statistical methods. Furthermore, since the workload
in statistical simulation is embarrassingly parallel, simFrame supports parallel computing
using snow to increase computational performance.

Future plans include to further develop the model-based data generation facilities and
implement mixed simulation designs, to improve the support for small area estimation,
as well as to extend the framework with different sampling methods and more specialized

57

2.8 Conclusions and outlook

contamination and missing data models. In addition, adding support of additional pack-
ages for parallel computing and random number streams may be considered. Concerning
large data sets, the incorporation of the package ff for memory-efficient storage may be
investigated.

Computational details All computations in this paper were performed using Sweave

(Leisch 2002a,b) with R version 2.12.0 and simFrame version 0.3.6. The most recent
version of the package is always available from CRAN (the Comprehensive R Archive
Network, http://cran.R-project.org), and (a slightly modified and up-to-date version
of) this paper is also included as a package vignette (Leisch 2003).

Acknowledgments This work was partly funded by the European Union (repre-
sented by the European Commission) within the 7th framework programme for re-
search (Theme 8, Socio-Economic Sciences and Humanities, Project AMELI (Advanced
Methodology for European Laeken Indicators), Grant Agreement No. 217322). Visit
http://ameli.surveystatistics.net for more information on the project.

Furthermore, we would like to thank two anonymous referees for their constructive
remarks that helped to improve the package and the paper.

58

http://cran.R-project.org
http://ameli.surveystatistics.net

Chapter 3

Applications of statistical

simulation in the case of

EU-SILC: Using the R package

simFrame

Supplementary material to Alfons et al. (2010e) (Chapter 2), which has been accepted
for publication in the Journal of Statistical Software.

Andreas Alfonsa, Matthias Templa,b, Peter Filzmosera

a Department of Statistics and Probability Theory, Vienna University of Technology
b Methods Unit, Statistics Austria

Abstract This paper demonstrates the use of simFrame for various simulation designs
in a practical application with EU-SILC data. It presents the full functionality of the
framework regarding sampling designs, contamination models, missing data mechanisms
and performing simulations separately on different domains. Due to the use of control
objects, switching from one simulation design to another requires only minimal changes
in the code. Using bespoke R code, on the other hand, changing the code to switch
between simulation designs would require much greater effort. Furthermore, parallel
computing with simFrame is demonstrated.

Keywords R, statistical simulation, EU-SILC

59

3.1 Introduction

3.1 Introduction

This is a supplementary paper to “An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame” (Alfons et al. 2010e) and demonstrates the use of
simFrame (Alfons 2010) in R (R Development Core Team 2010) for various simulation
designs in a practical application. It extends the example for design-based simulation in
Alfons et al. (2010e) (Example 6.1). Different simulation designs in terms of sampling,
contamination and missing data are thereby investigated to present the strengths of the
framework.

Note that the paper is supplementary material and is supposed to be read after
studying Alfons et al. (2010e). It does not give a detailed discussion about the motivation
for the framework, nor does it describe the design or implementation of the package.
Instead it is focused on showing its full functionality for design-based simulation in
additional code examples with brief explanations. However, model-based simulation is
not considered here.

The European Union Statistics on Income and Living Conditions (EU-SILC) is panel
survey conducted in EU member states and other European countries and serves as basis
for measuring risk-of-poverty and social cohesion in Europe. An important indicator
calculated from this survey is the Gini coefficient , which is a well-known measure of
inequality. In the following examples, the standard estimation method (EU-SILC 2004)
is compared to two semiparametric methods under different simulation designs. The two
semiparametric approaches are based on fitting a Pareto distribution (e.g., Kleiber and
Kotz 2003) to the upper tail of the data. In the first approach, the classical Hill estimator
(Hill 1975) is used to estimate the shape parameter of the Pareto distribution, while the
second uses the robust partial density component (PDC) estimator (Vandewalle et al.
2007). All these methods are implemented in the R package laeken (Alfons et al. 2010b).
For a more detailed discussion on Pareto tail modeling in the case of the Gini coefficient
and a related measure of inequality, the reader is referred to Alfons et al. (2010f).

The example data set of simFrame is used as population data throughout the paper.
It consists of 58 654 observations from 25 000 households and was synthetically generated
from Austrian EU-SILC survey data from 2006 using the data simulation methodology
by Alfons et al. (2010c), which is implemented R package simPopulation (Alfons and
Kraft 2010).

3.2 Application of different simulation designs to EU-SILC

First, the required packages and the data set need to be loaded.

60

3.2 Application of different simulation designs to EU-SILC

R> library("simFrame")

R> library("laeken")

R> data("eusilcP")

Then, the function to be run in every iteration is defined. Its argument k determines
the number of households whose income is modeled by a Pareto distribution. Since the
Gini coefficient is calculated based on an equivalized household income, all individuals
of a household in the upper tail receive the same value.

R> sim <- function(x, k) {

+ x <- x[!is.na(x$eqIncome),]

+ g <- gini(x$eqIncome, x$.weight)$value

+ eqIncHill <- fitPareto(x$eqIncome, k = k, method = "thetaHill",

+ groups = x$hid)

+ gHill <- gini(eqIncHill, x$.weight)$value

+ eqIncPDC <- fitPareto(x$eqIncome, k = k, method = "thetaPDC",

+ groups = x$hid)

+ gPDC <- gini(eqIncPDC, x$.weight)$value

+ c(standard = g, Hill = gHill, PDC = gPDC)

+ }

This function is used in the following examples, which are designed to exhibit the
strengths of the framework. In order to change from one simulation design to another,
all there is to do is to define or modify control objects and supply them to the function
runSimulation().

3.2.1 Basic simulation design

In this basic simulation design, 100 samples of 1500 households are drawn using simple
random sampling. Note that the setup() function is not used to permanently store the
samples in an object. This is simply not necessary, since the population is rather small
and the sampling method is straightforward. Furthermore, the Pareto distribution is
fitted to the 175 households with the largest equivalized income.

R> set.seed(12345)

R> sc <- SampleControl(grouping = "hid", size = 1500, k = 100)

R> results <- runSimulation(eusilcP, sc, fun = sim, k = 175)

In order to inspect the simulation results, methods for several frequently used generic
functions are implemented. Besides head(), tail() and summary() methods, a method
for computing summary statistics with aggregate() is available. By default, the mean

61

3.2 Application of different simulation designs to EU-SILC

is used as summary statistic. Moreover, the plot() method selects a suitable graphical
representation of the simulation results automatically. A reference line for the true value
can thereby be added as well.

R> head(results)

Run Sample standard Hill PDC

1 1 1 26.56793 26.48025 25.66614

2 2 2 26.98203 27.73124 26.39318

3 3 3 27.07081 27.11886 25.52524

4 4 4 26.86841 27.70216 25.71355

5 5 5 26.43215 26.49267 25.64191

6 6 6 26.96175 27.13876 27.17536

R> aggregate(results)

standard Hill PDC

26.65621 26.79016 26.89564

R> tv <- gini(eusilcP$eqIncome)$value

R> plot(results, true = tv)

Figure 3.1 shows the resulting box plots of the simulation results for the basic simu-
lation design. While the PDC estimator comes with larger variability, all three methods
are on average quite close to the true population value. This is also an indication that
the choice of the number of households for fitting the Pareto distribution is suitable.

3.2.2 Using stratified sampling

The most frequently used sampling designs in official statistics are implemented in
simFrame. In order to switch to another sampling design, only the corresponding control
object needs to be changed. In this example, stratified sampling by region is performed.
The sample sizes for the different strata are specified by using a vector for the slot size
of the control object.

R> set.seed(12345)

R> sc <- SampleControl(design = "region", grouping = "hid",

+ size = c(75, 250, 250, 125, 200, 225, 125, 150, 100),

+ k = 100)

R> results <- runSimulation(eusilcP, sc, fun = sim, k = 175)

62

3.2 Application of different simulation designs to EU-SILC

standard

Hill

PDC

26 28 30 32

●

●

●

●●

● ●

Figure 3.1: Simulation results for the basic simulation design.

As before, the simulation results are inspected with head() and aggregate(). A plot of
the simulation results is produced as well.

R> head(results)

Run Sample standard Hill PDC

1 1 1 27.08652 27.22293 27.66753

2 2 2 26.80670 27.35874 25.93378

3 3 3 26.68113 27.03964 26.60062

4 4 4 25.84734 26.52346 25.18298

5 5 5 26.05449 26.26848 26.60331

6 6 6 26.98439 27.01396 26.48090

R> aggregate(results)

standard Hill PDC

26.71792 26.85375 26.86248

R> tv <- gini(eusilcP$eqIncome)$value

R> plot(results, true = tv)

Figure 3.2 contains the plot of the simulation results for the simulation design with
stratified sampling. The results are very similar to those from the basic simulation design
with simple random sampling. On average, all three investigated methods are quite close
to the true population value.

63

3.2 Application of different simulation designs to EU-SILC

standard

Hill

PDC

25 26 27 28 29 30

●

●

●

●

● ●●

Figure 3.2: Simulation results for the simulation design with stratified sampling.

3.2.3 Adding contamination

When evaluating robust methods in simulation studies, contamination needs to be added
to the data to study the influence of these outliers on the robust estimators and their
classical counterparts. In simFrame, contamination is specified by defining a control
object. Various contamination models are thereby implemented in the framework. Keep
in mind that the term contamination is used in a technical sense here (see Alfons et al.
2010e,d, for an exact definition) and that contamination is modeled as a two step process
(see also Béguin and Hulliger 2008, Hulliger and Schoch 2009a). In this example, 0.5%
of the households are selected to be contaminated using simple random sampling. The
equivalized income of the selected households is then drawn from a normal distribution
with mean µ = 500 000 and standard deviation σ = 10 000.

R> set.seed(12345)

R> sc <- SampleControl(design = "region", grouping = "hid",

+ size = c(75, 250, 250, 125, 200, 225, 125, 150, 100),

+ k = 100)

R> cc <- DCARContControl(target = "eqIncome", epsilon = 0.005,

+ grouping = "hid", dots = list(mean = 5e+05, sd = 10000))

R> results <- runSimulation(eusilcP, sc, contControl = cc,

+ fun = sim, k = 175)

64

3.2 Application of different simulation designs to EU-SILC

standard

Hill

PDC

25 30 35 40

●

●

●

●

● ●●●

●

Figure 3.3: Simulation results for the simulation design with stratified sampling and
contamination.

The head(), aggregate() and plot() methods are again used to take a look at the
simulation results. Note that a column is added that indicates the contamination level
used.

R> head(results)

Run Sample Epsilon standard Hill PDC

1 1 1 0.005 32.71453 29.12110 27.03731

2 2 2 0.005 34.22065 31.62709 26.24857

3 3 3 0.005 33.56878 28.49760 28.00937

4 4 4 0.005 35.26346 29.57160 26.25621

5 5 5 0.005 33.79720 29.15945 25.61514

6 6 6 0.005 34.72069 28.58610 27.22342

R> aggregate(results)

Epsilon standard Hill PDC

1 0.005 34.88922 30.26179 27.02093

R> tv <- gini(eusilcP$eqIncome)$value

R> plot(results, true = tv)

In Figure 3.3, the resulting box plots are presented. The figure shows that such a
small amount of contamination is enough to completely corrupt the standard estimation

65

3.2 Application of different simulation designs to EU-SILC

of the Gini coefficient. Using the classical Hill estimator to fit the Pareto distribution is
still highly influenced by the outliers, whereas the PDC estimator leads to very accurate
results.

3.2.4 Performing simulations separately on different domains

Data sets from official statistics typically contain strong heterogeneities, therefore indi-
cators are usually computed for subsets of the data as well. Hence it is often of interest
to investigate the behavior of indicators on different subsets in simulation studies. In
simFrame, this can be done by simply specifying the design argument of the function
runSimulation(). In the case of extending the example from the previous section, the
framework then splits the samples, inserts contamination into each subset and calls the
supplied function for these subsets automatically. With bespoke R code, the user would
need to take care of this with a loop-like structure such as a for loop or a function from
the apply family.

In the following example, the simulations are performed separately for each gender.
It should be noted that the value of k for the Pareto distribution is thus changed to 125.
This is the same as Example 6.1 from Alfons et al. (2010e), except that a control object for
sampling is supplied to runSimulation() instead of setting up the samples beforehand
and storing them in an object.

R> set.seed(12345)

R> sc <- SampleControl(design = "region", grouping = "hid",

+ size = c(75, 250, 250, 125, 200, 225, 125, 150, 100),

+ k = 100)

R> cc <- DCARContControl(target = "eqIncome", epsilon = 0.005,

+ grouping = "hid", dots = list(mean = 5e+05, sd = 10000))

R> results <- runSimulation(eusilcP, sc, contControl = cc,

+ design = "gender", fun = sim, k = 125)

Below, the results are inspected using head() and aggregate(). The aggregate()

method thereby computes the summary statistic for each subset automatically. Also the
plot() method displays the results for the different subsets in different panels by taking
advantage of the lattice system (Sarkar 2008, 2010). In order to compute the true
values for each subset, the function simSapply() is used.

R> head(results)

Run Sample Epsilon gender standard Hill PDC

1 1 1 0.005 male 34.58446 29.96658 26.61415

66

3.2 Application of different simulation designs to EU-SILC

standard

Hill

PDC

25 30 35 40

●

●

●

●

●●●

●●●●●●

male

25 30 35 40

●

●

●

●

●

●

female

Figure 3.4: Simulation results for the simulation design with stratified sampling, con-
tamination and performing the simulations separately for each gender.

2 1 1 0.005 female 38.82356 33.93700 28.82045

3 2 2 0.005 male 34.34853 29.09325 27.66380

4 2 2 0.005 female 36.38429 30.06097 27.42663

5 3 3 0.005 male 33.39992 30.54211 23.96698

6 3 3 0.005 female 35.12883 30.51336 26.06518

R> aggregate(results)

Epsilon gender standard Hill PDC

1 0.005 male 33.18580 29.00265 26.21119

2 0.005 female 35.61341 31.28984 27.69054

R> tv <- simSapply(eusilcP, "gender", function(x) gini(x$eqIncome)$value)

R> plot(results, true = tv)

The resulting plots are shown in Figure 3.4, which is the same as Figure 2 in Alfons
et al. (2010e). Clearly, the PDC estimator leads to excellent results for both subsets,
while the two classical approaches are in both cases highly influenced by the outliers.

3.2.5 Using multiple contamination levels

To get a more complete picture of the behavior of robust methods, more than one level
of contamination is typically investigated in simulation studies. The only necessary

67

3.2 Application of different simulation designs to EU-SILC

modification of the code is to use a vector of contamination levels as the slot epsilon

of the contamination control object. In this example, the contamination level is varied
from 0% to 1% in steps of 0.25%. With bespoke R code, the user would have to add
another loop-like structure to the code and collect the results in a suitable data structure.
In simFrame, this is handled internally by the framework.

R> set.seed(12345)

R> sc <- SampleControl(design = "region", grouping = "hid",

+ size = c(75, 250, 250, 125, 200, 225, 125, 150, 100),

+ k = 100)

R> cc <- DCARContControl(target = "eqIncome", epsilon = c(0,

+ 0.0025, 0.005, 0.0075, 0.01), dots = list(mean = 5e+05,

+ sd = 10000))

R> results <- runSimulation(eusilcP, sc, contControl = cc,

+ design = "gender", fun = sim, k = 125)

The simulation results are inspected as usual. Note that the aggregate() method in
this case returns values for each combination of contamination level and gender.

R> head(results)

Run Sample Epsilon gender standard Hill PDC

1 1 1 0.0000 male 26.58067 26.50425 26.35969

2 1 1 0.0000 female 27.43355 27.03526 28.16992

3 2 1 0.0025 male 31.63593 29.23365 27.12430

4 2 1 0.0025 female 31.43540 27.77698 26.85896

5 3 1 0.0050 male 33.35950 31.07040 25.97415

6 3 1 0.0050 female 35.68710 34.03560 29.11359

R> aggregate(results)

Epsilon gender standard Hill PDC

1 0.0000 male 25.94937 26.00769 25.85311

2 0.0025 male 30.44448 27.70155 26.01033

3 0.0050 male 33.54929 29.13202 26.16786

4 0.0075 male 36.76641 31.32342 26.49026

5 0.0100 male 39.42281 33.67944 26.53749

6 0.0000 female 27.30171 27.49442 27.41323

7 0.0025 female 31.68505 29.13643 27.61790

8 0.0050 female 35.49976 30.92128 27.91607

68

3.2 Application of different simulation designs to EU-SILC

Epsilon

30

35

40

0.000 0.002 0.004 0.006 0.008 0.010

male

0.000 0.002 0.004 0.006 0.008 0.010

female

standard
Hill
PDC

Figure 3.5: Simulation results for the simulation design with stratified sampling, multiple
contamination levels and performing the simulations separately for each gender.

9 0.0075 female 38.51819 33.08778 28.09784

10 0.0100 female 41.47137 35.32935 27.97407

R> tv <- simSapply(eusilcP, "gender", function(x) gini(x$eqIncome)$value)

R> plot(results, true = tv)

If multiple contamination levels are used in a simulation study, the plot() method
for the simulation results no longer produces box plots. Instead, the average results are
plotted against the corresponding contamination levels, as shown in Figure 3.5. The
plots show how the classical estimators move away from the references line as the con-
tamination level increases, while the values obtained with the PDC estimator remain
quite accurate.

3.2.6 Inserting missing values

Survey data almost always contain a considerable amount of missing values. In close-
to-reality simulation studies, the variability due to missing data therefore needs to be
considered. Three types of missing data mechanisms are commonly distinguished in
the literature (e.g., Little and Rubin 2002): missing completely at random (MCAR),
missing at random (MAR) and missing not at random (MNAR). All three missing data
mechanisms are implemented in the framework.

69

3.2 Application of different simulation designs to EU-SILC

In the following example, missing values are inserted into the equivalized household
income of non-contaminated households with MCAR, i.e., the households whose values
are going to be set to NA are selected using simple random sampling. In order to compare
the scenario without missing values to a scenario with missing values, the missing value
rates 0% and 5% are used. In the latter case, the missing values are simply disregarded
for fitting the Pareto distribution and estimating the Gini coefficient. Furthermore, the
number of samples is reduced to 50 and only the contamination levels 0%, 0.5% and 1%
are investigated to keep the computation time of this motivational example low.

With simFrame, only a control object for missing data needs to be defined and sup-
plied to runSimulation(), the rest is done automatically by the framework. To apply
these changes to a simulation study implemented with bespoke R code, yet another loop-
like structure for the different missing value rates as well as changes in the data structure
for the simulation results would be necessary.

R> set.seed(12345)

R> sc <- SampleControl(design = "region", grouping = "hid",

+ size = c(75, 250, 250, 125, 200, 225, 125, 150, 100),

+ k = 50)

R> cc <- DCARContControl(target = "eqIncome", epsilon = c(0,

+ 0.005, 0.01), dots = list(mean = 5e+05, sd = 10000))

R> nc <- NAControl(target = "eqIncome", NArate = c(0, 0.05))

R> results <- runSimulation(eusilcP, sc, contControl = cc,

+ NAControl = nc, design = "gender", fun = sim, k = 125)

As always, the head(), aggregate() and plot() methods are used to take a look at
the simulation results. It should be noted that a column is added to the results that
indicates the missing value rate used and that aggregate() in this example returns a
value for each combination of contamination level, missing value rate and gender.

R> head(results)

Run Sample Epsilon NArate gender standard Hill PDC

1 1 1 0.000 0.00 male 26.58067 27.00998 26.26273

2 1 1 0.000 0.00 female 27.43355 27.92305 26.69034

3 2 1 0.000 0.05 male 26.62313 26.54198 26.01043

4 2 1 0.000 0.05 female 27.51209 26.83574 27.25464

5 3 1 0.005 0.00 male 33.71363 28.44824 26.46635

6 3 1 0.005 0.00 female 35.47508 28.48208 27.70783

R> aggregate(results)

70

3.2 Application of different simulation designs to EU-SILC

Epsilon NArate gender standard Hill PDC

1 0.000 0.00 male 25.89948 25.99777 25.74944

2 0.005 0.00 male 33.52791 29.30477 26.14659

3 0.010 0.00 male 39.45422 32.74672 26.64929

4 0.000 0.05 male 25.88434 25.87824 25.80541

5 0.005 0.05 male 33.87975 29.60079 26.18759

6 0.010 0.05 male 39.99526 33.44462 26.31274

7 0.000 0.00 female 27.17769 27.30586 27.19275

8 0.005 0.00 female 35.46414 31.37099 27.98622

9 0.010 0.00 female 41.28625 35.22113 28.19677

10 0.000 0.05 female 27.16026 27.37710 27.20892

11 0.005 0.05 female 35.85305 31.56317 27.80455

12 0.010 0.05 female 41.86453 35.44025 27.98948

R> tv <- simSapply(eusilcP, "gender", function(x) gini(x$eqIncome)$value)

R> plot(results, true = tv)

If multiple contamination levels and multiple missing value rates are used in the sim-
ulation study, conditional plots are produced by the plot() method for the simulation
results. Figure 3.6 shows the resulting plots for this example. The bottom panels illus-
trate the scenario without missing values, while the scenario with 5% missing values is
displayed in the top panels. In this case, there is not much of a difference in the results
for the two scenarios.

3.2.7 Parallel computing

Statistical simulation is an embarrassingly parallel procedure, hence parallel computing
can drastically reduce the computational costs. In simFrame, parallel computing is im-
plemented using snow (Rossini et al. 2007, Tierney et al. 2008). Only minimal additional
programming effort due to the use of snow is required to adapt the code from the previous
example: to initialize the computer cluster, to ensure that all packages and objects are
available on each worker process, to use the function clusterRunSimulation() instead
of runSimulation() and to stop the computer cluster after the simulations. In addition,
random number streams (e.g., L’Ecuyer et al. 2002, Sevcikova and Rossini 2009) should
be used instead of the built-in random number generator.

R> cl <- makeCluster(4, type = "SOCK")

R> clusterEvalQ(cl, {

+ library("simFrame")

71

3.2 Application of different simulation designs to EU-SILC

Epsilon

25

30

35

40

0.000 0.002 0.004 0.006 0.008 0.010

male
NArate = 0

female
NArate = 0

male
NArate = 0.05

0.000 0.002 0.004 0.006 0.008 0.010

25

30

35

40

female
NArate = 0.05

standard
Hill
PDC

Figure 3.6: Simulation results for the simulation design with stratified sampling, mul-
tiple contamination levels, multiple missing value rates and performing the simulations
separately for each gender.

+ library("laeken")

+ data("eusilcP")

+ })

R> clusterSetupRNG(cl, seed = 12345)

R> sc <- SampleControl(design = "region", grouping = "hid",

+ size = c(75, 250, 250, 125, 200, 225, 125, 150, 100),

+ k = 50)

R> cc <- DCARContControl(target = "eqIncome", epsilon = c(0,

+ 0.005, 0.01), dots = list(mean = 5e+05, sd = 10000))

R> nc <- NAControl(target = "eqIncome", NArate = c(0, 0.05))

R> clusterExport(cl, c("sc", "cc", "nc", "sim"))

R> results <- clusterRunSimulation(cl, eusilcP, sc, contControl = cc,

+ NAControl = nc, design = "gender", fun = sim, k = 125)

R> stopCluster(cl)

72

3.3 Conclusions

When the parallel computations are finished and the simulation results are obtained,
they can be inspected as usual.

R> head(results)

Run Sample Epsilon NArate gender standard Hill PDC

1 1 1 0.000 0.00 male 26.20067 27.02017 23.66565

2 1 1 0.000 0.00 female 28.79194 29.23548 27.12933

3 2 1 0.000 0.05 male 26.19328 24.91570 24.07906

4 2 1 0.000 0.05 female 28.86860 27.38585 27.80012

5 3 1 0.005 0.00 male 34.46084 31.74470 24.87023

6 3 1 0.005 0.00 female 36.27429 32.14269 28.06137

R> aggregate(results)

Epsilon NArate gender standard Hill PDC

1 0.000 0.00 male 25.89996 25.98977 25.86451

2 0.005 0.00 male 33.56743 29.36361 26.39515

3 0.010 0.00 male 39.40362 33.05926 26.68715

4 0.000 0.05 male 25.87909 25.86055 26.00109

5 0.005 0.05 male 33.94829 29.65456 26.32813

6 0.010 0.05 male 39.95535 33.24853 26.78947

7 0.000 0.00 female 27.38636 27.52210 27.48816

8 0.005 0.00 female 35.52688 31.30099 28.03385

9 0.010 0.00 female 41.35311 35.81549 28.67901

10 0.000 0.05 female 27.38459 27.51825 27.54063

11 0.005 0.05 female 35.87991 31.74678 28.18308

12 0.010 0.05 female 41.89804 36.21921 28.41367

R> tv <- simSapply(eusilcP, "gender", function(x) gini(x$eqIncome)$value)

R> plot(results, true = tv)

Figure 3.7 shows the simulation results obtained with parallel computing. The plots
are, of course, very similar to the plots for the previous example in Figure 3.6, since the
design of the simulation studies is the same.

3.3 Conclusions

In this paper, the use of the R package simFrame for different simulation designs has
been demonstrated in a practical application. The full functionality of the framework for

73

3.3 Conclusions

Epsilon

30

35

40

0.000 0.002 0.004 0.006 0.008 0.010

male
NArate = 0

female
NArate = 0

male
NArate = 0.05

0.000 0.002 0.004 0.006 0.008 0.010

30

35

40

female
NArate = 0.05

standard
Hill
PDC

Figure 3.7: Simulation results obtained by parallel computing for the simulation design
with stratified sampling, multiple contamination levels, multiple missing value rates and
performing the simulations separately for each gender.

design-based simulation has been presented in various code examples. These examples
showed that the framework allows researchers to make use of a wide range of simulation
designs with only a few lines of code. In order to switch from one simulation design
to another, only control objects need to be defined or modified. Even moving from
basic to highly complex designs therefore requires only minimal changes to the code.
With bespoke R code, such modifications would often need a considerable amount of
programming. Furthermore, parallel computing with simFrame can easily be done based
on package snow.

Besides the functionality for carrying out simulation studies, methods for several
frequently used generic functions are available for inspecting or summarizing the simu-
lation results. Most notably, a suitable plot method of the simulation results is selected
automatically depending on their structure.

Due to this flexibility, simFrame is widely applicable for gaining insight into the
quality of statistical methods and is a valuable addition to a researcher’s toolbox.

74

3.3 Conclusions

Computational details All computations in this paper were performed using Sweave

(Leisch 2002a,b) with R version 2.12.0 and simFrame version 0.3.6. The most recent
version of the package is always available from CRAN (the Comprehensive R Archive
Network, http://cran.R-project.org), and (an up-to-date version of) this paper is
also included as a package vignette (Leisch 2003).

Acknowledgments This work was partly funded by the European Union (repre-
sented by the European Commission) within the 7th framework programme for re-
search (Theme 8, Socio-Economic Sciences and Humanities, Project AMELI (Advanced
Methodology for European Laeken Indicators), Grant Agreement No. 217322). Visit
http://ameli.surveystatistics.net for more information on the project.

75

http://cran.R-project.org
http://ameli.surveystatistics.net

Chapter 4

Contamination models in the R

package simFrame for statistical

simulation

Published in Computer Data Analysis and Modeling: Complex Stochastic Data and Sys-
tems (Alfons et al. 2010d).

Andreas Alfonsa, Matthias Templa,b, Peter Filzmosera

a Department of Statistics and Probability Theory, Vienna University of Technology
b Methods Unit, Statistics Austria

Abstract Due to the complexity of robust statistical methods, simulation studies are
widely used to gain insight into the quality of these procedures. The R package simFrame
is an object-oriented framework for statistical simulation with special emphasis on ap-
plications in robust statistics. Contamination is thereby modeled as a two-step process.
Furthermore, the existing framework may be extended with user-defined contamination
models.

4.1 Introduction

Robust statistical methods are becoming increasingly complex, therefore obtaining an-
alytical results about their properties is becoming more and more time-consuming and
difficult—often virtually impossible. On the other hand, computers are ever getting
faster and cheaper. Therefore simulation studies are widely used by researchers to gain
insight into the quality of the developed methods in different situations.

76

4.2 Contamination models in simFrame

Two main concepts for simulation studies are distinguished in the literature: model-
based and design-based simulation. In model-based simulation, data are generated re-
peatedly from a certain distribution. In every iteration, different methods are applied
and quantities of interest are computed for comparison. Reference values can be ob-
tained from the underlying theoretical distribution where appropriate. In design-based
simulation, samples are drawn repeatedly from a finite population. Since real popula-
tion data are only in few cases available to researchers, synthetic populations need to be
generated (Alfons et al. 2010c). In every iteration, certain estimators such as indicators
are computed. Where appropriate, these can be compared to the true population values.

When investigating robust methods, outliers need to be included. For model-based
simulation, reference values are then computed from the theoretical distribution of the
non-contaminated data. For design-based simulation, the situation is more complex (Al-
fons et al. 2009). The most realistic scenario would be to include outliers in the population
data. However, total control over the amount of contamination is required for proper
evaluation of robust methods. It is therefore suggested to generate outliers in the sam-
ples. In any case, reference values are computed from the non-contaminated population
values.

The R package simFrame (Alfons et al. 2010e) is a general framework for simulation
studies in statistics. Its object-oriented implementation provides clear interfaces for
extensions by the user. One of the main advantages of simFrame is that simulation
studies can be defined in terms of control objects. For large research projects, this ensures
that results obtained by different partners are comparable.

4.2 Contamination models in simFrame

In the literature on robust statistics, the distribution F of contaminated data is typically
modeled as a mixture of distributions

F = (1− ε)G+ εH, (4.1)

where ε denotes the contamination level , G is the distribution of the non-contaminated
part of the data and H is the distribution of the contamination (Maronna et al. 2006).
As a consequence, outliers may be modeled by a two-step process (Hulliger and Schoch
2009a). The first step is to select observations to be contaminated, the second is to model
the distribution of the outliers. Let n be the number of observations, p the number of
variables, and let xi = (xi1, . . . , xip), i = 1, . . . , n, denote the observations.

77

4.3 Example: Outlier detection

1. Let Oi, i = 1, . . . , n, be an indicator whether an observation is an outlier (Oi = 1)
or not (Oi = 0). The situation that the probability distribution of Oi does not
depend on any other variables, i.e., that

P (Oi = 1|xi1, . . . , xip) = P (Oi = 1), i = 1, . . . , n (4.2)

may be called outlying completely at random (OCAR). If Equation (4.2) is violated,
i.e., if the probability distribution of Oi depends on observed information, the
situation may be called outlying at random (OAR).

2. Let Ic := {i = 1, . . . , n : Oi = 1} be the index set of the observations to be
contaminated, and let x∗i = (x∗i1, . . . , x

∗
ip) denote the true (i.e., non-contaminated)

values of xi, i ∈ Ic. If the distribution H does not depend on the true values, i.e.,
if xi ∼ H(x1, . . . , xp), i ∈ Ic, the outliers may be called contaminated completely
at random (CCAR). On the other hand, if H depends on the true values, i.e., if
xi ∼ H(x1, . . . , xp, x

∗
i1, . . . , x

∗
ip), i ∈ Ic, the outliers may be called contaminated at

random (CAR).

The package simFrame is implemented in the open-source statistical environment
and programming language R (R Development Core Team 2010). Taking advantage of
object-oriented programming, the control classes DCARContControl and DARContControl

determine how contamination is handled in simulation studies (see the example in Sec-
tion 4.3). DCARContControl may be used for OCAR-CCAR and OAR-CCAR models,
whereas DARContControl corresponds to OCAR-CAR and OAR-CAR. Additional con-
tamination models may be added in the future. However, the object-oriented design
further allows contamination models to be implemented by the user. The programming
interfaces for such extensions are described in detail in Alfons et al. (2010e).

4.3 Example: Outlier detection

This simple motivational example for the usage of simFrame is a comparison of out-
lier detection using classical and robust estimation of location and scatter. The robust
estimates are obtained with the fast MCD (Rousseeuw and Van Driessen 1999) imple-
mentation in package rrcov (Todorov and Filzmoser 2009).

Data are generated in each of the 100 simulation runs from a two-dimensional normal
distribution. Varying the contamination level between 10% and 30% in steps of 5%,
the contaminated data are generated from a normal distribution with a shifted mean
(OCAR-CCAR). In the function to be executed in every iteration, the percentages of
false negatives and false positives are computed. Note that the default tuning parameter

78

4.4 Conclusions

0.5 is used for the MCD. For reproducibility of the simulation results, the seed of the
random number generator is set before running the simulation study.

R> sigma <- matrix(c(1, 0.5, 0.5, 1), 2, 2)

R> dc <- DataControl(size = 100, distribution = rmvnorm,

+ dots = list(sigma = sigma))

R> cc <- DCARContControl(epsilon = seq(0.1, 0.3, by = 0.05),

+ distribution = rmvnorm, dots = list(mean = c(5, -5),

+ sigma = sigma))

R> sim <- function(x, q) {

+ clas <- Cov(x[, 1:2])

+ rob <- CovMcd(x[, 1:2])

+ dclas <- mahalanobis(x[, 1:2], clas@center, clas@cov)

+ drob <- mahalanobis(x[, 1:2], rob@center, rob@cov)

+ outclas <- dclas > q

+ outrob <- drob > q

+ nout <- length(which(x$.contaminated))

+ ngood <- nrow(x) - nout

+ c(FNclas = length(which(!outclas & x$.contaminated))/nout,

+ FNrob = length(which(!outrob & x$.contaminated))/nout,

+ FPclas = length(which(outclas & !x$.contaminated))/ngood,

+ FProb = length(which(outrob & !x$.contaminated))/ngood) *

+ 100

+ }

R> set.seed(12345)

R> result <- runSimulation(dc, nrep = 100, contControl = cc,

+ fun = sim, q = qchisq(0.975, df = 2))

R> plot(result, select = c("FNclas", "FNrob"), ylab = "%FN")

R> plot(result, select = c("FPclas", "FProb"), ylab = "%FP")

In simFrame, a suitable graphical representation of the results is selected automati-
cally depending on their structure. Figure 4.1 shows plots of the average proportions of
false negatives (left) and false positives (right). The plots, of course, clearly favor the
MCD over classical estimation.

4.4 Conclusions

The package simFrame is an object-oriented framework for simulation studies in the
statistical environment R. Different contamination models are implemented using control

79

4.4 Conclusions

Epsilon

%
F

N

0

20

40

60

80

100

0.10 0.15 0.20 0.25 0.30

FNclas
FNrob

Epsilon

%
F

P

0.2

0.4

0.6

0.8

1.0

1.2

0.10 0.15 0.20 0.25 0.30

FPclas
FProb

Figure 4.1: Average proportions of false negatives (left) and false positives (right).

classes. The flexible framework further allows additional contamination models to be
implemented by the user. Hence simFrame is widely applicable in the field of robust
statistics.

Acknowledgments This work was partly funded by the European Union within the
7th framework programme for research (Project AMELI, Grant Agreement No. 217322).

80

Chapter 5

Simulation of close-to-reality

population data for household

surveys with application to

EU-SILC1

Revision submitted to the journal Statistical Methods & Applications.

Andreas Alfonsa, Stefan Krafta,b, Matthias Templa,c, Peter Filzmosera

a Department of Statistics and Probability Theory, Vienna University of Technology
b now at the Institute for Quantitative Asset Management
c Methods Unit, Statistics Austria

Abstract Statistical simulation in survey statistics is usually based on repeatedly draw-
ing samples from population data. Furthermore, population data may be used in courses
on survey statistics to explain issues regarding, e.g., sampling designs. Since the availabil-
ity of real population data is in general very limited, it is necessary to generate synthetic
data for such applications. The simulated data need to be as realistic as possible, while at
the same time ensuring data confidentiality. This paper proposes a method for generating
close-to-reality population data for complex household surveys. The procedure consists
of four steps for setting up the household structure, simulating categorical variables, sim-

1This work was partly funded by the European Union (represented by the European Commission)
within the 7th framework programme for research (Theme 8, Socio-Economic Sciences and Humanities,
Project AMELI (Advanced Methodology for European Laeken Indicators), Grant Agreement No. 217322).
Visit http://ameli.surveystatistics.net for more information on the project.

81

http://ameli.surveystatistics.net

5.1 Introduction

ulating continuous variables and splitting continuous variables into different components.
It is not required to perform all four steps so that the framework is applicable to a broad
class of surveys. In addition, the proposed method is evaluated in an application to the
European Union Statistics on Income and Living Conditions (EU-SILC).

Keywords Synthetic data, Simulation, Survey statistics, EU-SILC

5.1 Introduction

Survey data contain variability due to sampling, imputation of missing values, measure-
ment errors and editing. Statistical simulation in survey statistics therefore often follows
a close-to-reality approach (see, e.g., Münnich et al. 2003b), i.e., the behavior of the de-
veloped methodology for a specific survey is investigated by repeatedly drawing samples
from population data with the sampling method and weighting scheme used in practice.
Population data may thus form the basis for a realistic framework to compare statisti-
cal methods under different settings. In particular, the estimation of indicators needed
for policy decisions may be investigated with respect to different sampling designs or
common data problems such as measurement errors or missing values.

In teaching, population data may support courses on topics such as sampling, statisti-
cal modeling or indicator estimation. Again, real-world situations could be considered by
drawing samples from close-to-reality populations. Issues regarding, e.g., the sampling
design or inhomogeneities in the data can be explained using real-world applications.

However, real population data are typically limited to census or register data. Only
in exceptions are suitable population data available to researchers. The remedy of this
problem is to generate synthetic populations from existing survey data.

Simulation of population microdata is closely related to the field of microsimulation
(e.g., Clarke 1996), which is a well-established methodology within the social sciences,
although the aims are quite different. Microsimulation models attempt to reproduce the
behavior of individual units such as persons, households or firms over the course of many
years for policy analysis purposes. Hence they are highly complex and time-consuming.
Survey statisticians, on the other hand, need synthetic populations as a basis for extensive
simulation studies on the behavior of their statistical methods. Fast computation is thus
favored to over-complex models.

An alternative approach for the generation of synthetic data sets is discussed by
Rubin (1993). He addresses the confidentiality problem connected with the release of
publicly available microdata and proposes the generation of fully synthetic microdata
sets using multiple imputation. Raghunathan et al. (2003), Drechsler et al. (2008) and

82

5.2 Simulation of synthetic populations

Reiter (2009) discuss this approach in more detail. However, their approach does not
allow to generate categories that are not represented in the original sample, nor do
they investigate the possible generation of structural zeros in combinations of variables.
Moreover, some basic variables from the real population data are required as auxiliary
information.

The generation of population microdata for selected surveys as a basis for Monte Carlo
simulation is described by Münnich et al. (2003b) and Münnich and Schürle (2003). Nev-
ertheless, their framework was developed for household surveys with large sample sizes
that contain mainly categorical variables. All steps of the procedure are performed sep-
arately for each stratum of the sampling design. The household structure is thereby
simulated in two steps. First, the household sizes are drawn from the observed con-
ditional distributions within the strata. Second, the age and gender structure of the
population households is generated by resampling households of the same size from the
respective strata in the sample. Additional categorical variables are then simulated by
random draws from the observed conditional distributions of their multivariate realiza-
tions within each combination of stratum, age (or age category) and gender. Also con-
tinuous variables are modeled separately for each combination of stratum and outcomes
from certain influential variables.

In any case, this framework has been modified and extended in order to be applicable
to more complex surveys such as the well-known European Union Statistics on Income
and Living Conditions (EU-SILC). Please note that while it would be interesting to
establish a theoretical relationship between the goodness of the statistical models and
the resulting populations, such an analysis is out of scope for this paper due to the large
number of models involved. Instead, the proposed procedure is evaluated by means of
simulation.

The rest of the paper is organized as follows. In Section 5.2, the proposed data sim-
ulation method is described in great detail. Diagnostic plots and results from extensive
simulation studies in an application to EU-SILC are presented in Section 5.3. The final
Section 5.4 concludes.

5.2 Simulation of synthetic populations

The data simulation method proposed in this paper is motivated by the European Union
Statistics on Income and Living Conditions (EU-SILC; see Section 5.3), but since it is
designed to manage all difficulties of this highly complex survey, it is also applicable to
many other household surveys. In any case, the following conditions need to be respected
when simulating population data (Münnich et al. 2003b, Münnich and Schürle 2003):

83

5.2 Simulation of synthetic populations

• Actual sizes of regions and strata need to be reflected.

• Marginal distributions and interactions between variables should be represented
correctly.

• Heterogeneities between subgroups, especially regional aspects, should be allowed.

• Pure replication of units from the underlying sample should be avoided, as this
generally leads to extremely small variability of units within smaller subgroups.

• Data confidentiality must be ensured.

In the case of EU-SILC, another problem needs to be considered. As the name suggests,
EU-SILC contains information about income, which is split into different income compo-
nents. The data simulation method must thus ensure that such a breakdown of variables
is done in a realistic manner.

Since some of the above conditions are conflicting with one another, generating com-
pletely realistic populations seems an impossible task. Nevertheless, being as close to
reality as possible suffices for drawing meaningful conclusions from simulation studies.

Our procedure is based on the ideas of Münnich et al. (2003b) and Münnich and
Schürle (2003). However, they mainly consider the generation of categorical variables for
specific surveys such as the German Microcensus, with only a few simple extensions to
continuous variables. The proposed method uses modifications of their framework and
both improves and extends the simulation scheme such that it can be applied to a much
broader class of household surveys. This in particular includes surveys with relatively
small sample sizes or with complex continuous variables or components thereof. In
general, the procedure consists of four steps:

1. Setup of the household structure

2. Simulation of categorical variables

3. Simulation of continuous variables

4. Splitting continuous variables into components

While the propositions of Münnich et al. (2003b) and Münnich and Schürle (2003) are
only slightly modified in Step 1, an entirely different approach is used in Steps 2 and 3. In
addition, Step 4 constitutes a new development motivated by EU-SILC. Having different
stages provides maximum flexibility of the framework. Depending on the specific survey,
not all four steps need to be carried out.

It is important to note that the proposed data generation method relies solely on
the underlying sample data, no auxiliary information (e.g., available census data) is

84

5.2 Simulation of synthetic populations

required. Stratification allows to account for heterogeneities such as regional differences.
Furthermore, sample weights are considered in each step to ensure high similarity of
expected and realized values. Concerning data confidentiality, a detailed analysis of the
framework using different worst case scenarios is carried out in Templ and Alfons (2010).
The conclusion of this analysis is that the synthetic population data are confidential and
may be distributed to the public.

In the following sections, the different steps of the procedure are described in de-
tail. Section 5.2.5 then briefly discusses the implementation of the procedure in R (R
Development Core Team 2010).

5.2.1 Setup of the household structure

The household structure is simulated separately for each combination of stratum k and
household size l. First, the number of households Mkl is estimated using the Horvitz-
Thompson estimator (Horvitz and Thompson 1952):

M̂kl :=
∑
h∈HS

kl

wh, (5.1)

where HS
kl denotes the index set of households in stratum k of the survey data with house-

hold size l, and wh, h ∈ HS
kl, are the corresponding household weights. Similarly, let HU

kl

be the respective index set of households in the population data such that |HU
kl| = M̂kl.

To prevent unrealistic structures in the population households, basic information from
the survey households is resampled. Let xShij and xUhij denote the value of person i from
household h in variable j for the sample and population data, respectively, and let the
first p1 variables contain the basic information on the household structure. For each
population household h ∈ HU

kl, a survey household h′ ∈ HS
kl is selected with probability

wh′/M̂kl and the household structure is set to

xUhij := xSh′ij , i = 1, . . . , l, j = 1, . . . , p1. (5.2)

Alias sampling (Walker 1977) is well suited for our purpose, as it is very fast for a large
number of sampled elements. Furthermore, as few variables as possible should be adopted
by the persons in the resampled households for disclosure reasons. Our suggestion is to
use only age and gender information, which is typically available in household surveys.

5.2.2 Simulation of categorical variables

For simulating additional categorical variables, the approach by Münnich et al. (2003b)
and Münnich and Schürle (2003) is based on estimating conditional distributions directly

85

5.2 Simulation of synthetic populations

by the corresponding relative frequency distributions in the underlying sample. It there-
fore requires a rather large sample size and is not very flexible (see Section 5.3.2; cf. Kraft
2009). In particular, it does not allow to generate combinations that do not occur in the
sample. To overcome these shortcomings, the proposed approach estimates conditional
distributions with multinomial logistic regression models.

Let xSj = (xS1j , . . . , x
S
nj)
′ and xUj = (xU1j , . . . , x

U
Nj)
′ denote the variables in the sample

and population, respectively, where n and N give the corresponding number of individ-
uals. The additional categorical variables are thereby given by the indices p1 < j ≤ p2.
Furthermore, the personal sample weights are denoted by w = (w1, . . . , wn)′. Multino-
mial logistic regression models are fitted for each stratum separately. Due to limited
space, a detailed mathematical description of these models cannot be provided in this
paper, but can be found in, e.g., Simonoff (2003).

The following procedure is performed for each stratum k and each variable to be sim-
ulated, given by the index j, p1 < j ≤ p2. Let ISk and IUk be the index sets of individuals
in stratum k for the survey and population data, respectively. The survey data given by
the indices in ISk is used to fit the model with response xSj and predictors xS1 , . . . , xSj−1,
thereby considering the sample weights wi, i ∈ ISk . Furthermore, let {1, . . . , R} be the
set of possible outcome categories of the response variable. In particular, the number
of possible outcomes is denoted by R. For every individual i ∈ IUk , the conditional
probabilities pUir := P (xUij = r|xUi1, . . . , xUi,j−1) are estimated by

p̂Ui1 := 1
1 +

∑R
r=2 exp(β̂0r + β̂1rx

U
i1 + . . .+ β̂j−1,rx

U
i,j−1)

,

p̂Uir :=
exp(β̂0r + β̂1rx

U
i1 + . . .+ β̂j−1,rx

U
i,j−1)

1 +
∑R

r=2 exp(β̂0r + β̂1rx
U
i1 + . . .+ β̂j−1,rx

U
i,j−1)

, r = 2, . . . , R,
(5.3)

where β̂0r, . . . , β̂j−1,r, r = 2, . . . , R, are the estimated coefficients (see, e.g., Simonoff
2003). The values of xUj for the individuals i ∈ IUk are then drawn from the corresponding
conditional distributions.

Note that for simulating the jth variable, p1 < j ≤ p2, the j − 1 previous variables
are used as predictors. This means that the order of the additional categorical variables
may be relevant. However, once such a variable is generated in the population, that
information should certainly be used for simulating the remaining variables. In our
application to EU-SILC, changing the order of the variables did not produce significantly
different results (not shown). Alternatively, the procedure could be continued iteratively
once all additional variables are available in the population, in each step using all other
variables as predictors. Nevertheless, such a procedure would be computationally very
expensive for real-life sized population data.

86

5.2 Simulation of synthetic populations

Estimating the conditional distributions with multinomial logistic regression models
allows to simulate combinations that do not occur in the sample but are likely to oc-
cur in the true population. Such combinations are called random zeros, as opposed to
structural zeros, which are impossible to occur (e.g., Simonoff 2003). For close-to-reality
populations, such structural zeros need to be reflected. This can be done by setting
pUir′ := 0, where r′ is an impossible value for xij given xi1, . . . , xi,j−1, and adjusting the
other probabilities so that

∑R
r=1 p

U
ir = 1.

5.2.3 Simulation of continuous variables

Continuing the notation from the previous section, let xSj and xUj , p2 < j ≤ p3, denote
the continuous variables. Two different approaches are presented in the following. Both
are able to handle semi-continuous variables, i.e., variables that contain a large amount
of zeros.

Multinomial model with random draws from resulting categories

This approach is based on the simulation of categorical variables described in the previous
section. The following steps are performed for each variable to be simulated, given by
the index j, p2 < j ≤ p3. First, the variable xSj is discretized. This is done in a different
manner for continuous and semi-continuous variables. For continuous variables, R + 1
breakpoints b1 < . . . < bR+1 are used to define the discretized variable yS = (yS1 , . . . , y

S
n)′

as

ySi :=

{
1 if b1 ≤ xSij ≤ b2,
r if br < xSij ≤ br+1, r = 2, . . . , R.

(5.4)

For semi-continuous variables, zero is a category of its own, and breakpoints for negative
and positive values are distinguished. Let b−

R−+1
< . . . < b−1 = 0 = b+1 < . . . < b−

R++1
be

the breakpoints. Then yS is defined as

ySi :=

−r if R− > 0 and b−r+1 ≤ xSij < b−r , r = R−, . . . , 1,

0 if xSij = 0,
r if R+ > 0 and b+r < xSij ≤ b

+
r+1, r = 1, . . . , R+.

(5.5)

Note that the cases of only non-negative or non-positive values in xSj are considered
in (5.5).

Multinomial logistic regression models with response yS and predictors xS1 , . . . , xSj−1

are then fitted for every stratum k separately, as described in the previous section, in
order to simulate the values of the categorized population variable yU = (yU1 , . . . , y

U
N)′.

87

5.2 Simulation of synthetic populations

Finally, the values of xUj are generated by random draws from uniform distribu-
tions within the corresponding categories of yU . For continuous variables, the values of
individual i = 1, . . . , N are generated as

xUij ∼ U(br, br+1) if yUi = r. (5.6)

For semi-continuous variables, the values of individual i = 1, . . . , N are set to xUij := 0 if
yUi = 0, while the non-zero observations are generated as

xUij ∼

{
U(b−r+1, b

−
r) if yUi = −r < 0,

U(b+r , b
+
r+1) if yUi = r > 0.

(5.7)

The idea behind this approach is to divide the data into relatively small subsets. If
the intervals are too large, using uniform distributions may be an oversimplification.
However, the advantage of this approach is that it allows the breakpoints for the dis-
cretization to be chosen in such a way that the empirical distribution is well reflected in
the simulated population variable. It thereby needs to be considered that the larger the
number of breakpoints, the higher the computation time. Quantiles in steps of 10% are
reasonable default values for the breakpoints, while the fit in the tails of the distribution
may be improved by also using the 1%, 5%, 95% and 99% quantiles. Note that sufficient
accuracy in some applications may already be reached with larger steps in the middle
part of the distribution (see Section 5.3).

When simulating variables that contain extreme values, such as income, tail modeling
should be considered. In that case, values from the largest categories could be drawn
from a generalized Pareto distribution (GPD). The cumulative distribution function of
the GPD is defined as

Fµ,σ,ξ(x) =

1−

(
1 +

ξ(x− µ)
σ

)− 1
ξ

, ξ 6= 0,

1− exp
(
−x− µ

σ

)
, ξ = 0,

where µ is the location parameter, σ > 0 is the scale parameter and ξ is the shape
parameter. The range of x is x ≥ 0 when ξ ≥ 0 and µ ≤ x ≤ µ − σ

ξ when ξ < 0. See,
e.g., Embrechts et al. (1997) for details on the peaks over threshold approach for fitting
the GPD. Note that other distributions may be used for tail modeling as well (see, e.g.,
Kleiber and Kotz 2003). Nevertheless, if the purpose of such a population is comparing
different estimators in a simulation study, it is important to note that using a GPD for
the tails favors estimators that incorporate generalized Pareto tail modeling over other
types of estimators.

88

5.2 Simulation of synthetic populations

(Two-step) regression model with random error terms

The second approach is based on linear regression combined with random error terms.
Semi-continuous variables are thereby simulated using a two-step model. The following
procedure is repeated for each variable to be simulated, given by the index j, p2 < j ≤ p3.

For semi-continuous variables, the first step is to simulate whether xUij , i = 1, . . . , N ,
is zero or not. This is done by fitting logistic regression models (see, e.g., Simonoff 2003)
for each stratum separately. The binary response variable yS = (yS1 , . . . , y

S
n)′ is defined

as

ySi :=

{
0 if xij = 0,
1 else.

(5.8)

For each stratum k, the observations given by the index set ISk are used to fit the model
with response yS and predictors xS1 , . . . , xSj−1. The sample weights wi, i ∈ ISk , are con-
sidered in the model fitting process by using a weighted maximum likelihood approach.
For every individual i ∈ IUk , the conditional probabilities pUi := P (yUi = 1|xUi1, . . . , xUi,j−1)
that xUij is non-zero are estimated by

p̂Ui :=
exp(β̂0 + β̂1x

U
i1 + . . .+ β̂j−1x

U
i,j−1)

1 + exp(β̂0 + β̂1x
U
i1 + . . .+ β̂j−1x

U
i,j−1)

, (5.9)

where β̂0, . . . , β̂j−1 are the estimated coefficients (e.g., Simonoff 2003). The values yUi ,
i ∈ IUk , are then drawn from the corresponding conditional distributions. Consequently,
the zeros in the simulated semi-continuous variable are given by xUij := 0 if yUi = 0. For
the second step, the non-zero observations are indicated by ĨSk := {i ∈ ISk : ySi = 1} and
ĨUk := {i ∈ IUk : yUi = 1}.

For continuous variables, on the other hand, ĨSk := ISk and ĨUk := IUk are used in
the following. Linear regression models are fitted for every stratum separately. In order
to obtain more robust models, trimming parameters α1 and α2 are introduced. The
following procedure is carried out for each stratum k. Let the observations to be used for
fitting the model be given by the index set Iα2

α1
:= {i ∈ ĨSk : qα1 < xij < q1−α2}, where

qα1 and q1−α2 are the corresponding α1 and 1 − α2 quantiles, respectively. The linear
model is then given by

xSij = β0 + β1x
S
i1 + . . .+ βj−1x

S
i,j−1 + εSi , i ∈ Iα2

α1
, (5.10)

where εSi are random error terms. Using the weighted least squares approach with
weights wi, i ∈ Iα2

α1
, coefficients β̂0, . . . , β̂j−1 are obtained (see, e.g., Weisberg 2005) and

89

5.2 Simulation of synthetic populations

the population values are estimated by

x̂Uij = β̂0 + β̂1x
U
i1 + . . .+ β̂j−1x

U
i,j−1 + εUi , i ∈ ĨUk . (5.11)

The random error terms εUi need to be added since otherwise individuals with the same
set of predictor values would receive the same value in xUij . There are two suggestions on
how to generate the random error terms:

• Use random draws from the residuals

r̂Si = xSij −
(
β̂0 + β̂1x

S
i1 + . . .+ β̂j−1x

S
i,j−1

)
, i ∈ Iα2

α1
. (5.12)

• Use random draws from a normal distribution N (µ, σ2). The parameters µ and σ

are thereby estimated robustly with median and MAD, respectively.

The first approach is more data-driven, while the second approach is in accordance
with the theoretical assumption of normally distributed errors. For both, the trimming
parameters α1 and α2 need to be selected carefully. If they are too small, very large
random error terms due to outliers may result in large deviations especially in the tails
of the distribution. If they are too large, the random error terms may not introduce
enough variability. In the application to EU-SILC, α1 = α2 = 0.01 appeared to be a
reasonable choice.

For variables such as income, a log-transformation may be beneficial before fitting
the linear model. Equation (5.10) is then changed to

log xSij = β0 + β1x
S
i1 + . . .+ βj−1x

S
i,j−1 + εSi , i ∈ Iα2

α1
. (5.13)

In that case, the population values are estimated by

x̂Uij = exp(β̂0 + β̂1x
U
i1 + . . .+ β̂j−1x

U
i,j−1 + εUi), i ∈ ĨUk . (5.14)

However, the log-transformation causes problems with negative values, which is realistic
for income (losses from self employment, see the example with EU-SILC data in Sec-
tion 5.3). A simple remedy is of course to add a constant c > 0 to xSij to obtain positive
values, i.e., to use log(xSij+c) in the left-hand side of Equation (5.13). This constant then
needs to be subtracted from the right hand side of Equation (5.14). Another possibility
is to combine the two presented approaches for simulating (semi-)continuous variables.
A multinomial model with one category for positive values and certain categories for
non-positive values is applied in the first step. Positive values are then simulated using a

90

5.2 Simulation of synthetic populations

linear model for the log-transformed data, while negative values are drawn from uniform
distributions within the respective simulated categories.

5.2.4 Splitting continuous variables into components

The procedure for simulating components of continuous variables is motivated by EU-
SILC data, which contain information on various income components. When simulating
components, the following problems need to be considered (cf. Kraft 2009). Even for
a moderate number of components, it may be too complex to consider all the depen-
dencies between the components and the other variables, as well as between the com-
ponents themselves. Moreover, sparseness of various components may be an issue, e.g.,
in EU-SILC data, most income components typically contain only few non-zero observa-
tions. To manage these problems, a simple but effective approach based on conditional
resampling of fractions has been developed. Only very few highly influential categorical
variables should thereby be considered for conditioning.

Let zS = (zS1 , . . . , z
S
n)′ and zU = (zU1 , . . . , z

U
N)′ denote the variable giving the total

in the sample and population, respectively, and let xSj and xUj , p3 < j ≤ p4, denote the
variables containing the components. First, the fractions of the components with respect
to the total are computed for the sample:

ySij :=
xSi,p3+j

zSi
, i ∈ ISr , j = 1, . . . , p4 − p3. (5.15)

For the second step, let Jc be the index set of the conditioning variables. This step
is performed separately for every combination of outcomes r = (rj)j∈Jc . Let ISr :=
{i : xSij = rj ∀j ∈ Jc} and IUr := {i : xUij = rj ∀j ∈ Jc} be the index sets of individuals
in the survey and population data, respectively, with the corresponding outcomes in
the conditioning variables. For each individual i ∈ IUr in the population, an individual
i′ ∈ ISr from the survey data is selected with probability wi′/

∑
i∈ISr wi and the values of

the components are set to

xUi,p3+j := zUi y
S
i′j , j = 1, . . . , p4 − p3. (5.16)

If no observations for combination r exist in the sample, i.e., if ISr = ∅, a suitable donor
r′ is selected by minimizing a suitable distance measure such as the Manhattan distance
d1(r, s) = ‖r − s‖1. Then ISr := ISr′ is used in the above steps.

Resampling fractions has the advantage that it avoids unrealistic or unreasonable
combinations in the simulated components. At the same time, it does not result in pure

91

5.3 Application to EU-SILC

replication, as the absolute values for simulated individuals are in general quite different
from the corresponding individuals in the underlying survey data.

5.2.5 Software

The proposed data simulation framework is implemented in the R package simPopulation
(Alfons and Kraft 2010), which can be obtained from CRAN (the Comprehensive R

Archive Network, http://cran.r-project.org). For maximum flexibility, the four
steps of the procedure are available as separate functions. To generate populations
for EU-SILC, a wrapper combining all four steps is implemented in order to provide a
more convenient interface. Wrappers for other surveys can easily be defined by the user.
In addition, functions to create diagnostic plots as shown in Section 5.3.1 are available.
The latter are implemented using packages vcd (Meyer et al. 2006, 2010) and lattice

(Sarkar 2008, 2010).

It would certainly be beneficial to present a line-by-line illustration of the R code for
the application in Section 5.3. Nevertheless, the EU-SILC sample provided by Statis-
tics Austria is confidential, thus the reader would not be able to reproduce the results.
Furthermore, the additional explanation of the R code would render the length of the
paper far from being reasonable. Therefore, detailed instructions for such an analysis
and the generation of diagnostic plots are provided in a separate package vignette. If
simPopulation is installed, the vignette can be viewed from within R with the following
command:

R> vignette("simPopulation-eusilc")

Note that the vignette uses the synthetically generated example data from the package,
hence the results presented there are reproducible.

5.3 Application to EU-SILC

The European Union Statistics on Income and Living Conditions (EU-SILC) is one of
the most well-known panel surveys and is conducted in EU member states and other
European countries. It is mainly used as data basis for the Laeken indicators, a set of
indicators for measuring risk-of-poverty and social cohesion in European countries (cf.
Atkinson et al. 2002).

The application of the proposed data simulation procedure to EU-SILC (limited to
non-negative personal net income and income components) is described in more detail
in Kraft (2009), where an extensive collection of results can be found as well. With the
generalizations presented in this paper, however, it is also possible to simulate negative

92

http://cran.r-project.org

5.3 Application to EU-SILC

income or income components. The underlying survey data used in this section is the
Austrian EU-SILC sample from 2006. Table 5.1 lists the variables to be included in the
simulation and their possible outcomes. It should be noted that due to low frequen-
cies of occurence, some categories of economic status and citizenship, respectively, have
been combined. Such combined categories are marked with an asterisk (*) in Table 5.1.
A complete description of variables in EU-SILC and possible outcomes can be found in
Eurostat (2004).

Section 5.3.1 presents some diagnostic plots for comparing synthetic population data
to the underlying sample. How well the characteristics of the original sample are re-
flected in such synthetic populations is further assessed by simulation in Section 5.3.2.
These comparisons with the underlying sample are essential as this is the only real data
available. In Section 5.3.3, the influence of different sample sizes and sampling designs
on the proposed methodology is investigated by more extensive simulation studies.

5.3.1 Diagnostic plots for a single simulation

For setting up the household structure, households from the survey data are resampled
conditional on region and household size. Sensible correlation structures within the
households are ensured by resampling the variables age and gender, as recommended in
Section 5.2.1. Afterwards, the variable age is categorized in order to use the resulting
categories for the rest of the simulation. Variables that are categorized in the data
simulation procedure are listed in Table 5.2, along with the respective categories. Besides
age, the personal net income is discretized at a later stage. The age categories are chosen
as a resonable tradeoff between accuracy and computation time (see also Section 5.3.2).
Children below 16 are combined into one category since EU-SILC provides information
for the remaining variables to be simulated only for persons of age 16 or above (see
Eurostat 2004). Furthermore, one category for all persons of age above 80 is used due
to the low frequencies of occurrence. In any case, economic status and citizenship are
simulated for every region separately. In the multinomial logistic regression models
described in Section 5.2.2, the predictors age category, gender and household size are
used for economic status, while age category, gender, household size and economic status
are then used to simulate citizenship.

In this section, the structure of the simulated categorical variables is evaluated by
graphical means only. Figure 5.1 contains mosaic plots visualizing the expected and
realized frequencies of gender, region and household size (top), as well as gender, eco-
nomic status and citizenship (bottom). Both show very similar structures in the sample
and population data. Note that these plots have been selected representatively, as the
number of possible combinations of variables is too large to show them all. However, the

93

5.3 Application to EU-SILC

Table 5.1: Variables selected for the simulation of the Austrian EU-SILC population
data.

Variable Name Possible outcomes

Region db040 1 Burgenland
2 Lower Austria
3 Vienna
4 Carinthia
5 Styria
6 Upper Austria
7 Salzburg
8 Tyrol
9 Vorarlberg

Household size hsize Number of persons in household

Age age Age (for the previous year) in years

Gender rb090 1 Male
2 Female

Self-defined current pl030 1 Working full-time
economic status 2 Working part-time

3 Unemployed
4 Pupil, student, further training or unpaid work

experience or in compulsory military or community
service*

5 In retirement or in early retirement or has given up
business

6 Permanently disabled or/and unfit to work or other
inactive person*

7 Fulfilling domestic tasks and care responsibilities

Citizenship pb220a 1 Austria
2 EU*
3 Other*

Personal net income netIncome Sum of income components listed below

Employee cash py010n 0 No income
or near cash income > 0 Income

Cash benefits or losses py050n < 0 Losses
from self-employment 0 No income

> 0 Benefits

Unemployment benefits py090n 0 No income
> 0 Income

Old-age benefits py100n 0 No income
> 0 Income

Survivor’s benefits py110n 0 No income
> 0 Income

Sickness benefits py120n 0 No income
> 0 Income

Disability benefits py130n 0 No income
> 0 Income

Education-related py140n 0 No income
allowances > 0 Income

* combined categories

94

5.3 Application to EU-SILC

Table 5.2: Categorized variables created for use as predictors during the simulation.

Variable Name Categories

Age category ageCat ≤ 15, (15, 20], (20, 25], (25, 30], (30, 35],
(35, 40], (40, 45], (45, 50], (50, 55], (55, 60],
(60, 65], (65, 70], (70, 75], (75, 80], > 80

Personal net netIncomeCat [−9600,−5840), [−5840,−4200), [−4200, 0),
income category 0, (0, 800], (800, 2800], (2800, 5021.56],

(5021.56, 8456], (8456, 13720], (13720, 17738],
(17738, 23601.65] (23601.65, 29191.86],
(29191.86, 36000], (36000, 57227.69],
> 57227.69

interactions between all categorical variables are very well reflected in the synthetic pop-
ulation data. This is further documented in Section 5.3.2 by average relative differences
of contingency coefficients from multiple simulation runs. While the two plots at the top
of Figure 5.1 are nearly identical, closer inspection of the two plots at the bottom reveals
small differences. These differences are due to the multinomial logistic regression models.
The following two points need to be kept in mind. First, the expected frequencies of the
different combinations are solely determined by the sum of the corresponding sample
weights. Second, the multinomial models allow simulating combinations that do not oc-
cur in the sample but are likely to occur in the population. Consequently, the differences
may be interpreted as corrections of the expected frequencies. For additional results
concerning the simulation of categorical variables in the case of EU-SILC, including χ2

goodness of fit tests, the reader is referred to Kraft (2009).

For simulating personal net income, the two approaches described in Section 5.2.3 are
compared. In both cases, the variables age category, gender, household size, economic
status and citizenship are used as predictors and the models are computed separately for
each region. The approach based on multinomial logistic regression models thereby uses
the following parameter settings. In the categorization of personal net income, zero is a
category of its own since personal net income is a semi-continuous variable. Breakpoints
for the positive values are chosen as their weighted 1%, 5%, 10%, 20%, 40%, 60%, 80%,
90%, 95% and 99% quantiles. Furthermore, the only three negative values are used
as breakpoints for negative income. See Table 5.2 for the resulting income categories.
Values in the categories above the two largest breakpoints are drawn from a truncated
generalized Pareto distribution. In the following, this approach will be referred to as MP.
For the two-step linear regression approach, on the other hand, two different parameter
settings are investigated. The first uses random draws from the residuals and will be

95

5.3 Application to EU-SILC

Data = Sample

●

●
● ● ● ● ● ●

●
●

●

●
● ● ● ● ● ●

●
●

Region
G

en
de

r

H
ou

se
ho

ld
 s

iz
e

fe
m

al
e

98
76

5
4

3
2

1

m
al

e
B LA Vi C St UA Sa T Vo

98
76

5
4

3
2

1

Data = Population

●

●
● ● ● ● ● ●

●
●

●

●
● ● ● ● ● ●

●
●

Region

G
en

de
r

H
ou

se
ho

ld
 s

iz
e

fe
m

al
e

98
76

5
4

3
2

1

m
al

e

B LA Vi C St UA Sa T Vo

98
76

5
4

3
2

1

Data = Sample

Economic status

G
en

de
r

C
iti

ze
ns

hi
p

fe
m

al
e

O
E

A

m
al

e

1 2 3 4 5 67

O
E

A

Data = Population

Economic status

G
en

de
r

C
iti

ze
ns

hi
p

fe
m

al
e

O
E

A

m
al

e

1 2 3 4 5 67

O
E

A

Figure 5.1: Top: Mosaic plots of gender, region and household size. Bottom: Mosaic
plots of gender, economic status and citizenship.

referred to as TR, the second uses random draws from a normal distribution and will be
referred to as TN. In both cases, the positive sample data are trimmed with parameters
α1 = α2 = 0.01 and log-transformed in the second step of the procedure. Trimming is
used since this performed better (results not shown, cf. Kraft 2009). In order to simulate
negative income, a multinomial model is used in the first step. For negative income,
again the only three existing values are used as breakpoints (see Table 5.2), and the
simulated values are drawn from uniform distributions in the corresponding classes.

In Figure 5.2 (left), the cumulative distribution functions (CDF) of personal net
income in the three simulated populations are compared to the empirical CDF obtained

96

5.3 Application to EU-SILC

0.0

0.2

0.4

0.6

0.8

1.0

10000 20000 30000 40000 50000

Sample
MP
TR
TN

Sample

MP

TR

TN

−10000 0 10000 20000 30000 40000

Figure 5.2: Left : Cumulative distribution functions of personal net income. For better
visibility, the plot shows only the main parts of the data. Right: Box plots of personal
net income. Points outside the extremes of the whiskers are not plotted.

from the sample. Sample weights are taken into account by adjusting the step height.
For better visibility of the differences, the plot shows only the main parts of the data
(from 0 to the weighted 99% quantile of the positive values in the sample). The CDFs
indicate an excellent fit, in particular for the MP approach. With the TN approach,
there are some deviations for lower income, though. Figure 5.2 (right) uses box plots to
compare the distributions. The box plots are adapted for semi-continuous variables in
the following way. Box and whiskers are computed only for the non-zero part of the data
and the box widths are proportional to the ratio of non-zero observations to the total
number of observed values. For the sample data, sample weights are taken into account
when computing the box plot statistics and the box widths. These box plots suggest
that the proposed approaches perform well regarding the proportion of individuals with
zero income and the distribution of non-zero income for the main part of the data.

Figure 5.3 contains box plots of the conditional distributions of personal net income
with respect to gender (top left), citizenship (top right), region (bottom left) and economic
status (bottom right). The proportions of zeros and the distributions of the non-zero
observations appear to be in general well reflected in the simulated populations. Only
some very small subgroups of economic status show significant deviations for the two-
step regression approaches. This underlines the good fit of the models and illustrates
that the proposed methods succeed to account for heterogeneities in the data.

97

5.3 Application to EU-SILC

Sample

MP

TR

TN

−10000 0 10000 20000 30000 40000

male

Sample

MP

TR

TN

female

Sample
MP
TR
TN

−10000 0 10000 20000 30000 40000

AT
Sample

MP
TR
TN

EU
Sample

MP
TR
TN

Other

Sample
MP
TR
TN

−10000 0 10000 20000 30000 40000 50000

Burgenland
Sample

MP
TR
TN

Lower Austria
Sample

MP
TR
TN

Vienna
Sample

MP
TR
TN

Carinthia
Sample

MP
TR
TN

Styria
Sample

MP
TR
TN

Upper Austria
Sample

MP
TR
TN

Salzburg
Sample

MP
TR
TN

Tyrol
Sample

MP
TR
TN

Vorarlberg

Sample

MP

TR

TN

0 10000 20000 30000 40000

1

Sample

MP

TR

TN

2

Sample

MP

TR

TN

3

Sample

MP

TR

TN

4

Sample

MP

TR

TN

5

Sample

MP

TR

TN

6

Sample

MP

TR

TN

7

Figure 5.3: Box plots of personal net income split by gender (top left), citizenship (top
right), region (bottom left) and economic status (bottom right). Points outside the ex-
tremes of the whiskers are not plotted.

98

5.3 Application to EU-SILC

Sample

MP

TR

TN

−10000 0 10000 20000 30000 40000

py010n py050n

Sample

MP

TR

TN

py090n py100n

Sample

MP

TR

TN

py110n py120n

Sample

MP

TR

TN

py130n

−10000 0 10000 20000 30000 40000

py140n

Figure 5.4: Box plots of the income components. Points outside the extremes of the
whiskers are not plotted.

Last but not least, the income components are simulated conditional on income cat-
egory and economic status (see Section 5.2.4). Box plots of the results are shown in
Figure 5.4. Due to the large number of zeros in most income components, a minimum
box width is used in some cases to prevent the corresponding boxes from deteriorating
into lines. In any case, the plots suggest that the simulation procedure for splitting
variables into components works very well.

Additional results from simulations restricted to non-negative income, including cor-
relation coefficients of the income components, can be found in Kraft (2009).

5.3.2 Average results from multiple simulations

In this section, the quality of the proposed methods is further assessed by simulation.
With the parameter settings as described in the previous section, 100 populations are
simulated. Certain quantities of interest for the sample data are thereby compared to

99

5.3 Application to EU-SILC

the averages of their population counterparts over all simulation runs. The R package
simFrame (Alfons et al. 2010e, Alfons 2010) is used to manage the multiple simulations.

The relationships between the categorical variables, including the variables defining
the household structure (age, gender and household size), are evaluated using contingency
coefficients. Pearson’s coefficient of contingency is a measure of association for categorical
data defined as P =

√
χ2/(n+ χ2), where χ2 is the test statistic of the χ2 test of

independence and n is the number of observations (see, e.g., Kendall and Stuart 1967,
for more information).

Furthermore, the proposed methodology for the generation of categorical variables is
compared to the framework of Münnich et al. (2003b) and Münnich and Schürle (2003).
For the simulation of the household structure, the household sizes in our procedure are
obtained in a completely deterministic way by estimated population totals, whereas they
draw the household sizes from the observed conditional distributions within the strata.
However, the age and gender structure is also generated by resampling households from
the corresponding strata. Additional categorical variables are in their framework then
simulated by random draws from the observed conditional distributions of the multivari-
ate realizations within each combination of stratum, age category and gender. Keep in
mind that this does not allow to simulate combinations that do not occur in the sample.

Table 5.3 compares the contingency coefficients obtained from the sample to the aver-
age results over the simulation runs. For the proposed procedure, the relative differences
are negligible, except for the coefficient of age and citizenship (pb220a). This exception is
a result of using age categories for the prediction of citizenship, which can be avoided by
using more categories or the original uncategorized age information. On the other hand,
this increases computation time considerably, therefore a reasonable tradeoff has been
used. All in all, the correlation structure of the simulated populations is very close to the
expected one. For the method of Münnich et al. (2003b) and Münnich and Schürle (2003),
the contingency coefficient of age and citizenship also suffers from using age category as
conditioning variable. Moreover, the relationships between household size (hsize) and
the variables economic status (pl030) and citizenship (pb220a) are not well reflected.
This is because these authors suggest to use only stratum, age category and gender as
conditioning variables for the simulation of additional categorical variables. Including
household size as conditioning variable in the estimation of the conditional multivariate
distributions leads to an improvement of the contingency coefficients (results not shown),
but causes another problem. Since the size of the sample is rather small, only 3432 of the
possible 51030 combinations of region, age category, gender, household size, economic
status and citizenship exist in the sample. Hence the resulting populations cannot con-
tain any other combinations either. Even though many of the combinations that do not

100

5.3 Application to EU-SILC

Table 5.3: Pairwise contingency coefficients of the categorical variables for the sample
data (top), as well as average results from 100 simulated populations using the proposed
method (middle), and the method of Münnich et al. (2003b) and Münnich and Schürle
(2003) (bottom).

age rb090 hsize pl030 pb220a

Sample db040 0.261 0.019 0.217 0.139 0.161
age 0.118 0.546 0.723 0.194

rb090 0.081 0.385 0.026
hsize 0.404 0.182
pl030 0.172

Proposed db040 0.262 0.019 0.217 0.139 0.160
method age 0.118 0.546 0.716 0.153

rb090 0.082 0.386 0.026
hsize 0.405 0.179
pl030 0.171

Relative db040 0.283 −2.032 0.000 0.142 −0.073
differences age 0.021 0.030 −1.098 −21.220
(in %) rb090 0.339 0.129 −0.580

hsize 0.108 −1.267
pl030 −0.445

Method of db040 0.262 0.019 0.217 0.138 0.160
Münnich et al. age 0.118 0.546 0.715 0.151

rb090 0.081 0.386 0.026
hsize 0.366 0.045
pl030 0.172

Relative db040 0.190 −1.139 0.110 −0.536 −0.172
differences age 0.195 0.037 −1.175 −22.164
(in %) rb090 −0.288 0.233 2.091

hsize −9.423 −74.970
pl030 −0.055

occur are structural zeros, such low variation in the population is simply not realistic as
it is very likely that there is a significant number of random zeros resulting from the small
sample size (see Section 5.3.3). In short, the proposed method has the advantage that
the information from the household size can be included in the simulation of additional
variables since the multinomial models allow to simulate combinations that do not exist
in the sample.

101

5.3 Application to EU-SILC

Table 5.4: Evaluation of personal net income based on the percentage of zeros, 5%
quantile, median, mean, 95% quantile and standard deviation. Values from the sample
data are compared to average results from 100 simulated populations.

%Zeros 5% Median Mean 95% SD

Sample 11.39 2800.00 15428.26 17084.37 36000.00 11589.52
Averages of MP 11.41 2728.46 15703.79 17135.24 35682.04 11386.47
simulated TR 11.41 3643.36 14858.96 16980.55 37310.49 11257.74
populations TN 11.41 4946.36 14949.58 17118.29 36566.82 10296.96
Relative MP 0.14 −2.55 1.79 0.30 −0.88 −1.75
differences TR 0.19 30.12 −3.69 −0.61 3.64 −2.86
(in %) TN 0.19 76.66 −3.10 0.20 1.57 −11.15

In Table 5.4, simulated personal net income is evaluated based on various quantities of
interest: the percentage of zeros, 5% quantile, median, mean, 95% quantile and standard
deviation. Values from the sample data are compared to the average results for each of
the three investigated methods. The relative differences are again used for evaluation.
Clearly, the MP approach performs best with an excellent overall fit. For the two-
step linear regression procedures, there is considerable deviation in the 5% quantile (cf.
Figure 5.2, left). Due to the better fit and the more accurate standard deviation, the
TR approach may be favorable over the TN approach.

5.3.3 Influence of sample size and sampling design

In this section, the synthetic population data from Section 5.3.1 are used to evaluate
the effect of different sample sizes and sampling designs on the proposed framework in a
simulation study. It may not be optimal to use population data that have been generated
with the same methodology for such an analysis, but since real population data are not
available, this is the only possible way to investigate these issues.

Concerning the sample size, two different scenarios are considered: (i) 6 000 house-
holds, which is roughly the real sample size, and (ii) 1% samples, which corresponds to
about 35 000 households. In addition, the following two sampling designs are investi-
gated, both of which are frequently used for EU-SILC in practice:

1. Stratified simple random sampling of households by region.

2. Stratified simple random sampling of individuals by region. Then all individuals
belonging to the same household as any of the sampled individuals are collected
and added to the sample.

102

5.3 Application to EU-SILC

Table 5.5: Analysis of empty cells in the contingency tables of the categorical variables.
250 simulated populations are evaluated using the number of empty cells for the initial
population (#Initial) and the respective average percentage of false nonempties (%FE),
as well as the average number of of additional random empty cells for the samples (#Ran-
dom) and the respective average proportion of false empties (%FE).

Size Design #Initial %FN #Random %FE

Real 1 37730 0.61 10006.48 33.80
Real 2 37730 0.63 9540.84 29.59

1% 1 37730 0.99 6782.76 9.29
1% 2 37730 0.99 6327.52 9.74

The sample sizes were in both cases chosen proportional to the strata sizes. This leads
to approximately equal weights for the first design, and weights approximately inverse
proportional to the corresponding household sizes for the second design. For each com-
bination of sample size and sampling design, 25 samples are drawn from the initial
population. Then 10 populations are simulated for each sample, resulting in a total of
250 synthetic populations. Furthermore, calibration using different choices of variables
did not have a strong impact on the characteristics of the resulting variables (results not
shown). Since households are sampled, however, the resulting sample weights in general
do not sum up to the number of individuals in the population. Therefore, calibration on
the marginal totals of the regions is performed.

Since the proposed framework allows to simulate combinations of categorical variables
that do not occur in the underlying sample, empty cells in the contingency tables are
analyzed. Table 5.5 lists the number of empty cells for the initial population (#Initial),
the average percentage of these cells that are no longer empty for the simulated pop-
ulations (false nonempties, %FE), the average number of of additional random empty
cells for the samples introduced by the sampling process (#Random), and the average
proportion of these cells that are still empty for the simulated populations (false empties,
%FE).

For all scenarios, only a very low percentage of combinations that do not exist in the
initial population are introduced in the simulated populations. Note that not all empty
cells in the contingency table of the initial population are structural zeros. Just because
a certain combination does not occur in a specific population does not mean that it is
impossible to occur. Thus new combinations introduced in the simulated populations
may very well be realistic. In any case, the probability for generating a combination that
is in fact a structural zero is very low due to the low percentage of false nonempties.

103

5.3 Application to EU-SILC

On the other hand, the large majority of combinations that randomly do not exist
in the corresponding sample due to the sampling process are generated in the synthetic
populations. Nevertheless, in particular for the small real sample size, there is a consid-
erable amount of such combinations that still do not occur in the simulated populations.
The main reason for this is that large households do not occur very frequently in the
initial population, hence there is only a low number of such households in the samples,
which in turn makes it difficult to reproduce the full variation of possible combinations.
This also explains why the first scenario with the real sample size and simple random
sampling of households leads to the largest proportion of false empties, as it results in
the lowest expected absolute frequencies of large households. To summarize, considering
the small sample size for the first two scenarios and the resulting large number of random
empty cells in the contingency tables for the samples, the proposed procedure performs
quite well.

In Table 5.6, the contingency coefficients between the categorical variables from the
initial population are compared to the average results from the simulated populations
for each of the four sampling scenarios. For the real sample size, there are consider-
able differences specifically in the contingency coefficients between the variables region
(db040), age and gender (rb090). This is because the household structure is simulated
by resampling households from the sample, which due to the small size does not account
for all the variation in the initial population. However, since the dependencies within a
household are highly complex, the results with the simple resampling approach can still
be considered very reasonable. In addition, most of the other relationships are very well
reflected. The 1% samples are of course much less affected by the effect of resampling
households, and all in all the results are excellent.

Table 5.7 contains an evaluation of the simulated personal net income based on the
following quantities of interest: the percentage of zeros, 5% quantile, median, mean, 95%
quantile and standard deviation. It should be noted that the reference values for the
initial population are computed from the income generated by the MP approach, since
this this gave the best fit compared to the original sample data (see Section 5.3.1). The
results do not suggest a very strong influence of the sample size or the sampling design
and are similar to those from the comparison to the original sample data in Section 5.3.2.
For the real sample size, only a small effect of the sampling design on the percentage
of zeros is visible in all methods. Furthermore, the sampling design appears to have a
slight impact on the two-step linear regression methods in general, most notably on the
5% and 95% quantiles and the standard deviation. In any case, the MP approach clearly
gives excellent results and performs best, while the TR method is favorable over the TN
method for the two-step approach.

104

5.3 Application to EU-SILC

Table 5.6: Pairwise contingency coefficients of the categorical variables for the initial
population, as well as average results from 250 simulated populations for each of the four
sampling scenarios.

age rb090 hsize pl030 pb220a

Population db040 0.261 0.020 0.217 0.138 0.160
age 0.118 0.546 0.716 0.153

rb090 0.082 0.386 0.026
hsize 0.405 0.179
pl030 0.172

Real size, db040 0.337 0.025 0.256 0.153 0.162
Design 1 age 0.141 0.565 0.717 0.162

rb090 0.086 0.387 0.029
hsize 0.408 0.186
pl030 0.174

Relative db040 29.055 28.335 18.069 10.265 0.740
differences age 19.209 3.512 0.209 6.091
(in %) rb090 5.692 0.355 8.711

hsize 0.835 3.952
pl030 1.316

Real size db040 0.347 0.028 0.239 0.157 0.165
Design 2 age 0.142 0.560 0.716 0.162

rb090 0.080 0.388 0.027
hsize 0.404 0.188
pl030 0.176

Relative db040 32.810 41.592 10.129 13.667 3.091
differences age 20.100 2.631 0.121 6.142
(in %) rb090 −1.475 0.592 2.197

hsize −0.097 4.590
pl030 2.664

1% sample, db040 0.278 0.020 0.223 0.141 0.161
Design 1 age 0.123 0.549 0.716 0.153

rb090 0.082 0.385 0.027
hsize 0.406 0.182
pl030 0.171

Relative db040 6.352 1.480 2.951 1.640 0.577
differences age 4.048 0.611 0.029 0.524
(in %) rb090 0.532 −0.182 1.185

hsize 0.308 1.212
pl030 −0.062

1% sample, db040 0.277 0.021 0.221 0.140 0.161
Design 2 age 0.122 0.549 0.716 0.154

rb090 0.082 0.386 0.026
hsize 0.406 0.179
pl030 0.171

Relative db040 6.024 4.893 1.775 1.067 0.207
differences age 3.720 0.593 0.020 0.755
(in %) rb090 0.101 0.138 0.559

hsize 0.196 −0.065
pl030 −0.525

105

5.4 Conclusions

Table 5.7: Evaluation of personal net income based on the percentage of zeros, 5%
quantile, median, mean, 95% quantile and standard deviation. Values from the initial
population are compared to average results from 250 simulated populations for each of
the four sampling scenarios.

%Zeros 5% Median Mean 95% SD

Population 11.40 2719.73 15700.65 17130.72 35677.48 11390.32

Real size, MP 11.26 2669.72 15667.54 17064.57 35601.94 11232.09
Design 1 TR 11.28 3514.98 14770.39 16900.82 37305.08 11209.41

TN 11.28 4755.06 14990.06 17377.93 38028.43 10935.30
Relative MP −1.15 −1.84 −0.21 −0.39 −0.21 −1.39
differences TR −1.00 29.24 −5.92 −1.34 4.56 −1.59
(in %) TN −1.00 74.84 −4.53 1.44 6.59 −3.99

Real size, MP 11.44 2708.81 15665.23 17136.36 35826.75 11385.18
Design 2 TR 11.45 3397.59 14879.76 17097.54 38101.73 11540.92

TN 11.45 4743.06 15095.90 17610.83 38929.09 11278.78
Relative MP 0.38 −0.40 −0.23 0.03 0.42 −0.05
differences TR 0.45 24.92 −5.23 −0.19 6.79 1.32
(in %) TN 0.45 74.39 −3.85 2.80 9.11 −0.98

1% sample, MP 11.37 2720.79 15695.71 17113.44 35643.94 11279.51
Design 1 TR 11.37 3529.14 14834.87 16948.50 37324.55 11196.36

TN 11.37 4838.43 15049.16 17434.75 38057.47 10907.39
Relative MP −0.22 0.04 −0.03 −0.10 −0.09 −0.97
differences TR −0.19 29.76 −5.51 −1.06 4.62 −1.70
(in %) TN −0.19 77.90 −4.15 1.77 6.67 −4.24

1% sample, MP 11.36 2723.38 15699.97 17134.05 35661.53 11340.96
Design 2 TR 11.37 3406.91 14913.92 17085.76 37937.72 11455.55

TN 11.37 4810.99 15134.27 17628.18 38840.56 11211.61
Relative MP −0.31 0.13 −0.00 0.02 −0.04 −0.43
differences TR −0.25 25.27 −5.01 −0.26 6.34 0.57
(in %) TN −0.25 76.89 −3.61 2.90 8.87 −1.57

5.4 Conclusions

This paper introduced a flexible framework for simulating population data for household
surveys based on available sample data, which is implemented along with diagnostic plots
in the R package simPopulation. No auxiliary information is used in the procedure, and
stratification allows to account for heterogeneities such as regional differences.

106

5.4 Conclusions

The proposed framework is applicable to a broad class of surveys and led to excellent
results in an application to EU-SILC. For simulation of personal net income, using multi-
nomial models combined with random draws from the resulting categories and generalized
Pareto tail modeling performed better than two-step regression, but is computationally
more expensive. The computation time of the multinomial models thereby strongly de-
pends on the number of categories used in the discretization. Concerning the two-step
approach, trimming combined with random draws from the residuals appeared to be fa-
vorable. Nevertheless, the choice of method also depends on the purpose. For simulation
studies in survey statistics, it is important not to favor any of the investigated methods
by the underlying data generation procedure in order to avoid biased simulation results.

Acknowledgements The authors are grateful to the referees for helpful comments
and suggestions.

107

Chapter 6

Disclosure risk of synthetic

population data with application

in the case of EU-SILC1

Published in Privacy in Statistical Databases, volume 6344 of Lecture Notes in Computer
Science (Templ and Alfons 2010).

Matthias Templa,b, Andreas Alfonsa

a Department of Statistics and Probability Theory, Vienna University of Technology
b Methods Unit, Statistics Austria

Abstract In survey statistics, simulation studies are usually performed by repeatedly
drawing samples from population data. Furthermore, population data may be used
in courses on survey statistics to support the theory by practical examples. However,
real population data containing the information of interest are in general not available,
therefore synthetic data need to be generated. Ensuring data confidentiality is thereby
absolutely essential, while the simulated data should be as realistic as possible. This
paper briefly outlines a recently proposed method for generating close-to-reality popu-
lation data for complex (household) surveys, which is applied to generate a population
for Austrian EU-SILC (European Union Statistics on Income and Living Conditions)
data. Based on this synthetic population, confidentiality issues are discussed using five

1This work was partly funded by the European Union (represented by the European Commission)
within the 7th framework programme for research (Theme 8, Socio-Economic Sciences and Humanities,
Project AMELI (Advanced Methodology for European Laeken Indicators), Grant Agreement No. 217322).
For more information on the project, visit http://ameli.surveystatistics.net.

108

http://ameli.surveystatistics.net

6.1 Introduction

different worst case scenarios. In all scenarios, the intruder has the complete information
on key variables from the real survey data. It is shown that even in these worst case
scenarios the synthetic population data are confidential. In addition, the synthetic data
are of high quality.

Keywords Survey Statistics, Synthetic Population Data, Data Confidentiality

6.1 Introduction

In the analysis of survey data, variability due to sampling, imputation of missing values,
measurement errors and editing must be considered. Statistical methods thus need to be
evaluated with respect to the effect of these variabilities on point and variance estimates.
A frequently used strategy to adequately measure such effects under different settings is to
perform simulation studies by repeatedly drawing samples from population data (possibly
using different sampling designs) and to compare the estimates with the true values of
the sample frame. Evaluating and comparing various statistical methods within such a
design-based simulation approach under different close-to-reality settings is daily work for
survey statisticians and has been done, e.g., in the research projects DACSEIS (Münnich
et al. 2003b), EurEdit (Chambers 2001) and AMELI (Alfons et al. 2009).

Furthermore, population data may be used for teaching courses on survey statistics.
Realistic examples may help students to better understand issues in survey sampling,
e.g., regarding different sampling designs.

Since suitable population data are typically not available, it is necessary to generate
synthetic data. The generation of population microdata for selected surveys as a basis
for Monte Carlo simulation studies is described in Münnich et al. (2003b), Münnich and
Schürle (2003). These procedures were extended in Alfons et al. (2009, 2010c) to simulate
close-to-reality population data for more complex surveys such as EU-SILC (European
Union Statistics on Income and Living Conditions). However, confidentiality issues of
such synthetic population data are only briefly addressed in these contributions.

Generation of population microdata for simulation studies is closely related to the
field of microsimulation (Clarke 1996), yet the aims are quite different. Microsimulation
models attempt to reproduce the behavior of individual units within a population for
policy analysis purposes and are well-established within the social sciences. Nevertheless,
they are highly complex and time-consuming. On the other hand, synthetic population
microdata for simulation studies in survey statistics are used to evaluate the behavior of
statistical methods. Thus fast computation is preferred to over-complex models.

109

6.2 Generation of synthetic population data

Another approach towards the generation of microdata is to use multiple imputation
to create fully or partially synthetic data sets, as proposed in Rubin (1993), Little (1993).
This approach is further discussed in Raghunathan et al. (2003), Drechsler et al. (2008),
Reiter (2009). However, these contributions do not consider some important issues such
as the generation of categories that do not occur in the original sample or the generation
of structural zeros.

The rest of the paper is organized as follows. Section 6.2 outlines the framework for
generating synthetic populations proposed in Alfons et al. (2010c). Then the data inves-
tigated in this paper are introduced in Section 6.3. Sections 6.4 and 6.5 discuss statistical
disclosure control issues related to survey and population data. In Section 6.6, several
scenarios for evaluating the confidentiality of synthetic population data are described,
while Section 6.7 lists the obtained results for these scenarios. The final Section 6.8
concludes.

6.2 Generation of synthetic population data

The generation of synthetic population data for surveys is described in great detail in
Alfons et al. (2010c). Therefore, only the basic ideas of this framework are presented here.
Several conditions for simulating population data are listed in Münnich et al. (2003b),
Münnich and Schürle (2003), Alfons et al. (2010c). The most important requirements
are:

• Actual sizes of regions and strata need to be reflected.

• Marginal distributions and interactions between variables should be represented
accurately.

• Heterogeneities between subgroups, in particular regional aspects, should be al-
lowed.

• Data confidentiality must be ensured.

In general, the framework for generating synthetic population data consists of four steps:

1. In case of household data, set up the household structure.

2. Simulate categorical variables.

3. Simulate continuous variables.

4. Split continuous variables into components.

Not all of these steps need to be performed, depending on the survey of interest.

110

6.2 Generation of synthetic population data

Step 1. When generating household data, the household structure is simulated sep-
arately for the different household sizes within each strata. Using the corresponding
sample weights, the number of households is simply estimated by the Horvitz-Thompson
estimator (Horvitz and Thompson 1952). The structure of the population households
is then simulated by resampling some basic variables from the sample households with
probabilities proportional to the sample weights. For disclosure reasons, information
from as few variables as possible should be used to construct the household structure
(e.g., only age and gender information).

Step 2. For each stratum, the conditional distribution of any additional categorical
variable is estimated with a multinomial logistic regression model. The previously sim-
ulated variables are thereby used as predictors. Furthermore, the sample weights are
considered and it is possible to account for structural zeros. The main advantage of this
approach is that it allows to generate combinations that do not occur in the sample,
which is not the case for the procedure introduced in Münnich et al. (2003b), Münnich
and Schürle (2003).

Step 3. Two approaches for simulating continuous variables are proposed in Alfons
et al. (2010c), but only the approach that performs better in the case of EU-SILC data is
considered in this paper. First, the variable to be simulated is discretized using suitable
breakpoints. The discretized variable is then then simulated as described in the previous
step. Finally, the values of the continuous variable are randomly drawn from uniform
distributions within the respective intervals. Note that the idea behind this approach is
to divide the data into relatively small subsets so that the uniform distribution is not
too much of an oversimplification.

Step 4. Splitting continuous variables into components is based on conditional re-
sampling of fractions from the sample households with probabilities proportional to the
sample weights. Only very few highly influential categorical variables should thereby
be considered for conditioning. The resampled fractions are then multiplied with the
previously simulated total.

The data simulation framework proposed in Alfons et al. (2010c) is implemented in the
R (R Development Core Team 2010) package simPopulation (Alfons and Kraft 2010). In
addition to the four steps of the procedure and a wrapper function to generate synthetic
EU-SILC populations, various diagnostic plots are available.

111

6.3 Synthetic EU-SILC population data

6.3 Synthetic EU-SILC population data

The European Union Statistics on Income and Living Conditions (EU-SILC) is a complex
panel survey conducted in EU member states and other European countries. It is mainly
used for measuring risk-of-poverty and social cohesion in Europe (Atkinson et al. 2002).
The generation of synthetic population data based on Austrian EU-SILC survey data
from 2006 is discussed and evaluated in Alfons et al. (2010c). The resulting synthetic
population is investigated in this paper with respect to confidentiality issues. Table 6.1
lists the variables that are used in the analysis. A detailed description of all variables
included in EU-SILC data and their possible outcomes is given in Eurostat (2004).

In order to demonstrate that the synthetic population data are of high quality, they
are compared to the underlying sample data. Figure 6.1 contains mosaic plots of gender,
region and household size for the sample and synthetic population data, respectively.
Clearly, the plots show almost identical structures. In addition, the distribution of per-
sonal net income is visualized in Figure 6.2. On the left hand side, the cumulative
distribution functions for the sample and population data, respectively, are displayed.
For better visibility, only the main parts of the data are shown, which are nearly in
perfect superposition. On the right hand side, the conditional distributions with respect
to gender are represented by box plots. The fit of the distribution within the subgroups
is excellent and heterogeneities between the subgroups are very well reflected. Note that
points outside the extremes of the whiskers are not plotted. For extensive collections of
results showing that the multivariate structure of the data is well preserved, the reader
is referred to Alfons et al. (2010c), Kraft (2009).

Table 6.1: Variables of the synthetic EU-SILC population data used in this paper.

Variable Type

Region Categorical 9 levels
Household size Categorical 9 levels
Age category Categorical 15 levels
Gender Categorical 2 levels
Economic status Categorical 7 levels
Citizenship Categorical 3 levels
Personal net income Semi-continuous

112

6.3 Synthetic EU-SILC population data

Data = Sample

●

●
● ● ● ● ● ●

●
●

●

●
● ● ● ● ● ●

●
●

Region

G
en

de
r

H
ou

se
ho

ld
 s

iz
e

fe
m

al
e

98
76

5
4

3
2

1

m
al

e

B LA Vi C St UA Sa T Vo

98
76

5
4

3
2

1

Data = Population

●

●
● ● ● ● ● ●

●
●

●

●
● ● ● ● ● ●

●
●

Region

G
en

de
r

H
ou

se
ho

ld
 s

iz
e

fe
m

al
e

98
76

5
4

3
2

1

m
al

e

B LA Vi C St UA Sa T Vo

98
76

5
4

3
2

1

Figure 6.1: Mosaic plots of gender, region and household size of the Austrian EU-SILC
sample from 2006 and the resulting synthetic population.

0.0

0.2

0.4

0.6

0.8

1.0

10000 20000 30000 40000 50000

Sample
Population

Sample

Population

0 10000 20000 30000 40000

male

Sample

Population

female

Figure 6.2: Personal net income in the Austrian EU-SILC sample from 2006 and the
resulting synthetic population. Left : Cumulative distribution functions of personal net
income. Only the main parts of the data are shown for better visibility. Right: Box plots
of the conditional distributions with respect to gender. Points outside the extremes of
the whiskers are not plotted.

113

6.4 A global disclosure risk measure for survey data

6.4 A global disclosure risk measure for survey data

A popular global measure of the reidentification risk for survey data is given by the num-
ber of uniquenesses in the sample that are unique in the population as well. Let m cate-
gorical key variables in the sample and population data be denoted by xSj = (xS1j , . . . , x

S
nj)
′

and xPj = (xP1j , . . . , x
P
Nj)
′, respectively, j = 1, . . . ,m, where n and N give the corre-

sponding number of observations. For an observation in the sample given by the index
c = 1, . . . , n, let JSc and JPc denote the index sets of observations in the sample and
population data, respectively, with equal values in the m key variables:

JSc := {j = 1, . . . , n : xSjk = xSck, k = 1, . . . ,m},
JPc := {j = 1, . . . , N : xPjk = xSck, k = 1, . . . ,m}.

(6.1)

Furthermore, a function I is defined as

I(J) :=

1 if |J | = 1,

0 else.
(6.2)

The global disclosure risk measure can then be expressed by

τ0 :=
n∑
c=1

I(JSc) · I(JPc). (6.3)

Note that the notation in (6.3) differs from the common definition. For comparison,
see, e.g., the risk measures in Rinott and Shlomo (2006), Elamir and Skinner (2006).
The notation used in (6.3) describes the same phenomenon, but provides more flexibility
in terms of software implementation (Templ et al. 2009) and allows to formulate the
adapted risk measures given in the following section.

Clearly, the risk of reidentification is lower the higher the corresponding population
frequency count. If the population frequency count is sufficiently high, it is not possible
for an intruder to assign the observation for which they hold information with absolute
certainty. Hence the intruder does not know whether the reidentification was successful.
However, the true frequency counts of the population are usually unknown and need to
be estimated by modeling the distribution of the population frequencies.

In Section 6.6, the global disclosure risk measure τ0 is modified to estimate the
disclosure risk for synthetic population data in certain scenarios instead of survey data.

114

6.5 Confidentiality of synthetic population data

6.5 Confidentiality of synthetic population data

The motivation for generating close-to-reality population data is to make the resulting
data sets publicly available to researchers for use in simulation studies or courses on
survey statistics. Therefore, the disclosure risk of such data needs to be low, while at
the same time the multivariate structure should be as realistic as possible.

If population data are generated from perturbed survey data, confidentiality is guar-
anteed whenever the underlying survey data are confidential. Perturbing survey data is
typically done by performing recodings and suppression such that k-anonymity (Samerati
and Sweeney 1998, Sweeney 2002) is provided for categorical key variables, as well as low
risk of reidentification on the individual level is ensured (Franconi and Polettini 2004,
Domingo-Ferrer and Mateo-Sanz 2002, Templ and Meindl 2008, and references therein).
In any case, perturbation implies information loss. Usually not all combinations of cate-
gorical key variables are still included in the perturbed sample and outliers in continuous
variables are often modified to a great extent. It is thus favorable to use information of
the unperturbed sample to generate synthetic populations, as this increases the quality
of the resulting data.

Based on the ideas proposed in Rubin (1993), Little (1993), the generation of fully
or partially synthetic population data using multiple imputation is discussed in Raghu-
nathan et al. (2003), Drechsler et al. (2008), Reiter (2009). More precisely, let p be the
number of variables in the sample and let the first k, 1 ≤ k < p, categorical variables be
available for the population data from administrative sources. These first k variables are
released unchanged, while the remaining p − k variables are estimated using regression
based multiple imputation. It is important to note that the first k variables of real popu-
lation data may still contain unique combinations after cross tabulation, therefore further
investigation may be necessary to ensure confidentiality. Probabilities of reidentification
for such synthetic data have been studied in Reiter and Mitra (2009), based on the work
of Duncan and Lambert (1986), Fienberg et al. (1997), by matching the synthetic data
with the intruder’s data on some predefined key variables.

The situation for synthetic population data generated by the approach of Alfons
et al. (2010c) is somewhat different. A very low number of basic categorical variables are
generated in the first step by resampling from the actual survey data. Since the sample
weights are thereby used as probability weights, on average k-anonymity is provided with
respect to these basic variables, where k denotes the smallest sample weight. In surveys,
k is typically very high (> 500), hence the disclosure risk is very low. However, additional
categorical and continuous variables are generated based on models obtained from the
actual survey data. In particular, the generation of continuous variables involves random
draws from certain intervals.

115

6.6 Disclosure scenarios for synthetic population data

With the additional categorical variables, some unique combinations may be intro-
duced in the synthetic population data. If such a combination is not unique in the real
population, it is not useful to an intruder. On the other hand, if such a combination is
unique in the real population as well, it must be ensured that the values of the other
variables in the synthetic population data are not too close to the real values. Most no-
tably, it is of interest to measure the difference in continuous variables of the successfully
matched statistical units.

In addition, unique combinations in the real population may even be critical if they
are not unique in the synthetic population data. An intruder could in this case look for
all occurrences of such a combination in the synthetic population. If the corresponding
units have too similar values in a (continuous) variable of interest, the intruder may be
able to infer some information on the original value, since the synthetic values have been
predicted with models obtained from the real sample data.

In order to investigate these issues in more detail, various disclosure scenarios are
introduced in the following section. Section 6.7 then presents the results for the synthetic
EU-SILC population data described in Section 6.3.

6.6 Disclosure scenarios for synthetic population data

Five different scenarios are considered to evaluate the confidentiality of synthetic data
generated with the framework proposed in Alfons et al. (2010c). These scenarios are moti-
vated by the synthetic EU-SILC population data, hence only a continuous variable is con-
sidered to contain confidential information, while there are m categorical key variables.
In the case of EU-SILC, the confidential variable is personal net income and the key vari-
ables are region, household size, age category, gender, economic status and citizenship (see
Table 6.1). Let the confidential continuous variable for the original sample and synthetic
population, respectively, be denoted by yS = (yS1 , . . . , y

S
n)′ and yU = (yU1 , . . . , y

U
N)′, while

the categorical key variables are denoted by xSj = (xS1j , . . . , x
S
nj)
′ and xUj = (xU1j , . . . , x

U
Nj)
′,

j = 1, . . . ,m, analogous to the definitions in Section 6.4. Furthermore, let JSc be defined
as in (6.1) and let JUc be defined accordingly as

JUc := {j = 1, . . . , N : xUjk = xSck, k = 1, . . . ,m}. (6.4)

In the following scenarios, the intruder has knowledge of the m key variables for all
observations from the original sample and tries to acquire information on the confidential
variable.

It should be noted that the link to the global risk measure from (6.3) is loosened in
the following. Disclosure is considered to occur if the value of the confidential variable

116

6.6 Disclosure scenarios for synthetic population data

for a unique combination of key variables in the sample can be closely estimated from
the synthetic population data, given a prespecified value of accuracy p. However, such
a sample uniqueness does not need to be unique in the true population, in which case
close estimation of the confidential variable would not necessarily result in disclosure.
In this sense, the following scenarios can be considered worst case scenarios and the
reidentification risk is thus overestimated. Proper analysis with estimation of the true
population uniquenesses is future work.

6.6.1 Scenario 1: Attack using one-to-one matches in key variables

with information on the data generation process

The intruder in this scenario tries to find one-to-one matches between their data and the
synthetic population data. Moreover, they know the intervals from which the synthetic
values were drawn. For details on the data generation procedure, the reader is referred to
Alfons et al. (2010c). Let these intervals be denoted by [lj , uj], j = 1, . . . , N , and let l be
a function giving the length of an interval defined as l([a, b]) := b−a and l(∅) := 0. With
a prespecified value of accuracy p defining a symmetric interval around a confidential
value, (6.3) is reformulated as

τ1 :=
n∑
c=1

I(JSc) · I(JUc) · l([y
S
c (1− p), ySc (1 + p)] ∩ [ljc , ujc])

l([ljc , ujc])
, (6.5)

where jc ∈ JUc if |JUc | = 1, i.e., jc is the index of the unit in the synthetic population
with the same values in the key variables as the cth unit in the intruder’s data if such a
one-to-one match exists, otherwise it is a dummy index. The last term in (6.5) thereby
gives the probability that for the successfully matched unit, the synthetic value drawn
from the interval [ljc , ujc] is sufficiently close to the original value ySc .

6.6.2 Scenario 2: Attack using one-to-one matches in key variables

without information on the data generation process

In general, an intruder does not have any knowledge on the intervals from which the
synthetic values were drawn. In this case, reidentification is successful if the synthetic
value itself of a successfully matched unit is sufficiently close to the original value. The
risk of reidentification thus needs to be reformulated as

τ2 :=
n∑
c=1

I(JSc) · I(JUc) · I[ySc (1−p),ySc (1+p)](y
U
jc), (6.6)

where jc is defined as above and IA denotes the indicator function for a set A.

117

6.6 Disclosure scenarios for synthetic population data

6.6.3 Scenario 3: Attack using all occurrences in key variables with

information on the data generation process

This scenario is an extension of Scenario 1, in which the intruder does not only try to find
one-to-one matches, but looks for all occurrences of a unique combination from their data
in the synthetic population data. Keep in mind that the intruder in this scenario knows
the intervals from which the synthetic values were drawn. For a unique combination in
the intruder’s data, reidentification is possible if the probability that the synthetic values
of all matched units are sufficiently close to the original value. Hence the disclosure risk
from (6.5) changes to

τ3 :=
n∑
c=1

I(JSc) ·
∏
j∈JUc

l([ySc (1− p), ySc (1 + p)] ∩ [lj , uj])
l([lj , uj])

. (6.7)

6.6.4 Scenario 4: Attack using all occurrences in key variables without

information on the data generation process

In an analogous extension of Scenario 2, reidentification of a unique combination from
the intruder’s data is successful if the synthetic values themselves of all matched units
are sufficiently close to the original value. Equation (6.6) is in this case rewritten as

τ4 :=
n∑
c=1

I(JSc) ·
∏
j∈JUc

I[ySc (1−p),ySc (1+p)](y
U
j). (6.8)

6.6.5 Scenario 5: Attack using key variables for model predictions

In this scenario, the intruder uses the information from the synthetic population data to
obtain a linear model for yU with predictors xUj , j = 1, . . . ,m:

yU = β0 + β1x
U
1 + . . .+ βmx

U
m + ε. (6.9)

For a unique combination of the key variables, reidentification is possible if the corre-
sponding predicted value is sufficiently close to the original value. Let the predicted
values of the intruder’s data be denoted by ŷS = (ŷS1 , . . . , ŷ

S
n)′. Then the disclosure risk

can be formulated as

τ5 :=
n∑
c=1

I(JSc) · I[ySc (1−p),ySc (1+p)](ŷ
S
c). (6.10)

Note that for large population data, the computational costs for fitting such a regres-
sion model are very high, so an intruder needs to have a powerful computer with very

118

6.7 Results

Table 6.2: Results for Scenarios 1-5 using different values for the accuracy parameter p.

p

Scenario Risk measure 0.01 0.02 0.05

1 τ1 0 0 0.052
2 τ2 0 0 0
3 τ3 1.1 · 10−8 1.2 · 10−6 0.053
4 τ4 15 15 15
5 τ5 20 43 110
1 τ1/n 0 0 3.5 · 10−6

2 τ2/n 0 0 0
3 τ3/n 6.7 · 10−13 8.6 · 10−11 3.5 · 10−6

4 τ4/n 0.001 0.001 0.001
5 τ5/n 0.001 0.003 0.007

large memory. Furthermore, the intruder could also perform a stepwise model search
using an optimality criterion such as the AIC (Akaike 1970).

6.7 Results

The disclosure risk of the synthetic Austrian EU-SILC population data described in
Section 6.3 is analyzed in the following with respect to the scenarios defined in the
previous section. In these scenarios, the intruder has knowledge of the categorical key
variables region, household size, age category, gender, economic status and citizenship
for all observations in the original sample used to generate the data. In addition, the
intruder tries to obtain information on the confidential variable personal net income (see
Table 6.1 for a description of these variables). The original sample thereby consists of
n = 14 883 and the synthetic population of N = 8 182 218 observations.

Note that this paper only evaluates the risk of reidentification for this specific syn-
thetic data set. In order to get more general results regarding confidentiality of the data
generation process, many data sets need to be generated in a simulation study and the
average values need to be reported. This task, however, is beyond the scope of this paper.

Table 6.2 lists the results for the risk measures for the investigated scenarios using
different values of the accuracy parameter p. Besides the absolute values, the relative
values with respect to the size of the intruder’s data set are presented, which give the
probabilities of successful reidentification.

The results show that even if an intruder is able to reidentify an observation, they do
not gain any useful information, as the probability that the obtained value is sufficiently
close to the original value is extremely low.

119

6.8 Conclusions

In particular if the intruder tries to find one-to-one matches (Scenarios 1 and 2), the
probability of a successful reidentification is only positive for p = 0.05 and if they have
information on the data generation process, i.e., the intervals from which the synthetic
values were drawn.

If the intruder looks for all occurrences of a unique combination from their data in the
synthetic population, using information on the data generation process hardly changes
the probabilities of reidentification (Scenario 3). This is not a surprise given the formula
in (6.7), since for such a unique combination, the probabilities that the corresponding
synthetic values are sufficiently close to the original value need to be multiplied. On the
other hand, if the intruder uses only the synthetic values (Scenario 4), some observa-
tions are successfully reidentified. Nevertheless, the probabilities of reidentification are
extremely low.

Among the considered scenarios, Scenario 5 leads to the highest disclosure risk. How-
ever, the regression model in this scenario comes with high computational costs and the
probabilities of reidentification are still far too low to obtain any useful information.

6.8 Conclusions

Synthetic population data play an important part in the evaluation of statistical methods
in the survey context. Without such data, it is not possible to perform design-based
simulation studies.

This paper gives a brief outline of the flexible framework proposed in Alfons et al.
(2010c) for simulating population data for (household) surveys based on available sample
data. The framework is applicable to a broad class of surveys and is implemented along
with diagnostic plots in the R package simPopulation. In the case of EU-SILC, the data
generation procedure led to excellent results with respect to information loss.

In this paper, confidentiality issues of the generated synthetic EU-SILC population
are discussed based on five different worst case scenarios. The results show that while
reidentification is possible, an intruder would not gain any useful information from the
purely synthetic data. Even if they successfully reidentify a unique combination of key
variables from their data, the probability that the obtained value is close to the original
value is extremely low for all considered worst case scenarios.

Due to our experiences and the results from the investigated scenarios, we can ar-
gue that synthetic population data generated with the methodology introduced in Alfons
et al. (2010c) and implemented in simPopulation are confidential and can be distributed
to the public. Researchers could then use this data to evaluate the effects of different sam-

120

6.8 Conclusions

pling designs, missing data mechanisms and outlier models on the estimator of interest
in design-based simulation studies.

121

Chapter 7

A comparison of robust methods

for Pareto tail modeling in the

case of Laeken indicators

Slightly corrected reprint of Alfons et al. (2010f), which has been published in Combining
Soft Computing and Statistical Methods in Data Analysis, volume 77 of Advances in
Intelligent and Soft Computing.

Andreas Alfonsa, Matthias Templa,b, Peter Filzmosera, Josef Holzera,c

a Department of Statistics and Probability Theory, Vienna University of Technology
b Methods Unit, Statistics Austria
c now at Landesstatistik Steiermark

Abstract The Laeken indicators are a set of indicators for measuring poverty and social
cohesion in Europe. However, some of these indicators are highly influenced by outliers
in the upper tail of the income distribution. This paper investigates the use of robust
Pareto tail modeling to reduce the influence of outlying observations. In a simulation
study, different methods are evaluated with respect to their effect on the quintile share
ratio and the Gini coefficient.

7.1 Introduction

As a monitoring system for policy analysis purposes, the European Union introduced a set
of indicators, called the Laeken indicators, to measure risk-of-poverty and social cohesion
in Europe. The basis for most of these indicators is the EU-SILC (European Union

122

7.2 Selected Laeken indicators

Statistics on Income and Living Conditions) survey, which is an annual panel survey
conducted in EU member states and other European countries. Most notably for this
paper, EU-SILC data contain information on the income of the sampled households. Each
person of a household is thereby assigned the same equivalized disposable income (EU-
SILC 2004). The subset of Laeken indicators based on EU-SILC is computed from this
equivalized income, taking into account the sample weights.

In general the upper tail of an income distribution behaves differently than the rest
of the data and may be modeled with a Pareto distribution. Moreover, EU-SILC data
typically contain some extreme outliers that not only have a strong influence on some of
the Laeken indicators, but also on fitting the Pareto distribution to the tail. Modeling the
tail in a robust manner should therefore improve the estimates of the affected indicators.

The rest of the paper is organized as follows. Section 7.2 gives a brief description of
selected Laeken indicators, while Section 7.3 discusses Pareto tail modeling. A simulation
study is performed in Section 7.4 and Section 7.5 concludes.

7.2 Selected Laeken indicators

This paper investigates the influence of promising robust methods for Pareto tail model-
ing on the quintile share ratio and the Gini coefficient. Both indicators are measures of
inequality and are highly influenced by outliers in the upper tail. Strictly following the
Eurostat definitions (EU-SILC 2004), the indicators are implemented in the R package
laeken (Alfons et al. 2010b).

For the following definitions, let x := (x1, . . . , xn)′ be the equivalized disposable
income with x1 ≤ . . . ≤ xn and let w := (wi, . . . , wn)′ be the corresponding personal
sample weights, where n denotes the number of observations.

7.2.1 Quintile share ratio

The income quintile share ratio is defined as the ratio of the sum of equivalized disposable
income received by the 20% of the population with the highest equivalized disposable
income to that received by the 20% of the population with the lowest equivalized dis-
posable income (EU-SILC 2004). Let q0.2 and q0.8 denote the weighted 20% and 80%
quantiles of x with weights w, respectively. With I≤q0.2 := {i ∈ {1, . . . , n} : xi ≤ q0.2}
and I>q0.8 := {i ∈ {1, . . . , n} : xi > q0.8}, the quintile share ratio is estimated by

QSR :=

∑
i∈I>q0.8

wixi∑
i∈I≤q0.2

wixi
. (7.1)

123

7.3 Pareto tail modeling

7.2.2 Gini coefficient

The Gini coefficient is defined as the relationship of cumulative shares of the popula-
tion arranged according to the level of equivalized disposable income, to the cumulative
share of the equivalized total disposable income received by them (EU-SILC 2004). In
mathematical terms, the Gini coefficient is estimated by

Gini := 100

2
∑n

i=1

(
wixi

∑i
j=1wj

)
−
∑n

i=1w
2
i xi

(
∑n

i=1wi)
∑n

i=1 (wixi)
− 1

 . (7.2)

7.3 Pareto tail modeling

The Pareto distribution is defined in terms of its cumulative distribution function

Fθ(x) = 1−
(
x

x0

)−θ
, x ≥ x0, (7.3)

where x0 > 0 is the scale parameter and θ > 0 is the shape parameter (Kleiber and Kotz
2003). Furthermore, the density is given by

fθ(x) =
θxθ0
xθ+1

, x ≥ x0. (7.4)

In Pareto tail modeling, the cumulative distribution function on the whole range of x is
modeled as

F (x) =

{
G(x), if x ≤ x0,

G(x0) + (1−G(x0))Fθ(x), if x > x0,
(7.5)

where G is an unknown distribution function (Dupuis and Victoria-Feser 2006).
Let n be the number of observations and let x = (x1, . . . , xn)′ denote the observed

values with x1 ≤ . . . ≤ xn. In addition, let k be the number of observations to be used
for tail modeling. In this scenario, the threshold x0 is estimated by

x̂0 := xn−k. (7.6)

On the other hand, if an estimate x̂0 for the scale parameter of the Pareto distribution has
been obtained, k is given by the number of observations larger than x̂0. Thus estimating
x0 and k directly corresponds with each other. Various methods for the estimation of
x0 or k have been proposed (Beirlant et al. 1996b,a, Dupuis and Victoria-Feser 2006,
Van Kerm 2007). However, this paper is focused on evaluating robust methods for
estimating the shape parameter θ (with respect to their influence on the selected Laeken
indicators) once the threshold is fixed.

124

7.3 Pareto tail modeling

7.3.1 Hill estimator

The maximum likelihood estimator for the shape parameter of the Pareto distribution
was introduced by Hill (1975) and is referred to as the Hill estimator. It is given by

θ̂ =
k∑k

i=1 log xn−k+i − k log xn−k
. (7.7)

Note that the Hill estimator is non-robust, therefore it is included for benchmarking
purposes.

7.3.2 Weighted maximum likelihood (WML) estimator

The weighted maximum likelihood (WML) estimator (Dupuis and Morgenthaler 2002,
Dupuis and Victoria-Feser 2006) falls into the class of M-estimators and is given by the
solution θ̂ of

k∑
i=1

Ψ(xn−k+i, θ) = 0 (7.8)

with
Ψ(x, θ) := w(x, θ)

∂

∂θ
log f(x, θ) = w(x, θ)

(
1
θ
− log

x

x0

)
, (7.9)

where w(x, θ) is a weight function with values in [0, 1]. In this paper, a Huber type weight
function is used, as proposed in Dupuis and Victoria-Feser (2006). Let the logarithms of
the relative excesses be denoted by

yi := log
(
xn−k+i
xn−k

)
, i = 1, . . . , k. (7.10)

In the Pareto model, these can be predicted by

ŷi := −1
θ

log
(
k + 1− i
k + 1

)
, i = 1, . . . , k. (7.11)

The variance of yi is given by

σ 2
i :=

i∑
j=1

1
θ2(k − i+ j)2

, i = 1, . . . , k. (7.12)

Using the standardized residuals

ri :=
yi − ŷi
σi

, (7.13)

125

7.3 Pareto tail modeling

the Huber type weight function with tuning constant c is defined as

w(xn−k+i, θ) :=

{
1, if |ri| ≤ c,
c
|ri| , if |ri| > c.

(7.14)

For this choice of weight function, the bias of θ̂ is approximated by

B̂(θ̂) = −
∑k

i=1

(
wi

∂
∂θ log fi

)
|θ̂
(
Fθ̂(xn−k+i)− Fθ̂(xn−k+i−1)

)∑k
i=1

(
∂
∂θwi

∂
∂θ log fi + wi

∂2

∂θ2
log fi

)
|θ̂
(
Fθ̂(xn−k+i)− Fθ̂(xn−k+i−1)

) , (7.15)

where wi := w(xn−k+i, θ) and fi := f(xn−k+i, θ). This term is used to obtain a bias-
corrected estimator

θ̃ := θ̂ − B̂(θ̂). (7.16)

For details and proofs of the above statements, the reader is referred to Dupuis and
Morgenthaler (2002), Dupuis and Victoria-Feser (2006).

7.3.3 Partial density component (PDC) estimator

For the partial density component (PDC) estimator (Vandewalle et al. 2007), the Pareto
distribution is modeled in terms of the relative excesses

yi :=
xn−k+i
xn−k

, i = 1, . . . , k. (7.17)

The density function of the Pareto distribution for the relative excesses is approximated
by

fθ(y) = θy−(1+θ). (7.18)

The PDC estimator is then given by

θ̂ = arg min
θ

[
w2

∫
f2
θ (y)dy − 2w

k

k∑
i=1

fθ(yi)

]
, (7.19)

i.e., by minimizing the integrated squared error criterion (Terrell 1990) using an incom-
plete density mixture model wfθ. The parameter w can be interpreted as a measure of
the uncontaminated part of the sample and is estimated by

ŵ =
1
k

∑k
i=1 fθ̂(yi)∫
f2
θ̂
(y)dy

. (7.20)

126

7.4 Simulation study

See Vandewalle et al. (2007) and references therein for more information on the PDC
estimator.

7.4 Simulation study

Various robust methods for the estimation of poverty and inequality indicators, mostly
non-parametric, have been investigated in Van Kerm (2007), but neither the WML nor
the PDC estimator for Pareto tail modeling are considered there. Preliminary results
with income generated from theoretical distributions (Holzer 2009) are an indication
that both estimators are promising in the context of Laeken indicators. This is further
investigated in this section. However, variance estimation is not yet considered in this
paper.

The simulations are carried out in R (R Development Core Team 2010) using the
package simFrame (Alfons 2010, Alfons et al. 2010e), which is a general framework for
statistical simulation studies. A synthetic data set consisting of 35 041 households and
81 814 individuals is used as population data in the simulation study. This data set has
been generated with the R package simPopulation (Alfons et al. 2010c, Alfons and Kraft
2010) based on Austrian EU-SILC survey data from 2006 and is about 1% of the size of
the real Austrian population. A thorough investigation in a close-to-reality environment
using real-life sized synthetic Austrian population data is future work.

From the synthetic data, 500 samples are drawn using simple random sampling. Each
sample consists of 6 000 households, which is roughly the sample size used in the real-life
survey. With these samples, two scenarios are investigated. In the first scenario, no
contamination is added. In the second, the equivalized disposable income of 0.25% of
the households is contaminated. The contamination is thereby drawn from a normal
distribution with mean µ = 1 000 000 and standard deviation σ = 10 000. Note that
the cluster effect is considered, i.e., all persons in a contaminated household receive the
same income. The threshold for Pareto tail modeling is in both cases set to k = 275
based on graphical exploration of the original EU-SILC sample with a Pareto quantile
plot (Beirlant et al. 1996b). Furthermore, the tuning constant c = 2.5 is used for the
bias-corrected WML estimator due to favorable robustness properties (Holzer 2009).

Figure 7.1 shows the results of the simulations without contamination for the quintile
share ratio (left) and the Gini coefficient (right). The three methods for tail modeling as
well as the standard estimation method without tail modeling behave very similarly and
are very close to the true values, which are represented by the grey lines. This is also an
indication that the choice of k is suitable.

127

7.4 Simulation study

Quintile share ratio

standard

Hill

WML

PDC

3.8 3.9 4.0 4.1 4.2 4.3

●

●

●

●

●●●● ●

●●

● ●●●

●●● ●●●● ●●

Gini coefficient

standard

Hill

WML

PDC

26.0 26.5 27.0 27.5 28.0 28.5

●

●

●

●

● ●●

●●

● ●●●● ●● ●● ●

● ●●●●● ●

Figure 7.1: Simulation results for the quintile share ratio (left) and the Gini coefficient
(right) without contamination.

Quintile share ratio

standard

Hill

WML

PDC

4.0 4.5 5.0 5.5 6.0

●

●

●

●

●●

●●● ●●●●●● ●●●●

●●●●●●● ●● ●

●●● ●●● ●●●●● ●●

Gini coefficient

standard

Hill

WML

PDC

26 28 30 32 34 36 38

●

●

●

●

●● ●

●●● ●●● ●●●● ● ●●●●

●●● ●●●●●● ●● ● ●

● ● ●●●● ●●●●● ●●

Figure 7.2: Simulation results for the quintile share ratio (left) and the Gini coefficient
(right) with 0.25% contamination.

Figure 7.2 shows the results of the simulations with 0.25% contamination for the
quintile share ratio (left) and the Gini coefficient (right). Even such a small amount of
contamination completely corrupts the standard estimation of these inequality indicators.
Fitting the Pareto distribution with the Hill estimator is still highly influenced by the
outliers. The best results are obtained with the PDC estimator, while the WML estimator
shows a slightly larger bias.

128

7.5 Conclusions and outlook

7.5 Conclusions and outlook

The quintile share ratio and the Gini coefficient, which are inequality indicators belonging
to the set of Laeken indicators, are highly influenced by outliers. A simulation study for
the case of simple random sampling showed that robust Pareto tail modeling can be
used to reduce the influence of the outlying observations. The partial density component
(PDC) estimator thereby performed best.

The simulation study in this paper is limited to simple random sampling because the
estimators for Pareto tail modeling do not account for sample weights. Future work is
to modify the estimators such that sample weights are taken into account, to investigate
variance estimation, and to perform simulations using real-life sized synthetic population
data.

Acknowledgements This work was partly funded by the European Union (repre-
sented by the European Commission) within the 7th framework programme for re-
search (Theme 8, Socio-Economic Sciences and Humanities, Project AMELI (Advanced
Methodology for European Laeken Indicators), Grant Agreement No. 217322). Visit
http://ameli.surveystatistics.net for more information on the project.

129

http://ameli.surveystatistics.net

Chapter 8

Robust variable selection with

application to quality of life

research1

To appear in the journal Statistical Methods & Applications (Alfons et al. 2010a).

Andreas Alfonsa, Wolfgang E. Baaskeb, Peter Filzmosera, Wolfgang Maderc,
Roland Wieserb

a Department of Statistics and Probability Theory, Vienna University of Technology
b STUDIA-Schlierbach, Studienzentrum für internationale Analysen
c SPES Academy

Abstract A large database containing socioeconomic data from 60 communities in
Austria and Germany has been built, stemming from 18 000 citizens’ responses to a sur-
vey, together with data from official statistical institutes about these communities. This
paper describes a procedure for extracting a small set of explanatory variables to explain
response variables such as the cognition of quality of life. For better interpretability,
the set of explanatory variables needs to be very small and the dependencies among the
selected variables need to be low. Due to possible inhomogeneities within the data set,
it is further required that the solution is robust to outliers and deviating points. In
order to achieve these goals, a robust model selection method, combined with a strategy
to reduce the number of selected predictor variables to a necessary minimum, is devel-

1The research was supported by a grant of the Austrian Research Promotion Agency (FFG), Project
Ref. No. 813000/10345.

130

8.1 Introduction

oped. In addition, this context-sensitive method is applied to obtain responsible factors
describing quality of life in communities.

Keywords Robustness, Model selection, Success factors, Quality of life

8.1 Introduction

The research project ErfolgsVision (English: vision of success) is a joint cooperation of
the Austrian institutions SPES Academy (a regional developer), STUDIA-Schlierbach
(an applied social researcher) and the Department of Statistics and Probability Theory
at Vienna University of Technology. For this project, data from screening processes
carried out by SPES in 60 communities in Austria and Germany during the period of
2000 to 2006 were used. In total, 18 748 questionnaires were collected, on average 312
per municipality. The survey was subject to individual adaptations towards the needs
of the municipalities. It usually comprised about 250 questions, most of them multiple
choice. In this project, we were interested in comparing the communities, therefore
indicators referring to the questions were computed jointly from the questionnaires of
each community. These data were merged with statistics on demography and economy.
After removing observations with more than 50% and variables with more than 20%
of missing values, a data matrix with 43 (out of 60) observations and 153 (out of 250)
variables resulted. Some of the observations still included missing values (in one case
for 20% of the variables), thus kNN imputation (Troyanskaya et al. 2001) was used to
obtain a complete data matrix.

Although the goal of the project was much broader, this paper is focused on finding
the factors controlling quality of life. Since an easy interpretation of the results was a
major objective, the number of explanatory variables should be limited to about 5 to at
most 10. Moreover, the analysis needed to be robust against outliers and deviating data
points because of possible inhomogeneities within the data set.

Various methods for model selection have been proposed to date. Here we are in-
terested in robust approaches, as they are less sensitive to outliers in the data. Such
methods have gained increasing attention in the literature (e.g., Ronchetti and Staudte
1994, Ronchetti et al. 1997, Wisnowski et al. 2003, Müller and Welsh 2005, Khan et al.
2007a,b, McCann and Welsch 2007, Salibian-Barrera and Van Aelst 2008, Choi and Kiefer
2010, Riani and Atkinson 2010, Van Aelst et al. 2010). However, robust variable selec-
tion is especially difficult if the number of observations is smaller than the number of
variables. In that case it is no longer possible to directly apply robust regression meth-
ods (Maronna et al. 2006) in order to select the most significant variables. On the other

131

8.1 Introduction

hand, various techniques for variable selection in high dimensions have been introduced,
which are based on the non-robust least squares criterion (see, e.g., Hastie et al. 2009,
Varmuza and Filzmoser 2009). An example is least angle regression (LARS; Efron et al.
2004), which selects the regressor variables in the order of their importance for predicting
the response variable. LARS has been robustified in Khan et al. (2007b) by two different
approaches: the plug-in method and the cleaning method. In the plug-in method, the
non-robust estimators mean, variance and correlation in classical LARS are replaced by
robust counterparts. The idea of the cleaning method, on the other hand, is to shrink
outliers and to apply classical LARS to the cleaned data. Both methods use the so-called
winsorization technique to estimate the correlations and shrink the outliers, respectively.
Thus the influence of potential outliers on computing the sequence of predictors is re-
duced. Since the plug-in approach is computationally faster and more widely applicable,
it is the basis of our algorithm for robust variable selection. In the following, the plug-in
method will be referred to as RLARS. Khan et al. (2007b) illustrated that the sequence
of predictors returned by RLARS can be stabilized with the help of the bootstrap. The
resulting procedure is called bootstrapped RLARS, for short B-RLARS.

A reduced set of the B-RLARS sequence of candidate predictors is then used for build-
ing a more refined regression model. For this purpose we suggest to use MM-regression
(Yohai 1987, Maronna et al. 2006). MM-estimators have many desirable properties.
Most importantly, they combine a maximum breakdown point of 0.5 with high efficiency.
Salibian-Barrera and Zamar (2002) further studied the distribution of MM-estimates us-
ing a robust bootstrap method. We apply MM-regression to filter out the non-significant
variables at a certain significance level. Since in general the resulting number of the
resulting variables is still too high for a reasonable interpretation, all possible subsets of
size k are examined (see, e.g., Furnival and Wilson 1974, Miller 2002, Gatu and Kon-
toghiorghes 2006), which is sometimes referred to as k-subset regression. In our case, a
robustified version of k-subset regression is applied by using the weights obtained from
MM-regression. Thus strong dependencies among the regressor variables are eliminated
and the smaller models are highly interpretable, which is required in the context of social
sciences. This approach will therefore be called context-sensitive and can be considered
a trade-off between quality of the model and interpretability.

The rest of this paper is organized as follows. In Section 8.2, we will describe the
complete algorithm in more detail. Section 8.3 outlines how the procedure can be applied
to obtain a small set of explanatory variables determining quality of life, and a simulation
study is performed in Section 8.4. The final Section 8.5 concludes.

132

8.2 Context-sensitive model selection

8.2 Context-sensitive model selection

Let y = (y1, . . . , yn)t be the response variable and x1 = (x11, . . . , xn1)t, . . . , xp =
(x1p, . . . , xnp)t the candidate predictors. Thus n denotes the number of observations
and p the number of candidate predictors. Furthermore, let J = {1, . . . , p} be the set
of indices referring to the candidate predictor variables. Our method aims to find a
model for the response variable y that contains a very low number of predictors, at
most k � p, in order to achieve high interpretability. Since the predictor variables
should contain potentially new information, an additional requirement is that strong
dependencies among the regressor variables should be avoided. These goals of easy-to-
interpret models and low or only moderate dependencies between the predictors reflect
the context-sensitivity of our method.

8.2.1 Description of the algorithm

For a start, the response variable y and the candidate predictors x1, . . . ,xp are robustly
centered and scaled using median and MAD, according to

y∗i =
yi −med(y1, . . . , yn)
MAD(y1, . . . , yn)

, i = 1, . . . , n (8.1)

x∗ij =
xij −med(x1j , . . . , xnj)
MAD(x1j , . . . , xnj)

, i = 1, . . . , n, j = 1, . . . , p. (8.2)

Hence all predictor variables x∗j = (x∗1j , . . . , x
∗
nj)

t, j = 1, . . . , p, are on an equal scale.
Our algorithm then proceeds in three steps. The first step seeks a drastic reduction of the
number of candidate predictors such that the following steps become computationally
feasible. For this purpose, B-RLARS (Khan et al. 2007b) is applied to y∗ = (y∗1, . . . , y

∗
n)t

and x∗1, . . . ,x
∗
p to find a sequence (x∗j)j∈J1 , J1 ⊂ J , of candidate predictors for y∗ with

k < |J1| � p. Clearly, J1 contains the indices of the |J1| most important predictor
variables returned by B-LARS. In order to allow for an interpretation of the final model,
|J1| should be in the range of 10 to 20.

In the second step, the covariates x∗j , j ∈ J1, are entered as predictors for y∗ in
MM-regression (Yohai 1987, Maronna et al. 2006). We apply MM-regression to filter
out the non-significant variables. Let J2 ⊆ J1 be the set of indices of the significant
variables at a given significance level α. The choice of α should not be too strict (we
used α = 0.3) in order not to exclude important variables. Note that this test is robust
because it is based on robust estimates of the standard errors (Croux et al. 2008). The
second step thus concludes with fitting another MM-regression model to y∗, using only

133

8.2 Context-sensitive model selection

the significant predictors x∗j , j ∈ J2. Thus we consider the regression model

y∗i = (x∗i)
tβ + ei, i = 1, ..., n, (8.3)

where x∗i denotes the i-th observation of the predictor variables x∗j , j ∈ J2, extended by
1 in the first component to account for the intercept. Furthermore, β is the vector of
length |J2| + 1 of the unknown regression coefficients, and ei denotes the error terms,
which are assumed to be i.i.d. random variables. MM-regression minimizes a function
of the scaled residuals. Denoting the residuals by ri(β) = y∗i − (x∗i)

tβ, MM-regression
solves the problem

β̂ = argmin
β

n∑
i=1

ρ

(
ri (β)
σ̂

)
, (8.4)

where ρ (r) is a bounded function, and σ̂ is a robust scale estimator of the residuals,
derived from a robust (but inefficient) S-estimator (for more details, see Maronna et al.
2006). Differentiating (8.4) with respect to β yields

n∑
i=1

ψ

(
ri (β)
σ̂

)
x∗i = 0 (8.5)

where ψ = ρ′. Using the notation

wi =
ψ(ri(β)/σ̂)
ri(β)/σ̂

, i = 1, ..., n, (8.6)

allows (8.5) to be rewritten as

n∑
i=1

wiri (β) x∗i = 0. (8.7)

Equation (8.7) is a weighted version of the normal equations. Hence the estimator can be
considered a weighted least squares estimator with weights wi from (8.6), which depend
on the data. For an estimator to be robust, observations with large residuals should
receive small weights. Thus the function ρ was chosen as the bisquare function (see
Maronna et al. 2006), which ensures that ψ(r) is decreasing towards zero for increasing |r|.
The resulting weights ŵi, i = 1, . . . , n, for the MM-regression estimator β̂ will be used
in the third step of the algorithm.

The third step is based on k-subset regression (see, e.g., Furnival and Wilson 1974,
Miller 2002, Gatu and Kontoghiorghes 2006). Thus we want to find the best subset of
maximum size k of the predictor variables that optimizes a criterion such as Mallows’ Cp
(Mallows 1973) or the BIC (Schwarz 1978). Although k-subset regression is not feasible

134

8.2 Context-sensitive model selection

even for moderate numbers of predictors, our method does not suffer from this problem
since the number of predictors has been drastically reduced with B-RLARS in the first
step and MM-regression in the second step. Another problem with k-subset regression
is that it is not robust. However, a simple robustification is to use the weights computed
in the second step during MM-regression, i.e., to enter the procedure with the response
variable ỹ = (ŵ1y

∗
1, . . . , ŵny

∗
n)t and the candidate predictors x̃j = (ŵ1x

∗
1j , . . . , ŵnx

∗
nj)

t,
j ∈ J2. Since the data are robustly standardized, multiplying the observations with
the weights results in shrinking the outliers towards the main body of the data. This
robustified version of k-subset regression yields the optimal subset {x∗j : j ∈ J3} with
J3 ⊆ J2, |J3| ≤ k, of the set of candidate predictors {x∗j : j ∈ J2}.

Instead of using the weights computed in the second step, other robust versions of
k-subset regression might be considered. One example is fitting MM-regression models
to all possible subsets of maximum size k and using m-fold cross-validation to estimate a
robust prediction loss function, e.g., the root trimmed mean squared error of prediction
(RTMSEP), for choosing the optimal submodel. In m-fold cross validation, the data are
split randomly in m blocks of approximately equal size. Each block is left out once for
fitting the model, and the left-out block is used as test data. Thus a prediction is obtained
for each observation. Let b(i) be the block to which observation i = 1, . . . , n belongs,
then the prediction for yi is denoted by ŷ

−b(i)
i . For a trimming factor 0 ≤ γ < 0.5, the

RTMSEP is defined as

RTMSEP =

√√√√ 1
N

N∑
i=1

r2(i) (8.8)

where ri = yi − ŷ−b(i)i , i = 1, . . . , n, are the residuals using the predictions from cross-
validation, r2(1) ≤ . . . ≤ r

2
(n) are the sorted squared residuals, and N = n−bnγc (here bac

denotes the integer part of a). Whereas such procedures are certainly more robust than
the simple weighted approach, they are computationally expensive even for small prob-
lems. On the other hand, using the weights computed in the second step of the procedure
results in a cleaned data set, thus reducing the influence of atypical observations in both
fitting the submodels and computing classical criteria for deciding on the best submodel.
Even though the weights might not be optimal for each submodel, this approach is a
reasonable compromise between computational complexity and robustness. It is fast for
small problems and worked very well in our studies (see the example in Section 8.3).

8.2.2 Summary of the algorithm

The response variable and all candidate predictor variables are robustly centered and
scaled using median and MAD. The resulting response variable is denoted by y∗ =

135

8.2 Context-sensitive model selection

(y∗1, . . . , y
∗
n)t, and the resulting candidate predictors by x∗1 = (x∗11, . . . , x

∗
n1)t, . . . ,x∗p =

(x∗1p, . . . , x
∗
np)

t. Let J = {1, . . . , p} be the set of indices for the candidate predictors, and
k � p the desired maximum number of predictors for the model. Then the algorithm
can be summarized as follows:

1. Perform B-RLARS on y∗ and x∗1, . . . ,x
∗
p to compute a sequence (x∗j)j∈J1 , J1 ⊂ J ,

of candidate predictors with k < |J1| � p.

2. Use x∗j , j ∈ J1, as predictors for y∗ in MM-regression. Let J2 ⊆ J1 be the set
of indices of the significant variables at a given significance level α. Fit another
MM-regression model to y∗ with only the significant predictors x∗j , j ∈ J2, and let
ŵ1, . . . , ŵn denote the resulting weights for the observations.

3. Apply k-subset regression with the response variable ỹ = (ŵ1y
∗
1, . . . , ŵny

∗
n)t and the

candidate predictors x̃j = (ŵ1x
∗
1j , . . . , ŵnx

∗
nj)

t, j ∈ J2. This robustified version of
k-subset regression yields the optimal subset {x∗j : j ∈ J3} with J3 ⊆ J2, |J3| ≤ k,
of the set of candidate predictors {x∗j : j ∈ J2}.

A more visual summary of the algorithm is given by the following diagram:

B-RLARS MM-regression k-subset regression
J −→ J1 −→ J2 −→ J3

8.2.3 Diagnostics

The elimination of high dependencies among the predictor variables is a major demand
for our context-sensitive method. In the social sciences, such a model has potential
for an interesting interpretation. Correlated predictor variables, on the other hand, are
likely to describe more or less the same factors, which are just expressed with different
variables in the data set. The resulting model will not be as interesting with respect to
interpretation, even if it has a high prediction ability of the response variable. Hence a
graphical tool to check whether the procedure succeeded in fulfilling this demand would
be useful. A dendrogram (e.g., Everitt and Dunn 2001) based on robust correlations
seems suitable for this purpose.

Since the number of candidate predictors is in general too large for an informative
plot, only the variables xj , j ∈ J1, from the initial B-RLARS sequence will be used.
The correlation matrix of this reduced set of candidate predictors can be estimated
with a high-breakdown estimator such as the minimum covariance determinant (MCD;
Rousseeuw and Van Driessen 1999) or the orthogonalized Gnanadesikan-Kettenring es-
timator (OGK; Maronna and Zamar 2002). Note that the correlations used here do

136

8.2 Context-sensitive model selection

not need not come from an affine equivariant or orthogonal equivariant method, the
Spearmann or Kendall correlation could also be used (for their robustness properties,
see Croux and Dehon 2010). Let R = (rij)i,j∈J1 denote such a robust estimate of the
correlation matrix. Then the dissimilarity matrix D = (dij)i,j∈J1 given by

dij = 1− |rij |, i, j ∈ J1, (8.9)

is used for clustering the variables. Complete linkage clustering (e.g., Everitt and Dunn
2001) is well suited for our purposes, as the dissimilarity measure is based on robust
correlations. In this method, the dissimilarity of two clusters A and B is defined as

d(A,B) = max
xi∈A,xj∈B

dij . (8.10)

Using (8.9), this can be written as

d(A,B) = 1− min
xi∈A,xj∈B

|rij |. (8.11)

In each step, the two clusters with minimum dissimilarity are merged. Thus complete
linkage clustering in our case yields that variables with low correlations will not belong
to the same cluster if an appropriate cut-off point is chosen. Hence the resulting den-
drogram is a convenient way of exploring the robust correlation structures among the
candidate predictor variables. If the selected variables belong to different clusters, then
the procedure performed well in the context-sensitive sense. Such a dendrogram may also
reveal potential problems due to strong correlations among all predictor variables. In
this case, it would probably be difficult to decide on which variables should be eliminated
for a highly interpretable model.

8.2.4 Implementation

An implementation of our algorithm in the statistical environment R (R Development
Core Team 2010) and detailed documentation can be downloaded from http://www.

statistik.tuwien.ac.at/public/filz/programs.html. The required R code for B-
RLARS by Khan et al. (2007b) can be obtained from http://users.ugent.be/~svaelst/

software/RLARS.html. In addition, the R packages robustbase (Rousseeuw et al. 2009)
and leaps (Lumley and Miller 2009), which are available on CRAN (the Comprehensive
R Archive Network, http://cran.r-project.org), need to be installed.

137

http://www.statistik.tuwien.ac.at/public/filz/programs.html
http://www.statistik.tuwien.ac.at/public/filz/programs.html
http://users.ugent.be/~svaelst/software/RLARS.html
http://users.ugent.be/~svaelst/software/RLARS.html
http://cran.r-project.org

8.3 Example: Driving factors behind quality of life

8.3 Example: Driving factors behind quality of life

In this section, we will attempt to find the driving factors behind quality of life in
communities, using the data collected by SPES (see Section 8.1 for a general description
of the data). Table 8.1 contains explanations for the most important variables. In order to
ensure an easy-to-interpret model, the response variable qualityLife should be explained
by at most 10 predictors. Note that some variables, which are too discontinuous or clearly
redundant in the context of quality of life, are removed from the data set, resulting in 138
remaining candidate predictors. Hence all variables are continuous, which is important
for applying the developed robust method.

Furthermore, we will compare our robust context-sensitive method, in the following
referred to as RCS, with B-RLARS.

8.3.1 Results

RCS is carried out with parameter settings as described in the following. As mentioned
above, the maximum number of variables in the final model is set to k = 10. In the
initial B-RLARS step, 15 variables are sequenced with 50 bootstrap repetitions. These
candidate predictors are then filtered at significance level α = 0.3 in MM-regression.
This unusually high significance level will prevent the exclusion of potentially important
variables. For deciding on the optimal submodel in the robustified version of k-subset
regression, the BIC is used as criterion. With these parameters, RCS returns the following

Table 8.1: Explanation of important variables.

Variable Explanation

qualityLife quality of life
agriculture state of local agriculture
beauty beauty of the community
contrFarmers contribution of local farmers to quality of life
futureComm future development of the community
impOrganic importance of organic products
impTrad importance of traditional festivities
interesting interestingness of the community
medCare state of medical care
merchAssort assortment of local merchants
merchComm contribution of local merchants to the development of the community
parish state of local parish
percAdolesc percentage of adolescents
publicServ state of public services
eduProTraining educational and professional training opportunities
view state of the community’s view

138

8.3 Example: Driving factors behind quality of life

six predictors: agriculture, medCare, merchAssort, eduProTraining, beauty and parish
(see Table 8.1).

In addition to the simple weighted k-subset regression in the third step of RCS,
we also apply a more sophisticated robust version for comparison. In this version, we
fit MM-regression models to the subsets and use fivefold cross-validation to estimate
the root trimmed mean squared error of prediction (RTMSEP) with 20% trimming,
see (8.8). Fivefold cross-validation seems to be a reasonable choice given the number of
observations in the data set. Furthermore, the choice of the trimming proportion is based
on the weights returned by the MM-regression in the second step, which indicate some
outliers. With a lower value, these outliers may still influence the RTMSEP, whereas a
higher value may result in some bias. The submodel with the lowest RTMSEP is then
chosen as the optimal submodel. While this procedure yields the same six variables as
the simple weighted approach, it is computationally much more expensive.

In order to compare RCS with B-RLARS, we start with the B-RLARS sequence
of length 15 that we computed in the first step of RCS. Then we proceed as in the
examples in Section 6 of Khan et al. (2007b) to obtain the final B-RLARS model. There
it is suggested to start with the first variable and to increase the number of variables
along the sequence, while fitting a robust regression model in each step. For each model,
the robust R2 measure

R2
rob = 1−

(
med(|y1 − ŷ1|, . . . , |yn − ŷn|)

MAD(y1, . . . , yn)

)2

, (8.12)

is computed, where yi, i = 1, . . . , n, are the observed values of the response variable
and ŷi, i = 1, . . . , n, are the fitted values (see Rousseeuw and Leroy 1987). Finally,
these robust R2 values are plotted against the model size to obtain a learning curve
(c.f. Croux et al. 2003). Note that the robust R2 is not always monotonically increasing
with the number of variables since algorithms for robust regression yield only approx-
imate solutions. Keeping in mind that the number of predictors should be at most
10, the learning curve in Figure 8.1 (left) suggests using the first 8 variables of the se-
quence: contrFarmers, agriculture, medCare, merchComm, impOrganic, merchAssort,
percAdolesc and interesting (see Table 8.1). These variables are further examined by
fitting MM-regression models to all possible subsets. Deciding on the best subset is
done by minimizing the RTMSEP with 20% trimming, which is estimated using fivefold
cross-validation. The final model resulting from this procedure contains the predictors
agriculture, merchAssort and interesting.

Tables 8.2 and 8.3 show the results of MM-regression with the predictor variables
selected by RCS and B-RLARS, respectively. In both models, the included variables are

139

8.3 Example: Driving factors behind quality of life

Table 8.2: MM-regression results for the RCS model for quality of life.

Estimate Standard error t-Value p-Value

(Intercept) -2.302 11.227 -0.205 0.839
agriculture 0.251 0.053 4.713 3.6 · 10−5

medCare 0.076 0.023 3.228 0.003
merchAssort 0.177 0.064 2.751 0.009
eduProTraining 0.117 0.026 4.450 8.0 · 10−5

beauty 0.292 0.113 2.588 0.014
parish 0.216 0.035 6.226 3.5 · 10−7

Robust residual standard error: 1.705

Table 8.3: MM-regression results for the B-RLARS model for quality of life.

Estimate Standard error t-Value p-Value

(Intercept) 8.795 7.079 1.242 0.221
agriculture 0.337 0.064 5.278 5.2 · 10−6

merchAssort 0.277 0.065 4.297 1.1 ·10−4

interesting 0.409 0.082 5.009 1.2 · 10−5

Robust residual standard error: 2.419

highly significant. Containing only three predictor variables, the B-RLARS model is on
the one hand somewhat simpler than the RCS model, which consists of six predictors.
Two of the three variables selected by B-RLARS are also selected by RCS (agriculture
and merchAssort). On the other hand, the robust residual standard error indicates that
the B-RLARS model might be too simple. The RCS model is a better fit due to the
much lower robust residual standard error.

However, in order to decide on which model is preferable, it is necessary to estimate
the prediction quality of the models. For this purpose, repeated fivefold cross-validation
with 1,000 repetitions is applied. In each repetition, the RTMSEP with 20% trimming is
estimated. Figure 8.1 (right) displays the resulting density curves for the RCS model, the
final B-RLARS model (B-RLARS-3) and the B-RLARS model with the first 8 variables
as suggested by the learning curve (B-RLARS-8). It is clearly visible from this plot that
the average RTMSEP is significantly smaller for RCS than for the other two models. Even
though the variance of the RTMSEP is slightly larger for RCS than for B-RLARS-3, it is
comparable for the two methods. Thus the RCS model performs much better than the

140

8.3 Example: Driving factors behind quality of life

2 4 6 8 10 12 14

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Number of variables from B−RLARS sequence

R
ob

us
t R

−
sq

ua
re

d

1.5 2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

RTMSEP using fivefold CV

D
en

si
ty

RCS
B−RLARS−3
B−RLARS−8

Figure 8.1: Learning curve for the B-RLARS sequence (left). Densities of the RTMSEP
for the RCS model, the final B-RLARS model (B-RLARS-3) and the B-RLARS model
with the first 8 variables as suggested by the learning curve (B-RLARS-8), estimated
with repeated fivefold cross-validation (right).

two B-RLARS models, while the B-RLARS-8 model clearly leads to the worst prediction
performance.

One of the main requirements concerning context-sensitivity was that the resulting
model should be simple. Nevertheless, while succeeding in finding a few important pre-
dictor variables, the B-RLARS model turns out to be too simple. By only moving along
the computed sequence of candidate predictors for finding the optimal size of the model,
variables such as medCare and eduProTraining were completely neglected, even though
they are clearly very important in the context of quality of life. Since RCS manages
to include these variables in the selected model, the key step for context-sensitivity in
the RCS procedure may be selecting the variables of the initial B-RLARS sequence at a
certain significance level in MM-regression.

Another main requirement was that the dependencies among the selected variables
should be rather low. Therefore, a dendrogram is constructed according to Section
8.2.3 and shown in Figure 8.2. It includes the 15 most important candidate predictors
for quality of life, which were sequenced with B-RLARS in the first step of our context-
sensitive procedure. The robust correlations for the dendrogram were computed with the
reweighted MCD. The trimming parameter for the size of the subsets was thereby set to
75%. Furthermore, the finite sample correction factor and the asymptotic consistency
factor were used. The dendrogram shows that RCS was able to fulfill this demand of low

141

8.3 Example: Driving factors behind quality of life

vi
ew

in
te

re
st

in
g

be
au

ty

pe
rc

A
do

le
sc

ed
uP

ro
T

ra
in

in
g

fu
tu

re
C

om
m

co
nt

rF
ar

m
er

s

ag
ric

ul
tu

re

im
pO

rg
an

ic im
pT

ra
d

pa
ris

h

m
er

ch
C

om
m

m
er

ch
A

ss
or

t m
ed

C
ar

e

pu
bl

ic
S

er
v

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D
is

si
m

ila
rit

y

Figure 8.2: Dendrogram (based on robust correlations) of the initial B-RLARS sequence
of candidate predictors for quality of life.

variable dependencies. In addition, every group in the dendrogram is represented in the
RCS model, but not in the B-RLARS model.

The results seem to be significant in terms of theoretical concepts for quality of life as-
sessments. Our selection procedure definitely moves beyond producing inconsistent lists
of indicators, it creates a set of meaningful empirical measures. In quality of life research
(e.g., Diener et al. 1999), individualistic and subjective indicators prevail, but recent
concepts combine them with features of the external world. The model of Renwick et al.
(1994), followed by Tichbon and Newton (2002), allows subjective states (being—e.g.,
health, nutrition, beliefs, values), as well as objective states (belonging—e.g., services, ac-
tivities, leisure) and development (becoming—e.g., acquisition of skills and knowledge).
Meaningful variables of all three types are included in the empirical results presented
in this article (with some of the variables loading on different types): medCare and
merchAssort are being-indicators, agriculture and beauty are belonging-indicators, while
parish, interesting and eduProTraining signify development (becoming). The studies of
this project are insofar unique, as they combine internal and external world features on a
solid data base with appropriate analysis techniques. We recommend to incorporate the
results into the design of agricultural policies. Municipalities often underestimate the
role of the “lagging-behind” sector agriculture, whereas our analysis shows that the state
of local agriculture constitutes a significant share of quality of life. On a world-wide level,
producing quality of life as an external effect within the proximity may cause agriculture

142

8.4 Simulations

to be be respected and handled differently from a mere producer of tradable commodities
(Baaske et al. 2009).

8.3.2 CPU times

The computation times presented in this section are average times over 50 runs, carried
out on a machine with an Intel Core2 Quad 2.66GHz processor and 8GB main memory.
Keep in mind that the computations were carried out with R (and thus only one of
the four available processors was effectively used), and that the data set consists of
43 observations and 138 candidate predictor variables. With the parameter settings
as described in the beginning of Section 8.3.1, RCS completed after 20.61 seconds. The
running time was thereby dominated by computing the initial B-RLARS sequence, which
took 20.54 seconds. This example indicates that RCS is still feasible whenever computing
the initial B-RLARS sequence is feasible.

For finding the final B-RLARS model, the learning curve had to be inspected graph-
ically to find the optimal number of predictors. Afterwards, all subsets of the reduced
sequence were examined using MM-regression and fivefold cross-validation, which was
very time-consuming for such a small problem. Since RCS uses the simple weighted
version of robust k-subset regression and does not require manual interaction, obtaining
the RCS model was much faster than obtaining the final B-RLARS model.

8.4 Simulations

For further investigation of the proposed RCS procedure, simulations are carried out
using a simulation setting similar to that from Khan et al. (2007b). With k latent
independent standard normal variables l1, . . . , lk and an independent standard normal
variable e, a linear model is constructed as

y := l1 + . . .+ lk + σe, (8.13)

where σ is chosen so that the signal-to-noise ratio is 5, i.e.,√
var(l1 + . . .+ lk)/var(σe) =

√
k/σ = 5. (8.14)

143

8.4 Simulations

Using independent standard normal variables e1, . . . , ep, a set of p candidate predictors
is then constructed as

x1 := l1 + τe1,

x2 := l1 + τe2,

x3 := l1 + τe3,
...

x3k−2 := lk + τe3k−2,

x3k−1 := lk + τe3k−1,

x3k := lk + τe3k,

x3k+1 := l1 + δe3k+1,

x3k+2 := l1 + δe3k+2,
...

x5k−1 := lk + δe5k−1,

x5k := lk + δe5k,

xi := ei, i = 5k + 1, . . . , p,

(8.15)

where τ = 0.2 and δ = 5 so that x1, . . . , x3k form k groups of low-noise perturbations
of the latent variables, x3k+1, . . . , x5k are noise covariates that are correlated with the
latent variables, and x5k+1, . . . , xp are independent noise covariates.

Regarding contamination, the following scenarios are investigated (similar to a subset
of the scenarios investigated in Khan et al. 2007b), where ε denotes the fraction of outliers
in the data:

1. No contamination.

2. Contamination in y given by e ∼ (1− ε)N(0, 1) + εN(0, 1)/U(0, 1).

3. Same as 2., but contaminated observations contain outliers in x1, . . . , xp coming
from N(5, 1).

Note that in the last scenario, the contamination is not more extreme because the outliers
in the data for which the proposed method has been designed (see Section 8.1) are
moderate as well.

In the simulation experiments in Khan et al. (2007b), B-RLARS is compared to
other methods using recall curves, i.e., the average numbers of target variables included
in the first m sequenced variables are plotted, with m varying within a certain range.
However, our procedure does not produce a sequence of predictor variables, instead it is
designed to obtain a final model from an initial sequence of candidate predictors. Hence
a comparison with B-RLARS using recall curves is not meaningful.

144

8.4 Simulations

Moreover, one requirement for our procedure is that strong correlations between
variables should be avoided. For each latent variable, a group of low-noise perturbations
is thus defined in (8.15). Variables in the same group are highly correlated, while the
correlations between variables from different groups are low. The procedure is successful
in the context-sensitive sense if the final model contains exactly one predictor variable
from each of these groups. Nevertheless, the success of the procedure of course also
depends on the initial B-RLARS sequence. If no variables of one group exist in the
initial sequence, the final model cannot contain a variable of this group either.

In the simulations, k = 5 latent variables are used to construct the linear model for
the response as in (8.13) and p = 100 candidate predictors as in (8.15). Concerning the
number of observations, two situations are investigated: n = 50 (n < p, high-dimensional
data) and n = 150 (n > p). In both cases, the contamination level is set to ε = 0.1. The
number of predictors in the final RCS model is limited to the number of latent variables
k = 5. For the remaining parameters of RCS, the same settings as in the example from
Section 8.3 are used, i.e., 15 variables are sequenced in the initial B-RLARS step with
50 bootstrap repetitions, the significance level for MM-regression in the second step is
set to α = 0.3, and the BIC used as criterion for k-subset regression in the third step.
In addition, the simulations are performed with the R package simFrame (Alfons 2010,
Alfons et al. 2010e), which is a general framework for statistical simulation.

The results from 100 simulation runs are presented in Table 8.4. Averages of certain
quantities of interest are thereby computed. The final RCS model is evaluated by the
number of groups of low-noise perturbations that are represented by exactly one variable
(#target), the number of noise variables (#noise), and the total number of variables
(#total). Ideally, the final model would consist of k = 5 target predictors—exactly one
from each group and no noise variables. Since the success of the procedure depends on
the initial B-RLARS step, the initial sequence from this step is evaluated as well. As
discussed in the example in Section 8.3, the first part of the sequence may not contain
some important predictors. In order to further investigate this issue, the number of
groups that are represented by exactly one variable (#target) and the number of noise
variables (#noise) are computed for the first k variables in the initial B-RLARS sequence
as well. In the complete B-RLARS sequence, as many of the low-noise perturbations as
possible should be included. It is essential that all groups occur in the sequence so that it
is possible to extract one variable for each group in the remaining steps of the procedure.
Therefore, the initial B-RLARS sequence is evaluated using the number of represented
groups (#groups) and the number of noise variables (#noise). The initial B-RLARS step
performs well in this setting if all variables from the groups of low-noise perturbations
and no additional noise variables are sequenced.

145

8.4 Simulations

Table 8.4: Average results from 100 simulation runs with contamination level ε = 0.1.
For RCS, the number of target groups represented by exactly one variable (#target), the
number of noise variables (#noise), and the total number of variables (#total) are shown.
For the first k variables of B-RLARS, the number of target groups represented by exactly
one variable (#target) and the number of noise variables (#noise) are displayed. The
full B-RLARS sequence is evaluated using the number of represented groups (#groups)
and the number of noise variables (#noise).

RCS First k of B-RLARS B-RLARS
n Scenario #target #noise #total #target #noise #groups #noise

1 4.84 0.06 4.90 3.91 0.43 4.99 5.25
50 2 4.79 0.09 4.88 3.82 0.52 5 5.58

3 4.28 0.68 4.96 3.48 1.02 4.82 7.47
1 5 0 5 3.86 0 5 1.19

150 2 5 0 5 4.12 0.02 5 1.81
3 4.89 0.11 5 3.91 0.49 5 4.84

The simulation results from Table 8.4 indicate that the RCS procedure performs very
well. In particular in the case of n > p, the results are excellent. Only in some instances
for the scenario with contamination in the candidate predictors, the final model does
not contain exactly one variable from each group of low-noise perturbations. In these
instances, the final model also contains one noise variable, which may be due to the
considerably higher number of noise variables in the initial B-RLARS sequence compared
to the other scenarios. In the case of n < p (low sample size, high-dimensional data),
variable selection is much more difficult, which is also reflected in the simulation results.
For all scenarios, the number of noise variables in the initial B-RLARS sequence is much
higher than in the case of n > p. The RCS procedure still gives excellent results if the
data are not contaminated or if contamination is only present in the response. Merely
in some cases, the final model consists of less than k = 5 predictors or contains a noise
variable. But even if the candidate predictors are contaminated as well, the results are
very reasonable considering that on average about half of the variables in the initial
B-RLARS sequence are noise variables.

Furthermore, the results from the simulations show that the first parts of the B-RLARS
sequence may not contain some important variables for data of a certain structure. In
all investigated scenarios, the first k variables in the initial B-RLARS sequence often
contain more than one variable from the same group of low-noise perturbations, and in
some scenarios even noise variables frequently occur.

146

8.5 Conclusions and discussion

8.5 Conclusions and discussion

Motivated by a practical application, we developed a strategy for finding a linear regres-
sion model that includes only a necessary minimum of key predictor variables to describe
the response. The number of explanatory variables thereby was supposed to be smaller
than a given boundary, each of them should contain potentially new information, and the
resulting model should be highly interpretable. Moreover, the variable selection proce-
dure needed to be robust with respect to possible data inhomogeneities and outliers. The
difficulty with these requirements was that the underlying data set is high-dimensional,
with much more variables than observations.

Several methods for model selection in high dimensions are available to date, but
only a few proposals for robust model selection have been made due to the much higher
request of computation time. Our algorithm is based on bootstrapped robust least angle
regression (B-RLARS; Khan et al. 2007b), which we apply to find an initial sequence of
explanatory variables. In addition to being robust to atypical observations, B-RLARS
yields a stable sequence of predictors because of the bootstrap procedure, it is fast to
compute, and R code (R Development Core Team 2010) is freely available. Different
strategies for further reducing the initial sequence of predictor variables are possible.
Since our aim is to extract a small set of highly informative explanatory variables, fil-
tering out the non-significant variables with MM-regression (Yohai 1987, Maronna et al.
2006) seems a suitable approach. MM-regression is used because it is both highly ef-
ficient and highly robust. Then all subsets of a given maximum size k of the set of
significant variables can be examined to find the optimal regression model. However,
using robust regression and resampling methods for this purpose is computationally ex-
pensive. Therefore, we suggest using k-subset regression based on least squares (e.g.,
Furnival and Wilson 1974, Miller 2002, Gatu and Kontoghiorghes 2006), which is robus-
tified by using the weights obtained from another MM-regression model with only the
significant explanatory variables. This is a simplification because the weights obtained
from MM-regression on the significant variables might not be appropriate for a subset
of these variables. For this reason, an alternative procedure based on the root trimmed
mean squared error of prediction (RTMSEP) has been proposed as well, which never-
theless is computationally much more demanding. Note that also other procedures for
robust variable selection are possible, such as the forward search strategy (see Atkinson
and Riani 2002).

In the example of extracting a small set of explanatory variables for quality of life,
the suggested strategy succeeded in finding an easy-to-interpret model containing only
predictors with potentially new information. The latter was confirmed by a cluster
analysis based on robust correlations (see Figure 8.2). Moreover, the resulting model is

147

8.5 Conclusions and discussion

an excellent fit and performs well with respect to prediction. Simulation results were
presented as further indication of the excellent performance of the proposed procedure.
Last but not least, our procedure also gave meaningful answers to other questions and
hypotheses related to the project.

A principal question is whether robust methods are really required for a data set at
hand. Usually, inspecting high-dimensional data for possible inhomogeneities or outliers
is difficult. For our data set, we used the outlier detection method by Filzmoser et al.
(2008), which identified some clearly outlying observations. In the example for quality of
life, the weights obtained by MM-regression with the reduced set of predictor variables
indicated that outliers still exist in the much lower-dimensional subset of the data. In
any case, even if only minor contamination is present, robust model selection can yield
more stable results, as it is less sensitive to small changes in the (high-dimensional) data.

Acknowledgements The authors are grateful to the referees for helpful comments
and suggestions.

148

References

D. Adler, C. Gläser, O. Nenadic, J. Oehlschlägel, and W. Zucchini. ff: Memory-efficient
storage of large atomic vectors and arrays on disk and fast access functions, 2010. URL
http://ff.r-forge.r-project.org. R package version 2.2-1.

J. Aitchison. The Statistical Analysis of Compositional Data. Chapman & Hall, London,
1986. ISBN 0-412-28060-4.

J. Aitchison. On criteria for measures of compositional difference. Mathematical Geology,
24(4): 365–379, 1992.

J. Aitchison, C. Barceló-Vidal, J.A. Mart́ın-Fernández, and V. Pawlowsky-Glahn. Lo-
gratio analysis and compositional distance. Mathematical Geology, 32(3): 271–275,
2000.

H. Akaike. Statistical predictor identification. Annals of the Institute of Statistical
Mathematics, 22(2): 203–217, 1970.

A. Alfons. simFrame: Simulation framework, 2010. URL http://CRAN.R-project.org/

package=simFrame. R package version 0.3.6.

A. Alfons, W.E. Baaske, P. Filzmoser, W. Mader, and R. Wieser. Robust variable
selection with application to quality of life research. Statistical Methods & Applications,
pages 1–18, 2010a. URL http://dx.doi.org/10.1007/s10260-010-0151-y. DOI
10.1007/s10260-010-0151-y, to appear.

A. Alfons, J. Holzer, and M. Templ. laeken: Laeken indicators for measuring social
cohesion, 2010b. URL http://CRAN.R-project.org/package=laeken. R package
version 0.1.3.

A. Alfons and S. Kraft. simPopulation: Simulation of synthetic populations for
surveys based on sample data, 2010. URL http://cran.r-project.org/package=

simPopulation. R package version 0.2.1.

149

http://ff.r-forge.r-project.org
http://CRAN.R-project.org/package=simFrame
http://CRAN.R-project.org/package=simFrame
http://dx.doi.org/10.1007/s10260-010-0151-y
http://CRAN.R-project.org/package=laeken
http://cran.r-project.org/package=simPopulation
http://cran.r-project.org/package=simPopulation

REFERENCES

A. Alfons, S. Kraft, M. Templ, and P. Filzmoser. Simulation of synthetic pop-
ulation data for household surveys with application to EU-SILC. Research Re-
port CS-2010-1, Department of Statistics and Probability Theory, Vienna University
of Technology, 2010c. URL http://www.statistik.tuwien.ac.at/forschung/CS/

CS-2010-1complete.pdf.

A. Alfons, M. Templ, and P. Filzmoser. Contamination models in the R package simFrame
for statistical simulation. In S. Aivazian, P. Filzmoser, and Y. Kharin (editors), Com-
puter Data Analysis and Modeling: Complex Stochastic Data and Systems, volume 2,
pages 178–181, Minsk, 2010d. ISBN 978-985-476-848-9.

A. Alfons, M. Templ, and P. Filzmoser. An object-oriented framework for statistical
simulation: The R package simFrame. Journal of Statistical Software, 2010e. Accepted
for publication.

A. Alfons, M. Templ, P. Filzmoser, and J. Holzer. A comparison of robust meth-
ods for Pareto tail modeling in the case of Laeken indicators. In C. Borgelt,
G. González-Rodŕıguez, W. Trutschnig, M.A. Lubiano, M.A. Gil, P. Grzegorzewski,
and O. Hryniewicz (editors), Combining Soft Computing and Statistical Methods in
Data Analysis, volume 77 of Advances in Intelligent and Soft Computing, pages 17–24.
Springer, Heidelberg, 2010f. ISBN 978-3-642-14745-6.

A. Alfons, M. Templ, P. Filzmoser, S. Kraft, and B. Hulliger. Intermediate report on
the data generation mechanism and on the design of the simulation study. AMELI
Deliverable 6.1, Department of Statistics and Probability Theory, Vienna University
of Technology, 2009. URL http://ameli.surveystatistics.net.

K. Arnold, J. Gosling, and D. Holmes. The Java Programming Language. Prentice Hall,
Upper Saddle River, 4th edition, 2005. ISBN 978-0321349804.

A.C. Atkinson and M. Riani. Forward search added-variable t-tests and the effect of
masked outliers on model selection. Biometrika, 89(4): 939–946, 2002.

T. Atkinson, B. Cantillon, E. Marlier, and B. Nolan. Social Indicators: The EU and
Social Inclusion. Oxford University Press, New York, 2002. ISBN 0-19-925349-8.

W.E. Baaske, P. Filzmoser, W. Mader, and R. Wieser. Agriculture as a success factor
for municipalities. In Jahrbuch der Österreichischen Gesellschaft für Agrarökonomie
(ÖGA), volume 18, pages 21–30. Facultas Verlag, Vienna, 2009. ISBN 978-3-7089-
0432-3.

150

http://www.statistik.tuwien.ac.at/forschung/CS/CS-2010-1complete.pdf
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2010-1complete.pdf
http://ameli.surveystatistics.net

REFERENCES

C. Béguin and B. Hulliger. The BACON-EEM algorithm for multivariate outlier detec-
tion in incomplete survey data. Survey Methodology, 34(1): 91–103, 2008.

J. Beirlant, P. Vynckier, and J.L. Teugels. Excess functions and estimation of the
extreme-value index. Bernoulli, 2(4): 293–318, 1996a.

J. Beirlant, P. Vynckier, and J.L. Teugels. Tail index estimation, Pareto quantile plots,
and regression diagnostics. Journal of the American Statistical Association, 31(436):
1659–1667, 1996b.

A. Burton, D.G. Altman, P. Royston, and R.L. Holder. The design of simulation studies
in medical statistics. Statistics in Medicine, 25(24): 4279–4292, 2006.

J.M. Chambers. Programming with Data. Springer, New York, 1998. ISBN 0-387-98503-4.

J.M. Chambers. Software for Data Analysis: Programming with R. Springer, New York,
2008. ISBN 978-0-387-75935-7.

J.M Chambers and T.J. Hastie. Statistical Models in S. Chapman & Hall, London, 1992.
ISBN 9780412830402.

R. Chambers. Evaluation criteria for statistical editing and imputation. EurEdit Deliv-
erable D3.3, Department of Social Statistics, University of Southhampton, 2001.

R.L. Chambers. Outlier robust finite population estimation. Journal of the American
Statistical Association, 81(396): 1063–1069, 1986.

G. Chauvet and Y. Tillé. A fast algorithm of balanced sampling. Computational Statis-
tics, 21(1): 53–62, 2006.

X.-H. Chen, A.P. Dempster, and J.S. Liu. Weighted finite population sampling to max-
imize entropy. Biometrika, 81(3): 457–469, 1994.

H. Choi and N.M. Kiefer. Improving robust model selection tests for dynamic models.
Econometrics Journal, 13(2): 177–204, 2010.

G.P. Clarke. Microsimulation: An introduction. In G.P. Clarke (editor), Microsimulation
for Urban and Regional Policy Analysis. Pion, London, 1996.

W.G. Cochran. Sampling Techniques. John Wiley & Sons, New York, 3rd edition, 1977.
ISBN 0-471-16240-X.

C. Croux and C. Dehon. Influence functions of the Spearman and Kendall correlation
measures. Statistical Methods & Applications, 19(4): 497–515, 2010.

151

REFERENCES

C. Croux, G. Dhaene, and D. Hoorelbeke. Robust standard errors for robust estimators.
Discussion Papers Series 03.16, KU Leuven, 2008.

C. Croux, P. Filzmoser, G. Pison, and P.J. Rousseeuw. Fitting multiplicative models by
robust alternating regressions. Statistics and Computing, 13(1): 23–36, 2003.

J.-C. Deville, C.-E. Särndal, and O. Sautory. Generalized raking procedures in survey
sampling. Journal of the American Statistical Association, 88(423): 1013–1020, 1993.

J.-C. Deville and Y. Tillé. Unequal probability sampling without replacement through
a splitting method. Biometrika, 85(1): 89–101, 1998.

J.-C. Deville and Y. Tillé. Efficient balanced sampling: The cube method. Biometrika,
91(4): 893–912, 2004.

E. Diener, E.M. Suh, R.E. Lucas, and H.L. Smith. Subjective well-being: Three decades
of progress. Psycholigical Bulletin, 125(2): 276–302, 1999.

J. Domingo-Ferrer and J.M. Mateo-Sanz. Practical data-oriented microaggregation for
statistical disclosure control. IEEE Transactions on Knowledge and Data Engineering,
14(1): 189–201, 2002.

D.L. Donoho and P.J. Huber. The notion of breakdown point. In P.J. Bickel, K. Dok-
sum, and J.L. Hodges, Jr. (editors), A Festschrift for Erich L. Lehmann. Wadsworth,
Belmont, 1983.

J. Drechsler, S. Bender, and S. Rässler. Comparing fully and partially synthetic datasets
for statistical disclosure control in the German IAB Establishment Panel. Transactions
on Data Privacy, 1(3): 105–130, 2008.

G.T. Duncan and D. Lambert. Disclosure-limited data dissemination. Journal of the
American Statistical Association, 81(393): 10–28, 1986.

D.J. Dupuis and S. Morgenthaler. Robust weighted likelihood estimators with an appli-
cation to bivariate extreme value problems. The Canadian Journal of Statistics, 30
(1): 17–36, 2002.

D.J. Dupuis and M.-P. Victoria-Feser. A robust prediction error criterion for Pareto
modelling of upper tails. The Canadian Journal of Statistics, 34(4): 639–658, 2006.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The Annals
of Statistics, 32(2): 407–499, 2004.

152

REFERENCES

J.J. Egozcue, V. Pawlowsky-Glahn, G. Mateu-Figueras, and C. Barceló-Vidal. Isometric
logratio transformations for compositional data analysis. Mathematical Geology, 35
(3): 279–300, 2003.

E.A.H. Elamir and C.J. Skinner. Record level measures of disclosure risk for survey
microdata. Journal of Official Statistics, 22(3): 525–539, 2006.

P. Embrechts, G. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance
and Finance. Springer, New York, 1997. ISBN 3-540-60931-8.

EU-SILC. Common cross-sectional EU indicators based on EU-SILC; the gender pay gap.
EU-SILC 131-rev/04, Working group on Statistics on Income and Living Conditions
(EU-SILC), Eurostat, Luxembourg, 2004.

Eurostat. Description of target variables: Cross-sectional and longitudinal. EU-SILC
065/04, Eurostat, Luxembourg, 2004.

B.S. Everitt and G. Dunn. Applied Multivariate Data Analysis. Arnold, London, 2nd
edition, 2001. ISBN 0-340-54529-1.

S.E. Fienberg, U.E. Makov, and A.P. Sanil. A bayesian approach to data disclosure:
Optimal intruder behavior for continuous data. Journal of Official Statistics, 13(1):
75–89, 1997.

P. Filzmoser, R. Maronna, and M. Werner. Outlier identification in high dimensions.
Computational Statistics & Data Analysis, 52(3): 1694–1711, 2008.

M. Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language.
Addison-Wesley, 3rd edition, 2003. ISBN 978-0-321-19368-1.

L. Franconi and S. Polettini. Individual risk estimation in µ-ARGUS: A review. In
J. Domingo-Ferrer and V. Torra (editors), Privacy in Statistical Databases, volume
3050 of Lecture Notes in Computer Science, pages 262–272. Springer, Heidelberg, 2004.
ISBN 978-3-540-22118-2.

G. Furnival and R. Wilson. Regression by leaps and bounds. Technometrics, 16(4):
499–511, 1974.

C. Gatu and E.J. Kontoghiorghes. Branch-and-bound algorithms for computing the best-
subset regression models. Journal of Computational and Graphical Statistics, 15(1):
139–156, 2006.

A. Genz and F. Bretz. Computation of Multivariate Normal and t Probabilities, volume
195 of Lecture Notes in Statistics. Springer, New York, 2009. ISBN 978-3-642-01688-2.

153

REFERENCES

A. Genz, F. Bretz, T. Miwa, X. Mi, F. Leisch, F. Scheipl, and T. Hothorn. mvtnorm:
Multivariate normal and t distributions, 2010. URL http://CRAN.R-project.org/

package=mvtnorm. R package version 0.9-92.

M. Haahr. random.org: True random number service, 2010. URL http://www.random.

org. Accessed October 20, 2010.

J. Hájek. Asymptotic theory of rejective sampling with varying probabilities from a finite
population. Annals of Mathematical Statistics, 35(4): 1491–1523, 1964.

F.R. Hampel. A general qualitative definition of robustness. Annals of Mathematical
Statistics, 42(6): 1887–1896, 1971.

F.R. Hampel. The influence curve and its role in robust estimation. Journal of the
American Statistical Association, 69(346): 383–393, 1974.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer,
New York, 2nd edition, 2009. ISBN 978-0-387-84857-0.

B.M. Hill. A simple general approach to inference about the tail of a distribution. The
Annals of Statistics, 3(5): 1163–1174, 1975.

J. Holzer. Robust methods for the estimation of selected Laeken indicators. Master’s the-
sis, Department of Statistics and Probability Theory, Vienna University of Technology,
Vienna, Austria, 2009.

D.G. Horvitz and D.J. Thompson. A generalization of sampling without replacement
from a finite universe. Journal of the American Statistical Association, 47(260):
663–685, 1952.

K. Hron, M. Templ, and P. Filzmoser. Imputation of missing values for compositional
data using classical and robust methods. Computational Statistics & Data Analysis,
54(12): 3095–3107, 2010.

B. Hulliger and T. Schoch. Robust multivariate imputation with survey data. 57th

Session of the International Statistical Institute, Durban, 2009a.

B. Hulliger and T. Schoch. Robustification of the quintile share ratio. New Techniques
and Technologies for Statistics, Brussels, 2009b.

M.E. Johnson. Multivariate Statistical Simulation. John Wiley & Sons, New York, 1987.
ISBN 0-471-82290-6.

154

http://CRAN.R-project.org/package=mvtnorm
http://CRAN.R-project.org/package=mvtnorm
http://www.random.org
http://www.random.org

REFERENCES

O. Jones, R. Maillardet, and A. Robinson. Introduction to Scientific Programming and
Scientific Simulation Using R. Chapman & Hall/CRC, Boca Raton, 2009. ISBN
978-1-4200-6872-6.

M.G. Kendall and A. Stuart. The Advanced Theory of Statistics, volume 2. Charles
Griffin & Co. Ltd., London, 2nd edition, 1967.

J.A. Khan, S. Van Aelst, and R.H. Zamar. Building a robust linear model with forward
selection and stepwise procedures. Computational Statistics & Data Analysis, 52(1):
239–248, 2007a.

J.A. Khan, S. Van Aelst, and R.H. Zamar. Robust linear model selection based on
least angle regression. Journal of the American Statistical Association, 102(480):
1289–1299, 2007b.

C. Kleiber and S. Kotz. Statistical Size Distributions in Economics and Actuarial Sci-
ences. John Wiley & Sons, Hoboken, 2003. ISBN 0-471-15064-9.

S. Kraft. Simulation of a population for the European Income and Living Conditions
survey. Master’s thesis, Department of Statistics and Probability Theory, Vienna
University of Technology, Vienna, Austria, 2009.

P. L’Ecuyer and J. Leydold. rstream: Streams of random numbers for stochastic simu-
lation. R News, 5(2): 16–20, 2005. URL http://cran.r-project.org/doc/Rnews/.

P. L’Ecuyer, R. Simard, E.J. Chen, and W.D. Kelton. An object-oriented random-
number package with many long streams and substreams. Operations Research, 50(6):
1073–1075, 2002.

F. Leisch. Sweave: Dynamic generation of statistical reports using literate data analysis.
In W. Härdle and B. Rönz (editors), Compstat 2002 - Proceedings in Computational
Statistics, pages 575–580, Heidelberg, 2002a. Physica Verlag. ISBN 3-7908-1517-9.

F. Leisch. Sweave, part I: Mixing R and LATEX. R News, 2(3): 28–31, 2002b.

F. Leisch. Sweave, part II: Package vignettes. R News, 3(2): 21–24, 2003.

J. Leydold. rstream: Streams of random numbers, 2010. URL http://statistik.

wu-wien.ac.at/arvag/. R package version 1.2.5.

N. Li. rsprng: R interface to SPRNG (Scalable Parallel Random Number Generators),
2010. URL http://CRAN.R-project.org/package=rsprng. R package version 1.0.

155

http://cran.r-project.org/doc/Rnews/
http://statistik.wu-wien.ac.at/arvag/
http://statistik.wu-wien.ac.at/arvag/
http://CRAN.R-project.org/package=rsprng

REFERENCES

R.J.A. Little. Statistical analysis of masked data. Journal of Official Statistics, 9(2):
407–426, 1993.

R.J.A. Little and D.B. Rubin. Statistical Analysis with Missing Data. John Wiley &
Sons, New York, 2nd edition, 2002. ISBN 0-471-18386-5.

M.O. Lorenz. Methods of measuring the concentration of wealth. Publications of the
American Statistical Association, 9(70): 209–219, 1905.

T. Lumley and A. Miller. leaps: Regression subset selection, 2009. URL http://CRAN.

R-project.org/package=leaps. R package version 2.9.

C.L. Mallows. Some comments on Cp. Technometrics, 15(4): 661–675, 1973.

R. Maronna, D. Martin, and V. Yohai. Robust Statistics. John Wiley & Sons, Chichester,
2006. ISBN 978-0-470-01092-1.

R.A. Maronna and R.H. Zamar. Robust estimates of location and dispersion for high-
dimensional datasets. Technometrics, 44(4): 307–317, 2002.

M. Mascagni and A. Srinivasan. Algorithm 806: SPRNG: A scalable library for pseudo-
random number generation. ACM Transactions on Mathematical Software, 26(3):
436–461, 2000.

G. Mateu-Figueras, V. Pawlowsky-Glahn, and J.J. Egozcue. The normal distribution in
some constrained sample spaces, 2008. URL http://arxiv.org/abs/0802.2643.

M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Modeling
and Computer Simulation, 8(1): 3–30, 1998.

L. McCann and R.E. Welsch. Robust variable selection using least angle regression and
elemental set sampling. Computational Statistics & Data Analysis, 52(1): 249–257,
2007.

D. Meyer, A. Zeileis, and K. Hornik. The strucplot framework: Visualizing multi-way
contingency tables with vcd. Journal of Statistical Software, 17(3): 1–48, 2006.

D. Meyer, A. Zeileis, and K. Hornik. vcd: Visualizing categorical data, 2010. URL
http://CRAN.R-project.org/package=vcd. R package version 1.2-9.

H. Midzuno. On the sampling system with probability proportional to sum of size. Annals
of the Institute of Statistical Mathematics, 3(2): 99–107, 1952.

156

http://CRAN.R-project.org/package=leaps
http://CRAN.R-project.org/package=leaps
http://arxiv.org/abs/0802.2643
http://CRAN.R-project.org/package=vcd

REFERENCES

A. Miller. Subset Selection in Regression. Chapman & Hall/CRC, Boca Raton, 2nd
edition, 2002. ISBN 1-58488-171-2.

B.J.T. Morgan. Elements of Simulation. Chapman & Hall, London, 1984. ISBN
0-412-24590-6.

S. Müller and A.H. Welsh. Outlier robust model selection in linear regression. Journal
of the American Statistical Association, 100(472): 1297–1310, 2005.

R. Münnich, W. Bihler, J. Bjørnstad, Z. Li-Chun, A. Davidson, S. Sardy, A. Haslinger,
P. Knotterus, S. Laaksonen, D. Ohly, J. Schürle, R. Wiegert, U. Oetliker, J.-P. Renfer,
A. Quatember, C. Skinner, and Y. Berger. Data quality in complex surveys. DACSEIS
Deliverable D1.1, University of Tübingen, 2003a. URL http://www.dacseis.de.

R. Münnich and J. Schürle. On the simulation of complex universes in the case of
applying the German Microcensus. DACSEIS research paper series No. 4, University of
Tübingen, 2003. URL http://w210.ub.uni-tuebingen.de/volltexte/2003/979/.

R. Münnich, J. Schürle, W. Bihler, H.-J. Boonstra, P. Knotterus, N. Nieuwenbroek,
A. Haslinger, S. Laaksonen, D. Eckmair, A. Quatember, H. Wagner, J.-P. Renfer,
U. Oetliker, and R. Wiegert. Monte Carlo simulation study of European surveys.
DACSEIS Deliverables D3.1 and D3.2, University of Tübingen, 2003b. URL http:

//www.dacseis.de.

T.E. Raghunathan, J.P. Reiter, and D.B. Rubin. Multiple imputation for statistical
disclosure limitation. Journal of Official Statistics, 19(1), 2003.

J.N.K. Rao. Small Area Estimation. John Wiley & Sons, Hoboken, 2003. ISBN 978-0-
471-41374-5.

R Development Core Team. R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria, 2010. URL http://www.

R-project.org. ISBN 3-900051-07-0.

J.P. Reiter. Using multiple imputation to integrate and disseminate confidential micro-
data. International Statistical Review, 77(2): 179–195, 2009.

J.P. Reiter and R. Mitra. Estimating risks of identification disclosure in partially syn-
thetic data. Journal of Privacy and Confidentiality, 1(1): 99–110, 2009.

R. Renwick, I. Brown, and D. Raphael. Quality of life: Linking conceptual approach to
service provision. Journal on Developmental Disabilities, 3(2): 32–44, 1994.

157

http://www.dacseis.de
http://w210.ub.uni-tuebingen.de/volltexte/2003/979/
http://www.dacseis.de
http://www.dacseis.de
http://www.R-project.org
http://www.R-project.org

REFERENCES

M. Riani and A.C. Atkinson. Robust model selection with flexible trimming. Computa-
tional Statistics & Data Analysis, 54(12): 3300–3312, 2010.

Y. Rinott and N. Shlomo. A generalized negative binomial smoothing model for sample
disclosure risk estimation. In J. Domingo-Ferrer and L. Franconi (editors), Privacy in
Statistical Databases, volume 4302 of Lecture Notes in Computer Science, pages 82–93.
Springer, Heidelberg, 2006. ISBN 978-3-540-49330-3.

B.D. Ripley. Stochastic Simulation. John Wiley & Sons, New York, 1987. ISBN 0-471-
81884-4.

E. Ronchetti, C. Field, and W. Blanchard. Robust linear model selection by cross-
validation. Journal of the American Statistical Association, 92(439): 1017–1023, 1997.

E. Ronchetti and R.G. Staudte. A robust version of Mallows’s Cp. Journal of the
American Statistical Association, 89(426): 550–559, 1994.

A.J. Rossini, L. Tierney, and N. Li. Simple parallel statistical computing in R. Journal
of Computational and Graphical Statistics, 16(2): 399–420, 2007.

P.J. Rousseeuw, C. Croux, V. Todorov, A. Ruckstuhl, M. Salibian-Barrera, T. Verbeke,
and M. Maechler. robustbase: Basic robust statistics, 2009. URL http://CRAN.

R-project.org/package=robustbase. R package version 0.5-0-1.

P.J. Rousseeuw and A.M. Leroy. Robust Regression and Outlier Detection. John Wiley
& Sons, New York, 1987. ISBN 0-471-48855-0.

P.J. Rousseeuw and K. Van Driessen. A fast algorithm for the minimum covariance
determinant estimator. Technometrics, 41(3): 212–223, 1999.

D. Rubin. Inference and missing data. Biometrika, 63(3): 581–592, 1976.

D.B. Rubin. Discussion: Statistical disclosure limitation. Journal of Official Statistics,
9(2): 461–468, 1993.

M. Salibian-Barrera and S. Van Aelst. Robust model selection using fast and robust
bootstrap. Computational Statistics & Data Analysis, 52(12): 5121–5135, 2008.

M. Salibian-Barrera and R.H. Zamar. Bootstrapping robust estimates of regression. The
Annals of Statistics, 30(2): 556–582, 2002.

P. Samerati and L. Sweeney. Protecting privacy when disclosing information:
k -anonymity and its enforcement through generalization and suppression. Technical
Report SRI-CSL-98-04, SRI International, 1998.

158

http://CRAN.R-project.org/package=robustbase
http://CRAN.R-project.org/package=robustbase

REFERENCES

M.R. Sampford. On sampling without replacement with unequal probabilities of selec-
tion. Biometrika, 54(2): 499–513, 1967.

D. Sarkar. Lattice: Multivariate Data Visualization with R. Springer, New York, 2008.
ISBN 978-0-387-75968-5.

D. Sarkar. lattice: Lattice graphics, 2010. URL http://CRAN.R-project.org/

package=lattice. R package version 0.19-13.

C.-E. Särndal, B. Swensson, and J. Wretman. Model Assisted Survey Sampling. Springer,
New York, 2003. ISBN 0-387-40620-4.

M. Schmidberger, M. Morgan, D. Eddelbuettel, H. Yu, L. Tierney, and U. Mansmann.
State of the art in parallel computing with R. Journal of Statistical Software, 31(1):
1–27, 2009. URL http://www.jstatsoft.org/v31/i01.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):
461–464, 1978.

H. Sevcikova and T. Rossini. rlecuyer: R interface to RNG with multiple streams, 2009.
URL http://CRAN.R-project.org/package=rlecuyer. R package version 0.3-1.

J.S. Simonoff. Analyzing Categorical Data. Springer, New York, 2003. ISBN 0-387-
00749-0.

L. Sweeney. k -anonymity: A model for protecting privacy. International Journal on
Uncertainty, Fuzziness and Knowledge-based Systems, 10(5): 557–570, 2002.

M. Templ and A. Alfons. Disclosure risk of synthetic population data with application
in the case of EU-SILC. In J. Domingo-Ferrer and E. Magkos (editors), Privacy in
Statistical Databases, volume 6344 of Lecture Notes in Computer Science, pages 174–
186. Springer, Heidelberg, 2010. ISBN 978-3-642-15837-7.

M. Templ, A. Alfons, and A. Kowarik. VIM: Visualization and imputation of missing
values, 2010a. URL http://cran.r-project.org/package=VIM. R package version
1.4.2.

M. Templ and P. Filzmoser. Visualization of missing values using the R-package VIM.
Research Report CS-2008-1, Department of Statistics and Probability Theory, Vi-
enna University of Technology, 2008. URL http://www.statistik.tuwien.ac.at/

forschung/CS/CS-2008-1complete.pdf.

159

http://CRAN.R-project.org/package=lattice
http://CRAN.R-project.org/package=lattice
http://www.jstatsoft.org/v31/i01
http://CRAN.R-project.org/package=rlecuyer
http://cran.r-project.org/package=VIM
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2008-1complete.pdf
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2008-1complete.pdf

REFERENCES

M. Templ, P. Filzmoser, and K. Hron. Robust imputation of missing values in composi-
tional data using the R-package robCompositions. New Techniques and Technologies
for Statistics, Brussels, 2009.

M. Templ, K. Hron, and P. Filzmoser. robCompositions: Robust estimation for composi-
tional data., 2010b. URL http://CRAN.R-project.org/package=robCompositions.
R package version 1.4.3.

M. Templ and B. Meindl. Robust statistics meets SDC: New disclosure risk measures for
continuous microdata masking. In J. Domingo-Ferrer and Y. Saygin (editors), Privacy
in Statistical Databases, volume 5262 of Lecture Notes in Computer Science, pages
113–126. Springer, Heidelberg, 2008. ISBN 978-3-540-87470-6.

G. Terrell. Linear density estimates. In Proceedings of the Statistical Computing Section,
pages 297–302. American Statistical Association, 1990.

C. Tichbon and P. Newton. Life is do-able: Quality of life development in a supportive
small group setting. Occasional Paper Series 2, Mental Health Foundation of New
Zealand, 2002.

L. Tierney, A.J. Rossini, and N. Li. snow: A parallel computing framework for the R

system. International Journal of Parallel Programming, 37(1): 78–90, 2009.

L. Tierney, A.J. Rossini, N. Li, and H. Sevcikova. snow: Simple network of workstations,
2008. URL http://CRAN.R-project.org/package=snow. R package version 0.3-3.

Y. Tillé. An elimination procedure of unequal probability sampling without replacement.
Biometrika, 83(1): 238–241, 1996.

Y. Tillé. Sampling Algorithms. Springer, New York, 2006. ISBN 0-387-30814-8.

Y. Tillé and A. Matei. sampling: Survey sampling, 2009. URL http://CRAN.

R-project.org/package=sampling. R package version 2.3.

V. Todorov. rrcov: Scalable robust estimators with high breakdown point, 2010. URL
http://CRAN.R-project.org/package=rrcov. R package version 1.1-00.

V. Todorov and P. Filzmoser. An object-oriented framework for robust multivariate anal-
ysis. Journal of Statistical Software, 32(3): 1–47, 2009. URL http://www.jstatsoft.

org/v32/i03.

O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Bot-
stein, and R.B. Altman. Missing value estimation methods for DNA microarrays.
Bioinformatics, 17(6): 520–525, 2001.

160

http://CRAN.R-project.org/package=robCompositions
http://CRAN.R-project.org/package=snow
http://CRAN.R-project.org/package=sampling
http://CRAN.R-project.org/package=sampling
http://CRAN.R-project.org/package=rrcov
http://www.jstatsoft.org/v32/i03
http://www.jstatsoft.org/v32/i03

REFERENCES

S. Urbanek. multicore: Parallel processing of R code on machines with multiple cores
or CPUs, 2009. URL http://www.rforge.net/multicore/. R package version 0.1-3.

S. Van Aelst, R. Welsch, and R.H. Zamar, editors. Special issue on variable selection
and robust procedures. Computational Statistics & Data Analysis, 54(12), 2010.

P. Van Kerm. Extreme incomes and the estimation of poverty and inequality indicators
from EU-SILC. IRISS Working Paper Series 2007-01, CEPS/INSTEAD, 2007.

B. Vandewalle, J. Beirlant, A. Christmann, and M. Hubert. A robust estimator for the
tail index of Pareto-type distributions. Computational Statistics & Data Analysis, 51
(12): 6252–6268, 2007.

K. Varmuza and P. Filzmoser. Introduction to Multivariate Statistical Analysis in Chemo-
metrics. CRC Press, Boca Raton, 2009. ISBN 978-0-470-98581-6.

A.J. Walker. An efficient method for generating discrete random variables with general
distributions. ACM Transactions on Mathematical Software, 3(3): 253–256, 1977.

S. Weisberg. Applied Linear Regression. John Wiley & Sons, Hoboken, 3rd edition, 2005.
ISBN 0-471-66379-4.

J.W. Wisnowski, J.R. Simpson, D.C. Montgomery, and G.C. Runger. Resampling meth-
ods for variable selection in robust regression. Computational Statistics & Data Anal-
ysis, 43(3): 341–355, 2003.

V.J. Yohai. High breakdown-point and high efficiency robust estimates for regression.
The Annals of Statistics, 15(20): 642–656, 1987.

161

http://www.rforge.net/multicore/

Index

AMELI, 1, 2
ARPR, see at-risk-of-poverty rate
ARPT, see at-risk-of-poverty threshold
at-risk-of-poverty rate, 3
at-risk-of-poverty threshold, 3

box plot, 44, 97
breakdown point, 6

asymptotic, 7
finite-sample, 6

calibration, 13
CAR, see contaminated at random
CCAR, see contaminated completely at ran-

dom
CDF, see cumulative distribution function
class, 24

diagram, 27
inheritance, 24
virtual, 25

complete linkage clustering, 137
contaminated at random, 14, 78
contaminated completely at random, 14, 78
contamination, 6, 36, 77

in simulation studies, 14, 35, 76
contamination level, 6, 36, 77
contingency coefficient, 100
cross validation, 135
cumulative distribution function, 96

empirical, 96

DAR, see distributed at random

DCAR, see distributed completely at ran-
dom

dendrogram, 136
disclosure risk

survey data, 114
synthetic population data, 116

dissimilarity matrix, 137
distributed at random, 14, 37
distributed completely at random, 14, 37

embarrassingly parallel, 18, 44
equivalized disposable income, 3
ErfolgsVision, 1, 5, 131
EU-SILC, 2, 45, 60, 92, 112, 122

generalized Pareto distribution, 88
generic function, 24
Gini coefficient, 4, 46, 60, 124
GPD, see generalized Pareto distribution

influence function, 7

k-subset regression, 132
robust, 135

kernel density plot, 44

laeken, 46, 60, 123
Laeken indicators, 2, 122–129
LARS, see least angle regression
learning curve, 139
least angle regression, 132

bootstrapped robust, 132
robust, 132

162

INDEX

log-transformation, 90
Lorenz curve, 4

MAR, see missing at random
MCAR, see missing completely at random
MCD, see minimum covariance determinant

estimator
method, 24

accessor, 25, 29
mutator, 25, 29
signature, 25

microsimulation, 82
minimum covariance determinant estima-

tor, 7, 78, 136
missing at random, 15, 38
missing completely at random, 15, 38
missing not at random, 15, 38
missing value rate, 39
MM-regression, 132, 133
MNAR, see missing not at random
mosaic plot, 93
multiple imputation

fully synthetic microdata, 82, 110
partially synthetic microdata, 110

OAR, see outlying at random
object-oriented programming, 24
OCAR, see outlying completely at random
outlier, 6

nonrepresentative, 8
representative, 8

outlier detection, 78
outlying at random, 14, 78
outlying completely at random, 14, 78

package vignette, 58, 75, 92
parallel computing, 18, 44
Pareto distribution, 46, 60, 124

Hill estimator, 46, 60, 125

partial density component estimator, 46,
60, 126

weighted maximum likelihood estima-
tor, 125

poststratification, 13

QSR, see quintile share ratio
quality of life, 5, 138
quintile share ratio, 4, 123

random error terms, 90
random number generator, 10

parallel, 18, 45
regression model

linear, 89
logistic, 89
multinomial, 86, 87
two-step, 89

RNG, see random number generator
robust R2, 139
robust statistics, 5
robust variable selection, 130–148

context-sensitive, 133
root trimmed mean squared error of predic-

tion, 135
RTMSEP, see root trimmed mean squared

error of prediction

sample weights, 13
sampling, 13

balanced, 14
cluster, 13
multi-stage, 13
simple random, 13
stratified, 13
unequal probability, 13

signal-to-noise ratio, 143
simFrame, 22–80, 100, 127, 145
simPopulation, 46, 60, 92, 111, 127

163

INDEX

simulation, 9
contamination, 10, 14, 35, 76
design-based, 9, 10, 32, 45, 59
missing values, 10, 17, 38
model-based, 9, 31, 48
Monte Carlo, 9, 18
parallel computing, 51, 71

slot, 24
success factors, 5
synthetic population data, 81–121

categorical variables, 85, 111
components, 91, 111
continuous variables, 87, 111
data confidentiality, 115
disclosure scenarios, 116
household structure, 85, 111

tail modeling, 46, 60, 88, 124
trimming, 89

UML, see Unified Modeling Language
Unified Modeling Language, 27

164

Curriculum vitae

Education

Oct 2001 – Apr 2008 Vienna University of Technology

• Dipl.-Ing. (MSc equivalent) in Technical Mathematics with specialization on
Mathematical Computer Science

Sep 2005 – Jun 2006 University of Groningen, NL

• Exchange student with the ERASMUS program

Work experience

Jun 2008 – present Vienna University of Technology, Department of Statistics and
Probability Theory

• Research assistant

• Research includes large-scale statistical simulation, robust estimation of EU
poverty indicators, robust model selection and visualization of incomplete data

• Teaching staff for the course Statistics and Probability for Computer Scientists

Jun 2009 – Jan 2010 United Nations Industrial Development Organization, Re-
search and Statistics Branch

• Expert on statistics and programming

• Research included the analysis of world trade data with respect to changes in
trade specialization patterns and global production chains

Jul 2006 – Dec 2008 Self-employed data analyst and programmer

• Land-, forst- und wasserwirtschaftliches Rechenzentrum GmbH
– Implementation and optimization of statistical software for the analysis

of agricultural time series data in S-Plus and Oracle PL/SQL

• Bombardier Transportation Austria GmbH & Co. KG
– Statistical consulting

• Federal Institute of Agricultural Economics (AWI)
– Optimization of S-Plus scripts
– Design of a database and implementation in Microsoft SQL

165

Curriculum vitae

Mar 2008 – Apr 2008 Vienna University of Technology, Department of Information
Systems

• Teaching assistant for the course Data Modeling

Oct 2007 – Apr 2008 Vienna University of Technology, Department of Computer
Graphics

• Teaching assistant for the course Algorithms and Data Structures 1

Mar 2007 – Jul 2007 Vienna University of Technology, Department of Computer
Graphics

• Teaching assistant for the course Algorithms and Data Structures 1

Mar 2005 – Jul 2005 Vienna University of Technology, Department of Computer
Graphics

• Teaching assistant for the course Algorithms and Data Structures 1

Mar 2004 – Jul 2004 Vienna University of Technology, Department of Computer
Graphics

• Teaching assistant for the course Algorithms and Data Structures 1

Skills

Languages German (native), English (excellent), Dutch (good), French (basic)

Programming R, S-Plus, MatLab, LaTeX, PL/SQL, C/C++, Maple, Mathematica, Java,
Tcl/Tk, (X)HTML

Scientific organizations

• Member of the Austrian Statistical Society

Event organization

• Co-organizer of the International Conference on Indicators and Survey Methodology,
February 24–26, 2010, Vienna, Austria, http://statistik.tuwien.ac.at/ameli/

166

http://statistik.tuwien.ac.at/ameli/

	Acknowledgments
	Abstract
	Kurzzusammenfassung
	List of Tables
	List of Figures
	Introduction
	Project AMELI
	Selected Laeken indicators

	Project ErfolgsVision
	Robust statistics
	Breakdown point
	Influence function
	Example: Covariance matrix estimation
	Outliers in survey statistics

	Statistical simulation
	Random number generation
	General design of simulation studies in survey statistics
	Finite population sampling and weighting
	Contamination models
	Missing data models
	Parallel computing

	Outline of the remaining chapters
	Overview of the remaining chapters

	An object-oriented framework for statistical simulation
	Introduction
	Object-oriented programming and S4
	Design of the framework
	UML class diagram
	Naming conventions
	Accessor and mutator methods

	Implementation
	Data handling
	Sampling
	Contamination
	Insertion of missing values
	Running simulations
	Visualization

	Parallel computing
	Using the framework
	Design-based simulation
	Model-based simulation
	Parallel computing

	Extending the framework
	Model-based data
	Sampling
	Contamination
	Insertion of missing values

	Conclusions and outlook

	Applications of statistical simulation in the case of EU-SILC
	Introduction
	Application of different simulation designs to EU-SILC
	Basic simulation design
	Using stratified sampling
	Adding contamination
	Performing simulations separately on different domains
	Using multiple contamination levels
	Inserting missing values
	Parallel computing

	Conclusions

	Contamination models in the R package simFrame
	Introduction
	Contamination models in simFrame
	Example: Outlier detection
	Conclusions

	Simulation of close-to-reality population data
	Introduction
	Simulation of synthetic populations
	Setup of the household structure
	Simulation of categorical variables
	Simulation of continuous variables
	Splitting continuous variables into components
	Software

	Application to EU-SILC
	Diagnostic plots for a single simulation
	Average results from multiple simulations
	Influence of sample size and sampling design

	Conclusions

	Disclosure risk of synthetic population data
	Introduction
	Generation of synthetic population data
	Synthetic EU-SILC population data
	A global disclosure risk measure for survey data
	Confidentiality of synthetic population data
	Disclosure scenarios for synthetic population data
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4
	Scenario 5

	Results
	Conclusions

	A comparison of robust methods for Pareto tail modeling
	Introduction
	Selected Laeken indicators
	Quintile share ratio
	Gini coefficient

	Pareto tail modeling
	Hill estimator
	Weighted maximum likelihood (WML) estimator
	Partial density component (PDC) estimator

	Simulation study
	Conclusions and outlook

	Robust variable selection
	Introduction
	Context-sensitive model selection
	Description of the algorithm
	Summary of the algorithm
	Diagnostics
	Implementation

	Example: Driving factors behind quality of life
	Results
	CPU times

	Simulations
	Conclusions and discussion

	References
	Index
	Curriculum vitae

