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Abstract

In recent years, research has focused on the development of intelligent robots that
are aware of their environment and begin to link perceptions to the meaning of
objects attributed by humans. One way to bridge the gap between robotic and
human understanding of their common environment is the concept of affordances,
which links the perception of objects to the action of robots. Allowing a robot to
learn object affordances from a human tutor or autonomously requires a represen-
tation of what it knows, so that it can reason about what it can learn, how to act
so as to learn it, execute those actions and then learn to fill its knowledge gaps.

This work presents a perception system for a cognitive robot, which represents
the structure of objects to link perception to robot actions. To manifest what
objects afford to the robot, a model based on piecewise planar surface patches
is proposed. Planar patches are detected from tracked interest points in image
sequences. For this we formalize model selection with Minimal Description Length
(MDL) in an incremental manner. In each iteration tracked planes and new planes
computed from randomly sampled interest points are evaluated. The hypotheses
that best explain the scene are retained and their supporting points are marked so
that in the next iteration random sampling is guided to unexplained points. Hence,
it is possible to represent the remaining finer details of the scene.

Planar patches are stored in a spatio-temporal graph and tracked to subsequent
images. After reconstruction of the planes the 3D motion is analyzed and initial
object hypotheses are created. These object hypotheses are verified from the robot
by pushing them. In case planar patches start moving independently a split event
is triggered, the spatio-temporal object graph is traced back and visible planes as
well as occluded planes are assigned to the most probable split object.

Furthermore, we developed probabilistic measures for observed detection suc-
cess, predicted detection success and the completeness of learned models where
learning is incremental and online. This allows the robot to decide when to add a
new keyframe to its view-based object model, and where to look next in order to
complete the model, predicting the probability of successful object detection given
the model trained so far as well as knowing when to stop learning.

We demonstrate that the proposed planar patches build basic meaningful fea-
tures, where the robot can start to explore the scene. We further show that through
interaction with planar parts the approximate structure of objects can be recon-
structed and that the proposed measure for completeness explains what has been
seen and where to continue exploration.
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Chapter 1

Introduction

Since people started using stones as hammers and learned to forge knives from
metal, their intention is to disburden human lives. A major turning point in human
history has been the industrial revolution which started at the end of the 18th

century. At this time there began a transition from manual labor to machine based
manufacturing and machines that perform simple tasks by their own. This led to
current robots that can be defined as stationary or mobile machines designed for
specific tasks. Robots are usually programmed by experts and repeatedly execute
tasks in a controlled (mostly) industrial environment.

In recent years, research has focused on the development of intelligent robots,
which are able to operate side by side and cooperate with humans. Hence, robots
operating in home environments as well as robots designed for industry need to
be aware of their environments and perceive their meaning in accordance with
humans. The ability to reason, perceive and act in humans environments leads to
a cognitive, i.e., intelligent robot. In [oC10] cognitive robot is defined as being

[...] concerned with integrating reasoning, perception, and action within
a uniform theoretical and implementation framework (using methods
drawn from logic, probability and decision theory, reinforcement learn-
ing, game theory, etc.). It is quite a young field of research. [...] Com-
plex applications and the need for effective interaction with humans are
increasing the demand for robots that are capable of deliberation and
other high-level cognitive functions. Models from cognitive science and
techniques from machine learning are being used to enable robots to
extend their knowledge and skills. Combining results from mainstream
robotics and computer vision with those from knowledge representation
and reasoning, machine learning, and cognitive science has been central
to research in cognitive robotics.

As can be seen, building a cognitive robot involves a lot of different disciplines.
We want to attach special importance to the embodiment, the robot itself. It is
convincing that a robot can only perform actions according to its embodiment. But

1



1. Introduction

beside the action capabilities, all other sub-fields including the perception strongly
depend on the embodiment and often could benefit if the system were treated from
a global point of view. This is what we set out to do in this work: how to design
visual perception given a cognitive robot system. To know what to require from
visual perception, we first need to know what we expect the robot to do.

Basic skills for a cognitive robotic system are learning and interaction. Cer-
tainly, if robots move into daily life it must be possible to interact with them in a
human-like manner. A robot must be able to expand its knowledge in a human tu-
tor driven way or even learn on its own. Hence, the real challenge is to understand
and build cognitive systems which are able to handle situations unforeseen by their
designers. The aim is to create a theory – grounded and evaluated in robots – of
how a cognitive system can model its own knowledge, use this uncertain knowledge,
extend its abilities and knowledge, and extend its understanding of those abilities.
This should lead to1

... a cognitive system that models not only the environment, but its
own understanding of the environment and the way this understanding
changes under action. It identifies gaps in its own understanding and
then plans how to fill those gaps so as to deal with novelty and uncer-
tainty in task execution, gather information necessary to complete its
tasks, and to extend its abilities and knowledge so as to perform future
tasks more efficiently.

Therefore, the system must be capable of self-extension, that is it must be able to
learn, represent what it does not know, reason about what it can learn and how
to act so as to learn it, to execute those actions and then learn from the resulting
experience. We argue, that for a cognitive robot those abilities, namely explore,
explain and extend are not only manifested in a high level reasoning component –
the brain of a robot – but need to be implemented at each level of the system. At
the lowest level, finally leading to an intelligent perception system tightly coupled
with actuators.

This thesis focuses on a concept for visual perception that enables a cognitive
robot to interact in human environments. The robot should act as a companion
for humans and it should be able to perform fetch and carry tasks for everyday
household objects.

Let’s start with a specific example, which includes human tutor driven learning
by showing (see Figure 1.1) as well as learning by experimentation by the robot on
its own. Imagine a person, who wants to teach my cup to the robot:

When Mrs. T got her new robot, she guided it through the apartment
and since James already knows most of the furniture, it also knows the
table in the kitchen. Mrs. T guides the robot James to the kitchen

1From the description of work for CogX, a project of the European Community’s Seventh
Framework Programme [FP7/2007-2013] under grant agreement No. 215181

2



1. Introduction

cupboard, takes her cup and puts it on the kitchen table. Then she
says:

• Mrs. T: James, that is my cup!

James looks to the table and sees Mrs. T pointing to the yellow cup
with a picture of Eiffel Tower on it. Some time before, Mrs. T made tea
and left a yellow tea box on the table. Because of the known geometry
of the table, James immediately identifies that there is a second object
which is also yellow. James analyzes these two objects and recognizes
that these objects have a common modality, the color. So James tries
to generalize the cup of Mrs. T in order to learn the object category
cup, and asks Mrs. T:

• James: Mrs. T, there is a second object on the table, which is also
yellow. Is it a cup too?

• Mrs. T: No, it is a yellow tea box.

Then she takes several cups out of the cupboard, puts them on the table
and says:

• These are cups!

The table is quite small, so the cups are located close together. To
be sure that there are several cups on the table James pushes one by
one and separates them. Now, James is able to identify the common
modality shape for the object class cup and it knows that the yellow
cup with a picture of Eiffel Tower is Mrs. T’s cup.

This scenario points out the tasks given to vision and perception as part of a
robot system. Important questions emerging from the scenario are:

• What does my cup look like?

• How do cups look in general?

• Where is my cup typically found?

• Where are cups typically found within a house?

• How to grasp my cup?

• How to grasp cups in general?

• What are cups used for?

3
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Figure 1.1: Human tutor driven learning by showing, where a person shows his
favorite cookies to the robot.

Of course detecting the object instance my cup including 3D pose alignment is
solved and can be done with high reliability [RBSF09]. It is more challenging to
detect a cup, but recently developed approaches to detect generic object classes are
promising (e.g. [LLS08, RBTH10]). In our opinion, the real challenge is to find a
way to empower the robot with capabilities to gather information in a task driven
way to enable it to learn by experimentation and accordingly provide meaningful
features, explain them and extend the models.

1.1 Cognitive Vision, Affordances and Object

Modelling

In essence, we try to provide vision for a cognitive robot. In the last few years,
cognitive vision has become a popular buzzword within the computer vision com-
munity. Often the term cognitive vision is used to indicate a cognitively inspired
method. We use the term cognitive vision for a vision system designed to bridge
the gap between the robot and its environment (Vernon [Ver06]). In this sense
meaningful features are parts of objects which describe what objects afford to the
robot. Backed by the cognitive robot and the scenario outlined in the last section,
our cognitive vision system needs to be an active vision system which links object
models with affordances. Hence, vision has to be embedded into the cognition of
the robot and thus it has to be adaptable to the current situation of the robot
and its environment. Within this context, cognitive vision is equivalent to situated
vision (Pylyshyn [Pyl01]) and tries to give a comprehensive approach to vision for
a cognitive robot.

One concept that helps to link perception to action is the concept of affordances.
The American psychologist J.J. Gibson states that the world is perceived not only
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in terms of object shapes and spatial relations but also in terms of actions, which
an agent is able to execute with an object. In the context of ecological perception,
visual perception would enable agents to experience the opportunities for action in
a direct way. In [Gib86] Gibson defines affordances of the environment:

...are what it offers the animal, what it provides or furnishes, either for
good or ill something that refers both to the environment and the animal
in a way that no existing term does. It implies the complementarities
of the animal and the environment.

Examples for affordances would be: buttons for pushing, knobs for turning, handles
for pulling, but also cups for grasping or to fill them with coffee. According to
Gibson’s theory, perception of the environment inevitably leads to some course of
action.

Affordance based visual object representations are function based representa-
tions. Stark and Bowyer [SB94] and Rivlin et al. [RDR95] use a set of primitives,
such as relative orientation, stability or proximity and face and vertex information
to define specific functional properties. According to the scenario described in the
last section, the simplest action is touching an object. Furthermore, the robot
should perform simple object manipulations that aim at grasping the object and
putting it on top of another object. Affordances necessary for this are for example
’pushable’, ’graspable’ and ’supportable’.

1.2 Requirements

Considering the cognitive robot and our scenario, the following requirements to
link affordances to an object model can be positioned:

Meaningful parts: bridge the gap between what is seen in images and what
objects afford to an embodiment. We propose piecewise planar surface patches
detected in image sequences as meaningful parts.

Clusters of parts: are created from basic meaningful parts and bridge the gap to
complex object affordances (e.g. grasping). For the description of clusters, we pro-
pose to use histograms of the relations of angle and the scale between reconstructed
parts.

Description of the completeness of models and of knowledge gaps: Be-
fore the robot can formalize what to explore, it must describe what it knows. We
propose a probabilistic completeness model which can be visualized with a spherical
histogram showing what has been seen up to now.
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Recognition of object instances: is one of the basic abilities of a cognitive
robot which has to operate side by side and cooperate with humans. For this we
combine state-of-the-art interest points and color histograms.

Recognition of object classes and categories: One of the most important
abilities of a cognitive robot is the ability to generalize from instances. Depending
on the object and its affordances, 2D image features, such as color and texture, as
well as, 3D shape features are necessary to describe object categories. We propose
to combine colour, texture and the description of clusters of parts to recognize
object classes and categories.

Interaction such as pushing and grasping: Beside the visual appearance in
static images, motion in image sequences is the strongest cue to cluster parts which
belong together. The proposed meaningful parts can be directly used to compute
approaching vectors for pushing and grasping.

Action selection and planning: To close the circle from perception to the ex-
ploring robot, action selection and planning need to be supported. The prediction
what to do next can directly be inferred from the proposed description of com-
pleteness. Planning the action itself is supported by the reconstructed clusters of
meaningful parts.

1.3 Putting it Together based on Planar Patches

State-of-the-art object recognition approaches learn appearances of object parts
directly in images. Normally, for this interest point detectors are used to gather
salient regions, which are then encoded with image descriptors. For learning “mean-
ingful” parts, similar interest points are clustered and significant ones are assigned
to the corresponding object class (Leibe et al. [LLS08]). These approaches implic-
itly encode the projective object shape. To some extent they are able to cope with
the large variety within object classes. Current affordance learning approaches use
interest points (Fritz et al. [FPK+06]) or approximate objects with basic features
such as color, circleness or squareness (Montesano et al. [MLBSV08]). What all of
these approaches have in common is that they use interest points or basic shape fea-
tures and color to create a vaguely construed link from affordances to “meaningful”
parts.

Our hypothesis is that clusters of planar patches bridge the gap between images
and objects affordances. Hence, in contrast to state-of-the-art approaches, which
implicitly encode affordances with image features, we propose to detect planar
patches in pairs of images, cluster and reconstruct them depending on common
motion in image sequences and use these features to explicitly encode affordances.
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Plane Detection

Coherent Planes in Image Sequences

From Planes to Objects

Model Completeness and Object Recognition

Images

Object Models

Figure 1.2: System overview

The diagram shown in Figure 1.2 indicates the tasks necessary to form mean-
ingful parts from images and accordingly create the object model and their com-
pleteness description. The first step is to detect planes in pairs of images (red). For
this we rely on interest points to compute plane hypotheses. To provide reliable
planar patches, coherent planes are detected and tracked in image sequences (yel-
low). Subsequently, planar patches are reconstructed and clusters with common
motion build initial object hypotheses. Contact points, computed from parts, are
used to push them and if parts start moving separately they are split to separate
items (green). Finally, features for recognition are detected and the probabilistic
completeness model is computed (blue).

A specific experiment is shown in Figure 1.3. Imagine, a robot which moves
around and at one point sees an unknown structure popping out from the floor or
from a table. It moves around the structure and builds an object hypothesis of it,
followed by simple interaction to verify the hypothesis. The individual steps for this
are shown in Figure 1.4. The system is based on interest points which are tracked
in an image sequence. To detect planar patches, we developed an incremental
model selection scheme, where planar patches once detected are tracked and serve
as prior in subsequent images (red). In each iteration, tracked planar patches and
new planes computed from randomly selected interest points are evaluated. If
planar patches accumulate enough disparity, they are reconstructed and build the
initial object hypotheses (green). Incremental bundle adjustment in combination
with the estimated motion (encoder/odometry) by the robot ensures an optimal
reconstruction in an absolute coordinate system. The incremental approach adds
new planar patches if new viewpoints are visited (Figure 1.4 second row). If patches
start moving separately, a split event is triggered and the accumulated information,
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camera trajectory

push object

Figure 1.3: Example scenario we used to test our system, where a camera moves
around objects and pushes them. The image shows a stereo setup, from which we
use only a single camera.

which is stored in a keyframe based graph structure, is evaluated. Therefore the
graph is traced back and depending on color and structure information, the patches
are assigned to the most likely split object hypothesis. Accompanying the modelling
process the object description parameters stated in the last section are stored within
the graph structure. Hence, at each point in time, the system is able to provide
the necessary information to plan trajectories to visit new view points in order to
get a more complete object model or to interact with the object.

As already indicated, the final object model is based on an approximated 3D
structure using planar surface patches. The motivation behind using planar patches
as basic parts is, on the one hand, that planes can directly be detected in image pairs
and, on the other hand, that the relation of planar patches in the 3D Euclidean
space can be efficiently used for interaction. State-of-the-art interest points in
combination with local descriptors such as SIFT [Low04] or SURF [BETG08] are
used for reliable recognition of object instances and for pose alignment. To account
for object classes, each individual planar patch holds a normalized color histogram
and the relative location of pairs of patches is described by a histogram of angle
and scale.

So far, we end up with a representation of physical properties derived from
images. Still, there is one issue that remains open, namely, how to support planning
with the goal to improve the object model? Necessarily, to provide information
about these knowledge gaps, we need a description of the completeness of the object
model. Therefore, we developed a probabilistic representation, which indicates the
likelihood to successfully recognize objects given a specific viewpoint. The main
idea is to carry out tests about stability while learning the object and to maintain
a spherical viewpoint histogram. Hence, at each point in time the approach is able
to predict the success rate of recognition from a specified view point, as well, as to

8



1. Introduction

Tracking of interest points
and grouping to planes

Reconstruction and merging 
of planes to object hypotheses

Visit new view points
to complete the model

Interact with object hypotheses
and separate planes to individual object

Figure 1.4: Vision Approach

evaluate the recognition result.

To recapitulate, the object is built-on the the following cues (Figure 1.5):

• 3D shape description for interaction using piecewise planar surfaces (center),

• Color histogram for object(-instance) recognition (green),

• Relative angle and scale (RAS) description of planar patches for object class
recognition (green),

• Interest points including 2D image location and 3D location for object in-
stance recognition and pose alignment (green), and
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Histograms for
colour and shape  description (RAS)

Alignment of interest points
for recognition and 
pose estimation

Description
of completeness
and knowledge gaps

Selection of viewpoints
to acquire reliable object models

Figure 1.5: Object Model including the approximate structure of two objects (cen-
ter), representations for object (-instance) recognition (green arrows) and repre-
sentations for the completeness of the object model (blue arrows)

• Spherical viewpoint histogram to represent the completeness and knowledge
gaps (blue).

1.4 Contributions and Outline of the Thesis

This thesis presents a system to interactively detect, model and recognize objects
for a cognitive robot. The first contribution is to provide a concept for an object
model to enable a robot to interact with its environment. We propose an object
model based on planar patches to manifest affordances for the robot. The following
paragraphs present an outline of this thesis and describe the contributions of each
chapter. The thesis is structured as follows:
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Chapter 2 – Related Work gives an overview of related work in situated vision
and active vision, on which our work is concentrated. Next, we review the state-of-
the-art in related vision areas which we tackle in this thesis, namely active object
modelling and learning of object affordance and affordance recognition.

Chapter 3 – Plane Detection introduces the detection of planar surface
patches. Planar patches are the main building block for the subsequent 3D re-
construction and for the later affordance recognition. We developed a new method
to detect multiple planes in image pairs. The theoretical framework for this is
grounded in model selection and Minimal Description Length (MDL). We embed
model selection in an iterative scheme, where existing planar patches have to com-
pete with newly generated hypotheses. Planes are represented with the 2D projec-
tive transformation (homography), which is computed from four sampled interest
point pairs. This method allows to create plane hypotheses mainly in unexplained
regions and in this way, it limits the search space which leads to a faster explana-
tion of the entire image. Furthermore, the iterative model selection scheme invites
to incorporate knowledge about tracked planar patches from the last frame and
information of new detected planes in the current image. The framework allows to
avoid a confidence value, which otherwise would be necessary for pruning wrong
tracking results. Detection of planes is also published in [PZLV10].

Chapter 4 – Coherent Planes in Image Sequences introduces a consistency
check and provides a method for reasoning in image sequences. While model se-
lection, described in the previous chapters is formalized to select the best planes
of the current frame, here we investigate how to keep track of multiple hypotheses.
Therefore, a graph based representation of multiple hypotheses, which describe the
content of a particular frame, is proposed and an evaluation criterion is used to
calculate the most likely hypothesis path that best explains the image sequence.
The ideas of occlusion reasoning and reasoning in image sequences are published
in [PAAV09, PZV09, APVA09].

Chapter 5 – From Planes to Objects investigates the reconstruction and
the merging of planar patches to individual objects. Tracked planar patches are
directly used to reconstruct multiple objects. For this purpose, consistent with
the MDL-formulation of the previous chapter, a pseudo-likelihood is developed
which combines motion, color and the spatial arrangement of planar patches. The
approach presented here is related to the problem of Multi-body Structure-and-
Motion (MSaM). Instead of directly reconstructing object models from interest
points, we first cluster the latter to planes using 2D projective transformation
and then reconstruct planar patches with consistent motion. Furthermore, a new
strategy is presented, which enables an agent to interactively learn object models.
This work is also published in [PZV11b].
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Chapter 6 – Model Completeness and Object Recognition investigates
the recognition of objects. To represent the completeness of an object model,
confidence values are learned and a probabilistic view representation is proposed.
This representation is used to predict the success rate of recognition from a specified
view point, as well, as to describe the overall model completeness and to evaluate
the reliability of object recognition. Object instance recognition, itself is based on a
hierarchical approach with different levels of abstraction, starting with a codebook
representation and a fast indexing of object views and finally leading to a 3D pose
alignment of the object. The generative object model and the provided description
of completeness allow a robot to decide whether it should continue learning or
stop and make use of the models learned so far. The proposed recognizer and the
probabilistic model for object completeness are also published in [ZPMV11].

Chapter 7 – Summary and Discussion concludes with a discussion of the
relevance in cognitive robotics. Subsequently, further directions and the perspective
of this thesis are given.

12



Chapter 2

Related Work

Our system combines different methods and thus contributes to different areas in
computer vision. It is based on the paradigm of situated robot vision and the
overall outcome can be attributed to the field of active vision. Hence, we start
with a review of related work in situated vision, active vision and active object
modelling. This leads us to the aspects learning of affordances and affordance
recognition. At the beginning of each chapter, we review the state-of-the-art for
specific vision algorithms used in this work.

2.1 Situated Vision

We use the term situated vision in the sense of [Sch09] and [SPV09] who refer to the
dual goal of situating vision inside a broader cognitive framework and to emphasize
the situatedness of the agent – and hence of its vision – in its environment. In
this sense, it is related to the use of this notion by [Pyl01], which claims that a
theory of situated vision needs to know two distinct routes – a pre-conceptual,
unmediated connection between visual elements and elements in the world, as well
as a conceptual, constructive representation of the stimuli.

In the last years, there has been an inflationary use of the notion “cognitive
vision” to emphasize the need to include “cognition” into vision research. However,
very often it either resulted in explaining some algorithm as if it were cognitive or in
sticking cognitive reasoning on top of vision. Schlemmer et al. [SPV09] claim that
true “cognitive vision” is in its best sense pleonastic: Vision needs to be seen as
part of cognition. They say that vision in its best sense – as situated vision – needs
to be recognized as being multi-dimensional, not just two- or three-dimensional.
This means that dimensions, such as prediction, priming, or intentionality must
be accounted for. Schlemmer et al. claim that this would indeed allow to solve
tasks that are not only hard at the moment but in fact (due to a wrong approach)
in principle not solvable. Consider Figure 2.1: When confronted with the task of
recognizing arches, a classical computer vision learning algorithm would rely on a
huge training set of arch-images in order to re-detect one (or a very similar instance)
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"Object concept" Arch:
●  Structure
●  Function
●  Affordance
●  Spatio-Temporal Location
●  Colour
●  Existence (real, unreal)
●  ...

Figure 2.1: Variety of arches (Schlemmer et al. [SPV09]) – what is the common
constituting substrate?

of those when confronted with it in a test situation. Humans, however, even if they
have never seen one of those arches before, would immediately recognize that all
images of Figure 2.1 indeed show instances of arches. Schlemmer et al. argue that
one crucial “cognitive function” that is at work here is abstraction, i.e., seeing the
concept behind the instance.

In [Sch09] Schlemmer defines the following stances of “situated vision” for a
cognitive robot companion:

• Incorporates various non-visual cues,

• Relies on a powerful ontology of high-level scene knowledge, observations,
empirical generalizations, etc,

• Uses semantic information about what is seen by linking observations to
previous knowledge,

• Is not only feeding other cognitive subtasks with “adequate” information, but
is itself fed by those routines,

• Includes for the special case of a robot companion the possibility to see things
“with another agent’s eyes” (due to the shared working environment), and

• Is a problem definition that demands an interdisciplinary approach.

Computer vision, as outlined above, never quite reaches a “semantic level”. This
is not a big surprise, as it usually proceeds in a bottom-up fashion. “Meaning”
can only get into the system by connecting observations with previous knowledge
(the sources of which might be very diverse – reaching from innate stuff to em-
pirical generalizations). A simple illustration: Detecting a cylinder is a typical
computer vision task. Knowing that this cylinder is the favorite coffee mug of
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someone goes far beyond that. However, a pre-given and fixed 1:1 matching of
observation to higher-level concepts would not allow for the context-dependence
claimed before, and robot companions are inherently confronted with dynamically
changing environments. Hence, according to Schlemmer [Sch09], the approach is
even more abstract, namely functional. He proposes to search for necessary func-
tionalities as deployment of what he calls cognitive functions. The functional layer
allows us to connect various disciplines that – on a more concrete layer – might
diverge too much (cf. Mark Solms’ conception of the right discussion layer between
neuro-psychoanalysts and engineers in [Sol08]).

For situated vision of a robot companion, Schlemmer [Sch09] proposes that
intentionality, prediction, abstraction, generalization, and symbol binding seem es-
pecially important. The first one is the overall principle of task-guidance which
can already be found in older philosophical works (such as [Pup13]), and which
introduces the directedness of consciousness towards an object (be it “internal” as
a kind of representation or “external” as object of focus of attention). The second
function is more concretely concerned with anticipating what will be seen next and
can be loosely associated with the unfolding of situation-understanding and the
use of previous knowledge. Some approaches believe this is the most important
capability of the human brain, e.g. [HB04]. Abstraction then is concerned with
mapping actually observed data to higher-level conceptual knowledge. This is the
really hard part of seeing the “concept behind the instance” (cf. Figure 2.1). Gen-
eralization is the other way round: The building up of a concept from instances
seen. In [Sch09], Schlemmer proposes that this is not thought to be appearance-
and brute-force-based but rather in the sense of extracting the “thing-in-itself” as
philosophers call it: the constituting substrate of what makes an object an ob-
ject. Symbol binding, finally, is the capability to link additional (of course, again
situation-dependent) information to the observations made.

As can be seen, some of the mentioned cognitive functions are more vision-
related (prediction, abstraction, and generalization) than others (intentionality
and symbol binding) which can rather be seen as superordinate principles that
govern the whole processing of the cognitive agent. Nevertheless, they need to be
incorporated into a thorough vision analysis of what a robot companion needs.

2.2 Active Vision

Early attempts on Active Vision go back to [Baj88], [AWB88], [Bal91]. In [Baj88],
Bajcsy states that perception is not passive, but active. Bajcsy strengthens this
statement with a comparison to humans, where the pupils adjust to the level of
illumination, the eyes bring the world into sharp focus, the eyes converge and
diverge and the human head moves to get a better view. Compared to an “active
sensor”, which generally refers to a sensor which transmits to the environment, such
as a time-of-flight sensor, Bajcsy uses the term ’Active Vision’ for a passive sensor
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operated in an active fashion. Here, the sensor’s state parameters are changed
according to the sensing strategies. Thus, according to Bajcsy, Active Vision is an
application of intelligent control theory which includes reasoning, decision making
and control. This implies three facts: First of all, an Active Vision system needs
the model of the physics of the sensors as well as the noise of the sensors. Then
the model of the signal processing and the data reduction mechanisms are applied
to the acquired sensor data. Together, these two models build the “local models”.
The system is modular and interactive, thus a further model is required which
models the whole process, including feedback. Bajcsy refers to this model as “global
models”. Thirdly, it is necessary to explicitly specify the initial and the final
stage/goal. Bajcsy’s emphasis lies in the study of modelling and control strategies
for perception.

This differs from Aloimonos et al. [AWB88] who introduce a general methodol-
ogy, in which they hold the view that low-level vision problems should be addressed.
They investigate several basic problems in vision under the assumption that the
observer is active and provides a continuous sequence of images with a known
viewing transformation. They argue that “problems that are ill-posed, nonlinear
or unstable for a passive observer become well-posed, linear and stable for an active
observer.” They investigate four algorithms in computer vision, namely shape from
shading, shape from contour, shape from texture and structure from motion. The
proposed solutions address problems regarding stability and linearity. Furthermore,
Aloimonos et al. propose unique solutions which require no assumptions.

Following these ideas, researchers have contributed in different areas.
Krotkov [Kro88] studies automatic focusing of a servo-controlled video camera.
He manually selects a target and tries to find the position of the servo motor with
the sharpest focus on the pre-specified object point and then computes the dis-
tance to the point. Krotkov proposes to measure the sharpness of focus based on
maximizing the magnitude of the intensity gradient since this solution has the ad-
vantage of being unimodal, monotonic about the mode, and robust in the presence
of noise. For this purpose, the Fibonacci search technique is used to optimally
locate the mode of the criterion function. To determine the distance of the selected
point, the thick-lens law is used. For objects within 3m this allows to compute the
location with a precision of 2.5cm.

According to the Active Vision paradigms of Aloimonos, Hamker [Ham06] pro-
poses feature-based attention as an active top-down inference process. This ap-
proach aims to select relevant information within the scene and the computation
of an appropriate representation. In the sense of a visual selection device, this
method is able to acquire the necessary information on demand by focusing on the
relevant areas within the visual scene while taking different viewpoints of the same
object. Therefore, an approach is developed in which feature-based attention acts
on the object representation itself. The computed top-down expectations meet the
bottom-up processed stimulus features in the ventral pathway. Then a competi-
tive interaction mechanism filters out the information that is inconsistent with the

16



2. Related Work

high-level goal description.

The work of Mishra [MA09] et al. follow up ideas of the original ideas of
Active Vision by Aloimonos with respect to segmentation. The motivation is that
the human visual system observes and understands a scene by fixation of points
and thus humans are able to see small parts around those points (in the fovea)
in high resolution. Hence, in this work the basic segmentation problem is defined
as segmenting a region containing the fixation point. The proposed algorithm
combines monocular cues (color/intensity/texture) with stereo or motion in a cue
independent manner. The core cue integration relies on a log-polar transformation
of the images around the fixation point and graph-cut to separate the edge-image
into foreground and background. The cue integration itself is performed at edge
level, where edges are weighted depending on depth cues or motion. Hence, this
work incorporates the Active Vision paradigm with respect to focusing on fixation
points and integration of image sequences.

We tackle the Active Vision paradigm with respect to several points. In con-
trast to Aloimonos et al. [AWB88], who focuses on linearizing vision problems with
the help of continuous image sequences, we rely on state-of-the-art nonlinear opti-
mization techniques, but in case an estimate of the camera pose is available, this
information is involved at reconstruction level. We aim to model objects within
a natural environment. With respect to segmentation of the object, our approach
goes beyond the traditional Active Vision paradigm. Our integrated system ac-
tively interacts with objects to group features and form objects and in this way
segmentation relies, beside geometry and color, on motion.

2.3 Active Object Modelling

In the spirit of Active Vision we are concerned with active object modelling. We
now give a brief review of systems which model the environment and especially ob-
jects within the environment. Most related literature belongs to robotic navigation
and assumes a laser range sensor. The motivation is to model and detect objects
and thereby to get rid of the static world assumption. In [BLST02] Biswas et al. pro-
pose an object mapping in non-stationary environments where the objects change
their location over time. The approach builds on the well-known occupancy grid
map. Each map captures a snapshot of the environment at a specific point in time.
Moved objects are detected using standard change detection algorithms. Then the
approach learns models of the objects using an expectation maximization (EM)
algorithm, where the E-step establishes correspondences between different object
views at a different point in time and the M-step refines the object models repre-
sented by occupancy grids. The assumption is that the environment changes slowly
and the objects can be assumed to be static for the time of mapping.

Modayil et al. [MK04] also use mapping of laser range data to an occupancy
grid. The main emphasis of the approach of Modayil et al. is to learn an ontol-
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ogy of objects to explain aspects of the sensor input from an unknown dynamic
world. The occupancy grid representation for local space does not include the con-
cept of an object. Hence, the assumption is that the environment is static and
that the space can be divided into empty and occupied. Then the shape of the
occupied space is detected. In [MK06], they improved the creation of the object
shape model. They propose an algorithm that defines angular constraints between
multiple sensor scans of an object. Due to these constraints the system is able to
align the scans and to create maximally coherent object shape models. In [MK07]
and [MK08], Modayil et al. extend the model and propose a system with multi-
ple integrated representations, including spatio-temporal clusters of data, percepts
which represent properties for the tracked objects, generalizations from past expe-
rience, and actions which change object percepts. Thus, the robot is able to use
the observed shape of a tracked object to generate shape classes, which are used
to generalize from past experiences. Hence, the robot is able to interact with an
individual object using learned actions that modify percepts of the objects.

Modayil closes the loop from simple laser range sensor data to higher level ob-
jects and object interaction. Xu et al. [XK10] state that in order to understand
and manipulate in the world, the agent must be able to learn high level concepts.
Hence, they propose multiple representations with different ontologies within a joint
representation which they call Object Semantic Hierarchy (OSH, see Figure 2.2).
This representation separates the problems of object perception into intermediate
stages. Each layer consists of knowledge about an object with the natural repre-
sentation and thus with relatively simple transitions from less structured to more
structured. From the bottom to the top, each layer creates new invariants on top
of the previous layer. The approach starts from a constant background model,
where the foreground object is treated as noise. Then the foreground objects are
individuated from the background and the object model is created while they are
tracked. The idea of the hierarchical model is, that lower layers can provide simpler
properties that are more robust, while higher layers benefit from lower layers and
get simpler too. If higher layer, fail processing at a lower level can still be successful
and can accumulate information for a more sophisticated analysis.

While the above literature is concerned with modelling the object (shape) it-
self, Hart et al. [HGJ05] and Stoytchev [Sto05] propose representations for task
knowledge and affordances. According to Mandler [Man04], task knowledge can
be decomposed into declarative and procedural components. In [HGJ05], Hart ex-
plains how to learn procedural knowledge when the declarative structure is given.
They propose a relational model to find the statistical dependencies between sen-
sorimotor variables and task success. Mandler claims that relational models are
useful because they provide a framework for learning from experience. Further-
more, if the structure of a task recommends an action, the model can be used
to observe the sensorimotor variables and to determine which resources should be
employed. Stoytchev [Sto05] proposes a behavior-grounded representation of tool
affordances. The idea is to ground tool affordances in a behavioral repertoire of the
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Figure 2.2: Object Semantic Hierarchy (OSH, Xu et al. [XK10]). The agent re-
peatedly identifies new invariants with the goal to reduce the noise and thus builds
models for foreground objects and for the background within different abstraction
levels.

robot. The representation is learned in a training phase, where the robot randomly
chooses different behaviors, applies them to the tool, and observes their effects in
the environment.

Metta et al. [MF03] develop an active strategy for a robot to acquire visual
experience through simple experimental manipulation. The experiments are ori-
ented towards determining what parts of the environment are physically coherent,
that is, which parts will move together, and which are more or less independent.
For testing their approach, an upper torso humanoid, called Cog, is used, which
is not designed to enact trajectories with high fidelity. It is rather designed for
interaction with a poorly characterized environment, where collisions are frequent
and informative events. The system includes an attentional system consisting of a
pre-attentive filter sensitive to motion, color, and binocular disparity. These filters
are implemented on a space-variant imaging system, which mimics the distribution
of photoreceptors in the human retina. A voting mechanism is used to decide what
to attend and to track next. Several experiments are performed: Beside studies
about direct effects of actions, where time-correlation of optical flow is used as
signature to identify parts of the scene that are influenced by the robot’s motion,
indirect effects including a refinement of the segmentation and the development of
mirror neurons are studied.

Our experiments are similar, but in contrast to Metta, who studies the causal
chains of events, we focus on learning a 3D piecewise planar object model trig-
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gered by motion events. With respect to the conceptual object modelling system,
the work by Modayil et al. [MK08] and Xu et al. [XK10] is closely related to our
approach. They rely on a laser ranger, which is only able to sample points in a
plane with constant height to the floor. Accordingly, the representation of objects
is simplified to a contour in 2D. Instead, we propose a system with a monocular
camera and build a complete 3D model up to a certain generalization which is nec-
essary for robot interaction. The work by Stoytchev [Sto05], who already proposes
learning of affordances, directly leads us to the next section.

2.4 Affordance Learning and Recognition

The world is perceived not only in terms of object shapes and spatial relations but
also in terms of actions, which an agent is able to execute with an object (Gibb-
son [Gib86]). For cognitive robotics, this becomes essential if we want to enable
the robot to interact in an unknown environment. In the following, we provide
an overview of approaches that demonstrate the learning of causal relationships
between visual cues and predictable interactions.

Fritz et al. [FPK+06] show the importance of learning in perceptual cueing
for anticipation of opportunities for interaction of robotic agents and provide a
refined concept of affordance perception. They propose an interaction component
to recognize relevant events in interaction via perceptual entities and a predictive
aspect to predict interaction via perceptual entities. The outcome of the affordance
cueing system, given a multimodal feature vector, is a probability distribution over
affordance hypotheses. Among other cues, such as color, shape and 3D information,
they investigate the benefit of using visual 2D patterns, especially Scale Invariant
Feature Transform (SIFT [Low04]) features for their use in affordance cueing. The
proof of concept is shown with experiments using a simulated environment. There,
predictive 2D affordance cues to characterize affordance recognition processes have
successfully been learned.

In [MMFF03], Metta et al. extend the experiments studying the causal chain of
events, described in [MF03], with object affordances. They stated that affordances
are not only a property of the mechanics of an object, but rather a combination of
visual appearance, of the object’s physical composition, and the ability of an actor.
For the visual component of the affordance, they select the principal axis of the
object directly measured from the segmentation. For the experiments, they select
four simple objects (bottle, cube, car, ball) and train about 100 actions per object,
where the motor vocabulary includes four possible directions to poke. A clustering
schema is used to cluster the resulting behaviors. Using these four objects the
robot made about 15 false behavior predictions out of 100.

The work of Sinapov et al. [SS07] is based on the framework for behavior-
grounded representation of tools by Stoytchev [Sto08]. They extend the model
with an approach that enables the robot to learn the effects of its action with a
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tool and therefore to learn to detect features in its sensory stream which are useful
to predict the effects. The final model consists of a compact representation of the
action possibilities that a tool affords the robot. This representation is learned by
exploring the space of actions with the tool and observing their effects. Hence,
the predictive model is grounded in the robot’s own perceptual and behavioral
repertoire. For learning of the compact model a classical decision tree [Qui93]
approach is used. Experiments have shown that the decision tree outperforms the
k-NN algorithm and that a reference frame centered on the attractor object contains
the most predictive information. An application towards detection of functional
components is proposed by Sukhoy et al.[SS10]. They use active exploration and a
multimodal correlation of the input data that is a visual feature vector together with
auditory feedback, to train a visual model for detecting the functional components
of a doorbell button. The system acts like an affordance detector as it is able to
label patches with, e.g., “pushable there”. Experiments have shown that for novel
buttons, the system is still able to find a decent approximation of the functional
components.

Affordances encode relationships between actions, objects and effects. Mon-
tesano et al. [MLBSV08] present a general model for learning object affordances
using Bayesian networks integrated within a general developmental architecture for
social robots. Furthermore, one of the motivations of Montesano’s system is imi-
tation, where affordances also play an important role for interaction with another
agent. Like newborns have a series of reflexes and responses, Montesano considers
that the robot starts with a predefined set of core motor actions which must be
adjusted by self-experience. Experiments have been conducted in a simple play-
ground environment to get along with the built-in segmentation and category for-
mation capabilities of the system, which provides region based measurements such
as convexity, eccentricity circleness and squareness. For learning, Montesano et al.
propose a Bayesian Networks to encode the dependencies between actions, object
features, and the effects of those actions. This representation permits to take into
account the uncertainty of the real world, to encode some notion of causality and
to provide a unified framework for learning and using affordances.

In [RSL10], Ridge et al. propose a self-supervised cross-modal online learning
of basic object affordances for developmental robotic systems. In the real world
it is important that a robot builds its own internal representation of object affor-
dances. Ridge et al. refer to the input modality of features for features taken prior
to arm-object interaction. For this purpose, they first fit a quadratic surface to
segmented range data. Secondly, use the intensity image segmentation to compute
10 shape features. After an action has been initiated on an object in motion, the
output modality is formed. Therefore the motion is calculated with the help of
a color-based particle filter and 9 features are calculated. To estimate how the
appearances of the objects change during motion the average difference of color
and edge histograms is computed. For co-occurrence clustering, Ridge et al. de-
velop an online classifier training algorithm based on Kohonen’s learning vector
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quantization (LVQ) which does not require labels during training. Thus, given a
series of interactive episodes, the learning task is to find clusters in the output
modality feature space which correspond to affordance classes. These clusters are
then used to train a classifier for the input modality space which is used to predict
the affordance classes.

The above approaches either start with a pre-defined set of action capabilities,
which are improved by self-experience (e.g. [MLBSV08]), or the action behavior
is simply given [RSL10]. Given a (multi-)modal input vector, the systems learn
to predict effects according to an action and an object. Stoytchev [Sto08] pro-
pose a decision tree for learning to predict affordances. While all of the described
approaches concentrate on learning affordances from 2D features in simplified envi-
ronments. Instead, we propose to use relations of piecewise planar surface patches
in 3D Euclidean space which are directly represented within our object model.

In summary, we reviewed different areas which are related to computer vision
within the context of cognitive robotics, namely situated vision, active vision, active
object modelling and affordance learning and recognition. In this work, the term
situated vision is used in the sense of [Sch09] and [SPV09] who refer to the dual
goal of situating vision inside a broader cognitive framework and to emphasize the
situatedness of the agent – and hence of its vision – in its environment.

The proposed approach is about the perception of an active robot which ex-
plores its environments. Early work on active vision goes back to Bajcsy [Baj88],
Aloimonos et al. [AWB88] and Ballard [Bal91]. Bajcsy states that perception is not
passive, but active. All of them investigate different aspects related to computer
vision. Whereas Aloimonos et al. investigate how low level vision benefits from
image sequences captured from an active sensor, according to Bajcsy active vision
is an application of intelligent control theory which includes reasoning, decision
making and control.

Our experiments within the context of active object modelling are similar to the
work of Metta et al. [MF03], but in contrast to Metta, who studies the causal chains
of events, we focus on learning a 3D piecewise planar object model triggered by
motion events. With respect to the conceptual object modelling system, the work
by Modayil et al. [MK08] and Xu et al. [XK10] is closely related to our approach.
They rely on a laser ranger, which is only able to sample points in a plane with
constant height to the floor. Accordingly, the representation of objects is simplified
to a contour in 2D. Instead, we propose a system with a monocular camera and
build a complete 3D model up to a certain generalization which is necessary for
robot interaction. The work by Stoytchev [Sto05], who already proposes learning
of affordances, directly leads us to affordances and the interaction of a robot with
the environment.

State-of-the-art approaches for learning affordances either start with a
pre-defined set of action capabilities, which are improved by self-experience
(e.g. [MLBSV08]), or the action behavior is simply given [RSL10]. Given a
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(multi-)modal input vector, the systems learn to predict effects according to an
action and an object. Stoytchev [Sto08] propose a decision tree for learning to
predict affordances. While all of the related approaches concentrate on learning
affordances from 2D features in simplified environment. In contrast, we propose to
use relations of piecewise planar surface patches in 3D Euclidean space which are
directly represented within our object model.
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Chapter 3

Plane Detection

For proposing planes as basic features to learn dense object affordances and their re-
lations, we need to develop a method to detect multiple planes in image sequences.
In [PZLV10] we have shown that our method competes with state-of-the-art algo-
rithms while it is more flexible to incorporate prior knowledge from tracking. In
the following, we first review the state of the art 3.1 and then describe the ap-
proach including model selection based plane detection (Sections 3.2 and 3.2.1),
a comparison of different sampling strategies (Section 3.2.2) and the tracking of
plane hypotheses (Section 3.3). Finally, results of the experiments are shown in
Section 3.5.

3.1 State of the Art

There exist various approaches for plane detection in uncalibrated image pairs
exist. Most of them use a hypothesize-and-test framework. A popular method for
detecting multiple models is to use the robust estimation method RANSAC [FB81],
to sequentially fit the model to a data set and then to remove inliers. To generate
plane hypotheses, Vincent et al. [VL01] studied different methods to select groups
of four points which are likely to be coplanar. Beside a totally random selection,
they propose to check the interest point configuration to avoid degenerate cases.
Therefore, they compare the area of the four triangles defined by the four points.
Another possibility to increase the likelihood that the points belong to the same
plane is to select points which lay on two different edges in an image. In contrast,
Kanazawa et al. [KK04] define a probability for feature points to belong to the
same plane. The idea is to use a uniform distribution to sample an initial set of
points and then to compute a conditional probability using the Euclidean distance
between the initially selected points and the remaining points. According to these
probabilities, for each initially selected point three additional points are sampled
and thus the chosen groups of points are located in a local area. Both approaches
use a RANSAC scheme, iteratively detect the dominant plane, remove the inliers
and proceed with the remaining interest points.
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The success of the plane computation depends on the coplanarity of four
matched points. Nicolas et al. [LNGPS05] propose to use the knowledge of the
first homography to guide the computation of further homographies and thus re-
duce the set of points/lines to three pairs. After the first iteration, they use the
geometric constraint of the first homography and three points to generate further
plane hypotheses. The selection scheme is also iterative and RANSAC based. Pi-
azzi et al. [PP06] also need only three corresponding points. They propose to use
two cameras aligned to the same orientation to compute the normal vector to a
plane. The normal vector is then used to cluster triangles. This approach does not
use RANSAC, but instead clusters sequentially similar neighboring normal vectors
of Delaunay triangles. Lourakis et al. [LAO02] use results from projective geometry
to automatically detect planes. They exploit the fact that every pair of a 3D line
and a 3D point defines a plane. First, they estimate the fundamental matrix and
the epipoles. Then the homography is computed for each set of point and line fea-
ture and a voting scheme is applied, where each homography transfers all features
from the first image to the second. The homography with the highest number of
inliers is selected and refined using Least Median of Squares. This approach also
detects a plane and removes the inliers in an iterative scheme.

Fraundorfer et al. [FSB06] start with a set of sparse affine invariant correspond-
ing seed regions and iteratively expand and refine the plane-induced homographies.
This image-driven method simultaneously solves the region segmentation and the
matching problem for planar parts of a scene containing an unknown number of
planar regions. The idea is to use affine invariant regions for initialization. In an
iterative manner Harris corners of the regions are detected to compute a homogra-
phy, the region is expanded based on correlation of grey-values and the homography
is re-estimated. The iterative algorithm is stopped if no new points can be added.
This approach leads to a pixel-wise image segmentation in contrast to sparse clus-
ters of features.

More recent approaches concentrate on robust estimation of multiple structures.
Toldo et al. [TF08] propose j-linkage, an approach based on random sampling and
conceptual data representation. Each point is represented with the characteris-
tic function of the set of random models that fit the point. The method starts
with random sampling. M hypotheses are generated by sampling a minimal set
of data points necessary to estimate the model. Then the consensus set for each
model is computed, i.e., the set of points with a distance from the models smaller
than a threshold ε. Agglomerative clustering is used to group points belonging
to the same model. In [FSB10] this method is used for the robust detection and
matching of multiple planes. For hypothesis generation random sampling is used.
Then Fouhey et al. use j-linkage for clustering homographies followed by a global
merging. Since most of the initial hypotheses are generated from groups of nearby
points, globally visible aspects of the perspective transformation are underdeter-
mined. Thus agglomerative clustering is continued using a different error function
which measures the average error for the model. Finally, a spatial analysis is used

26



3. Plane Detection

to split overlapping hypotheses. In [CWS09], Chin et al. propose a novel Mercer
kernel for the robust estimation problem which elicits the potential of two points to
have emerged from the same underlying structure and thus can cope with more than
90% outliers. This approach consists of two steps: First they propose to remove
gross outliers, followed by a robust fitting of multiple structures. To remove gross
outliers, a mercer kernel is used for robust fitting before the data is analyzed using
a Singular Value Decomposition (SVD). To fit multiple structures to the remaining
inliers they propose a Principle Component Analysis (PCA) and spectral clustering
step followed by a structure merging scheme where clusters are merged if the esti-
mated model still satisfactorily “explains” the resulting structures. While random
sampling is used to generate hypotheses, principal component analysis and spec-
tral clustering are applied for robust fitting. The methods of Toldo et al. [TF08],
Fouhey et al. [FSB10] as well as Chin et al. [CWS09] use clustering schemes and
avoid removing inliers and iterative detection of planes.

Given a fixed threshold to detect inliers, incremental methods favor planes
detected first over subsequent planes by greedily consuming features. Recently
developed approaches overcome this drawback by treating hypotheses equally, but
plane hypotheses have to be created independently of each other and thus it is not
possible to restrict the search space, which leads to higher computational complex-
ity. We propose model selection based on the MDL principle: Instead of creating
all hypotheses at once, pruning models and then using model selection, we propose
to embed model selection in an incremental scheme and thus guide randomized se-
lection of interest points to compute more likely plane hypotheses. This allows us
to avoid an additional hypotheses pruning step without decrease of performance.
Finally, this formulation allows us to explicitly introduce priors, hence we can de-
tect and track planes in one scheme which is not possible in any of the approaches
described above.

3.2 Iterative Plane Hypotheses Selection

We develop a method to detect multiple planes in image pairs. Typical approaches
(cf. Vincent et al. [VL01], Kanazawa et al. [KK04] or Lourakis et al. [LAO02]) use
interest points to find the corresponding point in image pairs. Groups of four points
are used to generate plane hypotheses which are represented by the two dimensional
projective transformation (homography). A popular method to achieve robustness
against noise is RANSAC proposed by Fischler et al. [FB81]. Algorithm 1 shows a
typical implementation. An important role plays the inlier ratio ε = Imax/N which
is the ratio of the inliers of the correct solution and all available correspondences.
If this ratio is known, the probability that a plane with m = 4 point pairs is correct
is εm, and that in k iterations no correct solution is found is

η = (1− εm)k. (3.1)
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Algorithm 1 Dominant plane detection with RANSAC

k ← 0, ε← m/N , Imax ← 0
while η = (1− εm)k ≥ η0 do

Sample m point pairs
Compute the plane P ′

Count number of explained interest points (inliers) I for P ′

if I > Imax then
Imax ← I
ε← Imax/N
P ← P ′

end if
k ← k + 1

end while

Typically the true inlier ratio is unknown, thus a well known strategy is to use the
best estimate available up to now. To detect multiple planes, this algorithm can
be embedded in a sequential loop. In each iteration, the explained interest points
are removed and the algorithm starts again with the remaining point pairs.

Given a fixed threshold to detect inliers, sequential methods favor planes de-
tected first over subsequent planes by greedily consuming features. If all hypotheses
are created first and interest points have to compete, this drawback is overcome.
But generating hypotheses first does not allow us to restrict the search space.
Hence, in complex environments the number of random hypotheses grows, finding
the ideal solution gets intractable and finer scene details are missed. Additionally,
there is no possibility to estimate the inlier ratio.

We therefore propose to embed Minimal Description Length (MDL) based
model selection in an iterative scheme. Existing planes compete with newly created
hypotheses to ensure that interest points are assigned to the best currently avail-
able hypothesis. Additionally hypothesis generation can be guided to unexplained
regions. This method avoids the bias towards dominant planes that is typical for
iterative methods and it limits the search space, which leads to a faster explanation
of the entire image in terms of piecewise planar surfaces.

Algorithm 2 shows our proposed method for plane detection. In each iteration,
a small number Z of new plane hypotheses P ′ are computed which have to compete
with the selected hypotheses P of the last iteration. The termination criterion is
based on the true inlier ratio ε and the number of samples M which are necessary
to compute the homographies. As long as we do not know these values, we use
the best estimate available up to now. For ε, that is, the ratio of the number of
explained interest points Imax of the current best plane hypotheses and the number
of matched interest points N to explain.

A critical question is how to set M? From a global point of view, i.e., if
hypotheses are distributed uniformly and there is no bias or guiding, it would be
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Algorithm 2 Plane detection using model selection

P ← 0, P ′ ← 0
k ← 0, ε←M/N , Imax ← 0
while η = (1− εM)k ≥ η0 do
P ′ ← P
Add Z random plane hypotheses to P ′ (Section 3.2.2)
Select plane hypotheses from P ′ and store in P (Section 3.2.1)
Count number of explained interest points (inliers) I for P
if I > Imax then
Imax ← I
ε← Imax/N

end if
k ← k + 1

end while

feasible to estimate M with the number of plane hypotheses currently selected
multiplied with the minimal set of interest points m = 4 to compute one plane
homography. In case there are just a few dominant planes in the scene this would
be possible, but, because of Equation 3.1, with a growing number of planes this
does not converge within the desired “realtime” framerate. In Section 3.2.2 we
show that in case sampling is biased to unexplained regions M can be set to four
without a loss of performance. The reason for this could be that in each iteration
only one additional new hypothesis from unexplained points is computed and added
to the model selection. We will use this value for all experiments. Furthermore,
in Algorithm 2 k is the number of iterations, η stands for the probability that no
correct set of hypotheses is found and the parameter η0 is the desired failure rate.
Due to the incremental scheme, it is possible to guide the computation of new
hypotheses to unexplained regions.

3.2.1 Hypotheses Representation and Model Selection

In each iteration, selected homographies of the last iteration have to compete with
newly sampled hypotheses. For the selection, the idea is that the same feature
cannot belong to more than one plane and that the model cannot be fitted sequen-
tially. Thus an over-complete set of homographies is generated and the best subset
in terms of a Minimum Description Length criterion is chosen.

Minimum Description Length (MDL)

The core of the problem is to find a general mechanism to optimally describe the
data with respect to an objective function and to reduce the number of redundant
models. Hence, the objective function has to formalize a trade-off between the
complexity of the representation and a general notion of simplicity. The notion
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of simplicity has a long history in Gestalt psychology, which has found its way in
different vision systems (e.g. Lowe [Low87], Zillich [Zil07]). In the field of infor-
mation theory, this led to the principle of Minimum Description Length (MDL)
(Rissanen [Ris84]). The purpose of MDL is to discover regularities in the observed
data and hence to describe the data with the shortest possible encoding. In image
processing and computer vision, this principle can be used to select a subset of all
recovered models and thus to describe parts of the image or possibly the whole
image.

The basic mathematical tool for the purpose of range image segmentation is
introduced by Leonardis et al. [LGB95] and adapted in [LLS08]. In the following,
we briefly describe the ideas, which are then reformulated for plane detection in
the next section.

According to Leonardis et al. [LGB95], the length of encoding the image

Limage(n) = Lpointwise(n) + Lmodels(n) (3.2)

can be formalized as the sum of the length of encoding of individual data points
that are not described by the model Lpointwise(n) and the length of encoding of
data described by the selected models Lmodels(n). The vector nT = [n1, n2, ..., nM ]
stands for a set of models, with ni = 1 if a model is selected and ni = 0 otherwise.
If a model is represented by an image region with Sdata,i elements and the error
measure Serror,i Equation 3.2 leads to

Limage = K1(Sall − Sdata(n)) +K2Serror(n) +K3Smodel(n) (3.3)

where Sall denotes the number of all data points in the image and Sdata refers to
the number of data points explained by the selected models. Smodel stands for the
parameters which are needed to describe the models and Serror is the error, added
by the models. The constants K1, K2 and K3 are weights which can be determined
on a purely information-theoretical basis (in terms of bits), or they can be adjusted
in order to express the preference for a particular type of description.

Now, the task is to minimize the cost of encoding the data Limage. Since Sall is
constant this is equivalent to maximizing the expression

SH(n) = K1Sdata(n)−K2Serror(n)−K3Smodel(n) (3.4)

Intuitively, this formulation shows that an encoding is efficient if the number of
data points described by a model is large, the contributed error is low, and the
number of parameters is small.

MDL for Plane Hypotheses Selection

In practice, the weights K1, K2 and K3 of Equation 3.4 are related to the average
cost of the data points, the model and the error, and we only need to consider the
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relative savings between different combinations of hypotheses. Hence, to select the
best model, the savings for each individual hypothesis H can be expressed as

SH = Sdata − κ1Smodel − κ2Serror (3.5)

where κ1 = K3

K1
and κ2 = K2

K1
. In our case Sdata is the number of interest points N

explained by H and Smodel stands for the cost of coding the model itself. We use
one model (the homography of a plane) and thus Smodel = 1. Serror describes the
cost for the error added, which we express with the log-likelihood over all interest
points fi of the plane hypothesis H. Experiments indicate that the Gaussian error
model

p(fi|H) =
1

σ
√

2π
exp

(
− ε2i

2σ2

)
(3.6)

in conjunction with an approximation of the log-likelihood comply with our expec-
tations. Thus the cost of the error results in

Serror = − log
N∏
i=1

p(fi|H) = −
N∑
i=1

log(p(fi|H)) (3.7)

= −
N∑
i=1

∞∑
n=1

1

n
(1− p(fi|H))n ≈ N −

N∑
i=1

p(fi|H) (3.8)

where log(p(fi|H)) is the log-likelihood that an interest point belongs to the plane.
For εi we use the Euclidean distance of inliers to the estimated homography. Sub-
stitution of Equation 3.8 into Equation 3.5 yields the merit of a model

SH = −κ1 +
N∑
k=1

((1− κ2) + κ2p(fk|H)) (3.9)

An interest point can only be assigned to one model. Hence, overlapping models
compete for interest points which can be represented by interaction costs

sij = −1

2

∑
fk∈Hi∩Hj

((1− κ2) + κ2 min{p(fk|Hi), p(fk|Hj)}) . (3.10)

Finding the optimal possible set of homographies for the current iteration leads
to a Quadratic Boolean Problem (QBP)1

max
n

nTSn , S =

 s11 · · · s1N
...

. . .
...

sN1 · · · sNN

 (3.11)

1 QBP assumes pairwise interaction, which in our case can be violated. But this is still a good
approximation because interaction always increases cost, yielding a desirable bias against weak
hypotheses.
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where n= [n1, n2, · · · , nN ] stands for the indicator vector with ni = 1 if a plane
hypothesis is selected and ni = 0 otherwise and sii = SH,i represents a merit term
of a plane hypothesis. The time to solve the QBP grows exponentially with the
number of hypotheses. Several methods have been proposed to solve the problem
with an approximate solution. Our results indicate that for our specific problem a
greedy approximation gives good results (cf. Section 3.5.2). But still, what is most
important is to keep the number of hypotheses tractable. We addressed this by
embedding the model selection in an iterative algorithm and hence, the solution
can be found very fast.

3.2.2 Hypotheses Generation and Efficiency

One of the key issues of approaches that use random samples is to select good
features. Our method addresses this issue in different ways. Following My-
att et al. [MTN+02], sampling is biased to features that are most likely located
on the same plane. The second strategy is to sequentially guide sampling towards
unexplained regions. Furthermore, we use a pre-filter which selects good hypothe-
ses and adds them to the iterative model selection. In the following sections, we
describe the different sampling strategies, the proposed filter to select good plane
hypotheses and finally compare the impact to uniformly distributed sampling.

Uniformly Distributed Sampling

One possibility to compute plane hypotheses is to sample features uniformly. This
method is often used for robust object detection or pose estimation, where the
percentage of outliers is known to be lower than 50%. A typical setting is to
estimate the affine homography of image points matched with a model. Then the
number of attempts to select outlier free samples is

k =
log (1− p)

log (1− εm)
(3.12)

If the desired confidence to obtain outlier free samples is p = 99% and if the data is
contaminated with 50% noise, for an affine model (m = 3) 35 trials are necessary.
In our case, the setting is much more complex. In one of the test images shown in
Figure 3.1 we marked 10 ground truth planes. To compute the plane homography,
we need m = 4 point pairs. If we assume that all 10 planes have equal size, and
we also want a desired confidence of p = 99% and the data consists of only 20%
noise, there are 112429 trials necessary to compute one plane. Hence, uniformly
distributed sampling does not lead to satisfying results within a given timeframe.

Sampling Biased Towards Near Adjacent Points

Instead of uniformly distributed sampling, Myatt et al. [MTN+02] propose to bias
random selection towards clusters in a multi-dimensional space. If a selected point
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Figure 3.1: Test image with ground truth overlay

A is an inlier, then there will be an increased probability of a point adjacent to
A also being an inlier. Following this approach we first select an interest point
A randomly. Then all other points are ordered by increasing Euclidean distance
from A and three additional nearby points are randomly selected, with a sam-
pling probability depending on their position in the sorted list using a Gaussian
distribution.

Sampling Biased to Features with a Similar Motion Vector

Another heuristic, which significantly improves the performance, is to sort the
points depending on the motion vector. The motion vector describes the shift of a
specific point between two images. The method proposed in the last section sorts
points depending on the Euclidean distance of an initial selected point. Here we
propose to select a point A and sort all other points depending on the similarity of
the motion vector to the first point. The selection is also biased to similar motion
with a Gaussian distribution.

Sampling Biased to Unexplained Regions

The last three methods focus on increasing the probability of selecting three points
which lie on the same plane as a point A, selected first. The overall approach is
concerned with describing the whole scene with planes. Thus, if a plane is found it
seems to be plausible to bias sampling towards unexplained regions. Our iterative
model selection schema perfectly supports this. In each iteration explained interest
points are marked and points are sampled in unexplained regions. As described
in Section 3.2, newly generated plane hypotheses have to compete with previously
selected ones.

Pre-Filter Good Hypotheses

Although we propose a sequential algorithm, there are many samples necessary to
reliably detect planes in a complex scene. Hence, it is important to prune plane
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(a) Bad hypothesis, growing stops (b) Good hypothesis

Figure 3.2: Connected components filter for early pruning of plane hypotheses. A
2D Delaunay triangulation is used to connect interest points (white edges). Three
points are sampled (red) and an affine homography is computed. The graph is
traced and points supporting the affine mapping are clustered (green). A Hypoth-
esis is accepted if all initial sampled points are connected within the cluster (right
image).

hypotheses as early as possible. We propose a connected components analysis of
points supporting a hypothesis. Therefore, neighboring interest points are con-
nected using a 2D Delaunay triangulation. To further reduce the complexity of the
initial model, only three points are sampled and an affine homography is computed
(6 degrees of freedom). Starting from one of the sampled points, the graph is ex-
panded and interest points which support the affine transformation are clustered
until a cut-off threshold is reached. If all three initial sampled points are visited
during clustering, this hypothesis is considered as good. Otherwise the algorithm
starts again with a new set of three points. In case a good hypothesis is found,
a least squares homography (8 parameters) is computed using the Direct Linear
Transform (DLT) algorithm proposed by Hartley [Har08] (see Appendix A), the
graph is further expanded and this plane hypothesis is considered for the subse-
quent model selection. Algorithm 3 summarizes the proposed plane hypothesis
generation. In Figure 3.2(a) a typical bad hypothesis is shown. Three initial pairs
of interest points are shown in red. The clustering of interest points (green dots)
immediately stops because one of the three points lies on a totally different sur-
face. In contrast, in Figure 3.2(b) the cluster of interest points (colored green) also
contains the initial sampled points (red). In our test images, only about 3% of the
plane hypothesis are refined and passed on to the subsequent model selection.

The comparison in Figure 3.3 shows the improvement when the sampling is
biased towards unexplained interest points. While in the test scenario shown in
Figure 3.1, uniform sampling does not exceed a tp-rate of 0.3, a bias towards near
adjacent points improves the tp-rate to 0.6. It is interesting to note that if a bias to
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Algorithm 3 Connected component filter for early pruning of plane hypotheses

Create 2D neighborhood graph using the Delaunay triangulation
while No good plane hypothesis found do

Sample 3 interest point pairs
Compute affine transformation A (6 parameters)
Trace graph and cluster interest points which support A
if Cluster contains initial 3 sampled points then

Good hypothesis found
break

else
No hypothesis found
continue

end if
end while
Compute least-squares homography (8 parameters) using the DLT algorithm
Continue clustering and store plane hypothesis for iterative model selection
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Figure 3.3: Sampling strategies and pre-filtering of hypotheses

a similar motion vector is used, the tp-rate is slightly higher for a lower number of
iterations. The reason for this might be that for big planes, which are detected first,
the interest points are distributed more uniformly over the plane, while in contrast
the results are more unstable if near adjacent points are selected. As expected,
incrementally adding hypotheses in unexplained regions drastically improves the
quality. In combination with the connected component analysis, this method has
a tp-rate higher than 0.99 with a low number of only 120 filtered hypotheses.
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3.3 Tracking of Clusters

One of the key benefits of our algorithm is that prior knowledge can be introduced
easily. We exploit this in image sequences where detected planes are propagated to
subsequent frames. For this, the interest points of planes detected in the previous
image pair are matched with interest points of the current frame, followed by
a robust homography estimation using least median of squares (LMedS)2. Thus
Algorithm 2 is extended with tracked planes Ptracked, which are used to initialize
P . Following Ptracked, the initialization value of the inlier ratio ε increases to the
number of accumulated interest points of the tracked planes divided by the total
number of matched interest points. Hence, plane detection already starts with
an initial guess of planes which have to survive the following hypothesis selection
stage.

3.4 Post-Processing of the Planes

Plane hypotheses often capture interest points that match the underlying homog-
raphy by chance. To account for this, we introduce a post-processing step with the
goal to assign features which support more than one homography to an individ-
ual plane and additionally split planes because of an interest point neighborhood
constraint, using the Delaunay triangulation.

3.4.1 Belief Propagation for Feature/Plane Assignment

An straight-forward solution to assign interest point pairs that support more than
one homography to an individual plane is to select the point with the minimal
error to the transferred model point. In cases where this assignment is ambiguous,
i.e., the error in several planes is similar, the assignment of the adjacent points
can be considered. This can be formalized with a Markov random field (MRF)
framework. Felzenszwalb et al. [FH06] use a MRF framework to solve early vi-
sion problems, such as image restoration and stereo image registration. We use
this method to assign interest points to individual planar patches. Because of the
irregular spatial distribution of the interest points, we use the Delaunay triangu-
lation to define the neighborhood graph, instead of the grid graph proposed by
Felzenszwalb et al. [FH06]. Thus the general goal is to assign plane labels l ∈ L to
interest points f ∈ F with respect to an energy function

E(l) =
∑
f1∈F

Df1(lf1) +
∑

(f1,f2)∈N

W (lf1 , lf2) (3.13)

2For robust estimation of homographies, we use an implementation by Manolis
Lourakis [Lou06].
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belief prop. min. error no post-processing

precision (ppr) 0.980 0.970 0.946
wrong assignments per image (nf,fp) 5.53 8.435 16.7

Table 3.1: Comparison of feature assignment methods.

where N are the undirected edges of the interest point neighborhood graph, Df1(lf1)
is the data cost of assigning plane label lf1 to interest point f1 and W (lf1 , lf2) mea-
sures the cost of assigning the labels lf1 and lf2 to two neighboring interest points.
To approximate the MAP solution to MRF problems, a max-product algorithm
can be used (see [WF01]). The reason why the algorithm only approximates the
MAP solution is that the graph is cyclic and therefore Loopy Belief Propagation is
used. For a non-cyclic graph, Belief Propagation would return the exact result. We
use the negative log probability of Equation 3.6, thus the max-product becomes a
min-sum. Felzenszwalb et al. [FH06] have shown that the minimization problem
can be solved by iteratively passing messages

mt
f1→f2(lf2) = min

lf1

W (lf1 , lf2) +Df1(lf1) +
∑

s∈N(f1)\f2

mt−1
s→f1(lf1)

 (3.14)

around the graph. mt
f1→f2(lf2) is a vector whose dimension is given by the number

of available planes and stands for a message that a feature f1 sends to a neigh-
boring feature f2 at iteration t. For first experiments we set W (lf1 , lf2) = 0 if the
features f1 and f2 have the same label and in case they have different labels we set
W (lf1 , lf2) = c to a constant cost value c. After T iterations the final assignment
of interest points and plane labels is the minimum of the individual label elements
of the vector

bf2(lf2) = Df2(lf2) +
∑

f1∈N(f2)

mT
f1→f2(lf2). (3.15)

In Table 3.1 belief propagation and best fit (min. error) assignment are compared
with results without post-processing. It can be seen that because of the normaliza-
tion the difference in precision is rather small but the absolute number of incorrect
feature assignments is significantly reduced.

3.4.2 Splitting of Clusters

Another method to reduce the number of falsely assigned features is to analyze
the distribution of the interest points. The assumption is that interest points are
uniformly distributed on the surface of objects and thus large distances between
neighboring interest points are a hint for incorrect assignment. Hence, we build a
neighborhood graph of the interest points of a plane using the Delaunay triangula-
tion. Then the mean and the standard deviation of the distance between connected
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Figure 3.4: A plane (top surface of packaging) accidentally picks up interest points
in the background. Therefore we split the interest point clusters (colored dots)
using the mean and standard deviation of edges of a Delaunay graph (white edges).

interest points in image coordinates are computed and edges longer than s times
the standard deviation are removed. For each split plane hypothesis, we verify that
the support is large enough, i.e. the merit still surpasses κ1. We found that for
our scenarios a factor of s = 1 works best and thus keep it fixed for all following
experiments. Figure 3.4 shows the edges of the Delaunay neighborhood graph in
white and the plane hypothesis split into two groups of interest points. The dark
cluster is accepted and the weaker white group is rejected, since it does not surpass
the base cost κ1.

3.5 Tests and Evaluation

To test our method, we use two completely different sets of images. Motivated by
our cognitive robotic scenarios, the first set of images show packaging of arbitrary
shapes typically found in a supermarket (see Figures 3.8). We placed each object
in front of a weakly textured background as well as in a highly cluttered scene. For
comparison, we additionally test the system with the houses data sets published by
the Visual Geometry Group at the University of Oxford [Oxh] (see Figures 3.10).
To get ground truth, we manually marked all planes in the foreground and the
dominant ones of the background, resulting in 231 planes in 56 images. To test the
tracking capability of our method, the packaging data set consists of 8 sequences
with 4 subsequent images, whereas we use 6 sets from Oxford with also 4 images,
but these images are not ordered in a sequence.
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For all experiments we use SIFT, the well known interest point detec-
tor/descriptor proposed by Lowe [Low04]. SIFT features are matched in image
pairs using the Euclidean distance of the descriptors and matches are accepted
if the NNDR (nearest/next distance ratio) d is below 0.8. To compute the ho-
mography, we follow Hartley [Har08], i.e., points are normalized to zero mean and
scaled to get an average distance of

√
2 from the origin. Then the homography is

estimated using the Direct Linear Transform (DLT) algorithm.

Three numbers are computed to compare the methods. The first is the feature
based precision

ppr =
nf,tp

nf,tp + nf,fp
(3.16)

which is the ratio of the number of inliers nf,tp correctly located on a ground truth
plane and the total number of features per detected plane nf,tp +nf,fp. The second
number is the oversegmentation rate

pov =
np,fp

np,tp + np,fp
(3.17)

per plane which indicates whether an algorithm splits a plane into several parts.
np,fp the number of false positives is the number of detected planes minus the
number of correctly detected planes np,tp. Furthermore, we compute the plane
based true-positive rate (tp-rate)

ptp =
np,tp

np,tp + np,fn
(3.18)

which describes the ratio of the correctly detected planes np,tp and the total number
of planes np,tp + np,fn.

3.5.1 Parameter Optimization

To analyze the influence of the parameters of the proposed method, we tested it
with the first half of the packaging data set. We vary the parameters: number
of random hypotheses Z = [1...35], κ1 = [1...15] and κ2 = [0...1.] and plot the
performance measures. Figures 3.5(a), 3.5(b) and 3.5(c) show that our algorithm,
in particular with respect to precision, is robust against variation of the parameters.
While the over-segmentation-rate in Figure 3.5(a) is almost constant, the precision
slightly increases at the beginning and the tp-rate reaches a peak at Z = 3. The
Parameter κ1 mostly influences the over-segmentation-rate and the tp-rate. We set
κ1 = 6 to the maximum of ptp, where pov is already low. In Figure 3.5(c) it can be
seen that the Parameter κ2 is stable in a wide range. We set κ2 = 0.4, where the
tp-rate has a maximum.
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Figure 3.5: Parameter optimization

method ppr pov ptp savings

greedy 0.978 0,021 0.944 323.6
brute force 0.978 0,004 0.966 323.8

Table 3.2: Comparison of a greedy solution and the exact brute force computed
solution of the QBP.

3.5.2 Comparison of a Greedy and the Exact Brute Force
Solution of the QBP

To evaluate the performance of a greedy approximate solution of the Quadratic
Boolean Problem (QBP) from Section 3.2.1, we compute the feature based precision
ppr, the over-segmentation-rate pov, the true-positive rate ptp and the total savings
S (see Equation 3.11) for our algorithm. Table 3.2 shows that there is a very small
decrease in performance for the approximate solution.
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Figure 3.6: Comparison of plane detection methods. Left graph shows the plane
detection result for images with no background texture. The test images of the
right graph have a highly textured background.

3.5.3 Plane Detection

For the experiments all images of our packaging data set and the Oxford houses
data set [Oxh] are used. We compare the proposed methods with a sequential
RANSAC and J-LINKAGE. The RANSAC based method detects a dominant plane
and marks supporting features, which are then excluded in the following iterations.
J-LINKAGE is an implementation according to Fouhey et al. [FSB10]. With ItMoS
we refer to the proposed iterative model selection algorithm (see Section 3.2). For
the tests, sampling of interest points is biased to near adjacent points and to
unexplained regions (see Section 3.2.2). Additionally, ItMoS (f) stands for our
method including the connected components based pre-filter and ItMoS (f,t) refers
to our method including tracking of planes in image sequences.

The experimental evaluation shows that our model selection method outper-
forms the other methods in terms of tp-rate and lower over-segmentation, especially
for complex scenes. Although it is not optimized for outdoor environments of the
Oxford houses, it competes with the other methods. The incremental RANSAC
approach has a slightly higher tp-rate at the cost of over-segmentation. If one
compares Figure 3.6(a) with the Figures 3.6(b) and 3.7(b), an interesting detail
can be seen. Although we use the same post-processing step for all of the methods
(see Section 3.4), in the case of highly cluttered images over-segmentation increases
especially with the RANSAC based method, while it remains low for the ItMoS
methods. Comparing Figure 3.6(a) and 3.6(b) it seems that all methods have a
higher tp-rate in case of a cluttered background. For foreground objects, some of
the marked ground truth planes are very small and thus easily missed, while the
background planes of the cluttered scenes are generally rather large and thus more
easily detected, which explains the higher overall tp-rate for these scenes.

The Tables 3.3, 3.4, 3.5, 3.6 show the numerical results depicted in Figures 3.6
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Figure 3.7: Results for all our images (left) and for the Oxford houses data set
(right).

method ppr pov ptp tprocessing [s] nsamples [1/image]

ItMoS 0.952 0.021 0.718 1.4 2814
ItMoS (f) 0.977 0.051 0.714 1.6 1486 (24318)
ItMoS (f.t) 0.966 0.014 0.688 1.0 858 (14476)
RANSAC 0.981 0.097 0.726 0.7 1793
J-LINKAGE 0.980 0.030 0.590 5.7 5000

Table 3.3: Results for the packaging data with a weakly textured background.

method ppr pov ptp tprocessing [s] nsamples [1/image]

ItMoS 0.923 0.123 0.745 7.4 6629
ItMoS (f) 0.980 0.175 0.798 3.8 672 (30904)
ItMoS (f.t) 0.978 0.156 0.793 2.5 481 (18903)
RANSAC 0.977 0.421 0.738 5.4 16886
J-LINKAGE 0.980 0.210 0.650 27.8 5000

Table 3.4: Results for the packaging data with a highly textured background.

method ppr pov ptp tprocessing [s] nsamples [1/image]

ItMoS 0.973 0.139 0.742 8.7 8950
ItMoS (f) 0.970 0.126 0.761 2.5 1017 (26528)
ItMoS (f,t) 0.978 0.080 0.756 1.7 639 (17897)
RANSAC 0.979 0.259 0.722 3.0 9320
J-LINKAGE 0.980 0.110 0.620 16.0 5000

Table 3.5: Results for the packaging data set.
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method ppr pov ptp tprocessing [s] nsamples [1/image]

ItMoS 0.97 0.310 0.668 13.4 5967
ItMoS (f) 0.99 0.39 0.71 17.7 1856 (75593)
ItMoS (f.t) 0.98 0.35 0.68 13.6 1341 (62932)
RANSAC 0.990 0.568 0.751 88.8 292995
J-LINKAGE 0.992 0.311 0.707 67.1 5000

Table 3.6: Results for the Oxford houses data set.

and 3.7. In these tables, tprocessing stands for the mean processing time per image
without the time needed for computation of the interest points. The experiments
have been performed with a laptop with an Intel(R) Core(TM)2 Duo CPU T7500
(2.20GHz, bogomips 4388.83). Furthermore, nsamples is the mean number of sam-
ples generated per image. For the methods with a pre-filter (ItMoS (f), ItMoS (f,t)),
the first number is the number of samples after filtering and the number within
brackets is the total number of generated samples. It can be seen that much more
hypotheses can be analyzed within a shorter time and only about 3% are passed
on to the model selection stage. Comparing ItMoS and sequential RANSAC, it
can be seen that although ItMoS converges faster and the mean number of random
samples per image is lower the tp-rate is higher. One reason for this is that the
incremental filtering out of interest points which support planes detected first by
the RANSAC method leads to a decreasing inlier ratio and thus to an increasing
number of samples for planes detected later. In contrast, ItMoS treats all planes
simultaneously and thus the number of samples has an appropriate lower value.

In Figures 3.8, 3.9, 3.10 and 3.11, the detected planes are depicted in different
colors. A critical point in images with a highly cluttered background is the inlier
threshold. Especially interest points of the CD’s on the table are often clustered
with parts of the CD cover. In Figures 3.8 and 3.9, they are correctly separated,
but interest points on the CD’s lying on the magazine are clustered together with
the magazine. The inlier threshold is also responsible for the approximation of the
cylinder with piecewise planar surfaces in Figure 3.9(c). If the inlier threshold were
lower and if the cylindrical object were less textured, the approximation would be
less accurate.

Figure 3.10 and Table 3.6 show results of the Merton college and the Wadham
college from the Oxford data set. In these images, the camera motion between the
frames is much larger than it is in our data set. Furthermore the size of the images
is larger (1024x768). In general this leads to a higher processing time. While
our methods converge after 15s...20s, RANSAC and J-LINKAGE need more than
one minute. Furthermore, we tried some indoor examples with satisfying results.
Figure 3.11(a) shows a rather crowded living room where planes of the pillow break
in different pieces. In contrast Figure 3.11(b) shows a sparsely textured room where
very small planes on the tile stove are merged to one bigger plane and because of
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(a) (b) (c)

Figure 3.8: Results for the packaging data set 1 using ItMoS, the proposed Algo-
rithm 2.

(a) (b) (c)

Figure 3.9: Results for the packaging data set 2 using ItMoS, the proposed Algo-
rithm 2.

(a) MertonCollege1 (b) WadhamCollege

Figure 3.10: Examples of the Oxford Visual Geometry data set using ItMoS.

low texture, the couch is hardly visible for the system.
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(a) (b)

Figure 3.11: Indoor scenes using ItMoS.

3.6 Discussion

This chapter presented a method for modelling a scene in terms of piecewise planar
surfaces which are represented by the 2D projective transformation homography.
For this, we track interest points in image pairs and use randomly selected points
to generate plane hypotheses.

To select the subset of planes that best explains the image pair we reformulated
the model selection based on Minimum Description Length (MDL) proposed by
Leonardis et al. [LGB95] and lateron by Leibe [LLS08]. Finding the optimal set
leads to a Quadratic Boolean Problem (QBP). The time to solve the QBP grows
exponentially with the number of hypotheses. The goal to achieve real time per-
formance makes it necessary to adopt an approximate solution. We have shown
that for this formulation, a greedy approximation gives nearly as good results as
a brute force computed exact solution. But still, the problem space to compute
the interaction matrix for the plane hypotheses is of size O(n2) and hence, we pro-
pose to embed model selection in an incremental algorithm to keep the interaction
matrix of the QBP as small as possible.

Nevertheless, the piecewise planar scene model can only be as good as the
generated plane hypotheses. Besides a uniformly distributed sampling, we explored
two options to increase the probability of choosing point pairs which are located
on the same plane. Experiments have shown that the selection of near adjacent
points to the first sampled point, using the Euclidean distance, gives nearly as
good results as the selection using a sorted list depending on the motion vector of
each point pair. It seems to be most important to keep the search space as small
as possible. Our incremental model selection perfectly supports this because it is
possible to distribute samples in unexplained regions.

There are two more details which dramatically improve the performance. First,
it is important to provide a small number of good hypotheses. Superior performance
is achieved with a connected component based pre-filter. This filter is able to select
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the important 3% of hypotheses which are then passed on to the least-squares
refinement and to the model selection. Secondly, the performance is improved if
three points are sampled first, a six parameter affine transformation is used for
the connected component analysis and after that the full 8 parameter least-squares
homography is computed.

Up to now we did not aim at providing a pixel-wise segmentation, but it seems
to be feasible to extend the approach with a post-processing to get a dense piecewise
planar object model. One possibility would be to introduce a multi-label segmen-
tation using a Markov Random Field (MRF) optimization and graph-cuts, e.g.,
using the method proposed by Sudipta et al. [SSS09] and Micusik et al. [MK09].
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Chapter 4

Coherent Planes in Image
Sequences

Typical vision systems integrate low-level visual cues in a hierarchical fashion and
extract relevant output from this bottom-up processing. More recent approaches
try to establish feedback loops and combine different vision methods at differ-
ent levels, but these methods also reach their limitations if dynamical scenes get
crowded up and objects get partially or even totally occluded. This chapter ex-
plores how to benefit from long image sequences. In this context, it is an excursus
to modelling objects in 2D without a reconstruction of the Euclidean 3D structure.
Instead, we try to handle the inaccuracy of the object model and the uncertainty
of the vision component by means of reasoning over the image sequence. Planar
patches from the previous chapter can directly be used for reasoning in long image
sequences. But to show the benefit of our reasoning approach, we use a simpler mo-
tion clustering of interest points for segmentation and a star-shaped representation
for recognition.

The work is inspired by findings of Gredebäck [Gre04] and Spelke [SvH01], who
have shown that even infants at the age of 4 months build a spatio-temporal rep-
resentation of objects and accurately predict the reappearance after full occlusion.
To incorporate such ability, bottom-up visual processing is fused with top-down
reasoning and inference to keep track of occluded objects and to learn appearances
of objects that continuously change due to rotation or lighting.

We investigate two methods, namely reasoning based on an evaluation
function for an object hypotheses graph and tight coupling of segmen-
tation, detection and tracking using model selection. The first one builds
on a reasoning component originally developed by Antenreiter et al. [AA06] for
template based object tracking. The approach reasons about occlusion and hiding
events and maintains a hypotheses graph that is updated according to the visual
input. In case of a plausible hypothesis, a learning event is triggered and the vision
component updates the interest point based object model. If the object is moving,
interest points adjacent to the assumed object boundary are tested for consistent
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motion. Furthermore, an interest point statistic is maintained that allows to delete
interest points with low information content. Hence, the approach is able to keep
an object model smart and manageable. In [PAAV09] and [APVA09], we have
shown the increase of performance of an already very robust interest point based
object detector in case our reasoning component keeps track of the objects.

Secondly, in Section 4.4 we test a tight coupling of interest point based object
segmentation, detection and tracking within a model selection framework [PZV09].
This approach adds hypotheses depending on simple motion segmentation and
weights the results with priors from the last frames. Additionally, direct occlusion
detection based on interest point statistics is proposed, which triggers hiding events.

We test the methods with a scenario where a human moves different objects
which interact several times, i.e., get occluded and reappear again. The goal is that
the system tracks the objects even under full occlusion while enhancing the object
model with never seen interest points and removing unreliable interest points.

After a review of the related work, we describe the overall approach (Section 4.2)
and the common parts of both methods, namely the object model (Section 4.2.1)
and the object detection (Section 4.2.2). Subsequently, each reasoning approach
is described in detail in Section 4.3 and Section 4.4. Finally, results are given
in Section 4.5.

4.1 State of the Art

Approaches can be split into occlusion reasoning systems for tracking and segment-
ing objects, mostly for traffic scenes or for following persons.

Elgammal and Davis [ED01] use a probabilistic framework for segmenting peo-
ple under occlusion. Their system operates on a pixel level, whereas our system
performs the occlusion reasoning on a more abstract object level.

Huang and Essa [HE05] present an approach for tracking a varying number
of objects through temporally and spatially significant occlusions. The method is
built on the idea of object permanence. The system can track objects in presence of
long periods of full occlusions. They assume that a simple color model is sufficient
to describe each object in a video sequence. Therefore they do not have to update
their object models.

The approaches in [BT98] and [MJD+00] use image regions for occlusion rea-
soning. A region may consist of one or more objects, the relative depth between
objects is not considered. If occlusions occur, the system merges the affected re-
gions into a new region. On the other hand, a region is split, if the system is able to
discriminate objects within this region. Thus, these approaches handle occlusion
not at the object level.

Bennett et al. [BMCH04] enhance tracking results of moving objects by rea-
soning about spatio-temporal constraints. The reasoning engine resolves errors,
ambiguities, and occlusions to produce a most likely hypothesis, which is consis-
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tent with global spatio-temporal continuity constraints. However, the whole system
performs only bottom-up processing.

One way to incorporate knowledge into vision systems is to use a knowledge-
based approach, e.g. [MH90] for an aerial image understanding system, and
[CPM00] for traffic monitoring applications. Matsuyama and Hwang [MH90] iden-
tified two types of knowledge in an image understanding system, namely, knowledge
about objects and about analysis tools, and they built a modular framework which
integrates top-down and bottom-up reasoning. The system extracts various scene
descriptions, and an evaluation function selects the most complex scene description
from the database. The evaluation function is simple and trusts the low-level vision
output more than the reasoning output. While reasoning in [CPM00] is based on
image regions using trajectories and velocity information, our reasoning is based
on more abstract object behavior to achieve a consistent scene interpretation even
if objects are totally occluded.

4.2 Approach

Computer vision deals with very noisy sensor data and a huge amount of data.
Thus, robust object detection in single images is still challenging. Reasoning in
image sequences addresses this in two ways: First, with the prior knowledge from
previous images the location of objects can be predicted, which accumulates to
higher certainty of object detection. The second advantage when dealing with im-
age sequences is the reduction of the search space. If we keep track of objects, we
do not need to re-detect them again. Even if objects get totally occluded, the loca-
tion of the re-appearance can be predicted accurately around the occluder. In the
following sections, we describe the overall approach and the common components
of both reasoning methods proposed.

Both approaches consist of three main parts (Figure 4.1, right): the object de-
tector, the reasoning component, and the knowledge-base used by the reasoning
component. The reasoning component maintains a graph of hypotheses (Figure 4.1,
left). Each hypothesis describes the content of a particular frame of the video, and
it is linked to plausible hypotheses for the previous as well as for the next frame. A
hypothesis is an assumption about the states of all relevant objects. It is calculated
from the vision inputs for the current frame, from one of the hypotheses for the
previous frame, and from the rules in the knowledge-base. Our current knowledge
base includes the rules about the appearance of interacting physical objects. Ex-
amples for such rules are given in Section 4.3. Communication between the object
detector and the reasoning component is not just bottom-up, but also includes
top-down instructions from the reasoning component to the object detector, such
as a request to detect a specific object at a certain location, or the command to
update the object model with interest points at a specified position. The following
list describes the main steps:
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Figure 4.1: System overview, including the hypotheses graph (left), the structure
of the system and the communication between components (right).

1. Top-down processing: Feed information from the hypotheses about the pre-
vious frame to the vision components.

2. Bottom-up processing: Create new pre-hypotheses from the output of the
vision components. These pre-hypotheses give possible object positions and
the confidence of the vision components for these positions.

3. Reasoning: Apply the construction rules of the knowledge base to the pre-
hypotheses. The construction rules construct all plausible hypotheses.

4. Hypotheses selection: Prune the hypotheses graph from unlikely hypotheses.
This pruning is based on an evaluation function for sequences of hypotheses
corresponding to the sequence of frames.

5. Object model update: Provide the boundary of the visible object area to
update the object model if the actual hypothesis is reliable.

The next sections in detail describe the involved components and the main steps,
starting with the object detector.

4.2.1 Object Representation

In Section 4.2, we described our reasoning approach which is designed to process
image sequences. The first step is to learn the initial object models. To this
end, the user has to mark the object boundaries in the first frame. In case of
an existing initial object model or in case we use some kind of segmentation (e.g.
plane detection proposed in Chapter 3 or the motion segmentation from the tested
implementation described in Section 4.4.1), this interaction can be omitted.

As object representation, we use a part based model proposed by Leibe
et al. [LLS08] for the task of object class recognition. The idea is to build up a
vocabulary (in the following termed a codebook) of interest points and to compose
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(a) (b)

Figure 4.2: Figure 4.2(a) shows detected interest points and in Figure 4.2(b) the
star-shaped object representation is sketched.

the geometric structure out of this vocabulary. The initial set of codebook entries
is generated from the first image. As proposed by Lowe [Low04], the Difference-
of-Gaussian (DoG) operator and SIFT descriptor are used for detection and de-
scription of interest points. These interest points are clustered and each codebook
entry represents a cluster of interest points with a similar SIFT descriptor. The
codebook is then used to build up a structural model of the object. Therefore de-
tected interest points on the object are matched with the codebook and the relative
locations of interest points with respect to the center of the object are assigned to
codebook entries.

In summary, each codebook entry represents a part of the object and stores the
possible locations where this part can be found relative to the object center. The
result is a star-shaped structural model of the object that is shown in Figure 4.2.

4.2.2 Object Detection

As described in Section 4.2.1 for generating the codebook, interest points are de-
tected using the DoG-operator and the SIFT-descriptor for object recognition. The
detected interest points are matched with the codebook, and activated codebook
entries vote for an object center.

Consistent votes are accumulated in the Hough accumulator array. We use a
four dimensional space where occurrences of activated codebook entries vote for an
object location xv = (xv, yv), a scale sv and an object model m:

sv =
si
socc

, (4.1)

xv = Rxoccsv + xi. (4.2)

In Equation 4.1 si is the scale of the detected interest point in the current image
and socc denotes respectively the scale of the occurrence in the learning image.
In Equation 4.2 xi is the location of the detected interest point in the current
image, xocc denotes the location of the object center with respect to an occurrence
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of the model and R stands for the matrix that describes the rotation (in image
coordinates) from model to image orientation of the interest point. Likewise, as
proposed by Leibe et al. [LLS08] we weight votes depending on the cluster size of
the according codebook entries.

Once all matched interest points have voted, the Hough accumulator array is
used to find the most promising object hypotheses. The votes in each Hough bin i
are summed up and – starting with the best hypothesis, i.e., the maximal bin – the
object location is refined. This is done in a mean shift like procedure, for which
the neighboring bins are examined for contributing votes. This handles the typical
boundary effect of Hough voting schemas.

The result of the mean shift refinement is a cluster of interest points that
consistently vote for an object location. This cluster is used to compute an affine
homography Haff , for which we use a Least Median of Squares implementation,
publicly available at FORTH [Lou06].

We define the object confidence

detected(o|m, ft) =
nmatched
ndetected

(4.3)

of an object o for a given frame ft and an object model m as the ratio between
the matched interest points nmatched and the number of the detected interest points
ndetected located within the boundary projected to the current frame.

4.3 Reasoning based on an Evaluation Function

for the Object Hypotheses Graph

The hypotheses graph described in Section 4.2 stores different explanations for
the scene, i.e., object hypotheses and the corresponding confidence values for each
image of a video. The challenge for the reasoning component is to consider the
possible object locations detected in the image sequence and to select the best
hypothesis available up to now.

The main idea is to split a hypothesis into two or more plausible hypotheses, if
the correct hypothesis cannot be inferred. What can be inferred mainly depends
on what can be observed. In the setting for the following experiments, we use one
static camera. Thus the distance of objects from the camera cannot be observed. If
two boundaries intersect, it cannot be decided ad hoc which object is in front of the
other object. Hence, the current hypothesis is split in two and each possibility is
represented by one of the hypotheses. Examples for hypotheses construction rules:

1. If the boundaries of two objects intersect, then split the hypothesis into two.
One hypothesis states that the first object is in front, the other hypothesis
states that the second object is in front.
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2. If an object is partially occluded by one other object (occluder), then we
generate two hypotheses. One hypothesis states that the object does not
move and reappears at the old position. The other hypothesis states that the
occluded object can reappear along the trajectory of the occluder.

3. If the object detector returns two or more possible object positions with sim-
ilar confidence for an object, then generate one hypothesis for each plausible
object position.

After running the object detector and constructing the hypotheses graph, an
evaluation criterion is used to calculate the most likely hypothesis path which
explains the video sequence. The following summarizes the reasoning approach
originally developed by Antenreiter et al. [AA06] for template based object tracking.
The evaluation function Q(H|F) evaluates a hypothesis path H = 〈h1, . . . , hm〉
from the root hypothesis at frame 1 to a hypothesis for the current frame where
F = 〈f1, . . . fm〉 is the corresponding sequence of frames. It is a quality measure
of a hypothesis path compared to other paths. We sum the quality measures q for
each hypothesis on the path to calculate the overall evaluation measure Q,

Q(H|F) =
1

m

m∑
i=1

q(hi|fi). (4.4)

The quality measure for a hypothesis of frame ft then is the sum of all normalized
plausibility values,

q(hi|ft) =
1

#{o : o ∈ hi}
∑
o∈hi

p(o|hi, ft)
maxh∈Ht p(o|h, ft)

(4.5)

where Ht = {h : h is a hypothesis for frame ft} is the set of all hypotheses for
frame ft. The plausibility value p(o|hi, ft) is a mapping of the detector state and
the current state of the hypothesis hi.

The inconsistency function ι combines the confidence value detected(o|hi, ft) of
the detector component with the relative occluded area occludedarea(o|hi), and
should detect inconsistency between these values:

ι(o|hi, ft) =

∣∣∣∣∣−
√

2

2
+

√
2

2
detected(o|hi, ft) +

√
2

2
occludedarea(o|hi)

∣∣∣∣∣ (4.6)

Equation 4.6 describes the normal distance from a line defined by (1, 0) and (0, 1)
and thus the values are between 0 and

√
(2)/2. The function occludedarea returns

the normalized area of the occluded object area, depending on the state of the
given hypothesis, ranging from 0 to 1. We assume that if the detector confidence is
small, the occluded object area should be large. The inconsistency ι is small if the
low-level vision confidence is small and the occluded object area is large, or vice
versa.

53



4. Coherent Planes in Image Sequences

The plausibility function p maps the inconsistency value to a value between one
and zero. For objects which are not totally occluded, we define

p(o|hi, ft) := − 2√
2
ι(o|hi, ft) + 1. (4.7)

If an object is totally occluded, a different definition of plausibility is needed. It
would be misleading if a plausibility value of 1 were assigned to totally occluded
objects, since a visible object will not typically receive a plausibility value of 1
due to noise, illumination changes, etc. Then a hypothesis with a totally occluded
object would have higher plausibility than a hypothesis where the same object is
partially visible. Therefore, we bound the plausibility of a total occluded object
by its maximal plausibility when it is visible:

p(o|hi, ft) = max
h ∈ Ht

o is visible|h

p(o|h, ft) (4.8)

If there does not exist a hypothesis h ∈ Ht so that object o is visible, then set
p(o|hi, ft) = 1.0. This is the case where all hypotheses assume that the object o is
totally occluded.

4.4 Tightly Coupling Segmentation, Detection

and Tracking in 2D using Model Selection

The approach described in the preceding sections provides a general framework to
integrate object detection and reasoning with the goal to improve the availability
of object locations even if visual detection fails. To create the initial object model,
manual interaction is necessary. A necessary basic ability for such an artificial
cognitive system (be it an ambient intelligent system or an autonomous robot) is
to focus on the foreground and perceive objects in contrast to the background. In
the following, we introduce a simple clustering depending on common motion of
interest points and a model selection framework to learn 2D appearances of objects
and to keep track of them. Hence, in comparison to the system described above,
we now formalize reasoning for a model selection framework and in addition. the
initialization is not done manually anymore, but by motion segmentation. Thus
the system from Figure 4.1 is enhanced with a motion segmentation which is shown
in Figure 4.3.

4.4.1 Motion Segmentation

The whole system is triggered by the motion segmentation component. We do not
rely on a perfect segmentation of moving objects, but rather take care to achieve
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Figure 4.3: System overview, including the hypothesis graph (left), the structure
of the system and the communication between the different components (right)
including motion segmentation for automatic initialization.

robustness later due to the reasoning component described in Section 4.4.5. Conse-
quently, we just use a fast clustering of interest points based on their affine motion.
Our approach is inspired by the work of Pundlik et al. [PB08], who presented a
real-time incremental approach to motion segmentation, operating on sparse fea-
ture points. In contrast to Pundlik et al., who randomly select interest points and
uses an incremental growing algorithm, we use a 2-dimensional histogram of the
length of the motion vectors and the motion direction to obtain good initial pre-
clusters. Then a splitting algorithm and an outlier detection step follow and the
clusters are merged based on similar affine motion.

In detail: The first step is to examine the 2D-motion histogram. For this,
we search for all local maxima, that is we look for histogram bins which are sur-
rounded by bins with a lower number of entries. Starting from the local maxima,
all neighboring bins are clustered until a saddle bin is found. The result can be
seen in Figure 4.4(a). The next step is to split large clusters in case of intersecting
convex hulls of other clusters. For this purpose, we use a Delaunay tree to create a
location neighborhood graph of all interest points detected in the image. The split-
ting criterion prohibits intersections of two clusters and thus substitutes a cluster
with two new ones if they have no connection within the Delaunay tree. After an
affine outlier detection using a Least Median of Squares implementation, publicly
available at FORTH [Lou06] (see Figure 4.4(b)), the clusters are again merged if
the affine error is lower than the maximal error would be if they stayed separated.
Thus the merging criterion results in

Cm = Ci ∪ Cj for em < max(ei, ej) (4.9)

In Equation 4.9, Ci and Cj are two clusters, which are tested for similar affine
motion and Cm denotes the merged cluster. e stands for the affine errors of the
clusters. Additionally, we can adjust a chaining parameter to cluster only features
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(a) (b) (c)

Figure 4.4: Grouped motion vectors of interest points are shown with identical
colors; different colors mean different clusters. Each subfigure depicts the result
of different processing steps. Figure 4.4(a) shows the result of grouping accord-
ing to similar length and direction of the motion vectors using a 2-dimensional
histogram. Figure 4.4(b) pictures the result after examination of the neighboring
motion vectors using a Delaunay triangulation and after affine outlier detection.
In Figure 4.4(c) the result of Figure 4.4(b) is used to initialize a merging algorithm
which combines clusters depending on their affine motion.

which are tracked for more than two frames and are thus considered as more stable.

Figure 4.4 shows the results of all three main steps. It can be seen that the three
outliers on the hand are filtered out as well as the mismatch on the keypad of the
telephone. The final motion clusters are handed over to the reasoning component
which initializes a new object hypothesis or adds the features to an existing object.
This is explained in detail in Section 4.4.5.

4.4.2 Confidence Values for the Model Selection Frame-
work

Finally, the object detector described in Section 4.2.2 incrementally consumes sup-
porting interest points of neighboring histogram bins with a mean shift algorithm.
The result of the mean shift refinement is a cluster of interest points that consis-
tently vote for an object location. Subsequently, an affine homography Haff of the
cluster is computed, which is used to project the model boundary to the current
frame. The projected boundary is on the one hand used for visualization, but also
for interest point statistics and for computation of the confidence value

c(o|m, ft) = −κ1 + (1− κ2) ·
nmatched
ndetected

+ κ2 ·
smatched
ndetected

(4.10)

of an object o for a given frame ft and an object model m. nmatched is the number
of matched interest points and ndetected is the number of the detected interest points
located within the boundary projected to the current frame. smatched is the sum of
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Figure 4.5: Probability map for one specific object computed using the predicted
location and the result of the occlusion analysis.

the weights

w = pmpocc =
1

nm · nocc
(4.11)

of all matched interest points with pm and pocc denoting the probabilities of the
match and the occurrence in the model, respectively. nocc is the number of oc-
currences of the specific object model of the activated codebook entry and nm is
the number of activated entries of the interest point. κ1 and κ2 are two constants
which weight the different factors.

For tracking of the objects, we use a constant velocity assumption. Therefore,
the affine homography Hinc between two frames is computed for each object. Then
the assumed location and scale is computed for objects of the current frame and
the confidence value is extended to

ctrack(o|m, ft) = c(o|m, ft) + κ3 · log p(oft |oft−x) + κ4 · log s(oft|oft−x) (4.12)

where p(oft |oft−x) and s(oft |oft−x) stand for the location and the scale prior. The
log-probabilities result in negative values. This is reflected in the values of κ3 and κ4
which are used to weight the priors. . We model the priors using a Gaussian around
the predicted location and the last scale. In case of occlusion, the location prior
is extended and surrounds the whole boundary of the occluder. Thus reappearing
objects are accepted near the occluder and at the last seen location (see Figure 4.5).
Then the objects are sorted according to the tracking confidence value and added
to the hypothesis tree.

4.4.3 Maintenance of the Object Models

The next step is to update existing object hypotheses. For this, we compute an
overlap matrix which describes the support of segmented regions and detected
object hypotheses. We define the support

supporti,j =
Aseg ∩ Adet
Aseg ∪ Adet

. (4.13)
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where the support of a segmented region rseg for a detected object hypothesis
odet is the ratio of the intersection and the union of the segmented area Aseg and
the area of the detected object hypothesis Adet. For our experiments we used a
winner takes all updating strategy, which means that the detection result with
the highest tracking confidence value is updated if the support is larger than a
threshold tupdate. Additionally we use a second threshold tnew to create a new
object hypothesis. If a segmented region does not support any detection result
more than tnew, a new hypothesis is created. Depending on the detection results
and these two thresholds an over-complete set of object hypotheses is created, from
which hypotheses explaining the scene in a consistent way are selected.

4.4.4 Direct Occlusion Detection

The reasoner plays the central role in our framework. It predicts object locations
both for the case of tracking and for the case of total occlusion. It creates new
object models or updates existing models depending on coherent segmentation
and detection results and it selects objects from an over-complete set to obtain
a consistent scene interpretation. This section describes the occlusion analysis,
which forms one of the important cues of the reasoning and selection component
described in the next section.

We aim to get a consistent interpretation of an image sequence. Thus it is
necessary to predict objects even if they are totally occluded. Therefore we, devel-
oped an event based occlusion analysis schema. If an object gets lost, the past, the
current and the predicted object locations in the future are examined for possible
occluders. Hence, for each location the overlap of the projected object boundary
with the other visible object hypotheses is computed and if they overlap the visible
object gets an occlusion vote. The voting is performed for all past and future ob-
ject locations which are within a maximum distance of half the object size. After
the visible objects have accumulated the votes, the ID of the occluded object is
assigned to the visible one with the most votes and to all other ones which got
more than 80% of the maximum. It turned out that using this voting schema is
more reliable than only looking at the position of disappearance, because in case
of partial occlusion, our model updating algorithm tends to shrink the estimated
object boundary to the visible part of the object.

Figure 4.6 shows an occlusion event, the correct depth ordering which is esti-
mated from the confidence values and the link of an occluded object to the occluder
(indicated by an object ID within brackets).

4.4.5 Model Selection for Reasoning

As an alternative to the reasoning component described in Section 4.3, we propose
a tight coupling of segmentation, detection and tracking within a model selection
framework. The motivation for model selection has already been introduced in
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(a) (b) (c) (d)

Figure 4.6: Occlusion event including correct depth ordering and an occluded object
linked to the occluder

Chapter 3 for plane detection. The idea is that the same data points cannot explain
more than one object and that the models cannot be fitted sequentially. Thus, an
over-complete set of hypotheses is generated and the best subset is chosen.

As for plane detection, the data set consists of the interest points and each
interest point can only be assigned to one object model. Hence, overlapping models
compete for interest points. This competition is expressed by the interaction costs
qij, while qii represents the merit term of an object hypothesis. Finding the optimal
set of models leads to a Quadratic Boolean Problem (QBP)

max
n

nTQn , Q =

 q11 · · · q1N
...

. . .
...

qN1 · · · qNN

 (4.14)

where n= [n1, n2, · · · , nN ] stands for the indicator vector with ni = 1 if an object
hypothesis is selected and ni = 0 otherwise. Q is the interaction matrix with the
diagonal elements qii = ctrack(o|m, ft) and the off-diagonal elements

qij = − 1

no,weak
· ((1− κ2) · noverlap + κ2 · soverlap) (4.15)

where no,weak is the number of interest points within the projected boundary to
the current frame of the weaker hypothesis, i.e. with the lower confidence value,
noverlap stands for the number of interest points which are shared by both objects
and soverlap is the sum of the weights of all shared interest points (cf. Equation 4.11).
Equivalent to plane detection, the optimization problem described in Equation 4.14
is solved with a greedy approximation.

Hence, object hypotheses are generated with the results from object segmen-
tation, detection and tracking. In addition, the QBP-framework selects a set of
hypotheses that best explains the current frame.
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(a) (b)

Figure 4.7: Two possible interpretations of an observed scene are shown. Fig-
ure 4.7(a) shows the best interpretation of the frame 290, which is the correct
one. The confidence value of this hypothesis path is 0.9669, compared to the other
interpretation in Figure 4.7(b), which is only 0.8913. The system explained the
occlusion event correctly.

4.5 Tests and Evaluation

Both methods, the system including the reasoning component which evaluates the
whole image sequence up to the current timestamp and the QBP-framework for
scene interpretation, have been tested with scenarios where a human moves different
objects which interact several times, i.e., get occluded and reappear again.

4.5.1 Comparison with/without the Reasoning Component

For a comparison with and without the reasoning component described in Sec-
tion 4.3, we processed four video sequences. In the first video sequence we ar-
ranged the objects within three layers. A person moved the objects between the
layers and the objects got partially or totally occluded. The system has to interpret
the sequence correctly, so that it can update the object models accordingly. This
is important, because wrong model updates can accumulate to a wrong model,
which can lead to false detection results. On the other hand – without updating
the object models –, the system will not be able to reliably detect the objects.
Small objects are usually not reliably detected during motion and rotation. In our
first test sequence, the object with id ’I-2’ is an example of such a small object.
Figure 4.7 shows an occlusion event and two possible interpretations from the ob-
served detection results. In Figure 4.7(a) the system concludes that the object with
id ’I-1’ is occluded by the two objects ’I-4’ and ’I-5’. Therefore it can accordingly
update the model for ’I-1’. The system draws the visible boundary for the object
’I-1’. In Figure 4.7(b) the system tries to explain the scene with another object
ordering. This leads to a different and wrong object model for object ’I-1’. The
newly learnt model for object ’I-1’ gives a good detection result, because the system
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: The first box sequence showing the various occlusion events (Frames:
420, 495, 545, 570, 595, and 845). The relative depth between the objects is correct
in every frame.

learnt additional keypoints from the surrounding objects, but the overall hypothe-
sis cannot explain the scene properly. The contradiction is that all detectors give
good detection results even under occlusions. The evaluation function is able to
detect such a contradiction. The corresponding hypothesis of Figure 4.7(a) has a
confidence value of 0.9669, which is higher than the confidence value 0.8913 of the
hypothesis from Figure 4.7(b). In Figure 4.8 we show a more complex arrangement
of objects from the first sequence. Every object has an id label and a boundary.
The system draws the estimated visible boundary. Therefore, the images show the
estimated relative depth between objects. The id label (within the boundary) is
bracketed if the reasoning does not use the detection result. Question marks indi-
cate that the reasoning has assumed a detection failure. A dashed box around the
last known object position is drawn if the reasoning has not enough evidence for
an exact object position. In frame 420 (Figure 4.8(a)), the object with id ’I-1’ is
placed between the objects ’I-4’ and ’I-5’. The relative depth is correctly estimated.
The next frame (Figure 4.8(b)) shows a nearly total occlusion of object ’I-1’, ’I-4’,
and ’I-5’. In Figure 4.8(c) detection results are used for objects ’I-2’ and ’I-3’,
but not for object ’I-4’ which is totally occluded by the hand, and not for object
’I-2’. In the frames 570 and 595 (Figures 4.8(d) and 4.8(e)), there is less occlusion
and the reasoning uses the detection results (bottom-up processing). In the last
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frame the object ’I-3’ is rotated and placed on top of the object ’I-4’. The objects
’I-1’ and ’I-2’ are totally occluded by the other objects in the scene. In Table 4.1,

static model online learned model
Video detection rate depth ordering detection rate depth ordering

box1 95.90% 88.86% 97.81% 85.05%
box2 74.31% 66.43% 98.71% 97.84%
box3 81.43% 74.80% 99.07% 91.24%
cap 32.86% 21.40% 99.95% 93.21%

Table 4.1: Comparison of using a static model versus a dynamic model.

we show a comparison with a system which learns the object model from the first
image (static model). The static model is used with the reasoning component to
explain the scene. The first column shows the detection rate for all visible objects.
The second column indicates how well the reasoning can infer the correct depth
ordering. As can be seen from Table 4.1, our online model improves the detection
results compared to the static model. Additionally, the reasoning component can
prevent the system from learning a wrong model even under occlusion events.

4.5.2 Tests with the Model Selection Framework for Rea-
soning

We processed six video sequences to test reasoning with the model selection frame-
work described in Section 4.4. In the following, we present three sequences, which
show the strengths as well as the weaknesses. The system has to detect object
hypotheses because of consistent moving interest points, interpret the sequence
correctly including hypotheses for totally occluded objects and build object mod-
els with all seen views. In our first video sequence, called Sorting the Shopping
Basket, we arranged typical household articles in a box in a crowded manner. A
person empties the box, resorts the articles and places them into the box again.
The sequence shows many complex interactions and is taken at a low frame rate
(objects move more than 40 pixels between two frames) to show that our system
can handle motion blur and that it is not bound to a strict tracking assumption,
but rather selects the best interpretation that is currently available. Figure 4.9
shows selected frames of the sequence. Currently available object models are de-
picted with bounding boxes and the corresponding IDs and confidence values are
displayed in the upper left corner of each image. In Figure 4.9(a), the first object
is grasped and because of the motion, an object hypothesis with ID 1 is gener-
ated. The next Figure 4.9(b) shows the second object (ID 5) which moves behind
the first object. Correct occlusion assignment and the last detected location are
indicated with the ID within brackets under the occluder ID and with a colored
dot surrounded by a grey circle. During complex actions, sometimes “hallucinated”
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(a) Frame #78 (b) Frame #150 (c) Frame #304

(d) Frame #563 (e) Frame #611 (f) Frame #634

(g) Frame #640 (h) Frame #707 (i) Frame #902

Figure 4.9: Selected frames of the video named Sorting the Shopping Basket, indi-
cating the complex interactions. Bounding boxes of learned objects are shown with
different colors and the corresponding IDs and confidence values of all currently
available models are depicted in the upper left corner of each image. If an object is
lost, the last position is depicted with a colored dot surrounded by a grey circle and
the ID of the occluded object is displayed under the occluder ID within brackets.

object hypotheses are created (Figure 4.9(d) object ID 45) which are not confirmed
and thus deleted in the following frames. In Figure 4.9(e), the object with ID 5
re-appears. In this frame, all eight correctly learned object models are listed in
the upper left area of the image. After some interactions shown in Figure 4.9(f),
4.9(g) and 4.9(h), the sorted box with correct occlusion assignment is depicted in
Figure 4.9(i). Only the chocolate bar (ID 27) is not recognized again, because of a
too drastic change of the size and a too large rotation while it was occluded (i.e.,
no model was generated of this view before).

The second sequence depicted in Figure 4.10 contains three foreground objects.
One of the objects (ID 13) is rotated to different views. Then this object moves
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(a) Frame #578 (b) Frame #640 (c) Frame #676

(d) Frame #772 (e) Frame #810 (f) Frame #850

Figure 4.10: Part of a 900 frames long video which indicates the learning of an
object model including the history of the object. The model of object 13 is learned
while rotating to completely different views. Then it is moved behind object 3
and 9. During full occlusion, the object is rotated and appears again with a view
learned at the beginning.

behind the other two and – triggered by the occlusion event – a model of all views,
which have been shown before, is computed. During full occlusion, the object
is rotated and re-appears with a view shown at the beginning. It is correctly
recognized again in Frame #850 (Figure 4.10(f)).

(a) Frame #1820 (b) Frame #2175 (c) Frame #2460

Figure 4.11: Three images of a 2590 frames long video are depicted showing two
possible errors.

In Figure 4.11, another sequence with household articles is shown. Two errors
occurred despite the correctly learned object models. The first one is that the model
of the xerox box (ID 27) has disappeared. This object hypothesis is not confirmed
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often enough during tracking and thus it has been deleted due to our forgetting
curve. The second error is that the occluded object with ID 5 is not linked to the
occluder 37. Because of a rotation in depth during occlusion, the prediction was
wrong and thus object 5 did not get in contact with the occluder 37.

4.6 Discussion

This chapter discussed modelling and detection of objects in image sequences using
a simple two dimensional star-shaped object model. A reasoning system is proposed
to handle the inaccuracy of the object model and to keep track of the objects
even if they are fully occluded. For reasoning, two methods are tested. The first
approach combines a decoupled reasoning component and the vision component
with a general interface. The reasoning triggers detection and learning of a model
and maintains a hypotheses graph based on an evaluation function. The second
method is based on model selection to select hypotheses from an over-complete
set, which currently best explain the image sequence. Hence, it tightly couples
segmentation, detection and tracking.

We have shown that both methods are well suited to keep track of objects under
full occlusion. Through maintaining different hypotheses it is possible to update
the object model and to handle the drift typical for online update. Thus an image
sequence with more than 2500 frames showing a large number of partially and
totally occluded objects could be handled successfully.

However, two limitations arise from these methods. The evaluation of the hy-
potheses graph is NP-hard and thus early pruning is a crucial point to achieve
real time performance. Another issue is that reasoning can handle the inaccuracy
of the star-shaped model, but it is not possible to reconstruct the 3D Euclidean
structure necessary for robotic applications. To solve this, the system could be
adapted and a more accurate object model introduced, e.g., a model constructed
from planar patches such as described in the previous chapter. Hence, the next
chapter is concerned with the creation of 3D object models from planar patches.
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Chapter 5

From Planes to Objects

In Chapters 3 and 4, we provided tools to detect meaningful structures – namely
planar patches – in image pairs, which are then tracked and consistently interpreted
during partial and total occlusions in long image sequences. Up to this point, planes
are modelled with homographies which provide a lot of information necessary for
robot manipulation. According to the requirements list in Chapter 1, Section 1.2,
the piecewise planar object model already

• consists of meaningful parts

• forms clusters of parts according to to object hypotheses

• provides a description to recognize object instances

• enables object interaction

• contains elements to support a description for recognizing object classes and
categories, and

• contains elements to support action selection and planning

Requirements that are not or only partially fulfilled – such as to recognize ob-
ject classes, to detect affordances, to enable interaction and to accordingly do
the required planning – highly depend on the 3D Euclidean structure. Hence, in
this chapter we are concerned with the Euclidean reconstruction using the pla-
nar patches from Chapter 3. We further examine how to create reliable object
hypotheses from image sequences.

In [PZV11b], we have shown that the planes modelled with homographies well
support a subsequent robust Euclidean reconstruction. Hence, in the following
chapter we investigate how to reconstruct the objects and how to acquire Euclidean
models using image sequences. For this, we propose a Structure-from-Motion ap-
proach which focuses on already detected planes. This method is able to cope
with multiple motions, and in combination with the pose provided by the robot
kinematics, a full reconstruction without scale ambiguity is acquired.
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5.1 State of the Art

The planes, represented by homographies, are the basic entities for 3D reconstruc-
tion and for merging/splitting to create the final object model. While the classi-
cal Structure-from-Motion problem of moving through a static scene is essentially
solved in a coherent theory [FLP01, Har08] and several robust systems exist, in re-
cent years, researchers have focused on dynamic scenes composed of rigidly moving
objects. The solutions available so far can be broadly classified into algebraic meth-
ods, (e.g. [CK95, VM04, VH04]), which exploit algebraic constraints satisfied by
all scene objects, even though they move relative to each other, and non-algebraic
methods, (e.g. [Tor98, FZ00]), which essentially combine rigid SfM with segmenta-
tion.

Costeira et al. [CK95] propose an algebraic method. They developed a multi-
body factorization method to segment the motion and recover the shape of multiple
moving objects from a set of features tracked in a sequence of images. They in-
troduce a linear-algebraic construct of object shapes, called the shape interaction
matrix. The entries of the matrix are directly computed from the feature trajecto-
ries without knowing their object identities. Then the transformation of the matrix
into the canonical form results in a segmentation of the features as well as a re-
covery of the shape and motion of each object. Furthermore, it is shown that this
approach works for different projection models, such as weak perspective (scaled
orthography), paraperspective, or an affine camera. Vidal et al. [VM04] present a
unified algebraic approach for 2D and 3D motion segmentation. The key contri-
bution is to view the estimation of multiple motion models as the estimation of a
single multibody motion model. Vidal et al. show that the image measurements
can be fit with a real or complex polynomial function and that the parameters of
the motion models can be obtained from the derivatives of the polynomial at the
measurement. The approach is based on a polynomial differentiation instead of a
polynomial factorization and thus, compared to former approaches, the efficiency,
accuracy and robustness of the algorithm is improved. This approach studies the
segmentation of multiple motions from two-view correspondences. In [VH04], Vi-
dal et al. consider the problem of segmenting multiple rigid motions from point
correspondences in multiple affine views. The problem is cast as a subspace clus-
tering problem and thus the approach handles the whole spectrum of possible affine
motions: from two dimensional and partially dependent to four-dimensional and
fully independent. Point trajectories of all points are projected into a 5-dimensional
space, and a PowerFactorization method is used to fill in missing data. Then GPCA
is used to fit multiple linear subspaces representing independent motions. Thus,
the approach achieves a misclassification error of less than 5% for sequences with
up to 30% of missing data points.

The non-algebraic approach proposed by Torr [Tor98] uses mixture models in
an optimal statistical framework to estimate the number and type of motion mod-
els and their parameters. For this, Torr developed a robust version of the AIC
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information criterion, called GRIC, for robust model selection. This method si-
multaneously flushes outliers and selects the type of model that best fits the data.
Fitzgibbon et al. [FZ00] extend the recovery of structure and motion to the case
of image sequences with multiple unknown motions. The assumption that all cam-
eras share the same unknown camera parameter allows Euclidean reconstruction in
the multibody case, when it was underconstrained for a static scene. In [SSW08]
Schindler et al. propose a framework for multibody-structure-and-motion based on
model selection. First, in a recover-and-select procedure, a redundant set of scene
motions is generated. Subsets of these redundant motion candidates are regarded
as possible explanation of the tracked image features. In a second step, the most
likely explanation is selected by model selection. For the selection criterion, Torr’s
BIC [Tor00] is adapted to estimate the coding length of the structure-and-motion.
Schindler et al. generate motion hypotheses for the entire sequence and then prune
an optimal set which is computationally intractable for long sequences. Based on
this work, Ozden et al. [OSG10] adapt the idea and use model scoring only in a
temporal window rather than as a global batch optimization.

Most closely related to our system are the methods proposed by
Schindler [SSW08] and by Ozden [OSG10]. They use interleaved segmentation
and 3D reconstruction of tracked features into independent objects. Instead of
directly sampling features and generating 3D object hypotheses, we incrementally
cluster features to planes in 2D using homographies and then reconstruct and
merge/split planes to independently moving objects in 3D. Thus, in the first step
we use a simpler model in order to more robustly cluster tracked features to planes,
which is followed by a second step in which we, that is, to reconstruct, merge/split
planes and create the final object model. Finally, instead of a sparse point cloud
we get a dense representation with planes, which can be directly used for robotic
manipulation.

5.2 Basic Structure from Motion (SfM)

The reconstruction is based on the typical SfM pipeline which is described by
various authors (e.g. Beardsley et al. [BTZ96]), Pollefeys et al. [PVGV+04]). De-
pending on the setup, i.e., the type of the camera projection model, the type of cor-
respondences between the images, the unknowns in the motion model (calibrated,
semi-calibrated, uncalibrated internal parameters, wide or short base-line,..) or the
type of optimization algorithms (linear, non-linear), numerous variants have been
proposed. Figure 5.1 shows a typical SfM pipeline. In this section we provide an
overview of the core techniques including multiple view geometry, calibrated recon-
struction, pose tracking and bundle adjustment. More details about the individual
methods can be found in [Har08].
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Start SfM

track feature points
create 3 keyframes

initialize 3D structure
and camera pose

no displacement > tmax

tracking quality
low 

track features
estimate

camera pose

create keyframe
reconstruct new tracks

initialize new 2D features
run bundle adjustment

yes

end of sequence

End SfM

yes

no

Figure 5.1: A typical Structure from Motion (SfM) pipeline.

5.2.1 Camera Geometry

Before we discuss the reconstruction, it is important to decide on the camera model.
The most commonly used model in computer vision is the pin-hole perspective
camera model. For most commercially available cameras, this model is a good
compromise between simplicity and generality. For this type of camera a 3D world
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point X = [X Y Z 1]T can be projected to the 2D image point

x = P X, (5.1)

where x = [x y w]T = [x/w y/w 1]T is represented with homogeneous coordinates.
The 3× 4 matrix

P = K [R|t] (5.2)

is called projection matrix and is derived from the extrinsic camera parameters,
namely the camera rotation R and the camera translation t, and the intrinsic
camera matrix K. The upper-triangular matrix

K =

 fx s cx
0 fy cy
0 0 1

 (5.3)

holds the camera internal parameters, where fx and fy stand for the focal length
for the sensor in x and y direction expressed in pixel-related units, s encodes
any possible skew between the sensor axes due to the sensor not being mounted
perpendicular to the optical axis and cx and cy denote the optical center expressed
in pixel coordinates. Thus, assuming an ideal camera without lens distortion and in
case the external camera pose (R, t) is known, any 3D point can be transformed to
the camera coordinate system and projected to the image using the camera matrix
K.

5.2.2 Reconstruction from Two Calibrated Views

In the last section, we assumed known 3D points and projected them to the image.
Structure from motion considers the inverse problem, namely how to recover the
3D structure and the camera pose from image point correspondences. In the fol-
lowing, we assume that the camera parameters are available and fixed, hence 3D
points are reconstructed from two calibrated views. One possibility to estimate the
camera pose is based on the decomposition of the Essential matrix E. Of course,
in case there are only image measurements available, the recovered structure has
an unknown scale factor and hence, the absolute distance is not available. In what
follows, we briefly describe the basic reconstruction algorithm.

The images xcam,x
′
cam of a 3D point X projected to the camera plane are

related by the inner product

< x′cam, t×Rxcam > = 0, (5.4)

xcam
′T T̂R xcam = 0, (5.5)

xcam
′T E xcam = 0, (5.6)
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Figure 5.2: Epipolar geometry.

where the 3 × 3 matrix E is called essential matrix and defines the constraining
line of two points in the camera planes. In combination with the camera matrix,
this leads to the corresponding formulation

x′
T

F x = 0, (5.7)

for two points x′,x in image coordinates, where F is called fundamental matrix
and is computed from

E = K′
T

F K, (5.8)

with K ′ = K if the images are from the same cameras. F can be estimated with
the linear normalized 8-point algorithm if a minimum of 8 non-coplanar image
point pairs are available (cf. Harley & Zisserman [Har08]). Figure 5.2 shows the
geometric relationship of a 3D point and two cameras.

Once the essential matrix has been estimated, the singular value decomposition
(SVD)

E = U S VT (5.9)

can be used to recover four solutions with

R = U W VT or U WT VT (5.10)

and
t = u3 or −u3, (5.11)

where u3 is the last column of U and

W =

 0 −1 0
1 0 0
0 0 1

 . (5.12)

Figure 5.3 shows, the geometric interpretation according to the four solutions.
To select the correct solution, the depth of a 3D point must be positive in both
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X

C C'

Figure 5.3: Four solutions of essential matrix decomposition.

cameras. Hence, for each combination of R and t a test point must be triangulated
and transformed to both camera coordinate systems.

A general 3 × 3 matrix has 9 degrees of freedom, due to the scale invariance
and the rank deficiency however, the fundamental matrix F has only 7 degrees of
freedom. If the internal camera parameters are known, the essential matrix, which
has five degrees of freedom, can directly be estimated using the 5-point algorithm
proposed by Nister [Nis04]. Hence, for the case of known internal parameter, the
pose transformation of a camera can be estimated up to scale, if five non-coplanar
point pairs in the two images are available.

5.2.3 Feature Tracking and Pose Estimation

Establishing feature correspondences in image pairs is one of the fundamental chal-
lenges in computer vision. Depending on the camera viewpoint of the two images,
two basic scenarios can be distinguished: wide baseline and narrow baseline appli-
cations. For the first one, where the viewpoints of the cameras differ significantly,
features must be used which are robust to geometric transformations. As repre-
sentatives for lots of variations, we pick out two popular methods. The first one,
which we already mentioned in the Chapters 3 and 4, is the Scale Invariant Fea-
ture Transform (SIFT) proposed by Lowe [Low04]. SIFT interest points are based
on salient scale invariant points in a Difference of Gaussian (DoG) image pyra-
mid. To find the corresponding points in two images, histograms of oriented image
gradients are computed and compared. Another established method is proposed
by Bay et al. [BETG08], who use an integer approximation to the determinant
of the Hessian blob detector and the sum of approximated 2D Haar wavelet re-
sponses for the description of the blob. In most visual Simultaneous Localization
and Mapping (SLAM) and SfM applications a small baseline is assumed. Hence,
in the majority of cases these approaches get along with simpler features. KLT is
a successfully applied method proposed by Tomasi et al. [TK91]. This approach
assumes brightness constancy and computes the displacement of local features by
minimizing the intensity difference between the locations in two images supported
by a small window. Tracked patches must have gradients in at least two different
orientations. In addition to the original implementation various methods to detect
corner-like structures are proposed (Harris et al. [HS88], Schmid et al. [SMB00],
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Rosten et al. [RPD10]).
Once the initial structure is recovered and the point correspondences are es-

tablished, the pose can be computed with a minimum of three points (Haral-
ick et al. [HLON94]). To obtain a unique solution, this algorithm is embedded
in the robust estimation scheme RANSAC (Fischler et al. [FB81]). The described
method tracks each feature independently from the others, without considering any
possible geometric relationship between their displacements. Hence, this method is
quite general method and can be applied in many types of scenes including dynamic
scenes. The drawback is that a good source of information, namely the predicted
camera pose is not used. For visual SLAM applications, where subsequent image
frames are guaranteed, tracking of features and pose can be jointly done within a
prediction framework (e.g. extended Kalman filter (EKF) [TBF05]).

5.2.4 Bundle Adjustment

After the initial reconstruction, tracking of 3D points and reconstruction of points
which newly appear goes hand in hand. That is, the current camera pose is used to
reconstruct new tracks of 2D points, which are then used to track the camera pose
in subsequent frames. The incremental scheme leads to an accumulation of error
of the pose, as well as of the structure. Hence, a non-linear minimization is applied
to all inliers to get a more suitable solution. If there are n images and z 3D points,
11n+3 z parameters have to be optimized simultaneously in order to minimize the
global error function, such as the 2D reprojection error. Typically, the minimization
is carried out using the Levenberg-Marquardt (LM) algorithm. For the case of
SfM, points appear in a small subset of camera frames. According to [Har08],
this sparse block structure can be exploited in order to minimize the optimization
cost. Additionally, in a typical SfM-pipeline, the points are not reconstructed and
optimized in each frame, but only if the mean displacement exceeds a threshold.

5.3 3D Object Modelling Based on Planes

The final results of our system are 3D models of objects. Approaching this goal
from object reconstruction, our system is strongly related to the dynamic SfM
frameworks [SSW08, OSG10]. In [OSG10], Ozden et al. defined the following
requirements:

1. Determine the number of independently moving objects at the beginning of
a sequence, and

2. whenever that number changes, segment the feature tracks into different mov-
ing objects in each frame.

3. Compute the 3D structure of all features and the camera motion for the
frames.
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4. Resolve geometric ambiguities.

5. Robustness to short feature tracks due to occlusion, motion blur, etc.

6. Scale to realistic recording times.

To determine independent objects, they propose interleaved segmentation and 3D
reconstruction of the feature tracks. Instead of directly sampling features and
generating 3D object hypotheses, we incrementally cluster features to planes in
2D and track them. Thus, the first items are approached with a simpler model in
2D followed by reconstruction, clustering and splitting of planes to objects in 3D,
which leads to more robust estimations.

To reconstruct planes, which are not assigned to a 3D motion model, we use
a standard SfM pipeline similar to Nister et al. [NNB04] and Klein et al. [KM08].
Therefore, the nonlinear optimized homography is directly decomposed to initialize
the first camera pose (cf. Ma et al. [Ma04]). In the following frames, the relative
motion from C−1 to C is estimated using RANSAC [FB81] and a direct least squares
solution between the two point sets (cf. Haralick et al. [HJL+89]). A sparse bundle
adjustment implementation by Lourakis [LA09] over the last N frames is used to
refine camera poses and 3D points of the plane. Once a plane is reconstructed,
our algorithm tries to incorporate planes greedily in case of consistent motion.

Algorithm 4 gives a detailed outline of the piecewise planar object modelling
pipeline and Figure 5.4 depicts the events, including detection, tracking, merging
and splitting of planes.

5.4 Homographies for 3D Reconstruction

In Section 5.2 we have shown how to use epipolar geometry for the initial pose
reconstruction. The proposed object modelling approach is based on planes, repre-
sented by homographies, which can be used directly to compute the camera poses.

Additionally to the essential matrix which constrains a point in the left image
to a line in the right image, the known homography constrains a point in the left
image exactly to one point in the right image. This can be formalized with

x′cam = Hcam xcam, (5.13)

Hcam = R+
1

d
t nT (5.14)

where Hcam is the projective transformation, computed from four image points in
camera coordinates which are in general form, i.e. no three of them are collinear
and n stand for the unit normal vector to the plane in the first camera. According
to [Ma04], the homography matrix can directly be decomposed to compute the
rotation and the translation between the cameras. Especially if the scene contains
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Algorithm 4 Piecewise planar object modelling pipeline

1. Instantiate new interest points (IPs)
2. Track interest points
3. Track planes modelled by homographies and try to estimate 3D motion for

existing objects
if plane does not support 3D motion then
• trigger split event and create new objects from current and past

keyframes
end if
if average displacement of the IPs < d pixels then
• goto step 1

else
• initialize a new keyframe and continue

end if
4. Detect and renew planes
5. Merge and reconstruct planes greedily

if new plane supports active object motion model then
• insert plane

else
• create new 3D object and motion model (SfM)

else if
6. Refine objects using incremental bundle adjustment
7. goto step 1

a dominant plane, this method is an alternative for the approach described in Sec-
tion 5.2. The mathematical details of the decomposition can be found in Appendix
A.

Additionally, in [LF96] Luong et al. have shown that a least-squares fundamen-
tal matrix can be computed from

HTF + FTH = 0, (5.15)

where at least two homographies improve the accuracy of the reconstruction.

5.5 Pose Tracking

The next step in a standard SfM pipeline is to track the camera pose with respect
to the environment. For our scenario, where a robot learns the appearance of an
object, we are concerned about the pose with respect to a specific object. Standard
SLAM approaches assume that more than 50% of features move consistently with
the camera, i.e., they assume a predominantly static scene. In contrast, we deal
with dynamic scenes, where the robot explores the environment and interacts with
parts of the scene to verify object hypotheses. Hence, the assumption that more
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detection, reconstruction, merging of planes with common motion and tracking

trace back graph and model separate objects

split event

after pushing

keyframe #X1 keyframe #X2 keyframe #X3

Figure 5.4: The upper row shows three keyframes of sequence 1 (897 frames) with
detected planes in green which are merged because of common 3D motion. The
brightness of the interest points indicates the assignment to different planes. After
the gripper (two black dots on the left image border) pushes the plane 43, the
keyframe-graph is traced back and the object model (44) and the background object
(43) are created (lower image row). Changing plane ids of the top surface of the
hexagonal object indicate that planes represented by homographies are substituted
with better explanations.

than 50% of the features move consistently is not guaranteed anymore. To overcome
this limitation we developed a pose estimation scheme which focuses on parts of the
scene, where the robot intends to interact. In detail, the robot moves and creates
object hypotheses out of planar scene parts. It then picks up a possible interaction
point and the pose tracking algorithm focuses on the corresponding plane. To
further stabilize tracking, consistently moving features from the remaining part of
the scene are included. Hence, the termination criterion of the standard RANSAC
algorithm described in Algorithm 1 for the case of dominant plane detection is
adapted to

ε =
It + w Is
Nt + wNs

(5.16)

with

w = kw
Nt

Ns

(5.17)

where It is the number of inliers of the target plane, Is is the number of inliers
of the remaining planes tested for support and Nt and Ns are the corresponding
total numbers of points. The weight w is used to force tracking of the target plane,
where we set the constant kw = 1 and thus the weight between target plane and
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the remaining supporting planes is equal. According to the weight kw sampling
of features also needs to be distributed equally between the target plane and the
supporting planes. Hence, independent of the size of the planes, tracking always
focuses on the target plane. The only assumption is that the quality of the feature
tracking is similar. If there are more outliers on the target plane, then the constant
kw < 1 needs to be adjusted to a lower value. Additionally, if the target plane is
more prominent than the remaining planes, i.e., there are more interest points on
it, we bound the weight w = 1 to one. Hence, the tracking algorithm switches to a
standard RANSAC behavior. To compute the pose hypotheses we use a standard
3-point algorithm (Haralick et al. [HLON94]) and thus, in contrast to the RANSAC
for plane detection described in Section 3.2, m is reduced to three.

In summary, in case the robot needs to keep track of a specific part of the scene,
the corresponding interest points are marked, the algorithm focuses on these points
and consistently moving interest points from the remaining part of the scene are
used to robustify tracking.

5.6 Incremental Bundle Adjustment and Abso-

lute Scale

In the previous sections we discussed how to reconstruct features and we have
shown how to robustly track the camera pose in pairs of images. If the camera
pose is sequentially tracked in an image sequence, the error is accumulated, which
leads to a drift of the pose. To avoid this a nonlinear optimization of the camera
poses for a bundle of images is introduced. Bundle adjustment is a well known
method designed to minimize a global error [TMHF00]. Unfortunately, minimizing
a global error becomes rapidly intractable. Hence, for real-time applications, such
as SLAM, it is common to perform the bundle adjustment incrementally. That is,
the bundle adjustment estimates the camera parameter and the 3D structure of the
n most recent key-frames using the projections of the N most recent key-frames
(e.g. n = 3 and N = 10). Thus, the computational effort is bounded with the
3D points in the last n frames. The drawback of that method is twofold: First,
since we only use the most recent frames, the system tends to drift and the error
increases with the number of key-frames. And secondly, it is obvious that if we
only use one camera, the object can only be reconstructed up to an unknown scale
factor.

Both drawbacks can be overcome if additional information from the encoders
of the robot is introduced. Hence, we scale the camera translation using the pose
of the robot. The scale corrected location

t̃C(t) = tC(t− 1) +
‖tR(t)− tR(t− 1)‖2
‖tC(t)− tC(t− 1)‖2

(tC(t)− tC(t− 1)) (5.18)

is computed from distance ratio of the robots location change
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∆tR = tR(t)− tR(t− 1) and the corresponding transformation estimated
from the camera ∆tC = tC(t) − tC(t − 1) between the last and the current
key-frame. The scale has to be corrected directly after the camera pose is
estimated. For the following triangulation of the new corner tracks and for the
incremental bundle adjustment, the new camera location t̃C is used. Hence, the
drift of the incremental approach is reduced and additionally, the absolute scale of
the object is determined.

5.7 Merging and Splitting in a Probabilistic For-

mulation

To recapitulate, in our scenario a robot explores the environment. It moves around
and perceives some parts of the scene that indicate individual objects and motivate
the robot to interact. In the preceding chapters, we detected homographies, i.e.,
planar parts estimated from image pairs, and reconstructed them with the moti-
vation to create object hypotheses and to provide features for interaction. The
following sections describe a framework for separating piecewise planar scene parts
to individual objects. Motivated by Palmer [Pal99] – who stated that, although
the vast majority of objects in ordinary environments are stationary for the vast
majority of the time, objects that move are important – we first merge planes de-
pending on common motion and, if they start moving separately, we split them to
individual objects. The appearance model of planes computed from color and from
a 3D interest point adjacency graph allows to assign already occluded planes to
the split objects. Hence, the framework is able to create individual object models
from planes visible in the current image and from currently occluded planes seen
in a previous frame.

5.7.1 Merging of Planes with Consistent Motion

The merging of planes is nothing more than to check whether the motion of a new
plane is consistent with the motion of an existing object. We developed a strategy
to greedily assign homographies to a motion model. Analogous to Equation 3.9 in
Chapter 3, a formulation is developed, which results in a confidence

pij = −ν1 +
1

n

n∑
k=1

(
(1− ν2) + ν2p(f

proj
i,k |Hj)

)
(5.19)

that a plane i moves consistently with an existing motion model of an object j,
where p(fproji,k |Hj) is the probability that an interest point k of a plane i belongs
to the 3D object Hj. This is modelled using a Gaussian error model. The camera
pose of object j is used to compute 3D points for plane i. Then the projections
are compared to the corresponding tracked image points. ν1 and ν2 are constants
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to weight the different factors, where ν1 is an offset which must be reached to be
considered as moving together. Homographies are assigned to the motion model
according to the highest probability pij.

5.7.2 Separating Planes in case of Different Motions

While tracking the camera motion relative to an object hypothesis (cluster of
planes), each individual plane is continuously tested if it still supports the mo-
tion. For this, the formalism outlined in the last section is used and in case pij is
low, i.e., planes start moving separately, a split event is triggered. Planes which are
currently visible build the initial split object hypotheses from which we compute
the appearance model Aj. Then the frame of the original object (before split-
ting) – which is stored in a key-frame based graph structure – is traced back and
the occluded planes are assigned to the most plausible split object. For this, the
pseudo-likelihood

p∗(ai|Aj) =
N∑
k=1

(
(1− ν3) + ν3p(f

3D
i,k |Hj)

)
+ log(p(ci|Cj)) (5.20)

is computed, which combines the 3D adjacency of interest points and the color
in a probabilistic manner. Interest point adjacency (first term) is based on a
probabilistic voting scheme. For this purpose, a neighborhood graph of all currently
available 3D points is constructed and the mean µ and the standard deviation σ
of the length of edges which connect points of the same plane are computed. Then
µ and σ are used to compute Gaussian votes p(f 3D

i,k |Hj), where each 3D point of a
target plane votes for the nearest object and thus the object which is close to the
plane accumulates more votes and gets a higher probability that the plane belongs
to that object. The second term models the color distribution of the objects.
For this we build the 8 × 8 × 8 bin color histogram ci of the target plane i and
the histogram Cj of the object j to which the plane should be assigned. We use
normalized rgb colors to be insensitive to brightness differences of object planes.
The border of the plane is approximated by the convex hull of the interest points.
For comparison of color models, we use the Bhattacharyya coefficient

p(ci|Cj) ∼
∑
q

√
ci(q)Cj(q). (5.21)

Hence, the probability of a plane i which has to be assigned to an object j consists
of a probabilistic vote of each interest point to the nearest object and a probability
describing the color similarity. While we are aware of the fact that assigning oc-
cluded planes based on colour and 3D interest point adjacency is a critical point,
our experiments indicate that for our scenarios, where only a few objects are mod-
elled simultaneously, this is a good criterion.
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(a) First reconstruction (b) Labeled image to initialize the color
model and the interest point proximity.

Figure 5.5: Initialization to evaluate the plane assignment using colour and point
proximity.

5.8 Tests and Evaluation

For all experiments we use Shi-Tomasi interest points [ST94] and a KLT-
tracker [TK91]. In [MSC+09] it has been shown that a sub-pixel refinement es-
sentially improves pose estimation. Hence, we use the affine refined location of the
interest points with sub-pixel accuracy and finally compute a non-linear optimized
homography using homest [Lou06].

To test our system, we use five videos with about 800 frames each. Motivated by
our cognitive robotic scenarios, the sequences show packaging of arbitrary shapes
typically found in a supermarket (see Figure 5.4). We placed two different objects
on a table and manually moved camera and gripper around them in a way that
one half of the objects is already occluded before the gripper pushes one object.

5.8.1 Evaluation of Plane Assignment using Color and In-
terest Point Proximity

First, we evaluate the cues described in Section 5.7.2, which we used to assign
occluded planes to individual object hypotheses. For this, we select about 200
keyframes of the first three videos and mark the objects. After reconstruction of
the planes visible in the first frames, we build the color model and the interest
point proximity model (see Figure 5.5). In the following frames, these models are
used to assigned planes to separate objects, according to Equation 5.20. In all tests
we set ν3 = 1 and we used the mean Euclidean distance dm of the interest points
to model the Gaussian N (dm, (1.5 dm)2)).

Figures 5.5, 5.6, 5.7 and the Tables 5.1 – 5.4 show the results of the evaluation.
We compare the individual cues color (Equation 5.21) and proximity (first part of
Equation 5.20) with the combination of them. Figure 5.6(d) shows a typical ground
truth image. We marked the object with red and green and the background with
blue. The ideal case would be that the method is able to assign planes to “known”
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(a) (b) (c) (d)

Figure 5.6: Comparison of plane assignment using color (Figure 5.6(a)), inter-
est point proximity (Figure 5.6(b)), the combination of color and proximity (Fig-
ure 5.6(c)) and the according ground truth image (Figure 5.6(d)) for sequence 1
frame 280.

(a) (b) (c) (d)

Figure 5.7: Comparison of plane assignment sequence 1 frame 480.

(a) (b) (c) (d)

Figure 5.8: Comparison of plane assignment sequence 1 frame 515.

color [%] proximity [%] combined [%]

true 75.0 84.6 96.3
false 25.0 15.4 0.0
undefined 0.0 0.0 3.7

Table 5.1: Comparison of plane assignment for sequence 1

models and that it also labels unknown (uncertain) plane assignments. Because
of the problems arising with thresholds, we decided to assign the planes to the
model with the higher probability. Only in case the value drops below 0 because
of the log-likelihood we set the label to “undefined”. This is only possible for the
combined color and proximity method. The numbers in the Tables 5.1, 5.2, 5.3
and 5.4 indicate that our method provides an appropriate heuristic for this setup.
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color [%] proximity [%] combined [%]

true 70.5 97.1 96.2
false 29.5 2.9 0.0
undefined 0.0 0.0 3.8

Table 5.2: Comparison of plane assignment for sequence 2

color [%] proximity [%] combined [%]

true 70.5 97.1 96.2
false 29.5 2.9 0.0
undefined 0.0 0.0 3.8

Table 5.3: Comparison of plane assignment for sequence 3

color [%] proximity [%] combined [%]

true 78.8 93.2 96.9
false 21.2 6.8 0.0
undefined 0.0 0.0 3.1

Table 5.4: Comparison of plane assignment for all sequences

Although color is a rather weak cue, in combination with the interest point prox-
imity it helps to avoid a hard threshold. Figure 5.6 shows an example where color
proposes a wrong plane assignment but the combination of color and interest point
proximity finally leads to a correct decision shown in Figure 5.6(c). Figure 5.8
shows an example where color and proximity propose different assignments and
the combination of both declares the plane as unknown. This is not correct, but
in case of a high uncertainty we prefer the unknown label instead of a wrong as-
signment. This can be seen as knowledge gap of the robot, which leaves room for
further exploration.

5.8.2 Tests of the Integrated System

The goal of the experiments is that our system detects the planes, reconstructs,
tracks and merges them depending on common motion and that finally, after push-
ing one object, the system creates two separate piecewise planar object models.
Figures 5.4, 5.9, 5.10, 5.11 and 5.12 show the qualitative results of our system.
Planes merged to one object are drawn with the same color, whereas the bright-
ness of interest points indicates the assignment to different planes. In each figure
the third image of each row shows the perspective of the camera shortly before/after
the object is pushed and the last one depicts the reconstructed objects. Figure 5.4
shows the whole event chain, that is, detection, reconstruction and merging of
planes with a common motion colored green and separating planes as they start
moving independently (indicated in red and blue). In Sequences 1, 2, 4 and 5,
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Figure 5.9: Sequence 2 (715 frames).

Figure 5.10: Sequence 3 (870 frames).

Figure 5.11: Sequence 4 (543 frames).

Figure 5.12: Sequence 5 (811 frames).

shown in Figures 5.4, 5.9, 5.11 and 5.12, object modelling was successful and ac-
curate as expected. The 3D reconstruction (right most image of each row) shows
that sometimes parts of an object, which we intuitively would mark as one plane,
are split. On the one hand, this is due to the fact that these planes are in fact not
flat but a little bit curved, and on the other hand that model selection within our
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Figure 5.13: Example image and reconstruction of a small, more complex sequence
which shows the limits of our system. Planes of the three dominant objects at the
front are reconstructed, while the object in the center of the image and the objects
in the background are not detected because of low texture and too few features.

plane detection algorithm replaces a plane in the following keyframes if a better,
more complete/accurate plane is found. Figure 5.11 shows one of the failures that
might occur. These two objects have approximately the same height and thus, one
joined explanation instead of two separate ones was favored. In the case shown
in Figure 5.11, this results in a much too big top surface of the red object which
covers a part of the heart-shaped box. Figures 5.12 and 5.13 show the limits of our
system. Our reconstruction relies on planes modelled by homographies and thus
for one plane a minimum number of five interest points is necessary (4 + 1 that
supports the homography). Because of reliability issues, we used a threshold of 10
points. Hence, in Figure 5.12, even though a small plane is detected (shown at
the top of the middle image), the top of the cleaner bottle is completely lost. In
Figure 5.13, the object in the middle has hardly any texture and the finer scene
details in the background are invisible for our system, whereas the three prominent
objects are nicely recovered.

5.9 Discussion

This chapter presented an approach to model the scene with piecewise planar parts
using tracked interest points. Homographies build the basic plane model and are
directly used for reconstruction of the scene. By using this approach, it is possible
to model separate objects from pushing planar patches. If accidentally several ob-
jects are pushed at the same time, different motions will occur and the objects will
be modelled as two different items. Consistent with plane detection we propose
a Minimal Description Length (MDL) formulation to merge/split planes to inde-
pendently moving objects in 3D. Merging as well as splitting is triggered based on
a probability which combines 3D motion, structure and color information of the
planes. Instead of a sparse point cloud, which is typical for Multi-body Structure-
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and-Motion, we get a dense representation with planes.
The evaluation of the pseudo-likelihood, designed to assign occluded planes to

separate objects if a split event occurs, provided promising results for table top
scenarios and the packaging data sets. As shown in Table 5.4, the performance is
rather low if only color is used, but in combination with proximity of the 3D location
of interest points, color seems to provide reliable base costs to avoid wrong plane
assignments.

Limitations of the system are shown in the Figures 5.11 and 5.12. In envi-
ronments with low texture, two typical failures occur. Firstly, parts of objects,
such as the top of the aerosol can in Figure 5.12 or the ground plane in most of
our sequences, are totally missed. Secondly, because of missing parts of the scene,
hallucinating planes are detected, such as the top surface depicted in Figure 5.11,
which covers coplanar planes of two individual objects. Beside a pixel-wise seg-
mentation using Markov random fields, or the dense reconstruction proposed by
Newcomb et al. [ND10], this weakness can be overcome by using additional depth
information from an RGB-D sensor (e.g. Kinect recently developed by PrimeSense).

In the next chapter, we describe the proposed recognizer and introduce our
notion of completeness. Furthermore, we already use Kinect data to learn the
object models.
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Chapter 6

Model Completeness and Object
Recognition

Autonomous learning robots often face the exploration-exploitation dilemma in
one form or another: Should I continue learning (exploration) or make use of
the models learned so far (exploitation)? Or to put it another way, when have
I learned enough in order to satisfactorily complete my tasks? This means that
not only does the robot need to represent its knowledge, but also the limits of its
knowledge. This becomes all the more important in integrated robotic systems
which have to make decisions based on observations drawn from a multitude of
modalities. All of these observations will carry some degree of uncertainty, and
it is paramount that these uncertainties are formulated consistently in order to
support well informed decisions. Moreover, the robot should be enabled to improve
performance in future tasks by reducing uncertainties, i.e. it should be able to
derive actions that reduce gaps in its knowledge. Again, this increase in knowledge
must be formulated consistently to allow planning for optimal knowledge gathering
actions.

In this chapter, we are concerned with learning 3D object models for recognition.
Object recognition has made impressive advances and increasingly powerful meth-
ods have shown their applicability in challenging scenes [GL06, OFL07, RBSF09].
The focus of research, however, often lies on optimizing recognition (robustness,
speed, generality) while the learning phase typically takes place offline, i.e. outside
the robot’s normal execution of tasks. Consider an autonomous robot which has to
perform tasks including the recognition of objects such as fetching various items,
when these items are not known in advance. So one of the tasks of the robot,
e.g. while not being occupied with more urgent things, will be to wander about
and learn new objects which might feature as part of a fetching task at a later
time.

We explicitly concentrate on the process of acquiring these object models. This
requires representing the completeness of models acquired so far as well as mech-
anisms to support planning for further knowledge gathering actions. We present
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(a) (b) (c)

Figure 6.1: Learning an object model: The object in the scene (left) and bundles of
features with their view vectors (in blue) after acquiring some views of the object.
View sphere (right) with brighter shades of grey indicating that the object has been
learned from the respective direction.

three probabilistic measures of observed detection success, predicted detection suc-
cess and model completeness which allow to reason about when to extend the model,
where to look next as well as to predict the probability of successful detection given
the model learned so far.

Figure 6.1 illustrates the basic idea. Object models are based on associating
SIFT [Low04] or SURF features [BETG08] with 3D locations on the object’s sur-
face. The 3D location either is computed by assigning the features to the object
piecewise planar surface model described in Chapter 5 or it is acquired by an rgb-
depth sensor recently developed by PrimeSense.

Models are built online, while the object is tracked based on the model acquired
so far. New features are mapped onto the 3D object surface and associated with the
view direction from which they were captured. Thus we know which object views
are covered so far, which is represented as “bundles” of view vectors associated with
features in Figure 6.1(b). The “view sphere” shown in Figure 6.1(c) illustrates the
completeness of the model, where brighter parts indicate a higher probability of
detecting the object from the respective direction. A weighted sum over the whole
sphere gives the expected probability of detection and the fringes of the bright
areas constitute learning opportunities.

In [ZPMV11] we have shown that our probabilistic model is well suited to pre-
dict when to learn new views and to predict the probability of successful detection
given the model learned so far.

After a state of the art review, we describe learning of new object views in Sec-
tion 6.2, followed by a description of the proposed codebook structure in Section6.3.
Section 6.4 gives an overview of the proposed recognition approach, including the
building of a vocabulary tree (Section 6.3.1), voting for object hypotheses (Sec-
tion 6.4.1) and estimation of the poses of multiple objects (Section 6.4.2). In con-
trast to interactive learning of object models described in Chapter 5 this Chapter
concentrates on probabilistic measures proposed for detection success and com-
pleteness (Section 6.5). Hence, for learning of the object model we use a simpler
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approach with static objects and a table plane constraint. Finally, the evaluation
is presented in Section 6.6.

6.1 State of the Art

In the following, we first review the state-of-the-art for the recognition of object
instances and object classes. Next, we focus on online learning of object models
and on methods for efficient matching of interest points, followed by a review of
approaches targeted to interactive modelling. Finally, we present approaches that
combine object recognition and pose registration.

Various approaches to recognize specific object instances [Low04, RLSP06,
SZ09] or object categories [FPZ07, LLS08] in monocular images have been pro-
posed. These approaches are optimized for recognition in complex environments,
whereas training is done offline in a (weakly) supervised fashion. In contrast we
concentrate on learning objects online while tracking the model acquired so far.
There also exist some approaches which optimize detection for tracking in real
time [VLF04, OLFF06, OFL07]. Özuysal et al. [OFL07] rely on randomized trees
for wide baseline feature matching. Assuming the object moves slowly in the first
frames, this approach is able to detect the object pose to initialize the initial
model. In the following frames, new features are added and features which can-
not be reliably found are discarded. Once all the training frames are processed,
bundle-adjustment is used to refine the geometry. Özuysal et al. use simple image
patches to describe the interest points. Instead, we rely on SURF [BETG08] which
can be computed very fast and it has been shown that these features are adequate
for recognition of multiple objects in complex environments.

The approaches described in [GGB07, RDB06] focus on online learning of object
models to avoid manual labeling of training images. Whereas [GGB07] combines
a robust background model, a tracker and an online learning method, in [RDB06]
classifier-based keypoint descriptions allowing incorporation of background infor-
mation are learned.

With respect to efficient interest point matching, the work by Riemenschnei-
der et al. [RDB07] is most similar to our approach. They use a vocabulary tree
originally developed by Nister et al. [NS06] which represents prototype descrip-
tors in a hierarchical structure for a fast matching of interest points. Instead,
Lowe [Low04] proposes an approximate nearest-neighbor method based on a kd-
tree for matching of interest points. Sivic et al. [SZ09] propose matching of query
interest points with a codebook that is weighted based on the entropy. For the
ranking of matched database images a Term Frequency - Inverse Document Fre-
quency (TF-IDF) scoring is used. Similar to [NS06], Philbin et al. [PCI+07] rely
on a hierarchical structure and introduce a method based on randomized trees to
avoid the quantization effects from k-means clustering.

An interactive modelling approach was introduced in Pan et al. [PRD09]. For
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this purpose, an online Structure-from-Motion algorithm is used for camera pose
tracking, and the geometry is reconstructed using tetrahedron carving on the De-
launay tetrahedralization of the point cloud. Weise et al. [WWLG11] propose an
interactive 3D scanning system that allows users to scan complete object geometry
by turning the object around in front of a real-time 3D range scanner. To avoid
artefacts, they propose online loop closure and outlier handling for model recon-
struction. Both approaches aim to reconstruct the 3D geometry of objects, either
by means of Structure-from-Motion or with an additional sensor that provides the
3D data.

There also exist some approaches which combine object recognition and pose
registration [GL06, EKH05, RBSF09, TRS10, RS10, HBN07]. Gordon and
Lowe [GL06] build a 3D model composed of SIFT descriptors in an offline training
phase by performing structure and motion estimation. The online phase then uses
RANSAC to estimate 6D pose from 2D-3D correspondences. The system, though,
is geared at augmented reality applications and the scene is not segmented into
objects. The work by Collet et al. [RBSF09] is most similar to our approach. They
extend the above for application in the robotics domain, specifically by augment-
ing RANSAC with a Mean-Shift clustering step to allow recognition of multiple
instances of the same object. However, the system does require manual segmen-
tation of the object in each training image. Furthermore, the obtained sparse 3D
point model has to be manually aligned with a CAD model of the object, so the
whole procedure requires considerable user intervention. Instead, we avoid user
interaction by learning objects from salient regions popping out from a dominant
ground plane. Furthermore, we combine different sensor modalities, namely the
rgb-image and the point cloud acquired with the rgb-depth sensor Kinect to build
scale corrected object models and to improve pose registration.

6.2 Online Learning of Objects

The first step when learning object models is to detect the object and segment it
from the background. Typically, attention approaches and saliency operators are
used for this purpose (e.g. [IKN98], [FRC09] and [PZV11a]). In contrast, here we
use a modified version of plane pop-out proposed by Zhou [ZZV09]. This method
relies on a robust plane estimation to segment objects that pop out from the table
plane. It is more robust, but the objects need to be located on a flat surface and
must be placed individually with a minimum distance of a few centimeter.

Thus, we propose to detect and segment objects on tables, build initial object
models, track the object model acquired so far and add new views to the model
whenever there is a lack of information (see Figure 6.2). For the detection of table
planes, we use 3D point clouds acquired with the rgb-depth sensor Kinect recently
developed by PrimeSense and Microsoft.

In detail, first the table plane is robustly detected using RANSAC. The point
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segment object 
using 3D point clouds 
and plane pop-out

map interest points
to the 3D object surface

track object pose and add new 
keyframes to the object model

Figure 6.2: Learning of interest point models. The top image of the left column
shows interest points detected within the region of interest (center) which is com-
puted from the point cloud. The bottom image shows the point cloud where the
table plane is already removed. Note that, although the images show a clean table
plane because of the rgb-depth sensor, this approach handles both: highly cluttered
scenes and clean untextured tables. The center column indicates the alignment of
interest points and 3D structure, where the right part shows 3D locations of the
interest points projected to the object. The right column of the image depicts a
possible camera trajectory, where keyframes are added and hence, a more complete
object model is created.

cloud acquired from Kinect is organized in a 2D grid. This can be exploited for
clustering the remaining 3D points. Instead of using a neighborhood graph (e.g.
the ANN [AMN+98] or FLANN [ML09]), we implemented a connected component
analysis which directly parses the point cloud grid. To split objects which touch in
the grid, but are separated in depth, a cut-off threshold of the depth value is used.
Then, interest points within the region of interest, detected in the corresponding
grey scale image are associated with their location of the object in 3D. Because of
the extrinsic calibration of the rgb-camera and the depth-camera, the initial object
model can simply be created by assigning the interest points to the corresponding
location in the organized point cloud.

In the following frames, the relative pose of the camera is detected. Therefore,
the interest points which have been learned up to now are matched with interest
points detected in the current image. Then the robust pose is computed using
RANSAC [FB81] and the 3-point pose algorithm [HLON94]. Additionally, we use
the depth data for early pruning of RANSAC hypotheses and immediately discard
pose hypotheses which are not supported by the point cloud.
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To decide when to learn a new view we project the 3D model points of the
currently recognized view into the image and count the number of projected points
which are supported by a detected interest point, i.e., where the distance to an
interest point is less than a threshold tinl. Consequently, we compute the confidence
values

ci,j =
nsupport,i,j
nmodel,i.j

, (6.1)

ci = max
j
ci,j (6.2)

where nsupport,i,j is the number of interest points that support 3D model points and
nmodel,i,j stands for the number of points of the detected view j of the object model
Mi.

In case the confidence sinks below 0.6, indicating that almost half of the in-
terest points of the current view are no longer visible, a new view is added to the
model. However, this only happens if at the same time the probability is high that
the object was tracked correctly. This probability of observed detection success is
introduced in Section 6.5.

For learning a new view, first the camera pose is refined with non-linear opti-
mization using the sparse bundle adjustment implementation by Lourakis [LA09].
Then, the 3D point locations from the object are assigned to interest points. If
the interest point can be matched to a model interest point it is linked to the ac-
cording 3D point, otherwise the corresponding 3D location from the point cloud is
transformed to object coordinates.

In summary, the object model consists of interest points which are organized
in keyframes. To distinguish between object and background, as well as for the
metric reconstruction of the interest points the point cloud from the rgb-depth
sensor is used. Hence, learning is performed online while the object is explored
and new viewpoints are visited. In case viewpoints visited before are passed again,
recognized interest points are linked for a non-linear refinement of the structure.
Furthermore, the completeness of the object model is represented by a spherical
histogram. Figure 6.2 depicts the different learning steps. The probabilistic for-
malization for this is shown in Section 6.5. In the next section, we briefly describe
how the online characteristic of model learning fits to the proposed recognizer.

6.3 Codebook Structure

For recognition of multiple objects, an efficient representation of the interest points
is important. In [NS06], Nistér et al. have shown that vocabulary trees can be
used for efficient indexing of large image databases. We adapted this approach for
recognition of specific objects and use the resulting ranked list of found objects
for a successive pose registration. Additionally, we develop a generative codebook
based on incremental mean shift clustering. In the following we describe these two
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methods to efficiently store the interest points and discuss their advantages and
limitations.

6.3.1 Vocabulary Tree

The vocabulary tree defines a hierarchical quantization represented by prototype
interest points, which is learned offline by unsupervised hierarchical k-means clus-
tering. Instead of k defining the final number of clusters, k is the number of children
of each node. Nistér has shown that for image retrieval, a large vocabulary of up to
one million leaves improves the recognition performance. Once the tree is created,
the interest points of a particular image can be matched efficiently by matching
against prototype descriptors of nodes and parsing down the tree. To recognize an
image, the task now is to compare how similar the paths are for the descriptors
from a database image and a query image. To account for ambiguous descriptor
assignment, weights wi based on entropy are assigned to nodes. Thus, query qi and
database vectors di are defined by

qi = niwi (6.3)

di = miwi (6.4)

where ni and mi are the number of interest points of the query image and the
database image with a path through a particular node. The score for a database
image

s(q, d) = ‖ q

‖q‖
− d

‖d‖
‖ (6.5)

is then defined by the normalized difference between the query and the database
vector. Likewise, as proposed by Nistér and by Sivic et al. [SZ09] we use a term
frequency-inverse document frequency (TF-IDF) scheme. Thus the weight wi re-
sults in

wi = ln
N

Ni

. (6.6)

N is the number of object views in the database and Ni stands for the number
of object views in the database with at least one descriptor path through node i.
Scoring can be efficiently implemented with an inverted file structure, where every
node holds an inverted file and stores the ID of the object, the corresponding view
in which it occurs and the term frequency mi. Thus, according to the score s(q, d),
a ranked list of object view hypotheses is generated. Furthermore, we directly
store the ID of the interest points of the models in the leaf nodes and thus, we
additionally get tentative matches for the query interest points.

Once the vocabulary tree is created, interest points can be matched very fast
resulting in a ranked list of object views of the database. Nistér has shown that the
performance increases with an increasing number of leaf nodes up to one million
leaves. The tree structure is learned with hierarchical k-means clustering. For
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indexing of a movie, Sivic et al. [SZ09] learned a codebook using a random subset
of images of the movie. But still, the question remains how to create an optimal
tree, i.e. how to choose the number of levels and the number of branches of the
nodes to avoid over-fitting? Is it possible to learn a vocabulary tree which covers the
big variety of all possible objects? To avoid parameter tuning resulting from these
questions, we propose a mean shift algorithm to sequentially extend the codebook
while learning new object views.

6.3.2 Codebook Extension with Mean Shift Update

In contrast to the vocabulary tree described above, this codebook is created online
while learning new views of objects. The main idea is to create a new codebook
entry whenever an interest point does not match any prototype feature. Hence,
the approach starts with an empty codebook which is sequentially extended while
objects are being learned. The ideal case would be that parts, represented by in-
terest points can uniquely be assigned to prototypes and in case a part is unknown
it becomes a new prototype. In fact this works fine with a robust interest point
descriptor, such as SIFT, but the drawback is, that descriptors are used as pro-
totypes which are on the decision boundary and thus they are not representative
for this part. Another possibility is to update the prototype with the mean of all
descriptors assigned to the cluster. In practice, this tends to drift and thus it is
possible that the updated prototype is not representative for the cluster anymore.

Instead, we propose to update the prototype descriptor for a codebook entry
using a mean shift kernel which leads to a cluster mean

m(x) =

∑
xi∈C(x)K(xi − x)xi∑
xi∈C(x)K(xi − x)

, (6.7)

where C(x) stands for the interest points assigned to the codebook entry, and

K(xi − x) = ec||xi−x||
2

(6.8)

represents the Gaussian kernel.
In summary, if a new view is learned, each interest point is matched with the

codebook. If a match is found, it is assigned to the corresponding entry and the
cluster center (the prototype descriptor) is updated using Equation 6.7. Likewise,
as described in Section 6.3.1, for recognition a TF-IDF scheme is used to rank
object views. There are two parameters which we empirically adjusted. First,
the cut-off threshold for matching and secondly, the constant c which defines the
Gaussian kernel. In fact, if the parameter c is set to a low value, the codebook
gets noisy and if it is set to a high value, the codebook entries tend to drift. For
the experiments we set c = 0.2, which seems to be a good compromise. Another
constraint of this approach is that the codebook cannot be organized as tree and
thus, the number of objects which can be handled at once is limited.
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6.4 Object Recognition

Recognition of objects ends up in a similar procedure as learning of objects. First,
the interest points of the query image have to be computed. Subsequently, the
interest points are matched against the codebook and the scores for the query im-
age and the object views in the database are computed, which results in a ranked
list of matching object views. The scores are either computed using the vocab-
ulary tree 6.3.1 or the codebook described in 6.3.2. According to the matched
object views, each interest point of the query image has several tentative matches
which are then used for geometric verification and to estimate the object pose.
Algorithm 5 gives an overview of the different steps of our recognition pipeline. In

Algorithm 5 Object recognition pipeline

Detect interest points of query image
Match interest points with codebook
Query ranked list L of matching object views
for all Matching object views L do

Let matches vote for object centers
Cluster consistent votes
for all Clusters do

while Unmarked matches do
Estimate object pose using LoRANSAC
Mark inliers

end while
end for

end for
Compute probabilistic confidence value
Select recognized objects (non maxima suppression)

the following sections, details about voting for object hypotheses 6.4.1 and the final
object pose estimation using the locally optimized RANSAC 6.4.2 are described.

6.4.1 Voting for Object Hypotheses

The final result of our recognition approach should include the location of the
object with respect to the camera. The number of iterations required for RANSAC
increases with the outlier rate. Because of the vocabulary based matching approach,
however, the outlier rate can increase up to 90% and thus it is necessary to filter
the matches. We integrated a voting scheme followed by mean shift clustering of
the votes to group the most promising matches. In detail, the relative scale srel
and the relative orientation θrel of the query interest point and the model interest
point is used to vote for an object location

xv = R xd srel + xq, (6.9)
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(a) (b)

Figure 6.3: Interest points (red circles) vote for object centers (coloured dots) which
results in the correct pose indicated with the green overlay (left image).

where R stands for the rotation matrix computed from θrel, xd is the location of
the model interest point relative to the object center and xq is the location of the
interest point in the query image. Thus, votes of correct matches accumulate at the
center of the object. To group the votes we use mean shift clustering (cf. [CM02]),
which is an appropriate tool because of the unknown number of objects in the
image.

Figure 6.3(a) shows detected interest points (red circles) and the corresponding
votes for object centers (colored dots). It can be seen, that the correct mean
shift cluster (cyan dots) accumulates most of the votes and thus leads to the most
accurate pose indicated with the green overlay in Figure 6.3(b).

6.4.2 Locally Optimized RANSAC for Object Hypotheses
Verification and 3D Pose Registration

RANSAC, introduced by Fishler and Bolles [FB81] in combination with the 3-point
algorithm [HLON94], is the most widely used approach for perspective pose esti-
mation in case at least three 3D/2D point correspondences are available. Thus, one
possibility would be to cluster interest points, which vote for object centers and
then use this approach to compute the pose and select consistent interest points.
RANSAC finds all inliers and the corresponding model by repeatedly drawing ran-
dom samples from the input set of data points. The number of inliers is typically
not known and has to be estimated with the best model found up to the cur-
rent iteration. It can be observed that the classical formulation runs much longer
than theoretically predicted. This is due to the assumption that a model with
parameters computed from an outlier-free sample of data points is consistent with
all inliers. Because of the noisy measurements, this assumption rarely holds in
practice. In [CMK03], Chum et al. propose a local optimization scheme applied
to selected models. The idea is that an uncontaminated minimal sample is suffi-
ciently close to the optimal solution and thus the local optimization step applied
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to selected models leads to an approach which is close to the optimal solution.
We adapted the ideas by Chum for robust pose estimation and added a model

upgrade step. Algorithm 6 shows our version for pose estimation. In contrast to

Algorithm 6 Locally optimized RANSAC with model upgrade

k ← 0, ε← 3/N , Imax ← 0
while η = (1− ε3)k ≥ η0 do

Sample 3 point pairs from interest point matches
Compute the affine transformation from model image to query image A′

Count number of explained interest points (inliers) Ia for A′

if Ia > Imax then
for z = 1→ Z do

Sample 5 points from inlier set and compute pose P ′

Count number of explained interest points Ip for P ′

if Ip > Imax then
Imax ← Ip
ε← Imax/N
P ← P ′

end if
end for

end if
k ← k + 1

end while

the standard implementation (described in Algorithm 1 for plane detection), we
propose a weaker affine model computed from a minimal set of three points for the
main loop. Only if a better explanation is found the pose is estimated with the
DLT algorithm by sampling five points in an inner RANSAC loop. The pose that
is more accurate is used to compute the termination of the main loop.

Hence, our implementation detects an almost outlier free subset of interest point
matches very fast, which is then used to estimate an accurate pose. Figure 6.4
shows a typical test scenario where more than ten objects are recognized at the
same time.

6.5 Self-Evaluation and Prediction

While being a valid and intuitively clear indicator for the quality of a detection
outcome and lying in the range [0, 1], the confidence defined in Equation 6.2 is not a
probability. Making informed decisions based on such a value is difficult, especially
when fusing detection results with other observations within a complete robotic
system. Simple thresholding in order to force crisp outcomes of “found” and “not-
found” leads to brittle systems. This section presents a sound probabilistic notion
of detection success, as well as a measure of model completeness.
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Figure 6.4: Typical scenario to test the object recognizer. The colored overlays are
computed from the convex hull of the 3D points of the recognized object views,
which are projected into the image.

6.5.1 Probability of Detection

Taking an approach from multi-view object detection by [LA06, HMM+10, MGL10]
we define a generative detector model

p(c | o = true)

p(c | o = false)
(6.10)

That is, we model the probability of detection confidence given that we have a
true positive or a true negative, respectively. E.g., for the confidence as defined
in Equation 6.2, it turns out that typically, a confidence of 0.4 already indicates
almost absolute certainty of having a successful detection, while confidences under
0.1 tend to be false positives. We obtain training examples by transforming a
virtual object model with 1000 random rotations, 252 scales and varying levels of
artificial noise and blur. These virtual training examples can be created during
the learning phase, though in our case they were generated beforehand for later
comparison to ground truth. Figure 6.5 shows examples of a true positive (in
green) and true negative (in red). The threshold for accepting a detection result
as a positive example was set to 4 cm of distance deviation, where we found that
changing the threshold had no significant impact on results. Moreover, evaluation
(Section 6.6) further justified this particular value.

Figure 6.6 shows examples of histograms of confidence values for true positives
and true negatives for one of our objects. As can be seen, we obtain monomodal
distributions (if we did not, this would indicate a badly chosen confidence measure)
and we fit two Gaussians, as shown in Figure 6.7. Following Bayes rule we can then
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Figure 6.5: Rendered virtual views of an object for evaluating detection probability,
with a true positive (left) and a true negative (right).

infer the posterior probability of a detected object

p(o | c) =
p(c | o) p(o)

p(c)
=

p(c | o) p(o)∑
k∈{t,f} p(c | o = k)

(6.11)

where the prior for detecting an object could come from context knowledge such
as current room category or bottom-up attention. Equation 6.11 is used during
learning in Section 6.2 to decide whether tracking of the current view is still reliable.
Furthermore, it returned to the user by the recognizer as a measure of observed
detection success.

Figure 6.8 shows the posterior probability of having successfully detected an
object given detector confidence for the training data of Figure 6.6.

6.5.2 Representing Completeness

In order to obtain a quantitative measure of completeness, we need to know the
probability of detecting the object given the views learned so far. To this end, we
learn the probability of detecting an object view for a given out of plane rotation
θ. Again we start with labeled training data, to obtain

p(θ | oj = true)

p(θ | oj = false)
(6.12)

where oj is the j-th view of the object, and use Bayes rule to get the predicted
detection success for a given rotation

p(oj | θ) =
p(θ | oj) p(oj)

p(θ)
=

p(θ | oj) p(oj)∑
k∈{t,f} p(θ|oj = k)

(6.13)

Figure 6.9 shows that recognition probability for a single learned view drops to
50% around 22◦, which is about the expected value for the feature descriptor used.
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Figure 6.6: Histograms for true positives (blue) and true negatives (red)
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Figure 6.7: Estimated Gaussian PDFs of confidence for true positives (blue) and
true negatives (green)

Note that the same procedure applies to varying scale instead of rotation, and
in fact other environmental factors, such as lighting, which affect recognition. How-
ever, it is only rotation and scale that we can actively influence.
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Figure 6.8: Observed detection success: Posterior probability of detected object for
given confidence
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Figure 6.9: Predicted detection success: Posterior probability of detected object for
given rotation, for a single learned view.

101



6. Model Completeness and Object Recognition

To arrive at a measure of model completeness, we take the expected detection
probability over all learned views (note that we actually have to vary over two
angles - azimuth and inclination, for notational simplicity, however, we use a single
angle θ)

p̂(o) =
∑
θ,j

p(oj | θ)p(θ) (6.14)

where p(θ) takes into account that certain views are less likely than others and
thus are possibly not even learned (such as the underside of an object).

6.5.3 Taking Action

The above view-based representation with associated detection probabilities and
measure of completeness allows us to inform the system about the next learning
steps.

Starting with a single learned view we can choose a rotation for which the
probability of detecting the object in the new view is high enough to allow to
associate the two views with the same object model but low enough to warrant
learning the additional view. Note that our approach relies on tracking the previous
most probable view in order to associate newly added views with a correct object
pose. Therefore, learning can only take place at the fringe of currently available
knowledge, i.e. the border between “bright” and “dark” areas in Figure 6.1(c).

To arrive at a utility to drive exploration, we need a gain (higher probability
of detection after acquiring a new training view) as well as costs associated with
reaching that view and attempting a learning step. Costs are measured in run-time
and are composed of path planning for either moving the arm mounted camera or
the whole platform (e.g. 0.5 s), executing the planned movement (several seconds)
and attempting the learning step. The learning step consists of first detecting
the object using the views learned so far (e.g. 0.5 s), which will succeed with a
probability given by Equation 6.13 and adding the new view. (Note that actually,
new views will only be added if they are sufficiently different to previous views,
which is determined inside the learner using various metrics. So there is a (small)
probability that a new view might not be added. But we can safely ignore these
cases)

We define gain as the expected decrease in p̂(o = false) after learning the new
(n+ 1)-th view:

g = p̂n(o = false)− p̂n+1(o = false) (6.15)

with

p̂n(o = false) = 1−
∑
θ

n∑
j=1

p(oj | θ)p(θ) (6.16)

p̂n+1(o = false) = 1−
∑
θ

n+1∑
j=1

p(oj | θ)p(θ) (6.17)
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That is, we tentatively add the (empty) future view to our model together with its
predicted detection success mode (which we assume to be the same for all views)
and calculate the increase in detection probability.

6.6 Tests and Evaluation

In this section, we evaluate the measures for observed detection success (Equa-
tion 6.11) and predicted detection success (Equation 6.13). Note that it is not our
goal here to evaluate recognition performance. Nor can we at this point evaluate a
complete system including model completeness, where learning is guided using our
measures. Before doing so, we first need to establish that these measures learned
from virtual training data actually match ground truth obtained from real images.

To learn our measures, we rendered five virtual objects into background images
of realistic scenes with randomly chosen poses (see Figure 6.5). We selected a
random object pose of each object and trained an initial recognition model. Then
we rotated the virtual object to 1000 randomly chosen poses with different viewing
angles from 0..60◦ and tried to recognize the object. Furthermore, we changed the
scale of the object from 0.5 to 2 times the learning distance, which results in 252
images for each of the 5 objects. In order to simulate realistic conditions, we added
Gaussian noise and blur at 8 levels, with σnoise = 0..16 grey levels (out of 255) and
blur with σblur = 0..1.6 pixels. After learning the measures for observed detection
success and predicted detection success, we evaluated them on four real sequences,
where we rigidly attached a checker board pattern to the objects to create the
ground truth pose data. The pose of the pattern is estimated with a standard
DLT algorithm, followed by a non-linear optimization of the pose using the sparse
bundle adjustment implementation by Lourakis [LA09]. In total, we used about
50000 virtually rendered images for learning and 461 real images for testing.

Figure 6.10 shows the comparison of observed detection success learned from
virtual vs. real ground truth training data for one of the objects. As can be seen,
increasing noise levels shift confidence (as is to be expected), and the true curve lies
within the band defined by the various virtual curves. The real curve, however, has
a steeper slope indicating that training from real data allows better discrimination
between positives and negatives.

Figure 6.11 shows the comparison of observed detection success for different
objects. As can be seen, the curves differ considerably indicating that different
objects pose varying difficulties for recognition. This further indicates that observed
detection success should be learned for each object individually.

Figure 6.12 compares predicted detection success for virtual (with varying noise
level) and real training data for the same object as in Figure 6.10. We can see
that the curves more or less intersect around 22◦ where probability drops to 50%,
and that again training from real data allows for better discrimination between
positives and negatives.
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Figure 6.10: Comparison of observed detection success learned from virtual training
data including various levels of noise (thin lines) and learned from real ground truth
data (thick line).
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Figure 6.11: Comparison of observed detection success for different objects.

Figure 6.13 shows the accuracy of pose registration of the proposed approach
for the real image sequences. As expected, it can be seen that the depth error
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Figure 6.12: Comparison of predicted detection success learned from virtual training
data including various levels of noise (thin lines) and learned from real ground truth
data (thick line).

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8
0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

error x
error y
error z

angle [rad]

er
ro

r 
[m

]

Figure 6.13: Accuracy of the pose of the recognized objects for real data. The
evaluation is done in camera coordinates with the z-axis pointing towards the
object. Hence, error x and error y represent the deviation from ground truth
within the image plane and error z is the depth error.

is slightly higher than the error within the image plane. Furthermore, the error
increases with an increasing rotation in depth θ and passes 4 cm at about 20◦, after
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which performance rapidly degrades. This is in accordance with Figure 6.12 which
predicts detection success to drop below 50% around 22◦. Motivated by the results
of the accuracy evaluation, we use this threshold of 4 cm to distinguish between
true positive (tp) and false positive (fp) in Section 6.5.1.

6.7 Discussion

This chapter presented an online learning approach for object recognition targeted
to a robotics exploration framework. To overcome the exploration-exploitation
dilemma, i.e., when to stop learning in order to complete the task, we developed a
probabilistic model. The model is designed for self-assessment of observed detection
success, as well as for the prediction of detection success. This leads to a measure for
the completeness of learned object models. The learning and recognition approach
combines different sensor modalities, namely the rgb-image and the point cloud
acquired with the rgb-depth sensor Kinect to build scale corrected object models
and to improve pose registration. We propose mean shift clustering to incrementally
extend the codebook and compare it to the recently proposed vocabulary tree for
an efficient representation of interest points. Using the proposed incremental mean
shift extension of the codebook, online learning of objects can start without any a
priori knowledge, i.e., without a trained codebook or vocabulary tree.

The main contribution of this chapter lies in proposing three learned probabilis-
tic measures for observed detection success, predicted detection success and model
completeness. The evaluation has shown that learning these measures from virtual
training data, which can be generated from partially learned object models during
object learning, shows results comparable to learning from real ground truth data
(which is of course not available during learning). These measures allow the robot
to represent its knowledge of objects as well as the limit of its knowledge in a prob-
abilistic manner compatible with probabilistic reasoning mechanisms elsewhere in
the system and thus to plan for actions to extend its knowledge.
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Chapter 7

Summary and Discussion

Learning and interaction are basic skills for a cognitive robotic system. A robot
must be able to expand its knowledge in a human tutor-driven way or even learn
entirely on its own. Hence, the real challenge is to understand and build cognitive
systems that are able to handle situations unforeseen by their designers. The system
must be capable of self-extension, that is, it must be able to learn, represent what
it does not know, reason about what it can learn and how to act so as to learn
it, execute those actions and then learn from the resulting experience. We argue
that for a cognitive robot those abilities, namely explore, explain and extend are
not only manifested in a high level reasoning component – the brain of a robot
–, but need to be implemented at each level of the system based on an intelligent
perception system.

In this thesis we developed a perception system for cognitive robots. In Chap-
ter 1, we introduced a concept for visual perception that enables the robot to
explore human environments. The hypothesis is that planar surface patches are
the key element of a suitable object representation. In contrast to sparse point
clouds, typically used for camera localization and robot navigation, planar patches
have an orientation, a size and a shape. Hence, it is possible to compute approach-
ing vectors for interaction, and the patches support reasoning about contact points
for touching or grasping objects. The following chapters describe how to explain
the environment in terms of piecewise planar surfaces, how to create initial object
hypotheses and how to verify these object hypotheses by interaction. Furthermore,
a probabilistic completeness representation is introduced which allows to reason
about unseen object views and where to extend the models.

In detail, Chapter 3 developed a new approach to detect multiple planes in
image pairs. The theoretical framework for this is grounded in model selection and
Minimal Description Length (MDL). Model selection is embedded in an iterative
scheme, where existing planes have to compete with newly generated hypotheses.
We have shown that this framework allows to limit the search space, which leads
to a fast explanation of the entire image in terms of piecewise planar surfaces.

Next, in Chapter 4 we examined how to robustify segmentation and tracking
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with reasoning in image sequences. Typically, segmentation in single images or
image pairs is inaccurate and results are under- or over-segmented. Furthermore,
trackers with online update need to handle the drift which comes from the tracking
inaccuracy. We have shown that the reasoning system is able to keep track of
objects under partial and full occlusion, as well as to handle the drift.

In Chapter 5, we investigated the reconstruction and the merging of planes to
individual objects. Therefore, consistent with the MDL-formulation of the previous
chapter, a pseudo-likelihood has been developed which combines motion, colour and
the spatial arrangement of planes. The presented approach is related to the problem
of Multi-body Structure-and-Motion (MSaM). Instead of direct reconstruction from
of interest points, we first cluster them to planar patches and then reconstruct
patches with consistent motion. We have shown that the color and proximity of
patches, which are currently not visible but have been seen before, can be used to
separate the foreground object patches from the background.

Finally, in Chapter 6 we presented an approach for learning models for object
recognition. We developed a probabilistic model to evaluate the observed detection
success as well as the prediction of detection success, which leads us to a measure for
the completeness of learned object models. The goal of this chapter is to overcome
the exploration-exploitation dilemma and to provide measures for the cognitive
robot to decide when to continue learning and when to stop learning and use the
knowledge acquired so far.

In summary, this thesis developed an object model that enables a robot to inter-
act with its environment. It is based on piecewise planar surface patches detected
in image pairs from consistently moving interest points. The planar patches are
tracked and reconstructed. They build the initial object hypotheses and provide
contact points which are linked to affordances for the robot. Simple interactions
by the robot lead to the final object model. For example, if the robot accidentally
pushes several objects, different motions will occur and they will be modelled as
different items. State-of-the-art interest points, efficiently stored in a codebook,
are used to recognize the reappearance of patches. The codebook is incrementally
extended if never seen interest points appear. Chapters 3 – 5 focused on a monoc-
ular camera system and dynamically changing scenes to reconstruct objects. The
last chapter introduced the recently developed rgb-depth sensor Kinect for recog-
nition and to evaluate the probabilistic completeness representation. RGB-depth
sensors provide depth information also if the scene is static and untextured. Hence,
this sensor provides the opportunity for our curious robot to detect planar parts
without the need to change the view point. This is already a point that will be
investigated in the future work.
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7.1 Discussion

In this thesis, we developed a perception system for cognitive robotic exploration.
This carries advantages and limits that we discuss here and investigate how to
proceed with future work.

The basic parts of our object model are planar patches. Thus, the first question
that comes up is how to handle round or free formed surfaces. Up to now, the
results strongly depend on the motion between image pairs. We detect planes using
random samples and model selection and a fixed threshold to distinguish between
inliers and outliers. Hence, if the motion is small, the approximation is rather weak
and, for example, a cylinder will be approximated with only a few patches. This
immediately leads to the next question, namely: How robust is the approach in
case there is large motion and the images are rather blurry? We addressed this
issue in two ways. First, we have shown that reasoning improves segmentation and
tracking. But in our understanding, it is even more important that the system
self-assesses the current status and that it is able to predict what comes next. We
addressed this with the probabilistic measure about the uncertainty and the model
to predict the result if the viewpoint is changed.

For robotic applications it is important that results are available within a de-
sired time. In Chapter 3, we discussed how to speed up plane detection. Results
show that incremental model selection based plane detection has a superior per-
formance. The reason is that the incremental approach allows us to guide random
sampling to unexplained regions, while new samples still have to compete with
plane hypotheses from the last iteration. The real-time issue also arises in Chap-
ter 4 and Chapter 5, where image sequences are represented within a hypotheses
graph. To keep the hypotheses graph manageable, early pruning of weak hypothe-
ses is necessary. Scaling in general is an open issue. Until now, we tested our system
with table top experiments. The next step for future work is to implement the sys-
tem on a real robot with the ability to drive in a whole flat or house. Although
we tested object modelling by manually pushing planar patches, experiments with
a real robot are left for future work. Another question is whether it is possible
to describe more complex affordances and functions. For example, a future robot
butler should be able to prepare and serve a cup of tea. Therefore it is necessary
that the robot fills water into a cup. Currently available implementations use pre-
programmed scripts, but in the future, models need to be developed so that robots
can learn functions (e.g. fillable in) on their own.

Beside conceptual issues there is a lot of space for improvements. In the follow-
ing paragraph we mention a few examples. We propose a piecewise planar object
model. The developed algorithms are based on interest points. This implies that
the objects need to be textured. In case of sparsely textured surface parts, details
of the scene will be missed. This drawback can partially be overcome with a multi-
label segmentation using a Markov Random Field (MRF) optimization and graph-
cuts, e.g., such as proposed by Sudipta et al. [SSS09] and Micusik et al. [MK09] or
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by an optical flow based optimization proposed by Newcombe [ND10]. But still,
if parts of the scene are single colored, they cannot be detected. To some extent,
these challenging environments can be handled with a recently developed rgb-depth
sensor which we already used to test our recognition system. The additional depth
information can also be used to improve robustness.
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Appendix A

Homography Estimation

The homography H is the projective transformation of points located on a plane
from one image to another one. The homography transformation of a 2D image
point x = [x y w]T = [x/w y/w 1]T to its counterpart x′ can be written as follows:

c x′ = H x (7.1)

c

 x′

y′

1

 =

 h1 h2 h3
h4 h5 h6
h7 h8 1

  x
y
1

 (7.2)

The simplest way to estimate the parameters of the homography matrix is the
Direct Linear Transform (DLT). With a minimum of four point pairs Equation 7.2
can be reformulated to:

A h = 0 (7.3)


x′1 y′1 1 0 0 0 −x1x′1 −x1y′1 −x1
0 0 0 x′1 y′1 1 −y1x′1 −y1y′1 −y1

· · ·
· · ·
· · ·





h1
h2
h3
h4
h5
h6
h7
h8
1


=


0
0
·
·
·

 (7.4)

The solution to this equation can be computed with the Singular Value Decom-
position (SVD) of A, where the parameters of H are given by the singular vector
corresponding to the smallest singular value. Hence, the solution for

h =
v19, · · · , v99

v99
(7.5)

is given by the last column of VT , normalized by its last entry of the SVD of

A = UDVT = U

 d11 · · · 0
...

. . .
...

0 · · · d99


 v11 · · · s19

...
. . .

...
v91 · · · s99

 (7.6)
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7. Summary and Discussion

The solution to Equation 7.6 minimizes the least-squares error for the parameters
of the homography matrix H.

More details, including a more elaborate estimation based on nonlinear op-
timizations can be found in [Har08] and there is also a c-implementation by
Lourakis [Lou06] is available online.

Homography Decomposition

According to [Ma04], to decompose the homography matrix, it has to be normalized
with the second singular value

Hn =
Hcam

σ2
(7.7)

and decomposed to
Hn

THn = V S VT , (7.8)

which results in four solutions:

R1,2 = W1U1
T (7.9)

n1,2 = ±v̂2u1 (7.10)

1

d
T1,2 = ±(Hn −R1) n1 (7.11)

and
R3,4 = W2U2

T (7.12)

n3,4 = ±v̂2u2 (7.13)

1

d
T3,4 = ±(Hn −R2) n1 (7.14)

where
V = [v1 v2 v3], (7.15)

Σ = diag(σ2
1 σ

2
2 σ

2
3 ) (7.16)

and

u1,2 =

√
1− σ2

3 v1 ±
√
σ2
1 − 1 v3√

σ2
1 − σ2

3

. (7.17)

Furthermore U1,2 and W1,2 stand for

U1,2 = [v2 u1,2 v̂2u1,2] (7.18)

and
W1,2 = [Hnv2 Hnu1,2 Ĥnv2Hnu1,2]. (7.19)

The correct solution can be found using the physical constraints described in Sec-
tion 5.2.
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