
DISSERTATION

Real-Time Stereo Matching for
Embedded Systems in Robotic

Applications

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der
technischen Wissenschaften unter der Leitung von

ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Markus Vincze

eingereicht an der Technischen Universität Wien
bei der Fakultät für Elektrotechnik und Informationstechnik

von

Dipl.-Ing. (FH) Martin Humenberger
Matrikelnummer: 0003452

Webgasse 37/1/36
1060 Wien

humenberger@gmail.com

Wien, im April 2011

 
 
Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek 
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). 
 
The approved original version of this thesis is available at the main library of 
the Vienna University of Technology  (http://www.ub.tuwien.ac.at/englweb/). 

 



c© Copyright 2011 Dipl.-Ing. (FH) Martin Humenberger

Alle Rechte vorbehalten



Abstract

In 3D perception with stereo vision two digital cameras are used to capture a target
scene. A canonical stereo setup is used where the cameras are mounted in parallel
onto a common, mechanically rigid structure. Each scene point visible in both images
is projected onto the image planes of both cameras. Thus, the projections correspond
to each other and can further be used to reconstruct the 3D position of the scene
point. The horizontal displacement is the disparity which is inversely proportional
to the depth of the projected point. The main task of a stereo vision system is to
�nd these correspondences or, in other words, to solve the correspondence problem.
A corresponding pixel pair is called a match.

In this thesis, we tackle the challenge of fast stereo matching for robotic ap-
plications and embedded systems. Motivated by the fact that limited resources,
e.g. memory and processing power, and most importantly real-time capability on
robot platforms do not permit the use of most existing sophisticated stereo match-
ing approaches, we evaluated the strengths and weaknesses of di�erent matching
approaches and found a well-suited solution in a Census-based stereo matching ap-
proach. We adapt and optimize our algorithm in a way that the well-known Census
transform can be used in embedded real-time systems without the need of dedi-
cated hardware such as application-speci�c integrated circuits (ASIC) or �eld pro-
grammable gate arrays (FPGA). In contrast to the classic Census transform we use a
sparse Census mask which halves the processing time with nearly unchanged match-
ing quality. This is due to the fact that large sparse Census masks perform better
than small dense masks with the same processing e�ort. We show the evidence of
this assumption with the results of experiments with di�erent mask sizes. Beside the
algorithm we also present the complete stereo matching system as well as the detailed
analysis and evaluation of the results. The system is robust, easy to parameterize
and o�ers high �exibility in the target application �eld.

Furthermore, we give a detailed performance analysis of the algorithm for opti-
mized reference implementations on various commercial o�-the-shelf platforms, e.g. a
personal computer, a digital signal processor, and a graphics processing unit, where
our algorithm achieves a frame rate of up to 75 fps for 640×480 images and 50 allowed
disparities. We compare the matching quality and processing time of our approach
to other algorithms on the Middlebury stereo evaluation website where it achieves
rank 73 out of 104 submissions in the main ranking and rank 23 if subpixel accuracy
is presumed. Additionally, we evaluate the algorithm by comparing the results with
a fast and well-known sum of absolute di�erences algorithm and a modi�ed version
of semi-global matching using several Middlebury datasets and real-world scenarios,
which shows the enhanced performance of our algorithm.

i



Kurzfassung

Zur dreidimensionalen Datenerfassung mit Stereo Vision wird eine Szene von zwei
digitalen Kameras erfasst. Hierfür werden die Kameras parallel zueinander auf ei-
ner Basis montiert. Jeder sichtbare Punkt der Szene wird auf die Bildebene beider
Kameras projiziert. Die Projektionen korrespondieren miteinander und das Pixel-
paar kann zur Rekonstruktion der dreidimensionalen Position des Szenenpunktes
verwendet werden. Der horizontale Versatz eines korrespondierenden Pixelpaars ist
die Disparität und ist indirekt proportional zur Tiefe des projizierten Punktes. Die
Hauptaufgabe von Stereo Vision Systemen ist diese Korrespondenzen zu �nden oder,
in anderen Worten, das Korrespondenzproblem zu lösen. Ein gefundenes Pixelpaar
wird Match genannt.

In dieser Arbeit stellen wir uns der Herausforderung von echtzeitfähigem Stereo-
matching, das den Anforderungen von Anwendungen in der Robotik genügen soll.
Dazu gehört, neben hoher Rechengeschwindigkeit, auch die Möglichkeit einer einge-
betteten Realisierung. Solche eingebetteten Systeme haben beschränkte Ressourcen,
vor allem bei dem Speicher und der Rechenleistung, und erlauben deshalb keinen
Einsatz von den meisten technisch ausgefeilten und anspruchsvollen Stereomatching-
Algorithmen. Aus diesem Grund evaluierten wir die Stärken und Schwächen der
bekannten Methoden und fanden eine passende Lösung in einem Census-basierten
Verfahren. Gezielte Änderungen und Erweiterungen sowie die Optimierung des be-
kannten Verfahrens machen die Census Transformation echtzeitfähig und ermögli-
chen die Realisierung auf eingebetteten Systemen, ohne dass dedizierte Hardware,
wie eigens hierfür erzeugte Halbleiterchips, verwendet werden müssen. Wir verwen-
den, im Gegensatz zur klassischen Census Transformation, ein spärlich besetztes
Census-Fenster, das bei gleich bleibender Matchingqualität eine nahezu doppelt so
schnelle Verarbeitung ermöglicht. Dies ist auf die Tatsache zurückzuführen, dass sich
groÿe, spärlich besetzte, Census-Fenster besser eignen als kleine vollständig besetz-
te Fenster. Diesen Sachverhalt zeigen wir durch Experimente mit unterschiedlichen
Fenstergröÿen. Neben dem Algorithmus stellen wir das komplette Stereo Vision Sy-
stem, mit einer genauen Evaluierung der Ergebnisse, vor. Das System ist robust, lässt
sich leicht parametrisieren und ist für den Einsatz im Anwendungsfeld der Robotik
�exibel und skalierbar.

Auÿerdem präsentieren wir eine detaillierte Analyse der Laufzeiten von hochop-
timierten Realisierungen des Algorithmus auf unterschiedlichen kommerziell erhältli-
chen Plattformen wie einem Personalcomputer (PC), einem digitalen Signalprozessor
(DSP) und einer Gra�kkarte (GPU). Dabei erreichen wir mit unserem Algorithmus
eine Bildwiederholungsrate von bis zu 75 Bildern in der Sekunde für eine Au�ösung
von 640 × 480 mit 50 Disparitätsstufen. Zur Evaluierung der Matchingqualität ver-

ii



iii

wenden wir die Middlebury Stereo Datenbank, in der unser Algorithmus Rang 73
von 104 Einträgen in der Haupttabelle und Rang 23, wenn Subpixel-Genauigkeit
vorausgesetzt ist, erreicht. Zu guter Letzt vergleichen wir unseren Algorithmus mit
dem bekannten Stereomatching Algorithmus Sum of Absolute Di�erences (SAD) und
einer modi�zierten Form des Algorithmus Semi-Global Matching, sowohl mit Midd-
lebury Datensätzen als auch mit Aufnahmen aus dem Anwendungsfeld und zeigen
eine klare Verbesserung der Ergebnisse mit unserem Ansatz.



Acknowledgements

Though this dissertation is an individual work, many people contributed in di�erent
ways, thus, it is important for me to thank them here. First of all I want to thank
Markus Vincze for supervising my work. He woke my strong interest in computer vi-
sion for robotics and was a great help and scienti�c mentor. I also want to thank the
Vision for Robotics (V4R) team around Markus Vincze especially Peter Einramhof,
Walter Wohlkinger, and Sven Olufs who often helped me in fruitful discussions
and constructive criticisms to observe the topic from di�erent points of view. My
honest gratitude goes to Margrit Gelautz who kindly agreed to review my work as
secondary supervisor. Furthermore, I want to thank Michael Bleyer who helped me
with his expertise in the topic stereo vision to �nd a good starting point for my work.

During my time as PhD student and before, I was employed as a research
fellow at the AIT Austrian Institute of Technology. Here, I want to thank Manfred
Gruber, head of the business unit Safe and Autonomous Systems, for giving me the
opportunity to work for him during this time and the time after. I want to express
my gratitude to Wilfried Kubinger who, �rst, encouraged me to write this thesis,
second, supervised my work at AIT all the time, and third, was always a strong and
helpful guide for me. Furthermore, I am grateful to all my colleagues at AIT who
worked with me on the topic stereo vision and embedded systems. Especially, I want
to thank Christian Zinner who always was and is a great inspiration. He signi�cantly
improved the quality of this work through his research expertise and engineering
expert knowledge. My thanks also go to Christoph Sulzbachner, Jürgen Kogler, and
Stephan Ramberger for a very nice work environment and fruitful discussions about
several topics. I also want to thank Kristian Ambrosch for being a very helpful
PhD study colleague, especially in publications, and Wolfgang Herzner who always
gives helpful advices after paper reviews. Furthermore, I thank Daniel Hartermann,
Michael Weber, and Tobias Engelke who worked with me during their diploma theses.

Most important, my highest gratuity goes to my family. Without their love and
support during all my time as a student this work would not have been possible.
I also want to thank my friends who always supported me and helped me to �nd
distance when needed. Finally, my special thanks go to Felicitas Metzler. She was
on my side all the time during this work and still is.

Financial support was provided by the European Union funded project
robots@homeTM under grant FP6-2006-IST-6-045350.

iv



Contents

Abstract i

Kurzfassung ii

Acknowledgements iv

List of Abbreviations vii

1 Introduction 1

1.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Resulting Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Journal Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 Conference and Workshop Papers . . . . . . . . . . . . . . . . 7

2 Fundamentals of Stereo Vision 8

2.1 Epipolar Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The Correspondence Problem . . . . . . . . . . . . . . . . . . . . . . 10
2.3 3D Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Single Camera . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Stereo Camera . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.3 Recti�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Related Work 19

3.1 Stereo Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.1 Costs Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Disparity Optimization . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Evaluation of Stereo Matching Algorithms . . . . . . . . . . . . . . . 26
3.2.1 Middlebury Ranking . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Real-World Scenes . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Real-Time Stereo Vision Systems . . . . . . . . . . . . . . . . . . . . 31
3.4 Analyzing the Requirements . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

v



CONTENTS vi

4 Real-Time Census-Based Stereo Matching 38

4.1 Work�ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Image Acquisition and Recti�cation . . . . . . . . . . . . . . . . . . . 39
4.3 Sparse Census Transform . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Disparity Space Image Calculation . . . . . . . . . . . . . . . . . . . 41
4.5 Costs Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Subpixel Re�nement . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.7 Disparity Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7.1 Left/Right Consistency Check . . . . . . . . . . . . . . . . . . 43
4.7.2 Con�dence and Texture Threshold . . . . . . . . . . . . . . . 44
4.7.3 Example Costs Functions . . . . . . . . . . . . . . . . . . . . 46

4.8 3D Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Evaluation 50

5.1 Parameter Impact and Matching Quality . . . . . . . . . . . . . . . . 50
5.1.1 Census Mask and Aggregation Block Size . . . . . . . . . . . 51
5.1.2 Disparity Discontinuities . . . . . . . . . . . . . . . . . . . . . 53
5.1.3 Con�dence and Texture Thresholds . . . . . . . . . . . . . . . 53

5.2 Algorithm Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.1 Overall Quality . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.2 Disparity Discontinuities . . . . . . . . . . . . . . . . . . . . . 58
5.2.3 Brightness Di�erences . . . . . . . . . . . . . . . . . . . . . . 59
5.2.4 Real-World Scenes . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.5 Middlebury Ranking . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Reference Implementations 68

6.1 Plain Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Optimized Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.1 Target Platform . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2.2 Overall Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2.3 Algorithm Performance Optimization . . . . . . . . . . . . . . 69

6.3 Graphics Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.1 Target Platform . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3.2 Overall Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.3 Algorithm Performance Optimization . . . . . . . . . . . . . . 74

6.4 Digital Signal Processor . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.4.1 Target Platform . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.4.2 Overall Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.4.3 Algorithm Performance Optimization . . . . . . . . . . . . . . 77

6.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.5.1 Multi-Core Processing . . . . . . . . . . . . . . . . . . . . . . 79
6.5.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.5.3 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . 82

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Conclusion and Outlook 87



CONTENTS vii

A Extension to Global Optimization 89

A.1 Work�ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.1.1 Modi�ed Semi-Global Matching . . . . . . . . . . . . . . . . . 89
A.1.2 Con�dence and Texture . . . . . . . . . . . . . . . . . . . . . 90
A.1.3 Segmentation and Plane Fitting . . . . . . . . . . . . . . . . . 90
A.1.4 Disparity Map Re�nement . . . . . . . . . . . . . . . . . . . . 91

A.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.2.1 Modi�ed Semi-Global Matching . . . . . . . . . . . . . . . . . 92
A.2.2 Middlebury Ranking . . . . . . . . . . . . . . . . . . . . . . . 94
A.2.3 Real-World Scenes . . . . . . . . . . . . . . . . . . . . . . . . 95

A.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 99

Curriculum Vitae 110



List of Abbreviations

ASIC application-speci�c integrated circuits

CCD charge-coupled device

CM con�dence map

CMOS complementary metal oxide semiconductor

CPU central processing unit

CUDA compute uni�ed device architecture

DDR-RAM double data rate random-access memory

DM disparity map

DMA direct memory access

DSI disparity space image

DSL disparity space layer

DSP digital signal processor

ERAM external random-access memory

FPGA �eld programmable gate arrays

FPS frames per second

GPU graphics processing unit

GT ground truth

IRAM internal random-access memory

LIDAR light detection and ranging

MDE/J million disparity evaluations per Joule

MDE/S million disparity evaluations per second

MiB mebibyte (1MiB=230Byte)

MIPS million instructions per second

viii



CONTENTS ix

NCC normalized cross correlation

PC personal computer

PCI peripheral component interconnect

RMS root mean square

ROS-DMA resource optimized slicing-direct memory access

SAD sum of absolute di�erences

SDRAM synchronous dynamic random access memory

SGM semi-global matching

SIMD single instruction, multiple data

SSD sum of squared di�erences

SSE streaming SIMD extensions

TM texture map

TOF time-of-�ight

TP true positives

VLIW very long instruction word

WTA winner takes all

ZSAD zero mean sum of absolute di�erences



Chapter 1

Introduction

Robotics summarizes design, development, and manufacture of robots. The task
of a commercially available robot is the execution of a prede�ned and programmed
function such as the automation of technical processes in industrial applications.
Modern car manufacture is unthinkable without the use of robots, in detail robot
arms, at the assembly lines. The term robot was invented by the Czech artist Josef
Capek (1887�1945) and formed by the American author and professor of biochemistry
at Boston University, Isaac Asimov (1920�1992). He also published the famous
three laws of robotics [1]. The engineering science of robotics consists of electronics,
mechanics, and software. Electronics and mechanics describe and realize physical
sensors, actuators and manipulators which enable the interaction with the physical
environment as well as movement of the robot itself. The tasks of the software,
besides the control of the physical elements, are the robot's target application and
the interpretation of sensor data to perceive the robot's surrounding environment
and enable correct operation in there.

Besides robot arms in industrial applications, the promising research �eld of
service robots exists. A service robot ful�lls tasks which can help people in their
everyday life and work. On the one hand, actually available examples for private
usage are automatic household robots such as lawn-mowers or vacuum cleaners. The
idea of controlling these robots is to specify a certain area, e.g. with a wire, where
the robot can operate without the need of complicated path planning or mapping.
On the other hand, service robots are interesting for industrial purposes as well and
suitable solutions exist. Here, a service robot can ful�ll tasks such as autonomous
transport in o�ce or factory buildings. Such autonomous vehicles are available as
well, with the limitation of prede�ned paths.

A more sophisticated challenge is to realize autonomous navigation of service
robots without prede�ned paths but with de�ned destinations or waypoints only.
Then the robot has to deal with situations that are not a priori programmed. Besides
industrial purposes, personal applications can be help for elder or handicapped people
as well as household help in general.

In contrast to industrial robots, where the operation environment is well known
and controlled, a personal service robot has to operate mostly in human environ-
ments. Such environments could be apartments, �ats, or public places with an
uncontrolled behavior. A robot always has to be able to deal with obstacles or, more
important, suddenly appearing humans or animals in its operation area.

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Left: LIDAR, Sick AG, LMS291, http://www.sick.de; Right: TOF,
MESA Imaging AG, SwissRangerTM SR4000, http://www.mesa-imaging.ch

For safe operation in such uncontrolled environments, dependable perception
modules are needed for a reliable description of the surrounding of the robot. Es-
pecially 3D information is crucial for reliable operation in human environments.
State-of-the-art embedded sensors for mobile robots are laser range �nders or laser
scanners (LIDAR, light detection and ranging) and time-of-�ight (TOF) cameras.
Embedded means that the sensors have to be able to operate independently of the
main processing unit. This is advantageous because the processing power on a robot
is limited and the application is computationally intensive anyway.

Common time-of-�ight sensors illuminate the scene with modulated infrared light.
They measure the time that the light needs from the sensor to an object and back to
the sensor to calculate the distance of the object. In detail, a grid of infrared light
emitting diodes is used for illumination of the scene and a CCD/CMOS chip detects
the re�ections. Laser scanners also use the round-trip time (or phase di�erence) of
a laser beam to an object with the di�erence that the laser beam is used for a single
point only and not for a whole area like TOF. This makes the laser more accurate
with the drawback that the beam has to be moved along the scan line to cover more
than one scene point.

The mentioned techniques, LIDAR and TOF, deliver accurate depth information
but su�er from low resolution. Laser range �nders additionally scan in one plane
only, which means the �eld-of-view can only be horizontal or vertical depending on
the mounting position. Obstacles that do not intersect with this plane can obviously
not be detected. If a whole 3D scene should be scanned, the laser has to move the
scanning plane which limits the robot's speed. The advantage of laser scanners is
the high accuracy of a few centimeter and the robustness to lighting conditions.

Time-of-�ight sensors have, as well as digital cameras, both a horizontal and
vertical �eld-of-view. The main drawback is the low resolution of, e.g., 176× 144 in
comparison to industrial digital cameras where devices with an image resolution of,
e.g., 640×480 are broadly available. Figure 1.1 shows two examples of commercially
available range sensors. On the left, a laser range �nder from the company SICK
AG and, on the right, a time-of-�ight camera from the company MESA Imaging AG
are shown.

A promising alternative to TOF and LIDAR is stereo vision. A classic stereo
sensor consists of two digital cameras which are mounted in parallel, separated by
the baseline. 3D information is calculated using the correspondences between both
images. The horizontal displacement of corresponding pixels is called the disparity.
The stereo matching algorithm, in more detail �nding the pixel correspondences of



CHAPTER 1. INTRODUCTION 3

Figure 1.2: Principle of 3D perception with stereo vision; First, the images are
captured with digital cameras, then corresponding pixels are searched which results
in a disparity map (black areas mark unmatched pixels) and �nally the 3D data of
all found pixels is reconstructed.

the stereo image pair, is the core part of stereo vision systems. Figure 1.2 shows a
typical stereo vision work�ow for 3D data perception.

In contrast to time-of-�ight and laser, stereo vision delivers 3D information and
camera images of the captured environment synchronously. This makes it very well
suited for robot applications because the camera images can be additionally used
for other tasks such as scene classi�cation. Each image capture of a stereo sensor
delivers a 3D reconstruction of the captured scene visible in both camera images.
The maximum lateral and depth resolution is physically given by the optical and
geometrical properties of the digital cameras and their alignment. Stereo vision is a
purely passive technology that uses, additionally to the cameras, only a processing
unit to realize the sensing. The processing unit can be, e.g., a personal computer
or an embedded system. The power consumption of an embedded stereo sensor is
about 1 W for the cameras and about 5 W for the embedded processing unit. This
is low in comparison to TOF (about 12 W) and LIDAR (about 30 W).

The mentioned properties of stereo vision, especially the higher resolution, the
lower power consumption, the fact that digital images can be used for other tasks as
well, and the passive 3D data perception make stereo vision very interesting for robot
applications. High quality stereo matching algorithms are computationally intensive
and require a large amount of hardware resources. Integrating such an algorithm
into an embedded system, which is in fact limited in resources, scale, and power,
is a delicate task. The real-time requirements of robot applications add additional
constraints to the realization. The de�nition of the term real-time by Kopetz [2]
which means that a task has to be �nished within an a priori de�ned time frame
is extended in this work. Additionally, we make demands on fast (at least 10 fps),
constant, and scene-independent processing time.

The key to success in realizing a reliable, embedded, and real-time-capable stereo
vision system is the careful design of the core algorithm and an optimized implemen-
tation on proper hardware platforms. Not all algorithms and methods are realizable
in real-time up to now, so the implementation has to be part of the algorithm de-
sign as well. A suitable trade-o� between computational e�ort, computation time,
memory consumption, and quality of stereo matching must be found. The detailed
analysis of possible matching approaches, the design of an adequate method to solve



CHAPTER 1. INTRODUCTION 4

Figure 1.3: Mobile robot platform "James" of the Automation and Control Institute
at the Vienna University of Technology, with and without casing

the correspondence problem, the complete evaluation of the algorithm and the opti-
mized realization from the scratch on several target platforms for robotic applications
are the topics of this thesis.

1.1 Requirements

This thesis arose in close collaboration of the Automation and Control Institute
(ACIN) of the Vienna University of Technology and the Safety & Security Depart-
ment (DSS) of the AIT Austrian Institute of Technology. The scienti�c research
areas of ACIN include computer vision for robotics, DSS has skills in embedded and
safety critical systems for computer vision applications.

ACIN and DSS are partners in the research project robots@home1 with the ob-
jective to provide an open mobile platform for the massive introduction of robots
into the homes of everyone. Target applications could be, among others, home help,
food delivery, security or elderly care. Stereo vision, as well as other sensor tech-
nologies shall be used for the main robotic challenges such as obstacle detection and
navigation but also for more high-level tasks such as learning and mapping of rooms
and classifying of items and furniture. The success of the project will be the learn-
ing of four homes and the heading for at least ten annotated pieces of furniture.
The stereo vision system should overcome known drawbacks of actually used sensors
like time-of-�ight or laser; it should stay in a lower price segment and approve the
valuable usage of a stereo matching systems as 3D perception sensors.

Figure 1.3 shows the research robot platform "James" of the Automation and
Control Institute (ACIN) of the Vienna University of Technology equipped with laser,
time-of-�ight, and stereo vision 3D perception modules. It is used for realization and
testing of the developed algorithms.
The following requirements for the stereo vision sensor have to be ful�lled:

1European Union funded project robots@homeTM under grant FP6-2006-IST-6-045350.



CHAPTER 1. INTRODUCTION 5

Real-time processing: The calculation of the 3D data has to be fast (at least 10
fps), constant, known and scene-independent to a�ord interactive behavior of
the robot in a human environment.

Reliable 3D data: The resulting 3D data have to be reliable because a robot can-
not trust on data for critical processing tasks which is provided but false with
a high probability. Thus, uncertain 3D points have to be determined.

Accurate 3D data: The accuracy of the 3D data decreases with the increasing
distance of scene points. This is systematically given, so the sensor has to be
adaptable to the optimal working distance. Subpixel accuracy is also helpful
to cope with the large depth steps caused by integer disparity steps in large
distances.

Dense 3D data: One advantage of stereo vision is the large amount of 3D points
that can be provided per image capture. Obviously, as many reliable 3D points
as possible have to be found.

Embedded realization: The processing power of the onboard computer of the
robot is limited, so an additional calculation unit has to be used for the stereo
matching. On a robot, electric power as well as mounting space are limited
resources. Embedded systems have a small form factor and low power con-
sumption, and thus, are well suited for robot applications.

Scalable design: The target platform cannot be strictly de�ned, so the design has
to be scalable in terms of resource usage, image resolution, and processing
speed.

Memory awareness: On embedded platforms, a frequent constraint is the fast on-
chip memory; thus, the algorithm has to be memory-aware.

Low price: Service robots for common homes have to be much cheaper than robots
in production lines or other industrial applications. The stereo sensor is only
a small part of it and, thus, has to cost a fraction of the whole system. Due
to their high price, embedded systems using �eld programmable gate arrays
(FPGA) or application speci�c integrated circuits (ASIC) are not favorable in
this work.

Passive: The stereo sensor is optimized for home robot application. This includes
that it should in�uence its environment as little as possible. Contrary to active
sensors, such as laser scanners or time-of-�ight cameras, stereo is purely passive
and does not disturb the surrounding environment with light beams or other
radiance.

Power consumption: Due to the usage of the sensor on robotic platforms where
power is a critical resources this requirement is essential.

1.2 Contributions

As part of computer vision, the research in stereo matching algorithms is driven by
the motivation of ideally calculating a correct and perfectly dense disparity map.



CHAPTER 1. INTRODUCTION 6

Processing time is only of secondary priority. Many well-matching algorithms ex-
ist but cannot be used in robot practice because of their high processing time and
high memory consumption. The contribution of this thesis is the design of a stereo
matching algorithm and the integration into a stereo vision system that overcomes
these problems by ful�lling all requirements listed above. Thus, the algorithm is a
well-balanced trade-o� between resource consumption and results quality. It han-
dles di�cult areas for stereo matching, such as areas with low texture, very well in
comparison to state-of-the art real-time methods. It can successfully eliminate false
positives to provide reliable 3D data. An adaption of the Census transform makes
this possible, which halves the processing time with nearly unchanged matching
quality. This allows the use of large Census mask sizes while still enabling real-time
performance. An advantage is also the good scalability which makes it applicable
to robotics because it can be adapted according to the needs of the autonomous
platform. It is well suitable for embedded systems because it can be processed in
small pieces sequentially as well as for computational powerful platforms such as
graphics processing units (GPU) where high image resolutions can also be processed
in real-time because of the possibility of parallel implementation. The highly opti-
mized implementation on several hardware platforms is an important contribution
of this work as well. We give a detailed performance comparison and analysis of the
completely di�erent processing platforms. As a pure software solution, it reaches a
performance level that was possible on expensive hardware only up to now. To make
this possible, we use memory and processing time-e�cient approaches for calculating
and storing the matching costs before a local optimization technique is used to �nd
the optimal disparity. Due to the fact that the depth resolution decreases with the
growing distance, subpixel re�nement is used to increase the accuracy of the matches.

The algorithm can be adapted according to di�erent camera characteristics by
using a con�dence and a texture metric. The con�dence estimates the probability
of the uniqueness of each match and the texture adjusts the algorithms' sensitivity
to the cameras' noise. We evaluate the results by the use of the Middlebury stereo
evaluation website as well as with images with overlayed synthetic noise and with
scenes under real-world conditions. In the Middlebury main ranking, the algorithm
is well-ranked in comparison to all other real-time algorithms and outperforms all
higher ranked algorithms in processing time clearly. The algorithm is also the only
purely embedded solution in the ranking up to now.

1.3 Organization

The remainder of this thesis is organized as follows. Chapter 2 introduces the funda-
mentals of stereo vision, the epipolar geometry, the correspondence problem, the 3D
reconstruction and the camera calibration. Chapter 3 describes the state-of-the-art
in stereo matching algorithms, introduces real-time stereo vision systems and algo-
rithm evaluation techniques. Chapter 4 gives a description of the proposed real-time
stereo engine, where each step, from image acquisition to 3D reconstruction is de-
scribed in detail. Afterwards, the matching quality of the algorithm is evaluated in
Chapter 5 with a wide number of parameter con�gurations. Chapter 6 shows the
reference implementations on a personal computer (PC), a digital signal processor
(DSP), and a graphics processing unit (GPU) with a comprehensive performance



CHAPTER 1. INTRODUCTION 7

comparison. Finally, Chapter 7 concludes the thesis and gives an outlook to future
research.

1.4 Resulting Publications

The work presented in this thesis has appeared in following journal and conference
papers:

1.4.1 Journal Paper

Martin Humenberger, Christian Zinner, Michael Weber, Wilfried Kubinger, and
Markus Vincze. A Fast Stereo Matching Algorithm Suitable for Embedded Real-Time
Systems.
Journal on Computer Vision and Image Understanding, 2010,
http://dx.doi.org/10.1016/j.cviu.2010.03.012, Elsevier.

1.4.2 Conference and Workshop Papers

Martin Humenberger, Tobias Engelke, and Wilfried Kubinger. A Census-Based
Stereo Vision Algorithm Using Modi�ed Semi-Global Matching and Plane-Fitting to
Improve Matching Quality.
In Proceedings of the Twenty-Third IEEE Conference on Computer Vision and
Pattern Recognition, 6th Workshop on Embedded Computer Vision, 2010.

Martin Humenberger, Christian Zinner, and Wilfried Kubinger. Performance Eval-
uation of a Census-Based Stereo Matching Algorithm on Embedded and Multi-Core
Hardware.
In Proceedings of the 6th International Symposium on Image and Signal Processing
and Analysis, 2009.

Martin Humenberger, Daniel Hartermann and Wilfried Kubinger. Evaluation of
Stereo Matching Systems for Real World Applications Using Structured Light for
Ground Truth Estimation.
In Proceedings of IAPR Conference on Machine Vision Applications, 2007.

Martin Humenberger and Wilfried Kubinger. A Stereo Matching Development
Platform with Ground Truth Evaluation and Algorithm Taxonomy for Embedded
Systems.
In Proceedings of the 18th International DAAAM Symposium, 2007.



Chapter 2

Fundamentals of Stereo Vision

The research area around stereoscopy started long ago in 1840 as Sir Charles Wheat-
stone �rst used this method to create a three dimensional illusion of a scene by show-
ing the eyes two di�erent images, captured side by side. The brain matches the image
pair and creates the 3D illusion. This technique was �rst used in entertainment and
experimental setups only, but found function in optical distance measurement later
on as well. From the invention of the digital camera, this concept was picked up by
computer vision researchers to use it for 3D sensing. They tried to do the matching,
done by the human brain so far, with computer vision algorithms. Many approaches
came up but the so called correspondence problem is still not completely solved.

Classic stereo vision uses a stereo camera setup, which is built up of two cameras,
called stereo camera head, mounted in parallel. It captures a synchronized stereo
pair consisting of the left camera's image and the right camera's image. A typical
stereo head is shown in Fig. 2.1; the distance between both cameras is called the
baseline. The main challenge of stereo vision is the reconstruction of 3D information
of a scene captured from two di�erent points of view. In this chapter, a summary
of stereo vision fundamentals is given. Additional information can be found in, e.g.,
Sonka et al. [3], Faugeras [4], Gonzalez and Woods [5], Hartley and Zisserman [6],
and Davies [7].

Figure 2.1: Typical stereo camera head

First, we describe in Section 2.1 the geometry of a stereo setup. Then we explain
the di�culties of �nding the correct correspondences in Section 2.2 followed by the
3D reconstruction of the captured scene in Section 2.3. Finally, in Section 2.4 we

8



CHAPTER 2. FUNDAMENTALS OF STEREO VISION 9

describe how stereo cameras need to be calibrated to calculate the exact stereo camera
geometry.

2.1 Epipolar Geometry

The pinhole camera model is used to explain the stereo camera geometry. Figure 2.2
illustrates the projection of a scene point P onto the image planes, πl and πr, of two
cameras. The cameras are separated by the baseline b, and have the optical centers at
Ol and Or. Of course, real lenses usually cause distortion in the images which can be
corrected, as explained later on in Section 2.4. The scene point P = (x, y, z) is given
in world coordinates (meters) and its projection onto the image planes, pl = (u, v)
and pr = (u, v), in image coordinates (pixels). The points pl and pr represent the
same scene point and thus correspond to each other.

P

Ol Or

l r

l r

l

r

l r

Figure 2.2: Arbitrary aligned stereo vision geometry as pinhole camera model

The points pl and pr lie on their epipolar lines gl and gr which are de�ned by
the intersection of the plane spanned by (P,Ol, Or) and the image planes πl and πr.
The intersection of the baseline b and the image planes are called epipoles el and
er. When searching for the correspondence of a pixel in the one image, each possible
matching candidate lies on the according epipolar line in the other image. The search
for the best match is therefore restricted to a search along the corresponding epipolar
line instead of the whole image This reduces the processing e�ort signi�cantly.

The epipolar line gr corresponds to the pixel pl and gl to pr. The corresponding
epipolar lines can only be calculated if the geometry between both cameras is known.
The computation of this epipolar geometry is part of stereo calibration, which is
explained in Section 2.4.

Once the geometry is known, the images can be recti�ed. In recti�ed images, the
epipolar lines are horizontal, the epipoles are mapped to in�nity and corresponding
pixels have the same v-coordinate. The epipolar lines correspond to the horizontal
scanlines, which makes the search for matches much easier, because only one image
coordinate changes. The arbitrary aligned stereo camera setup in Fig. 2.2 changes
after recti�cation to the setup in Fig. 2.3.

An important restriction also reduces the search range for the corresponding pixel
along the epipolar lines. Figure 2.4 shows that if the scene point P is assumed to
be within the distance zc,range with respect to the right camera coordinate system,
the possible positions of the corresponding point pl lies within the disparity search



CHAPTER 2. FUNDAMENTALS OF STEREO VISION 10

P

Ol Or

l r

l r

l r

Figure 2.3: Recti�ed stereo vision geometry as pinhole camera model

range drange. Low disparities mean high distance and vice versa. The disparity range
de�nes the depth range of the sensor and is freely con�gurable. A common usable
search range starts at in�nity (disparity 0) and searches until a de�ned minimum
detectable distance (maximum disparity). The processing e�ort increases for high
search ranges, so it should be well chosen for the target application.

r

Ol Or

P
c,range

range

l

Figure 2.4: Disparity range along the epipolar line for recti�ed images

2.2 The Correspondence Problem

As a reminder, the correspondence problem for projected scene points is solved by a
stereo matching algorithm and the result is a disparity map. This is an image of the
same size like the stereo pair images containing the disparity for each pixel instead
of the intensity value.

As a consequence of the stereo geometry, not all areas within the �eld of view
are visible in both cameras. Especially at depth discontinuities, so called occlusions
appear. Areas that are visible in one camera only are called half-occluded and areas
visible in none of the cameras, occluded. Figure 2.5 shows an example for both.

Each scene point visible in both images has exactly one representing pixel per



CHAPTER 2. FUNDAMENTALS OF STEREO VISION 11

occlusionhalf-occlusion

Figure 2.5: Occluded and half-occluded areas in a scene captured with a stereo
camera head

image, and these pixels have to be determined uniquely. In practice, this is not so
easy, due to the vast number of similar scenery points in di�erent distances which
cause a pixel in, say, the left image, to be mapped to a series of similar pixels in the
right image. The problems stereo matching algorithms have to face are:

Occlusions: These areas cannot be matched because they are not visible in both
images.

Re�ections: The camera cannot distinguish between the re�ecting surface and the
re�ected object. Thus, the distance of the re�ected object is calculated instead
of the surface which would be the correct distance.

Transparency: Perfect transparent objects and surfaces are impossible to match
because they cannot be identi�ed by the cameras. Additionally, transparent
surfaces such as glass often also cause re�ections and violate the uniqueness
constraint as described in Section 3.1.2 later on.

Textureless areas: On textureless areas, all pixels have nearly the same color.
Thus, a pixel of one image has a huge number of equal matching candidates in
the other image. This decreases the probability of choosing the correct pixel.

Repetitive textures: As well as textureless areas, repetitive textures o�er lots of
equal matching candidates and thus are di�cult to match.



CHAPTER 2. FUNDAMENTALS OF STEREO VISION 12

Thin objects: If a neighborhood of pixels is used to increase the matching quality,
pixels of thin objects are hard to �nd if the neighborhood is broader than the
object.

Cameras: All known problems occurring by the use of cameras exist in stereo vision
as well. Especially in robotics, a big problem is the limited dynamic range of
the cameras. If a robot moves from a dark room into a very bright room, a
good auto shutter is needed. The real problem comes up if one area of the
image is very dark and an other area is very bright because common image
sensors and optics can only be adjusted for the whole image.

2.3 3D Reconstruction

Once the correspondences between the stereo images are found, the disparity (the
horizontal displacement of corresponding pixels) is de�ned as shown in Fig. 2.6.

P

l r

Ol Or

l r

u1 u2

Figure 2.6: Corresponding pixels with disparity d = u2 − u1

For 3D reconstruction, the used coordinate systems have to be known; Fig. 2.7
shows how they are de�ned. O is the optical center of the camera, f the focal length
of the lens, (u, v) are the image coordinates on the image plane, (xc, yc, zc) are the
camera coordinates of the projected points in space with the camera's optical center
as origin and (X,Y, Z) are the world coordinates with the application-speci�c origin.

c

cc

camera 
coordinates

(xc,yc,zc)

image
coordinates

(u,v)

O

world 
coordinates

(X,Y,Z)

image plane

Figure 2.7: Camera, image, and world coordinate system



CHAPTER 2. FUNDAMENTALS OF STEREO VISION 13

For depth calculation, as shown in Fig. 2.6, triangulation is used for each pixel
to obtain

z =
b · f
d
, (2.1)

where z is the distance between the camera's optical centers and the projected scene
point P , b is the baseline, d the disparity and f is the focal length of the camera.
This relation can be derived from the similar right angle triangles in the model as
explained in Gonzalez and Woods [5]. The depth of a pixel is therefore indirectly
proportional to its disparity.

The complete 3D point cloud in camera coordinates can be calculated with xc
yc
zc

 = K−1

 u · zc
v · zc
zc

 (2.2)

where K is the camera calibration matrix, the pixel is given in homogeneous coor-
dinates (u · zc, v · zc, zc)T and zc is calculated with Equ. (2.1). K and f have to be
determined by the camera calibration explained in the next section. If the mounting
position of the stereo sensor is known, the point cloud can be transformed to any
world coordinate system by a translation and rotation.

2.4 Camera Calibration

Camera calibration is an essential part of stereo vision because it is used to determine
the exact camera and stereo parameters needed for 3D reconstruction and optimized
stereo matching. On the one hand, both cameras have to be calibrated separately
to obtain the intrinsic and extrinsic camera parameters for lens undistortion and 3D
reconstruction. On the other hand, a stereo calibration has to be done to determine
the geometry between both cameras which will be further used to rectify the stereo
images. The calibration method used in this work is well chosen with respect to
the needs of embedded stereo vision. The calibration process is based on capturing
images of known calibration pattern, e.g. chessboards. The correspondences between
camera and world coordinate systems are used for single camera calibration and the
correspondences between the stereo image pair for stereo calibration. Methods for
calculating the calibration parameters can be found in Zhang [8], Sonka et al. [3],
Fusiello et al. [9] and Bradski and Kaehler [10]. Implementations of most of the
described functions can be found in the Caltech Calibration Toolbox, Bouguet [11],
and in the OpenCV library [12].

2.4.1 Single Camera

The intrinsic camera parameters are given by the camera calibration matrix K,
Equ. (2.3), and the distortion coe�cients described later on. The calibration matrix
contains the focal length f which is given in horizontal pixels (fx) and in vertical
pixels (fy). If the pixels are exact quadratic, fx and fy are equal. It also contains
the principal point C(cx, cy) which is the true center of the image plane in pixels.

K =

 fx 0 cx
0 fy cy
0 0 1

 (2.3)



CHAPTER 2. FUNDAMENTALS OF STEREO VISION 14

The calibration matrix is used to transform the camera coordinates (xc, yc, zc) to
image coordinates (u, v) with(

u

v

)
=

(
cx
cy

)
+

1

zc

(
fxxc
fyyc

)
. (2.4)

If homogeneous coordinates are used, the coordinate transform is the matrix multiply uzc
vzc
zc

 = K

 xc
yc
zc

 . (2.5)

The inversion of Equ. (2.4) is xc
yc
zc

 = zc


u−cx
fx

v−cy
fy

1

 . (2.6)

Needless to say that it is only unique if zc is known. If zc is calculated with Equ. (2.1)
and (u, v) is one of the corresponding pixels, Equ. (2.6) can be used to reconstruct
the 3D data given in camera coordinates of the projected scene point. Of course
homogenous coordinates can be used as well with xc

yc
zc

 = K−1

 uzc
vzc
zc

 . (2.7)

The assumption of ideal central projection usually fails by the use of real lenses
because of lens distortion. To overcome this problem, the camera images have to
be undistorted using a radial and tangential distortion model described with the
distortion coe�cients dr1, dr2 and dr3 for radial and dt1, dt2 for tangential distortion.
Let (ud, vd) be the image coordinates in the distorted image. For undistortion, every
pixel in the undistorted image (dst) is given by the pixel (ud, vd) in the distorted
image (src).

dst(u, v) = src(ud, vd) (2.8)

formulates this backward transform. If this is done for the whole image, the generated
map can be used for every image captured by the calibrated camera. The bene�t of
this backward transform is that, unlike to forward transform, it is ensured that all
pixels of the destination image get �lled. Subpixel coordinates are expected, so the
exact pixel value is determined by bilinear interpolation.

The calculation of (ud, vd) works backwards as well. First, the ideal image coor-
dinates (u, v) of the undistorted image have to be transformed in camera coordinates
(xc, yc) with Equ. (2.6) where zc = 1. After that, the distortion model is applied to
(xc, yc) with(

xd
yd

)
=

(
xc
yc

)
(1 + dr1r

2 + dr2r
4 + dr3r

6) +

(
dt12xcyc + dt2(r

2 + 2x2c)

dt1(r2 + 2y2c ) + dt22xcyc

)
(2.9)

where
r =

√
x2c + y2c . (2.10)



CHAPTER 2. FUNDAMENTALS OF STEREO VISION 15

The �nal distorted image coordinates are transformed back from the distorted camera
coordinates (xd, yd) with Equ. (2.4) where xc = xd, yc = yd and zc = 1. The result
is the location (ud, vd) of the undistorted pixel (u, v) in the original image.

The single camera calibration is mainly the calculation of the intrinsic and ex-
trinsic camera parameters. It is then used for correcting the distortion of the camera
images and after the stereo matching process, for the 3D reconstruction of the pro-
jected scene points with respect to one of the cameras' coordinate systems.

2.4.2 Stereo Camera

A stereo camera head built up of two identical cameras placed side by side perfectly in
parallel is called a rectilinear stereo rig. Even if this perfect assumption is valid only
theoretically, the cameras should be set up as rectilinearly as possible. The missing
accuracy can be obtained with stereo camera calibration which makes it essential for
stereo vision systems. It determines the epipolar geometry of both cameras which
o�ers the possibility of stereo recti�cation.

The epipolar geometry is described by the so called fundamental matrix F with
the core characteristic

pTr Fpl = 0 (2.11)

where pl and pr represent corresponding pixels in the left and in the right image.
The epipolar line el of a pixel pr in the right image can be determined with

el = F T pr (2.12)

and the epipolar line er of a pixel pl in the left image with

er = Fpl. (2.13)

One possibility of stereo matching is to compute the corresponding epipolar line for
each pixel to avoid the need of stereo recti�cation. The advantage of this approach is
that the input images do not su�er from transforms, which means more accuracy in
3D reconstruction. The drawback is that memory accesses during costs aggregation
are much more complex, which causes more processing time. As described later on
in Chapter 4, the costs aggregation is a linear �lter with a quadratic kernel. The
epipolar lines of unrecti�ed images are skewed so a processing time optimized memory
access is not realizable. So, in this work, the input images are recti�ed before the
stereo matching is applied. For recti�cation, basically two techniques came up where
both calculate, as well as for lens distortion correction, a backward transform which
follows Equ. (2.8).

The �rst technique was introduced by Hartley [13] where no knowledge about
the intrinsic and extrinsic camera parameters is needed and is therefore called un-
calibrated method. It can be used if undistorted images are available. The only
requirements are accurate point correspondences between the stereo images which
can be �rst used to calculate the fundamental matrix and afterwards to calculate
the homography matrices Hr,l which are used to rectify the camera images. Alterna-
tively, the homographies can be transformed in 3D rotation matrixes for the camera
coordinate system following

Rr,l = K−1r,l Hr,lKr,l. (2.14)



CHAPTER 2. FUNDAMENTALS OF STEREO VISION 16

The advantage of the uncalibrated method is that it enables online calibration due
to the fact that only point correspondences are needed. The drawback is that the
intrinsic camera parameters are unknown, thus the 3D reconstruction is possible up
to a projective transform. This means that objects with di�erent sizes could seem
to be the same.

The second technique was introduced by Tsai [14], Zhang [8], and Zhang [15]
and uses knowledge about both camera geometries for calculation of the transform
matrixes and is therefore called calibrated method and will be used in this work.
Jean-Yves Bouguet implemented this method in his well-known camera calibration
toolbox for Matlab [11]. The geometry of a camera is represented by its perspective
projection matrix P = K(R|t) which can be used to transform camera to world
coordinates. R and t are the extrinsic camera parameters, determined by single
camera calibration, where R is the rotation and t the translation between camera and
world coordinates. The results of this technique are two 3× 3 rotation matrixes Rr,l

which rotate the camera coordinate systems until the epipolar lines are horizontal,
the epipoles are at in�nity and corresponding pixels share the same v coordinate.
The camera matrices also change to recti�ed camera matrixes

K ′r,l =

 f ′x 0 c′x
0 f ′y c′y
0 0 1

 . (2.15)

The recti�cation process itself is also a backward transform which calculates the
coordinates (ur, vr) in the original image for each pixel (u, v) in the recti�ed image.
First, (u, v) is transformed to camera coordinates with Equ. (2.7) where zc = 1 and
K = K ′r,l. After that, the recti�cation is inverted with x

y
w

 = R−1l,r

 xc
yc
1

 (2.16)

and

x′ =
x

w
y′ =

y

w
. (2.17)

Finally, the unrecti�ed camera coordinates (x′, y′) are transformed to the �nal unrec-
ti�ed image coordinates (ur, vr) with Equ. (2.5) where xc = x′, yc = y′ and zc = 1.
The pixel value is determined by bilinear interpolation. The generated maps can be
further used for recti�cation of all images captured by the calibrated stereo head.

The quality Q of the calculated stereo calibration can be determined by the use of
the characteristics of the fundamental matrix in Equ. (2.12) and Equ. (2.13). They
are used to determine the epipolar lines for the corresponding pixel pairs used for
stereo calibration. If the calibration is perfect, pl lies on its corresponding epipolar
line er and pr on el. If ax+ by + c = 0 represents el,r, pl,r = (x, y) has to ful�l this
equation. The quality is the root mean square (RMS) error over all corresponding
pixel pairs, calculated with

Q =

√√√√ 1

N

N∑
i=0

(er,apl,x + er,bpl,y + er,c)2 + (el,apr,x + el,bpr,y + el,c)2 (2.18)

where N is the total number of pixel pairs.



CHAPTER 2. FUNDAMENTALS OF STEREO VISION 17

2.4.3 Recti�cation

The previous section described how to calculate the transform maps for correction
of the lens distortion and recti�cation of the stereo camera images. These maps can
be combined to a single transform per image. On embedded systems, the camera
calibration parameters, consisting of the camera matrices, the distortion parame-
ters, the recti�cation matrices, and the projection matrices are used to calculate the
maps at start-up. As a reminder, once the combined transform maps, from now on
called recti�cation maps, are calculated, they can be used to rectify (lens distortion
correction is from now on included in this term) the input images at runtime.

For this, also a backward transform is used to calculate the image coordinates
(u, v) of the recti�ed image out of the unrecti�ed image coordinates (ulr, vlr). The
process of calculating the recti�cation maps is explained for the left camera. The
same process can be used for the right camera. First, (u, v) is transformed to camera
coordinates (xc, yc, zc) where zc = 1 and K = K ′l with Equ. (2.7). Then the recti�ca-
tion is reversed with Equ. (2.17), the distortion model is applied with Equ. (2.10), and
�nally the camera coordinates are transformed to image coordinates with Equ. (2.5)
where zc = 1. The resulting recti�cation maps,

mapx(x, y) = ulr mapy(x, y) = vlr, (2.19)

can be used to rectify the stereo image pair with

dst(ul, vl) = src(mapx(ul, vl),mapy(ul, vl)). (2.20)

Figure 2.8 illustrates the backward transform of recti�cation.

lr, lr rr, rr

l, l r, r

Figure 2.8: Backward transform of recti�cation

2.5 Summary

In this chapter we presented the fundamentals of stereo vision. A stereo vision
sensor consists of two digital cameras mounted in parallel. The cameras capture
the scene and a matching algorithm searches for the pixel correspondences to �nally
reconstruct the 3D information for each matched pixel. The horizontal displacement
is called disparity and is indirectly proportional to the depth of the projected scene
point. The disparity range is used to de�ne the target depth range, e.g. from in�nity
(disparity 0) and the minimum distance (maximum disparity). The alignment of
the cameras is described with the epipolar geometry. Corresponding pixels always



CHAPTER 2. FUNDAMENTALS OF STEREO VISION 18

lie on their epipolar lines. Once the epipolar geometry is known, the images can be
recti�ed. The corresponding pixel search e�ort reduces a lot because the recti�ed
epipolar lines are aligned in parallel to the image rows and corresponding pixels have
the same v-coordinate. The camera parameters and the epipolar geometry can be
calculated with a camera calibration and can be used to reconstruct the 3D points
in respect to the left or right camera coordinate system.

In the next chapter, we will discuss state-of-the art stereo matching approaches
and analyze them according to the given requirements.



Chapter 3

Related Work

Stereo matching algorithms try to solve the correspondence problem between the
two pixels representing the projection of a single scene point on the left and right
image planes. To do this, all possible matching candidates have to be analyzed and
the best matches have to be chosen. First, we explain in Section 3.1 the possibilities
of calculating the matching probabilities, how the best match can be chosen out of
all candidates, and how the best matching disparities can be optimized. Then we
give possibilities how the results of stereo matching algorithms can be evaluated and
compared with others in Section 3.2, followed by a compilation of real-time stereo
systems in Section 3.3. Finally, we analyze the system requirements in terms of stereo
matching algorithms and reason the algorithm decision for the proposed stereo vision
sensor in Section 3.4.

3.1 Stereo Matching

There are two main groups of stereo matching algorithms: feature-based and area-
based algorithms. The �rst try to �nd proper features, such as corners or edges, in
the images and match them. The second try to match each pixel independently of the
image content. Feature-based algorithms result in a sparse disparity map because
they only calculate disparities for the extracted features. Area-based algorithms
calculate the disparity for each pixel in the image so the resulting disparity map can
be very dense.

The techniques described here are restricted to area-based algorithms because
this work attempts to obtain a dense disparity map. A good summary of stereo
matching algorithms can be found in the work of Brown et al. [16] and Scharstein
and Szeliski [17].

Basically, an area-based stereo matching algorithm is built up as follows: First,
preprocessing functions are applied, e.g. a noise �lter. This step is not manda-
tory because modern digital cameras have good noise characteristics. Second, the
matching costs for each pixel at each disparity level within the disparity range are
calculated. The matching costs determine the probability of a correct match. Math-
ematically, it is a similarity measurement between two pixels. Third, the matching
costs for all disparity levels are aggregated within a certain neighborhood window
(block). Fourth, the disparities are optimized to �nd the best matches.

19



CHAPTER 3. RELATED WORK 20

Aggregating costs increases the uniqueness of possible matches using the assump-
tion that pixels within the window share the same disparity level. This assumption
fails if blocks overlap disparity discontinuities. In such cases the borders become
broader because the costs of the foreground object have more impact than the half
occluded areas of the background. However, the bigger the block size, the higher the
chance for a correct match at di�cult areas. Beside the drawback of quality loss at
disparity discontinuities, large blocks also decrease the accuracy for small objects.
Small blocks increase the quality at object borders and the localizing of matches is
more accurate but they can cause more false matches at di�cult areas. Chapter 5
gives more details about the impact of di�erent aggregation block sizes. To over-
come this problem, Hirschmueller [18], Hirschmueller et al. [19], Fusiello et al. [20]
introduced multiple windowing aggregation strategies. The basic idea is to aggregate
multiple blocks of di�erent sizes and shapes around the target pixel and then use the
blocks with the lowest costs only. Other strategies are to select an appropriate block
for each pixel by variation of intensity and disparity [21] or to �rst estimate an initial
disparity and optimize it afterwards [22]. In this approach, the block size and shape
is selected by including boundary information. Yoon and Kweon [23] introduced an
adaptive support weight approach. The support weight for each pixel is adaptively
determined by the use of color similarity and geometric relationship to the reference
pixel. With the use of integral images (Veksler [24]), the processing time is indepen-
dent of the window size, so an adaptive aggregation can also be realized with a low
processing time. A good comparison and evaluation of di�erent costs aggregation
strategies is given by Tombari et al. [25].

3.1.1 Costs Calculation

In the following, popular costs calculation metrics for the pixel I1(u, v) in the ref-
erence image and pixel I2(u + d, v) in the corresponding image are discussed. The
disparity is de�ned as d and the resulting costs value as c(u, v, d). Also an n ×m
costs aggregation ∑

i=n

∑
j=m

=

bn
2
c∑

i=−bn
2
c

bm
2
c∑

j=−bm
2
c

(3.1)

is included in the metrics.
A very popular method is the sum of absolute di�erences (SAD) and is calculated

with
c(u, v, d) =

∑
n

∑
m

|I1(u+ i, v + j)− I2(u+ d+ i, v + j)|. (3.2)

As can be seen, the costs are the absolute di�erences of the pixels' intensities. It is
simple and can be used for very fast implementation due to the usage of additions
and subtractions only. The drawback is that additive brightness di�erences have a
strong in�uence on the matching quality.

Based on SAD, the metric sum of squared di�erences (SSD) with the costs cal-
culation is

c(u, v, d) =
∑
n

∑
m

(I1(u+ i, v + j)− I2(u+ d+ i, v + j))2. (3.3)



CHAPTER 3. RELATED WORK 21

Here, the similarity is de�ned by the squared intensity di�erence of two pixels. The
exponent of 2 applies a higher weight to large errors than to small errors in contrary
to SAD where the costs are linear. This makes the SSD more sensitive to outliers.
The computational e�ort increases because of the high number of multiplications.

A metric that makes the costs invariant to additive or multiplicative intensity
di�erences caused by di�erent shutter times, lighting conditions or apertures of the
cameras is the normalized cross correlation (NCC) calculated with

c(u, v, d) =

∑
n

∑
m I1(u+ i, v + j)I2(u+ d+ i, v + j)√∑

n

∑
m I1(u+ i, v + j)2

∑
n

∑
m I2(u+ d+ i, v + j)2

. (3.4)

Another similarity measure is the zero mean sum of absolute di�erences (ZSAD)
with the costs

c(u, v, d) =
∑
n

∑
m

|(I1(u+ i, v + j)− I1)− (I2(u+ d+ i, v + j)− I2)| (3.5)

where

I =
1

nm

∑
n

∑
m

(I(u+ i, v + j)) (3.6)

is the mean intensity of image I. The advantage of this metric is that the o�set,
caused by di�erent apertures, is reduced by subtraction of the mean value of the
images.

A di�erent matching strategy is to �rst apply a non-parametric local transform
to the images. This means that the transform does not rely on the intensity value
of the image but on their ordering. In statistics, non-parametric models are models
whose structure cannot be de�ned a priori; thus, it is determined by the data. Such
transforms are the Census and the Rank transform introduced by Zabih and Wood�ll
[26]. Both transforms are based on local intensity relations between the actual pixel
and the pixels within a certain window. This relation is given with

ξ(p1, p2) =

{
0, p1 ≤ p2
1, p1 > p2

(3.7)

where p1 and p2 are pixels in the image. The Census transform uses Equ. (3.7) to
create a bit string for each pixel in the image I, as shown in Equ. (3.8) where the
operator

⊗
denotes a bit-wise concatenation and n×m the window size.

Icensus(u, v) =
⊗
i=n

⊗
j=m

(ξ(I(u, v), I(u+ i, v + j))) (3.8)

The costs calculation for Census-transformed pixels is the calculation of the Hamming
distance between the two bit strings with

c(u, v, d) =
∑
i=n

∑
j=m

Hamming(I1(u+ i, v + j), I2(u+ d+ i, v + j)) (3.9)

including an n ×m aggregation. The Hamming distance is the number of di�erent
bits of two numbers (bit strings) and is de�ned as the logical operation

Hamming = ||x⊗ y|| (3.10)



CHAPTER 3. RELATED WORK 22

where ||x|| denotes the number of set bits of x. The processing time of Census-based
matching strongly depends on the window size of the Census transform.

The Rank transform changes each pixel to the sum of all pixels within a cer-
tain window whose intensities are less than the actual pixel's intensity. A Rank
transformed pixel is calculated with

Irank(u, v) =
∑
i=n

∑
j=m

(ξ(I(u, v), I(u+ i, v + j))). (3.11)

For costs calculation, an intensity-di�erence-based metric applied on the transformed
pixels can be used.

Zabih [27] mentioned an idea of e�cient Census matching in his dissertation. He
used the fact that if pixel P ′ lies within the Census mask of pixel P , the relative
value between these pixels is calculated twice (see Equ. (3.7)). The use of certain
neighborhoods allows the avoidance of double calculations and reduces the total
number of comparisons. The mask con�guration in his work obtains a rather irregular
structure which is very unfavorable for performance optimized implementations on
modern processors. The advantage in saving half of the pixel comparisons would be
overcompensated by the overhead caused by the irregular memory accesses.

A detailed evaluation of the mentioned costs functions can be found in the work
of Hirschmueller and Scharstein [28].

3.1.2 Constraints

The matching costs de�ne how likely two pixels correspond to each other. However,
due to the fact that all possible pixels within the disparity range are analyzed, costs
for systematical impossible matches are calculated as well. To reduce the chance
for a mismatch, following constraints and assumptions can be used to exclude such
matching candidates from the search for the correct correspondence.

Uniqueness

The �rst assumption is that each pixel in the left image corresponds to exactly one
pixel in the right image, as long as it is not occluded. This assumption is violated
for objects behind transparent surfaces. A point of an object, e.g. seen through
a window glass in the left image, is on the one hand represented by its projection
in the right image and on the other hand by the proper point of the window glass.
However, transparent surfaces cannot be reliably detected with stereo vision anyway.
Pixels which have assigned more than one correspondence can thus be assumed as
invalid and eliminated.

Ordering

The second constraint de�nes the ordering of the matches. It assumes that the
ordering of the pixels in one scanline stays unchanged in the corresponding scanline.
Let us say that pixel pl of the left image corresponds to pixel pr of the right image
and ql to qr. It is assumed that if pl is on the left of ql then pr is also on the left
of qr. This assumption fails on thin objects in the foreground. Figure 3.1 shows an
example of a valid ordering (3.1(a)) and an example of a violation (3.1(b)).



CHAPTER 3. RELATED WORK 23

Ol

QP

pl
prql

qr

Or

(a) Valid

Ol

Q

P

pl pr

ql qr

Or

(b) Invalid

Figure 3.1: Examples of the ordering constraint

Smoothness

The third assumption concerns the disparity steps in the near neighborhood of each
pixel. Depth changes on surfaces of natural objects tend to have a smooth charac-
teristic. This leads to the constraint that disparity changes have to be smooth as
well in the neighborhood of the projected pixels. This assumption obviously does
not apply to so called disparity discontinuities at abrupt changes from foreground
objects to background or vice versa. The smoothness constraint can be used if dis-
parity discontinuities can be determined and, thus, excluded from the smoothness
analysis.

Consistency

The last constraint breaks the ranks in comparison to the others but is the most
important in this work. Contrary to the others, the consistency constraint is used
to eliminate found disparities and not matching candidates. As shown in Fig. 3.2,
the costs calculation can be done from the right to the left and from the left to
the right. The consistency constraint says that only disparities with the same value
(within a threshold of e.g. 1 disparity step) for both directions are accepted. It is
also called left/right consistency check and is a good method to eliminate uncertain
and in particular occluded matches.

3.1.3 Disparity Optimization

Once the matching costs of all matching candidates are calculated and false matching
candidates are eliminated due to the previously described constraints, the �nal step
is to �nd the best match out of all candidates for each pixel. At this point, we
have to di�erentiate between local and global approaches. Local methods select
the match with the lowest costs (or energy) independent of the other pixels aside



CHAPTER 3. RELATED WORK 24

Left Right

RightLeft

dr=12

dl=12

Figure 3.2: Illustration of the consistency constraint; the match is valid because
dl = dr

from the nearest neighbors (because of aggregation). The most common method is
a winner-takes-all (WTA) minimum or maximum search over all possible matching
costs. Global methods try to minimize the energy of the actual scanline or the whole
image to assign a disparity value to each pixel. Beside the matching costs, the energy
consists of additional metrics. Commonly, a smoothness term which represents the
smoothness of the disparity transitions between neighboring pixels is de�ned. Such
an energy function can be formulated as

E(dm) = Edata(dm) + Esmooth(dm) (3.12)

where Edata is the function representing e.g. the matching costs and Esmooth the
function representing the smoothness constraint. The following sections describe
global optimization strategies used by many published approaches.

Dynamic Programming

The strategy of dynamic programming (Ohta and Kanade [29], Birch�eld and Tomasi
[30], Gonzalez et al. [31], Forstmann et al. [32]) is to �nd the optimal path through
all possible matches for each scanline. The ordering constraint, that pixels in the
reference image have the same order as their corresponding pixels in the matching
image, speci�es the possible neighbors of each matching candidate. The goal is now
to �nd the path with the lowest energy for each scanline. The energy is de�ned by the
matching costs and a smoothness term along each scanline as formulated in Equ. 3.12.
If occlusions are determined in the path, a penalty can be added to the energy of
the path. It is also possible to mark occlusions from both directions as invalid
matches and so imply a left/right consistency check. Due to the optimization of a
whole line, the resulting disparity maps su�er from horizontal streaks. An advantage
of dynamic programming is that it is computationally e�cient in comparison to
the other global optimization techniques. There are implementations of dynamic
programming with very low processing time, e.g. from Birch�eld and Tomasi [30] in
the OpenCV library [12].



CHAPTER 3. RELATED WORK 25

Graph Cuts

The aforementioned drawback of dynamic programming is that it only considers
horizontal smoothness constraints. An approach that overcomes this is graph cuts
(Boykov et al. [33], Kolmogorov and Zabih [34]) where vertical smoothness is also
taken into consideration. Finding stereo correspondence with graph cuts formulates
the correspondence problem as the search for the maximum �ow of a weighted graph.
This graph has two special vertices, the source and the sink. Between them, nodes are
connected with weighted edges. Each node represents a pixel at a disparity level and
is associated with the according matching costs. Each edge has an associated �ow
capacity de�ned as a function of the costs of the node it connects. This capacity
de�nes the amount of �ow that can be sent from source to sink. The maximum
�ow is comparable to the optimal path along a scanline in dynamic programming,
with the di�erence that it is consistent in two dimensions. The computation of the
maximum �ow is very intensive, so it cannot be used for real-time applications. An
implementation can also be found in the OpenCV library [12].

Belief Propagation

Another global disparity optimization approach is belief propagation (Sun et al. [35]).
Described as a labeling problem, this iterative strategy uses rectangular Markov
random �elds to assign the best matching disparities to the pixels. Each node is
assigned to a disparity level and holds its matching costs. The belief (probability)
that this disparity is the optimum arises from the matching costs and the belief
values from the neighboring pixels which represent the joint probability. At each
iteration, all nodes send their belief values to the four connected nodes. The belief
value is the sum of the matching costs and the received belief values. The new belief
value is the sum of the actual and the received value and is saved for each direction
separately. This is done for each disparity level. Finally, the best match is the one
with the lowest belief values de�ned by the sum over all four directions. A real-time
implementation on a graphics processing unit can be found in Yang et al. [36].

Semi-Global Matching

A rather modern global optimization approach is semi-global matching ([37, 38]).
Like dynamic programming, this technique also tries to minimize the global energy
with the extension that not only the two horizontal directions are optimized but also
vertical and diagonal directions as well. Hereby, an eight or sixteen neighborhood
can be used. The costs-path Lr(p, dp) of the pixel p := (u, v) at disparity dp in
direction r is calculated recursively with

Lr(p, dp) := C(p, dp)+ min(Lr(p− r, dp),
Lr(p− r, dp − 1) + P1,

Lr(p− r, dp + 1) + P1,

min
k∈D

Lr(p− r, k) + P2) ,

(3.13)

where P1 is a penalty which is added if the disparities di�er by one and the penalty
P2 is added if the disparities di�er by more than one (P1 < P2). D is the set of



CHAPTER 3. RELATED WORK 26

all possible disparities. Afterwards, the costs S are summed up over all paths in all
directions r

S(p, dp) :=
∑
r

Lr(p, dp) . (3.14)

A real-time implementation on an FPGA is presented by Gehrig et al. [39] and a fast
implementation on a GPU by Ernst and Hirschmueller [40].

Segmentation-Based Matching

The described techniques up to this point have in common that they try to optimize
calculated costs in terms of data and smoothness. Once a disparity map is deter-
mined, it can also be treated as initial state for further optimizations such as image
segmentation. In this approach, one or both images of the stereo pair are divided
into non-overlapping segments. As segmentation criteria e.g. color, intensity, or tex-
ture can be used. Mean shift [41] is a commonly used segmentation technique that
uses color to create the segments. After assigning each pixel to a segment, the initial
disparities are used to �t a proper model (e.g. planar) onto the segment. This model
is then used to optimize the initial disparities for each segment. A color segmentation
implies, on the one hand, the assumption that disparities of pixels within a segment
follow smoothly the chosen model. On the other hand, disparity discontinuities are
not expected to be inside a segment. A big advantage of segmentation-based match-
ing is that it increases the matching quality at textureless areas. It also enables the
possibility of assigning disparities to half occluded areas as long as these areas are
part of non-occluded segments. Of course, the quality of the �tted model strongly
depends on the initial disparities. A plane, e.g., cannot be �tted correctly if the data
mainly consist of outliers. A disadvantage is that the implied assumptions often fail
in real-world environments, such as �tting a plane onto a ball. Another drawback
is that the processing time strongly increases, especially when complex models are
used. The segmentation makes the processing time scene-depended as well what
controverts our de�nition of real-time capability in stereo vision.

Figure 3.3 gives an example of the matching quality for each stereo matching
algorithm mentioned above. The next section introduces how to evaluate the di�erent
approaches.

3.2 Evaluation of Stereo Matching Algorithms

The most meaningful method of evaluating stereo matching algorithms is to compare
the resulting disparities with their true values (ground truth), which results in a
statistical analysis of the true and false matches. To do this, test datasets consisting
of the stereo image pair and the appropriate ground truth image are used.

The advantage of this method is that it exactly evaluates the matching quality
for the used datasets. The drawback is that the datasets are created under very
controlled conditions with high-quality digital cameras, which cannot be found in
real-world applications. To realize a better approximation of cameras used in real-
world applications, noise and radiometric distortion can be added. The following
two sections introduce di�erent groups of datasets for statistical matching quality
evaluation.



CHAPTER 3. RELATED WORK 27

(a) Dynamic programming [30] (b) Graph cuts [42]

(c) Belief propagation [43] (d) Semi-global matching [44]

(e) Segmentation [45] (f) Local optimization [17]

Figure 3.3: Example disparity maps for di�erent matching strategies



CHAPTER 3. RELATED WORK 28

3.2.1 Middlebury Ranking

Scharstein and Szeliski [17] have developed an online evaluation platform, the Mid-
dlebury Stereo Evaluation1 [46], which provides about 40 stereo image datasets. The
main feature is an online comparison of submitted area-based stereo matching al-
gorithms. To keep the e�ort for the developers small, just four of those, shown in
Fig. 3.4, are used for the online evaluation. All available datasets are created by
illuminating a scene with a series of light pattern to encode the pixels uniquely and
make matching trivial. Details of the method used can be found in Scharstein and
Szeliski [47].

To evaluate an algorithm on this website, disparity maps of all four datasets
have to be generated and uploaded. The disparity maps have to relate to the left
stereo image and the disparities have to be scaled by a factor depending on the
dataset (Teddy 4, Cones 4, Venus 8, Tsukuba 16). The evaluation engine calculates
the percentage of badly matched pixels (false positives) within an error threshold
(δ = 0.5, 0.75, 1, 1.5or2) by pixel-wise comparison with the ground truth image. This
is done three times for each dataset: First for all pixels where a ground truth value
is available; second, for all non-occluded pixels; and third, for all pixels at disparity
discontinuities.

Many stereo algorithm developers - there are over 90 entries up to now - use this
platform for evaluation. This gives a good relation on how the developed algorithm
performs in comparison to others. The platform is up-to-date and constantly grow-
ing. Unfortunately, processing time is not taken into consideration. Of course, this is
di�cult to realize if a fair comparison should be guaranteed because an independent
processing time measurement would be needed.

The main table of the ranking is sorted by the average rank of all twelve resulting
values for an error threshold of 1. As mentioned above, the error threshold can be
set to 0.5, 0.75, or 1.5 to enable subpixel accuracy as well; unfortunately, only a
limited number of algorithms in the ranking support subpixel accuracy. To overcome
this problem, Yang et al. [48] have introduced a postprocessing step to enhance the
resolution of range images to subpixel accuracy. They have proved that it is suitable
for all algorithms of the Middlebury ranking on publication date and published the
results on their website2. The drawback is that the website is out-of-date at the
creation time of this work, so only 25 algorithms are listed. Using the subpixel error
thresholds in the Middlebury ranking shows how less actual algorithms re�ne their
results in the subpixel domain during calculation and not as a postprocessing step.

Table 3.1 shows the Middlebury ranking valid during the elaboration of this work.
The order of the algorithm accords with the main ranking. For each algorithm in
Table 3.1, the matching algorithm class and the processing time is listed. Important
is that the algorithm class just gives an idea of the basic matching strategy used.
The di�erent approaches vary considerably when they are analyzed in detail. If
an algorithm does not �t into a class described above it is marked as others. The
processing time is taken from the reference papers, as long as it is mentioned.

1http://vision.middlebury.edu/stereo/
2http://vis.uky.edu/ liiton/publications/super_resolution/



CHAPTER 3. RELATED WORK 29

Table 3.1: Middlebury main ranking with algorithm class and processing time. If
entries are missing, no paper was available or the information was not provided.

Av. % of
Reference Algorithm bad pixels Proc. time

CoopRegion [49] Seg, PF 4.41 20s
AdaptingBP [43] BP, Seg 4.23 14s - 25s
DoubleBP [50] Seg, PF, BP 4.19 > 20s
OutlierConf [51] Seg 4.60
SubPixDoubleBP [48] other 4.39
SurfaceStereo [52] Soft Seg 4.06 about 1h
WarpMat [53] Seg 4.98 10mins
Undr+OvrSeg (ano.) Seg 5.39
GC+SegmBorder (sub.) Seg 4.52
AdaptOvrSegBP [54] Seg 5.59 90s
GeoSup [55] Seg, local, adapt. support 5.80
PlaneFitBP [56] Seg, PF, BP 5.78 1fps
SymBP+occ [57] BP 5.92 45s
AdaptDispCalib [58] Rank, adapt. window 6.10
Segm+visib [45] Seg, PF 5.40 > 20s
C-SemiGlob [38] SGM 5.76 a few secs.
MultiResGC (sub.) GC 6.04
SO+borders [59] SO 6.03 some mins.
DistinctSM [60] other 6.14
OverSegmBP [61] Seg, BP 6.11 50s
MVSegBP [62] Seg, BP 6.34
CurveletSupWgt [63] other 5.75
SegmentSupport [64] Seg, adapt. window 6.44
LocallyConsist [65] Adapt. aggr. 6.33 13s
CostAggr+occ [66] local, other 6.20 49s
RegionTreeDP [67] DP 6.56 10s
EnhancedBP [68] BP 6.69
PUTv3 [69] other 6.64
GradAdaptWgt (sub.) Adpt. support 6.55
AdaptWeight [23] Adpt. support 6.67 about 1min
SegTreeDP [70] Seg, DP 6.82 60 - 70ms
MultiCue (sub.) local 6.89
InteriorPtLP [71] other 7.26 9mins
ImproveSubPix [72] other 6.90 7s
SemiGlob [44] SGM 7.50 1,3s
BP+DirectedDi� [73] other 7.29
FastBilateral [74] other 7.31 14s
RealTimeABW 7.90
CostRelaxAW [75] other 7.66 11s
BPcompressed [76] BP 7.53
RealtimeBP [36] BP 7.69 16fps
RealtimeBFV [77] BFV 7.65 57fps
VariableCross [78] Adapt. support 7.60 60s
2OP+occ [79] other 7.75
CCH+SegAggr [80] Seg 8.07
VarMSOH (sub.) other 8.17
FastAggreg [81] Color seg. aggr. 8.24 0.2s
GC+occ [34] GC 8.26 83s
MultiCamGC [42] GC 8.31 369s
Unsupervised [82] other 9.45
SNCC 9.41
Layered [83] other 8.24



CHAPTER 3. RELATED WORK 30

ESAW [84] Adapt. support 8.21 10 - 43.4ms
StereoSONN [85] other 8.89 100s
RealtimeVar [86] other 7.85 0.6 to 3fps
AdaptPolygon [87] other 8.32
OptimizedDP [88] DP 8.83 0.2s
ConvexTV [89] other 9.30 15s
GenModel [90] other 9.50
TensorVoting [91] other 9.25 2.5mins
RealTimeGPU [92] Adapt. aggr., DP 9.82 0.054s
CostRelax [93] other 10.6
ReliabilityDP [94] DP 10.7 16.6fps
DOUS_Re�ne 10.6
TreeDP [95] DP 11.7 about 1s
GC [17] GC 11.4 23.6s
CSBP [96] BP 11.4 0.67fps
BioPsyASW [97] Adapt. support 11.2
DCBGrid [98] Adapt. support 10.9 16fps
BP+MLH [99] BP 11.1
H-Cut [100] GC 11.7
SAD-IGMCT (sub.) Census 12.5
DPVI (ano.) other 13.3
DP [17] DP 14.2 1s
Bipartite 15.4
PhaseBased [101] other 15.3
RegionalSup (sub.) other 17.0
IMCT (techn. rep.) other 16.3
SSD+MF [17] SSD 15.7 1.1s
SO [17] SO 16.6 1.1s
MI-nonpara 15.4
STICA (Expo Mexico) other 19.7
PhaseDi� [102] BP 18.8 15mins
Rank+ASW 18.4
LCDM+AdaptWgt [103] other 19.5
Infection [104] other 20.7

It can be seen clearly that the top performing algorithms all include segmentation-
based matching. Most of them segment the input image using color as criterion.
Looking at the processing time, the �rst considerable fast algorithm can be found
on rank 11 even if it reaches 1 fps only. All other algorithms supposed to be capable
for real-time are located between rank 30 and 61. The average percentage of bad
matches gives an indication how close the algorithms lie to each other. The main
ordering criterion is the average rank over three evaluations. The top ten performing
algorithms vary only by 1.57 percent of bad matches and the real-time approaches
between rank 30 and 61 by 4.88. It must be said that the disparity maps used for the
evaluation have to be completely dense. That means that matches marked as unsure
or occluded have to be extrapolated, which strongly in�uences the performance in
the ranking.

3.2.2 Real-World Scenes

The Middlebury evaluation website o�ers a good possibility to compare the matching
quality of an algorithm to others, but it has its limitations as well. Especially the
selection of the datasets is not always meaningful for real-world environments. To
overcome this problem, we used the technique of Scharstein and Szeliski [47] in a



CHAPTER 3. RELATED WORK 31

previous work [105] to create our own datasets. We selected the scenes according
to our opinion of indoor stereo matching di�culties and used standard industrial
digital cameras to keep the dataset as realistic as possible. The creation of the
datasets works as follows.

First, we illuminate the scene with a series of light patterns from di�erent po-
sitions and capture each with the cameras. The light patterns project a code on
the scene, thus, the matching becomes trivial because each pixel of the scene has its
unique code value (gray code). The resulting disparity map is a �rst 3D reconstruc-
tion of the scene and we use it to calculate the projection matrices between the two
cameras and each illumination source position. With these matrices, we calculate
the illumination disparities for all pixels. The last step is the combination of all
available sets of disparities which results in the �nal disparity map. Figure 3.5 shows
the datasets we created in our o�ce. Unfortunately, due to the lower image quality
and resolution of the used cameras, the resulting disparity maps are of less quality
than the datasets from Middlebury.

3.3 Real-Time Stereo Vision Systems

This work is related to embedded real-time stereo vision systems, so a list of available
systems (not only pure embedded solutions) is given in Table 3.2 and Table 3.3.
Due to their high price, only a few embedded solution using an FPGA or an ASIC
are compared here. Nevertheless, the selected hardware systems are well chosen
because of their importance in the target research �eld. Ambrosch [106] gives a
detailed comparison of hardware-based FPGA stereo systems in his dissertation.
Table 3.2 compares local optimizing systems and Table 3.3 global optimizing systems
in terms of the stereo matching algorithm, the processing platform and of course the
processing speed. The processing speed of the di�erent systems is described with
the frame rate in frames per second (fps) on the one hand and, more meaningful, in
million disparity evaluations per second with

Mde/s = width× height× disps× fps (3.15)

on the other hand. The advantage of using Mde/s is that it is a processing time metric
which includes image resolution and disparity range. For content independent and
non-iterative algorithms, Mde/s stays constant for di�erent image resolutions. The
processing time evaluation in Section 5 shows that it also depends on the processing
platform. Obviously, on platforms which can process a large amount of data more
e�ciently, the Mde/s increases for higher image resolutions. Not all steps of stereo
matching algorithms are in�uenced by the number of disparities. Thus, in such cases
the Mde/s varies for di�erent disparity ranges. Nevertheless, with these facts in
mind, Mde/s is a useful performance measure metric for system comparison because
it summarizes image resolution and disparity range in one value. In general, a high
Mde/s means a high performance of the system. All performance data in the table are
directly taken from the authors' papers; the Mde/s is self-calculated with Equ. 3.15.
Detailed information about certain pre- or postprocessing as well as optimization
steps can be found in the literature. A few of the algorithms can be also found in
the Middlebury stereo evaluation ranking, as will be described in Section 5.



CHAPTER 3. RELATED WORK 32

Table 3.2: A selection of published real-time stereo vision systems using local opti-
mization techniques, sorted by Mde/s

Reference Mde/s fps Algorithm Platform

Mobile Robots[107] 996.24 30 SAD FPGA
VidereDesign [108] 589.824 30 SAD FPGA
Miyajima and Maruyama [109] 491.52 20 SAD FPGA + PC
Yang et al. [110] 283.268 11.5 SAD GPU
Poi [111] 203.98 83 SAD CPU
Wood�ll et al. [112] 187.20 30 Census ASIC
OpenCV [10] 117.97 66.67 SAD CPU
Chang et al. [113] 88.473 50 SAD DSP
Wood�ll and Herzen [114] 77.414 42 Census 16 FPGA
Wang et al. [92] 52.838 43 SAD GPU
Kanade et al. [115] 38.4 30 SSAD 8 DSP
Kimura et al. [116] 38.4 20 SSAD FPGA
Khaleghi et al. [117] 11.5 20 Census DSP, MCU
Tombari et al. [81] 8.84 5 segm. aggr. CPU
Faugeras et al. [118] 7.489 3.6 cross correlation FPGA
Kosov et al. [86] 0.353 2.15 SSD CPU

Table 3.3: A selection of published real-time stereo vision systems using global opti-
mization, sorted by Mde/s

Reference Mde/s fps Algorithm Platform

Gehrig et al. [39] 870.40 25 SGM FPGA
Forstmann et al. [32] 188.928 12.3 DP CPU
Ernst and Hirschmueller [40] 165.15 4.2 SGM GPU
Zhang et al. [77] 100.859 57 BFV GPU
Gong and Yang [94] 42.11 23.8 DP GPU
Yang et al. [36] 19.66 16 BP GPU
Salmen et al. [88] 3.804 5 DP CPU

Very interesting are the commercially available stereo vision products. A very
fast local optimizing stereo vision system is the Mobile Ranger from Mobile Robots
Inc. [107]. It uses SAD for stereo processing on a PCI board equipped with an FPGA.
Another system is the well known Small Vision System (SVS) from Videre Design,
developed by Konolige [108]. It is a fully embedded system with integrated cameras
and an FPGA for stereo processing (Stereo on a Chip - STOC). The system bene�ts
from the high processing speed and the small form factor. Konolige also published his
algorithm in the OpenCV library [12] where it processes noticeably more slowly due
to the fact that it runs on a PC instead of the high parallel hardware. Also a software
stereo system is provided by Point Grey Research Inc. [111]. The system includes
a stereo head and the processing is done on a target PC. The last commercially
available sensor is the only Census-based system and developed by Tyzx Inc. [112].
It is also fully embedded and the stereo processing is done on a dedicated stereo
processor chip which does a fast 7 × 7 Census correlation. The drawback of this
system is its high price. Wood�ll et al. [114] published an earlier Census-correlation
on an FPGA array, as well.

Additionally to the commercially available system, other published systems are



CHAPTER 3. RELATED WORK 33

listed in Table 3.2. Khaleghi et al. [117] implemented another Census-based matching
algorithm on a DSP and emphasized on the miniaturization of the system. It is fully
integrated and �ts within a 5cm × 5cm package. The drawback is the low image
resolution of 160×120 and the small Census window size of 3×3. The other systems
use SAD or SSD as correlation criterion.

Most global optimization algorithms are implemented on powerful processing
platforms, such as GPU or FPGA, to reach real-time processing rates. This can be
seen in Table 3.3 where the highly optimized FPGA implementation from Gehrig
et al. [39] of semi-global matching performs best by far. All algorithms are based
on dynamic programming, belief propagation or semi-global matching, beside the
approach from Zhang et al. [77] which uses bitwise fast voting (BFV). This technique
optimizes the disparity map after WTA by voting for the best disparity in support
regions around each pixel where it is assumed that pixels within a support region
have the same disparity.

In addition to the processing speed, obviously the matching quality is essential.
A fair comparison of the stereo matching quality of all the systems listed in Ta-
ble 3.2 and 3.3 is hard to realize because not all of them use a consistent results
comparison, such as the mentioned Middlebury database, or are available for evalu-
ation.
Summarizing, following lessons can be learnt from the systems comparison:

• There are only local optimization algorithms commercially available.

• All except one of them use SAD for correlation.

• The Census-based sensor uses dedicated hardware for real-time stereo calcula-
tion.

• Nearly all fast implementations are hardware solutions using an FPGA or a
dedicated ASIC.

• Only a very small number of DSP solutions exist.

• Computationally intensive global optimization approaches, such as SGM or
BP, need powerful processing platforms such as GPUs or expensive hardware
platforms such as FPGAs or ASICs for high speed processing.

3.4 Analyzing the Requirements

In Section 1.1, the requirements for an embedded real-time stereo sensor are stated.
The requirements concerning the stereo matching algorithms are summarized as suit-
ability for real-time processing, reliability of the 3D data, possibility of embedded
realization and scalability of the design. The analysis of the state-of-the art stereo
matching algorithms and real-time stereo systems in Section 3.2 showed that global
optimizing techniques promise to deliver high quality 3D data and local optimizing
techniques enable high speed realization even on an embedded hardware.

Table 3.4 compares the most promising algorithms in terms of ful�lling the four
requirements. Semi-global matching is capable for real-time as long as powerful
processing platforms such as an FPGA or a GPU are used. The FPGA platform fails



CHAPTER 3. RELATED WORK 34

Table 3.4: Analysis of the requirements

Real-time Reliable Embedded Scalable
Algorithm processing 3D data realization design

SAD (local) yes no yes yes

Census (local) yes no yes yes

SGM (global) no yes no no

Segmentation (global) no yes no no

Belief prop. (global) no yes no no

due to the low-costs requirement and the GPU cannot be seen as purely embedded
because it needs a PC for operation. For semi-global matching, the paths to each
pixel from up to 16 directions has to be saved. So the memory consumption is
strongly dependent on the input image dimensions, and, thus it is not scalable.

Segmentation-based matching fails in all algorithm requirements. Due to the
model �tting, it is computationally very intensive, which makes real-time processing
impossible up to now. As a reminder, in this work, real-time stands for processing
speed of 10 fps and above, known, and scene independent processing time. However,
the Middlebury evaluation showed that the 3D data of segmentation-based matching
is of high quality, using the ranking as criterion, because the model assumption is
ful�lled in many datasets. A drawback is that this assumption often fails in real-
world environments. This makes the 3D data unreliable for robot applications. The
segmentation part also makes the processing time and the memory consumption
strongly scene-dependent. Due to that, embedded realization and scalable design
su�er considerably.

Belief propagation also proved real-time capability on GPUs only. This challenge
could be tackled but the large amount of memory consumption makes it not suitable
for embedded realization.

The two remaining local approaches only fail in terms of reliable 3D data. In a
previous work [119], we showed that Census-based matching promises better results
than SAD. Banks and Corke [120] showed that Census is more robust to radiometric
distortions and occlusions. Due to the computational e�ort of calculating the Ham-
ming distance instead of the absolute di�erence, it is computationally more intensive
than SAD. The state-of-the-art analysis also showed that parallelization is needed for
reaching real-time performance with a Census-based approach. The current Census-
based approaches also use windows of up to 7 × 7 only. Larger windows promise
to increase the matching quality, as shown later on in Chapter 5. Obviously, larger
windows also increase the challenge of realizing real-time performance.

As a consequence of the analysis summarized in Table 3.4, Census-based matching
promises to be a good compromise between high-quality stereo matching and real-
time performance on embedded systems.

3.5 Summary

In this chapter, we presented the important related work on stereo matching and
introduced published real-time stereo systems. There are two main groups of stereo
matching algorithms. Feature-based approaches search for certain features in the
images and match them. This results in depth information for the found features



CHAPTER 3. RELATED WORK 35

only. Area-based methods try to solve the correspondence problem for each pixel in
the images, and, thus result in very dense disparity maps.

In area-based algorithms, the matching costs for each possible match are cal-
culated. To increase the probability of correct matches, the costs are aggregated
within a block neighborhood. The best matching candidate is found either by local
or by global optimization techniques. Local techniques chose the candidate with the
highest matching probability. This can be realized at low processing time. Global
techniques optimize a global energy function to �nd the best match. This is com-
putationally very intensive, has a high memory consumption and is, therefore, not
suited for embedded real-time systems.

The evaluation of the matching quality of di�erent algorithms can be done with
proper stereo datasets. These datasets consist of the stereo image pair and a ground
truth image which is a disparity map that holds the true disparities for all pix-
els. Scharstein and Szeliski have developed an online stereo evaluation platform
(Middlebury) which provides several stereo datasets and a ranking to compare the
algorithms. It is shown that the top performing approaches are all based on image
segmentation, which is, however, not suited for embedded realization. The draw-
back of the Middlebury evaluation is that the datasets are not that meaningful for
real-world environments because the scenes are well chosen to avoid many stereo
matching problems such as large textureless areas of unknown geometry. To over-
come this, we have created additional datasets. The scenes are taken from an o�ce
and show a more realistic environment for robot applications. The drawback is the
lower quality of the input images and the ground truth disparity map because the
datasets are captured with low cost cameras at uncontrolled conditions.

The analysis of the requirements and the related work showed that a local area-
based stereo matching algorithm ful�lls the needs, de�ned in Section 1.1 of an em-
bedded real-time capable stereo sensor. In our opinion, the Census transform is the
right choice because it promises to be a well compromise between high quality results
and real-time realization.

In the next chapter we will describe our Census-based stereo matching algorithm
and the adaptations we have made to make it capable for real-time implementation.



CHAPTER 3. RELATED WORK 36

Figure 3.4: Middlebury evaluation stereo datasets [46]; Left: Left stereo images;
Right column: Ground truth images; From top to bottom: Teddy, Cones, Venus,
Tsukuba



CHAPTER 3. RELATED WORK 37

Figure 3.5: Real-world stereo datasets



Chapter 4

Real-Time Census-Based Stereo

Matching

The design of a real-time capable Census-based stereo matching algorithm with still
high matching quality is the challenge of this chapter. We present the work�ow
of the algorithm in Section 4.1, where �rst the stereo image pair is acquired and
recti�ed, described in Section 4.2. Then the images are Census transformed in Sec-
tion 4.3. The matching costs are then calculated in Section 4.4 and aggregated in
Section 4.5. The best matching candidate is searched and a subpixel re�nement is
done in Section 4.6. In the next step, false matches and occlusions are identi�ed and
eliminated. To detect occlusions, we do left/right consistency check in Section 4.7.1
and, to eliminate unreliable matches, we use a con�dence and texture threshold in
Section 4.7.2. Finally, the 3D reconstruction in Section 4.8 closes the work�ow.

4.1 Work�ow

Sparse 
Census

Transform

DSI 
Calculation

WTA + 
Subpixel 

Refinement

Disparity 
Map

Lcensus

Rcensus

DSI

Left/Right
Consistency

Cost 
Aggregation

DSIaggr

DMsub,l

DMsub,r

Stereo 
Camera

L

R

Lrect

Rrect

Rectification,
Undistortion

Confidence, 
Texture

Thresholding

DMsub3D 
Reconstruction

Z-Image

3D Point 
Cloud

Confidence 
Map

Confidence, 
Texture 

Calculation

DMfinal

Camera 
Calibration

Texture Map, left
Calib. Params., Rect. 

Undist. Maps

Texture 
Map

Figure 4.1: Stereo matching block diagram.

38



CHAPTER 4. REAL-TIME CENSUS-BASED STEREO MATCHING 39

Figure 4.1 shows the principle work�ow of the algorithm. The inputs are the cal-
ibration parameters, the disparity range, and the con�dence and texture thresholds.
The outputs are the disparity map, the depth image (z-map), the 3D point cloud in
camera coordinates, a con�dence map, and a texture map.

4.2 Image Acquisition and Recti�cation

Step 1 of the work�ow in Fig. 4.1 is the image acquisition with the stereo head.
The input stereo images are delivered by two digital cameras mounted in parallel
with minimal variation. Before a continuous stereo matching can be done, the stereo
camera head has to be calibrated o�ine. We used the calibration method described
in Section 2.4. Here, the undistortion and recti�cation maps for the stereo camera
head that hold the image coordinates of the undistorted and recti�ed images are
calculated.

The proposed algorithm uses monochrome input images, so it would be ad-
vantageous to use monochrome cameras instead of converting color to grayscale.
Monochrome cameras deliver more accurate intensity images than color cameras
equipped with a Bayer �lter. Another important aspect is the exact synchronicity
of the stereo image capture. Especially when the camera head or the captured scene
is in motion, acquisition has to be as simultaneous as possible. Many cameras have
an external trigger input, which o�ers the possibility of triggering two cameras at
exactly the same time.

Once the stereo images L and R are captured, step 2, undistortion and recti�ca-
tion, follows with

Lrect(u, v) = L(mapxl(u, v),mapyl(u, v)) (4.1)

and
Rrect(u, v) = R(mapxr(u, v),mapyr(u, v)). (4.2)

where the o�ine calculated undistortion and recti�cation maps, mapxl, mapyl,
mapxr, and mapyr, are used to remap the images. Bilinear interpolation is used
to calculate the pixel value because the maps are given in subpixel accuracy.

With the calibrated stereo images, the stereo matching can begin. Thus, step 3
of the work�ow is the Census transform.

4.3 Sparse Census Transform

Based on the balanced tradeo� between quality loss and performance gain, as will be
shown in Section 5.1, a modi�ed Census transform, hereinafter referred to as sparse
Census transform, is used. Our approach keeps the mask size large and symmetric
and uses only every second pixel and every second row of the mask for the Census
transform, as shown in Fig. 4.2 for an 8×8 mask. The �lled squares are the pixels used
for the Census and the sparse Census transform. Avoiding the double comparisons,
like Zabih's approach, is not our key to minimize the processing time. Furthermore,
we show that large sparse Census masks perform better than small normal (dense)
Census masks with the same weight of the resulting bit strings. Thus, sparse 16×16
Census performs better than 8 × 8 normal Census, where both have a bit string



CHAPTER 4. REAL-TIME CENSUS-BASED STEREO MATCHING 40

weight of 64 and thus need the same processing time. Section 5.1 presents a detailed
analysis and an experimental proof of this claim. Our approach still yields high
matching quality while still enabling e�cient implementations on modern processor
architectures.

Of course, the used checkerboard could be adapted to ful�ll Zabih's approach,
avoiding point symmetries according to the center pixel, but analysis showed that it
yields no quality improvement for this kind of neighborhood.

(a) sparse (b) normal

Figure 4.2: Census masks

After evaluating di�erent mask sizes, as will be explained in Section 5.1, a mask
size of 16 × 16 was chosen for the implementation of the proposed algorithm. The
reasons for this are �rstly the high quality which this Census mask size delivers, and
secondly the e�cient memory access of registers with a size that is a multiple of 32
bits. The drawback of even mask sizes is that the anchor point cannot be exactly
in the middle. Figure 4.2 shows that the sparse Census transform overcomes this
drawback because the rightmost column and the bottom row are discarded. The
calculation of the sparse Census-transformed images Lcensus and Rcensus is based on
Equ. (3.8) and performed with

Lcensus(u, v) =
⊗
n∈N

⊗
m∈M

ξ(Lrect(u, v), Lrect(u+ n, v +m)) (4.3)

and
Rcensus(u, v) =

⊗
n∈N

⊗
m∈M

ξ(Rrect(u, v), Rrect(u+ n, v +m)) (4.4)

where

ξ(p1, p2) =

{
0, p1 ≤ p2
1, p1 > p2

(4.5)

and
N = M = {−7,−5,−3,−1, 1, 3, 5, 7}. (4.6)

The transformed images can now be used to calculate the probabilities of correct
correspondences between the source image and the matching candidates in step 4.
This probabilities are de�ned by the matching costs; in case of Census, the Hamming
distance has to be used.



CHAPTER 4. REAL-TIME CENSUS-BASED STEREO MATCHING 41

4.4 Disparity Space Image Calculation

The calculated costs are stored in the so-called disparity space image (DSI), which
is a three-dimensional data structure of size disps × width × height and is further
used to search for the best matching candidate. For each disparity level there exists
a slice of a 3D matrix as shown in Fig. 4.3.

min

max

min

max

Figure 4.3: Disparity space image

Not all entries of the DSI have to be �lled because per disparity level and per
image row, only width−d pixels are possible matching candidates. If the matching is
done from right to left, the pixels on the right side of the right image have no matching
candidates, as can be seen in Fig. 4.4. The amount of these pixels increases with the
disparity level.

d = 0 = dstart d = dstopd = d’ d = d’’

width width - d’ width - d’’ width - dstop

Figure 4.4: The widths of the DSI levels shrink with the disparity.

Particularly with the use of the classic Census transform, the calculation of the
DSI is computationally very intensive because the Hamming distance has to be cal-
culated for each pixel at each possible disparity level (from dstart to dstop) over bit
strings of 256-bit weights. The sparse Census transform reduces the bit weight to 64
bits, since only every fourth pixel is used. The DSI is calculated according to

∀d ∈ dstart, ..., dstop : DSId(u, v) = Hamming(Rcensus(u, v), Lcensus(u+ d, v)). (4.7)

Figure 4.5 illustrates the calculation of the DSI with Equ. (4.7). The arrows indicate
the calculation of the Hamming distance.



CHAPTER 4. REAL-TIME CENSUS-BASED STEREO MATCHING 42

Lcensus Rcensus

(x, y)

(x+dstart, y) (x+dstop, y)number of disparities

DSI0
DSI1

...
DSInHamming

Figure 4.5: Illustration of the disparity space image calculation

4.5 Costs Aggregation

It is assumed that neighboring pixels, except at disparity discontinuities, have a
similar disparity level, so a costs aggregation in step 5 increases the uniqueness of
matching candidates. The larger the block size used, the larger the impreciseness
at object borders. A fairly good compromise has been found at a size of 5 × 5
(Section 5.1). In order to keep the good trade-o� between quality and processing
time, a simple squared window aggregation is used. The aggregation itself is a sum
over a window with the speci�ed size (convolution) and is calculated with

∀d ∈ dstart, ..., dstop : DSId,aggr(u, v) =
∑
n∈N

∑
m∈M

DSId(u+ n, v +m). (4.8)

4.6 Subpixel Re�nement

After calculating all possible matches, the best matching candidate has to be found
in step 6. As explained above, the best match is the one with the lowest costs and
it is calculated for a pixel at image coordinates (u, v) with

dmin(u, v) = min(DSIdstart,aggr(u, v), ..., DSIdstop,aggr(u, v)). (4.9)

Figure 4.6 shows a typical costs function. The circles show the costs at integer
disparity levels. It can be seen that the lowest cost is at disparity level dmin. This
level wins by the use of a winner-takes-all (WTA) minimum search. It delivers integer
disparities, but the true disparities lie between them in most cases. To calculate the
so-called subpixel disparities, a parabolic �tting is used. The best integer disparity
and its neighbors are used to span the parabola shown in Fig. 4.6, and its minimum
gives the disparity in subpixel accuracy. From now on, y(d) means the cost of a



CHAPTER 4. REAL-TIME CENSUS-BASED STEREO MATCHING 43

dmindsub

Disparity / pixel

M
at
ch
in
g
C
os
ts

Figure 4.6: Example of a costs function including subpixel re�nement.

match at disparity d for a certain pixel (u, v). The subpixel disparity for one pixel
is calculated with

dsub = dmin +
y(dmin + 1)− y(dmin − 1)

2(2y(dmin)− y(dmin − 1)− y(dmin + 1))
. (4.10)

where the coordinates (u, v) are omitted in the equation. The whole disparity map
in subpixel accuracy for both matching directions is calculated with

DMsub,l(u, v) = dsub,l(u, v) (4.11)

and
DMsub,r(u, v) = dsub,r(u, v). (4.12)

4.7 Disparity Validity

Because of the problems described in Section 2.2 stereo matching algorithms have
to face, a not ignorable amount of uncertain matches exists in the disparity map
at this point. As mentioned in Section 3.1, disparity discontinuities are a challenge
for any kind of block matching approach because the blocks overlay the discontinu-
ities and broadens them in the disparity map. The algorithm described up to now
completely ignores this fact. The existence of occlusions is known as well but not
properly treated. Repetitive pattern and textureless areas also cause false matches.
These are the reasons why the left/right consistency, the con�dence, and the texture
check are introduced in step 7. The following sections describe these techniques to
�lter occlusions and eliminate uncertain and unreliable matches. Examples of costs
functions with applied validity checks are given as well.

4.7.1 Left/Right Consistency Check

To �lter false matches mainly caused by occlusions, a left/right consistency check is
applied to DMsub,l and DMsub,r with

a = DMsub,l(u, v) b = DMsub,r(u− a, v) (4.13)



CHAPTER 4. REAL-TIME CENSUS-BASED STEREO MATCHING 44

and

DMsub(u, v) =

{
|a+b

2 |, |a− b| ≤ 1
0, else

. (4.14)

It is based on the consistency constraint, mentioned in Section 3.1.2, which says that
a match is valid only if it results in the same disparity (within a threshold of 1) if
searched form right to left and vice versa. As an implementation detail, the costs
calculation is not really done twice. If all possible matching costs are calculated,
one straight and one slanted search through all candidates result in both matching
directions.

L(0,0)R(0,0) L(width-1,0)R(width-1-0,0)
L(1,0)R(0,0) L(width-1,0)R(width-1-1,0)

L(2,0)R(0,0)
L(3,0)R(0,0)

L(4,0)R(0,0)
L(5,0)R(0,0)

L(6,0)R(0,0)

L(width-1,0)R(width-1-2,0)
L(width-1,0)R(width-1-3,0)
L(width-1,0)R(width-1-4,0)
L(width-1,0)R(width-1-5,0)
L(width-1,0)R(width-1-6,0)

d L
R

d = 0
d = 1
d = 2
d = 3
d = 4
d = 5
d = 6

R(0,0)L(0,0) R(width-1-0,0)L(width-1,0)
R(0,0)L(1,0) R(width-1-1,0)L(width-1,0)
R(0,0)L(2,0) R(width-1-2,0)L(width-1,0)

R(width-1-3,0)L(width-1,0)
R(width-1-4,0)L(width-1,0)

R(width-1-5,0)L(width-1,0)
R(width-1-6,0)L(width-1,0)

R(0,0)L(3,0)
R(0,0)L(4,0)
R(0,0)L(5,0)
R(0,0)L(6,0)

d R
L

d = 0
d = 1
d = 2
d = 3
d = 4
d = 5
d = 6

d LR

(a) left to right

L(0,0)R(0,0) L(width-1,0)R(width-1-0,0)
L(1,0)R(0,0) L(width-1,0)R(width-1-1,0)

L(2,0)R(0,0)
L(3,0)R(0,0)

L(4,0)R(0,0)
L(5,0)R(0,0)

L(6,0)R(0,0)

L(width-1,0)R(width-1-2,0)
L(width-1,0)R(width-1-3,0)
L(width-1,0)R(width-1-4,0)
L(width-1,0)R(width-1-5,0)
L(width-1,0)R(width-1-6,0)

d L
R

d = 0
d = 1
d = 2
d = 3
d = 4
d = 5
d = 6

R(0,0)L(0,0) R(width-1-0,0)L(width-1,0)
R(0,0)L(1,0) R(width-1-1,0)L(width-1,0)
R(0,0)L(2,0) R(width-1-2,0)L(width-1,0)

R(width-1-3,0)L(width-1,0)
R(width-1-4,0)L(width-1,0)

R(width-1-5,0)L(width-1,0)
R(width-1-6,0)L(width-1,0)

R(0,0)L(3,0)
R(0,0)L(4,0)
R(0,0)L(5,0)
R(0,0)L(6,0)

d R
L

d = 0
d = 1
d = 2
d = 3
d = 4
d = 5
d = 6

d LR

(b) right to left

Figure 4.7: Disparity space image entries for one line at 6 disparity levels with the
WTA search directions

Figure 4.7 shows the DSI entries for a single line in both matching directions.
A matching pair of pixels in the left and right image is given with L(x,y)R(x',y')
and vice versa depending on the matching direction. Matching a line from left to
right works by starting comparing the rightmost pixels of the left and right images.
As shown in Fig. 4.7(a), to increase disparity, the coordinates of the pixel in the
left image remain unchanged while the x-coordinate of the pixel in the right image
decreases. WTA is then performed straight through the possible disparities for each
pixel in the left image. Matching from right to left works vice versa by starting the
comparisons with the leftmost pixel of the left and right images. Here, the pixel
of the right image stays constant and the pixel of the left image moves along the
line for the disparity range (Fig. 4.7(b)). As can be seen, the pixel comparisons for
both directions are the same but in a di�erent order. The DSI from left to right is
a slanted version of the DSI from right to left and vice versa, so a slanted WTA can
be performed to use one DSI only.

4.7.2 Con�dence and Texture Threshold

A large part of the remaining uncertain matches is eliminated with a con�dence and
texture threshold. The con�dence of a match is de�ned by the relation of the absolute



CHAPTER 4. REAL-TIME CENSUS-BASED STEREO MATCHING 45

costs di�erence between the best two matches, as denoted with dy in Fig 4.8, and the
maximum possible cost (ymax = 64×5×5 = 1600, for a 16×16 sparse Census mask).
The whole con�dence map is calculated with

CM(u, v) = min

(
255, 1024

dy(u, v)

ymax

)
. (4.15)

For a better visualization, the con�dence value is scaled by the factor 1024 and
saturated at 255. Figure 4.8 shows cost functions of two di�erent pixels. The �rst
one contains a clear minimum, so the con�dence will be high. The second has many
similar peaks, which results in a low con�dence level.

0 20 40 60

500

1,000

dy

Disparity / pixel

A
gg

re
ga

te
d

M
at

ch
in

g
C

os
ts (100,100)

(a)

0 20 40 60

200

400

600

dy

Disparity / pixel

(354,21)

(b)

Figure 4.8: Cost functions for two pixels with di�erent con�dence values

Particularly in real-world environments, textureless areas are quite common and
this is a known problem for stereo matching algorithms. It is impossible to match
complete textureless areas larger than the Census mask size with a local optimization
technique. Many applications only deal with reliable matches, so textureless areas
should be masked out. A texture map is calculated for this purpose with

TM(u, v) =
1

nm

∑
i=n

∑
j=m

L(u+ i, v + j)2 − 1

nm

∑
i=n

∑
j=m

L(u+ i, v + j)

2

, (4.16)

by using an n × m variance �lter. In this work, the kernel size is experimentally
de�ned and set to 11× 11.

So in the �nal step, the con�dence and texture maps are applied on the left/right-
checked disparity map by a thresholding with

DMfinal(u, v) =

{
DMsub(u, v), CM(u, v) ≥ γ

0, else
(4.17)

and

DMfinal(u, v) =

{
DMsub(u, v), TM(u, v) ≥ τ

0, else
. (4.18)

The thresholds are γ for con�dence and τ for texture.



CHAPTER 4. REAL-TIME CENSUS-BASED STEREO MATCHING 46

4.7.3 Example Costs Functions

The texture check uses the left input image to determine textureless areas. In con-
trast, left/right consistency and con�dence check analyze the costs function to rate
the reliability of a match. In the following, four examples of costs functions are
presented to clarify the applied checks. The e�ect of broaden borders will be shown
as last point in this section with another two costs functions.

max costs 1600
gt 18

0 845 863
1 884 835
2 926 817
3 913 844
4 881 918
5 913 828
6 935 864
7 971 927
8 1039 853
9 1123 906

10 1101 841
11 937 742
12 826 743
13 743 703
14 604 664
15 469 558
16 459 494

second peak RL

match, first peak RL = 
first peak LR

second peak LR

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60

M
at
ch
in
g 
co
st
s

RL

LR
ground truth

confidence threshold

16 459 494
17 331 342
18 129 129
19 393 409
20 483 470
21 566 505
22 632 650
23 666 790
24 707 887
25 693 1002
26 797 1093
27 864 1051
28 833 974
29 861 895
30 822 889

second peak RL

match, first peak RL = 
first peak LR

second peak LR

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60

M
at
ch
in
g 
co
st
s

Disparities

RL

LR
ground truth

confidence threshold

Figure 4.9: Left/right and con�dence check are valid

Figure 4.9 shows an example of a costs function for a valid left/right and con-
�dence check. It can be seen that the �rst peak in the functions of both matching
directions is at the same disparity level and, thus, the match is set as valid. The
ground truth indicator (vertical slashed line) shows that this match is correct. The
horizontal slashed line marks the con�dence threshold. If the second peak of a costs
function is below this border, the con�dence check fails and the match is eliminated.
Here, both second peaks are above so the con�dence check is valid as well.

The fact that the left/right check alone is not su�cient for reliable matching is
shown in Fig. 4.10. Here, the �rst peak of both matching directions results in the
same disparity. The ground truth shows that this decision is wrong. The second
peak of both directions is beneath the con�dence threshold, so the wrong match is
eliminated correctly.

Figure 4.11 shows an example of a costs function where both checks failed. None
of the peaks represents the true disparity; thus, the decision is correct.

The con�dence check is successfully used (as will be shown in Chapter 5) to
eliminate false positives. Contrarily, Fig. 4.12 shows an example where a true positive
is eliminated because of a low con�dence. The functions consist of three considerable
peaks where the one with the lowest costs correspond with the ground truth. The
second peaks are very close to the �rst peak, so the algorithm classi�ed the match
as uncertain and, thus, as invalid.

The last two costs functions are examples for false matches at disparity disconti-
nuities. Figure 4.13 shows a costs function for a foreground pixel at an object border.
It has a clear peak, the left/right check as well as the con�dence check declared it as
valid and the ground truth indicator shows the correctness of this decision.



CHAPTER 4. REAL-TIME CENSUS-BASED STEREO MATCHING 47max costs 1600
gt 20

RL LR
0 905 917
1 931 840
2 862 712
3 861 632
4 941 575
5 933 463
6 897 484
7 933 476
8 944 518
9 900 567

10 903 597
11 876 618
12 777 592
13 712 669
14 767 737
15 681 760

second peak LR match, first peak RL = 
first peak LR

second
peak RL

0

200

400

600

800

1000

0 10 20 30 40 50 60

M
at
ch
in
g 
co
st
s

RL

LR

ground truth

confidence threshold

15 681 760
16 583 804
17 649 792
18 621 780
19 685 787
20 538 756
21 465 790
22 683 757
23 787 754
24 715 788
25 546 792
26 518 744
27 572 703
28 495 540
29 542 602

second peak LR match, first peak RL = 
first peak LR

second
peak RL

0

200

400

600

800

1000

0 10 20 30 40 50 60

M
at
ch
in
g 
co
st
s

Disparities

RL

LR

ground truth

confidence threshold

Figure 4.10: Left/right check valid and con�dence check failed

Analyzing the costs function of a pixel near this object border at the background
in Fig. 4.14 shows that, due to the Census window and the aggregation block, the
foreground object still has a strong in�uence on background pixels. This in�uence
causes the peak at the same disparity level as the pixel on the foreground object.
The ground truth shows that the correct disparity is smaller; the pixel belongs to
the background. Both checks declared this pixel as correct and, thus, this decision
is an example for a false positive which is not eliminated.

4.8 3D Reconstruction

Finally, in step 7, the z-image using (2.1) and the 3D point cloud with respect to the
left camera's coordinate system using (2.7) are calculated. If the 3D reconstruction
has to be done for an arbitrarily aligned world coordinate system, the proper rotation
and translation have to be calculated.

4.9 Summary

In this chapter, we introduced our Census-based real-time stereo matching engine.
The decision for this algorithm was made because it has no systematically given
constraints to ful�ll the real-time capability. It is computationally intensive but
delivers high matching quality. The challenge was to design the algorithm in a
way to bene�t from the matching quality but still enabling fast realization. This is
the �rst part of realizing a fast real-time capable stereo matching algorithm. The
optimized implementation follows in Chapter 6.

The algorithm is built up as follows: First, the images are captured by an o�ine
calibrated stereo camera head. The lens distortion is removed and the image pair is
recti�ed. The next step is the sparse Census transform where only every second row
and every second column is used. This enables high matching quality with only half



CHAPTER 4. REAL-TIME CENSUS-BASED STEREO MATCHING 48

max costs 1600
gt 35

RL LR
0 866 773
1 894 774
2 939 700
3 929 726
4 939 806
5 841 872
6 697 982
7 558 1141
8 475 1046
9 486 954

10 557 889
11 688 845
12 836 778
13 885 778
14 886 796
15 798 805

second peak RL
second peak LR, 
first peak RL

first peak LR

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

M
at
ch
in
g 
co
st
s

RL

LR

ground truth

confidence 
threshold

15 798 805
16 720 860
17 710 929
18 689 898
19 671 836
20 621 742
21 594 576
22 537 458
23 457 438
24 408 408
25 411 454
26 502 606
27 598 741
28 701 847
29 820 931

second peak RL
second peak LR, 
first peak RL

first peak LR

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

M
at
ch
in
g 
co
st
s

Disparities

RL

LR

ground truth

confidence 
threshold

Figure 4.11: Left/right and con�dence check failed

of the computational e�ort. The matching cost of two Census transformed pixels is
the Hamming distance. It is calculated for all possible disparity levels. To increase
the uniqueness of the correct matching candidate, the assumption that pixels share
the same disparity level in their nearest neighborhood is used and, thus, the costs
are aggregated within a neighborhood block. A minimum search (winner takes all)
is used to pick the best matching candidate out of the whole disparity range. To
increase the reliability of the matches, a left/right consistency, a con�dence, and
texture check is applied. The left/right check can only pass those matches which are
consistent over both matching directions. This is a fast and proper way of occlusion
detection. The con�dence is calculated out of the relation between the costs di�erence
between the two best matching candidates and the maximum possible matching
costs. Textureless areas and areas with repetitive texture are di�cult to match and,
thus, result in unreliable matches. These areas have a low con�dence value and can
be eliminated in this way. Additionally, a texture �lter is used to eliminate pixels
at completely textureless areas. These post-matching steps are depicted with six
examples of typical costs functions at the end of this chapter.

The algorithm has certain parameters, most important the sparse Census mask
and the aggregation block size, to adjust. In the next chapter, we will evaluate
all important parameter settings in terms of processing time and matching quality.
Furthermore, we will evaluate our algorithm using the Middlebury stereo database
and two publicly available stereo matching algorithms.



CHAPTER 4. REAL-TIME CENSUS-BASED STEREO MATCHING 49

700

800

900

1000
ground truth

400

500

600

700

800

900

1000

M
at
ch
in
g 
co
st
s RL

LR

ground truth

confidence threshold

second peak RL
match, first peak RL = first 

peak LR

second peak LR

0

100

200

300

400

500

600

700

800

900

1000

M
at
ch
in
g 
co
st
s RL

LR

ground truth

confidence threshold

second peak RL
match, first peak RL = first 

peak LR

second peak LR

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60

M
at
ch
in
g 
co
st
s

Disparities

RL

LR

ground truth

confidence threshold

Figure 4.12: Left/right valid and con�dence check failed

1000

1200
ground truth

600

800

1000

1200

ng
 c
os
ts

ground truth

second peak RL

second peak LR
400

600

800

1000

1200

M
at
ch
in
g 
co
st
s

RL

ground truth

second peak RL

match, first peak RL = first 
peak LR

second peak LR

0

200

400

600

800

1000

1200

M
at
ch
in
g 
co
st
s

RL

LRconfidence threshold

ground truth

second peak RL

match, first peak RL = first 
peak LR

second peak LR

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

M
at
ch
in
g 
co
st
s

Disparities

RL

LRconfidence threshold

ground truth

second peak RL

match, first peak RL = first 
peak LR

second peak LR

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

M
at
ch
in
g 
co
st
s

Disparities

RL

LRconfidence threshold

ground truth

second peak RL

match, first peak RL = first 
peak LR

second peak LR

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

M
at
ch
in
g 
co
st
s

Disparities

RL

LRconfidence threshold

ground truth

Figure 4.13: True match at an object border
max costs 1600
gt 16

RL LR
0 839 926
1 891 9381000

1200
ground truth

1 891 938
2 981 901
3 873 883
4 797 856
5 874 854
6 784 860
600

800

1000

1200

tc
hi
ng

 c
os
ts

RL

ground truth

6 784 860
7 742 812
8 701 772
9 642 770

10 617 790 match, first peak RL = 
first peak LR

second peak LR
second peak RL

200

400

600

800

1000

1200

M
at
ch
in
g 
co
st
s

RL

LRconfidence threshold

ground truth

11 600 752
12 574 742
13 725 779
14 862 778
15 780 725

match, first peak RL = 
first peak LR

second peak LR
second peak RL

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

M
at
ch
in
g 
co
st
s

Disparities

RL

LRconfidence threshold

ground truth

15 780 725
16 872 711
17 1101 754
18 1139 795
19 999 806
20 882 812

match, first peak RL = 
first peak LR

second peak LR
second peak RL

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

M
at
ch
in
g 
co
st
s

Disparities

RL

LRconfidence threshold

ground truth

20 882 812
21 811 872
22 724 871
23 624 903
24 723 865
25 832 849
26 701 832
27 515 779
28 660 720
29 732 68629 732 686

Figure 4.14: False match at an object border



Chapter 5

Evaluation

In the former chapters, we declared the proposed algorithm to be a good compromise
between matching quality and processing time. To prove this claim, we now intro-
duce a detailed evaluation of the matching quality by ground truth comparison with
two state-of-the-art algorithms and the approaches from the Middlebury database.
Additionally, we provide a comparison with other algorithms in terms of processing
time.

The proposed algorithm uses a non-parametric transform which, means that it
does not rely on the intensity values but on their ordering inside a certain window.
Non-parametric does not mean that the transform has no parameters. It solely means
that the structure of the model is not de�ned a priori. In the case of Census, this
means that the structure of the bit string relies on the ordering of the pixels and not
on their intensity values.

However, there are several parameters in the proposed algorithm, such as the
sparse Census window size and the aggregation block size, which have to be set
properly. They have an important impact on the performance in terms of matching
quality and processing time of the algorithm and have to be treated with care. In this
chapter, we �rst explain the parameter impact on the matching quality in Section 5.1,
then we compare the proposed algorithm with state-of-the-art approaches using the
Middlebury datasets and real-world scenes in Section 5.2.

5.1 Parameter Impact and Matching Quality

This section analyzes the impact of the algorithm parameters described in Chapter 4
in detail. The goal is to �nd a proper Census mask size, aggregation block size and
suitable con�dence and texture thresholds for the target applications. Additionally,
we will present the advantages of the use of a sparse Census transform. To �nd
the most suitable parameters, the matching quality but also the processing time
play the key role. As reference for the matching quality, we use 31 datasets from
the Middlebury stereo evaluation website ([17, 47, 121, 122]). These datasets are
captured with low-noise and high-resolution cameras that allow the high quality of
the ground truth images. Unfortunately, this is not close to the expected environment
in the target application. To overcome this, we additionally overlay the datasets with
random noise. Thus, for the proposed experiments, we analyze the matching quality
always twice, once with the original and once with the noisy datasets. Figure 5.1

50



CHAPTER 5. EVALUATION 51

shows one example dataset with its original left image, the noisy left image and its
ground truth image.

As evaluation criterion for the matching quality, we use the average percentage
of the true positives ([tp]=%) over all 31 datasets on the one hand with

tp =
100

Pnz

∑
u,v

(|DM(x, y)−GT (x, y)| ≤ δ), (5.1)

where δ is the error threshold, DM is the �nal disparity map, GT is the ground
truth image, and Pnz is the number of pixels that are non zero in the disparity map
and the ground truth image. The latter means that they have to be found by the
algorithm and a proper ground truth value has to exist. The true positives rate the
accuracy of the results. On the other hand, we use the average percentage of the
correct matched pixels ([total]=%) in relation to the total number of pixels P (with
available ground truth values) in the image with

total =
100

P

∑
u,v

(|DM(x, y)−GT (x, y)| ≤ δ). (5.2)

This rates the density of the resulting disparity maps, or, in other words, it speci�es
how many pixels of the whole image are matched correctly. Due to the use of subpixel
re�nement, we use an error threshold of δ = 0.5 pixels. In this work, we use a squared
window with the anchor point in the middle for the Census mask as well as for the
aggregation block. In the following charts, the sizes give the side length of the square.

Figure 5.1: Middlebury dataset Art, from Scharstein and Pal [121]; Left image, noisy
left image, and ground truth image

5.1.1 Census Mask and Aggregation Block Size

The �rst parameter to analyze is the Census mask size. Figure 5.2 shows the match-
ing quality for increasing mask sizes without costs aggregation; hence, the attention
is completely paid to the Census transform. As can be seen, evaluating the original
datasets results in a maximum at a size of 16 × 16. The noisy datasets show that
di�cult scenes match better with larger mask sizes, whereas 16 × 16 also performs
well. Both evaluations exhibit the fact that very large Census masks, 24 × 24 and
above, decrease the matching quality. This can be traced back to the fact that large
Census masks broaden the object borders. As a reminder, large Census masks mean
large bit strings in the Census-transformed images. This means high computational
e�ort during costs calculation as can be seen in Fig. 5.3 where the processing times



CHAPTER 5. EVALUATION 52

8 12 16 20 24 28 32 36 40
0

20

40

60

80

100

Census mask size / pixel

P
er
ce
nt
ag
e

tp, normal
tp, sparse

total, normal

total, sparse

(a) original

8 12 16 20 24 28 32 36 40
0

20

40

60

80

100

Census mask size / pixel

P
er
ce
nt
ag
e

tp, normal
tp, sparse

total, normal

total, sparse

(b) noisy

Figure 5.2: Matching quality for di�erent Census mask sizes without costs aggrega-
tion

of normal and sparse Census transforms are compared. We used a plain software
solution for this comparison.

After �nding a proper Census mask, we analyze the aggregation block size. A
well-known problem concerning aggregation block sizes are disparity discontinuities
as explained in Section 3.1 and shown in Section 4.7.3. Figure 5.5 shows the matching
quality for increasing block sizes at a Census mask size of 16× 16. The chart of the
original datasets clearly shows that the discontinuity problem decreases the matching
quality from a block size of 5×5. The noisy datasets prove that large blocks increase
the matching quality in di�cult scenes for instance. Another important consequence
of costs aggregation is that it closes the matching quality gap (Fig. 5.2) between
normal and sparse Census transform.

Figure 5.4 shows the true positives for the noisy datasets of sparse and normal
Census masks. We chose the mask sizes in a way to produce the same bit string
weights to reach nearly the same computational e�ort. It shows that larger sparse
Census masks perform better than small normal masks, which in turn justi�es their
usage.

Since the noisy scenes represent a worst case scenario and the cameras used in
the application are expected to be much better, we use a block size of 5× 5.

After analyzing Census mask and aggregation block size separately, we give a
summarizing evaluation of more combinations of both. As can also be seen in Fig. 5.2,
the noisy datasets in Fig. 5.6 show that large Census mask and aggregation block sizes
improve the matching quality for images of poor quality. In contrary, if high quality
images are given, the evaluation of the original datasets shows that the matching
quality pro�ts from 5× 5 aggregation at Census mask sizes beyond 10× 10. In the
real-world application, rather good image quality but di�cult scenes are expected,
so a compromise of a large Census mask, 16 × 16, and a relative small aggregation
size, 5× 5, is used.



CHAPTER 5. EVALUATION 53

8 12 16 20 24 28 32 36 40

0

0.5

1

1.5

2

2.5

Census mask size / pixel

P
ro
ce
ss
in
g
ti
m
e
/
s

normal
sparse

Figure 5.3: Processing time for di�erent normal and sparse Census mask sizes; The
times are measured using the plain software version with optimized Hamming dis-
tance calculation.

5.1.2 Disparity Discontinuities

Finally, we analyze the matching quality on disparity discontinuities and object bor-
ders for di�erent Census mask and aggregation block sizes. As reference, the Middle-
bury database provides four datasets with disparity discontinuity masks. Thus, only
pixels on disparity discontinuities are evaluated. These datasets are also used for the
online ranking described later in Section 5.2.5. We set the error threshold to δ = 1
because the Tsukuba dataset has no subpixel accuracy and one image of four would
in�uence the results distinctly. Furthermore, neither con�dence nor texture thresh-
old is used. Figure 5.7 shows that the Census mask as well as the aggregation block
size deliver better results, the smaller they are. This is a good argument for small
blocks and masks, but an aggregation block of 5× 5 is again a good compromise.

5.1.3 Con�dence and Texture Thresholds

The last two parameters are the thresholds for con�dence and texture. Because the
values have to be adapted for each camera head and the operating environment,
they can be changed at runtime. Figure 5.8 shows the e�ect on the matching quality
with respect to increasing con�dence values for a 16× 16 sparse Census mask with a
5× 5 aggregation. The ideal curves would be increasing true positives and constant
total matches, which would mean that only false positive matches are eliminated.
Figure 5.8 shows that the true positives actually increase but the total matches
decrease as well. This means that false as well as true positives are eliminated.
For the original and the noisy datasets, a con�dence threshold of about 35 would
be a good compromise between increasing true positives by �ltering wrong matches
and losing correct matches. Especially the noisy datasets show that a well chosen
con�dence value helps to increase the reliability of the matches more than it harms
the results.



CHAPTER 5. EVALUATION 54

6 12 8 16 10 20 12 24 14 28 16 32 18 36

0

20

40

60

Datasets

P
er
ce
nt
ag
e

tp, normal Census

tp, sparse Census

Figure 5.4: Matching quality of sparse Census versus normal Census masks with the
same bit string weights

1 5 9 13 17 21 25 29 33 37
0

20

40

60

80

100

Aggregation block size / pixel

P
er
ce
nt
ag
e

tp, normal
tp, sparse

total, normal

total, sparse

(a) original

1 5 9 13 17 21 25 29 33 37

0

20

40

60

80

100

Aggregation block size / pixel

P
er
ce
nt
ag
e

tp, normal tp, sparse

total, normal total, sparse

tp, normal Census 8

(b) noisy

Figure 5.5: Matching quality for di�erent aggregation block sizes and a 16×16 sparse
Census transform

Finally, the texture threshold has to be adjusted. As explained in Section 4.7.2,
it �lters textureless areas where correlation-based, locally optimizing matching algo-
rithms fail. This parameter can also be used to adjust the algorithm to the noise
characteristics of the image sensors. This is very useful in textureless dark areas, for
example, where the cameras' noise produces random textures, the matching fails and
the con�dence threshold is insu�cient. Figure 5.9 shows that the original datasets
are well textured, so the texture threshold must be set very low to avoid losing too
many true positives. The simulated noise in the noisy datasets is unfortunately too
strong, so the texture threshold does not truly improve the results.

As a summary of the parameter impact, we use a sparse Census mask size of 16×
16 and an aggregation block size of 5×5 for the optimized reference implementations
in Chapter 6. To adjust the algorithm to the speci�c application, we set the texture
and con�dence threshold on runtime.



CHAPTER 5. EVALUATION 55

8 12 16 20 24 28 32 36 40

65

70

75

80

85

Census mask size / pixel

P
er
ce
nt
ag
e

tp, block 1

tp, block 5

tp, block 9

tp, block 13

tp, block 17

(a) original

8 12 16 20 24 28 32 36 40

20

30

40

50

60

Census mask size (normal) / pixel

P
er
ce
nt
ag
e

tp, block 1

tp, block 5

tp, block 9

tp, block 13

tp, block 17

(b) noisy

Figure 5.6: Matching quality for di�erent Census mask and aggregation block sizes

8 12 16 20 24 28 32 36 40

40

50

60

70

80

90

Census mask size (sparse) / pixel

P
er
ce
nt
ag
e

tp, block 1

tp, block 3

tp, block 5

tp, block 9

tp, block 13

Figure 5.7: Matching quality on disparity discontinuities for di�erent Census mask
and aggregation block sizes

5.2 Algorithm Comparison

We chose two well-known stereo matching algorithms for detailed results evalua-
tion. The �rst is the SAD block matching algorithm from Konolige [123] available
in the OpenCV library [10]. The second is the semi-global Matching algorithm
from Hirschmueller [37] also, in a modi�ed version, available in the OpenCV library.
The main di�erence between this version and the original is that the Birch�eld-
Tomasi [30] metric is used for costs calculation instead of mutual information. Thus,
the costs can also be aggregated, what we further do for our evaluations. However,
if the aggregation block size is set to 1, the aggregation is turned o�. We chose these
two algorithms for three reasons: First, both are well-known, and second, both are
meaningful representatives of their algorithm class. The SAD for fast local area-
based matching and the SGM for fast (semi) global area-based matching. Both are
also implemented embedded, SAD on a DSP [123] and SGM on an FPGA [39]. The



CHAPTER 5. EVALUATION 56

0 40 80 120 160 200
0

20

40

60

80

100

Con�dence threshold

P
er
ce
nt
ag
e

tp, sparse

total, sparse

(a) original

0 40 80 120 160 200
0

20

40

60

80

100

Con�dence threshold

P
er
ce
nt
ag
e

tp, sparse

total, sparse

(b) noisy

Figure 5.8: Matching quality for di�erent con�dence threshold values with 16 × 16
Census transform and 5× 5 aggregation

0 20 40 60 80 100
0

20

40

60

80

100

Texture threshold

P
er
ce
nt
ag
e

tp, sparse

total, sparse

(a) original

0 20 40 60 80 100
0

20

40

60

80

100

Texture threshold

P
er
ce
nt
ag
e

tp, sparse

total, sparse

(b) noisy

Figure 5.9: Matching quality for di�erent texture threshold values with 16×16 sparse
Census transform and 5× 5 aggregation

third reason is that implementations of both algorithms are available in the OpenCV.
For ground truth comparison, we also use the 31 datasets from Middlebury, in

the original and the noisy version. Unfortunately, the SAD and SGM algorithms
produce a black border of the width of the maximum disparity. Additionally, the
SAD produces a black border of the width of the half aggregation block size around
the disparity map. One strength of our algorithm is the use of the maximum possible
matching range even at the image borders. Nevertheless, to provide a completely
fair comparison, the black borders produced by SAD and SGM are arti�cially added
in the results of the Census algorithm.

Our algorithm, as well as both from the OpenCV keep all parameters constant
over all datasets. Table 5.1 lists the experimentally chosen values. The uniqueness
parameter of SAD and SGM is similar to the con�dence parameter of our sparse
Census algorithm. It eliminates all matches where the di�erence between the �rst
and the second minimal costs value are less than this threshold. The higher the
threshold, the more unique the residual matches. Additionally, the SGM uses a



CHAPTER 5. EVALUATION 57

speckle �lter for postprocessing. This means that only disparities within the �lter
kernel which di�er maximum for the given di�erence are set as valid. The penalties
of SGM, as described in Section 3.1.3, are set to P1 = 7 and P2 = 21. We always
chose the parameters in a way that the true positives are maximized without losing
too many correct matches.

Table 5.1: Parameters for the algorithm comparisons

Postprocessing

Datasets Original Noise

Sparse Census

Sparse Census mask 16 16
Con�dence 35 50
Texture 0 0
SAD

Uniqueness 40 20
Texture 0 0
SGM

Uniqueness 50 50
Speckle (Size/Di�erence) 16/10 16/10

5.2.1 Overall Quality

Figure 5.10 shows the true positives (tp) and the total matches (total) of the proposed
algorithm in comparison to the SAD with an error threshold of δ = 0.5 for di�erent
aggregation block sizes. Both charts of Fig. 5.10 show that the proposed algorithm
performs signi�cantly better for small aggregation block sizes and nearly equal for
large sizes in terms of true positives. The real improvement is the signi�cant higher
percentage of total matches, which means a higher density of the disparity maps.

5 9 13 17 21 25 29 33 37
0

20

40

60

80

100

Aggregation block size / pixel

P
er
ce
nt
ag
e

tp, sparse Census

total, sparse Census

tp, SAD, OpenCV

total, SAD, OpenCV

(a) original

5 9 13 17 21 25 29 33 37
0

20

40

60

80

100

Aggregation block size / pixel

P
er
ce
nt
ag
e tp, sparse Census

total, sparse Census

tp, SAD, OpenCV

total, SAD, OpenCV

(b) noisy

Figure 5.10: Matching quality comparison between the 16× 16 sparse Census trans-
form and the SAD algorithm for di�erent aggregation block sizes



CHAPTER 5. EVALUATION 58

Figure 5.11 shows the true positives (tp) and the total matches (total) of the
proposed algorithm in comparison to the SGM with an error threshold of δ = 0.5
for di�erent aggregation block sizes. For the original datasets, SGM performs best
without costs aggregation, as originally published, but stays nearly constant up to a
block size of 31× 31. Our algorithm is only slightly below in terms of true positives
but delivers a higher number of correct matches (total). For the noisy datasets,
SGM performs best with a block size around 11 × 11 and strongly decreases the
performance for large blocks.

1 5 9 13 17 21 25
0

20

40

60

80

100

Aggregation block size / pixel

P
er
ce
nt
ag
e

tp, sparse Census

total, sparse Census

tp, SGM, OpenCV

total, SGM, OpenCV

(a) original

1 5 9 13 17 21 25
0

20

40

60

80

100

Aggregation block size / pixel

P
er
ce
nt
ag
e

tp, sparse Census

total, sparse Census

tp, SGM, OpenCV

total, SGM, OpenCV

(b) noisy

Figure 5.11: Matching quality comparison between the 16× 16 sparse Census trans-
form and the SGM algorithm for di�erent aggregation block sizes

As a summary of the overall matching quality, our proposed algorithm performs
signi�cantly better than SAD for the original as well as for the noise datasets. The
best matching con�guration of SGM and sparse Census di�ers only a little in terms
of true positives with a bene�t of SGM. Sparse Census delivers for the original as
well as for the noise datasets more correct matches in relation to the total number
of pixels.

5.2.2 Disparity Discontinuities

An advantage of the Census transform is the robustness on disparity discontinuities
because of a good outlier tolerance as described by Wood�ll et al. [124]. Figure 5.12
shows that the matching quality at object borders is clearly better than using SAD.
It also shows that it performs only slightly worse than the SGM approach which
has one of its strengths in good performance on object borders. This is due to
the fact that not local neighborhoods only are taken into consideration but also
global connections in form of scanlines in 8 directions. Thus, the impact of the local
matching window, which causes the wrong matches, decreases. The experiments
with the original images show that the percentage of the true positives shrinks with
increasing block size for both algorithms due to the disparity discontinuity e�ect
which causes object borders to become broader. This is also true for the noisy
images when using the Census matching, but the SAD has di�erent characteristics.
Due to the noise, small block sizes deliver rather little true positives. Only after a
block size of about 23× 23 does the disparity discontinuity e�ect become noticeable



CHAPTER 5. EVALUATION 59

and the number of true positives begin to decrease. SGM performs for the noisy
datasets at object borders again best with a costs aggregation of about 11× 11. As
done before in Section 5.1, we set the error threshold is to δ = 1 for this analysis and
abandon postprocessing.

1 5 9 13 17 21 25 29 33 37
40

60

80

100

Aggregation block size / pixel

P
er
ce
nt
ag
e

tp, sparse Census

tp, SAD, OpenCV

tp, SGM, OpenCV

(a) original

1 5 9 13 17 21 25 29 33 37
20

40

60

80

Aggregation block size / pixel

P
er
ce
nt
ag
e

tp, sparse Census

tp, SAD, OpenCV

tp, SGM, OpenCV

(b) noisy

Figure 5.12: Matching quality comparison between the 16× 16 sparse Census trans-
form, the SAD, and the SGM on disparity discontinuities

5.2.3 Brightness Di�erences

In real-world environments, it can easily happen that the left and the right camera
images su�er from di�erent illuminations. A reason for this can be, e.g., indepen-
dently operating autoshutters. Hirschmueller and Scharstein [122] evaluated many
costs functions in terms of di�erent illumination in their work and discovered that
the Rank transform works best of all the correlation methods. Due to the fact that
the Census transform, as well as the Rank transform, is based on local pixel intensity
di�erences, which are independent of constant gain and brightness di�erences in the
stereo pair, similar results for the Census transform are expected. Figure 5.13 shows
the results of the proposed algorithm and the SAD for �ve di�erent Middlebury
datasets in true positives and total matches charts and the Art dataset for visual
comparison. The input stereo pair is also given, where the illumination di�erences



CHAPTER 5. EVALUATION 60

can be seen clearly. The Census matching delivers in all cases more true positives
than the SAD. A considerable di�erence can be seen in the percentage of the to-
tal matches, where the Census transform clearly outperforms the SAD. The SGM
approach deals worse with these datasets as can be seen in the charts.

A
rt

D
ol
ls

B
oo
ks

L
au
nd
ry

M
oe
bi
us

0

50

100

Datasets

P
er
ce
nt
ag
e
of

tp

(a) true positives
A
rt

D
ol
ls

B
oo
ks

L
au
nd
ry

M
oe
bi
us

0

50

100

Datasets
P
er
ce
nt
ag
e
of

to
ta
l

sparse Census

SAD, OpenCV

SGM, OpenCV

(b) total matches

(c) left (d) right (e) Census (f) SAD

Figure 5.13: Matching quality comparison between the 16× 16 sparse Census trans-
form with 5 × 5 aggregation and the 11 × 11 SAD for scenes with illumination
di�erence between the stereo pair

5.2.4 Real-World Scenes

For visual comparison of the matching quality, Fig. 5.14 shows four real-world scenes.
We performed the aggregation block size selection with the charts in Fig. 5.10 and
Fig. 5.11. For each algorithm, we chose the best matching con�guration for the
original scenes. The proposed algorithm has a 5× 5 aggregation block size, the SAD
a block size of 11×11, and the SGM is done without costs aggregation. The residual
parameters can be found in Tab. 5.1. Additionally, we show the disparity maps of
the sparse Census algorithm without con�dence and texture thresholds. It can be
seen that false matched pixels are �ltered out well and apparent true matches are
kept valid.

5.2.5 Middlebury Ranking

As explained earlier in Section 3.2.1, the Middlebury stereo database [46] provides
a huge number of stereo image datasets consisting of the stereo image pair and
the appropriate ground truth image. Four of these datasets (Fig. 3.4) are used to
evaluate stereo matching algorithms and to compare the results with many others



CHAPTER 5. EVALUATION 61

(a) Left image (b) Census 16 (c) Census 16t (d) SAD 11t (e) SGM

Figure 5.14: Real-world scenes; From left to right: Left stereo image, Census 16
(16 × 16 sparse Census mask, 5 × 5 aggregation, without thresholds), Census 16t
(16× 16 sparse Census mask, 5× 5 aggregation, con�dence 40 and texture 0), SAD
11t (SAD with 11 × 11 block size and uniqueness threshold 40), SGM (without
aggregation and uniqueness threshold of 50)

online. Since this evaluation is very well-known and state-of-the-art, we also evaluate
the proposed algorithm in this manner.

Figure 5.15 shows the four evaluation datasets and the resulting disparity maps
of sparse Census and the SAD as well as the SGM from Section 5.2. A sparse Census
mask of 16×16 is the main con�guration of the algorithm but another con�guration,
with a Census mask of 10 × 10, is used for the Middlebury evaluation. Another
di�erence between them is the Census mask size of 10×10 and an aggregation block
size of 3 × 3 in contrast to 16 × 16 Census and 5 × 5 aggregation. The reason for
this is because Fig. 5.6 in Section 5.1 shows that smaller Census masks are well
suited for high quality input images. For SAD, an aggregation of 11 × 11 is used
and SGM is done without aggregation and postprocessing. Additionally, a 9 × 9
median �lter is applied as a postprocessing step for Census 10 and SAD. We chose
these parameters in such a way as to achieve the best possible rank on this website.
Finally, to ful�ll the evaluation rules, the missing values in the disparity maps have
to be extrapolated. Due to the smaller Census mask and aggregation block size of
the proposed algorithm, and the simple postprocessing, the processing time is not
negatively in�uenced.

As a reminder, Table 3.1 lists the actual ranking. After a short study of the lead-
ing algorithms, it can be seen that nearly none of them is developed for high frame
rates. Many of them use global optimization techniques and focus on matching qual-
ity only. To include processing time in the evaluation, we mention only algorithms
declared capable of real-time or near real-time, or at least faster than one second.
As Table 5.3 will show later on, the meaning of real-time and the corresponding



CHAPTER 5. EVALUATION 62

(a) Left image (b) GT (c) Census 10t (d) SAD 11t (e) SGM

Figure 5.15: Middlebury stereo datasets [17, 47]; From left to right: Left stereo
image, ground truth, Census 10t (10 × 10 sparse Census mask, 3 × 3 aggregation,
con�dence 40 and texture 0), SAD 11t (11×11 block size, uniqueness 40 and texture
0), SGM (without aggregation and postprocessing)

processing time is interpreted di�erently by the authors of the algorithms. We also
evaluate the SAD and SGM algorithms from Section 5.2 even if they are not in the
permanent table. Of course, due to the fact that they produce the black border on
the left side of the image, they su�er more from extrapolating. The processing times
for published algorithms are taken from the literature, the SAD and SGM algorithms
and the proposed algorithm are measured by ourselves.

The main ranking of the algorithms published on the Middlebury stereo website
is ordered by the average rank over all twelve bad matching percentage columns with
an error threshold of δ = 1 and is shown in Table 5.2. Figure 5.16 and Fig. 5.17 give
a visual comparison of the disparity maps. As can be seen, only one of the real-time
algorithms ranks among the top 15. The others, including the proposed algorithm,
rank in the middle and bottom positions. In addition, we give the average percentage
of bad pixels over all twelve columns. This value is meaningful because shows how
close together the algorithms lie. The distance between the best real-time algorithm
and the proposed algorithm is only 3.95 percent.

Interesting is the comparison of the processing times in Table 5.3. We attempted
to use the same input image sizes and disparity ranges for all the algorithms when
possible. The proposed algorithm is currently the fastest, and only slightly worse
in terms of the bad matches percentage; it is thus considered to be a very good
compromise between matching quality and processing time. As can be seen, in
contrast to the others the presented algorithm reaches real-time capability not only
on GPU, but also on DSP and PC.

In Section 5.1 and Section 5.2 the error threshold is set to δ = 0.5 because the



CHAPTER 5. EVALUATION 63

Table 5.2: Middlebury main ranking (error threshold 1) with real-time algorithms
only; The SAD and SGM are not included in the online table, that is why we printed
the absolute instead of the average rank. While writing this thesis, the main ranking
consists of a total of 90 (SAD and SGM included) algorithms. All values, except
the ranks, are given in percentages. The small numbers are the speci�c ranks of the
columns. Avg. (%) is the average percent of bad pixels over all 12 columns.

Algorithm Avg. Tsukuba Venus Teddy Cones Avg.
all all all all (%)

PlaneFitBP 12 1.83 19 0.51 15 12.1 22 10.7 35 5.78
SegTreeDP 31 2.76 39 0.60 20 15.2 56 7.86 5 6.82
RealtimeBP 42 3.40 43 1.90 49 13.2 29 11.6 45 7.69
RealtimeBFV 43 2.22 32 0.87 29 15.0 48 12.3 48 7.65
FastAggreg 48 2.11 30 4.75 66 15.2 50 12.6 51 8.24
ESAW 54 2.45 36 1.65 47 14.2 43 12.7 58 8.21
RealtimeVar 57 5.48 60 2.35 52 7.25 5 6.59 3 7.85
OptimizedDP 58 3.78 48 4.74 65 13.9 38 13.7 57 8.83
Prop. Alg. 62 6.25 66 2.42 53 13.8 35 9.54 24 9.73
RTimeGPU 63 4.22 52 2.98 56 14.4 45 13.7 56 9.82
ReliaDP 65 3.39 42 3.48 62 16.9 59 19.9 71 10.7
SGM 66 4.87 66 1.74 50 18.8 71 12.8 60 10.0
TreeDP 67 2.84 39 2.10 50 23.9 69 18.3 66 11.7
CSBP 68 4.17 55 3.11 64 20.2 73 16.5 72 11.4
DCBGrid 72 7.26 84 1.91 56 17.2 66 11.9 51 10.9
SAD 82 7.91 73 3.57 63 22.6 65 17.9 64 17.2

algorithm delivers disparities in subpixel accuracy. The Middlebury ranking also
supports subpixel error thresholds but lots of algorithms in the database calculate
integer disparities only. Thus, a direct comparison would be unfair. To overcome
this problem, we used the postprocessing step, as explained in Section 3.2.1, to
enhance the resolution of range images to subpixel accuracy by Yang et al. [48].
The �nal evaluation step of the introduced algorithm is a subpixel comparison with
the subpixel enhanced versions of the real-time algorithms. Unfortunately, only 4
of them are available up to now. The rankings on the mentioned website are out-
of-date, so the ranking criterion is now the bad pixel percentage. The proposed
algorithm is the leader with 14.34%, followed by RealtimeBP with 14.56%, followed
by ReliabilityDP with 16.57%, followed by RealtimeGPU with 16.72% and, at last,
TreeDP with 19.29%.

However, if we use an error threshold of δ = 0.5 in the Middlebury ranking,
our algorithm is ranked on an overall position of 20 followed by the �rst real-time
algorithm on position 40. If additionally only non-occluded areas are taken under
consideration, the rank of our algorithm increases to position 12 of all algorithms in
the database followed by the �rst real-time algorithm on position 33.

5.3 Summary

In this chapter, we presented an evaluation of the matching quality of the proposed
algorithm and gave a comparison with other algorithms. We provided a detailed
analysis of the algorithm's parameters and their in�uence. We illustrated that espe-



CHAPTER 5. EVALUATION 64

Table 5.3: Performance comparison of the declared real-time algorithms in the Mid-
dlebury main ranking; The frame rates and platforms are taken from the papers wher-
ever they were mentioned. If di�erent implementations are published, the fastest is
taken. Size denotes input image resolution and disparity search range. The proposed
algorithm is given for all three implementations.

Algorithm Rank Fps Size Platform

PlaneFitBP [56] 12 1 512× 384, 48 GeForce 8800 GTX
SegTreeDP [70] 31 6.13 384× 288, 16 PC Dual Intel Xeron 2.4 GHz
RealtimeBP [36] 42 16 320× 240, 16 GeForce 7900 GTX
RealtimeBFV [77] 43 57 384× 288, 16 GeForce 8800 GTX
FastAggreg [81] 48 5 384× 288, 16 Intel Core Duo 2.14 GHz
ESAW [84] 54 100 384× 288, 16 GeForce 8800 GTX
RealtimeVar [86] 57 2.15 384× 288, 16 PC 2.83 GHz
OptimizedDP [88] 58 5 384× 288, 16 PC 1.8 GHz
Proposed Alg. 62 573.7 320×240, 15 GeForce GTX 280
Proposed Alg. 62 169 320×240, 15 PC Intel Core2 Quad 2.5 GHz
Proposed Alg. 62 26.4 320×240, 15 DSP 1 GHz TI TMS320C6416
RealTimeGPU [92] 63 43.48 320× 240, 16 Radeon XL1800
ReliabilityDP [94] 65 23.8 384× 288, 16 Radeon 9800 XT
SGM1 66 11.11 384× 288, 16 PC Intel Core2 Quad 2.5 GHz
TreeDP [95] 68 1-5 Middlebury2 n/a
CSBP [96] 68 0.67 800× 600, 300 GeForce 8800 GTX
DCBGrid [98] 72 16 480× 270, 40 Quadro FX 4800
SAD [10] 82 66.67 384× 288, 16 PC 3 GHz

1Modi�ed version of [37].
2"It runs in a fraction of a second for the Middlebury images."

cially the con�dence and texture threshold are strongly dependant on the application
and camera. Large Census masks as well as large aggregation blocks increase the
matching quality in textureless areas and noisy images. The drawback is that local-
izing of the matches decreases, especially at disparity discontinuities such as object
borders. Thus, we discovered a Census mask size of 16×16 and an aggregation block
size of 5× 5 as a good compromise between processing time and high quality match-
ing. These parameters are then used for the optimized implementations introduced
in the next chapter. We also proved that the use of a sparse Census size signi�cantly
decreases the processing time by nearly constant matching quality. Mentionable is
that the aggregation step closes the gap between sparse and normal Census masks.

We did a detailed comparison of our algorithm with a state-of-the-art SAD block
matching and a globally optimizing SGM algorithm. It showed that the sparse
Census transform performs signi�cantly better than the SAD in all measures. Our
algorithm performs slightly worse than the SGM in terms of true positives but de-
livers more correct matches in the original as well as in the noisy datasets. We also
achieve nearly the same matching quality at disparity discontinuities as SGM and
outperform SAD.

Further, we evaluated the proposed algorithm with the Middlebury database.
Taking only approaches into account which declare to be real-time capable, our
approach is ranked in the middle using matching quality as criterion but outperforms
all others in terms of precessing speed.



CHAPTER 5. EVALUATION 65

In the last chapter, we will introduce four highly optimized reference implementa-
tions on di�erent platforms to show the real-time and embedded realization capability
of our algorithm.



CHAPTER 5. EVALUATION 66

PlaneFitBP

SegTreeDP

RealtimeBFV

RealtimeBP

FastAggreg

ESAW

RealtimeVar

OptimizedDP

Figure 5.16: Visual comparison of the real-time algorithms on the Middlebury web-
site, sorted by the main ranking in Tab. 5.2, part 1



CHAPTER 5. EVALUATION 67

Proposed Alg.

RealTimeGPU

ReliabilityDP

SGM

TreeDP

CSBP

DCBGrid

SAD

Figure 5.17: Visual comparison of the real-time algorithms on the Middlebury web-
site, sorted by the main ranking in Tab. 5.2, part 2.



Chapter 6

Reference Implementations

A highly optimized real-time implementation of an image processing algorithm is not
a trivial task. First, the huge amount of data being processed have to be managed
e�ciently. Especially on light weight platforms such as digital signal processors,
memory is a rare resource. Second, the processing time of the individual pixels
has to be low because it is done, e.g., about 6 million times for images with a
resolution of 640× 480 assuming a frame rate of 20 fps. In case of stereo matching,
each pixel is compared with a number of pixels equal the disparity range which
can strongly vary depending on the operation distance and range. As explained in
Chapter 4, the proposed algorithm uses the Hamming distance of two 64-bit words
for costs calculation. For the example resolution above and a disparity range of
60, the Hamming distance has to be calculated about 368 million times per second
(Mde/s). This is just the costs calculation; it has to be kept in mind that the costs
have to be evaluated and optimized as well to get the �nal results.

In this chapter, we introduce four reference implementations of the proposed
stereo matching algorithm. First, we present a plain and hardly optimized software
solution for common CPUs in Section 6.1. Then, we present an optimized software
version for multi-core CPUs in Section 6.2, followed by an implementation on three
NVIDIA GPUs in Section 6.3. In Section 6.4, we present a version for Texas Instru-
ments DSPs which shows the possibility of real resource-aware and purely embedded
implementation. All the implementations have in common that the calibration is
performed with the OpenCV library [12] and undistortion and recti�cation are re-
alized by calculating the transform maps o�ine and applying a remapping to the
images online as described in Section 2.4. Also, all implementations are �exible in
terms of image dimensions and disparity levels. Finally, we give a performance and
power consumption comparison in Section 6.5.

6.1 Plain Software

The �rst reference implementation is a plain software solution written in C/C++.
The main idea of this implementation was the development of functional behavior
of the proposed algorithm. It is embedded in a Microsoft Foundation Class (MFC)
graphical user interface and uses the OpenCV library as image processing basis. The
strength of this implementation is the �exibility in Census mask and aggregation
block size. The only optimized routine is the Hamming distance calculation, which

68



CHAPTER 6. REFERENCE IMPLEMENTATIONS 69

is the counting of the set bits after calculating the xor product of two Census-
transformed pixel values. The counting is done with the O(log n) population count
algorithm from AMD's Software Optimization Guide for AMD64 Processors (AMD
[125]). We used this implementation also for the evaluations in Section 5.1.

6.2 Optimized Software

This implementation is based on the plain software version and is performance-
optimized for standard PC hardware without using any graphics card acceleration
but with extensive use of the Streaming SIMD Extensions (SSE) and the multi-core
architectures of state-of-the-art PC CPUs.

6.2.1 Target Platform

The main target platform during the performance-optimized implementation is an
Intel Mobile Core2 Duo processor (model T7200) clocked at 2 GHz (Int [126]). This
CPU model is commonly used not only in notebook PCs, but also in industrial and
so-called �embedded� PCs. We intentionally avoided to optimize our software only for
high-end PCs with respect to a broader �eld of application in the industrial / mobile
domain. Beside that, this implementation is applicable for a freely con�gurable
number of processor cores. We will give the detailed performance evaluation of the
algorithm on multi-core architectures in Section 6.5.

On the software side, we implemented the proposed algorithm in C with the
requirement to keep it portable among MS Windows and Linux. We used Microsoft
Visual Studio Compiler 8 on theWindows side and under Linux the GCC 4.3 compiler
came to service. Both compilers can deal with basic OpenMP1 directives which we
used to realize the multi-core capability.

6.2.2 Overall Strategies

We use the PfeLib [127] as the back-end for the performance critical functions,
which in turn uses parts of the Intel Performance Primitives for Image Processing
(IPP) [128] whenever possible. Much of the performance optimizations described in
the following sections were actually done in functions of the PfeLib. The library has
an open architecture for adding new functions, migrating them to other platforms,
and optimizing them for each platform. It also provides components for veri�cation
and high resolution performance timing on various platforms.

6.2.3 Algorithm Performance Optimization

A common guideline of our software design process is to consequently encapsulate
all computation intensive image processing functions into the dedicated performance
primitives libraries (PfeLib and IPP). The remaining part of the program is usually
not performance critical and, thus, can be coded in a portable manner. The following
sections describe in detail the optimization strategies of the core parts of the proposed
algorithm.

1http://openmp.org/



CHAPTER 6. REFERENCE IMPLEMENTATIONS 70

Table 6.1: Hamming distance calculation scheme [130].

Pseudocode Data bits Comment

a a7 a6 a5 a4 a3 a2 a1 a0 operand a
b b7 b6 b5 b4 b3 b2 b1 b0 operand b
c=xor(a,b) c7 c6 c5 c4 c3 c2 c1 c0 get di�ering bits

d=and(c, 010101012) 0 c6 0 c4 0 c2 0 c0 1-bit comb mask
e=and(shr(c,1),010101012) 0 c7 0 c5 0 c3 0 c1 shift and mask
f=add(d,e) c6 + c7 c4 + c5 c2 + c3 c0 + c1 add bits

g=and(f,001100112) 0 0 c4 + c5 0 0 c0 + c1 2-bit comb mask
h=and(shr(f,2),001100112) 0 0 c6 + c7 0 0 c2 + c3 shift and mask
i=add(g,h) c4 + c5 + c6 + c7 c0 + c1 + c2 + c3 add

j=and(i,000011112) 0 0 0 0 c0 + c1 + c2 + c3 4-bit comb mask
k=and(shr(i,4),000011112) 0 0 0 0 c4 + c5 + c6 + c7 shift and mask
l=add(j,k) c0 + c1 + c2 + c3 + c4 + c5 + c6 + c7 hamming weight

Sparse Census Transform

To optimize the Census transform, the SSE provides the _mm_cmplt_epi8 instruction,
which compares 16 pairs of signed 8-bit values at once. The drawback is that it
cannot be used directly because the image pixel intensities are unsigned numbers.
Pixel values greater than 127 would be interpreted as negative, leading to an incorrect
result. To overcome this, 128 has to be added to each pixel value before using the
SSE instruction.

Hamming Distance

The Hamming distance calculation is an important part to optimize because it is
executed most often (width× height× disps). The calculation method was inspired
by the BitMagic library (Kuznetsov [129]), which is similar to the already mentioned
method from AMD. A simple loop counting of set bits after computing the xor prod-
uct of two 256-bit strings requires over 1100 CPU clock cycles. Table 6.1 explains
the optimized Hamming distance calculation for two 8-bit values a and b using pseu-
docode. We extended the procedure for 128-bit registers achieving now 64 cycles for
the Hamming distance calculation.

DSI and Costs Aggregation

The plain software implementation �rst calculates the whole DSI, then aggregates
and selects the �nal disparity afterwards. Due to the huge amount of memory re-
quired, this approach has to be optimized in a way that it can also be used for
embedded realization. The chosen method is to process the stereo image pair line-
by-line. The standard DSI (Fig. 4.3) is transformed in such a way that one layer of
the three dimensional structure represents one image line with all possible matches,
so only a number of layers equal to the aggregation mask size has to be stored for
one line. Figure 6.1(a) shows the transformed DSI and we call such a slice through
the DSI a disparity space layer (DSL). A DSL comprises the costs values for all dis-
parities of an image line; thus, it is a 2D-data structure, which in turn can be treated



CHAPTER 6. REFERENCE IMPLEMENTATIONS 71

d

x

y

y-2
y-1
y

dmin

dmax

(a) Conventional method:
storing separate DSLs for each
line

xdmin

dmax
dmin

dmax

dmax

y

y-1

y-2

(b) Storing the last n DSLs
into a common frame bu�er

x

y d=dmin d=dmin+1

x=0 x=W

x

d=dmax

x

● ● ●

(c) The same frame bu�er with tweaked image de-
scription parameters: common �ltering functions
are now applicable

Figure 6.1: Memory layout for e�cient cost aggregation (example with a 3×3
mask) [130].

with image processing functions. The problem is that the y-neighborhood of costs
values is actually spread among di�erent images, which makes it hard to use common
optimized �lter functions. We faced this by storing the last n DSLs into one single
image frame bu�er of n-fold height as shown in Fig. 6.1(b). Now, it would be �ne
to have costs values with equal disparities, but from adjacent y-coordinates, on top
of each other. This can be achieved by tweaking the image parameters describing
width, height, and the number of bytes per line. We �nally get a result as shown
in Fig. 6.1(c), which is an image with only n pixels in height, but with D times the
width.

We notably achieved this without any movement of pixel data in memory. Now,
aggregation means not more than applying a linear �lter with all �lter mask coe�-
cients set to one and the common divisor also set to one. The �lter kernel is indicated
in its start position in Fig. 6.1(c). The result of the �ltering can be transformed into
an �ordinary� DSL reversely. The same method is used in the DSP implementation
in Section 6.4 because of its memory awareness.

6.3 Graphics Processing Unit

A graphics processing unit (GPU) is a dedicated graphics rendering device which is
used in personal computers, workstations, or game consoles. Modern GPUs are very
e�cient at manipulating and displaying computer graphics, and their highly parallel



CHAPTER 6. REFERENCE IMPLEMENTATIONS 72

architecture makes them very e�ective for complex algorithms. An important part for
achieving high performance on GPUs is the parallelizing of the algorithm. The better
the algorithm can be subdivided into parallel tasks, the higher performance gain can
be achieved. Thus, this is the main challenge in this reference implementation.

The GPU can be programmed with languages such as Cg, HLSL and OpenGL
as well as with GPU programming libraries such as Brook, AMD/ATI's Close To
Metal (CTM), now called Stream SDK, and NVIDIA's Compute Uni�ed Device
Architecture (CUDA). An overview is given in Houston [131].

For this work, we chose CUDA for the implementation of the optimized GPU
software. CUDA provides an interface based on standard C with only a few additional
keywords. It abstracts the underlying hardware and does not necessitate knowing
in-depth details about programming the hardware itself.

6.3.1 Target Platform

We used three di�erent graphic card generations in this work. The �rst is the Quadro
FX 570 and it is based on the G84GL chip generation, the second is the GeForce
9800 GT (NVIDIA [132]), which is based on the G92 chip generation, and the third
is the GeForce GTX 280 (NVIDIA [133]) based on the chip generation GT200. Since
the CUDA Toolkit only supports NVIDIA graphic cards, we only used these and
compared them in Table 6.2.

Table 6.2: Graphic cards used

Speci�cations FX 570 9800 GT GTX 280

Multiprocessors 4 14 30
Processor Cores1 32 112 240
Processor Clock (MHz) 460 1500 1296
Registers per core 8192 8192 16384
Peak GFLOPS 44.1 504 933

Memory (MB) 256 1024 1024
Memory Clock (MHz) 800 900 1107
Memory Interface Width (Bit) 128 256 512
Peak Memory Bandwidth (GB/s) 12.8 57.6 141.7

Compute Capability v1.1 v1.1 v1.3

1Each multiprocessor contains 8 cores.

The Quadro FX 570 is an entry level graphics card and is therefore the slowest, in
processor as well as in memory clock. It has also the least number of multiprocessors
which means that fewer threads can be launched in parallel. On devices with compute
capability 1.2 and higher, the memory access on the GPU is less restrictive than on
cards with a lower compute capability. The newer GTX 280 card is clocked at 1.295
GHz, compared to 1.5 GHz of the older 9800 GT. Nevertheless, the slower clock
compared to the 9800 GT is overcompensated by more than double the number of
processors on the card as well as a 2.4 times larger memory bandwidth. We present a
detailed performance comparison between the three graphics cards in Section 6.5.1.



CHAPTER 6. REFERENCE IMPLEMENTATIONS 73

6.3.2 Overall Strategies

The bandwidth between the host and the graphics card via the PCI-Express bus
(PCI-SIG [134]) is quite low compared to the graphic cards memory bandwidth as
can be seen in Fig. 6.2. Hence, data transfer between GPU and CPU is a major
bottleneck.

0 20 40 60 80 100 120 140

NVIDIA GTX 280

NVIDIA 9800 GT

PCI-Express v2.0 x16

PCI-Express v1.1 x16

Bandwidth [GB/s]

Figure 6.2: GPU memory bandwidth versus PCI-Express bus bandwidth

Due to that fact, one goal is to do as much work as possible on the GPU, rather
than on the CPU, to minimize the transfers via the PCI-Express bus.

Table 6.3 shows di�erent types of available memory on the GPU. Apparently, reg-
isters and shared memory are well suited for fast access but, unfortunately, their size
is very small. The images and intermediate results usually reside in global memory.
Access to global memory can also be very fast as long as adjacent memory addresses
are accessed. This way, memory access coalesces and results in one 64-byte or 128-
byte memory transaction. Using the texture memory can also be advantageous. It
provides a texture cache that is optimized for 2D spatial locality. Thus, addresses
that are close together are read from the cache. The texture memory also supports
clipping for addresses which are outside of [0, N). Indices below 0 are set to 0 and
values greater or equal to N are set to N − 1.

Table 6.3: Available memory on the GPU using CUDA

Memory Scope Access Latency1 Cached2 Persistent

Global Memory global read + write 400-600 no yes
Constant Memory global read 400-600 yes yes
Texture Memory global read 400-600 yes yes
Shared Memory block read + write 4 no no
Local Memory thread read + write 400-600 no no
Registers thread read + write 0 no no

1In clock cycles.
2Upon a cache-hit, so the access is as fast as a register access.

Unlike the iterative processing on the CPU, where the image data are processed
column-by-column and row-by-row by one thread, on the GPU, one separate thread
is usually used for each data element. This way, the execution occurs almost in par-
allel, which promises high throughput. The image data are partitioned into multiple
blocks and each block is processed independently by an individual multiprocessor. To
avoid access to the slow global memory, each block is loaded into the on-chip shared



CHAPTER 6. REFERENCE IMPLEMENTATIONS 74

memory once. In case surrounding data are required, they are also transferred into
shared memory as shown in Fig. 6.3. Within the shared memory, read and write
operations can take place with almost no latency. After all the processing steps are
complete, the result is written back into the persistent global memory.

image in device memory

working data apron

image block in shared memory

Figure 6.3: Image data are loaded block-wise with a surrounding apron

The minimum parallel computing unit is a warp which contains 32 threads. The
individual threads within one warp start together at the same program address but
can execute and branch independently. A warp executes most e�ciently when all
of its 32 threads have the same execution path. As threads within one warp may
diverge due to a data-dependent conditional branch, the warp executes each branch
serially taken. When all the branches �nish, the threads converge back to the same
execution path. To obtain high performance, it is therefore necessary to minimize
the number of di�erent branches. As controlling structures such as if, switch and
loops may lead to di�erent branch paths, such structures should be avoided wherever
possible. Although the compiler may optimize the code to avoid di�erent branches,
complex code must be optimized manually.

6.3.3 Algorithm Performance Optimization

Left/right consistency check, con�dence and texture calculation, con�dence and
texture thresholding, and 3D reconstruction are fairly straightforward. They are
adopted from the existing CPU implementation by removing the iteration over the
image and instead launching a single thread for each pixel.

Recti�cation & Undistortion

As the translation map for undistortion and recti�cation remains the same for each
image pair, it is calculated once and copied into a 2D texture memory on the GPU
for fast access. In addition to the clipping of (u, v) coordinates which are out of
bounds, the texture memory o�ers hardware support for bilinear interpolation which
is needed because of subpixel coordinates in the maps.

Sparse Census Transform

Even though the image pairs are stored in the texture memory and memory access is
cached, to speed up subsequent reads, the data are loaded block-wise, including an



CHAPTER 6. REFERENCE IMPLEMENTATIONS 75

apron, into the shared memory as can be seen in Fig. 6.3. This provides a favorable
e�ect regarding the runtime as each pixel value is read 65 times in total.

DSI Calculation

The Hamming distance is also calculated using the O(log n) population count al-
gorithm from AMD's Software Optimization Guide for AMD64 Processors (AMD
[125]). This algorithm performs its calculation on a 32-bit integer within only 12 op-
erations. For parallel calculation, the GPU starts a thread for each pixel. In detail,
it starts

⌈
width
128

⌉
∗ 128 ∗ height threads. If 128 is not an integer divisor of the image

width, the GPU starts a few dummy threads. The fast shared memory can be used
e�ciently only with this drawback. Each thread evaluates Equ. (4.7) for its pixel.

Costs Aggregation

Costs aggregation can be implemented using convolution. However, it is the most
extensive part for the GPU because the GPU cannot e�ciently execute iterative
algorithms such as moving box �lters. For this reason, we examined three di�erent
strategies. In Gong et al. [135], six approaches are compared, among which the
square-window approach performed best. The square-window can be implemented
using a box �lter (convolution) that can be horizontally and vertically separated,
and by using integral images [24]. Figure 6.4 shows the processing time with respect
to di�erent convolution mask sizes. As can be seen, integral images are independent
from the mask sizes but are only pro�table for very large masks. Due to the use of
a 5× 5 aggregation, the standard convolution is chosen because it performs best at
this mask size.

3×3 5×5 7×7 9×9 11×11 13×13 15×15

5

10

15

20

25

30

Block size / pixel

P
ro

ce
ss

in
g

tim
e

/m
s Integral Image

Separated Convolution
Convolution

Figure 6.4: The computation time needed for the aggregation with di�erent mask
sizes using convolution, separated convolution, and integral images. The runtime
was measured on a GTX 280 graphics card. For each computation 50 disparities
with an 512× 512 image were used.

Subpixel Re�nement

Because of the relatively high data volume and because each value is read only once,
the shared memory cannot be used in a reasonable manner for subpixel re�nement.



CHAPTER 6. REFERENCE IMPLEMENTATIONS 76

Furthermore, the execution partially depends on the DSI data. Therefore conditional
branches in the code have to be accepted. Due to the data structure and the fact
that the data access depends on the data itself, reads hardly coalesce, which in turn
has a negative impact on data throughput. To accelerate reads within the global
memory, a 1D texture is bound onto the memory. Contrary to 2D and 3D textures,
a 1D texture can be used on global memory, but does not o�er the same advantages.
Nevertheless, the texture cache helps to speed up the unaligned read access.

6.4 Digital Signal Processor

The TMS320C64x family from Texas Instruments contains various high-end DSP
models with clock frequencies of up to 1.2 GHz and single core peak performances of
9600 MIPS. With power ratings below 2 W (DSP only), these processors make very
small and energy-e�cient embedded systems possible. The market o�ers various
industrial smart cameras that are equipped with such DSPs. Cost-e�cient stereo
vision systems could be realized either by combining two smart cameras or by using
a smart camera that features two imaging sensors. Currently, the absence of fast and
reliable high-quality software stereo engines for DSPs is the main hurdle in realizing
such systems. This is the key motivation for the DSP reference implementation of
the proposed stereo matching algorithm.

6.4.1 Target Platform

The primary DSP platform for the reference implementation is a C6416 �xed-point
DSP clocked at 1GHz; its details can be found in Tex [136]. Minor adaption steps
will follow to enable the use of processors with the enhanced C64+ core architecture,
up to the recently announced C6474 multicore DSP (Tex [137]) with up to three
times greater performance compared to single core DSPs.

The very good ratio between computation speed and power consumption of this
platform is gained by several architectural characteristics that are signi�cantly dif-
ferent from PC CPUs for instance. Due to its very long instruction word (VLIW)
architecture, the DSP features an instruction level parallelism employing eight func-
tional units that can operate in parallel.

6.4.2 Overall Strategies

The TMS320C64x has no �oating point unit. Floating point operations have to
be emulated in software. Thus, performance-critical programs must avoid �oating
point operations as much as possible. This processor lacks instructions for fast integer
division. A 32-bit division takes up to 42 machine cycles. Thus, divisions must also
be avoided in critical inner loops. DSP machine registers are 32 bits wide, which is
another handicap compared to the 128-bit SSE registers on recent PC CPUs.

The memory hierarchy of the TMS32C64x DSPs has several stages, namely the
fast L1 Caches and the additional on-chip memory (IRAM) for fast access. Further
external memory (SDRAM or DDR-RAM) already have much slower access times
and bandwidths. IRAM is usually a very limited resource; the C6416 DSP has 1 MiB
of IRAM and other models o�er even less. Thus, large amounts of image data have
to be stored in ERAM. Although a portion of the on-chip memory can be con�gured



CHAPTER 6. REFERENCE IMPLEMENTATIONS 77

to serve as L2-cache for the ERAM, performance can still be much worse compared
to keeping all the data in IRAM.

A remedy for this problem is using a DMA double data bu�ering scheme. The
method is called resource optimized slicing with direct memory access (ROS-DMA)
and is described in detail in Zinner and Kubinger [138]. Figure 6.5 is a case study that
uses the Census transform function within three di�erent memory con�gurations.
IRAM means that any image data reside in fast on-chip memory, which is the optimal
setting, hence this con�guration performs best. ERAM + L2 Cache is a con�guration
with image data in external memory and activated L2 cache. The function now takes
more time. In the third con�guration, data still reside in ERAM, but the ROS-DMA
method is used instead of L2 cache. This results in a relatively small performance
loss compared to IRAM.

0 5 10 15 20 25 30 35 40

IRAM

ERAM + L2 Cache

ERAM + ROS-DMA

CPU cycles per pixel (cpp)

Figure 6.5: Impact of di�erent memory con�gurations on the performance of the
Census transform

6.4.3 Algorithm Performance Optimization

Starting from ordinary ANSI-C code, the DSP platform o�ers an enormous potential
for performance gain once several optimization techniques have been applied. Al-
though TI delivers very sophisticated optimizing compilers, a fact remains that the
programmer's skill and particular knowledge about processor architecture and com-
piler behavior continue to exert signi�cant in�uence on the resulting performance.

For this implementation, we used the already mentioned special embedded per-
formance primitives library, the PfeLib. In addition to a basic set of optimized
routines, it also provides a framework for optimizing new low-level image process-
ing functions, including a test environment that enables thorough simulator-based
performance analysis and optimizations. The principles of the PfeLib are presented
in Zinner et al. [127].

Almost all the subfunctions have been optimized at the hardware level by using
compiler intrinsics that allow for explicit access to certain machine instructions.
In an initial stage, we did the optimizations for each function in an isolated test
environment using only on-chip memory. The goal was to maximize data throughput
and, thus, minimize the required processor cycles per pixel (cpp) for each function.
We veri�ed algorithmic correctness against a generic ANSI-C version of the function.

After a brief discussion of the most important functions, Figure 6.6 shows the
resulting speedups compared to the generic version.

Census Transform

The _cmpgtu4() intrinsic is able to perform four 8-bit comparisons within a single
instruction. This enables quite a fast implementation of the Census transform. For



CHAPTER 6. REFERENCE IMPLEMENTATIONS 78

the 16×16 sparse Census transform, which requires 64 comparisons per pixel, a �nal
performance value of 18 cpp was achieved.

Hamming Distance

The DSP o�ers an instruction for counting the set bits of four 8-bit values, which can
be accessed via the _bitc4() intrinsic. Counting the set bits of a 64-bit word thus
requires two _bitc4() instructions which deliver 8 partial bit counts that have to be
summed together to the �nal Hamming distance. The optimized version accomplishes
all this, including the loading of two 64-bit operands and the writing of one 16-bit
result, at an average expense of less than 2.5 processor cycles.

Costs Aggregation

For this, we implemented a dedicated 16-bit 5× 5 sum �lter function. In addition to
using various intrinsics, we extended the inner loop in a way to iterate over chunks
of 8 pixels, which results in better utilization of the DSP units. This has been shown
to be the fastest way of realizing a costs aggregation rather than, for example, using
integral images. The optimized version achieves a �ltering speed of 2.71 cpp.

WTA - Minimum Search

For the purpose of saving memory bandwidth, we combined the searching for the
minimum costs values with the subpixel interpolation and the calculation of the
con�dence values within a single function. We optimized the minimum search in
such a way that four columns of cost values in the DSI are scanned in parallel by
using intrinsics such as _cmpgt2() and _min2(), which perform 16-bit comparisons
and minimum operations, respectively. The optimizations resulted in a performance
enhancement from 10 to 1.9 cycles per evaluated costs value.

Subpixel Re�nement

The subpixel re�nement is done by evaluating (4.10). Conversion into the �xed-
point domain achieved a remarkable increase in speed, but the division operation is
still processor-intensive. We substituted this integer division by an approximation
method applying Newton's method. By using the _norm() intrinsic, we gained a
�rst estimate and then three of Newton's iterations are enough to achieve su�cient
accuracy.

Con�dence Calculation

An evaluation of Equ. (4.15) also requires a division. As the denominator ymax is
constant during the program run, the division is replaced by a multiplication by the
reciprocal value.

6.5 Comparison

Each of the upper introduced reference implementations has its very own charac-
teristics. The plain software version is �exible in Census mask size and all other



CHAPTER 6. REFERENCE IMPLEMENTATIONS 79

100 101 102

WTA - Minimum Search

Aggregation

Hamming Distance

Census Transform

Speedup Factor

Figure 6.6: DSP low-level function performance optimization speedups

parameters, which is useful for matching quality evaluation. The optimized software
can be used on standard PC platforms and is thus generally applicable. It is realized
for multi-core CPUs which enables fast processing. The GPU reference implementa-
tion showed to be the fastest because of the possibility of massive parallelization. A
purely embedded version of our algorithm is the DSP reference implementation. It
is optimized for TI DSP platforms which can also be found in smart cameras which
enables a compact realization of the stereo sensor.

Due to the fundamental di�erences of the target platforms, the achieved per-
formance varies for each of them. In the following section, we �rst explain the
possibilities of speed up by multi-core processing for the optimized CPU and the
GPU implementations and then compare the processing time as well as the million
disparity evaluates per second (Mde/s) between all implementations for several im-
age dimensions and disparity search ranges. Especially the Mde/s perform quite
di�erent on the platforms.

6.5.1 Multi-Core Processing

To bene�t from multi-core processing, the algorithm has to be parallelizable. This
means that the functions, or even a bigger part, of the algorithm can be subdivided
into portions which can be executed independently. Independent means that the
needed resources and memory can be used, read, and written without interfering
with the other in parallel processing portions. Gene Amdahl stated in his famous
law [139] that the maximum achievable speedup by parallelizing an algorithm is

Speedup =
1

(1− P ) + P
N

, (6.1)

where P is the proportion of the algorithm which can be parallelized and N is the
number of processor cores or parallel processing units.

Optimized Software

In the optimized software implementation, multi-cores processing means the use
of more than one central processing units (CPUs), as typically provided in modern
personal computers. OpenMP o�ers a fast and simple way to realize this. The idea is
to subdivide for loops into independent threads which are then processed in parallel.
Detailed information about parallel programming on CPUs with OpenMP can be
found in [140]. We realized all computationally intensive parts of our algorithm in
parallel up to thresholding and 3D reconstruction. The reason is that we want to



CHAPTER 6. REFERENCE IMPLEMENTATIONS 80

enable the possibility of global postprocessing which is not possible in the line-by-line
scheme up to this point. Of course, thresholding as well as 3D reconstruction could
be implemented in parallel as well.

To verify the achieved speedup of our implementation, we calculated the maxi-
mum possible speedup following Amdahl's law in Equ. 6.1. The results in Table 6.4
show that the speedup is near to the optimum which proves that the algorithm is
well suited for parallel implementation. Table 6.4 also gives a detailed comparison
of the processing times of each step of the algorithm. It may be puzzling that some
steps are slower with more cores, but this is caused by cache and operating system.
The overall performance stays nearly the same because if one step is slower this is
compensated by an other which is faster.

Table 6.4: Performance on an Intel Core2 Quad @2.5GHz with the use of 1 to 4
cores and Windows XP with OpenMP; The image dimensions are 450x375 and the
disparity search range is 60. All values, except frame rate and speedup, are in ms.

Function 1 2 3 4

Sparse Census Transform 9.73 5.00 3.38 2.68
DSI Calculation 47.81 16.20 9.89 10.85
Texture Map Calculation 1.59 1.58 1.58 1.58
Cost Aggregation 15.16 11.10 8.41 4.82
WTA + Subpixel Re�nement 21.19 15.15 9.61 4.98
LR/RL Consistency Check 1.90 1.81 1.61 1.52
Thresholding 0.74 0.73 0.73 0.73
3D Reconstruction 2.85 2.85 2.85 2.86

Total (ms) 100.97 54.42 38.06 30.02
Total (fps) 9.90 18.37 26.27 33.31
Mde/s 100.23 186.05 266.02 337.27

Amdahl speedup 1.0 1.93 2.8 3.61
Multiprocessing speedup 1.0 1.86 2.66 3.36

Graphics Processing Unit

As can be seen in Table 6.2, the three graphics cards used signi�cantly di�er in
nearly all characteristics. Important values are processor clock and number of CUDA
cores. Table 6.5 compares the processing speed of the algorithm steps for the GPUs.
Unsurprisingly, the lowest performance was achieved with the entry-level Quadro
FX 570 GPU. It has a processor clock of 460 MHz and only 32 CUDA cores. The
mid-range GPU, Geforce 9800 GT, has a high processor clock of 1500 MHz and is
equipped with 112 CUDA cores. The achieved processing speed is about 10 times
faster than the �rst. The third GPU is a high performance card in the consumer
market. It has the highest number of CUDA cores, 240, and the highest memory
bandwidth. The proposed algorithm achieves a frame rate of 105.4 fps for the Teddy
dataset (450× 375, 60 disparities) on this graphics card.



CHAPTER 6. REFERENCE IMPLEMENTATIONS 81

Table 6.5: Performance on three GPUs; The image dimensions are 450x375 and the
disparity search range is 60. All values, except frame rate, are in ms. The value in
brackets gives the number of CUDA cores of the GPU.

Function FX 570 (32) 9800 GT (112) GTX 280 (240)

Sparse Census Transform 9.55 0.89 0.52
DSI Calculation 54.93 4.76 2.42
Texture Map Calculation 4.51 0.51 0.24
Cost Aggregation 82.07 7.86 4.03
WTA + Subpixel Re�nement 46.65 4.43 2.08
LR/RL Consistency Check 1.79 0.25 0.09
Thresholding 0.51 0.06 0.04
3D Reconstruction 0.40 0.03 0.02

Total (ms) 200.41 18.79 9.49
Total (fps) 4.98 53.21 105.4
Mde/s 50.42 538.85 1067.17

6.5.2 Performance

Table 6.6 gives a direct comparison of the processing times of the di�erent imple-
mentations. The GPU implementation, with a considerable frame rate of 105.4 fps
for the Teddy dataset, is by far the fastest, followed by the optimized software with
33.31 fps and the DSP with 7.74 fps.

Table 6.6: Performance of the reference implementations; The image dimensions are
450 × 375 and the disparity search range is 60. Subpixel re�nement includes the
con�dence map calculation and thresholding includes texture and con�dence. All
values, except frame rate and Mde/s, are in ms.

Function Plain SW Opt. SW GTX 280 DSP

Sparse Census Transform 168 2.68 0.52 8.97
DSI Calculation 332 10.85 2.42 33.08
Texture Map Calculation 29 1.58 0.24 4.02
Cost Aggregation 573 4.82 4.03 33.57
WTA + Subpixel Re�nement 555 4.98 2.08 39.11
LR/RL Consistency Check 8 1.52 0.09 2.55
Thresholding 7 0.73 0.04 2.48
3D Reconstruction 32 2.86 0.02 N/A1

Total (ms) 1738 30.02 9.49 129.18
Total (fps) 0.575 33.31 105.4 7.74
Mde/s 5.82 337.27 1067.17 78.38

13D reconstruction is not yet implemented on the DSP.

Figures 6.7, 6.8 and 6.9 show the performance of the implementations for di�erent
image sizes and disparity search ranges, given in frames per second (fps) and million
disparity evaluations per second (Mde/s). Please note that we chose commonly used
image dimensions for the data points in the diagrams. Thus, the pixel count does not
increase linearly along the x-axis. Mde/s increase with increasing disparities in all
three charts, which is as expected because some algorithm steps, e.g. the recti�cation,



CHAPTER 6. REFERENCE IMPLEMENTATIONS 82

have a constant complexity which is independent from the number of disparities. On
the PC, the Mde/s are relatively constant for di�erent image dimensions. This means
that the PC is able to deliver a quite constant memory bandwidth presumably due
to its large data caches. On the GPU, the Mde/s clearly increase with extending
image dimensions. Processing larger images results in more thread blocks being
launched. The thread scheduler on the GPU can then work more e�ciently. On the
DSP platform, the e�ects of the DMA bu�ering schemes and the behavior of the L1
data cache are too manifold to be able to identify a clear trend in the behavior of the
Mde/s according to varying image dimensions. The DSP, indeed, delivers by far the
most stable performance since processing times of consecutive frames are practically
equal without any signi�cant outliers. However, the given frame completion times
of the PC and GPU implementations must be taken as average values over several
frames because they may range across several percent. This is caused by the bad
in�uences of large data caches and high level operating systems on the predictability
of the worst case execution time on these platforms. Under this aspect of real-time
capability, only the DSP platform o�ers truly guaranteed maximum execution times.

6.5.3 Power Consumption

For the power consumption measures, we used a MacMini with an Intel Core2 Duo
clocked at 2 GHz for the optimized software implementation. The NVIDIA GTX 280
GPU is used within an Intel Core2 Quad system clocked at 2.4 GHz and equipped
with 4GB RAM. For the DSP implementation, we used a Texas Instruments DSP
Starter Kit (6416DSK). Table 6.7 shows the power consumption of the three real-
time implementations. All measurements were carried out for the entire system
respectively without cameras. Power consumption was measured in idle mode as
well as during stereo processing.

Table 6.7: Power consumption of the reference implementations

Platform Idle (W) Processing (W) E�ciency (Mde/J)

Opt. software (MacMini) 13 57 2.29
GPU (Intel Q6600 2.4 GHz) 126 205 5.21
DSP (TI DSK) 3 5 15.68

We introduced an additional evaluation parameter, million disparity evaluations
per Joule (Mde/J), to show the power e�ciency in terms of disparity calculation of
the di�erent platforms. As can be seen, the DSP is most power e�cient. It calculates
15.68 million disparity evaluations per Joule. The GPU, although it has the highest
power consumption, is twice as e�cient as the MacMini platform.

6.6 Summary

In this chapter, we introduced four reference implementations of the proposed stereo
matching algorithm. One of them is a plain, not optimized, software version which
enabled the evaluation of all parameter settings. The others are optimized for three
fundamentally di�erent platforms. The algorithm is well suited for parallel imple-
mentation, so the �rst reference implementation is optimized for multi-core CPU



CHAPTER 6. REFERENCE IMPLEMENTATIONS 83

machines. A comparison with the maximum achievable speedup, de�ned by Am-
dahl's Law, showed that the parallelization works well. It has to be mentioned
that optimization with parallelization is only the second step. The comparison with
the plain software version shows that a speedup is also possible with optimization
of a sequential implementation. The second reference implementation is optimized
for graphics processing units which became a powerful alternative processing plat-
form for computational intensive algorithms. We ensured the compatibility of this
implementation for at least three di�erent GPU generations and presented a perfor-
mance comparison. Unsurprisingly, the latest generation performed best. Finally,
as a purely embedded solution, we optimized the algorithm for a Texas Instruments
digital signal processor platform. This is the most lightweight platform and thus
caused the most implementation e�ort. A known problem of embedded systems is
for sure the limited amount of fast internal memory. We overcame this by using
resource-optimized slicing which is implemented, among other highly optimized im-
age processing functions for TI DSPs, in our own developed library named PfeLib.
The performance comparison of all implementations showed that the algorithm is
scalable. It can be used in lightweight embedded systems as well as in systems with
high processing power with exactly the same results quality. Due to this scalabil-
ity, applications with di�erent requirements in terms of image resolution and depth
accuracy can be realized in real-time. If the power consumption is considered as
evaluation criterion, the DSP implementation can calculate the most disparity eval-
uations per Joule and is therefore the most e�cient platform.



CHAPTER 6. REFERENCE IMPLEMENTATIONS 84

24
0x
18
0

32
0x
24
0

48
0x
36
0

64
0x
48
0

80
0x
60
0

0

50

100

150

200

Input image dimensions / pixel

F
ra
m
e
ra
te

/
fp
s

d = 15
d = 30
d = 50
d = 80
d = 120

24
0x
18
0

32
0x
24
0

48
0x
36
0

64
0x
48
0

80
0x
60
0

100

150

200

250

300

350

400

Input image dimensions / pixel

M
de

p
er

se
co
nd

d = 15
d = 30
d = 50
d = 80
d = 120

Figure 6.7: Optimized software implementation: Frame rates (fps) and million dis-
parity evaluations per second (Mde/s) for di�erent image sizes and disparity ranges
on an Intel 2.5 GHz Core2 Quad CPU



CHAPTER 6. REFERENCE IMPLEMENTATIONS 85

24
0x
18
0

32
0x
24
0

48
0x
36
0

64
0x
48
0

80
0x
60
0

0

100

200

300

400

500

600

Input image dimensions / pixel

F
ra
m
e
ra
te

/
fp
s

d = 15
d = 30
d = 50
d = 80
d = 120

24
0x
18
0

32
0x
24
0

48
0x
36
0

64
0x
48
0

80
0x
60
0

600

700

800

900

1,000

1,100

1,200

1,300

1,400

Input image dimensions / pixel

M
de

p
er

se
co
nd

d = 15
d = 30
d = 50
d = 80
d = 120

Figure 6.8: GPU implementation: Frame rates (fps) and million disparity evaluations
per second (Mde/s) for di�erent image sizes and disparity ranges on an NVIDIA
GeForce GTX 280



CHAPTER 6. REFERENCE IMPLEMENTATIONS 86

24
0x
18
0

32
0x
24
0

48
0x
36
0

64
0x
48
0

80
0x
60
0

0

5

10

15

20

25

30

35

40

Input image dimensions / pixel

F
ra
m
e
ra
te

/
fp
s

d = 15
d = 30
d = 50
d = 80
d = 120

24
0x
18
0

32
0x
24
0

48
0x
36
0

64
0x
48
0

80
0x
60
0

30

40

50

60

70

80

90

100

Input image dimensions / pixel

M
de

p
er

se
co
nd

d = 15
d = 30
d = 50
d = 80
d = 120

Figure 6.9: DSP implementation: Frame rates (fps) and million disparity evalua-
tions per second (Mde/s) for di�erent image sizes and disparity ranges on a 1GHz
TMS320C6416 single core DSP. Some data points are missing due to memory re-
strictions of the evaluation board (6416DSK)



Chapter 7

Conclusion and Outlook

In this thesis, we presented a 3D perception system for robotic application based
on stereo vision. The requirements for such a 3D sensor can be summarized with
real-time capability, high speed processing, reliable and dense 3D data, and memory
awareness due to embedded realization. A detailed analysis of state-of-the-art stereo
matching algorithms showed on the one hand that most sophisticated algorithms
deliver high matching quality but are not capable for real-time and embedded re-
alization. On the other hand, existing real-time stereo matching algorithms su�er
from low matching quality or scalability because of the use of dedicated hardware.
The core part of the introduced system is the adapted and highly optimized stereo
matching algorithm which uses the Census transform and block correlation to solve
the correspondence problem.

Due to the gain in processing time and the insigni�cant loss of quality, a sparse
Census transform is introduced. This strategy bene�ts from the proven fact that large
sparse Census masks perform better than small dense masks with the same processing
e�ort. This has been shown by evaluating the algorithm with 31 Middlebury datasets
under normal conditions and with additive noise. As a consequence, the algorithm
is robust, easy to parameterize and it delivers a good matching quality even under
real-world conditions.

The algorithm has been implemented on a PC, a GPU as well as on a purely em-
bedded DSP platform. All implementations, aside from the plain software, achieve
real-time performance, whereby the GPU is by far the fastest but has also the high-
est power consumption. The implementations o�er high �exibility in terms of image
dimensions, disparity range, image bit-depth and frame rates, enabling the use of a
wide variety of camera hardware. As a pure software solution, for embedded and
non-embedded systems, it is able to run on a broad spectrum of COTS platforms
which enables cost e�cient stereo sensing systems as well as the integration of ad-
ditional functionality on existing platforms. The comparison with the well-known
local area-based stereo matching algorithm SAD showed that our approach clearly
achieves better results. The comparison with a global optimizing algorithm, SGM,
showed that our approach delivers nearly the same results. We achieve this within
a fraction of processing time and, more important due to embedded realization, low
memory consumption. We evaluated the resulting disparity maps on the Middlebury
stereo website where the algorithm performs well in comparison to other real-time
approaches. Especially in terms of processing times, the proposed algorithm outper-

87



CHAPTER 7. CONCLUSION AND OUTLOOK 88

forms algorithms with comparable matching quality.
Our research in real-time capable stereo matching algorithms for embedded real-

ization showed that even if we achieved good matching quality on textured and low
textured areas, there is room for further improvements. The projection of random
light pattern onto the target scene to generate synthetic texture could be a possi-
bility, but is out of scope in this work because passive technologies are preferred.
A processing time improvement for embedded systems can be achieved by the use
of upcoming multi-core DSPs. For generation of large 3D maps and models, an
automated registration of the calculated 3D point clouds could be of interest.



Appendix A

Extension to Global Optimization

In this chapter, we give possible algorithmic improvements of our stereo algorithm
by the use of semi-global Matching and plane �tting. The challenge is to keep the
computational e�ort and the memory consumption low to enable embedded and
real-time processing. First, we explain the work�ow and the single steps of the
improvements in Section A.1 followed by a detailed analysis of in�uence of the mod-
i�cations in terms of matching quality, processing time, and memory consumption
in Section A.2.

A.1 Work�ow

Figure A.1 shows the work�ow of the improved algorithm. The �rst two steps are
taken from our sparse Census algorithm we described in this thesis. Then we apply
a modi�ed semi-global Matching (SGM) to increase the con�dence of the matches,
and thus to determine the initial disparity map. Afterwards, we do a segmentation
on either the left stereo image or the texture map. Finally, we �t a planar model
onto the segments which is then used to determine the re�ned disparity map.

A.1.1 Modi�ed Semi-Global Matching

Semi-global matching determines the optimal paths through the whole image for
each pixel, thus the costs of the path have to be stored for the whole image. In
Section 6.2, we showed that an optimized high-speed implementation of a Census-
based stereo matching approach bene�ts from a line-by-line processing of the images.
Only a number of lines equal to the aggregation block size has to be stored at once.
Especially for embedded systems, this approach is advantageous because the data
can then be processed in the fast on-chip memory. To keep the bene�t of line-by-
line processing, we introduce a modi�ed SGM technique in this work. It uses the
assumption that a part of the image is enough for each pixel to bene�t from the SGM.
Therefore the initial costs matrix is divided into horizontal stripes with a range of nr
pixels (the last stripe may be smaller). The stripes are treated like the whole image
and the paths are calculated with Equ. (3.13) as well. For determining the optimal
paths through the stripes a number equal to the range of the initial costs has to be
stored. Thus, the memory consumption depends on the size of the range and the

89



APPENDIX A. EXTENSION TO GLOBAL OPTIMIZATION 90

Census 
Correlation

Semi-Global
Matching

Stereo
Camera

Segmention
of the

Left Image

Confidence,
Texture
Check

Segmention
of the

Texture Image
Plane Fitting

Filling of all
Non-Textured

Pixels

Filling of all
Non-Confident

Pixels
Plane Fitting

Final
Disparity Map

Figure A.1: The work�ow of the proposed improved algorithm

number of disparities. The stripes are then processed separately and the resulting
disparity map (DM) is stored as a combination of the total number of stripes.

A.1.2 Con�dence and Texture

Even if SGM increases the reliability of the matches, a number of false positives
remain. To determine them, we use the con�dence value from Section 4.7.2. As
mentioned above, large textureless areas are di�cult to match even if SGM is done
over the whole image. To identify them, we also use the texture image as calculated
in Section 4.7.2.

A.1.3 Segmentation and Plane Fitting

Once the initial disparity map is calculated, textureless areas and non-con�dent
pixels are optimized with segmentation and plane �tting. The segmentation can
either be done by color on the left input image (mean-shift [141]) or binary on the
texture image. The texture image (TI) is derived from the texture map with

TI(u, v) :=

{
0 if TM(u, v) ≤ ttexture
255 otherwise

, (A.1)

where ttexture is the used threshold. The segmentation process on the binary tex-
ture image is straight forward. All white pixels are united to one segment and all
connected black pixels are joint to single segments.

An advantage of the texture segmentation is that monochrome input images can
be used as well as color images. On the one hand, monochrome cameras deliver
images of higher native resolution than common industrial color cameras (because of
the Bayer pattern) and on the other hand, for this kind of segmentation, the focus
exactly lies on textureless areas which are the main regions of interest for optimiza-
tion. The advantage of color segmentation is that the segments are more accurate
and that occlusions can better be optimized. Section A.2 will show that color seg-
mentation is more suitable for the Middlebury datasets and texture segmentation for
real-world scenes.

Both segmentations have in common that only pixels which successfully passed
the con�dence check are used for the plane �tting step. A plane is represented by
three parameters a, b, and c of equation

d(u, v) := au+ bv + c . (A.2)



APPENDIX A. EXTENSION TO GLOBAL OPTIMIZATION 91

These parameters can be estimated with the method of least squares by solving the
linear equation system

m∑
i=1

u2
i

m∑
i=1

uivi
m∑
i=1

ui

m∑
i=1

uivi
m∑
i=1

v2i
m∑
i=1

vi

m∑
i=1

ui

m∑
i=1

vi
m∑
i=1

1



a

b

c

 =


m∑
i=1

uidi

m∑
i=1

vidi

m∑
i=1

di

 , (A.3)

where m is the number of con�dent pixels in the segment. Unfortunately this is
not robust against outliers, thus the method described by Bleyer and Gelautz [142]
is used. The problem is solved by iteratively eliminating outliers until the calculated
plane has reached its �nal state.

A problem of segmentation regarding real-time capability is that the processing
time strongly depends on the number of segments found. This work tries to deal
with this problem by limiting the number of possible segments. The authors know
that this is just a �rst step towards real-time segmentation because also the absolute
number of con�dent pixels inside the segments in�uences the processing time.

After plane �tting, the last step is to optimize and re�ne the initial disparity map
with the calculated planar model.

A.1.4 Disparity Map Re�nement

In contrast to traditional model-based segmentation optimization, in this work only
non-con�dent pixels (which failed the con�dence check) or pixels in textureless areas
(which failed the texture check) are re�ned with the calculated planes. The others are
taken from the initial disparity map. Additionally, only reliable segments are used
for re�nement because in di�cult areas the initial data may be not good enough for
a correct model estimation. The reliability of the planes is di�erently determined for
color and texture segmentation.

For color segments the function

Ωc(C) :=

{
true if nc

np
≤ tconfidence

false otherwise
(A.4)

is used where C is the segment, nc the number of non-con�dent pixels and np the
number of pixels in C. If the segment is reliable, thus the fraction of con�dent pixels
in the segment is higher than the given threshold tconfidence, Ωc is true and false
otherwise.

In large textureless areas, often a low number of con�dent pixels exists. The
use of Ωc would not be advantageous because the percentage of con�dent pixels in
textureless areas varies with the segment size. To overcome this, another reliability
metric,

Ωt(C) :=

{
true if δ ≤ tplane
false otherwise

, (A.5)

is introduced to measure the quality of the estimated plane where tplane is the used
threshold. The criterion is the average distance

δ :=
1

m

m∑
i=0

|di − (aui + bvi + c)| , (A.6)



APPENDIX A. EXTENSION TO GLOBAL OPTIMIZATION 92

between the points and the estimated plane, where m is the number of con�dent
pixels in the segment.

Summarizing, the last step of the proposed algorithm is the re�nement of the
initial disparity map. For color segmentation, only non-con�dent pixels and for
texture segmentation only pixels in textureless areas are re�ned. The reliability of
the estimated planes is determined and only reliable planes are used for this �nal
optimization.

A.2 Evaluation

In this section, we present the results of the proposed improvements. First, the
matching quality, the processing time, and the memory consumption of the modi�ed
semi-global matching is evaluated. Then, on the one hand, for evaluation of the
matching quality, we again used the Middlebury ranking. The main advantage is
the possibility of comparing the stereo vision algorithm with many others online.
The datasets used for this evaluation are not realistic representatives for the target
application, thus results for real-world scenes are shown on the other hand.

A.2.1 Modi�ed Semi-Global Matching

Semi-global Matching optimizes the disparities in either 8 or 16 directions with the
use of two penalties P1 = 54 and P2 = 99. The use of 16 directions showed no con-
siderable enhancement of the results so 8 directions are used because of the shorter
processing time. The optimal penalties were determined by evaluation of all mean-
ingful combinations.

Figure A.2 shows an evaluation of matching quality and memory consumption
for the modi�ed SGM approach. As can be seen in Fig. A.2(a), the average percent-
age of matched pixels over the four main ranking Middlebury datasets with ranges
nr = 5(5)190 is very similar to the original approach (straight black line). The en-
hancement of the modi�ed SGM is the reduced memory consumption. Original SGM
has a memory consumption of about 40 MB for the Teddy dataset. As can be seen
in Fig. A.2(b), if a range of about 55 is used, the memory consumption is about 5
MB. If a very small range of 5 is used, the memory consumption even is about 300
KB, which makes it very suitable for embedded realization. For better visualization,
Fig .A.2(c) shows the memory consumption and the percentage of correct matches
for the Tsukuba dataset plotted in one chart.

As a reminder, the con�dence of the matches is essential for successful plane
�tting. Figure A.3 shows the improvement of the con�dence when modi�ed SGM is
used. Both costs functions show the same correctly matched pixel (disparity is at
the lowest costs) for Census on the left side and for Census with modi�ed SGM on
the right side. The di�erence between the two best matching candidates is very low
for Census, thus the con�dence is very low. SGM highly increases the di�erence and
thus the con�dence as well. The more correct matches are marked as con�dent, the
more can be used for the plane �tting step what again increases the quality of the
�nal disparity map.



APPENDIX A. EXTENSION TO GLOBAL OPTIMIZATION 93

91 00

92.00

93.00

94.00

95.00

M
at
ch
ed

 p
ixe

ls 
(%

)

Original SGM

90.00

91.00

92.00

93.00

94.00

95.00

5 30 55 80 105 130 155 180

M
at
ch
ed

 p
ixe

ls 
(%

)

Range

Original SGM

(a)

30.00

20 00

30.00

by
te
) Teddy Tsukuba

20.00

30.00

ry
 (M

by
te
) Teddy Tsukuba

10.00

20.00

30.00

M
em

or
y 
(M

by
te
) Teddy Tsukuba

0.00

10.00

20.00

30.00

M
em

or
y 
(M

by
te
) Teddy Tsukuba

0.00

10.00

20.00

30.00

5 30 55 80 105 130 155 180

M
em

or
y 
(M

by
te
)

Range

Teddy Tsukuba

0.00

10.00

20.00

30.00

5 30 55 80 105 130 155 180

M
em

or
y 
(M

by
te
)

Range

Teddy Tsukuba

0.00

10.00

20.00

30.00

5 30 55 80 105 130 155 180

M
em

or
y 
(M

by
te
)

Range

Teddy Tsukuba

(b)

93 00

93.50

94.00

94.50

95.00

M
at
ch
ed

 p
ixe

ls 
(%

) Tsukuba

92.50

93.00

93.50

94.00

94.50

95.00

0.02 0.61 1.23 1.84 2.46 3.07 3.69 4.30

M
at
ch
ed

 p
ixe

ls 
(%

)

Memory (Mbyte)

Tsukuba

(c)

Figure A.2: Evaluation of di�erent ranges nr for modi�ed SGM: (a) Percentage of
correct matched pixels (average over the Middlebury datasets), (b) memory con-
sumption, and (c) a combined chart of memory consumption and correct matches

0 10 20 30 40 50 60

80

100

120

Disparities

A
gg
re
ga
te
d
M
at
ch
in
g
C
os
ts

(163,95)

(a) Census

0 10 20 30 40 50 60
500

1,000

1,500

Disparities

(163,95)

(b) SGM

Figure A.3: Illustration of the con�dence improvement by using modi�ed SGM with
nr = 55. The con�dence value using pure Census is CM(u, v) = 13, 65 and with
SGM the maximum of CM(u, v) = 255.



APPENDIX A. EXTENSION TO GLOBAL OPTIMIZATION 94

Figure A.4: The results of the proposed algorithm (Census correlation with SGM
and color-based segmentation) for the Middlebury datasets.

100
Census
Census + Plane Fitting
Census + SGM

95

ls
 (%

)

Census  SGM
Census + SGM + Plane Fitting

90

at
ch

ed
 P

ix
e

85

M

80
Teddy Venus Tsukuba Cones

Figure A.5: The percentage of correctly matched pixels with Census correlation,
plane �tting (color segmentation) and SGM.

A.2.2 Middlebury Ranking

We also evaluated our improvements with the Middlebury database. For this evalua-
tion, the color-based segmentation approach is used because it has the big advantage
that many occluded areas (if Ωc is true) are �lled with the calculated planes rather
with extrapolation. Outliers are reduced with a �nal median �lter.

The resulting disparity maps are compared with the ground truth, which is the
reference disparity map of the scene. Figure A.4 shows the resulting disparity maps
of the proposed algorithm. Figure A.5 shows the resulting improvements of the
di�erent algorithm steps.

Table A.1 compares di�erent algorithm con�gurations in the Middlebury evalu-
ation framework. The best result in the main ranking (rank 37) could be achieved
with a combination of Census correlation, SGM and plane �tting. Additionally to
the proposed algorithm steps, the results of standard SAD for local costs calculation
are shown.

As can be seen, SGM clearly improves the quality of the matches. When using
the proposed modi�ed SGM technique the rank shrinks a few places. This is caused
by the fact that the entries in the Middlebury ranking are very close together, so
little worse results may cause signi�cant degradation in the ranking. A meaningful
metric is the average bad matches percentage. It shows that the overall performance
of original SGM and the modi�ed version is quite similar. Also interesting is, when
using the average bad matches as criterion, that SGM produces nearly the same



APPENDIX A. EXTENSION TO GLOBAL OPTIMIZATION 95

matching quality for Census correlation and SAD.
An important factor in Table A.1 is the con�dence threshold. As mentioned in

the previous section, SGM signi�cantly increases the con�dence of matched pixels.
In comparison to SAD and Census, for SGM a much higher con�dence threshold can
be used without eliminating too many true positives. This increases the number of
con�dent matches which is essential for the plane �tting step.

In the main ranking of the Middlebury website, all matches within an error
threshold of 1 are valid. If the error threshold is set to 0.5, which means that
subpixel accuracy is supposed, the best position of the proposed algorithm increases
to rank 10. If additionally only non-occluded areas are evaluated, the rank increases
to position 2.

Table A.1: The proposed algorithm in di�erent con�gurations evaluated with the
Middlebury framework. PF stands for plane �tting.

Error th. = 1.0 Error th. = 0.5
Av. bad Av. bad

Algorithm Rank matches Rank matches Conf.

Census 56 9.86 16 9.86 30
SAD 66 13.20 57 22.20 5
Census + SGM 40 8.35 9 12.10 95
SAD + SGM 47 7.41 19 10.50 10
Census + SGM + PF 37 8.19 10 12.20 95
SAD + SGM + PF 46 8.35 19 15.20 10

Census + SGM (nr = 10) 52 9.19 14 13.70 95
Census + SGM (nr = 55) 55 9.70 14 13.90 95
Census + SGM (nr = 180) 51 9.05 11 12.90 95

Census + SGM (nr = 10) + PF 48 8.84 12 13.70 95
Census + SGM (nr = 55) + PF 52 9.32 14 14.00 95
Census + SGM (nr = 180) + PF 46 8.90 11 13.10 95

A.2.3 Real-World Scenes

To show the power of plane �tting with texture segmentation, two real-world scenes
for robot applications are evaluated.

Figure A.6 shows a �oor scene which is di�cult for area-based stereo matching
approaches. In general, randomly patterned surfaces, such as the carpet in this
scene, can be matched well. The most di�cult areas for stereo matching here are
the monotone white walls (marked black in the texture image in Fig. A.6(c)). The
pure Census correlation in Fig. A.6(e) can deal with the carpet well but has its
problems with the walls. The same for the combination of Census and SGM in
Fig. A.6(f) with the enhancement that the carpet is completely dense. The walls are
in both disparity maps reduced to noise. To deal with this, the con�dence check was
introduced to eliminate obviously wrong matches. The result of Census correlation
with con�dence check in Fig. A.6(g) shows that the disparity map is very sparse
and almost all matches of the walls are eliminated. The proposed improvements
were developed exactly to optimize such scenes. The resulting disparity map in



APPENDIX A. EXTENSION TO GLOBAL OPTIMIZATION 96

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure A.6: The results of the �oor scene with large textureless areas: (a) original
left image, (b) original right image, (c) texture image (τ2 = 20), (d) texture-based
segmentation, (e) disparity map for pure Census correlation, (f) disparity map for
Census correlation and SGM, (g) disparity map for Census correlation with con�-
dence check, (h) disparity map for Census correlation, SGM, and plane �tting

Fig. A.6(h) shows that areas of the image with enough texture (white in the texture
image) are kept original and areas with low texture (black in the texture image) are
used for the segmentation-based optimization. The quality of the planes strongly
depends on the data used for �tting, so a high con�dence threshold of τ1 = 200 is
used. To show the quality of the 3D data, the 3D point clouds for three algorithm
con�gurations are given in Fig. A.7. As can be seen, the walls are completely wrong
when no optimization is used. Only the planes in Fig. A.7(e) are good estimates of the
walls in the scene. Especially Fig. A.7(c) shows the impact of the higher con�dence
of Census in comparison to SAD. Not all textureless areas can be optimized using
texture-based segmentation. Figure A.8 shows an example where an estimated plane
does not �t correctly. Here, the estimated plane in Fig. A.8(c) of the wall behind
the door is obviously wrong. Therefore, the threshold function Ωt was introduced
to eliminate such planes as shown in Fig. A.8(d). A limitation of the approach
is that the �tted planes are only estimations of the real world. Problematic are
curved surfaces because a plane cannot be �tted on there. However, most curved
surfaces are not textureless in the images because of di�erent light re�ections on the
surfaces. Additionally, the probability that such a surface would be eliminated by Ωt

is high because the distance of the points from the curved surface to the estimated
plane is large. Nevertheless, in indoor home robot applications, the assumption that
textureless areas are planar in many cases can be made.

A.3 Summary

In this chapter we introduced extensions to global optimization for our stereo
matching approach consisting of a combination of SGM disparity optimization and
segmentation-based plane �tting for enhancements on textureless and occluded ar-
eas. A modi�cation of original SGM makes the approach capable for embedded
realization as well. The image is divided into stripes that may �t into fast on-chip



APPENDIX A. EXTENSION TO GLOBAL OPTIMIZATION 97

(a) (b) (c)

(d) (e)

Figure A.7: 3D point cloud of the �oor scene with (a) pure Census correlation
(without con�dence and texture check), (b) Census with SGM, (c) SAD with SGM
and plane �tting, (d) Census with plane �tting, (e) Census with SGM and plane
�tting.

(a) (b) (c) (d)

Figure A.8: Results of the desk scene: (a) Left stereo image, (b) the segmentation
of the texture image, (c) 3D point cloud with SGM and texture-based optimization
without plane check, and (d) with plane check and a threshold of tplane = 0.2.



APPENDIX A. EXTENSION TO GLOBAL OPTIMIZATION 98

memory of digital signal processors. Semi-global matching signi�cantly increases the
con�dence of the matches. It is shown that the segmentation-based plane �tting
performs well with the Census-based correlation method. The main advantage is the
improvement of the matching quality in occluded and textureless areas. Further-
more, it is shown that the texture-based segmentation approach makes it possible to
match large textureless areas very well whereas these are a signi�cant problem for
standard area-based stereo matching approaches.



Bibliography

[1] I. Asimov. Runaround. Astounding Science Fiction, 1942.

[2] H. Kopetz. Real-Time Systems, Design Principles for Distributed Embedded
Applications. Springer, 1997.

[3] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and Machine
Vision. Thomson-Engineering, 2 edition, 1999.

[4] O. Faugeras. Three-Dimensional Computer Vision. The MIT Press, Cam-
bridge, Massachusetts, 4 edition, 2001.

[5] R. C. Gonzalez and R. E. Woods. Digital Image Processing, Second Edition.
Pearson Education International, 2002.

[6] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2004.

[7] E. R. Davies. Machine Vision: Theory, Algorithms, Practicalities. Morgan
Kaufmann, San Francisco, CA, 3rd edition, December 2005.

[8] Z. Zhang. Flexible camera calibration by viewing a plane from unknown orien-
tations. In Proc. Seventh IEEE International Conference on Computer Vision
The, volume 1, pages 666�673, 20�27 Sept. 1999.

[9] A. Fusiello, E. Trucco, and A. Verri. A compact algorithm for recti�cation of
stereo pairs. Machine Vision and Applications, 12(1), 2000.

[10] G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with the
OpenCV Library. O'Reilly, Cambridge, MA, 2008.

[11] J. Y. Bouguet. Camera Calibration Toolbox for Matlab, 2008. URL
http://www.vision.caltech.edu/bouguetj/calib_doc/.

[12] OpenCV. URL http://opencv.willowgarage.com/.

[13] R. I. Hartley. Theory and practice of projective recti�cation. International
Journal of Computer Vision, 35:115�127, 1999.

[14] R. Y. Tsai. A versatile camera calibration technique for high-accuracy 3d
machine vision metrology using o�-the-shelf tv cameras and lenses. IEEE
Journal of Robotics and Automation, RA-3:323�344, 1987.

99



BIBLIOGRAPHY 100

[15] Z. Zhang. A �exible new technique for camera calibration. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(11):1330�1334, 2000.

[16] M. Z. Brown, D. Burschka, and G. D. Hager. Advances in computational
stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25:
993�1008, 2003.

[17] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms. International Journal of Computer Vision,
47(1-3):7�42, 2002. ISSN 0920-5691.

[18] H. Hirschmueller. Improvements in real-time correlation-based stereo vision.
In Proceedings of the IEEE Workshop on Stereo and Multi-Baseline Vision,
2001.

[19] H. Hirschmueller, P. R. Innocent, and J. Garibaldi. Real-time correlation-based
stereo vision with reduced border errors. International Journal of Computer
Vision, pages 229�246, 2002.

[20] A. Fusiello, V. Roberto, and E. Trucco. E�cient stereo with multiple window-
ing. In Proceedings of the International Conference of Computer Vision and
Pattern Recognition, pages 858 � 863, 1997.

[21] T. Kanade and M. Okutomi. A stereo matching algorithm with an adaptive
window: Theory and experiment. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16:920 � 932, 1994.

[22] S. Yoon, D. Min, and K. Sohn. Fast dense stereo matching using adaptive win-
dow in hierarchical framework. In Proceedings of the International Symposium
on Visual Computing, pages 316 � 325, 2006.

[23] K. J. Yoon and I. S. Kweon. Adaptive support-weight approach for correspon-
dence search. IEEE Transanctions on Pattern Analysis and Machine Intelli-
gence, 28:650 � 656, 2006.

[24] O. Veksler. Fast variable window for stereo correspondence using integral im-
ages. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages
551�561, 2003.

[25] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda. Classi�cation and
evaluation of cost aggregation methods for stereo correspondence. In Proceed-
ings of the International Conference on Computer Vision and Pattern Recog-
nition, 2008.

[26] R. Zabih and J. Wood�ll. Non-parametric local transforms for
computing visual correspondence. In Proceedings of 3rd European
Conf. Computer Vision, pages 151�158, Stockholm, 1994. URL
citeseer.ist.psu.edu/article/zabih94nonparametric.html.

[27] R. Zabih. Individuating Unknown Objects by Combining Motion and Stereo.
PhD thesis, Department of Computer Science, Stanford University, 1994.



BIBLIOGRAPHY 101

[28] H. Hirschmueller and D. Scharstein. Evaluation of stereo matching costs on
images with radiometric di�erences. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(9):1582�1599, Sept. 2009.

[29] Y. Ohta and T. Kanade. Stereo by intra- and inter-scanline search using dy-
namic programming. IEEE Transactions on Pattern Analysis and Machine
Intelligence, (2):139�154, March 1985.

[30] S. Birch�eld and C. Tomasi. Depth discontinuities by pixel-to-pixel stereo.
International Journal of Computer Vision, 35:3:269�293, 1996.

[31] R. C. Gonzalez, J. A. Cancelas, J. C. Alvarez, J. A. Fernandez, and J. M. En-
guita. Fast stereo vision algorithm for robotic applications. In Proc. 7th IEEE
International Conference on Emerging Technologies and Factory Automation
ETFA '99, volume 1, pages 97�104, 18�21 Oct. 1999.

[32] S. Forstmann, Y. Kanou, J. Ohya, S. Thuering, and A. Schmitt. Real-time
stereo by using dynamic programming. In In Conference on Computer Vision
and Pattern Recognition Workshop, page 29. IEEE Computer Society, 2004.

[33] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization
via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 23(11):1222�1239, Nov. 2001.

[34] V. Kolmogorov and R. Zabih. Computing visual correspondence with occlu-
sions using graph cuts. In Proceedings of the International Conference on
Computer Vision, pages 508�515, 2001.

[35] J. Sun, N.-N. Zheng, and H.-Y. Shum. Stereo matching using belief propaga-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(7):
787�800, July 2003.

[36] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nister. Real-time global
stereo matching using hierarchical belief propagation. In Proceedings of The
British Machine Vision Conference, pages 989�998, 2006.

[37] H. Hirschmueller. Accurate and e�cient stereo processing by semi-global
matching and mutual information. In Proceedings of the 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2005.

[38] H. Hirschmueller. Stereo vision in structured environments by consistent semi-
global matching. In Proceedings of the 2006 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, pages 2386 � 2393, 2006.

[39] S. K. Gehrig, F. Eberl, and T. Meyer. A real-time low-power stereo vision
engine using semi-global matching. Computer Vision Systems, 5815/2009:134�
143, 2009.

[40] I. Ernst and H. Hirschmueller. Mutual information based semi-global stereo
matching on the gpu. In Proceedings of the 4th International Symposium on
Advances in Visual Computing, pages 228�239, 2008.



BIBLIOGRAPHY 102

[41] D. Comaniciu and M. Peter. Mean shift: A robust approach toward feature
space analysis. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 24:603 � 619, 2002.

[42] V. Kolmogorov and R. Zabih. Multi-camera scene reconstruction via graph
cuts. In Proceedings of the European Conference on Computer Vision, pages
82�96, 2002.

[43] A. Klaus, M. Sormann, and K. Karner. Segment-based stereo matching using
belief propagation and a self-adapting dissimilarity measure. In Proceedings of
the 18th International Conference on Pattern Recognition, 2006.

[44] H. Hirschmueller. Stereo processing by semiglobal matching and mutual infor-
mation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30
Issue 2:328 � 341, 2008.

[45] M. Bleyer and M. Gelautz. A layered stereo algorithm using image segmenta-
tion and global visibility constraints. In Proceedings of the IEEE International
Conference on Image Processing, pages 2997�3000, 2004.

[46] Stereo Evaluation. Middlebury Computer Vision. URL
http://vision.middlebury.edu/stereo/.

[47] D. Scharstein and R. Szeliski. High-accuracy stereo depth maps using struc-
tured light. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. IEEE Computer Society Press, 2003.

[48] Q. Yang, R. Yang, J. Davis, and D. Nister. Spatial-depth super resolution
for range images. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition CVPR '07, pages 1�8, 17�22 June 2007.

[49] Z.-F. Wang and Z.-G. Zheng. A region based stereo matching algorithm using
cooperative optimization. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2008.

[50] Q. Yang, L. Wang, R. Yang, H. Stewenius, and D. Nister. Stereo matching
with color-weighted correlation, hierarchical belief propagation, and occlusion
handling. IEEE Transactions on Pattern Analysis and Machine Intelligence,
31 Issue 3:492 � 504, 2009.

[51] L. Xu and J. Jia. Stereo matching: An outlier con�dence approach. Computer
Vision � ECCV 2008, 5305:775�787, 2008.

[52] M. Bleyer, C. Rother, and P. Kohli. Surface stereo with soft segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2010.

[53] M. Bleyer, M. Gelautz, C. Rother, and C. Rhemann. A stereo approach that
handles the matting problem via image warping. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2009.



BIBLIOGRAPHY 103

[54] Y . Taguchi, B. Wilburn, and C. L. Zitnick. Stereo reconstruction with mixed
pixels using adaptive over-segmentation. In Proceedings of the International
Conference on Computer Vision and Pattern Recognition, 2008.

[55] A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann. Local stereo matching using
geodesic support weights. In Proceedings of the IEEE International Conference
on Image Processing, 2009.

[56] Q. Yang, C. Engels, and A. Akbarzadeh. Near real-time stereo for weakly-
textured scenes. In Proceedings of the British Machine Vision Conference,
2008.

[57] J. Sun, Y. Li, S. Bing Kang, and H.-Y. Shum. Symmetric stereo matching
for occlusion handling. In Proceedings of tht IEEE Conference on Computer
Vision and Pattern Recognition, pages 399 � 406, 2005.

[58] Z. Gua, X. Su, and Y. Liu. Local stereo matching with adaptive support-
weight, rank transform and disparity calibration. Pattern Recognition Letters,
29 Issue 9:1230 � 1235, 2008.

[59] S. Mattoccia, F. Tombari, and L. Di Stefano. Stereo vision enabling precise
border localization within a scanline optimization framework. LNCS Computer
Vision ACCV, 4844:517 � 527, 2007.

[60] K.-J. Yoon and I. S. Kweon. Stereo matching with the distinctive similarity
measure. In Proceedings of the International Conference on Computer Vision,
2007.

[61] C. L. Zitnick and S. B. Kang. Stereo for image-based rendering using image
over-segmentation. International Journal of Computer Vision, 75:49 � 65, 2007.

[62] T. Montserrat, J. Civit, O. D. Escoda, and J.-L. Landabaso. Depth estimation
based on multiview matching with depth/color segmentation and memory e�-
cient belief propagation. In Proceedings of the IEEE International Conference
on Image Processing, 2009.

[63] D. Mukherjee, G. Wang, and J. Wu. Stereo matching algorithm based on
curvelet decomposition and modi�ed support weights. In Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing, 2010.

[64] F. Tombari, S. Mattoccia, and L. Di Stefano. Segmentation-based adaptive
support for accurate stereo correspondence. LNCS Advances in Image and
Video Technology, 4872:427 � 438, 2007.

[65] S. Mattoccia. A locally global approach to stereo correspondence. In Proceed-
ings of the International Conference on Computer Vision Workshops, 2009.

[66] D. Min and K. Sohn. Cost aggregation and occlusion handling with wls in
stereo matching. IEEE Transactions on Image Processing, 17 Issue 8:1431 �
1442, 2008.



BIBLIOGRAPHY 104

[67] C. Lei, J. Selzer, and Y.-H. Yang. Region-tree based stereo using dynamic pro-
gramming optimization. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2378 � 2385, 2006.

[68] E. S. Larsen, P. Mordohai, M. Pollefeys, and H. Fuchs. Temporally consistent
reconstruction from multiple video streams using enhanced belief propagation.
In Proceedings of the International Conference on Computer Vision, pages 1 �
8, 2007.

[69] O. Stankiewicz and K. Wegner. Depth map estimation software version 3. In
ISO/IEC MPEG meeting M15540, 2008.

[70] Y. Deng and X. Lin. A fast line segment based dense stereo algorithm using
tree dynamic programming. In Proceedings of the European Conference on
Computer Vision, LNCS, pages 201 � 212, 2006.

[71] A. Bhusnurmath and C. J. Taylor. Solving stereo matching problems using
interior point methods. In Proceedings of the Fourth International Symposium
on 3D Data Processing, Visualization and Transmission, pages 321 � 329, 2008.

[72] S. K. Gehrig and U. Franke. Improving stereo sub-pixel accuracy for long range
stereo. In Proceedings of the International Conference on Computer Vision,
Workshop, 2007.

[73] A. Banno and K. Ikeuchi. Disparity map re�nement and 3d surface smoothing
via directed anisotropic di�usion. In Proceedings of the IEEE 12th International
Conference on Computer Vision Workshops, pages 1870 � 1877, 2009.

[74] S. Mattoccia, S. Giardino, and A. Gambini. Accurate and e�cient cost aggre-
gation strategy for stereo correspondence based on approximated joint bilateral
�ltering. In Proceedings of the 9th Asian Conference on Computer Vision, 2009.

[75] R. Brockers. Cooperative stereo matching with color-based adaptive local sup-
port. LNCS Computer Analysis of Images and Patterns, 5702:1245, 2009.

[76] T. Yu, R.-S. Lin, B. Super, and B. Tang. E�cient message representations for
belief propagation. In Proceedings of the IEEE International Conference on
Computer Vision, 2007.

[77] K. Zhang, J. Lu, G. Lafruit, R. Lauwereins, and L. V. Gool. Real-time accurate
stereo with bitwise fast voting on cuda. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 5th Workshop on Embedded Computer
Vision, 2009.

[78] K. Zhang, J. Lu, and L. Gauthier. Cross-based local stereo matching using
orthogonal integral images. IEEE transactions on circuits and systems for
video technology, 19:1073�1079, 2009.

[79] O. Woodford, P. Torr, I. Reid, and A. Fitzgibbon. Global stereo reconstruction
under second-order smoothness priors. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31 Issue 12:2115 � 2128, 2009.



BIBLIOGRAPHY 105

[80] T. Liu, P. Zhang, and L. Luo. Dense stereo correspondence with contrast con-
text histogram, segmentation-based two-pass aggregation and occlusion han-
dling. LNCS Advances in Image and Video Technology, 5414:449 � 461, 2008.

[81] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda. Near real-time
stereo based on e�ective cost aggregation. In Proc. 19th International Confer-
ence on Pattern Recognition ICPR 2008, pages 1�4, 8�11 Dec. 2008.

[82] H. Trinh and D. McAllester. Unsupervised learning of stereo vision with monoc-
ular cues. In Proceedings of the British Machine Vision Conference, 2009.

[83] L. C. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High-
quality video view interpolation using a layered representation. ACM Trans.
Graph., 23:600�608, 2004.

[84] W. Yu, T. Chen, F. Franchetti, and J. C. Hoe. High performance stereo vision
designed for massively data parallel platforms. To appear in IEEE Transactions
on Circuits and Systems for Video Technology, 2010.

[85] M. Vanetti, I. Gallo, and E. Binaghi. Dense two-frame stereo correspondence
by self-organizing neural network. LNCS Image Analysis and Processing �
ICIAP 2009, 5716:1035�1042, 2009.

[86] S. Kosov, T. Thormaehlen, and H. P. Seidel. Accurate real-time disparity
estimation with variational methods. In Proceedings of the International Sym-
posium on Visual Computing, 2009.

[87] J. Lu, G. Lafruit, and F. Catthoor. Anisotropic local high-con�dence voting
for accurate stereo correspondence. In Proceedings of SPIE, 2008.

[88] J. Salmen, M. Schlipsing, J. Edelbrunner, S. Hegemann, and S. Lueke. Real-
time stereo vision: Making more out of dynamic programming. LNCS: Com-
puter Analysis of Images and Patterns, 5702/299:1096�1103, 2009.

[89] T. Pock, T. Schoenemann, G. Graber, H. Bischof, and D. Cremers. A convex
formulation of continuous multi-label problems. ECCV '08 Proceedings of the
10th European Conference on Computer Vision: Part III, 5304:792 � 805, 2008.

[90] C. Strecha, R. Fransens, and L. Van Gool. Combined depth and outlier estima-
tion in multi-view stereo. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2394 � 2401, 2006.

[91] P. Mordohai and G. Medioni. Stereo using monocular cues within the ten-
sor voting framework. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28:968�982, 2006.

[92] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nister. High-quality real-time
stereo using adaptive cost aggregation and dynamic programming. In 3DPVT
'06: Proceedings of the Third International Symposium on 3D Data Process-
ing, Visualization, and Transmission (3DPVT'06), pages 798�805, Washing-
ton, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2825-2.



BIBLIOGRAPHY 106

[93] R. Brockers, M. Hund, and B. Mertsching. Stereo vision using cost-relaxation
with 3d support regions. In Proceedings of the IEEE International Conference
on Image Processing, pages 389 � 392, 2005.

[94] M. Gong and Y.-H. Yang. Near real-time reliable stereo matching using pro-
grammable graphics hardware. In Proc. IEEE Computer Society Conference
on Computer Vision and Pattern Recognition CVPR 2005, volume 1, pages
924�931, 20�25 June 2005.

[95] O. Veksler. Stereo correspondence by dynamic programming on a tree. In
IEEE Conference on Computer Vision and Pattern Recognition, volume 2,
pages 384�390, Washington, DC, USA, 2005. IEEE Computer Society. ISBN
0-7695-2372-2.

[96] Q. Yang, L. Wang, and N. Ahuja. A constant-space belief propagation algo-
rithm for stereo matching. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2010.

[97] L. Nalpantidis and A. Gasteratos. Biologically and psychophysically inspired
adaptive support weights algorithm for stereo correspondence. Robot. Auton.
Syst., 58(5):457�464, 2010. ISSN 0921-8890.

[98] C. Richardt, D. Orr, I. Davies, A. Criminisi, and N. A. Dodgson. Real-time
spatiotemporal stereo matching using the dual-cross-bilateral grid. In Proceed-
ings of the European Conference on Computer Vision, 2010.

[99] O. Stankiewicz and K. Wegner. Depth map estimation software version 2. In
ISO/IEC MPEG meeting M15338, 2008.

[100] D. Miyazaki, Y. Matsushita, and K. Ikeuchi. Interactive shadow removal from
a single image using hierarchical graph cut. In Proceedings of the Asian Con-
ference of Computer Vision, 2009.

[101] S. El-Etriby, A. K. Al-Hamadi, and B. Michaelis. Dense stereo correspondence
with slanted surface using phase-based algorithm. In Proceedings of the IEEE
International Symposium on Industrial Electronics, pages 1807 � 1813, 2007.

[102] S. El-Etriby, A. K. Al-Hamadi, and B. Michaelis. Dense depth map recon-
struction by phase di�erence-based algorithm under in�uence of perspective
distortion. In Proceedings of the International Conference on Computer Vision
and Graphics, pages 349 � 361, 2006.

[103] L. Nalpantidis and A. Gasteratos. Stereo vision for robotic applications in the
presence of non-ideal lighting conditions. Image and Vision Computing, 2009.

[104] G. Olague, F. Fernandez de Vega, C. B. Perez, and E. Lutton. The infection
algorithm: An arti�cial epidemic approach for dense stereo matching. LNCS
Parallel Problem Solving from Nature - PPSN VIII, 3242:622�632, 2004.

[105] M. Humenberger, D. Hartermann, and W. Kubinger. Evaluation of Stereo
Matching Systems for Real World Applications Using Structured Light for
Ground Truth Estimation. In Proc. of the IAPR Conference on Machine Vision
and Applications, 2007.



BIBLIOGRAPHY 107

[106] K. Ambrosch. Mapping Stereo Matching Algorithms to Hardware. PhD thesis,
Vienna University of Technology, 2009.

[107] Mobile robots inc. mobileranger, datasheet. URL
http://www.activrobots.com/ACCESSORIES/MobileRanger

SpecSheet.pdf.

[108] VidereDesign. Stereo-on-a-Chip Stereo Head User Manual 1.3. Videre Design,
2007. URL http://www.videredesign.com/vision/stoc.htm.

[109] Y. Miyajima and T. Maruyama. A real-time stereo vision system with fpga.
In Field-Programmable Logic and Applications, volume 2778 of Lecture Notes
in Computer Science, pages 448�457. Springer Berlin / Heidelberg, 2003.

[110] R. Yang, M. Pollefeys, and S. Li. Improved real-time stereo on commodity
graphics hardware. In Computer Vision and Pattern Recognition Workshop,
volume 3, pages 36�42, Washington, DC, USA, 2004. IEEE Computer Society.
ISBN 0-7695-2158-4.

[111] Triclops, Technical Manual. Point Grey Research Inc., 2004. URL
http://www.ptgrey.com/products/triclopsSDK/triclops.pdf.

[112] J. I. Wood�ll, G. Gordon, D. Jurasek, T. Brown, and R. Buck. The Tyzx
DeepSea G2 Vision System, A Taskable, Embedded Stereo Camera. In Pro-
ceedings of the 2006 Conference on Computer Vision and Pattern Recoginition
Workshops, 2006.

[113] N. Chang, T.-M. Lin, T.-H. Tsai, Y.-C. Tseng, and T.-S. Chang. Real-time
dsp implementation on local stereo matching. In Proc. IEEE International
Conference on Multimedia and Expo, pages 2090�2093, 2�5 July 2007.

[114] J. Wood�ll and B. Von Herzen. Real-time stereo vision on the parts recon-
�gurable computer. In IEEE Symposium on FPGAs for Custom Computing
Machines, pages 242�250. IEEE Computer Society Press, 1997.

[115] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka. A stereo machine
for video-rate dense depth mapping and its new applications. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, pages 196�
202, 1996.

[116] S. Kimura, T. Shinbo, H. Yamaguchi, E. Kawamura, and K. Naka. A convolver-
based real-time stereo machine (sazan). In Computer Vision and Pattern Recog-
nition, pages 457�463, 1999.

[117] B. Khaleghi, S. Ahuja, and Q. Wu. An improved real-time miniaturized em-
bedded stereo vision system (mesvs-ii). In Proc. IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition Workshops CVPR Work-
shops 2008, pages 1�8, 23�28 June 2008.

[118] O. Faugeras, B. Hotz, H. Mathieu, T. Vieville, Z. Zhang, P. Fua, E. Theron,
L. Moll, G. Berry, J. Vuillemin, P. Bertin, and C. Proy. Real-time correlation
based stereo: algorithm implementations and applications. Technical Report
2013, INRIA, 1993.



BIBLIOGRAPHY 108

[119] K. Ambrosch, M. Humenberger, and S. Olufs. Smart Cameras, chapter Chapter
5: Embedded Stereo Vision. Springer Verlag, 2009.

[120] J. Banks and P. Corke. Quantitative evaluation of matching methods and
validity measures for stereo vision. International Journal of Robotics Research,
20:512�532, 2001.

[121] D. Scharstein and C. Pal. Learning conditional random �elds for stereo. In Pro-
ceedings of the 2007 Conference on Computer Vision and Pattern Recoginition,
2007.

[122] H. Hirschmueller and D. Scharstein. Evaluation of cost functions for stereo
matching. In Proc. IEEE Conference on Computer Vision and Pattern Recog-
nition CVPR '07, pages 1�8, 17�22 June 2007.

[123] K. Konolige. Small vision system: Hardware and implementation. In Proceed-
ings of Eighth International Symposium on Robotics Research, Japan, 1997.
URL citeseer.ist.psu.edu/konolige97small.html.

[124] J. I. Wood�ll, B. v. Herzen, and R. Zabih. Frame-rate robust stereo on a pci
board. 1998.

[125] AMD. Software Optimization Guide for AMD64 Processors. Advanced Micro
Devices, Inc., rev. 3.06 edition, September 2005.

[126] Intel Core2 Duo Processors and Intel Core2 Extreme Processors for Platforms
Based on Mobile Intel 965 Express Chipset Family. Intel Corporation, 2008.
Document Number:316745-005.

[127] C. Zinner, W. Kubinger, and R. Isaacs. Pfelib: A performance primitives
library for embedded vision. EURASIP Journal on Embedded Systems, 2007
(1):14, 1 2007. ISSN 1687-3955.

[128] Intel Integrated Performance Primitives for Intel Architecture. Intel Corpora-
tion, 2007. Document Number:A70805-021US.

[129] A. Kuznetsov. Bitmagic library: Sse2 optimization, 10 2008. URL
http://bmagic.sourceforge.net/bmsse2opt.html.

[130] C. Zinner, M. Humenberger, K. Ambrosch, and W. Kubinger. An optimized
software-based implementation of a census-based stereo matching algorithm.
In Advances in Visual Computing, Lecture Notes in Computer Science, volume
5358, pages 216�227. Springer, 2008. ISBN 978-3-540-89638-8.

[131] M. Houston. High level languages for gpus overview. In SIGGRAPH '07: ACM
SIGGRAPH 2007 courses, page 5, New York, NY, USA, 2007. ACM.

[132] NVIDIA. GeForce 9800 GT. NVIDIA Corporation, 11 2008. URL
http://www.nvidia.com/object/product_geforce_9800gt_us.html.

[133] NVIDIA. GeForce GTX 280. NVIDIA Corporation, 11
2008. URL http://www.nvidia.com/docs/IO/55506/GeForce

_GTX_200_GPU_Technical_Brief.pdf.



BIBLIOGRAPHY 109

[134] PCI-SIG. Pci express speci�cations, 2009. URL
http://www.pcisig.com/specifications/pciexpress/specifications/.

[135] M. Gong, R. Yang, L. Wang, and M. Gong. A performance study on di�erent
cost aggregation approaches used in real-time stereo matching. International
Journal of Computer Vision, 75(2):283�296, 2007. ISSN 0920-5691.

[136] TMS320C6414T, TMS320C6415T, TMS320C6416T Fixed-Point Digital Sig-
nal Processors. Texas Instruments, 2003. Lit. Number: SPRS226K.

[137] TMS320C6474 Multicore Digital Signal Processor. Texas Instruments, 2008.
Lit. Number: SPRS552.

[138] C. Zinner and W. Kubinger. Ros-dma: A dma double bu�ering method for
embedded image processing with resource optimized slicing. In Proc. 12th IEEE
Real-Time and Embedded Technology and Applications Symposium, pages 361�
372, 04�07 April 2006.

[139] G. M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, spring
joint computer conference, AFIPS '67 (Spring), pages 483�485. ACM, 1967.

[140] K. S. Gatlin and P. Isensee. Openmp and c++: Reap the bene�ts
of multithreading without all the work. MSDN Magazine, 2005. URL
http://msdn.microsoft.com/en-us/magazine/cc163717.aspx.

[141] D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature
space analysis. 24(5):603�619, 2002.

[142] M. Bleyer and M. Gelautz. A layered stereo matching algorithm using image
segmentation and global visibility constraints. ISPRS Journal of Photogram-
metry and Remote Sensing, 59:128�150, 2005.



Curriculum Vitae

Martin Humenberger was born on June 1st, 1981 in Vienna. After secondary school
in the BG6 Amerlingstrasse he ful�lled the Austrian military forces in Baden. In
2000 he attended the course of study Hardware/Software Systems Engineering at the
Upper Austrian University of Applied Science, Hagenberg. He �nished with a degree
of Dipl.-Ing. (FH) in 2004. During the last semesters he started to work for the AIT
Austrian Institute of Technology where he also wrote his diploma theses entitled
"Development of a TT-Vision Node Platform". In 2005 he started his PhD studies
at the Vienna University of Technology on the Automation and Control Institute
(ACIN). Employed at the AIT as PhD student, he was part of the European Union
funded project robots@home under grant FP6-2006-IST-6-045350 which has been
�nished in 2010. Now he works at the AIT on stereo vision for fall detection in
systems for ambient assisted living. His main research interests are stereo vision and
3D reconstruction for scene representation, interpretation, and three dimensional
modeling.

110


