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Abstract

Future emission laws like EURO V I, JPNLT , US 10 and US T4 require to increase the
efficiency of diesel engines. Shaping the rate of diesel fuel injected into a cylinder during one
combustion cycle has great influence on emission of CO, NOx and sooty particles. In order to
determine an optimal rate shaping, knowledge of the thermodynamic behavior of diesel and of
the pressure waves in the components of the injection system is needed.
Here we deduce a simulation model, that calculates transient one-dimensional flow of diesel fuel.
The model consists of three components, which are all based on the equations of state for liquid
diesel fuel. The flow in the pipes is considered one-dimensional and inviscid. Thus the Euler
equations are solved numerically using Roe’s method. In a volume the kinetic energy can be
neglected and the changes of internal energy are calculated by a mass and energy balance consid-
ering the in and outflow masses and their enthalpy and the change of volume with time, as well.
A throttle will be described by a pressure loss coefficient. Changes of temperature due to the
Joule-Thomson effect are also taken into account. Equations of state for liquid diesel Fuel have
been derived from measured data for density and isobaric heat capacity. The equation of state
is tested by comparing the predicted values for the speed of sound with measured data reported
in the literature. To proof the ability of the simulation tool to resolve shock and rarefaction
waves as well as contact discontinuities, the results for a shock tube test are shown. Further
the change of density and temperature during compression and expansion in a piston pump is
shown. Also the results for two volumes with different initial conditions, connected by a throttle
in one test case and connected by a pipe in another test case, show different transient behavior.
This work shall help simulating transient one dimensional flow of liquid diesel fuel in modern
diesel injection systems, having operating pressures of up to 2500 bar and operating tempera-
tures from 260 K to 393 K.
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Kurzdarstellung

Künftige Abgasnormen wie EURO V I, JPNLT , US10 und US T4 erfordern eine Steigerung der
Effizienz von Dieselmotoren. Der Verlauf der Einspritzrate des Dieselkraftstoffes während eines
Brennzyklus spielt eine entscheidende Rolle für die Emission von CO, NOx und Russpartikeln.
Um optimale Einspritzverlaufs- Formung zu bestimmen, bedarf es sowohl einer genauen Kennt-
nis der thermodynamischen Eigenschaften des Dieselkraftstoffes, als auch der sich ausbreitenden
Wellen in den einzelnen Komponenten.
Hier wird eine Simulationsmodell abgeleitet, das instationäre eindimensionale Strömungsvorgänge
von Dieselkraftstoff berechnet. Das Modell besteht aus drei Komponenten, deren gemeinsame
Grundlage eine Zustandsgleichung für flüssigen Dieselkraftstoff ist. Die Strömung in den Rohrlei-
tungen wird eindimensional und reibunsfrei angenommen. Daher werden die Euler Gleichungen
numerisch, mittels der Methode von Roe, gelöst. In einem Vorratsbehälter (Volumen) können
die kinetischen Energien vernachlässigt und die Änderungen der inneren Energie mittels Massen-
und Energiebilanz berechnet werden, unter Berücksichtigung von ein- und ausströmender Mas-
se und Enthalpie, sowie der zeitlichen Änderung des Gesamtvolumens. Drosseln werden durch
Druckverlustbeiwerte beschrieben. Außerdem werden Änderungen der Temperatur aufgrund des
Joule-Thomson Effekts berücksichtigt. Die benötigten Zustandsgleichungen für flüssigen Diesel
Kraftstoff werden aus Messungen von Dichte und isobarer Wärmekapazität hergeleitet. Um die-
se Zustandsgleichung zu testen, wurden daraus berechnete Werte für die Schallgeschwindigkeit
mit Werten aus der Literatur verglichen. Um das Simulationsmodell auf die Fähigkeit Druckwel-
len, Verdünnungsfächer und Kontaktunstetigkeiten auflösen zu können zu überprüfen, werden
die Ergebnisse eines Stoßrohrproblems gezeigt. Weiters werden die Änderungen von Dichte und
Temperatur während der Kompression und Expansion in einer Kolbenpumpe gezeigt. Außer-
dem wurden zwei verschiedene Kombinationen von Komponenten ausgetestet. Zwei Volumina
mit unterschiedlichen Anfangsbedingungen werden in einem Test mit einer Drossel und in ei-
nem anderen Test mit einer Leitung verbunden. Der zeitliche Verlauf der daraus resultierenden
Ausgleichsvorgänge wird gezeigt.
Die Arbeit soll helfen instationäre eindimensionale Strömungsvorgänge von flüssigem Diesel in
modernen Einspritzsystemen, mit Betriebsdrücken bis zu 2500 bar und Temperaturen zwischen
−10◦ C und 120◦ C, zu simulieren.
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Chapter 1

Introduction

To simulate procedures in injection systems of diesel fuel engines interdisciplinary methods from
the fields of fluid mechanics, technical mechanics, electrical engineering and automatic control
engineering have to be used. The numerical simulation of injection systems plays an important
role for developing and dimensioning new components. Considerable requirements for the quality
of the model and the numerics behind, are resulting out of high pressures used, and out of the
little amount of fuel that gets injected during each combustion cycle (≈ 1.5 mm3 ± 0.5 mm3).
Furthermore it must be pointed out that fuel injection is a transient phenomenon, that can
stimulate strong oscillations in valves and other components, and that can cause mechanical
stress resulting in cavitation damage [Mollenhauer, 2002]. Also notable heating of the fuel due
to throttle and friction losses, with extensive impact on the characteristics of the fuel, have to
be quantified. New emission legislation boosts the need for new solutions. In order to comply
with emission laws like EURO VI, JPNLT, US 10 and US T4, manufacturer need to reduce the
emission of CO, NOx and sooty particles [Parche, 2010]. Therefore a wide variety of solutions
within the engine, exhaust gas aftertreatment, air and injection systems have been taken into
account. It was shown that continuous rate shaping during the injection helps not only reducing
emissions and therefore reducing fuel consumption, but also helps reducing the noise of the
engine, which is also one of the main goals in designing new diesel engines. To investigate effects
of rate shaping turns out to be a very powerful tool for developing better engines [Predelli,
2010].
To understand what is behind rate shaping one needs to understand the fuel cycle, which is
indicated by the yellow closed loop in figure 1.1 [BMW, 2006]. The fuel cycle in a diesel engine
starts in the tank where the fuel is stored under atmospheric pressure. An electrical lift pump
transports the fuel to the low pressure pump (LPP), where the pressure increases up to a few
bars. From there on the fuel is forced through a filter first, before it gets to the high pressure
pump (HPP). In the high pressure pump the fuel gets compressed to a pressure up to 2200 bar
(in the future up to 2500 bar), depending on the manufacturer of the injection system [Leonhard,
2009]. The highly pressurized fuel is then conducted to the so called rail, which is a high pressure
fuel reservoir, as well as to the pressure control valve (PCV), at the end of the rail, and to the

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Common Rail Scheme containing the fuel cycle (yellow), control unit cycle (orange),
intake and exhaust air cycle (blue and red). Components: 1. HPP, 2. fuel heat sensor, 3. suction
control valve, 4. rail pressure sensor, 5. rail, 6. PCV, 7. low pressure manifold, 8. low pressure
reservoir, 9. pressure converter, 10. camshaft pickup, 11. injector, 12. + 13. + 15. charge
air sensors, 14. charge-air intercooler, 16. variable nozzle turbine actuator, 17. exhaust gas
recirculation inter-cooler, 18. lambda sensor, 19. exhaust silencer, 20. control unit, 21. gas pedal
module, 22. tank, 23. electrical pump, 24. return flow throttle, 25. bimetal valve, 26. crank shaft
pickup, 27. LPP, 28. coolant sensor, 29. filter

injector itself, for activation piloting. Through high pressure pipes the fuel gets conducted from
the rail to the injectors, which are installed on top of each cylinder of the engine. Since only a
little amount of fuel is injected into the cylinder during one combustion, a major part of the fuel
flows through the pressure control valve, which regulates the pressure in the rail, and through
some other throttles, back into the tank, where the fuel cycle has started.
A variety of injectors are available on the market, using different technologies. To outline
the function of an injector, one technology that is controlled by a magnetic valve (see figure
1.2 [BMW, 2006]) is presented here. Since the injector is connected to the rail via a pipe, the
rail pressure is present at the inlet of the injector. Through a bore hole in the injector the fuel is
transported down to a small reservoir storing pressurized fuel. Since the force from the injector
spring together with the pressure from the activation piloting outweigh the force from the small
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Figure 1.2: Schematic drawing of an injector with closed nozzle (a) and during injection with
open nozzle (b). Components: 1. fuel return line, 2. electrical plug, 3. magnetic control device,
4. fuel intake (high pressure), 5. ball valve, 6. drain throttle, 7. inlet throttle, 8. valve control
reservoir, 9. valve control piston, 10. nozzle inlet pipe, 11. needle

reservoir, the injector stays in a closed position. When the control device supplies the magnetic
valve with an electric current the anchor lifts up and opens the ball valve. The pressure of
the activation piloting drops, therefore the needle lifts up and opens the injector nozzle. After
a certain amount of time the control device stops the electric current. Then the pressure at
the activation piloting increases, since the ball valve closes again, and the needle is forced back
closing the nozzle. Modern injectors use piezo stacks instead of the magnetic valve to lift the
needle, because of shorter reaction times and therefore better control over the amount of fuel
that gets injected.
What is called rate shaping is the technique of using a certain progression in the amount of
fuel injected into the cylinder during one combustion cycle. Different types of rate shaping are
actually in the focus of engine developers across the world, as for example the multiple injections
(see figure 1.3) and also the continuous progressions of the rate injected into the cylinder.
In order to make a transient simulation of the whole fuel cycle, including all pumps, valves and

pipes, one dimensional calculations deliver results within an appropriate expenditure of time.
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Figure 1.3: Injection rate over time during on combustion cycle from a multiple injection system
is shown. Four pre-injections, each transporting ∼ 1 mg diesel fuel followed by the main injection
is shown.

Two or three dimensional transient models are connected with major consumption of time and
costs. The benefit of transient simulations is not only to identify sources of error, but also to
write an optimized software program for the control unit of the engine. Commercial available
software tools for one dimensional modeling are often very expensive, and often have no suitable
equation of state for liquid diesel fuel. The goal of this work was to try to create a simulation
tool, which helps simulating the diesel fuel cycle in an engine by creating the basic components
for a module construction of any type of closed fluid network. Therefore three components have
been implemented as subroutines, that can be arranged in an arbitrary way. First the pipe
is discussed, describing the inviscid pressure driven flow in pipes with circular cross section.
Second, the volume describes storage volumes on the one hand, like the rail or the tank, but
also pumps on the other hand. At last the throttle is the basis for describing valves and orifice
plates.
The whole simulation tool was implemented in Matlab Simulink 2008b ©, because it uses a
graphical interface and it makes the creation of complex simulation models very easy, by using
the basic components. Also the software is widely spread amongst developers in the automotive
industry. All calculations presented in the results were performed on an ordinary laptop with a
Intel©Core Duo 2.19 GHz CPU and a working memory of 3 GB.



Chapter 2

Material and Methods

In this chapter we will provide the governing equations for

� the fluid flow of diesel fuel through a pipe of constant cross section,

� the flow of diesel fuel through a throttle,

� the compression of diesel fuel in a piston pump,

� the charge and discharge of diesel fuel in a storage volume.

Therefore the thermodynamic equations of state of diesel fuel and the Euler equations governing
the flow are reviewed. Also numerical algorithms are discussed.

2.1 Equations of State for liquid diesel Fuel

Diesel fuel is a complex mixture consisting among others of hydrocarbons having different ther-
modynamic properties, i.e. boiling points, densities and so on [Mollenhauer, 2002]. The main
constituent parts are paraffin, different naphtalenes and some aromatics. There are differences
in compositions, depending on the origin of the fuel and also depending on the season of the
year [Kolev, 2007].
Here, for simplicity liquid diesel fuel is assumed to be a pure substance. It is described by the
thermal and caloric equation of state (DEOS - Diesel Equations Of State). The state of pure
substances in one phase and in thermal equilibrium can be described by two independent vari-
ables. In the following the temperature T and the pressure p are chosen as independent state
variables. Note that the DEOS have to satisfy the Maxwell relations1 [Schneider and Haas,
2004]. We assume that the density ρ = ρ(p, T ) is a given function of pressure p and temperature
T, which is known from measurements. The measured data is well represented by the following

1All Maxwell Relations can be found in text books on thermodynamics, for example [Schneider and Haas,
2004]

5
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expression

ρ(p, T ) =
3∑
i=1

 3∑
j=1

Aij

(
T

Tref

)j−1
( p

pref

)i−1

ρref (2.1)

with the pressure pref = 1 Pa, the temperature Tref = 1 K and the density ρref = ρ(pref , Tref ) =
1 kg/m3 defining the system of units. The dimensionless coefficient matrix A is

A =

 828.59744 0.63993 −0.00216
8.65679 10−17 −5.93672 10−9 1.56678 10−11

−7.59052 10−16 8.99915 10−18 −2.77890 10−20

 ,

as can be found in [Kolev, 2007]. A graph showing the density ρ as a function of pressure p and
temperature T according to (2.1) is shown in Figure 2.1. To get the caloric equation of state,
the isobaric heat capacity cp = cp(p0, T ) at the constant reference pressure p0 = 1 bar is needed.
It has been taken from [Kolev, 2007]. Although in [Kolev, 2007] thermodynamic variables like
speed of sound c = c(p, T ), the isobaric heat capacity cp = cp(p, T ) and many others are listed,
they turn out to be inconsistent. For instance in equations (13.38) on page 285 and (13.43) on
page 287 expressions for the heat capacity cp and the derivative

(
∂h
∂p

)
T

are given. However they
do not satisfy the integrability condition

∂

∂T

(
∂h

∂p

)
=

∂

∂p

(
∂h

∂T

)
.

Evaluating both sides we obtain

− 2.188 10−6 m3

kgK
6= 0.456

m3

kgK

for a pressure of p = 1000 bar and a temperature of T = 313 K.
Here we will derive an expression for the specific enthalpy h

h = h(p, T ) (2.2)

which is thermodynamically consistent, i.e. satisfies the Maxwell relations. We assume that the
the density ρ = ρ(p, T ) as a function of pressure p and temperature T is given. Furthermore
the heat capacity cp(T ) = cp(p0, T ) as functions of temperature T at a fixed reference pressure
p0 = 1 bar is given. If pressure p and temperature T are given as independent variables the
Gibbs free energy g = g(p, T ) serves as a thermodynamic potential. With other words any
thermodynamic variable can be expressed in terms of g or its derivatives. Starting with the
Maxwell relation (

∂g

∂p

)
T

=
1

ρ(p, T )
(2.3)
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we obtain
g(p, T ) = g0(T )− g0(T0) +

∫ p

p0

1
ρ(p′, T )

dp′, (2.4)

where g0(T ) is an appropriate function, which has to be specified in the following. Writing the
specific enthalpy h as a function of pressure p and specific entropy s

h(p, T ) = h(p, s(p, T )) (2.5)

we get the isobaric heat capacity

cp(p, T ) =
(
∂h

∂T

)
p

=
(
∂h

∂s

)
p

(
∂s

∂T

)
p

. (2.6)

Using the Maxwell relations
(
∂h
∂s

)
p

= T ,
(
∂g
∂T

)
p

= −s and (2.4) we can write for the isobaric

heat capacity

cp(p, T ) = −T ∂
2g(p, T )
∂T 2

= −T
[
g′′0(T ) +

∂2

∂T 2

∫ p

p0

1
ρ(p′, T )

dp′
]
. (2.7)

Using the volumetric thermal expansion coefficient βp = −1
ρ

(
∂ρ
∂T

)
p
, we obtain

cp(p, T ) = −Tg′′0(T )− T
(
∂

∂T

∫ p

p0

1
ρ(p′, T )

βp(p′, T )dp′
)
p

. (2.8)

Inserting p = p0 in equation (2.8) we get the auxiliary function g0

g′′0(T ) = −cp(p0, T )
T

. (2.9)

Therefore we have

cp(p, T ) = cp(p0, T )− T
(
∂

∂T

∫ p

p0

1
ρ(p′, T )

βp(p′, T )dp′
)
p

. (2.10)

Now the isobaric heat capacity can be evaluated for any pressure and temperature. The specific
enthalpy can be integrated from isobaric heat capacity

h(p, T ) =
∫ T

T0

cp(p, T ′)dT ′ + h0(p), (2.11)

where h0(p) = h(p, T0). Using (2.5) the chain rule for differentiation yields(
∂h

∂p

)
T

=
(
∂h

∂p

)
s

+
(
∂h

∂s

)
p

(
∂s

∂p

)
T

=
∂

∂p

(∫ T

T0

cp(p, T ′)dT ′ + h0(p)
)

(2.12)
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Figure 2.1: Density for liquid diesel fuel depending on temperature and pressure

and with the Maxwell relations
(
∂h
∂p

)
s

= 1
ρ ,
(
∂h
∂s

)
p

= T and
(
∂s
∂p

)
T

= 1
ρ2

(
∂ρ
∂T

)
p

we can write

1
ρ

+
T

ρ2

(
∂ρ

∂T

)
p

=
∂

∂p

∫ T

T0

cp(p, T ′)dT ′ + h′0(p). (2.13)

Evaluation of this expression at T = T0 delivers an expression for the auxiliary function h0

1
ρ(p, T0)

(1− T0βp(p, T0)) = h′0(p). (2.14)

Finally we obtain the specific enthalpy as

h(p, T ) = h(p0, T0) +
∫ T

T0

cp(p, T ′) dT ′ +
∫ p

p0

1
ρ(p′, T )

(
1− T βp(p′, T )

)
dp′ (2.15)

which is determined up to an arbitrary reference value for h(p0, T0). Considering the range of
temperature and pressure used in further applications, we chose specific enthalpy at a pressure of
p0 = 1 bar and a temperature of T0 = 253.15 K, to vanish. The resulting numerical evaluations
of this enthalpy function are shown in Figure 2.2.
The thermal and caloric equation of state, ρ = ρ(p, T ) and h = h(p, T ), and their derivatives
with respect to both state variables, which will be evaluated numerically using predefined Matlab
functions, are the basis for further considerations.
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Figure 2.2: Specific enthalpy for liquid diesel fuel depending on pressure is shown. The enthalpy
has been evaluated using (2.15) and using the approximation from [Kolev, 2007] for two different
temperatures.

2.2 1-d Pipe Flow

The governing equations of fluid mechanics can be found in the literature, like for example
[Landau and Lifshitz, 1987] or [Chorin and Marsden, 1993]. The flow in a pipe is influenced by
transient phenomena, for example due to transient boundary conditions at both ends of the pipe
and due to initial conditions in the pipe. Also the temperature of the fluid can change along
the pipe depending on the outside temperature, the fluid temperature and the character of the
cladding material of the pipe. Also changes in pressure lead to a change in temperature.

2.2.1 Governing equations

To calculate the one dimensional inviscid flow depending on time t and spatial coordinate x,
three conservation laws have to be obeyed, which are: conservation of mass, momentum and
energy. These conservation laws are valid for the whole pipe as well as for arbitrary small parts
of the pipe. The conservation of mass can be written in the form:

∂

∂t
ρ+

∂

∂x
(ρu) = 0, (2.16)

where u is the velocity and ρ the density of the fluid. The conservation of momentum can be
written as

∂

∂t
(ρu) +

∂

∂x
(ρu2 + P ) = 0, (2.17)

where P is the pressure. Finally conservation law of total energy E = Ei + Ekin = ρ(e + u2

2 ),
consisting of internal energy Ei = ρe(P, T ), with the specific internal energy e = e(P, T ), and
kinetic energy Ekin = ρu2

2 is
∂

∂t
E +

∂

∂x
((E + P )u) = 0. (2.18)

These equations((2.16),(2.17),(2.18)) are known as the Euler equations. Here viscosity and heat
conduction has been neglected [LeVeque, 2004]. Rewriting (2.16),(2.17),(2.18) in vector form
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and using an abbreviation for the momentum M = ρu, as well as using a vector of conserved
state variables ~q = (ρ,M,E) ∈ Ω ⊂ [R+,R,R], the general form of these conservation laws is

~qt + f(~q)x = 0, (2.19)

with the flux function f(~q) : Rp → Rp and subindices t and x indicating the differentiation with
respect to time and space; More precisely

∂

∂t

 ρ

M

E

+
∂

∂x

 M
M2

ρ + P
(E+p)M

ρ

 = 0. (2.20)

The Jacobian J = ∂f(~q)
∂~q of the flux function f(~q) is

J =


0 1 0

−M2

ρ2
+ ∂

∂ρP 2Mρ + ∂
∂MP

∂
∂EP

M
ρ

(
−E+P

ρ + ∂
∂ρP

)
E+P
ρ + M

ρ
∂
∂MP

M
ρ

(
1 + ∂

∂EP
)
 , (2.21)

see [Guardone and Vigevano, 2001]. The Jacobian matrix J and its eigenvalues and eigenvectors
are discussed in Appendix I.

2.2.2 Pressure Derivatives

In this section we want to determine the pressure derivatives of (2.21) in terms of thermodynamic
quantities. In the Euler equations (2.20) we consider the pressure function

P = P (ρ,M,E) (2.22)

as a function of conserved variables. Of course the pressure is also a function of the thermody-
namic state variables internal energy per volume Ei and density ρ

p = p(Ei, ρ). (2.23)

Since E = Ei + ρu2

2 we have

P (ρ,M,E) = p(E − M2

2ρ
, ρ). (2.24)

Thus if we consider the pressure function as a function of the three conserved variables we use
P with the capital letter, but if we consider the pressure function of the two thermodynamic
variables we us p with the lower case letter. Derivatives of the pressure function follow to(

∂P

∂ρ

)
M,E

=
(
∂p

∂ρ

)
Ei
− 1

2
M2

ρ2

(
∂p

∂E

)
ρ

, (2.25)
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(
∂P

∂E

)
ρ,M

=
(
∂p

∂Ei

)
ρ

(2.26)

(
∂P

∂M

)
ρ,E

= −M
ρ

(
∂p

∂Ei

)
rho

. (2.27)

In order to determine the pressure derivatives
(
∂p
∂ρ

)
Ei

and
(
∂p
∂Ei

)
ρ

we need to change the in-

dependent variables (p, T ) ⇐⇒ (ρ,Ei). For the internal energy Ei and the density ρ we can
write

Ei = ρ(p, T )h(p, T )− p, (2.28)

ρ = ρ(p, T ). (2.29)

Considering the pressure p = p(ρ,Ei) and the temperature T = T (ρ,Ei) as functions of the
density and the internal energy yields

Ei = ρ(p(ρ,Ei), T (ρ,Ei))h(p(ρ,Ei), T (ρ,Ei))− p, (2.30)

ρ = ρ(p(ρ,Ei), T (ρ,Ei)). (2.31)

Differentiating the expressions (2.30), (2.31) with respect to internal energy Ei follows

1 = h

[(
∂ρ

∂p

)
T

(
∂p

∂Ei

)
ρ

+
(
∂ρ

∂T

)
p

(
∂T

∂Ei

)
ρ

]
+ρ

[(
∂h

∂p

)
T

(
∂p

∂Ei

)
ρ

+
(
∂h

∂T

)
p

(
∂T

∂Ei

)
ρ

]
−
(
∂p

∂Ei

)
ρ

0 =
(
∂ρ

∂p

)
T

(
∂p

∂Ei

)
ρ

+
(
∂ρ

∂T

)
p

(
∂T

∂Ei

)
ρ

As a result an expression for the pressure derivative with respect to internal energy Ei, that
depends only on known quantities from the equations of state, can be formulated

(
∂p

∂Ei

)
ρ

=

ρ
(∂h

∂p

)
T

−

(
∂h
∂T

)
p

(
∂ρ
∂p

)
T(

∂ρ
∂T

)
p

− 1


−1

. (2.32)

Analogously we can differentiate (2.30), (2.31) with respect to density ρ

0 = h

[(
∂ρ

∂p

)
T

(
∂p

∂ρ

)
Ei

+
(
∂ρ

∂T

)
p

(
∂T

∂ρ

)
Ei

]
+ρ

[(
∂h

∂p

)
T

(
∂p

∂ρ

)
Ei

+
(
∂h

∂T

)
p

(
∂T

∂ρ

)
Ei

]
−
(
∂p

∂ρ

)
Ei
,

1 =
(
∂ρ

∂p

)
T

(
∂p

∂ρ

)
Ei

+
(
∂ρ

∂T

)
p

(
∂T

∂ρ

)
Ei
.
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Now an expression for the pressure derivative with respect to density ρ, again depending only
on known quantities from DEOS , can be formulated to

(
∂p

∂ρ

)
Ei

=
−h− ρ

( ∂h∂T )
p

( ∂ρ∂T )
p

ρ
(
∂h
∂p

)
T
− ρ

(
∂ρ
∂p

)
T
( ∂h∂T )

p

( ∂ρ∂T )
p

− 1

. (2.33)

In terms of common thermodynamic properties using the definition of the isothermal compress-
ibility χ = 1

ρ

(
∂ρ
∂p

)
T

, the isobaric heat capacity cp =
(
∂h
∂T

)
p
, the isobaric coefficient of expansion

β = −1
ρ

(
∂ρ
∂T

)
p
, and using the relation

(
∂h
∂p

)
T

= 1−Tβ
ρ (see [Schneider and Haas, 2004]), we can

rewrite the equations (2.32) and (2.33)(
∂p

∂Ei

)
ρ

=
β

Tβ2 + ρcpχ
, (2.34)

(
∂p

∂ρ

)
Ei

=
h− cp

β

Tβ − ρcpχ
β

. (2.35)

Thus we have (
∂P

∂ρ

)
M,E

=
βh− cp

Tβ2 − ρcpχ
− M2

2ρ2

β

Tβ2 + ρcpχ
, (2.36)

(
∂P

∂E

)
ρ,M

=
β

Tβ2 + ρcpχ
, (2.37)

(
∂P

∂M

)
ρ,E

= −M
ρ

β

Tβ2 + ρcpχ
(2.38)

2.2.3 Numerical Methods

One-dimensional Finite Volume Method

The following concepts for solving conservation laws in one spatial direction are covered in the
literature, see for example [LeVeque, 2004] or [Toro, 2009].
The finite volume method is based on dividing the region of interest into intervals (the ”finite
volumes” or so called ”grid cells”, or ”cells”) and is also based on approximating the integral of
the state vector q = ~q over each of those cells. The intervals Ci have a constant length ∆x, a
midpoint xi and can be denoted by

Ci = (xi− 1
2
, xi+ 1

2
) (2.39)

where the cell boundary on the left side is located at xi− 1
2

= 1
2(xi + xi−1) and on the right side

at xi+ 1
2

= 1
2(xi + xi+1), as shown in Figure 2.3. The value Qni approximates the average value
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Figure 2.3: Subdivision of a pipe (blue) into k Cells with length dx and midpoint xi = 1...k
(black dots).

of the state vector over the ith interval at time tn:

Qni ≈
1

∆x

∫ x
i+1

2

x
i− 1

2

q(x, tn) dx ≡ 1
∆x

∫
Ci

q(x, tn) dx. (2.40)

Note that only uniform grids and pipes with no change in cross-section will be discussed here.
Integrating the differential form of the quasi one-dimensional Euler equation

∂

∂t
q +

∂

∂x
f(q) = 0 (2.41)

over the cell Ci and one time interval [xi− 1
2
, xi+ 1

2
]× [tn, tn+1] yields the integral formulation:

∫ x
i+1

2

x
i− 1

2

q(x, tn+1) dx−
∫ x

i+1
2

x
i− 1

2

q(x, tn) dx+
∫ tn+1

tn

f(q(xi+ 1
2
, t) dt−

∫ tn+1

tn

f(q(xi− 1
2
, t) dt = 0.

(2.42)
The state vector q and the analytical flux function f depend on spatial coordinate x and time
t. The first two terms in (2.42) represent the total fluxes of the state quantities across the
boundaries xi+ 1

2
and xi− 1

2
. The third and fourth terms correspond to the total change of state

quantities inside cell Ci during the time step ∆t = tn+1− tn. Therefore the system of equations
(2.42) states, that every gain or loss of state quantities inside the cell is due to the fluxes across
the boundaries. Implicitly the conservation of the state quantities within the whole region of
interest will be ensured. However in general we cannot evaluate the time integrals exactly, since
q(xi± 1

2
, t) varies with time along each edge of the cell, and we dont have the exact solution to

work with. To cope with this problem we use a numerical method of the form

Qn+1
i = Qni −

∆t
∆x

(Fn
i+ 1

2

− Fn
i− 1

2

) (2.43)

where Fi± 1
2

is some approximation to the average flux along the left and the right boundary of
the i-th cell respectively,

Fn
i− 1

2

≈ 1
∆t

∫ tn+1

tn

f(q(xi− 1
2
, t) dt. (2.44)
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Rearranging (2.43) we can express the change in state for each cell as

d Qi
dt

=
Qn+1
i −Qni

∆t
=
Fn
i+ 1

2

− Fn
i− 1

2

∆x
(2.45)

where the left hand side represents the change in time, which has been calculated using ordinary
differential equation solvers (ODE solvers) predefined in Matlab. These solvers can be found
in the Matlab manual or in [Shampine and Reichelt, 1997]. The right hand side has been
numerically evaluated using an approximation for the flux function Fi± 1

2
.

Roe’s Linearization

This method is well documented in the literature (see, e.g., [LeVeque, 2004]) and will only be
briefly outlined here.
The Roe approximate Riemann solver has been introduced by Phil Roe and is a Gudonov
type scheme based on a local linearization of the considered hyperbolic system of conservation
laws [Roe, 1981]. This method makes no assumption on the equation of state, and, in this
respect, is more flexible than the flux split methods [Guardone and Vigevano, 2001]. At every
cell boundary xi− 1

2
the associated Riemann problem is replaced by a linear Riemann problem

∂

∂t
q + Ân

i− 1
2

∂

∂x
q = 0 (2.46)

where the so called Roe-matrix Ân
i− 1

2

is chosen to be an approximation to f ′(q) valid in a neigh-
borhood of the data Qi−1 and Qi. Further the Roe-matrix has to satisfy following conditions:

� Conservation: Ân
i− 1

2

(qni − qni−1) = f(qni )− f(qni−1)

� Hyperbolicity: Ân
i− 1

2

has real eigenvalues λ̂p
i− 1

2

and a corresponding set of eigenvectors r̂p
i− 1

2

that form a basis of Rp

� Consistency: Ân
i− 1

2

(qni−1,q
n
i )→ J(q) = ∂f(q)

∂q when qni and qni−1 → q

with p = 3 for the Euler equations in one spatial dimension. The approximate Riemann solution
then consists of waves Wp proportional to the eigenvectors r̂p

i− 1
2

of Âi− 1
2
, propagating with

speeds sp
i− 1

2

= λ̂p
i− 1

2

given by the eigenvalues. The waves can be obtained by solving the linear
system

Qi −Qi−1 =
3∑
p=1

αp
i− 1

2

r̂p
i− 1

2

(2.47)
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for the coefficients αp
i− 1

2

and then setting Wp

i− 1
2

= αp
i− 1

2

r̂p
i− 1

2

.
To get the Roe-matrix, the conservation condition can be rewritten

0 1 0

−M̂2

ρ̂2
+ ∂

∂ρ̂ P̂ 2M̂ρ̂ + ∂
∂M̂

P̂ ∂
∂Ê
P̂

M̂
ρ̂

(
− Ê+P̂

ρ̂ + ∂
∂ρ̂ P̂

)
Ê+P̂
ρ̂ + M̂

ρ
∂
∂M̂

P̂ M̂
ρ̂

(
1 + ∂

∂Ê
P̂
)

 ρi − ρi−1

Mi −Mi−1

Ei − Ei−1

 =


Mi −Mi−1

M2
i
ρi

+ Pi −
M2
i−1

ρi−1
− Pi−1

(Ei+Pi)Mi

ρi
− (Ei−1+Pi−1)Mi−1

ρi−1


(2.48)

where expressions with ’ .̂ ’ denote Roe averaged quantities. Obviously the equation in the first
line of (2.48) is trivial, since no Roe averaged states appear in this equation. The derivatives
of the pressure function, which are derived in chapter 2.2.2, are now functions of Roe averaged
state variables p̂ and T̂ as well as the density ρ̂ = ρ(p̂, T̂ ) known from DEOS . Following Roe
we set the averaged velocity û = M̂

ρ̂ and the averaged total enthalpy Ĥ = Ê+p̂
ρ̂

M̂

ρ̂
=

Mi−1√
ρi−1

+ Mi√
ρi√

ρi−1 +
√
ρi

(2.49)

and

Ĥ =
√
ρi−1Hi−1 +

√
ρiHi√

ρi−1 +
√
ρi

=
Ei−1+pi−1

ρi−1
+ Ei+pi

ρi√
ρi−1 +

√
ρi

. (2.50)

It remains to determine ρ̂, and thus p̂ and T̂ . It turns out that the second and third equation
in (2.48) are satisfied if

∂P̂

∂ρ̂
(ρi − ρi−1) +

∂P̂

∂M̂
(Mi −Mi−1) +

∂P̂

∂Ê
(Ei − Ei−1) = pi − pi−1 (2.51)

holds, see [Guardone and Vigevano, 2001]. Inserting the expressions for the pressure derivatives
(2.25), (2.26), (2.27) and equation (2.49) for the averaged velocity turns the supplementary
equation into

∂p̂

∂ρ̂
(ρi − ρi−1) +

∂p̂

∂Êi
(Eii − Eii−1) = pi − pi−1, (2.52)

where Ei denotes the internal energy. The exact derivation of this equation can be found
here [Guardone and Vigevano, 2001]. If now one inserts the expressions (2.35) and (2.34) for the
pressure derivatives, the supplementary equation is depending on two averaged state quantities
p̂ and T̂ . These quantities define the Roe matrix for any pair of states Qi−1 and Qi. To find a
Roe Matrix, a second conditional equation is needed, what for the caloric equation of state is
used in the conditional form

h(p̂, T̂ ) = Ĥ − 1
2

(
M̂

ρ̂

)2

(2.53)
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Those two equations ((2.52),(2.53)) determine the averaged pressure p̂ and the averaged temper-
ature T̂ and thus the Roe matrix. To solve these equations, in order to get values of p̂ and T̂ , a
Levenberg-Marquardt algorithm has been used, which is a preimplemented function in Matlab,
that is described in the Matlab manual or in [Levenberg, 1944]. After the Roe matrix is found,
numerical evaluation of the associated eigenvalues λ̂p, eigenvectors r̂p, that are building up the
eigenbasis Ri− 1

2
, can be done and the numerical flux function

Fn
i− 1

2

=
1
2

(f(Qi−1) + f(Qi)) +
1
2

3∑
p=1

∣∣∣λ̂pi−1/2

∣∣∣Wp
i−1/2 (2.54)

can be evaluated. Note that this numerical flux function can be found in [LeVeque, 2004].

2.2.4 Source Terms

In order to take into account that heat can be transfered into and out of the fluid trough the
surface of the pipe, the governing equations have to be changed into

~qt + f(~q)x = Ψ, (2.55)

with the source term vector Ψ. This model of the pipe has no friction term included and also
heat transfer within the fluid is neglected. Only heat transfered through the surface of the pipe
is taken into account. Therefore the source term vector is defined by

Ψ =

 0
0

λh
d As(Text − T )

 , (2.56)

where d denotes the wall thickness of the pipe, λh describes the thermal conductivity of the pipe
material, As is the surface of one finite volume and Text is the temperature outside the pipe.
The time evolution of the approximate state vector Qn+1

i with source terms is

dQi
dt

=
Qn+1
i −Qni

∆t
=
Fn
i+ 1

2

− Fn
i− 1

2

∆x
+ Ψ. (2.57)

2.3 Volume

Here the conservation laws for mass and energy shall be discussed for an open thermodynamic
system like a fluid reservoir, where kinetic energies can be neglected. As boundary conditions
mass flow, into and out of the reservoir, and a change in size of the reservoir, which is the case
in pumps for example, are given. The volume shall calculate the inner parameters of the fluid
such as compressibility, enthaply, density and other fluid parameters resulting out of DEOS .
Therefore the time evolutions of pressure and temperature are searched.
Starting with the conservation of mass, the change in mass in the vessel equals an external mass
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flow, which is assumed to be a transient boundary condition

dm

dt
= ṁext =

∑
i

ṁi
ext, (2.58)

where i denotes the number of components that are connected to this vessel. Introducing the
specific volume v = 1

ρ the total mass m = ρV = V
v is a function of specific volume and total

volume, and then (2.58) can be rewrite as

dm

dt
=

1
v

(
dV

dt

)
ext

− V

v2

dv

dt
= ṁext, (2.59)

where quantities with the subindex ext denote boundary conditions. Now an equation for the
change in density can be formulated out of the conservation of mass

− 1
ρ2

dρ

dt
=
dv

dt
=

1
V

[
v

(
dV

dt

)
ext

− v2ṁext

]
(2.60)

The conservation of energy is expressed by the first law of thermodynamics

dE

dt
= Ẇ + Q̇+

∑
i

ṁi
exth

i
ext (2.61)

where E is the total energy, Ẇ the work done on the system, Q̇ heat added to the system and∑
i ṁ

i
exth

i
ext the sum of all enthalpy currents into or out of the system. Since in the vessel kinetic

energies are neglected, total energy equals the internal energy E = Ei(v, T ). Due to simplicity
it is assumed that work done on the system only refers to compression work

Ẇ = −pdV
dt
. (2.62)

Heat transfered through the boundary into the volume can be described through a linear, one
dimensional heat transfer. The volume is bounded by a wall with the surface area A and with
a wall thickness b and the thermal conductivity λ, so the heat transfered is proportional to the
temperature gradient between outside(To) and inside(Ti) the volume

Q̇ =
Aλ

b
(To − Ti). (2.63)

Note that in reciprocating compressors convective heat transfer may play an important role.
Since stationary vortices can cause high velocities inside the compressor more heat is transfered
over the surface (T. Müllner 2010, pers. comm.). Therefore in this model the thermal conduc-
tivity λ is an effective heat transfer coefficient, which can have higher values than the actual
thermal conductivity then for the supposed cladding material. Introducing the specific inner



CHAPTER 2. MATERIAL AND METHODS 18

energy e(v, T ) = Ei(v,T )
m equation (2.61) can be rewritten as

dE

dt
=
dEi

dt
=
dm

dt
e+m

de

dt
(2.64)

Inserting equation (2.58) and decomposing the differential of the specific internal energy e it
follows

(
∑
i

ṁi
ext)e+m

[(
∂e

∂T

)
v

dT

dt
+
(
∂e

∂v

)
T

dv

dt

]
= −pdV

dt
+
Aλ

b
(To − T ) +

∑
i

ṁi
exth

i
ext (2.65)

From Gibbs fundamental equation

ds =
1
T

(
∂e

∂T

)
v

dT +
1
T

[(
∂e

∂v

)
T

+ p

]
dv, (2.66)

the expression for the partial derivative of the specific internal energy e with respect to the
specific volume v (

∂e

∂v

)
T

= (T
(
∂s

∂v

)
T

− p) (2.67)

can be developed for constant temperatures. The expression in the bracket in equation (2.65)
can then be simplified into(

∂e

∂T

)
v

dT

dt
+
(
∂e

∂v

)
T

dv

dt
= cv

dT

dt
+ (T

(
∂s

∂v

)
T

− p)dv
dt

(2.68)

where cv =
(
∂e
∂T

)
v

describes the isochoric heat capacity. Using the Maxwell relation
(
∂s
∂v

)
T

=(
∂p
∂T

)
v

we can solve for transient temperature change

dT

dt
= − 1

cv

[
(T
(
∂p

∂T

)
v

− p)dv
dt

+
1
m

(
p
dV

dt
− Aλ

b
(To − T )− (

∑
i

ṁi
exth

i
ext) + (

∑
i

ṁi
ext)e

)]
(2.69)

which only depends on quantities known from DEOS , because of
(
∂p
∂T

)
v

= βp
χT

and cv = cp−
Tβ2

p

χT ρ

(see [Schneider and Haas, 2004]). Both, time evolution of the density and time evolution of the
temperature, are then evaluated using the Matlab ODE solvers [Shampine and Reichelt, 1997].

2.4 Throttle

Here the influence of a thin orifice plate on the fluid flow is discussed. We will calculate the mass
flow depending on the pressure difference between both sides of the throttle, and also calculate
the change in temperature of the fluid after passing the throttle. The key parameter for this
device is a ratio of the diameters between the diameter of the obstruction D2,where the flow is
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forced through, and the diameter of the inlet and discharge pipe D as can be seen in Figure 2.4

γ =
D2

D
. (2.70)

After the flow passed the obstruction, the actual cross section, that conveys mass, is contracted
to the diameter D2 < d [White, 2006], see Figure 2.4. Starting with the mass balance

D2π

4
u1ρ =

D2
2π

4
u2ρ, (2.71)

where u1 and u2 are an averaged velocity before and after the obstruction.Using Bernoulli’s law

p1 +
ρu2

1

2
= p2 +

ρu2
2

2
, (2.72)

the mass flow can be calculated to

ṁ =
D2

2π

4

√√√√2ρ(p1 − p2)

(1− D4
2

D4 )
(2.73)

Note that all considerations in this section assume an incompressible fluid without friction,
which is not accurate for real applications. Therefore equation (2.73) has to be modified. Also
equation (2.73) can only deliver results for p1 > p2, because of the root function, what has to
be changed in order to function omnidirectional. Using the sign function sgn and introducing
the friction coefficient Cd, the mass flow equation (2.73) can be changed into

ṁ = sgn(p1 − p2)
d2π

4
Cd

√
2ρ(|p1 − p2|)

(1− γ4)
(2.74)

Note that due to simplify the model, the diameter of the obstruction d and the diameter of
the contracted vein are assumed to be equal d = D2. The friction coefficient Cd = Cd(γ,Re)
depends on the diameter ratio as well as on the Reynolds number (Re = u1D

ν ), with kinematic
viscosity ν). The following curve fit for approximating the friction coefficient for thin orifice
plates is used

Cd(γ,Re) = 0.5959 + 0.0312γ2.1 − 0.184γ8 + 91.71γ2.5Re−0.75, (2.75)

which can be found in [White, 2006].
Now also the change in temperature shall get determined by the pressure difference ∆p = p1−p2.
We assume that the specific enthaply does not change while the fulid passes through the throttle.
This assumption is valid if heat exchange with the surroundings is neglected, the kinetic energy
of the fluid does not change and no work is done on the fluid. Starting with Gibbs fundamental
equation

dh = Tds+ vdp = 0 (2.76)
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Figure 2.4: Schematic velocity and schematic pressure change trough a generalized Bernoulli
obstruction meter

the entropy differential can be reformulated due to the assumption s = s(p, T ), so that

0 = T

(
∂s

∂T

)
p

dT +
[
v + T

(
∂s

∂p

)
T

]
dp. (2.77)

Inserting the definition of the specific heat capacity cp = T
(
∂s
∂T

)
p

=
(
∂h
∂T

)
p

follows

0 = cpdT +
[
v + T

(
∂s

∂p

)
T

]
dp. (2.78)

Now using the Maxwell Relation
(
∂s
∂p

)
T

= −
(
∂v
∂T

)
p

and introducing the linear expansion coeffi-

cient βp = 1
v

(
∂v
∂T

)
p

yields (
∂T

∂p

)
h

=
v(Tβp − 1)

cp
, (2.79)

an expression for the Joule-Thomson coefficient
(
∂T
∂p

)
h
, depending on DEOS . The Joule-

Thompson coefficient can have a negative or positive sign, or equals zero for an ideal gas. For
diesel however it turns out that the Joule-Thompson coefficient is negative. Thus during throt-
tling of diesel the temperature increases. For solving the temperature progression the equation
(2.78) can be reformulated

(Tβp − 1)−1dT =
v

cp
dp. (2.80)
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Introducing the auxiliary function χ = Tβp − 1 and inserting the differential β−1
p dχ = dT this

can be transformed into
1
βp

dχ

χ
=

v

cp
dp, (2.81)

and after integrating both sides

χ2 = exp
(
vβp
cp

(p2 − p1)
)
χ1 (2.82)

and reinserting the expression for χ, follows the solution for the temperature of the fluid after
it passed the throttle T2:

T2 =
exp

(
vβp
cp

(p2 − p1)
)

(T1βp − 1) + 1

βp
, (2.83)

where T1 is the temperature of the fluid at the intake of the throttle.

2.5 Boundary conditions

In order to create a physical model of a hydrodynamic network containing pipes, volumes and
throttles, the single components have to exchange information. This section is on the infor-
mations the single components need as input for setting boundary conditions, and also on the
informations the single components give back to other components.
The pipe simulates the flow in a straight pipe without cross section changes. Therefore it can
be connected to two other components, one at the left and one at the right end of the pipe.
Two different versions of the pipe have been implemented. One implementation only needs the
pressure and temperature from both connected components, because the momentum is assumed
to have a vanishing gradient using ghost cells [LeVeque, 2004]. This implementation is for con-
necting the pipe with volumes. On each side of the pipe it is analyzed if the fluid is flowing into
the pipe or out of the pipe. As an outflow boundary condition the pressure in the cell next to the
volume is set to the same value as prevailing in the connected volume. As an inflow boundary
condition the pressure and the temperature in the cell next to the volume has to satisfy the
following conditions. Due to the conservation of energy the first condition can be written as

h(pc, Tc) +
u2

2
= h(pV , TV ), (2.84)

with pressure and temperature in the cell indicated by subindex c, in the connected volume
by subindex V and with the velocity u in the cell. Since no friction or heat transfer is taken
into account the inflow is assumed to be isentropic (ds = 0). According to Gibbs fundamental
equation

ds =
cp
T
dT −

(
∂v

∂T

)
p

dp, (2.85)
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see [Schneider and Haas, 2004], the second condition can be rewritten as∫ Tc

TV

cp(p, T ′)dT ′ +
∫ pc

pV

T
β(p′, T )
ρ(p′, T )

dp′ = 0. (2.86)

The other implementation of the pipe needs the pressure, the temperature and the mass flow at
both ends. Here these informations determine the state vector at the left and right end of the
pipe completely. The outside temperature, the wall thickness and the heat conductivity of the
pipe material also have to be set. In order to provide boundary conditions for the connected
components the informations on pressure, temperature and mass flow are given back from next
to the first and next to the last cell of the pipe.
The throttle needs the information on pressure from both connected components, from which
it calculates the mass flow and the temperature change in the flow. Therefore it also needs the
temperature from the incoming flow, which will be indicated by subindex l, assuming that the
fluid is flowing from the left side to the right side. The throttle gives back the information on
mass flow at both sides and temperature on the right side (in flow direction).
The volume can connect to any number of surrounding components. The volume needs infor-
mation on mass flows and enthalpy flows ḣ = ṁh(p, T ) from every connected component and
returns information on pressure and temperature inside the volume. Also the change in volume
with time d Vext

dt = ∂V
∂t is needed as a boundary condition.

The following table gives an overview over the committed quantities.

Components Input Output
Pipe pl,r, Tl,r, (ṁl,r) pl,r, Tl,r (ṁl,r)
Throttle pl,r, TL ṁl,r, Tr
Volume pn, Tn, ṁn pn,Tn

Table 2.1: Summary of obtained and emitted information by the single components at each time
step



Chapter 3

Numerical Results

In this chapter the following numerical tests on DEOS , on single components and on combina-
tions of components are discussed:

� values for the speed of sound calculated from DEOS have been compared to literature
data,

� the pipe has been tested by a shock tube test according to [Sod, 1978],

� the influence of a periodical change in size of a volume on temperature and pressure are
shown,

� two volumes with different initial pressures have been connected via a throttle until pres-
sure equilibrium is attained,

� two volumes with different initial pressures have been connected via a pipe leading to a
balancing action.

3.1 Speed of sound

Since DEOS are the basis for every further calculation, they have been tested first. The isen-

tropic speed of sound c =
√(

∂ρ
∂p

)
s

is part of the Eigenvalues from the Jacobian of the flux

function, see appendix I. Thus values for the speed of sound resulting from DEOS have been
compared to values of the speed of sound according to equation (3.1)(see [Kolev, 2007]) in table
3.1

c =
3∑
i=1

5∑
j=1

Bij

(
p

pref

)j−1( T

Tref

)i−1

cref , (3.1)

23
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with the pressure pref = 1 Pa, the temperature Tref = 1 K, the velocity cref = 1 m
s defining the

system of units and with the dimensionless coefficient matrix Bij :

B =

2226.4926 2.27318 10−6 2.75574 10−15 3.41172 10−22 −1.74367 10−30

−2.68172 3.79909 10−9 −8.17983 10−17 −1.65536 10−24 9.50961 10−33

−0.00103 1.77949 10−11 6.4506 10−20 2.19744 10−27 −1.29278 10−35

 .

While for high pressures and high temperatures the values from both approximations are in
good agreement, the lower pressure and lower temperature regions show notable differences.
The largest deviation of values calculated using DEOS from Kolev’s approximations is 18.39%,
for the case of pressure p = 1 bar and temperature t = 380 K.

Pressure [bar] Temperature [K] Kolev’s speed of sound [ms ] DEOS speed of sound [ms ]
2000 380 1796.2 1793.9
2000 290 1965.2 1989.2
1000 380 1527.0 1373.8
1000 290 1732.5 1726.2
500 380 1329.2 1300.2
500 290 1572.2 1655.4
1 380 1059.3 1298.1
1 290 1362.7 1621.3

Table 3.1: Comparison of values of velocity of sound calculated with (3.1) on the one hand, and
calculated by the eigenvalues of (2.21) using DEOS on the other.

3.2 Shock Tube

The pipe has been tested with one of the standard tests in fluid dynamics, the shock tube (see
references [Sod, 1978], [LeVeque, 2004], [Toro, 2009], [Guardone and Vigevano, 2001]). Initially
the fluid has two different thermodynamical states on either side of an interface, which is lo-
cated in the middle of the pipe. The initial state of the fluid is specified by pl = 1000 bar on
the left side of the interface and pr = 100 bar on the right side. The fluid is assumed to be
initially at rest and the fluid in the whole pipe has a temperature of T = 290 K. Therefore the
density is different in the left and the right side of the interface (see Figure 3.1). The physical
properties of the cladding pipe are given by the length of l = 1 m, the diameter of d = 0.01
m, a wall-thickness of dw = 0.002 m and a thermal conductivity of λh = 45 W

m K similar to the
thermal conductivity of stainless steal. The external temperature is assumed to have a fixed
value of Text = 290 K. When this interface is removed, the fluid evolves in such a way that four
states appear. Shortly after the removal these waves are not fully developed yet, but one can
see the velocity of the fluid growing up to a certain value, depending amongst others on the
pressure difference between both sides. Also the temperature increases on the right side, where
the pressure increases, and temperature decreases on the left side where the pressure decreases,
see figure 3.2. After 0.075 milliseconds the density shows a division into four different states,
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Figure 3.1: Initial conditions for the tested Shock Tube at t = 0 s. From the upper left to the
lower right diagram there is shown the density, velocity, pressure and temperature over the length
of the pipe, which is discretized by 1000 grid cells.

see figure 3.3. Each state is separated by one of three elementary waves. Starting from the left
the rarefaction wave (often called rarefaction fan) separates the high density level from an inter-
mediate level. Then the contact discontinuity divides the intermediate density region into two
regions with slightly different densities. Then the shock wave separates the intermediate region
from the low density region. While the rarefaction wave and the shock wave propagate with the
speed of sound the contact discontinuity propagates with the velocity of the fluid. After 0.225
milliseconds the rarefaction fan and the shock wave have almost reached the ends of the pipe,
see 3.4. To avoid influences from the boundary conditions the simulated time interval ended at
this time. The time evolution of the fluid in the pipe, which was discretized using 1000 grid cells
and a Courant Friedrichs Lewy -condition1 of CFL = 0.1, can be found in a sequence of four
figures 3.1, 3.2, 3.3, 3.4.
To calculate the transient solution to the shock tube problem, one of several solvers for ordi-

nary differential equations (ode’s) available in Matlab Simulink, had to be used for evaluating
the change of the state vector Q over time (see (2.45). The ode solvers are named after the

1a necessary condition for convergence while solving certain partial differential equations numerically, see [Toro,
2009], [LeVeque, 2004]
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Figure 3.2: Solution for the shock tube at the time T = 1.5 10−6 s after removal of interface.
From the upper left to the lower right diagram, density, velocity, pressure and temperature are
shown over the length of the pipe.

Figure 3.3: Solution for the shock tube at the time T = 7.5 10−5 s after removal of interface.From
the upper left to the lower right diagram, density, velocity, pressure and temperature are shown
over the length of the pipe.
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Figure 3.4: Solution for the shock tube at the time T = 2.25 10−4 s after removal of interface.From
the upper left to the lower right diagram, density, velocity, pressure and temperature are shown
over the length of the pipe.

accuracy of the method. The available solvers using fixed timesteps are: ode1 (Euler’s Method),
ode2 (Heun’s Method), ode3 (Bogacki-Shampine Formula), ode4 (Fourth-Order Runge-Kutta
Formula) and ode5 (Dormand-Prince Formula). Literature on these solvers can be found in the
Matlab manual or in [Shampine and Reichelt, 1997]. In order to rate which of these solvers is
the best choice for this problem, the CPU time and the quality of the results are taken into
account. Table 3.2 and Figure 3.5 show that solvers with low accuracies are sufficient accurate
for this problem, because the results from the different solvers can hardly be distinguished, but
the CPU time is significantly less for lower accurate solvers. Note that this evaluation only refers
to simulation of the pipe alone, and not for systems containing other components.

Solver Method Order of accuracy CPU time [min]
ode1 Euler 1 0.13144
ode2 Heun 2 0.22274
ode3 Bogacki - Shampine 3 0.30767
ode4 Runge - Kutta 4 0.39036
ode5 Dormand - Prince 5 0.56155

Table 3.2: CPU time of is shown for the shock tube with 200 grid cells and a fixed solver timestep
of∆t = 7.5 10−7. From the upper left to the lower right diagram, density, velocity, pressure and
temperature are shown over the length of the pipe.

In order to dissolve shock and rarefaction waves, the amount of grid cells, used in the pipe,
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Figure 3.5: Results for shock tube with 200 grid cells, using different solvers in Matlab Simulink,
at physical time T = 1.5 10−4 seconds after release are shown. From the upper left to the lower
right diagram, density, velocity, pressure and temperature are shown over the length of the pipe.

is of great importance. On the one hand the CPU time grows fast for an increasing number of
grid cells (see Table 3.3). On the other hand, low numbers of grid cells lead to degeneration of
the shock and rarefaction wave as well as degeneration of the contact discontinuity. The waves
start to smear out as can be seen in Figure 3.6.

Amount of Cells Used Timestep ∆t CPU time [min]
50 2.4 10−6 0.048717
100 1.2 10−6 0.074207
200 6 10−7 0.15761
500 3 10−7 0.6206
1000 1.5 10−7 2.35630

Table 3.3: Influence of amount of grid cells on CPU time

3.3 Compressor

Here the volume has been tested by simulating the fluid in a cylinder, which gets compressed
and diluted by a piston, that moves periodically with a frequency of f = 50 Hz. The ratio
between the minimum and maximum size of the volume Vmin

Vmax
= 96 % and the minimum size of
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Figure 3.6: Results for shock tube test using different amounts of grid cells, and using the ’ode4’
solver, are presented at physical time of T = 1.2 10−4 s after release. From the upper left to the
lower right diagram, density, velocity, pressure and temperature are shown over the length of the
pipe.

the volume of Vmin = 0.001 m3. Thus the pressure raises from pmin = 156 bar up to pmax = 2148
bar during compression. The temperature raises from Tmin = 303 K up to Tmax = 321 K during
the phase of compression.

3.4 Volume- Throttle- Volume

Similar to the shock tube test, this test is also about two different initial states, that lead to
a transient action of the fluid. But here two volumes of the same size V1 = V2 = 0.001 m3

have different initial pressures (p1 = 2000 bar and p2 = 150 bar) and since they have the same
temperatures (T ini1 = T ini2 = 313.15 K) they also have different densities. The two volumes
are connected via a throttle with an obstruction diameter of d = 0.01 m. Due to the pressure
difference between both sides of the throttle, fluid is forced through the obstruction until the
pressure in both volumes is balanced. The time dependent behavior of the fluid in the two
volumes and in the throttle is shown in figure 3.8. For the described settings, pressure balance
is reached shortly after 0.01 seconds. Note that the increase of fluid temperature in the second
volume is not only a result of the raising pressure in this volume, but also because the diesel
fuel heats up while passing the throttle.
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Figure 3.7: Pressure and temperature of the fluid in a cylinder with a moving piston are shown
over a time interval of ∆t = 0.1 s. The piston compresses and dilutes the fluid in a periodical way,
with a frequency of f = 50 Hz.

3.5 Volume- Pipe- Volume

In this test again two volumes of the same size with different initial pressures, that are connected
via a pipe, are analyzed. A similar test for one-dimensional unsteady flow procedures can be
found in [Davis and Campbell, 2007]. The size of the volumes has been V1 = V2 = 0.001 m3 and
the initial pressures for this test have been p1 = 1250 bar and p2 = 750 bar. The pipe, which
is discretized into 50 grid cells, has been l = 0.1 m long with an inner diameter of d = 0.01 m.
The cladding material is assumed to be a stainless steel with a wall thickness of dw = 0.002 m
and a thermal conductivity of λh = 45 W

m K . The system is assumed to be initially in thermal
equilibrium with the surrounding heat bath T1 = T2 = Text = 313.15 K, where the subindices
1 and 2 denote the temperatures in the volumes. The pressure difference between the volumes
forces the fluid through the pipe. The quality of the transient action that occurs from these
initial conditions is different to the previous test. Instead of clearing the initial pressure difference
without any oscillations, now an oscillating state appears, seen figure 3.9. The frequency of the
oscillation, which lies around f ≈ 600 Hz, is much lower than the frequency of waves traveling
through the pipe, which would lie around fwaves ≈ 18000 Hz. The oscillation is not perpetual
but slowly fading away until pressure balance is reached. The decay time of the oscillation is
estimated from the change in amplitude to lie between one and two seconds.
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Figure 3.8: Balancing process of two vessels with different starting pressures (p1 = 2000 bar,
p2 = 150 bar) and equal temperature(T1 = T2 = 313.15 K), that are connected through a throttle
with an obstruction diameter of d = 0.01 m. In the upper left and upper right diagram the pressure
and the temperature in both volumes is shown. In the lower left diagram the temperature of the
fluid into and out of the throttle can be found. In the lower right diagram the current mass flow
on the one hand, and the total mass transported through the throttle on the other hand, can be
seen.
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Figure 3.9: Oscillation of fluid parameters due to a initial value problem for two vessels connected
via one pipe is shown. The transient development of the pressure and the temperature inside the
vessels are shown in the upper left and upper right diagram. In the lower left diagram the change
in velocity at both ends of the pipe over time can be seen. The lower right diagram shows that
the mass in both vessels is oscillating.
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Discussion

The goal of this work was to create a simulation tool for analyzing fuel injection systems within
Diesel engines. A fuel injection system can be seen as a hydrodynamic network out of pipes,
throttles and volumes. Therefore these three components have been discussed and have been
tested in different numerical tests. Also equations of state for liquid Diesel fuel have been pre-
sented, valid in a range from 1 bar up to 2500 bar in pressure and from 263.15 K up to 393.15
K in temperature.
The equations of state have been derived from measurements of the density ρ = ρ(p, T ) as a
function of pressure p and temperature T and from measurements of the isobaric heat capacity
c0p(T ) = cp(p0, T )as a function of temperature T at a fixed pressure p0. It is possible to use other
thermodynamic properties to derive a consistent pair of state equations. We tried to derive a
pair of state equations from the density ρ = ρ(p, T ) and the speed of sound c0(T ) = c(p0, T ) as a
function of temperature and with a fixed pressure, but the resulting values for the isobaric heat
capacity turned out to differ with literature data. So we chose to use the density and the isobaric
heat capacity, what turned out to deliver useful results. The velocity of sound resulting from
this state equation is in good agreement with the approximation from the book [Kolev, 2007]
for high pressures and high temperatures. The deviations in the lower pressure regions were
accepted in order to stick with a inherently consistent equation of state, which is not available
in Kolev’s book [Kolev, 2007].
It was necessary to have a consistent state equation for using Roe’s method to solve the Euler
equations. Thus the flow in the pipe was assumed to be quasi one dimensional and inviscid, due
to typically low velocities that occur in fuel injection systems. For the linearization procedure of
Roe [Roe, 1981] an intermediate pressure p̂ and an intermediate temperature T̂ have to be found,
which satisfy the conditions (2.52) and (2.53). Those conditions have been deduced assuming a
pressure function p = p(Ei, ρ) depending on the total internal energy Ei and on the density ρ,
according to [Guardone and Vigevano, 2001]. The Euler equations have been extended with a
source term. Considering that the pipe is connected to a heat bath, the temperature of the fluid
can change because of heat conduction through the wall of the pipe. In the numerical results
however, this effect was not of importance, because of the short time scales in the tests of only
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up to 5 ms. In the shocktube test an analysis of the influence of grid cells has been performed,
showing that waves tend to smear out according to the number of cells used, see figure 3.6.
Since computational time raises with the number of cells (see table 3.3), it is up to the user
of the simulation tool to decide, weather the high accurate but slow model is better than the
low accurate fast one, or not. The test of the two volumes connected via a pipe has shown
an oscillation in thermodynamic properties in both volumes. This oscillation only slowly fades
away. Since no heat conduction inside the fluid is taken into account, the resulting state in the
volumes have different temperatures. In order to improve the pipe heat conduction and friction
should be added to the model. Therefore the source term vector (2.56) has to be changed. A
further improvement of the pipe to take changes in cross section into account, would also be
useful for may applications.
The whole simulation tool was implemented in Matlab Simulink 2008b. To reduce simulation
time all embedded Matlab functions used in the Simulink model should be replaced by pre-
implemented Simulink blocks.
Since the main interest of this work was to analyze the temperature behavior of liquid Diesel
fuel, it is highly recommended to validate not only the equations of state but also the assumed
physical behavior of the fluid in the single components by experiments measuring the tempera-
ture of the fluid. Due to the Joule-Thompson coefficient the Diesel fuel heats up, while passing
a throttle, depending on the pressure drop. Since in the injector the pressure of the fluid drops
from 2000 bar to ∼ 150 bar, the change in temperature can be up to temperatures where Diesel
starts to evaporate (Diesel starts to evaporate at temperature of T = 390K [Kolev, 2007]), see
figure 3.8.
The numerical results indicate that the presented methods are capable to simulate the flow of liq-
uid Diesel fuel in Diesel injection systems, but experimental validation is highly recommended.
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Jacobian of the Euler flux function

In this section we want to analyze the Jacobian of the flux function from the Euler equations
using a general equation of state. The only restriction for this general state equation is, that
the described media is a pure substance. As mentioned before pure substances can be defined
by two independent state variables [Schneider and Haas, 2004].
The Euler equations in conserved form can be written as

~qt + f(~q)x = 0, (1)

using the state vector ~q of conserved variables, or more precisely the Euler equations can be
written as

∂

∂t

 ρM
E

+
∂

∂x

 M
M2

ρ + p
(E+p)M

ρ

 = 0. (2)

The Jacobian J = ∂f
∂qi

of the flux function f(~q) denotes to

J =

 0 1 0
−M2

ρ2
+ ∂p

∂ρ 2Mρ + ∂p
∂M

∂p
∂E

−(E+p)M
ρ2

+ M
ρ
∂p
∂ρ

E+p
ρ + M

ρ
∂p
∂M

M
ρ (1 + ∂p

∂E )

 . (3)

The Euler equations can be transformed to new coordinates Q(new) = (ρ,M, S), where S = ρs

is the entropy. In the case of flow without friction or heat conduction, this flow is considered to
be isentropic, and the Euler equations can be rewritten as

∂

∂t

 ρM
S

+
∂

∂x

 M
M2

ρ + p

SMρ

 = 0 (4)

(see [Steinrück, 2008]). Now the equation of state for pressure p = P (ρ, s) = P (ρ, S 1
ρ) has to be

inserted and in the course of that the velocity of sound gets introduced

c2 =
(
∂P

∂ρ

)
S

. (5)

The specific entropy can be written as

s = S
1
ρ

= s(ρ, e) = s(ρ,
E

ρ
− M2

2ρ2
), (6)
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due to the basic assumptions for the general state equation. Therefore the derivatives of the
pressure function can be calculated to(

∂P

∂ρ

)
S

=
(
∂P

∂ρ

)
S

−
(
∂P

∂s

)
ρ

S

ρ2
= c2 −

(
∂P

∂s

)
ρ

S

ρ2
, (7)

and (
∂P

∂S

)
ρ

=
(
∂P

∂s

)
ρ

1
ρ
. (8)

The Jacobian J (S) of the flux function in the new coordinates denotes to

J (S) =


0 1 0

−M2

ρ2
+ c2 − S

ρ2

(
∂P
∂s

)
ρ

2Mρ
(
∂P
∂s

)
ρ

1
ρ

−SM
ρ2

S
ρ

M
ρ

 . (9)

Inserting an expression for the velocity u = M
ρ and using an expression for

(
∂P
∂s

)
ρ

= ρc2

cp
Tβ

(see [Schneider and Haas, 2004]) the Jacobian get the form

J (S) =

 0 1 0
−u2 + c2(1− Tβs

cp
) 2u c2Tβ

cp

−su s u

 . (10)

Now the Jacobian gets transformed back into the conserved system Q = Q(ρ,M,E) using the
transformation matrix TM = ∂Q(ρ,M,S)

∂Q(ρ,M,E)

TM =

 1 0 0
0 1 0
∂S
∂ρ

∂S
∂M

∂S
∂E

 (11)

Due to the chain rule for differentiation the derivations of the entropy with respect to the
conserved variables can be calculated using the definition (6):

∂S

∂ρ
= s+ ρ

(
∂s

∂ρ

)
e

+ ρ

(
∂s

∂e

)
ρ

(
−E
ρ2

+
M2

ρ3

)
, (12)

∂S

∂M
= ρ

(
∂s

∂e

)
ρ

(
−M
ρ2

)
, (13)

∂S

∂E
=
(
∂s

∂e

)
ρ

. (14)

Using the Maxwell relations (
∂s

∂e

)
ρ

=
1
T

(15)
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and (
∂s

∂ρ

)
e

= − p

Tρ2
, (16)

we can rewrite the transformation matrix

TM =

 1 0 0
0 1 0

s− 1
T (h− u

2 ) − u
T

1
T

 (17)

with it’s inverse T−1

TM−1 =

 1 0 0
0 1 0

h− sT − u
2 u T

 (18)

Now the transformation of the Jacobian Matrix from entropy system back to conserved system
can written as

J (E) = TM−1J (S)TM =


0 1 0

−2cpu2+c2(2cp+β(−2h+u2))
2cp

(2− βc2

cp
)u βc2

cp
u(−cp(2h+u2)+c2(2cp+β(−2h+u2)))

2cp
h+ (−2βc2+cp)u2

2cp
u+ uβc

2

cp

 (19)

Similar to the Eigenvalues for an ideal gas the Eigenvalues for a general equation of state (λi)
turn out to be

λ1 = u− c, λ2 = u, λ3 = u+ c (20)

with their associated Eigenvectors ri

r1 =

 1
u− c
H − cu

 , r2 =

 1
u

H − cp
β

 , r3 =

 1
u+ c

H + cu

 (21)

To proof this statement thermodynamic properties of an ideal gas can be inserted into (21). For
an ideal gas the isothermal expansion coefficient is

β =
1
T

(22)

and the specific entropy can be written as

h = cp T = H − u2

2
(23)
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Therefore the eigenvector r2, which is the only one differing from the eigenvectors of an ideal
gas,

r2 =

 1
u

H − cp
β

 =

 1
u
u2

2

 (24)

turns out to be the same as for an ideal gas, see [LeVeque, 2004].
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fahrzeuge. MTZ, 70:368–375.

[Levenberg, 1944] Levenberg, K. (1944). A method for the solution of certain problems in least
squares. Quart. Appl. Math., 2:164–168.

[LeVeque, 2004] LeVeque, R. J. (2004). Finite Volume Methods for Hyperbolic Problems. Cam-
bridge University Press.

[Mollenhauer, 2002] Mollenhauer, K. (2002). Handbuch Dieselmotoren. Springer.

[Parche, 2010] Parche, M. e. a. (2010). Bosch 2000/2200 bar common rail systems for commercial
vehicles. 31. internationales wiener motorensymposium, Robert Bosch GmbH, Stuttgart.

40



BIBLIOGRAPHY 41

[Predelli, 2010] Predelli, O. e. a. (2010). Continuous injection rate-shaping for passenger-car
diesel engines - potential, limits and feasibility. 31. internationales wiener motorensymposium,
Ingenieurgesellschaft Auto und Verkehr GmbH, Berlin.

[Roe, 1981] Roe, P. (1981). Approximate riemann solvers, parameter vectors and difference
schemes. J. Comput. Phys., 43:357–372.

[Schneider and Haas, 2004] Schneider, W. and Haas, S. (2004). Repetitorium Thermodynamik.
R. Oldenbourg, Wien - München.

[Shampine and Reichelt, 1997] Shampine, L. and Reichelt, M. (1997). The matlab ode suite.
SIAM J. Sci. Comput., 18(1):1–22.

[Sod, 1978] Sod, G. (1978). A survey of several finite difference methods for systems of nonlinear
hyperbolic conservation laws. J. Comput. Phys., 27:1–31.

[Steinrück, 2008] Steinrück, H. (2008). Skriptum: Wärmeübertragung. TU Wien.
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