
Exact Garbage Collection for the
Cacao Virtual Machine

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Michael Starzinger
Matrikelnummer 0306126

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall

Wien, 22.06.2011
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Exact Garbage Collection for the
Cacao Virtual Machine

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering & Internet Computing

by

Michael Starzinger
Registration Number 0306126

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall

Vienna, 22.06.2011
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Michael Starzinger
Bacherplatz 7/3, A-1050 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
(einschließlich Tabellen, Karten und Abbildungen), die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

Wien, 22.06.2011

(Unterschrift Verfasser)

i

Abstract

Every virtual machine capable of executing Java byte-code needs to perform some sort of au-
tomatic memory management, commonly referred to as garbage collection. However, it is not
specified how this garbage collection process actually has to be performed. So far the Cacao
Virtual Machine (CacaoVM) used a conservative garbage collector that was designed for unco-
operative environments, thus it has been unable to take full advantage of the information already
present in the runtime infrastructure. This conservative garbage collector was replaced by an
exact one, which has been tailored to the specific needs of a Java Runtime Environment.

In the context of Java several different components of the virtual machine need to be orches-
trated for exact garbage collection to work. The application threads act as mutators on the heap
and need to be prevented from interfering with the collector. Another central aspect is identi-
fying the actual references which point into the heap and prevent objects from being collected.
These references are referred to as the root-set and keep objects alive. The actual collection
algorithms are in charge of cleaning up dead objects and reorganizing the heap, so that free
memory is made available again. Those algorithms have already been researched in depth over
the past decades, exhibiting vastly different characteristics.

All of the above aspects need to be considered from the perspective of a pure Just-In-Time
compilation approach as taken by CacaoVM. Some crucial simplifications, which rely on fall-
backs into an unoptimized interpreter mode, cannot be applied and need to be revisited in this
setting. Special care was taken to allow future development towards a generational garbage
collection approach by providing the necessary infrastructure.

iii

Kurzfassung

Jede abstrakte Maschine, die Java Bytecode ausführen kann, muss eine gewisse Art der auto-
matischen Speicherverwaltung durchführen, welche als Speicherbereinigung bezeichnet wird.
Jedoch ist nicht spezifiziert wie genau diese Speicherbereinigung umgesetzt werden muss. Bis-
her hat die Cacao Virtual Machine (CacaoVM) eine konservative Speicherbereinigung, welche
für nichtkooperative Umgebungen entwickelt wurde, verwendet und konnte daher Informationen
aus der Laufzeitumgebung nicht voll ausnutzen. Dieser konservative Ansatz wurde durch einen
exakten abgelöst, der auf die speziellen Bedürfnisse einer Java Laufzeitumgebung zugeschnitten
werden konnte.

Im Zusammenhang mit Java müssen diverse Komponenten der abstrakten Maschine auf-
einander abgestimmt werden, damit exakte Speicherbereinigung funktionieren kann. Alle Aus-
führungsstränge einer Anwendung agieren als Zugriffsmethoden auf den Speicher und müssen
davon abgehalten werden die Speicherbereinigung negativ zu beeinflussen. Ein weiterer zentra-
ler Punkt ist das Auffinden von Referenzen, die in den Speicher zeigen und Objekte vor einer
Bereinigung bewahren. Diese Referenzen werden als Wurzelmenge bezeichnet und halten Ob-
jekte am Leben. Die eigentlichen Algorithmen zur Bereinigung müssen tote Objekte aufsammeln
und den Speicher so umstrukturieren, dass freie Speicherbereiche wieder zur Verfügung stehen.
Diese Algorithmen wurden in den letzten Jahrzehnten tiefgreifend erforscht und weisen extrem
unterschiedliche Eigenschaften auf.

Alle zuvor angesprochenen Aspekte müssen aus dem Blickwinkel einer puren Just-in-time-
Übersetzung, wie sie von CacaoVM durchgeführt wird, betrachtet werden. Manche entschei-
denden Vereinfachungen, welche auf ein Zurückschalten in einen nichtoptimierten interpretie-
renden Modus beruhen, müssen diesbezüglich erneut untersucht werden. Es wurde besonders
darauf geachtet, eine Weiterentwicklung in Richtung einer generationellen Speicherbereinigung
zu ermöglichen, indem die nötige Infrastruktur zur Verfügung gestellt wurde.

v

Contents

1 Introduction 1
Introduces the general concept of garbage collection in the context of Java and presents
the scope of this thesis focusing on an exact and generational approach.
1.1 Motivation . 1
1.2 Basics and Terminology . 3
1.3 Current Situation in the Cacao Virtual Machine 6

2 Garbage Collection Infrastructure 9
Describes the necessary infrastructure inside the virtual machine to support exact
garbage collection and explains how those needs were satisfied in CacaoVM.
2.1 Discovering References into the Heap . 9
2.2 Direct vs. Indirect References . 11
2.3 Efficient Storage of Indirection Cells . 14
2.4 Modes of Execution inside the Virtual Machine 15
2.5 Thread Suspension Mechanisms . 18
2.6 Unrolling a Thread’s Stack Information . 20
2.7 Object Identity Hash-Codes . 22
2.8 Different Reachability Strengths in Java . 24

3 Methodology and Algorithms 25
Presents the main garbage collection algorithms used by the collector and how they
were orchestrated in two reference implementations as part of CacaoVM.
3.1 Algorithm for Copying Collection . 25
3.2 Reference Implementation Semi-Space Heap 26
3.3 Algorithm for Marking Live Objects . 28
3.4 Algorithm for Reference Threading . 29
3.5 Algorithm for Compacting Memory Regions 31
3.6 Reference Implementation Mark-and-Compact Heap 33

vii

4 Results and Future Work 35
Gives an overview of achieved results and pointers to possible future work towards
the realization of a generational garbage collection approach.
4.1 Results and Comparison of Runtime Impact 35
4.2 Results and Comparison of Heap Usage . 37
4.3 Missing Pieces for Generational Garbage Collection 38

5 Conclusion and Related Work 41
Explains design decisions previously presented for this exact garbage collector in com-
parison to other state-of-the-art garbage collection implementations.
5.1 Thread-Local Allocation . 41
5.2 Liveness Analysis of Local Variables . 43
5.3 Concurrent Garbage Collection . 43
5.4 Unloading of Class Information . 45
5.5 No Silver Bullet towards Garbage Collection 46

Bibliography 47

CHAPTER 1
Introduction

Introduces the general concept of garbage collection in the context of Java and
presents the scope of this thesis focusing on an exact and generational approach.

This junk isn’t garbage! I can dig in any
random pile and find something great.

PHILIP J. FRY

1.1 Motivation

Modern computer languages no longer just only provide means to compile an application written
in that language into machine code. They furthermore provide a complex runtime environment
which the application links against and which helps in performing certain management tasks
during runtime. This runtime environment can be considered an additional abstraction layer
decoupling the application from the operating system, thus increasing portability. One of these
tasks is memory management, that is, keeping track of which memory regions are in use by the
application at the moment and which regions are free to be used when new memory is needed.

There are two fundamentally different approaches towards memory management. The first
being explicit memory management, which leaves the task of allocating and freeing memory up
to the application itself. The runtime environment merely provides functions for performing
those two operations. The pseudo-code in listing 1.1 shows a typical pattern. An object is
allocated using the new keyword. Once the object is no longer needed, it has to be explicitly
freed using the delete keyword.

This example already illustrates the only two basic flavors of operations necessary to im-
plement memory management. The simplest (but inefficient) implementation would be a direct
mapping of these operations to their operating system pendants.

1. Allocating memory: Makes a continuous region of memory available to the application.
Of course that region is exclusive to the requesting application and not allowed to overlap
with other regions. See POSIX’s malloc() for details.

1

Node createTree() {
Node n = new Node();
Leaf l = createLeaf();
if (l == null) {

delete n;
return null;

}
n.addLeaf(l);
return n;

}

Listing 1.1: Environment with explicit memory management

2. Freeing memory: Returns (or deallocates) a previously allocated region of memory to the
runtime environment. It can then be reused when new memory is needed. See POSIX’s
free() for details.

The second, vastly different approach is automatic memory management, which delegates
part of the aforementioned task of managing memory to the runtime environment. To be more
precise, it delegates the task of freeing memory, whereas allocations are still done explicitly. The
pseudo-code in listing 1.2 exemplifies this approach. Rather than having an explicit keyword to
free objects, the runtime environment is in charge of determining when and how to free the
object.

Node createTree() {
Node n = new Node();
n.addLeaf(createLeaf());
return n;

}

Listing 1.2: Environment with automatic memory management

Comparing the two snippets of code above, the advantages of the automatic over the explicit
approach should become evident [15].

• The risk of introducing memory-leaks is drastically reduced. It is no longer necessary for
the developer to keep track of allocated objects on every possible path of execution.

• The risk of accidental freeing of memory still referenced by pointers to it, commonly
called a dangling pointer bug, is completely eliminated.

• Source code readability is improved by focusing on the essential functionality instead of
memory management issues.

2 CHAPTER 1. INTRODUCTION

• Uncommon cases where the machine actually runs out of memory are implicitly handled
by exceptions instead of explicit null-pointer checks.

• Other types of resources might be coupled with the lifecycle of objects, which in turn
would increase the overhead of management code even further. Those resources could be
released together with the object itself. This technique is called finalization and will be
discussed in detail in section 2.8.

Of course these advantages come with a certain price, because memory has to be freed at
some point, it is merely done implicitly and in background by the virtual machine [15].

• Computational power is spent on deciding whether objects can be freed or not, whereas
the application might have implicit knowledge of the answer.

• Memory usage might be inefficient and not take advantage of memory locality which leads
to an effect called thrashing [13].

• The details of garbage collection might interfere with regular application execution and
unexpected pause times or bad throughput are unwelcome side effects [26].

In the context of Java we deal with an object-oriented language executed inside a virtual
machine. So the basic mean to allocate memory is by instantiating new objects [20, section
2.4.6]. The lifecycle and layout of these objects are described in section 1.2 and section 2.8 in
detail.

1.2 Basics and Terminology

Realizing automatic memory management as motivated in the last section is the responsibility
of the virtual machine, it has to free previously allocated objects which are no longer used by
the application. The subsystem in charge of performing this task is called the garbage collector
and it reclaims unused objects that reside in the garbage collected heap.

The decision whether objects are alive and need to be kept allocated, or dead and can be
reclaimed, can basically be broken down to a graph-theoretical question of whether an object is
reachable or unreachable for the executed application. This will be illustrated later on in sec-
tion 2.1. This binary distinction of reachability can be further extended by introducing different
strengths of reachability as discussed in section 2.8 and required by Java.

There are three tasks a garbage collector has to perform during a collection. Those tasks
can be combined, performed separately or concurrently and even be split into several subtasks.
But it is important that all three tasks are perfectly synchronized with other application or ser-
vice threads being executed inside the same virtual machine. Those threads are commonly just
referred to as mutators, because from the garbage collector point of view they mutate the heap
while he tries to clean it up [15].

1. Determine root-set of pointers into the collected heap.

1.2. BASICS AND TERMINOLOGY 3

2. Distinguish between objects being alive or dead.

3. Reclaim memory of dead objects.

The rest of this section will discuss several general ideas towards accomplishing those tasks
and the general ideas and terminology behind those approaches.

Conservative Garbage Collection Approach

The conservative approach lacks the ability to correctly distinguish between reachable and un-
reachable objects. In case of ambiguity it conservatively sides on objects being reachable. This
approach is easier to implement and has less implications for the overall system because not all
references have to be clearly identified. The garbage collector can always resort to "guessing"
to determine whether any value is a reference or not. However it has several major limitations.

• Memory Waste: Some non-reference values might look like references to the garbage
collector, when in fact they are actually just of a primitive type. In this case more objects
are kept alive than are actually reachable by the application.

• Fragmentation: Objects are pinned to their current location because the garbage collec-
tor is unable to update references, it might erroneously update a primitive value which
was interpreted as reference. Hence free space is more and more split into smaller non-
continuous parts. Precious free space is wasted due to fragmentation.

This is also the approach that CacaoVM has taken for the past years as further explained in
section 1.3 below. It is the scope of this thesis to overcome the limitations of said approach.

Exact Garbage Collection Approach

The exact approach can correctly distinguish between reachable and unreachable objects. There
are mechanisms in place which allow to exactly locate all references which point to objects on
the heap. Such an approach is far more complicated to integrate into a virtual machine, the
whole chapter 2 deals with the implications of such an approach on CacaoVM or any other Java
Virtual Machine for that matter.

Some further classifications might apply to implementations following this approach. The
following is a short explanation together with an indication whether our implementation falls
into that classification or not [15].

• Moving Objects: If a garbage collector has the ability to move objects around inside the
heap, he is referred to as moving. Note that changing the location of an object implies
updating all references pointing to that object. All algorithms presented in chapter 3 are
moving ones.

• Concurrent Collection: The simplest way to synchronize garbage collection tasks with
mutators is to suspend all mutator threads at safe points, perform all collection tasks and
then resume all threads again. Such a procedure is called stop-the-world and section 2.5

4 CHAPTER 1. INTRODUCTION

explains our implementation of it. However, some garbage collection tasks might be exe-
cuted concurrently with mutators, which would drastically reduce pause times. Especially
on multi-core machines, suspending all threads is a very expensive operation performance-
wise. However concurrent collection is outside the scope of this thesis [26].

• Reference Tagging: If the virtual machine would otherwise not be able to identify refer-
ences or such a process would be too cost-intensive, references can be tagged. One bit of
each value is used to mark references in-place. This has the advantage that references can
be identified without further information lookup which preserves memory locality. On the
other hand it has the drawback that primitive values are reduced to 31 respectively 63 bit
length, so the virtual machine has to use boxing for values which need that bit for their
representation.

Generational Garbage Collection Approach

The generational approach is a special case of a moving and exact garbage collector. It separates
the collected heap into regions, so called generations, which hold objets of roughly the same age.
New objects are all allocated in the youngest generation (the so called nursery or eden) and over
time moved (or promoted) to older generations until they reach the oldest (the so called tenured)
generation [5, 15].

In figure 1.1 one can see a visualization of a heap consisting of three generations, left being
the youngest and right being the oldest one. This approach makes sense under the following
fundamental assumption which is believed to be true for almost all application scenarios [29].

Most allocated objects will die young.
– Weak Generational Hypothesis (1)

.

.

.

.

.

Generation 1

Start of
free space

.

.

.

.

.

Generation 2

Start of
free space

.

.

.

.

.

Generation 3

Start of
free space

Figure 1.1: Generational approach towards garbage collection

The generational approach of composed heap regions has several advantages over one big
continuous heap. The following is an overview of those advantages in the context of several
aspects such a garbage collector bears with it [15].

1.2. BASICS AND TERMINOLOGY 5

• Minor Collection: The youngest region is the one filling up most often. Once it runs out
of free space, it has to be evicted so that further allocations can succeed. Those minor
collections happen more often but take much less time because only one generation has to
be collected instead of the whole heap.

• Efficient Copying: Those minor collections require promotion of objects from one gen-
eration to the next. As we will see in section 3.1, those collections can be done very
efficiently which further reduces performance-critical pause times for the mutators.

• Fast Allocation: The youngest generation (in which allocations occur) is never frag-
mented, there is definite address separating allocated from free space. Allocation can be
implemented by simple pointer bumping of this address [5], hence it can be implemented
very efficiently and even be inlined into the JIT-code.

• Major Collection: Only in the uncommon case that the oldest generation fills up, does
the garbage collector run a major collection. For the last generation there is no target
region to copy objects into, so other techniques (see section 3.6 for one example) have to
be utilized.

There is one implication of the generational approach concerning backwards references
(those from older to younger generations, dashed arrow in figure 1.1) which could be considered
a drawback. This implication is discussed in section 4.3 as possible future work. Fortunately
there is another fundamental assumption indicating that those backwards references are uncom-
mon [29].

Few references from older to younger objects exist.
– Weak Generational Hypothesis (2)

As a conclusion of this section we believe a generational, moving and exact garbage collec-
tor to be the solution most worthy of aspiring towards for CacaoVM as a Java Virtual Machine.
All following chapters aim towards that direction.

1.3 Current Situation in the Cacao Virtual Machine

All previous garbage collector implementations in CacaoVM were conservative ones at best.
The implications that exact garbage collection has on the overall system were never acknowl-
edged and the interfaces needed to be adapted accordingly. There were two usable implementa-
tions of collected heaps available at the time this thesis started.

6 CHAPTER 1. INTRODUCTION

Non-collecting Heap

The first one is basically just a fallback for testing purposes, performing no collection at all. The
heap consists of one continuous block in which pointer bumping is performed. Once this block
is filled up, the virtual machine is permanently out of memory and can no longer allocate new
objects.

Boehm-Demers-Weiser Garbage Collector

The second implementation uses the so called BoehmGC library to manage the collected heap.
It’s a mature and highly optimized conservative garbage collector which can be integrated non-
intrusively into most C (and C++) programs [8, 30].

To understand why BoehmGC can be used to manage the memory of a virtual machine
despite of all the drawbacks mentioned in the previous section, we have to elaborate on some
specific optimizations.

• Efficient Free-List: An efficient management of free-lists together with optimized lock-
ing provide fast allocation of memory [25]. Any exact garbage collection approach aiming
to replace BoehmGC will have to eliminate locking completely to compete performance-
wise. One possible approach to achieve that is outlined in section 5.1 as future work.

• Grouping by Size: Objects of same size are grouped into one region of the heap. This
reduces fragmentation because reclaimed space between objects has roughly the same size
as objects which will be allocated in that space later on.

• No Intra-Object Pointer: All references which would point into an object rather than to
object boundaries are discarded. This drastically minimizes the number of false positives
during pointer recognition.

• Finalization: There is support for finalization (see section 2.8 for details) in BoehmGC.
This allows implementation of finalization support as requested by the Java specification
[20, section 2.17.7].

The scope of this thesis is to investigate the necessary frameworks to support future exact
garbage collection development in CacaoVM and lay ground for features which depend on such
a garbage collector. The reference implementations presented in the process can in no way
compete with the engineering work that went into BoehmGC.

1.3. CURRENT SITUATION IN THE CACAO VIRTUAL MACHINE 7

CHAPTER 2
Garbage Collection Infrastructure

Describes the necessary infrastructure inside the virtual machine to support exact
garbage collection and explains how those needs were satisfied in CacaoVM.

Now, the hard part...

HIRO NAKAMURA

2.1 Discovering References into the Heap

Before a garbage collector can determine the reachability of objects on the heap, it has to find
all references pointing into the heap from the outside. The set of such references is called the
root-set as mentioned in section 1.2 before. Keep in mind that this root-set has to be complete.
It has to be impossible for an application to reach an object inside the heap, which cannot also
be indirectly reached through at least one reference in the root-set [15].

Note that references stored as part of an object will never point outside the heap. Any
reference can either contain the null value or a valid reference to any object on the heap.
There might be some cases where this constraint doesn’t seem to apply.

• Unsafe Memory Access: There are some methods as part of the sun.misc.Unsafe
class, which allow direct allocation of memory. However these addresses are passed as
long values and hence are not recognized as references.

• Direct Byte Buffer: There is one type of object as part of the NIO interface, namely
instances of java.lang.nio.DirectByteBuffer which handle memory outside
the heap. Again, the actual address is stored as a long value.

• Class Information: Unfortunately CacaoVM stores instances of java.lang.Class
outside the heap. The details behind that are discussed in section 5.4. But it should be the
goal to move those objects into the heap and let the garbage collector manage them.

9

.

.

.

.

.

Root-Set

.

.

.

.

.

Heap

Figure 2.1: The root-set spanning a directed graph inside the heap

• String Literals: Same applies for java.lang.String instances which are loaded
through string literals. Those should also be moved onto the heap in the future.

With these assumptions we can see that the garbage collector can traverse the directed graph
spanned by the roots residing in the root-set as depicted in figure 2.1. It is hence possible to
clearly distinguish between reachable and unreachable objects, the latter ones being grayed out
in this figure. The algorithms through which this is accomplished are described in section 3.1
and section 3.3 later. For the sake of simplicity, most depictions of objects in this thesis just
contain one reference marked by the black dot in the middle. But the concepts are trivially
extendable to multiple references per object.

Now to the matter at hand, which subsystems of a virtual machine need to be considered in
order for the root-set to be complete?

• Machine Registers: The actual processor registers might contain references into the heap
used in the operation being executed by the current thread. It is not feasible for the virtual
machine to remember the register allocation layout at each possible point in the code. But
section 2.5 will show that a small subset of possible points in the code will suffice.

• Thread Stacks: Each thread of execution has a stack attached to it. This stack may
contain stack-frames of JIT-code or native code. For JIT-code we know the exact layout
and can locate all references (see section 2.6 for details). Unfortunately we have no way
of knowing the exact layout of stack-frames for native code and need to rely on other
mechanisms (see section 2.2 for details) [2].

10 CHAPTER 2. GARBAGE COLLECTION INFRASTRUCTURE

• Global References: These are references which can be globally accessed by any thread,
most commonly stored in static variables. The garbage collector provides service methods
to register (or unregister) any location which contains such a global reference. Common
places where such global references need to be registered are:

– All static variables in the virtual machine codebase.

– Global references registered through the Java Native Interface.

– Objects held by the locking subsystem.

– Objects used as class loaders registered in some class cache.

• Local References: For stack-local references in native code that are versatile enough to
be passed to third-party native libraries, the so called local reference is used. The Java
Native Interface defines functions for managing those references, but they are also used
by the virtual machine internally (details are discussed in section 2.2 and section 2.4).

• Thread-Local Information: Each thread can store thread-local information inside an
associated structure (similar to the java.lang.Thread object in the Java world). At
the moment we just register each reference inside said structure as a global reference and
be done with it.

Now that all the areas that could possibly hold references belonging to the root-set are iden-
tified, the garbage collector has to ensure that their respective exact locations can be determined
at every possible point in the code, or that collections are only done while threads are suspended
at such points. Basically the rest of this chapter deals with that central issue.

2.2 Direct vs. Indirect References

So far we have assumed that the garbage collector can exactly locate all references in machine
registers and on a thread’s stack. This might be true for JIT-code that the virtual machine gener-
ated, because it knows the exact types of each location. Unfortunately threads will also execute
native code. Firstly CacaoVM itself is compiled using an ordinary C/C++ compiler which pro-
duces custom stack-frame layouts. Secondly Java supports loading of third-party native libraries
at runtime which could have been compiled by any compiler. So it is virtually impossible to
know the stack-frame layout of native methods.

The only feasible option of extending exact garbage collection to native methods as well, is
to not pass direct references to those methods. So instead of direct references pointing into the
collected heap, so called indirection cells or handles are used [1]. The illustration in figure 2.2
shows how those handles are used in CacaoVM.

All references passed to native methods are actually pointers into a table containing direct
references into the collected heap. Thereby the entries in that table form indirection cells. By
adding this table to the root-set the exact location of each direct reference (indirectly used by
native methods) is known and can also be updated. Both, handles and local references follow
this layout.

2.2. DIRECT VS. INDIRECT REFERENCES 11

.

.

Root-Set

.

.

.

.

.

Heap

.

.

Handles

Native Method

Figure 2.2: Usage of indirection cells for native methods

Of course we introduced one evident drawback, each object access in native code needs
to take the indirection and furthermore synchronize with the garbage collector in some way.
However we will show in section 4.1 that the associated runtime penalty can be considered
negligible for real-world applications.

Access through the Java Native Interface

Fortunately the Java Native Interface (JNI) was already designed with handles in mind [19].
All references passed into third-party native methods are stored in so called local references.
Previously in CacaoVM those were equivalent to direct references, but now they are equivalent
to handles. All actual accesses to objects on the heap are done through functions provided by
the JNI as listing 2.1 exemplifies.

JNIEXPORT jint JNICALL
Java_Test_sumArray(JNIEnv *env, jobject obj, jintArray arr)
{

jsize len = (*env)->GetArrayLength(env, arr);
jint *data = (*env)->GetIntArrayElements(env, arr, 0);
for (int i = 0; i < len; i++)

sum += data[i];
(*env)->ReleaseIntArrayElements(env, arr, data, 0);
return sum;

}

Listing 2.1: Sample of array access via JNI inside a native method

This sample native method returns the sum of all integers in an array. The JNI function
for getting the array elements actually returns a copy of the array data, thereby ensuring the
underlying object can be moved by the garbage collector if needed. One major overhaul of the
JNI implementation in CacaoVM allowed us to realize all such changes.

12 CHAPTER 2. GARBAGE COLLECTION INFRASTRUCTURE

Another solution would be to pin the object inside the heap until it is released by the ap-
propriate JNI function again, thereby making it temporarily unmovable. But since our garbage
collector implementation does not support temporal pinning of any kind, we don’t use this ap-
proach.

Access through the internal interface

Using the above interface for internal operations inside the virtual machine as well would be too
inefficient, so there is a second internal interface to access objects on the heap. This interface is
sometimes referred to as the low-level native interface and has to synchronize with the garbage
collection as well [1].

Whenever an indirection is taken and a concurrent movement of the referenced object is not
allowed, the thread performing that access is said to be inside a critical section. The typical
access of an object on the heap performs the following steps.

1. Enter Critical Section: The fact that a thread is inside a critical section is represented as
a boolean flag inside it’s thread-local information. Flipping this flag is efficient, because
each thread only modifies it’s own flag, so no synchronization is necessary. The garbage
collector only reads those flags when threads are suspended, so no race-condition emerges.

2. Take Indirection: Taking the indirection cell returns a direct pointer to the referenced
object’s current position. As long as the critical section is active, the garbage collector
won’t move the object.

3. Perform Access: Direct access to the object’s content can be performed using the direct
pointer from the previous step. Primitive values can be used as-is, whereas reference
values have to be wrapped into indirection cells themselves before the critical section
ends.

4. Leave Critical Section: The diametrically opposite operation to the first step, same rea-
soning as above applies in this case.

5. Poll for Pending Collection: A global flag indicates whether the garbage collector re-
quested a stop-the-world while the thread was inside the critical section, in which case
the thread will suspend itself. In section 2.5 the details and reasoning for this step are
discussed.

To perform the above steps efficiently without cluttering the source code of CacaoVM, we
introduced so called accessor classes. These are C++ classes performing typed access on exist-
ing handles for given Java classes through the use of inline methods. In listing 2.2 one example
of copying the content of a string is shown.

This example takes a handle for an instance of java.lang.String and copies it’s con-
tent into the given buffer. Three of the object’s fields (namely value, count and offset)
are accessed through the accessor class. Another array accessor class performs the actual copy
operation of a region from the string value. All the details discussed before are hidden inside
those accessor classes.

2.2. DIRECT VS. INDIRECT REFERENCES 13

void string_copy(Object* string, char* buffer, int size)
{

java_lang_String jls(string);
Object* value = jls.get_value();
int32_t count = jls.get_count();
int32_t offset = jls.get_offset();

CharArray ca(value);
ca.get_region(offset, MIN(count, size), buffer);

}

Listing 2.2: Sample of array access via internal interface inside a native method

2.3 Efficient Storage of Indirection Cells

Whenever a reference value is read in native code, it is wrapped inside a newly created handle.
Therefore creating and managing handles has to be implemented as efficiently as possible. An-
other aspect not discussed so far is the ability to destroy handles when the referenced object is
no longer needed in native code.

To solve both issues we implemented a so called handle memory, which is a thread-local
growable data structure which can be freed in bulks. To understand what that means, let us look
at those characteristics in detail.

• Thread Locality: All handles are by principle thread-local, they are only used by the
thread who created them. For an efficient implementation this is extremely important be-
cause it permits to avoid locks altogether. Whenever any thread wants to share a reference
with another thread in native code, those references have to be made into global references
as outlined in section 2.1 before.

• Growable Structure: Since there is no upper boundary on the number of references a
thread can hold at a moment, the data structure has to be capable of holding an indefinite
number of entries. This is achieved by separating it into blocks, the so called handle
memory blocks, which in turn form a single linked list with it’s head being the most recent
block.

• Fast Creation: As creating handles is the only common operation, it has to be as fast as
possible. The location of the next available entry inside the most recent block is known, we
just use the entry at that location and bump the pointer forward. There is no fragmentation
inside the blocks.

• Freeing in Bulks: Having to free each handle individually would nullify the advantages of
a garbage collector in native code. So handles can only be freed in bulks. This is realized
by placing markers, the so called handle memory borders inside the data structure. At a
certain point (e.g. at method entry) the marker is placed at the current position. Later on

14 CHAPTER 2. GARBAGE COLLECTION INFRASTRUCTURE

(e.g. at method exit) the most recent border can be popped, thus destroying all handles
created after the marker was set.

With the functionality of this handle memory described above, it is possible for native meth-
ods to create their own scopes inside of which handles can be used efficiently. Once those scopes
are left, handles are automatically destroyed and the referenced objects can be collected by the
garbage collector. Consider figure 2.3 for a depiction of how this data structure looks like.

Native Method

.

.

.

.

.

Heap

threadobject

HM blocks
HM borders

HMB

HMB

.

.

.

next
available entry

Figure 2.3: Design of the handle memory data structure

The only issue left, now that we have an efficient way of managing handles, is to identify
those places in the virtual machine where handle memory borders should be placed. As a rule of
thumb, each support function that is called regularly and internally makes heavy use of handles
should have it’s own border (e.g. all JNI functions). Enough borders have to be placed, so that
long-running methods do not keep objects alive unnecessarily.

2.4 Modes of Execution inside the Virtual Machine

The previous sections talked about JIT-code as well as native code and how differently those
two types have to be treated. Each thread executed inside the virtual machine always executes
code which is of one of those two types. Commonly JIT-code originates from Java methods
being executed, whereas native code comprises of supporting functions of the virtual machine
that were compiled using a C/C++ compiler.

As section 2.5 will point out, it is very important to know the exact mode of execution each
thread is currently in, to allow threads to be suspended correctly. Therefore special care has to

2.4. MODES OF EXECUTION INSIDE THE VIRTUAL MACHINE 15

be taken for transitions between modes to be well-defined to eliminate race-conditions. A flag
as part of the thread-local information is used to indicate the current mode of execution, the
following sections will describe the transitions changing this flag.

In order to be able to implement those transitions in a way that is almost platform-independent
we reused the concept of an execution-state which was introduced by the on-stack replacement
implementation. The execution-state represents the machine state (i.e. processor registers) and
can be read out of the machine or written back into it. The listing 2.3 contains the actual structure
used to represent said state [28].

struct executionstate_t {
uint8_t *pc; /* program counter */
uint8_t *sp; /* stack pointer within method */
uint8_t *pv; /* procedure vector */
uint8_t *ra; /* return address / link register */

uintptr_t intregs[INT_REG_CNT]; /* register values */
double fltregs[FLT_REG_CNT]; /* register values */

codeinfo *code; /* codeinfo corresponding to the pv */
};

Listing 2.3: Platform-independent representation of the machine state

Native-to-Java Transition

This transition is used to enter JIT-code generated by the virtual machine itself. As outlined
in section 2.2, direct references are used inside JIT-code, hence all references wrapped inside
handles passed into it need to be unwrapped. The following ordering of transition operations
ensures the transition is free of race-conditions.

1. Enter Java World: Set the thread’s mode of execution to java before any direct refer-
ences into the heap are created. This prevents concurrent movement of referenced objects.

2. Prepare Machine State: Unwrap handles and prepare an execution-state containing di-
rect references. Should the thread be suspended here, the mode is already set to java but
the JIT-code cannot be determined because the machine didn’t yet jump into it. So the
race is detected.

3. Write Machine State: The transition is finished by finally writing the prepared execution-
state into the machine. Thereby the program-counter will point into the JIT-code, effec-
tively jumping into it.

Upon return the above steps are reversed bottom-up so that the thread can end up in the
calling native code again.

16 CHAPTER 2. GARBAGE COLLECTION INFRASTRUCTURE

Java-to-Native Transition

This transition is diametrically opposite to the previous one, hence all references passed into
the native code need to be wrapped into indirection cells. But on top of that, the Java Native
Interface specification requires us to use local references for those indirection cells [19]. The
following steps ensure a safe and correct transition.

1. Read Machine State: The transition starts by reading the machine state and preparing an
execution-state to contain all values, including direct references.

2. Prepare Local References: Wrap all references into local references (as mentioned in
section 2.2 they have the same layout as handles). Thereby those references can either
be used by the Java Native Interface or by the internal interface, depending on how the
underlying native code was designed.

3. Exit Java World: Now that all references are safely wrapped, the thread’s mode of exe-
cution can be set to native and the thread can safely execute native code.

4. Push Handle Border: As a courtesy to the callee and as a precaution, we install the first
handle border right away. This destroys all handles created inside the native code even if
the callee forgets to use handle borders and prevents possible handle leaks.

Again upon return the above steps are reversed bottom-up so that the thread can end up in
the calling JIT-code again.

Fast Intrinsics Transition

There are some supporting native methods frequently called from within JIT-code, which are
referred to as intrinsics (or builtins in CacaoVM-speak). Doing the full Java-to-Native transition
roundtrip for them would be inefficient, hence we introduced the concept of fast-builtins to
CacaoVM as an optimization.

Those fast intrinsics use direct references although they are actually native code. Should a
thread be suspended while inside a fast intrinsic, the garbage collector will detect this because no
associated JIT-code can be found. To avoid deadlocks all fast intrinsics must have the following
characteristics.

• Don’t block and return "fast".

• Don’t throw exceptions out of the intrinsic.

• Don’t allocate any objects which would cause collections.

Even for intrinsics not having those characteristics the optimization could be applied by
splitting the intrinsic into two parts. One full implementation for the slow-path and one par-
tial implementation just providing the fast-path and falling back to the full implementation if
necessary. Remember that the fast-path is a perfect candidate for inlining into JIT-code.

2.4. MODES OF EXECUTION INSIDE THE VIRTUAL MACHINE 17

The framework for supporting this two-fold approach was introduced into CacaoVM, and
was so far only utilized to experiment with lock-inlining. But it most certainly provides more
optimization potential.

Trap Handling Transition

For dealing with uncommon cases of faults (e.g. exceptions, compiler-invocations, replacement
points, ...) the concept of traps is used in CacaoVM. In a POSIX environment those traps
are delivered by the operating system in the form of signals that the virtual machine handles.
Together with those signals a machine-dependent state information (i.e. the machine-context) is
passed as well.

Since traps can only occur in JIT-code and all the handling functions are realized as native
code, a transition similar to the Java-to-Native case discussed above needs to be performed. The
only major difference to the necessary steps outlined there, is that we use conversion functions
to convert a machine-context into an execution-state and vice-versa in this case.

As a general word of caution, keep in mind that the trap-handling code is very complex and
fragile. Even though it might seem straightforward at first glance, think over every change to it
twice or thrice, because you will break stuff.

2.5 Thread Suspension Mechanisms

As mentioned before, our garbage collector implementation uses a stop-the-world approach.
This requires threads to be suspendible regardless of their current state of execution in a reason-
able amount of time. Since CacaoVM knows two different modes of execution (as illustrated in
section 2.4) which have to be handled separately, this section will explain how to handle both.

Even semi-concurrent approaches of garbage collection require some sort of thread suspen-
sion, so having a working framework for that purpose is necessary for future development and
testing as well. But keep in mind that we only introduced a reference implementation which is
not yet fully optimized.

The notion of suspending a thread in this context not only means preventing the thread from
being executed concurrently, but also making sure it is suspended at a well-defined point inside
the code at which it’s state can be examined (and possibly changed) [1]. Those points are mostly
referred to as safe-points in literature. Our implementation uses the following steps for initially
suspending a thread and later performing a roll-forward depending on it’s mode of execution.

1. Flag Pending Collection: Set the global gc_pending flag indicating that a garbage
collection is pending and hence a suspension at safe-points is requested.

2. Suspension by Signal: Send a dedicated signal to every initialized thread, thereby in-
terrupting it’s current execution. The appropriate signal handler will store the current
execution-state so that it can be used to unroll the thread’s stack in section 2.6 later. It is
important to wait for all signal handlers to finish their job to ensure the stored execution-
state is accurate.

18 CHAPTER 2. GARBAGE COLLECTION INFRASTRUCTURE

3. Determine Mode of Execution: According to the current mode of execution of every
thread, a different suspension approach might be taken. Reading the appropriate flag
unsynchronized is safe, because the thread mutating it is suspended at the moment.

After the suspension mechanism for each thread finished and all threads have successfully
acknowledged their suspension at a safe-point, the garbage collector can finally commence with
unrolling each thread’s stack as section 2.6 will describe.

Suspension in Native Mode

At this point the thread exclusively uses indirection cells as introduced in section 2.2 to represent
references into the heap. Hence suspending it is safe in most cases, expect for critical sections
which are rather short and uncommon [1].

4. Check for Critical Section: In case any of the indirection cells are taken, the thread will
indicate so by setting the appropriate thread-local critical section flag. Reading this flag
unsynchronized is safe, because the thread mutating it is suspended at the moment.

5. Roll-Forward: Should the thread be inside a critical section and hence be unsafe to sus-
pend, it will be resumed. The global gc_pending flag makes sure the thread will sus-
pend itself as soon as the critical section is left. This explains why critical sections need
to be reasonably small in order for the suspension to be efficient.

Suspension in Java Mode

At this point the thread might hold direct references in machine registers and on it’s stack, which
need to be located exactly. Instead of assuming every position in the code is safe expect those in-
side critical sections, the opposite approach is taken. It’s generally assumed the current position
in the code is unsafe and some roll-forward to the next well-defined safe-point is required.

4. Determine the Code: Internal information for the code that the thread is currently execut-
ing needs to be found. This is achieved by either looking up the procedure vector or the
program counter in the current execution-state. In case no such information can be found,
the thread is in transition between modes of execution as explained in section 2.4. The
current solution in this case is to resume the thread for some time and retry suspending it
again, which clearly is a rather sub-optimal solution in need of optimization.

5. Activate Traps: By activating (or arming) traps at safe-points inside the current code, the
thread will again suspend itself after being resumed. We reused the trapping mechanism
already present from our on-stack replacement implementation. There need to be enough
traps to ensure the thread will not escape the current code and will suspend in a finite
amount of time, so traps are placed at the following instructions [28].

• All method invocations of any kind.

• All backwards branches (which would form loops).

2.5. THREAD SUSPENSION MECHANISMS 19

• All return statements (which would escape the code).

6. Roll-Forward: Resume the thread and rest assured, that it will suspend itself in a reason-
able amount of time through a hook in the on-stack replacement subsystem.

2.6 Unrolling a Thread’s Stack Information

One central aspect of exact garbage collection is to exactly locate all references a thread’s ma-
chine state and stack holds. This has to be done for all threads running inside the virtual machine
and is generally referred to as the process of walking the stack. Note that it is closely related to
how and where threads have been suspended (see section 2.5 for details).

In general each stack in CacaoVM can hold two types of stack-frames, so called native
frames and JIT frames, arbitrary interleaved and held together by some glueing frames. Basically
for each transition described in section 2.4 some sort of glueing frame is required. The layout of
these frames is depicted in figure 2.4.

.

.

threadobject

sfi
es

Native-to-Java

Native-to-Java

Java-to-Native

.

.

.

execution-state

sp

SFI

SFI

.

.

.

stack

native

JIT

JIT

JIT

native

Figure 2.4: Layout of a thread’s stack

The process of walking the stack is very similar to stack-unwinding as done when exceptions
are thrown. All stack-frames are successively popped from the stack (to be more precise, the
popping is simulated) until the last frame is reached. Additionally, locations of references into
the heap are gathered to fill the root-set. This is all done in close cooperation with the on-stack
replacement implementation because of it’s similar functionality [28].

• Popping JIT Frames: The exact layout of the topmost JIT frame is known, because the
thread was suspended at a safe-point. All successive JIT frames are also in the state of a
safe-point because they are at the point of an invocation of some sort.

20 CHAPTER 2. GARBAGE COLLECTION INFRASTRUCTURE

• Reverse Native-to-Java: The glueing frame of a Native-to-Java transition can be identi-
fied because of it’s unique program counter value, which causes the popping of JIT frames
to stop.

• Popping Native Frames: The content of a native frame is completely unknown to the
virtual machine because it’s layout follows that of the compiler which produced the under-
lying native code. No assumptions about that layout can be made. However all references
are wrapped in indirection cells as section 2.2 pointed out. The previously recorded stack-
frame information (SFI) allows us to pop the native frame (it might actually contain more
than one frame, but the virtual machine doesn’t care about that) and continue at the next
glueing frame. The whole process stops in case the last stack-frame information object is
reached.

• Reverse Java-to-Native: The glueing frame of Java-to-Native invocation allows reentry
into the popping loop. It also contains callee-saved registers which are needed to restore
an accurate machine-state at that point.

At each step during this process the execution-state for the given thread is transformed to
represent the machine state at each stack-frame level. All references contained within registers
are represented by an entry in that execution-state and can also be added to the root-set.

This was a very simplified description of the general approach taken in CacaoVM and only
outlines the general cornerstones of the concept. A lot of corner cases appear in conjunction
with the trap handling transition outlined in section 2.4. The devil is in the details.

Layout of JIT Frames

As stated several times, the layout and type information of machine state and stack is known
for all points in the code. At first it is just known at compile-time but needs to be preserved for
runtime at well-defined points.

The infrastructure to preserve the type information was already provided by the on-stack re-
placement mechanisms through so-called replacement points [28]. However that type-information
actually is too precise and hence introduces an unnecessary overhead when used solely for
garbage collection purposes. The garbage collector does not need precise type information for
registers and stack-slots, it just needs a binary distinction between reference and non-reference
values.

Therefore we propose an optimized garbage collection point which contains a subset of the
information present in a replacement point and can be used when such a point is used solely
by the garbage collector. The proposed implementation contains two bit-fields of fixed upper
lengths to represent said binary distinction for registers respectively stack-slots. Should the size
of the stack-frame exceed the upper bound, the fallback is to simply use a regular replacement
point instead. This optimization will reduce the memory-consumption by necessary manage-
ment information drastically.

2.6. UNROLLING A THREAD’S STACK INFORMATION 21

2.7 Object Identity Hash-Codes

One important concept of object-oriented programming is that every initialized object has it’s
own identity. Consequently it is always possible to check whether two given references refer
to the same object. Note that this is inherently different from checking whether two (pos-
sibly different) objects are considered equal in the context of an application. The distinc-
tion between those two types of comparisons should become evident when considering the
String.equals() method.

In an environment without moving garbage collection the identity comparison is equivalent
to a pointer comparison. Actually the generated JIT-code performs a simple pointer comparison
in the moving garbage collection setting as well as the listing 2.4 illustrates. However it is
important to keep in mind that these pointers are highly volatile because objects are allowed to
move.

======== L000 ========
IN: <null> javalocals: [La0(rdi) La1(rsi)]
134: 0: ALOAD L0 => La0(rdi)
134: 1: ALOAD L1 => La1(rsi)
134: 2: IF_ACMPNE La0(rdi) La1(rsi) --> L002
134: 3: NOP
OUT: []

134:
0x00007ffff7e8fde0: cmp %rdi,%rsi
0x00007ffff7e8fde3: jne 0x00007ffff7e8fdf8

Listing 2.4: Object identity comparison in JIT-code

At first glance the realization of the object identity concept inside a virtual machine seems
straightforward, however problems arise when using the object identity to hash objects. This
happens for example when objects are put into hash-tables without overriding the appropriate
Object.equals() and Object.hashCode() methods.

The typical implementation in a non-moving environment is again to use the actual pointer
value as the hash-code. Note that most hashing-based algorithms are also optimized towards
hash-codes having pointer characteristics (i.e. aligned at 4-byte boundaries). But it is of central
importance that the hash-code of an object remains unchanged over time, even after the garbage
collector has moved the object on the heap.

One solution is for the virtual machine to also return the pointer value as hash-code but for
the garbage collector to attach the initial hash-code to the object once it is moved around on the
heap [6]. This value can be attached to the end of an object, causing its actual size to increase
by one word (32 or 64 bit). This is possible for every move operation discussed in chapter 3
because the target location is always big enough.

The virtual machine considers three different states any object can be in, when it comes
to hashing object identities or moving objects on the heap. A combination of two identity-bits

22 CHAPTER 2. GARBAGE COLLECTION INFRASTRUCTURE

Object Header

Object Content

10

Hash-Code

(a) Object after hash was taken for
the first time but before it has been
moved.

Object Header

01

Object Content

Attached Hash-Code

(b) Object with original hash-code attached to it’s end
after it has been moved.

Figure 2.5: Attaching hash-code to object

inside the object header is sufficient to keep track of those states. The illustration in figure 2.5
shows how these identity-bits correspond to attached hash-codes.

• Normal: The object identity was not yet taken, the object has not been hashed. In this
state the garbage collector can freely move the object on the heap. (Bit-mask: 00b)

• Taken: Once the application queries the hash-code and hence knows the current value,
that hash-code has to be preserved so that all consecutive queries return the same value.
As long as the object does not move, it can remain in this state. (Bit-mask: 01b)

• Attached: Once the garbage collector decides to move an object for which the hash-code
was taken and hence is known to the application, it has to record the original value and
attach it to the object. (Bit-mask: 10b)

Note that one optimization technique for virtual machines is to provide intrinsics for com-
monly used methods like Object.hashCode() which can then be inlined. Otherwise those
methods would be backed up by native implementations which are very hard (if at all possi-
ble) to inline. Our slightly more complicated implementation of said method does increase the
complexity of such intrinsics, but they could still be inlined if needed.

For the sake of completeness, let’s also note that using a separate table to keep track of
attached hash-codes is no feasible solution, because efficient implementations of such a table
would require correct object identity hashing themselves, leading into a typical chicken-and-egg
problem.

2.7. OBJECT IDENTITY HASH-CODES 23

2.8 Different Reachability Strengths in Java

In addition to the two basic states (reachable and unreachable as described in section 2.1) that an
object can be in from a garbage collection point of view, Java knows several other interim states
between those two. This section will discuss those states, their meaning and possible use-cases.

The runtime system provides so called reference objects which are treated specially by the
garbage collector and themselves refer to one object, the so called referent. The following is
a list of possible strengths together with some details about the appropriate reference object
from strongest to weakest. The actual reachability is defined by the strongest link leading to the
referent [23].

• Strong Reference: Any usual reference inside a Java application that does not utilize a
reference object is a strong one. This is equivalent to the notion of reachable as used so
far.

• Soft Reference: Objects that are softly reachable are eligible to be reclaimed at the discre-
tion of the garbage collector. The heuristic used to reach that decision is not specified, but
softly reachable objects need to be reclaimed before an OutOfMemoryError is thrown.
They are commonly used to implement application-level caches.

• Weak Reference: Objects that are weakly reachable will be reclaimed. The weak ref-
erence acts just like a soft one, only that there is no heuristic involved in the decision
whether an object should be kept alive or not. They are commonly used to associate
required cleanup tasks with objects without keeping them alive.

• Finalization: In case an object implements the finalize() method, it will be finalized
exactly once before being reclaimed. Note that the finalizer might resurrect an object and
therefore prevent it’s reclamation, but that doesn’t change that invariant.

• Phantom Reference: Objects that are phantomly reachable have been finalized but not
yet reclaimed. In contrast to soft and weak references, all phantom references will be dealt
with after the referent has been finalized. The reference will not be cleared by the garbage
collector, it is the responsibility of the application to make it eligible to be reclaimed. They
are commonly used to associate required post-finalization cleanup tasks with objects.

• Unreachable: This is finally the reachability strength that condemns objects to be re-
claimed once and for all, there is no way to prevent the garbage collector from doing so.
This is equivalent to the notion of unreachable as used so far.

Almost all reference objects will be cleared once their respective reachability strengths apply
and they might even be enqueued into a ReferenceQueue, if they are registered with one.
This gives applications some level of control over garbage collection and the object life-cycle
[23].

24 CHAPTER 2. GARBAGE COLLECTION INFRASTRUCTURE

CHAPTER 3
Methodology and Algorithms

Presents the main garbage collection algorithms used by the collector and how they
were orchestrated in two reference implementations as part of CacaoVM.

Beware of bugs in the above code; I have
only proved it correct, not tried it.

DONALD E. KNUTH

3.1 Algorithm for Copying Collection

For the generational garbage collection approach to be beneficial, it is important to have an
efficient algorithm for promoting live objects to the next generation, thereby evicting the current
generation. This section presents one such so called copying algorithm which is based on Ch-
eney’s algorithm [9] and is used in one form or another in many generational garbage collection
implementations [5, 26].

The general idea of this algorithm is to perform both tasks of finding reachable objects and
moving them into another region in one single phase. The region being evicted is referred to
as source region and the one where objects are copied into is called destination region. This is
done by forwarding objects from the source into the destination region and leaving a forward
marker in the source region pointing to the new location. The following two requirements on the
underlying object layout emerge.

1. Forward Pointer: Each object has to be large enough to hold the forward marker pointing
to it’s new location. This can easily be satisfied because in CacaoVM each object contains
the vftbl entry which can be misused for this purpose.

2. Markable Pointer: The forward pointer needs to be marked in some way to identify it
and distinguish it from a regular vftbl value. Since all our virtual function tables are
at least 4-byte aligned, the least-significant bit of that pointer can be used for marking
purposes.

25

The central function of the algorithm is one performing the forwarding operation on objects.
It maintains the next pointer, separating allocated from free space. As mentioned in section 1.2
this is part of the fast allocation principle in our regions anyways. The simplified pseudo-code
in listing 3.1 describes the forwarding operation in detail [5].

forward(PTR):
if (PTR points into source-region) then
if (PTR[vftbl] is marked) then

return unmark(PTR[vftbl]);
else

copy(NEXT, PTR, PTR[size]);
PTR[vftbl] = mark(NEXT);
NEXT += PTR[size];
return unmark(PTR[vftbl]);

endif
else
return PTR;

endif

Listing 3.1: Pseudo-code of the forwarding operation for copying collection

Using this forwarding operation, a non-recursive copying collector can be implemented by
maintaining a scan pointer which is initialized to the value of the next pointer. Forwarding
references in the root-set and copying objects into the destination region (thereby making them
alive) will advance the next pointer. However those objects haven’t yet been scanned for further
references themselves. By scanning objects in the destination region for references which in turn
need to be forwarded, the scan pointer will be advanced until both pointers refer to the same
memory address. At that point all references have been forwarded and all reachable objects have
been copied into the destination region [15, section 7.1]. The figure 3.1 should further illustrate
this procedure step-by-step for a simplified example.

This space- and time-efficient algorithm is perfectly suited for promoting objects between
generations, assuming that the root-set for a particular generation contains all the references
pointing into that generation. A certain caveat regarding this precondition is discussed in sec-
tion 4.3. Also the destination region needs to have enough free space to hold all the life objects
from the source region. But besides that the algorithm requires no additional data structures
outside the heap and runs in linear time depending on the number of live objects in the source
region, a fact that is particular helpful considering that most objects will die according to the
weak generational hypothesis [29] as outlined in section 1.2.

3.2 Reference Implementation Semi-Space Heap

The first reference implementation is the so called semi-space heap and is solely based on the
copying algorithm presented in the previous section 3.1. It divides the collected heap into two

26 CHAPTER 3. METHODOLOGY AND ALGORITHMS

source destination

nextscan

source destination

scan next

source destination

scan next

source destination

scan next

source destination

nextscan

Figure 3.1: Illustration of the copying collection algorithm

equally sized regions, with only one being active at a time. The first one is called from-space and
is the target for all allocations. The second one is called to-space and is kept empty. During the
garbage collection all live objects are copied from the from-space into the to-space, after which
those spaces switch roles [15].

The obvious hitch with this heap implementation is that only half of the heap is usable by
the application at any time. Hence this heap implementation is barely usable in production-
ready scenarios, but serves as a good test implementation for the copying algorithm. To further
improve test coverage the from-space can be overwritten with canary words after each collection,
so that all old object locations are destroyed and erroneous access can be detected.

3.2. REFERENCE IMPLEMENTATION SEMI-SPACE HEAP 27

3.3 Algorithm for Marking Live Objects

Before the garbage collector can reclaim unused memory, all live objects reachable from the
root-set need to be marked to prevent them from being reclaimed. This process is referred to as
marking or tracing and is commonly implemented as some sort of depth-first traversal through
the heap. However a simple recursive implementation cannot be used, because deep structures
on the heap would overflow the collector’s stack, so a more efficient work-list has to be used.

The presented marking algorithm is based on Shorr’s algorithm [27] which places the men-
tioned work-list on the heap itself to reduce the amount of memory used for additional data
structures. There are basically two pieces of information required for each entry on the work-
list, the first is a reference to the object being traversed, the second is the number of references
in that object that have already been visited. The actual marking bits which indicate whether an
object was visited or not are stored as part of the object header.

• Object Reference: The figure 3.2 illustrates how references to objects on the work-list are
stored as a reverse linked list inside the objects themselves. The back-link to the previous
entry (depicted as a dashed arrow) is stored in the reference currently being visited. If
all references inside the current object have been visited, the back-link can be taken to
backtrack to the previous level and the original value of said reference can be restored.
References already visited are depicted gray whereas those yet to be visited are depicted
white.

• Reference Number: The back-links actually point to the object being on the work-list.
To find the reference inside that object to which the backtrack occurs, the number of
references already visited needs to be stored. For small values this number can be stored
inside the object header, for larger values we use an external stack as a fallback solution.
For ordinary objects we store the field index (for arrays the array index) of the reference
being visited at the moment.

• Marking Bits: To actually mark objects as visited we use two marking bits inside the
object header. If an object which has already been marked gets visited a second time,
traversal of it’s references will be skipped because it is either already on the work-list or
has already been traversed completely. Objects which have been marked are depicted gray
whereas unmarked objects are depicted white.

This space-efficient tracing algorithm only requires minimal data structures outside the heap
to mark all reachable objects. However objects containing references and placed on the work-list
are visited several times, associated class information needs to be looked up at each visit.

Also this algorithm only works with suspended mutators and is not suited for any sort of
concurrent garbage collection, because the heap is left in an unstable state and modifications
by mutators cannot be detected. For the implementation of concurrent approaches a tri-color
marking algorithm needs to be used [11].

28 CHAPTER 3. METHODOLOGY AND ALGORITHMS

heap region

(a) Graph in original state before tracing algorithm has started.

heap region

current
depth level

(b) Graph in modified state containing the work-list while tracing.

Figure 3.2: Illustration of tracing algorithm to mark live objects

3.4 Algorithm for Reference Threading

One important aspect when moving objects around the heap, is to update all references pointing
to them accordingly. If the original memory location is not overwritten, a simple forward marker
can be left (as presented in section 3.1) and references can be updated after the object has been
moved. Unfortunately this solution is unfeasible if the original memory location might get
destroyed.

Furthermore managing additional data structures outside the heap is not possible, because

3.4. ALGORITHM FOR REFERENCE THREADING 29

garbage collection algorithms are executed at times when free memory is a sparse commodity.
In this section an efficient algorithm for updating references is presented which is referred to as
reference threading or pointer reversal [15, section 5.3].

vftbl vftbl vftbl

vftbl

(a) Graph in original state before references
were threaded.

vftblvftblvftbl
vftbl

(b) Graph in modified state after references were
threaded.

Figure 3.3: Illustration of threading algorithm to update references

In subfigure 3.3a the original graph before references are threaded is shown. Each of the
three objects holds a references pointing to the target object to be moved. Similar requirements
to the ones presented in section 3.1 apply, pointers need to be markable and one freely modifiable
pointer needs to be available in each object. We use the same technique as outlined before to
satisfy these requirements. Next the objects are processed from left to right. Each pointer to
the target object is reversed so that vftbl is marked and points to the location of the actual
reference (not the object holding it). The original value of vftbl is preserved in the reference
itself.

In subfigure 3.3b the final graph after successively reversing all three references is shown.
All references are threaded into a single linked list of marked references (depicted in gray) with
the head in vftbl of the object to be moved and the tail being the first un-marked pointer. Now
it is possible to move the target object to a new location and update all references to it by simply
following that linked list and un-threading each reference. The tail of said list will contain the
original vftbl value of the target object which can then be restored.

This space-efficient algorithm for updating references to moved objects requires no addi-
tional data structures outside the heap. The threading of a references is done in constant time
and un-threading of all references is done in linear time depending on the number of threaded
references. It is used in CacaoVM by the compaction algorithm presented in section 3.5.

30 CHAPTER 3. METHODOLOGY AND ALGORITHMS

3.5 Algorithm for Compacting Memory Regions

Most generational garbage collection approaches require some sort of non-copying algorithm
for major collections, to reclaim memory in the oldest generation as well. The algorithm pre-
sented here is of the compacting type and moves all live objects to one end of the region, thereby
eliminating all fragmentation caused by interleaved dead objects.

The presented compaction algorithm is based on Morris’ algorithm [22] which originally
required three phases. A major precondition is that all live objects must have been marked
before, which is achieved by executing it after the marking algorithm presented in section 3.3
has been applied. The following illustration is for the original three-phase variant because it’s
easier to understand. The actual implementation uses an optimized two-phase variant which will
be discussed below.

The general idea is to thread and update all references (as discussed in section 3.4 before) in
the first two phases and only actually move objects in the last phase. This causes any destructive
movement, which would break lists of threaded objects, to be done after all objects have been
unthread. The following is a detailed description of those phases.

• Preparation: Thread all references being part of the root-set, thereby making sure those
references are updated when objects are moved. Note that this step does not determine
whether objects are alive or dead, because that was already done by a previous marking
algorithm.

• Phase 1: Scan through objects in forward direction while threading and updating all for-
ward references. Once a live object (identifiable because it’s marked) is reached, all for-
ward references to it have been threaded by now and can be updated by unthreading them.
The final target location of the object is known by keeping track of the size of all live
objects encountered so far.

• Phase 2: Scan through objects in reverse direction while threading and updating all back-
wards references. Same reasoning as for the previous phase, only in reverse direction,
applies here. By the end of this phase all references point to the correct location. But
since objects haven’t been moved yet, they all point to a memory location of random
content, so the heap is in a highly unstable state.

• Phase 3: Scan through objects in forward direction one last time and move each live object
to it’s respective target location. Note that this actually is a move operation as opposed to
a copy operation, because source and target memory may overlap. However, objects are
only moved into one direction, either they stay at the same location or move backwards
because a dead object has been reclaimed. All references have already been updated by
the previous phases and are now pointing to actual objects.

To further illustrate the necessary steps, figure 3.4 shows a simplified example. Objects
being unmarked and hence dead, are depicted with dashed lines. References being part of a
threading are depicted as gray objects. The final heap layout is drawn separately although it
actually represents the same region.

3.5. ALGORITHM FOR COMPACTING MEMORY REGIONS 31

direction of scan

scan

scan

scan

final heap layout

(a) Region during phase 1 of compaction scan-
ning forward and updating forward references.

scan

direction of scan

scan

scan

final heap layout

(b) Region during phase 2 of compaction scan-
ning reverse and updating backward references.

final heap layout

(c) Region after phase 3 of compaction moved
objects to their respective target locations.

Figure 3.4: Illustration of the compacting collection algorithm

As mentioned before, the actual implementation uses an optimized two-phase variant of the
algorithm [16]. This optimization is possible because the moving of objects can be merged
together with the unthreading of backward references into one phase. Also scanning a heap
containing objects of variable size in reverse direction, as the original variant requires, is actually
a problematic requirement. The following is a description of the reduced set of necessary phases.

• Preparation: Same as in the original variant.

• Phase 1: Scan through objects in forward direction while threading and updating all ref-
erences. However the unthreading operation in this phase will only update forward refer-
ences correctly, all backward references will remain threaded, because they are encoun-
tered after the target object has been scanned.

• Phase 2: Scan through objects in forward direction while updating all backward refer-
ences that are still threaded. Also move objects to their respective target locations. This
can be done, because all references not updated so far are located in objects yet to be
scanned.

This space- and time-efficient algorithm can be used for collections in the last generation
of a generational garbage collector. However the notion of being time-efficient needs to be

32 CHAPTER 3. METHODOLOGY AND ALGORITHMS

relativized. The algorithm runs in linear time depending on the number of objects inside a
region. To be precise it needs to scan trough all (living or dead) objects inside a region two times
without even accounting for the pre-required marking.

3.6 Reference Implementation Mark-and-Compact Heap

The second reference implementation is the so called mark-and-compact heap and is a com-
bination of the previously presented marking algorithm (see section 3.3) and the compaction
algorithm (see section 3.5), as the name suggests. The collected heap consist of one big region
which is compacted during each garbage collection, hence keeping it free of fragmentation and
allowing fast allocation [5, 15].

The memory consumption of this heap implementation is far better as compared to the semi-
space heap. Unfortunately the collection process has a bad runtime performance because of the
complexity of the algorithms involved. One possible solution is a combination of both presented
heap implementations as suggested in section 4.3. Again this heap serves as a test implemen-
tation for the involved algorithms and test coverage can be improved by overwriting free space
inside the heap with canary words after each collection.

3.6. REFERENCE IMPLEMENTATION MARK-AND-COMPACT HEAP 33

CHAPTER 4
Results and Future Work

Gives an overview of achieved results and pointers to possible future work towards
the realization of a generational garbage collection approach.

Time is that quality of nature which
keeps events from happening all at once.
Lately it doesn’t seem to be working.

ANONYMOUS

4.1 Results and Comparison of Runtime Impact

Again it has to be emphasized that our garbage collector implementation does not intend to com-
pete with BoehmGC performance-wise, but instead intends to provide infrastructure for exact
garbage collection development. Hence we are not comparing the reference implementations
presented in chapter 3, instead we compare the infrastructure changes presented in chapter 2
to the previous situation in CacaoVM. All measurements were taken on a quad-core x86_64
machine running CacaoVM compiled against GNU Classpath, both in the most recent version
at the time of writing.

In figure 4.1 the negative impact of several changes to the infrastructure of CacaoVM is il-
lustrated using the CaffeineMark 3.0 benchmark scores (higher is better). Red bars represent the
base implementation without any added modifications. One major modification causing a slight
performance drop was the addition of execution mode transitions as introduced in section 2.4.
Measurements after adding this change are depicted in green. Another major modification de-
pending on the previous one was the introduction of indirection cells for native code as presented
in section 2.2 and section 2.3. Measurements after adding both changes are depicted in blue.

Considering pure computational performance of generated JIT-code the impact can be con-
sidered negligible as the results for sieve, loop and logic show. The only major drop can be
observed in the handling of operations related to string modifications and could be combated by
further pursuing inlining of intrinsics as mentioned at the end of section 2.4.

35

 0

 20000

 40000

 60000

 80000

 100000

 120000

sieve loop logic string float method

C
af

fe
in

eM
ar

k
Sc

or
e

Base
Stubs

Handles

Figure 4.1: Measurements of performance impact by infrastructure changes

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 thread 5 threads 20 threads

Al
lo

ca
tio

n
Ti

m
e

(m
s)

BoehmGC
CacaoGC

TLABs

Figure 4.2: Measurements of allocation time for two million allocations

36 CHAPTER 4. RESULTS AND FUTURE WORK

In figure 4.2 accumulated time for the allocation of two million objects is shown. Note
that these numbers only contain runtime needed for allocation (lower is better), initialization as
well as garbage collection time is not accounted for. The original implementation delegating
to BoehmGC is depicted in red. Fast pointer-bumping in one locked global region (as used in
section 3.2 and section 3.6) is depicted in green. An experimental prototype of thread-local allo-
cation as presented in section 5.1 is indicated in blue. However this prototype is highly unstable
because collections inside thread-local areas will almost certainly reclaim live objects. Each
thread is given a fixed allocation buffer to perform unsynchronized allocations in. Once a buffer
fills up it is completely evicted into the global heap, ignoring any old-to-young references. This
prototype is able to bootstrap the virtual machine and execute the above allocation benchmark,
any more complex application will crash due to live objects being falsely reclaimed.

Objects are concurrently allocated by the number of threads specified until a total allocation
count of two million is reached. For the single-threaded mode all objects are allocated con-
secutively by a single thread, hence contention of the lock synchronizing the global heap never
happens. For the multi-threaded modes that single lock experiences more and more load because
all threads try to allocate concurrently, leading to permanent contention.

This shows that fast pointer-bumping is a bit more efficient than the allocation that BoehmGC
can provide. Providing an inlined version of the allocation intrinsic would further improve allo-
cation time. However both variants suffer from the effects of synchronization due to one global
heap, as the thread-local prototype should clearly demonstrate. Especially multi-core machines
will highly benefit from development towards that direction.

Note that this metric only shows pure allocation time, any additional overhead needed to
evict thread-local areas is not taken into account by the above measurements. However there
are two reasons why memory management tasks should be postponed as long as possible in this
case. Most of the objects that are allocated thread-locally will die young and not survive the
first promotion. Coupled with the computational complexity of the involved copying algorithms
which solely depend on the number of living objects, such minor collections have low pause
times.

4.2 Results and Comparison of Heap Usage

Another interesting measurement parameter is the size of used heap memory over time. For this
purpose collections were triggered at regular intervals and the used heap space was calculated by
subtracting reported free space from total heap size. Note that this measurement is independent
from the actual memory consumption a virtual machine exhibits, because total heap size is not
stated and the garbage collector might decide to increase or decrease total heap size at it’s own
discretion.

In general the exact garbage collection approach has a lower heap usage due to it’s precise
nature. The heap usage of the conservative approach can serve as an upper bound and is expected
to be higher or equal the heap usage of an exact collector. This situation is exemplified in
figure 4.3 using the DaCapo Eclipse Benchmark with a maximum heap size of 128 megabytes
(option -Xmx128M) and forced collections each second, comparing BoehmGC against one of
our implementations presented in section 3.2 and section 3.6. For this measurement those two

4.2. RESULTS AND COMPARISON OF HEAP USAGE 37

10m

15m

20m

25m

30m

35m

 0 1 2 3 4 5 6 7 8 9 10 11

H
ea

p
U

sa
ge

 (b
yt

es
)

BoehmGC
CacaoGC

Figure 4.3: Measurements of heap usage over time

implementations can be used interchangeably, because they exhibit exactly the same degree of
precision and even use the same codebase to calculate a root-set.

4.3 Missing Pieces for Generational Garbage Collection

One remaining issue to successfully deploy generational garbage collection in CacaoVM, which
was just briefly mentioned so far, concerns references from older to younger objects. Even
though these references are uncommon according to the weak generational hypothesis, they still
need to be handled correctly. For an illustration of such old-to-young references see figure 1.1
in one of the earlier chapters. These references need to be added to the root-set for copying
collection as described in section 3.1.

Aside from dedicated hardware-support there are several software solutions to keep track of
those references, almost all based on so called write barriers. Such barriers are executed when-
ever a references inside the heap is updated (i.e. either through a field-store or an array-store
operation) and checks if the new reference value would create a back-reference. The following
is a list of common approaches towards implementing write barriers, which mainly vary in the
granularity of the information they record [14].

• Remembered Sets: Each generation has an associated remembered set, which records all
locations that might contain references into that generation from an older one. The finest
granularity would be to record the reference location itself, but a more feasible solution

38 CHAPTER 4. RESULTS AND FUTURE WORK

might just record the object containing the reference. During collections those locations
recorded in the remembered set are scanned for references that have to be added to the
root-set for that generation.

• Card Marking: By dividing each generation into smaller regions, so called cards, an even
coarser granularity can be achieved. Each card can be marked as dirty in case it might
contain old-to-young references. These marking bits are associated with the source-region
of references as opposed to remebered sets which belong to the destination-region. During
collections all dirty cards of all older generations are scanned for references pointing into
the region being collected. Issues arise when objects transcend card boundaries, because
finding object headers might not be possible in that case.

• Page Protection: One variant of the above card marking technique is to use page protec-
tion mechanisms provided by the underlying operating system to detect when pages are
dirtied. In this case cards are equivalent with memory pages.

Coincidently these write barriers also help to support the implementation of concurrent
marking techniques as briefly mentioned in section 3.3 and section 5.3, that require keeping
track of concurrent reference updates by mutators [11, 26].

4.3. MISSING PIECES FOR GENERATIONAL GARBAGE COLLECTION 39

CHAPTER 5
Conclusion and Related Work

Explains design decisions previously presented for this exact garbage collector in
comparison to other state-of-the-art garbage collection implementations.

I suppose it is tempting, if the only tool
you have is a hammer, to treat everything
as if it were a nail.

ABRAHAM H. MASLOW

5.1 Thread-Local Allocation

As mentioned in section 1.2 already, one goal of any memory management scheme should be
to achieve fast allocation. All presented heaps as part of this thesis use simple pointer bumping
for allocation, one of the most efficient methods of allocating memory, tuning it further seems
virtually impossible. However there is one detail that hasn’t been discussed so far, namely the
required locking of the heap during allocation.

The heap is a global storage area that is accessed concurrently by all mutators, hence these
accesses need to be synchronized. However some of the allocated objects will be used exclu-
sively by one thread and don’t have to be allocated on a global heap. This immediately suggests
the introduction of thread-local storage areas for objects and would avoid any unnecessary syn-
chronization during allocation, thus further increasing allocation speed.

Locality through Escape Analysis

One approach to achieve above goal is to apply escape analysis onto the underlying code [21].
Thereby it can be proven that objects allocated at certain allocation sites will never escape a
predefined scope.

41

• Method Scope: Objects that don’t escape the scope of a method can be put directly onto
the stack. No explicit allocation is necessary, however the underlying memory still has to
be cleared.

• Thread Scope: Objects that don’t escape the scope of a thread can be allocated on a
thread-local heap without the need for any synchronization. Even collections can be
performed completely without synchronization.

• Global Scope: No additional constraints can be bestowed upon objects allocated at sites
with global scope, those still have to be allocated on a global heap.

The major advantage of using escape analysis to solve this issue is the distinction between
several different scopes for allocation sites. Unfortunately escape analysis determines scopes
for allocation sites and not for the actual objects themselves, thereby exhibiting conservative
behavior for indecisive results.

Locality through Generations

Another approach is based on the generational garbage collection infrastructure presented in
this thesis and requires no additional static analysis of any kind. Assuming that most objects
won’t escape the thread scope, each object is by default allocated in a thread-local area of the
heap acting as an own generation. This approach is very similar to using thread-local heaps and
has the major advantage that again allocation can be done without any synchronization. Even
collection can be done on a thread-local basis without suspending other mutators [12].

.

.

.

.

.

Generation 1

.

.

.

.

.

Generation 2

TLAB 1

TLAB 3

TLAB 2

Figure 5.1: Thread-local allocation through generations

In figure 5.1 an illustration of these generations placed in front of the global heap, which
are sometimes referred to as thread-local allocation buffers (TLABs), is shown. During the first

42 CHAPTER 5. CONCLUSION AND RELATED WORK

minor collection (which can mostly be done thread-locally as well) these buffers are evicted
and promoted objects are placed onto the global heap. Thereby the generational infrastructure
implicitly performs dynamic escape analysis as discussed in section 4.3. Again the weak gener-
ational hypothesis is the basis for this optimization. It can be shown that such an approach can
even be faster than stack allocation [4].

5.2 Liveness Analysis of Local Variables

So far only two kinds of type-precision were considered when it comes to local variables that
are stored as part of a thread’s stack or machine registers. The conservative approach has no
type information wheres the exact approach has precise type information for each local variable.
However there are a total of four degrees of precision worth considering when it comes to the
calculation of the root-set in a Java Virtual Machine [3].

1. Ambiguous: Every local variable is treated as a possible reference without considering
it’s actual type. This leads to ambiguous root-sets as they are used in conservative garbage
collection covered in section 1.2. This degree of precision was previously implemented
by CacaoVM by utilizing BoehmGC.

2. Type-Precise: Accurate type-information is used to obtain a type-precise root-set only
containing reference types. Appropriate techniques to store and use such information are
covered throughout this thesis and are the basis for exact garbage collection. This degree
of precision is used by the presented garbage collector.

3. Live-Precise: Augmented information from an intra-procedural live variable analysis is
used, to only add local variables which are alive and result in a live-precise root-set. Ob-
jects to which the method still holds a references, but which definitely will not be accessed
again, can be reclaimed. This degree of precision is commonly used by modern garbage
collection implementations [3].

4. Refined Live-Precise: More complex analyses, such as an inter-procedural live variable
analysis, can be used to further refine precision of the root-set.

Note that determining exactly which local variables an application will access again is equiv-
alent to the halting problem. Thus a fully-precise calculation of the root-set is not computable,
but liveness analysis as presented here is a good approximation of that optimum.

Using a more precise root-set helps to further reduce memory usage. Some of this behavior
can be simulated by explicitly setting references to null in an application. But this practice
introduces unnecessary overhead, burdens the developer with memory management issues and
on top of all, is unable to cover all cases of local variables losing their liveness.

5.3 Concurrent Garbage Collection

Large pause times caused by major collections in the oldest generation can be reduced by using
concurrent techniques. The marking algorithm presented in section 3.3 requires all mutators to

5.2. LIVENESS ANALYSIS OF LOCAL VARIABLES 43

be suspended. To realize concurrent marking of reachable objects, a tri-color marking algorithm
can to be used [11].

Initially all objects are colored white, thereby indicating that they are unmarked. The mark-
ing algorithm then continues with tracing references and coloring referenced objects gray. Those
objects have been marked to be reachable, but their references have not yet been scanned, hence
they are still on the work-list. Once all references in an object have been scanned and it is
removed from the work-list, it is finally colored black. This algorithm requires the so called
tri-color invariant to hold throughout the marking phase. To ensure that said invariant holds,
write-barriers as described in section 4.3 are used to return black objects that are concurrently
modified, back to a gray state, in order for them to get rescanned again.

During marking there will be no edge pointing from a black node to a white one.
– Strong Tri-Color Invariant

Even though the original tri-color algorithm can achieve almost full concurrency with mu-
tator threads, most implementations settle with so called semi-concurrent or semi-parallel algo-
rithms for the sake of better throughput [7]. A typical implementation might use several short
pauses for exclusive marking, interleaved with concurrent marking and sweeping phases [26].

• Initial Marking Pause: Calculate the root-set by walking the stack of each mutator thread
while it is fully suspended as described in section 2.6.

• Concurrent Marking Phase: Perform the tri-color marking on said initial root-set, while
mutators are being executed concurrently. After marking finishes, most objects are black,
while some might still be gray because of concurrent updates to one of their reference
fields. However the write-barriers described in section 4.3 record such updates.

• Final Marking Pause: Again calculate the root-set like in the first step, but also add
recorded gray objects from the previous concurrent phase. This final marking step is
executed with all mutators being suspended and ensures that all concurrent changes from
the previous phase are correctly marked as well.

• Concurrent Sweeping Phase: A non-moving sweeping phase can be performed concur-
rently again, because it only deals with dead white objects which cannot be reached by
mutators anymore. Compacting objects as presented in section 3.5 however cannot be
done concurrently, because it modifies live objects as well.

This shows that semi-concurrent marking could be added to the presented garbage collector
once write-barriers are in place. However the compaction of memory regions, which takes up a
large portion of the pause time of major collections, cannot easily be parallelized and is outside
the scope of this thesis.

44 CHAPTER 5. CONCLUSION AND RELATED WORK

Especially for large-scale applications with a high degree of parallelism deployed on mul-
tiprocessor servers, the aspect of minimizing pause times without loosing throughput becomes
very important. Some garbage collection algorithms even allow to specify a soft real-time goal
for pause times. This is often coupled with incremental garbage collection, which is very simi-
lar to the concurrent approach. The Garbage-First collector for example partitions the heap into
regions, much like generations but unsorted. It uses remembered sets (see section 4.3) to record
all locations that might contain pointers to objects within the region. Instead of sweeping dead
objects or compacting live ones, the regions are always evicted (or evacuated) by copying live
objects into another region as discussed in section 3.1 before. An arbitrary set of such regions
can be chosen for collection, preferring the ones containing lots of dead objects, hence the name
of that garbage collector [10].

5.4 Unloading of Class Information

At the moment CacaoVM stores all class information outside the heap. Every instance of
java.lang.Class is un-collectable and lives outside the collected heap, which directly con-
tradicts one of the fundamental assumptions in section 2.1. This circumstance requires special-
casing in all presented collection algorithms and makes class unloading hard to implement.

The concept of class unloading is an optimization which helps the virtual machine to further
reduce memory consumption. It has to be completely transparent to the application whether the
underlying virtual machine supports it or not, therefore accidental reloading of classes (which
would reset static variables and rerun static initializers) has to be prevented. This is realized by
coupling the life-cycle of class information to the loading class loader. A class or interface may
be unloaded if and only if its class loader is unreachable. The bootstrap class loader is always
reachable; as a result, system classes may never be unloaded. [20, section 2.17.8].

One proposed solution to implement class unloading and collection of class information
memory, by reusing most of the infrastructure for generational garbage collection presented so
far, would have the following cornerstones.

• Separate Generation: Keep instances of java.lang.Class in a dedicated generation
because they are generally long lived and contradict the weak generational hypothesis.
This can be easily realized because those instances are exclusively instantiated by the
virtual machine internally, as opposed to a new keyword. All references held in static
fields are considered to be old-to-young references in the way that section 4.3 presented
them. Collections in that generation are only initiated when class unloading is triggered
by the following point and not when memory runs low.

• Weak Class Cache: The class cache mapping class loaders to actual class information
they loaded, uses weak global references to class loaders. Thereby additional cleanup
code that initiates class unloading can be associated with class loaders, without keeping
them alive unnecessarily.

5.4. UNLOADING OF CLASS INFORMATION 45

5.5 No Silver Bullet towards Garbage Collection

As a final statement we want to emphasize that there is no silver bullet towards garbage collec-
tion, especially when it comes to embedded systems or other resource-constrained environments
[24]. Modern garbage collection implementations allow tweaking to fine-tune garbage collector
behavior towards specific needs of a particular application, even production-ready Java solutions
often are equipped with more than one garbage collector.

A lot of the general concepts presented throughout this thesis (like partitioning into regions,
concurrent collections & thread locality) are essential for a state-of-the art garbage collector
and need to be present. Their concrete configuration however, highly depends on the application
being executed. As a result we believe that the goal should be to create a flexible garbage
collection framework which can be tweaked to individual scenarios. Since manual tweaking is
infeasible, profiling of the application’s memory management needs and characteristics should
be done and fed back into the framework to further improve performance. Just like compiler
profiling can help to optimize the result of a compiler, garbage collector profiling could be used
to optimize the results of a garbage collector [24].

Especially for embedded systems, making best use of the limited resources is a priority,
regarding garbage collection as a separated black-box is not beneficial. Hence we see garbage
collection as an integrated part of the virtual machine and believe it needs to be treated as such.

46 CHAPTER 5. CONCLUSION AND RELATED WORK

Bibliography

[1] O. AGESEN, GC points in a threaded environment, tech. rep., SMLI TR-98-70. Sun Mi-
crosystems, December 1998.

[2] O. AGESEN AND D. DETLEFS, Finding references in Java stacks, in Workshop on
Garbage Collection and Memory Management, OOPSLA ’97, October 1997.

[3] O. AGESEN, D. DETLEFS, AND J. E. MOSS, Garbage collection and local variable type-
precision and liveness in Java virtual machines, SIGPLAN Notices, 33 (1998), pp. 269–
279.

[4] A. W. APPEL, Garbage collection can be faster than stack allocation, Information Pro-
cessing Letters, 25 (1987), pp. 275–279.

[5] A. W. APPEL, Simple generational garbage collection and fast allocation, Software Prac-
tice and Experience, 19 (1989), pp. 171–183.

[6] D. E. BACON, S. J. FINK, AND D. GROVE, Space- and time-efficient implementation of
the Java object model, in Proceedings of the Sixteenth European Conference on Object-
Oriented Programming (ECOOP 2002), Springer, June 2002, pp. 111–132.

[7] H.-J. BOEHM, A. J. DEMERS, AND S. SHENKER, Mostly parallel garbage collection,
in Proceedings of the ACM SIGPLAN 1991 conference on Programming language design
and implementation, PLDI ’91, New York, NY, USA, 1991, ACM, pp. 157–164.

[8] H.-J. BOEHM AND M. WEISER, Garbage collection in an uncooperative environment,
Software Practice and Experience, 18 (1988), pp. 807–820.

[9] C. J. CHENEY, A nonrecursive list compacting algorithm, Communications of the ACM,
13 (1970), pp. 677–678.

[10] D. DETLEFS, C. FLOOD, S. HELLER, AND T. PRINTEZIS, Garbage-first garbage collec-
tion, in Proceedings of the 4th international symposium on Memory management, ISMM
’04, New York, NY, USA, 2004, ACM, pp. 37–48.

[11] E. W. DIJKSTRA, L. LAMPORT, A. J. MARTIN, C. S. SCHOLTEN, AND E. F. M. STEF-
FENS, On-the-fly garbage collection: an exercise in cooperation, Communications of the
ACM, 21 (1978), pp. 966–975.

47

[12] T. DOMANI, G. GOLDSHTEIN, E. K. KOLODNER, E. LEWIS, E. PETRANK, AND

D. SHEINWALD, Thread-local heaps for Java, SIGPLAN Notices, 38 (2002), pp. 76–87.

[13] D. GRUNWALD, B. ZORN, AND R. HENDERSON, Improving the cache locality of memory
allocation, SIGPLAN Notices, 28 (1993), pp. 177–186.

[14] A. L. HOSKING, J. ELIOT, B. MOSS, AND D. STEFANOVIC, A comparative performance
evaluation of write barrier implementations, in Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications, ACM Press, Octo-
ber 1992, pp. 92–109.

[15] R. JONES AND R. D. LINS, Garbage Collection: Algorithms for Automatic Dynamic
Memory Management, John Wiley & Sons, Ltd., 1996.

[16] H. B. M. JONKERS, A fast garbage compaction algorithm, Information Processing Letters,
9 (1979), pp. 26–30.

[17] A. KRALL, Efficient JavaVM just-in-time compilation, in Proceedings of the 1998 Inter-
national Conference on Parallel Architectures and Compilation Techniques, PACT ’98,
Washington, DC, USA, 1998, IEEE Computer Society, pp. 205–212.

[18] A. KRALL AND R. GRAFL, Cacao - a 64-bit JavaVM just-in-time compiler, Concurrency
and Computation: Practice and Experience, 9 (1997), pp. 1017–1030.

[19] S. LIANG, Java Native Interface: Programmer’s Guide and Specification, Prentice Hall,
1999.

[20] T. LINDHOLM AND F. YELLIN, Java Virtual Machine Specification, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd ed., 1999.

[21] P. MOLNAR, A. KRALL, AND F. BRANDNER, Stack allocation of objects in the Cacao vir-
tual machine, in Proceedings of the 7th International Conference on Principles and Practice
of Programming in Java, PPPJ ’09, New York, NY, USA, 2009, ACM, pp. 153–161.

[22] F. L. MORRIS, A time- and space-efficient garbage compaction algorithm, Communica-
tions of the ACM, 21 (1978), pp. 662–665.

[23] M. PAWLAN, Reference objects and garbage collection, August 1998.
http://www.pawlan.com/monica/articles/refobjs/.

[24] A. PETIT-BIANCO, No silver bullet - garbage collection for Java in embedded systems,
August 1998.
http://gcc.gnu.org/java/papers/nosb.html.

[25] C. PFEIFHOFER AND M. STARZINGER, Garbage collection - BoehmGC. June 2006.

[26] T. PRINTEZIS AND D. DETLEFS, A generational mostly-concurrent garbage collector,
in Proceedings of the 2nd international symposium on Memory management, ISMM ’00,
New York, NY, USA, 2000, ACM, pp. 143–154.

48

http://www.pawlan.com/monica/articles/refobjs/
http://gcc.gnu.org/java/papers/nosb.html

[27] H. SCHORR AND W. M. WAITE, An efficient machine-independent procedure for garbage
collection in various list structures, Communications of the ACM, 10 (1967), pp. 501–506.

[28] E. STEINER, A. KRALL, AND C. THALINGER, Adaptive inlining and on-stack replace-
ment in the Cacao virtual machine, in Proceedings of the 5th international symposium on
Principles and practice of programming in Java, PPPJ ’07, New York, NY, USA, 2007,
ACM, pp. 221–226.

[29] D. UNGAR, Generation scavenging: A non-disruptive high performance storage reclama-
tion algorithm, SIGSOFT Software Engineering Notes, 9 (1984), pp. 157–167.

[30] B. ZORN, The measured cost of conservative garbage collection, Software Practice and
Experience, 23 (1993), pp. 733–756.

49

List of Figures

1.1 Generational approach towards garbage collection 5

2.1 The root-set spanning a directed graph inside the heap 10
2.2 Usage of indirection cells for native methods 12
2.3 Design of the handle memory data structure 15
2.4 Layout of a thread’s stack . 20
2.5 Attaching hash-code to object . 23

3.1 Illustration of the copying collection algorithm 27
3.2 Illustration of tracing algorithm to mark live objects 29
3.3 Illustration of threading algorithm to update references 30
3.4 Illustration of the compacting collection algorithm 32

4.1 Measurements of performance impact by infrastructure changes 36
4.2 Measurements of allocation time for two million allocations 36
4.3 Measurements of heap usage over time . 38

5.1 Thread-local allocation through generations 42

51

List of Listings

1.1 Environment with explicit memory management 2
1.2 Environment with automatic memory management 2

2.1 Sample of array access via JNI inside a native method 12
2.2 Sample of array access via internal interface inside a native method 14
2.3 Platform-independent representation of the machine state 16
2.4 Object identity comparison in JIT-code . 22

3.1 Pseudo-code of the forwarding operation for copying collection 26

Comic courtesy of Laurent Grégoire.

52

	Introduction
	Motivation
	Basics and Terminology
	Current Situation in the Cacao Virtual Machine

	Garbage Collection Infrastructure
	Discovering References into the Heap
	Direct vs. Indirect References
	Efficient Storage of Indirection Cells
	Modes of Execution inside the Virtual Machine
	Thread Suspension Mechanisms
	Unrolling a Thread's Stack Information
	Object Identity Hash-Codes
	Different Reachability Strengths in Java

	Methodology and Algorithms
	Algorithm for Copying Collection
	Reference Implementation Semi-Space Heap
	Algorithm for Marking Live Objects
	Algorithm for Reference Threading
	Algorithm for Compacting Memory Regions
	Reference Implementation Mark-and-Compact Heap

	Results and Future Work
	Results and Comparison of Runtime Impact
	Results and Comparison of Heap Usage
	Missing Pieces for Generational Garbage Collection

	Conclusion and Related Work
	Thread-Local Allocation
	Liveness Analysis of Local Variables
	Concurrent Garbage Collection
	Unloading of Class Information
	No Silver Bullet towards Garbage Collection

	Bibliography

