
Dissertation

Resource Bound Analysis of
Imperative Programs

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines

Doktors der technischen Wissenschaften unter der Leitung von

Univ. Prof. Dr. Helmut Veith

E184/4
Institut für Informationssysteme

eingereicht an der Technischen Universität Wien

Fakultät für Informatik

von

Florian Zuleger

0929415

Skodagasse 3/7

1080 Wien
Österreich

Wien, am 20.04.2011 Unterschrift des Verfassers

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

We must know - we will know!

David Hilbert,
Address to the Society of German

Scientists and Physicians, in
Königsberg (8 September 1930)

iii

Acknowledgements

First and foremost, I would like to thank my advisor Helmut Veith, without

whom this thesis would not have been possible. He suggested to me the topic

of this thesis, introduced me to research, always believed in my abilities and

gave me enough space to develop my own ideas. Throughout my studies

his enthusiasm and dedication to research always were encouraging. Helmut

strongly influenced the development of my logical viewpoint on computer sci-

ence. I further would like to thank Helmut for his friendliness and reliability

and for creating a nice group atmosphere by social events such as visiting

conferences jointly, going to the ball together etc.

I would like to thank Sumit Gulwani for our joint work on bound analysis

during my internship and thereafter, which had a substantial influence on

this thesis. I learned from Sumit the importance of practical examples for

theoretical research and how to focus on relevant problems. Sumit is an

inspiring researcher whose passion sets an example for other researchers. I

further would like to thank him for his continuing supervision and advice.

I would like to thank the members of my group for providing such a

lively working environment and for all the fun inside and outside university.

I especially thank Moritz Sinn for our joint work on bound analysis, his

help with the figures and the proof-reading of this thesis, Andreas Holzer for

letting me sleep on his couch before I had my own appartment, Johannes

Kinder for storing my piano during my internship, and Michael Tautschnig

for all his support on linux issues.

I would like to thank my parents for their continuing emotional and moral

support, which gives me the safety to believe that things will always turn out

well.

iv

Abstract

For many practical applications it is important to bound the resources con-

sumed by a program such as time, memory, network-traffic, power, and to

estimate quantitative properties of data in programs, such as information

leakage or uncertainty propagation. At the heart of many of these questions

lies the problem of finding a symbolic worst-case bound on the number of

visits to a given program location in terms of the inputs to that program;

we call this the reachability-bound problem. The automatic computation of

reachability-bounds is challenging because in general such bounds are com-

plicated expressions that hinder the direct application of standard abstract

domains and require disjunctive invariants.

We propose a two-step methodology for computing a reachability-bound

of a given program location: First, we generate a transition system that

disjunctively summarizes all pairs of states for which there is a program

execution that visits the location once and again. Second, we compute a

bound of the transition system to derive a reachability-bound. We present

two approaches that implement this methodology.

Our first approach brings together two different techniques for reasoning

about loops. We present an abstract-interpretation based iterative technique

for computing disjunctive loop invariants, which we use for summarizing

inner loops. We use a non-iterative proof-rules based technique for loop

bound computation that takes over the role of doing inductive reasoning,

while deriving its power from the use of SMT solvers to reason about ab-

stract loop-free fragments. We evaluate the effectiveness of our approach on

a .Net library and illustrate the precision of our algorithm for disjunctive

invariant computation on a set of benchmark examples. Though effective

our first approach lacks a unifying theory that allows to discuss properties

v

like completeness, complexity, etc.

Our second approach is based on the so-called size-change abstraction

(SCA). While SCA is an established abstract domain for termination analy-

sis that has been successfully implemented in many tools for functional and

declarative programs, we are the first to demonstrate its potential for the

harder problem of bound analysis. SCA has the crucial property to be closed

under the computation of transitive hulls, which we use for summarizing

inner loops disjunctively. We show that SCA offers a separation of con-

cerns for bound computation: we extract local progress measures from small

program parts, and then compose these local progress measures to a global

bound using only the size-change abstracted program. We state two program

transformations that make imperative programs amenable to bound analysis

with SCA. We evaluate the effectiveness of our approach on C benchmark

programs.

Having demonstrated the practical relevance of SCA for bound analysis,

we present results towards a theoretical characterization of the bounds ex-

pressible by SCA. In particular, we define complexity witnesses that establish

lower bounds of abstract programs.

In a qualitative comparison we show that our solution to the reachability-

bound problem captures the essential ideas of earlier termination and bound

analyses in a simpler framework and outperforms these analyses in computing

loop-bounds and proving termination.

vi

Kurzfassung

In vielen praktischen Anwendungen benötigt man eine Beschränkung der von

Computerprogrammen verbrauchten Resourcen (z.B. Ausführungszeit, Spe-

icher, Netzwerkverkehr, Energie) und eine Abschätzung von quantitativen

Programmeigenschaften (z.B. des Verlusts geheimer Informationen oder der

Ausbreitung von Fehlern). Viele dieser Fragen lassen sich auf das Prob-

lem der Berechnung einer symbolischen Schranke zurückführen, wie oft ein

bestimmter Programmpunkt in Abhängigkeit von den Programmeingaben

besucht werden kann; wir nennen dies das Erreichbarkeitsschrankenproblem.

Die automatische Berechnung von Erreichbarkeitsschranken ist anspruchsvoll,

da solche Schranken im allgemeinen komplizierte Ausdrücke sind, die nicht

direkt durch bewährte abstrakte Domänen berechnet werden können, und

disjunktive Invarianten benötigen.

Die in dieser Dissertation vorgestellte Methode berechnet eine Erreich-

barkeitsschranke eines gegebenen Programmpunktes in zwei Schritten: Im

ersten Schritt erzeugen wir ein Transitionssystem, das disjunktiv alle Paare

von Zuständen zusammenfasst, für die es eine Programmausführung gibt,

die den Programmpunkt mindestens zweimal besucht. Im zweiten Schritt

berechnen wir eine Schranke für das Transitionssystem und erhalten dadurch

die gewünschte Erreichbarkeitsschranke. Wir präsentieren zwei Ansätze, die

unsere Methode praktisch umsetzen.

Unser erster Ansatz benützt zwei verschiedene Techniken zur Analyse

von Schleifen. Zum einen präsentieren wir eine auf abstrakter Interpre-

tation basierende iterative Technik zur Berechnung disjunktiver Schleifen-

invarianten. Zum anderen benutzen wir eine nicht-iterative auf Beweis-

regeln basierende Technik für die Berechnung von Schleifenschranken, welche

ihre Leistungsfähigkeit aus dem Einsatz von SMT Beweisern bezieht; das

vii

ermöglicht präzise Schlüsse über lange schleifenfreie Codeabschnitte. Wir

evaluieren die Effizienz unseres Ansatzes an einer .Net Bibliothek und an

mehreren Beispielen für die Berechnung disjunktiver Invarianten aus der Lit-

eratur. Ungeachtet seiner praktischen Effizienz mangelt es dem ersten Ansatz

an einer vereinheitlichenden Theorie, auf deren Grundlage wir Eigenschaften

wie Vollständigkeit, Komplexität etc. diskutieren können.

Unser zweiter Ansatz basiert auf einer Abstraktion, die das monotone Ver-

halten numerischer Größen über den Programmzuständen beschreibt. Die so-

genannte size-change abstraction (SCA) ist eine etablierte abstrakte Domäne

für Terminationsanalyse, die für funktionale und deklarative Sprachen erfol-

greich eingesetzt wird. In dieser Dissertation wird SCA erstmals für das

schwierigere Problem der Schrankenanalyse eingesetzt. Für das disjunk-

tiven Zusammenzufassen innerer Schleifen nutzen wir die Abschlusseigen-

schaft von SCA in Bezug auf transitive Hüllen. Mit Hilfe von SCA können wir

Schranken stufenweise berechnen: Zunächst extrahieren wir lokale Fortschritts-

maße aus kleinen Programmabschnitten und setzen diese lokalen Fortschritts-

maße dann nur mit Hilfe des abstrahierten Programmes zu einer global gülti-

gen Schranke zusammen. Durch zwei geeignete Programmtransformationen

ermöglichen wir dann die Schrankenanalyse imperativer Programme. Wir

evaluieren die Effizienz unserer Ansatzes anhand zweier Benchmarks für die

Sprache C.

In Ergänzung des praktischen Relevanznachweises für SCA in der Schranke-

nanalyse präsentieren wir theoretische Beiträge, die auf eine mathematische

Charakterisierung jener Schranken, die mit SCA ausgedrückt werden können,

hinarbeiten. Insbesondere definieren wir Komplexitätszeugen für den Nach-

weis unterer Schranken abstrakter Programme.

Zusammenfassend diskutieren wir anhand eines qualitativen Vergleiches

viii

ausführlich, wie unser Lösungsansatz des Erreichbarkeitsschrankenproblems

auf den wesentlichen Ideen früherer Terminations- und Schleifenanalysen auf-

baut und diese früheren Ansätze bei der Berechnung von Schleifenschranken

und Terminationsbeweisen verbessert.

Contents

1 Introduction 1

1.1 The Reachability-bound Problem 4

1.1.1 Challenges in the Reachability-bound Problem 5

1.1.2 Methodological Examples 6

1.1.3 Difference between the Loop-bound and

Reachability-bound Problem 9

1.1.4 Amortized Analysis . 10

1.1.5 Cut-points and the Local Method 11

1.2 Summary of our Approach . 12

1.2.1 Proof-rule Based Approach (Chapter 3) 14

1.2.2 Size-change Abstraction Based Approach (Chapter 4) . 17

1.2.3 Fundamental Properties of the Size-change Abstrac-

tion (Chapter 5) . 20

1.3 Related Work . 22

1.4 Contributions . 24

2 Problem Definition and Main Steps of the Analysis 27

2.1 Notation for Sets and Relations 27

2.2 Program Model . 28

2.3 The Reachability-Bound Problem 29

ix

Contents x

2.4 Main Steps of our Analysis . 32

2.5 Computing Transition Systems 33

2.5.1 Disjunctiveness in Algorithm 1 39

2.5.2 Pathwise Analysis in Algorithm 1 39

2.6 Proof of Theorem 7 . 40

3 Proof-rule based Approach 44

3.1 Transitive Closure Computation 44

3.2 Ranking Function for a Transition 52

3.2.1 Arithmetic Iteration Patterns 53

3.2.2 Boolean Iteration Patterns 55

3.2.3 Bit-vector Iteration Patterns 56

3.2.4 Data-structure Iteration Patterns 57

3.3 Bound Computation . 57

3.3.1 Max Composition of Ranking Functions 59

3.3.2 Additive Composition of Ranking Functions 61

3.3.3 Multiplicative Composition of Ranking Functions . . . 63

3.3.4 Combining the Composition Rules 65

3.4 Experiments . 67

3.4.1 Loop Bound Computation 67

3.4.2 Disjunctive Invariant Computation 70

4 Size-change Abstraction Approach 73

4.1 Size-change Abstraction . 73

4.1.1 Order Constraints . 73

4.1.2 Size-change Abstraction (SCA) 74

4.1.3 Heuristics for Extracting Norms 76

4.2 Transitive Closure Computation 77

Contents xi

4.2.1 Disjunctive Summarization of Loops with SCA 80

4.2.2 Comparison of Blockwise and Pathwise SCA Analysis . 80

4.3 Bound Computation . 82

4.3.1 Contextualization . 83

4.3.2 Bound Algorithm . 85

4.3.3 A Complete Example 89

4.4 Experiments . 90

5 Fundamental Properties of the Size-change Abstraction 93

5.1 Order Constraints . 93

5.1.1 Computing Saturations 101

5.2 Size-change Abstraction . 106

5.2.1 Size-change Systems 107

5.2.2 Equivalence of Syntactic and Semantic Termination . . 111

5.2.3 Deciding the Termination of SCSs 119

5.3 Lower Bounds . 123

5.3.1 For-loops . 123

5.3.2 Value Intervals . 125

5.3.3 Offsets . 127

5.3.4 Counters . 129

5.3.5 Lower Bounds from For-loops 131

5.3.6 Discussion of the Complexity of SCSs 134

6 Related Work 136

6.1 Bound Analysis by the SPEED project 136

6.2 Termination Analysis by Ranking Functions and Transition

Invariants . 138

Contents xii

6.3 Comparison of transition predicate abstraction (TPA) and

SCA by Heizmann et al. 140

6.4 Termination Analysis by Terminator 141

6.5 Termination Analysis byLoopfrog 142

6.6 Loop Summarization . 144

6.7 Disjunctive Invariant Generation 145

6.8 Size-change Abstraction . 146

6.9 Other Approaches . 147

7 Conclusion 150

Bibliography 153

Curriculum Vitae 159

List of Figures

1.1 Two programs for which the local method yields imprecise

results. 10

1.2 Loops from recent work on proving termination and loop bound

computation. 23

2.1 Different stages of the computation of TransSys(P, l6) by Al-

gorithm 1 . 36

3.1 Programs from .Net class libraries that have outer loops whose

iterators are modified by inner loops. 48

3.2 The table shows the number of loops for respective number of

transition relations. 69

3.3 Prominent disjunctive invariant challenges from recent litera-

ture. 72

4.1 Simplified CFG of Program 1.1 with transition relations 78

4.2 Program 4.1 with its CFG obtained from contextualization. . . 84

4.3 Contextualization of Program 1.7 (see page 23) 84

4.4 The contextualization and size-change abstraction of Program 1.2. 89

5.1 Tables of the addition and multiplication operators of the or-

der lattice. 97

xiii

List of Figures xiv

5.2 A run DAG and the orbits of its vertices. 112

5.3 SCRs of the SCS used in the proof of Lemma 96. 119

List of Algorithms

1 TransSys(P, l) computes a transition system for P |l 33

2 TransHull(T) computes a transition invariant for T 49

3 Bound(T) composes a bound of T from ranking functions of the

individual transitions of T . 65

4 TransHull(T) computes a transition invariant for T 78

5 Bound(P) composes a bound of P from the individual bounds

of the SCCs of P . 86

6 BndSCC computes bounds for individual SCCs 87

7 Floyd-Warshall computes the saturation of a set of constraints 105

8 Closure(A) computes the transitive closure of A 122

9 Complexity(A) computes the asymptotic complexity of A . . . 135

xv

Chapter 1

Introduction

In formal verification, proving termination is an important step in proving the

correctness of programs. A general method for constructing a termination

proof of a program involves associating a measure with each step of the

program [Turing, 1936]. The measure is taken from the domain of a well-

founded relation, e.g. the ordinal numbers, and is commonly called a ranking

function. If the ranking function decreases according to the well-founded

relation for every step of the algorithm, the program must terminate, because

there are no infinite descending chains with respect to a well-founded relation.

Termination analysis attempts to automatically detect whether a given

program terminates on all inputs. Because the halting problem is undecid-

able [Turing, 1936], such an analysis is necessarily incomplete. However the

goal is to find the answer “program does terminate” (or “program does not

terminate”) for as many programs occurring in practice as possible.

Recent years have seen a rapid progress in the field of termination analysis

for imperative programs. This development started with automatic methods

for constructing ranking functions. These methods built on the insight that

many ranking functions have simple shapes that can be captured by ranking

1

1 Introduction 2

function templates; various constraint solving techniques have been proposed

for finding the coefficients of such ranking function templates. The effective-

ness of these techniques has been limited to small programs because larger

programs in general have complex ranking functions whose shapes cannot be

captured by templates. The key for handling larger programs was the advent

of compositional techniques for termination analysis. In [Lee et al., 2001],

Lee, Jones and Ben-Amram describe a size-change abstraction approach,

which allows to prove termination of functional programs by constructing

a global termination argument from local size-changes of data-structures.

In [Podelski and Rybalchenko, 2004b] Podelski and Rybalchenko generalize

this approach and describe a proof rule, which allows to prove termination of

imperative programs by constructing a global termination argument from lo-

cal size-changes of data-structures. Cook, Podelski and Rybalchenko describe

in [Cook et al., 2006] how such termination arguments can be constructed

iteratively with an abstraction refinement algorithm. Their approach has the

advantage that ranking functions only need to be constructed for small pro-

gram parts, which are simple enough to be handled by automatic techniques,

and that it shifts the difficulty from finding to checking the termination ar-

gument, which can be done by techniques for safety checking. Note that this

reduction to safety checking is a key enabling factor for termination anal-

ysis: The progress of software model checking and abstract interpretation

techniques in establishing safety properties of imperative programs is lever-

aged to termination analysis. For the first time in this field of research [Cook

et al., 2006] crossed the border between pure research and industrial develop-

ment, being able to prove termination of Windows device drivers with several

thousands lines of code.

However, as useful as it is to automatically reason about the termination

1 Introduction 3

of programs, it is not quite sufficient for many purposes. Programs make

use of physical resources such as time, memory, power, bandwidth, etc. Many

important applications require establishing worst-case bounds on usage of

such resources. We list several examples:

• In memory-constrained environments such as embedded systems, it is

important to bound the amount of memory required to run certain

applications.

• In real-time systems, it is important to bound the worst-case execution-

time of the program.

• Similarly, applications running on low-power devices or low-bandwidth

environments must use up little power or bandwidth respectively.

• With the advent of cloud computing, where users will be charged per

program execution, predicting resource usage characteristics would be

a crucial component of accurate bid placement by cloud providers.

• For deciding whether to parallelize a loop, it is important to accurately

estimate the number of times the loop is executed and the cost of

executing the body of the loop one time.

One of the fundamental questions that lies at the heart of computing resource

bounds for imperative programs is: How many times is a given control loca-

tion inside the program executed?

Executing a program affects certain quantitative properties of the data

that it operates on. In such cases even the correctness of programs relies on

the presence of bounds to the effects of their executions on the quantitative

data properties. We list two examples:

1 Introduction 4

• For example, how much secret information is leaked by a program de-

pends on the number of times a certain operation that leaks the data,

either by direct or indirect information flow, is executed [Malacaria,

2007].

• Similarly, the amount of perturbation in the output data values resulting

from a small perturbation or uncertainty in the input values depends on

the number of times additive error propagation operators are applied,

e.g., in numerical algorithms machine numbers are used instead of the

mathematical real numbers.

Estimating such quantitative properties can be addressed by a similar ques-

tion as above: How many times is a given control location inside the program

that performs certain operations executed?

Note that computing a bound on how often a certain control location of

a program is visited is a harder problem than proving termination, and that

therefore the undecidability of the halting problem extends to resource bound

analysis. Further note that resource bounds are quantitative properties of

programs, as opposed to termination, which is a Boolean property. In this

thesis we show how the successful techniques for termination analysis can

be extended to resource-bound analysis. In this way we contribute to the

quantitative agenda set forth recently [Henzinger, 2009] (as opposed to the

Boolean agenda).

1.1 The Reachability-bound Problem

We define the reachability-bound problem to be the problem of computing a

symbolic worst-case bound b(s) on the number of visits to a given control

location l of a given program P . The bound b(s) is parameterized by the

1 Introduction 5

initial state s of P . 1 We illustrate that this definition allows to address

resource-bound problems by two examples:

• Memory consumption (under the assumption of fixed-byte memory al-

location):

∑
locations l that allocate memory

bl(s) · BytesAllocated(l)

• Program complexity:

The loop-bound problem is the problem of computing a bound on the

number of iterations of a given loop. It is an instance of the reachability-

bound problem – the control location under consideration is the imme-

diate successor of the header of the loop. By computing such loop-

bounds we can bound the complexity of a given program P :

∑
location l is the immediate successor of a loop header of P

bl(s)

1.1.1 Challenges in the Reachability-bound Problem

Computing reachability bounds faces the following four technical challenges:

(A) Bounds are often complex non-linear arithmetic expressions built from

+, ∗,max etc. Therefore, abstract domains based on linear invariants

(e.g. intervals, octagons [Miné, 2006], polyhedra [Cousot and Halbwachs,

1978]) are not directly applicable for bound computation.

(B) The proof of a given bound often requires disjunctive invariants that

can express loop exit conditions, phases, and flags which affect program

1The formal definition will be given in Section 2.3.

1 Introduction 6

behavior. Although recent research made progress on computing dis-

junctive invariants [Gulwani et al., 2009a; Podelski and Rybalchenko,

2004b; Cook et al., 2006; Berdine et al., 2007; Popeea and Chin, 2006;

Gopan and Reps, 2006], this is still a research challenge. (The domains

mentioned in (A) are conjunctive.)

(C) It is difficult to predict a bound in terms of a template with parameters

because (1) the search space for suitable bounds is huge, and (2) the

bound is a global property of the program and therefore a local analysis

is not possible.

(D) It is not clear how to exploit the loop structure of imperative programs

to achieve compositionality in bound analysis. This is in contrast to

automatic termination analysis, where the cut-point method (e.g. [Cook

et al., 2006; Berdine et al., 2007]) is used standardly to exploit the loop

structure in order to achieve compositionality.

Next we illustrate these challenges on several hard instances of the reachability-

bound problem.

1.1.2 Methodological Examples

Inner Loop Affecting the Iterations of Outer Loop. Let us consider

Example 1.1. Computing a bound for the header of the outer loop l1 exhibits

the following difficulties: The inner loop cannot be excluded in the analysis

of the outer loop (e.g. by the standard technique called slicing [Muchnick,

1997]) as it modifies the counter of the outer loop; this demonstrates the need

for global reasoning in bound analysis (D). Further one needs to distinguish

whether the inner loop has been skipped or executed at least one time as this

determines whether j = 0 or j > 0. This exemplifies why we need disjunctive

1 Introduction 7

void main (int n){

int i = 0;

int j;

l1 : while(i < n) {

i++;

j := 0;

l2 : while((i < n) && nondet ()){

i++;

j++;

}

if (j > 0)

i--;

}

}

Program 1.1: The inner loop affects the iterations of outer loop.

invariants for loops (B). Moreover, the counter i may decrease, but this can

only happen when i has been increased by at least 2 before. This presents a

difficulty to an automatic analysis since it needs to be disjunctive and precise

enough to capture arithmetic reasoning (A).

Loop Phases. Bound computation is difficult for loops that contain finite

state machines that controls their dynamics. Program 1.2, found during our

experiments on the cBench benchmark [CBenchWebPage, 2010], presents

such a loop. The loop has three different phases: in its first iteration it

assigns 1 or 2 to d, then it either increases or decreases s until it sets f to true;

then it divides c by 2 until the loop is exited. In order to distinguish these

loop phases, disjunctive reasoning is crucial (B). The loop has the bound

max(255, s) + 3, which is difficult to guess by a template (C). The bound

cannot be obtained directly from classical abstract domains because of the

exponential decrease of variable c and because of the maximum operator (A).

1 Introduction 8

// cBench/consumer_lame/src/quantize -pvt.c

int bin_search_StepSize2 (int r, int s) {

static int c = 4;

int n;

int f = 0;

int d = 0;

do {

n = nondet ();

if (c == 1) break;

if (f)

c /= 2;

if (n > r) {

if (d == 1 && !f) {

f = 1;

c /= 2;

}

d = 2;

s += c;

if (s > 255)

break;

}

else if (n < r) {

if (d == 2 && !f) {

f = 1;

c /= 2;

}

d = 1;

s -= c;

if (s < 0)

break;

}

else break;

}

while (1);

}

Program 1.2: The loop contains a finite state machines that its dynamics.
This results into different loop phases.

1 Introduction 9

void main(int n, int[] A) {

l1 : int i = 0;

l2 : while (i<n) {

int j = i+1;

l4 : while (j<n) {

l5 : if (A[j]) {

l6 : ConsumeResource ();

j--;

n--;

}

l9 : j++;

}

i++;

}

}

Program 1.3: Demonstrates the difference between loop- and
reachability-bounds

1.1.3 Difference between the Loop-bound and

Reachability-bound Problem

We discuss the difference between the loop-bound problem and the reachability-

bound problem on Program 1.3, which presents a loop skeleton from a .Net

base-class library. We consider the problem of computing a symbolic bound

on the number of times the procedure ConsumeResource() is called at loca-

tion l6. Using techniques for loop-bound computation (e.g. [Gulwani et al.,

2009c,a]) one could approximate the number of calls at location l4 by the

number of iterations of the closest enclosing loop at location l4. However,

this approximation yields imprecise results since the number of iterations of

the loop at location l4 is bounded by n2, while the number of executions of

l6 is bounded by n. We see that the reachability-bound problem is more

general and requires more precise techniques than the loop-bound problem.

1 Introduction 10

void main (int n) {

int i = 0;

l1 : while(i < n) {

i++;

l2 : while((i < n) &&

nondet ())

i++;

}

}

Program 1.4

void main (int n) {

int i = 0; int j = 0;

l1 : while(i < n) {

i++;

l2 : while((j < n) &&

nondet ())

j++;

}

}

Program 1.5

Figure 1.1: Two programs for which the local method yields imprecise results.

1.1.4 Amortized Analysis

Consider the two programs shown in Figure 1.1, which have both inner loops.

For both programs the outer loop has bound n and the inner loop can be

iterated maximally n times between two iterations of the outer loop. A

straightforward idea for obtaining a bound on the total number of iterations

of the inner loop is to multiply these two bounds. We call this way of inferring

bounds the local method and further discuss it in Subsection 1.1.5 below. This

yields the quadratic bound n2 for the total number of iterations of the inner

loop. Clearly this bound is imprecise as both programs have linear bounds:

In Example 1.4, the total number of visits to both cut-points is bounded by n

because both loops iterate over the same counter variable i. In Example 1.5,

the total number of visits to both cut-points is bounded by n + n = 2n

because the outer and inner loop have the different counter variables i and j

and the counter variable of the inner loop j is not reset during an iteration

of the outer loop.

The precise reasoning how often certain costly program operations – such

as inner loops, calls of expensive functions, etc. – are executed is called

1 Introduction 11

amortized analysis. The challenge in amortized analysis is that these costly

operations do not need to occur as often as the syntactic structure of the

program might imply. We have given an example for the amortized analysis

of inner loops in the above discussion on Examples 1.4 and 1.5. We have given

an example for the amortized analysis of a call to an expensive function in

Subsection 1.1.3, where we discussed that ConsumeResource() is not executed

as often as its enclosing loop.

Note that the notion of a reachability-bound addresses the problem of

computing amortized analysis. For both programs n is a reachability-bound

of l1 (the header of the outer loop) and l2 (header of the inner loop). This

implies the linear bound 2n on the total number of visits to l1 and l2 for both

programs (which is not the most precise bound for Example 1.4, but at least

a linear bound).

1.1.5 Cut-points and the Local Method

In this subsection we introduce the cut-point method for proving termination,

which uses the syntactic structure of programs. After that we show that the

local method – which we informally introduced in Subsection 1.1.4 above –

is an extension of the cut-point method to bound analysis. We have already

seen in Subsection 1.1.4 that the local method is not adequate for comput-

ing reachability-bounds because it fails to compute amortized bounds. This

shows that using only the syntactic structure of programs is not sufficient for

bound analysis and thus substantiates the claim stated in challenge (D).

We now explain the cut-point method for proving termination (a more

detailed description can be found in [Berdine et al., 2007]). A set of cut-points

C is a set of control locations of a given program P such that by deleting the

locations C from the control flow graph of P the graph becomes acyclic. A

1 Introduction 12

standard choice for the set of cut-points C in structured (reducible) programs

is the set of loop headers. A set of cut-points C allows the following procedure

for proving termination: Choose an unmarked cut-point c ∈ C. Show that

c cannot be visited infinitely often by executions that only visit unmarked

cut-points. Mark c. Repeat these three steps until all cut-points are marked.

The cut-point method has a natural extension for loop bound compu-

tation, which we call the local method (a more detailed description can be

found in [Gulwani et al., 2009c,a]): Choose an unmarked cut-point c ∈ C.

Compute the bound bc on the number of visits to c by executions that only

visit unmarked cut-points. Mark c. Recursively compute a bound brest on

the total number of visits to all remaining unmarked cut-points. Return

(bc + 1) · brest as bound on the total number of visits to the cut-points that

were unmarked when c ∈ C was chosen.

We apply the above approach to Examples 1.4 and 1.5: We choose {l1, l2}

as set of cut-points, compute the bound n for the header of the outer loop

l1, isolate the inner loop by forbidding visits to the header of the outer

loop l1, compute the bound n for the header l2 of the inner loop, and then

conclude the bound (n + 1) · n for the total number of visits to both cut-

points. Note that this description matches the application of the local method

in Subsection 1.1.4.

1.2 Summary of our Approach

Our method starts from the observation that progress in most software de-

pends on the linear change of integer-valued functions on the program state

(e.g., counter variables, size of lists, height of trees, etc.), which we call norms.

The vast majority of non-linear bounds in real-life programs stems from two

1 Introduction 13

sources – nested loops and loop phases – and not from inherent non-linear

behavior as in numeric algorithms. For most bounds, we have therefore the

potential to exploit the nesting structure of the loops, and compose global

bounds from bounds on norms. Upper bounds on norms typically consist of

easily established facts such as size comparisons between variables and can

be computed by classical conjunctive domains.

Two-step Analysis. To determine a reachability-bound of a location l of

program P , we propose two steps:

• First, compute a transition system T for l from P . A transition system

T for l is a set of transition relations such that for every execution of P

and for every two consecutive visits of this execution to l the states at

these visits are contained in one of the transition relations (see formal

definitions in Section 2.2).

• Second, compute a bound of T . This bound then gives a bound on the

number of visits to l.

We implement these two steps as follows:

• Transition System Computation. We recursively compute transition

systems for the inner loops of P and summarize them disjunctively by

transitive hulls. Using these summaries we derive a disjunctive transi-

tion system T for l by the program transformation pathwise analysis.

Pathwise analysis is based on two ideas: First, to abstract not only

single program statements or blocks but complete program paths. Sec-

ond, to exploit the looping structure of programs by choosing paths

from loop header back to header; these paths are the program entities

on which we expect the linear change of individual norms to take place.

1 Introduction 14

Pathwise analysis enumerates all cycle-free paths from location l to l,

inserts the transitive hulls of the inner loops on all of these paths at

the header of the respective loops, and contracts the transition rela-

tions on the resulting paths in order to derive a disjunctive transition

system. We describe our algorithm for computing transition systems

(Algorithm 1) and discuss pathwise analysis in Section 2.5. Algorithm 1

is parameterized by an algorithm for computing transitive hulls.

• Bound Computation. We first compute bounds for single transition

relations of T and then compose these bounds to an overall bound of

T .

In the above methodology we have left open how to compute transitive

hulls and we have not given any details on how to compute bounds. We

describe our first approach in the next subsection, then discuss the limitations

of the first approach and after that describe our second approach, which

overcomes these limitations.

1.2.1 Proof-rule Based Approach (Chapter 3)

Our first approach uses two different techniques, namely an iterative tech-

nique for computing transitive hulls based on abstract interpretation, and a

non-iterative proof-rule based technique for computing bounds of transition

systems.

Transitive Hull Computation. Our transitive hull algorithm is parameter-

ized by an abstract domain and iteratively computes disjunctive invariants

for transition systems over the powerset extension of the abstract domain.

Algorithms over powerset set domains face the problem of when to merge

elements of the base domain. The main idea of our algorithm is to use a

1 Introduction 15

fixed syntactic merging criterion for this. This is motivated by an assump-

tion resembling convex theories that we found to be satisfied for the examples

encountered in practice. We describe this transitive hull algorithm in Sec-

tion 3.1. We also evaluated this algorithm on benchmark examples taken

from recent work on computing disjunctive invariants. Our algorithm can

discover required invariants in all examples, suggesting its potential for effec-

tive use in other applications requiring disjunctive invariants besides bound

analysis.

Bound Computation. We compute bounds of transition systems by a

non-iterative proof-rules based technique that requires discharging queries

using an off-the-shelf SMT solver. We have collected patterns that describe

the typical iterations of the individual loops of most software programs, e.g.,

increasing a counter variable, going through the elements of a list, etc. In

Section 3.2 we list proof rules that check these iteration patterns on indi-

vidual transitions of small program parts in order to obtain local ranking

functions. In Section 3.3 we list proof rules that describe conditions that

are sufficient for combining the local ranking functions for individual tran-

sitions into an overall bound of the transition system using three different

mathematical operators, namely max, sum, and product. This methodology

represents an interesting design choice for reasoning about loops, because

SMT solvers are used to perform precise reasoning about transitions (loop-

free code-fragments), whereas a simple proof-rules based technique takes over

the role of performing inductive reasoning effectively.

We have implemented our solution to the reachability-bound problem in

a tool that computes symbolic computational complexity bounds for pro-

cedures in .Net codebases. This involves computing amortized bounds for

nested loops by solving the reachability-bound problem for nested loops.

1 Introduction 16

Our experiments (described in Section 3.4) demonstrate the effectiveness of

our approach.

Limitations of the Proof-rule based Approach:

Transitive Hull Computation. We argued that one challenge in bound

analysis is the computation of disjunctive invariants. We have addressed this

challenge by a fairly general algorithm that is capable of even handling the

benchmark examples from recent work on computing disjunctive invariants

(as demonstrated in Section 3.4). The algorithm makes use of a syntactic

criterion for merging elements in the powerset abstract domain. However,

the syntactic merging criterion itself is based on a merging function that is

a priori unknown. In our implementation we select this merging function

heuristically. While this approach for computing disjunctive invariants is

fairly general and can be easily adjusted to different application domains, it

is worthwhile to investigate algorithms that are more robust and specifically

targeted towards bound computation.

Bound Computation. In our first approach to the reachability-bound

problem we have given proof rules, which we found out to be effective through-

out our experiments. In general such proof-rules based approaches are ver-

satile and often give rise to efficient analyses. However, they are also ad

hoc and do not establish a systematic theory of the investigated problem.

This is unsatisfactory because such a theory allows to study the complete-

ness and complexity of the analysis and to investigate the applicability to

related problems and other programming paradigms.

.Net vs. C language. The .Net language for which we computed bounds

in our experiments contains a lot of structure that can be exploited by the

proof-rule based approach: rich type information, well-designed interfaces

1 Introduction 17

and object-oriented standard libraries. In contrast, the C language is lacking

these features and for this reason it is not clear how our implementation for

.Net programs can be extended to C programs. We believe that instead of

devising new proof rules for C it is more rewarding to investigate a more

abstract model for bound analysis.

1.2.2 Size-change Abstraction Based Approach (Chap-

ter 4)

Our second approach builds on the size-change abstraction (SCA) by Lee

et al. [Lee et al., 2001; Ben-Amram, 2011]. SCA is a predicate abstract

domain that consists of (in)equality constraints between integer-valued vari-

ables and boolean combinations thereof in disjunctive normal form (DNF).

The inequality constraints consist of control predicates which describe control

invariants and transition predicates which describe transitions of the program

state.

SCA is well-known to be an attractive abstract domain: First, SCA is

rich enough to capture the progress of many real-life programs. It has been

successfully employed for automatic termination proofs of recursive functions

in functional and declarative languages, and is implemented in widely used

systems such as ACL2, Isabelle etc. [Manolios and Vroon, 2006; Krauss, 2007;

Codish et al., 2005, 2010]. Second, SCA is simple enough to achieve a good

trade-off between expressiveness and complexity. For example, SCA termi-

nation is decidable and ranking functions can be extracted on terminating

instances in PSPACE [Ben-Amram, 2011]. The simplicity of SCA sets it

apart from other disjunctive abstract domains used for termination/bounds

such as transition predicate abstraction [Podelski and Rybalchenko, 2005]

and powerset abstract domains used in [Berdine et al., 2007] and in our first

1 Introduction 18

approach.

SCA is the key for obtaining efficient algorithms for transitive hull and

bound computation that at the same time overcome the above discussed

limitations:

Transitive Hull Computation. Due to its built-in disjunctiveness and the

transitivity of order relations, SCA is closed under taking transitive hulls,

and transitive hulls can be efficiently computed. These properties of SCA

give rise to a simple and robust summarization algorithm for inner loops,

which we describe in Section 4.2.

Bound Computation. SCA is our key technique for composing global

bounds from norms. The literature already knows how to compose global

ranking functions from norms [Ben-Amram, 2011]. Therefore our approach

is the natural next step. Like in the proof-rule base approach we compute

norms locally, i.e., we extract small parts of the program under consideration.

However, after the extraction we consider only the size-change-abstracted

program for bound computation. Note that in this way we obtain the abstract

model for bound analysis that we have been looking for: Instead of searching

for better ad hoc proof rules we can systematically study SCA for obtaining

better bound algorithms. We give a first bound algorithm built on SCA in

Section 4.3, which gives good results in practice and is strictly more general

than the proof-rules stated in Section 3.3.

Furthermore SCA is the natural abstract domain to be used in connection

with two program transformations that increase the precision of bound anal-

ysis of imperative programs. Both transformations make use of the progress

in SMT solver technology to reason about the long pieces of straight-line

code given by program paths:

Pathwise analysis uses an SMT solver for reasoning over complete pro-

1 Introduction 19

gram paths. As described earlier pathwise analysis is part of our transition

system generation algorithm given in Section 2.5. We want to point out

that pathwise analysis is especially effective when combined with specialized

abstract domains such as SCA (which is targeted at termination / bound

analysis). This is because the specialized abstract domain does not need to

be precise enough to reason about complete program paths itself. In this way

a separation of concerns is achieved. We explain in Section 4.2.2 why the

classical blockwise use of SCA is less precise than our pathwise use of SCA.

Contextualization enriches the state space by adding the information

which transition is executed next to every control location. This allows to

detect transitions that cannot be executed subsequently. Such transitions

are then deleted from the control-flow graph (CFG) of the program. Our

bound analysis (described in Section 4.3) uses contextualization (described

in Section 4.3.1) as preprocessing step. Contextualization benefits the actual

bound computation (described in 4.3.2), which exploits the SCC component

graph of the CFG. Since pathwise analysis contracts large paths from l to l

into single transitions, contextualization is particularly important after path-

wise analysis.

We have implemented the above described approach in our tool Loopus

that computes bounds for C programs and evaluated it on the compiler opti-

mization cBench [CBenchWebPage, 2010] benchmark. Loopus automatically

computes bounds for a large percentage of the benchmark programs (details

can be found in Section 4.4).

Our Solution addresses the Identified Challenges. We now come

back to challenges (A)-(D) that we identified in the beginning of the in-

troduction and explain how our approach addresses them:

1 Introduction 20

For (A), we compute global invariants with standard linear abstract do-

mains. Upper bounds on norms can usually be established by these invari-

ants.

For (B), we use SCA to compute disjunctive summaries of inner loops.

Furthermore we compute disjunctive transition systems by enumerating cycle-

free paths and contracting the transition relations of these paths. Addition-

ally the program transformation contextualization entails disjunctive infor-

mation by refining the CFG of the program.

For (C), we extract norms from paths that start from loop headers and go

back to the headers. Our experiments (and also those of [Cook et al., 2006])

confirm that these paths have the right granularity to extract norms. Our

bound algorithm on size-change abstracted programs then composes bounds

on the norms to complex bounds using the operators +, ∗,max.

For (D), our pathwise-analysis exploits the looping structure of impera-

tive programs. In contrast to the cut-points method it retains enough infor-

mation to compute precise bounds.

1.2.3 Fundamental Properties of the Size-change Ab-

straction (Chapter 5)

Finding the right abstraction for a problem is an essential step in computer

science, especially for problems that are undecidable. The usefulness of an

abstraction of a problem depends on whether many relevant practical in-

stances can be handled by the abstraction (1) and whether the abstraction

has decidable properties, gives rise to efficient algorithms, etc. (2).

In Chapter 4 we identify SCA as suitable abstraction for bound analysis

and give evidence for (1) by describing practical algorithms for bound anal-

ysis based on SCA and by demonstrating the effectiveness of our approach

1 Introduction 21

through experiments on benchmark programs. In Chapter 5 we focus on (2)

and give theoretical results on SCA towards a characterization of the bounds

that can be expressed by SCA.

For our theoretical investigation we follow earlier work on SCA and study

size-change systems (SCSs) as an abstract program model. An SCS consists

of a CFG whose nodes are labeled by invariants and whose transitions are

labeled by size-change relations (SCRs). Invariants and SCRs are sets of in-

equalities. We define the semantics of SCSs over well-ordered domains, i.e.,

well-founded linear orders. This is a natural choice: Linear orders ensure that

we can compare two elements; thus, we can give semantics to inequalities.

Well-foundedness ensures that there are no infinitely decreasing sequences;

thus, we can define termination of SCSs. Note that we define the seman-

tics of SCSs directly instead of first defining a concrete program model and

then obtaining SCSs as an abstraction of this program model (as we do in

Chapter 4).

In Section 5.1 we introduce inequalities and linear orders and discuss

their properties. In contrast to earlier work on SCA we strictly separate

syntactic and semantic properties in our investigation. These properties lay

the foundations for our further investigations.

We introduce SCSs, their semantics and different termination notions in

Section 5.2. Every well-ordered domain is equivalent to an ordinal. There-

fore we define the semantics of SCSs over ordinals. This is in contrast to

earlier work on SCA, which defines the semantics of SCSs over integers. We

define a semantic notion of termination of SCSs in the standard way using

the well-foundedness of ordinals. We also give a syntactic notion of termi-

nation of SCSs that can be used for detecting the semantic termination of

SCSs. We state that for SCSs interpreted over sufficiently large ordinals the

1 Introduction 22

semantic and syntactic notions of termination coincide. This confirms that

our semantics of SCSs is natural and robust.

We discuss asymptotic bounds of SCCs in Section 5.3. We introduce an

adequate notion of for-loops for SCCs. Our main result is that these for-

loops give rise to polynomial lower bounds of SCCs, which have the form

Ω(1),Ω(N), . . . ,Ω(Nn) for an SCS that is interpreted over the natural num-

bers that are smaller than N and that has n variables. The importance of

this result is that a for-loop provides a complexity witness for an SCS. We

conjecture for-loop provide a complete characterization of the complexity of

SCSs: Every SCS either does not terminate or has complexity Θ(Nk), which

is witnessed by some for-loop. Thus we believe that our result is the first

step towards a full characterization of the bounds expressible by SCA.

1.3 Related Work

The loop-bound problem (computing bounds on the number of loop itera-

tions) is a special case of the reachability-bound problem – the control loca-

tion under consideration is the location immediately after the loop header.

Several recent papers on the loop-bound problem have been published [Gul-

wani et al., 2009c,a; Gulavani and Gulwani, 2008; Albert et al., 2008]. How-

ever, none of these papers directly addresses the more general reachability-

bound problem that we introduce in this thesis.

We give a detailed comparison with earlier work on termination and

bound analysis in Chapter 6, most notably the Terminator tool [Cook

et al., 2006], and the more recent tools SPEED [Gulwani et al., 2009c,a] and

Loopfrog [Kroening et al., 2010, 2011]. We show that our bound analy-

sis captures the essential ideas of these approaches in a simpler framework

1 Introduction 23

void main(int n,
int x, int z)

while (x < n)
if (z > x) x++;
else z++;

Program 1.6

void main(uint n, uint m)

Assume(0 < n < m);

j := n+ 1;
while (j < n ∨ j > n)

if (j > m) j := 0;
else j++;

Program 1.7

Figure 1.2: Loops from recent work on proving termination [Cook et al.,
2006] (left) and loop bound computation [Gulwani et al., 2009a] (right).

and that our technique outperforms these recent approaches on loop-bound

computation and termination analysis:

On the one hand, our technique is able to compute bounds for loops

whose iterations are affected by inner loops for which existing bound tech-

niques [Gulwani et al., 2009c,a; Gulavani and Gulwani, 2008; Albert et al.,

2008] mostly fail; we give examples on which these techniques fail and explain

the reasons for failure in Sections 6.1 and 6.9.

On the other hand even in case of loops without inner loops, our tech-

nique is able to compute bounds for loops using a much simpler uniform

algorithm compared to existing termination techniques or specialized bound

computation techniques. Figure 1.2 shows two such examples that have been

used as motivating examples by previous techniques. The computation of

the transition systems for these examples is almost trivial, and the bounds

of the resulting transition systems are easily computed by our techniques.

Since bound analysis generalizes termination analysis, many of our methods

are relevant for termination.

1 Introduction 24

1.4 Contributions

We summarize the above outline and list the contributions of this disserta-

tion per chapter.

In Chapter 2, we give definitions and state the main steps of our approach:

• We define the reachability-bound problem and the notion of a precise

solution to that problem (Section 2.3). This contributes to the problem

of defining an entire quantitative program logic, which is part of the

quantitative agenda set forth recently [Henzinger, 2009].

• We reduce the problem of computing the reachability-bound to the

problem of computing the bound of a transition system of a location

(Section 2.4).

• We give an algorithm for the generation of a transition system of a

location. This algorithm uses the program transformation pathwise

analysis, which exploits the loop structure of imperative programs (Sec-

tion 2.5).

In Chapter 3, we describe our proof-rule based approach:

• We describe an abstract interpretation based iterative algorithm for

computing the transitive closure of a transition system (Section 3.1).

This algorithm handles the benchmark examples from state-of-the-art

papers on computing disjunctive invariants as we demonstrate in our

experiments.

• We describe pattern matching techniques that allow to obtain ranking

functions of individual transition relations (Section 3.2). We describe

1 Introduction 25

non-iterative proof rules (Section 3.3) that allow to compose the rank-

ing functions of individual transition relations to symbolic bounds of

transition systems (Section 3.2).

• We present experimental results evaluating the effectiveness of the

proof-rule based approach (Section 3.4).

In Chapter 4, we describe our SCA approach:

• We exploit SCA for bound analysis: We describe how to compute tran-

sitive hulls for summarizing inner loops with SCA (Section 4.2). We

describe how to compute bounds of size-change abstracted programs

(Section 4.3).

• We describe how to apply SCA on imperative programs: We combine

SCA with the program transformation pathwise analysis for the gener-

ation of precise transition systems (Section 4.2.2). We use the program

transformation contextualization as preprocessing step for the compu-

tation of precise bounds (Section 4.3.1).

• Our experiments show that we can automatically compute bounds for

a large percentage of benchmark programs (Section 4.4).

In Chapter 5, we make the following contributions to the theory of SCA:

• We systematically investigate properties of order relations and linear

orders (Section 5.1), strictly separating syntactic and semantic proper-

ties in contrast to earlier work on SCA.

• We define non-standard semantics for SCS. We give evidence for the

adequacy of our semantics by showing that semantic and syntactic

notions of termination of SCSs coincide (Section 5.2).

1 Introduction 26

• We define the notion of for-loops of SCSs. We show that for-loops give

rise to lower bounds of SCSs. We state the conjecture that SCSs can

express precisely polynomial bounds (Section 5.3).

In Chapter 6 we give a detailed comparison with related work. We show

that our bound analysis captures the essential ideas of earlier termination and

bound analyses in a simpler framework and that our technique outperforms

these approaches on loop-bound computation and termination analysis.

Chapter 2

Problem Definition and Main

Steps of the Analysis

2.1 Notation for Sets and Relations

Let A be a set. The concatenation of two relations B1, B2 ∈ 2A×A is the

relation B1 ◦ B2 = {(e1, e3) | ∃e2.(e1, e2) ∈ B1 ∧ (e2, e3) ∈ B2}. Id(A) =

{(e, e) | e ∈ A} is the identity relation over A. Let B ∈ 2A×A be a relation.

We inductively define the k-fold exponentiation of B by Bk = Bk−1 ◦B and

B0 = Id(A). B+ =
⋃
k≥1B

k resp. B∗ =
⋃
k≥0B

k is the transitive- resp.

reflexive transitive closure of B. We lift the concatenation operator ◦ to

sets of relations by defining C1 ◦ C2 = {B1 ◦ B2 | B1 ∈ C1, B2 ∈ C2} for sets

of relations C1, C2 ⊆ 2A×A. We set C0 = {Id(A)}; Ck, C+ etc. are defined

analogously.

27

2 Problem Definition and Main Steps of the Analysis 28

2.2 Program Model

We introduce a simple program model for sequential imperative programs

without procedures. Our definition models explicitly the essential features

of imperative programs, namely branching and looping. In Section 2.5 we

will explain how to exploit the graph structure of programs in our analysis

algorithm. We leave the extension to concurrent and recursive programs for

future work.

Definition 1 (Transition Relations / Systems / Invariants). Let Σ be a set

of states. The set of transition relations Γ = 2Σ×Σ is the set of relations

over Σ. A transition set T ⊆ Γ is a finite set of transition relations. Let ρ

be a transition relation. T is a transition system for ρ, if ρ ⊆
⋃
T . T is a

transition invariant for ρ, if ρ∗ ⊆
⋃
T .

Definition 2 (Program, Path, Trace, Termination). A program is a tuple

P = (L,E), where L is a finite set of locations, and E ⊆ L × Γ × L is a

finite set of transitions. We write l1
ρ−→ l2 to denote a transition (l1, ρ, l2).

A path of P is a sequence l0
ρ0−→ l1

ρ1−→ · · · with li
ρi−→ li+1 ∈ E for all

i. Let π = l0
ρ0−→ l1

ρ1−→ l2 · · · lk
ρk−→ lk+1 be a finite path. π is cycle-free, if

π does not visit a location twice except for the end location, i.e., li 6= lj for

all 0 ≤ i < j ≤ k. The contraction of π is the transition relation rel(π) =

ρ0 ◦ ρ1 ◦ · · · ◦ ρk obtained from concatenating all transition relations along π.

Given a location l, paths(P, l) is the set of all paths l
ρ0−→ l1

ρ1−→ l2 · · · lk
ρk−→ l

of P with the start and end location l. A path π ∈ paths(P, l) is simple, if

all locations, except for the start and end location, are different from l.

A trace of P is a sequence (l0, s0)
ρ0−→ (l1, s1)

ρ1−→ · · · such that l0
ρ0−→ l1

ρ1−→

· · · is a path of P , si ∈ Σ and (si, si+1) ∈ ρi for all i. P is terminating, if

there is no infinite trace of P .

2 Problem Definition and Main Steps of the Analysis 29

Note that a cycle-free path π ∈ paths(P, l) is always simple. Further

note that our definition of programs allows to model branching and looping

precisely and naturally: imperative programs can usually be represented as

CFGs whose edges are labeled with assign and assume statements.

Definition 3 (Transition Relation of a Location). Let P = (L,E) be a

program and l ∈ L a location. The transition relation of l is the set P |l =⋃
simple π∈paths(P,l) rel(π).

2.3 The Reachability-Bound Problem

Let P = (L,E) be a program and let l ∈ L be a location. There are two

classical problems associated with the reachability of l inside P :

• Safety Problem: Is the control location l never reached/visited for

all executions of program P?

• Termination Problem: Is the control location l visited at most a finite

number of times for all executions of program P?

In this thesis, we have motivated the following bound problem, which is

a generalization of both the safety and termination problem.

• Reachability-bound Problem: Compute a worst-case symbolic bound

b(s) on the number of visits to control location l.

The notion of a worst-case symbolic bound is defined below.

Definition 4 (Worst-case Symbolic Bound). A function b(s) : Σ→ N from

the program states to the natural numbers is a worst-case symbolic bound on

the number of visits to control location l, if for any trace (l0, s0)
ρ0−→ (l1, s1)

ρ1−→

· · · of P there are at most b(s0) locations li with li = l.

2 Problem Definition and Main Steps of the Analysis 30

There may be multiple worst-case symbolic bounds for a given location.

It is desirable to produce a bound that is precise in the sense that there

exists a family φ(s) of worst-case inputs that exhibit the worst-case bound

(up to some constant factor, as motivated by the definition of asymptotic

complexity), formally defined as follows:

Definition 5 (Precision of Worst-case Symbolic Bounds). A worst-case sym-

bolic bound b(s) for l is precise (up to multiplicative constant factors), if there

exist positive integers c1, c2, and a formula φ(s) such that:

P1. For any state s0 ∈ Σ such that φ(s0) holds, there is a trace (l0, s0)
ρ0−→

(l1, s1)
ρ1−→ · · · of P with at least b(s0)

c1
− c2 locations li with li = l.

P2. For any integer k, there exists a state s0 with φ(s0) and b(s0) > k. In

other words, the formula ∃s0 ∈ Σ.(b(s0) ≥ k ∧ φ(s0)) has a satisfying

assignment.

We refer to the triple (φ, c1, c2) as precision-witness for bound b.

Note that we have relaxed the definition of precision of bounds to up

to multiplicative constants (as motivated by the definition of asymptotic

complexity) since it would be almost impossible to find exact closed-form

bounds in practice.

The following example explains and motivates the requirements P1 and

P2 in the above definition.

Example 6. A precision-witness for the bound n on the number of times

location l6 is visited in Program 1.3 can be φ = ∀m(0 ≤ m < n. A[m]),

c1 = 1 and c2 = 1 since it can be shown that under the precondition φ,

location l6 is visited at least n− 1 times.

2 Problem Definition and Main Steps of the Analysis 31

A precision-witness for the bound n2 on the number of times the inner

loop (location l5) is executed can be φ = ∀m(0 ≤ m < n. ¬A[m]), c1 = 4

and c2 = 1 since it can be shown that under the precondition φ, location l5

is visited at least n2/4 times. This is because, for example, i takes all values

between 0 to n/2− 1 at location l4 (hence the number of visits to location l2

is at least n/2), and for each of those visits, j takes all values between n/2 to

n − 1 at location l4 (i.e., the number of visits to location l4 is at least n/2).

Note that if we did not relax the requirement P1 to allow for constants c1 and

c2, then computation of a precise bound would have required us to compute the

exact bound (n−1)(n−2)
2

. It would be impractical to find such exact closed-form

solutions.

A bound of, say, 100, on the number of times location l6 is visited is not

precise. It may appear that φ = (∀m(0 ≤ m < 100. A[m])∧n ≤ 100), c1 = 1

and c2 = 1 is a precision-witness. Note however that it violates requirement

P2 since for any n > 100, there does not exist a satisfying assignment for

the formula φ ∧ n > 100.

In this thesis, we describe an algorithm for computing a worst-case sym-

bolic bound. Automatically establishing the precision of a bound b returned

by our algorithm is an orthogonal problem that we leave for future work.

The duality between computing a symbolic bound and finding a witness

to show the precision of the bound is similar to the duality between proving a

given safety property and finding a concrete counterexample/witness to the

violation of a safety property. However, the additional challenge in computing

precision-witnesses is that such witness are symbolic and not concrete.

2 Problem Definition and Main Steps of the Analysis 32

2.4 Main Steps of our Analysis

We now state the main steps of our approach to the reachability-bound prob-

lem:

Input: program P = (L,E), location l ∈ L

Output: reachability-bound b for l

1. Compute global invariants by standard abstract domains

2. Compute T = TransSys(P, l)

3. Compute b = 1 + Bound(T)

We explain the steps of the above algorithm in the following. Let P =

(L,E) be a program and l ∈ L be a location for which we want to compute

a reachability-bound.

• In Step 1 we compute global invariants by standard abstract domains

such as interval, octagon or polyhedra. As this step is standard, we do

not discuss it in this thesis.

• In Step 2 we compute a transition system T = TransSys(P, l) for P |l
by Algorithm 1, which is parameterized by a function TransHull that

computes transition invariants for the summarization of inner loops.

• In Step 3 we compute a bound b = Bound(T) for the transition system

T . The reachability-bound b of l is then obtained by adding 1 to the

bound of transition system T to account for the first visit to l.

We give algorithms that implement the functions TransHull and Bound

in Sections 3.1 and 3.3 of the proof-rule based approach, and in Sections 4.2

and 4.3 of the size-change abstraction based approach.

2 Problem Definition and Main Steps of the Analysis 33

Procedure: TransSys(P, l)
Input: a program P = (L,E), a location l ∈ L
Output: a transition system for P |l
Global: array summary for storing transition invariants

foreach (L, header) ∈ NestedLoops(P, l) do
T := TransSys(L, header);
summary[header] := TransHull(T);

foreach cycle-free path π = l
ρ0−→ l1

ρ1−→ l2 · · · lk
ρk−→ l ∈ paths(P, l) do

Tπ := {ρ0} ◦ ITE(IsHeader(l1), summary[l1], {Id}) ◦ {ρ1}◦
ITE(IsHeader(l2), summary[l2], {Id}) ◦ {ρ2} ◦ · · · ◦
ITE(IsHeader(lk), summary[lk], {Id}) ◦ {ρk};

return
⋃

cycle-free path π∈paths(P,l) Tπ;

Algorithm 1: TransSys(P, l) computes a transition system for P |l

2.5 Computing Transition Systems

In this section we describe our algorithm for computing transition systems.

We first present the actual algorithm, and then discuss specific character-

istics. The function TransSys in Algorithm 1 takes as input a program

P = (L,E) and a location l ∈ L and computes a transition system for P |l,

cf. Theorem 7 below. The key ideas of Algorithm 1 are (1) to summarize

inner loops disjunctively by transition invariants, and (2) to enumerate all

cycle-free paths for pathwise analysis. Note that for loop summarization the

function TransSys is recursively invoked. Further note that Algorithm 1 is

parameterized by the function TransHull. Algorithm 1 relies on the follow-

ing property of TransHull: Given a transition relation ρ and a transition

system T for ρ, then TransHull(T) is a transition invariant for ρ.

Loop Summarization. In the first foreach-loop, Algorithm 1 iterates

over all nested loops of P w.r.t. l. A loop L of P is a nested loop w.r.t. l,

if it is strongly connected to l but does not contain l, and if there is no loop

2 Problem Definition and Main Steps of the Analysis 34

with the same properties that strictly contains L. Let L be a nested loop of

P w.r.t. l and let header be its header. (We assume that the program is re-

ducible, see discussion below.) TransSys calls itself recursively to compute a

transition system T for L|header . Next Algorithm 1 computes TransHull(T).

Note that TransHull(T) is a transition invariant for L|header because of the

above stated assumption on the function TransHull. Finally Algorithm 1

stores TransHull(T) in the array summary at location header .

After the first foreach-loop, Algorithm 1 has summarized all inner loops,

not only the nested loops, because the recursive calls reach all nesting levels.

For each inner loop L with header header a transition invariant for L|header
has been stored at summary[header]. Summaries of inner loops are visible to

all outer loops, because the array summary is a global variable.

Pathwise Analysis. In the second foreach-loop, Algorithm 1 iterates

over all cycle-free paths of P with start and end location l. Let π = l
ρ0−→

l1
ρ1−→ · · · lk

ρk−→ l be such a cycle-free path. For each location li the expres-

sion ITE(IsHeader(li), summary[li], {Id}) evaluates to summary[li], if li is the

header of an inner loop Li, and evaluates to the transition set {Id}, which

contains only the identity relation over the program states, else. Algorithm 1

computes the transition set

Tπ = {ρ0} ◦ ITE(IsHeader(l1), summary[l1], {Id}) ◦ {ρ1}

◦ ITE(IsHeader(l2), summary[l2], {Id}) ◦ {ρ2} ◦ · · ·

◦ ITE(IsHeader(lk), summary[lk], {Id}) ◦ {ρk},

which represents the contraction of π, where the summaries of the inner loops

Li are inserted at their headers li. The transition set Tπ overapproximates

all paths starting and ending in l that iterate arbitrarily often through inner

loops along π, because for every loop Li the transition set summary[li] over-

2 Problem Definition and Main Steps of the Analysis 35

approximates all paths starting and ending in li that iterate arbitrarily often

through Li (as summary[li] is a transition invariant for Li|li). Algorithm 1

returns the union
⋃

cycle-free path π∈paths(P,l) Tπ of all those transition sets Tπ.

Theorem 7. Algorithm 1 computes a transition system TransSys(P, l) for

P |l.

Proof sketch, for a detailed proof see Section 2.6 below. Let π′ ∈ paths(P, l)

be a simple path. We obtain a cycle-free path π ∈ paths(P, l) from π′ by

deleting all iterations through inner loops of (P, l) from π′. The transition set

Tπ overapproximates all paths starting and ending in l that iterate arbitrarily

often through inner loops of (P, l) along π. As π′ iterates through inner loops

of (P, l) along π we have rel(π) ⊆
⋃
Tπ.

Implementation. We use conjunctions of formulae to represent individual

transitions. This allows us to implement the concatenation of transition

relations by conjoining their formulae and introducing existential quantifiers

for the intermediate variables. We detect empty transition relations by asking

an SMT solver whether their corresponding formulae are satisfiable. We

further use SMT solver queries to check if one transition relation is contained

in another transition relation. We use these checks at several points during

the analysis to reduce the number of transition relations.

Irreducible Programs. Algorithm 1 refers to loop headers, and thus im-

plicitly assumes that loops are reducible. (Recall that in a reducible program

each SCC has a unique entry point called the header.) We have formulated

Algorithm 1 in this way to make clear how it exploits the loop structure of

imperative programs. However, Algorithm 1 can be easily extended to irre-

ducible loops by a case distinction on the (potentially multiple) entry points

of the SCCs.

2 Problem Definition and Main Steps of the Analysis 36

l1

l2

l4

l9l6

ρinit

ρ0

ρ1

ρ5 ρ2

ρ3ρ4

ρinit ≡ i′ = 0
ρ0 ≡ j′ = j − 1 ∧ n′ = n− 1
ρ1 ≡ j′ = j + 1
ρ2 ≡ i < n ∧ j′ = i+ 1
ρ5 ≡ j ≥ n ∧ i′ = i+ 1
ρ3 ≡ j < n ∧ ¬A[j]
ρ4 ≡ j < n ∧ A[j]

l6 l9

l4

l2

ρ0

ρ1

ρ5 ρ2

ρ3ρ4
Inner loops of P with regard to l6:

L = ({l9, l4}, {l9
ρ1−→ l4, l4

ρ2−→ l4, l4
ρ3−→ l9}) with header l9

L′ = ({l4}, {l4
ρ5−→ l2, l2

ρ2−→ l4}) with header l4

l4

l2

ρ5 ρ2 TransSys(L′, l4) ≡ {j ≥ n ∧ i+ 1 < n ∧ i′ = i+ 1 ∧ j′ = i+ 2}

l9

l4

ρ1 ρ3

summary[l4] ≡ {i′ = i ∧ j′ = j ∧ n′ = n,
j ≥ n ∧ i+ 1 < n ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2}

TransSys(L, l9) ≡
{j + 1 < n ∧ i′ = i ∧ j′ = j + 1 ∧ n′ = n,
j ≥ n ∧ i+ 1 < n ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2}

l6 l9

l4

ρ0

ρ1ρ4

summary[l4] ≡ {i′ = i ∧ j′ = j ∧ n′ = n,
j ≥ n ∧ i+ 1 < n ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2}

summary[l9] ≡ {i′ = i ∧ j′ ≥ j ∧ n′ = n,
j ≥ n ∧ i+ 1 < n ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2}

TransSys(P, l6) ≡ {i′ = i ∧ j′ ≥ j ∧ n′ = n− 1 ∧ j′ < n,
j ≥ n ∧ i+ 1 < n ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2 ∧ n′ = n− 1 ∧ j′ < n}

Figure 2.1: Different stages of the computation of TransSys(P, l6) by Al-
gorithm 1, where the program P is given by Program 1.3: The first row
shows the CFG of P Program 1.3 and its transition relations. The second
row shows the CFG of P with regard to location l6 and its inner loops. The
third, fourth and fifth row respectively belong to the nested recursive, recur-
sive and actual call of TransSys; they show the part of the CFG which is
needed for the enumeration of the cycle-free paths, the used summaries of
the inner loops and the computed transition systems.

2 Problem Definition and Main Steps of the Analysis 37

Example 8. Let P be Program 1.3 on page 9. In the following we describe

how Algorithm 1 computes TransSys(P, l6). We depict the different stages of

this computation in Figure 2.1. In the first foreach-loop Algorithm 1 calls

itself recursively on the nested loop L = ({l9, l4}, {l9
ρ1−→ l4, l4

ρ2−→ l4, l4
ρ3−→ l9})

with header l9. In the first foreach-loop of the recursive call Algorithm 1

calls itself recursively on the nested loop L′ = ({l4}, {l4
ρ5−→ l2, l2

ρ2−→ l4}) with

header l4. In the nested recursive call Algorithm 1 skips the first foreach-

loop because (L′, l4) does not have nested loops. The second foreach-loop

iterates over all cycle-free paths of paths(L′, l4). There is only one such a

path π = l4
ρ5−→ l2

ρ2−→ l4. Algorithm 1 computes

Tπ = {j ≥ n ∧ i+ 1 < n ∧ i′ = i+ 1 ∧ j′ = i+ 2}

and returns Tπ as the transition system TransSys(L′, l4). After the return

of the nested recursive call T = TransSys(L′, l4) Algorithm 1 computes

TransHull(T). Let us assume

TransHull(T) = {i′ = i ∧ j′ = j ∧ n′ = n,

j ≥ n ∧ i+ 1 < n ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2}.

Algorithm 1 then stores TransHull(T) in summary[l4]. As there is no other

nested loop the first foreach-loop of the recursive call is finished. The second

foreach-loop iterates over all cycle-free paths of paths(L, l9). There is only

one such a path π = l9
ρ1−→ l4

ρ3−→ l9. Algorithm 1 computes

Tπ = {ρ2} ◦ summary[l4] ◦ {ρ4} = {j + 1 < n ∧ i′ = i ∧ j′ = j + 1 ∧ n′ = n,

j ≥ n ∧ i+ 1 < n ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2}

and returns Tπ as the transition system TransSys(L, l9). After the return of

the recursive call T = TransSys(L, l9) Algorithm 1 computes TransHull(T).

2 Problem Definition and Main Steps of the Analysis 38

Let us assume

TransHull(T) = {i′ = i ∧ j′ ≥ j ∧ n′ = n,

j ≥ n ∧ i+ 1 < n ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2}

Algorithm 1 then stores TransHull(T) in summary[l9]. As there is no other

nested loop the first foreach-loop is finished. The second foreach-loop it-

erates over all cycle-free paths of paths(P, l6). There is only one such path

π = l6
ρ0−→ l9

ρ1−→ l4
ρ4−→ l6. Algorithm 1 computes

Tπ = {ρ0} ◦ summary[l9] ◦ {ρ1} ◦ summary[l4] ◦ {ρ3}

= {i′ = i ∧ j′ ≥ j ∧ n′ = n− 1 ∧ j′ < n,

j ≥ n ∧ i+ 1 < n ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2 ∧ n′ = n− 1 ∧ j′ < n,

j ≥ n ∧ i+ 1 < n ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 3 ∧ n′ = n− 1 ∧ j′ < n,

j ≥ n ∧ i+ 1 < n ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2 ∧ n′ = n− 1 ∧ j′ < n}

= {i′ = i ∧ j′ ≥ j ∧ n′ = n− 1 ∧ j′ < n,

j ≥ n ∧ i+ 1 < n ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2 ∧ n′ = n− 1 ∧ j′ < n}

Note that {ρ0} ◦ summary[l9] ◦ {ρ1} ◦ summary[l4] ◦ {ρ3} resulted into four

transition relations because summary[l9] and summary[l4] contain two transi-

tion relations each. Further note that these four transition relations were

contracted into two transition relations by checking for pairwise set contain-

ment. This check can be easily implemented by an SMT solver query and

reduces the number of transition relations. Algorithm 1 then returns Tπ as

transition system TransSys(P, l6) for P |l6.

We give another example application of Algorithm 1 in Section 4.2. The

example application in Section 4.2 computes a transition system for a loop

with multiple cycle-free paths and includes an instantiation of TransHull for

computing transition invariants.

2 Problem Definition and Main Steps of the Analysis 39

2.5.1 Disjunctiveness in Algorithm 1

Disjunctiveness is crucial for bound analysis as discussed in the introduction.

Our transition system computation algorithm (Algorithm 1) incorporates

disjunctive reasoning in two ways:

(1) We summarize inner loops disjunctively. Given a transition system T

for some inner loop L, we want to summarize L by a transition invariant. The

most precise transition invariant T ∗ = {Id} ∪ T ∪ T 2 ∪ T 3 ∪ · · · introduces

infinitely many disjunctions and is not computable in general. However,

by overapproximating the infinite disjunction T ∗ by the finite disjunction

TransHull(T) we retain disjunctive information in loop summaries.

(2) We summarize local transition relations disjunctively. Given a pro-

gram P = (L,E) and location l ∈ L, we want to compute a transition

system for P |l. For a cycle-free path π ∈ paths(P, l) the transition set Tπ
computed in Algorithm 1 overapproximates all simple paths in paths(P, l)

that iterate through inner loops along π. Because all Tπ are sets, the set

union
⋃

cycle-free path π∈paths(P,l) Tπ is a disjunctive summarization of all Tπ that

keeps the information from different paths separated. This is important for

our analysis which relies on the observation that monotonic changes of norms

can be observed along single paths from loop header back to the header.

2.5.2 Pathwise Analysis in Algorithm 1

It is well-known that analyzing large program parts jointly improves the pre-

cision of static analyses, e.g. [Colby and Lee, 1996]. Owing to the progress in

SMT solvers this idea has recently seen renewed interest by static analyses

such as abstract interpretation [Monniaux, 2009] and software model check-

ing [Beyer et al., 2009], which use SMT solvers for abstracting large blocks

2 Problem Definition and Main Steps of the Analysis 40

of straight-line code jointly to increase the precision of the analysis.

We call the analyses of [Monniaux, 2009; Beyer et al., 2009] blockwise,

because they do joint abstraction only for loop-free program parts. In con-

trast, our pathwise analysis abstracts complete paths at once: Algorithm 1

enumerates all cycle-free paths from loop header to loop header and inserts

summaries for inner loops on these paths. These paths are then abstracted

jointly in a subsequent loop summarization or bound computation. In this

way our pathwise analysis is more precise than blockwise analysis. We illus-

trate this difference in precision in Section 4.2.2 on SCA.

Implementation. Pathwise analysis may lead to an exponential blow up in

size because of the enumeration of all cycle-free paths and the insertion of

the disjunctive summaries of inner loops on these paths. We observed in our

experiments that by first extracting norms from the program under scrutiny

and then slicing the program w.r.t. all statements on which these norms

are control dependent [Muchnick, 1997] before continuing with the analysis

normally results into programs small enough for making our analysis feasible.

2.6 Proof of Theorem 7

We prove a stronger statement than the one stated in Theorem 7: for every

program P = (L,E) and location l ∈ L it holds that TransSys(P, l) is a

transition system for P |l and that for every inner loop L of P w.r.t. l with

header header the transition set summary[header] is a transition invariant

for L|header (*). The stronger statement has the advantage to be inductive,

whereas the statement of Theorem 7 is not. Our proof of (*) proceeds by

induction on the loop nesting structure of programs.

Let P = (L,E) be a program and l ∈ L be some location. In the base

2 Problem Definition and Main Steps of the Analysis 41

case, there are no inner loops of P w.r.t. l. Let π = l
ρ0−→ l1

ρ1−→ · · · lk
ρk−→ l ∈

paths(P, l) be a path with start and end location l. Because P does not have

inner loops w.r.t. l, π is cycle free. Thus, no location li is the header of an

inner loop. Therefore we have ITE(IsHeader(li), summary[li], {Id}) = {Id}

for all i. Hence,

{rel(π)} = {ρ0 ◦ ρ1 ◦ ρ2 ◦ · · · ◦ ρk}

= {ρ0} ◦ {Id} ◦ {ρ1} ◦ {Id} ◦ {ρ2} ◦ · · · ◦ {Id} ◦ {ρk}

= {ρ0} ◦ ITE(IsHeader(l1), summary[l1], {Id})◦

{ρ1} ◦ ITE(IsHeader(l2), summary[l2], {Id}) ◦ {ρ2} ◦ · · · ◦

ITE(IsHeader(lk), summary[lk], {Id}) ◦ {ρk}

Therefore,⋃
TransSys(P, l) =

⋃
cycle-free path π∈paths(P,l)

rel(π)

=
⋃

π∈paths(P,l)

rel(π) = P |l

.
Thus TransSys(P, l) is a transition system for P |l.

In the inductive case, there are nested loops of P w.r.t. l. Let L be a

nested loop of P w.r.t. l and let header be its header.

We show that summary[header] is a transition invariant for L|header . By

the induction hypothesis we have that T = TransSys(L, header) is a transi-

tion system for L|header . Because our assumption on the function TransHull,

we have that TransHull(T) is a transition invariant for L|header . Thus

summary[header] is a transition invariant for L|header .

By the induction hypothesis we further have that for all inner loops L′ of

L w.r.t header with header header ′ the transition set summary[header ′] is a

transition invariant for L′|header ′ .

Thus we have that for every inner loop L of P w.r.t. l with header header

2 Problem Definition and Main Steps of the Analysis 42

the transition set summary[header] is a transition invariant for L|header .

It remains to show that TransSys(P, l) is a transition system for P |l.

If suffices to show that for every path π ∈ paths(P, l) we have rel(π) ⊆⋃
TransSys(P, l). Let π = l

ρ0−→ l1
ρ1−→ · · · lk

ρk−→ l ∈ paths(P, l) be a path

of P with start and end location l. In the following we iteratively remove

iterations through inner loops from π to obtain a cycle-free path. Let i1 be the

first index such that li1 appears multiple times in π. Let L1 be the innermost

loop of P w.r.t. l that contains li1 . Because P w.r.t. l is reducible, there is a

unique loop header header of L1. Because header is a dominator for li1 every

path from l to li1 must visit header before. Because L1 is the innermost loop

that contains li1 , every path of P that starts and ends in li1 must visit header .

Therefore π also visits header multiple times. As li1 is the first location visited

multiple times we must have li1 = header . Let j1 be the last index such that

lj1 = li1 . We denote by q1 = π[i1, j1] = li1
ρi1−→ li1+1

ρi1+1
−−−→ · · · lj1−1

ρj1−−→ lj1

the subpath of π from index i1 to index j1. We have that qj ∈ paths(L1, li1)

is some iteration through the inner loop L1 with header li1 . Let π1 be the

result of deleting the subpath from index i1 + 1 to index j1 of π. π1 is a path

because li1 = lj1 . Note that π1 does not contain li1 multiple times any more,

but does contain li1 exactly once. We iterate this approach to derive indices

i2, j2, i3, j3, . . . , im, jm and paths q2, π2, q3, π3, . . . , qm, πm until πm does not

contain a location that appears multiple times. By induction assumption we

have that summary[lij] is a transition invariant for Lj|lij for all 1 ≤ j ≤ m.

2 Problem Definition and Main Steps of the Analysis 43

Thus rel(qj) ⊆ Lj|∗lij ⊆
⋃

summary[lij] for all 1 ≤ j ≤ m. This gives us

rel(π) = ρ0 ◦ ρ1 ◦ · · · ◦ ρk

= ρ0 ◦ ρ1 ◦ · · · ◦ ρi1−1 ◦ ρi1 ◦ · · · ◦ ρj1 ◦ ρj1+1 ◦ · · ·

◦ ρim−1 ◦ ρim ◦ · · · ◦ ρjm ◦ ρjm+1 ◦ · · · ◦ ρk

= ρ0 ◦ ρ1 ◦ · · · ◦ ρi1−1 ◦ rel(q1) ◦ ρj1+1 ◦ · · ·

◦ ρim−1 ◦ rel(qm) ◦ ρjm+1 ◦ · · · ◦ ρk

⊆
⋃

({ρ0} ◦ {ρ1} ◦ · · · ◦ {ρi1−1} ◦ summary[li1] ◦ {ρj1+1} ◦ · · ·

◦ {ρim−1} ◦ summary[lim] ◦ {ρjm+1} ◦ · · · ◦ {ρk})

=
⋃

({ρ0} ◦ ITE(IsHeader(l1), summary[l1], {Id}) ◦ {ρ1}

◦ ITE(IsHeader(l2), summary[l2], {Id}) ◦ {ρ2} ◦ · · ·

◦ ITE(IsHeader(lk), summary[lk], {Id}) ◦ {ρk})

=
⋃

TransSys(P, l).

This concludes the proof of (*).

Chapter 3

Proof-rule based Approach

In this chapter we present our first approach to the reachability-bound prob-

lem. We describe our abstract interpretation based algorithm for computing

transitive hulls in Section 3.1. We present proof rules for computing rank-

ing functions of individual transition relations in Section 3.2. We give proof

rules for composing the ranking functions of individual transition relations to

global bounds in Section 3.3. We present experimental results in Section 3.4.

3.1 Transitive Closure Computation

In this section, we give an algorithm for the function TransHull required by

Algorithm 1 for computing transition invariants, which is based on abstract

interpretation and computes transition invariants for transition sets.

Definition 9 (Transition Invariant for a Transition Set). Let T = {ρ1, . . . , ρn}

be a transition set. A transition set T ′ = {ρ′1, . . . , ρ′m} is a transition invari-

ant for T , if

• Id ⊆
⋃
{ρ′1, . . . , ρ′m}, and

• ρ′j ◦ ρi ⊆
⋃
{ρ′1, . . . , ρ′m} for all i ∈ {1, . . , n} and j ∈ {1, . . ,m}

44

3 Proof-rule based Approach 45

Transition invariants of transition systems overapproximate the transitive

closures of the respective transition relations:

Proposition 10. If T is a transition system for a transition relation ρ, and

if T ′ is a transition invariant for T , then T ′ is a transition invariant for ρ.

Example 11. In Example 8 on page 37 we have computed the transition

system T = TransSys(L′, l5) for L′|l5. We have assumed that the function

TransHull returns the transition set T ′ = {i′ = i ∧ j′ = j ∧ n′ = n, j ≥ n ∧

i+ 1 < n ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2}. Note that T ′ is a transition invariant

for T . By Proposition 10 T ′ is a transition invariant for L′|l5. T ′′ = {i′ ≥

i∧n′ = n} would be another choice for a transition invariant for T . However,

T ′′ is not as precise as T ′ and would lead to a transition system for P |l6 for

which no bound exists.

Computing transition invariants for transition systems is equivalent to

computing invariants on loops whose transitions are the transition relations

of a transition system. We have seen in Example 11 that such invariants need

to be precise, in particular disjunctive. Several papers have been published

on discovering disjunctive invariants [Handjieva and Tzolovski, 1998; Popeea

and Chin, 2006; Gopan and Reps, 2006, 2007; Beyer et al., 2007; Rival and

Mauborgne, 2007; Gulwani et al., 2009a]. The algorithm we present below

takes advantage of its particular application to bound analysis. (We also re-

mark that our technique can be used in general for proving safety properties

of programs. In Section 3.4.2, we present preliminary results that demon-

strate the effectiveness of our technique on a set of benchmark examples taken

from a variety of recent literature on generating disjunctive invariants.)

Our algorithm for the computation of precise transitive closures is inspired

by a convexity-like assumption that we found to hold true for all examples

3 Proof-rule based Approach 46

we have come across in practice. (This includes the transitive hulls of the

transition systems of inner loops, as well as the benchmarks considered by

previous work on computing disjunctive invariants.)

Recall that a theory is said to be convex iff for every quantifier-free formula

φ in that theory, if φ implies a disjunction of equalities, then it implies one

of those equalities, i.e.,(
φ⇒

(∨
i

(xi = yi)

))
=⇒

(∨
i

(φ⇒ (xi = yi))

)
.

By similarly distributing implication (i.e. ⊆) over disjunctions (i.e.
⋃

) in

the equations of Definition 9, we obtain the convexity-like assumption, which

is defined formally below.

Definition 12 (Convexity-like Assumption). Let T = {ρ1, . . . , ρn} be a

transition set and let T ′ = {ρ′1, . . . , ρ′m} be a transitive closure of T . We

say that T ′ satisfies the convexity-like assumption, if there exists an integer

δ ∈ {1, . . ,m} and a map σ : {1, . . ,m} × {1, . . , n} 7→ {1, . . ,m} such that

• Id ⊆ ρ′δ, and

• ρ′j ◦ ρi ⊆ ρ′σ(j,i) for all i ∈ {1, . . , n} and j ∈ {1, . . ,m}.

We refer to such a tuple (δ, σ) as convexity-witness of T ′.

Note that the convexity-like assumption essentially implies that no case-

split reasoning is needed to prove the inductiveness of transitive closures. For

example, given a transition set T = {ρ1, . . . , ρn} and a transition set T ′ =

{ρ′1, . . . , ρ′m} we want to show that T ′ is a transition invariant for T . Given

two transitions ρ′j ∈ T ′ and ρ′i ∈ T we have to show ρ′j ◦ ρi ⊆
⋃
{ρ′1, . . . , ρ′m}

according to Definition 9. This may require case splits because ρ′j◦ρi does not

3 Proof-rule based Approach 47

need to be included in only one of the ρ′k. By the convexity-like assumption

there is an index k = σ(j, i) such that ρ′j◦ρi ⊆ ρ′k. This releases us from doing

a case split on ρ′j ◦ ρi and justifies the naming of the map σ as convexity-

witness.

Example 13. In Figure 3.1 we show some examples that we found in a .Net

base-class library. All the transitive hulls of the transition systems given in

Figure 3.1 satisfy the convexity-like assumption

The transitive hulls of Example 8 satisfy the convexity-like assumption.

A convexity-witness for the transitive hull

T ′ = TransHull(T) = {i′ = i ∧ j′ = j ∧ n′ = n,

j ≥ n ∧ i+ 1 < n ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2}

of the transition system

T = TransSys(L′, l5) = {j ≥ n ∧ i+ 1 < n ∧ i′ = i+ 1 ∧ j′ = i+ 2}

is δ = 1 and σ = {(1, 1) 7→ 1, (2, 1) 7→ 2}.

A convexity-witness for the transitive hull

T ′ = TransHull(T) = {i′ = i ∧ j′ ≥ j ∧ n′ = n,

j ≥ n ∧ i+ 1 < n ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2}

of the transition system

T = TransSys(L, l9) = {j + 1 < n ∧ i′ = i ∧ j′ = j + 1 ∧ n′ = n,

j ≥ n ∧ i+ 1 < n ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2}

is δ = 1 and σ = {(1, 1) 7→ 1, (2, 1) 7→ 2, (1, 2) 7→ 2, (2, 2) 7→ 2}.

Algorithm 2 performs abstract interpretation over the powerset exten-

sion [Cousot and Cousot, 1979] of an underlying abstract domain (such as

polyhedra [Cousot and Halbwachs, 1978], octagons [Miné, 2006], conjunctions

3 Proof-rule based Approach 48

Program 3.1

void main(uint n, uint m){

while(n > 0 ∧m > 0){
n--; m--;

while(nondet()){

n--; m++;

}

}

}

{n′ ≤ n ∧ m′ ≥ m}
{n > 0 ∧m > 0 ∧ n′ ≤ n− 1}
n

Program 3.2

void main(uint n, int[] A){

while(n > 0){
int t := A[n];
while(n > 0 ∧ t = A[n])

n--;
}

}

{n′ ≤ n
{n > 0 ∧ n′ ≤ n ∧A[n] 6= A[n′],
n > 0 ∧ n′ ≤ 0}

n

Program 3.3

void main(uint n){
bool flag := true;

while(flag){

flag := false;

while(n > 0 ∧ nondet()){
n--;
flag := true;

}

}

}

{n′ ≤ n− 1 ∧ flag′,
n′ = n ∧ flag′ = flag}
{flag ∧ flag′ ∧ n > 0 ∧ n′ ≤ n− 1,
flag ∧ ¬flag′ ∧ n′ = n}

n+ 1

Program 3.4

int i := 0;
while (i < n){

flag := false;

while(nondet()){

if(nondet()){

flag:=true; n--; }

}

if(¬flag) i++;
}

}

{n′ ≤ n− 1 ∧ flag′ ∧ i′ = i
i′ = i ∧ n′ = n ∧ flag′ = flag}
{i < n ∧ flag′ ∧ n′ ≤ n− 1 ∧ i′ = i,
i < n ∧ ¬flag′ ∧ i′ ≥ i+ 1 ∧ n′ = n}

n

Figure 3.1: Programs from .Net class libraries that have outer loops whose
iterators are modified by inner loops. For each loop, the second row shows the
transitive closure of the inner loop computed by Algorithm 2 that is precise
enough for enabling bound computation of the outer loop; the third row
shows the transition-system generated by Algorithm 1 using the transitive
closure for summarizing the inner loop; the fourth row shows the bound
computed from the transition-system by Algorithm 3.

3 Proof-rule based Approach 49

Procedure: TransHull(T)
Input: a transition set T = {ρ1, . . . , ρn}
Output: transitive hull T ′ = {ρ′1, . . . , ρ′m} of T
ρ′δ := Id(Σ);
for j ∈ {1, . . ,m} \ {δ} do ρ′j := ∅;
repeat

for i ∈ {1, . . , n}, j ∈ {1, . . ,m} do
ρ′σ(j,i) := Join(ρ′σ(j,i), ρ

′
j ◦ ρi);

until T ′ has not changed ;
return T ′;

Algorithm 2: TransHull(T) computes a transition invariant for T .

of a given set of predicates), where the elements are restricted to at most m

disjuncts. We assume that the underlying abstract domain is equipped with

a Join operator, which takes two elements and returns the least upper bound

of both elements. The algorithm uses the map σ to determine how to merge

the n ×m different disjuncts (into m disjuncts) that are obtained after the

propagation of m disjuncts across n transitions using the Join operator.

The key distinguishing feature of Algorithm 2 from earlier work on com-

puting disjunctive invariants is that our algorithm uses solely a syntactic

criterion to merge disjuncts, which is given by the map σ. This is contrast

to most of the earlier work on computing disjunctive invariants, which uses a

semantic criterion based on the notion of differences between disjuncts. The

following theorem states the remarkable result that on transition invariants

that satisfy the convexity-like assumption no semantic merging criterion can

be more powerful than a static syntactic criterion for merging data-flow facts.

Theorem 14 (Precision of Algorithm 2). Let T ′′ = {ρ′′1, . . . , ρ′′m} be a tran-

sition invariant for a given transition set T = {ρ1, . . . , ρn} that satisfies the

convexity-like assumption. Given the number of disjuncts m and a convexity-

witness (δ, σ), Algorithm 2 outputs a transition invariant that is at least as

3 Proof-rule based Approach 50

precise as T ′′ = {ρ′′1, . . . , ρ′′m}.

Proof. We prove ρ′k ⊆ ρ′′k for all 1 ≤ k ≤ m by induction on the number of

steps of Algorithm 2.

Base Case: Algorithm 2 initializes ρ′j = ∅ for j 6= δ, and ρ′j = Id for

j = δ. By the definition of the convexity-like assumption we have Id ⊆ ρ′′δ .

Thus the claim holds for the base case.

Induction case: By the induction assumption we have ρ′k ⊆ ρ′′k for all

1 ≤ k ≤ m. Assume that Algorithm 2 computes ρ′σ(j,i) := Join(ρ′σ(j,i), ρ
′
j ◦ρi)

for some 1 ≤ j ≤ m and 1 ≤ i ≤ m. By the definition of the convexity-

like assumption we have ρ′′j ◦ ρi ⊆ ρ′′σ(j,i). This gives us Join(ρ′σ(j,i), ρ
′
j ◦

ρi) ⊆ Join(ρ′′σ(j,i), ρ
′′
j ◦ ρi) ⊆ Join(ρ′′σ(j,i), ρ

′′
σ(j,i)) = ρ′′σ(j,i) using the induction

assumption and the monotonicity and idempotence of the join operator. Thus

the claim holds for the induction case.

There are two issues with Algorithm 2 that we discuss below.

Abstract Domains with Infinite Height. Algorithm 2 may not termi-

nate on domains with infinite height. The standard solution would be to the

apply a Widen operator (as defined in [Cousot and Cousot, 1977]) in place of

the Join operator, in order to enforce termination.

Since the use of widening may overapproximate the least fixed point in

general, it is no longer possible to formally prove precision results as in The-

orem 14. However, we show experimentally (in Section 3.4.2) that our al-

gorithm is able to compute sufficiently precise invariants with the use of

standard widening techniques when applied on benchmarks taken from re-

cent work on computing disjunctive invariants. It would be interesting to

theoretically investigate conditions under which widening preserves enough

precision.

3 Proof-rule based Approach 51

Choice of m and a convexity-witness (δ, σ). Since we do not know

the number of disjuncts m and the convexity-witness (δ, σ) of the desired

transitive closure upfront, we have two options:

• We enumerate all possible (δ, σ) for a specifically chosen m: There

are mmn such possible maps since without loss of generality, we can

assume that δ is 1. If m and n are small constants, say 2 (which is

quite often an important special case), then there are 16 possibilities.

Each choice for σ and δ results in some transitive closure computation

by the algorithm. One can then select the strongest transitive closure

among the various transitive closures thus obtained (or heuristically

select between incomparable transitive closures). However, if m or n is

large, then this approach quickly becomes prohibitive.

• We use heuristics for choosing m, δ, σ: The following heuristic turns out

to be effective for our application of bound computation. We set m and

δ to n+1, and select the map σ from the DAG of dependencies between

the transition relations of T . We generate such a DAG from a successful

bound computation of T by Algorithm 3 described in Section 3.3. In

particular, we set σ(n + 1, i) := i and σ(i, i) := i for all i ∈ {1, . . , n},

and set σ(i, j) := i for all i, j ∈ {1, . . , n} except when ¬NI(ρj, ρi, r),

where r ∈ RankC(ρi) is the ranking function that contributed to the

bound computation of T , in which case we set σ(i, j) := j. It can be

proved that such a choice of the map δ and σ generates a transitive

closure TransHull(T) such that Algorithm 3 can compute a bound of

the transition system (TransHull(T) ◦ T), provided Algorithm 3 was

able to generate a bound of the transition system T .

Transitive closures computed by this heuristic preserve important re-

3 Proof-rule based Approach 52

lationships between the program variables. Therefore, when used as

summaries of inner loops, the transitive closures keep enough informa-

tion such that bounds can be computed. For example, the required

transitive-closures of the transition systems in Example 8 and Fig-

ure 3.1 can be computed by Algorithm 2 using the above heuristic

for the construction of a convexity-witnesses.

3.2 Ranking Function for a Transition

In this section, we show how to compute ranking functions for transition

relations. These ranking functions are made use of by the bound computation

algorithm described in Section 3.3.

Definition 15 (Ranking Function for a Transition Relation). Let ρ be a

transition relation. A function r : Σ → Z from the program states to the

integers is a ranking function for ρ, if it holds for all pairs of states (s1, s2) ∈

ρ, that

• r(s1) ≥ 0, and

• r(s1) > r(s2).

We denote this by Rank(ρ, r).

A ranking function r1 is more precise than a ranking function r2, if

r1(s1) ≤ r2(s1) for all (s1, s2) ∈ ρ.

Rank(ρ, r) has the following intuitive meaning: r is bounded from below

by 0 whenever ρ is enabled, and r decreases by at least 1 for every execution

of ρ.

We discuss below the design of a functionality RankC that takes a tran-

sition relation ρ as input and outputs a set of ranking functions r for that

3 Proof-rule based Approach 53

transition. We use a pattern-matching based technique that relies on asking

queries that can be discharged by an SMT solver. We found this technique

to be effective (fast and precise) for almost all of examples we encountered

throughout our experiments. However, other techniques, such as constraint-

based techniques [Podelski and Rybalchenko, 2004a] or counter instrumen-

tation enabled iterative fixed-point computation based techniques [Gulavani

and Gulwani, 2008; Gulwani et al., 2009c] can also be used for generating

ranking functions. Clearly, there are examples where the constraint-based

or iterative techniques that perform precise arithmetic reasoning are more

precise, but nothing beats the versatility of simple pattern matching that

can handle non-arithmetic patterns with equal ease.

We list below some patterns that we found to be most effective. In these

patterns we assume that the transition relation ρ is given as a conjunctive

formula over the variables X and X ′.

3.2.1 Arithmetic Iteration Patterns

One standard way to iterate over loops is to use an arithmetic counter. Rank-

ing functions for such an iteration pattern can be computed using the fol-

lowing pattern.

If ρ⇒ (e > 0 ∧ e[X ′/X] < e), then e ∈ RankC(ρ)

The candidates for expression e while applying the above pattern are

restricted to those expressions that only involve variables from X and that

occur syntactically in ρ as an operator of conditionals when normalized to

the form (e > 0), after rewriting a conditional of the form (e1 > e2) to

(e1 − e2 > 0). In the following we give example transitions whose ranking

functions can be computed using an application of this pattern:

3 Proof-rule based Approach 54

• RankC(i′=i+1 ∧ i<n ∧ i<m ∧ n′=n ∧ m′≤m)={n−i,m−i}

• RankC(n > 0 ∧ n′ ≤ n ∧ A[n] 6= A[n′]) = {n}

The second example transition above (obtained from the transition system

generated for the loop in Program 3.2 in Figure 3.1) is a good illustration of

how simple pattern matching is used to guess a ranking function. An SMT

solver (that can reason about combination of theory of linear arithmetic and

theory of arrays) can be used to perform the relatively complicated reasoning

of verifying the ranking function over a loop-free code fragment.

Another common arithmetic pattern is the use of a multiplicative counter

whose value doubles or halves in each iteration (as in case of binary search).

A more precise ranking function for such a transition can be computed by

using the pattern below.

If ρ⇒ (e ≥ 1 ∧ e[X ′/X] ≤ e/2), then log e ∈ RankC(ρ)

The candidates for expression e while applying the above pattern are

restricted to those expressions that only involve variables from X and those

that occur syntactically in ρ as an operator of conditionals when normalized

to the form (e > 1), after rewriting a conditional of the form (e1 > e2) that

occurs in ρ to (e1
e2
> 1), provided e2 is known to be positive. In the following

we give example transitions whose ranking functions can be computed using

an application of this pattern:

• RankC(i′ ≤ i/2 ∧ i > 1) = {log i}

• RankC(i′ = 2× i ∧ i > 0 ∧ n > i ∧ n′ = n) = {log (n/i)}

The above two patterns are good enough to compute ranking functions for

most loops that iterate using arithmetic counters. However, for the purpose

of completeness, we describe below two examples (taken from some recent

3 Proof-rule based Approach 55

work on proving termination) that cannot be matched using the above two

patterns, and hence illustrate the limitations of pattern-matching. However,

we can find ranking functions or bounds for these examples using the counter

instrumentation and invariant generation techniques described in [Gulavani

and Gulwani, 2008].

• Consider the terminating transition system {x′ = x+y∧y′ = y+1∧x <

n ∧ n′ = n} from [Bradley et al., 2005], which uses the principle of

polyranking lexicographic functions for proving its termination. Note

that the reason why the transition system terminates is because even

though y is not known to be always positive, it will eventually become

positive by virtue of the assignment y′ = y + 1.

• Consider the terminating transition system {x′ = y∧y′ = x−1∧x > 0}.

This transition system can be proven terminating by monotonicity con-

straints as introduced in [Ben-Amram, 2009b]. Note, that the reason

why the transition system terminates is because in every two iterations

the value of x decreases by 1.

3.2.2 Boolean Iteration Patterns

Often loops contain a path/transition that is meant to execute just once. The

purpose of such a transition is to switch between different phases of a loop, or

to perform the cleanup action immediately before loop termination. Such an

iteration pattern can be captured by the following rule, where the operator

Bool2Int(e) maps boolean values true and false to 1 and 0 respectively.

If ρ⇒ (e ∧ ¬(e[X ′/X])), then Bool2Int(e) ∈ RankC(ρ)

The candidates for boolean expression e while applying the above pattern

are restricted to those expressions that only involve variables from X and

3 Proof-rule based Approach 56

that occur syntactically in the transition ρ. In the following we give example

transitions whose ranking functions can be computed using an application of

this pattern:

• RankC(flag′ = false ∧ flag) = {Bool2Int(flag)}

• RankC(x′ = 100 ∧ x < 100) = {Bool2Int(x < 100)}

3.2.3 Bit-vector Iteration Patterns

One standard way to iterate over a bit-vector is to change the position of

the lsb, i.e., the least significant one bit (or msb, i.e., most significant one

bit). Such an iteration pattern can be captured by the following rule/lemma,

where the function LSB(x) denotes the position of the least significant 1-bit,

counting from 1, and starting from the most significant bit-position. LSB(x)

is defined to be 0 if there is no 1-bit in x. Note that LSB(x) is bounded above

by the total number of bits in bit-vector x.

If ρ⇒ (LSB(x′) < LSB(x) ∧ x 6= 0), then LSB(x) ∈ RankC(ρ)

The candidates for the variable x while applying the above pattern are all

the bit-vector variables that occur in the transition ρ. The query in the above

pattern can be discharged using an SMT solver that provides support for bit-

vector reasoning, and, in particular, the LSB operator. (If the SMT solver

does not provide first-class support for the LSB operator, then one can encode

the LSB operator using bit-level manipulation as described in [Warren, 2002].)

In the following we give example transitions whose bound can be computed

using the above rule:

• RankC(x′ = x << 1 ∧ x 6= 0) = {LSB(x)}

• RankC(x′ = x&(x− 1) ∧ x 6= 0) = {LSB(x)}

3 Proof-rule based Approach 57

3.2.4 Data-structure Iteration Patterns

Iteration over data-structures or collections is quite common, and one stan-

dard way to iterate over a data-structure is to follow field dereferences until

some designated object is reached. Such an iteration pattern can be cap-

tured by the following rule/lemma, where the function Dist(x, z, f) denotes

the number of field dereferences along field f required to reach z from x.

If ρ⇒ (x 6= z ∧ (Dist(x′, z, f) < Dist(x, z, f))),

then Dist(x, z, f) ∈ RankC(ρ).

The candidates for variables x, z and field f , while applying the above

pattern are all variables X and field names that occur in ρ. The query in

the above pattern can be discharged using an SMT solver that implements

a decision procedure for the theory of reachability and can reason about its

cardinalities (e.g., [Gulwani et al., 2009b]). Note, that Dist(x, z, f) denotes

the cardinality of the set of all nodes that are reachable from x before reaching

z along field f . In the following we give example transitions whose ranking

functions can be computed using an application of this pattern:

• RankC(x 6= Null ∧ x′ = x.next) = {Dist(x, Null, next)}

• RankC(Mem′=Update(Mem, x.next, x.next.next) ∧

x 6= Null ∧ x.next 6= Null) = {Dist(x, Null, next)}

3.3 Bound Computation

In this section, we show how to compute a bound Bound(T) of a transition

system T .

If a transition system consists of a single transition ρ, then a bound of

the transition system can be obtained simply from any ranking function r of

3 Proof-rule based Approach 58

the transition ρ:

Theorem 16. Let T = {ρ} and let r ∈ Rank(ρ). Then,

Bound(T) = max(0, r)

is a bound of T , where the max operator returns the maximum of its argu-

ments.

Proof. If the transition ρ is ever taken, then r denotes an upper bound on

the number of iterations of ρ (since, by our definition of a ranking function,

transition ρ implies that r is bounded from below by 0 and decreases by at

least 1 in each iteration). The other case is that ρ is never executed (i.e., the

number of iterations of ρ is 0). Combining these two cases, we obtain the

result.

The significance of sanitizing the bound by applying the max operator in

Theorem 16 is illustrated in Example 22 below.

Obtaining a bound of a transition system consisting of multiple transitions

is not as straightforward. We cannot simply add the ranking functions of all

individual transitions to obtain the bound of the transition system, since the

interleaving of these transitions with each other can invalidate the decreasing

measure of the ranking function. An alternative can be to define the notion

of lexicographic ranking functions [Bradley et al., 2005] or disjunctively well-

founded ranking functions [Podelski and Rybalchenko, 2004b] for transition

systems consisting of multiple transitions. However, such an approach might

be sufficient for proving termination, but would usually not be precise for

yielding bounds.

For the purpose of precise bound computation, we distinguish between

the different ways in which two transitions of a transition system can interact

3 Proof-rule based Approach 59

with each other. These cases (described in Sections 3.3.1, 3.3.2, and 3.3.3)

allow for composing the ranking functions of the two transitions using one

of three operators max, sum, and product. These cases can be efficiently

identified by asking queries to SMT solvers.

3.3.1 Max Composition of Ranking Functions

The bound of a transition system T = {ρ1, ρ2} consisting of two transition

relations can be obtained by applying the max operator to ranking functions

for the individual transitions, if the transition relations decrease each other’s

ranking functions. We make this precise in Theorem 18, which makes use of

the following definition.

Definition 17 (Cooperative-interference). We say there is cooperative in-

terference between transitions ρ1 and ρ2 through their ranking functions r1

and r2, if the following condition holds:

∀(s1, s2) ∈ ρ1. r2(s2) ≤ max(r1(s1), r2(s1))− 1

We denote such a cooperative-interference by CI(ρ1, r1, ρ2, r2).

Theorem 18 (Proof Rule for Max-Composition). Let T = {ρ1, ρ2} and let

r1 ∈ RankC(ρ1) and r2 ∈ RankC(ρ2). If CI(ρ1, r1, ρ2, r2) and CI(ρ2, r2, ρ1, r1)

hold, then

Bound(T) = max(0, r1, r2)

is a bound of T .

Proof. We show below that max(r1, r2) is a ranking function for T = {ρ1, ρ2},

i.e., that for all pairs of states (s1, s2) ∈ ρi and i ∈ {1, 2} we have

• max(r1, r2)(s1) ≥ 0, and

3 Proof-rule based Approach 60

• max(r1(s1), r2(s1)) > max(r1(s2), r2(s2)).

This is sufficient to prove the claim: If some transition ρi is ever taken, then

max(r1, r2) denotes an upper bound on the number of iterations of T (since,

by our definition of a ranking function, every transition relation ρi ∈ T

implies that max(r1, r2) is bounded from below by 0 and decreases by at

least 1 in each iteration). The other case is that no ρi is ever executed (i.e.,

the number of iterations of ρ is 0).

We now show that max(r1, r2) is a ranking function: Because of r1 ∈

RankC(ρ1) we have r1(s1) ≥ 0 for all pairs of states (s1, s2) ∈ ρ1. Thus we

have max(r1, r2)(s1) ≥ 0 for all pairs of states (s1, s2) ∈ ρ1. Similarly, we have

max(r1, r2)(s1) ≥ 0 for all pairs of states (s1, s2) ∈ ρ2. This establishes the

first condition on max(r1, r2). By assumption we have CI(ρ1, r1, ρ2, r2). Thus

r2(s2) ≤ max(r1(s1), r2(s1)) − 1 for all pairs of states (s1, s2) ∈ ρ1. Because

of r1 ∈ RankC(ρ1) we have r1(s1) > r1(s2) for all pairs of states (s1, s2) ∈ ρ1.

This gives us max(r1(s1), r2(s1)) > max(r1(s2), r2(s2)) for all pairs of states

(s1, s2) ∈ ρ1. Similarly, we get max(r1(s1), r2(s1)) > max(r1(s2), r2(s2)) for

all pairs of states (s1, s2) ∈ ρ2. This establishes the second condition on

max(r1, r2).

Example 19. We obtained the transition system TransSys(P, l6) = {ρ1, ρ2}

for P |l6 in Example 8, where:

ρ1 ≡ (n′ = n− 1 ∧ j < n ∧ j′ ≥ j ∧ i′ = i)

ρ2 ≡ (n′ = n− 1 ∧ i < n− 2 ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2)

We can compute RankC(ρ1) = {n − j} and RankC(ρ2) = {n − i − 2}. We

can prove CI(ρ1, n − j, ρ2, n − i − 2) and CI(ρ1, n − i − 2, ρ2, n − j). An

application of the max-composition theorem (Theorem 18) yields the bound

3 Proof-rule based Approach 61

max(0, n−i−2, n−j) for the transition system {ρ1, ρ2}. Using the invariants

i ≥ 0 ∧ j ≥ 1 that hold during the first visit to l6 (which can be obtained by

generating invariants at control location l6) we obtain the bound n − 1 on

the transition system. This implies the bound n on the number of visits to

control location l6. This concludes the bound computation for Example 1.3.

3.3.2 Additive Composition of Ranking Functions

The bound of a transition system T = {ρ1, ρ2} consisting of two transition

relations can be obtained by adding together the ranking functions for the

two transitions when the transition relations do not increase each other’s

ranking functions. To state this formally (Theorem 21), we first define the

notion of non-interference of a transition with respect to the ranking function

of another transition relation.

Definition 20 (Non-interference). We say that a transition relation ρ1 does

not interfere with the ranking function r2 of another transition relation ρ2,

if the following condition holds:

∀(s1, s2) ∈ ρ1. r2(s2) ≤ r2(s1)

We denote such a non-interference by NI(ρ1, ρ2, r2).

Theorem 21 (Proof Rule for Additive-Composition). Let T = {ρ1, ρ2} and

let r1 ∈ RankC(ρ1) and r2 ∈ RankC(ρ2). If NI(ρ1, ρ2, r2) and NI(ρ2, ρ1, r1)

hold, then is a bound of T .

Bound(T) = Iter(ρ1) + Iter(ρ2), where

Iter(ρ1) = max(0, r1)

Iter(ρ2) = max(0, r2)

3 Proof-rule based Approach 62

Proof. The non-interference condition NI(ρ2, ρ1, r1) ensures that the value of

the ranking function r1 for transition ρ1 is not increased by any interleaving

of transition ρ2. Hence, the total number of iterations of the transition ρ1

is given by max(0, r1) (based on an argument similar to that in proof of

Theorem 16). Similarly, the total number of iterations of the transition ρ2 is

given by max(0, r2). Hence, the result.

Example 22. Consider the transition system T = {ρ1, ρ2} (obtained from

the loop in Program 1.6 in Fig. 1.2) with the following 2 transitions:

ρ1 ≡ z > x ∧ x < n ∧ x′ = x+ 1 ∧ z′ = z ∧ n′ = n

ρ2 ≡ z ≤ x ∧ x < n ∧ z′ = z + 1 ∧ x′ = x ∧ n′ = n

We can compute RankC(ρ1) = {n − x} and RankC(ρ2) = {n − z}. We can

prove NI(ρ1, ρ2, n − z) and NI(ρ2, ρ1, n − x). An application of the additive-

composition theorem (Theorem 21) yields the bound max(0, n−x)+max(0, n−

z) for T .

We now explain the importance of using the max operators in the state-

ment of Theorem 16 and Theorem 21. If we defined Iter(ρ) to simply r

instead of max(0, r), then we would incorrectly conclude the bound on T to

be 2n− x− z. This is incorrect because, for example, suppose that the tran-

sition system was executed in the initial state n = 100, x = 0, z = 200, then

the expression n − x − z evaluates to 0, while the transition system ρ1 ∨ ρ2

executes for 100 iterations.

This example is also a good illustration of how our technique differs sig-

nificantly from (and, in fact, provides a simpler alternative to) recently pro-

posed techniques for proving termination [Cook et al., 2006] and loop bound

3 Proof-rule based Approach 63

analysis [Gulwani et al., 2009a]. The control-flow refinement technique used

in [Gulwani et al., 2009a] unravels the exact interleaving pattern between the

two transitions to conclude that ρ1 and ρ2 interleave in lock-steps, only after

which it is able to derive the bound. In contrast, our proof rule stated in The-

orem 21 only requires to establish the non-interference property between the

two transitions. The principle of disjunctively well-founded ranking functions

used in [Cook et al., 2006] requires computing the transitive closure of the

transition system only to conclude a quadratic bound. In contrast, our proof

rule stated in Theorem 21 does not require computing any transitive-closure,

and is even able to obtain a precise linear bound. (The transitive-closure is

required in our technique only to summarize any inner nested loops, which,

however, are not present in the loop in Program 1.6).

Observe that the additive-composition theorem (Theorem 21) and max-

composition theorem (Theorem 18) provide orthogonal proof-rules. The

bound of the transition system in Example 19 can be computed using the

max-composition theorem, but not using the additive-composition theorem.

Similarly, the bound of the transition system in Example 22 can be computed

using the additive-composition theorem, but not using the max-composition

theorem.

3.3.3 Multiplicative Composition of Ranking Functions

If mutual cooperative-interference or mutual non-interference properties of

two transitions cannot be established, then it is still possible to compute

bounds provided one of the transition satisfies the non-interference property.

The bound in such a case is obtained by multiplying together the ranking

functions for the two transitions, as made precise in the following theorem.

This is a common case for bounding iterations of an inner loop when its

3 Proof-rule based Approach 64

iterators are re-initialized inside the outer loop.

Theorem 23 (Proof Rule for Multiplicative-Composition). Let T = {ρ1, ρ2}

and let r1 ∈ RankC(ρ1), and r2 ∈ RankC(ρ2). If NI(ρ2, ρ1, r1), then

Bound(T) = Iter(ρ1) + Iter(ρ2), where

Iter(ρ1) = max(0, r1)

Iter(ρ2) = max(0, r2) + max(0, u)×max(0, r1)

is a bound of T , where u denotes an invariant of T that is an upper bound

on expression r2.

Proof. From the non-interference condition NI(ρ2, ρ1, r1), we can conclude

that Iter(ρ1) ≤ max(0, r1) (the same argument as in the proof of Theo-

rem 21). However, the same reasoning does not apply to ρ2. Instead we

observe that the maximum number of iterations of ρ2 in between any two

interleavings of ρ1 is bounded above by max(0, u) (since the starting value of

the ranking function r2 may be reset to u by any execution of ρ1). However,

the number of iterations of ρ2 before any interleaving of ρ1 is still bounded

by max(0, r). Hence, the total number of iterations of ρ2 is bounded by

max(0, r2) + max(0, u)×max(0, r1).

For a given transition system, application of both additive-composition

theorem (Theorem 21) and multiplicative-composition theorem (Theorem 23)

may be possible and may yield incomparable bounds, as illustrated by the

example below.

Example 24. Consider the transition system T = {ρ1, ρ2} with the following

3 Proof-rule based Approach 65

Procedure: Bound(T)
Input: a transition set T = {ρ1, . . . , ρn}
Output: a bound b of T
foreach i ∈ {1, . . , n} do Iter[ρi] := ⊥;
repeat

foreach i ∈ {1, . . , n} and r ∈ RankC(ρi) do
J := {j | ¬NI(ρj, ρi, r)};
if Iter[ρi] = ⊥ and for all j ∈ J : Iter[ρj] 6= ⊥ then

factor :=
∑
j∈J

Iter[ρj];

Let u be an invariant of T that is an upper bound on r;
Iter[ρi] := max(0, r) + max(0, u)× factor;

until array Iter has not been changed ;
if for all i ∈ {1, . . , n}: Iter[ρi] 6= ⊥ then return

∑
i∈{1,..,n}

Iter[ρi];

else return “Potentially Unbounded”;

Algorithm 3: Bound(T) composes a bound of T from ranking functions
of the individual transitions of T .

two transitions:

ρ1 ≡ i′ = i− 1 ∧ i > 0 ∧ j′ = j − 1 ∧ j > 0 ∧ k′ = k ∧ m′ = m

ρ2 ≡ j′ = m ∧ k′ = k − 1 ∧ k > 0 ∧ ∧ i′ = i ∧ m′ = m

We can compute RankC(ρ1) = {i, j} and RankC(ρ2) = {k}. We can prove

NI(ρ1, ρ2, k) and NI(ρ2, ρ1, i). An application of additive-composition theorem

(Theorem 21) yields the bound max(0, i)+max(0, k) for the transition system

T . An application of multiplicative-composition theorem (Theorem 23) yields

the incomparable bound max(0, j) + max(0,m)×max(0, k).

3.3.4 Combining the Composition Rules

In this section, we discuss how to compute bounds of transition systems with

more than 2 transition relations by putting together the proof rules stated

3 Proof-rule based Approach 66

in Theorem 18, 21, and 23. Since different order of applications of the proof

rules may generate different bounds, we present a strategy that we found

effective throughout our experiments.

First, observe that an optimal way of applying the additive-composition

theorem (Theorem 21) and multiplicative-composition theorem (Theorem 23)

is to compute the total number of iterations for each transition individually,

and then sum them up together.Algorithm 3 implements such a strategy

based on a simple generalization of Theorem 21 and Theorem 23 to the case

when a transition system contains more than 2 transitions. Algorithm 3

iteratively computes an array Iter such that Iter[ρi] denotes a bound on

the total number of iterations of the transition ρi during any execution of the

transition system T = {ρ1, . . . , ρn}. Algorithm 3 initializes all elements of

Iter to ⊥. Then Algorithm 3 chooses a transition relation ρi and a ranking

function r ∈ RankC(ρi) and computes the set J of all indices of transition

relations that interfere with the ranking function r. If a bound on the total

number of iterations of all those transition relations ρj with j ∈ J is known,

i.e., Iter[ρj] 6= ⊥, then a bound on the number of iterations of ρi is obtained

using a generalization of Theorems 21 and 23. Algorithm 3 iterates the above

steps until the array Iter does not change any more. If a transition relation

ρi remains such that Iter[ρi] = ⊥, Algorithm 3 failed to compute a bound

and reports that there is possibly no bound. Otherwise a bound on the entire

transition system T is obtained by summing up the bounds Iter[ρi] on the

total number of iterations of the individual transition relations ρi.

For simplicity, we have presented the algorithm to output only one bound,

but the Algorithm 3 can be easily extended to output multiple bounds by

associating a set of bounds (as opposed to a single bound) with Iter[ρi]

and appropriately relaxing the condition Iter[ρi] = ⊥ in the main loop to

3 Proof-rule based Approach 67

multiple bounds.

We now discuss how one could extend Algorithm 3 to also take advantage

of the max-composition proof rule in Theorem 18. Before computing a bound

with Algorithm 3, one could add max(r, r′) to RankC(ρ) for any transition ρ,

where r ∈ RankC(ρ) and r′ ∈ RankC(ρ′) for some other transition ρ′, provided

Rank(ρ,max(r, r′)) holds. This enables a subsequent application of additive-

composition proof rule (Theorem 21) to obtain an additive bound that may

be a constant factor of 2 away from the bound that would have been obtain-

able from an application of the max-composition proof rule (Theorem 18),

but that is much better than a multiplicative bound.

3.4 Experiments

We have implemented our proposed solution to the reachability-bound prob-

lem in C# using the Phoenix Compiler Infrastructure [PhoenixWebPage,

2009] and the SMT solver Z3 [Z3WebPage, 2009]. This implementation is

part of a tool that computes symbolic complexity for procedures in .Net bina-

ries. Below we present two different sets of experimental results that measure

the effectiveness of various aspects of our solution.

3.4.1 Loop Bound Computation

We considered the problem of computing symbolic bounds on the number

of loop iterations, which is an instance of the reachability-bound problem

where the control location under consideration is the loop header. We chose

mscorlib.dll (a .Net base-class library), which had 2185 loops, as our bench-

mark. Our tool analyzes these 2185 loops in less than 5 minutes and is able

to compute bounds for 1677 loops. The problem of loop bound computa-

3 Proof-rule based Approach 68

tion is especially challenging under the following two cases for which earlier

techniques for bound computation do not perform as well.

Case 1: Iterations of outer loops depending on inner loops (examples of

the kind described in Figure 3.1). There were 113 such loops out of the

total 2185 loops. The key idea of this thesis is to address such challenges is

to summarize inner loops by their transitive-closure that preserves required

relationships between the inputs and outputs of the loop. The effectiveness

of our transitive closure computation algorithm is illustrated by the fact that

our success ratio for such cases (80 out of 113, i.e., 70%) is similar to our

overall success ratio (1677 out of 2185, i.e., 76%).

Case 2: Loop bound computation for nested loops. The challenge here

is to compute precise amortized bounds on the total number of iterations

of those loops, as opposed to the number of iterations per iteration of the

immediate outer loop (the latter is an easier problem than the former). This

is the same issue as exemplified by Example 1.3. There were 250 such loops

out of the total 2185 loops. Unfortunately, we cannot evaluate the precision

of our bounds automatically. As described in Section 2.3, the problem of

computing a precision-witness for a given symbolic bound is an orthogonal

problem to the one in this thesis. Instead, we manually investigated the

generated bounds for most of these loops and found all these bounds to

be precise (according to Definition 5). This points out the effectiveness of

our bound-computation algorithm based on the three proof rules presented in

Section 3.3.

Another interesting statistic is the distribution of the number of transi-

tions generated for each loop, as shown in Figure 3.2. The small number of

transitions validates the design choice behind our transition system gener-

3 Proof-rule based Approach 69

Transitions 1 2 3 4 5 6 7 8 9 ≥10

Loops 1561 224 107 44 25 11 9 5 8 191

Figure 3.2: The table shows the number of loops for respective number of
transition relations.

ation algorithm that enumerates all paths between two program points (in

order not to lose any precision) after slicing has been performed.

Out of the 508 loops for which we failed to compute a bound, the failure

for 503 loops is attributed to not being able to compute ranking functions for

some transition in the transition system corresponding to the loop. There

were two main causes. (i) Our implementation is intra-procedural, mean-

ing that our transition system generation algorithm fails when the value of

loop iterators gets modified because of procedure calls. This problem can be

addressed by simply inlining the procedure, provided there are no recursive

calls. (ii) Of the various proof rules described in Section 3.2, we only im-

plemented those corresponding to arithmetic and boolean iteration patterns,

while several transitions were iterating using field dereferences or bit-vector

manipulation. A sound handling of field dereferences would require use of

an alias analysis. On the positive side these results show the effectiveness

of the proof-rule based technique for finding ranking functions: a handful of

patterns are sufficient to compute ranking functions for transitions arising in

76% of the examples.

There were only 5 cases (out of 1682 cases) for which we were able to

compute a ranking function for each transition, but were not able to com-

pute a bound of the transition system. This points out the effectiveness of

our proof rules for composing bounds from of ranking functions of individual

transitions.

3 Proof-rule based Approach 70

3.4.2 Disjunctive Invariant Computation

We also evaluated the effectiveness of the transitive closure algorithm (Al-

gorithm 2) described in Section 3.1 on a variety of benchmark examples

chosen by recent state-of-the-art papers on computing disjunctive invariants.

Figure 3.3 describes these four examples that have been used as flagship ex-

amples to motivate new techniques for proving non-trivial safety assertions.

Proving validity of the assertions in all these examples requires disjunctive

loop invariants. It turns out that the required disjunctive invariant for each

of these examples satisfies the convexity-like assumption, and hence can be

discovered by Algorithm 2. We have adapted Algorithm 2 slightly to take ad-

vantage of the initial condition Init (as is done by all the other approaches)

by initializing s′1 to Init ∧ Id at the loop headers instead of Id. This al-

lows Algorithm 2 to establish the desired disjunctive invariant using fewer

disjuncts. We give an example for the application of Algorithm 2 without

initial condition at the end of this section.

Given that the number of disjuncts in the desired transitive closure is 2

for all examples, and that the number of transitions in the transition system

represented by the loop is either 2 or 3, the total number of possibilities for

the map σ is 16 or 64 respectively. Hence, by trying out all possible maps,

Algorithm 2 can discover the desired disjunctive invariants.

Instead, we used a heuristic that constructs the map σ dynamically for

our experiments on the programs shown in Figure 3.3. We choose m = 1 and

initialize ρ′1 to Init ∧ Id. We maintain a partial map σ that is completely

undefined at start, and construct σ on the fly: During the main loop of

Algorithm 2 we compute ρ = ρ′j ◦ ρi for transitions ρ′j ∈ T ′, ρi ∈ T . If σ(j, i)

is undefined and ρ 6= ∅, we heuristically find an index k such that ρ is close

to an existing disjunct ρ′k and define σ(j, i) to be k. If we do not find such

3 Proof-rule based Approach 71

a k, we increase m by 1 and set σ(j, i) to the new value of m. We used the

octagon domain [Miné, 2006] in our experiments, which contains equalities

and inequalities, and consider octagons close, if the share an equality. This

heuristic combines semantic- and syntactic-merging criteria in an interesting

manner: the semantic-merging criterion is used the construct the syntactic-

merging criterion σ, which is used to compute the transitive hull in the light

of Theorem 14. With this heuristic our prototype implementation is able to

validate the assertion in each of the examples in less than 0.2sec.

We now return to the discussion on how we can apply Algorithm 2 without

making use of the initial condition Init. For example, for the first example,

we would require the transition invariant T = {ρ1, ρ2, ρ3, ρ4, }, where

ρ1 ≡ Id,

ρ2 ≡ x ≤ 50 ∧ x′ ≤ 51 ∧ x′ − x = y′ − y,

ρ3 ≡ x ≥ 51 ∧ x′ ≥ 52 ∧ x′ − x = y′ − y,

ρ4 ≡ x ≤ 50 ∧ x′ ≥ 52 ∧ 102− x′ − x = y − y′.

Note that the transition invariant consists of more disjuncts, and involves

elements from richer numerical domains than the octagon abstract domain

such as the polyhedra abstract domain. However, the above invariant still

satisfies the convexity-like assumption, where a convexity-witness σ is as fol-

lows: σ = {(1, 1) 7→ 2, (2, 1) 7→ 2, (3, 1) 7→ 3, (4, 1) 7→ 4, (1, 2) 7→ 3, (2, 2) 7→

4, (3, 2) 7→ 3, (4, 2) 7→ 4}. Thus Algorithm 2 instantiated with the polyhedra

abstract domain is precise enough to discover the desired invariant T . Note

that T is a relational invariant that summarizes the loop. In contrast, none of

the techniques that were proposed for the examples shown in Figure 3.3 can

compute such loop summaries. We discuss related work on loop summaries

in Section 6.6.

3 Proof-rule based Approach 72

Original Example Various Details

Gopan and Reps 06.
Page 3, Fig. 1

x:=0, y:=0;

while (*)

if (x ≤ 50) y++;

else y--;

if (y<0) break;

x++;

assert(x=102)

ρ1 ≡ x ≤ 50 ∧ y + 1 ≥ 0 ∧ y′ = y + 1 ∧ x′ = x+ 1
ρ2 ≡ x > 50 ∧ y − 1 ≥ 0 ∧ y′ = y − 1 ∧ x′ = x+ 1

Init ≡ x = 0 ∧ y = 0

ρ′1 ≡ 0 ≤ x′ ≤ 51 ∧ x′ = y′

ρ′2 ≡ 52 ≤ x′ ≤ 102 ∧ x′ + y′ = 102

δ = 1, σ = {(1, 1) 7→ 1, (1, 2) 7→ 2, (2, 2) 7→ 2, (2, 1) 7→ 1}

Beyer et al. 07.
Page 306, Fig. 4.

x:=0; y:=50;

while (x<100)

if (x<50) x++;

else x++; y++;

assert(y=100);

ρ1 ≡ x ≤ 50 ∧ x′ = x+ 1 ∧ y′ = y
ρ2 ≡ 51 ≤ x ≤ 100 ∧ x′ = x+ 1 ∧ y′ = y + 1

Init ≡ x = 0 ∧ y = 50

ρ′1 ≡ 0 ≤ x′ ≤ 50 ∧ y′ = 50)
ρ′2 ≡ (51 ≤ x′ ≤ 100 ∧ x′ = y′

δ = 1, σ = {(1, 1) 7→ 1, (1, 2) 7→ 2, (2, 2) 7→ 2, (2, 1) 7→ 1}

Gulavani et al. 06.
Page 5, Fig. 3. Henzinger
et al. 02. Page 2, Fig. 1.

lock :=0; assume(x 6= y)
while (x 6= y)

lock := 1;

x := y;

if (*)

lock := 0;

y++;

assert(lock = 1);

ρ1 ≡ x 6= y ∧ lock′ = 1 ∧ x′ = y ∧ y′ = y
ρ2 ≡ x 6= y ∧ lock′ = 0 ∧ x′ = y ∧ y′ = y + 1

Init ≡ x 6= y ∧ lock = 0

ρ′1 ≡ x′ = y′ ∧ lock′ = 1
ρ′1 ≡ x′ + 1 = y′ ∧ lock′ = 0

δ = 1, σ = {(1, 1) 7→ 1, (2, 1) 7→ 1, (1, 2) 7→ 2, (2, 2) 7→ 2}

Popeea and Chin 06.
Page 2

x := 0; upd := 0;

while (x < N)

if (*)

l := x;

upd := 1;

x++;

assert(upd = 1
⇒ 0 ≤ l < N);

ρ1 ≡ x < N ∧ x′ = x+ 1 ∧ l′ = l ∧ upd′ = upd
ρ2 ≡ (x < N ∧ x′ = x+ 1 ∧ l′ = x ∧ upd′ = 1

Init ≡ x = 0 ∧ upd = 0

ρ′1 ≡ x′ ≥ 0 ∧ l′ = l ∧ upd′ = 0 ∧N ′ = N
ρ′2 ≡ x′ ≥ 1 ∧ upd′ = 1 ∧ N ′ = N ∧0 ≤ l′ < N

δ = 1, σ = {(1, 1) 7→ 1, (1, 2) 7→ 2, (2, 2) 7→ 2, (2, 1) 7→ 2}

Figure 3.3: Prominent disjunctive invariant challenges from recent literature.
Corresponding to each example the entries in 2nd column show the following
details in that order: transition-system representation T = {ρ1, ρ2} of the
loop, initial condition Init, transitive closure T ′ = {ρ′1, ρ′2} of T , and the
convexity-witness (δ, σ).

Chapter 4

Size-change Abstraction

Approach

In this chapter we present our second approach to the reachability-bound

problem. We introduce the size-change abstraction (SCA) in Section 4.1.

We describe how we use SCA for computing transitive hulls in Section 4.2.

We present our algorithm for bound computation in Section 4.3. We present

experimental results in Section 4.4.

4.1 Size-change Abstraction

In this section we introduce SCA and at the same time give the definitions

and notations necessary for the presentation of our transitive hull and bound

algorithms in Sections 4.2 and 4.3.

4.1.1 Order Constraints

Let X be a set of variables. We denote by B any element from {>,≥}.

73

4 Size-change Abstraction Approach 74

Definition 25 (Order Constraint). An order constraint over X is an in-

equality xB y with x, y ∈ X.

Given a variable x we denote by x′ its primed version. We denote by X ′

the set {x′ | x ∈ X} of the primed variables of X.

Definition 26 (Valuation). The set of all valuations of X is the set ValX =

X → Z of all functions from X to the integers.

Given a valuation σ ∈ ValX we define its primed valuation as the function

σ′ ∈ ValX′ with σ′(x′) = σ(x) for all x ∈ X.

Given two valuations σ1 ∈ ValX1 , σ2 ∈ ValX2 with X1 ∩X2 = ∅ we define

their union σ1 ∪ σ2 ∈ ValX1∪X2 by (σ1 ∪ σ2)(x) =

 σ1(x), for x ∈ X1,

σ2(x), for x ∈ X2.

Definition 27 (Semantics). We define a semantic relation |= as follows:

Let σ ∈ ValX be a valuation. Given an order constraint x1 B x2 over X,

σ |= x1 B x2 holds, if σ(x1) B σ(x2) holds in the structure of the integers

(Z,≥). Given a set OC of order constraints over X, σ |= OC holds, if

σ |= o holds for all o ∈ OC .

4.1.2 Size-change Abstraction (SCA)

We are using integer-valued functions on the program states to measure

progress of a program. Such functions are called norms in the literature.

Norms provide us sizes of states that we can compare. We will use norms for

abstracting programs.

Definition 28 (Norm). A norm n ∈ Σ → Z is a function that maps the

states to the integers.

We fix a finite set of norms N for the rest of this subsection, and describe

4 Size-change Abstraction Approach 75

in Section 4.1.3 how to extract norms from programs automatically. Given

a state s ∈ Σ we define a valuation σs ∈ ValN by setting σs(n) = n(s).

We will now introduce SCA. Our terminology diverts from the seminal

papers on SCA [Lee et al., 2001; Ben-Amram, 2011] because we focus on

a logical rather than a graph-theoretic representation. The set of norms N

corresponds to the SCA “variables” in [Lee et al., 2001; Ben-Amram, 2011].

Definition 29 (Monotonicity Constraint, Size-change Relation / Set, Con-

cretization). The set of monotonicity constraints OC is the set of all order

constraints over N ∪ N ′. The set of size-change relations (SCRs) SCRs =

2OC is the set of all subsets of OC . An SCR set S ⊆ SCRs is a set of

SCRs. We use the concretization function γ : SCRs → Γ to map an SCR

T ∈ SCRs to a transition relation γ(T) by defining γ(T) = {(s1, s2) ∈ Σ×Σ |

σs1 ∪ σ′s2 |= T} as the set of all pairs of states such that the evaluation of the

norms on these states satisfy all constraints of T . We lift the concretization

function to SCR sets by setting γ(S) = {γ(T) | T ∈ S} for an SCR set S.

Note that the abstract domain of SCRs has only finitely many elements,

namely 3|N |
2
. Further note that an SCR set corresponds to a formula in

DNF.

Definition 30 (Abstraction Function). The abstraction function α : Γ →

SCRs takes a transition relation ρ ∈ Γ and returns the greatest SCR con-

taining it, namely α(ρ) =
⋃
{T ∈ SCRs | ρ ⊆ γ(T)} = {o ∈ OC | ρ |= o}.

We lift the abstraction function to transition sets by setting α(T) = {α(ρ) |

ρ ∈ T } for a transition set T .

Note that the equality
⋃
{T ∈ SCRs | ρ ⊆ γ(T)} = {o ∈ OC | ρ |= o}

is a simple observation from the definitions, and that α is a best abstraction

function.

4 Size-change Abstraction Approach 76

Implementation of the abstraction. α can be implemented by an SMT

solver under the assumption that the norms are provided as expressions and

that the transition relation is given as a formula such that the order con-

straints between these expressions and the formula fall into a logic that the

SMT solver can decide.

Using abstraction and concretization we can define concatenation of SCRs:

Definition 31 (Concatenation of SCRs). Given two SCRs T1, T2 ∈ SCRs,

we define T1 ◦ T2 to be the SCR α(γ(T1) ◦ γ(T2)). We lift the concatenation

operator ◦ to SCR sets by defining S1 ◦ S2 = {T1 ◦ T2 | T1 ∈ T1, B2 ∈ S2}

for SCR sets S1,S2 ⊆ 2A×A. S0 = {Id},Sk,S+,S∗ etc. are defined in the

natural way.

Concatenation of SCRs is conservative by definition, i.e., γ(T1 ◦ T2) ⊇

γ(T1) ◦ γ(T2) and associative because of the transitivity of order relations.

Concatenation of SCRs can be effectively computed by a modified all-pairs-

shortest-path algorithm (taking order relations as weights). Because the

number of SCRs is finite, the transitive hull is computable.

4.1.3 Heuristics for Extracting Norms

We now describe our heuristics for extracting norms from programs. Let P =

(L,E) be a program and l ∈ L be a location. We compute all cycle-free paths

from the loop header back to the loop header. From each of these paths we

extract local ranking functions checking the patterns described in Section 3.2

by an SMT solver. The expressions of the local ranking functions are then

included into the set of norms. Similarly to program slicing [Muchnick, 1997],

we iteratively add all expressions of inner loops to the set of norms on which

the already extracted norms are control dependent until a fixed point is

4 Size-change Abstraction Approach 77

reached. We heuristically also include the sum and the difference of two

norms, when an inner loop affects several norms at the same time.

We mention two approaches for handling complex data structures whose

norms are not captured by the patterns in Section 3.2:

• One could preanalyze common data structures (such as provided in

standard libraries) and provide a set of norms for them. This approach

achieves a separation of concerns between analyzing application code

and library functions.

• If this is not possible, one could automatically abstract such data struc-

tures before the actual analysis and derive an integer program using

techniques such as as [Gulwani et al., 2009b; Magill et al., 2010].

4.2 Transitive Closure Computation

In this section, we give an algorithm for the function TransHull required

by Algorithm 1 in Section 2.5 for computing transition invariants based on

SCA.

The following theorem can be directly shown from the definitions given

in Section 4.1.

Theorem 32. Let T be a transition set. Then γ(α(T)∗) is a transition

invariant for T .

Theorem 32 can immediately be used for computing transitive hulls. Al-

gorithm 4 presents such an implementation of Theorem 32.

In the following example we show how Algorithm 1 is used by Algorithm 4

for computing transition invariants that summarize inner loops disjunctively.

4 Size-change Abstraction Approach 78

Procedure: TransHull(T)
Input: a transition set T
Output: transitive hull T ′ of T
S := {Id};
repeat
S ′ = S;
S = S ◦ α(T);

until S ′ = S;
T ′ = γ(S);
return T ′;

Algorithm 4: TransHull(T) computes a transition invariant for T .

begin

l1

l2

end

ρ0

ρ1

ρ2

ρ3 ρ4

ρ5

ρ0 ≡ i = 0
ρ1 ≡ i < n ∧ i′ = i+ 1 ∧ j′ = 0
ρ2 ≡ i < n ∧ i′ = i+ 1 ∧ j′ = j + 1
ρ3 ≡ j > 0 ∧ i′ = i− 1
ρ4 ≡ j ≤ 0
ρ5 ≡ i ≥ n

Figure 4.1: Simplified CFG of Program 1.1 with transition relations

4 Size-change Abstraction Approach 79

Example 33. Let P Program 1.1. The (simplified) CFG and the transition

relations of P are shown in Figure 4.1. We explain in the following how

Algorithm 1 computes the transition system TransSys(P, l1) for P |l1 using

Algorithm 4 for computing TransHull. In the first foreach-loop Algorithm 1

calls itself recursively on the nested loop L = ({l2}, {l2
ρ2−→ l2}) with header

l2. In the recursive call Algorithm 1 skips the first foreach-loop because

(L, l2) does not have nested loops. The second foreach-loop iterates over all

cycle-free paths of paths(L, l2). There is only one such a path π = l2
ρ2−→ l2.

Algorithm 1 computes Tπ = {i < n ∧ i′ = i + 1 ∧ j′ = j + 1 ∧ n′ = n} and

returns Tπ as the transition system TransSys(L, l2). After the return of the

recursive call T = TransSys(L, l2) Algorithm 1 calls Algorithm 4 to compute

TransHull(T). Algorithm 4 size-change abstracts T by α(T) = {n − i >

0∧n′− i′ < n− i∧ j < j′}, computes the disjunctive transitive closure in the

abstract S = α(T)∗ = {n− i > 0∧n′− i′ = n− i∧ j = j′, n− i > 0∧n′− i′ <

n− i ∧ j < j′} and returns the concretization γ(S). Algorithm 1 then stores

TransHull(T) in summary[l2]. As there is no other nested loop, the first

foreach-loop is finished. The second foreach-loop iterates over all cycle-free

paths of paths(P, l1). There are two such paths, namely π1 = l1
ρ1−→ l2

ρ3−→ l1

and π2 = l1
ρ1−→ l2

ρ4−→ l1. Algorithm 1 computes

Tπ1 = {ρ1} ◦ summary[l2] ◦ {ρ3}

= {n− i > 0 ∧ i1 = i+ 1 ∧ j1

= 0 ∧ n′ − i′ = n− i1 ∧ j′ = j1 ∧ j′ > 0,

n− i > 0 ∧ i1 = i+ 1 ∧ j1 = 0 ∧ n′ − i′ < n− i1 ∧ j′ > j1 ∧ j′ > 0}

= {false, n− i > 0 ∧ i′ > i ∧ j′ > 0}, and

4 Size-change Abstraction Approach 80

Tπ2 = {ρ1} ◦ summary[l2] ◦ {ρ4}

= {n− i > 0 ∧ i1 = i+ 1 ∧ j1 = 0 ∧ n′ − i′ = n− i1 ∧ j′ = j1 ∧ j′ = 0,

n− i > 0 ∧ i1 = i+ 1 ∧ j1 = 0 ∧ n′ − i′ = n− i1 − 1 ∧ j′ > j1 ∧ j′ = 0}

= {n− i > 0 ∧ n′ − i′ = n− i− 1 ∧ j′ = 0, false},

and returns Tπ1 ∪ Tπ2 = {n − i > 0 ∧ i′ > i ∧ j′ > 0, n − i > 0 ∧ n′ − i′ =

n − i − 1 ∧ j′ = 0} as transition system TransSys(P, l1) for P |l1. Note that

for each path, false indicates that one transition relation was detected to be

unsatisfiable, e.g. n− i > 0 ∧ j = 0 ∧ n′ − i′ < n− i− 1 ∧ j < j′ ∧ j′ = 0 in

π2, and that Algorithm 1 returned only the two satisfiable transitions.

4.2.1 Disjunctive Summarization of Loops with SCA

We point out that the need for disjunctive summaries of loops in the bound

analysis is a major motivation for SCA, because it allows us to compute

disjunctive transitive closures naturally:

Given a transition system T for some loop L, we want to summarize

L by a transition invariant. The most precise transition invariant T ∗ =

{Id} ∪ T ∪ T 2 ∪ T 3 ∪ · · · introduces infinitely many disjunctions and is not

computable in general. In contrast to this the abstract transitive closure

α(T)∗ = α({Id}) ∪ α(T) ∪ α(T)2 ∪ α(T)3 ∪ · · · has only finitely many dis-

junctions and is effectively computable. This allows us to overapproximate

the infinite disjunction T ∗ by the finite disjunction γ(α(T)∗).

4.2.2 Comparison of Blockwise and Pathwise SCA Anal-

ysis

In Section 2.5.2 we discussed the difference between pathwise and blockwise

analysis and explained why pathwise analysis is more precise. In this sec-

4 Size-change Abstraction Approach 81

tion we review classical SCA analyses [Lee et al., 2001; Ben-Amram, 2009a],

observe that these analyses are blockwise analyses and then show that our

pathwise SCA analysis is more precise.

Classical SCA analyses [Lee et al., 2001; Ben-Amram, 2009a] do not ex-

plicitly discuss how to obtain abstract programs. However, their abstract

program model consists of CFGs whose edges are labeled by SCRs. This

lets us conclude that classical SCA analyses are blockwise analyses. These

analyses abstract a program under scrutiny in one step, and then analyze

the abstracted program by a single transitive hull computation. In contrast,

our pathwise analysis abstracts a program in multiple steps and computes

transitive hulls at multiple times during the analysis. Our approach can be

seen as a generalization of classical SCA and is strictly more precise as we

show in the following.

Let P be Program 1.1. By our pathwise analysis we obtain the transition

system

TransSys(P, l1) = {n− i > 0 ∧ n′ − i′ < n− i ∧ j′ > 0,

n− i > 0 ∧ n′ − i′ = n− i− 1 ∧ j′ = 0}

for P |l1 as described in Section 2.5. Note that TransSys(P, l1) establishes

that the variable i increases at every loop iteration and that i < n is an

invariant at l1. TransSys(P, l1) is precise enough so that our Algorithm 5 can

further size-change abstract it and compute a bound from the abstraction.

The blockwise analysis in classical SCA begins with abstracting P . Be-

cause of the inner loop at location l2, each transition ρ1, ρ2, ρ3, ρ4 constitutes

a program block and needs to be abstracted separately.

4 Size-change Abstraction Approach 82

Thus we get the SCRs

α(ρ1) = n− i > 0 ∧ n′ − i′ < n− i ∧ j′ > 0,

α(ρ2) = n− i > 0 ∧ n′ − i′ < n− i ∧ j < j′,

α(ρ3) = j > 0 ∧ n′ − i′ > n− i,

α(ρ4) = j ≤ 0 ∧ n′ − i′ = n− i.

The termination analysis of classical SCA computes a transitive hull of

these SCRs following the CFG of P . In particular classical SCA computes the

SCR α(ρ1)◦α(ρ2)◦α(ρ3) = n−i > 0∧j′ > 0 for the path l1
ρ1−→ l2

ρ2−→ l2
ρ3−→ l1.

Note that classical SCA cannot establish that n− i increases every time this

path is taken (the concatenation of n′ − i′ < n − i and n′ − i′ > n − i in

α(ρ2) and α(ρ3) loses all information on n − i) and therefore cannot prove

the termination of P .

Parsers are a natural class of programs which illustrate the need for path-

wise use of SCA. In our experiments we observed that many parsers increase

an index while scanning the input stream and use lookahead to detect which

token comes next. Like in Example 1.1, lookaheads may temporarily decrease

the index. Pathwise abstraction is crucial to reason about the progress of

these parsers with SCA.

4.3 Bound Computation

In this section, we show how to compute a bound Bound(T) for a transition

system T with SCA in two steps:

• The first step P = Contextualize(T) transforms the transition system

T into a program P . This is done by the program transformation

contextualization, which we describe in Section 4.3.1.

4 Size-change Abstraction Approach 83

• The second step b = Bnd(P) consists of the bound computation for

program P . It is performed by Algorithm 5, which we describe in

Section 4.3.2.

4.3.1 Contextualization

Contextualization is a program transformation by Manolios and Vroon [Mano-

lios and Vroon, 2006], who report on an impressive precision of their SCA-

based termination analysis of functional programs. Note that we do not

use their terminology (e.g. “calling context graphs”) in this thesis. Our

contribution is in adopting contextualization to imperative programs and in

recognizing its relevance for bound analysis.

Definition 34 (Contextualization). Let T be a transition set. The con-

textualization Contextualize(T) of T is the program P = (T , E), where

E = {ρ ρ−→ ρ′ | ρ, ρ′ ∈ T and ρ ◦ ρ′ 6= ∅}.

The contextualization of a transition system is a program in which every

location stores the context of which transition is to be executed next; the

program has an edge between two locations only if the transitions of the

locations can be executed one after another.

Contextualization restricts the order in which the transitions of the tran-

sition system can be executed. Thus, contextualization encodes information,

that could otherwise be deduced from the pre- and postconditions of tran-

sitions, directly into the CFG. Since pathwise analysis contracts whole loop

paths into single transitions, contextualization is particularly important after

pathwise analysis: our subsequent bound algorithm does not need to com-

pute the pre- and postcondition of the contracted loop paths but only needs

to exploit the structure of the CFGs for determining in which order the loop

4 Size-change Abstraction Approach 84

void main (int x, int b) {

while (0 < x < 255) {

if (b) x = x + 1;

else x = x - 1;

}

}

Program 4.1

l1 l2

ρ1 ρ2

Figure 4.2: Program 4.1 with its CFG obtained from contextualization.

l1 l2 l3

ρ1

ρ1 ρ2

ρ3

Figure 4.3: Contextualization of Program 1.7 (see page 23)

paths can be executed.

We illustrate contextualization on Program 4.1. The program has two

paths, and gives rise to the transition system T = {ρ1, ρ2}, where

ρ1 ≡ 0 < x < 255 ∧ b ∧ x′ = x+ 1 ∧ b′

ρ2 ≡ 0 < x < 255 ∧ ¬b ∧ x′ = x− 1 ∧ ¬b′

Keeping track of the boolean variable b is important for bound analysis of

T : Without reference to b not even the termination of T can be proven. In

Figure 4.2 (right) we show the contextualization of T . Note that contextu-

alization has encoded information about the variable b into the CFG in such

a way that we do not need to keep track of the variable b anymore. Thus,

contextualization releases us from taking the precondition b resp. ¬b and the

postcondition b′ resp. ¬b′ into account for bound analysis.

We next describe the application of contextualization on the flagship ex-

ample of a recent publication [Gulwani et al., 2009a] on the bound problem.

Example 35. The authors of [Gulwani et al., 2009a] motivate control-flow

4 Size-change Abstraction Approach 85

refinement for bound analysis on Program 1.7. Their algorithm relies on a

sophisticated interplay between program transformation and abstract inter-

pretation. We show that our much simpler technique can also handle Pro-

gram 1.7.

We assume an invariant analysis (e.g. octagon analysis) computes the

invariant 0 ≤ n ≤ m ∧ j ≥ 0 at the header of the while-loop.

The while-loop has four paths because we consider the inequality j !=

n as the disjunction j < n ∨ j > n. Algorithm 1 gives us the transition

system T = {ρ1, ρ2, ρ3} (there is no fourth transition relation because 0 ≤

n ≤ m ∧ j < n ∧ j > m is detected as unsatisfiable), where

ρ1 ≡ 0 ≤ n ≤ m ∧ n < j ≤ m ∧ j′ = j + 1,

ρ2 ≡ 0 ≤ n ≤ m ∧ j > m ∧ j′ = 0,

ρ3 ≡ 0 ≤ n ≤ m ∧ 0 ≤ j < n ∧ j′ = j + 1.

Contextualization gives us the CFG depicted in Figure 4.3, which reflects

the different loop phases precisely. This CFG structure is exploited by Algo-

rithm 5 to compute the bound maxId +1 as we describe in Example 36 (stated

in the next subsection).

Implementation. We implement contextualization by encoding the con-

catenation ρ1 ◦ρ2 of two transitions ρ1, ρ2 into a logical formula and querying

an SMT solver whether this formula is satisfiable. This approach is very

simple to implement in comparison to the explicit computation of pre- and

postconditions.

4.3.2 Bound Algorithm

Our bound algorithm reduces the computation of bounds to components

whose bounds are combined into an overall bound. To this end, we exploit

4 Size-change Abstraction Approach 86

Procedure: Bound(P)
Input: a program P = (L,E)
Output: a bound b on the length of the traces of P
SCCs := computeSCCs(P); b := 0;
while SCCs 6= ∅ do

SCCsOnLevel := ∅;
forall the SCC ∈ SCCs s.t. no SCC ′ ∈ SCCs can reach SCC do

r := BndSCC(SCC);
Let r ≤ bSCC be a global invariant;
SCCsOnLevel := SCCsOnLevel ∪ {SCC};

b := b + maxSCC∈SCCsOnLevel bSCC ;
SCCs := SCCs \ SCCsOnLevel ;

return b;

Algorithm 5: Bound(P) composes a bound of P from the individual
bounds of the SCCs of P

the structure of the CFGs obtained from contextualization: We partition

the CFG of programs into its strongly connected components (SCCs) (SCCs

are maximal strongly connected subgraphs). For each SCC, we compute a

bound by Algorithm 6, and then compose these bounds to an overall bound

by Algorithm 5.

Algorithm 5 arranges the SCCs of the CFG into levels. The first level

consists of the SCCs that do not have incoming edges, the second level con-

sists of the SCCs that can be reached from the first level, etc. For each level,

Algorithm 5 calls Algorithm 6 to compute bounds for the SCCs of this level.

Let SCC be an SCC of some level and let r := BndSCC(SCC) be the bound

returned by Algorithm 6 on SCC . r is a (local) bound of SCC that may

contain variables of P that are changed during the execution of P . Algo-

rithm 5 uses global invariants (e.g. interval, octagon or polyhedra) in order

to obtain a bound bSCC on r in terms of the initial values of P . The SCCs of

one level are collected in the set SCCsOnLevel . For each level, Algorithm 5

composes the bounds bSCC of all SCCs SCC ∈ SCCsOnLevel to a maximum

4 Size-change Abstraction Approach 87

expression. Algorithm 5 sums up the bounds of all levels for obtaining an

overall bound.

Procedure: BndSCC(P)
Input: strongly-connected program P = (L,E)
Output: a bound b on the length of the traces of P
if E = ∅ then return 1;
NonIncr := ∅; DecrBnded := ∅; BndedEdgs := ∅;
foreach n ∈ N do

if ∀ l1
ρ−→ l2 ∈ E n ≥ n′ ∈ α(ρ) then

NonIncr := NonIncr ∪ {n};

foreach l1
ρ−→ l2 ∈ E, n ∈ NonIncr do

if n ≥ 0, n > n′ ∈ α(ρ) then
DecrBnded := DecrBnded ∪ {max(n, 0)};
BndedEdgs := BndedEdgs ∪ {l1

ρ−→ l2};

if BndedEdgs = ∅ then fail with “there is no bound for P”;
b = Bnd((L,E \ BndedEdgs));
return ((

∑
DecrBnded) + 1) · b;

Algorithm 6: BndSCC computes bounds for individual SCCs

Algorithm 6 computes the bound of a strongly-connected program P .

First Algorithm 6 checks if P = (L,E) is non-trivial, i.e., E 6= ∅, and returns

1, if this is not the case. Next Algorithm 6 collects all norms in the set

NonIncr that on all transitions either decrease or stay equal. Subsequently

Algorithm 6 checks for every norm n ∈ NonIncr and transition l1
ρ−→ l2 ∈ E,

if n is bounded from below by zero and decreases on ρ. If this is the case,

Algorithm 6 adds max(n, 0) to the set DecrBnded and l1
ρ−→ l2 to BndedEdgs .

Note that the transitions included in the set BndedEdgs can only be executed

as long as their associated norms are greater than zero. Every transition in

BndedEdgs decreases an expression in DecrBnded when it is taken. As the

expressions in DecrBnded are never increased, the sum of all expressions

in DecrBnded is a bound on how often the transitions in BndedEdgs can

4 Size-change Abstraction Approach 88

be taken. If DecrBnded is empty, Algorithm 5 fails, because the absence of

infinite cycles could not be proven. Otherwise we recursively call Algorithm 5

on (L,E \ BndedEdgs) for a bound b on this subgraph. The subgraph can

be entered as often as the transitions in BndedEdgs can be taken plus one

(when it is entered first). Thus, ((
∑

DecrBnded) + 1) · b is an upper bound

of P .

Example 36. The control flow graph given in Figure 4.3 has 3 SCCs: (ρ1),

(ρ2), (ρ3). Algorithm 6 computes the following bounds of these SCCs: bρ1 =

max(maxId − tmp, 0), bρ2 = 1 and bρ3 = max(id − tmp, 0). Algorithm 5

composes these bounds as follows: u(bρ1) + u(bρ2) + u(bρ3), where u denotes

an upper bound on the value of the given expression. Assuming that the

invariant analysis provides u(bρ1) = maxId− id, u(bρ2) = 1, u(bρ3) = id, we

obtain the precise bound maxId+ 1.

Role of SCA in our Bound Analysis. Our bound analysis uses the

size-change abstractions of transitions to determine how a norm n changes

according to n ≥ n′, n > n′, n ≥ 0 in Algorithm 6. We plan to incorporate

inequalities between different norms (like n ≥ m′) in future work to make

our analysis more precise.

Termination analysis. If in Algorithm 5 the global invariant analysis

cannot infer an upper bound on some norm, the algorithm fails to compute

a bound, but we can still compute a lexicographic ranking function, which is

sufficient to prove termination. The respective adjustment of our algorithm

is straightforward.

4 Size-change Abstraction Approach 89

l3l2 l4 l1

l5 l6

ρ1ρ2

ρ1ρ2

ρ3

ρ3 ρ4

ρ4

ρ5 ρ6

ρ5

ρ6

The size-change abstractions of the transition
relations:

α(ρ1) = l ≥ 0 ∧ s′ > s ∧ s′ ≤ 255 ∧ l′ = l

α(ρ2) = l ≥ 0 ∧ s′ < s ∧ s′ ≥ 0 ∧ l′ = l

α(ρ3) = α(ρ5) = l ≥ 0 ∧ l′ < l ∧ s′ > s ∧ s′ ≤ 255

α(ρ4) = α(ρ6) = l ≥ 0 ∧ l′ < l ∧ s′ < s ∧ s′ ≥ 0

Figure 4.4: The CFG obtained from contextualizing the transition system of
Program 1.2 (left) and the size-change abstractions of the transition relations
(right)

4.3.3 A Complete Example

Let P be Program 1.2 (see page 8) and let l be the header of the loop.

We assume a standard invariant analysis (such as the octagon analysis) to

compute the invariant c ≥ 1 at l, which is valid throughout the execution

of the loop. Algorithm 1 computes the transition system T = {ρ1, . . . , ρ6}

by collecting all paths from loop header back to the loop header (omitting

transition relations that belong to infeasible paths), where

ρ1 ≡ c ≥ 1 ∧ ¬f ∧ d 6= 1 ∧ d′ = 2 ∧ s′ = s+ c ≤ 255 ∧ c′ = c ∧ f ′ = f,

ρ2 ≡ c ≥ 1 ∧ ¬f ∧ d 6= 2 ∧ d′ = 1 ∧ s′ = s− c ∧ s′ ≥ 0 ∧ c′ = c ∧ f ′ = f,

ρ3 ≡ c ≥ 1 ∧ ¬f ∧ d = 1 ∧ f ′ ∧ c′ = c/2 ∧ d′ = 2 ∧ s′ = s+ c′ ∧ s′ ≤ 255,

ρ4 ≡ c ≥ 1 ∧ ¬f ∧ d = 2 ∧ f ′ ∧ c′ = c/2 ∧ d′ = 1 ∧ s′ = s− c′ ∧ s′ ≥ 0,

ρ5 ≡ c ≥ 1 ∧ f ∧ c′ = c/2 ∧ d′ = 2 ∧ s′ = s+ c′ ∧ s′ ≤ 255 ∧ f ′ = f,

ρ6 ≡ c ≥ 1 ∧ f ∧ c′ = c/2 ∧ d′ = 1 ∧ s′ = s− c′ ∧ s′ ≥ 0 ∧ f ′ = f.

By our heuristics (cf. Section 4.1.3) we consider s and the logarithm of c

(which we abbreviate by l) as program norms.

Figure 4.4 shows the CFG obtained from contextualizing the transition

system of Example 1.2 on the left. The CFG shows that the transitions

4 Size-change Abstraction Approach 90

cannot interleave in arbitrary order. Our bound Algorithm 5 exploits the

SCC decomposition of the CFG:

The CFG in Figure 4.4 has 5 SCCs: (ρ1), (ρ2), (ρ3), (ρ4), (ρ5, ρ6). Algo-

rithm 6 computes the following bounds of these SCCs: bρ1 = max(255−s, 0),

bρ2 = max(s, 0), bρ3 = 1, bρ4 = 1, bρ5,ρ6 = log c. Algorithm 5 composes

these bounds as follows: u(max(bρ1 , bρ2))+u(max(bρ3 , bρ4))+u(bρ5,ρ6), where

u denotes an upper bound on the value of the given expression computed

by an invariant analysis. Assuming that the invariant analysis provides

u(max(bρ1 , bρ2)) = max(255, start), u(max(bρ3 , bρ4)) = 1, u(bρ5,ρ6) = 2, we

obtain the precise bound max(255, start) + 3.

We point out how the above described approach enables automatic bound

analysis by SCA. The loop phases of Program 1.2 are encoded into the CFG:

The variables d and f do not appear in the abstracted transitions. Our

automatic bound analysis uses only the CFG and does not need to take d

and f into account explicitly.

We further point out how the approach described above separates bound

analysis for the components from the composition of bounds from the com-

ponents. In order to obtain the bound in the example, two different norms as

well as the operators max and log are needed. By first extracting the norms

from program paths and then composing them by our bound algorithm, an

automatic analysis becomes feasible.

4.4 Experiments

Our tool Loopus implements the SCA based approach on bound analysis

presented in this thesis for computing loop bounds of C programs. Loopus

employs the LLVM compiler framework and performs its analysis on the

4 Size-change Abstraction Approach 91

LLVM intermediate representation [Lattner and Adve, 2004]. For logical

reasoning Loopus uses the yices SMT solver [Dutertre and de Moura, 2006].

We evaluated Loopus on the Mälardalen WCET [WCETWebPage, 2010]

and the cBench [CBenchWebPage, 2010] benchmarks on an Intel Xeon CPU

(4 cores with 2.33 GHz) with 16 GB Ram.

The Mälardalen benchmark is used in the area of worst case execution

time analysis for the comparison and evaluation of methods and tools. It

contains 7497 lines of code and 262 loops. In less than 35 seconds total time,

Loopus computed a bound for 93% of the loops. On the loops with more

than one path (in the following called non-trivial loops) Loopus had a success

ratio of 72% (42 of 58 loops). The failure cases had the following reasons:

(1) unimplemented modeling of memory updates [2 loops] (2) arithmetic

instructions that cannot be handled by yices [4 loops] (3) insufficient invariant

analysis [4 loops] (4) quantified invariants on array contents needed [6 loops

in 2 programs].

The cBench benchmark was collected for research on program and com-

piler optimization. After removing code-duplicates it contains 1027 C source

code files, 211.892 lines of code and a total number of 4302 loops. For 4090

loops Loopus answered within a 1000 seconds timeout (3923 loops in less

than 4 seconds). On 71 loops Loopus exceeded the 1000 seconds timeout

and 141 loops could not be analyzed because our current tool does not handle

irreducible CFGs.

Loopus successfully computed a bound for 75% of the 4090 analyzed

loops in the cBench benchmark. On the non-trivial loops Loopus was suc-

cessful in 65% of the cases (1181 of 1902 loops).

For the class of inner loops (e.g. program location l2 in Program 1.1)

Loopus computed a bound for 65% (830 of 1345) of the loops. This class of

4 Size-change Abstraction Approach 92

loops is especially interesting for evaluating the precision of the automatically

computed bounds in the presence of outer loops. A manual sample of around

100 loops in this class showed that the bounds obtained from Loopus were

precise.

We evaluated our transitive hull algorithm on the class of loops for which

an inner loop had to be summarized in order to compute an iteration bound.

Loopus was successful in 56% of these cases (578 of 1102). The relatively low

success ratio of 56% is caused by limits of our implementation of the transitive

hull algorithm which currently does not support invariants involving values

of memory locations.

In 992 of the total 1017 failure Loopus failed to bound a transition.

An analysis revealed that the reasons for failed attempts were: (1) missing

implementation features like pointer calculations and memory updates (2)

insufficient invariant analysis (3) some loops were not meant to terminate, e.g.

input loops (4) complex invariants like quantified invariants on the content

of arrays needed. None of these reasons reveals a general limitation of our

analysis. All but reason (4) can be solved by systematic engineering work.

In the 25 remaining cases our tool computed a bound for each transition but

was not able to compose an overall bound.

Chapter 5

Fundamental Properties of the

Size-change Abstraction

In this chapter we give theoretical results on SCA towards a characterization

of the bounds that can be expressed by SCA. In order to do so, we first define

order constraints and linear orders in Section 5.1. Based on these definitions

we introduce size-change systems (SCSs) in Section 5.2, which provide us an

abstract program model. We prove lower bounds for SCSs and conjecture

that these lower bounds give rise to a complete algorithm that decides the

complexity of SCSs in Section 5.2.

In order to make the presentation self-contained we will restate some of

the definitions used in Chapter 4 throughout this chapter.

5.1 Order Constraints

We introduce some notation that is convenient for dealing with inequalities.

By B we denote any element from {>,≥}. By Bc we denote the opposite

relational sign of the element denoted by B, i.e., >c = ≤ and ≥c = <.

93

5 Fundamental Properties of the Size-change Abstraction 94

Given a variable x we denote by x′ its primed version and by x(i) its version

with i-primes. Given a set of variables X we denote by X ′ = {x′ | x ∈ X}

the set of primed variables and by X(i) = {x(i) | x ∈ X} the set of variables

with i-primes.

Definition 37 (Order Constraint). Let X be a set of variables. An order

constraint over X is an inequality x1 B x2 with x1, x2 ∈ X. We denote the

set of all order constraints over X by OC (X).

Given a constraint c ∈ OC (X) we denote by c[X ′/X] the constraint over

X ′ which is obtained from c by substituting every variable x ∈ X by its

primed version x′ ∈ X ′.

Given a set of order constraints S ⊆ OC (X) we denote by S[X ′/X] =

{c[X ′/X] | c ∈ S} the set of constraints which results from substituting each

variable in X by its corresponding variable in X ′.

Given a set of order constraints S ⊆ OC (X) and a subset Y ⊆ X we

denote by S�Y = {x B y | x B y ∈ S and x, y ∈ Y } the restriction of S to

variables in Y .

In a logical context a set of order constraints S ⊆ OC (X) denotes the

formula
∧
c∈S c.

Definition 38 (Decrease Constraint, Size-change Relation (SCR)). Let X

be a set of variables. A decrease constraint over X is an order constraint

x1 B x′2 ∈ OC (X ∪ X ′) with x1, x2 ∈ X. We denote the set of all decrease

constraints over X by DEC (X). We call a set of decrease constraints a

size-change relation (SCR).

Definition 39 (Valuations). Let M be a set of values and X a set of vari-

ables. We define the set of valuations ValXM to be the set of mappings

X → M. Given a valuation σ ∈ ValXM we define its primed valuation

5 Fundamental Properties of the Size-change Abstraction 95

as the function σ′ ∈ ValX
′

M with σ′(x′) = σ(x) for all x ∈ X. Given two

valuations σ1 ∈ ValX1
M , σ2 ∈ ValX2

M with X1 ∩ X2 = ∅ we define their union

σ1 ∪ σ2 ∈ ValX1∪X2
M by (σ1 ∪ σ2)(x) =

 σ1(x), for x ∈ X1,

σ2(x), for x ∈ X2.

Definition 40 (Theory of Linear Order). The theory of linear order TLin
consists of the three axioms

• ∀a, b. a ≥ b ∧ b ≥ a→ a = b (antisymmetry),

• ∀a, b, c. a ≥ b ∧ b ≥ c→ a ≥ c (transitivity),

• ∀a. a ≥ a (reflexivity).

Definition 41 (Linear Order). Given a set of valuesM and a binary relation

≥ ⊆ M×M over M, the pair (M,≥) is a linear order, if the axioms of

TLin are valid when interpreted over the domain M and relation ≥.

We also say that a binary relation ≥ ⊆ M×M is a linear order, when

(M,≥) is a linear order.

Definition 42 (Semantics). Let X be a set of variables.

Given a linear order (M,≥) and a valuation σ ∈ ValXM we define the

semantic relation |= as follows: σ |= x1 B x2 holds for an order constraint

x1Bx2 ∈ OC (X) iff σ(x1)Bσ(x2). σ |= S holds for a set of order constraints

S ⊆ OC (X) iff σ |= c holds for all c ∈ S. σ |= S holds for a set of sets of

order constraints S ⊆ 2OC (X) iff σ |= S for all S ∈ S.

S1 ⇒ S2 holds for two sets of sets of order constraints S1,S2 ⊆ 2OC (X)

iff for every linear order (M,≥) and every valuation σ ∈ ValXM with σ |= S1

there is a set of order constraints S ∈ S2 such that σ |= S holds.

A set of order constraints S ⊆ OC (X) is unsatisfiable, if there is no

linear order (M,≥) and no valuation σ ∈ ValXM with σ |= S.

5 Fundamental Properties of the Size-change Abstraction 96

Proposition 43 (without proof). For two sets of sets of order constraints

S1,S2 ⊆ 2OC (X), S1 ⇒ S2 holds iff

TLin ∧
∧
S∈S1

S →
∨
S∈S2

S

is a tautology of first-order logic.

Remark 44. We will use sequences of sets of order constraints over X to

denote sets of sets of order constraints over X, i.e., the sequence S1, . . . , Sl

denotes the set {Si | 1 ≤ i ≤ l}. Given an order constraint c we write S, c

instead of S, {c}.

Definition 45 (Order Semiring, Order Set). The order semiring (Ge,v,t, ·)

is an ordered commutative semiring, where

• Ge = {⊥,≥, >} is the order set,

• the order relation v is defined by ⊥v ≥ v >,

• the plus operator t is defined as the maximum of two elements w.r.t.

v, and

• the multiplication operator · is defined by

– ⊥ ·B = B · ⊥ = ⊥ for B ∈ Ge, and

– B1 ·B2 = B1 tB2 for B1,B2 ∈ {≥, >}.

It is easy to verify that (Ge,v,t, ·) is indeed a commutative semiring.

We present the tables of the addition and multiplication operators of the

order semiring in Figure 5.1.

We explain our motivation for defining the order semiring in the following.

Let X be a set of variables and let S ⊆ OC (X) be a set of order constraints.

5 Fundamental Properties of the Size-change Abstraction 97

t ⊥ ≥ >

⊥ ⊥ ≥ >
≥ ≥ ≥ >
> > > >

· ⊥ ≥ >

⊥ ⊥ ⊥ ⊥
≥ ⊥ ≥ >
> ⊥ > >

Figure 5.1: Tables of the addition and multiplication operators of the order
lattice.

We define S |= x ⊥ y to hold for all variables x, y ∈ X. The statement

S |= x⊥ y does not allow to infer any order relation between x and y. Using

this definition, B2vB1 and S |= x B1 y imply S |= x B2 y for all variables

x, y ∈ X. Thus v is monotonic w.r.t to semantic validity. Because v is a

linear order S |= xB1y and S |= xB2y imply S |= xB1tB2y for all variables

x, y ∈ X. Thus the plus operator t respects semantic validity. Using the

above definition S |= xB1 z and S |= zB2 y imply S |= xB1 ·B2 y. Thus the

multiplication operator · allows to compute valid order constraints that are

consequences of the transitivity of order relations.

Definition 46 (Resolution). Let S ⊆ OC (X) be a set of order constraints.

A constraint xB y is derivable by resolution S ` xB y,

• if xB′ y ∈ S and BvB′, or

• if there are constraints x B1 z, z B2 y with S ` x B1 z, S ` z B2 y and

B v B1 tB2. In this case we call xB y a z-resolvent.

The first rule of resolution allows to derive the constraints included in the

set of order constraints. The second rule of resolution allows to use transi-

tivity of order relations and derive new constraints from two already derived

constraints. Both rules allow to derive ≥ constraints, when > constraints

can be inferred.

Because every linear order is transitive, derivation by resolution is sound:

5 Fundamental Properties of the Size-change Abstraction 98

Proposition 47. Let S ⊆ OC (X) be a set of order constraints. S ` x B y

implies S |= xB y.

Next we show that resolution is also complete:

Lemma 48. Let S ⊆ OC (X) be a set of order constraints. S is satisfiable

iff there is no variable x ∈ X with S ` x > x.

Proof. Assume there is a variable x ∈ X with S ` x > x. By the soundness

of resolution S is unsatisfiable.

Assume that there is no variable x ∈ X with S ` x > x. We define a

relation � ⊆ X ×X by x � y iff S ` x ≥ y. By the definition of resolution

we have that S ` x ≥ z and S ` z ≥ y imply S ` x ≥ y. Therefore � is

transitive. We define � to be the reflexive closure of �. The relation � is

transitive and reflexive and therefore a preorder on X. We define equivalence

classes [x]� = {y | x � y ∧ y � x} and the set X/ �= {[x]� | x ∈ X}. We

define a relation % on X/ � by [x]� % [y]� iff x � y. Note that because � is

a preorder on X, the induced relation % is a partial order on X/ �. Every

partial order can be extended to a linear order by standard arguments: Let

R = {R ⊆ X/ � ×X/ � | R is a partial order ∧% ⊆ R}

be the set of all partial orders on X/ � that extend �. R is ordered by

set inclusion ⊆ and closed under union over increasing chains w.r.t. ⊆. By

Zorn’s Lemma R contains maximal elements w.r.t. ⊆. All maximal elements

of R are linear orders because maximality ensures that every two elements

can be compared. Let ≥ be such a linear order on X/ � that extends �. We

define a valuation σ ∈ ValXX/� by σ(x) = [x]� for all x ∈ X and show σ |= S:

Let x B y ∈ S be a constraint. We have S ` x ≥ y and thus x � y. This

gives us x � y. Thus [x]� % [y]�. This implies [x]� ≥ [y]�. It remains to

5 Fundamental Properties of the Size-change Abstraction 99

show that B = > implies [x]� 6= [y]�. Assume that B = > and [x]� = [y]�.

We have y � x and thus y � x. This gives us y � x. Therefore S ` y ≥ x.

Because B = > we have S ` x > y. By resolution we get S ` x > x. This is

a contradiction to the assumption there is no variable x ∈ X with S ` x > x.

Therefore we have σ |= xB y for all constraints xB y ∈ S.

Definition 49 (Saturation). Let S be a set of order constraints over X.

The saturation S of S is the set {x1 B x2 | S |= x1 B x2 ∧ x1, x2 ∈ X}. S is

saturated, if S = S.

Lemma 50. Let S1, S2 be two sets of order constraints over X. S1 ⇒ S2

holds iff S2 ⊆ S1.

Proof. Assume S2 ⊆ S1: Clearly, S2 ⊆ S1 implies S1 ⇒ S2. Further, we have

S1 ⇒ S1 and therefore S1 ⇒ S2.

Assume S2 6⊆ S1: There is a constraint x1Bx2 ∈ S2 such that x1Bx2 6∈ S1.

As S1 is saturated, there is a linear orderM and a valuation σ ∈ ValXM such

that σ |= S1, {x1 Bc x2}. Clearly we have σ |= S1, but not σ |= S2.

Lemma 51. Let S be a set of order constraints over a set X. For every

order constraint x B y with x, y ∈ X we have S ` x B y iff there is a l ≥ 1

and there are constraints xi Bi xi+1 ∈ S with 0 ≤ i < l such that x0 = x,

xl = y and
⊔

0≤i<lBi w B.

Proof. The if direction follows directly from the definition of resolution. It

remains to show the only-if direction. Let x B y be an order constraint

with x, y ∈ X and S ` x B y. We show that there is a l ≥ 1 and there

are constraints xi Bi xi+1 ∈ S with 0 ≤ i < l such that x0 = x, xl = y

and
⊔

0≤i<lBi w B by induction on the number of derivation steps of `.

Assume S ` x B y holds because of the first case in the definition of `.

5 Fundamental Properties of the Size-change Abstraction 100

Thus there is a constraint x B′ y ∈ S with B v B′. Therefore the claim

clearly holds. Assume that S ` x B y holds because of the second case

in the definition of `. There are two constraints x Ba z, z Bb w ∈ y such

that S ` x Ba z, S ` z Bb y and B v Ba t Bb. By induction assumption

there are constraints xi Bi xi+1 ∈ S with 0 ≤ i < l1, x0 = x, xl1 = z

and
⊔

0≤i<l1 Bi w Ba for some l1 ∈ ω and constraints yi Bi yi+1 ∈ S with

0 ≤ i < l2, y0 = z, yl2 = y and
⊔

0≤i<l2 Bi w Bb for some l2 ∈ ω. We set

l3 = l1 + l2 and zi = xi for 0 ≤ i ≤ l1 and zi = yi−l1 for l1 < i ≤ l1 + l2 = l3.

We have z0 = x, zl3 = y and
⊔

0≤i<l3 Bi w Ba tBb w B.

Lemma 52. Let S be a satisfiable set of order constraints over a set X and

let x B y be an order constraint with x, y ∈ X such that S 6` x B y. Then

S ∪ {xBc y} is satisfiable.

Proof. Assume that S ∪{xBc y} is unsatisfiable. By Lemma 48 S ∪{xBc y}

is satisfiable iff there is no variable z ∈ X with S ∪ {x Bc y} ` z > z.

Thus there is a z ∈ X with S ∪ {x Bc y} ` z > z. By Lemma 51 there

is a l ≥ 1 and there are constraints xi Bi xi+1 ∈ S with 0 ≤ i < l such

that x0 = x, xl = y and
⊔

0≤i<lBi w>. Assume that xi Bi xi+1 ∈ S for

all 0 ≤ i < l. This implies S ` z > z. By Lemma 48 S is unsatisfiable,

which contradicts our assumption about S . Therefore at least one of the

constraints xiBi xi+1 is xBc y. W.l.o.g. there is exactly one such constraint.

Let xj Bj xj+1 be this constraint. We have xj = y, xj+1 = x,B0 = Cc and

xi Bi xi+1 ∈ S for all 0 ≤ i < l with i 6= j. Thus S ` x
⊔
j<i<lBi t

⊔
0≤i<j y

and
⊔
j<i<lBi t

⊔
0≤i<j w B. Therefore S ` xB y. This is a contradiction to

the assumption.

Lemma 53. Let S be a satisfiable set of order constraints over a set X. For

every order constraint xB y with x, y ∈ X we have S ` xB y iff S |= xB y.

5 Fundamental Properties of the Size-change Abstraction 101

Proof. The only-if direction holds because of the soundness of resolution.

We show the if direction. Let x B y be an order constraint with x, y ∈ X

and S 6` x B y. By Lemma 52 S ∪ {x Bc y} is satisfiable. Thus there is a

linear order (M,≥) and a valuation σ ∈ ValXM with σ |= S ∪ {xBc y}. Thus

S 6|= xBc y.

Corollary 54. Let S be a satisfiable set of order constraints over a set X.

We have S = {xB y | there is a l ≥ 1 and there are constraints xi Bi xi+1 ∈

S with 0 ≤ i < l such that x0 = x, xl = y and
⊔

0≤i<lBi w B}.

Proof. The claim is a direct consequence of Lemmas 51 and 53.

Remark 55. We mention the following interpretation of Corollary 54: Let

S be a satisfiable set of order constraints over a set X. Given some l ≥ 1

and constraints is Bs is+1 ∈ S with 0 ≤ s < l, i0 = i, il = j, the constraint

i
⊔

0≤s<lBsj is the strongest constraint between i and j that follows from these

constraints.

5.1.1 Computing Saturations

We present an algorithm for computing saturations of sets of constraints,

when the set of variables is finite. The algorithm is an instantiation of

the Floyd-Warshall all-pairs-shortest-path algorithm [Floyd, 1962], where the

weights and associated addition and multiplication operations are given by

the order semiring.

Every finite set of variables X with |X| = n is isomorphic to the set

X = {1, 2, . . . , n}. We fix X = {1, 2, . . . , n} for the rest of this subsection.

This allows us to define a restricted resolution that uses the order of the

elements of X. Our algorithm for computing saturations of sets of constraints

makes use of this restricted resolution. We denote elements of X by i, j, k.

5 Fundamental Properties of the Size-change Abstraction 102

Definition 56 (h-Resolution). Let S ⊆ OC (X) be a set of order constraints.

A constraint iB j is derivable by h-resolution S `h iB j,

• if h ≥ 0, iB′ j ∈ S and B v B′, or

• if h > 0 and there are two constraints i B1 k, k B2 j with S `h1 i B1

k, S `h2 kB2 j and B v B1tB2 and h1, h2 ∈ {0, . . . , k−1} and k ≤ h.

In this case we call xB y a h-resolvent.

In the following proposition we state the obvious fact that n-resolution is

a restriction of full resolution:

Proposition 57. Let S ⊆ OC (X) be a set of order constraints. S `n iB j

implies S ` iB j.

We need the following lemma in order to show that restricted resolution

is equally strong as full resolution:

Lemma 58. Let S ⊆ OC (X) be a set of order constraints. Let l ≥ 1 be

some number and let is Bs is+1 ∈ S be constraints with 0 ≤ s < l, i0 = i,

il = j,
⊔

0≤s<lBs w B and is 6= it for all 0 < s < t < l. We have S `h iB j

with h = max0<s<l is (setting max ∅ = 0).

Proof. We prove the claim by induction on h.

h = 0: We have l = 1, i0 B0 i1 ∈ S, B0 w B1 and h = max0<s<1 is =

max ∅ = 0. Therefore S `0 iB j.

h > 0: Let r ∈ {1, . . . , l − 1} be an index such that ir = h. Note that r

is unique because of is 6= it for all 0 < s < t < l. We set h1 = max0<s<r is

and h2 = maxr<s<l is. Clearly we have h1, h2 < h. By induction assumption

we have S `h1 i
⊔

0≤s<rBsh and S `h2 h
⊔
r≤s<lBsj. From this we get

S `h iB j.

5 Fundamental Properties of the Size-change Abstraction 103

In the next lemma we show that restricted resolution is equally strong as

full resolution:

Lemma 59. Let S ⊆ OC (X) be a set of order constraints. Let i B j be a

constraint with S ` i B j. We have S `n i B j or S `n k > k for some

k ∈ {1, . . . , n}.

Proof. By Lemma 51 there is a l ≥ 1 and there are constraints xiBi xi+1 ∈ S

with 0 ≤ i < l such that x0 = i, xl = j and
⊔

0≤i<lBi w B. In the following

we remove constraints from the sequence i0B0 i1, i1B1 i2, . . . , . . . , il−1Bl−1 il

in order to obtain a sequence that contains only pairwise different variables

is.

Assume there are indices 0 ≤ s < t ≤ l with is = it. We distinguish two

cases:

•
⊔
s≤r<tBr = ≥: We continue with the constraints i0 B0 i1, i1 B1 i2, . . . ,

is−1 Bs−1 is, it Bt it+1, . . . , il−1 Bl−1 il.

•
⊔
s≤r<tBr = >: We continue with the constraints is Bs is+1, is+1 Bs+1

is+2, . . . , it−1 Bt−1 it.

We renumber the constraints to get continuous indices that start from 0 and

go to some positive number l. We repeat the above step until all variables is

are pairwise different.

Because the obtained sequence does only contain pairwise different vari-

ables we can apply Lemma 58. The result follows directly.

We define the function constraint : X3 → Ge by

constraint(i, j, k) =

>, S `k i > j,

≥, S `k i ≥ j ∧ S 6`k i > j,

⊥, else.

5 Fundamental Properties of the Size-change Abstraction 104

The function constraint satisfies a recursive equation, which we state in

the following lemma.

Lemma 60. The function constraint satisfies the recursive equation

constraint(i, j, k) = constraint(i, j, k − 1)t

constraint(i, k, k − 1) · constraint(k, j, k − 1)

with initial values

constraint(i, j, 0) =

>, i > j ∈ S,

≥, i ≥ j ∈ S ∧ i > j 6∈ S,

⊥, else.

Proof. We use B to denote elements of Ge. We prove the recursive equation

by a case distinction on k.

k = 0: Clearly the recursive equation holds in the base case.

k > 0: We fix some i, j ∈ X and show that the recursive equation holds

for constraint(i, j, k). Let B = constraint(i, j, k).

Let B1 = constraint(i, j, k − 1). If B1 6= ⊥, we have S `k−1 i B1 j and

thus S `k iB1 j. Therefore B1 v B (1).

Let Ba = constraint(i, k, k − 1) and Bb = constraint(k, j, k − 1). We

set B2 = Ba · Bb. If B2 6= ⊥, there is the k-resolvent i B2 j and we have

S `k iB2 j. Therefore B2 v B (2).

Combining (1) and (2) we get B1 tB2 v B.

By the definition of `k we have that S `k iB j is established by using a

k-resolvent or by using a k′-resolvent with k′ < k. In the first case we have

B = B2. In the second case we have S `k−1 i B j and thus B = B1. From

both cases we get B1 tB2 w B. Thus B1 tB2 = B.

5 Fundamental Properties of the Size-change Abstraction 105

Input: a set of order constraints S ⊆ OC (X)
Output: the saturation S of S
for i := 1 to n do

for j := 1 to n do

constraint [i][j] =

>, i > j ∈ S
≥, i ≥ j ∈ S ∧ i > j 6∈ S
⊥, else

;

for k := 1 to n do
for i := 1 to n do

for j := 1 to n do
constraint [i][j] :=
constraint [i][j] t (constraint [i][k] · constraint [k][j]);

for i := 1 to n do
if constraint [i][i] = ⊥ then return “S is unsatisfiable”

return {iB j | B v constraint [i][j] and ⊥ 6= B};
Algorithm 7: Floyd-Warshall computes the saturation of a set of
constraints

We use the recursive equation stated in Lemma 60 in order to compute

constraint(i, j, k) iteratively for increasing values of k. Algorithm 7 imple-

ments this iteration in a particular way. First Algorithm 7 initializes the

array constraint as stated in Lemma 60. Then Algorithm 7 computes

constraint(i, j, k) for increasing values of k in its main loop (the for-loop

that iterates over k). Note that Algorithm 7 is an in-situ algorithm that

uses the two-dimensional array constraint for representing the values of

constraint(i, j, k) for two subsequent iterations k − 1 and k. This has the

effect that Algorithm 7 overwrites values from iteration k − 1 while calcu-

lating k. This does not effect correctness because the only difference to the

recursive equation stated in Lemma 60 is that valid constraints can prob-

ably be inferred earlier, i.e., for smaller values of k. However, the in-situ

implementation has the advantage to greatly reduce the memory needed.

5 Fundamental Properties of the Size-change Abstraction 106

Lemma 61. Let S be a set of order constraints over X = {1, . . . , n}. Algo-

rithm 7 computes the saturation S in time O(n3) and space O(n2).

Proof. Note that throughout all iterations of the main loop (the for-loop

that iterates over k) we have the following invariant: constraint(i, j, k) v

constraint [i][j] for all i, j ∈ X. Therefore after the termination of the main

loop we have constraint(i, j, n) v constraint [i][j] for all i, j ∈ X (1).

Assume that there is an i with S `n i > i. With (1) we then get > =

constraint(i, i, n) v constraint [i][i]. Thus constraint [i][i] = >. Algorithm 7

correctly recognizes S as unsatisfiable.

Assume that there is no i with S `n i > i. By Lemma 59 S ` i B j

implies S `n i B j for all i, j ∈ X. Furthermore constraint [i][j] = B 6=

⊥ implies S ` i B j for all i, j ∈ X. Combining both implications we

get constraint [i][j] v constraint(i, j, n) for all i, j ∈ X. With (1) we get

constraint [i][j] = constraint(i, j, n) for all i, j ∈ X. Thus S ` i B j iff

B v constraint [i][j] and ⊥ 6= B. By 53 we have S ` iB j iff S |= iB j. Thus

Algorithm 7 computes the saturation S.

Clearly Algorithm 7 executes in time O(n3) and space O(n2).

5.2 Size-change Abstraction

In this section we define size-change systems (SCSs), which provide an ab-

stract program model. An SCS consists of program variables, control loca-

tions and transitions between the control locations. Each control location

is labeled by invariant constraints over the program variables that describe

the valid program states at this control location. Each transition has a start

control location and an end control location and is labeled by transition

constraints over the primed and unprimed program variables that describe

5 Fundamental Properties of the Size-change Abstraction 107

the possible state transitions from the start control location to the end con-

trol location. The term size-change accounts for the fact that invariant-

and transition constraints are inequalities between two variables. Our SCSs

have control location invariants whereas the original definition of SCSs [Lee

et al., 2001] does not have invariants. The addition of invariants is motivated

by [Ben-Amram, 2009b], where Ben-Amram generalizes SCSs to monotonic-

ity constraints systems (MCSs) which include control location invariants. For

the ease of explanation we restrict ourself to SCSs which have invariants and

leave the generalization to MCSs for future work.

5.2.1 Size-change Systems

Definition 62 (Size-change System (SCS)). A size-change system A =

(Var , L,→, Inv) consists of

• a finite set of program variables Var,

• a finite set of control locations L,

• a finite set of transitions → ⊆ L× 2DEC (Var) × L, and

• an invariant function Inv : L → 2OC (Var) that assigns an invariant

Inv(l) to every control location l ∈ L.

Given an SCS A we refer by LA,→A, InvA to its set of control locations,

its set of transitions and its invariant function. We refer by VarA to the set

of program variables over which the transitions and invariants are defined.

We denote (l1, T, l2) ∈ →A by the more intuitive l1
T−→ l2 ∈ A.

Remark 63. In the above definition of SCSs we have one set of program

variables Var. An alternative for defining SCSs would be to associate a set

5 Fundamental Properties of the Size-change Abstraction 108

of variables Var(l) with every control location l ∈ L and to require Inv(l) ⊆

OC (Var(l)) for every location l ∈ L and T ⊆ OC (Var(l1)∪Var(l2)) for every

transition l1
T−→ l2. Clearly our definition is a special case of the alternative

definition. However, the alternative definition is not more expressive. We

can add to every control location the program variables of all other locations

by setting Var =
⋃
l∈L Var(l). Because we do not change the set of transitions

we obtain an essentially identical SCS that matches our above definition of

SCSs. Thus both definitions are equivalent. We choose to have only one set

of program variables as this simplifies the presentation.

A transition l1
T−→ l2 intuitively denotes – as we make precise in Defini-

tion 68 below – that the variables Var capture the values of the variables

at the start point l1 of the transition, the variables Var ′ capture the values

of the variables at the end point of the transition l2, and the SCR T which

labels the transition describes how these values are related.

Definition 64 (Run). A run R of A is a (finite or infinite) sequence of

transitions li
Ti−→ li+1. We denote a run by l0

T0−→ l1
T1−→ · · · .

In Definition 68 below we define traces of SCSs, which add to every lo-

cation of a run a valuation over some value domain, and thus provide a

semantics for SCSs. As we are interested in program termination, we want

to have value domains in which infinite descent is not possible. Such domains

are called well-founded in mathematics.

Definition 65 (Well-founded Sets). A set W is well-founded with regard to

a relation > ⊆ W ×W , if there is no infinite sequence w1, w2, . . . ∈ W ω such

that wi > wi+1 for all i ∈ ω.

Well-founded sets also have an alternative characterization.

5 Fundamental Properties of the Size-change Abstraction 109

Remark 66. A set W is well-founded with regard to a relation > ⊆ W ×W

iff every non-empty subset of W has a minimal element with respect to >,

formally:

∀V ⊆ W. V 6= ∅ → ∃m ∈ V. ∀v ∈ V.m ≯ v

Furthermore, we want to interpret variables in a linearly ordered domain

as we need to assign truth values to invariants. Sets that are well-founded

and linearly ordered are called well-ordered in mathematics.

Definition 67 (Well-ordered Set). A set W is well-ordered with regard to

a relation > ⊆ W × W , if W is well-founded with regard to > and if the

reflexive closure ≥ of > is a linear order over W .

As every well-ordered set is isomorphic to an ordinal we will interpret

SCSs over ordinals. We use the letter α to denote an arbitrary ordinal, and

we use ω to denote the smallest ordinal that is isomorphic to the natural

numbers.

Definition 68 (Trace). Given an ordinal α and an SCS A, a trace over α of

A is a (finite or infinite) sequence (l0, σ0)
T0−→ (l1, σ1)

T1−→ · · · with σi ∈ Valα

such that l0
T0−→ l1

T1−→ · · · is a run of A and we have σi |= Inv(li) and

σi ∪ σ′i+1 |= Ti for all i.

Note that traces are parameterized by the ordinal α.

Definition 69 (Termination of a Run (Over an Ordinal)). Let A be an SCS

and let R = l0
T0−→ l1

T1−→ · · · be a run of A. R is terminating over α, if

there is no infinite trace (l0, σ0)
T0−→ (l1, σ1)

T1−→ · · · with σi ∈ Valα. R is

terminating, if it is terminating over every α.

Note that there are two definitions of the termination of a run, one that

is parameterized by α and one that quantifies over all ordinals α.

5 Fundamental Properties of the Size-change Abstraction 110

Definition 70 (Uniform Termination). An SCS A is uniformly terminating,

if every run of A is terminating.

As uniform termination refers to the termination of a run, it implicitly

quantifies over all ordinals α.

Definition 71 (Consistency). A control location f is consistent, if its in-

variant Inv(l) is satisfiable.

An SCS is consistent, if all its control locations are consistent.

As no trace includes an inconsistent control location, we can remove all

inconsistent locations and their incident transitions without changing the

set of traces. As it can easily be determined if a set of order constraints is

satisfiable, we assume in the following that we always deal with consistent

SCSs.

In [Kupferman and Vardi, 2001], Kupferman and Vardi introduce a Büchi

complementation algorithm that uses level rankings of run DAGs as witnesses

for the absence of an accepting run. We adopt their notion of a run DAG for

our purposes.

Definition 72 (Run DAG). Given a run R = l0
T0−→ l1

T1−→ · · · of some SCS,

we define the run DAG of R as the directed acyclic graph (DAG) GR = (V,E)

with vertices V = N×Var and labeled edges E ⊆ (N×Var)×{>,≥}× (N×

Var), where ((d1, x1),B, (d2, x2)) ∈ E if and only if

• d2 = d1 + 1 and x1 B x′2 ∈ Td1, or

• d2 = d1 and x1 B x2 ∈ Inv(ld1).

For every vertex v = (d, x), we call d the level of v.

5 Fundamental Properties of the Size-change Abstraction 111

Definition 73 (Walk, Thread). Let R be a run of some SCS and let GR =

(V,E) be its run DAG. A walk of R is an infinite labeled path in GR with

vertices (di, xi) and labels Bi such that ((di, xi),Bi, (di+1, xi+1)) ∈ E for all

i ∈ N. A walk is decreasing if at least one Bi is >. A walk is infinitely

decreasing if infinitely many Bi are >. A thread of R is a walk with di+1 =

di + 1 for all i ∈ N.

Note, the level d0 of the first vertex of a walk is not specified.

Definition 74 (Walk-termination resp. Thread-termination). A run R is

walk-terminating resp. thread-terminating, if there is an infinitely decreasing

walk resp. thread of R.

Definition 75 (Uniform Walk- resp. Thread-termination). An SCS A is

uniformly walk-terminating resp. uniformly thread-terminating, if every run

of A is walk- resp. thread-terminating.

Lemma 76. An infinite R is terminating over every ordinal α, if it is walk-

terminating.

Proof. Let R be a walk-terminating run. The run DAG of R contains an in-

finitely decreasing walk. Clearly, no ordinal α can have an infinitely decreas-

ing chain of elements. Therefore walk-termination implies termination.

5.2.2 Equivalence of Syntactic and Semantic Termina-

tion

In this subsection we prove the other direction of Lemma 76. Before we are

able to do so we need some definitions and lemmata.

5 Fundamental Properties of the Size-change Abstraction 112

(0, x1) (1, x1) (2, x1) (3, x1) (4, x1) (5, x1) (6, x1) · · ·

(0, x2)
∈ Mω

(1, x2)
∈ Mω

(2, x2)
∈ Mω

(3, x2)
∈ Mω

(4, x2)
∈ Mω

(5, x2)
∈ Mω

(6, x2)
∈ Mω

· · ·

(1, x3)
∈ M0

(2, x3)
∈ M1

(4, x3)
∈ M0

(3, x3)
∈ M2

(5, x3)
∈ M1

(6, x3)
∈ M0

· · ·

> > > > > > >

≥ ≥ ≥ ≥ ≥ ≥ ≥

> >

>

>

> >

>

Figure 5.2: A run DAG and the orbits of its vertices.

Definition 77 (Decrease Order). Let GR = (V,E) be the run DAG of some

R. The decrease order is the relation >R⊆ V × V defined by: v1 >R v2 if

there is a decreasing walk from v1 to v2 in GR.

Proposition 78. >R is a partial order.

Proof. Clearly >R is transitive by the definition of walks. >R is irreflexive

because all invariants are consistent.

For every subset U ⊆ V we denote the set of minimal elements with

regard to >R by min>R U .

Definition 79 (Orbits). Let GR = (V,E) be the run DAG of some R. The

orbits MR
α ⊆ V of R are defined by transfinite induction: MR

α = min>R(V \⋃
β<αM

R
β).

We illustrate the notion of an orbit in the next example.

Example 80. Figure 5.2 shows the run DAG of some run R. Every vertex

(d, x3) is element of some orbit MR
k with k ∈ ω. This is because every (d, x3)

has only finitely many successors with regard to >R. All vertices (d, x2) are

element of the orbit MR
ω because they have a successor in every MR

k for large

enough k but do not start an infinitely decreasing walk. No vertex (d, x1)

is element of some orbit MR
α , because every such vertex start an infinitely

decreasing walk.

5 Fundamental Properties of the Size-change Abstraction 113

Proposition 81. Let R be some run. For all ordinals α1, α2 with α1 6= α2

their orbits are disjoint, i.e., MR
α1
∩MR

α2
= ∅.

Lemma 82. Let R be some run. For all ordinals α and vertices v ∈ MR
α

there is no infinitely decreasing walk of R that starts with v.

Proof. We proceed by transfinite induction on α. Let α be an ordinal such

that for all β < α and vertices v it holds that v ∈ MR
β implies that there

is no infinitely decreasing walk of R that starts with v. Assume that there

is an infinitely decreasing walk v1 >R v2 >R v3 >R · · · of R that starts

with a vertex v1 ∈ MR
α . From the definition of MR

α we have that v1 ∈

min>R(V \
⋃
β<αM

R
β). Thus we know that v2 ∈

⋃
β<αM

R
β . Therefore there

must be a β < α such that v2 ∈ Mβ. As v2 >R v3 >R · · · is an infinitely

decreasing walk of R this is a contradiction to the induction assumption.

Lemma 83. Let R be a run, let GR = (V,E) be the run DAG of R and let

∅ 6= U ⊆ V be a set such that min>R U = ∅. For every vertex v ∈ U there is

an infinitely decreasing walk of R that starts with v.

Proof. For every u ∈ U we define sets Su = {v ∈ U | u >R v}. We have

Su 6= ∅ for every u ∈ U as U does not have a minimal element. By the axiom

of choice there exists a function f : U → U with f(u) ∈ Su. The function

l gives an infinitely decreasing walk u >R f(u) >R f 2(u) >R · · · for every

u ∈ U .

We recall an axiom of set theory.

Definition 84 (Axiom Schema of Replacement). In ZFC the axiom schema

of replacement is given by

∀w1, . . . , wk∀A([∀x ∈ A∃!yφ(x, y, w1, . . . , wk, A)]

→ ∃B∀y[y ∈ B ⇔ ∃x ∈ Aφ(x, y, w1, . . . , wk, A)]),

5 Fundamental Properties of the Size-change Abstraction 114

where φ is a formula in the language of set theory with free variables among

x,w1, . . . , wn, A such that B is not free in φ.

The axiom schema of replacement can be stated informally as follows:

Suppose φ is a binary relation given as a formula in the language of set

theory such that for every set x there is a unique set y such that φ(x, y)

holds. We represent φ by a function Fφ with Fφ(x) = y if and only if φ(x, y).

For every class A we can define a class B defined such that for every set y

we have y ∈ B if and only if there is a set x ∈ A with Fφ(x) = y. B is called

the image of A under Fφ, and denoted Fφ(A) or {Fφ(x) | x ∈ A}. The axiom

schema of replacement states that for every set A and every function Fφ, the

image Fφ(A) is also a set.

Lemma 85. For every run R there is a least ordinal α such that MR
α = ∅.

Proof. We set U = {v ∈ V | ∃α.v ∈ Mα}. We instantiate the axiom schema

of replacement by setting k = 0, A = U , x = v, y = α and φ(v, α) =

α is an ordinal ∧ v ∈ Mα. For every v ∈ U there is only one ordinal α

such that v ∈ Mα by Proposition 81. By the axiom schema of replacement

we get that the class B = {α | ∃v ∈ U.α is an ordinal ∧ v ∈ Mα} = {α |

α is an ordinal ∧ ∃v ∈ V.v ∈ Mα} is a set. As a set cannot contain all

ordinals there is a least ordinal α such that α 6∈ B. By the definition of

orbits we have that Mα = ∅.

Definition 86 (Rank of a Run). We define the rank rank(R) to be the least

ordinal α such that MR
α = ∅.

The rank always exists by Lemma 85.

Lemma 87. For every run R that is not walk-terminating we have V =⋃
β<rank(R) M

R
β .

5 Fundamental Properties of the Size-change Abstraction 115

Proof. Let α = rank(R) and let U = V \
⋃
β<αM

R
β . By the definition of

orbits we have ∅ = MR
α = min>R U . There is no v ∈ U because such a v

would start an infinite thread by Lemma 83. Thus we must have ∅ = U =

V \
⋃
β<αM

R
β .

If R is not walk-terminating, there is a β < rank(R) with v ∈ Mβ for

every v ∈ V by the above lemma. Moreover there is only one such a β for

every v ∈ V by Proposition 81. We use this fact to define ranks of vertices.

Definition 88 (Rank of a Vertex). Let R be a run which is not walk-

terminating. We define the rank rank(v) of the vertex v ∈ V to be the

unique β < rank(R) with v ∈Mβ.

In the next lemma we state that the rank respects the edge labels of the

run DAG for all vertices.

Lemma 89. Let GR = (V,E) be the run DAG of R which is not walk-

terminating. We have rank(v1)B rank(v2) for every edge (v1,B, v2) ∈ E.

Proof. Let (v1,B, v2) ∈ E be an edge. We have v1 ∈ Mrank(v1) and v2 ∈

Mrank(v2). In the case B = ≥ we have rank(v1) ≥ rank(v2) by the definition

of orbits. In the case B = > we have rank(v1) > rank(v2) by the definition

of orbits. From both cases we get rank(v1)B rank(v2).

Ranks of vertices provide us a way of defining canonic valuations.

Definition 90 (Canonic Valuations). Let R = l0
T0−→ l1

T1−→ · · · be a run

which is not walk-terminating. The canonic valuations σ0, σ1, . . . ∈ Val rank(R)

are defined by σi(x) = rank(i, x).

The canonic valuations give an infinite trace as stated by the next lemma.

5 Fundamental Properties of the Size-change Abstraction 116

Lemma 91. Let R = l0
T0−→ l1

T1−→ · · · be a run which is not walk-terminating

and let σ0, σ1, . . . be the canonic valuations. (l0, σ0)
T0−→ (l1, σ1)

T1−→ · · · is an

infinite trace for run R.

Proof. We show that every size-decrease and invariant constraint of R is

satisfied by the canonic valuations.

Let x B y′ ∈ Ti be a size-decrease constraint with x, y ∈ Var . We set

v1 = (i, x) and v2 = (i + 1, y). By the definition of the run DAG we have

(v1,B, v2) ∈ E. We get σi(x) = rank(v1)Brank(v2) = σi+1(y) by Lemma 89.

Thus we have σi, σ
′
i+1 |= xB y′.

Let x B y ∈ Inv(li) be an invariant constraint with x, y ∈ Var . We

set v1 = (i, x) and v2 = (i, y). By the definition of the run DAG we have

(v1,B, v2) ∈ E. We get σi(x) = rank(v1)B rank(v2) = σi(y) by Lemma 89.

Thus we have σi |= xB y.

We obtain as a corollary the theorem stated below.

Theorem 92. If a run R is not walk-terminating, then it does not terminate

over rank(R).

Up to now we did not use any structure of run DAGs except the assump-

tion that they are DAGs which do not have infinitely decreasing walks.

For the proof of the existence of a rank for every run in Lemma 85 we

relied on the axiom schema of replacement and for the proof of the existence

of infinitely decreasing walks for subsets which do not have minimal elements

in Lemma 83 we relied on the axiom of choice.

However, by exploiting more structure of run DAGs we do not have to

rely on these axioms and we are able to obtain a stronger result.

For the proof of Lemma 83 we do not need to refer to the axiom of choice

because the vertex set of the run DAG is countable.

5 Fundamental Properties of the Size-change Abstraction 117

In the following lemma we formulate an analogy to the insight in the

Kupferman-Vardi construction [Kupferman and Vardi, 2001] that an endan-

gered vertex starts an infinite path of endangered vertices (for a definition of

endangered vertices see [Kupferman and Vardi, 2001]).

Lemma 93. Let γ be a limit ordinal with MR
γ 6= ∅. Every vertex v ∈ MR

γ

has an infinite walk v B1 v1 B2 v2 · · · with vi ∈MR
γ .

Proof. Let v ∈MR
γ be a vertex. We define

ReachRγ (v) = {u ∈MR
γ | there is a walk of R from v to u}.

Further, we define

NextRγ (v) = {w | w 6∈MR
γ ∧ ∃u ∈ ReachRγ (v). uB w ∈ ER}.

Because of w 6∈ MR
γ we have rank(w) < γ for every w ∈ NextRγ (v) (*). By

the definition of orbits we have γ =
⋃
w∈NextRγ (v) rank(w) (**).

Assume |ReachRγ (v)| is finite. As GR is finitely branching |NextRγ (v)| is

finite. Thus
⋃
w∈NextRγ (v) rank(w) < γ by (*) and the assumption that γ is a

limit ordinal. This is contradiction to (**). Therefore |ReachRγ (v)| is infinite.

ReachRγ (v) is an infinite subgraph of GR. ReachRγ (v) is a DAG because

every vertex in ReachRγ (v) can be reached from v. ReachRγ (v) is finitely

branching because GR is finitely branching. There is an infinite walk starting

from v by König’s Lemma because ReachRγ (v) is an infinite finitely branching

DAG.

In the Kupfermann-Vardi construction almost all levels in a run DAG

contain an endangered vertex, if there is an endangered vertex. At every step

all endangered vertices are removed. As the number of different elements at

5 Fundamental Properties of the Size-change Abstraction 118

each level is bounded the construction terminates because almost all levels

loose an element every step. In the next lemma we adopt this reasoning to

our setting. We obtain a stronger result than in Lemma 85.

Lemma 94. For every run R of an SCS A with |VarA| = n we have

rank(R) ≤ nω.

Proof. We assume that rank(R) > nω. Thus Mα 6= ∅ for all α ≤ nω.

By Lemma 93 we have that for every 1 ≤ k ≤ n there are infinite walks

vk1 B
k
1 v

k
2 B

k
2 · · · with vki ∈MR

kω.

We define m = max{dk | 1 ≤ k ≤ n ∧ vk1 = (dk, xk)} and set Vm = {v |

v = (d, x) ∧ d ≥ m}. Because the Mkω’s are pairwise disjoint as stated by

Proposition 81 we have that these walks partition Vm. Thus for every vertex

v ∈ Vm we have rank(v) = kω for some 1 ≤ k ≤ n.

For all v1, v2 ∈ Vm the edge (v1, >, v2) ∈ ER implies rank(v1) > rank(v2).

As we have rank(v) = kω for some 1 ≤ k ≤ n for every vertex v ∈ Vm every

decreasing walk in Vm can contain at most n− 1 strict decreases >.

Choose some v ∈ Vm. Because of rank(v) ≥ ω there is a walk for any

number n such that the walk contains at least n strict decreases >. This is

a contradiction.

Combining the results of Lemma 76, Theorem 92 and Lemma 94 we obtain

that the notions of walk-termination and termination coincide for SCSs which

are interpreted over ordinals greater than nω.

Theorem 95. Let R be a run of an SCS A with |VarA| = n For all ordinals

α ≥ nω we have that R is walk-terminating iff R is terminating over α.

In the next lemma we state that Theorem 95 cannot be strengthened.

Lemma 96. There is an SCS A with |VarA| = n that has a R that is not

walk-terminating but that is terminating over every α < nω.

5 Fundamental Properties of the Size-change Abstraction 119

xn

xn−1

· · ·
x3

x2

x1

xn′

xn−1′

· · ·

x3′

x2′

x1′

≥

≥

≥

≥

xn

xn−1

· · ·
x3

x2

x1

xn′

xn−1′

· · ·

x3′

x2′

x1′

≥

≥

≥

≥

>

xn

xn−1

· · ·
x3

x2

x1

xn′

xn−1′

· · ·

x3′

x2′

x1′

≥

≥

≥

≥

>>

xn

xn−1

· · ·
x3

x2

x1

xn′

xn−1′

· · ·

x3′

x2′

x1′

≥

≥

≥

≥

> >

· · ·

xn

xn−1

· · ·
x3

x2

x1

xn′

xn−1′

· · ·

x3′

x2′

x1′

≥

≥

≥

≥> >

xn

xn−1

· · ·
x3

x2

x1

xn′

xn−1′

· · ·

x3′

x2′

x1′

≥

≥

≥

≥
> >

R D Tn Tn−1 . . . T3 T2

Figure 5.3: SCRs of the SCS used in the proof of Lemma 96.

Proof. Let A be the SCS ({x1, . . . , xn}, {l}, {l
R−→ l, l

D−→ l, l
Tn−→ l, l

Tn−1−−−→

l, . . . , l
T2−→ l}, {l 7→ ∅}), whose SCRs are shown in Figure 5.3. Consider the

run

R = DTnDTn−1 · · ·DT2RD
2TnD

2Tn−1 · · ·D2T2RD
3TnD

3Tn−1 · · ·D3T2R · · · .

Note that R is not walk-terminating but is terminating over every α <

nω.

Assume that a run R of some SCS A is given. We want to determine if

R is terminating. It is desirable to be able to decide this question based on

the syntactic criterion of walk-termination. By Theorem 95 we know that

walk-termination is sufficient if A is interpreted over nω. By Lemma 96

we know that we can not rely on walk-termination if A is interpreted over

some ordinal less than nω. As nω is the least ordinal such that the notions

of walk-termination and termination coincide, we define nω as the canonic

value domain for SCSs.

5.2.3 Deciding the Termination of SCSs

In this subsection we state the criterion for termination of Lee et al. [Lee

et al., 2001]. We first give the relevant definitions.

Walks have the undesirable property that they can contain edges which

5 Fundamental Properties of the Size-change Abstraction 120

are not forward, i.e., a walk can contain an edge v1 B v2 such that v1 and v2

are at the same level; in contrast, threads contain only forward edges. In the

next definition we state a property of transitions which will allow us to state

an equivalence between walk-termination and thread-termination shortly.

Definition 97 (Saturation). Let l1
T−→ l2 ∈ A be a transition of some SCS

A. We define the transition l1
H−→ l2 to be the saturation of l1

T−→ l2, if

H = {x1 B x′2 | Inv(l1), T, Inv(l2)′ |= x1 B x′2 ∧ x1, x2 ∈ VarA}, and call

l1
T−→ l2 saturated, if H = T .

Note that T ′ in the above definition does only include size-decrease con-

straints and therefore is an SCR.

Corollary 98. Let l1
T−→ l2 ∈ A be a transition of some SCS A. The satura-

tion of l1
T−→ l2 can be computed in O(n3).

Proof. Apply Lemma 61 and restrict the result to size-decrease constraints.

Definition 99 (Saturation). An SCS A is saturated, if all its transitions

are saturated.

Lemma 100. Let A be a saturated SCS A. We have that A is thread-

terminating, if it is walk-terminating.

Proof. LetR be a run ofA. AsA is walk-terminating it contains an infinitely

decreasing walk w = v1 B1 v2 B2 · · · . Let (li, xi)Bi . . .Bj−2 (lj−1, xj−1)Bj−1

(lj, xj) be a subsequence of w such that li = li+1 = · · · = lj−1 and lj =

li + 1. Then the run DAG also contains the edge (li, xi) Bi (lj, xj) because

all transitions are saturated. In this way every subsequence of the above

form can be replaced by a forward edge. We obtain an infinitely decreasing

run.

5 Fundamental Properties of the Size-change Abstraction 121

Corollary 101. A saturated SCS A is terminating, iff it is thread-terminating.

Definition 102 (Concatenation of SCRs). Given two SCRs T1 and T2, we

define the concatenation T1 ◦ T2 to be the SCR T , with x1 B x′2 ∈ T , if

T1[Var ′′/Var ′], T2[Var ′′/Var] |= x1 B x′2.

The next remark is a comment on the representation of SCRs in a com-

puter.

Remark 103 (Representation). We can obtain a canonic representation of

SCRs by dropping redundant constraints: Given an SCR T with x > y′ ∈ T

and x ≥ y′ ∈ T , we remove the first constraint from T as it is implied by the

second constraint.

Given two SCRs T1, T2, the concatenation T = T1 ◦ T2 can be obtained as

follows:

• x1 > x′2 ∈ T , if there is a y, such that there are constraints x1B1y
′ ∈ T1

and yB2x
′
2 ∈ T2 and at least one of the constraints is strict, i.e., B1 = >

or B2 = >, and

• x1 ≥ x′2 ∈ T , if there is a y, such that there are constraints x1B1y
′ ∈ T1

and y B1 x
′
2 ∈ T2, but not x1 > x′2 ∈ T .

Remark 104. The set of size-change relations together with the operation ◦

is a semigroup.

Definition 105 (Idempotent SCRs). We call a size-change relation T idem-

potent, if T ◦ T = T .

The number of SCRs is bounded by 3n
2

(n is the number of program

variables), and is therefore finite. A finite non-empty semigroup of the form

{T k | k ∈ N} contains precisely one idempotent element. For every T we

denote this idempotent element by T ◦.

5 Fundamental Properties of the Size-change Abstraction 122

Procedure: Closure(A)
Input: an SCS A
Output: the transitive closure A?
A? := A;

while ∃l1
T1−→ l2, l2

T2−→ l3 ∈ A?.l1
T1◦T2−−−→ l3 6∈ A? do

A? := A? ∪ {l1
T1◦T2−−−→ l3};

return A?
Algorithm 8: Closure(A) computes the transitive closure of A

Definition 106 (Concatenation of Transitions). Given two transitions l1
T1−→

l2 and l2
T2−→ l3 we define their concatenation to be the transition l1

T1◦T2−−−→ l3.

Definition 107 (Closure). Given an SCS A we define its closure A? to be

the least set with

• A ⊆ A?, and

• for all transitions l1
T1−→ l2, l2

T2−→ l3 ∈ A? their concatenation l1
T1◦T2−−−→ l3

is in A?.

Lemma 108. Algorithm 8 computes the closure A? of an SCS A in less than

m2 · 3n2
iterations of the repeat-until loop, where |VarA| = n is the number

of program variables and m is the number of program locations.

Proof. The number of SCRs is bounded by 3n
2
. Therefore the number of

transitions is bounded by m2 · 3n2
. In every iteration of the do-while loop, at

least one transition is added. ThereforeA? stabilizes within m2·3n2
steps.

Theorem 109 ([Lee et al., 2001]). A saturated SCS A is thread-terminating,

if and only if for every transition l
T−→ l ∈ A? with T idempotent, there is a

size-decrease constraint x > x′ ∈ T .

5 Fundamental Properties of the Size-change Abstraction 123

5.3 Lower Bounds

In this section we state our results on the complexity of SCSs. The complexity

of an SCS depends on the number of its variables. For the ease of explanation

we fix the number of variables and assume for every SCS A in this section

that |VarA| = n.

5.3.1 For-loops

Definition 110. An SCR T absorbs an SCR H, if T ◦ H = T .

Note that absorbtion is a generalization of idempotence: an SCR T which

absorbs itself is idempotent.

Definition 111 (For-loop). Given an SCS A, a for-loop L of A is a pair

(l;L1, . . . , Lk) where l ∈ LA is a location and L1, . . . , Lk is a list of SCRs

such that l
L1−→ l, . . . , l

Lk−→ l ∈ A? and Li absorbs Lj for all i ≤ j. We refer

to l as the header, to L1, . . . , Lk as the loops and to k as the degree of the

for-loop (l;L1, . . . , Lk).

For the rest of this subsection we fix a for-loop L = (l;L1, . . . , Lk).

Definition 112 (Dependence Graph, Dependence Set). The dependence

graph of L is the directed labeled graph GL = (Var , EL) with

EL = {(x, Li, y) | 1 ≤ i ≤ k + 1 ∧ xB y′ ∈ Li},

where the loop Lk+1 is set to {xBy′ | Inv(l) |= xBy}. An edge (x, Li, y) ∈ EL
is decreasing, if x > y ∈ Li. A sequence of edges (z1, T1, z2)(z2, Tz, z3) · · ·

(zl−1, Tl−1, zl) with (zi, Ti, zi+1) ∈ EL for 1 ≤ i < l is a path of GL. A path

is decreasing if one of its edges is decreasing. A maximal SCC of GL is a

5 Fundamental Properties of the Size-change Abstraction 124

dependence set of L. A dependence set S is decreasing, if one of its edges is

decreasing, i.e., if there is a decreasing edge (x, Li, y) ∈ EL with x, y ∈ S.

When we speak of runs and traces of a for-loop L = (l;L1, . . . , Lk), we

refer to runs and traces of the SCS {l L1−→ l, . . . , l
Lk−→ l}. As such runs and

traces only involve the location l we will denote runs and traces differently in

the rest of this section for ease of notation. A run l
T1−→ l

T2−→ · · · is denoted

by T1T2 · · · . A trace (l, σ1)
T1−→ (l, σ2)

T2−→ · · · is denoted by σ1
T1−→ σ2

T2−→ · · · .

By the definition of dependence sets we have the following lemma.

Lemma 113. For every (decreasing) dependence set S and for all variables

x, y ∈ S there is a (decreasing) path (z1, T1, z2)(z2, T2, z3) · · · (zl−1, Tl−1, zl)

with x = z1, y = zl and zi ∈ S.

Definition 114 (Loop Indices, Activity Index, Active Variables). Let S

be a dependence set. The loop index set Loops(S) is the set {i | ∃x, y ∈

S.(x, Li, y) ∈ EL}. The activity index act(S) = minLoops(S) is the mini-

mum of the loop indices. The set of active variables of S is the set Act(S) =

{x ∈ S | ∃y ∈ S.xB y ∈ Lact(S)}.

Note that always Act(S) 6= ∅.

Lemma 115. For every dependence set S we have x B y ∈ Lact(S) for all

variables x ∈ Act(S), y ∈ S, where B = >, if S is decreasing, and where

B = ≥, if S is non-decreasing.

Proof. Let S be a (decreasing) dependence set and let x ∈ Act(S), y ∈ S be

some variables. As x ∈ Act(S) there is a z ∈ S and an edge (x, Lact(S), z) ∈

EL. By Lemma 113 there is a (decreasing) path (z1, T1, z2)(z2, T2, z3) · · ·

(zl−1, Tl−1, zl) with z = z1 ,y = zl and zi ∈ S . Thus we have x B y′ ∈

Lact(S) ◦ T1 ◦ · · · ◦ Tl, where B = >, if S is decreasing, and where B = ≥,

5 Fundamental Properties of the Size-change Abstraction 125

if S constant. For every Ti it holds that i ∈ Loops(S) because we have

zi, zi+1 ∈ S. From act(S) = minLoops(S) and from the assumption that

Lact(S) absorbs all Li with i ≥ act(S) we have Lact(S) = Lact(S) ◦ T1 ◦ · · · ◦ Tl.

Therefore we have xB y′ ∈ Lact(S).

Corollary 116. For every decreasing dependence set S we have act(S) ≤ k.

Proof. Assume there is a decreasing dependence set S with act(S) = k+1. As

every dependence set is non-empty there is a x ∈ Act(S). By Lemma 115 we

have x > x′ ∈ Lk+1. By the definition of Lk+1 we must have Inv(l) |= x > x′.

This contradicts the assumption that all invariants are consistent.

Definition 117 (Proper For-loop). A for-loop (l;L1, . . . , Lk) is proper, if it

holds for all dependence sets S that x ∈ S and x > x′ ∈ Li imply i = act(S).

5.3.2 Value Intervals

Definition 118 (Partitioning). A sequence t = S0, . . . , Sh is an ordered

partitioning of a set V , if all Si are non-empty, pairwise disjoint and V =⋃
0≤i≤h Si. For every v ∈ V we define the index t(v) = i as the unique i such

that v ∈ Si.

Definition 119 (Reverse-topological Ordering). Let G = (V,E) be a directed

graph. An ordered partitioning t = S0, . . . , Sh of V is a reverse-topological

ordering of T , if

• every Si is a maximal SCC of T ,

• for every edge (u, v) ∈ E we have t(u) ≥ t(v).

Remark 120. A reverse-topological ordering of a directed graph G = (V,E)

can be computed in linear time in the size of T , i.e., in O(|V | + |E|) by

Tarjan’s algorithm.

5 Fundamental Properties of the Size-change Abstraction 126

By the definition of reverse-topological orderings we have the following

property of maximal SCCs:

Proposition 121. Let G = (V,E) be a directed graph, let t be a reverse-

topological ordering of T and let S be a maximal SCC of T . There is a

natural number tS such that t(v) = tS for all v ∈ S.

The above proposition motivates the following definition:

Definition 122. Let G = (V,E) be a directed graph, and let t be a reverse-

topological ordering of T . For every maximal SCC S of T we define tS to be

the number such that t(v) = tS for all v ∈ S.

The above definition associates a natural number with every SCC using

a given reverse-topological ordering. By the definition of reverse-topological

orderings these numbers have the following property:

Proposition 123. Let G = (V,E) be a directed graph, let t be a reverse-

topological ordering of T and let S1, S2 be maximal SCCs of T with S1 6= S2

such that there is an edge (u, v) ∈ E with u ∈ S1, v ∈ S2. We have tS1 > tS2.

Definition 124 (Dependence Ordering). For every for-loop L we fix a reverse-

topological ordering of the dependence graph GL. We denote this ordering by

tL and refer to it as the dependence ordering of L.

Definition 125 (Value Interval). Given a for-loop L and an ordinal β we

define for every variable x ∈ Var its value interval IβL(x) = [lβL(x), rβL(x)[=

[tL(x) · β · n, (tL(x) + 1) · β · n[.

Lemma 126. Let L be a for-loop with header l, and let σ be a valuation

with σ(x) ∈ IβL(x) for every program variable x ∈ Var. For every constraint

x B y ∈ Inv(l) with x ∈ S1, y ∈ S2, where S1, S2 are dependence sets with

S1 6= S2, we have σ |= xB y.

5 Fundamental Properties of the Size-change Abstraction 127

Proof. Let x B y ∈ Inv(l) be a constraint with x ∈ S1, y ∈ S2, where S1, S2

are dependence sets with S1 6= S2. Because of S1 6= S2 we have that S1 and

S2 are different maximal SCCs of GL. Because of the edge (x, Lk+1, y) ∈ EL
we know that S2 is reachable from S1. Therefore we have tS1

L > tS2
L and thus

tL(x) = tS1
L > tS2

L = tL(y). We have σ(x) ≥ tL(x) · β · n ≥ (tL(y) + 1) · β · n >

σ(y).

Lemma 127. Let L be a for-loop with loops L1, . . . , Lk, and let σ1, σ2 be

valuations with σ1(x), σ2(x) ∈ IβL(x) for every program variable x ∈ Var.

For every constraint x B y′ ∈ Li with x ∈ S1, y ∈ S2, where S1, S2 are

dependence sets with S1 6= S2, we have σ1, σ
′
2 |= xB y′.

Proof. Let xB y′ ∈ Li be a constraint with x ∈ S1, y ∈ S2, where S1, S2 are

dependence sets with S1 6= S2. Because of S1 6= S2 we have that S1 and S2

are different maximal SCCs of GL. Because of the edge (x, Li, y) ∈ EL we

know that S2 is reachable from S1. Therefore we have tS1
L > tS2

L and thus

tL(x) = tS1
L > tS1

L = tL(y). We have σ1(x) ≥ tL(x) ·β ·n ≥ (tL(y) + 1) ·β ·n >

σ2(y).

5.3.3 Offsets

Definition 128 (Offset Graph). Given a loop L = (l;L1, . . . , Lk) and a

dependence set S of L, we define the offset graph GS
L to be the dependence

graph of the loop (l;Lact(S)+1�S, . . . , Lk�S).

Note that all offset graphs GS
L are subgraphs of the dependence graph

GL, induced by restricting the dependence graph GL to vertices in S and to

edges labeled by loops with an index greater than act(S).

Definition 129 (Offset Ordering). For every loop L = (l;L1, . . . , Lk) and

every dependence set S of L, we fix a reverse-topological ordering of the offset

5 Fundamental Properties of the Size-change Abstraction 128

graph GS
L. We denote this ordering by bSL and refer to it as the offset ordering

of S in L.

Lemma 130. Let L be a proper for-loop. For every dependence set S of GL

the offset graph GS
L does not have a decreasing dependence set.

Proof. Assume GS
L has a decreasing dependence set T . From Act(T) 6= ∅

we have that there is a x ∈ Act(T). By Lemma 115 we have x > x′ ∈

Lact(T). By the definition of offset graphs we have act(T) > act(S). This is a

contradiction to the definition of proper for-loops.

For the rest of this subsection we fix a proper for-loop L = (l;L1, . . . , Lk)

and a dependence set S of L.

Corollary 131. Inv(l) |= xB y with x, y ∈ S implies bSL(x)B bSL(y).

Corollary 132. x B y′ ∈ Li with x, y ∈ S and i > act(S) implies bSL(x) B

bSL(y).

Lemma 133. Let σ be a valuation and let c be a value such σ(x) = c+ bSL(x)

holds for every program variable x ∈ S. For every constraint xB y ∈ Inv(l)

with x, y ∈ S we have σ |= xB y.

Proof. Let xBy ∈ Inv(l) be a constraint with x, y ∈ S. We have (x, Lk+1, y) ∈

ES. By Corollary 131 we have that bSL(x) B bSL(y). Therefore we have

σ(x) = c+ bSL(x)B c+ bSL(y) = σ(y).

Lemma 134. Let σ1, σ2 be valuations and let c be a value such σ1(x) =

σ2(x) = c+bSL(x) holds for every program variable x ∈ S. For every constraint

xB y′ ∈ Li with x, y ∈ S and i > act(S) we have σ1, σ
′
2 |= xB y′.

Proof. Let x B y′ ∈ Li be a constraint with x, y ∈ S and i > act(S). By

Corollary 132 we have that bSL(x) B bSL(y). Therefore we have σ1(x) = c +

bSL(x)B c+ bSL(y) = σ2(y).

5 Fundamental Properties of the Size-change Abstraction 129

5.3.4 Counters

Definition 135 (Counters, Constants). Let (l;L1, . . . , Lk) be a for-loop. The

set Counters(Li) =
⋃
S: dependence set S is decreasing ∧act(S)=i S is the set of coun-

ters of loop Li. The set Const = Var −
⋃

1≤i≤k Counters(Li) is the set of

constants.

Proposition 136. We have Const =
⋃
S: dependence set S is non-decreasing S.

Proof. By Lemma 116 we have that act(S) ≤ k for all decreasing dependence

sets S.

By definition the set of constants Const is disjoint from each set of coun-

ters Counters(Li). However, the counters of two different loops do not need

to be disjoint in general. The situation is different for proper for-loops which

follows directly from their definition.

Proposition 137. Given a proper for-loop (l;L1, . . . , Lk), we have that for

all i 6= j the sets Counters(Li) and Counters(Lj) are disjoint.

For the rest of this subsection we fix a proper for-loop L = (l;L1, . . . , Lk)

and an ordinal β.

We use the fact that Counters(L1), . . . , Counters(Lk), Const is a parti-

tioning of Var to define a valuations through values c1, . . . , ck as stated in

the next definition.

Definition 138. We denote by σ := c1, . . . , ck the definition of a valuation

σ ∈ ValVarn·β·n, where the value σ(x) of variable x ∈ Var is defined as follows:

• For x ∈ Counters(Li): Let S be the decreasing dependence set with

x ∈ S. We set σ(x) = tL(x) · β · n+ ci · n+ bSL(x).

• For x ∈ Const: We set σ(x) = tL(x) · β · n.

5 Fundamental Properties of the Size-change Abstraction 130

Lemma 139. Given a valuation σ defined by σ := c1, . . . , ck with c1, . . . , ck ∈

[0, β[we have σ(x) ∈ IβL(x) for every program variable x ∈ Var.

Proof. Let x ∈ Counters(Li) be a variable with IβL(x) = [lL(x), rL(x)[=

[tL(x) · β · n, (tL(x) + 1) · β · n[. We have l = tL(x) · β · n ≤ tL(x) · β · n +

ci · n + bSL(x) ≤ tL(x) · β · n + ci · n + (n − 1) < tL(x) · β · n + (ci + 1) · n ≤

tL(x) · β · n+ β · n = (tL(x) + 1) · β · n = r and therefore σ(x) ∈ IβL(x).

Let x ∈ Const be a variable with IβL(x) = [l, r[= [tL(x) ·β ·n, (tL(x) + 1) ·

β · n[. We have σ(x) = tL(x) · β · n = l and therefore σ(x) ∈ IβL(x).

Lemma 140. Given a valuation σ defined by σ := c1, . . . , ck with c1, . . . , ck ∈

[0, β[we have σ |= Inv(l).

Proof. Let xBy ∈ Inv(l) be an order constraint. Either there is a dependence

set S with x, y ∈ S (a) or there are two dependence sets S1, S2 with x ∈

S1, y ∈ S2 and S1 6= S2 (b).

(a) Assume there is a dependence set S with x, y ∈ S: As x, y ∈ S we

have tL(x) = tSL = tL(y). Either S is decreasing (aa) or S is non-decreasing

(ab).

(aa) Assume S is decreasing. Thus we have x 6∈ Const. Let i be the

index such that x, y ∈ S ⊆ Counters(Li). We set c = tL(x) · β · n + ci · n.

We have σ(x) = tL(x) · β · n + ci · n + bSL(x) = c + bSL(x) and σ(y) = tL(y) ·

β · n+ ci · n+ bSL(y) = tL(x) · β · n+ ci · n+ bSL(y) = c+ bSL(y). Thus we can

apply Lemma 133 and we get σ |= xB y.

(ab) Assume S is non-decreasing: We have x, y ∈ S ⊆ Const. Thus

σ(x) = tL(x) · β · n = tL(y) · β · n = σ(y). Because S is constant we have

B = ≥. We have σ |= xB y because of σ(x) ≥ σ(y).

(b) Assume there are two dependence sets S1, S2 with x ∈ S1, y ∈ S2

and S1 6= S2: By Lemma 139 we have that σ(x) ∈ IβL(x) for every program

variable x ∈ Var . By Lemma 126 we have that σ |= xB y.

5 Fundamental Properties of the Size-change Abstraction 131

5.3.5 Lower Bounds from For-loops

In this subsection we introduce for-loop programs which will be constructed

from the for-loops. For-loop programs are a tool for inferring runs and cor-

responding traces for SCSs from for-loops. These traces then enable us to

establish lower bounds for SCSs. We obtain the result that if an SCS A has

a for-loop L of degree k, then A is Ω(Nk).

The for-loop program has variables c1, . . . , ck which are the iterators of the

k nested loops of the for-loop program. Further the program has a variable

z which counts the number of steps that the for-loop program executes. By

a step, we understand the execution of one of the nested loops. At the

beginning of the for-loop program z is initialized to 1.

At every step of the for-loop program we define an SCR Tz to be one of the

loops Li and we define a valuation σz with the help of the program variables,

i.e., we set σz := c1, . . . , ck. We will later prove that σ1
T1−→ σ2

T2−→ · · · is a

trace of A.

Definition 141 (For-loop Program). The for-loop program of for-loop L is

the program

z := 1, ;

for (c1 := decrease(β); c1 > 0; save(L1), c1 := decrease(c1))

for (c2 := decrease(β); c2 > 0; save(L2), c2 := decrease(c2))

...

for (ck := decrease(β); ck > 0; save(Lk), ck := decrease(ck))

where save(Li) is a macro for σz := c1, . . . , ck, Tz := Li, z++ and decrease(β)

is a nondeterministic function which takes an ordinal β > 0 and returns an

arbitrary ordinal γ < β.

5 Fundamental Properties of the Size-change Abstraction 132

In the following proposition we state that the values of the variables ci

always stay in the interval [0, β[.

Proposition 142. For every execution of the for-loop program we have the

invariant ci ∈ [0, β[for all variables 1 ≤ i ≤ k.

From the above proposition we get the following lemma on the valuations.

Lemma 143. For every SCR Tz and every two valuations σz, σz+1 defined

during an execution of the for-loop program we have σz, σ
′
z+1 |= Tz.

Proof. Let Tz be an SCR and let σz, σz+1 be two valuations defined during

an execution of the for-loop program. Let Li be the loop which is assigned

to Tz. By the definition of the for-loop program we have σz := c1, . . . , ck for

some c1, . . . , ck and σz+1 := c′1, . . . , c
′
k where c′1 := c1, . . . , c

′
i−1 := ci−1, c

′
i :=

decrease(ci), ci+1 := decrease(β), . . . , ck := decrease(β) (*).

Let xBy′ ∈ Li be a size-decrease constraint. Either there is a dependence

set S with x, y ∈ S (a) or there are two dependence sets S1, S2 with x ∈

S1, y ∈ S2 and S1 6= S2 (b).

(a) Assume that there is a dependence set S with x, y ∈ S. As x, y ∈ S

we have tL(x) = tL(y). Either S is decreasing (aa) or S is non-decreasing

(ab).

(aa) Assume S is decreasing. Thus we have x 6∈ Const. Let i be the

index such that x, y ∈ S ⊆ Counters(Li). We have either i = act(S) (aaa)

or i > act(S) (aab).

(aaa) Assume that we have i = act(S). Therefore we have ci > c′i by (*).

σz(x) = tL(x)·β·n+ci·n+bSL(x) ≥ tL(x)·β·n+ci·n > tL(y)·β·n+c′i·n+(n−1) ≥

tL(y) · β · n+ c′i · n+ bSL(y) = σz+1(y).

(aab) Assume that we have i > act(S). Therefore we have ci = c′i by (*).

We set c = tL(x) ·β ·n+ci ·n. We have σ(x) = tL(x) ·β ·n+ci ·n+bSL(x) = c+

5 Fundamental Properties of the Size-change Abstraction 133

bSL(x) and σ(y) = tL(y)·β·n+c′i·n+bSL(y) = tL(x)·β·n+ci·n+bSL(y) = c+bSL(y).

Thus we can apply Lemma 134 and we get σz, σ
′
z+1 |= xB y′.

(ab) Assume S is non-decreasing: We have x, y ∈ S ⊆ Const. Thus

σz(x) = tL(x) · β · n = tL(y) · β · n = σz+1(y). Because S is constant we have

B = ≥. We have σz, σ
′
z+1 |= xB y′ because of σz(x) ≥ σ′z+1(y).

(b) Assume that there are two dependence sets S1, S2 with x ∈ S1, y ∈ S2

and S1 6= S2: We have σz, σ
′
z+1 |= xB y′ by Lemma 127.

Lemma 144. Every for-loop program terminates.

Proof. A for-loop program terminates by the standard argument for the ter-

mination of for-loops: The iterator ci of nested loop i is not changed during

the execution of the respective inner loops i + 1, . . . , k and loop i decreases

its iterator ci during its update. Loop i can only decrease its iterator finitely

many times before it returns control to loop i − 1. The for-loop terminates

when the outermost loop returns the control.

A more formal view is that (c1, . . . , ck) is a lexicographic ranking function

for the for-loop program: The value of the ranking function decreases every

time a loop does its update. Thus loop updates can happen only finitely

often.

Therefore the for-loop program terminates on all executions, i.e., for all

choices of decrease.

Theorem 145. Let A be an SCS, let α, β be ordinals with α ≥ n · β · n, and

let L be a proper for-loop with degree k. The length of the longest trace of A

over α has the lower bound βk.

Proof. Let (l;L1, . . . , Lk) be the proper for-loop L of degree k. We fix some

execution of the for-loop program. At program termination the variable z

stores the number of steps the for-loop program has performed during the

5 Fundamental Properties of the Size-change Abstraction 134

execution. Let Ti be the SCRs Ti defined during the execution of the for-

loop program for 1 ≤ l < z and let σi be the valuations defined during the

execution of the for-loop program for 1 ≤ i ≤ z. Let R = T1T2 · · ·Tz−1 be

the run given by the SCRs Ti. We have σz |= Inv(l) for all 1 ≤ z ≤ l by

Proposition 142 and Lemma 140. We have σi, σ
′
i+1 |= Ti for all 1 ≤ i < z by

Lemma 143. Thus σ1
T1−→ σ2

T2−→ · · · Tl−1−−→ σl (*) is a trace of A.

For every execution of the for-loop program we obtain a trace (*) of A.

This means that for all choices of decrease we obtain traces (*) of A. Thus

the length of the longest run of A has the lower bound βk.

5.3.6 Discussion of the Complexity of SCSs

Restricting α to the natural numbers in Theorem 145 gives us the following

result:

Theorem 146. Let A be an SCS, and let L be a proper for-loop of A with

degree k. Then the length of the longest trace of A over N ∈ N is Ω(Nk).

In [Ben-Amram, 2009b], Ben-Amram shows how to obtain lexicographic

ranking functions for SCSs over the natural numbers. These lexicographic

ranking functions have n components in the worst case. His development can

be easily adjusted to obtain the following result:

Theorem 147 ([Ben-Amram, 2009b]). Let A be a terminating SCS. Then

the length of the longest trace of A over N ∈ N is O(Nn).

The importance of Theorem 146 is that for-loops provide convexity-witnesses

for SCS. In light of Theorem 147, we conjecture that for-loops give rise to a

complete characterization of the complexity of SCSs:

5 Fundamental Properties of the Size-change Abstraction 135

Procedure: Complexity(A)
Input: an SCS A
Output: the asymptotic complexity of A
forall the l ∈ LA do

forall the l
T−→ l ∈ A? do

if T is idempotent and there is no x ∈ Var with x > x′ ∈ T
then

return “A does not terminate”

for k from n downto 0 do
forall the l ∈ LA do

forall the l
L1−→ l, . . . , l

Lk−→ l ∈ A? do
if (l;L1, . . . , Lk) is a proper for-loop then

return “A has complexity O(Nk)”

Algorithm 9: Complexity(A) computes the asymptotic complexity of
A

Conjecture 148. Let A be an SCS. Then A either does not terminate or

the length of the longest trace of A over N ∈ N is Θ(Nn) and there is a

proper for-loop of A with degree k.

We mention that conjecture 148 gives rise to an algorithm for deciding

the complexity of an SCS A, which we state in Algorithm 9. Algorithm 9 first

decides the termination of A by enumerating all SCRs in A? and checking

the condition stated in Theorem 109. In case A is terminating, Algorithm 9

searches for proper for-loops starting with the highest degree n going down to

0. Algorithm 9 is in PSPACE because the elements of A? can be enumerated

in PSPACE (for details see Ben-Amram [2011]).

Chapter 6

Related Work

In this section we give a detailed comparison with earlier termination and

bound analyses. We show that our bound analysis captures the essential ideas

of these approaches in a simpler framework and that our technique outper-

forms these recent approaches on loop-bound computation and termination

analysis.

6.1 Bound Analysis by the SPEED project

[Gulwani et al., 2009c] would fail to compute bounds for Programs 1.3, 3.2,

3.3, 3.4, 1.7 because the invariants required for establishing bounds on the

counters are disjunctive. (It can compute bounds for Programs 3.1 and 1.6.)

The multiplicative counter instrumentation strategy of [Gulwani et al., 2009c]

are meant to alleviate the problem of computing disjunctive invariants, but

does not help for the listed examples because there the outer loop has only

one back-edge and therefore only one counter can be instrumented.

[Gulwani et al., 2009a] likewise proposes to use program transformation

before performing bound analysis. The program transformation of [Gulwani

136

6 Related Work 137

et al., 2009a] is parameterized by an abstract domain, which is used simulta-

neously with the actual transformation algorithm to detect the infeasibility

of certain paths. However, [Gulwani et al., 2009a] is vague about what ab-

stract domains should be used, and the actual transformation algorithm is

quite involved. In contrast, we propose two simple program transformation

that are easy to implement. Our program transformations only rely on SMT

solvers and do not need specific abstract domains. [Gulwani et al., 2009a]

would fail to compute bounds for Programs 1.3, 3.2, 3.3, 3.4 because the

invariants required for establishing bounds on the counters are disjunctive.

(It can compute bounds for Programs 3.1, 1.6 and 1.7.) The control-flow re-

finement strategy of [Gulwani et al., 2009a] is meant to alleviate the problem

of computing disjunctive invariants, but does not help in any of these cases

since the control-flow is already refined and cannot be refined any further.

[Gulavani and Gulwani, 2008] describes two operations for lifting con-

junctive linear numerical abstract domains. On the one hand interesting

non-linear expressions are identified by user annotations. These expressions

and an approximation of their arithmetic properties are then added to the

abstract domain. This enables the computation of non-linear invariants. On

the other hand the abstract domain is extended using the maximum oper-

ator. The maximum operator is used to infer additional inequalities during

the joins of the abstract domain that involve the maximum operator. In this

way the maximum operator enables the computation of disjunctive bounds

for transition systems with multiple transitions. However, the lifted abstract

domain contains an extend set of expressions and operators but is still con-

junctive. Therefore it fails to compute bounds for Programs 1.3, 3.2, 3.3, 3.4,

1.7 because the invariants required for establishing bounds on the counters

are disjunctive. (It can compute bounds for Program 3.1 and 1.6.) However,

6 Related Work 138

the technique described in [Gulavani and Gulwani, 2008] can be used in a

synergistic manner with our technique, in particular, as an extension to the

pattern-matching based technique to compute ranking functions for single

transitions.

We report on implementations of symbolic bound generation for .Net

binaries and C programs, while [Gulwani et al., 2009c,a; Gulavani and Gul-

wani, 2008] implemented bound generation for C++ programs. Hence, we

only provide analytical (not experimental) comparison with these techniques.

Quite significantly, our implementation scales to large programs, while [Gul-

wani et al., 2009c,a; Gulavani and Gulwani, 2008] have been applied to only

small benchmarks.

6.2 Termination Analysis by Ranking Func-

tions and Transition Invariants

There is a large body of work on proving termination of programs. The

standard approach consists of finding ranking functions [Turing, 1936]. Such

ranking functions are generally complex, e.g. the standard lexicographic

ranking functions. In many cases these ranking functions be seen as a com-

position of several local ranking functions, e.g. a lexicographic ranking func-

tion is composed of its components. Recently transition invariants [Podelski

and Rybalchenko, 2004b] have been recognized as an alternative method for

proving termination: Local ranking functions can be composed to a global

termination argument even without constructing a global ranking function.

One can obtain a bound from a lexicographic ranking function, if one can

show that the domains of all its components are bounded, by multiplying the

heights of the domains of the components. Likewise one can obtain a bound

6 Related Work 139

from a transition invariant, if one can show that the domains of all its local

ranking functions are bounded, by multiplying the heights of the domains of

the local ranking functions. Similarly to the above sketched methods we also

use local ranking functions to compute bounds. However, whereas the above

sketched methods for computing bounds only use the multiplication operator

we compose local ranking functions using the plus or maximum operators if

possible in order to yield precise symbolic bounds.

There is superficial similarity between transition invariants [Podelski and

Rybalchenko, 2004b] and our transition system approach in that transition

invariants also summarize relationships between two different visits to a con-

trol location and often require disjunctive invariants. However, there are two

key technical differences: (a) Our technique requires computing relationships

between two immediate visits to a control location, while transition invari-

ants require computing relationships between any two visits to a control

location. (b) Our technique requires use of disjunctive invariants only to

summarize nested loops. In particular, for the example programs 1.6 and 1.7

with no nested loops, our technique would not require computing disjunctive

invariants.

Our approach can be regarded as an alternative new technique for proving

termination. For example, the recently proposed approaches [Berdine et al.,

2007] and [Cook et al., 2006] (further discussed in Section 6.4) that both

implement the transition invariant approach cannot prove termination of the

loop in Program 1.7, while our technique can.

6 Related Work 140

6.3 Comparison of transition predicate ab-

straction (TPA) and SCA by Heizmann

et al.

In [Heizmann et al., 2010] Heizmann et al. state that SCA is an instance

of the more general technique of TPA [Podelski and Rybalchenko, 2005]. In

particular they formally show that when a tail-recursive functional program

F is translated into an imperative program P , then an SCA-based termina-

tion analysis on F can be mimicked by a TPA-based termination analysis on

P whose predicates are order relations.

However, [Heizmann et al., 2010] does not

• deal with general imperative programs, but with programs obtained as

translations from functional programs. Since functional programs can

be size-change abstracted more easily (as explained in our comparison

with SCA), this problem setting is much simpler.

• show how to obtain transition predicates for the independent analysis

of imperative programs by TPA. It only shows that (as a result of the

translation) TPA is more general than SCA.

• deal with a concrete programming language, and does not deal with

practical issues, or concrete analysis tools.

• make use of the recent progress of the SCA [Ben-Amram, 2011], where

SCA is extended from natural numbers to integers, and deals only with

natural numbers.

This thesis not only fills in all these gaps left open in [Heizmann et al.,

2010], but also unifies much of the previous work, e.g., by Terminator in

6 Related Work 141

Section 6.4, SPEED in Section 6.1 etc., and is drawing most of its motivation

from these other papers.

While we find it quite intuitive that SCA as well as our more general

approach are instances of TPA, we are concerned with a different issue in

this thesis. We argue that precisely because of its limited expressiveness

SCA is suitable for bound analysis: abstracted programs are simple enough

such that we can compute bounds for them. We have shown that imperative

programs are amenable to bound analysis by SCA using appropriate program

transformations, whereas [Heizmann et al., 2010] is a theoretical paper.

6.4 Termination Analysis by Terminator

The Terminator tool [Cook et al., 2006] is an automatic termination an-

alyzer of imperative programs, which uses TPA [Podelski and Rybalchenko,

2005] for constructing a Ramsey based termination argument [Podelski and

Rybalchenko, 2004b].

Our approach and Terminator share the idea of extracting progress

measures locally (norms resp. local ranking functions) and composing them

for a global analysis (bound resp. termination proof). Because of its non-

constructive nature, the Ramsey based termination argument underlying

TPA cannot be used for extracting a global ranking function out of the ter-

mination proof. In contrast, we use SCA for the first time to compose global

bounds from bounds on norms. Earlier work on SCA [Ben-Amram, 2011]

already has shown how to compute global ranking functions from norms.

In order to apply the Ramsey based termination argument, Terminator

needs to analyze the transitive hull of programs. This analysis is the most

expensive step in the analysis of Terminator and it has to be repeated

6 Related Work 142

again and again. In contrast, we abstract programs first and then analyze

only the transitive hull of the abstract program. This has huge benefits for

the speed of the analysis (further discussed in Subsection 6.5).

TPA can lose precision in every step of the analysis. In contrast, our

pathwise analysis follows the structure of programs and loses precision only

at well-defined places. Our analysis handles paths precisely by conjoining

the formulae of the statements along the path (using all theories that can be

handled by SMT solvers) and loses precision when handling loops. However,

we handle loops precisely w.r.t. their monotonic behavior of norms: SCA is

closed under taking transitive hulls because of the built-in disjunctiveness of

SCA and the transitivity of the order relations, and these transitive hulls can

be computed effectively.

Terminator is built on top of a full-fledged software model checker,

which implements a complicated CEGAR loop in order to extract predicates

and local ranking functions from programs. In contrast, our simple and

lightweight static analysis relies only on an SMT solver, our set of transition

predicates is fixed in advance (the monotonicity predicates of SCA) and our

set of norms is extracted from program at the beginning of the analysis. It

is an interesting direction of future work to investigate how to combine these

approaches, e.g., by using our approach for filtering the “easy cases” and

using a CEGAR like approach for coping with the “hard cases”.

6.5 Termination Analysis byLoopfrog

[Kroening et al., 2010, 2011] observe that TPA-based approaches such as

Terminator [Cook et al., 2006] spend almost all time in analyzing the

transitive hulls of programs, i.e., the expensive step is proving P |+l ⊆
⋃
T

6 Related Work 143

for transition sets T . Therefore [Kroening et al., 2010, 2011] take a different

approach and give algorithms that search for a transitive transition system

T for P |l. A transition set T is transitive, if
⋃
T 2 ⊆

⋃
T . A transitive

transition system T for P |l already implies P |+l ⊆
⋃
T + ⊆

⋃
T by the

transitivity of T . This has the advantage that the expensive direct proof of

P |+l ⊆
⋃
T is avoided.

The first version of Loopfrog [Kroening et al., 2010] implements an

algorithm that constructs such transitive transition systems iteratively. In

every step Loopfrog adds transition relations to a candidate transition set

T . We argue that the effectiveness of such an iterative algorithm is limited,

and that what the authors of [Kroening et al., 2010] really want is SCA!

Note that a transitive transition system T for P |l that is precise enough

to prove the termination of P is an overapproximation of P that still ter-

minates. Let us consider an example transition set T = {ρ1, ρ2} with

ρ1 = x > 0 ∧ x > x′ and ρ2 = y > 0 ∧ y > y′. T does not terminate because

ρ1 can increase the value of y arbitrarily and ρ2 can increase the value of x

arbitrarily. Let us assume that the analyzed program P nevertheless termi-

nates because the variable x can only be decreased when y stays constant.

Let us further assume that Loopfrog has added ρ1 to T in the first step

and ρ2 in the second step of its iteration. Loopfrog could have added the

information about x in the first step by setting ρ1 = x > 0∧ x > x′ ∧ y = y′,

but not in the second step. Note that once the candidate transition set

T does not terminate, it cannot be repaired by adding transition relations.

Note further that in later steps the loss of information of earlier steps cannot

be repaired as we have seen on the above example. Thus, we conclude that

a candidate transition set T has to be constructed in one single step. This

is exactly what we do in our analysis. We first compute transition system

6 Related Work 144

for programs, and then size-change abstract the transition relations for our

bound analysis. Alternatively, these abstracted transition relations could be

analyzed for termination by a transitive hull computation using the termina-

tion criterion of SCA [Ben-Amram, 2011]. This transitive hull then provides

exactly the transitive transition system T for P |l. From this we conclude

that what the authors of [Kroening et al., 2010] really want is SCA!

The second version of Loopfrog [Kroening et al., 2011] uses relational

loop summarization (see also the next subsection). For this summariza-

tion [Kroening et al., 2011] uses template invariants. Only one of these

templates contains disjunction (two disjuncts). [Kroening et al., 2011] states

that these templates are inspired by the more general size-change abstract

domain. We show in this thesis how to employ the full SCA domain by using

pathwise analysis for exploiting the loop structure of imperative programs.

This allows us to use the full disjunctive power of SCA. [Kroening et al.,

2011] is only concerned with termination analysis, whereas we show how to

use SCA for the more difficult problem of bound analysis.

6.6 Loop Summarization

Loop summarization as in Algorithm 1 is being recognized as important tool

in program analysis, for example [Kroening et al., 2008] summarizes loops

by overapproximations of the reachable states for automatic proofs of safety

properties. Relational summarizations of loops have for the first time been

used in the bound analysis of [Gulwani and Zuleger, 2010]. The termination

analysis [Kroening et al., 2011], which is an extension of [Kroening et al.,

2008], also uses relational summaries of loops.

Loop summarization is closely related to procedure summarization, e.g. [Gul-

6 Related Work 145

wani and Tiwari, 2007].

6.7 Disjunctive Invariant Generation

Classical domains in abstract interpretation are normally good at inferring

conjunctive invariants, and various domain exists in the precision/cost spec-

trum (like intervals [Cousot and Cousot, 1976], octagons [Miné, 2006], and

polyhedra [Cousot and Halbwachs, 1978]). Because program verification is

in need of discovering disjunctive invariants methods it has been proposed to

lift classical conjunctive abstract domains to powerset domains [Cousot and

Cousot, 1979]. Lifting an abstract domain to the powerset domain requires

an adequate lifting of its join operator. Set union would be the precise join

operator of the powerset lattice, but every set union increases the number of

the base elements of the powerset elements. However, the powerset lattices of

many classical abstract domains (like intervals, octagons or polyhedra) have

infinite width. Thus practical implementations needs to limit the number of

base elements of a powerset element in order to ensure the finiteness of the

analysis. [Handjieva and Tzolovski, 1998; Popeea and Chin, 2006; Gopan and

Reps, 2006, 2007; Rival and Mauborgne, 2007] address this issue by propos-

ing various semantic-merging heuristics. In contrast, we have presented in

Section 3.1 a result that calls for working with a static syntactic merge cri-

terion under the convexity-like assumption (which appears to be satisfied by

the benchmark examples).

Some syntactic techniques based on program restriction [Beyer et al.,

2007] or control-flow refinement [Gulwani et al., 2009a] have also been sug-

gested for discovering disjunctive invariants. By choosing a suitable convexity-

witness σ these techniques can be viewed as instantiations of our more general

6 Related Work 146

framework that we described in Section 3.1.

In [Monniaux, 2009] Monniaux proposes calculating most precise abstract

transformers. He requires the provision of a template which can be an arbi-

trary boolean combination of linear inequalities. His method relies on quan-

tifier elimination over the reals. As quantifier elimination has a prohibitive

complexity our approach is more scalable.

In recent work on termination analysis [Berdine et al., 2007] it is proposed

to use a powerset abstract domain for computing disjunctive transition invari-

ants. In the implementation section of [Berdine et al., 2007] it is suggested

to use a lifting of the octagon / polyhedra domain as this powerset abstract

domain. However, [Berdine et al., 2007] remains vague on how this lifting

is implemented: “For our present empirical evaluation we use an extraction

method after the fixed-point analysis has been performed in order to find

disjunctive invariance/variance assertions.”.

In contract, SCA is a finite powerset domain that naturally handles dis-

junction: SCA has finite width, therefore we never have to merge abstract

elements and can handle disjunction precisely. This releases us from relying

on complicated merging algorithms as [Gulwani and Zuleger, 2010; Berdine

et al., 2007]. SCA has finite height, therefore we do not need widening to

compute fixed points (e.g. transitive hulls). This releases us from lifting

the widening operator of conjunctive domains (e.g. octagon, polyhedra) to

powerset domains.

6.8 Size-change Abstraction

Despite its success in functional/declarative languages, e.g. [Manolios and

Vroon, 2006], [Krauss, 2007], SCA [Lee et al., 2001; Ben-Amram, 2011] has

6 Related Work 147

not yet been applied to imperative programs. We describe the two main

obstacles in the application of SCA to imperative programs and how we

solve them:

In functional / declarative languages, algorithms typically operate on

algebraic data structures where constructs and destructs happen in single

steps. Due to this succinctness, SCA achieves sufficient precision on small

program blocks. In imperative programs loops can have many intermediate

stages and oftentimes only the program state at the loop header can be

considered as “clean”. Therefore the abstraction of small program blocks

to size-change relations loses too much precision. (This issue is well-known

in the field of invariant computation.) We solve this issue by our pathwise

analysis, which has the effect that large pieces of code that lie between the

“clean” program locations are abstracted jointly.

The intended use of the SCA variables is as local progress measures of

the program. In functional/declarative languages there is a natural set of

such local progress measures such as the size of a data type, the height of a

tree, the length of a list, or any arithmetic expression built up from those.

In imperative programs, it is less clear what the shape of this local progress

measures is and how they can be automatically extracted from programs.

We give a solution to this problem by extracting norms from the conditions

of complete loop paths (as described in our heuristics).

6.9 Other Approaches

[Albert et al., 2008] computes bounds by generating recurrence relations and

then deriving a closed form expression for the maximum size of the unfold-

ings of the (possibly nondeterministic) recurrence relations into trees. Since

6 Related Work 148

their method does not precisely summarize inner loops, they cannot han-

dle loops where the inner loop changes the iterators of the outer loop as in

Programs 3.1, 3.2, 3.3, 3.4. Also, they can’t handle Programs 1.6, 1.7 and

are unable to compute the amortized bounds as for Program 1.3. We report

on implementations of symbolic bound generation for .Net binaries and C

programs, while [Albert et al., 2008] implemented bound generation for Java

programs respectively. Hence, we only provide analytical (not experimental)

comparison with these techniques. Quite significantly, our implementation

scales to large programs, while [Albert et al., 2008] has been applied to only

small benchmarks.

A series of works describes a type-based potential-method of amortized

analysis for the estimation of resource usage in first-order functional pro-

grams, which reduces the problem to linear constraint solving. Recent en-

hancement includes the extension to multivariate polynomial bounds [Hoff-

mann et al., 2011] and higher-order programs [Jost et al., 2010].

[Crary and Weirich, 2000] presents a type system for the certification of

resource bounds (once they are provided by the programmer), but does not

infer bounds.

The embedded and real-time systems community has taken considerable

effort on worst case execution time (WCET) estimation [Wilhelm et al.,

2008]. WCET research is largely orthogonal, focused on distinguishing be-

tween the complexity of different code-paths and low-level modeling of archi-

tectural features such as caches, branch prediction, instruction pipelines. For

establishing loop bounds, WCET techniques either require user annotation,

or use simple techniques based on pattern matching or numerical analysis.

These WCET techniques cannot compute bounds for most of the examples

considered in this thesis. We report on the Mälardalen WCET [WCETWeb-

6 Related Work 149

Page, 2010] benchmark in our experimental section.

[Goldsmith et al., 2007] computes symbolic bounds by curve-fitting timing

data obtained from profiling. Their technique has the advantage of measuring

real time in seconds for a representative workload. However, their technique

does not provide worst-case bounds and their results are not sound for all

inputs.

Chapter 7

Conclusion

In this thesis we have defined and motivated the reachability-bound prob-

lem. We have proposed a two-step methodology for computing reachability-

bounds and have presented two approaches that implement this methodol-

ogy. We have described an algorithm, which is used by both approaches, that

computes transition systems based on the program transformation pathwise

analysis. Our first approach uses two different techniques for reasoning about

loops, namely an iterative technique for computing transitive hulls based on

abstract interpretation, and a non-iterative proof-rule based technique for

computing bounds of transition systems. We have discussed the limitations

of our first approach, and motivated our second approach. Our second ap-

proach is based on the size-change abstraction (SCA). We summarize loops

using the property of SCA to be closed under the computation of transitive

hulls. We compute bounds using a separation of concerns offered by SCA: we

compose locally extracted norms to a global bound based only on the size-

change abstracted program. We have stated two program transformations

(pathwise analysis and contextualization) that make SCA amenable to the

bound analysis of imperative programs. We have presented results towards a

150

7 Conclusion 151

characterization of the bounds expressible by SCA. In particular, we have de-

fined complexity witnesses (for-loops) that establish lower bounds of abstract

programs. In a qualitative comparison we have showed that our solution to

the reachability-bound problem captures the essential ideas of earlier termi-

nation and bound analyses in a simpler framework and outperforms these

analyses in computing loop-bounds and proving termination.

We point out several directions for future work:

Recursive Procedures and Concurrent Programs. Currently, our anal-

ysis is limited to sequential programs without procedures. The next technical

challenges are to address the reachability-bound problem in context of recur-

sive procedures and concurrent execution.

Enhancing the Bound Analysis based on SCA. We believe that SCA

is the right abstract domain for the bound analysis of imperative programs.

Our solution presents a first choice in the solution space offered by this pow-

erful abstraction. Further investigations are worthwhile, for example, our

bound algorithm handles many programs occurring in practice, but does not

yet exploit the full strength of SCA.

Applications. We plan to integrate the proposed solution to the reachability-

bound problem with other specific techniques to provide an integrated solu-

tion for several applications:

• Computing worst-case bounds for embedded systems.

• Identifying performance bottlenecks in standard code that is caused by

inefficient calls to library functions.

• Proving bounded liveness properties of protocols.

7 Conclusion 152

• Controlling program complexity by introducing appropriate type sys-

tem into programming languages.

Lower- and Average-case Bounds. There are two interesting problem

extensions that we leave for future work:

(a) Establishing precision of the generated bounds by identifying a symbolic

precision-witness.

(b) Generating average-case bounds. For example, [Goldsmith et al., 2007]

computes symbolic bounds by curve-fitting timing data obtained from

profiling. Their technique has the advantage of measuring real amortized

complexity; however the results are not sound for all inputs.

Separated Research Communities. Most existing research on the ter-

mination/bound problem has been divided into separate lines for the impera-

tive and functional/declarative world.Our work for the first time has bridged

this gap by using SCA – developed for functional languages and applied to

functional/declarative programs – in an imperative setting. We hope that

our work will foster the transfer of ideas and techniques between these areas.

We have given a first example of such a cross-fertilization by using the pro-

gram transformation contextualization, which was originally developed for

functional programs [Manolios and Vroon, 2006].

Bibliography

Albert, E., Arenas, P., Genaim, S., and Puebla, G. (2008). Automatic infer-

ence of upper bounds for recurrence relations in cost analysis. In SAS.

Ben-Amram, A. (Mar. 2011). Monotonicity constraints for termination in

the integer domain. Technical report.

Ben-Amram, A. M. (2009a). A complexity tradeoff in ranking-function ter-

mination proofs. Acta Inf., 46(1):57–72.

Ben-Amram, A. M. (2009b). Size-change termination, monotonicity con-

straints and ranking functions. In CAV, pages 109–123.

Berdine, J., Chawdhary, A., Cook, B., Distefano, D., and O’Hearn, P. W.

(2007). Variance analyses from invariance analyses. In POPL, pages 211–

224.

Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M. E., and Sebastiani, R.

(2009). Software model checking via large-block encoding. In FMCAD,

pages 25–32.

Beyer, D., Henzinger, T. A., Majumdar, R., and Rybalchenko, A. (2007).

Path invariants. In PLDI, pages 300–309.

153

Bibliography 154

Bradley, A., Manna, Z., and Sipma, H. (2005). Termination of polynomial

programs. In VMCAI.

CBenchWebPage (2010). http://ctuning.org/wiki/index.php/CTools:

CBench.

Codish, M., Fuhs, C., Giesl, J., and Schneider-Kamp, P. (2010). Lazy ab-

straction for size-change termination. In LPAR (Yogyakarta), pages 217–

232.

Codish, M., Lagoon, V., and Stuckey, P. J. (2005). Testing for termination

with monotonicity constraints. In ICLP, pages 326–340.

Colby, C. and Lee, P. (1996). Trace-based program analysis. In POPL, pages

195–207.

Cook, B., Podelski, A., and Rybalchenko, A. (2006). Termination proofs for

systems code. In PLDI, pages 415–426.

Cousot, P. and Cousot, R. (1976). Static determination of dynamic properties

of programs. In Second International Symposium on Programming, pages

106–130.

Cousot, P. and Cousot, R. (1977). Abstract Interpretation: A Unified Lattice

Model for Static Analysis of Programs by Construction or Approximation

of Fixpoints. In POPL, pages 238–252.

Cousot, P. and Cousot, R. (1979). Systematic design of program analysis

frameworks. In POPL, pages 269–282.

Cousot, P. and Halbwachs, N. (1978). Automatic Discovery of Linear Re-

straints among Variables of a Program. In POPL, pages 84–96.

http://ctuning.org/wiki/index.php/CTools:CBench
http://ctuning.org/wiki/index.php/CTools:CBench

Bibliography 155

Crary, K. and Weirich, S. (2000). Resource bound certification. In POPL

’00.

Dutertre, B. and de Moura, L. (2006). The yices smt solver. Technical report.

Floyd, R. W. (1962). Algorithm 97: Shortest path. Commun. ACM, 5(6):345.

Goldsmith, S., Aiken, A., and Wilkerson, D. S. (2007). Measuring empirical

computational complexity. In ESEC/SIGSOFT FSE, pages 395–404.

Gopan, D. and Reps, T. W. (2006). Lookahead widening. In CAV.

Gopan, D. and Reps, T. W. (2007). Guided static analysis. In SAS.

Gulavani, B. S. and Gulwani, S. (2008). A numerical abstract domain based

on expression abstraction and max operator with application in timing

analysis. In CAV, pages 370–384.

Gulwani, S., Jain, S., and Koskinen, E. (2009a). Control-flow refinement and

progress invariants for bound analysis. In PLDI, pages 375–385.

Gulwani, S., Lev-Ami, T., and Sagiv, M. (2009b). A combination framework

for tracking partition sizes. In POPL, pages 239–251.

Gulwani, S., Mehra, K. K., and Chilimbi, T. M. (2009c). Speed: precise and

efficient static estimation of program computational complexity. In POPL,

pages 127–139.

Gulwani, S. and Tiwari, A. (2007). Computing procedure summaries for

interprocedural analysis. In ESOP, pages 253–267.

Gulwani, S. and Zuleger, F. (2010). The reachability-bound problem. In

PLDI, pages 292–304.

Bibliography 156

Handjieva, M. and Tzolovski, S. (1998). Refining static analyses by trace-

based partitioning using control flow. In SAS, pages 200–214.

Heizmann, M., Jones, N. D., and Podelski, A. (2010). Size-change termina-

tion and transition invariants. In SAS, pages 22–50.

Henzinger, T. (2009). From boolean to quantitative system specifica-

tions, keynote. In Ist Workshop on Quantitative Analysis of Software.

http://research.microsoft.com/users/sumitg/qa09/keynote.pdf.

Hoffmann, J., Aehlig, K., and Hofmann, M. (2011). Multivariate amortized

resource analysis. In POPL, pages 357–370.

Jost, S., Hammond, K., Loidl, H.-W., and Hofmann, M. (2010). Static

determination of quantitative resource usage for higher-order programs.

In POPL, pages 223–236.

Krauss, A. (2007). Certified size-change termination. In CADE, pages 460–

475.

Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., and Wintersteiger,

C. M. (2008). Loop summarization using abstract transformers. In ATVA,

pages 111–125.

Kroening, D., Sharygina, N., Tsitovich, A., and Wintersteiger, C. M. (2010).

Termination analysis with compositional transition invariants. In CAV,

pages 89–103.

Kroening, D., Sharygina, N., Tsitovich, A., and Wintersteiger, C. M. (2011).

Loop summarization and termination analysis. In TACAS, page unkown.

Kupferman, O. and Vardi, M. Y. (2001). Weak alternating automata are not

that weak. ACM Trans. Comput. Log., 2(3):408–429.

Bibliography 157

Lattner, C. and Adve, V. (2004). Llvm: A compilation framework for life-

long program analysis & transformation. In CGO ’04: Proceedings of the

international symposium on Code generation and optimization, page 75,

Washington, DC, USA. IEEE Computer Society.

Lee, C. S., Jones, N. D., and Ben-Amram, A. M. (2001). The size-change

principle for program termination. In POPL, pages 81–92.

Magill, S., Tsai, M.-H., Lee, P., and Tsay, Y.-K. (2010). Automatic numeric

abstractions for heap-manipulating programs. In POPL, pages 211–222.

Malacaria, P. (2007). Assessing security threats of looping constructs. In

POPL, pages 225–235.

Manolios, P. and Vroon, D. (2006). Termination analysis with calling context

graphs. In CAV, pages 401–414.

Miné, A. (2006). The octagon abstract domain. Higher-Order and Symbolic

Computation, 19(1):31–100.

Monniaux, D. (2009). Automatic modular abstractions for linear constraints.

In POPL, pages 140–151.

Muchnick, S. S. (1997). Advanced Compiler Design and Implementation.

Morgan Kaufmann.

PhoenixWebPage (2009). Microsoft Phoenix Compiler. http://research.

microsoft.com/phoenix/.

Podelski, A. and Rybalchenko, A. (2004a). A complete method for the syn-

thesis of linear ranking functions. In VMCAI, pages 239–251.

http://research.microsoft.com/phoenix/
http://research.microsoft.com/phoenix/

Bibliography 158

Podelski, A. and Rybalchenko, A. (2004b). Transition invariants. In LICS,

pages 32–41.

Podelski, A. and Rybalchenko, A. (2005). Transition predicate abstraction

and fair termination. In POPL, pages 132–144.

Popeea, C. and Chin, W.-N. (2006). Inferring disjunctive postconditions. In

ASIAN, pages 331–345.

Rival, X. and Mauborgne, L. (2007). The trace partitioning abstract domain.

ACM Trans. Program. Lang. Syst., 29(5).

Turing, A. M. (1936). On Computable Numbers, with an application to the

Entscheidungsproblem. Proc. London Math. Soc., 2(42):230–265.

Warren, H. S. (2002). Hacker’s Delight. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA.

WCETWebPage (2010). http://www.mrtc.mdh.se/projects/wcet/

benchmarks.html.

Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley,

D. B., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F.,

Puaut, I., Puschner, P. P., Staschulat, J., and Stenström, P. (2008). The

worst-case execution-time problem - overview of methods and survey of

tools. ACM Trans. Embedded Comput. Syst., 7(3).

Z3WebPage (2009). Z3 Theorem Prover. http://research.microsoft.

com/projects/Z3/.

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://research.microsoft.com/projects/Z3/
http://research.microsoft.com/projects/Z3/

Curriculum Vitae

Florian Zuleger

Skodagasse 3/7

1080 Wien

Austria

zuleger@forsyte.at

www.forsyte.at/~zuleger

Education Technische Universität München Munich, Germany

October 2004 – October 2008

Diploma in mathematics (major) and computer science (mi-

nor) with high distinction. Thesis title: Partial Deci-

sion Methods for the Halting Problem. Thesis supervisor:

Prof. Helmut Veith.

Gymnasium Ottobrunn Ottobrunn, Germany

September 1994 – June 2003

Publications F. Zuleger, S. Gulwani, M. Sinn and H. Veith. Bound Analy-

sis of Imperative Programs with the Size-change Abstraction

submitted, 2011.

M. Sinn and F. Zuleger. Loopus - A Tool for Computing

Loop Bounds for C Programs. In Proc. WING, to appear,

2010.

S. Gulwani and F. Zuleger. The Reachability-Bound Prob-

lem. In Proc. PLDI, pages 292–304, 2010.

www.forsyte.at/~zuleger

J. Kinder, F. Zuleger and H. Veith. An Abstract

Interpretation-Based Framework for Control Flow Recon-

struction from Binaries. In Proc. VMCAI, pages 214–228,

2009.

Talks Loopus - A Tool for Computing Loop Bounds for C Pro-

grams, 3rd Workshop on Invariant Generation (WING), 2010

The Reachability-Bound Problem, Programming Language

Design and Implementation (PLDI), 2010

The Reachability-Bound Problem, 15. Kolloquium Program-

miersprachen und Grundlagen der Programmierung (KPS)

/ Colloquium on Programming Languages and Principles of

Computation, 2009

Systematic Disassembly based on Abstract Interpretation,

Disputation / Disputationprüfung TopMath, 2008

Partial Decision Methods for the Halting Problem, Collo-

quium / Kolloquium TopMath, 2007

Termination of Goodstein Sequences, Application / Bewer-

bungsvortrag TopMath, 2006

Interactive Protocols, Presentation JASS, 2006

Awards Microsoft Research PhD Scholarship, since 2007

Max-Weber Programm of the state Bavaria, 2007–2009

Erfahrene Wege in die Forschung of TU München, since 2007

TopMath fast-track promotional program, since 2007

Several prizes in German mathematical competitions, 1998–

2003

Professional

Activities

Journal Referee

JSC 2011; STTT 2010; IPL 2010.

Conference Referee

DATE 2011; VMCAI 2011; POPL 2011; APLAS 2010;

LPAR 2010; RTSS 2010; CSR 2010; FMCAD 2010; ATVA

2010; WING 2010; ICTAC 2010; CAV 2010; ESOP 2010;

POPL 2010; VMCAI 2010; FMCAD 2009; CAV 2009; WING

2009.

Supervision of the diploma thesis of Moritz Sinn at TU

Darmstadt.

Microsoft Research

Redmond, USA March 2009 – May 2009

Supervised by Sumit Gulwani

Technische Universität Wien, FORSYTE Research

assistant

Vienna, Austria since February 2010

Ph.D. student in the group of Prof. Helmut Veith.

Technische Universität Darmstadt, FG FORSYTE

Research assistant

Darmstadt, Germany April 2008 – January 2010

Ph.D. student in the group of Prof. Helmut Veith.

Technische Universität München, I7 Research

assistant

Munich, Germany October 2007 – March 2008

Ph.D. student in the group of Prof. Helmut Veith.

	Introduction
	The Reachability-bound Problem
	Challenges in the Reachability-bound Problem
	Methodological Examples
	Difference between the Loop-bound and Reachability-bound Problem
	Amortized Analysis
	Cut-points and the Local Method

	Summary of our Approach
	Proof-rule Based Approach (Chapter 3)
	Size-change Abstraction Based Approach (Chapter 4)
	Fundamental Properties of the Size-change Abstraction (Chapter 5)

	Related Work
	Contributions

	Problem Definition and Main Steps of the Analysis
	Notation for Sets and Relations
	Program Model
	The Reachability-Bound Problem
	Main Steps of our Analysis
	Computing Transition Systems
	Disjunctiveness in Algorithm 1
	Pathwise Analysis in Algorithm 1

	Proof of Theorem 7

	Proof-rule based Approach
	Transitive Closure Computation
	Ranking Function for a Transition
	Arithmetic Iteration Patterns
	Boolean Iteration Patterns
	Bit-vector Iteration Patterns
	Data-structure Iteration Patterns

	Bound Computation
	Max Composition of Ranking Functions
	Additive Composition of Ranking Functions
	Multiplicative Composition of Ranking Functions
	Combining the Composition Rules

	Experiments
	Loop Bound Computation
	Disjunctive Invariant Computation

	Size-change Abstraction Approach
	Size-change Abstraction
	Order Constraints
	Size-change Abstraction (SCA)
	Heuristics for Extracting Norms

	Transitive Closure Computation
	Disjunctive Summarization of Loops with SCA
	Comparison of Blockwise and Pathwise SCA Analysis

	Bound Computation
	Contextualization
	Bound Algorithm
	A Complete Example

	Experiments

	Fundamental Properties of the Size-change Abstraction
	Order Constraints
	Computing Saturations

	Size-change Abstraction
	Size-change Systems
	Equivalence of Syntactic and Semantic Termination
	Deciding the Termination of SCSs

	Lower Bounds
	For-loops
	Value Intervals
	Offsets
	Counters
	Lower Bounds from For-loops
	Discussion of the Complexity of SCSs

	Related Work
	Bound Analysis by the SPEED project
	Termination Analysis by Ranking Functions and Transition Invariants
	Comparison of transition predicate abstraction (TPA) and SCA by Heizmann et al.
	Termination Analysis by Terminator
	Termination Analysis byLoopfrog
	Loop Summarization
	Disjunctive Invariant Generation
	Size-change Abstraction
	Other Approaches

	Conclusion
	Bibliography
	Curriculum Vitae

