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Abstract

Electrical stimulation of the nervous system plays a major role in todays

medical research and practice. Muscles can be stimulated to avoid disuse,

impaired function can be improved by targeted stimulation of certain nerves,

and brain and spinal cord function can be researched.

To appropriately apply these techniques, it is essential to understand the

underlying mechanisms involved in the artificial activation of the central and

peripheral nervous system by electrical stimulation. Complex nerve fiber

models exist that describe the influence of the applied electrical field on the

neurons. These models can be used to calculate, for example, excitation

thresholds and action potential propagation and thus offer the possibility

to study the electrical stimulation without complicated experiments.

In this work, the theory of neuron and axon models and the mode of their

artificial electrical activation are explained. An application is presented that

allows to experiment with two commonly used axon models. Parameters

can be varied and thresholds can be calculated. The goal is to provide

an application with which students and interested people can learn the

properties of electrical stimulation and the differences between commonly

used axon models. The application is designed to offer as much freedom

to the user as possible, in order to enable a learning by experimenting

approach.
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Kurzfassung

Die elektrische Stimulation des Nervensystems spielt eine wichtige Rolle

in der heutigen medizinischen Forschung und Praxis. Muskeln können

stimuliert werden um Inaktivitätsatrophie vorzubeugen, krankheitsbedingt

eingeschränkte Fähigkeiten können verbessert werden und das Nervensys-

tem kann erforscht werden. Um all diese Anwendungen in angemessener

Weise einzusetzen, ist es wichtig die zugrundeliegenden Mechanismen der

elektrischen Stimulation des Nervensystems zu verstehen. Es gibt mathe-

matische Modelle von Neuronen, die die Auswirkung des elektrischen Feldes

auf die Nerven biologisch korrekt mit Differenzialgleichungen beschreiben.

Solche Modelle können zum Beispiel dazu verwendet werden, um die Schwel-

lenwerte der Aktivierung und die Weiterleitung von Aktionspotentialen

zu beschreiben. Daher bieten uns solche Modelle eine Möglichkeit die

elektrische Stimulation ohne komplizierte Experimente zu untersuchen und

lehren. In dieser Arbeit wird die Theorie von Axonmodellen und deren

künstlichen elektrischen Stimulation beschrieben. Weiters wird ein Pro-

gramm vorgestellt, das erlaubt mit intra- und extrazellulärer Stimulation

von Axonen zu experimentieren. Parameter können variiert werden um

deren Einfluss zu verstehen. Das Ziel der Arbeit ist es, ein Programm bere-

itzustellen, welches Studenten erlaubt, durch experimentieren, die Funktion

der künstlichen Stimulation und die Eigenschaften der Modelle zu lernen.
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CHAPTER 1
Introduction

An applied electrical field can be used to artificially stimulate the ner-

vous system. There are numerous medical and scientific applications for

the electrical stimulation of the nervous system. Inactive muscles can be

repetitively activated in order to prevent muscular atrophy due to disuse

(Dimitrijevic and Dimitrijevic, 2002), impaired movement function can be

enhanced, e.g. with the stimulation of the peroneal nerve of a person with

foot drop (Liberson, Holmquest, Scot, and Dow, 1961), the central nervous

system (CNS) function can be researched (e.g. Minassian, Persy, Rattay,

Dimitrijevic, Hofer, and Kern, 2007), and many more applications exist.

Computer simulation of the electrical stimulation of the nervous sys-

tem often accompanies research of functional electrical stimulation meth-

ods, biomedical engineering and neuromodulation (Rattay, Greenberg, and

Resatz, 2003), e.g. for spinal cord stimulation (Coburn, 1985; Rattay, Mi-

nassian, and Dimitrijevic, 2000; Danner, Hofstoetter, Ladenbauer, Rattay,

and Minassian, 2011) and deep brain stimulation (McIntyre, Grill, Sherman,

and Thakor, 2004), since the effects of the artificial intra- and extracellular
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CHAPTER 1. INTRODUCTION 10

stimulation can be simulated using computer models based on the work of

Hodgkin and Huxley (1952).

For people who use or want to simulate the stimulation of the nervous

system, it is important to understand the mechanisms involved. Thus an

application, which can be used to teach and learn the influence of intra- and

extracellularly applied electrical fields on the nervous system is presented

in this thesis. The analysis of different substructures of a neuron has shown

that the part most excitable by external electrical stimulation is the myeli-

nated axon. Due to the high value of the membrane capacitance of the soma

compared to that of the non-myelinated node of Ranvier, the probability

to excite a nerve at the soma region is low (Porter, 1963; Nowak and Bul-

lier, 1998; Rattay, 1998, 1999). Myelinated fibers are more excitable than

unmyelinated ones and large-diameter fibers have lower thresholds than

the thinner ones (Ranck, 1975; Rattay, 1987, 1990; Roth, 1994). It should

be noted that the relationship between excitation threshold and the fibre

diameter is not linear. Thresholds drastically increase for small-diameter

fibers (Veltink, van Alsté, and Boom, 1988; Struijk, Holsheimer, and Boom,

1993). Thus the emphasis of the application is on the electrically stimulated

axon.

The complex and theoretical nature of the topic can be simulated and il-

lustrated, and thus an interactive approach for learning and teaching seems

optimal, but until now no adequate interactive application exists that can

be easily used to simulate the effects of electrical stimulation of the myeli-

nated axons. Therefore the goal of this work is to offer an application that

can be used to teach and learn: (i) the effects of intra- and extracellular

stimulation, (ii) the conducting properties of myelinated axons and (iii)

the differences between the most commonly used models. The application
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should be useable as a supplement to a course, as well as a self contained

package to learn without supervision. An optimal learning outcome shall

be secured by giving the incentive to experimentally interact with the stim-

ulation settings.

To give a good overview of the tools available to simulate extracellu-

lar stimulation, the application is able to calculate the activating function

(Rattay, 1986, 1988, 1989), which can be used to approximate the influ-

ence of extracellular stimulation (see chapter 2 for details), and simulate

following axon models, which are applicable also for the human case:

• CRRSS model (Chiu, Ritchie, Rogart, and Stagg, 1979; Sweeney, Mor-

timer, and Durand, 1987)

• MRG model (McIntyre, Richardson, and Grill, 2002)

The CRRSS model is an adaptation of the McNeal model for mam-

malian myelinated nerve fibers and is widely used, but has been shown to

overestimate threshold values (Wesselink, Holsheimer, and Boom, 1999).

The MRG model is a double cable model with a detailed reproduction of

the ion channels and the anatomy of the nerve fiber. Further Kuhn, Keller,

Lawrence, and Morari (2009) have shown that the MRG model realistically

reproduces the threshold values for transcutaneous electrical stimulation.

Different cases can be selected, i.e. variations of intracellular stimula-

tion and extracellular stimulation with point electrodes. Most parameters,

i.e. stimulation strength, pulse shape, distance of the electrode, etc., are

changeable by the user to investigate their effects. In combination with

the documentation the user should be able to understand the underlying

concepts and will get familiar with the computer simulation of electrically

stimulated nerve fibers.
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This thesis consists of two main parts:

• Chapter 2 explains in detail the anatomy and physiology of nerve

cells, how they can be stimulated and how neuron models in general

and axon models in detail work.

• Chapter 3 deals with the implementation and documentation of the

application and illustrates fundamental properties of neurons under

the influence of an electrical field with the help of examples using the

presented application.



CHAPTER 2
Background

In the following paragraphs the biological background is summarized and

an introduction into neuron and nerve fiber models is given. Three models

of myelinated axons are described in detail.

2.1 Anatomy and physiology

The nervous system mainly consists of nerve cells (neurons) and glia cells,

which provide support, nutrition and with the help of myelin improve the

speed of action potential propagation (Bear, Connors, and Paradiso, 2001).

Neurons consist of many parts, but most important for the simulations

of the membrane potentials are the soma, the dendrites, the axons and the

synapses. The soma is the main cell body. The dendrites are the projections

of the neuron that act as a site of synaptic contacts of other neurons. The

axons are longer projections that conduct the action potential to other cells

and the synapses are the electrochemical connections on the end of an axon

to another cell (Kandel, Schwartz, and Jessell, 2000).

13



CHAPTER 2. BACKGROUND 14

The membrane of the neuron is tightly structured and thus prevents ions

from passing through, but even at rest there is small conductivity (Pfützner,

2003). There are different ion concentrations on the extracellular and in-

tracellular parts of the neuron that are held constant by energy consuming

ion pumps (Bear et al., 2001). When the membrane potential—the poten-

tial between the inner and outer part of the membrane—exceeds a certain

threshold, sodium gates open and Na+ ions flow into the cell and a depolar-

ization occurs shorty after potassium channels open and K+ ions flow out

of the cell to counteract the depolarization. After a short period of hyper-

polarization the membrane potential returns to its initial state (Pfützner,

2003). This is called an action potential. These action potentials travel

along the axons and are propagated through the synapses to different neu-

rons (Bear et al., 2001). The resting state is usually at about −70 mV and

during depolarization an about 100 mV higher value is reached. The action

potentials travel along the neuronal membrane and are propagated to the

next cell via the synapses. The main computational property is believed

to be the membrane potential of the neurons. There exist many different

types of neurons, neurons that generate excitatory or inhibitory post synap-

tic potentials (potentials that are generated by the pre-synaptic neuron and

influence the post-synaptic neuron), bursting neurons, chattering neurons,

resonating neurons and many more (Dayan and Abbott, 2001).

2.2 Computer models of neurons

The majority of artificial neural network models are based on the prop-

agation of continuous variables from one processing unit or ’neuron’ to

the next (Maass and Bishop, 2001). However, real neurons do not work
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like that. Simplistically speaking, neurons operate with discrete events,

so called action potentials or spikes. Further the frequency and timing of

these action potentials play an important role in their computational capa-

bilities (Izhikevich, 2007). With the work of Hodgkin and Huxley (1952) on

the quantitative properties of the squid axon, the simulation of excitation

of a single neuron became possible. And with increasing computational

power and insight from neuroscience more complex models of neurons and

networks became available (Dayan and Abbott, 2001). The motivation of

these simulations is twofold, on one side it is the desire to enhance our

understanding of information processing in biological networks and on the

other side it is the goal creating new information processing technologies

(Maass and Bishop, 2001). Here we are interested in the former.

2.2.1 Formal or abstract spiking models

A possibility, besides modeling detailed membrane dynamics, is to use ab-

stract models that capture certain properties that are of interest.

2.2.1.1 Integrate and fire

One such model is the integrate and fire (IF) model that dates back to

1907 and was first described by Lapicque (1907). It consists of a single

capacitor that represents the membrane. And with additional current—

either through post synaptic potentials or through artificial stimulation—

the membrane potential changes from its rest potential and when a certain

threshold is exceeded the potential will be reset and an action potential is

assumed to be generated. The model does not generate a spike by itself, it

just consists of the discharge of a capacitor. The equations can be written
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as
dV m

dt
= −I inj/c (2.1)

where V m is the membrane potential, i.e. the potential difference between

extra- and intracellular milieu, I inj is the injected current and c the capacity

of the membrane.

The timing of spike generation can be used as post synaptic potentials

for other neurons. The post synaptic potentials are mostly defined by a

synaptic weight and a simple time dependence (e.g. alpha-functions). With

these models it is already possible to construct large scale networks and

observe their dynamic properties.

An extension of the IF model is the leaky integrate and fire model that

adds a resistor in parallel to the capacitor and introduces time dependency

of the input. In other words postsynaptic potentials are not just summed

up, they are also decaying if the threshold is not reached. Thus spike timing

becomes important with this model. The model equation is

dV m

dt
= −(I inj + g(V m))/c (2.2)

where g is the conductance of the membrane.

Both models are subject to a low computational cost and are easily

applicable to large scale networks, but lack many properties of the Hodgkin-

Huxley like neurons. For example real neurons do not produce all or nothing

signals, action potentials can be of different size, they do not sum up input

signals, rather they are resonators that respond to certain frequencies better

than to others and finally there is no exact threshold (Izhikevich, 2006,

2007). All these features are incorporated into the Hodgkin-Huxley models

due to their exact replication of the ion dynamics, but are neglected in

the IF and leaky-IF models. Moreover the simulation of axons and action

potential propagation along axons is not possible with such models.
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Figure 2.1: The Izhikevich model for spiking neurons. Upper row (from left
to right): Equation used for computation, reseting of time dependent vari-
ables, parameter space for the different behavior illustrated below. Lower
two rows: an excerpt of different model behaviors including stimulation
pulse below. Adapted from Izhikevich (2003).

In the next subsection a model is described that captures many dif-

ferent properties of the Hodgkin-Huxley neurons but still remains a low

computational cost.

2.2.1.2 Izhikevich: A simple model of spiking neurons

The Izhikevich (2003) model can replicate a wide variety of different neu-

ronal behavior that occurs in the central nervous system. It is a result

of mathematical analysis of the Hodgkin-Huxley and other models and re-

produces many of their properties. In figure 2.1 the model equations are
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depicted including the parameter space and the resulting behavior. The

model still works with a resetting mechanism (like the IF/LIF model) when

the threshold of 30 mV is surpassed. It can be solved by forward Euler

integration with a step size of 1 ms and thus has a very low computational

cost. It is well suited for simulation of large scale networks with various

kinds of neurons but simulation of the extracellular influence is not easily

possible.

In the following section a class of neuron models is discussed that sim-

ulates the ion channels of the neuronal membrane and produce a realistic

dynamic behavior of the membrane potential of neurons.

2.2.2 Hodgkin-Huxley-like or conductance based

models

Hodgkin and Huxley (1952) were the first to quantitatively describe the

membrane potential of neurons including the simulation of ion channels.

Their work was based on the squid axon with large diameters and was thus

easier to investigate than other axons. With the patch clamp technique—a

method where the current influx of ion channels at a constant voltage can

be measured—equations for different ion channels could be deduced. With

a minimal set of two channels, i.e. potassium and calcium, in combination

with a leakage conductance and a capacitance in parallel an action potential

can be produced, the equivalent circuit can be seen in figure 2.2.

With the aid of the equivalent circuit (figure 2.2) the equations can be

deduced using Kirchoff’s law, which states that the sum of current influx

is equivalent to the sum of current efflux or in other words, when influx is

seen as positive and efflux as negative current flow, it states that the sum
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Figure 2.2: Equivalent circuit of the Hodgkin-Huxley model including a
leakage conductor, a capacitor, and two active membrane channels (potas-
sium and sodium). R denotes the maximal resistance, C the capacity and
E the reversal potential. Adapted from Hodgkin and Huxley (1952).

of the current flux at one point is 0:∑
I = 0. (2.3)

The equation for the conductance (i.e. leakage current) can be written

as:

I lk = glk · (V m − Elk) (2.4)

where glk is the conductance, V m is the membrane potential, Elk is the

reversal or Nernst potential and I lk is the resulting current flux. For the
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capacitance the equations are given as follows:

Ic =
dV m

dt
· c (2.5)

where c is the capacitance, Ic is the current flux of the capacitor and t is

the time. Substituting the equations of the active ion channels with Iactive

results in:

Iactive + glk · (V m − Elk) +
dV m

dt
· c = 0. (2.6)

Using equivalent transformations the equation can be written as follows:

dV m

dt
= −(Iactive + glk · (V m + Elk))/c. (2.7)

In this form the equation represents an initial value problem and can be

easily solved using numerical integration methods (i.e. forward or backward

Euler or more complex methods if necessary).

The active channels are described in a voltage dependent way using the

same equation as the leakage conductance, but substituting the constant

conductance g with a time and voltage dependent conductance g(t, V )

g(t, V m) = ḡ ·
∏
i

mi(t, V
m)pi (2.8)

where ḡ is the maximal conductivity of the ion channels, pi is an integer

and mi is a differential equation of the form:

dm(t, V m)

dt
=

m∞(V m)−m(t, V m)

τm(V m)
(2.9)

= αm(V m) · (1−m)− βm(V m) ·m. (2.10)

The parameters α and β for all m are determined experimentally with

patch and voltage clamp methods and differ between cell types and ion

channels.

In figure 2.3 the simulation of the original Hodgkin-Huxley model is

depicted. The model is excited by injection of a current. It can be seen
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Figure 2.3: Simulation of the original Hodgkin-Huxley model from 1952
with current injection. The change of voltage from the resting potential
and the change of conductance due to the influence of the ion channels is
depicted. Adapted from Hodgkin and Huxley (1952).

how the interplay between the ion channels generate the action potential

including de- and hyperpolarization.

Note that a neuron in this simulation is abstracted to be homogenous

and not having any axons or dendrites and thus is simulated as a single

set of equations. When one wants to take into account the propagation of

action potentials along the dendrites and axons and incorporate different

geometric structures this approach has to be extended.

This can be done by compartmentalization and using the cable the-

ory (Dayan and Abbott, 2001; Niebur, 2008). The cable theory describes

how current flows along a cable. Neurons can be seen as branching cables

and thus the cable theory can be applied to calculate the current flux be-

tween different parts of the neurons. A neuron can be divided into several

parts—so called compartments—to account for geometric variations within

the neurons, i.e. differences between the soma, dendrites and axons. Each
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compartment has different geometric properties and is numerically treated

as an isopotential element. If the compartments are small enough a suffi-

ciently close approximation of the electrical phenomena in a complex neuron

or axon can be described (Rattay et al., 2003). Each compartment can be

connected to n other compartments. To do this, intracellular current flux

is modeled into the main equation, resulting in:

dV m

dt
= −

(
Iactive + glk · (V m − Elk) +

∑
n

I intn

)
/c (2.11)

where I int represents the current influx from compartment n and is given

by:

I intn =
Ei
k − Ei

n

(Rk +Rn)/2)
(2.12)

for every compartment n that is connected to compartment k, where Ei is

the intracellular voltage measured against the ground—in the special case of

no extracellular potential influences and no additional structural modeling

it is equivalent to the membrane potential V m.

With these tools available one can model any kind of neurons if enough

knowledge about the makeup of the neuron is known (i.e. ion channels,

structure, conductance etc.; De Shutter, 2010). This enables scientists to

model structures present in the brain, with the only limit being the knowl-

edge available of these structures. Thus dynamic properties can be inves-

tigated without conducting time consuming and possibly inversive in-vitro

experiments.

When considering network models, these kinds of models are most useful

for small neural networks where many properties are known (Calabrese and

Prinz, 2010). Such models have a high computational cost (Izhikevich,

2003) and if not much is known about the properties of the neurons that

one wants to simulate only the most common and general properties of the
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neurons can be assumed as true and thus little additional information is

gained by using complex Hodgkin-Huxley-like models.

In the case of the extracellular stimulation of the nervous system—the

case treated here—models based on Hodgkin and Huxley (1952) dynamics

are the most useful. Because the large diameter myelinated axons are the

most excitable parts of the nervous system (see chapter 1) simulations often

neglect the soma and non-myelinated parts of the neuron, e.g. branchings

before the synaptic connections. In the simplest case a model of a myeli-

nated axon consists of two different compartments, one for the node of

Ranvier and one for the myelinated internode, alternately chained together.

The compartment of the node of Ranvier contains a series of ion channels

in parallel to the leak conductance and a capacitance. It is not covered

in myelin, in contrary to the internode, whose ion channels—due to their

scarcity—are usually neglected. The internode is thus modeled simply as a

capacitance in parallel with a conductance, taking into account the special

electrical properties of the myelin. It should be noted that more complex

models exist that model more complex geometrical properties of the axon

and also include ion channels along the internode (see section 2.3.3; Halter

and Clark, 1991; McIntyre et al., 2002).

Here we are interested in the adequate description of the complex, non-

linear behavior of the membrane potential, under the influence of a time

varying electrical field (Rattay and Aberham, 1993). It is possible to ap-

proximate the influence of the electrical field on the axon. This can be done

with the activating function (Rattay, 1986, 1988, 1989, 1990, 1999). The

activating function fn for compartment n is the driving term of the external

potential, or the equivalent injected current:

fn = 1/c

(
V e
n−1 − V e

n

Rn−1/2 +Rn/2
+

V e
n+1 − V e

n

Rn+1/2 +Rn/2
+ ...

)
(2.13)
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where V e is the extracellular potential, c the membrane capacity and R the

axial resistance.

The activating function represents the rate of membrane voltage change

if the neuron is in resting state before the stimulation. Its physical dimen-

sions are V/s or mV/ms, respectively. Put into other words it represents the

slope of the membrane voltage at the beginning of the stimulation (Rattay

et al., 2003). Following McNeal (1976)’s simplifications for long fibers of an

ideal internode membrane, with both membrane capacity and conductance

assumed to be 0 the equation for each node is:

dV m
n

dt
=

[
−iion,n +

d∆x

4piL
·
(
V m
n−1 − 2V m

n + V m
n+1

∆x2
+
V e
n−1 − 2V e

n + V e
n+1

∆x2

)]
/c

(2.14)

where d is the constant fiber diameter, ∆x the node-to-node distance, L

the node length ρi the axomplasmatic resistivity, c the capacity and iion the

ionic currents. From this the activating function follows as:

fn =
d∆x

4ρiLc

V e
n−1 − 2V e

n + V e
n+1

∆x2
. (2.15)

In this case the activating function is proportional to the second order

spatial difference of the extracellular potential along the fibers. When L =

∆x and ∆x→ 0 (2.15) is:

f =
d

4ρic
· δ

2V e

δx2
(2.16)

and is proportional to the second order spatial differential along the fiber.

Positive values of f suggest a depolarization of the membrane potential and

negative values a hyperpolarization of the membrane potential. Generally

speaking, since f corresponds to the second order spatial differential of the

extracellular potential along the fiber, its curvature induces a change in

membrane potential. Thus, the curvature of the fiber, the makeup of the
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electrical field and transitions between medias of different conductivities

influence the excitability of nerve fibers. The effect of fibre bending is well

known from cortical stimulation. Sharp changes of the fibre direction of

pyramidal cells in the motor cortex result in spike initiation at the sites of

the bends when electrical (Iles, 2005; Wongsarnpigoon and Grill, 2008) or

magnetic stimulation is applied (Maccabee, Amassain, Eberle, and Cracco,

1993; Iles, 2005; Amassian and Maccabee, 2006). All the mentioned effects

will be illustrated using the presented learning tool, AxonSim, in chapter

3.2.

2.3 Axon models

In the following subsections three different axon models will be described,

first the model by McNeal (1976), which marks the first attempt to effi-

ciently model an extracellularly stimulated axon. Followed by the CRRSS

(Chiu et al., 1979; Sweeney et al., 1987) and the MRG model (McIntyre

et al., 2002), the former a widely used model for the mammalian nerve

fiber and the latter a recent, detailed model of the axon geometry and ion

channels.

2.3.1 McNeal model

The nerve fiber model of McNeal (1976) was a milestone in computer mod-

eling and simulation in biomedical engineering. It was the first spatial

model of an axon stimulated by an external point source using a network

consisting of a set of local models (Rattay and Aberham, 1993).

The model was constructed using the following assumptions: (i) the

fiber is infinitely long, (ii) the nodes of Ranvier are equally spaced, (iii)
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spherical electrode located directly over and 1 mm away from
one of the nodes. A consideration of other electrode geome-
tries is left for future analysis. Only monophasic, constant-
current pulses are considered. Subthreshold responses are pre-
sented, a strength-duration curve is calculated and the effect
of fiber diameter on threshold is examined.

GENERAL THEORY
A myelinated nerve fiber can be approximated by the equiv-

alent electrical network shown in Fig. 1. Symbols for variables
and constants and the values of constants used in this paper
are given in Table I. The assumptions generally follow those
of FitzHugh [71, except that it is assumed here that the my-
eln sheath is a perfect insulator. The validity and effect of
this assumption is considered later in the Discussion section.
Following FitzHugh, it is assumed that the fiber is infinitely
long with nodes that are regularly spaced. Both intemodal
distance and axon diameter are assumed to be proportional to
fiber diameter. The nodal gap width is considered to be a con-
stant for all fiber diameters which implies that the nodal mem-
brane area is also proportional to fiber diameter. This is con-
sistent with the theoretical predictions of Rushton [20] and
Dun [211. In addition to FitzHugh, the reader is referred to
Goldman and Albus [101 for a review of the experimental
evidence supporting the above assumptions.
The internodal conductance Ga, can be calculated from

Ga = ird2/4piL. (1)

The membrane impedance is represented by a capacitor Cm
and conductance Gm in parallel which are given by

Gm - g 7rdl

and

Cm = Cm rrdl.

(2)

(3)

Note that all three of these components are proportional to
fiber diameter. (Ga ' d since L ax d. See previous paragraph.)
For a given diameter, Ga and Cm are constants, but Gm is, in
general, a complex function of the membrane potential.

TIhis model assumes that the electrical potential outside the
fiber is determined only by the stimulus current, tissue outside
the nerve fiber and the electrode geometry, and is not dis-
torted by the presence of the fiber. This is reasonable since
the dimensions of a single nerve fiber are small and because
our interest is limited to the period of time prior to excitation
(before internally generated currents become significant). The
small dimensions of the fiber also allow the simplification that
the external surface of the membrane at any one node is at an
equipotential. This implies that variations in the membrane
current density over the nodal surface can be neglected. These
assumptions are considered further in the Discussion section.

In this paper, it will be assumed that the medium,extemal to
the nerve fiber is infinite and isotropic. This assumption is not
vital to the model, and both anisotropic and finite external
mediums can be considered. Calculation of the potential
throughout the medium, of course, becomes more complex as
more realistic models for the extemal environment are
formulated.

Ve,n Ve, n+l

Fig. 1. Electrical network representation of a myelinated nerve fiber.

TABLE I
VARIABLES AND CONSTANTS

Variables
t
Vn

In
Ve,n
Vi,n
Ga
Gm
Cm
D

d

L
Ii,n
iNa
iK
ip
iL
I
T

Constants

Pi
Pe

Cm

gm

1

LID

d/D

Vr

110 Q2 * cm
300 12 cm

2 ,uF/cm2

30.4 mmho/cm2

2.5 jum

100

0.7

-70 mV

time (microseconds)
membrane potential at node n minus
the resting potential (millivolts)

membrane current at node n (pa)
external potential at node n
internal potential at node n
axial internodal conductance
nodal membrane conductance
nodal capacitance
fiber diameter (external myelin
diameter)

axon diameter (internal myelin
diameter)

internode length
total ionic current at node n
sodium current density
potassium current density
nonspecific delayed current density
leak current density
stimulus current
stimulus duration

axoplasm resistivity (Stampfli [251)
resistivity of external medium (Abzug

etal. [19])
membrane capacitance/unit area
(Frankenhaeuser and Huxley [ 1 )

membrane conductance/unit area
(Frankenhaeuser and Huxley [1 ])

nodal gap width (Dodge and
(Frankenhaeuser [26])

ratio of internodal space to fiber
diameter (Hursh [27] and Dodge
and Frankenhaeuser [26])

ratio of axon and fiber diameters
(Goldman and Albus [101 )

resting potential (Frankenhaeuser and
Huxley [ I 1 ] )

The membrane current at node n is equal to the sum of the
incoming axial currents and to the sum of the capacitive and
ionic currents through the membrane. Hence,

dVi,
Cm dtn +Ij,= Ga(Vj,ns -l 211k,, + (4)al

For subthreshold stimuli, it can be assumed that the membrane
conductance is constant. (See Discussion.) The ionic current
at node n is then given by Gm,,Vn. Substituting this into (4), it
can be shown that the myelinated fiber is described by the fol-
lowing infinite set of linear, first-order differential equations:

330

(4)

Figure 2.4: The equivalent circuit of the McNeal model. Note that only
the membranes of the nodes of Ranvier are modeled, myelin is assumed as
a perfect isolator (adapted from McNeal, 1976).

inernodal distance and axon diameter are proportional to the fiber diameter,

(iv) the nodal gap is constant for all fiber diameters and (v) the myelin is

a perfect isolator. Thus, the model simulates only the nodes of Ranvier as

isopotential compartments that are connected with a conductance with the

neighboring nodes. The nodes of Ranvier are modeled using Frankenhaeuser

and Huxley (1964) membrane dynamics that have been derived from the

frog axon. The equivalent circuit can be seen in figure 2.4. The membrane

current of the node of Ranvier can be described by

dV m

dt
= [Ga(Ei

n−1 − 2Ei
n + Ei

n+1)− Inn ]/c (2.17)

where Ga is the axonal conductance and

In = Gm(V m − V r) (2.18)

were Gm is the sum of the conductance as specified by the ion channels

modeled by Frankenhaeuser and Huxley (1964) and V r is the reversal po-
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tential. All the equations and parameters can be found in McNeal (1976)

and Frankenhaeuser and Huxley (1964).

Since in this work we are interested in simulating human or mammalian

nerve fibers and this model is based on the frog, it is not used in AxonSim

but mentioned here due to its importance in the development of nerve fiber

models.

2.3.2 CRRSS model

The Chiu-Ritchie-Rogart-Stagg-Sweeney (abbreviated to CRRSS; Chiu

et al., 1979; Sweeney et al., 1987) is a widely used nerve fiber model to

simulate the mammalian axon. It is similar to the McNeal (1976) model

but removes the assumption that myelin is a perfect isolator and introduces

a conductance and capacity of myelin. Thus, the model consists of two dif-

ferent compartments, one for the node of Ranvier and one for the internode,

that are alternatingly chained together. An illustration of the equivalent

circuit can be seen in figure 2.5.

Each compartment, whether node of Ranvier or internode, can be mod-

eled as specified in (2.11) and (2.12). The influence of the extracellular

potential can be written as:

Iext =
∑
n

V e
n − V e

k

Ra

. (2.19)

Thus, each compartment is given by:

dV m

dt
· c = −Iactive − glk · (V m − Elk)−

∑
n

En − Ek
Ra

−
∑
n

V e
n − V e

k

Ra

(2.20)

where n is the count of connected compartments, c is the membrane capacity

and Ra the axonal resistance of the k-th compartment. Their values depend
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Fig. 4.  Electrical network model of a myelinated nerve fiber. Internodes were 
represented by single compartments with constant membrane conductance 
Gm. Nodes of Ranvier were modeled as active membranes. The batteries ENa 
and El result from differences in ion concentrations of the intracellular and 
extracellular fluids. 

boundary conditions with !0 = 0 V were applied to the 
external top and bottom surfaces. Applying Neumann 
conditions to these surfaces in eSCS resulted in a shifted, 
unnatural extracellular voltage distribution along the fiber 
pathways since the electrode was not positioned in the vertical 
center of the model. The shapes of the voltage distributions 
and thus the sites of spike initiation were identical in both 
cases, using Dirichlet and Neumann conditions. The threshold 
voltages differed by maximally 3%. 

The steady-state solutions of this volume conductor 
problem were calculated with the finite element method using 
the software package COMSOL Multiphysics 3.4 (COMSOL 
Inc., Burlington, MA). Degrees of freedom: 627547 (tSCS), 
727106 (eSCS). The number of mesh elements in the eSCS 
simulation was larger due to a refined discretization of the 
solution domain surrounding the small model implant. The 
final results of the volume conductor model were the 3D 
electric potential distributions evaluated along the trajectories 
of the target nerve fibers. 

B. Nerve Fiber Model 
In order to simulate neural reactions the nerve fiber was 

divided into compartments each represented by an electrical 
circuit (Fig. 4). Node of Ranvier segments alternate with 
internodes which consider the insulating myelin sheath. The 
transmembrane voltage Vn = Vi,n–Ve,n–Vrest of the n-th 
compartment in response to external potentials Ve can be 
calculated as 

!"
#+"

+

$%
& +"

+"=

+"

+"

a

1ne,ne,1ne,

a

1nn1n
nion,

nm,

n

2                    

21

R
VVV 

R
VVVI

Cdt
dV

 (4) 

where Cm is the membrane capacitance and Ra the intra-axonal 
resistance between the centers of two adjacent compartments 
[21]. Internodes are elements with passive membranes and 
were assumed to have a constant membrane conductance Gm,n. 
In these cases the ionic membrane current Iion,n can be 
formulated as (5). 

nnm,nion, VGI =  (5) 

n
m

nm, ld
N
cC #=  (6) 

n
m

nm, ld
N
gG #=  (7) 

With values assumed for the specific capacity cm and the 
conductivity gm of the membrane the variables Cm,n (6) and 
Gm,n (7) can be approximated, which depend on the number N 
of layers of myelin wrapped around the internodal cylinders 
with diameter d and length ln [33]. For node of Ranvier 
compartments additional differential equations had to be 
included to calculate Iion,n. The nerve membrane model 
developed by Chiu et al. (CRRSS model) [34], [35] was used 
to simulate the voltage dependent ion channel dynamics in 
these active parts of the axon. The parameters used for 
simulation are listed in Table II.  

The immediate membrane voltage change of each node and 
internode in response to an externally applied field can be 
estimated with the activating function f (8) [19], [37].  

TABLE II 
PARAMETER VALUES USED FOR THE NERVE FIBER MODEL 

Parameter Value Unit Referemce 
D Fiber diameter 20 µm [19] 
d Axon diameter 0.64 D µm [5] 

Node length 1.5 µm [5] ln Internode length 100 D µm [5] 
cm Membrane capacity 0.6 µF/cm!  
$a Axoplasmatic resistivity 0.055 k% cm [35] 
gm Membrane conductivity 1 mS/cm!  
N Number of myelin layers 400 1  

gNa Na channel conductivity 1445 mS/cm! [35] 
gl Leak channel conductivity 128 mS/cm! [35] 

ENa Na channel equilibrium 
potential 115 mV [35] 

El Leak channel equilibrium 
potential -0.01 mV [35] 

To obtain the lowest threshold values, fibers with the largest diameters were 
simulated. gm was given the proper value to achieve the propagation velocity 
(120 m/s) expected for myelinated nerve fibers with 20 µm diameter. N was 
calculated assuming a lamellar double layer thickness of 18 nm in the myelin 
sheath [36], resulting in N = (D–d)/0.018. 

TABLE I 
CONDUCTIVITIES OF THE MODELED STRUCTURES 

Material Conductivity (S/m) Reference 
Electrodes 0.01 [14] 
Skin 0.0025 [28],[29] 

Fat 0.04 [30] 
General thorax 0.25 [5], [16] ,[30] 
Muscle (transversal) 0.08 [31] 
Muscle (longitudinal) 0.5 [31] 
Vertebral bone 0.02 [28] 
Vertebral disc 0.6 [32] 
Epidural fat 0.04 [41] 
Cerebrospinal fluid 1.7 [5],[41] 
White matter (transversal) 0.083 [5],[41] 
White matter (longitudinal) 0.6 [41] 
Grey matter 0.23 [41] 

[5], [14], [16], and [41] are SCS computer modeling studies 
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Figure 2.5: The equivalent circuit of the CRRSS model. In contrast to the
McNeal model also the myelin is modeled as separate compartments with
a conductance and a capacity. The node of Ranvier is modeled with one
active ion channel, the Na ion channel (adapted from Ladenbauer et al.,
2010).

on the compartment diameter d, the length l and the specific membrane

capacity cm or axoplasmatic resistivity ρ. They can be calculated by:

c = cmdπl (2.21)

Ra = ρ
4l

d2π
. (2.22)

For the internode Iactive equals 0 and c and glk are calculated as follows:

c =
cm
N
dπl (2.23)

glk =
gm
N
dπl (2.24)

where N is the number of myelin layers.
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For the node of Ranvier Iactive consists of a single sodium channel that

is specified by

Iactive = GNam2h(V m − ENa) (2.25)

GNa = gNadπl (2.26)

where ENa is the sodium reversal potential and m and h are gating variables

that are specified by:

dm

dt
= [αm(1−m)− βmm]k (2.27)

= [−(αm + βm)m+ αm]k (2.28)

dh

dt
= [αh(1− h)− βhh]k (2.29)

= [−(αh + βh)h+ αh]k (2.30)

k = 30.1T−3.7 (2.31)

αm =
97 + 0.363V m

1 + exp(31−Vm

5.3
)

(2.32)

β =
αm

exp(V
m−23.8
4.17

)
(2.33)

α =
βh

exp(V
m−5.5

5
)

(2.34)

β =
15.6

1 + exp(24−Vm

10
)

(2.35)

where T is the temperature. All parameters are taken from Ladenbauer

(2008) and are listed in table 2.1.

2.3.3 MRG model

In the following the MRG model is described according to Danner (2010)1:

The McIntyre-Richardson-Grill (MRG) axon model has as a double-cable

1All equations and the derivations of the equations are taken from Danner (2010)
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Table 2.1: Parameters of the CRRSS model

Fiber diameter D variable

Axon diameter d 0.64Ḋ cm
Node length ln 1.5 · 10−4 cm
Internode length ln 100D cm
Specific membrane capacity cm 1 µF/cm2

Axoplasmatic resistivity ρ 0.07 kΩcm
Membrane conductivity, passive gm 1 mS/cm2

Number of myelin sheath layers N 75 · 104D
Sodium channel conductivity gNa 1445 mS/cm2

Leak channel conductivity glk 128 mS/cm2

Equilibrium potential for sodium channels ENa 115 mV
Equilibrium potential for leakage conductance Elk -0.01 mV

Adapted from Ladenbauer (2008)

structure where current flows both in the axonal and in the the space be-

tween the axon and the myelin sheath, the periaxonal space. The model

follows the hypothesis that the geometry of the axon plays a major role in

its function. With the exception of Halter and Clark (1991) previous mod-

els were not strictly based on the morphology obtained from experiments

(McIntyre et al., 2002). It was shown that the myelin attachment segment

(MYSA) of the axon plays an important role in the depolarizing after po-

tentials (DAP), thus a model should incorporate these parts of the axon

(Barrett and Barrett, 1982; McIntyre et al., 2002). According to Barrett

and Barrett (1982) the importance of the DAP lies in the increased ex-

citability shortly after an action potential and that the DAP is subject to a

passive capacitative current, which is probably a result of a discharge of the

internodal axonal membrane capacitance through a resistive current path-

way beneath or through the myelin sheath. Thus, the double cable structure

and sophistic modeling of the myelin sheath as well as the myelin attach-

ment and paranodal regions seem plausible and helpful to achieve better
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results in simulations, at least according to the aforementioned properties.

Later, it was shown that the MRG model realistically reproduces excitation

threshold values in the case of transcutaneous electrical stimulation (Kuhn,

2008; Kuhn et al., 2009). This phenomenon was subsequently confirmed for

the case of transcutaneous and epidural spinal cord stimulation (Danner,

2010). In comparison the CRRSS model has been shown to overestimate

the threshold values of extracellular stimulation Wesselink et al. (1999).

Node Mysa

Flut Stin1 Stin2

Myelin

Axon

periaxonal space

Figure 2.6: Visualisation of the geometry and the compartments of the
MRG model (adapted from Danner, 2010).

The geometry of the MRG model consists of 10 segments between two

neighboring nodes. Namely the myelin attachment segment (MYSA), the

paranode main segment (FLUT) and internode segments (STIN). The ab-

breviations stand for (i) STIN: stereotyped internodal region (ii) FLUT

paranodal main segment, because of it being a crenated or fluted region.

The detailed geometry is illustrated in figure 2.6. Models for ten different

fiber diameters ranging from 2 to 16.0µm (see table 2.3) are supplied. For

all other diameters interpolation, and possibly extrapolation, of the param-
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Table 2.2: MRG model electrical parameters

Nodal capacitance cn 2 µF/cm2

Internodal capacitance ci 2 µF/cm2

Myelin capacitance cm 0.1 µF/cm2

Axoplasmic resistivity pa 70 Ω · cm
Periaxonal resistivity pp 70 Ω · cm
Myelin conductance gm 0.001 S/cm2

MYSA conductance ga 0.001 S/cm2

FLUT conductance gf 0.0001 S/cm2

STIN conductance gi 0.0001 S/cm2

Maximum fast Na+ conductance gNaf 3.0 S/cm2

Maximum slow K+ conductance gKs 0.08 S/cm2

Maximum persistent Na+ conductance gNap 0.01 S/cm2

Nodal leakage conductance gLk 0.007 S/cm2

Na+ Nernst potential ENa 50.0 mV
K+ Nernst potential EK −90 mV
Leakage reversal potential ELk −90 mV
Rest potential Vrest −80 mV

eters can be applied. The Hodgkin and Huxley (1952) like nodal membrane

dynamics are modeled for fast (Naf) and persistent (Nap) sodium and slow

potassium (Ks). Optional fast potassium (Ks) channels in the paranodal

main segment were tested with little effect (McIntyre et al., 2002).

To simulate the model it is divided into compartments. In order to

represent the double cable structure, every segment—except the node of

Ranvier, which is not surrounded by myelin and therefore has no periaxonal

space—consists of two compartments. One in the axonal and one in the

periaxonal space. Every compartment can be described by an equivalent

electrical circuit. In figure 2.7 the equivalent electrical circuit of the whole

model is illustrated and in table 2.2 the electrical properties are listed.

In the following the equations for non-nodal segments, followed by the

equations for the node of Ranvier will be described.
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Non-nodal Segments For each segment k two compartments have to be

calculated, one for the inner-axonal space (denoted with the superscript i)

and one for the periaxonal space (denoted with the superscript p). Note

that although the MRG model in contrary to the model of Halter and Clark

(1991) does not simulate the outer boundary membrane, such simulations

could be useful when the surrounding is spatially restricted or interactions

of two or more axons are of interest.

Potentials that are measured against the ground are referred to with the

letter E.

V i
k = Ei

k − E
p
k , and (2.36)

V p
k = Ep

k − E
e
k (2.37)

are the potential differences between inner-axonal / periaxonal and peri-

axonal / extracellular space respectively. V i
k can also be referred to as

the membrane voltage and is equivalent to V m for the node of Ranvier.

Iax,leftk and Iax,rightk are the currents flowing from the left and right node,

respectively. And Imemk is the current flowing through the membrane. Imemk

consists of a ionic (Imem,ionk ) and a capacitive (Imem,capk ) component.

Following the schematics of the the equivalent circuit in Figure 2.7 the

equations for the k-th segment are derived (Danner, 2010).

First, the equations for the inner-axonal compartments:

Iax,leftk + Iax,rightk + Imemk = 0 (2.38)

where

Iax,leftk =
Ei
k − Ei

k−1

Ri
k+Ri

k−1

2

(2.39)

Iax,rightk =
Ei
k − Ei

k+1

Ri
k+Ri

k+1

2

(2.40)
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and

Imemk = Imem,ionk + Imem,capk (2.41)

Imem,ionk = Gmem
k · (Ei

k − E
p
k − E

pas
k ) (2.42)

Imem,capk = Cmem
k · d(Ei

k − E
p
k)

dt
(2.43)

now when inserted in the first equation we get

Ei
k − Ei

k−1

Ri
k+Ri

k−1

2

+
Ei
k − Ei

k+1

Ri
k+Ri

k+1

2

+Gmem
k · (Ei

k−E
p
k−E

pas
k )+Cmem

k · d(Ei
k − E

p
k)

dt
= 0

(2.44)

and after simplification and substituting V i
k for Ei

k − E
p
k we get

dV i
k

dt
= −

(
Gmem
k · (V i

k − E
pas
k ) +

Ei
k − Ei

k−1

Ri
k+Ri

k−1

2

+
Ei
k − Ei

k+1

Ri
k+Ri

k+1

2

)
/Cmem

k (2.45)

Next we derive the the equations to calculate the periaxonal compartments:

Ipx,leftk + Ipx,rightk + Imyelink − Imemk = 0 (2.46)

Ipx,leftk =
Ep
k − E

p
k−1

Rp
k+Rp

k−1

2

(2.47)

Ipx,rightk =
Ep
k − E

p
k+1

Rp
k+Rp

k+1

2

(2.48)

Imyelink = Imyelin,ionk + Imyelin,capk (2.49)

Imyelin,ionk = Gmyelin
k · (Ep

k − E
e
k) (2.50)

Imyelin,capk = Cmyelin
k · d(Ep

k − Ee
k)

dt
(2.51)

Ipx,leftk +Ipx,rightk +Imyelin+Gmem
k ·(Ei

k−E
p
k−E

pas
k )+Cmem

k · d(Ei
k − E

p
k)

dt
= 0

(2.52)

Now we can substitute Cmem
k · d(E

p
k−E

p
k)

dt
with (2.45), which results in:

Ipx,leftk + Ipx,rightk + Imyelink + Iax,leftk + Iax,rightk = 0 (2.53)



CHAPTER 2. BACKGROUND 35

and after substituting V p
k for Ep

k − Ee
k

dV p
k

dt
= −

(
Gmyelin
k · V p

k +
Ei
k − Ei

k−1

Ri
k+Ri

k−1

2

+
Ei
k − Ei

k+1

Ri
k+Ri

k+1

2

+
Ep
k − E

p
k−1

Rp
k+Rp

k−1

2

+
Ep
k − E

p
k+1

Rp
k+Rp

k+1

2

)
/Cmyelin

k (2.54)

The nodal segments are not covered by myelin and thus have no periax-

onal space (see Figure 2.7). Therefore the Ipx,left and Ipx,right are connected

to Ee
node for the left and right MYSA segments respectively.

With (2.45), (2.54) and the parameters from tables 2.2 and 2.3 all non-

nodal segments can be simulated.

Node of Ranvier As stated before, the node consists of fast and persis-

tent Na+, slow K+, a leakage conductance and a capacitance in parallel (see

figure 2.7). According to Hodgkin and Huxley (1952) these ionic currents

can be written in general form as

Iion = gion · (V − Eion) (2.55)

Where gion consists of the maximum conductance of the ion channels mul-

tiplied by a number of gating variables, with a range from 0 to 1. The time

dependent differential equations for the gating parameters (γ) is given by

dγ

dt
= αγ · (1− γ)− βγ · γ (2.56)

In the following paragraphs the membrane dynamics for fast and per-

sistent Na+ (INaf and INap respectively) and the slow K+ (IKs) at the

temperature of 36 Degrees Celsius are listed.

Fast sodium current

INaf = gNaf ·m3 · h · (V i − ENa) (2.57)
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αm =
6.57 · (V i + 21.4)

1− e−(V i+21.4)/10.3
(2.58)

βm =
0.304 · (−V i − 25.7)

1− e(V i+25.7)/9.16
(2.59)

αh =
0.34 · (−V i − 114)

1− e(V i+114)/11
(2.60)

βh =
12.6

1− e−(V+31.8)/13.4
(2.61)

Persistent sodium current

INap = gNap · p3 · (V i − ENa) (2.62)

αp =
0.0353 · (V i + 27)

1− e−(V i+27)/10.2
(2.63)

βp =
0.000883 · (−V i − 34)

1− e(V i+34)/10
(2.64)

Slow potassium current

IKs = gKs · s · (V i − Ek) (2.65)

αs =
0.3

1− e(V i+53)/−5
(2.66)

βs =
0.03

1− e(V i+90)/−1
(2.67)

The equations for the node can be derived analogously to Equation 2.45

except that

Imem = INaf + INap + IKs + ILk + Imem,cap (2.68)

where

ILk = Gmem · (V i − ELk) (2.69)

which results in

dV i
k

dt
= −

(
INaf + INap + IKs + ILk + Iax,left + Iax,right

)
/Cmem

k (2.70)
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Extracellular Stimulation It is possible to calculate the equivalent in-

tracellular current (I int) of an extracellular stimulation. This is done by

adding

I int =
Ee
k − Ee

k+1

Ri
k+Ri

k+1

2

+
Ee
k − Ee

k−1

Ri
k+Ri

k−1

2

(2.71)

to the to intracellular compartment (Warman, Grill, and Durand, 1992;

Grill, 1999). According to Richardson, McIntyre, and Grill (2000) it is

sufficient to use the equivalent injected intracellular current only for the

the intraxonal compartments and neglect the periaxonal compartments.

To adopt the equations we need to substitute Ee with 0 and add I int to the

currents in equation 2.45 and 2.70.

Now the final equations used in the simulation are as follows (Danner,

2010):

Interaxonal segments for non-nodal compartments:

dV i
k

dt
= −

(
Gmem
k · (V i

k − E
pas
k ) +

Ei
k − Ei

k−1

Ri
k+Ri

k−1

2

+
Ei
k − Ei

k+1

Ri
k+Ri

k+1

2

+
Ee
k − Ee

k+1

Ri
k+Ri

k+1

2

+
Ee
k − Ee

k−1

Ri
k+Ri

k−1

2

)
/Cmem

k

(2.72)

Periaxonal segments for non-nodal compartments:

dV p
k

dt
= −

(
Gmyelin
k · V p

k +
Ei
k − Ei

k−1

Ri
k+Ri

k−1

2

+
Ei
k − Ei

k+1

Ri
k+Ri

k+1

2

+
Ep
k − E

p
k−1

Rp
k+Rp

k−1

2

+
Ep
k − E

p
k+1

Rp
k+Rp

k+1

2

+
Ee
k − Ee

k+1

Ri
k+Ri

k+1

2

+
Ee
k − Ee

k−1

Ri
k+Ri

k−1

2

)
/Cmyelin

k (2.73)
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Node:

dV i
k

dt
= −

(
INaf + INap + IKs + ILk +

Ei
k − Ei

k−1

Ri
k+Ri

k−1

2

+
Ei
k − Ei

k+1

Ri
k+Ri

k+1

2

+
Ee
k − Ee

k+1

Ri
k+Ri

k+1

2

+
Ee
k − Ee

k−1

Ri
k+Ri

k−1

2

)
/Cmem

k

(2.74)

For equation 2.73 Ep = V p now holds and for the nodal equation (3.18)

the membrane voltage V i is equivalent to Ei. These facts can be exploited

to simplify the simulation.

Parameters The absolute conductances, resistances and capacitances used

in the equations above can be calculated from the density units in table 2.2

and the geometrical properties from the chosen model in table 2.3.

Let lk be the length and dk the diameter of the segment k, then the

axonal resistance (Rax
k ), the membrane capacity (Cmem

k ) and the membrane

conductance (Gmem
k ) are

Rax
k =

4 · pa · l
d2 · π

(2.75)

Cmem
k = ck · lk · dk · π (2.76)

Gmem
k = gk · lk · dk · π (2.77)

In order to calculate the absolute parameters for the myelin conductance

(Gmy
k ), the myelin capacity (Cmy

k ) and the periaxonal resistivity (Rpx
k ) the

number of myelin lamellas (N) and the space between the membrane and

the myelin sheath (sp) is needed (see table 2.3). Then they can be calculated

as follows:

Rpx
k =

pp · l
(d/2 + 2 · sp)2 − (d/2)2

(2.78)

Cmy
k =

cm · dk · lk · π
2N

(2.79)
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Gmy
k =

gm · dk · lk · π
2N

(2.80)
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CHAPTER 3
The application

In this chapter the application, dubbed AxonSim, is described in detail.

First, in section 3.1 the details of the implementation are elaborated and

a comprehensive manual/documentation is given for users and second, the

chapter is concluded with section 3.2, which illustrates a list of examples of

stimulation cases.

3.1 Implementation and documentation

To be easy to use and to allow for easy extension and adaption, the applica-

tion has been written in Matlab 2010b (Mathworks Inc.) with the CVODE

differential equation solver from the Suite of nonlinear differential/algebraic

equation solvers (SUNDIALS) Version 2.4.0 (Hindmarsh, Brown, Grant,

Lee, Serban, Shumaker, and Woodward, 2005). The sundialsTB Matlab

bindings, supplied with the SUNDIALS distribution were used to interface

the CVODE solver in Matlab. The application, including its source code,

is available to download from http://code.google.com/p/axonsim/.

42

http://code.google.com/p/axonsim/
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3.1.1 The user interface

The user interface (UI) is designed to summarize all important parameters

and plots into one window (see figure 3.1). The program is started by

starting Matlab and stepping into the code directory and typing:

>> AxonSim

This starts the program and displays the user interface (figure 3.1).

When initiated already some parameters are set and the simulation can be

started. Pressing Calculate starts the simulation according to the set pa-

rameters. When Calculate threshold is selected the activation threshold, i.e.

the minimal stimulation strength needed to elicit an action potential, is cal-

culated using binary search with the set accuracy, otherwise the simulation

is performed with the supplied stimulation strength.

In the following all parameters are described in detail:

Electrode This parameter is used to set the type of electrode. There are

four types of electrodes:

single This is a single point electrode located in the extracellular

space.

double Two point electrodes with an electrode separation set by

Electrode separation where one electrode uses the same and the

other the opposite sign of the Stimulation strength.

triple Similar to the former two electrode types, here three point

electrodes are created. The middle one uses the Stimulation

strength as set, the other electrodes use a Stimulation strength

multiplied by −0.5. All electrodes are separated by Electrode

separation and are in one line, parallel to a straight fiber.
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Figure 3.1: The user interface of the application AxonSim. A list of stimu-
lation parameters can be set. The output is displayed in a number of plots.
The relative position between the electrode and the fiber is illustrated, fol-
lowed by the potential distribution, generated by the stimulation electrode
and evaluated along the fiber. An approximation of the activating function,
i.e. the second order spatial differential, is given, followed by an illustration
of the membrane potential of one and all nodes and the stimulation func-
tion. Here the result of the binary search with the accuracy of of 0.01 mA to
determine the activation threshold of a 20 mm long fiber is shown, thus the
illustrated curves represent the result of the stimulation at the activation
threshold (-0.07 mA).
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intracellular In contrary to all aforementioned electrode types, which

are all variations of extracellular stimulation, this electrode stim-

ulates using an injected current into a node of Ranvier.

Stimulation strength The stimulation strength identifies how much cur-

rent an electrode generates (please refer to Electrode for details on

the electrode types). Note that the unit is mA for the extracellular

stimulation case and pA for the intracellular stimulation case.

Frequency Describes the frequency, how often the stimulation pulse or in

general the stimulation function should be repeated. The frequency

is specified in Hz.

Electrode separation This parameter describes the distance between the

electrodes if Electrode is set to double or triple. Otherwise this setting

has no effect.

Electrode position Here the position of the electrode can be specified.

This is done by supplying a two dimensional vector to the field in the

form of [x y] or [x, y], i.e. the usual Matlab style, where x and y

are the x- and y-coordinates of the electrode position in mm. In the

case of double or triple electrode configurations the coordinates specify

the center of the electrodes. In the case of intracellular stimulation

the field’s name is Location of electrode (Node) and the value specifies

the node where the current is injected. The value has to be a positive

integer and must not be bigger than the maximum number of nodes

in the fiber.

Location of electrode (Node) see Electrode position
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Time of simulation This parameter specifies for how long the simulation

should be run. The value is specified in ms. Note that all plots are

adjusted to show the whole simulation time.

Nerve fiber curvature This setting lets the user change the curvature of

the nerve fiber, the value can be in the interval [−1, 1]. 0 denotes

a straight fiber, positive values denote curvatures in direction to and

negative values in direction from the stimulating electrode (if Electrode

position is set as default). 1 and −1 create a half circle out of the

fiber. The method how this curvature is generate is described in detail

in section 3.1.2.1.

Pulse duration This parameter specifies the duration of the stimulation

pulses. It only applies to the single and double pulse settings of Stimu-

lation function. If a custom stimulation function is chosen this setting

has no effect.

Fiber length With this parameter the length of the fiber can be chosen

in µm. Note that, especially for the MRG model, an increase in fiber

length strongly increases the time needed to compute the solution.

The center of the fiber is always at (0,0) and the fiber is extended

along the x-axis in both directions.

Nerve fiber diameter With this setting the diameter of the nerve fiber

can be chosen. For the MRG model the supplied parameters are used

if the diameter matches a diameter with a supplied parameter set,

if not the values are interpolated between two parameter sets. For

values bigger than 16 µm the parameter values are extrapolated, for

values smaller 2 µm the values are linearly scaled. The fiber diameter

has to be specified in µm.
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Medium resistance Here the specific resistance for the medium in which

the fiber and the electrode reside can be specified. For the intracellular

stimulation case this setting has no effect. The unit of the resistance

is Ω·cm.

Model With this parameter the axon model that will be used for the sim-

ulation can be selected. Candidates are the McIntyre-Richards-Grill

(MRG; McIntyre et al., 2002) and the Chiu-Ritchie-Rogart-Stagg-

Sweeney (CRRSS; Chiu et al., 1979; Sweeney et al., 1987) model.

Stimulation function Here the time dependent function of the stimu-

lation electrode can be set. A single pulse generates a rectangular

stimulation pulse with the stimulation strength and sign specified in

Stimulation strength and duration specified in Pulse duration. The

double pulse option creates two adjacent rectangular pulses with the

same strength and duration, also as specified in Stimulation strength

and Pulse duration but the first pulse has the same sign as specified

in Stimulation strength and the second pulse is multiplied by −1. The

third option, custom, uses a custom stimulation function as specified

in Custom function.

Custom function In this field a time dependent function can be specified

that afterwards is used as the stimulation function. It is only used if

Stimulation function is set to custom, otherwise it has no effect. The

function must fit into one line and can make use of t, the time in ms.

The output of the function is multiplied with the stimulation strength

as specified in Stimulation strength or as set by the binary search

algorithm to determine the activation threshold. An easy example is

to set the custom function to t and Frequency to 1000 Hz to create
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a sawtooth wave, with an upper bound of 1 and a lower bound of

0. Note that adjusting the frequency results in a repetition of the

function and thus after the reciprocal of the frequency the time t is

reset to 0. It is also possible to create a custom method and pass

it to Custom function. For this a Matlab m-file in the directory of

the program has to be created that specifies a function that takes

up to one argument, the time t, and returns a single real value. For

examples please refer to section 3.2.

Print PDF When this button is clicked a PDF containing all parameters

and plots of the previous simulation is created in the current directory.

Calculate threshold This checkbox can be checked if it is desired to cal-

culate the activation threshold using binary search with the accuracy

as specified in Accuracy. When checked the Stimulation strength is

ignored, only the sign of Stimulation strength is used. The binary

search algorithm starts with Accuracy multiplied by the sign of Stim-

ulation strength. The result of the binary search, i.e. the activation

threshold, is printed right of the checkbox and the simulation is per-

formed and plotted with the stimulation strength set to the activation

threshold. If the box is not checked, the simulation is performed as

specified by all other parameters.

Accuracy This parameter determines the accuracy of the binary search

algorithm. If Calculate threshold is not checked, this field has no

effect.

Calculate If calculate is clicked the program simulates the selected nerve

fiber model according to the specified parameters and plots the results.
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When the simulation is finished a series of plots are drawn, in the fol-

lowing list these plots are described in detail:

Electrode-fiber position In this plot the fiber is drawn as a blue contin-

uous line and the electrode position is marked as one to three x-es, de-

pending on the electrode type. The purpose of this plot is to provide

relative geometrical information about fiber and electrode position.

Also the fiber curvature can be seen. The units used are µm.

Potential along fiber Here the potential distribution, generated by the

extracellularly located electrodes along the fiber is displayed. This

is done by calculating the electrical field that is generated by the

electrode(s) and evaluating it along the fiber trajectory. The field

is calculated using Stimulation strength as the current generated by

the electrodes, even if a custom stimulation function is used. For

custom stimulation functions the generated field is multiplied by the

stimulation function and then used as the input for the nerve fiber

model as the extracellular voltage. The units displayed are in V for

the y-axis and in µm for the x-axis.

Approximation of activating function Here an approximation of the

activating function is displayed. This approximation is calculated sim-

ply as the second order spatial difference of the extracellular potential

along the fiber. The potential along the fiber is calculated using Stim-

ulation strength even when a custom stimulation function is used. As

described above the activating function f is proportional to the sec-

ond order spatial derivate of the potential distribution. Thus, in the

discrete case, fn is proportional to the second order spatial difference

of the potential distribution.
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Single node membrane potential In this plot the membrane potential

V m of the n-th node is displayed. As a default the 7th node is dis-

played. Note that for the node of Ranvier V i as used by the MRG

model is equivalent to V m. The x-axis represents the time and is in

ms units and the y-axis is in mV.

Membrane potentials of all nodes Here the membrane potentials V m

of all nodes are displayed. The uppermost line is the leftmost and

the lowermost line is the rightmost node of Ranvier in the Electrode-

fiber position plot. In this plot the propagation and conduction of the

action potential can be seen. The x-axis represents the time and is in

ms units.

Stimulation function Here the stimulation function, whether a prede-

fined or a custom function, is displayed. The x-axis represents the

time and is in ms units and the y-axis represents the the factor k the

Stimulation strength is multiplied with, at a certain time, due to the

stimulation function.

In order to be able to start AxonSim one needs a Matlab version that

is compatible with SundialsTB and SundialsTB installed. SundialsTB is

part of the standard SUNDIALS package and can be found on SUNDIALS

homepage (link: https://computation.llnl.gov/casc/sundials/main.

html).

3.1.2 Implementation remarks

In this section some remarks are give on how certain features are imple-

mented.

https://computation.llnl.gov/casc/sundials/main.html
https://computation.llnl.gov/casc/sundials/main.html


CHAPTER 3. THE APPLICATION 51

3.1.2.1 Nerve fiber curvature

The curvature of the nerve fiber is calculated depending on the parameter

c that is taken from the parameter Nerve fiber curvature. c can be any

real number between −1 and 1. If bigger absolute values are chosen, the

absolute value is set to 1 while remaining the sign. In the following, only

the positive case is treated, to derive the curvature for a negative value of

c the curve can be mirrored along the x-axis. If c is 1 the curve is defined

as a semicircle with the middle of the line being at x=y=0. And if c equals

0 a straight line should be drawn. For c = 1 the radius r can be defined as

r = l/π (3.1)

where l is the length of the fiber. To calculate the values in between 1/c is

introduced as a factor, resulting in

r = 1/c · l/π (3.2)

or

r =
l

c · π
. (3.3)

Then the angle α of the circle that comprises the nerve fiber trajectory

has to be calculated so that the fiber retains it length l as specified. α is

calculated by

α = l/r. (3.4)

Then x coordinates of points of the fiber trajectory can be calculated

as being between − sin(α/2) and sin(α/2). Here this is done by setting the

first point as − sin(α/2) and adding l/n, where n is the number of segments,

until x = sin(α/2). The y-coordinate is then calculated by

y = −
√
r2 − x2 + r. (3.5)
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Figure 3.2: Illustration of the results of the function curvature for a fiber
with the length of 20,000 µm and c values of -1, -0.8, -0.6, -0.4, -0.2, 0, 0.2,
0.4, 0.6, 0.8 and 1. Note that for all negative c values the line is bent in
negative y-direction and for positive c values in the positive y-direction. All
values are displayed in µm.

The results for 11 values of c between -1 and 1 are illustrated in figure

3.2. And the source code of the function used in the application can be

seen in listing 3.1.

Listing 3.1: Method curvature to calculate curved trajectories of the fiber.

c can be between -1 and 1.

function [ x,y ] = curvature( c, length )

parts=499;

s = sign(c);
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c=s*c;

if c > 1

c=1;

end

if c 6= 0

r = 1/c*length/pi;

U = 2*r*pi;

angle = length/U*2*pi;

dev=sin(angle/2)*r;

x = −dev:(2*dev/parts):dev;

y = −sqrt(rˆ2 − x.ˆ2);

y = y+r;

end

if c == 0

x = −length/2:length/parts:length/2;

y = zeros(1,parts+1);

end

y = s.*y;

end

3.1.2.2 Electrical field

For a single point electrode in an infinite homogeneous medium the potential

field can be calculated for a point at (x,y), when the electrode is at (0,0)

as follows (note that the z-coordinate is ignored, since here we assume that

the electrodes and fibers reside on the xy-plane):

V e =
ρIel
4π
·
√
x2 + y2 (3.6)

where V e is the (extracellular) potential at (x,y), ρ is the specific resistance

of the medium and Iel is the current of the electrode. Since
√
x2 + y2 is the
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distance del of the point electrode to the point where the field is evaluated

the formula can be written as:

V e =
ρIel
4π
· del (3.7)

and for N point electrodes:

V e =
N∑
i=1

(
ρIel,i
4π
· del,i

)
(3.8)

where Iel,i is the current of and del,i the distance from the i-th point elec-

trode. The code used in AxonSim is listed in listing 3.2 and an example of

a potential distribution generated by a single and a double electrode along

a straight fiber is illustrated in figure 3.3.

Listing 3.2: Method electrode to calculate the potential at a point in the

xy-plane.

function V = electrode(rho,I,xe,ye,x,y )

q = rho * I;

d = sqrt((xe−x).ˆ2+(ye−y).ˆ2);

V = q./(4.*pi.*d);

end

3.1.2.3 Approximation of the activating function

As described in section 2.3, the activating function f is proportional to the

second order spatial derivate of the potential distribution along the fiber:

f =
d

4ρic
· δ

2V e

δx2
. (3.9)

Similarly, the discrete activating function fn is proportional to the second

order spatial difference of the potential distribution along the fiber:

fn =
d∆x

4ρiLc

V e
n−1 − 2V e

n + V e
n+1

∆x2
. (3.10)
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Figure 3.3: Potential distributions evaluated along a straight fiber 20 mm
long fiber. The electrodes are located at the middle in a 1 mm distance.
Top: single point electrode at -.2 mA. Bottom: two point electrodes, sep-
arated by 1 mm, left at -.2 mA and right at .2 mA. Units are in µm and
mA for the x- and y-axis, respectively.
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Thus, if (d∆x)/(4ρiLc) is substituted by constant factor, e.g. 1, a fiber

independent approximation of the activating function is achieved:

fn =
V e
n−1 − 2V e

n + V e
n+1

∆x2
. (3.11)

This is the function that is displayed in the application.

3.1.2.4 Stimulation functions

As described in section 3.1.1 there exist two hardcoded stimulation func-

tions, a single pulse and double pulse, both with variable pulse duration

and intensity. Further, also custom stimulation functions can be defined,

by passing them into the field Custom function and setting Stimulation

function to custom. This function f has to be defined as a function that

takes only t, the time in ms, as an argument and returns a scalar:

f : R→ R (3.12)

and has to be defined in Matlab code. All variables and functions that

are available in the working space can be used. The field calculated and

evaluated along the fiber will be multiplied by the result of the function at

the time t. Thus, if the function returns 1, the stimulation intensity is as

specified in the parameters. A simple example would be sin(2*pi*t)/2.

This creates a sinusoid function with the phase of 1 ms and a peak-to-peak

amplitude as specified in the parameters.

Only one-line functions can be specified, but since all variables and

methods that are available to the workspace are also available here, a custom

method can be specified in an m-file and used as a custom stimulation

function. Thus, all functions that are realizable in Matlab can be created

and used as stimulation functions. In section 3.2 examples using different

stimulation functions, including custom m-files, are given.
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3.1.2.5 Binary search

Binary search is a search algorithm that finds an element in the worst case

runtime of

O(N) = log2N (3.13)

where N is the number of values in the search space. In our case the search

space are the natural numbers and here the worst case runtime is

O(N) = 2 · dlog2ke (3.14)

with k being the number to be search. This only applies if the search is

performed in N or Z, if the search is performed in R the search space has to

be discretized. Here this is done by limiting the accuracy to a certain value

and thus the search is stopped when the result falls between two values with

a maximum distance from each other that is not bigger than the specified

accuracy. Thus the activation threshold is defined as the minimal strength,

as a multiple of the accuracy, needed to evoke an action potential in a fiber.

Thus here k times the accuracy is the activation threshold.

The algorithm works starting with a small value (set using the Accuracy)

that should be lower than the activation threshold, then the value is doubled

if it is still below the activation threshold. If the value is above the activation

threshold the space between the last sub- and superthreshold values is split

in half for as long as the stepsize is smaller than the activation threshold.

For an exact algorithm please refer to listing 3.3.

Listing 3.3: The binary search algorithm to find the threshold values

(adapted from Danner 2010)

step = 1
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x = 1

result = 0

grow = 1

while 1

if model(x) == 1

grow = 0

result = x

x = x − step

step = step/2

else

x = x + step

if grow == 1

step = step*2

else

step = step/2

end

end

if step < smallestStepSize

break

end

end

3.1.2.6 ODE solver

The CVODE solver solves ordinary differential equation initial value prob-

lems in real N-space. A usual problem is defined as

dy

dt
= f(t, y) (3.15)

y(t0) = y0 (3.16)

where t is the independent variable, usually the time, y is a N dimensional

real vector and f is an arbitrary function. The solver uses variable-order,
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variable-step multistep methods, which are based on

K1∑
i=0

αn,iyn−i + hn

K2∑
i=0

βn,i
dyn−1

dt
= 0 (3.17)

where yn are the computed approximations of y(tn) and hn is the step size

tn − tn−1. Since here stiff differential equations are solved, (differential

equations are called stiff if “one rapidly damped mode, whose time con-

stant is small compared to the time scale of the solution itself” is present;

Hindmarsh et al., 2005), backward differentiation formulas (BDFs) in fixed-

leading coefficient form are used. These are given by inserting K1 = q and

K2 = 0 into (3.17), where q is variable between 1 and 5. To solve each step,

here Newton iteration was applied.

3.2 Examples

In this section many properties of the nerve fiber models will be illustrated

using AxonSim. Several examples are presented that shall explain how

to use the application and simultaneously show how nerve fibers react to

certain stimulation properties.

3.2.1 Propagation of an action potential

Usually an action potential is initiated at a single node of Ranvier, the

influx of current and the change of the membrane potential at this node

influences also neighboring parts of the axon. In the case of the myelinated

axons, this influence is transferred to the next node of Ranvier, where the

membrane potential is lifted above the threshold level and the active ion

channels produce an action potential, subsequently also an action potential

is initiated at its neighboring nodes of Ranvier. The propagation of an
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action potential is always in one direction, since after the initiation of the

action potential this node becomes unexcitable for a short period of time

but when an action potential is initiated artificially there is no previous

node of Ranvier that has been excited and is in an unexcitable state. Thus,

when artificial stimulation is used action potentials travel, propagate in all

direction away from the initiation site.

Figure 3.4: Example of an action potential propagation along a 20 cm long
nerve fiber. In the plot Membrane potential of all nodes the bidirectional
propagation of the action potential along the nerve fiber can be seen.

Note that each subsequently elicited action potential is subject to a

short delay, this results in a finite propagation velocity of the nerve fiber.
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Depending on the fiber diameter the velocity of action potential conduction

ranges from 1 to 100 m/s.

In figure 3.4 an example is shown that uses a point electrode localized

1 mm above the middle of an 20 cm long axon with 16 µm diameter. The

electrode stimulates the axon with a current of I = −0.08 mA and a single

pulse of 1 ms duration. The model used is the MRG model. For all other

parameters please refer to the figure.

3.2.2 Intracellular- and extracellular stimulation

With intracellular stimulation an electrode is stuck into the axon itself and

current is injected into the intraaxonal space. In mathematical terms, this

means that (3.18) for the node of Ranvier is adapted as follows:

dV i
k

dt
= −

(
INaf + INap + IKs + ILk + I intstim

+
Ei
k − Ei

k−1

Ri
k+Ri

k−1

2

+
Ei
k − Ei

k+1

Ri
k+Ri

k+1

2

)
/Cmem

k (3.18)

where I intstim is the intracellularly inject stimulation current and the equiv-

alent injected extracellular current I inj

I inj =
V e
k − V e

k−1

Ri
k+Ri

k−1

2

+
V e
k − V e

k+1

Ri
k+Ri

k+1

2

(3.19)

has been removed since the simulation only relies on intracellular stimula-

tion. If a simulation with both, intracellular and extracellular stimulation,

is desired, I inj can be added back into the equation.

For intracellular stimulation small fiber diameters have lower thresholds

than large fiber diameters (for more information please see section 3.2.4).



CHAPTER 3. THE APPLICATION 62

Figure 3.5: Example of intracellular stimulation of 16 µm nerve fiber with
600 pA injected current into the 15-th node with a 1 ms long stimulation
pulse. Note that all plots at the left side are empty, since the current is
directly injected into a node of Ranvier and no extracellular field acts on
the fiber.

3.2.3 The CRRSS and the MRG model

The CRRSS and the MRG model have several differences. The most impor-

tant difference for the electrical stimulation of the nervous system is that

the MRG model has been reported to realistically reproduce the activation

threshold with transcutaneous electrical stimulation (Kuhn et al., 2009),

while Wesselink et al. (1999) reported that the CRRSS model overesti-

mates excitation thresholds for extracellularly stimulated myelinated nerve
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fibers. For the case of spinal cord stimulation this discrepancy in activation

threshold values has been confirmed (Danner, 2010). Since AxonSim is able

to simulate both axon models, features of both models can be compared.

Figure 3.6: Simulation of the CRRSS model with same settings as in figure
3.1. Note that for the CRRSS model the reduced membrane potential is
used, where the resting potential is shifted to 0.

Figure 3.6 shows the simulation of the CRRSS model under the same

conditions as the MRG model in figure 3.1. Differences can be seen in the

shape of the action potential, i.e. with the MRG model the depolarizing

after potential is visible. Furthermore, the threshold value of the MRG

model is lower than of the CRRSS model, i.e. -0.07 vs. -0.16.
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3.2.4 Activation threshold and fiber diameter

The fiber threshold has a big influence on the activation threshold Ranck

(1975). It can be differentiated between two different cases:

0 2 4 6 8 10 12 14 16 18 20
45

40

35

30

25

20

15

10

5

0

Figure 3.7: Influence of the fiber diameter on the activation threshold for
extracellular stimulation. X-axis: fiber diameter in µm, y-axis: activation
threshold in mA. The activation threshold decreases with an increasing
fiber diameter. Note that the relationship is not linear, an approximately
the threshold is proportional to reciprocal of the fiber diameter.

Extracellular stimulation With extracellular stimulation lower thresh-

olds can be achieved with bigger axon diameters. Figure 3.7 illustrates

activation thresholds for fiber diameters ranging between 2 and 20

µm. The simulation is conducted with the MRG model and a single

point electrode that is located 10 mm above the middle of a 20 mm

long, straight fiber. The resistance of the medium is 35 Ωcm. The

stimulation pulse is 1 ms long.

It can be seen that the relationship is not linear and that the activation

threshold rapidly increases for small fiber diameters. The relationship
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can be approximated as the threshold being inverse proportional to

the fiber diameter. A linear regression with the activation threshold

Ithr as the dependent variable and the reciprocal of the fiber diameter

1/d as the independent variable results in:

Ithr = 4.999− 102.009 · 1/d (3.20)

with R2 = .988. Thus 1/d can be regarded as proportional to the ac-

tivation threshold in the range between 2 and 20 µm and can be used

to approximate the influence of the change of the activation thresh-

old when the fiber diameter is adjusted in the case of extracellular

stimulation.

Intracellular stimulation In intracellular stimulation a reverse relation-

ship to the extracellular case can be observed, small fiber diame-

ters have lower excitation thresholds than larger fibers. For exam-

ple thresholds for a 2 cm long fiber intracellularly stimulated at the

middle node of Ranvier has a threshold of 147, 300 and 599 pA for

diameters of 5, 10 and 16 µm, respectively.

3.2.5 Activation threshold and fiber curvature

The curvature of the fiber in the electrical field generated by electrodes has

an effect on the activation threshold, since it enhances or reduces the cur-

vature of the extracellular field, evaluated fiber trajectory. And as already

discussed (see section 2.3) the activating function, which predicts the ex-

citability of fibers in an electrical field, is proportional to the second order

spatial derivative of the potential field along the fiber. Figure 3.8 illustrates

this effect for c values between -1 and 1, c.f. figure 3.2. The electrode to
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fiber distance is set to 5 mm and the fiber diameter is 16 µm. The threshold

was calculated with the electrode being at negative potential.
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Figure 3.8: Influence of the fiber curvature on the activation threshold. X-
axis c value as specified in the Nerve fiber curvature field, y-axis activation
threshold.

The results show a rather large difference between a straight fiber and

a fiber bent (with c = 1) towards the electrode, the activation threshold

increases to 227.3%. While the decrease of the activation threshold of a fiber

bent away from the electrode is only to 89.2%. This can be explained by

investigating the electrical field in comparison to the fiber trajectory, for the

case of the fiber being bent towards the electrode with c = 1 the electrode

position almost matches the center of the circle, the fiber is part of. This

results in the isopotential lines of the electrical field, being almost parallel to

the fiber geometry and thus there is little change in the potential along the
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Figure 3.9: Influence of the electrode to fiber distance on the potential
distribution and activating function. Left: 1 mm distance, right: 10 mm
distance. Electrodes are at the activation thresholds, e.g. -0.07 and -1.95
mA for the 1 and 10 mm fibers, respectively. The focused field with large
values of the activating function can be seen on the left, while the absolute
potential is higher on the right.

fiber. In order to reduce the threshold further more abrupt changes of the

fiber trajectory away from the electrode are needed. Such fiber bendings

in combination with transitions of the fiber between two different media

are the reason that posterior root fiber can be stimulated transcutaneously

Ladenbauer et al. (2010).

3.2.6 Activation threshold and electrode-fiber

distance

The distance of the electrode from the fiber strongly influences the acti-

vation threshold. This is due to two main properties, first, the electrical

field is more focused, when the electrode is near the fiber and thus the ac-

tivating function reaches pronounced high, second, the absolute values of
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Figure 3.10: Example of a custom stimulation function. The function
mod(t/2,1) creates a sawtooth stimulation function with a frequency of
500 Hz.

the potential field decrease the farther away the electrode is from the fiber.

Thus, in general, the closer electrode is to a straight fiber the lower the

excitation threshold of said fiber. In figure 3.9 the potential distributions

and activating functions of two exemplary electrode-fiber distances of 1 and

10 mm are illustrated.
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3.2.7 Stimulation functions

Custom stimulation functions can be defined by setting Stimulation function

to custom and typing a function, depending from t into Custom function.

An example an be seen in figure 3.10.

In figure 3.10 it is noteworthy to point out that the first three action

potentials are propagated, although the amplitude of the subsequent action

potentials at the node where it is initiated is reduced but the fourth action

potential is not being propagated along the the fiber.

Sometimes it is desired to stay current neutral, meaning the sum of

the current that is introduced into the medium should be 0. This can be

done by using two adjacent pulses, one with negative and one with positive

polarity. Especially with implanted electrodes staying current neutral is

desired.

To illustrate the effect of the different configurations, the activation

thresholds of the a single cathodic pulse (1 ms: -0.548 mA, 0.1 ms: -1.92),

a cathodic pulse followed by an anodic pulse (1 ms: 0.554 mA, 0.1 ms: 2.39)

and an anodic pulse followed by an cathodic pulse (1 ms: 0.531 mA, 0.1 ms:

2.99) were calculated. All simulations were performed with a straight 16

µm thick fiber and an electrode fiber distance of 5 mm. It can be seen that

the threshold is slightly reduced by an anodic pulse followed by a cathodic

pulse for the 1 ms pulse duration, while with a pulse duration of 0.1 ms both

double-pulse configurations increase the activation threshold significantly.

It is also possible to create custom stimulation functions using m-files.

An example is shown in listing 3.4 and illustrated in figure 3.11. The

function creates an stimulation function shaped like half of the phase of a

sine function with the length as specified by the argument l. The activation

threshold of this function is with -0.09 mA only slightly above the activation
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Figure 3.11: Example of a custom stimulation function specified by a func-
tion file. The method stim(t,l) creates an l ms long stimulation pulse.

threshold for the rectangular stimulation pulse, which is -0.07 mA.

Listing 3.4: Custom stimulation function m-file

function x = stim( t,length )

if t < length

x = sin(t*pi/length);

else

x=0;

end
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end

Further also custom stimulation functions can make use of the frequency,

e.g. when the frequency is set to 1000 Hz, stimulation pulses are directly

chained after each other. Also sinusoid high frequency stimulation can be

created with custom stimulation functions. An example is shown in figure

3.12 where an 16 µm diameter, straight fiber has been stimulated with 10

kHz stimulation of an extracellular electrode with 0.6 mA peak-to-peak in-

tensity and an electrode-fiber distance of 1 mm. Four action potentials are

elicited. Afterwards the the fiber remains ’silent’. No action potentials are

elicited, even if the simulation is conducted for a longer time. According

to Bhadra, Lahowetz, Foldes, and Kilgore (2007) such high frequency sinu-

soidal electrical stimulation can create a nerve fiber block. After a setup

time all action potentials reaching the stimulated parts will not be able to

propagate further.
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Figure 3.12: Illustration of the effect of 10 kHz stimulation with en extra-
cellular electrode.



CHAPTER 4
Summary

An application, AxonSim, was presented that can be used to simulate two

different nerve fiber models, the McIntyre-Richardson-Grill (MRG) model

and the Chiu-Ritchie-Rogart-Stagg-Sweeney (CRRSS) model. Both are

commonly used models for the mammalian myelinated axon. The theory

behind the nerve fiber models and the electrical stimulation of the nervous

system was elaborated. Many features of the electrical stimulation of the

nervous system that can be studied with computer models were investigated

as examples of use of AxonSim. Further crucial parts of the source code of

AxonSim were reviewed and explained.

The presented application, in combination with this text, is well suited

to teach the underlying principles of axon models and their behavior under

the influence of extra- and intracellular artificial stimulation. Furthermore,

the presented application is appropriate to study nerve fiber models without

supervision for everyone who wants to get acquainted with the topic, since

all kinds of configurations can be simulated and cues are given in the text

on how the parameters have an influence on the outcome.

73
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