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Kurzfassung

Diese Arbeit untersucht die Erkennung und Brechung von Symmetrien in Antwortmen-
genprogrammen zur Vermeidung symmetrischer Suchräume und Lösungen. Ein wis-
senschaftlicher Beitrag ist dabei die Reduktion von den Symmetrien eines Logischen
Programms zu der Automorphismengruppe eines Graphen. Wir verwenden sogenannte
Generatoren, die alle Symmetrien mit exponentieller Platzersparnis abbilden. Auf Ba-
sis derer kodieren wir Bedingungen an die Antwortmengen des Logischen Programms,
welche Symmetrien brechen. Wir formulieren unseren Ansatz als Präprozessor für
Antwortmengensysteme, in dem automatisch zuerst Symmetrien in einem Logischen
Programm erkannt und dann gebrochen werden. Experimente vergleichen unsere
Strategie mit der direkten Anwendung eines Antwortmengensystems.

Darüber hinaus untersuchen wir den Einsatz von automatischer Symmetrieerken-
nung und -Brechung in zwei Erweiterungen der Antwortmengenprogrammierung: der
Antwortmengenprogrammierung mit Constraints, und der verteilten Antwortmengen-
programmierung in Multi-Context Systemen. Insbesondere begründen wir einen Ansatz
zur Antwortmengenberechnung mit Constraints mittels Übersetzung zu einem Logis-
chen Programm (ohne Constraints), sodass der direkte Einsatz unserer Methoden mög-
lich wird. Um deren Effizienz mit a-priori Techniken zur Symmetriebrechung zu vergle-
ichen, kodieren wir das Value Precedence Constraint als Antwortmengenprogramm, de-
rart, dass der Inferenzmechanismus eines Antwortmengensystems Domain-Konsistenz
herstellt. Wir evaluieren beide Verfahren empirisch. Für verteilte nicht-monotone Multi-
Context Systeme entwickeln wir einen verteilten Algorithmus zur Erkennung von Sym-
metrien und erweitern unsere Techniken zur Symmetriebrechung für verteilte Antwort-
mengenprogrammierung.





Abstract

In the context of answer set programming, this work investigates symmetry detection and
symmetry breaking to eliminate symmetric parts of the search space and, thereby, simplify
the solution process. We contribute a reduction of symmetry detection to a graph automor-
phism problem which allows to extract symmetries of a logic program from the symmetries
of the constructed coloured graph. The correctness of our reduction is rigorously proven.
We also propose an encoding of symmetry-breaking constraints in terms of permutation
cycles and use only generators in this process which implicitly represent symmetries and
always with exponential compression. These ideas are formulated as preprocessing and im-
plemented in a completely automated flow that first detects symmetries from a given answer
set program, adds symmetry-breaking constraints, and can be applied to any existing answer
set solver. We demonstrate computational impact on benchmarks versus direct application
of the solver.

Furthermore, we explore symmetry breaking for answer set programming in two do-
mains: first, constraint answer set programming as a novel approach to represent and solve
constraint satisfaction problems, and second, distributed nonmonotonic multi-context sys-
tems. In particular, we formulate a translation-based approach to constraint answer set
solving which allows for the application of our symmetry detection and symmetry breaking
methods. To compare their performance with a-priori symmetry breaking techniques, we
also contribute a decomposition of the global value precedence constraint that enforces do-
main consistency on the original constraint via the unit-propagation of an answer set solver.
We prove correctness and evaluate both options in an empirical analysis. In the context
of distributed nonmonotonic multi-context system, we develop an algorithm for distributed
symmetry detection and also carry over symmetry-breaking constraints for distributed an-
swer set programming.
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1 Introduction

Answer set programming (ASP; Baral, 2003) has been shown to be a useful approach for
knowledge representation and nonmonotonic reasoning (NMR; Reiter, 1987) in various appli-
cations that include difficult combinatorial search, among them bioinformatics (Baral et al.,
2004), crypto analysis (Aiello and Massacci, 2001), configuration (Soininen and Niemelä, 1999),
database integration (Leone et al., 2005), diagnosis (Eiter et al., 1999), hardware design (Erdem
and Wong, 2004), model checking (Heljanko and Niemelä, 2003), planning (Lifschitz, 2002),
preference reasoning (Brewka and Eiter, 1996), semantic web (Eiter et al., 2008), and as a high-
light among these applications the high-level control of the space shuttle (Nogueira et al., 2001).
ASP combines an expressive but simple modelling language, able to encode all search prob-
lems within the first three levels of the polynomial hierarchy, with high-performance solving
capacities (Drescher et al., 2008a).

However, many combinatorial search problems exhibit symmetries which can frustrate a
search algorithm to fruitlessly explore independent symmetric subspaces. Various instance fam-
ilies, such as the pigeon hole problem, are known to require exponential time for resolution and
backtracking algorithms (Urquhart, 1987). Indeed, state-of-the-art ASP solvers take a very long
time to solve those instances (see Section 6). Once their symmetries are identified, it is possible
to avoid redundant computational effort by pruning parts of the search space through symmetry
breaking. Symmetry breaking also addresses post-processing: Where symmetries induce equiv-
alence classes in the solution space, symmetric solutions can be discarded. Problems like the
all-interval series taken from the CSPLib (Gent and Walsh, 1999) have plenty symmetric solu-
tion. However, all solutions to the original problem can be reconstructed from the answer sets
under symmetry breaking.

This work breaks the problem of symmetry breaking down into two parts: (1) identifying
symmetries and (2) breaking the identified symmetries. We adopt existing theoretical founda-
tions from symmetry breaking for Boolean satisfiability (SAT; Biere et al., 2009) and present a
reduction of symmetry detection for logic programs to the graph automorphism problem (GAP;
McKay, 1981). For SAT, this has been proposed in (Crawford et al., 1996) and further refined
in (Aloul et al., 2003a;b). Detected symmetries can then be utilized to add symmetry-breaking
constraints (SBCs) to the original problem. These constraints ensure that a search engine never
visits two points in the search space that are equivalent under the symmetry they represent. Un-
fortunately, generating all SBCs is intractable since there might be an exponential number of
symmetries, but partial symmetry breaking can be done in polynomial time (assuming that the
associated GAP is tractable). While Crawford et al. construct a partial symmetry tree, Aloul
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et al. restrict to a set of irredundant generators of the symmetric group. We followed the ap-
proach of Aloul et al. in (Drescher et al., 2010) and introduce an ASP encoding of symmetry-
breaking constraints that is linear in the number of problem variables.

This thesis further extends our results and investigates symmetry breaking for answer set
programming in two domains: first, constraint answer set programming as a novel approach to
represent and solve constraint satisfaction problems (CSP), and second, distributed nonmono-
tonic multi-context systems (MCS; Dao-Tran et al., 2010).

Constraint Answer Set Programming

Constraint satisfaction problems are combinatorial search problems defined as a set of variables
whose value must satisfy a number of requirements, i.e. constraints, and are subject to intense re-
search. Problems that have been successfully modelled as a CSP stem from a variety of areas, for
example, artificial intelligence, operations research, electrical engineering and telecommunica-
tions. There are several approaches to representing and solving constraint satisfaction problems:
traditional constraint programming (CP; Dechter, 2003; Rossi et al., 2006), ASP, SAT, its exten-
sion to satisfiability modulo theories (SMT; Nieuwenhuis et al., 2006), and many more. Each
has its particular strengths: for example, CP systems support global constraints, ASP systems
permit recursive definitions and offer default negation, whilst SAT solvers often exploit very ef-
ficient implementations. In many applications it would often be helpful to exploit the strengths
of multiple approaches. Consider the problem of timetabling at a university (Järvisalo et al.,
2009). To model the problem, we need to express the mutual exclusion of events (for instance,
we cannot place two events in the same room at the same time). A straightforward representation
of such constraints with clauses and rules uses quadratic space. In contrast, global constraints
such as all-different typically supported by CP systems can give a much more concise encoding.
On the other hand, there are features that are hard to describe in traditional constraint program-
ming, like the temporary unavailability of a particular room. However, this is easy to represent
with nonmonotonic rules such as those used in ASP. Such rules also provide a flexible mech-
anism for defining new relations on the basis of existing ones. Answer set programming has
been put forward as a powerful paradigm to solve constraint satisfaction problems by Niemelä
(1999), which also shows that ASP embeds SAT but provides a more expressive framework from
a knowledge representation point of view. Moreover, modern ASP solvers such as CLASP (Geb-
ser et al., 2007b) have experienced dramatic improvements in their performance (Gebser et al.,
2009c), offer an efficiency and scalability that in practice remain largely unmatched to date, and
compete with the best SAT solvers (SAT competition).

An empirical comparison of the performance of ASP and constraint logic programming
(CLP; Jaffar and Maher, 1994) systems on solving combinatorial problems conducted by Dovier
et al. (2005) shows ASP encodings to be more compact, more declarative, and highly competi-
tive. Particularly of relevance here is the fact that clause learning is known to be more general
and potentially more powerful than traditional learning in constraint solvers (Katsirelos and
Bacchus, 2005). However, Dovier et al.’s study also revealed shortcomings: non-Boolean con-
structs, like resources or functions over finite domains, in particular global constraints, are more
naturally modelled and efficiently handled by CP systems. This led to the integration of answer
set programming and constraint processing. In our work on constraint answer set programming
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systems (Drescher, 2010), we identify three different approaches: (1) integration of constraint
solvers, (2) usage of additional propagators, such as aggregates, and (3) translation-based tech-
niques.

Briefly, in a hybrid system, theory-specific solvers interact in order to compute solutions to
the whole constraint model, similar to SMT. Hence, the key idea of an integrative approach is
to incorporate constraint predicates into propositional formulas, and extending an ASP solver’s
decision engine for a more high-level proof procedure. Recent work on combining ASP with CP
was conducted by Baselice et al. (2005); Mellarkod et al. (2008); Mellarkod and Gelfond (2008)
and Gebser et al. (2009d). While Baselice et al.; Mellarkod et al.; Mellarkod and Gelfond all
view ASP and CP solvers as blackboxes, Gebser et al. embed a CP solver into an ASP solver
adding support for advanced backjumping and conflict-driven learning techniques. Balduccini
(2009) and Järvisalo et al. (2009) cut ties to ad-hoc ASP and CP solvers, and principally support
global constraints (without considering learning techniques). Dal Palù et al. (2009) put further
emphasis on handling constraint variables with large domains, and presented a strategy which
only consider parts of the model that actively contribute in supporting constraint answer sets. To
conclude, each existing system has a subset of the following limitations: either they are tied to
particular ASP and CP solvers, or the support for global constraints is limited, or communication
between the ASP and CP solver is restricted.

Little attention is paid to constraint answer set programming through reformulation into
ASP with usage of additional propagators, such as aggregates. Aggregations and other forms
of set constructions have been shown to be useful extensions to ASP (Dell’Armi et al., 2003).
In fact, a lack of aggregation capabilities may lead to an exponential growth in the number of
rules required to model a CSP (Baral, 2003). Therefore, it is common to most ASP solvers
to incorporate specialised algorithms, for instance, the treatment of cardinality constraints, and
their generalisation to weight constraints (Niemelä et al., 1999). Work on a generic framework
which provides an elegant treatment of such extensions was conducted by Elkabani et al. (2004)
who employed external constraint propagators for their handling. However, it does not carry over
to modern ASP solving technology based on conflict-driven nogood learning (CDNL; Gebser
et al., 2007a). A first comprehensive approach to integrating specialised algorithms for weight
constraint rules into CDNL is presented in (Gebser et al., 2009b).

In a translation-based approach all parts of the model are mapped into a single constraint
language for which highly efficient off-the-shelf solvers are available. Previous work has mostly
focussed on the translation of specific types of constraints to SAT. For example, pseudo-Boolean
constraints (linear constraints over Boolean variables), including the special case of Boolean car-
dinality constraints, have been Booleanised such that a SAT solver can compete with the best ex-
isting native pseudo-Boolean solvers (Eén and Sörensson, 2006). Integer linear constraints have
also been translated to SAT by transforming all constraints into primitive comparisons (Tamura
et al., 2006). Although efficient, existent results have a number of limitations. First, the types of
constraints dealt with are limited. Second, the techniques proposed are not necessarily compat-
ible, thus making the translation of a heterogeneous constraint model difficult in both practice
and theory. The latter is faced by Huang (2008) presenting translation techniques to SAT at lan-
guage level by systematically Booleanising a general constraint language, rather than specialised
constraint types. However, this comes with the price of weaker encodings in terms of propaga-
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tion power and loss of explicit domain knowledge and structure. It remains a difficult task to
define universal SAT encodings that are both compact and enforce a strong type of consistency
on the original model. Techniques for translating constraint variables and constraint propagation
algorithms to ASP received little attention. A first study on introducing high-level statements
for multi-valued propositions into the language of ASP was conducted by Gebser et al. (2009a).

We put forward translation-based constraint answer set solving in (Drescher and Walsh,
2010a;b), and show that this approach offers an efficient way to seamlessly combine the propa-
gators of all constraints, through the unit-propagation of an ASP solver. In particular, queueing
of propagators becomes irrelevant as all constraints are always propagated at once. Another
major strength is that the unified conflict resolution framework can exploit constraint interde-
pendencies, which may lead to faster propagation between constraints. Using this approach, we
explore symmetry breaking in the context of constraint answer set programming.

Clearly, symmetry is an important aspect of modelling and solving CSP. Not only that sym-
metry occurs naturally in many problems, symmetry can also be introduced when we model a
problem, e.g., if we name the elements in a variables domain, we introduce the possibility of
permuting their order. We must deal with symmetry in CSP or we will waste much time visiting
symmetric solutions, as well as parts of the search which are symmetric to already visited parts.
In this work, we study the impact of our symmetry detection and symmetry-breaking techniques,
but also studies more efficient methods for a particular, common type of value symmetry where
the values of variables are interchangeable, e.g., if we have a coloured graph, we can generate
another solution if we swap two colours.

Distributed Nonmonotonic Multi-Context Systems

With the rise of distributed systems in the world wide web, there has been increasing inter-
est in formalisms that accommodate multiple, possibly distributed knowledge bases. Based on
ground-breaking work by McCarthy (1987) and Giunchiglia (1992) several approaches have
been proposed, most notably the propositional logic of context developed by McCarthy (1993)
and McCarthy and Buvac (1998), and multi-context systems (MCS; Giunchiglia and Serafini,
1994), which have been associated with the local model semantics introduced by Ghidini and
Giunchiglia (1998). Giunchiglia and Serafini have argued that MCSs constitute the most general
among these formal frameworks.

Intuitively, an MCS consists of several heterogeneous theories (the contexts), heterogeneous
in the sense that they can use different logical languages and different inference systems, that are
interlinked with a special type of rules that allow to add knowledge into a context depending on
knowledge in other contexts. MCSs have applications in various areas, such as argumentation,
data integration, or multi-agent systems. In the latter, each context models the beliefs of an
agent while the bridge rules model an agent’s perception of the environment. An example for
data integration from different sources is given in (Eiter et al., 2010).

Among the various MCS proposals, e.g. (Brewka et al., 2007), the general MCS framework
of Brewka and Eiter (2007) is of special interest, as it generalises previous approaches in con-
textual reasoning and allows for heterogeneous and nonmonotonic MCSs, i.e., a system may
have different, possibly nonmonotonic logics in its contexts, e.g. logic programs under answer
set semantics, and bridge rules may use default negation to deal, for instance, with incomplete
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information. Recent work on Brewka and Eiter’ style nonmonotonic MCSs was conducted by
Dao-Tran et al. (2010) and Bairakdar et al. (2010). While Dao-Tran et al. assume that the
topology of the MCS is not known at context nodes, Bairakdar et al. provide enhancements by
computing topology information.

However, to our knowledge, symmetry breaking in MCSs is still an open issue. We instanti-
ate the MCS framework with ASP contexts, and extend our symmetry detection and symmetry-
breaking techniques to this new line of research.

Contribution of this Thesis

Our work addresses solving combinatorial problems in answer set programming, constraint an-
swer set programming, and distributed answer set programming. The main contributions, briefly
summarized, are as follows:

1. We present a reduction of symmetry detection in logic programs to a graph automorphism
problem.

2. We propose an encoding of symmetry-breaking constraints.

3. We formulate a translation-based approach to constraint answer set solving.

4. Our decomposition of the global value precedence constraint enforces domain consis-
tency.

5. We develop an algorithm for distributed symmetry detection and define distributed sym-
metry-breaking constraints.

6. Experimental results show the impact of symmetry breaking.

More precisely, we study and completely automate a flow that starts with a logic program and
finds all of its symmetries within a very general class, including all syntactic symmetries, i.e.,
permutations that do not change the logic program. In our flow, all symmetries are captured
implicitly, in terms of irredundant group generators, which always guarantees exponential com-
pression. The logic program is then preprocessed by adding symmetry-breaking constraints that
do not affect the existence of answer sets. Any ASP solver can be applied to the preprocessed
logic program without changing its code, which allows for programmers to select the solvers
that best fit their needs.

We contribute a reduction of symmetry detection to a graph automorphism which allows to
extract symmetries of a logic program from the symmetries of the constructed graph, and also
propose a construction of constraints to break detected symmetries. Experiments demonstrate
computational impact. Furthermore, we extend our methods to constraint answer set program-
ming and distributed nonmonotonic multi-context systems with ASP logics. In particular, we
formulate a translation-based approach to constraint answer set solving which allows for the
application of our symmetry detection and symmetry-breaking methods. To compare their per-
formance with a-priori symmetry-breaking techniques, we also contribute a decomposition of
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the global value precedence constraint that enforces domain consistency on the original con-
straint using the unit-propagation of an ASP solver. We evaluate both options in an empirical
analysis. In the context of distributed nonmonotonic multi-context system, we develop an algo-
rithm for distributed symmetry detection and also carry over symmetry-breaking constraints for
distributed answer set programming.

Organisation of this Thesis

The remaining material is organised as follows. At first, we provide all necessary preliminaries
in Section 2. In particular, we describe answer set programming, our approach to constraint
answer set programming and distributed nonmonotonic multi-context systems. We then give
group theoretic background and define what we mean by a symmetry in Section 3. In Section
4, we present our symmetry detection techniques for logic programs, for their extensions, and
for distributed nonmonotonic multi-context systems with ASP logics. Section 5 amounts to
symmetry-breaking methods. We implemented our techniques in various systems, which we
evaluate in Section 6. Section 7 concludes our work.

Throughout this thesis, we state theorems and provide their proofs if not proved elsewhere,
and sometimes with help of lemmas. Corollaries follow from theorems and are as tagged as
such. To enhance readability, we do not tag every definition, but instead, emphasise whenever a
new term is introduced.
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2 Logical Background

We start with an introduction to answer set programming and provide all necessary background
which allows us to characterise inference in ASP as unit-propagation on nogoods. In turn, we
explain our translation-based techniques for constraint answer set programming, an important
extension of ASP. Running examples, most notably the all-interval series and the graph colour-
ing problem, complement the theory. Finally, towards distributed answer set programming, we
present distributed nonmonotonic multi-context systems.

2.1 Answer Set Programming

As a form of declarative programming oriented towards combinatorial search problems, ASP
comes with an expressive but simple modelling language.

Definition 2.1. A (disjunctive) logic program over a set of primitive propositions A is a finite
set of rules r of the form

a1; . . . ; a` ← b1, . . . , bm,∼c1, . . . ,∼cn (2.1)

where ai, bj , ck ∈ A are atoms for 1 ≤ i ≤ `, 1 ≤ j ≤ m, and 1 ≤ k ≤ n.

A default literal â is an atom a or its default negation ∼a. Let head(r) = {a1, . . . , a`} be the
head of r and body(r) = {b1, . . . , bm,∼ c1, . . . ,∼ cn} the body of r. For a set S of atoms,
define S = {∼a | a ∈ S}. For a set S of default literals, define S+ = {a | a ∈ S} and
S− = {a |∼a ∈ S}. The set of atoms occurring in a logic program P is denoted by atom(P ),
and the set of bodies in P is body(P ) = {body(r) | r ∈ P}. If |head(r)| = 1 for all r ∈ P , i.e.,
all rules in the P have a single head atom, we call P a normal logic program.

The semantics of a logic program is given by its answer sets. A set M ⊆ A is an answer set
of a logic program P over A, if M is a ⊆-minimal model of the reduct (Gelfond and Lifschitz,
1991)

PM = {head(r)← body(r)+ | r ∈ P, body(r)− ∩M = ∅}.

A rule of form (2.1) can be seen as a constraint on the answer sets of a program, stating that if
b1, . . . , bm are in the answer set and none of c1, . . . , cn are included, then one of a1, . . . , a` must
be in the set. Important extensions to logic programs are integrity constraints, choice rules, and
cardinality constraints (Simons et al., 2002).
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Definition 2.2. Given an alphabet A. An integrity constraint has the form

← b1, . . . , bm,∼c1, . . . ,∼cn (2.2)

where bj , ck ∈ A, for 1 ≤ j ≤ m and 1 ≤ k ≤ n.

We understand an integrity constraint as a short hand for a rule with an unsatisfiable head, and
thus forbids its body to be satisfied in any answer set.

Example 2.1. Consider the logic programs P1 and P2, both have two answer sets {a} and {b},
given by

P1 =
{
a←∼b
b←∼a

}
, P2 =

{
a; b←
← a, b

}
.

To verify, for instance, answer set {a}, we consider the reduct P {a}1 , P {a}2 respectively:

P
{a}
1 =

{
a←

}
, P

{a}
2 =

{
a; b←

}
.

The ⊆-minimal model of P {a}1 is {a}. P {a}2 has three classical models, {a}, {b}, and {a, b}
where {a} and {b} are ⊆-minimal. Therefore, {a} is an answer set of both P1 and P2. Observe
that P1 and P2 remain invariant under a swap of atoms a and b, which is what we call a sym-
metry. In this work we will only deal with symmetries that can be thought of as permutations of
atoms.

Definition 2.3. Given an alphabet A. An choice rule has the form

{a1, . . . , a`} ← b1, . . . , bm,∼c1, . . . ,∼cn . (2.3)

where ai, bj , ck ∈ A, for 1 ≤ i ≤ `, 1 ≤ j ≤ m, and 1 ≤ k ≤ n.

A choice rule allows for the nondeterministic choice over atoms in {a1, . . . , an}.

Definition 2.4. Given an alphabet A. A cardinality constraint has the form

← k{â1, . . . , ân} (2.4)

where ai ∈ A, for 1 ≤ i ≤ n and k ≥ 0 is an integer.

A cardinality constraint is interpreted as no answer set satisfies k or more default literals of the
set {â1, . . . , ân}.

More formally, the semantics of integrity constraints, choice rules, and cardinality con-
straints can be given through program transformations that introduce additional propositions (Si-
mons et al., 2002). For instance, a cardinality constraint of the form (2.4) can be transformed into(
n
k

)
integrity constraints r such that body(r) ⊆ {â1, . . . , ân} and |body(r)| = k. Simons et al.

provide a transformation that needs just O(nk) rules, introducing atoms l(âi, j) to represent the
fact that at least j of the default literals with index ≥ i, i.e., the default literals in {âi, . . . , ân},

8



are in a particular answer set candidate. Then, the cardinality constraint can be encoded by an
integrity constraint← l(â1, k) and the three following rules, where 1 ≤ i ≤ n and 1 ≤ j ≤ k:

l(âi, j)← l(âi+1, j)
l(âi, j + 1)← âi, l(âi+1, j)

l(âi, 1)← âi

Notice that both transformations are modular. Alternatively, modern ASP solvers also incorpo-
rate specialised propagators for cardinality constraints that run in O(n).

Although the answer set semantics are propositional, atoms in A and can be constructed
from a first-order signature ΣA = (FA,VA,PA), where

- FA is a set of function symbols (including constant symbols),

- VA is a denumerable collection of (first-order) variables, and

- PA is a set of predicate symbols.

The logic program over A is then obtained by a grounding process, systematically substituting
all occurrences of variables VA by terms in T (FA), where T (FA) denotes the set of all ground
terms over FA. Atoms in A are formed from predicate symbols PA and terms in T (FA).

ASP engineers usually use a generate-and-test technique (Baral, 2003) to model a problem,
by producing the space of solution candidates in the generate component and defining rules that
filter invalid solutions in the test component. For instance, the first line of our all-interval series
problem encoding from Examples 2.2 generates an assignment to the problem variables. The
remaining rules comprise the test component as they eliminate assignments that do not solve the
problem.

Example 2.2. The all-interval series problem is to find a permutation of the n integers from
0 to n − 1 such that the difference of adjacent numbers are also all-different. We encode the
all-interval series problem introducing propositional variables vi,j and dk,l for the i ∈ 1..n
integer variables taking values 0 ≤ j < n, and k ∈ 1..(n− 1) auxiliary variables taking values
l ∈ 1..(n−1) to represent the differences between adjacent numbers, respectively. Furthermore,
we require both sets of variables to have pairwise different values.

vi,0; vi,1; . . . ; vi,n−1← i ∈ 1 . . . n
← vi,k, vj,k i < j

di,|j−k|← vi,j , vi+1,k i ∈ 1..(n− 1) ∧ j, k ∈ 0 . . . (n− 1)
← di,k, dj,k i < j

Note that above encoding remains invariant under complex permutation of atoms. We refer to
Example 3.3 for a detailed analysis.

Generate-and-test is also used in the encoding of Ramsey’s theorem in Section 6.2.
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Nogoods

As shown by Lee (2005), the answer sets of a logic program P correspond to the classical models
of P that satisfy all loop formulas, where the classical models of P are represented by the set of
formulas

RFP =


 ∧
b∈body(r)+

b ∧
∧

c∈body(r)−

¬c

→ ∨
a∈head(r)

a | r ∈ P

 ,

A nonempty set L ⊆ A is called a loop of P , if for all nonempty K ⊂ L, there is some r ∈ P
such that head(r) ∩K 6= ∅ and body(r) ∩ (L \K) 6= ∅ (Gebser et al., 2006). Note that every
atom contained in A, forms a loop of P , i.e. a singleton, and if all loops are singletons, then P
is called tight (Erdem and Lifschitz, 2003). For a loop L, let

supP (L) = {r ∈ P | head(r) ∩ L 6= ∅, body(r) ∩ L = ∅} .

be the set of rules from P that can externally support L. The (disjunctive) loop formula (Lee,
2005) of L is defined as

LFP (L) =
∨
a∈L

a→
∨

r∈supP (L)

 ∧
b∈body(r)+

b ∧
∧

c∈body(r)−

¬c ∧
∧

d∈head(r)\L

¬d

 .

Finally, let loop(P ) denote the set of all loops in P and LFP = {LFP (L) | loop(P )}. Then,
according to Lee, a set M ⊆ A is an answer set of a logic program P , if M is a model of
RFP ∪ LFP .

As a remark, the influential Clark’s completion (Clark, 1978) allows for a slightly different
characterisation, where the completion Comp(P ) of a logic program P is defined as the set of
rules in P , and the loop formulas for singletons. Hence, a set M ⊆ A is an answer set of a
logic program P , if M is a model of Comp(P ) ∪ LFP (Ben-Eliyahu and Dechter, 1994; Lee
and Lifschitz, 2003).

We want to view inferences in ASP as unit-propagation on nogoods. Following Gebser
et al. (2007a), inferences in ASP rely on atoms and program rules, which can be expressed by
using atoms and bodies. Thus, for a program P , the domain of truth assignments A is fixed
to dom(A) = atom(P ) ∪ body(P ). Formally, a truth assignment A is a set {σ1, . . . , σn} of
signed literals σi for 1 ≤ i ≤ n of the form Ta or Fa where a ∈ dom(A). Ta expresses
that a is assigned true and Fa that it is false in A. (We omit the attribute truth for assignments
whenever clear from the context.) The complement of a signed literal σ is denoted by σ, that is
Ta = Fa and Fa = Ta. In the context of ASP, we define a nogood (Dechter, 2003) as follows.

Definition 2.5. A nogood is a set δ = {σ1, . . . , σn} of signed literals, expressing a constraint
violated by any assignment A such that δ ⊆ A.

For a nogood δ, a signed literal σ ∈ δ, and an assignment A, we say that δ is unit and σ is
unit-resulting if δ \A = {σ}. Let AT = {a ∈ dom(A) | Ta ∈ A} the set of true propositions
and AF = {a ∈ dom(A) | Fa ∈ A} the set of false propositions. A total assignment, that is
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AT ∪AF = dom(A) and AT ∩AF = ∅, is a solution for a set ∆ of nogoods if δ 6⊆ A for all
δ ∈ ∆. This provides us with a uniform framework for describing propagation via a program,
its completion, and loop formulas.

We follow Drescher et al. (2008a) and start by considering a logic program P as sets of
implications, i.e., we represent RFP . For a set S = {b1, . . . , bm,∼ c1, . . . ,∼ cn} of default
literals, the following set ∆(S) of nogoods defines whether S must be assigned T or F in terms
of the conjunction its elements:

∆(S) =
{
{Tb1, . . . ,Tbm,Fc1, . . .Fcn,FS},
{Fb1,TS}, . . . , {Fbm,TS}, {Tc1,TS}, . . . , {Tcn,TS}

}
.

Intuitively, for some rule r, the nogoods in ∆(body(r)) enforce the truth of body(r) iff all
its default literals are satisfied. This allows us to characterise the implications expressed by a
program P via the following set of nogoods:

∆P =
⋃
r∈P

(∆(body(r)) ∪ {{Tbody(r)} ∪ {Fa | a ∈ head(r)}}) .

Then, the solutions for ∆P correspond to the classical models of P . In order to describe the
completion of a logic program P via nogoods, we make use of shifting (Gelfond et al., 1991):

~P = {ai ← body(r),∼a1, . . . ,∼ai−1,∼ai+1, . . . ∼a` | r ∈ P,
head(r) = {a1, . . . , ai−1,∼ai,∼ai+1, . . . ,∼a`}} .

Shifting retains the loop formulas for singletons, what allows us to check support of singletons
on the shifted version of a program (Drescher et al., 2008a). The set of nogoods

Θ~P =
⋃
r∈~P

∆(body(r)) ∪ {{Ta} ∪ {Fd | d ∈ body(sup~P ({a}))} | a ∈ atom(P )}

then regulate support for singletons. Given that for a tight program P every loop of P is a
singleton, the solutions for ∆P ∪Θ~P coincide with the models of RFP ∪ LFP , i.e., the answer
sets of P . This result still holds after replacing ∆P by ∆~P . Note that ∆P ∪ Θ~P amounts to
the completion of P , provided that P does not contain any tautological rules r, i.e., head(r) ∩
body(r) 6= ∅. Loop formulas, expressed in the set of nogoods ΛP , have to be added to establish
full correspondence to the answer sets of P . We refer the reader to (Drescher et al., 2008a) for
details. Typically, solutions for ∆P ∪Θ~P ∪ΛP are computed by applying some form of conflict-
driven nogood learning (Gebser et al., 2007a; Drescher et al., 2008b). This combines search and
propagation by recursively assigning the value of a proposition and using unit-propagation to
determine logical consequences (Mitchell, 2005).

Example 2.3. Reconsider the logic program P1 from Example 2.1. We have

∆P1 = {{Fb,Fβ1}, {Tb,Tβ1}, {Fa,Fβ2}, {Ta,Tβ2}, {Tβ1,Fa}, {Fβ2,Tb}}
Θ ~P1

= {{Ta,Fβ1}, {Fb,Tβ2}}

Since P1 is tight, ∆P ∪Θ ~P1
coincide with the answer sets of P1. Suppose A = {Fb}. Then the

nogoods {Fb,Fβ1} and {Fb,Tβ2} are unit, where Fβ1 and Tβ2 are unit-resulting and trigger
further propagation. Eventually, unit-propagation extends A to {Fb,Fβ1,Tβ2,Ta}, that is the
answer set {a}.
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Algorithm: UP(∇,A)
Input: A set ∇ of nogoods, and an assignment A.
Output: An extended assignment, and a status (either violating or success).

repeat
if δ ⊆ A for some δ ∈ ∇ then

return (A, violating);
Σ← {δ ∈ ∇ | δ \A = {σ}, σ 6∈ A};
if Σ 6= ∅ then let σ ∈ δ \A for some δ ∈ Σ in

A← A ∪ (σ);
until Σ = ∅;
return (A, success);

Algorithm 2.1: The unit-propagation algorithm.

2.2 Constraint Answer Set Programming

The classic definition of a constraint satisfaction problem is as follows (Rossi et al., 2006).

Definition 2.6. A constraint satisfaction problem is a triple (V,D,C) where V is a set of vari-
ables V = {v1, . . . , vn}, D is a set of finite domains D = {D1, . . . , Dn} such that each vari-
able vi has an associated domain dom(vi) = Di, and C is a set of constraints. A constraint c is
a pair (RS , S) where RS is a k-ary relation on the variables in S ∈ V k, called the scope of c.

In other words, RS is a subset of the Cartesian product of the domains of the variables in S. To
access the relation and the scope of c define range(c) = RS and scope(c) = S. For a (constraint
variable) assignment A : V →

⋃
v∈V dom(v) such that A(v) ∈ dom(v) for all v ∈ V , and a

constraint c = (RS , S) with S = (v1, . . . , vk), define A(S) = (A(v1), . . . , A(vk)), and call
c satisfied if A(S) ∈ range(c). Given this, define the set of constraints satisfied by A as
satC(A) = {c ∈ C | A(scope(c)) ∈ range(c)}. A binary constraint c has |scope(c)| = 2,
while a global (or n-ary) constraint c has parametrized scope.

Example 2.4. The binary constraint v1 6= v2 ensures that v1 and v2 take different values, while
the global all-different constraint ensures that a set of variables, {v1, . . . , vn} take all different
values. This can be decomposed into O(n2) binary constraints vi 6= vj for i < j.

Finally, an assignment A is a solution for a CSP iff it satisfies all constraints in C.

Constraint Programming

Constraint programming is a natural paradigm for solving constraint satisfaction problems.
CP systems usually use a constrain-and-generate technique in which an initial deterministic
phase assigns a domain to each of the constraint variables and imposes a number of constraints,
then a nondeterministic phase generates and explores the solution space. Various heuristics af-
fecting, for instance, the variable selection criteria and the ordering of the attempted values, can
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be used to guide the search. Each time a variable is assigned a value, a deterministic propagation
stage is executed, pruning the set of values to be attempted for the other variables, i.e., enforcing
a certain type of local consistency like arc, domain, bound, or range consistency.

Definition 2.7. A binary constraint c is called arc consistent iff when a variable v1 ∈ scope(c)
is assigned any value d1 ∈ dom(v1), there exists a consistent value d2 ∈ dom(v2) for the other
variable v2.

Definition 2.8. An n-ary constraint c is generalised arc consistent (GAC) or domain consistent
iff when a variable vi ∈ scope(c) is assigned any value di ∈ dom(vi), there exist compatible
values in the domains of all the other variables dj ∈ dom(vj) for all 1 ≤ j ≤ n, j 6= i such
that (d1, . . . , dn) ∈ range(c).

The concepts of bound and range consistency are defined for constraints on ordered intervals.
Let min(Di) and max(Di) be the minimum value and maximum value of the domain Di.
A constraint c is bound consistent iff when a variable vi is assigned either min(dom(vi)) or
max(dom(vi)), i.e., the minimum or maximum value in its domain, there exist compatible
values between the minimum and maximum domain value for all the other variables in the scope
of the constraint. Such an assignment is called a bound support. A constraint is range consistent
iff when a variable is assigned any value in its domain, there exists a bound support. Notice that
range consistency is in between domain and bound consistency.

Constraint Logic Programming

Constraint logic programming is a programming paradigm that naturally merges traditional con-
straint programming and logic programming. The goal is to bring advantages of logic program-
ming based knowledge representation techniques to constraint programming.

Definition 2.9. A constraint logic program P over an extended alphabet distinguishing regular
and constraint atoms, denoted by A and C, respectively, is a set of rules of the form

a1; . . . ; a` ← b1, . . . , bm,∼c1, . . . ,∼cn (2.5)

where ai ∈ A and bj , ck ∈ A ∪ C, for 1 ≤ i ≤ `, 1 ≤ j ≤ m, and 1 ≤ k ≤ n.

Observe that a constraint logic program is in fact a logic program over A∪ C. Constraint atoms
are identified with constraints via a function γ : C → C. For sets of constraints, we write
γ(C ′) = {γ(c) | c ∈ C ′} for C ′ ⊆ C. Finally, for a set S of default literals we define
S|A = S ∩ (A ∪A) and S|C = S ∩ (C ∪ C).

We extend the answer set semantics to constraint logic programs and define the constraint
reduct (Gebser et al., 2009d) as

PA = {head(r)← body(r)|A | r ∈ P,
γ(body(r)+|C) ⊆ satC(A), γ(body(r)−|C) ∩ satC(A) = ∅}.

Then, a set M ⊆ A is a constraint answer set of a constraint logic program P with respect to an
assignment A, if M is an answer set of PA.
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Similar to logic programs, the atoms in A and C can be constructed from a multi-sorted, first-
order signature Σ = (FA ∪ FC ,VA ∪ VC ,PA ∪ PC), where

- FA ∪ FC is a finite set of function symbols (including constant symbols),

- VA is a denumerable collection of regular variable symbols,

- VC ⊆ T (FA) is a set of constraint variable symbols, and

- PA ∪ PC is a finite set of predicate symbols, where PA and PC are disjoint.

While the atoms in A are formed as discussed before, the ones in C are constructed from predi-
cate symbols PC and (FC ,VC)-terms. This definition follows Gebser et al. (2009d) and tolerates
occurrences of similar ground terms in atoms of both A and C.

Example 2.5. To illustrate constraint answer set programming, we encode the graph colour-
ing problem in the language of the preprocessor INCA from the (Potassco suite) labs suite. A
colouring of a graph (V,E) is a mapping c : V → {1, . . . , k} such that c(v) 6= c(w) for every
edge (v, w) ∈ E with a given number k of colours. Given k, the graph colouring problem is to
determine the existence of a colouring.

#var $colour(X) : node(X) = 1..k.

:- $colour(X) == $colour(Y), edge(X,Y).

The first line defines an integer variable for each node, taking values from 1 to k, representing
the colouring. The second line posts the constraint that connected nodes must not have the same
colour. We have FA is the union of {$colour} and the set of all possible arguments of the
edge/2-relation defined in some problem instance, FC = ∅, VA = {X,Y}, PA = {edge}, and
PC = {==}. Observe that the colours are symmetric to each other (value symmetry).

In (Drescher and Walsh, 2010a;b) we explain how to translate constraint logic programs with
multi-valued propositions into a logic program. There are a number of choices of how to encode
constraints on multi-valued propositions, e.g. a constraint variable v, taking values out of a pre-
defined finite domain, dom(v). In what follows, we assume dom(v) = [1, d] for all v ∈ V to
save the reader from multiple superscripts.

A popular choice is called the direct encoding (Walsh, 2000). In the direct encoding, a
propositional variable e(v, i), representing v = i, is introduced for each value i that can be
assigned to the constraint variable v. Intuitively, the proposition e(v, i) is true if v takes the
value i, and false if v takes a value different from i. For each v, the truth-assignments of atoms
e(v, i) are encoded by a choice rule (2.6). Furthermore, there is an integrity constraint (2.7) to
ensure that v takes at least one value, and a cardinality constraint (2.8) that ensures that v takes
at most one value.

{e(v, 1), . . . , e(v, d)} ← (2.6)

←∼e(v, 1), . . . ,∼e(v, d) (2.7)

← 2 {e(v, 1), . . . , e(v, d)} (2.8)
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In the direct encoding, each forbidden combination of values in a constraint is expressed by an
integrity constraint. On the other hand, when a relation is represented by allowed combinations
of values, all forbidden combinations have to be deduced and translated to integrity constraints.
Unfortunately, the direct encoding of constraints hinders propagation:

Theorem 2.1 (Walsh, 2000). Enforcing arc consistency on the binary decomposition of the
original constraint prunes more values from the variables domain than unit-propagation on its
direct encoding.

The support encoding has been proposed to tackle this weakness (Gent, 2002). A support for
v = 9 in a constraint c is the set of values {i1, . . . , im} ⊆ dom(v′) of another variable in v′ ∈
scope(c)\{v}which allow v = i, and can be encoded as following support rule, extending (2.6–
2.8):

← e(v, i),∼e(v′, i1), . . . ,∼e(v′, im) .

This integrity constraint can be read as whenever v = i, then at least one of its supports must
hold. In the support encoding, for each constraint c there is one support rule for each pair of
distinct variables v, v′ ∈ scope(c), and for each value i.

Theorem 2.2 (Gent, 2002). Unit-propagation on the support encoding enforces arc consistency
on the binary decomposition of the original constraint.

We illustrate this approach on an encoding of the global all-different constraint. For vari-
ables v, v′ and value i it is defined by the following O(n2d) integrity constraints:

← e(v, i),∼e(v′, 1), . . . ,∼e(v′, i− 1),∼e(v′, i+ 1), . . . ,∼e(v′, d)

To keep the encoding small, we make use of the equivalence

e(v′, i) ≡ ∼e(v′, 1), . . . ,∼e(v′, i− 1),∼e(v′, i+ 1), . . . ,∼e(v′, d) (2.9)

covered by (2.7–2.8) and get
← e(v, i), e(v′, i) .

Observe that this is also the direct encoding of the binary decomposition of the global all-
different constraint. However, this observation does not hold in general for all constraints (Walsh,
2000). As discussed in the previous section of this thesis, we can use Simons et al.’s encoding
to optimise above condition, or rather express it as O(d) cardinality constraints:

← 2 {e(v1, i), . . . , e(vn, i)} . (2.10)

Corollary 2.3 (Drescher and Walsh, 2010a). Unit-propagation on (2.6–2.8) and (2.10) enforces
arc consistency on the binary decomposition of the global all-different constraint in O(nd2)
down any branch of the search tree.

In (Drescher and Walsh, 2010a;b) we also propose a range encoding and a bound encoding, and
prove similar results, i.e., unit-propagation on the range encoding enforces range consistency on
the original constraint, and unit-propagation on the bound encoding enforces bound consistency
on the original constraint. In particular, we show how simple encodings can simulate very
complex propagation algorithm with a similar overall complexity of reasoning.

15



2.3 Distributed Nonmonotonic Multi-Context Systems

The idea of heterogeneous multi-context systems is to allow different logics to be used in dif-
ferent contexts, and to provide a framework that allows to add knowledge into a context de-
pending on knowledge in other contexts. Following Brewka and Eiter (2007), a logic L =
(KB,BS,ACC) is composed of the following components:

- KB is the set of well-formed knowledge bases (sets of formulas) of L.

- BS is the set of possible belief sets (sets of formulas),

- ACC : KB→ 2BS is a function describing the semantics of the logic by assigning each
kb ∈ KB a set of acceptable sets of beliefs.

This covers many monotonic and nonmonotonic logics like propositional logic (c.f. Biere et al.,
2009) under the closed world assumption and default logic (Reiter, 1980). We will consider
normal logic programs under answer set semantics, i.e., ASP logics L such that

- KB is the set of normal logic programs over an alphabet A,

- the possible belief sets BS = 2A contains all subsets of atoms, and

- ACC(P ) is the set of P ’s answer sets.

We now define a multi-context system according to Brewka and Eiter.

Definition 2.10. A multi-context system M = (C1, . . . , Cn) consists of a collection of con-
texts Ci = (Li, kbi, bri), where Li = (KBi,BSi,ACCi) is a logic, kbi ∈ KBi is a knowledge
base, and bri is a set of Li bridge rules r of the form

a← (c1 : b1), . . . , (cj : bj),∼(cj+1 : bj+1), . . . ,∼(cm : bm) , (2.11)

where 1 ≤ ck ≤ n, bk is an element of some belief set of Lck , 1 ≤ k ≤ m, and kb∪ {a} ∈ KBi

for each kb ∈ KBi.

We call a context atom (ck : bk) or its default negation ∼ (ck : bk) a context literal. Let
the atom head(r) = a be the head of r and the set body(r) = {(c1 : b1), . . . , (cj : bj),
∼(cj+1 : bj+1), . . . ,∼(cm : bm)} the body of r. For a set of context literals S, define S+ =
{(c : b) | (c : b) ∈ S}, S− = {(c : b) |∼(c : b) ∈ S}, and S|c = {b | (c : b) ∈ S}. The set of
atoms occurring in a set of bridge rules bri, i.e.,

⋃
r∈bri{b | (c : b) ∈ body(r)+ ∪ body(r)−} ∪

{head(r)} is denoted by atom(bri).
Intuitively, context literals in bridge rules refer to information of another contexts. Bridge

rules can thus modify the knowledge base, depending on what is believed or disbelieved in other
contexts.

The semantics of an MCS is given by its equilibria, viz., acceptable belief sets, one from
each context, which respect all bridge rules. More formally, for an MCS M = (C1, . . . , Cn)
define a belief state S = (S1, . . . , Sn) of M such that each Si ∈ BSi. A bridge rule r of the
form (2.11) is applicable in a belief state S iff body(r)+|ck ⊆ Sck and body(r)−|ck ∩ Sck = ∅
for all 1 ≤ k ≤ m.
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Definition 2.11. A belief state S = (S1, . . . , Sn) of an MCS M = (C1, . . . , Cn) is an equilib-
rium iff for 1 ≤ i ≤ n:

Si ∈ ACCi(kbi ∪ {head(r) | r ∈ bri, r is applicable in S}).

For multi-context systems with ASP-logics, we will assume that the underlying ASP logics Li
are defined over pairwise distinct alphabets Ai. A major difference to traditional answer set
programming is that bridge-rules allow for a certain form of self-justification of atoms.

Example 2.6. Consider an MCS M = (C1, C2) with ASP logics over alphabets A1 = {a},
A2 = {b}. Suppose kb1 = kb2 = ∅, br1 = {a ← (2 : b)}, and br2 = {b ← (1 : a)}.
One can check that ({a}, {b}) and (∅, ∅) are equilibria of M , while the answer set program
P = {a← b, b← a} has just a single answer set, that is ∅.

Dao-Tran et al.’s distributed algorithms for nonmonotonic MCS M = (C1, . . . , Cn) computes
partial equilibria w.r.t. a contextCk, i.e., parts of potential equilibria of the system which contain
coherent information from all contexts in the import closure of Ck. In the following, we recall
some basic notions of Dao-Tran et al. (2010). The import neighbourhood of a context Ck is the
set

In(k) = {c | (c : b) ∈ body(r), r ∈ bri}

The import closure IC(k) is defined as the smallest set S such that

- k ∈ S,

- i ∈ S implies In(i) ⊆ S.

Let ε 6∈
⋃n
i=1 BSi be a new symbol representing the value ‘unknown’. A partial belief state of

M is a sequence S = (S1, . . . , Sn), such that Si ∈ BSi ∪ {ε}, for 1 ≤ i ≤ n.

Definition 2.12. A partial belief state is a partial equilibrium of M w.r.t. a context Ck iff for
1 ≤ i ≤ n:

Si ∈ ACCi(kbi ∪ {head(r) | r ∈ bri, r is applicable in S}) if i ∈ IC(k),
Si = ε if i 6∈ IC(k).

Clearly, a partial equilibrium of M w.r.t. context Ck does not necessarily extend to an equilib-
rium of M . This is the case, for instance, if BSi = ∅ for some i 6∈ IC(k). However, a partial
equilibrium of M w.r.t. Ck is an equilibrium of the subsystem M(k) defined by IC(k).

For combining partial belief states S = (S1, . . . , Sn) and T = (T1, . . . , Tn) of M , their join
is defined as the partial belief state (U1, . . . , Un) with

Ui = Si if Ti = ε ∨ Ti = Si,
Ui = Ti if Ti 6= ε ∧ Si = ε.

Roughly, one can compute partial equilibria of M = (C1, . . . , Cn) w.r.t. context Ck as follows:
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1. Starting from context Ck, Dao-Tran et al.’s algorithm visits the import closure of Ck by
expanding the import neighbourhood at each context in a depth-first search with loop-
detection.

2. A leave context returns partial belief states to the invoking context.

3. Intermediate contexts consistently combine their beliefs with partial belief states returned
from their neighbours.

This algorithm can potentially be extended to equilibria of M . For a detailed description of the
algorithm, we refer to (Dao-Tran et al., 2010).
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3 Group Theoretic Background

Symmetries are studied in terms of groups. A group is an abstract algebraic structure (G, ∗),
where G is a set closed under a binary associative operation ∗ such that there is a unit element
and every element has a unique inverse.

Definition 3.1. A group (G, ∗) is a set G with a binary operation ∗ : G×G→ G that have the
following three properties:

- the operation ∗ is associative, i.e. ∀a, b, c ∈ G : (a ∗ b) ∗ c = a ∗ (b ∗ c),

- there is a unit element e ∈ G such that ∀a ∈ G : a ∗ e = e ∗ a = a,

- for every a ∈ G there exists a unique inverse a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e.

A subgroup is a subset of a group that is closed under the group operation, and is therefore a
group itself.

Often, we abuse notation and refer to the groupG, rather than to the structure (G, ∗). A compact
representation of a group is given through generators.

Definition 3.2. A set of group elements such that any other group element can be expressed in
terms of their product is called a generating set or set of generators, and its elements are called
generators. A generator is redundant if it can be expressed in terms of other generators. An
irredundant generating set, by definition, does not contain redundant generators.

An irredundant set of generators provides an extremely compact representation of a group. In
fact, representing a group by a generating set always ensures exponential compression.

Theorem 3.1 (Lagrange, from Elementary Group Theory; Hall, 1959). The size of any subgroup
of any finite group G must divide the size of G.

We denote the size of a group G as |G|.

Corollary 3.2 (Aloul et al., 2002). Any irredundant generating set for a finite group G, such
that |G| > 1, contains at most log2 |G| elements.

To relate different groups, we recall some more notion from algebra.
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Definition 3.3. A mapping f : G→ H between to groups (G, ∗) and (H, ◦) is a homomorphism
iff for and a, b ∈ G we have f(a ∗ b) = f(a) ◦ f(b). A homomorphism for which an inverse
exists that is also a homomorphism, is called an isomorphism. If an isomorphism exists, the
two groups G and H are called isomorphic. An isomorphism of a group with itself is called an
automorphism.

Since we can describe groups in terms of generators, it is important to know that isomorphisms
preserve generators.

Theorem 3.3 (Aloul et al., 2002). Any group isomorphism maps sets of generators to sets of
generators, and maps irredundant sets of generators to irredundant sets of generators.

In our context, the most important group is the group of permutations.

Definition 3.4. A permutation of a set S is a bijection π : S → S.

Indeed, the set of permutations form a group under composition, denoted as Π(S). It is easy to
see that the composition of two permutations is a permutation, that the composition of permuta-
tions is associative, that the composition with the identity never changes a permutation, and that
every permutation has a unique inverse. The image of a ∈ S under a permutation π is denoted
as aπ, and for a set X ⊆ S define Xπ = {aπ | a ∈ X}.

Definition 3.5. The orbit of a ∈ S under a permutation π ∈ Π(S) are the set of elements of S
to which a can be mapped by (repeatedly) applying π.

Note that orbits define an equivalence relation on elements in S. Analogously, for vectors v =
(v1, v2, . . . , vk) ∈ Sk define vπ = (vπ1 , v

π
2 , . . . , v

π
k ), for sets X = {a1, a2, . . . , ak) ⊆ S define

Xπ = {aπ1 , aπ2 , . . . , aπk}, and for sets of sets X = {X1, X2, . . . , Xk} such that Xi ⊆ S for
1 ≤ i ≤ k define Xπ = {Xπ

1 , X
π
2 , . . . , X

π
k }. Permutations can be expressed in tabular form,

for example,

π =
(
a1 a2 . . . an
aπ1 aπ2 . . . aπn

)
denotes a permutation that maps a1 to aπ1 , etc. More often, we will make use of the cycle notation
where a permutation is a product of disjoint cycles. A cycle (a1 a2 a3 . . . an) means that the
permutation maps a1 to a2, a2 to a3, and so on, finally an back to a1. An element that does not
appear in any cycle is understood as being mapped to itself. Finally, we define the support of a
permutation (McKay, 1981) as those elements that are not mapped to themselves.

Graph Automorphism Problems

In graph theory, the symmetries are studied in terms of graph automorphism. We consider
directed graphs G = (V,E), where V is a set of vertices and E ⊆ V × V is a set of directed
edges. Intuitively, an automorphism of G is a permutation of its vertices that maps edges to
edges, and non-edges to non-edges, preserving edge orientation. More formally, we define as
follows.
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Definition 3.6. An automorphism or a symmetry of a graph G = (V,E) is a permutation
π ∈ Π(V ) such that (u, v) ∈ E iff (u, v)π ∈ E.

A further extension considers vertex colourings, where symmetries must map each vertex into a
vertex with the same colour.

Definition 3.7. Given a partition of the vertices ρ(V ) = {V1, V2, . . . , Vk}. An automorphism or
a symmetry of a coloured graph G is a symmetry π of G such that ρ(V )π = ρ(V ).

We will think of the partition ρ as a colouring of the vertices.

Example 3.1. Consider the graph G = ({u, v, w}, {(u, v), (u,w), (v, u), (v, w)}) with parti-
tion {{u, v}, {w}}. G’s only nontrivial symmetry is π = (u v).

u

v w

v

u w

Original coloured graph π = (u v)

The (coloured) graph automorphism problem is to find all symmetries of a given graph, for in-
stance, in terms of generators. It is not known to have any polynomial time solution, and is con-
jectured to be strictly between the complexity classes P and NP (Babai, 1995), thus potentially
easier than computing answer sets. Practical algorithms for computing graph automorphism
groups have been implemented in the systems NAUTY (McKay, 1981), SAUCY (Darga et al.,
2004; 2008), and BLISS (Junttila and Kaski, 2007).

Symmetry in Constraint Satisfaction Problems

Intuitively, a symmetry of a CSP is a transformation of its components that leaves the CSP
unchanged. A common type of symmetry are value symmetries, which just act on values.

Definition 3.8. A value symmetry is a bijection on values of constraint variables that preserve
solutions.

For example, the colours in a graph colouring problem can be freely permuted in any solution.
If such a symmetry acts globally on values, we call it a global value symmetry.

Symmetry in Answer Set Programming

By a symmetry of an answer set program we mean a permutation of its atoms that does not
change the logic program, in particular, maps rules to rules. In principle, such a permutation can
affect arbitrarily many atoms at once, for instance, as in the case of a complete cyclic shift. For
a rule r of the form (2.1) and a permutation π define

rπ = aπ1 ; . . . ; aπ` ← bπ1 , . . . , b
π
m,∼cπ1 , . . . ,∼cπn

For a set of rules P , i.e., a logic program, define P π = {rπ | r ∈ P}.
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Definition 3.9. A symmetry of a logic program P is a permutation π ∈ Π(atom(P )) such that
π(P ) = P .

By definition, a symmetry of a logic program preserves answer sets.

Example 3.2. Reconsider P1 from Example 2.1, and π = (a b). Since π(P1) = P1, π is a
symmetry of P1.

Example 3.3. There are four symmetries in the all-interval series problem: (1) the identity, (2)
reversing the series (variable symmetry), (3) reflecting the series by subtracting each element
from n− 1 (value symmetry), and (4) doing both. It is easy to see that (2) and (3) form a group
of generators. Indeed, we can find both symmetries in our encoding (see Example 2.2) given in
cycle notation below.

π2 = (v1,0 vn,0) (v1,1 vn,1) . . . (v1,n−1 vn,n−1)
. . .
(vbn/2c,0 vdn/2e,0) (vbn/2c,1 vdn/2e,1) . . . (vbn/2c,n−1 vdn/2e,n−1)
(d1,1 dn−1,1) (d1,2 dn−1,2) . . . (d1,n−1 dn−1,n−1)
. . .
(db(n−1)/2c,1 dd(n−1)/2e,1) (db(n−1)/2c,2 dd(n−1)/2e,2)
. . . (db(n−1)/2c,n−1 dd(n−1)/2e,n−1)

π3 = (v1,0 v1,n−1) (v1,1 v1,n−2) . . . (vn,b(n−1)/2c vn,d(n−1)/2e)
. . .
(vn,0 vn,n−1) (vn,1 vn,n−2) . . . (vn,b(n−1)/2c vn,d(n−1)/2e)

Intuitively, the cycles in the first three lines of π2 simply swap the first and the last variable, the
second and the last but one variable, etc., value by value to reverse the series, where the remain-
ing cycles adjust the auxiliary variables, i.e., swap the differences value by value, respectively.
The cycles in π3 swap the values 0 and n− 1, 1 and n− 2, etc., for each variable to reflect the
series. Obviously, the permutations π2 and π3 represent (2) and (3), respectively, and do not
change the logic program.

Symmetry in Multi-Context Systems with ASP Logics

We will extend our notion of a symmetry to multi-context systems instantiated with ASP logics.
For bridge rules r of the form (2.11) define

rπ = aπ ← (c1 : bπ1 ), . . . , (cj : bπj ),∼(cj+1 : bπj+1), . . . ,∼(cm : bπm).

and for a set of bridge rules br define brπ = {rπ | r ∈ br}.

Definition 3.10. Let M = (C1, . . . , Cn) be an MCS such that all Li are ASP logics over Ai. A
symmetry of M is a permutation π ∈ Π(

⋃n
i=1Ai) such that π(kbi) = kbi and π(bri) = bri, for

1 ≤ i ≤ n.
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Example 3.4. Consider an MCS M = (C1, C2) with ASP logics over alphabets A1 = {a, b},
A2 = {c, d}. Suppose kb1 = kb2 = ∅, and

br1 =
{
a←∼(2 : c)
b←∼(2 : d)

}
, br2 =

{
c←∼(1 : a)
d←∼(1 : b)

}
.

One can check that ({a, b}, ∅), ({a}, {d}), ({b}, {c}), and (∅, {c, d}) are equilibria. Observe,
that a symmetry of M is given through π = (a b) (c d). In particular, the equilibria ({a}, {d}),
({b}, {c}) are symmetric.

Example 3.5. The MCS from Example 2.6 has only one symmetry: the identity.

Sometimes, a symmetry affects only atoms from the belief set of a single context, i.e., behaves
like the identity for the atoms of all other contexts. We call such a symmetry a local symmetry.

Definition 3.11. Let M = (C1, . . . , Cn) be an MCS such that all Li are ASP logics over Ai. A
symmetry π of M is local for context Ci iff π(a) = a for all a ∈ dom(π) \ Ai.

As a special case, the identity is local for all contexts of M .

Example 3.6. Consider an MCS M = (C1, C2) with ASP logics over alphabets A1 = {a, b},
A2 = {c, d, e, f}. Suppose

kb1 = ∅, br1 =
{
a←∼(2 : c)
b←∼(2 : d)

}
,

kb2 =
{

e← c,∼e
f ← c,∼f

}
, br2 =

{
c←∼(1 : a)
d←∼(1 : b)

}
.

One can check that ({a}, {d}), ({b}, {c, e}) and ({b}, {c, f}) are equilibria. Observe, that
a symmetry of M is given through π = (e f), which is also local for C2. In particular, the
equilibria ({b}, {c, e}) and ({b}, {c, f}) are symmetric.

Similar to equilibria, we define the notion of partial symmetries, which are parts of potential
symmetries of the system.

Definition 3.12. Let M = (C1, . . . , Cn) be an MCS such that all Li are ASP logics over Ai.
A permutation π of the elements in S ⊆

⋃n
i=1Ai is a partial symmetry of M w.r.t. the set of

contexts C = {Ci1 , . . . , Cim} iff the following conditions hold, for 1 ≤ k ≤ m:

- Aik ∪ atom(brik) ⊆ S,

- π(kbik) = kbik , and

- π(brik) = brik .

For combining partial symmetries π and σ, we define their join π ./ σ as the partial symmetry θ,
if π(a) = σ(a) for all a ∈ dom(π) ∩ dom(σ), and where

θ(a) =

{
π(a) if a ∈ dom(π),
σ(a) if a ∈ dom(σ).
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Note that, π ./ σ is void, i.e. undefined, if π and σ behave different for some a ∈ dom(π) ∩
dom(σ). The join of two sets of partial symmetries is then naturally defined as Π ./ Σ = {π ./
σ | π ∈ Π, σ ∈ Σ}.

Example 3.7. Consider an MCSM = (C1, C2) with ASP logics over alphabetsA1 = {a, b, c, d},
A2 = {e, f}. Suppose that

kb1 =


a←∼b
b←∼a
c←∼d
d←∼c

 br1 = ∅,

kb2 = ∅, br2 =
{

e← (1 : a)
f ← (1 : b)

}
.

One can check the following:

- π1 =
(
a b c d
b a d c

)
is a partial symmetry of M w.r.t. {C1},

- π2 =
(
a b e f
b a f e

)
is a partial symmetry of M w.r.t. {C2},

- dom(π1) ∩ dom(π2) = {a, b}, and π1(a) = π2(a), π1(b) = π2(b),

- π3 = π1 ./ π2 =
(
a b c d e f
b a d c f e

)
is a partial symmetry of M w.r.t. {C1, C2}.

Furthermore, π3 is a symmetry of M .
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4 Symmetry Detection

Our approach for detecting symmetries of a logic program is through reduction to, and solution
of, an associated graph automorphism problem. Our techniques are based on the body-atom
graph (V,E0 ∪ E1, E2) of a logic program P , that is, a directed graph with vertices V =
body(P ) ∪ atom(P ), and labelled edges E0 = {(β, a) | a ∈ atom(P ), β ∈ body(a)}, E1 =
{(a, β) | β ∈ body(P ), a ∈ β+}, and E2 = {(a, β) | β ∈ body(P ), a ∈ β−}. The body-
atom graph has been shown to be a suitable representation of a logic program (Linke, 2003).
However, we modify the body-atom graph by introducing additional vertices for negated atoms
to circumvent labelled edges, and construct a 3-coloured graph as follows:

1. In our graph encoding every atom in atom(P ) is represented by two vertices of colour 1
and 2 that correspond to the positive and negative literals, respectively.

2. Every rule is represented by a body vertex of colour 3, a set of directed edges that connect
the vertices of the literals that appear in the rule’s body to its body vertex, and a set of
directed edges that connect the body vertex to the vertices of the atoms (positive literals)
that appear in the head of the rule.

3. To ensure consistency, that is, a maps to b if and only if ∼a maps to ∼b for any atoms a
and b, vertices of opposite literals are mated by a directed edge from the positive literal to
the negative literal.

The choice of three vertex colours insures that body vertices can only be mapped to body
vertices, and positive (negative) literal vertices can only be mapped to positive (negative) lit-

β

a1

al

b1

bm

∼c1

∼cn

β

a1

al

∼a1

∼al

b1 ∼b1

bm ∼bm

∼c1

∼cn

c1

cn

Figure 4.1: General structure of a rule as a body-atom-graph and its 3-coloured graph encoding.
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∼b

∼a a
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2

b ∼b

⊥
Original 3-coloured graph of P1 Original 3-coloured graph of P2

∼b

b

1

2

a

∼a

∼b b

1

2

a ∼a

⊥
π1 = (a b) (∼a∼b) (1 2) π2 = (a b) (∼a∼b)

Figure 4.2: 3-coloured graph constructions and resulting symmetries for the example logic pro-
grams P1 and P2.

eral nodes. To conclude, given a logic program P consisting of m bodies and l literals over
n atoms, the graph encoding for detecting symmetries of P is constructed by m + 2n vertices
and l + n edges. Figure 4.1 illustrates the general structure of a rule r of the form (2.1) as a
body-atom-graph (left), where β is the body vertex. Straight lines represent edges in E0 ∪ E1,
curly lines represent edges in E2. On the right is the general structure of a 3-coloured graph
construction of r. Vertices of colour 1, 2, and 3 are represented by empty circles, filled circles,
and empty squares, respectively. Figure 4.2 provides an example.

Theorem 4.1. The symmetries of a logic program correspond one-to-one to the symmetries of
its 3-coloured graph encoding.

Proof. (⇒) We begin by showing that any symmetry of a logic program corresponds to a sym-
metry of the constructed 3-coloured graph. Such a graph symmetry will map vertices of the
same colour and edges to edges. In particular, if a maps to b, then ∼a maps to ∼b, and the edge
(a,∼a) maps to the edge (b,∼b). Since a and b, and ∼a and ∼b, have the same colour, the
symmetry is preserved. The same can be said about the other edges between vertices of different
colours: In a logic program, a and b might also be connected with one or more body vertices.
These connections would also be swapped at the respective vertices. Again, only vertices of the
same colour are mapped one to another. Thus, a consistent mapping of atoms in the program,
when carried over to the graph, must preserve the colours of the vertices.

(⇐) We now show that every symmetry in the graph corresponds to a symmetry of the logic
program. It is not hard to see because we use one colour for positive literals, one for negative
literals, and one for bodies. Hence, a graph symmetry must map (1) positive literal vertices to
other such, and negative literal vertices to negative literal vertices, and body vertices to body
vertices, and (2) the body edges of a vertex to body edges of its mate. This is consistent with
symmetries of the logic program mapping atoms to atoms, and bodies to bodies, i.e., rules to
rules. To prove Boolean consistency, i.e., if a maps to b then ∼a maps to ∼b, we recall that
every edge from a vertex of colour 2 to a vertex of colour 1 is a Boolean consistency edge of
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the form (a,∼a). Since every such edge can only map to another such edge, a mapping a to b
leaves no choice for (a,∼a) but to map to (b,∼b) because (b,∼b) is the only edge that connects
b to another vertex of the same colour as ∼a.

Theorem 4.2. The symmetry groups of the logic program and its 3-coloured graph encoding
are isomorphic.

Proof Sketch. The proof consists of the straightforward verification that the one-to-one mapping
constructed in the proof of Theorem 4.1 is a homomorphism.

Corollary 4.3. Sets of symmetry generators of the 3-coloured graph encoding correspond one-
to-one to sets of symmetry generators of the logic program.

Proof. By Theorem 3.3 and Theorem 4.2.

Since GAP algorithms are sensitive to the number of vertices of an input graph, our construction
can be optimised to reduce the number of graph vertices while preserving its symmetries. A
first simplification is achieved by modelling rules with an empty body and a single head atom,
so-called facts, by a (forth) colour for the vertex corresponding to the head atom instead of
using (empty) body vertices. Furthermore, rules with a single head atom and a 1-literal body
are modelled using a directed edge from the vertex corresponding to the literal of the body to
the vertex corresponding to the head atom. Observe that this optimisation may connect a literal
vertex to a positive literal vertex. Still, unintended mappings between 1-literal body edges and
consistency edges remain impossible, since consistency edges connect positive literal vertices to
their negative mates. For the special case of a 1-literal body and an empty head, we connect the
literal vertex to the special node ’⊥’.

We extend our graph encoding to integrity constraints, choice rules and cardinality con-
straints. No changes are necessary to cover integrity constraints. Also, the structure of a choice
rule is encoded like a rule, i.e, is represented by a body vertex, a set of directed edges that
connect the vertices of the literals that appear in the choice rule’s body to its body vertex, and
a set of directed edges that connect the body vertex to the vertices of the literals that appear
in the head of the rule. To distinguish choice rules from rules a new colour 5 is introduced
for their body vertices. An extension to cardinality constraints of the form (2.4) has to con-
sider the bound k. Hence, we colour its body vertex by k + 5 to ensure that the literals of two
cardinality constraints can be mated only if their bound is equal. Furthermore, each cardinal-
ity constraints is represented by a set of directed edges that connect the vertices of the literals
b1, . . . , bm,∼c1, . . . ,∼cn, that appear in its body, to its body vertex. Figure 4.3 (left) illustrates
the general structure of a coloured graph construction of a choice rule of the form (2.3). Vertices
of colour 1, 2, and 5 are represented by empty circles, filled circles, and filled squares, respec-
tively. On the right is the general structure of a coloured graph construction of a cardinality
constraint of the form (2.4). Vertices of colour 1, 2, and k + 5 are represented by empty circles,
filled circles, and empty diamonds, respectively.
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Figure 4.3: The general structure of a coloured graph construction of a choice rule and a cardi-
nality constraint.

Symmetry Detection for Multi-Context Systems with ASP Logics

In the following, we provide a distributed algorithm for detecting symmetries of an MCS M =
(C1, . . . , Cn) with ASP logics. Our methods are inductive, i.e., we first take a local stance
starting by detecting partial symmetries of M w.r.t. {Ci} for 1 ≤ i ≤ n, viz., each context
alone, and then successively try to combine partial symmetries.

For symmetry detection in a context Ci, we extend our approach for traditional answer set
programs, i.e., we encode symmetry detection as a graph automorphism problem where the
coloured graph is constructed by previously defined steps 1-3, and 4-6 defined as follows:

4. Every context atom (c : b) that occurs in bri is represented by two vertices of a new
colour c and c+1 that correspond to the positive and negative context literals, respectively.
This ensures that context atoms map to context atoms of the same context only.

5. Bridge rules are represented as traditional ASP rules, i.e., by a body vertex of a colour 4, a
set of directed edges that connect the vertices of the literals that appear in the rule’s body
to its body vertex, and a set of directed edges that connect the body vertex to the vertices
of the atoms (positive literals) that appear in the head of the rule.

6. To ensure consistency, that is again, (c : bi) maps to (c : bj) if and only if ∼(c : bi) maps
to ∼(c : bj) for any context atoms (c : bi) and (c : bj), vertices of opposite literals are
mated by a directed edge from the positive literal to the negative literal.

Example 4.1. One can check that the symmetries of the graph shown in Figure 4.4 are the
identity and (a b) (c d) (1 2). Therefore, the partial symmetries of the MSCM from Example 3.6
w.r.t. {C1}, are the identity and π1,1 = (a b) (c d).

Example 4.2. One can check that the symmetries of the graph shown in Figure 4.5 are the
identity and (e f) (1 2). Therefore, the partial symmetries of the MSC M from Example 3.6
w.r.t. {C2}, are the identity and π1,1 = (e f).
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∼a a 1 ∼c c

∼b b 2 ∼d d

Figure 4.4: Coloured graph construction of context C1 from the MSC in Example 3.6.

∼e

e

2

1

f

∼f

∼c c 3 ∼a a

∼d d 4 ∼b b

Figure 4.5: Coloured graph construction of context C2 from the MSC in Example 3.6.

Theorem 4.4. Let M = (C1, . . . , Cn) be an MCS such that all Li are ASP logics over Ai. The
partial symmetries of M w.r.t. {Ck} correspond one-to-one to the symmetries of Ck’s coloured
graph encoding.

Proof. The proof is symmetric to the one of Theorem 4.1. Therefore we only provide arguments
regarding bridge rules and context atoms. (⇒) A partial symmetries of M w.r.t. {Ck} will
map context atoms to context atoms of the same context. Since they have the same colour, the
symmetry is preserved for corresponding vertices and consistency edges. The same can be said
about body vertices and edges representing bridge rules, since the body vertices have incoming
edges from context literal vertices with their respective colour only, and vertices of the same
colour are mapped one to another. Thus, a consistent mapping of atoms in Ck, when carried
over to the graph, must preserve symmetry.

(⇐) We now show that every symmetry in the graph corresponds to a partial symmetries
of M w.r.t. {Ck}. Recall that we use one colour for positive context literals from each context,
one for negative context literals from each context, and one for bodies. Hence, a graph symmetry
must map (1) positive context literal vertices to other such from the same context, and negative
literal vertices to negative literal vertices from the same context, and body vertices to body
vertices, and (2) the body edges of a vertex to body edges of its mate. This is consistent with
partial symmetries of M w.r.t. {Ck} mapping context atoms to context atoms, and bodies to
bodies, i.e., bridge rules to bridge rules.

In the remainder of this section, we define a distributed algorithm for computing symmetries
of an MCS. We follow Dao-Tran et al. (2010) by taking a local stance, i.e., we consider a con-
text Ck and those parts of the system that are in the import closure of Ck to compute (potential)
symmetries of the system. To this end, we design an algorithm whose instances run indepen-
dently at each context node and communicate with other instances for exchanging sets of partial
symmetries. This provides a method for distributed symmetry building.
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Algorithm: DSD(H) at context Ck = (Lk, kbk, brk) with ASP logic Li
Input: Visited contexts H .
Data: Cache c(k).
Output: The set of accumulated partial symmetries Π.

if c(k) is not initialised then
c(k)← GAP(Ck);

H ← H ∪ {k};
Π← c(k);
foreach i ∈ In(k) \H do

Π← Π ./ Ci.DSD(H);
return Π;

Algorithm 4.1: The distributed symmetry detection algorithm.

The idea is as follows: starting from a contextCk, we visit the import closure ofCk by expanding
the import neighbourhood at each context, maintaining the set of visited contexts in a set H ,
the history, until a leaf context is reached, or a cycle is detected by noticing the presence of
a neighbour context in H . A leaf context Ci simply computes all partial symmetries of M
w.r.t. {Ci} by encoding symmetry detection as a graph automorphism problem, and invoking a
dedicated GAP solver. Then, it returns the results to its parent (invoking context), for instance,
in form of permutation cycles. The results of intermediate contexts Ci are partial symmetries
of M w.r.t. {Ci}, which can be joined, i.e., consistently combined, with partial symmetries from
their neighbours, and resulting in partial symmetries of M w.r.t. {Cj | j ∈ IC(i)} ∪ {Ci}. In
particular, the starting context Ck returns its partial symmetries joined with the results from its
neighbours, as a final result.

We assume that each context Ck has a background process, e.g. a daemon, that waits for
incoming requests with historyH , upon which it starts the computation outlined in our algorithm
shown in Figure 4.1. We writeCi.DSD(H) to specify that we sendH to the process at contextCi
and wait for its return message. This process also serves the purpose of keeping the cache c(k)
persistent. We use the primitive GAP(Ck) which computes partial symmetries of M w.r.t. {Ck}
via reduction to a graph automorphism problem, as described before. Our algorithm proceeds in
the following way:

1. Check the cache for partial symmetries of M w.r.t. {Ck}.

2. If imports from neighbour contexts are needed, then request partial symmetries from all
neighbours and join them (previously visited contexts excluded). This can be performed
in parallel. Also, partial symmetries can be joined in the order neighbouring contexts do
answer.

3. Return partial symmetries of M w.r.t. {Ci | i ∈ IC(k)}.

Correctness of our approach is provided by the following result.
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Theorem 4.5. LetM = (C1, . . . , Cn) be an MCS such that all Li are ASP logics overAi. Then,
π ∈ Ck.DSD(∅) iff π is a partial symmetry of M w.r.t. {Ck} ∪ {Ci | i ∈ IC(k)}.

Proof. We start by showing that the combination of partial symmetries of M are partial symme-
tries of M .

Lemma 4.6. Let M = (C1, . . . , Cn) be an MCS such that all Li are ASP logics overAi. Let Πi

the set of partial symmetries of M w.r.t. Ci. The partial symmetries of M w.r.t. {Ci1 , . . . , Cim}
are given through Πi1 ./ . . . ./ Πim . In particular, a partial symmetry ofM w.r.t. {C1, . . . , Cn}
is a symmetry of M .

Proof of Lemma 4.6. We prove by induction on m. Base case: Πi1 are the partial symmetries
of M w.r.t. {C1}, by Theorem 4.4. Induction step: Assume the partial symmetries of M
w.r.t. {Ci1 , . . . , Cim} are Π = Πi1 ./ . . . ./ Πim , and the set of partial symmetries of M
w.r.t. {Cim+1} is Πim+1 . (⇒) Let π ∈ Π and σ ∈ Πim+1 such that π(a) = σ(a) for all
a ∈ dom(π) ∩ dom(σ). Then, by Definition 3.12, θ = π ./ σ is a partial symmetry of M
w.r.t. {Ci1 , . . . , Cim , Cim+1}. To be more precise, θ(kbij ) = kbij and θ(brij ) = brij since
π(kbij ) = kbij and π(brij ) = brij for all 1 ≤ j ≤ m, and θ(kbim+1) = kbim+1 and θ(brim+1) =
brim+1 since σ(kbim+1) = kbim+1 and σ(brim+1) = brim+1 .

(⇐) Let θ be any partial symmetry of M w.r.t. {Ci1 , . . . , Cim , Cim+1}. Trivially, by Def-
inition 3.12, θ is also a partial symmetry of M w.r.t. {Ci1 , . . . , Cim}, and M w.r.t. {Cim+1}.
Hence, θ ∈ Π and θ ∈ Πim+1 , and θ ∈ Π ./ Πim+1 . In conclusion, Π ./ Πim+1 are the partial
symmetries of M w.r.t. {Ci1 , . . . , Cim , Cim+1}.

Finally, let π be a partial symmetry of M w.r.t. {C1, . . . , Cn}. By Definition 3.12 we have
dom(π) ⊆

⋃n
i=1Ai (upper bound for the domain of partial symmetries), and Ai ⊆ dom(π)

(lower bound for domain of partial symmetries), for 1 ≤ i ≤ n. Hence, π is a permutation of
exactly the elements in

⋃n
i=1Ai. Given this, and since π(kbi) = kbi and π(bri) = bri holds for

1 ≤ i ≤ n, i.e., all contexts in M , π is a symmetry of M .

We can now prove Theorem 4.5. (⇒) We prove soundness, i.e., if π ∈ Ck.DSD(∅) then π is a
partial symmetry of M w.r.t. {Ck} ∪ {Ci | i ∈ IC(k)}. We show by structural induction on
the topology of an MCS, and start with acyclic MCS M . Base case: Ck is a leaf with brk = ∅
and In(k) = ∅. By Theorem 4.4, we compute all partial symmetries of M w.r.t. {Ck}, i.e.,
c(k) ← GAP(Ck) in Algorithm 4.1. Induction step: Assume the import neighbourhood of
context Ck is In(k) = {i1, . . . , im} and

Πk = GAP(Ck)
Πi1 = Ci1 .DSD(H ∪ {k})

...
Πim = Cim .DSD(H ∪ {k})

By Lemma 4.6, the partial symmetries of M w.r.t. {Ck} ∪ {Ci | i ∈ IC(k)} are Π = Πk ./
Πi1 ./ . . . ./ Πim , as computed by Π← Π ./ Ci.DSD(H) in the loop of Algorithm 4.1.

The proof for cyclic M works similarly. In a run we eventually end up in a context Ci
such that i ∈ H again. In that case, calling Ci.DSD(H) is discarded, which breaks the cycle.
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Figure 4.6: Modified coloured graph construction of context C2 from the MSC in Example 3.6.

However, partial symmetries not including Ci are propagated through the system to the calling
context Ci which combines the intermediate results with partial symmetries of M w.r.t. {Ci}.

(⇐) We give now a proof sketch for completeness. Let π be a partial symmetry of M
w.r.t. {Ck} ∪ {Ci | i ∈ IC(k)}. We show π ∈ Ck.DSD(∅). The proof idea is as follows: we
proceed as in the soundness part by structural induction on the topology of M , and in the base
case for a leaf context Ck, by Theorem 4.4, we get that GAP(Ck) gives us all partial symmetries
of M w.r.t. {Ck}. By definition of a symmetry, π|Ak∪atom(brk) is a partial symmetry of M
w.r.t. {Ck}. Symmetric arguments hold for partial symmetries of M w.r.t. {Ck} ∪ {Ci | i ∈
IC(k)}.

Example 4.3. ReconsiderM from Example 3.6. Suppose the user invokes C1.DSD(∅) to trigger
the symmetry detection process. When called the first time, the process of context C2 determines
partial symmetries Π1 of M w.r.t. {C2}, that are given by identity and π1 = (a b) (c d) (see
Figure 4.4), and triggers its neighbours (only context C2). Eventually, the process at C2 returns
partial symmetries Π2 of M w.r.t. {Ci | i ∈ IC(i)} ∪ {C2} (= {C2}), that are the identity and
π2 = (e f) (see Figure 4.5). Finally, the process at C1 computes the join Π1 ./ Π2, that consists
of the identity and (e f). These results are returned to the user.

To compute local symmetries only, we further modify our approach by assigning a unique colour
to each context atom and each atom that is referenced in other contexts, i.e., context atoms cannot
be mapped.

Example 4.4. One can check that the symmetries of the graph shown in Figure 4.6 are the
identity and (e f) (1 2). Therefore, the local symmetries of the MSC M from Example 3.6 in C1,
are the identity and π2 = (e f). Hence, π2 is a symmetry of M .

Theorem 4.7. Let M = (C1, . . . , Cn) be an MCS such that all Li are ASP logics over Ai. The
local symmetries ofM inCk correspond one-to-one to the symmetries ofCk’s modified coloured
graph encoding.

Proof. The proof is symmetric to the one of Theorem 4.1. Therefore we only provide arguments
regarding bridge rules and context atoms.

(⇒) A local symmetry ofM inCk behaves on context atoms like the identity mapping. Since
they have unique colours, this property is preserved for corresponding vertices and consistency
edges. The same can be said about body vertices and edges representing bridge rules, since the
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body vertices have incoming edges from context literal vertices with their respective colour only,
and only vertices of the same colour are mapped one to another. Thus, a consistent mapping of
atoms in Ck, when carried over to the graph, must preserve symmetry.

(⇐) We now show that every symmetry in the graph corresponds to a local symmetry of M
in Ck. Recall that we use a unique colour for each positive context literal. Hence, a graph
symmetry behaves like the identity mapping on context literal vertices and body vertices which
represent bridge rules. This naturally carries over to the body edges of a context literal vertex.
Extend the symmetry to all atoms in

⋃n
i=1Ai such that previously undefined mappings behave

like the identity mapping. This is consistent with local symmetries of M in Ck.
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5 Symmetry Breaking

5.1 Symmetry-breaking Constraints

Recall that a symmetry π of a logic program P defines equivalence classes on the atoms in P
(orbits). This naturally extends to Boolean assignments, where, for signed literals Ta and Fa,
we define (Ta)π = T(aπ) and (Fa)π = F(aπ). Hence, symmetries induces equivalence classes
in the solution space of a problem: Given an answer set of P , all sets to which it can be mapped
by symmetries, must be answer sets of P . Similarly, symmetries always map non-answer sets
to non-answer sets. Therefore, it is sufficient to reason about one representative from every
equivalence class.

Symmetry breaking amounts to selecting some representatives from every equivalence class
and constructing rules, composed into a symmetry-breaking constraint, that is only satisfied on
those representatives. A full SBC selects exactly one representative from each orbit, otherwise
we call an SBC partial. The most common approach is to order all elements from the solution
space lexicographically, and to select the lexicographically smallest element, the lex-leader,
from each orbit as its representative (c.f. Crawford et al., 1996; Aloul et al., 2002; 2003a;b).
A lex-leader symmetry-breaking constraint (LL-SBC) is an SBC that is satisfied only on the
lex-leaders of orbits.

We will assume a total ordering on the atoms a1, a2, . . . , an of a logic program’s alphabetA
and consider the induced lexicographic ordering on the truth assignments, i.e., their interpreta-
tion as unsigned integers. The construction of a lex-leader SBC is accomplished by encoding a
permutation constraint (PC) for every permutation π, where

PC(π) =
∧

1≤i≤n

 ∧
1≤j≤i−1

(aj = aj
π)

→ (ai ≤ aiπ).

The lex-leader symmetry-breaking constraint that breaks every symmetry in a logic program can
now be constructed by conjoining all of its permutation constraints.

LL-SBC(Π) =
∧
π∈Π

PC(π)

Through chaining, which includes additional atoms, we achieve a PC representation that is linear
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in the number of atoms (Aloul et al., 2003a):

PC(π) = (a1 ≤ aπ1 ) ∧ cπ,2
cπ,i ≡ (ai−1 ≥ aπi−1)→ (ai ≤ aπi ) ∧ cπ,i+1 1 < i ≤ n
cπ,n+1 ≡ >

Theorem 5.1 (Crawford et al., 1996). For a group of symmetries Π, the truth assignments that
satisfy LL-SBC(Π) are the lexicographically smallest representatives from each class of truth
assignments that can be mapped to each others by elements from Π.

Finally, we encode above permutation constraint in ASP, denoted P (π), that is satisfied for the
lex-leader of the orbit induced by π as follows:

← a1,∼a1
π (5.1)

← cπ,2 (5.2)

cπ,i ← ai−1, ai,∼aiπ (5.3)

cπ,i ←∼ai−1
π, ai,∼aiπ (5.4)

cπ,i ← ai−1, cπ,i+1 (5.5)

cπ,i ←∼ai−1
π, cπ,i+1 (5.6)

cπ,n+1 ← (5.7)

where 1 < i ≤ n. Note that new atoms are introduced, thus extending the alphabet of P .
Correctness is provided by the following theorem.

Theorem 5.2. Let π be a symmetry over atoms A. For any truth assignment A, A satis-
fies PC(π) iff ∀δ ∈ ∆P (π) ∪ΘP (π) : δ 6⊆ A.

Proof Sketch. Using the one-to-one correspondance between nogoods and clauses (Bayardo and
Schrag, 1997), the proof consists of verifying that the nogoods represented by rules (5.3–5.6)
correspond to the clausal form of cπ,i and, even more obvious, the nogoods represented by
rules (5.1–5.2), and (5.7) correspond to the clausal form of PC(π), > respectively.

A careful analysis reveals some possibilities to reduce the size of permutation constraints. The
first corresponds to atoms that are mapped to themselves by the permutation, i.e., aiπ = ai.
This makes the consequent of the implication unconditionally true. For sparse symmetries,
one can significantly reduce the size of the permutation constraint with a restriction of the PC
construction to only those atoms that are in the support of π. Second, also for atoms a and b
such that both appear in P as facts, and aπ = b, the consequent a ≤ aπ is satisfied.

A third possibility corresponds to the lexicographically largest atom in each cycle of π. As-
sume a cycle (as . . . ae) on the atoms of some index set {a, . . . , e}. Using equality propagation
on the portion of the permutation constraint where i = e, we get (as = ae) → (ae ≤ as)
which is tautologous. Hence, we can further restrict the index set in the PC by excluding the
lexicographically largest atom in each cycle.

36



Example 5.1. We illustrate our PC encoding on the symmetries detected for the previous exam-
ples P1 and P2. Since both permutations π1 and π2 (Figure 4.2) map a to b and vice versa, they
share the same LL-SBC which is as simple as follows, assuming a is lexicographically smaller
than b:

← a,∼b

Observe that the ordering on the atoms of a logic program P induces a preference relation on the
answer sets of P under symmetry breaking. Here, the ordering selects {b} as the representative
of the set of all answer sets symmetric to {b}, hence, eliminating the answer set {a}.

Partial Symmetry Breaking

Breaking all symmetries may not speed up search because there are often exponentially many
of them. A better trade-off may be provided by breaking enough symmetries (Crawford et al.,
1996). We explore partial SBCs, i.e., we do not require that SBCs are satisfied by lex-leading
assignments only (but we still require that all lex-leaders satisfy SBCs). Irredundant generators
are good candidates because they cannot be expressed in terms of each other, and implicitly
represent all symmetries. Hence, breaking all symmetries in a generating set can eliminate all
problem symmetries. However, this does not hold in general, e.g., different generating sets of the
group of a logic program’s symmetries may lead to different pruning (Katsirelos et al., 2009).

Example 5.2. Consider a logic program P with interchangeable atoms a1, a2, a3, a4, for in-
stance

{a1, a2, a3, a4} ←
← a1, a2, a3, a4

An irredundant generating set for Π(P ) is the pair swap (a1 a2) and the rotation (a1 a2 a3 a4).
To break the symmetry (a1 a2) we post the permutation constraint

← a1,∼a2

To break the symmetry (a1 a2 a3 a4) we post

← a1,∼a2 c0← a1, a2,∼a3 c1← a2, a3,∼a4

← c0 c0← a1, c1 c1← a2, c2

c2← c0←∼a2, c1 c1←∼a3, c2

However, these two permutation constraints do not eliminate all symmetries. For instance, they
permit both answer sets {a2, a4} and its symmetry {a3, a4}. There is an alternative irredundant
generating set which breaks all symmetries, that is {(a1 a2), (a2 a3), (a3 a4)}. We can break
these three symmetries with

← a1,∼a2

← a2,∼a3

← a3,∼a4

eliminating all symmetries of P .
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We can further relax symmetry breaking to k supports from each permutation (Aloul et al.,
2003a). For k ≤ n and ai is a support of permutation π, we define the partial permutation
constraint:

← a1,∼a1
π

← cπ,2
cπ,i← ai−1, ai,∼aiπ
cπ,i←∼ai−1

π, ai,∼aiπ
cπ,i← ai−1, cπ,i+1

cπ,i←∼ai−1
π, cπ,i+1

cπ,k+1←
By restricting the construction of permutation constraints this way, we further reduce the size of
partial SBC.

Example 5.3. Consider the all-interval series problem encoded from Example 2.2 and the gener-
ators π2 and π3 from Example 3.3. The symmetry-breaking constraint, where both permutation
constraints are restricted to the second support, is given through the following, where c0, . . . , c3

are new atoms.

← v1,0,∼v1,n−1 ← v1,0,∼vn,0
← c0 ← c2

c0← v1,0, v1,1,∼v1,n−2 c2← v1,0, v1,1,∼vn,1
c0← v1,1,∼v1,n−1,∼v1,n−2 c2← v1,1,∼vn,0,∼vn,1
c0← v1,0, c1 c2← v1,0, c3

c0← c1,∼v1,n−1 c2← c3,∼vn,0
c1← c3←

Our techniques can be easily extended to constraint answer set programming using our transla-
tion based approach (Drescher and Walsh, 2010a;b), where a constraint logic program is decom-
posed into a logic program under answer set semantics. Then generic symmetry detection and
symmetry breaking can be applied. However, it is often reasonable to assume that the symme-
tries for a problem are known, and can be modelled a-priori.

5.2 Breaking Value Symmetry

For particular symmetries, there are more efficient breaking methods. We show here how to deal
with value symmetries. Recall, a value symmetry is a bijection on values of constraint variables
that preserve solutions. In this context, a pair of values is called interchangeable if they can be
swapped in any solution. One can break all symmetries between a pair of interchangeable values
(dj , dk) in the scope of the constraint variables v1, . . . , vn using the value precedence constraint
(Law and Lee, 2004)

precedence([dj , dk], [v1, . . . , vn]) (5.8)

which holds iff the smallest index of a variable that takes the value di is smaller than the smallest
index of a variable that takes the value dk, or dk is not taken by any variable v1, . . . , vn, i.e.,

min({i | vi = dj} ∪ {n+ 1}) < min({i | vi = dk} ∪ {n+ 2}) .
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We follow Walsh (2006) and encode this constraint by introducing a sequence of atoms bi for
1 ≤ i ≤ n (5.9), where Tbi if vl = dj for some l < i. Based on the direct encoding, the value
precedence constraint prevents us from assigning Te(vi, dk), representing vi = dk, unless Tbi.
Hence, we post the following sequence of constraints, i.e., rules (5.10–5.13) that hold iff vi = dj
implies Tbi (5.10), vi 6= dk implies bi = bi+1 (5.11–5.12), and Fbi implies vi 6= dk. We also
set Fb1 (5.14).

{b1, . . . , bn} ← (5.9)

← e(vi, dj),∼bi+1 1 ≤ i < n (5.10)

←∼e(vi, dj), bi,∼bi+1 1 ≤ i < n (5.11)

←∼e(vi, dj),∼bi, bi+1 1 ≤ i < n (5.12)

← e(vi, dk),∼bi 1 ≤ i ≤ n (5.13)

← b1 (5.14)

Theorem 5.3. Unit-propagation on (2.6) and (5.9–5.13) enforces domain consistency on Law
and Lee’s precedence constraint in O(nd) down any branch of the search tree.

Proof. The proof of domain consistency is provided by Walsh (2006). It remains to prove the
runtime. For each of the n variables, there are O(d) nogoods resulting from (2.6) that can be
propagated O(1) times down any branch of the search tree. Each propagation requires O(1)
time. Rule (2.6) therefore take O(nd) down any branch of the search to propagate. There are
O(n) nogoods resulting from (5.9–5.14) that each takeO(1) time to propagate down any branch
of the search tree. Therefore, the total running time is given by O(nd) +O(n) = O(nd).

Many problems, however, involve multiple interchangeable values, not just two. For instance,
we assign colours to vertices in the graph colouring problem (Example 2.5), all values are in-
terchangeable. To break such symmetry, Law and Lee propose the global value precedence
constraint

precedence([d1, . . . , dm], [v1, . . . , vn]) . (5.15)

In what follows, we consider [d1, . . . , dm] =
⋃

1≤i≤nDi. Then, the global value precedence
constraint (5.15) holds iff for all 1 ≤ i < j < m

min({i | vi = di} ∪ {n+ 1}) < min({i | vi = dj} ∪ {n+ 2}) .

To propagate this constraint, Law and Lee (2004) suggest decomposing it into pairwise value
precedence constraints of the form (5.8), i.e., precedence([dj , dk], [v1, . . . , vn]) for all j < k.
However, Walsh proved that such a decomposition hinders GAC propagation (Walsh, 2006).
We propose instead a simple ASP encoding of precedence([d1, . . . , dm], [v1, . . . , vn]), inspired
by Bacchus’ automaton-based CNF decomposition of the regular constraint (Bacchus, 2007).
(Note that the global value precedence constraint is an instance of the regular constraint.) A
regular language L has an associated deterministic finite automaton (DFA) M that accepts a
string iff that string is a member of L. Each M is defined by the quintuple (Q,Σ, δ, q0, F ),
where Q is a finite set of automaton states, Σ is an input alphabet, δ is a transition function
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Figure 5.1: The state diagram of a DFA M encoding the global value precedence constraint on
multiple interchangeable values. A state dj represents the maximum value seen before reading
the input symbol vi. If vi takes the value dj+1,M goes in state dj+1 and remains in dj , otherwise,
provided vi ≤ dj+1. It is understood that all transitions not shown lead to a (rejecting) sink state.

Q × Σ → Q, q0 is the initial state, and F is a set of accepting states (Homer and Selman,
2001). Each input symbol s ∈ Σ causes M to perform a transition from its current state q
to the new state δ(q, s), where M starts off in the state q0 and a string S over the alphabet
Σ. S is said to be accepted by the DFA M if M is in an accepting state after processing S.
We encode a deterministic finite automaton M = (Q,Σ, δ, d0, F ) that accepts the input string
S = [v1, . . . , vn] iff precedence([d1, . . . , dm], [v1, . . . , vn]) is satisfied. M is defined by Σ =
{d1, . . . , dm}, Q = Σ ∪ {d0}, F = Σ, and δ(A(vi), dj) = max(A(vi), dj) provided vi ≤ dj+1

for 0 ≤ j < m. A state diagram is given in Figure 5.1. For each step i of M ’s processing
1 ≤ i ≤ n, and each state dj ∈ Q, an atom state(vi, dj) is introduced. This atom is true if
M is in state dj when processing input symbol vi. Since d0 is the initial state, state(v1, d0)
is given as a fact 5.16. The transition function is encoded in rules (5.17–5.19). Consider M is
in state dj and reads symbol vi, i.e., state(vi, dj) is true. If vi = dj+1, i.e., i is the smallest
index of a variable that takes the value dj+1, then δ(vi, dj+1) = vi and state(vi, dj+1) becomes
true (5.17). If vi 6= dj+1, i.e., i is not the smallest index of a variable that takes the value dj+1,
then M remains in the state dj (5.18). M rejects if vi > dj (5.19).

state(v1, d0)← (5.16)

state(vi+1, dj+1)← state(vi, dj), e(vi, dj+1) 1 ≤ i < n, 0 ≤ j < m (5.17)

state(vi+1, dj)← state(vi, dj),∼e(vi, dj+1) 1 ≤ i < n, 0 ≤ j ≤ m (5.18)

← state(vi, dj), e(vi, dk) 1 ≤ i ≤ n, 1 ≤ j < k + 1 ≤ m (5.19)

A logic program that contains an ASP encoding of M has no answer set if M rejects S, i.e.,
precedence([d1, . . . , dm], [v1, . . . , vn]) can not be satisfied. Furthermore, unit-propagation en-
forces domain consistency on the global value precedence constraint.

Theorem 5.4. Unit-propagation on (2.6–2.8) and (5.16–5.19) enforces domain consistency on
the global value precedence constraint in O(nmd) down any branch of the search tree.

Proof. Suppose we have a set of domains for the constraint variables in which no pruning is pos-
sible and no domain is empty. First, if vi = dk is not pruned by the global value precedence con-
straint it must have compatible values in the domains of the other variables, i.e., v1, . . . , vi, . . . vn
is a sequence of inputs to the DFAM representing precedence([d1, . . . , dm], [v1, . . . , vn]) which
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causes M to transition through a sequence of states starting at the initial state d0 and ending at
an accepting state dm ∈ F . Setting all of the state atoms of the form state(vj , d`) and corre-
sponding atoms of the form e(vj , d`) to be true, and all other atoms to be false, we observe that
all nogoods encoding rules (5.16–5.19) cannot be violated any more. Hence Te(vi, dk) is part
of a satisfying truth assignment and since unit-propagation is sound it cannot force Fe(vi, dk).
We conclude by contraposition that if unit-propagation forces Fe(vi, dk) then the global value
precedence constraint prunes vi = dk to achieve domain consistency.

Second, if no unit-propagation is possible and Fe(vi, dk) has not been forced, then by
rule (5.19) nogoods {Tstate(vi, dj),Te(vi, dk} are not unit, for all j < k + 1. Hence the state
variables state(vi, dj), in particular the state variable state(vi, dk−1), also have not been falsi-
fied by unit-propagation. By (nogoods encoding) rules (5.17–5.18) state atoms state(vi−1, dk−1)
and state(vi+1, dk+1) cannot be falsified. Hence, e(vi−1, dk−1 and e(vi+1, dk+1 cannot be fal-
sified either. Continuing this way we arrive at an input sequence that includes dj ∈ dom(vi)
and that causes M to transition from d0 to an accepting state. That is, vi = dj has compatible
values in the domain of all the other variables, and the global value precedence constraint does
not prune it.

Finally, if the global value precedence constraint has no satisfying assignment then no value
d ∈ dom(vi) is compatible for any variable vi. By above, unit-propagation will force Fe(vi, d)
for every d ∈ dom(vi) thus violating rule (2.7) expressed in the nogood {Fvi, d1, . . . ,Fvi, dk}.

Now we address the runtime. For each of the n variables, there areO(nd) nogoods resulting
from (2.6) that take O(d) down any branch of the search to propagate. There are O(nmd)
nogoods resulting from (5.16–5.19) that each take O(1) time to propagate down any branch
of the search tree. Hence, the total runtime is given by O(nmd). By comparison, the total
runtime of Law and Lee’s decomposition into pairwise value precedence constraints is given
by O(nm2d).

Since ASP solvers are sensitive to the size of rules in terms of literals, we want to optimize
our encoding, and represent all values for vi allowed by precedence([d1, . . . , dm], [v1, . . . , vn])
instead of the value seen so far (expressed by the state qj of M before reading vi). Hence, for
each pair (vi, dj) we introduce a set of atoms Qi,j = {allowed(vi, dj) | 1 ≤ k ≤ j + 1}. Since
d0 is the initial state, the atom in Q1,1 = {allowed(v1, d1)} is given as fact (5.20). Whenever a
value dj is taken for the first time by vi, rule (5.21) enforces allowed(vi+1, dj+1). In any case,
values already seen are propagated through (5.22). Finally, M rejects if vi takes a value which
is not in the allowed-relation (5.23).

allowed(v1, d1)← (5.20)

allowed(vi+1, dj+1)← e(vi, dj) 1 ≤ i < n, 1 ≤ j < m (5.21)

allowed(vi+1, dj)← allowed(vi, dj) 1 ≤ i < n, 1 ≤ j ≤ m (5.22)

← e(vi, dj),∼allowed(vi, dj) 1 ≤ i ≤ n, 1 ≤ j ≤ m (5.23)

We refer to this ASP representation as our GAC encoding of the global value precedence con-
straint. Since domain consistency is the strongest type of local consistency, there can be no
encoding that achieves more pruning. In particular, global value precedence prunes more values
than symmetry-breaking in terms of generators (Katsirelos et al., 2009).
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5.3 Distributed Symmetry-breaking Constraints

Symmetry breaking for distributed computation of (partial) equilibria of MCS requires dis-
tributed symmetry breaking techniques. Recall that a symmetry π of an MCS M potentially
involves atoms from more than one context ofM , except π is local in a context Ck. To start with
the general case, let M = (C1, . . . , Cn) be an MCS such that all Li are ASP logics overAi, and
π be a symmetry of M . We will assume a total ordering on the atoms a1, a2, . . . , an in

⋃n
i=1Ai

and consider the induced lexicographic ordering on the belief states. Based on our techniques
for traditional answer set programming, we encode the distributed permutation constraint (dis-
tributed PC) that is satisfied for the lex-leading belief state induced by π below. For a contextCk,
we introduce intermediate atoms bπ,i−1 and dπ,i to access information about ai ≤ aπi and cπ,i+1

of another context. This might add further dependencies in form of bridge rules between previ-
ously independent contexts. In conclusion, for a context Ck, define the distributed permutation
constraint kbk(π) and brk(π) as follows:

← a1,∼a1
π

}
in kbk(π), if a1 ∈ Ak,← cπ,2

cπ,i← ai−1, ai,∼aiπ
 in kbk(π), if ai−1, ai ∈ Ak,

cπ,i←∼ai−1
π, ai,∼aiπ

cπ,i← ai−1, cπ,i+1

cπ,i←∼ai−1
π, cπ,i+1

cπ,i← ai−1, bπ,i−1

 in kbk(π), if ai−1 ∈ Ak, ai ∈ Ak+1,
cπ,i←∼ai−1

π, bπ,i−1

cπ,i← ai−1, dπ,i
cπ,i←∼ai−1

π, dπ,i

bπ,i−1← (k + 1 : ai),∼(k + 1 : aiπ)
}

in brk(π), if ai−1 ∈ Ak, ai ∈ Ak+1,
dπ,i← (k + 1 : cπ,i+1)

cπ,n+1←
}

in kbk(π), if an ∈ Ak,

where 1 < i ≤ n. Observe that we have some options to eliminate tautologies (cf. Section 5.1).
We now can define the lex-leader distributed symmetry breaking constraint (distributed SBC)
by conjoining all distributed PC: Given a set of symmetries Π of M , we construct a new MCS
M(Π) = (C1(Π), . . . , Cn(Π)) over an extended alphabet, based on M , where Ck(Π) extends
Ck by kbk(Π) = kbk ∪

⋃
π∈Π kbk(π) and brk(Π) = brk ∪

⋃
π∈Π brk(π). M(Π) breaks all

symmetries of M .

Corollary 5.5. Let Π be the symmetries of MCS M = (C1, . . . , Cn) with all Li are ASP logics
over Ai. The belief states S of M(Π) are the lexicographically smallest representatives from
each class of belief states of M that can be mapped to each others by elements from Π.

Proof Sketch. Verify that we achieve P (Π) by replacing the intermediate atoms by the condi-
tions they represent. Then Corollary 5.5 follows from Theorem 5.2.
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Example 5.4. Reconsider the MCS M and symmetry π3 = (a b) (c d) (e f) from Exam-
ple 3.7. The equilibria of M are ({a, c}, {e}), ({a, d}, {e}), ({b, c}, {f}), and ({b, d}, {f}).
The MCS M(Π), that breaks π3 (among others), contains the following additional rules:

← a,∼b


in kb1(π3),

← cπ3,2

cπ3,2← c, bπ3,1

cπ3,2←∼d, bπ3,1

cπ3,2← c, dπ3,2

cπ3,2←∼d, dπ3,2

bπ3,1← (2 : e),∼(2 : f)
}

in br1(π3), and
dπ3,2← (2 : cπ3,3)

cπ3,3←
}

in kb2(π3).

Observe that, because of the distributed PC defined above, ({a, c}, {e}), ({a, d}, {e}) are no
equilibria of M(Π). We can break the local symmetry π4 = (c d) of M in C1 by the dis-
tributed PC given through kb1(π4) = {← c,∼d}, br1(π4) = kb2(π4) = br2(π4) = ∅. The only
equilibrium of M(Π) is then ({b, d}, {f}).

Since in practice one is not interested in equilibria of the whole system M , but partial equilibria
of M w.r.t. {Ck}, i.e., equilibria of the subsystem M(k), we suggest to detect and break sym-
metries of M(k). Remark, partial symmetry breaking in terms of generators does not carry over
to distributed SBCs.

Theorem 5.6. The join of partial symmetries does not preserve generators.

Proof. Consider an MCS M with context C1 such that the atoms a, b, c, d can be freely per-
muted, and context C2 such that the atoms a and c can be swapped. A generating set of partial
symmetries of M w.r.t. {C1} is given through Π = {(a b c d), (c d)}, and a generating set of M
w.r.t. {C2} is given through Σ = {(a d)}. By 4.6, Π ./ Σ contain partial symmetries of M
w.r.t. {C1, C2}. Assume that Π ./ Σ is a generating set of M w.r.t {C1, C2}. Since Π ./ Σ = ∅,
there are no partial symmetries of M w.r.t. {C1, C2}. This contradicts to the observation that,
for instance, the identity and (a d) are partial symmetries of M w.r.t. {C1, C2}.
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6 Evaluation

6.1 The SBASS System

Our approach to symmetry-breaking answer set solving has been implemented within the pre-
processor SBASS, available at the (Potassco labs suite). The global architecture of SBASS is
shown in Figure 6.1. It accepts a logic program P in SMODELS format (Syrjänen) produced
by a grounder, e.g. LPARSE, available at the (SMODELS suite), and GRINGO, available at the
(Potassco suite). A first component, the Program Reader, takes care of creating an internal rep-
resentation and encodes symmetry detection as a graph automorphism problem. Notably, the
Program Reader also checks for duplicate edges in the graph encoding of P which, otherwise,
defect further processing. The actual search for an irredundant generating set of the group of
symmetries of P , taking P ’s graph encoding as input, is performed by the graph automorphism
program SAUCY (2.1), available at the (SAUCY website), which is incorporated into SBASS.
SAUCY sequentially returns graph symmetry generators as soon as they are detected. Each such
symmetry is used to construct a PC, all of which result in an SBC. In turn, SBASS prints P
together with symmetry-breaking constraints, again in SMODELS format, which can be applied
to any suitable answer set solver, e.g. SMODELS, available at the (SMODELS suite), and CLASP,
available at the (Potassco suite). Note that SBASS provides several options, for instance, to print
detected generators in cycle notation or statistics.

Logic
Program

Program
Reader

Graph
Encoding

SAUCY

Automor-
phism

Symmetry
Breaking

Logic
Program

+
SBC

Symmetry DetectionSBASS

Figure 6.1: Global architecture of SBASS.
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Table 6.1: Runtime results in seconds for pigeon hole problems using the disjunctive encoding.

#n #gen. SBASS CLASPπ1 CLASPπ5 CLASPπ CLASP

11 18 0.05 0.38 0.15 0.06 0.62
12 20 0.08 4.09 0.07 0.22 5.99
13 22 0.11 30.57 0.43 0.32 53.39
14 24 0.16 272.72 4.95 1.73 448.98
15 26 0.23 — 62.61 3.02 —
16 28 0.32 — — 23.01 —
17 30 0.44 — — 130.87 —

6.2 Experiments on Symmetry-breaking Answer Set Solving

To evaluate our approach, we conducted experiments on ASP encodings of several difficult com-
binatorial search problems. We use GRINGO (2.0.5) to generate our proposed encodings. Since
our encodings are disjunctive, but tight, we make use of shifting (Gelfond et al., 1991) to provide
an adequate encoding for the ASP solver CLASP, that are normal logic programs and its exten-
sions. Experiments consider the answer set solver CLASP (1.3.2) on instances with symmetry
breaking in terms of generators, i.e., instances preprocessed by SBASS, and without symme-
try breaking. To explore the impact of partial PC, we restrict the construction of permutation
constraints to k supports per permutation, denoted as CLASPπk , using SBASS’ option -size=k.

All tests were run on a 2.00 GHz PC under Linux, where each run was limited to 600 s time
and 1 GB RAM, preprocessing excluded. However, we also report the runtime for SBASS and
give the number of generators. The latter allows careful conclusions to be drawn with respect
to the size of the search space implicitly pruned through symmetry breaking. In the following
experiments we generally compare the runtime for testing the existence of an answer set to a
given problem.

Pigeon Hole Problems

The pigeon hole problem is to show that it is impossible to put n pigeons into n − 1 holes if
each pigeon must be put into a distinct hole. This problem is provably exponentially hard for
any resolution based method (Urquhart, 1987), but is tractable using symmetries (all the pigeons
are interchangeable and all the holes are interchangeable).

We chose a disjunctive encoding for the pigeon hole problem, where pij is taken to mean
that pigeon i is assigned hole j (Drescher et al., 2010):

pi,1; pi,2; . . . ; pi,n−1← i ∈ 1 . . . n
← pi,j , pk,j i < k

The runtimes for various sizes of n are shown in Table 6.1. Although symmetry breaking has
a positive impact, the runtime even with full PC is still exponentially growing with the number
of pigeons. Here, symmetry breaking on the generating set returned by SAUCY does not break
all problem symmetries. At this point, we should note that a given problem can be encoded in
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Table 6.2: Runtime results in seconds for pigeon hole problems using the support encoding.

#n #gen. SBASS CLASPπ1 CLASPπ5 CLASPπ CLASP

11 19 0.03 8.70 0.02 0.02 47.28
12 21 0.04 66.57 0.03 0.03 397.01
13 23 0.07 540.26 0.09 0.03 —
14 25 0.08 — 0.77 0.04 —
15 27 0.12 — 5.91 0.05 —
16 29 0.17 — 47.98 0.06 —
17 31 0.22 — 520.39 0.13 —

many equivalent logic programs (Lifschitz et al., 2001; Eiter and Fink, 2003), and with each
different encoding our techniques may detect a different generating set. Therefore, we also tried
an encoding of the pigeon hole problem based on the support encoding (Drescher and Walsh,
2010a;b):

{pi,1, pi,2, . . . , pi,n−1} ← i ∈ 1 . . . n
←∼pi,1,∼pi,2, . . . ,∼pi,n−1 i ∈ 1 . . . n
← 2{pi,1, pi,2, . . . , pi,n−1} i ∈ 1 . . . n
← pi,j , pk,j i < k

This caused SAUCY to compute a different, obviously better set of generators, which conse-
quently breaks all symmetry resulting in a polynomial runtime. (Observe the change in the
number of generators.) As can be seen in Table 6.2, full PCs are essential to tackle the pigeon
hole problem.

Ramsey’s Theorem

Ramsey’s Theorem states that for any pair of positive integers (k,m) there exists a least positive
integer n such that, no matter how we colour the edges of the clique with n vertices, Kn, using
two colours, say blue and red, there is a sub-clique with k vertices of colour blue or a sub-clique
with m nodes of colour red. Symmetries in Ramsey’s Theorem are between the colours and
the vertices in the sub-clique. Ramsey’s Theorem is discussed in many articles (see, for instance,
Graham and Rothschild, 1978) and can be found in the (Asparagus library) and the (CSP library).

We used the encoding by Leone et al. (2002), denoted as R(k,m, n), to determine whether
n is not an integer for which the theorem holds. The problem R(3, 5, n) is encoded as follows:

bluei,j ; redi,j ← i, j ∈ 1 . . . n, i < j
← redi,j , redi,k, redj,k i, j, k ∈ 1 . . . n, i < j < k
← bluei,j , bluei,k, bluej,k,

bluei,l, bluej,l, bluek,l,
bluei,m, bluej,m, bluek,m, bluel,m i, j, k, l,m ∈ 1 . . . n,

i < j < k < l < m
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Table 6.3: Average time for completed runs in seconds and the number of timeouts, if any, on
Ramsey’s Theorem instances, each shuffled 5 times. The ∗asterisk denotes instances that have
no answer sets.

SBASS CLASPπ1 CLASPπ5 CLASPπ CLASP

#gen. time time #t.out time #t.out time #t.out time #t.out

R(3, 5, 13) 11 0.06 0.01 0.01 0.03 0.01
R(3, 5, 14)∗ 12 0.10 3.58 1.23 0.49 354.25
R(3, 6, 17) 15 1.18 0.12 0.12 0.14 0.11
R(3, 6, 18)∗ 16 1.87 — 5 — 5 — 5 — 5
R(4, 4, 17) 15 0.26 0.73 0.12 0.50 0.07
R(4, 4, 18)∗ 16 0.37 — 5 — 5 — 5 — 5
R(4, 5, 23) 21 5.43 4.23 2.29 2.05 1.32
R(4, 5, 24) 22 7.15 77.64 208.66 1 180.96 3 — 5
R(4, 5, 25)∗ 23 9.54 — 5 — 5 — 5 — 5

Intuitively, the disjunctive rule guesses a colour for each edge. The first integrity constraint elim-
inates the colourings containing a red clique with 3 vertices, and the second integrity constraint
eliminates the colourings containing a blue clique with 5 vertices.

In formerly hard cases, namely R(3, 5, 14) and R(4, 5, 24), symmetry breaking lead to sig-
nificant pruning of the search space and yield solutions in a considerably short amount of time.
The results presented in Table 6.3 suggest full PCs for unsatisfiable instances, but small, partial
PCs for satisfiable instances.

Graceful Graphs

A labelling f of the vertices of a graph (V,E) is graceful if f assigns a unique label f(v) from
{0, 1, . . . , |E|} to each vertex v ∈ V such that, when each edge (v, w) ∈ E is assigned the label
|f(v) − f(w)|, the resulting edge labels are distinct. The problem of determining the existence
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Figure 6.2: A graceful labelling of the double wheel graph DW5.
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Figure 6.3: A graceful labelling of the graph K5P2.

of a graceful labelling of a graph has been modelled as a CSP by Petrie and Smith (2003), and
is an interesting application for symmetry-breaking answer set solving because the symmetries
are different for each instance and cannot be modelled a-priori in general.

Our experiments consider graphs DWn and KnPm. The double wheel graph DWn is com-
posed of two copies of a cycle with n vertices, each connected to a central hub (Figure 6.2).
The two wheels Wn, each have rotation and reflection symmetries. The labels of the two cy-
cles can also be interchanged. The graph KnPm is the cross-product of the clique Kn and the
path Pm (Figure 6.3). It consists ofm copies ofKn, with corresponding vertices in them cliques
also forming the vertices of a path Pm. Symmetries of the graph are simultaneous rotations of
the cliques and inter-clique permutations.

As can be seen in Table 6.4, we achieve speed-up on the unsatisfiable instance DW3. For
the other instances, all of which are satisfiable, no complete traversal of the search space is
necessary, and the branching heuristic used in our approach sometimes appears to be misled by
the extra variables introduced in CLASPπk . That explains some of the variability in the runtimes.
However, we still observe a substantial impact of our symmetry breaking techniques on the
difficult instances.

It seems safe to assume that the detection of symmetries in logic programs through reduc-
tion to graph automorphism is computationally quite feasible using today’s GAP tools such as
SAUCY, considering SBASS’ runtime.

Answer Set Enumeration

Finally, we want to test the impact of symmetry breaking on the number of answer sets. Our
study considers instances from the all-interval series problem and graceful graphs. Recall, the
all-interval series problem is to find a permutation of the n integers from 0 to n − 1 such that
the difference of adjacent numbers are also all-different. It has been proposed as a benchmark
domain for CP systems by Hoos (1999) and is part of the (CSP library). We modelled the
all-interval series problem (AllInt) as previously described in Example 2.2, using a direct rep-
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Table 6.4: Average time for completed runs in seconds and the number of timeouts on graceful
graph instances, each shuffled 5 times. The ∗asterisk denotes instances that have no answer sets.

SBASS CLASPπ1 CLASPπ5 CLASPπ CLASP

#gen. time time #t.out time #t.out time #t.out time #t.out

DW3
∗ 5 0.02 4.24 1.45 1.32 5.40

DW6 5 0.17 0.46 0.56 1.09 0.57
DW8 5 0.48 28.81 5.47 17.11 4.30
DW10 5 1.21 191.86 66.18 61.59 27.04 2
DW12 5 3.34 145.89 202.18 1 111.96 1 112.38 4
K3P3 3 0.04 0.08 0.08 0.07 0.08
K4P2 4 0.07 0.20 0.10 0.54 0.19
K4P3 4 0.29 24.68 29.06 198.57 24.01
K5P2 5 0.37 274.85 3 334.55 3 312.56 1 226.03 3

Table 6.5: Results on computing all answer sets of selected instances. Runtime and number of
solutions are shown.

SBASS CLASPπ1 CLASPπ5 CLASPπ CLASP

#gen. time time #sol. time #sol. time #sol. time #sol.

AllInt8 2 0.01 0.15 39 0.11 15 0.17 14 0.14 40
AllInt9 2 0.01 0.78 119 0.60 60 0.93 40 0.77 120
AllInt10 2 0.01 4.60 295 3.43 148 5.69 107 4.08 296
AllInt11 2 0.01 23.26 647 22.82 372 32.70 238 24.40 648
AllInt12 2 0.01 161.90 1327 147.17 862 211.27 442 160.32 1328
DW4 5 0.07 282.36 9472 168.03 5152 85.65 1150 314.15 11264
K3P3 3 0.05 229.15 5704 119.99 2836 126.25 1487 268.80 6816
K4P2 4 0.08 119.66 1080 67.96 552 27.72 146 145.13 1440

resentation for n integer variables and auxiliary variables to represent the differences between
adjacent numbers, and required both sets of variables to be all-different.

As one might expect, we can observe that symmetry breaking significantly compresses the
solution-space (see Table 6.5), and therefore, reduces the time necessary for post-processing
solutions. Clearly, CLASPπk discards more solutions (eliminating up to 90 per cent of the solution
space) for an increasing number k.

Recall that a given problem can be encoded in many equivalent logic programs, and with
each different encoding our techniques may detect a different generating set. For instance, we
tried symmetry detection and symmetry breaking on logic programs that were preprocessed, i.e.,
simplified. The key idea of preprocessing logic programs is to identify equivalences among its
relevant constituents. These equivalences are then used for building a compact representation of
the program (Gebser et al., 2008). Sometimes, we observed significant better results in terms of
time and number of answer sets, eliminating up to 95 per cent of the solution space.
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6.3 Experiments on Constraint Answer Set Programming

Our translational approach to constraint answer set solving has been implemented within the
prototypical preprocessor INCA, available at the (Potassco labs suite). It compiles constraint
logic programs with first-order variables, function symbols, and aggregates, etc. in linear time
and space, such that the logic program can be obtained by a grounding process. To evaluate the
performance of symmetry breaking in translation-based constraint answer set solving we further
modified INCA to handle the global value precedence constraint.

Experiments consider INCA in different settings using different decompositions for the global
value precedence constraint. The model ALL uses our GAC encoding to break all value sym-
metry. We denote PAIRWISE the method of Law and Lee (2004) which posts global precedence
constraints between pairwise interchangeable values. The model NONE breaks no symmetry
while GENERIC employs SBASS for symmetry breaking in terms of generators. Since INCA is a
pure preprocessor, we select the grounder GRINGO (2.0.5) and the ASP solver CLASP (1.3.3) as
its backend, using SBASS as middle-ware in case of the GENERIC method. All tests were run on
a 2.00 GHz PC under Linux, where each run was limited to 600 s time and 1 GB RAM

Schur Numbers

The Schur number S(k) is the largest integer n for which the set of integers 1 . . . n can be par-
titioned into k classes such that the Schur property x + y = z is not satisfied for any triple
of integers (x, y, z), where x, y, z ∈ 1 . . . n are not necessarily distinct (Guy, 1994). We con-
sider the corresponding decision problem, S(n, k), which asks whether the set of integers 1 . . . n
can be partitioned into k classes, all violating the Schur property. This problem has been pro-
posed as a benchmark domain for CP systems by Gent and Walsh (1999) and is part of both the
(Asparagus library) and the (CSP library). Furthermore, instances of Schur’s Lemma formed
a benchmark class in the (ASP competition) and the (ASP solver competition). Our basic en-
coding in the language of the preprocessor INCA defines a constraint variable representing the
assignment of each number to a partition, and posts Schur’s property:

#var $inpart(X) : number(X) = 1..k.

:- $inpart(X) == $inpart(Y), $inpart(X) == $inpart(X+Y).

In our configuration, the tool chain in terms of UNIX pipes, inca | gringo, generates
a logic program with duplicate literals in the body of some rules, whose graph encoding for
symmetry detection contains duplicate edges. Since the graph automorphism program SAUCY

we employ for symmetry detection rejects graphs with duplicate edges, we developed LNORM

(available at (Drescher’s research page)), a preprocessor for normalising a logic program, i.e.,
remove duplicate literals from the body of each rule. In conclusion, the complete tool chain to
realise the GENERIC option extends to

inca | gringo | lnorm | uniq | sbass | clasp.

We follow Law and Lee (2004) and Walsh (2006) and compute all solutions to study the impact
of symmetry breaking. The results of our experiments are presented in Table 6.6. Symmetry
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Table 6.6: Results on computing all answer sets of Schur’s Lemma instances.

NONE GENERIC PAIRWISE ALL

S(13,4) 2.71 1.13 0.13 0.11
S(13,5) 172.90 19.98 1.80 1.49
S(13,6) >600 72.74 6.93 5.65

S(14,4) 6.46 1.33 0.29 0.22
S(14,5) 527.02 68.46 6.03 4.67
S(14,6) >600 >600 30.56 27.94

S(15,4) 18.42 5.81 0.70 0.59
S(15,5) >600 257.59 22.66 18.63
S(15,6) >600 >600 153.79 125.79

S(16,4) 32.29 5.76 1.35 1.10
S(16,5) >600 >600 75.23 53.87
S(16,6) >600 >600 >600 502.06

breaking in terms of generators significantly improves performance, and is itself outperformed
by PAIRWISE and ALL. With few interchangeable values, we see similar runtimes using PAIR-
WISE and ALL. However, ALL is the option of choice when k grows. Our encoding of this global
constraint appears therefore to be an efficient and effective mechanism to deal with interchange-
able values.

Graph Colouring

Recall that a colouring of a graph (V,E) is a a mapping c from V to {1, . . . , k} such that
c(v) 6= c(w) for every edge (v, w) ∈ E with a given number k of colours. Given k, the
graph colouring problem is to determine the existence of a colouring. Random graph colouring
instances formed a benchmark class in the (ASP competition) and can also be found in the (As-
paragus library). We experimented on random graph colouring instances, but restricted ourselves
to 3-, 4- and 5-colourings, when we noticed that the relative performance of symmetry breaking
increased with each additional colour. For each of the three random graph k-colouring experi-
ments we generated 600 instances around the phase transition density with 400, 150, 75 vertices,
respectively. To explore the impact of partial PC, we also tried restrictions on the construction
of permutation constraints up to the k-th atom in a permutation, denoted as GENERICk.

The data on 3-, 4- and 5- colourings (Table 6.7, and Figures 6.4 and 6.5 which visualise the
results better) clearly shows that all symmetry breaking techniques considered in our study are
effective, i.e., our proposed methods observably improve the runtime. A detailed analysis of par-
tial PC leaves us with a few clear conclusions. First, but not surprisingly, the first k chain links in
the PC constraints prune biggest portions of the search. For the 3-colouring case, the GENERIC1

method reduces the runtime by approximately 50 per cent, and GENERIC5 up to additional 15 per
cent. Second, the pruning by longer PC does not pay off (see Table 6.7): The runtime increases
with the extra variables introduced by growing k, consuming all benefits induced by a smaller
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Table 6.7: Runtime results in seconds on random 3-colouring instances.

density NONE GENERIC1 GENERIC5 GENERIC50 GENERIC PAIRWISE ALL

2.25 21.60 12.42 10.30 11.18 20.07 13.09 0.03
2.30 23.02 13.88 11.72 13.08 23.50 13.62 0.03
2.35 30.06 17.09 14.51 16.22 28.40 17.11 0.58
2.40 29.41 14.64 11.95 13.46 22.55 14.42 0.93
2.45 21.57 10.74 8.32 9.18 15.49 10.43 1.14
2.50 15.45 8.20 6.50 7.19 12.84 7.96 1.32

Table 6.8: Runtime results in seconds on random 3-colouring instances.

density NONE ALL1 ALL5 ALL20 ALL50 ALL100 ALL200 ALL

2.25 21.60 12.29 8.20 6.72 2.47 2.33 0.35 0.03
2.30 23.02 13.55 10.73 8.93 6.70 4.32 0.95 0.03
2.35 30.06 16.90 13.67 12.62 8.49 4.96 2.72 0.58
2.40 29.41 14.89 11.65 9.93 8.66 6.58 3.33 0.93
2.45 21.57 10.48 7.73 7.23 6.02 4.46 2.54 1.14
2.50 15.45 8.24 6.39 6.32 4.25 3.97 3.42 1.32

search space when using full PC, albeit this effect loses impact with each additional colour. We
conclude that GENERIC5 provides a good setting for generic symmetry detection and breaking
on our graph colouring experiments. It performs slightly better than the PAIRWISE model on the
random 3-colouring instances, but worse on the random 4-colouring instances. The data on the
5-colourings clearly shows that our GENERIC method is inferiour to enforcing value precedence
through either the method of Law and Lee (2004) or our GAC encoding of the global value
precedence constraint. For the 3-colouring case, our GAC encoding gives a significantly better
improvement compared to the GENERIC and PAIRWISE options. For the 4- and 5-colouring case
the same conclusion can be drawn, albeit less convincing. An overall conclusion from our graph
colouring experiments must undoubtedly be that breaking value symmetry enforcing some form
of value precedence is most effective. Given that our encoding of the global value precedence
constraint is rather simple, we are surprised that no team participating in the second answer set
programming competition made use of it (see encodings of (ASP competition) participants).

To explore the impact of partial symmetry breaking, we also tried restrictions on the con-
struction of the global value precedence constraint up to the k-th variable in its scope, denoted as
ALLk. Our results are shown in Table 6.8 and reveal that – opposed to our observation regarding
partial PC – breaking all value symmetries is worth the extra variables introduced in our GAC
encoding. Clearly, the more variables in the scope of the global value precedence constraint the
better the runtime.
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Figure 6.4: Histogram of the average time required by five symmetry breaking approaches to
solve random 4-colouring instances near the phase transition density.
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Figure 6.5: Histogram of the average time required by five symmetry breaking approaches to
solve random 5-colouring instances near the phase transition density.
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Table 6.9: Average time for completed runs in seconds and the number of timeouts on several
MCS topologies, 10 random instances each.

DMCS DMCSπ DMCSOPT DMCSOPTπ

n time #t.out time #t.out time #t.out time #t.out

D

10 1.90 0.46 0.54 0.35
13 62.12 4 32.21 2 1.38 0.98
25 — 10 — 10 16.12 11.72
31 — 10 — 10 84.02 1 58.95

H

9 7.54 1.89 0.33 0.20
13 88.85 6 63.98 2 0.60 0.35
41 — 10 — 10 1.38 0.95
101 — 10 — 10 5.48 3.58

R
10 0.36 0.26 0.15 0.12
13 22.41 1 5.11 0.19 0.16

Z

10 6.80 3.24 0.62 0.37
13 57.58 3 42.93 3 1.03 0.68
70 — 10 — 10 18.87 9.98
151 — 10 — 10 51.10 30.15

6.4 Experiments on Distributed Nonmonotonic Multi-Context
Systems

Our approach to symmetry breaking for distributed nonmonotonic multi-context systems with
ASP logics has been prototypically implemented within a modification of the DMCS system,
and its optimized version DMCSOPT (Bairakdar et al., 2010). In contrast to DMCS, DMCSOPT

exploits the topology of an MCS, that is the graph where contexts are nodes and import re-
lations define edges, using decomposition techniques and minimises communication between
contexts by projecting partial equilibria to relevant atoms. Both systems are available at the
(DMCS website). We restrict experiments on MCSs to local symmetry breaking in terms of irre-
dundant generators, and leave unrestricted symmetry breaking, i.e., an exhaustive modification
of Bairakdar et al.’s system, to future work. We compare the average response time and the num-
ber of solutions under symmetry breaking, denoted as DMCSπ and DMCSOPTπ, on benchmarks
versus direct application of the respective systems. All tests were run on a 2 × 1.80 GHz PC
under Linux, where each run was limited to 180 s time.

Our benchmarks stem from (Bairakdar et al., 2010) and include random MCSs with various
fixed topologies that should resemble the context dependencies of realistic scenarios. In par-
ticular, experiments consider MCS instances with ordinary (D) and zig-zag (Z) diamond stack,
house stack (H), and ring (R). A diamond stack combines multiple diamonds in a row, where or-
dinary diamonds (in contrast to zig-zag diamonds) have no connection between the two middle
contexts. A house consists of 5 nodes with 6 edges such that the ridge context has directed edges
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Figure 6.6: Histogram of the average compression of the solution space achieved by symmetry
breaking on MCS.

to the two middle contexts, which form with the two base contexts a cycle with 4 edges. House
stacks are subsequently built up by using the basement nodes as ridges for the next houses.

Table 6.9 shows some experimental results on calculating (projected) partial equilibria w.r.t.
a randomly selected context of MSC with n contexts, where n varies between 9 and 151. Each
context has an alphabet of 10 atoms, exports at most 5 atoms to other contexts, and has a max-
imum of 5 bridge rules with at most 2 bridge literals. First, we confirm the results of Bairakdar
et al., i.e., DMCSOPT can handle larger sizes of MCSs more efficient than DMCS. Second, eval-
uating the MCS instances with symmetry breaking compared to the direct application of either
DMCS or DMCSOPT yields improvements in response time throughout all tested topologies. In
fact, symmetry breaking leads to better runtimes on all instances without exception, and in some
cases, returns solutions to problems which are otherwise intractable within the given time. Fig-
ure 6.6 presents the average compression of the solution space achieved by symmetry breaking.
While the results for DMCSπ range between 45 and 80 per cent, the impact of symmetry breaking
within DMCSOPT on the number of solutions varies between 5 and 65 per cent. We explain the
latter with the restriction of DMCSOPT to relevant atoms defined by the calling context.

As a remark, Pólya (1937), Erdős and Rényi (1963) proved that a random graph on n vertices
has no symmetries with probability 1−

(
n
2

)
2−n−2(1+o(1)) (c.f. Babai, 1995). This claim can be

extended to random MCSs. Since structured instances may have richer symmetries, we expect
even more drastic impact of symmetry-breaking on real-world applications.
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7 Conclusions

Our work addresses solving combinatorial problems in ASP whose difficulty arise from symme-
tries and redundant search caused by them.

We have shown a reduction of symmetry detection to a graph automorphism problem which
allows to extract symmetries of a logic program from the symmetries of the constructed coloured
graph. Our techniques are formulated as a completely automated flow that (1) starts with a logic
program, (2) detects all of its symmetries within a very general class, including all permutations
that do not change the logic program, (3) represents all symmetries implicitly and always with
exponential compression in terms of irredundant group generators, and (4) constructs a linear-
sized symmetry-breaking constraint that does not affect existence of answer sets. This flow does
not require source code modifications in ASP solvers. We successfully validated our implemen-
tation with CLASP and SMODELS (SMODELS results are not included in this thesis). Experiments
indicate that breaking just the symmetries in a generating set is an efficient and effective way
to deal with large numbers of symmetries. In many cases, our techniques achieved significant
pruning of the search space and yield solutions to problems which are otherwise intractable. We
also observed a significant compression of the solution space which makes symmetry breaking
attractive whenever all answer sets have to be post-processed. However, we stress that the pro-
posed flow may not be useful on ASP instances that are easy, or do not have symmetries. Many
ASP benchmarks in (Asparagus library) have large numbers of symmetries, but can be solved
so quickly that the symmetry detection and breaking overhead is not justified.

We have applied our methods to constraint answer set programming within constraint answer
set solving. In particular, we have formulated a translation-based approach to constraint answer
set solving which allows for the direct application of our symmetry detection and symmetry-
breaking techniques. Although our experiments suggest that symmetry detection seems to be
tractable, it is often reasonable to assume that the symmetries for a problem are known. For
particular symmetries, there are more efficient breaking methods, for instance, the global value
precedence constraint which we have decomposed into ASP, such that the unit-propagation of
an ASP solver enforces domain consistency on the original constraint. An empirical analysis
complements theoretical results and has shown that our decomposition superior to both, our
generic method and Law and Lee’s approach.

We have also extended our methods to distributed answer set programming in the framework
of multi-context systems. In particular, we have presented a basic distributed algorithm for com-
puting all (partial) symmetries of an MCS, and also carried over symmetry-breaking constraints.
The utility of our approach is not clear at this moment, e.g. symmetries are not represented
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efficiently, for instance, in terms of generators. However, we have conducted experiments on
distributed symmetry breaking and got promising results.

Future Work

We want to put forward constraint answer set programming as a novel approach to constraint
(logic) programming. Therefore, we (1) investigate efficient encodings of propagation algo-
rithms in answer set programming, (2) study the integration of techniques from constraint pro-
cessing into answer set programming engines, and (3) define a modelling language for constraint
logic programming under answer set semantics, that can be accepted by the scientific commu-
nity. Furthermore, we (4) want to implement our techniques in state-of-the-art systems. In par-
ticular, future work concerns, but is not limited to, the integration of further constraints useful
in constraint answer set programming. We are interested in decompositions of constraints using
the full range of propagators available in state-of-the-art ASP systems, and where necessary, ex-
tending ASP solving by further useful algorithms that make constraint answer set programming
more powerful. Motivated by award-winning application of the ASP solver CLASP as a pseudo-
Boolean solver (PB competition, 2009) and a SAT solver (SAT competition), we conjecture that
an ASP system can perform similar in traditional constraint solver competitions.

We also belief that multi-context systems provide foundations to distributed answer set pro-
gramming. In this regard, we want to investigate techniques to efficiently represent partial sym-
metries, e.g., in terms of irredundant generators, and plan to implement our approach based on
Bairakdar et al.’s system.
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