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Kurzfassung

Diese Arbeit thematisiert den Umgang, im Konkreten die Speicherung, die GPU-Handhabung,
aber vor allem die Darstellung und Visualisierung von komplexen Volumendatensätzen. Diese
können aus unterschiedlichen Primitiven zusammengesetzt sein wie zum Beispiel aus Dreiecken,
Voxel oder Partikel. Die vorliegenden Daten müssen dabei nicht räumlich voneinander ge-
trennt sein, sie können sich auch überlappen, gegebenenfalls auch miteinander interagieren.
Ein vorstellbares Szenario wäre eine überflutete Landschaft, wobei das Gelände in Form eines
Dreiecksnetzes, das Wasser als Volumen und eventueller Niederschlag als Partikel vorliegen.

Nach umfassender Recherche im Bereich der Datenstrukturen (vornehmlich Bäumen) soll eine
geeignete Struktur gewählt und praktisch umgesetzt werden. Diese Struktur soll nicht nur er-
möglichen, große Datenmengen zu beinhalten, sondern diese auch nach Bedarf schnell und mit
möglichst wenig Aufwand in den Speicher der Grafikkarte schieben zu können. Die Verwaltung
und Zurverfügungstellung der Daten ist der eine Teil, der andere ist die Auswertung und die
abschließende Ausgabe, d.h. das Traversieren durch die Baumstruktur der Daten. Diese Visu-
alisierung erfolgt durch Ray-Tracing. Die Umsetzung eines erweiterbaren Ray-Tracers auf der
Grafikkarte ist ebenfalls Bestandteil dieser Arbeit.

Aufgabe dieser Arbeit ist es, verschiedene Ideen zu sammeln, wie die verschiedenen Daten-
sätze gehandhabt werden können, um eine möglichst schnelle Anzeige zu ermöglichen. Die
Ansteuerung des hybriden Ray-Tracers ist vor allem in der Handhabung des Datenartwechsels
herausfordernd. Zu diesem Zweck wurden drei Methoden angedacht und die Vielversprechenste
implementiert.

Der praktische Teil wurde in C++ und NVIDIA CUDA implementiert. Er beinhaltet, nocheinmal
zusammengefasst, die Handhabung von verschiedenen Datensätzen vom Einlesen über das Vor-
bearbeiten, sprich das Einpacken in eine geeignete Datenstruktur, bis hin zur Verfügungstellung
auf der Grafikkarte und schließlich die Implementierung eines GPU-Ray-Tracers. Besonders
erwähnenswert ist, dass dabei gänzlich auf OpenGL oder DirectX verzichtet werden kann. Das
aufwändige Ray-Tracing wird direkt auf der Grafikkarte parallelisiert. Die Einarbeitung in den
Stand der Technik und in vorangegangene Arbeiten im Bereich der Datenstrukturen und des
Ray-Tracings bilden den theoretischen Teil dieser Diplomarbeit. Die Ergebnisse werden durch
Bilder von ausgewählten Szenarien visualisiert und anhand von Geschwindigkeitsmessungen
evaluiert.



Abstract

The main topic of this thesis is the handling of complex data sets. To be more precise, it consid-
ers the storage, the handling on the GPU and the visualization of extensive and complex data.
Different sets can contain different types of data like triangles, voxels and particles. In addition
they do not have to be separated in space, which means they can overlap and therefore interact
with each other. Considering a flooded landscape, the terrain would be made out of triangles,
the water out of voxels and the rain can be visualized by using particles.

After extensive research in the field of data structures (mainly trees), one structure should be
chosen and implemented. This data structure should be good enough to handle not only small
sets of data, but also big ones and should allow to move them efficiently to the memory of the
graphical unit. To store and to manage data sets is only one part of the whole process, the other is
to visualize them by traversing the tree data-structure. The visualization is done by ray tracing.
Thus the implementation of an expandable ray tracer on the graphical unit is also part of this
thesis.

The main task of this work is to gather several ideas how to handle different data sets of different
kinds of primitives efficiently. The ray tracing on the graphical unit should be done as fast
as possible. Switching between the different datatypes is the main challenge of this hybrid
ray tracer. Three different methods were thought about for this purpose and finally the most
promising one was chosen and implemented.

The practical part of this work was implemented in C++ and NVIDIA CUDA. It includes the
handling of different data sets beginning with reading in. The next step is to process data sets,
put them into a proper data structure and move them to the graphical unit and finally the im-
plementation of an expandable GPU ray tracer. Notably this process needs neither OpenGL nor
DirectX, the whole ray tracer is parallelized on the GPU. The research in the state of the art
in the field and previous works of data structures together are making up the theoretical part of
this master thesis. The results are visualized by pictures of selected scenarios and evaluated by
measurements of speed.
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1. Introduction

The graphics hardware improved enormously in the past few years. Nowadays it is not only
possible to program parts of the graphics-hardware pipeline with so called shader programs
(see figure 1.1), one can also use it to parallelize complex and expensive calculations. The high
degree of parallelization opens possibilities, which can not be realized on conventional multi-
core CPUs.

Input Assembler

Stream Output

Rasterizer

Output Merger

Vertex Shader Geometry Shader Pixel Shader

Video Memory

Figure 1.1: Shaders

To analyze how powerful this free programmable graphic hardware is, it would be interesting to
implement a ray-tracing system trying to reach real-time performance, also with bigger scenes
including different kinds of geometric data. Every data can have a different type of source, e.g., a
result of a simulation process like fluids or simply read from file like a transparent box consisting
of quads. The task was to put them together in a final step and render them.

Such a system could help in industrial applications, when objects have to be examined accurately
in less time or to build up a fast preview. It also has its future in video games [FGD+06], or in
other real-time and/or multi-field applications. In chapter 3 the following keywords and topics
will be discussed in detail:

• Virtual and Augmented Reality

• Visualizing Medical Data

• Archeology - Preservation and Presentation of Cultural Heritage

• Architecture

1



CHAPTER 1. INTRODUCTION

• Photorealism

• Other Media

For several months a framework was implemented, which should be able to simulate data and
to visualize the results. To develop a system, which matches the requirements mentioned above,
is time-consuming and complex. A lot of time was spent to write a ray tracer as described by
[Gla89], not only for one type of primitive, but for several types. To test different approaches to
trace rays, it should be easy to modify, too.

For speed-up an adequate acceleration data-structure for the primitives had to be found and the
most promising one was implemented. Read different model files, store them, handle them,
especially move them to the graphical unit was also a time-consuming work. Costly in terms
of time are two other points which have to be mentioned: first of all working with and debug-
ging a system still in development, which CUDA definitely is, and secondly building up a new
framework from scratch in a team was another challenge and often led to long discussions and
changes.

This thesis gives a detailed overview of the work which was done in the last months and its
results. It is targeted at readers, who do not have to be experts in computer graphics. All basics
and terms, which are needed, are described in the following section.

1.1 Basics and Terminology

In this section some terms are explained, which are used later on in this work. There are also a
few definitions, which are important to understand the algorithms below (see chapter 4).

• The Rendering Equation
The rendering equation was described by Kajiya in the year 1986 [Kay86]. It is a solution
to the problem of global illumination. The original rendering equation is:

I(x, x′) = g(x, x′)[ε(x, x′) +

∫
S
ρ(x, x′, x′′) ∗ I(x′, x′′)dx′′] (1.1)

where:
I(x, x′) is the intensity of light passing from point x’ towards point x.
g(x, x′) is a geometric term depending on the position of point x to point x’. If

an object is in between, this term is set to 0.
ε(x, x′) is the intensity of light which is emitted from point x’ towards point x if

point x’ is a light source.
ρ(x, x′, x′′) is the intensity of light outgoing from a point x” and being reflected

in point x’ in the direction of point x.
I(x′, x′′) is the intensity of light passing from point x” towards point x.

2



CHAPTER 1. INTRODUCTION

Simply said the rendering equation returns the outgoing light at a given point x. This light
includes the self emitted light in addition to all gathered light which is coming from other
points x’ and is reflected towards x.

• Ray Tracing and Ray Casting

A ray tracer is a method to visualize a scene in a photo-realistic manner. Turner Whitted
introduced a basic ray tracer in 1979 [Whi79]. Figure 1.2 shows a simple one. For every
pixel a ray is shot into the scene, which is called a primary ray. If the ray hits an object,
it stops. An extra ray is sent in the direction of the light source or the light sources to see
if the point of intersection lies in shadow or not (shadow ray). If the hit object mirrors the
ray, its direction may also be reflected and traced further into the scene (secondary rays).

a) b)

Figure 1.2: A ’Whitted’ Ray Tracer. a) the intersection point between the eye ray and the green
triangle is not illuminated b) the intersection point is illuminated indirectly

A ray tracer is able to simulate many visual effects which create the illusion of real life
images such as caustics, shadows, refraction, reflection and other so called scene features.
All of these effects are useful to imitate (global) illumination that looks real in the given
scenario. The distribution of light is not as simple as shown in figure 1.2a), where the
green triangle is illuminated only if there is no other object lying between the intersection
point and the light source. Global illumination means that the light in a scene can be
propagated for example by a reflection of another object (mirror) as shown in figure 1.2b).
This must be considered for a real looking image. If only a single ray is shot per pixel, it
is called ray casting or first hit ray tracing.

• Rays
A ray can be defined by two components - its origin and its direction. To move a point p
an arbitrary distance t along a normalized direction vector d̂, equation 1.2 can be used to
calculate point p’:

p′ = p+ t ∗ d̂ (1.2)

3



CHAPTER 1. INTRODUCTION

• Eye
Figure 1.2 shows that the origin of the eye is the point in which the ray starts. In this work
the term eye point is used to describe that point.

• Color Handling
Colors can be stored in four channels. Whereas the first three channels are assigned for
red, green and blue, the last one is containing the opacity. While tracing rays color has
to be added each time the ray intersects an object. Adding color was described by Marc
Levoy [Lev90] and can be done by using the following equations:

Cout = Cin + (1− αin) ∗ C ∗ α (1.3)

αout = αin + (1− αin) ∗ α (1.4)

where:
Cout is the resulting accumulated color,
αout is the resulting accumulated opacity,
Cin is the current accumulated color,
αin is the current accumulated opacity,
C is the color, which has to be added and
α is the opacity, which has to be added.

The color of the ray can be calculated by dividing the finally resulting color channels by
alpha.

• Scene Features

There are some features that can be added to objects to increase the photo realism of a
scene. A few of them are listed and explained below. By using the rasterization technique
the following effects can only be realized - if at all - by rough approximations. A ray
tracer can calculate them all in a natural way.

– Illumination
Shadows, self shadows and illumination, which was already explained in the render-
ing equation above, are more or less simple to implement. An extra ray from a point
of intersection has to be shot to the light source(s). If an object is in-between, the
point lies in shadow and can receive light only indirectly.

– Reflection
To reflect a ray at a point of intersection, the reflection vector (and the surface nor-
mal, if it is not given) has to be calculated. The equation of reflection is given in
[Gla89] on page 132. The following form of the reflection equation (1.5) is taken
from the book of Hearn and Baker [HB04] (page 600):

r = u− dot(2u, n)n (1.5)

where:

4
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r is the reflection vector,
u is the incoming ray,
n is the surface normal.

– Refraction and caustics
If non-opaque surfaces are hit, a ray can enter the object at this point and can change
its direction. This is called refraction. Some examples of non-opaque surfaces are
glass, prisms (causing caustics) and water. To calculate the change of direction of
the ray, equation 1.6 is used (see Hearn and Baker [HB04] on page 600):

t =
ηi
ηr
u− (cosΘr −

ηi
ηr
cosΘi)n (1.6)

where:
t is the refracted vector,
u is the incoming ray,
n is the surface normal,
ηi, ηr are the refraction indices in the incident material and the refracting

material,
Θr can be calculated by Snell’s law:

cosΘr =
√

1− ( ηiηr )2(1− cos2Θi)

Θi is the angle between the incoming ray and the normal vector n

• Rasterization
Rasterization is a technique to visualize a scene. In a simple process every single triangle
is handled separately and can be shown on the display.

Figure 1.3: Viewing frustum

Figure 1.3 shows the so called viewing frustum, a truncated and four sided pyramid. To
visualize the triangles they are projected onto the smaller plane to the left, which is called
the near plane. The bigger plane on the right side is called far plane. Every triangle which
lies behind the far plane is cut away. The projection of triangles leads to some smaller
problems. For example they have to be clipped at the borders of the near plane (see figure
1.3, the blue triangle). To determine the color of each screen pixel the clipped triangles
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have to be rasterized.

• Primitives

Primitives are not only polygons like triangles, quads and rectangles, but also spheres,
particles and voxels, the 3D analogon of pixels.

• Data Structures and Acceleration Structures

Primitives can be stored in so called data structures or acceleration structures. The use of
these structures is to decrease the number of intersection tests. Primitives are grouped and
assigned to, for example, a bounding volume like an axis-aligned bounding box (AABB)
enclosing all these primitives.

• Trees

Global definitions for all trees mentioned in this thesis:

– Each tree has only one root node.

– Each tree is acyclic, except rope trees.

– The height of a tree is equal to the length of the longest path from root to leaf.

– The depth of a node is equal to the length of the path from the node to the root.

• Real-time

Real-time is usually defined as at least 60 frames per second.

• Scattered Multi-field Volumes
Scattered Volumes: Various volumes can be positioned arbitrarily in the scene.
Multi-field Volumes: These volumes do not have to be spatially separated. They can

overlap each other, so that one point in space has several
values [FH07]. An example is data from MRT and CT.

1.2 Requirement Analysis

Before taking a look at the state of the art, a short outline of the problems and requirements of
the practical part of this work are given. In chapter 4 some of the following issues will be treated
in detail.
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1.2.1 Hardware

Hardware specific requirements of the system will not be a big topic in this work. A usual
modern hardware configuration should be enough. The ray tracer was tested and implemented
on an Intel(R) Core(TM)2 Duo CPU with 4GB RAM and an NVIDIA GeForce 8600 GTS with
512 MB Memory. All numbers and results are, if not mentioned separately, measured on this
hardware system. To run the ray tracer a system requires only a graphic card supporting NVIDIA
CUDA 2.3.

1.2.2 Software

The requirements of the software, which is needed for this project, are low. A simple software
pipeline, consisting of input, processing and output is sufficient. A possibility to outsource parts
of the processing step to the graphical unit is needed. The CPU handles the input (like loading or
creating data), preprocessing (like building up acceleration structures), steering GPU calls and
finally the output on screen. More information about the implementation of the framework and
its graphical user interface (GUI) is given in chapter 5.

1.2.3 Project

The choice of a proper acceleration structure or perhaps different acceleration structures needs a
close analysis of the requirements. These requirements can be categorized into two main issues:
Requirements for Rendering (RR) and Requirements for Performance (RP). The goal is to find
a solution, which satisfies both of them.

1.2.3.1 Requirements for Rendering

The rendering of the scene is done by tracing rays, not only through volumes consisting of
voxels, but also through other geometrical primitives like triangles and particles. This requires
the possibility to easily access the primitives from an arbitrary spatial block. Casting rays in
multi-field data scenes implies some special requirements. To cull currently invisible parts of
the scene, it is desirable to have the ability to discard them fast. This can be done easily by using
a tree as an acceleration structure like an octree or Kd-tree, where it is simple to cut off single
branches and push them to the graphical unit separately.
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1.2.3.2 Requirements for Performance

As mentioned before, handling spatially clustered parts of data is a very important issue for the
performance of a ray tracer. Some questions can be collected and grouped into the categories
Data-handling and Parallelism:

• Time
How to keep time complexity low?
What are the most expensive procedures?

• Data-handling
How to upload the needed data efficiently?
How to avoid the host-device bottleneck?

• Parallelism
How to portion data?
Which procedures can be executed in parallel?
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2. State of the Art

In the following sections an overview of all relevant issues is given. The first part will be about
tracing rays. After this a few types of data structures holding the geometrical data of the scene
will be discussed. The next section will show methods to traverse these structures while tracing
rays. Some interesting works about acceleration techniques are part of this thesis. The last
section treats ray tracing by using the GPU, parallelism and related work in this field.

2.1 Ray Tracing and Ray Casting

As already described in section 1.1, a ray tracer can be a really extensive and difficult challenge.
The implementation of such a ray tracer is a complex project. First it has to be determined, which
features are needed. Then the options, the ray tracer should offer and which are less important,
have to be sorted out. Paul S. Heckbert grouped these options in four categories (see Glassner
[Gla89] page 264ff):

• Geometry
This category includes the extensibility of the set of primitives as well as simple and
complex operations on primitives like read, transform and deform.

• Optics
Which optical effects should be simulated, for example shadows, reflection, refraction,
fog and many more.

• Optimization
First of all Optimization concerns the optimization of algorithms. Other topics are the
choice of acceleration structures to reduce the number of intersection tests and the find-
ing of the cheapest intersection tests. Common optimizations like changing hardware or
programming language are also part of this category.

• System
This category deals with modularity, debugging, interaction, animation and distributed
computing.

Based on these four suggested categories the practical work was planned and grouped (see chap-
ter 4). The following section 2.2, for example, is dedicated to the category Optimization.
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2.2 Acceleration Structures

A native ray-tracing algorithm needs too much time because it has to intersect every element
with the ray, starting from the eye point. A spatial subdivision technique (acceleration structure)
is required to speed up the traversal. The choice of a proper acceleration structure is not an
easy task. There are many issues to be considered and some structures are more or less useful
for the objects in the scene [TS05] [Hav00] [Bou05]. For example fluids are usually not stored
as polygons, but as particles. Simple geometrical shapes like boxes, cubes or pyramids can
be exactly represented by using polygons. Spheres can be approximated by polygons, too, but
much more polygons are necessary to represent them.

For the storage of data (e.g., results of MRT or CT), polygons are not useful as the scanned
data does not provide geometrical properties. Hence for each cell in a 3D grid of an arbitrary
resolution a scalar value has to be stored. So if there is data, which does not fill a whole volume,
only its hull has to be stored. This hull can be represented simply by polygons. Due to the
knowledge of theses facts the following acceleration structures should be considered.

2.2.1 Bounding Volumes and Bounding Volume Hierarchies

As the shapes of objects are often complex, the ray intersection can be very expensive. An idea
to reduce these costs is to wrap the objects in simple primitives like spheres or boxes which can
be intersected more efficiently. So a first fast intersection test with this bounding volume can
exclude many rays which do not hit the object.

The big disadvantage of spheres as bounding volumes is, that if one dimension of the bounded
object is for example very large in relation to the other dimensions, a simple sphere can contain
much empty space. For such inhomogeneously dimensioned objects another bounding volume
has to be chosen. Bounding volumes can be used in other approaches to speed up as well.

The next logical step is to extend them to a hierarchy of bounding volumes (BVH). Each parent
volume contains some child volumes lying spatially completely inside of their parent volume.
This means that every ray, which misses the parent volume, misses all children as well. Or the
other way around, if a ray intersects a parent, only its children have to be checked. If there
is more than one of them intersected, the closest one has to be found (see figure 2.1). Child
volumes do not have to be disjoint completely, i.e., they can overlap each other [GS87]. Niels
Thrane and Lars Ole Simonsen compare different acceleration structures including BVH and
their usage on GPU [TS05].
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leaf node
parent node

bounding volumes

a) b)

Figure 2.1: a) Bounding Volume (Sphere) b) Bounding Volume Hierarchies

2.2.2 Spatial Subdivision

Another type of acceleration structures are spatial subdivisions. The spatial region of a scene
is subdivided into smaller parts or cells. So the scene and its included objects are divided and
ordered in space. The structure containing the information about the subdivisions also includes
information about the distances between the objects. The leafs of the subdivision structures are
pointing to the included object data. Further information about this acceleration technique can
be found in the literature [Gla84], [TS05], [Kap87] and [FTI86].

Spatial subdivision structures are usually built by dividing space, by splitting at planes, which
usually are axis-aligned, but not necessarily. While tracing rays through a subdivision structure
only a few events can occure:

• The ray intersects an elementary cell or leaf node and the assigned object. The intersection
point is lying inside of the elementary cell (see figure 2.2): In this case a valid intersection
point has been found.

• More than one object is found. So the algorithm has to find the closest one.

• No intersection is found or the intersection point is lying outside of the elementary cell.

The method of tracing rays through a spatial subdivision is called Ray Shooting Algorithm
(RSA). The main difference to the BVH approach is that the elementary cells are spatially strictly
separated, they do not overlap each other.
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a) b)

x xx

c) d)

x

Figure 2.2: Spatial Subdivision - a) Object found b) Two objects have to be sorted c) Ray misses
the object d) Intersection point is lying outside, in a neighboring elementary cell

2.2.2.1 Grids

Grids have been well discussed already. This work does not go into detail. To visualize the grid
volumes, only a simple traversal algorithm (front-to-back and back-to-front) was implemented.
Thus only a short overview of grids is given in the following section.

A Uniform Grid is the first spatial subdivision technique to be explained. The scene is split
into cells with the same elementary size called voxels (volume elements), analogous to pixels
in 2D (picture elements). The uniform grid in the context of RSA was first introduced by Fu-
jimoto [FTI86]. The ray traversal algorithm for a uniform grid has been improved by several
researchers, including Ping-Kang Hsiung and Robert H. Thibadeau [HT92] and Robert Endl
and Manfred Sommer [ES94].

Traversing a uniform grid can be done by using a 3D DDA, the three dimensional discrete
differential analyzer. One disadvantage of this simple algorithm is that each voxel has to be
checked and some value has to be stored and sent to the graphical memory, no matter how
insignificant this value might be. If a ray is shot, for example, through a voxelized sphere at
most two voxels would be hit, which contain significant values. All other voxels, before, inside
and behind the volume are visited in vain. For medical data, as produced by an MRT, a uniform
grid can be suitable, because each voxel contains data. The uniform grid was analyzed by John
G. Clearly and Geoff Wyvill [CW88].
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Non-Uniform Grids are very similar to the uniform grids. Both split the space axis-aligned.
The only exception is that the cells do not have to be of the same size (uniform). So the space
can be split along an arbitrary axis as well.

The advantage of non-uniform grids is obvious. An area of many empty cells of a uniform grid
can be gathered to one cell and skipped in a single step. On the other hand it is also obvious,
that it costs much more storage and memory as the cell-split information has to be stored and
read. Another disadvantage is, that the algorithm to traverse the scene has to be more complex
than the simple 3D DDA already described before [Gig90].

As a last grid technique in this short overview about grids, we give some information about
Hierarchical Grids: The idea is to insert grids into other grids. According to the object a finer
grid can be set if more details have to be stored. The algorithm traversing a hierarchical grid is
more complex than the simple 3D DDA.

2.2.2.2 Kd-tree

Before introducing the Kd-tree, a description of its next relative, the Binary Space Partitioning
tree (BSP), is given. There are two different sorts of BSP. The first type is the axis-aligned
one, which subdivides space into two same sized cells along a perpendicular plane. The plane is
placed in the ’middle’, i.e., it subdivides space into two half spaces. The second type of BSP tree
is polygon-aligned, which means that an arbitrary splitting plane is chosen, which can include a
polygon. This plane does not have to be axis-aligned.

Using axis-aligned splitting planes leads to advantages during ray tracing. The ray-intersection
tests can be replaced by a simple position check, on which side of the splitting plane the eye
point lies. This method is less time consuming than the ray-intersection test. In addition, it
reduces the computation costs of the signed distance by about three times [Hav00]. Often the
order of axes is changed regularly, e.g., according to the x-, y- and z-dimension [Kap85].

The Kd-tree was introduced by Bentley in 1975 [Ben75]. In contrast to an ordinary BSP tree,
Kd-trees can have splitting planes that do not have to produce two equal sized cells. So the
axis-aligned plane can be placed arbitrarily along a dimension. A Kd-tree can be called a gener-
alization of a BSP tree.

In a Kd-tree there are three different types of nodes. One root node, interior nodes and leaf
nodes. If a leaf contains at least one object like a set of polygon(s), it is called full leaf ; otherwise
it is called empty leaf. An interior node always has two children representing the two parts of
the split space. There are many papers examining different heuristics where and how a splitting
plane has to be placed. The most famous one is called SAH (Surface Area Heuristics [MB90]
[PGSS06]).

Another interesting paper was written by Tim Foley and Jeremy Sugerman [FS05], where the
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use of a Kd-tree as an acceleration structure for a GPU ray tracer is examined. Kun Zhou et
al. published a work about the construction of Kd-trees on graphical hardware in real-time
[ZHWG08].

2.2.2.3 Octree

The last spatial subdivision mentioned is the so called octree - the 3D expansion of the quadtree
in 2D. For this work this is the most important one and will be explained in more detail in chapter
4. There are interesting papers, which introduce and deal with octrees [Gla84] [Kap85] [Gla89]
[Sam89] [Kno08].

As a difference to the already introduced BSP and Kd-tree, an interior cell of an octree does not
have only two, but eight children called octants. Like in a BSP leaf, nodes can be called full or
empty, if at least one object is assigned or not.

While going through an octree, the most time consuming work is to determine, which of the
eight children of an interior node is intersected. If more than one is affected, the order must be
determined in increasing distance to the eye point. The ray can intersect any number of children
from 1 to 4, whereas rays, which lie on the border between children, are explicitly assigned
to one child. This step is the most important and most time consuming part of a ray traversal
algorithm which uses an octree. Vlastimil Havran [Hav99] and Aaron Knoll [Kno08] compare
some different ray traversal algorithms with each other.

Octrees are very similar to BSP trees, and they have some disadvantages which are the same as
for uniform grids. Space is equally subdivided and when traversed, the ray tracer has to check
and pass many empty cells even if, for example, only one of them contains objects. An octree
can be realized by a BSP or its generalization. Whereas octrees only need one level, BSP or
Kd-trees need three to achieve a comparable result. Aside of having more levels, an octree is a
special kind of a Kd-tree.

An expansion of the octree is the Octree-R [WSC+95] which is the generalization of the octree.
The splitting planes do not have to be in the middle; they can be chosen arbitrarily, and so the
children cell sizes can differ from each other. The Octree-R is related to the octree like the Kd-
tree is related to the BSP tree. This expansion can speed up the traversal of an octree, but due to
the factors per cell and dimension, which have to be stored, more memory is needed.

An approach to speed up octrees are Ropes [MB90] [KB00] [HBv98]. Ropes are additional
connections between neighboring nodes, which simplify the traversal of an octree. Ropes are
calculated in a preprocessing step; there is one for each face of an octant. They reduce the
number of cell intersections, but instead the exit face must be found. Ropes are discussed in
detail in chapter 4.
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2.3 Methods of Tracing Rays through Data Structures

This section contains an overview of tracing methods. Some methods fit better to certain objects
or scenarios than others. Thus switching them during ray tracing can lead to a better perfor-
mance. Vlastimil Havran calls this methods RSAs (Ray Shooting Algorithms) in his PhD thesis
[Hav00].

To shoot rays through an octree, a closer look at the octree itself has to be taken. If each leaf has
the same depth (the tree is called complete), the RSA would be less complex because it is not
necessary to test if a node is already a leaf. A node can be addressed by a simple calculation.
But complete trees have a big disadvantage: Empty regions have to be stored and moved to the
graphical unit without containing information. It also consumes much time to find the closest
child (seen from the eye point). Each child has to be intersected with the ray and sorted in
ascending order according to their distance to the eye point.

There are several RSAs which can be used to traverse an octree. In chapter 4 a more detailed
description will be given, as this is an essential part of this work. A short overview of important
terms, RSAs and previous work follows:

• Basic Tree Traversal

First some basic terms of tree traversal are mentioned [FP02].

– Point Location
Find the leaf cell containing a given point.

– Region Location
Find the smallest cell that contains a given region.

– Neighbor Searches
Find the neighbor of a given node or cell touching it in a given direction.

• 3D DDA

Kelvin Sung describes an algorithm traversing an octree based on a 3D DDA [Sun91].
His algorithm works on a uniform voxel space and therefore requires a complete octree to
calculate the address by a hash function.

• Bottom-Up Based RSA Approach
A bottom-up approach first finds the closest intersection node of the object. To obtain the
next nodes, a process called neighbor finding is used [Sam89].

• Top-Down Based RSA Approach
Starting from the root node each node is intersected until the path leading to the next leaf
node is found [RUL00].
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• Stack-Based and Stackless RSA Approaches
Using a traversal stack can simplify the ray shoot algorithm. In a stack, nodes, which are
intersected but not yet used, can be stored because at least one node is located in front
of it. These nodes can have child nodes again, which must be handled before its parent’s
siblings.

If no stack is used, some calculations must be done multiple times, which leads to multiple
memory accesses [PGSS07]. This means, stack-based methods can be an advantage, if
enough memory is available. Another idea is to use stacks not for the whole tree, but only
for some parts [HSHH07].

• Ropes

Breaking the acyclic form of an octree and adding ropes makes it easy to find neighbor
nodes by looking them up [MB90] [KB00] [HBv98].

2.4 Acceleration Techniques

The most complex and time consuming tasks of a ray tracer are the intersection tests [Bou05].
If an acceleration structure is used, mainly Ray-Polygon and Ray-Box intersections, but also
Ray-Sphere, Ray-Plane and Ray-Line intersections (e.g., for debugging) have to be performed.

Martin Eisemann et al. [EGMM07] introduce a method for the intersection between a ray and an
axis-aligned bounding box (AABB). They test in two dimensional space by using ray slopes. In
his paper several methods of Ray-AABB intersections are compared to each other. Williams et
al. [WBMS05] show an implementation of a Ray-AABB method which does not have numerical
problems with slopes near zero along the axes.

2.5 GPU and Parallelism

To build an image, a ray tracer has to send many rays. Each of them can be seen as an indepen-
dent single task - the values of its neighbors are not important for one ray. Thus it makes sense
to parallelize the ray shooting [Lef93]. Modern hardware allows to execute this on the graph-
ical unit [PBMH02] [AK10]. Recent attempts try to achieve real-time performance [GPSS07]
[AL09] [GL10]. Kun Zhou et al. [ZHWG08] are using the GPU to build a Kd-tree in real-time,
whereas Iliyan Georgiev et al. [GRHS08] try to realize a whole real-time ray tracer.

16



3. Scenarios

As mentioned in chapter 1, a multi-field hybrid ray tracer - the actual result of this work - can be
useful in many fields of application. Pictures of possible scenes can be found in chapter 7.

3.1 Industrial Application

In this scenario an application example from the industrial sector will be described. A work piece
built up from plans in a 3D design software is loaded. As the data is not scanned, this model
consists of polygons. If visualizing some fluids in or around this piece, it can be combined with
some particles. The polygons of the work piece can border them. Making the work piece or
some polygons of it transparent gives the possibility to look inside easily.

3.2 Video Games

Video gaming is on its way to be one of the most popular field of application for a real-time ray
tracer, because worlds can be rendered very attractively and realistically which is often desired
by gaming communities. Ray tracing supports a lot of visual effects that can be a real eye
candy for users. For example, a game world including some mobile objects on a terrain using
effects, like shadowing, clouds, transparency, aso. can be rendered. This scenario includes less
multi-field data but more effects which can be realized by a ray tracer.

3.3 Virtual and Augmented Reality

A hybrid multi-field ray tracer can also give lots of possibilities in virtual and augmented reality
applications, where tracked or scanned objects have to be combined with artificially generated
ones. Simulating the world as it is in a photo-realistic manner is desired in this field.
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3.4 Archeology

Archaeological discoveries, often damaged by decomposition, can be reconstructed virtually.
Data of scanned fragments, stored, e.g., in a 3D grid, can be combined with a polygon mesh
easily, indeed not fully automatically but with the assistance of a specialist. Reconstruction and
visualization of archaeological discoveries can help to give an insight into the past and help to
preserve our cultural heritage.

3.5 Photorealism

Photorealism in general is highly demanding, especially, for example, in creating pictures for
commercials. A fast real-time ray tracer can also be used for animation movies which are getting
more and more popular. Considering a still life including transparent objects like bottles or
glasses, effects like reflection and refraction let them look real. Liquids inside the objects can be
implemented by adding particles or voxel volumes.

3.6 Architecture

Like in the industrial sector, a fast preview of objects can be of interest. Architects can use
the ray tracer to visualize buildings with an emphasis on, for example, shadows in and around
the objects. Shadows can affect the growth of plants around buildings and the other way round
plants can affect the light situation inside buildings. Clouds represented as particles can also
have an influence.

3.7 Visualization of Medical Data

Another very interesting field for the use of this ray tracer is a scenario from the medical sec-
tor. There are several different scanning methods like computed tomography (CT) or magnetic
resonance imaging (MRI). Each method is used to take data of human body parts. The results
of CT and MRI are three-dimensional images consisting of voxels. Using the steering geometry
approach, which is introduced in this thesis (see chapter 4.1.3), these voxels can be combined
with polygons representating bones.
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3.8 Fluid Simulation

Finally we present a scenario, which can affect many decisions: Handling and simulating flood-
ings, especially in cities. Many buildings composed of few polygons are located in floodwater.
Again, the fluid (water) consists of particles. In this scenario effects are not very important. The
challenge in this field of application is the real-time rendering of huge scenes.
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4. Algorithms

In this section some thoughts and ideas about alternative approaches of ray tracing different types
of data sets, data structures and optimizations of algorithms are mentioned. The implemented
algorithms will be shown and discussed. Results and evaluation numbers will be presented in
chapter 6. The following subsections are related to the first three categories for a ray-tracer soft-
ware, described by Andrew S. Glassner [Gla89] (see chapter 2). These categories are Geometry,
Optics and Optimization.

4.1 Geometry

To handle different types of data, they have to be stored in proper structures to move them easily
to the graphical unit. Questions are: What has to be uploaded and how can it be stored? It is not
necessary or perhaps not possible to move all data to the graphical hardware, especially when
it does not support enough memory. Thus it must be partitioned and only those parts moved,
which are necessary at the moment.

The task is to handle different data types while tracing along rays. The ray tracer has to know
which type of primitive or object it has to trace at the moment. Three different approaches are
considered to solve this task. Figure 4.1 shows two different scenes, which are used to explain
them.

Geometry

Voxel

Voxels

Particles

Figure 4.1: Simple scenes

20



CHAPTER 4. ALGORITHMS

On the left side there are different objects spatially strictly separated. The ray, which is shot from
the eye, hits the green triangle, the red circles (both geometrical objects) and finally intersects
the brown colored voxel grid. The scene on the right side shows a more sophisticated case.
The objects are overlapping each other, therefore, switching the method of tracing rays is much
more challenging. The simple green triangle on the left scene were replaced by a more complex
object. This object is like glass with transparent triangles, so that the ray can enter it (ignoring
refraction). The voxel grid contains, for example, a liquid, which should be present only in the
glass, but the dimension of the volume exceeds the bowl.

4.1.1 Separated Objects

As shown in figure 4.2 each object has either its own boundary volume or a complete bounding
volume hierarchy (particles). For every new ray, which will be shot, the tracer must intersect
all of these bounding volumes and take the closest one to go into detail. Figure 4.2 shows that
the ray starting from the eye intersects the bounding sphere of the green triangle and the voxel
grid on the upper right. In the scene on the right side the ray also intersects these two bounding
spheres. From the shown eye position the order of intersections is correct, the ray will hit the
boundary of the glass first. After hitting, a new ray will be shot from the inside of the glass
which means also inside both boundary volumes. The ray tracer has to decide which one is next.

Geometry

Voxel

Voxels

Particles

Figure 4.2: Simple scenes with separate bounding volumes

4.1.2 One Global Tree

Another approach is to hold the objects of the scene in one tree. This solves the problem of
tracing scenes shown on the left side of figure 4.3 as well. Each node of the tree includes a few
properties of the type of objects it contains. So switching is no problem. If objects are spatially
not separated they have to be split into smaller parts. This method works, but rebuilding the
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tree with consideration of possible animations would be time consuming and complex. If, for
example, a polygon moves into a voxel grid, it must be voxelized. Even if this operation is
possible, it is very costly.

Geometry

Voxel

Voxels

Particles

Figure 4.3: Simple scenes with global tree

4.1.3 Steering Geometry

The third approach, the steering-geometry approach, which is introduced next, was implemented
and presents the core of this work. The scene is expanded by a set of polygons which isolate
the different sets of data. In this work these polygons are triangles, so called steering triangles.
The number of these triangles must be as small as possible, so they can be updated fast and
the number of intersections between the ray and the steering triangles can be minimized. Each
triangle contains information about the region in front of it and on its back. If a new ray starts,
it has to be intersected with all of these steering triangles.

Figure 4.4 shows the already known scene from above. It is obvious that the scene on the left
side, where all different sets are spatially separated, is easy to handle for this method. With a
few steering triangles the voxel and particles can be split from the polygons. The figure on the
right side shows how steering triangles can handle a complex scene. A few steering triangles,
shown as dashed lines, isolate the different sets from each other (the red and green polygon sets,
the blue particles and the brown voxel grid).

Depending on what the scene designer imagines, the steering triangles must be adapted. Here
the volume should be inside of the glass. The steering triangles must be set manually for now.
It would be another interesting project to implement a graphical tool to support designers. The
next idea is to set the polygons located inside of the bowl as steering triangles. This leads to
an amount of steering triangles which would be too high. Thus the inside of the glass has to be
approximated like shown in figure 4.5.
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Geometry

Voxel

Voxels

Particles

Figure 4.4: Simple scenes with steering geometry

Figure 4.5: The steering-geometry approach: Scene: Head in Glass. Left: A photo montage.
Middle: The photo montage as an abstracted scene. Right: The adapted steering triangles are
colored in red.

In figure 4.6 two rays and their way through the glass scene are visualized. Both rays intersect
four steering triangles. Whereas ray 1 enters the glass at its bowl and leaves it at the top without
hitting another polygon of the glass the second one does it vice versa.

The traversal is quite simple: First the next pair of steering triangles (i.e., the next two intersected
triangles), which is called steering-triangle interval has to be found. Then the appropriate tracing
algorithm for the current area is activated. Ray 1 intersects in its first steering-triangle interval
a glass polygon. If there is an intersection, which does not lie in this interval, it can be skipped.
Ray 2 shows why: The first intersected polygon is located behind the voxel set, it must be
handled later. Algorithm 1 presents the steering procedure in pseudo code.
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1

2

1

2

Figure 4.6: The steering-geometry approach: Two rays shot through the scene Head in Glass.
The steering triangles are colored in red.

The steering-geometry approach seems to be the most promising and interesting one. The algo-
rithm is easy and efficient to implement, it is not too complicated and therefore error-prone. Due
to the high cost of triangle-ray intersections the number of steering triangles has to be small.
This implies that boundaries consisting of many polygons can only be approximated roughly.
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Algorithm 1 Tracing rays using the steering-geometry approach
1: ray ⇐ primaryray
2: s0⇐ getNextSteeringTriangle(ray)
3: if s0 is null then
4: exit() {terminate algorithm}
5: end if
6: while true do
7: ray.origin⇐ s0.intersectionPoint
8: s1⇐ getNextSteeringTriangle(ray)
9: if s1 is null then

10: interval⇐∞
11: else
12: interval⇐ calcInterval(s0, s1)
13: end if
14: if s0.type is ’polygons’ then
15: ret⇐ tracePolygons(ray)
16: checkIfInsideSteeringInterval(ret.intersectionPoint, interval)
17: else if s0.type is ’voxel’ then
18: ret⇐ traceV oxel(ray, interval, stepSize)
19: else if s0.type is ’particles’ then
20: ret⇐ traceParticles(ray, interval)
21: end if
22: s0⇐ s1
23: if checkExitCriteria() then
24: exit() {terminate algorithm}
25: end if
26: end while

4.2 Optics

Special optical effects like shadows, self occlusion, reflection and refraction are simple tasks
for a modularly designed ray tracer. From each ray-intersection point a newly defined ray will
be shot. Thus, for example, shadows with self occlusion can be simply realized by shooting
an additional ray from the intersection point to the light source(s). The same can be done with
reflections, the primary ray is just reflected at the intersection point using a given surface nor-
mal. If the material of the intersected object is not fully opaque, the ray can also be split-up or
refracted.

These effects were implemented by using the equations already described in chapter 2. Setting
a new ray direction and starting point causes numerical problems. If the calculation of the new
ray origin has small rounding errors, the object can shade itself spuriously (as figure 4.7 shows).
While setting the origin before the exact intersection point causes no problems, putting it behind
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the point leads to wrong results. This effect of self-occlusion is called shadow acne and can be
fixed by using an epsilon. The new origin is calculated as follows:

o = i− ε ∗ d̂ (4.1)

where:

o is the new origin,
i is the intersection point,
ε is a positive number near zero and
d̂ is the normalized direction vector.

a) b)

c) d)

Figure 4.7: Numerical problems in calculating intersection points. a) Shadow ray from point of
intersection. b) Numerical problems, object itself is between light source and point of intersec-
tion. c) Using equation 4.1 to avoid numerical problems. d) A green light source on the left side
and a polygon with shadow acne on the right side.

4.3 Optimization

In this section some ideas and algorithms about testing and optimizing ray tracing are presented.
These optimizations are very important. As a slow routine, e.g., for testing intersections or
traversal through a data structure, can lower the frame rate drastically, most of the work for this
ray tracer was invested in this field of work. This section has a few subsections. First of all
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the tree structure used to hold objects, which consist of polygons, will be introduced. This tree
was expanded by ropes with the aim to traverse faster through the objects. Afterwards some
different approaches to traverse the data structure are discussed and finally some information
about handling other sets of data are given.

4.3.1 Acceleration Structures

In chapter 2 different kinds of acceleration structures were already listed. In the following
section the octree is revisited and described in more detail. It was implemented and expanded
by ropes, which were also mentioned before. Building up the octree was quite complex, so this
process is explained as well as the build-up of the ropes.

4.3.1.1 Octree

For convex boundary volumes containing objects, which are built out of polygons, an octree
seems to be a suitable data structure for this project.

Before building up an octree some criteria have to be considered for the termination of the
algorithm:

• The current node is not intersected by any polygon.

• A given depth is reached.

• A threshold is set. If the number of polygons is falling below this value, the algorithm can
terminate (see chapter 6).

Building up the octree is made in two steps: First a pointer tree of objects, which is stored in
main memory, has to be created. To move and finally use the data on the graphic hardware, it
needs a second step, in which the octree has to be put into arrays. Figure 4.8 shows the first step.
A simple polygonal object is located on top of figure 4.8 and its resulting pointer tree (Quadtree
Graph) is shown at the bottom. The object consists of nine vertices which can be seen in table
Vertices included in figure 4.8. The coordinates of the vertices are not relevant to describe the
build-up of a tree, but their indices are. These indices are equivalent to the array position of the
vertices.

While none of the listed termination conditions are satisfied, the space is split into four child
cells. The bounding boxes of each of these cells have to be intersected with each triangle of the
parent node. If a triangle intersects a bounding box it must be assigned to the dedicated child
node. In figure 4.8 the eight triangles are listed in table Triangles. To avoid storing triangle
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Figure 4.8: A quadtree. Top: A simple polygonal object with vertices and triangles stored in
arrays. Bottom: The constructed quadtree shown as a graph.

vertices redundantly, pointers are used. These so called indices are integer values. A triple of
indices in anticlockwise order defines a triangle.

As mentioned before, in a second step this pointer tree has to be flattened into an array of tree
nodes. Each node includes the following information:

• a pointer to its parent node,

• pointers to its child nodes,

• a pointer to the start position in the polygon array (in the example of figure 4.9 it is called
the Quadtree Triangle Array) and

• the number of polygons it contains.

An additional useful information is the type of a node (root, interior node, or leaf ), which
simplifies the traversal algorithm. The array of tree nodes is built in preorder. Therefore, the
array positions of the children is always higher than the position of their parent. The reason of
this order is obvious; it simplifies updates and cutting off entire branches.
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Figure 4.9: A part of the Quadtree Graph is flattened in preorder to store it into an array of
quadtree nodes. The Quadtree Triangle Array contains the triangles which are assigned to the
quadtree nodes.

In figure 4.9 a part of the quadtree is outlined. This black frame corresponds to the black marked
part of the Quadtree Graph in the middle of figure 4.9. The nodes are numbered in preorder.
The row of nodes (on bottom) is the result of the flattening. Beneath the array of quadtree nodes
is shown. The Array Positions correspond to the numbers of the nodes above. The array of
quadtree nodes contains, beside its array positions, the parent of each node, their children, the
start positions in the Quadtree Triangle Array (Qt. Array Position), and the number of triangles
which are assigned to each node (No. of triangles). To render the black part only, the array of
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vertices, the array of quadtree triangles and the array of quadtree nodes are necessary. They have
to be moved to the graphical device.

During testing of this octree structure a problem occurred. Due to the recursive algorithm and the
redundant indices the memory often ran low. This problem can be solved by building smaller
subtrees first and storing only the resulting arrays, instead of keeping the whole pointer tree
inside the memory. There are different methods of traversing an octree. Before discussing them,
another problem is mentioned.
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11
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a)

b)

Figure 4.10: Handling overlapping polygons. a) The red triangle is assigned to multiple cells.
b) The blue triangle has to be intersected first.

Usually polygons overlap multiple cells as shown in figure 4.10. They have to be assigned to
each of these cells. This leads to an additional effort while performing the RSA. Each intersec-
tion point, which was found, has to be checked if it really lies in the current active cell. Figure
4.10 shows an example. The red triangle in figure 4.10a) overlaps the cells 00 and 01 and is
assigned to each of them. The ray first enters cell 10 and afterwards cell 00. When cell 10 is
active the intersection test between the eye ray and the red triangle is performed and an intersec-
tion point is found. This intersection point lies inside cell 00 which is not active at the moment.
Figure 4.10b) shows the problem of such intersection points. A blue triangle is added to the
scene and located in front of the red one and is not assigned to the first active cell 10. Thus the
eye ray should hit the blue one first, but it does not, because the red one is intersected in cell 10.
To avoid these false intersections, each intersection point has to be checked if it is localized in
the current active cell.
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4.3.1.2 Ropes

Ropes extend an acceleration structure like an octree by additional connections. Nodes of trees
do not have only directed parent-child connections, they also have additional connections to their
neighbors. These neighbors can be at any height of the tree (except at a height of 0). So in terms
of graph theory the former directed acyclic graph becomes a directed graph with cycles inside
as shown in figure 4.11.
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Figure 4.11: The ropes of a simple quadtree. For each face of a cell a connection is drawn to its
neighboring cell.

Figure 4.11 shows a simple example of a quadtree and its related ropes. On the left side a simple
quadtree is visualized including the order of the cell face’s labels. Its corresponding quadtree
graph is shown next to it by using dotted lines. The directed connections are the related ropes.
Each node has four of them, one for each cell face. If there is no neighbor, because the cell lies
at the outer border, the related connection points to nowhere. To visualize each rope of each
node in the graph of figure 4.11, a special node called No neighbor is included. The root node
always contains four connections to this special node. Multiple connections to the No Neighbor
node are merged to a single one and named appropriately.

Ropes are an additional effort. To build them in a preprocessing step, means, to spend much
time on calculations. The advantage of ropes is the simplification of the ray-tracing process.
When neighbors are known, it is possible to traverse through the object without time consuming
calculations and most notably without using stacks allocating a lot of GPU memory. However,
most complex and expensive is the calculation of the exit face, which is needed to read the proper
neighbor of the current node from memory. This task is, besides accessing the memory, the most
costly one and therefore it has to be optimized.

Build-Up Ropes
Building up ropes is a non trivial task. The build-up algorithm has to perform a procedure to
find the neighbor of each face for each cell. This is called neighbor-finding procedure. It has to
deal with five different cases. Figure 4.12 shows these cases, again using a quadtree to simplify
the explanation.
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Figure 4.12: Five cases to find the neighbor (colored in blue) of a start node (colored in red).
On the left side the five different cases are visualized by using a quadtree. In the middle their
respective graphs are shown including colored arrows and roman numbers which indicate the
order of node treatment. In case 4 and case 5 the neighbor-finding procedure requires a stack to
store node types. The look-up table on the right side is needed to find the neighbor’s node type,
given the type of a start node and the type of the face which lies in between.
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In case 1 the right neighbor of the red node is the direct child of its parent which type is 10.
In the first working step (I) the type of the neighbor is determined by the the Look-up table -
Neighbors on the right side of figure 4.12. In step II the child, which is of the determined type,
is read from the parent’s children list. In this example the parent is the root node of the tree.

Case 2 deals with the case of a start node lying at the border of the quadtree. A right neighbor
node does not exist. Table Look-up table - Neighbors returns that there is no neighbor to the
given type 10. The neighbor-finding procedure can be terminated in this case, because the parent
of the start node is the root node of the tree.

Case 3 is similar to case 1. The only difference is that the start node has more than one neighbor
and the procedure has to be terminated after working step II. Therefore a stack is needed which
can store types of nodes. Entries are pushed into this stack until a working step reaches the root
node, and are handled (popped) on their path to the neighbor node. Using an empty stack as
additional termination criterion, case 3 stops after step II, because no node type was pushed onto
the stack until the root node is reached. In case 4 and case 5 this stack is needed too, and at least
one element is pushed.

In case 4 four steps are necessary to find the neighbor of the red colored start node. The first one
involves a look-up for which type is on the right side of a node of type 11. The result would be
that there is no neighbor. As described in case 2 the procedure can be terminated returning ’no
neighbor found’, but this would be wrong in this case. Thus a new termination criterion has to
be introduced. If the parent of a node is not the root, the type of the node has to be pushed onto
the stack instead of returning ’no neighbor found’. Therefore the type of the start node is pushed
onto the stack, which is shown at the right side of the graph of case 4. In step II the root node
is reached and the type of the right neighbor of the start node’s parent, which is of type 00, can
be read from the look-up table. It is of type 10. As described above the next node can be found
by using the children list of the root node. The procedure can not stop at this node, because the
stack is not empty. Thus it has to push the entry from the stack and finally finds the neighbor
node in step IV by using the stored node type.

Case 5 is similar to case 4, but the procedure has to be terminated after step III. Even though the
stack is not empty, the neighbor node is already found, because the current node is a leaf node.

Algorithm 2 shows the neighbor-finding procedure which has to be performed once for each
face of an octree cell. The first step is to create a stack which can store types of nodes (node-
type stack). Starting with a given node it has to be found out if it has an easy to find neighbor
(EasyNeighbor). If there is one, the algorithm can stop searching and return this node as the
appropriate one (see case 1). If there is no child, the node type must be put onto the node-type
stack and the procedure has to determine if the parent of the parent has an easy to find neighbor
in the appropriate direction and so on. If there is no such neighbor, 0 is returned. The cell must
be at the border (see case 2).

After building up, the node-type stack can now be processed. While the stack is not empty the
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Algorithm 2 Build-up of ropes: The neighbor-finding procedure
1: node {the given current node}
2: face {the given face type between current node and the neighbor node}
3: nodeTypeStack {stack to store node types}
4: neighbor {return neighbor node}
5: type {node type}
6: buildStackCondition⇐ true {to exit the build-up stack loop}

{Build-up stack}
7: while buildStackCondition do
8: if node.parent.notExists() then
9: neighbor ⇐ null

10: stack.deleteAllElements()
11: buildStackCondition⇐ false
12: else
13: if node.hasEasyNeighbor(face) then
14: neighbor ⇐ node
15: buildStackCondition⇐ false
16: else
17: stack.push(node.type)
18: node⇐ parent
19: end if
20: end if
21: end while

{Handle stack}
22: while stack.isNotEmpty() do
23: type⇐ stack.pop()
24: neighbor ⇐ neighbor.getChildOfType(type)
25: end while
26: return neighbor

assumed neighbor is the child of the current node which has the type of the top entry of the
stack. If there are children, one of them has to be the neighbor of the start node. Otherwise the
current node itself will be returned as the proper neighbor (see case 4 and case 5). To find the
appropriate children of the current node, it is necessary to find out which position in the stack is
related to the according neighbor node. If the stack is empty, the current node can be returned
as neighbor node. If there are multiple neighbor nodes, the neighbor-finding procedure returns
their parent node. Thus the traversal algorithm has to check if the connected node is a leaf. If
not, the algorithm has to find the appropriate child.

Figure 4.13 shows an example of using ropes which have to be stored in the same order as the
tree array to simplify access while walking through the object. The ropes of the black marked
area are listed in the table in the lower left corner. To reproduce the build-up of the ropes the
number of the appropriate build-up case is inserted in column C. Some of the node numbers are
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Figure 4.13: Using ropes. The table in the lower left corner shows the ropes of the black marked
area. On the right side is an arbitrary ray shot through the area. The ray visits node 2, 3, 6, 14,
16 and 17 before leaving the black area. These nodes are colored red in the ropes table.

colored red. These nodes are intersected by the ray in the example at the right side of figure
4.13. The R in column C denotes a trivial case of the root node without neighbors.

The quadtree traversal procedure by using ropes is simple. The start node is node number 2. The
ray leaves this node at its top, thus the look-up in the column of node number 2 line Top leads to
node number 3. As this node is not a leaf, the traversal procedure has to find the ray-intersecting
child node, which is the closest one to the eye origin. It is node number 6. The next visited node
is node 14, followed by node 16. The final node of the black marked area is node number 17.
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4.3.2 Methods of Tracing Rays through Data Structures

As already discussed, ray-polygon intersections are very time consuming. Thus one has to find
a proper acceleration structure. The next step is to design an algorithm to traverse the scene by
using the chosen data structure. For this, important issues must be considered. GPU memory is
not only needed to store object data (like vertices, materials, acceleration structures, ...), it also
has to manage the locally used variables (storing and access). Especially algorithms using stacks
need a lot of memory.

In chapter 2 some terms about ray shooting algorithms (RSA) were already explained. In the
subsections below a closer look on the implemented RSA will be given. Except the first one
each of these algorithms uses an octree as acceleration structure. The following list outlines
different types of RSA:

• Straightforward RSA Approach
The simplest way to shoot rays into a scene is to intersect with each primitive, for example,
with all triangles in a scene. This algorithm is robust and easy to implement but temporally
way too expensive. The operation, which costs most, is the intersection calculation. While
working on the GPU (NVIDIA CUDA), this often leads to an unexpected problem - if an
object or a scene has too many primitives to intersect, the kernel returns a time out. Thus
there is no other choice but to find a better way to traverse the scene.

• Top-Down Based RSA Approach
The top-down approach traverses the octree from the root node to the leaves to find the
next active node. Beginning from the outer bounding volume the approach intersects
the eye ray with each child until the leaf node is found which is the closest to the eye
point. This node is now the active one and the intersection with its included objects can
be performed. To find the neighbor node, the ray point is set to the exit point of the active
cell and the algorithm has to start again at the bounding volume of the root. The ray tracer
has to provide the ability to find a leaf cell which contains a given point. This is called
point location. An advantage is that only little memory is needed but many intersections
between the eye ray and interior tree cells have to be processed multiple times. The
calculation of the new position of the ray point can lead to numerical problems. If this
calculation is not precise enough, it could be positioned just in front of the next node’s
bounding box. The next intersection test would return the current active node as the new
active node. This could happen multiple times. In the worst case the moving point would
never leave the active node.

• Bottom-Up Based RSA Approach
The bottom-up approaches try to find the next neighbor directly by using additional tree
information or results of the last steps. The algorithms are usually more complex than the
top-down approaches but faster.
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– Stackless RSA Approach
A simple extension of the top-down approach would be to look up the parent of
the active node and to continue from there to find the neighbor cell. This means
additional memory costs because the parent of each node has to be stored, but the
algorithm does not have to start over at the root node on each step. Thus many
intersection tests, which would have to be done multiple times, can be avoided.

– Stack-Based RSA Approach
Using a stack can bring other advantages. Each intersection has to be done only
once. If there is more than one child hit, they can be stored sorted and processed
later on. Thus sorting has to be done only once, too. And finally the eye point does
not have to be moved to assure that a node is not handled multiple times. Hence there
are no numerical problems to consider. The disadvantage is that a stack needs much
memory space and the size of it has to be precalculated. Equation 4.2 describes how
much memory is needed only for the stacks:

S = w ∗ h ∗ a ∗ (1 + th ∗ i) (4.2)

where:
S is the precalculated stack size,
w is the image width,
h is the image height,
a is the byte size of the node address,
th is the height of the tree and
i is the maximum number of intersected child nodes.

Assuming a resolution of 1600 x 1200 (w x h), this means 1.920.000 pixel and kernel
calls. Each kernel has a stack, which at least contains an unsigned integer, the array
address of a tree node. This means a is equal to 4 bytes. The worst case, i.e., the
maximum number of child nodes, which are intersected by a ray and have to be
stored in an octree, is 4 minus 1 - the one, which is used instantly. It can be proven
that more than four nodes can not be intersected. Thus i is equal to 3. If now the
height of the tree is 5 (th = 5), the result is 122.880.000 bytes.

– Ropes
Another approach to find neighbor nodes uses ropes. Ropes are additional connec-
tions inside of the octree. For each cell six pointers are stored - the neighbor cells for
each face. The algorithm only looks up which node is the next active one. Therefore
no intersection tests between ray and bounding volumes have to be done, but the
face has to be identified, where the ray exits the current cell. Ropes need additional
texture memory and the build-up process is complex.

The following sub sections will describe the implemented approaches, including a short descrip-
tion, a figure of the traversal and the traversal algorithm. An evaluation can be found in chapter
6. The straightforward and top-down RSA approaches are not useful for fast rendering, so every
implemented algorithm is kind of a bottom-up RSA approach.
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4.3.2.1 Method 1: Bottom-Up and Stackless RSA Approach

An easy method to traverse an octree is to let the eye point move along the ray. Thus intersections
behind the current position of the eye point can be discarded. To find the neighbor of the active
cell, the algorithm has to look up the parent to find the next one. Figure 4.14 shows the traversal
of a 2D scene using a quadtree. The intersection points between ray and the cell boundaries are
colored in red.
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Figure 4.14: RSA Method 1

First the leaf node 00/00 must be found. Then the eye point origin is set on the intersection
point 0 - the boundary of the first active node. The next step of the algorithm is to check if some
polygons are hit. Afterwards the eye point is moved to the exit point of node 00/00 and the
algorithm finds the neighbor node. Therefore the parent of the current node is looked up. If it
has another child, which is not handled yet (the ray origin lies on or before its boundaries), this
child is set as new active node. If it is not a leaf node, its children have to be handled too.

If the parent node does not have another child, the algorithm simply moves on to the next parent
if there is one. It will be set as the new active node. If there is no parent left, the algorithm can be
terminated and the ray origin lies at the exit face of the root node (in figure 4.14 it is intersection
point 3). Algorithm 3 shows a possible implementation of this approach.

4.3.2.2 Method 2: Bottom-Up and Stack-Based RSA Approach

The next implemented method is based on a stack. This approach has to do each bounding-
volume intersection-test only once. Also sorting of the children, if several are hit, does not have
to be repeated. Another advantage is that the ray origin does not have to be moved along the ray.
It remains at the starting point and thus there are no numeric problems to deal with. By using
a stack the algorithm does not have to know which node was already visited. But the memory
requirement can be enormous.

Figure 4.15 shows an example of this approach. The bounding volume, which is intersected
first, belongs to the root node. Thus the root node is pushed onto the stack. Due to the fact
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Algorithm 3 Method 1: Stackless RSA Approach
1: ray ⇐ primaryray
2: aN ⇐ root.this {active node}
3: while true do
4: while !aN.isLeaf() do
5: aN ⇐ aN.closestChild() {find closest child to eye point}
6: end while
7: intersect(ray, aN.polygons)
8: if checkExitCriteria() then
9: exit() {terminate algorithm}

10: end if
11: ray.origin⇐ aN.exitPoint
12: repeat
13: if aN.hasParent() then
14: aN ⇐ aN.parent
15: else
16: exit() {terminate algorithm}
17: end if
18: until aN.hasUnhandledChild()
19: end while
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Figure 4.15: RSA Method 2 uses a stack. Left: An eye ray is shot through an octree. Right: The
different stack states from I to V.

that it is used immediately it is popped instantly. This can be seen in stack state I, where the
immediately popped root node is crossed out. The next step is to intersect the children of the
root. As two of them are hit, they have to be sorted. The closest one to the eye point, node
00, is handled instantly, the other one, node 10, is pushed onto the stack (stack state II). Node
00 is a parent of two intersected children. Again, the closest one (00/00) can be handled right
away, whereas the second one, node 00/10, is pushed to the stack (stack state III). 00/00 is a
leaf node, thus the algorithm checks, if the eye ray intersects the polygons, which are assigned
to 00/00. If the algorithm does not terminate yet it continues with the topmost stack entry (node
00/10) which is a leaf node. The assigned polygons of node 00/10 have to be intersected and
the node is popped from the stack (stack state IV). The final stack entry is node 10. It is popped
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and its assigned polygons are checked, because node 10 is a leaf (stack state V). The algorithm
is terminated, when the stack is empty and every node was handled. Algorithm 4 shows this
approach in pseudo code.

Algorithm 4 Method 2: Stack-Based RSA Approach
1: aN ⇐ root.this {active node}
2: bV ⇐ root.boundingV olume
3: if !intersect(ray, bV ) then
4: exit() {terminate algorithm}
5: else
6: stack.push(aN)
7: end if
8: while !stack.isEmpty() do
9: activeNode⇐ stack.top() {pops the top element}

10: intersect(ray, aN.polygons)
11: if checkExitCriteria() then
12: exit() {terminate algorithm}
13: end if
14: nodeList⇐ intersect(ray, children)
15: nodeList.sort() {decreasing distance to eye point}
16: for i = 0 to nodeList.size do
17: stack.push(nodeList.elementAt(i)
18: end for
19: end while

4.3.2.3 Method 3: Bottom-Up RSA Approach and Ropes

The traversal of this approach using ropes is not complex. First the algorithm has to find the
entrance node by intersection with the hierarchical bounding volumes. When it is found, the
number of the intersections between eye ray and bounding volumes of the interior nodes is low,
compared to the other approaches in this section. Instead the algorithm has to calculate the exit
face of the active cell. After identifying it the neighbor node can be simply looked up in the
ropes array. Additional intersection tests are only necessary if the neighbor node is not a leaf
node. If there is no neighbor found, the ray exits the volume and the algorithm can be terminated
(see algorithm 5).

4.3.3 Tracing Particles

The visualization of particles is realized and implemented in a simple but costly way. They are
less important, than the other data sets in this work. Therefore only the distance of each particle
to the eye ray is calculated and taken as influence value. Different distributions can be used to
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Algorithm 5 Method 3: RSA by using Ropes
1: ray ⇐ eyeRay
2: aN ⇐ root.this {active node}
3: bV ⇐ root.boundingV olume
4: if !intersect(ray, bV ) then
5: exit() {terminate algorithm}
6: end if
7: while aNnotNULL do
8: while !aN.isLeaf() do
9: aN ⇐ aN.closestChild() {find closest child to eye point}

10: bV ⇐ aN.boundingV olume
11: end while
12: intersect(ray, aN.polygons)
13: if checkExitCriteria() then
14: exit() {terminate algorithm}
15: end if
16: face⇐ getExitFace(ray, bV )
17: aN ⇐ getNodeFromRopes(aN, face) {returns NULL if neighbor does not exist}
18: bV ⇐ aN.boundingV olume
19: end while

blend them together (Gaussian or Cauchy-Lorentz). Simple monotonically decreasing functions
with finite support can be used to reduce the influence of particles lying too far away from the
ray. Thus it is possible to render, for example, smooth clouds.

4.3.4 Tracing Voxel Grids

To trace a voxel grid, two methods were implemented, a front-to-back and a back-to-front ap-
proach. The first algorithm needs an interval length, which is equal to the distance between the
entrance point and the exit point of the volume, a step size, and an opacity threshold. The front-
to-back method starts from the eye point and walks from the front of the scene to its back, adding
color and opacity until the given threshold is reached. The back-to-front algorithm works the
other way. It is only used if no opacity threshold is set. The color and opacity can be managed
by a simple transfer function.
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This section gives more details about the practical part, the implementation of this work. The
framework will be introduced concisely, which is still in development, but which has already
been used as basis of the GPU ray tracer. The main topic of this section is the description of the
most important classes and kernel functions.

5.1 Framework

In 2008 the development of a new framework called visdom was started. The goal of this project
was to create a piece of software that would be easy to use and to expand. It should work on
many different operating system and also on handhelds. Therefore it was planned as a server-
client application. The server has to perform the complex calculations and thus C and C++
seemed to be the right choice. The tracing algorithm is performed on the graphical device of the
server. The resulting image is stored as a file (JPEG) and is provided to the client. The client has
to be the front end of the system. It manages the input, delegates setting changes to the server
and displays the provided image files. For the graphical user interface (GUI) Adobe Flex, i.e.,
Action Script, is used. It allows to connect nodes of three simple abstract types:

• Producer nodes
These nodes create data, e.g., reading from files.

• Filter nodes
Filter nodes change data.

• View nodes
These nodes finally show the results, for example, of a ray tracer or OpenGL view.

Figure 5.1 shows a small example of the framework GUI. The three nodes ModelLoader, Sample
and TransferFunction are producers. They generate data like loading a model file. The Trans-
formation node is a filter, which acts on the loaded model data, and on the right side there is a
view node, in this case a Ray-Tracer node, handling the output. In figure 5.1 this node is called
Ray). The settings of a node can either be manipulated on the node itself or in an extra panel
of the application. Each node has a few pins of different types to connect them to each other.
Producers only have outgoing connectors, views have only incoming connectors and filters have
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Figure 5.1: The framework GUI: Producer nodes (ModelLoader, Sample and TransferFunction),
Filter node (Transformation), View node (Ray)

both. Each producer creates a data-flow object, which is sent along the connectors. In figure
5.1 the Ray-Tracer node gets three data-flow objects, one from the sample node (the voxel data
object), one from the transfer-function node (the transfer-function data object), and one from the
model-loader (the model data object) called SceneItem.

5.2 Sourcecode and Classes

The following listed classes and kernel functions give an outline of all implementation work,
which has been done for this master thesis. Many helper classes were written as well as an own
small math core and lots of geometrical functions, classes and structs.

In figure 5.1 an example of the framework GUI is shown. An outline of the classes, which are
needed to implement this GUI setting, is given in figure 5.2. The diagram was designed using
Unified Modeling Language (UML). The classes are shown without their attributes and methods.
Most of them will be explained closer in the following subsections. The producer nodes, filter
nodes and view nodes are specializations of an abstract superclass called AbstractNode. Each
producer creates a data-flow object which can be manipulated by connected filters. The model
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AbstractData
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Figure 5.2: A class diagram using Unified Modeling Language

loader can use a class called TreeFactory to build up an octree and store it into its data-flow object
(SceneItem). The singleton class SteeringGeometry can be accessed by each AbstractNode to
add, delete or manipulate the steering triangles. In the example in figure 5.2 it is connected to
the model loader.

44



CHAPTER 5. IMPLEMENTATION

5.2.1 Scene Item

SceneItem : AbstractData

-vertices: GPUVector<Vector4f>
-indices: GPUVector<uint4>
-normals: GPUVector<Vector4f>
-colors: GPUVector<Vector4f>
-tree: GPUVector<treeNode>
-treeProps: GPUVector<treeProps>
-ropes: GPUVector<ropeNode>

+SceneItem()
+checkisOnDevice() : void
+isOnDevice() : bool
+moveToDevice() : void
+moveDeviceToHost() : void
+moveToTextureMemory() : void
+destroyTextureMemory() : void
+emptyDevice() : void
+moveAllToHost() : void

Figure 5.3: SceneItem

A scene item is an object generated
by the model-loader class. It holds
all the properties of the read poly-
gon model like vertices, indices,
normals, colors, but also the tree at-
tributes and ropes if they are used.
Besides the usual methods, e.g., get-
ters, setters, constructor and de-
structor, there are some extra func-
tions to handle the memory, where
the data is currently stored. The
graphical unit is called device, the
main memory is named host. Figure
5.3 shows the class methods which
are needed to move the data from
host to device and vice versa.

5.2.2 Model-Loader Node

ModelLoaderNode : AbstractNode

-settings: ModelLoaderSettings
-filename: string

+ModelLoaderNode(ModelLoaderSettings settings, string id)
+loadFile(SceneItem* sceneItem) : void
+getSettings() : ModelLoaderSettings
+setSettings(ModelLoaderSettings settings) : void
+~ModelLoaderNode()
-loadType(SceneItem* sceneItem) : void
-scaleModel2UnionBox(SceneItem* sceneItem) : void

Figure 5.4: ModelLoaderNode

Each node is a specialized form
of the abstract node class Abstract-
Node. Thus the model-loader node
also has its attributes and its meth-
ods. But these are less important
and therefore not listed in figure
5.4. The model loader opens a
given file and loads polygons and
attributes into a scene item. There
are several different file types the
loader can handle. All of them
have to contain ASCII data. The
class attribute ModelLoaderSettings
includes all settings sent from the GUI, like building a tree or not. The names of the methods of
this class are self explaining. The model loader can use the tree factory directly to push the data
into an acceleration structure. Ropes can also be calculated via the tree factory.

45



CHAPTER 5. IMPLEMENTATION

5.2.3 Tree Factory

TreeFactory

+TreeFactory()
+~TreeFactory()
+createTriangleTree(SceneItem * sceneItem) : void
+createParticleTree(SimParticles * particles): void

Figure 5.5: TreeFactory

The tree factory interacts directly
with the model loader. It sim-
ply needs a data-flow object (a
SceneItem), which is filled with
loaded polygon data. The data-flow
object includes the tree properties,
e.g., the condition, when the build-
ing algorithm has to terminate its
process or if it has to create ropes.
Figure 5.5 shows not only the method to create a triangle tree, it also includes one for building a
particle tree.

5.2.4 Acceleration Structure - Tree

The three classes shown in figure 5.6 were implemented to manage the model data and to ac-
celerate the handling of it while tracing rays. The acceleration tree is build recursively until it
is stopped by certain termination criteria. Each tree node is a specialized AbstractTree node and
contains a pointer to its children and a pointer to its parent node. The AbstractTree provides
additional basic attributes, e.g., height of the subtree, the actual depth of the node and some
interface methods.

A direct specialization of the AbstractTree is the AbstractOctree containing attributes like its
position in octree, as an example ’left-down-front’ coded as ’0-0-1’, or the number of elements
the node is allowed to hold. If there are more items than this given number, the tree has to
be split once more. Again there are some interface methods which each specialized class has
to implement. Important methods in this class are helpers to find the neighbors of a given
node. They are needed to build up ropes. Another specialization of the AbstractTree is the
AbstractKdTree which is not shown in figure 5.6.

The last specialized tree class is called TriangleOctree. It contains only one attribute storing the
vertices of the triangles. All interface methods have to be implemented. Additional methods
check if triangles are overlapping more than one child and therefore have to be assigned to all of
them.
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AbstractTree
#parent: AbstractTree*
#treeHeight: int
#nodeHeight: int
#treeSize: uint
#posInArray: uint

+AbstractTree()
+<<virtual>> AbstractTree()
+<<virtual>> buildTree() : uint

AbstractOctree

+indices: vector<uint>
#children: vector<AbstractOctree*>
#position: PositionInOctree
#maxItemPerNode: int

+AbstractOctree(AbstractTree* parent, vector<uint>indices, treeProps props)
-<<virtual>> buildTree() : uint
#<<virtual>> isElementInBox(uint element, box<float3> Box) : bool
#<<virtual>> calcChildElements(vector<uint> elements, box<float3> Box) : uint
#<<virtual>> buildChild(PositionInOctree pos, box<float3> Box) : void
+getRopes(GPUVector<ropeNodes>& ropes) : void
-findNeighbor(CUBOID_FACE face) : uint
-getNeighbor(CUBOID_FACE face, PositionInOctree pos, AbstractOctree parent) : uint
-getNeighborOfParentChild(AbstractOctree parent, PositionInOctree pos) : uint
-getNeighborType(CUBOID_FACE face, PositionInOctree pos) : PositionInOctree
-getBorderNeighbor(CUBOID_FACE face, PositionInOctree pos) : int

TriangleOctree

-vertices: GPUVector<Vector4f>

+TriangleOctree(AbstractTree* parent, Vector4f v, Vector4ui i, treeProps props)
+buildTree() : uint
+getNodeTree(Vector4ui i, Vector<octreeNode> treeNodes, uint nextNodePos) : void
-isElementInBox(uint element, box<float3> Box) : bool
-buildChild(PositionInOctree pos, box<float3> Box) : void
-calcChildElements(vector<uint> elements, box<float3> Box) : uint
-triBoxOverlap(Vec3f boxC, Vec3f boxHalf, Vec3f t0, Vec3f t1, Vec3f t2) : bool
-planeBoxOverlap(Vector3f n, Vector3f v, Vector3f maxBox) : int

Figure 5.6: Tree classes
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5.2.5 Steering Geometry

SteeringGeometry
<<singleton>>

-instance: SteeringGeometry*
-numElements: uint
-onDevice: bool
-steeringTris: GPUVector<float4>
-stVertices: cudaArray*
-steeringData: GPUVector<uint4>
-stData: cudaArray*

+SteeringGeometry()
+getInstance() : SteeringGeometry*
+addElement(geometry geo, uint4 data) : void
+clear() : void
+moveToDevice() : bool

Figure 5.7: SteeringGeometry

The steering-geometry class inter-
acts directly with the different pro-
ducer nodes, therefore it is a sin-
gleton class (see figure 5.7). Each
producer can add elements to a list
of polygons. These polygons are
needed to handle the ray tracing.
Thus it is defined, when which type
of data set has to be shown. The
steering-geometry class builds the
core of the system. To move trian-
gles and steering data to the graphi-
cal memory, a method called move-
ToDevice was implemented. An im-
portant difference to the other data
needed on the graphical unit (like
vertices, tree, aso.) is, that the steer-
ing data is not stored as linear texture but as a cudaArray. The access to a cudaArray is less time
consuming, but the amount of space is limited.

5.2.6 Ray Renderer

The RayRenderer is a view node which provides the possibility to change settings of the GPU
ray tracer. The methods of this class can call CUDA functions to start the rendering of the
scene, to bind the datasets to the memory of the graphical hardware and to unbind them. These
functions are listed in figure 5.8.

RayRenderer : AbstractRenderer

-settings: CudaRaySettings

+RayRenderer()
~RayRenderer()
+render2Array(map<string, AbstractData*> &data, GPUGrid<uchar3> *image) : void
-bindTextures(map<string, AbstractData*> &data) : void
-unbindTextures(map<string, AbstractData*> &data) : void

Figure 5.8: RayRenderer

48



CHAPTER 5. IMPLEMENTATION

5.2.7 Cuda Ray Node

Figure 5.9 shows the Cuda Ray Node class. It provides functions to bind and unbind the different
sets of data to the textures on the graphical device.

CudaRayNode - extern "C"

+cudaRayRender(uchar3 *image, type_info type,  
  CudaRaySettings settings) : CudaErrorReport
+cudaBindVoxelTexture(cudaArray *data, type_info type, 
  cudaChannelFormatDesc desc) : CudaErrorReport
+cudaBindTransferTexture(cudaArray *data, type_info type, 
  cudaChannelFormatDesc desc) : CudaErrorReport
+cudaBindParticlesTexture(cudaArray *data, type_info type, 
  cudaChannelFormatDesc desc) : CudaErrorReport
+cudaUnbindVoxelTexture(type_info type) : CudaErrorReport
+cudaUnbindTransferTexture(type_info type) : CudaErrorReport
+cudaUnbindParticleTexture(type_info type) : CudaErrorReport
+cudaBindVerticesTexture(float4* vertices_d) : CudaErrorReport
+cudaBindIndicesTexture(uint4* indices_d) : CudaErrorReport
+cudaBindOctreeTexture(uint4* octree_data_d, 
  float4* octree_bb_d) : CudaErrorReport
+cudaBindRopesTexture(uint* ropesUint_d) : CudaErrorReport
+cudaBindSteeringTexture(cudaArray* st_vertices_cA, 
  cudaArray* st_data_cA) : CudaErrorReport
+cudaUnbindVerticesTexture() : CudaErrorReport
+cudaUnbindIndicesTexture() : CudaErrorReport
+cudaUnbindOctreeTexture() : CudaErrorReport
+cudaUnbindRopesTexture() : CudaErrorReport
+cudaUnbindSteeringTexture() : CudaErrorReport

Figure 5.9: CudaRayNode
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5.2.8 GPU - CUDA Kernels

The RayRenderer_kernel.cuh file contains the main function of the ray tracer (see figure 5.10).
The method, which is used to render the image (stack less, stack based or using ropes), can be
set by arguments. It can be rendered interlaced, too.

RayRenderer_kernel.cuh

+rayTracer_main_kernel(RAY_TRACER_TYPE type, uchar3 *image_d, bool interlaced = false) : void
+test_kernel(ray<float3> eyeRay, colorRGBA & color) : void

Figure 5.10: RayRenderer Kernel

RayRenderer_functions.cuh

+setupConstants(CudaRaySettings settings) : void
+getChildBox(box<float3> Box, int child, box<float3> childBox) : uint
+getParentBox(box<float3> Box, int child, box<float3> parentBox) : uint
+euclDistance(float3 p, float3 q) : float
+intersectRayTriangle(ray<float3> Ray, float3 t0, float3 t1, float3 t2, float &t, 
  float &u, float &v) : bool
+intersectRaySphere(ray<float3> Ray, Sphere sphere) : float
+intersectRayPlane(ray<float3> Ray, float3 v0, float3 v1, float3 v2, float3 v3, 
  float3 & intersectionPt) : bool
+intersectSteeringTris(ray<float3> Ray, float & minT, uint steeringStartpos, 
  uint steeringData, uint lastObject) : int
+getSteeringPair(ray<float3> Ray, steeringArea & sa0, steeringArea & sa1) : int
+getNextSteeringTri(ray<float3> Ray, steeringArea & sa) : int
+drawLineOfTriangles(ray<float3> Ray, float width, float3 from, float3 to) : int
+drawBoxOfTriangles(ray<float3> Ray, box<float3> Box, float width) : int
+drawLineOfSpheres(ray<float3> Ray, float3 from, float3 to, float width, 
  float4 color, uint num, float4 & color) : void
+drawBoxOfSpheres(ray<float3> Ray, box<float3> Box, float width, float4 color, 
  uint num, float4 & color) : void
+drawAxes(ray<float3> Ray, float4 & color) : bool
+drawSphere(ray<float3> Ray, Sphere sphere, float4 color, float4 & color) : void
+calcRefractionRay(ray<float3> eyeRay, ray<float3> normal, 
  ray<float3> refractionRay, float eta_i, float eta_r) : void
+calcRefractionRayThinObjects(ray<float3> eyeRay, ray<float3> normal, 
  ray<float3> refractionRay, float eta_i, float eta_r) : void

Figure 5.11: RayRenderer Functions

Figure 5.11 shows another CUDA header file which provides the ray tracer with some important

50



CHAPTER 5. IMPLEMENTATION

functions. setupConstants can be called to set variables which can be accessed from each thread.
They contain global settings like the viewing matrix and the position of the eye. Octree specific
functions are getChildBox and getParentBox. They can be used to calculate a child or parent
bounding box of a given box. Essential intersection functions and draw methods, which are
used for debugging, are included as well as the calculation of certain effects (refraction and
reflection). And finally the most important methods are contained, i.e., the steering functions to
get the next steering triangle or the next pair of steering triangles.

RayRenderer_helpers.cuh

+getNearestChild1(ray<float3> eyeRay, box<float3> Box) : int
+getNearestChild2(ray<float3> eyeRay, box<float3> Box) : int
+getNearestChild3(ray<float3> eyeRay, box<float3> Box) : int
+getNearestChild4(ray<float3> eyeRay, box<float3> Box) : int
+getNearestChildrenSorted(ray<float3> eyeRay, box<float3> Box, int *children) : int
+hitTris_linearTextures(ray<float3> eyeRay, uint4 data, box<float3> Box, float & minT, 
  float3 & intersectionPt, int trisHit_N, float3 & normal) : void
+hitTris_cudaArrays(ray<float3> eyeRay, uint4 data, box<float3> Box, float & minT, 
  float3 & intersectionPt, int trisHit_N, float3 & normal) : void
+hitTris_args(ray<float3> eyeRay, uint4 data, box<float3> Box, float4 * v_d, uint4 * i_d, 
  uint4 * o_d, float3 & intersectionPt, int trisHit_N, float3 & normal) : void
+getExitFace1(ray<float3> eyeRay, box<float3> Box) : int
+getExitFace2(ray<float3> eyeRay, box<float3> Box) : int
+getExitFace3(ray<float3> eyeRay, box<float3> Box) : int
+getExitFace4(ray<float3> eyeRay, box<float3> Box) : int
+getExitFace5(ray<float3> eyeRay, box<float3> Box) : int
+getChildIncludingPt(float3 pt, box<float3> Box) : int
+findCurrentPosition(ray<float3> eyeRay) : uint

Figure 5.12: RayRenderer Helpers

Like the RayRenderer_function.cuh file the RayRenderer_helpers.cuh (see figure 5.12) contains
important functions, too. There are some different approaches to return the child node which is
the closest one to the eye (getNearestChildN). To intersect the triangles, which are assigned to a
node, three methods were written (hitTrisX). Each of the three functions can handle one special
kind of memory. The different getExitFaceN methods are needed for the traversal using ropes.
Five approaches were tested to find the fastest way to determine the exit face of a bounding box.
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RayRenderer_trace_kernel.cuh

+trace_kernel(ray<float3> eyeRay, colorRGBA & color) : void
+traceRay_shadow_kernel(traceArgs ta, uint objNumber) : int
+traceRay_stackless_kernel(traceArgs ta) : int
+traceRay_ropes_kernel(traceArgs ta) : int
+traceRay_stack_kernel(traceArgs ta) : int
+traceRay_sphere_kernel(traceArgs ta, Sphere sphere) : int
+traceRay_mirrors_kernel(traceArgs ta) : int
+traceRay_voxel_kernel(traceArgs ta, float aThresh, colorRGBA & color) : int
+traceRay_particle_kernel(traceArgs ta, float aThresh, colorRGBA & color, float & opacityDiff) : int
+traceRay_prism_kernel(traceArgs ta) : int

Figure 5.13: RayRenderer Trace Kernel

Figure 5.13 shows the content of the RayRenderer_trace_kernel.cuh file. It provides the different
tracing methods, including the three presented approaches (see 4.3.2) to handle polygons, voxels
and particles. The other functions are used to visualize various effects.
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This section presents the results of all testing work. First of all the issue of how to measure
the time in relation to the scene will be addressed, including the position of objects and camera
to each other. Afterwards the results of speed measurements of some basic algorithms like
intersection tests and memory access to the graphical hardware are included. The measurements
of the different tracing methods, the implemented steering technology, and the results of complex
scenarios are added.

6.1 An Expressive Way of Testing Speed

An easy way to quantify a scene is to measure the elapsed time from the start of the rendering
kernel to its end. Without further enhancement this works only for one specified object under the
same viewing settings. By using this simple method it is not possible to compare different scenes
with different settings, especially including other objects and different positions and directions
of the camera.

The model can be far away from the eye point and therefore most of the ray kernels would break
up after the first bounding box intersection. Thus using only the resolution, which means the
multiplication of the screen width with the screen height, is not expressive enough. Instead, the
number of primary and secondary rays, which are shot in a scene, can be used. In addition the
number of visited tree nodes can be interesting.

Another problem of comparing is different hardware - the used test configuration is not up-to-
date. Thus speed tests of basic operations are included. Their measurements in addition to the
number of their calls should allow to estimate the frames per second a scene would need to be
rendered on another hardware configuration. For this only the time of the basic operations, the
other machine needs, should be determined.

6.2 Basic Speed Tests

In this section time measurements of the most important operations are shown which have to be
performed while tracing rays. They can be categorized in intersection and memory access. First
measurements of simple, but essential, tasks are given to show how fast the GPU calls are. Each
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kernel has to calculate the origin and the direction of its eye ray (ray calculation). A second task
for each kernel is writing into the output array (writing output).

#kernel dimension/ ray calculation writing output
calls resolution (µs) (µs)

1 1x1 21.9 23.4
100 10x10 21.9 23.5

10000 100x100 21.9 70.3
16384 128x128 23.5 100.0
65536 256x256 28.1 325.1
76800 320x240 39.9 378.2
262144 512x512 46.9 1440.9
307200 640x480 51.6 1562.5
480000 800x600 68.7 2237.1
786432 1024x768 98.4 4273.5
921600 1280x720 109.3 4608.3
1000000 1000x1000 118.8 4651.2
1048576 1024x1024 125.0 6250.0
1920000 1600x1200 207.8 8928.6
2073600 1920x1080 221.9 9615.4
2560000 1600x1600 268.8 11904.8

Table 6.1: Basic measurements

Table 6.1 shows the results of the two tests, the ray calculation, and writing output. The tests
are performed on 16 different screen resolutions which lead to 16 different numbers of rays to
be calculated, i.e., its origins and directions. Table 6.1 shows the time which is consumed by
these simple tasks. The more rays are shot the more time is consumed. Especially writing into
the output array is an expensive process.

The first column of table 6.1 shows the number of rays, which are shot into the scene. This
number is equal to the number of GPU kernel calls. In the third column the time is given in
microseconds which is needed to handle the kernels and their simple ray calculation only. Writ-
ing the output back to the CPU is very costly. The last column shows the time in microseconds
needed for writing and moving the output.

The ray calculation and writing output are essential tasks that have to be performed. Thus they
can only be accelerated by using better hardware. The more kernel calls are performed, the more
time is needed. This means the kernels are not executed simultaneously.
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6.2.1 Ray Intersections

It is important to optimize the ray-intersection tests, because they have to be done often and
usually are temporally very complex. There are two intersection types which are most often
used in this work: ray-triangle and ray-AABB. A third one is needed for debugging only, i.e.,
the ray-sphere intersection. A problem of time-measurement systems can be that they are not
precise enough to handle one single kernel call. For this reason the results of the tests, which are
shown in 6.2, are averaged values. This means the kernel calls are performed 10.000 times.

#kernel ray - triangle ray - AABB ray - spheres
calls (sec) (sec) (sec)

1 0.0430 0.0220 0.0201
100 0.0750 0.0230 0.0229

10000 0.6510 0.4262 0.3061
16384 0.9925 0.6325 0.4455
65536 3.9569 2.4559 1.7059
76800 4.1329 2.8669 1.9609
262144 14.656 9.7181 6.6881
307200 17.637 11.386 7.8234
480000 25.541 17.775 12.212
786432 45.074 29.090 19.996
921600 48.672 34.093 23.406
1000000 52.412 36.975 25.397
1048576 55.953 38.781 26.625
1920000 99.621 70.979 48.730
2073600 107.18 76.653 52.607
2560000 132.79 94.622 64.950

Table 6.2: Ray Intersections - Triangle, AABB and Sphere. Each intersection is performed
100.000 times per kernel.

The results of the basic intersection tests are given in table 6.2. The intersections are performed
100.000 times in each kernel. The ray-sphere intersection is the fastest one, followed by the
intersection ray-AABB, which is even faster than the ray-triangle intersection. Table 6.2 shows
that intersection calculations are time-consuming tasks, thus the number of them has to be min-
imized.
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6.2.2 Memory Access Measurements

Another basic operation is accessing the memory. Due to the fact that there exist different
possibilities to store data on CUDA, they have to be examined. The first type of memory to
be mentioned is called Linear Texture Memory. If it is used as a one-dimensional array, the
maximum width is 134.217.728 units. Another kind of memory, cudaArrays, has a maximum
width of 8.192 units. The third type is called Constant Memory, it can only store 64KB of
data. All of these memories are read only. The unit numbers can be found in the NVIDIA
Programming Guide [NVI09] on page 102f. The document deals only with GPUs with identical
unit numbers for the mentioned memory types.

#kernel LT CA C
calls (sec) (sec) (sec)

1 0.0251 0.0378 0.0014
100 0.0411 0.0387 0.020

10000 0.2431 0.2281 0.0561
16384 0.3355 0.3365 0.0705
65536 1.2379 1.2379 0.2999
76800 1.4289 1.4299 0.3509
262144 4.8751 4.8751 1.5311
307200 5.6984 5.6824 1.3864
480000 8.8683 8.8683 2.1653
786432 14.527 14.543 4.2606
921600 17.016 17.016 4.1567
1000000 18.474 18.475 4.5062
1048576 19.360 19.360 6.1090
1920000 35.432 35.401 8.6522
2073600 38.247 38.246 9.3411
2560000 47.215 47.200 11.543

Table 6.3: Memory Access - Linear Texture Memory (LT), cudaArrays (CA) and Constant Mem-
ory (C). Each memory access is performed 10.000 times per kernel.

Table 6.3 shows the results of the texture-access measurements. To test the needed time 16 bytes
were read in 10.000 times. The Constant Memory is the fastest to access, but its capacity is too
low to store more than a few global settings. CudaArrays and Linear Texture Memory are very
similar in terms of access time. Again, the capacity is crucial. CudaArrays can not store enough
data to satisfy the requirements for this project. Thus all data like vertices, octree nodes and
ropes are stored by using Linear Texture Memory.
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6.3 Octree Settings

As explained in chapter 4 the octree, which is used to accelerate the traversal of polygonal ob-
jects, has a few settings. The two most important ones are the tree height and a given threshold of
polygons. If the number of polygons a node contains falls below this threshold, the tree-building
algorithm terminates at this branch. If the height of the octree is increased, the number of nodes,
which have to be visited and intersected until a leaf is found, increases, too. Therefore the num-
ber of triangle intersections decreases. A good threshold should prevent the system of building
up too large trees which are much more costly to traverse than more triangle intersections would
be. Deeper trees require more memory space, especially for storing more tree nodes, a bigger
number of polygons (if they overlap nodes), and eventually ropes.

Figure 6.1: Octree Settings: Increasing number of nodes per level. Top: A simple shaped object
called 3D’U’. Bottom: A complex object called Robot.
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6.3.1 Tree Height

The following tests are performed on two different objects: a very simple one and a more com-
plex model of a robot. The first one is shaped like a three dimensional ’U’. It is called 3D’U’
and consists of six triangles and eight vertices. The second object consists of 2.573 vertices and
4.699 triangles and is called Robot. The method used to run the tests for both of the objects
is a stackless ray-casting algorithm as described in chapter 4. Only the simple and fast surface
shading (by Phong) is calculated in addition (see figure 6.1).

The 3D’U’ scene seems to be too simple, but it demonstrates an important issue in an expressive
way. Increasing the height of the octree leads to additional traversal costs, because more nodes
have to be visited which means more ray-AABB intersections have to be calculated. Furthermore
additional data must be stored and moved to the graphical device (e.g., triangles, octree nodes,
ropes, aso.).

Considering this issue there has to be an optimal tree height h for each octree which leads to
the fastest rendering speed measured in frames per second (FPS). Further increasing of h would
reduce the number of FPS, because the additional traversal would be temporally more complex.
Thus it would annihilate the benefit of a higher tree, which is to reduce the number of ray-
polygon intersections.

# visited # visited #ray-tri
h th # nodes interiors #leaves leaves #tris intersections FPS
0 0 1 0 1 126224 6 757344 49.1
1 0 9 259127 8 230446 24 657396 42.2
2 0 73 817865 64 430713 96 575068 28.7
3 0 393 1423757 344 646016 384 517958 20.3
4 0 1801 2014775 1576 854739 1536 484936 15.9
5 0 7698 2586616 6728 1057067 6144 467472 12.9
6 0 31753 3145951 27784 1255129 24576 458516 10.5
0 0 1 0 1 62769 4699 294951531 0.10
1 0 9 149474 8 104869 20200 271977284 0.84
2 0 73 404701 64 185416 30309 79177153 2.21
3 0 577 904208 505 349959 44318 21723675 4.67
4 0 2689 1220001 2353 453148 65914 6113960 6.81
5 0 13353 1542849 11684 558928 115781 2044779 8.10
6 0 64025 1793543 56022 641045 253182 905493 7.53

Table 6.4: Octree Setting (Height): Top: Measurements of object 3D’U’. Bottom: Measure-
ments of object Robot.
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The following list explains the captions of table 6.4 and table 6.5:

h: the height of the octree
th: the octree build up stops, if the number of triangles falls under

this threshold
#nodes: number of nodes in octree, including interior nodes

and leaves
#visited interiors: number of interior nodes which are intersected by the ray
#leaves: number of leaf nodes in octree
#visited leaves: number of leaf nodes which are intersected by the ray
# tris: sum of triangles of each leaf
# ray-tri intersections: sum of all ray-triangle intersection which have to be done
FPS: frames per second

Table 6.4 shows the effect of changing the height of the tree on the two objects. The image reso-
lution of both scenes is 1000x1000 which leads to 1.000.000 rays shot. The number of primary
rays, i.e., rays which intersect at least one leaf node, is 126.224 in the simple object scene and
62.769 in the other. Figure 6.1 shows the increasing number of nodes on each additional level
of the octree.

The measurements of 3D’U’ (table 6.4 line 1 to 7) show that the optimal octree height for
traversing this simple object is 0, i.e., no octree should be used. With increasing the tree height
the FPS decreases. The more complex Robot shows the use of an octree. The time to render it
decreases with increasing the octree height, until its optimal height is reached at the value of 5.

6.3.2 Polygon Threshold

Using a threshold to let the octree-building algorithm terminate, if a node contains a number of
elements below this value, should accelerate the performance of the ray tracer. In table 6.5 some
test results are given. Different combinations of octree height and threshold were examined and
the frames per second measured. All tests are performed on the Robot as described in section
6.3.1. The explanation of the column headings of table 6.5 can be found there, too. The 3D’U’
scene is too simple and thus not suitable for further measurements.

Contrary to the assumption the performance should be accelerated by using a threshold, no
acceleration can be measured, at least not by using the Robot. But another advantage was found
during the test runs - the threshold gives the possibility to build up higher trees. Thus more
complex objects can be loaded and the problem of running out of local memory on the CPU can
be solved. Many node overlapping triangles do not have to be assigned multiple times again
and again on each new level. Which settings fit best, depends considerably on the scene and its
included objects. Good settings are essential for a fast performance.
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# visited # visited #ray-tri
h th # nodes interiors #leaves leaves #tris intersections FPS
2 100 73 404701 64 185416 30309 79177153 2.21
4 5 2721 1272814 2381 470621 65993 6174802 6.81
4 10 2681 1291543 2346 476970 66149 6337065 6.67
4 100 1681 1030484 1471 389243 67158 12388130 5.08
5 1 13425 1610159 11747 581078 115836 2056737 8.10
5 2 13385 1627154 11712 586835 115890 2071371 7.90
5 5 12825 1636883 11222 590568 116169 2205503 7.72
5 10 11681 1602826 10221 579229 115558 2555430 7.44
5 100 2641 1052177 2311 395867 83122 11334210 5.04
6 2 62841 1950293 54986 693029 253143 964043 7.27
6 5 54249 1907246 47468 679007 246543 1194867 7.11
6 10 38825 1762422 33972 630858 223906 1767882 6.95
6 100 3209 1053668 2808 396319 91857 11290138 4.89
12 50 8409 1287814 7358 473262 128667 6155211 5.71

Table 6.5: Octree Setting (Threshold): Measurements of the object Robot.
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6.4 Traversal Methods

The three different methods of traversing an octree discussed in chapter 4 are tested concerning
performance in this section. To get significant numbers, three scenes, each including different
objects, were used and all of them were viewed under two different camera settings. In addition
each object is rendered by using different opacity thresholds. Thus in the first case only primary
rays are sent. Figure 6.2 shows the three objects. The octrees of the objects are all built using
the same settings - height 5, threshold 0. The Robot has 115.781, the Ufos scene 225.560 and
the still life (Bottle) has 454.608 triangles. Table 6.6 shows the first set of measurements. Table
6.7 shows the second one in which the camera is closer to the scene and thus more primary rays
are shot.

Figure 6.2: Traversal Methods. Left: Robot. Middle: Ufos. Right: Bottle.

The evaluation of the tables shows that the fastest method to trace rays is the ropes approach.
Which of the other two methods is coming next depends on the scene. But another important
issue is the quality of the rendered pictures. The stackless approach often has some pixel errors
which result from numerical problems as described in section 4.3.2. The ropes and the stack-
based approach produce error free images. In return they require much more memory.
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#kernel object #primary #secondary
calls rays rays method FPS

65536 Robot 1069 0 stack based 45.66
65536 Robot 1069 0 stackless 45.66
65536 Robot 1069 0 ropes 64.10
65536 Ufos 627 0 stack based 45.66
65536 Ufos 627 0 stackless 53.19
65536 Ufos 627 0 ropes 58.48
65536 Bottle 1161 0 stack based 16.86
65536 Bottle 1161 0 stackless 16.42
65536 Bottle 1161 0 ropes 22.08

1000000 Robot 16267 0 stack based 7.710
1000000 Robot 16267 0 stackless 8.651
1000000 Robot 16267 0 ropes 12.08
1000000 Ufos 9649 0 stack based 8.000
1000000 Ufos 9649 0 stackless 9.406
1000000 Ufos 9649 0 ropes 11.22
1000000 Bottle 17759 0 stack based 3.786
1000000 Bottle 17759 0 stackless 3.831
1000000 Bottle 17759 0 ropes 5.565
65536 Robot 1069 1069 stack based 31.95
65536 Robot 1069 1069 stackless 33.67
65536 Robot 1069 1069 ropes 49.26
65536 Ufos 627 627 stack based 23.70
65536 Ufos 627 627 stackless 24.63
65536 Ufos 627 627 ropes 35.46
65536 Bottle 1161 1161 stack based 10.16
65536 Bottle 1161 1161 stackless 10.32
65536 Bottle 1161 1161 ropes 14.88

1000000 Robot 16267 16267 stack based 5.872
1000000 Robot 16267 16267 stackless 6.468
1000000 Robot 16267 16267 ropes 9.843
1000000 Ufos 9649 9649 stack based 5.615
1000000 Ufos 9649 9649 stackless 6.154
1000000 Ufos 9649 9649 ropes 8.204
1000000 Bottle 17759 17759 stack based 2.644
1000000 Bottle 17759 17759 stackless 2.452
1000000 Bottle 17759 17759 ropes 3.902

Table 6.6: Three methods of traversal - Camera Position 1
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#kernel object #primary #secondary
calls rays rays method FPS

65536 Robot 10826 0 stack based 14.88
65536 Robot 10826 0 stackless 8.418
65536 Robot 10826 0 ropes 22.08
65536 Ufos 4652 0 stack based 12.80
65536 Ufos 4652 0 stackless 8.651
65536 Ufos 4652 0 ropes 21.28
65536 Bottle 11404 0 stack based 5.120
65536 Bottle 11404 0 stackless 3.722
65536 Bottle 11404 0 ropes 8.000

1000000 Robot 165223 0 stack based 1.894
1000000 Robot 165223 0 stackless 1.298
1000000 Robot 165223 0 ropes 3.049
1000000 Ufos 71020 0 stack based 2.099
1000000 Ufos 71020 0 stackless 1.151
1000000 Ufos 71020 0 ropes 1.828
1000000 Bottle 174120 0 stack based 0.989
1000000 Bottle 174120 0 stackless 0.780
1000000 Bottle 174120 0 ropes 1.350
65536 Robot 10826 36064 stack based 5.079
65536 Robot 10826 36064 stackless 3.555
65536 Robot 10826 36064 ropes 8.097
65536 Ufos 4652 15984 stack based 2.540
65536 Ufos 4652 15984 stackless 1.702
65536 Ufos 4652 15984 ropes 3.460
65536 Bottle 11404 40687 stack based 1.855
65536 Bottle 11404 40687 stackless 1.385
65536 Bottle 11404 40687 ropes 3.190

1000000 Robot 165223 551706 stack based 0.831
1000000 Robot 165223 551706 stackless 0.578
1000000 Robot 165223 551706 ropes 1.325
1000000 Ufos 71020 243247 stack based 0.621
1000000 Ufos 71020 243247 stackless 0.292
1000000 Ufos 71020 243247 ropes 0.821
1000000 Bottle 174120 620694 stack based 0.361
1000000 Bottle 174120 620694 stackless 0.281
1000000 Bottle 174120 620694 ropes 2.807

Table 6.7: Three methods of traversal - Camera Position 2
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#kernel dimension/ #primary #secondary #shadow
calls resolution rays rays rays FPS

10000 100x100 4047 92598 0 12.82
65536 256x256 26511 606818 0 5.348

1000000 1000x1000 404532 9259657 0 0.703
2560000 1600x1600 1035588 23704594 0 0.322

10000 100x100 7503 98511 7503 21.28
65536 256x256 49396 656214 49396 4.255

1000000 1000x1000 755117 10014774 755117 0.350
2560000 1600x1600 1933566 25638160 1933566 0.141

10000 100x100 9496 99100 0 6.410
65536 256x256 62085 644628 0 2.062

1000000 1000x1000 948093 9806363 0 0.464
2560000 1600x1600 2427370 25094795 0 0.235

Table 6.8: Steering Scenarios - Head in Glass, Robots in Desert and Bottle and Glass

6.5 Steering Scenarios

Table 6.8 shows the results of the steering-geometry approach. Three different and complex
scenarios are used to measure its performance. Pictures of them are presented in chapter 7. The
Head in Glass scene contains a set of voxel data inside of a polygonal object which consists
of 236.745 triangles. The voxel volume overlaps the bowl of the glass and so the steering
technology is needed to cut off the overlapping parts. The first four lines of table 6.8 contain the
results of rendering this scene. About 40 percent of all rays shot hit an object, most of them the
glass. Due to its translucency these rays do not stop, but are refracted and are sent further into
the scene. This leads to the shown number of secondary rays.

The next scenario could be taken from a video game. Some robots are standing in a desert under
a cloudy sky. This scene contains particles, which are used to visualize the clouds, the terrain
and robots consisting of 168.234 polygons. A light source is added which let the objects cast
shadows. The shadow rays are already included in the secondary rays of table 6.8.

The final scene is called Bottle and Glass and pictures of them can also be found in chapter 7.
The polygonal objects (a bottle and a glass) are standing on a mirror and in front of another one.
The number of polygons of this objects is 454.608, the highest of all three scenes. The position
of the camera is chosen to let about 95 percent of all rays hit the object. The two mirrors and
the translucent objects are leading to a high number of secondary rays. Table 6.8 shows that
the implemented ray tracer is not able to render complex scenes by using the steering-geometry
approach in real-time.
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This section presents the results of the implementation of this work. After demonstrating the
features of the ray tracer, some scenarios with more complex settings will be given. All the
pictures are rendered by using the implemented framework. Due to the server-sided image
compression, the server-client design leads to minor pixel errors, so called artefacts. As an
introduction an object and its octree is shown (see figure 7.1). The implemented ray tracer can
render the boundaries of the octree cells.

a)

c) d)

b)

Figure 7.1: a) An object rendered by using the implemented ray tracer b) The octree of the object
is rendered using a tree height of 3 c) The octree height is increased to 4 d) This octree picture
is taken from GPU Gems 2 ([PF05])
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7.1 Features

On top of figure 7.2 a simple shaded model of a robot on a diffuse ground plane is shown.
The used surface shading (by Phong) is described in Hearn and Baker [HB04]. Underneath the
steering polygons are visualized additionally.

Figure 7.2: Features: Top: A simple shaded polygonal object. Bottom: The steering polygons
are visualized.
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On top of figure 7.3 the shading of the object is done by tracing an additional ray from the point
of intersection to the light source. This ray is called shadow ray. If the shadow ray intersects an
object on its way to the light source, the intersection point between object and eye ray lies in the
shadow. Shadow rays can be switched on and off for every object separately. At the bottom of
figure 7.3 the self-shadowing of the polygonal object is shown. Whereas the position of the light
is the same as in the figure 7.3 on the top, the simple shading is deactivated.

Figure 7.3: Features: Top: Shadow rays and simple shading. Bottom: Shadow rays and self-
shadowing.
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The next feature is reflection. The object stands on a mirror plane (see figure 7.4 top)). All
rays, which hit this plane, are reflected as described in section 1.1. At the bottom of figure 7.4 a
second vertical mirror is included.

Figure 7.4: Features: Top: A polygonal object on reflecting plane. Bottom: A polygonal object
and two mirror planes.
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On top of figure 7.5 a turquoise prism in front of the object is shown. The rays, which intersect
this prism, are refracted, as also described in section 1.1. If the polygons of the object are not
fully opaque, the rays will not stop at the object surface, but enter it. The figure at the bottom
shows the result if the entering rays are neither reflected nor refracted, but pierce the object in a
straight line.

Figure 7.5: Features: Top: Refraction at a prism. Bottom: Opacity.
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7.2 Steering Scenarios

The following pictures demonstrate the possibilities of the implemented ray tracer using the
steering-geometry approach. The scenarios shown are already mentioned in chapter 3.

Figure 7.6: Industry: Cooling Jacket. A polygonal object filled with particles. Top: Split into
two pieces: A simple shaded surface on the left side and a transparent surface on the right side.
Bottom: The complete cooling jacket is shown from above.

In figure 7.6 a cooling jacket is shown. The model of the workpiece consists of triangles. A
particle cloud is located inside of it to represent, e.g., the pressure or temperature of a cooling
fluid. The upper figure is split into two parts. On the left side the simple shaded surface of the
workpiece is shown. On the right side and in the figure at the bottom its surface is transparent
and the particle cloud can be seen.
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Figure 7.7: Video Games: Robots in Desert. Two robots and a vehicle are standing in a desert.
Clouds are in the sky.

Figure 7.7 shows a scenario which could be captured from a video game. Two robots and a
vehicle are standing in a desert surrounded by pyramids. Two white clouds are in the sky.
Whereas the robots, the vehicle, the pyramids and the desert consist of polygons, the clouds
are made of particles. All objects cast shadows onto other objects and on themselves (self
shadowing).
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Figure 7.8: Still life: Bottle and Glass. A bottle and a glass, both are filled with a red liquid.

In figure 7.8 a still life is shown. A bottle and a glass are standing above and in front of two
mirrors. They are filled with a red liquid (particles). All objects consist of polygons. If a ray hits
a mirror, it is reflected. At the glass surfaces they are refracted.
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Figure 7.9: Still life: Head in Glass. Top (from left to right): white background, black back-
ground, with steering geometry. Bottom: Objects on a reflective plane.

Figure 7.9 shows a human head in a glass. The glass consists of polygons, the head is stored as a
set of voxels. To each voxel a density value is assigned which can be manipulated by a transfer-
function. On top of figure 7.9 three different pictures of the rendered scene are shown. The two
on the left side and in the middle have different background colors. The third one visualizes the
scene including the steering polygons which are colored reddish and which enclose the set of
voxels and the glass. At the bottom of figure 7.9 and on top of figure 7.10 the glass and the head
are shown on a reflective plane using different transfer-functions. At the bottom of figure 7.10
the steering polygons can be seen.
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Figure 7.10: Still life: Head in Glass. Top: Objects on a reflective plane. Bottom: The steering
polygons are visualized.
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8. Conclusion

This work introduces three methods to handle different sets of data while tracing rays on the
GPU. One of them was implemented and examined. It also gives an insight of planning and
developing a GPU ray tracer and an expandable framework for it. The ray tracer was evaluated
and the speed tested. This was done not only for the whole tracer, but also for the implemented
intersection functions and texture accesses to find the most time consuming operations.

The used acceleration structure does not fit for every case. Splitting cells strictly into eight even-
sized subcells can lead to an exploding number of extra polygons which have to be stored and
moved to the graphical unit. A polygon, which overlaps a cell, has to be assigned to each cell
it intersects. While ray tracing, the calculation of the closest subcell, which is intersected, is a
time-consuming and complex task, too.

The steering method works as designed and planned, but the polygons have to be set manually
yet. Finally, the goal to implement a GPU ray tracer, which can handle different sets of not
necessarily spatially separated data, was reached, even if it does not run in real-time as planned
- at least not under the hardware configuration it was tested with. There are plenty of extensions
and speed-ups, which can improve the system and much research could be done to optimize it.

As future work there are several points to mention. The most important and interesting issue
would be to implement the two other introduced methods of handling different types of data,
separated objects and one global tree. Therefore a Kd-tree would be a natural choice. There are
also interesting extensions for the octree. For example, arbitrary splitting planes could speed up
the system.

Because of the simplicity of the test scenarios, which were shown in this work, only a few
steering polygons are necessary. With increasing complexity their number will strongly increase,
and an own acceleration structure would be essential.

By now only one graphical unit is in use while tracing rays, but the framework is already de-
signed to handle multiple GPUs. Thus it would be interesting and worthwhile to parallelize more
steps.
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CHAPTER 8. CONCLUSION

The steering geometry has to be set manually or at least semi-automatically. It would be helpful
to write a graphical user interface, which gives the possibility to manipulate, i.e., insert, delete
and edit the geometry.

The conclusion of this long time project is:

• Planning and developing an expandable framework is a time-consuming task. Most of
the time was used on team meetings and in performing the software developing loop.
Often changes in the core of the software lead to changes on many other components and
incurred severe delays.

• The development of an expandable ray tracer is more difficult than it looks like.

• Algorithms should be kept as simple as possible if the method of debugging is based on
colored output images and wrong GPU memory accesses can result in a freezing system.
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