
Diese Dissertation haben begutachtet:

. .

DISSERTATION

Applications and Generalizations of
Context-Sensitive Term Rewriting

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften unter der Leitung von

Ao.Univ.Prof. Dipl.-Inf. Dr.rer.nat. Bernhard Gramlich

E185/2
Institut für Computersprachen

Arbeitsbereich Theoretische Informatik und Logik

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Dipl.-Ing. Felix Schernhammer

Matrikelnummer: 0225493
Leonard Bernsteinstraße 8/1/8.5, 1220 Wien

Wien, am 14. Dezember 2010

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

This work has been supported by the Austrian Academy of Sciences within the
DOC program under grant number 22.361.

iii

Acknowledgments v

Acknowledgments

First of all I would like to thank my PhD advisor Prof. Bernhard Gramlich for his
ongoing support and confidence in me. He introduced me to the world of research and
provided me with the freedom needed to persue my ideas. Furthermore, I would like to
express my gratitude to the Austrian Academy of Science for granting me the scholarship
that made this work possible in the first place.

Special gratitude is dedicated to Prof. José Meseguer and his group at the University
of Illinois at Urbana-Champaign for their hospitality, support and friendship during my
research visit in the USA. I would also like to thank all of my colleges of the Theory and
Logic Group at the Vienna University of Technology who helped to broaden my scientific
horizon in many seminars and provided me with guidance and help whenever needed.

Finally, I would like to thank my family and friends for their ongoing love and support.

Felix Schernhammer

Abstract vii

Abstract
Term rewriting is a formalism that enables us to efficiently deal with many problems related
to symbolic equations. It is particularly used in fields like equational programming, formal
verification of software and automated deduction. The simple idea behind term rewriting
is to replace equals by equals in an object (in our case terms) until a form is reached, which
represents the result of the computation. In an operational sense the formalism of term
rewriting does not suggest how this replacement is carried out. Thus, in general rewrite
derivations (as we call sequences of replacements) are highly non-deterministic. Especially
in practical fields like equational programming and executable specifications it is important
to have means to guide rewrite derivations and thus to reduce their nondeterminism in
order to make them more efficient and/or produce the desired results. One major approach
to achieve this is context-sensitivity. The idea of context-sensitive rewriting is to exploit
the term structure of the objects in order to identify positions at which replacements are
allowed and others where no replacements may occur.

In the first part of this thesis we investigate the benefit one gains from using traditional
notions of context-sensitivity in the simulation of conditional rewrite systems by uncon-
ditional ones. Conditional rewriting is an extension of ordinary rewriting where rewrite
rules are guarded by conditions. These conditional rules may only be used for compu-
tations if the conditions are satisfied. It turns out that the use of context-sensitivity
significantly improves the accuracy one can achieve in this simulation. Indeed, we show
that by using a concrete transformation from conditional rewrite system into uncondi-
tional context-sensitive ones, the computational power of the conditional and transformed
system is entirely the same. Hence, the accuracy of a simulation of conditional rewriting
by using this transformation is arguably optimal. Besides simulation, we use this transfor-
mation to derive criteria for the practically crucial properties of operational termination
and CE -operational termination of conditional rewrite systems based on (local) termina-
tion properties of the transformed unconditional rewrite systems. The latter properties
are easier to verify and an extensive amount of existing research deals with verifying these
properties automatically.

The second part of the thesis introduces a new approach to context-sensitivity in term
rewriting. The basic idea is to define term patterns, which are called “forbidden pat-
terns”, that determine parts of a term that are forbidden for reduction whenever they
match the term. This new formalism is more general than many existing approaches to
context-sensitivity. Nevertheless, the definition of rewriting with forbidden patterns is
comparatively simple, thus making the approach feasible in practice despite its expres-
siveness. We develop a basic infrastructure of results concerning rewriting with forbidden
patterns, providing in particular criteria for completeness, confluence and termination.
Moreover, we present a method to automatically infer sets of forbidden patterns for given
rewrite systems that impose desirable restrictions on the induced rewrite relation.

Finally, in the third part of the thesis, we describe the termination laboratory VMTL,
which has been developed to evaluate the above as well as various other methods for the
automated termination analysis of conditional rewrite systems as well as of rewrite systems
with forbidden patterns introduced in this thesis.

Zusammenfassung ix

Zusammenfassung
Termersetzung ist ein Formalismus, der in vielen Gebieten der theoretischen Informatik
verwendet wird, in denen symbolische Gleichungen bzw. symbolische Berechnungen eine
Rolle spielen. Sie findet insbesondere in den Gebieten der gleichungsbasierten Program-
mierung, der formalen Verifikation von Software und im automatischen Beweisen ihre
Anwendung. Die prinzipielle Idee hinter Termersetzung ist Terme zu vereinfachen, in-
dem Teilterme durch einfachere, aber semantisch gleiche Terme ersetzt werden. Da es
a priori unklar ist welche Teilterme zuerst vereinfacht werden sollen, ist der Vorgang des
Termersetzens hochgradig nichtdeterministisch. In der Praxis spielt die Reihenfolge, in der
Vereinfachungen vorgenommen werden, allerdings oft eine große Rolle, beispielsweise wenn
bestimmte Vereinfachungssequenzen wesentlich schneller zum gewünschten Resultat führen
als andere, oder bestimmte problematische Vereinfachungssequenzen zu Nichtterminierung
führen. Deshalb versucht man den Nichtdeterminismus der Termersetzung durch Erset-
zungsstrategien zu verringern oder zu eliminieren. Ein wichtiger konkreter Ansatz für die
Definition solcher Strategien ist kontextsensitives Termersetzen.

Im ersten Teil der Dissertation wird kontextsensitives Termersetzen verwendet, um
Reduktionen bezüglich bedingter Termersetzungssysteme zu simulieren. In bedingten Ter-
mersetzungssystemen werden für jede Ersetzungsregel Bedingungen definiert, unter denen
die Regel anwendbar ist. Durch die Verwendung von kontextsensitivem Termersetzen ist es
tatsächlich möglich, bedingte Termersetzung akkurat durch unbedingte kontextsensitive zu
simulieren. Die Dissertation enthält eine Transformation, die bedingte Termersetzungssys-
teme in unbedingte kontextsensitive übersetzt, wobei nach der Übersetzung exakt die sel-
ben Resultate berechnet werden können wie davor. Diese Transformation wird in weiterer
Folge dazu benutzt, um praktisch relevante Eigenschaften von bedingten Ersetzungssys-
temen wie zum Beispiel operationale Terminierung oder CE -operationale Terminierung,
zu verifizieren, indem man Terminierungseigenschaften des transformierten unbedingten
Systems nachweist. Dieses Vorgehen ermöglicht es, existierende Methoden für die Ter-
minierungsanalyse von unbedingten Ersetzungssystemen wiederzuverwenden.

Im zweiten Teil der Dissertation wird ein neuer Ansatz zu eingeschränktem Termerset-
zen eingeführt, der kontextsensitives Termersetzen verallgemeinert. In diesem Ansatz wer-
den sogenannte “Forbidden Patterns” verwendet, um Teile eines Terms zu identifizieren, in
denen keine Vereinfachungen durchgeführt werden dürfen. Viele wichtige Standardreduk-
tionsstrategien für Termersetzung sind als Spezialfall dieses neuen Ansatzes vergleichsweise
einfach beschreibbar. Trotz dieser Allgemeinheit beruht Termersetzung mit “Forbidden
Patterns” auf vergleichsweise einfachen und gut handhabbaren Grundprinzipien. Dadurch
ist der Ansatz relativ einfach zu verwenden und die Analyse von Ersetzungssystemen mit
“Forbidden Patterns” in der Praxis effizient möglich. Die Dissertation enthält Kriterien
für Konfluenz, Terminierung und Vollständigkeit für Termersetzung mit “Forbidden Pat-
terns”. Außerdem wird gezeigt, wie man für ein gegebenes Termersetzungssystem geeignete
“Forbidden Patterns” automatisch generieren kann.

Im dritten Teil der Dissertation wird das Softwaretool VMTL vorgestellt, das Termer-
setzungssysteme automatisch auf Terminierung untersucht. Das Tool enthält u.a. Imple-
mentierungen aller Methoden zur Terminierungsanalyse, die in der Dissertation vorgestellt
werden und unterstützt insbesondere bedingte Systeme und “Forbidden Patterns”.

Contents

1 Introduction 1

1.1 Term Rewriting . 1

1.2 Strategies and Restrictions . 3

1.2.1 Reduction Strategies . 3

1.2.2 Restrictions of Rewriting . 4

1.3 Forbidden Patterns . 8

1.4 Conditional Rewriting . 10

1.5 Contributions . 12

1.6 Outline . 14

2 Preliminaries 15

2.1 Abstract Reduction Systems . 15

2.2 Term Rewriting . 15

2.3 Context-Sensitive Term Rewriting 17

2.4 The (Context-Sensitive) Dependency Pair Framework 19

3 Unravelings 21

3.1 Introduction . 21

3.2 Proving Operational Termination via CS Quasi-Reductivity 22

3.2.1 Context-Sensitive Quasi Reductivity 22

3.2.2 Verifying Context-Sensitive Quasi-Reductivity 24

3.2.3 Disproving Operational Termination 39

3.2.4 Proving Termination on Original Terms Automatically . . . 45

3.2.4.1 Narrowing Processors 48

3.2.4.2 Instantiation Processors 53

3.3 Implementation and Evaluation . 57

xi

xii Contents

3.4 Related Work . 58

4 Generalizing Context-Sensitivity 63

4.1 Introduction and Related Work . 63

4.2 Forbidden Patterns . 65

4.2.1 Basic Definitions . 65

4.2.2 Relations to Existing Approaches 69

4.3 Confluence of Rewriting with Forbidden Patterns 70

4.3.1 Confluence by Local Confluence 71

4.3.2 Confluence by the Diamond Property 79

4.4 Termination of Rewriting with Forbidden Patterns 81

4.4.1 Termination of Rewriting with Forbidden Patterns by Trans-
formation . 81

4.4.1.1 Proving Termination of TRSs Obtained by T . . . 87

4.4.2 A Modified Dependency Pair Framework for Rewriting with
Forbidden Patterns . 90

4.4.2.1 A Simple Context Processor 99

4.4.2.2 A Context Processor Based on Tree Automata . . . 102

4.5 Computing Useful Results via Rewriting with Forbidden Patterns . 121

4.6 Automated Synthesis of Suitable Forbidden Patterns. 127

5 VMTL 131

5.1 Introduction . 131

5.2 User Interface . 132

5.2.1 User Defined Strategies . 132

5.3 VMTL API . 134

5.3.1 Adding New Dependency Pair Processors 134

5.3.2 Adding New Transformations 135

5.3.3 Customizing Output Formatting 135

5.4 Implementation Details and Benchmarks 135

6 Conclusion 137

6.1 Summary . 137

6.2 Related Work . 139

6.2.1 Transforming Conditional Rewrite Systems 139

Contents xiii

6.2.2 Restrictions in Term Rewriting 141

6.3 Discussion . 142

Bibliography 143

List of Figures 153

List of Tables 157

Index 159

Curriculum Vitae 163

Chapter 1

Introduction

1.1 Term Rewriting

Term rewriting is a formal concept for dealing with various kinds of problems re-
lated to equations or state transitions. Such problems typically arise in areas like
automated deduction (e.g., [54]), functional and functional logic programming (e.g.,
[67, 43]) or formal verification of software (e.g., [66]). The basic idea of term rewrit-
ing is to simplify (rewrite, reduce) given expressions (terms) according to specified
rules (the rewrite system). These rewrite rules may contain variables that can be
arbitrarily instantiated, hence a rewrite rule is actually a schema abbreviating a
(usually infinite) set of actual simplifications it describes. Moreover, simplifications
may be performed at any position in a given term. The latter two properties are
called stability under substitutions respectively stability under contexts of rewriting.
They are also called closure properties. Note that the notion of simplification or re-
duction is actually a bit misleading since depending on the used rewrite rules terms
might not be syntactically simplified through rewriting.

Example 1. Consider the following two rewrite rules.

s(x) + y → s(x+ y)

0 + y → y

The rules contain two variables x and y. Term s(s(0)) + s(s(0)) can be simplified to
s(s(s(s(0)))) by applying the first rule twice and second rule once, i.e.,

s(s(0)) + s(s(0))→ s(s(0) + s(s(0)))→ s(s(0 + s(s(0))))→ s(s(s(s(0))))

In the above reduction sequence, the subterms that are actually simplified by the
rewrite rules are underlined. These subterms are instances of the left-hand sides of
one of the given rewrite rules. Such instances are called redexes. Note that when we
interpret the “+” symbol as addition, “0” as zero and the “s” symbol as the successor
function on natural numbers (i.e., s(x) = x + 1), then one can use the above rewrite

1

2 Chapter 1. Introduction

rules to recursively compute the sum of two unary encoded (i.e., n = sn(0)) natural
numbers. By interpreting the given reduction sequence in this way, we have computed
the sum of 2 = s(s(0)) and 2 which is 4 = s(s(s(s(0)))). Note that the final term
s(s(s(s(0)))) cannot be simplified any further. We call such terms normal forms (of
the initial term).

Despite the interpretation of the rewrite rules in Example 1, term rewriting is a
purely syntactical transformation on terms, so the terms, respectively the symbols
they are composed of, do not have any meaning a priori. This purely syntactic
character of term rewriting and thus its simplicity is one of the reasons why term
rewriting (and variations like narrowing) have successfully been applied in many
important areas of computer science.

An important aspect of the concept of term rewriting is its inherent nonde-
terminism concerning the order of simplifications. This is to say that terms can
be simplified in several ways. Thus, any concrete simplification has to repeatedly
choose among various possible simplification steps. However, these choices can have
extensive consequences regarding the efficiency and even effectiveness of the overall
simplification process.

Example 2. Consider the following rewrite rules

from(x) → x : from(s(x)) (1.1)

take(s(x), y : ys) → y : take(x, ys) (1.2)

take(0, y) → nil

take(x, nil) → nil

Here, one could interpret a call from(x) as representing an infinite list of natural
numbers starting from the given argument x. Moreover, take could be interpreted
as function that extracts the first n arguments of a list l where n and l are given
as parameters, nil as the empty list, “:” as the list constructor and s and 0 as in
Example 1.

Now the term take(s(0), 0 : from(s(0))) can be simplified in two possible ways:

take(s(0), 0 : from(s(0))) → 0 : take(0, from(s(0)))

with rule (1.2)

take(s(0), 0 : from(s(0))) → take(s(0), 0 : (s(0) : from(s(s(0)))))

with rule (1.1)

Obviously, the simplification using the rule (1.2) is preferable, since in one further
simplification step the term 0 : nil is reached which is a normal form. On the other
hand if one simplifies by repeatedly (and exclusively) using the rule (1.1) one cannot
obtain a normal form and indeed the simplification would not terminate.

Example 2 shows that different simplification paths can lead to drastically dif-
ferent results. While one path quickly leads to a normal form, another path might

1.2. Strategies and Restrictions 3

not lead to such a normal form at all. Hence, we need criteria to (automatically)
decide which rewrite rules to apply first and to what subterms. To this end so-called
reduction strategies and restrictions of rewriting were developed.

1.2 Strategies and Restrictions

1.2.1 Reduction Strategies

A reduction strategy basically restricts the set of possible simplifications of a term to
a subset (which is not the empty subset for reducible terms), thereby reducing or even
eliminating the nondeterminism of term rewriting. Examples of such strategies for
term rewriting range from simple ones, such as innermost and outermost strategies
to more involved but also more powerful ones, for instance relying on various notions
of sequentiality (e.g. [46, 50, 74]).

Term rewriting under an innermost strategy means that the contracted subterms
do not contain redexes as proper subterms, whereas rewriting under an outermost
strategy means that the contracted subterms are not contained as a proper subterm
of a redex. While these strategies are easy to define, understand and implement,
they often fail to serve their purpose of efficiently computing normal forms of terms.

Example 3. Consider the following set of rewrite rules

a → f(a)

g(x, f(y)) → b

The term g(a, a) has a normal form b. However, the infinite reduction g(a, a) →
g(f(a), a) → g(f(f(a)), a) → . . . is a proper innermost as well as outermost reduc-
tion sequence. It is innermost, since the reduced subterm is always a and thus has
no proper subterms. Furthermore, it is outermost, since the proper superterms of a
are g(fn(a), a), f(a), f(f(a)), . . . (for arbitrary n ∈ N) neither of which is a redex.

Note that in Example 3 there is an important difference in using the innermost
and the outermost reduction strategy. While it is not possible to compute the
normal form of g(a, a) using an innermost reduction strategy, this is possible with
the outermost strategy through the reduction sequence g(a, a) → g(a, f(a)) → b.
In this case applying an outermost strategy still leaves some nondeterminism in the
simplification of the term g(a, a), since it contains two parallel redexes.

When looking at the infinite outermost reduction sequence described in Example
3, one notices that this reduction sequence does not treat all outermost redexes of
g(a, a), i.e. the two a’s in a fair way, in the sense that the second a is never rewritten
despite being an outermost redex. Indeed, if one adds a fairness constraint to the
outermost strategy, yielding an outermost-fair reduction strategy, all normalizing
terms (i.e. terms having a normal form) are rewritten to normal forms provided that

4 Chapter 1. Introduction

the rule system is non-overlapping and left-linear (such rewrite systems are called
orthogonal, [71]).

More advanced reduction strategies utilize the concept of needed redexes. When
looking at the term g(a, a) it is obvious that a reduction of the second a is necessary
to compute the normal form b while the reduction of the first a is not necessary.
We thus say that the second a is a needed redex, since its contraction is needed to
compute a normal form. It was shown in [46] that every term, that is not a normal
form, contains a needed redex if the rule system is orthogonal. Unfortunately, it
is undecidable whether a given redex in a term is needed ([46]), so one cannot
immediately derive an effective reduction strategy from this result.

However, one can effectively approximate neededness for a certain subclass of
orthogonal rewrite systems called strongly sequential systems([50]). Then, by re-
peatedly contracting needed redexes a normal form is computed whenever it exists.

Example 4. The rewrite system of Example 3 happens to be strongly sequential
and in the term g(a, a) the second occurrence of a can be identified as needed redex,
while additionally it is detected that the first a is not needed. So when using a
reduction strategy based on strong sequentiality the shortest normalizing reduction
g(a, a)→ g(a, f(a))→ b is found.

A characteristic feature of any reduction strategy in term rewriting is that every
term that is not a normal form is reducible according to the strategy. In particular,
this means that one easily obtains infinite rewrite derivations when applying re-
duction strategies naively to non-normalizing terms (i.e. terms not having a normal
form).

Example 5. Consider the rewrite rules of Example 3 and the term a. This term is
not normalizing, i.e. not reducible to a normal form. Indeed we have a → f(a) →
f(f(a)) → . . . under every possible strategy, since in every term appearing in this
infinite reduction sequence there is exactly one redex.

So, while reduction strategies can be used to avoid some infinite reduction se-
quences (cf. Examples 4 and 3), others cannot be avoided (cf. Example 5). Still,
oftentimes it is desirable to avoid all non-terminating reduction sequences whatso-
ever. One way to achieve this is the use of proper restrictions of term rewriting.

1.2.2 Restrictions of Rewriting

Restrictions of rewriting are similar to reduction strategies in that the set of possible
simplifications in a term is restricted. The important difference to strategies is that
this restriction may yield the empty set of possible simplifications even if the term
in question is not a normal form.

While this more severe restriction of possible rewrite steps seems advantageous
regarding the avoidance of infinite reduction sequences, there is a significant price
to pay. This price is that when using restrictions of rewriting one has to ensure

1.2. Strategies and Restrictions 5

that normal forms of terms are not “missed” by too severely restricting rewriting (cf.
Example 7 below). This problem hardly occurs when using reduction strategies, since
there every term that is not a normal form is reducible under the strategy. Thus,
whenever a rewrite computation under a strategy terminates, the unique result of the
computation has been found, provided that the rewrite system is confluent (which
is the case for many practical applications, e.g. for orthogonal rewrite systems).

Context-Sensitive Rewriting
Existing approaches to rewriting with restrictions mostly rely on an analysis of

the syntactic structure of the term that is to be simplified. The most prominent
approach, context-sensitive rewriting [55, 60], allows reductions only in certain ar-
guments of certain function symbols as specified by the so-called replacement map.

Example 6. Consider the rewrite system of Example 3. In order to avoid the infinite
reduction sequence a → f(a) → f(f(a)) → . . . one could disallow the reduction of
arguments of the f function symbol. This is to say that in the term f(a) the only
redex a may not be contracted. Note that in this case f(a) is irreducible under
the context-sensitive restriction despite not being a normal form. However, in this
example this is not problematic, since f(a) does not have a normal form, i.e. it is
not normalizing.

Indeed, when restricting rewriting w.r.t. the rules of Example 3 in the way de-
scribed in Example 6 one can show that there are no infinite reduction sequences.
Still, normal forms of terms can be computed if they exist. However, if we slightly
modify the rewrite rules of Example 3 things get more complicated.

Example 7. Consider the following rewrite rules, that are only slightly different
from Example 3.

a → f(a)

g(x, f(f(y))) → b

When using the same restriction as in Example 6, i.e. disallowing reductions in the
argument of f , there are still no infinite reduction sequences. However, now for
instance the normal form of the term g(a, a) cannot be computed, since one would
have to make the reductions g(a, a) → g(a, f(a)) → g(a, f(f(a))) → b which is not
allowed, since in the second step a is reduced which occurs in the argument of f .

Example 7 shows that the design of concrete restrictions for a given TRS, such
that the restricted system has “good” properties is non-trivial. The good properties
that one is usually after when using restrictions of rewriting are termination and
completeness. Completeness here means completeness w.r.t. interesting derivations
in the simulation of unrestricted rewriting by restricted rewriting. Obviously, there
is some room of interpretation of what interesting derivations are. For instance if all
derivations are interesting, then no proper restriction would be complete. However,

6 Chapter 1. Introduction

usually one regards only those derivations as interesting that reduce a term to a
normal form. In this sense the restrictions of Example 6 are complete.

In many cases demanding that all normalizing reduction sequences w.r.t. unre-
stricted rewriting can also be performed under a restriction is too much in the sense
that if one designs a restriction satisfying this demand termination is lost. For in-
stance in Example 2 one observes that in order to obtain a terminating restricted
rewrite relation (only using context-sensitive restrictions) one has to forbid reduc-
tions in the second argument of “:”. However, then the normal form of the term
take(s(0), 0 : (1 : nil)) (which is 0 : nil) cannot be computed (as one has to stop at
0 : take(0, 1 : nil)). Thus this restriction is not complete in the above sense.

One way to overcome this problem is to relax the notion of completeness. In
[55, 60] an important criterion was introduced that guarantees that whenever a
term is irreducible due to the restrictions but not a normal form, it is a head-normal
form, i.e. no (unrestricted) reduction sequence starting from this term contains a root
reduction step. The criterion says that the replacement map needs to be such that
all non-variable subterms of left-hand sides of rewrite rules are allowed. Observe
that this is the case for Example 3 if the argument of f is forbidden, but not in
Example 7 with the same restriction, because in the left-hand side g(x, f(f(y)))
the non-variable subterm f(y) is forbidden, since it occurs in the first argument of
another f symbol. For a given rewrite system the most restrictive replacement map
that fulfills the above criterion is called the canonical replacement map. Obviously,
every replacement map that is less restrictive (we also say more liberal) fulfills the
criterion as well.

Example 8. Consider the rewrite rules of Example 2. By forbidding reductions
in the second argument of “:” one obtains a terminating restriction of the rewrite
relation. Furthermore, the corresponding replacement map (that allows reductions
in all arguments of all other functions and in the first argument of “:”) is more
liberal than the canonical replacement map for these rewrite rules. Thus, the results
computed by restricted rewriting are head-normal forms. For instance we have the
derivation

take(s(0), 0 : 1 : nil)→ 0 : take(0, 1 : nil)

in the restricted system. This term is irreducible, since the term take(0, 1 : nil) may
not be reduced as it occurs in the second argument of a “:” symbol. However, the
term is a head-normal form, which in this case is easy to see as the root symbol “:”
is a constructor.

Usually, computing head-normal forms is not satisfactory, since one actually
wants to compute normal forms. However, in [60] it was shown how to obtain
normal forms (whenever they exist) by repeatedly computing head-normal forms.
Yet, the drawback of this approach is that if no normal forms exist the process does
not terminate in general. We will see that the situation can sometimes be improved
by using more complex restrictions of rewriting, in particular the forbidden pattern
approach discussed in Section 4.2 below.

1.2. Strategies and Restrictions 7

Other Restrictions
In Example 7 we saw that it was impossible to define context-sensitive replacement

restrictions such that there are no infinite derivations and in addition irreducible
terms w.r.t. the restricted rewrite relation have a useful connection with actual
normal forms.

Hence, more complex restrictions of rewriting have been introduced that can han-
dle more examples, in particular ones like Example 7, i.e. where a context-sensitive
restriction with the canonical replacement map does not yield termination. The
fundamental idea behind some of these approaches is the notion of demand. A redex
should be allowed for reduction (by the restriction) whenever its reduction might
contribute to the creation of a more outer redex (i.e. the creation of the more outer
redex demands the more inner reduction step). Concrete approaches to restrictions
using this basic idea can be found in [27, 57, 7]. The following example illustrates the
idea of demand without going into the (quite complicated details) of concrete imple-
mentations of this idea (see also [77] for a survey and comparison of the approaches
of [27, 57, 7] and others).

Example 9. Consider the rewrite rules of Example 7 and the term g(a, a). The
reduction of the second a-subterm could contribute to the construction of a more
outer redex, because of the rule g(x, f(f(a)))→ b, hence we perform a reduction

g(a, a)→ g(a, f(a))

The term g(a, f(a)) is not a redex but the reduction of the second a-subterm now
directly contributes to making it one. Hence, we perform this reduction yielding
g(a, f(f(a))). In this term further reducing any of the a subterms cannot contribute
to the creation of a more outer redex, since the term itself is already a redex, hence
it is safe at this point to forbid the reduction of the a-subterms and allow only the
root reduction step yielding b. On the other hand when considering the term f(a) the
reduction of the a-subterm cannot contribute to the creation of a more outer redex
and can thus safely be forbidden, in the sense that possible subsequent root reductions
are not prevented by doing so.

While methods based on demand, in particular on-demand rewriting of [57] that
properly extends the machinery of context-sensitive rewriting, are more powerful
than context-sensitive rewriting, rewriting with these restrictions is significantly
harder to handle than when simpler approaches are used. One problem is that
already the definition of these approaches is subtle and complex (see for instance
[7][Section 3.2]). Moreover, caused by the complexity of the definitions the analysis
of rewrite systems with one of these complex restrictions regarding termination and
completeness is hard.

In this thesis a novel approach to restrictions in term rewriting is introduced
and discussed that allows for more sophisticated restrictions than context-sensitive
rewriting, but is conceptually easier than other advanced restrictions.

8 Chapter 1. Introduction

1.3 Forbidden Patterns

From a systematic point of view we have several demands for an ideal framework
of restrictions. For one its definition should be simple and intuitive. Moreover, it
should be flexible enough to express the desired restrictions for many concrete rewrite
systems. Finally, it should be feasible to verify properties such as termination and
completeness for given rewrite systems with restrictions and the restricted rewrite
relation should be“easy to handle”. For instance, deciding whether a redex is allowed
for reduction or not should be computationally easy and no critical nondeterminism
should be artificially introduced through the restrictions (e.g. by making a confluent
system non-confluent).

When defining our novel approach to restrictions of term rewriting we see the
following design decisions to be made:

• What part of the context of a (sub)term is relevant to decide whether the
(sub)term may be reduced or not?

• In order to specify the restricted reduction relation, is it better/advantageous
to explicitly define the allowed or the forbidden part of the context-free reduc-
tion relation?

• What are the forbidden/allowed entities, for instance whole subterms, contexts,
positions, etc.?

• Does it depend on the shape of the considered subterm itself (in addition to its
outside context) whether it should be forbidden or not (if so, stability under
substitutions may be lost)?

• Which restrictions on forbidden patterns seem appropriate (also w.r.t. practi-
cal feasibility) in order to guarantee certain desired closure and preservation
properties.

In this thesis we propose a new method of restricted rewriting by using so-called
forbidden patterns. The basic idea of rewriting with forbidden patterns is that in
a term certain subterms are forbidden for reduction if they occur inside or above a
specified term pattern (the forbidden pattern).

Example 10. Consider the TRS from Example 3. We define a forbidden pattern
restriction expressing that whenever the term (pattern) f(x) matches some subterm
of a term say at position p, then all positions q > p (i.e. all positions below p) in
this term are forbidden. Semantically, this amounts to the same restriction as in
Example 6 which there was expressed through context-sensitivity.

The advantage of forbidden pattern restrictions compared to other approaches is
that the shape of the pattern terms is not restricted. Hence, one can express more
fine-grained restrictions.

1.3. Forbidden Patterns 9

Example 11. Consider the rewrite rules of Example 7. There it was argued that
forbidding all reductions in arguments of f is not desirable. Hence, using a forbidden
pattern f(x) as in Example 10 does not improve the situation. However, if one uses
a forbidden pattern f(f(x)) and specifies that whenever this pattern matches some
subterm at position p, all subterms at positions below p.1 are forbidden, then the
normalizing reduction sequence of Example 7 is possible within the restricted system,
while the rewrite system with the restriction is terminating.

While the formalism of forbidden pattern is quite simple in that it relies only on
matching and comparison of positions within a term, the analysis of term rewrit-
ing systems restricted by forbidden pattern restrictions can be hard. Hence, it is
sometimes necessary to restrict the shape of terms appearing in forbidden patterns
in order to ease the verification of termination and completeness. In particular,
the closure properties of rewriting are invalidated in general when using forbidden
patterns.

Example 12. Consider a rewrite rule f(x)→ g(x) and a forbidden pattern f(f(a))
forbidding reductions at position p.1 whenever f(f(a)) matches at position p. We
have f(f(x)) → f(g(x)) but f(f(x))σ = f(f(a)) 6→ f(g(a)) = f(g(x))σ, hence
closure under substitutions is violated. Moreover, f(a) → g(a) but C[f(a)] =
f(f(a)) 6→ f(g(a)) = C[g(a)], hence closure under contexts is violated as well.

The main results of Section 4 below concern the analysis of rewrite systems (ac-
tually the verification of certain properties of these systems) when only a restricted
class of forbidden patterns is used. One of the most important research tasks is to
identify classes of forbidden patterns that are sufficiently large to express the desired
restrictions for many rewrite systems, but on the other hand sufficiently small so that
efficient methods for the analysis of these systems can be defined. An easy exam-
ple of a relevant class of forbidden patterns are those where only linear terms (i.e.
patterns) are used. More sophisticated classes of forbidden patterns are analyzed in
Section 4.

The goal is that within these classes of forbidden patterns termination analysis
and completeness analysis for concrete rewrite systems and forbidden patterns is
feasible. The most important class that we discuss in this thesis are so-called canon-
ical forbidden patterns. When using canonical forbidden patterns to restrict a given
rewrite system, terms that are irreducible w.r.t. to the restricted rewrite system are
head-normal forms w.r.t. the underlying unrestricted one (similar to the situation
when a canonical replacement map is used in context-sensitive rewriting).

For this class of patterns we propose two approaches to verify termination. The
first one uses a transformation of a restricted rewrite system into an unrestricted
one such that (ground) termination of both systems coincides. The other approach
(which is practically more powerful according to our evaluation) is based on an exten-
sion of the well-known dependency pair framework that has been used successfully
in the termination analysis of unrestricted rewriting (cf. e.g. [33]), context-sensitive
rewriting (cf. e.g. [2]) and other extended notions of rewriting (cf. e.g. [62, 6]).

10 Chapter 1. Introduction

1.4 Conditional Rewriting

A practically important extension of the formalism of term rewriting is conditional
term rewriting. There, conditions are attached to rewrite rules restricting the ap-
plicability of the rules. That is to say, that a rewrite rule may only be used for a
simplification step if the corresponding conditions are satisfied. The conditions in
turn are parametrized by the concrete instantiation of the rule that is to be applied.

Example 13. Consider the following conditional rewrite system.

insert(x, y : ys) → x : y : ys⇐ x ≤ y →∗ true (1.3)

insert(x, y : ys) → y : insert(x, ys)⇐ x ≤ y →∗ false (1.4)

insert(x, nil) → x : nil

s(x) ≤ 0 → false

0 ≤ x → true

s(x) ≤ s(y) → x ≤ y

If interpreted accordingly, these rules model the insertion of an element (a number)
into a sorted list. For instance we have

insert(s(0), 0 : s(s(0)) : nil) → 0 : insert(s(0), s(s(0)))

→ 0 : s(0) : s(s(0)) : nil

In the first step of this reduction sequence the conditional rule (1.4) is applied.
In particular, the instance of the rule obtained by the substitution σ where xσ =
s(0), yσ = 0 and ys σ = s(s(0)) : nil is used. This rule may only be applied if the
corresponding condition is satisfied, i.e. if (x ≤ y)σ →∗ false σ holds. Obviously,
we have (x ≤ y)σ = s(0) ≤ 0 → false = false σ. Hence, the rule may be ap-
plied when this particular substitution is used. Analogously, in the second step of
our reduction sequence the conditional rule (1.3) is used to obtain the normal form
0 : s(0) : s(s(0)) : nil.

It is not surprising that checking a concrete condition can be quite hard. Indeed,
the one-step conditional rewrite relation is in general not decidable ([12, 48]). Hence,
the tasks of implementing the use of conditional rewrite rules in rewrite engines
and of analyzing conditional rewrite systems for properties such as termination and
confluence are highly non-trivial.

Traditionally, transformations have been used for both tasks. For the use of
conditional rewrite rules in rewrite engines the conditional system is transformed
into an unconditional one, such that whenever a term s is reachable from a term t
though conditional rewriting it should also be reachable through ordinary rewriting
in the transformed system. This property of a transformation is called completeness
w.r.t. simulations or simulation-completeness (beware that in [69] the notion of
simulation-completeness has a different meaning). Several concrete transformations

1.4. Conditional Rewriting 11

have been suggested that have the property of completeness w.r.t. simulations, e.g.
[64, 63, 85, 83, 34]. It turns out that the dual property of soundness w.r.t. simulations
or simulation-soundness, meaning that a term s is reachable from a term t in the
conditional system if s is reachable from t in the transformed system, is much harder
to obtain when designing a transformation. In fact, none of the cited transformations
is in general simulation-sound in this sense.

For the analysis of termination usually some of the above mentioned transforma-
tions are used. Obviously, completeness w.r.t. simulation, which all these transfor-
mations enjoy, is sufficient to derive the absence of infinite conditional derivations
whenever the transformed unconditional system is terminating. However, there are
two problems with this approach. First, due to the lack of soundness w.r.t. transfor-
mations the termination criterion is only sufficient but not a full characterization of
conditional termination by unconditional termination. Second, and more severely,
infinite reduction chains are not the only source of non-termination in conditional
rewriting. It was already mentioned that even the one-step rewrite relation is not
decidable in general for conditional rewriting. Thus, the attempt to evaluate a single
condition which is not explicitly part of a conditional rewrite sequence might already
not terminate.

This problem was dealt with by introducing the notion of effective termination
([10]). A conditional rewrite system is effectively terminating if there are no infinite
derivations and in addition the one-step rewrite relation is decidable. In [72, 73] it
was shown that for the unraveling transformation of [72] which is a modified version
of the transformation of [64] that is applicable to a wider class of conditional systems,
termination of the transformed system implies effective termination of the original
conditional system.

Yet, in [61] it was argued that in practical applications effective termination
might still not be sufficient to guarantee finiteness of all computations w.r.t. to a
conditional rewrite system. This is illustrated by the following example.

Example 14 ([61, 73]). Consider the following rewrite system R.

a → b ⇐ f(a)→ b

R is effectively terminating, which is trivial, because the rewrite relation is empty
altogether. However, the standard approach to evaluate the term a is to attempt to
recursively evaluate f(a), i.e. the left-hand side of the condition of the rule defining
a. However, this is problematic, since when evaluating f(a) one might again try
to apply the only rewrite rule of R ending up checking the condition again. Hence,
naively pursuing this eager checking of conditions is another source of infinity in
conditional rewrite systems.

In order to capture conditional rewrite systems where also this source of infinity
does not occur, the notion of operational termination of conditional rewrite systems
was introduced in [61] (and in a more general form for membership equational pro-
grams in [18]). Roughly, a conditional rewrite system (resp. membership equational

12 Chapter 1. Introduction

program) is operationally terminating if there are no infinite proof trees in a certain
logical inference system modeling the recursive evaluation of conditions.

Fortunately, it turns out that, as for effective termination, termination of the
unconditional rewrite system obtained from a conditional one through the transfor-
mation of [72] implies operational termination of the conditional TRS (cf. [61] and
[72]).

In Chapter 3 of this thesis we use a slightly modified version of this transformation
to obtain an actual characterization of operational termination for so called deter-
ministic conditional rewrite systems (DCTRSs) which is arguably the most general
class of conditional rewrite systems for which operational termination is interesting.
This is because CTRSs that are not deterministic contain extra variables, either in
the right-hand sides of their rules or the left-hand sides of conditions, which can be
arbitrarily instantiated during rewriting computations. This possibility of arbitrary
instantiations leads to non-operational termination in all but pathological cases. We
achieve the characterization of operational termination by imposing a restriction
on unconditional rewrite systems obtained by our transformation using context-
sensitivity and weaken the notion of termination to local termination (c.f. e.g. [26]).
By using this approach to characterize operational termination of a DCTRS by a
local termination property of a corresponding unconditional (context-sensitive) TRS
we not only obtain a powerful method to verify operational termination, but also to
disprove operational termination.

1.5 Contributions

In Chapter 3 we introduce the notion of context-sensitive quasi reductivity (Defini-
tion 1) and prove that this property of DCTRSs is equivalent to operational termi-
nation for this class of conditional TRSs (Corollary 4). Moreover, we introduce a
version Ucs of the unraveling transformation of [72] where the resulting unconditional
TRS is restricted by context-sensitive replacement restrictions (Definition 4). We
prove that this transformation is simulation-sound and simulation-complete (Theo-
rems 2 and 1) and can thus be used to verify operational termination of DCTRS by
(context-sensitive) termination of the obtained unconditional TRSs. Yet, context-
sensitive termination of a transformed TRS Ucs(R) and operational termination of
the initial DCTRS R do not coincide in general (Example 21).

However, we prove that operational termination of a DCTRS R does coincide
with local termination of Ucs(R) where local termination here means that one is only
interested in reduction sequences starting from terms over the original signature of
R (Corollary 4).

Furthermore, if one considers the more general property of CE -(operational) ter-
mination instead of operational termination, it turns out that this property is indeed
completely characterized by CE -termination of the context-sensitive TRS obtained
by our transformation (Theorem 6). By CE -(operational) termination of a (DC)TRS
R we mean (operational) termination of the (DC)TRS R′ obtained by disjointly

1.5. Contributions 13

adding the two rules C(x, y) → x,C(x, y) → y to R (where C is a new function
symbol).

Finally, we also propose an approach to the automated verification of local termi-
nation in the above sense for CSRSs obtained by our transformation. This approach
is based on the well-known dependency pair framework of [9, 33] and implemented
in the termination tool VMTL [82]. Benchmark tests showed that the approach
succeeds in proving local termination of rewrite systems where global termination
does not hold.

The results of this chapter were published in [78] (Sections 3.2.1 and 3.2.2), [80]
(Sections 3.2.1, 3.2.2 and 3.2.3) and [81] (the whole Chapter 3).

In Chapter 4 we introduce a novel approach to restrictions in term rewriting. This
approach is based on the notion of forbidden patterns. We discuss several design
decisions and provide criteria for confluence (Theorems 12 and 13), completeness
(Theorem 20) and termination. Regarding termination we introduce one method
based on a transformation (Definition 28 and Theorem 14) and one method that
utilizes a contextual extension of the dependency pair framework of [9, 33] (Section
4.4.2).

We also introduce a method for the automated synthesis of suitable forbidden
patterns for a given rewrite system, which is based on our contextual extension of
the dependency pair framework (Section 4.6).

Various examples are provided where the use of existing restrictions and/or
strategies would not yield the desired properties of rewriting while the use of forbid-
den patterns does (e.g. Examples 32 and 34).

Moreover, since our approach is more general than many others, other restric-
tions and strategies such as context-sensitive rewriting and innermost/outermost
strategies can easily be expressed by using forbidden patterns. Thus, our criteria
for completeness and termination can be reused also for these simpler approaches.
We will exemplify this idea by using our contextual dependency pair framework to
prove outermost termination of TRSs (cf. Section 4.4.2).

The results of this chapter were published in [37] (Sections 4.2.1, 4.2.2, 4.4.1 and
4.5), [39] (Sections 4.4.2, 4.4.2.1 and 4.6) and [38] (giving an overview of Section
4.4.2.2).

Finally, in Chapter 5 we introduce the termination laboratory VMTL which
contains implementations of all the methods for termination analysis introduced in
Chapters 3 and 4 and which was used for all benchmarks presented in this thesis.
Moreover, VMTL provides its user with an open and extensible implementation of
the dependency pair framework and particularly allows the user to define custom
strategies for proof search and to add dependency pair processors in a modular way.
A system description of VMTL was published in [82].

Summarizing we think that the main and most interesting contributions of this
thesis are:

• The characterization of operational termination of deterministic DCTRSs R
by a local termination property of the context-sensitive TRS Ucs(R) and in ad-

14 Chapter 1. Introduction

dition the proofs of simulation-soundness and simulation-completeness of the
transformation Ucs as well as the characterization of CE -operational termina-
tion of DCTRSs R by CE -termination of the CSRS Ucs(R).

• The introduction of rewriting with forbidden patterns; in particular, criteria
for confluence, completeness and termination for rewriting under forbidden
pattern restrictions.

• The development of the termination laboratory VMTL, that has been used as
a test bench for performance measurements of the theoretic results concerning
termination of this thesis and contains implementations of many state-of-the-
art termination methods for ordinary, context-sensitive and conditional TRSs.

1.6 Outline

In Chapter 2 we present all notions and notations used in the subsequent chapters.
Chapter 3 is concerned with conditional rewrite systems and the verification of op-
erational termination. The main results of this chapter are Theorems 2, 1, 4, 5, 6,
8, 9, 10 and 11. In Chapter 4 we introduce rewriting with forbidden patterns. The
main results of this section are Theorems 12 and 13 regarding confluence, Theorems
14, 15, 16 and 19 regarding termination and Theorem 20 regarding completeness
of rewriting with forbidden patterns. Chapter 5 contains a description of the ter-
mination tool VMTL which provides implementations of the termination methods
introduced in Chapters 3 and 4. Chapter 6 contains a summary and discussion of
the results in this thesis as well as several pointers to related work.

Chapter 2

Preliminaries

2.1 Abstract Reduction Systems

An abstract reduction system is a pair (A,→) where A is some set and→ is a binary
relation on A. Elements a ∈ A for which no element b ∈ A with a → b exists are
called normal forms. The set of all normal forms of an abstract reduction system A
is denoted by NF (A) (NF (A) ⊆ A)). An element is reducible if it is not a normal
form. We denote by →+ (→0/1, →∗) the transitive (reflexive, reflexive-transitive)
closure of the relation →. Moreover, by ← we denote the inverse relation of → and
by ↔ the union of → and ←. Joinability of two elements a and b is denoted by
a ↓ b, i.e. a ↓ b⇔ ∃c.a→∗ c←∗ b. An element b is a normal form of a if a→∗ b and
b is a normal form.

The relation → is well-founded (terminating or strongly normalizing) if there
is no infinite sequence a1, a2, . . . of elements of A such that ai → ai+1 holds for
all i ≥ 1. We write SN(→). We call (possibly infinite) sequences of elements
a1, . . . , ai . . . where ai → ai+1 holds for all i ≥ 1 reduction sequences or reduction
chains. Furthermore,→ is confluent (or equivalently it has the Church-Rosser prop-
erty) if b ←∗ a →∗ c implies b ↓ c. We write CR(→). It has the diamond property
if b ← a → c implies that there exists an element d such that b → d ← c. An
abstract reduction system is weakly normalizing (WN(→)) if each element a of A
has a normal form.

We say that an element a ∈ A is strongly (weakly) normalizing (SN(a) resp.
WN(a)) if there is no infinite reduction sequence starting from a (resp. if there
exists a normal form of a).

2.2 Term Rewriting

A signature is a set of function symbols with arities. In this thesis the arities of
function symbols are mostly left implicit, hence we say for instance that a function
symbol f is part of some signature without explicit reference to the arity of f . In case

15

16 Chapter 2. Preliminaries

an explicit reference to the arity of f is needed we write ar(f). Function symbols
with arity 0 are called constants. Signatures are denoted by F , F ′, F1 etc. By
V ar (or just V) we denote a countably infinite set of variables which we write as
x, y, z, x1, y1, z1, x

′, y′, z′,

A term over a signature F is a tree whose nodes are labelled by elements from
F ∪ V where only leave nodes are labelled by variables and the number of children
of each inner node labelled by f ∈ F is equal to the arity of f . The root label of
a term s is denoted as root(s). Terms over a signature F are denoted by T (F , V).
Terms not containing variables are called ground terms and the set of such terms is
denoted by T (F , ∅) (or simply T (F)).

A many-sorted signature F is a pair (S,Ω) where S is a set of sorts and Ω is a
family of (mutually disjoint) sets of typed function symbols: Ω(Ω)ω,s where ω ∈ S∗
and s ∈ S. We also say, f is of type ω → s (or just s if ω = ε) if f ∈ Ωω,s.
V = (Vs | s ∈ S) is a family of (mutually disjoint) countably infinite sets of typed
variables (with V ∩ Ω = ∅). The set T (F , V)s of (well-formed) terms of sort s is
the least set containing Vs, and whenever f ∈ Ω(s1,...,sn),s and ti ∈ T (F , V)si for all
1 ≤ i ≤ n, then f(t1, . . . , tn) ∈ T (F , V)s. The sort of a term t is denoted by sort(t).

Positions in terms are sequences of natural numbers (written for example as
n1.n2.n3). The empty sequence is denoted by ε. The set of positions Pos(s) of a
term s is recursively defined by Pos(s) = {ε} if s is a variable or a constant, and
Pos(s) = {i.p | 1 ≤ i ≤ ar(f), p ∈ Pos(s|i)} if root(s) = f and ar(f) ≥ 1. Here
s|i denotes the subtree rooted by the ith child node of the root node of s. More
generally s|p for some position p ∈ Pos(s) denotes the subterm at position p of s
and is defined by s|ε = s and s|i.p′ = (s|i)|p′ . We use a partial order ≤ on positions
defined by p ≤ q if p is a (not necessarily proper) prefix of q. Positions p and q are
parallel, denoted p||q if neither p ≤ q, nor q ≤ p. By s[t]p (for p ∈ Pos(s)) we denote
the term where the subterm of s at position p has been replaced by t. Formally,
s[t]ε = t, s[t]i = f(s1, . . . , si−1, t, si+1, . . . , sar(f)) if s = f(s1, . . . , sar(f)), i ∈ N and
1 ≤ i ≤ ar(f) and s[t]i.p′ = s[s|i[t]p′]i otherwise. The size |p| of a position p is given
by |ε| = 0 and |i.p′| = 1 + |p′|. The depth |t| of a term t is given by maxp∈Pos(t)(|p|).

V ar(s) denotes the set of variables of a term s, i.e. V ar(s) = ∅ if s is a constant,
V ar(s) = {s} if s is a variable and V ar(s) =

⋃
1≤i≤n V ar(si) if s = f(s1, . . . , sn).

Slightly abusing notation we also write V ar(S) for a set S of terms which is defined
by
⋃
s∈S V ar(s). The set of variable positions PosV (s) of a term s are given by

{p ∈ Pos(s) | s|p ∈ V ar(s)}. The non-variable positions PosF(s) of s are Pos(s) \
PosV (s). A term s is called linear if each variable occurs at most once in s.

Given a signature F a substitution is a mapping from variables to terms over F ,
i.e. V ar → T (F , V). Substitutions are denoted by σ, θ, τ, Substitutions can be
extended to mappings from terms to terms in a straightforward way, i.e. σ(s) = σ(x)
if s = x ∈ V ar and σ(s) = f(σ(s1), . . . , σ(sn)) if s = f(s1, . . . , sn). The domain of
a substitution σ is denoted by Dom(σ). The codomain is denoted by Codomain(σ)
and defined by {s ∈ T (F , V) | ∃x ∈ Dom(σ).xσ = s}. For the sake of readability

2.3. Context-Sensitive Term Rewriting 17

we use postfix notation for substitutions, i.e. we write sσ instead of σ(s). A term s
matches a term t, written s ≤mr t if there exists a substitution σ such that sσ = t.
We also say that t is an instance of s. The induced matching relation ≤mr is a
quasi-order (i.e. a reflexive and transitive binary relation) on terms. A substitution
σ is said to be more general than another substitution σ′ if Dom(σ) = Dom(σ′)
and xσ ≤mr xσ′ for all x ∈ Dom(σ). Two terms s and t unify if there exists a
substitution σ such that sσ = tσ. Among all substitutions σ for which sσ = tσ,
the most general one is unique up to renaming of the variables occurring in terms
of Codomain(σ) and is called the most general unifier (mgu).

A term rewrite rule is an ordered pair of terms l, r denoted by l → r where
V ar(r) ⊆ V ar(l) and l 6∈ V ar. A term rewrite system (TRS) R is a pair (F , R)
where F is a signature and R is a set of rewrite rules consisting of terms over F
(abusing notation we sometimes identify a rewrite systemR with the set of its rewrite
rules, for instance in the statement l→ r ∈ R where l→ r is a rewrite rule and R is
a TRS). Sorted rewrite rules are rewrite rules l→ r where sort(l) = sort(r). Types
of terms and rewrite rules are made explicit only if they are used and relevant. A
TRS is called left-linear (right-linear) if the left-hand sides (right-hand sides) of all
rewrite rules are linear. Let R = (F , R) be a TRS and s ∈ T (F , V). Moreover,
let l → r ∈ R be a rewrite rule such that l matches s|p for some p ∈ PosF(s) (we
sometimes say that the rule l → r matches s|p). Then s rewrites to t = s[rσ]p at

position p using the rule l → r. We write s
p→l→r,R t, s

p→R t, s→R t or just s→ t
if the used rewrite rule, the position or the TRS are clear from the context or of no
relevance. The parallel rewrite relation w.r.t. R is given by s −−‖−→R t if and only if

s
p1→R s2

p2→R . . .
pn−1→ R sn

pn→R t and the positions p1, . . . , pn are pairwise parallel.
Moreover, if l unifies with s|p (with mgu θ) for some p ∈ PosF(s), then s narrows

to s[r]pθ = t, we write s
p
 l→r,R t.

In a reduction s
p→l→r,R t, the term s|p = lσ (for some substitution σ) is called

a redex. Slightly abusing this notion, given a term s and a TRS R we say that all
subterms of s at position q where s|q = lσ for some l→ r ∈ R and some substitution
σ are redexes (q is called the redex position).

Furthermore, let s1
p1←l1→r1,R s

p2→l2→r2,R s2 be a divergence such that p1 ≤ p2.
We say this divergence is due to a variable overlap if p2 ≥ p1.q for some position
q ∈ PosV (l1). On the other hand it is a critical overlap if p2 = p1.q for some position
q ∈ PosF(l1). In that case the pair of terms (s1, s2) is called a critical pair. Slightly
abusing terminology we say that a rewrite rule l → r overlaps a term t if l and t|p
unify for some position p ∈ PosF(t).

2.3 Context-Sensitive Term Rewriting

A replacement map µ (for a signature F) is a mapping F → P(N) from symbols
of F to sets of natural numbers such that µ(f) ⊆ {1, . . . , ar(f)} for all f ∈ F .
Given a term s, the replacing (or allowed, active) positions Posµ(s) ⊆ Pos(s) of

18 Chapter 2. Preliminaries

s w.r.t. a replacement map µ are given by {ε} if s is a constant or a variable and
{ε} ∪ {i.p | i ∈ µ(f), p ∈ Posµ(si)} if s = f(s1, . . . , sn). We denote the replacing
non-variable positions of a term s by PosµF(s) and the replacing variable positions
of s by PosµV (s). The non-replacing positions of a term s w.r.t. a replacement map
µ are denoted by Posµ(s). The set of variables of a term t that occur at replacing
positions is denoted by Varµ(t). The set of variables that occur at non-replacing
positions in t are denoted by Varµ(t) We call a replacement map µ more restrictive
than a replacement map µ′ (both for the same signature F) if µ(f) ⊆ µ′(f) for all
f ∈ F . This relation is a partial order on replacement maps ([55, 60]). An ordering
� on terms T (F , V) is called µ-monotonic if f is monotonic in its ith argument
whenever i ∈ µ(f) for all f ∈ F , i.e.,

si � ti ⇒ f(s1, . . . , si−1, si, si+1 . . . , sn) � f(s1, . . . , si−1, ti, si+1 . . . , sn).

A TRS with replacement map µ is called a context-sensitive rewrite system
(CSRS) and denoted as pair (R, µ). Context-sensitive rewriting w.r.t. a CSRS (R, µ)

(denoted by →µ,R) is rewriting at replacing positions, i.e. s
p→µ,R t ⇔ s

p→R t and
p ∈ Posµ(s).

Given a CSRS (R = (F , R), µ), the relation of context-sensitive narrowing (writ-
ten µ

R) is defined as t µ
R s if there is a replacing non-variable position p in t such

that t|p and l unify (l → r ∈ R and we assume that t and l → r do not share any
variables) with mgu θ and s = t[r]pθ. We say that s is a one-step, context-sensitive
narrowing of t. Note that in contrast to ordinary rewriting, here we allow rules in
R to have extra variables in the right-hand sides and variable left-hand sides. The
reason for this general definition of narrowing is that we are going to use a backward
narrowing relation that is induced by reversing all rules of a TRS (cf. Definition 13
below).

Given a TRS R = (F , R) the canonical replacement map is the most restrictive
replacement map µ such that for every l→ r ∈ R PosF(l) ⊆ Posµ(l). By canonical
context-sensitive rewriting we mean context-sensitive rewriting in the presence of
the canonical or a less restrictive replacement map.

Conditional Rewriting
A conditional term rewriting system (CTRS) R (over some signature F) consists

of rules l → r ⇐ c where c is a conjunction of equations si = ti . Equality in the
conditions may be interpreted (recursively) e.g. as ↔∗ (semi-equational case), as
↓ (join case), or as →∗ (oriented case). In the latter case, if all right-hand sides
of conditions are ground terms that are irreducible w.r.t. the unconditional version
Ru = {l→ r | l→ r ⇐ c ∈ R} of R, the system is said to be a normal one.

According to the distribution of variables, a conditional rule l → r ⇐ c may
satisfy (1) V ar(r) ∪ V ar(c) ⊆ V ars(l), (2) V ar(r) ⊆ V ars(l), (3) V ars(r) ⊆
V ars(l) ∪ V ars(c), or (4) no variable constraints. If all rules of a CTRS R are of
type (i), 1 ≤ i ≤ 4, we say that R is an i-CTRS. Given a conditional rewrite rule

2.4. The (Context-Sensitive) Dependency Pair Framework 19

l → r ⇐ c and a variable x such that x ∈ V ar(r) ∪ V ar(c) but x 6∈ V ar(l), we say
that x is an extra variable.

In this thesis we are mainly concerned with oriented CTRSs and in particular
with so-called deterministic CTRSs. A deterministic CTRS (DCTRS) is an oriented
3-CTRS where for each rule l → r ⇐ s1 → t1, . . . , sn → tn it holds that V ar(si) ⊆
V ar(l) ∪⋃i−1

j=1 V ar(tj). The rewrite relation of an oriented CTRS R is inductively
defined as follows R0 = ∅, Rj+1 = {lσ → rσ | l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn ∈
R ∧ siσ →∗Rj

tiσ for all 1 ≤ i ≤ n}, and →R=
⋃
j≥0 →Rj

.
A DCTRS (F , R) is called quasi-reductive, cf. [73], [29], if there exists an exten-

sion F ′ of F and a well-founded partial order� on T (F ′, V), which is monotonic, i.e.,
closed under contexts, such that for every rule l→ r ⇐ s1 →∗ t1, . . . , sn →∗ tn ∈ R,
every σ : V → T (F ′, V) and every i ∈ {0, . . . , n− 1}:

• If sjσ � tjσ for every 1 ≤ j ≤ i, then lσ �st si+1σ.

• If sjσ � tjσ for every 1 ≤ j ≤ n, then lσ � rσ.

Here �st= (� ∪ B)+ (B denotes the proper subterm relation).
A DCTRS R = (F , R) is quasi-decreasing [73] if there is a well-founded partial

ordering � on T (F , V), such that →R ⊆ �, � = �st, and for every rule l → r ⇐
s1 →∗ t1, . . . , sn →∗ tn ∈ R, every substitution σ and every i ∈ {0, . . . , n − 1} it
holds that sjσ →∗R tjσ for all j ∈ {1, . . . , i} implies lσ � si+1σ.

In Section 3 we are concerned with the property of operational termination of
DCTRS. In [61, 18] operational termination of (D)CTRSs is defined via the absence
of infinite well-formed trees in a certain logical inference system. In the case of
DCTRSs, this notion is shown to be equivalent to quasi-decreasingness [61].

The latter notions are related as follows ([73], [61]):

quasi-reductivity⇒ quasi-decreasingness⇔ operational termination

2.4 The (Context-Sensitive) Dependency Pair

Framework

Given a TRS R = (F , R), the signature F is partitioned into its defined and con-
structor symbols D] C, where the defined symbols are exactly those that occur as
root symbols of the left-hand sides of rules in R. A term t is hidden w.r.t. a CSRS
(R = ((D]C, R), µ)) if root(t) ∈ D and t appears non-µ-replacing in the right-hand
side of a rule of R. Moreover, we say that a function f hides a position i if there is
a rule l→ r ∈ R such that some term f(r1, . . . , ri, . . . , rn) occurs at a non-replacing
position of r, i ∈ µ(f) and ri contains a (not necessarily proper) subterm ri|p, such
that p ∈ Posµ(ri) and either ri|p ∈ V ar or root(ri|p) ∈ D. By t] we denote the term
f](t1, . . . , tn), where t = f(t1, . . . , tn) and f] is a new dependency pair symbol.

20 Chapter 2. Preliminaries

The set of context-sensitive dependency pairs ([2]) of a CSRS (R, µ), denoted
DP (R, µ), is DPo(R, µ) ∪DPu(R, µ) where the set of “ordinary” DPs DPo(R, µ) is
given by

{l] → s] | l→ r ∈ R, r Dµ s, root(s) ∈ D, l 6Bµ s}
and DPu(R, µ) is the union of the following “unhiding” dependency pairs:

• {l] → D](x) | l→ r ∈ R, x ∈ Varµ(r) \ Varµ(l)},

• D](f(x1, . . . , xi, . . . , xn))→ D](xi) for every function symbol f of any arity n
and every 1 ≤ i ≤ n where f hides position i, and

• D](t)→ t] for every hidden term t.

Here, D] is a fresh auxiliary function symbol that is used to avoid collapsing
dependency pairs (i.e. DPs whose right-hand side is a variable; cf. [2] for further
details). The relation Dµ is defined as sDµ t if s = s[t]p and p ∈ Posµ(t).

We denote by F] the signature F plus all dependency pair symbols plus the
new symbol D]. The replacement map µ is extended into µ] where µ](f) = µ(f) if
f ∈ F , µ](f]) = µ(f) if f] is a dependency pair symbol and µ(D]) = ∅.

LetDP andR be TRSs and µ be a replacement map for their combined signature.
A (possibly infinite) sequence of rules s1 → t1, s2 → t2, . . . (having disjoint sets of
variables) from DP is a (DP,R, µ)-chain if there is a substitution σ, such that
tiσ →∗R,µ si+1σ for all i > 0. We say that σ enables the chain s1 → t1, s2 → t2, . . .

We call a triple (DP,R, µ), where DP and R are TRSs and µ is a replacement
map for the combined signatures of DP andR, a (context-sensitive) dependency pair
problem (CS-DP problem). A context-sensitive dependency pair problem is finite if
there is no infinite (DP,R, µ)-chain and infinite otherwise.

A CSRS (R, µ) is µ-terminating if and only if the dependency pair problem
(DP (R, µ), R, µ) is finite ([2]).

Chapter 3

Using Context-Sensitivity in
Unravelings of Conditional TRSs

3.1 Introduction

When analyzing the termination behaviour of conditional TRSs, it turns out that
the proof-theoretic notion of operational termination [61, 18] is more adequate than
ordinary termination in the sense that practical evaluations w.r.t. operationally ter-
minating DCTRSs always terminate (which is indeed not true for other similar
notions like effective termination [73], cf. Example 14).

For the analysis of operational termination of DCTRSs the equivalent property
of quasi-decreasingness is usually used [61]. However, to the author’s knowledge,
there are no automated techniques to verify quasi-decreasingness of DCTRSs directly
(intuitively, the reason why it is hard to develop such techniques is that the definition
of quasi-decreasingness relies on the rewrite relation of the DCTRS itself, which
might be undecidable. This is in contrast to e.g. the definition of quasi-reductivity).
Thus, in [73], [72], based on the idea of unravelings of [64, 63], a transformation
from DCTRSs into TRSs is proposed such that termination of the transformed
TRS implies quasi-reductivity of the given DCTRS which in turn implies its quasi-
decreasingness.

We propose an alternative definition of quasi-reductivity using context-sensitiv-
ity ([55, 60]), that will be proved to be equivalent to operational termination of
DCTRSs. Furthermore, we use a simple modification of Ohlebusch’s transformation
([73]) that allows us to completely characterize the new property of context-sensitive
quasi-reductivity of a DCTRS by means of termination of the context-sensitive (un-
conditional) TRS, that is obtained by the transformation, on original terms (i.e.
terms over the signature of the DCTRS).

This complete characterization yields a method for disproving operational termi-
nation of DCTRSs by disproving termination of CSRSs on original terms. Moreover,
we will show that the proposed transformation is sound and complete with respect
to collapse-extended termination even if this notion is not restricted to original terms

21

22 Chapter 3. Unravelings

in the transformed system. As a corollary we obtain modularity of collapse-extended
operational termination of DCTRSs.

Finally, we present an approach, which is based on the dependency pair frame-
work of [33] (cf. also [9]), for proving termination of a CSRS on original terms, thus
exploiting the given equivalence result. This approach has been implemented in the
tool VMTL ([82])1 and evaluated on a set of 24 examples. Several of these examples
could be shown to be operationally terminating thanks to the new method, while
other existing approaches fail.

3.2 Proving Operational Termination via

Context-Sensitive Quasi-Reductivity

3.2.1 Context-Sensitive Quasi Reductivity

The first crucial step of our approach is the definition of context-sensitive quasi-
reductivity, which will be proved to be equivalent to operational termination (cf.,
Corollary 4 below), and which is the key to the main results of this section.

Definition 1 (context-sensitive quasi-reductivity). A DCTRS R (R = (F , R)) is
called context-sensitively quasi-reductive (cs-quasi-reductive) if there is an exten-
sion of the signature F ′ (F ′ ⊇ F), a replacement map µ (s.t. µ(f) = {1, . . . , ar(f)}
for all f ∈ F) and a µ-monotonic, well-founded partial order �µ on T (F ′, V)
satisfying for every rule l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn, every substitution
σ : V → T (F , V) and every i ∈ {0, . . . , n− 1}:

• If sjσ �µ tjσ for every 1 ≤ j ≤ i, then lσ �stµ si+1σ.

• If sjσ �µ tjσ for every 1 ≤ j ≤ n, then lσ �µ rσ.

The ordering �stµ is defined as (�µ ∪ Bµ)+ where t Bµ s if and only if s is a
proper subterm of t at some position p ∈ Posµ(t). Moreover �µ= (�µ ∪ =).

To be entirely precise, the notion of cs-quasi-reductivity should be parameterized
by the set of function symbols that may not be restricted by the replacement map µ.
However, as throughout the paper this set of function symbols is the set of functions
of the signature of the DCTRS in question, we refrain from giving a reference to this
parameter in the notion of cs-quasi-reductivity for the sake of simplicity.

Cs-quasi-reductivity generalizes quasi-reductivity in the sense that the extended
signature may be equipped with a replacement map (which must leave the original
signature untouched, though) and the monotonicity requirement of the ordering is
relaxed accordingly. Furthermore, and this is crucial, in the ordering constraints
for the conditional rules the substitutions replace variables only by terms over the

1http://www.logic.at/vmtl/

3.2. Proving Operational Termination via CS Quasi-Reductivity 23

original signature, whereas in the original definition (of quasi-reductivity) terms over
the extended signature are substituted.

The latter generalization appears to be quite natural, since the main implications
of quasi-reductivity remain valid (cf. Proposition 2). Moreover, it is the key to the
completeness results that we will prove (cf. Corollary 4).

Proposition 1. If a DCTRS R is quasi-reductive, then it is cs-quasi-reductive.

Proof. The result is obvious, since if a DCTRS is quasi-reductive with respect to
a signature extension F ′ and an ordering �, then it is cs-quasi-quasi-reductive
w.r.t. the same signature extension and the same ordering and the replacement
map µ with µ(f) = {1, . . . , ar(f)} for all f ∈ F ′.
Proposition 2. If a DCTRS R is cs-quasi-reductive, then it is quasi-decreasing.

Proof. Let R be cs-quasi-reductive w.r.t. the ordering �µ. First, we show that
→R ⊆ �µ: Assume s→R t (s, t ∈ T (F , V)). We will use induction on the depth of
the rewrite step in order to prove s �µ t. Assume the step s→R t has depth 1, i.e.,
an unconditional rule (or a rule with trivially satisfied conditions) is applied. In this
case s �µ t follows immediately from cs-quasi-reductivity of R and µ-monotonicity
of �µ.

Next, assume the step s →R t has depth d > 1. Thus, a rule l → r ⇐ s1 →
t1, . . . , sn → tn is applied (i.e., s|p = lσ). From the applicability of the conditional
rule it follows that σ can be extended to σ′ such that siσ

′ →∗R tiσ
′ for all 1 ≤

i ≤ n. Moreover, each reduction step in each of these reduction sequences has a
depth smaller than d. Thus, the induction hypothesis and transitivity of �µ yield
siσ
′ �µ tiσ′ for all 1 ≤ i ≤ n. Hence, by cs-quasi-reductivity we get lσ′ �µ rσ′, and

finally s �µ t by µ-monotonicity of �µ.
Now we prove that R is quasi-decreasing w.r.t. the ordering > := �stµ |T (F ,V)×T (F ,V):

1. →R ⊆ >: Follows immediately from →R ⊆�µ⊆ > if we restrict attention to
terms of the original signature.

2. > = >st: Assume there is a term s which is a proper subterm of a term
t ∈ T (F , V) (t = C[s]p), such that t 6> s. This implies t 6�stµ s, which
contradicts the definition of �stµ as p is a replacing position of t (because all
positions in t are replacing).

3. For every rule l → r ⇐ s1 → t1, . . . , sn → tn, every substitution σ : V →
T (F , V) and every i ∈ {0, . . . , n − 1} we must show sjσ →∗ tjσ for every
j ∈ {1, . . . , i} implies lσ > si+1σ. We know that sjσ →∗ tjσ ⇒ sjσ �µ tjσ.
Because of cs-quasi-reductivity this implies lσ �stµ sj+1σ and thus lσ > sj+1σ,
since lσ, sj+1σ ∈ T (F , V).

Corollary 1. Let R be DCTRS. If R is cs-quasi-reductive, then it is operationally
terminating.

24 Chapter 3. Unravelings

3.2.2 Verifying Context-Sensitive Quasi-Reductivity

In the following, we use a transformation from DCTRSs into CSRSs such that the
µ-termination of the transformed CSRS implies cs-quasi-reductivity of the original
DCTRS. The transformation is actually a variant of the one in [73], which in turn
was inspired by [64, 63].

Definition 2 (unraveling of DCTRSs, [73]). Let R be a DCTRS (R = (F , R)).
For every rule α : l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn we use n new function symbols
Uα
i (i ∈ {1, . . . , n}). Then α is transformed into a set of unconditional rules in the

following way:

l → Uα
1 (s1,Var(l))

Uα
1 (t1,Var(l)) → Uα

2 (s2,Var(l), EVar(t1))
...

Uα
n (tn,Var(l), EVar(t1), . . . , EVar(tn−1)) → r

Here, Var(s) denotes an arbitrary but fixed sequence of the set of variables of the
term s. Let EVar(ti) be Var(ti) \ (Var(l) ∪ ⋃i−1

j=1 Var(tj)). By abuse of notation,
by EVar(ti) we denote an arbitrary but fixed sequence of the variables in the set
EVar(ti). Any unconditional rule of R is transformed into itself. The transformed
system U(R) = (U(F), U(R)) is obtained by transforming each rule of R where
U(F) is F extended by all new function symbols. In case R has only one conditional
rule α, we also write Ui instead of Uα

i .

Henceforth, we use the notion of U -symbols of a transformed signature, which
are function symbols from U(F) \ F . Moreover, by U -terms or U -rooted terms we
mean terms with a U -symbol as their root.

Next, we define the function tb, whose intended meaning is to undo non-finished
meta-evaluations, i.e., evaluations of the form s →∗U(R) U(v1, . . . , vl). We call re-
ductions of this shape meta-evaluations, because they are used for the evaluation of
encoded conditions. This evaluation does not have an explicit counterpart in condi-
tional rewrite sequences. The function tb and its properties will play a crucial role
in understanding and proving the main results of this section.

Definition 3. The mapping tb : T (U(F), V) → T (F , V) (read “translate back”)
which is equivalent to Ohlebusch’s mapping 5 ([73, Definition 7.2.53]) is defined by

tb(t) =

x if t = x ∈ V
f(tb(t1), . . . , tb(tl)) if t = f(t1, . . . , tl)

and f ∈ F
lσ if t = Uα

j (v1, v2, . . . , vk+1, . . . , vmj
)

and α = l→ r ⇐ c

where Var(l) = x1, . . . , xk and σ is defined as xiσ = tb(vi+1) for 1 ≤ i ≤ k. Note
that from Definition 2 it follows that mj ≥ k + 1.

3.2. Proving Operational Termination via CS Quasi-Reductivity 25

Informally, the mapping tb translates back an evaluation of conditions to its
start. Thus, tb(u) = u for every term u ∈ T (F , V). Note that in general s = tb(t)
does not imply s →∗U(R) t. The reason is that, for a term t = Uα

j (v1, . . . , vl), the

definition of tb(t) completely ignores the first argument t1 of Uα
j .

Example 15. Let R be a DCTRS consisting of one rule

f(x) → a⇐ x→ b

U(R) is given by the two rules

f(x) → U(x, x)

U(b, x) → a

Consider the term t = U(a, b). We have tb(t) = f(b) and clearly f(b) 6→∗U(R) U(a, b).

Informally, the term t = Uα
j (v1, . . . , vmj

) represents an intermediate state of a
reduction in U(R) issuing from an original term, i.e., a term from T (F , V), only if
v1 can be obtained (by reduction in U(R)) from the corresponding instance of the
left-hand side of the corresponding condition of the applied conditional rule α.

The transformation of Definition 2 is suitable for verifying quasi-reductivity by
proving termination of a TRS, as whenever the transformed system U(R) is ter-
minating, the original DCTRS R is quasi-reductive [73]. However, the converse
implication does not hold.

Example 16. ([64]) Consider the DCTRS R = (F , R) given by

a → c c → l h(x, x) → g(x, x, f(k))
a → d d → m g(d, x, x) → A
b → c k → l A → h(f(a), f(b))
b → d k → m α : f(x) → x⇐ x→∗ e
c → e

The system U(R) = (U(F), U(R)) is given by U(F) = F ∪ {Uα
1 } and U(R) = R

except that rule α is replaced by the rules f(x) → Uα
1 (x, x) and Uα

1 (e, x) → x.
R is quasi-reductive (and thus operationally terminating) (cf. Example 20, below),
nevertheless U(R) is non-terminating ([73]).

Roughly speaking, the problem in Example 16 is that subterms at the second
position of Uα

1 are reduced, while they are actually only supposed to “store” the
variable bindings for future rewrite steps. These reductions can be prevented by
using context-sensitivity. More precisely, we intend to forbid reductions of subterms
which occur at or below a second, third, etc. argument position of an auxiliary
U -symbol, according to the intuition that during the evaluation of conditions, the
variable bindings should remain untouched. This leads to the following modification
of the transformation, which has already been proposed independently by several
authors (e.g., [20], [70], [18]) with slight differences.2

2See Section 3.4 (related work) for more details.

26 Chapter 3. Unravelings

Definition 4. (context-sensitive unraveling of a DCTRS) Let R = (F , R) be a
DCTRS. The context-sensitive rewrite system Ucs(R) uses the same signature and
the same rules as U(R). Additionally, a replacement map µUcs(R) is used with
µUcs(R)(U) = {1} if U ∈ U(F) \ F and µUcs(R)(f) = {1, . . . , ar(f)} if f ∈ F .

For notational simplicity we refer to µUcs(R) just as µ if no confusion arises,
e.g. in “µ-termination of Ucs(R)”. Moreover, we omit an explicit reference to the
replacement map µUcs(R) if it is clear from the context, for instance in →Ucs(R)

reductions.
By using context-sensitivity in Definition 4 we get the following easy property of

reduction sequences w.r.t. the obtained CSRSs.

Observation 1. Let R be a DCTRS. For every reduction

Ui(siσ
′, ~xiσi)

>ε→
∗
Ucs(R) Ui(tiσ

′′, ~xiσi)
ε→Ucs(R) Ui+1(si+1σ

′′′, ~xi+1σi+1)

it holds that xσi = xσi+1 for all x ∈ Dom(σi) ∩Dom(σi+1).

In fact this is a crucial property of Ucs(R), because given a DCTRS R = (F , R)
it guarantees that for each term t ∈ T (U(F), V) we have tb(t) →∗Ucs(R) t provided

that t is reachable by any term s ∈ T (F , V) (see Corollary 2, below). This is in
general not true, if context-sensitivity is dropped.

Example 17. Let R = (F , R) be the DCTRS of Example 15 extended by two un-
conditional rules

f(x) → a⇐ x→ b

a → b

a → c

The transformed system U(R) is

f(x) → U(x, x)

U(b, x) → a

a → b

a → c

Consider the term t = U(b, c). It is reachable in U(R) from f(a) ∈ T (F , V):

f(a)→U(R) U(a, a)→U(R) U(b, a)→U(R) U(b, c)

However, it is obviously not reachable from tb(t) = f(c) as b is not reachable from
c. On the other hand, within Ucs(R), U(b, c) is not reachable by any term from
T (F , V) because in Ucs(R) reachability of a term t by any term s ∈ T (F , V) (i.e.
s→∗Ucs(R) t) implies reachability of t from tb(t) (cf. Corollary 2 below).

3.2. Proving Operational Termination via CS Quasi-Reductivity 27

The fact that in a CSRSs Ucs(R) obtained by the context-sensitive transformation
of a DCTRSR = (F , R), each term t is reachable from tb(t) if t is part of a reduction
sequence issuing from a term of T (F , V), will be used extensively in the proofs of
some of the main results of this section (e.g. Theorems 1 and 4).

Certain Ucs(R)-reduction steps inside a U -term t will have no effect on the result
of the function tb, i.e., t → s and tb(t) = tb(s). This motivates the definition
of tb-preserving reduction steps in Ucs(R). First, obviously reductions that occur
strictly inside a U -term t do not alter the result of tb. The reason is that, because of
context-sensitivity these reductions can only take place in the first argument of the
root U -symbol and furthermore according to the definition of tb this first argument
is irrelevant for the computation of tb.

Second, if a rule of the form Uα
i (s1, . . . , sn)→ Uα

i+1(t1, . . . , tm) (whose right-hand
side is a U -term) is applied to t, then tb applied to the resulting term also yields
the same result as tb(t). The reason is that the variable bindings inside the U -
term are preserved in such a step and all the variables that are present in l (where
α = l → r ⇐ c) are already bound. For the same reason tb(t) = tb(s) if t is not a
U -term, s is a U -term and t→ s.

Definition 5 (tb-preserving reduction steps). Let R be a DCTRS (R = (F , R)) and

Ucs(R) its transformed CSRS. A step s
p→Ucs(R) t is called tb-preserving if either p

is strictly below some position q of s, where root(s|q) is a U-symbol, or (t|p) is a
U-term.

Proposition 3. Let R be a DCTRS. If s, t ∈ T (U(F), V) and s →Ucs(R) t with a
tb-preserving step, then tb(s) = tb(t).

Proof. If the reduction step from s to t, say at position p, occurs strictly inside a
U -term, then it occurs strictly inside the first argument of some maximal U -rooted
subterm u at position q < p in s. According to Definition 3 we have tb(s|q) = tb(t|q)
and thus tb(t) = tb(s).

Otherwise, t|p is a U -term. This means that either a rule of the shape l→ U1(c, ~x)
or a rule of the shape Ui(ci, ~xi) → Ui+1(ci+1, ~xi+1) was applied. So s|p = lσ and
t|p = U1(c, ~x)σ, or s|p = Ui(ci, ~xi)σ and t|p = Ui+1(ci+1, ~xi+1)σ. Hence, according to
Definition 3 we have tb(s|p) = tb(t|p) and thus tb(s) = tb(t).

Example 18. Consider a CSRS R

f(x) → U(b, x)

U(c, x) → x

b → c

with µ(U) = µ(f) = {1}. The following reductions are tb-preserving:

f(a) →µ U(b, a), as tb(f(a)) = tb(U(b, a)) = f(a)

U(b, a) →µ U(c, a), as tb(U(b, a)) = tb(U(c, a)) = f(a)

28 Chapter 3. Unravelings

while the following one is not:

U(c, a) →µ a, due to tb(U(c, a)) = f(a) 6= tb(a) = a

Before investigating the effects of using context-sensitivity in the unraveling
transformation of Definition 4 on the power of proving operational termination, let
us consider the capability of Ucs(R) to simulate reductions of a DCTRS R. While
simulation completeness, i.e., the property of Ucs(R) of being able to mimic reduc-
tions of R, is easy to obtain, simulation soundness, i.e., the property of Ucs(R) to
allow only those reductions (from original terms to original terms) that are also
possible in R, is non-trivial.

In [70] it was shown that simulation soundness is obtained for their version of the
transformation if an additional restriction is imposed on reductions in Ucs(R), which
roughly states that only redexes without U -symbols (except at the root position)
may be contracted. However, for our transformation this additional “membership
condition”is not needed (see also Section 3.4 (related work) below for further details).

Theorem 1 (simulation completeness). Let R = (F , R) be a DCTRS. For every
s, t ∈ T (F , V) we have: if s→R t, then s→+

Ucs(R) t.

Proof. We use induction on the depth of the step s →R t. If s →R t with a rule
l → r (i.e., an unconditional rule), then l → r ∈ Ucs(R) and thus s →Ucs(R) t.
Assume s →R t with a rule α : l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn. Then s = C[lσ]p
and t = C[rσ]p. All rewrite sequences siσ →∗R tiσ have lower depths than lσ →R rσ,
thus we can apply the induction hypothesis to obtain the following rewrite sequence
in the transformed system:

C[lσ]p →Ucs(R) C[Uα
1 (s1σ,Var(l)σ)]p

→∗Ucs(R) C[Uα
1 (t1σ,Var(l)σ)]p

→Ucs(R) C[Uα
2 (s2σ,Var(l)σ, EVar(t1)σ)]p

→∗Ucs(R) . . .

→∗Ucs(R) C[Uα
n (tnσ,Var(l)σ, EVar(t1)σ, . . . , EVar(tn−1)σ)]p

→Ucs(R) C[rσ]p = t

Theorem 2 (simulation soundness). Let R = (F , R) be a DCTRS. For every s, t ∈
T (U(F), V) we have: If s →∗Ucs(R) t and s is reachable from an original term (i.e.,

s′ →∗Ucs(R) s for some s′ ∈ T (F , V)), then tb(s) →∗R tb(t). Moreover, if s, t ∈
T (F , V), then s→+

Ucs(R) t implies s→+
R t .

Before proving Theorem 2 we need two auxiliary lemmas. The first one (Lemma

3.2. Proving Operational Termination via CS Quasi-Reductivity 29

1 below) states that whenever we have a Ucs(R)-reduction sequence D of the shape

s1 →∗Ucs(R) s2[lσ]p1

→Ucs(R) s2[Uα
1 (s1, ~x1)σ]p1

→∗Ucs(R) s3[Uα
1 (t1, ~x1)σ′]p2

→Ucs(R) s3[Uα
2 (s2, ~x2)σ′]p2

→∗Ucs(R) . . .

→∗Ucs(R) sn+1[Uα
n (tn, ~xn)σn]pn

→Ucs(R) sn+1[rσn]pn
→∗Ucs(R) sn+2,

where s1 is an original term which means that D contains the complete simulation
of the application of a conditional rule α : l → r ⇐ s1 →∗ t1, . . . sn →∗ tn, the
reductions satisfying its conditions siσ

n →∗Ucs(R) tiσ
n occur as subreductions of D

for all i ∈ {1, . . . , n}.
The second auxiliary result (Lemma 2 below) will be crucial for the overall in-

ductive proof structure of Theorem 2 to work.

For the former we first introduce some terminology for tracing subterms (espe-
cially U -subterms) in reduction sequences, in a forward and backward manner. In
the above reduction sequence D the positions pi mark descendants of the subterms
si−1|pi−1

of si−1. More formally, the set of one-step descendants of a subterm position

p of t w.r.t. a (one-step) reduction t = C[s]p
q→ t′ is the set of subterm positions in

t′ given by

• {p}, if q ≥ p or q || p,

• {q.o′.p′ | t|q = lσ, l|o ∈ Var , q.o.p′ = p, l|o = r|o′}, if q < p and (a superterm
of) s is bound to a variable in the matching of t|q with the left-hand side of
the applied rule, and

• ∅, otherwise.

Slightly abusing terminology, when t = C[s]p
q→ t′ with set {p1, . . . , pk} of one-step

descendants in t′, we also say that t|p has descendants t′|pi in t′. The descendant
relation (w.r.t given derivations) is obtained as the (reflexive-)transitive closure of
the one-step descendant relation. Note that the set of one-step descendants of a
U -subterm (w.r.t. a one-step derivation) is non-empty unless the subterm is erased
by an erasing rule (i.e., a rule l → r such that x ∈ Var(l) \ Var(r)), because U -
symbols occur only at but not below the root position in left-hand sides of rules
of systems obtained by the transformation of Definition 4. The notions of one-step
(and many-step) ancestors of a subterm position (w.r.t. a given reduction sequence)
are defined analogously (in a backward manner).

30 Chapter 3. Unravelings

Note that with a similar argument as for the existence of descendants of U -
subterms we get that every U -subterm has at least one one-step ancestor w.r.t.
every (one-step) reduction sequence.

Now we can express the notion of a complete simulated rule application more
formally. By a complete simulated rule application we mean that all rules obtained
by transforming one conditional rule are eventually applied to a certain subterm
and its descendants during the reduction sequence in the right order. Yet, these
(unconditional) rule applications need not be consecutive.

Note also that it makes sense to talk about descendants of U -subterms, because
they can only be copied, eliminated or duplicated but not otherwise modified by
more outer reductions. This is due to the special shape of the rules in systems
obtained by the transformation of Definition 4. More precisely, it is due to the fact
that U -symbols occur only at, but not below the root of left-hand sides of rules.

Lemma 1. Let R = (F , R) be a DCTRS and let α : l→ r ⇐ cl1 →∗ cr1, . . . cln →∗ crn
be a rule from R. Moreover, assume that D : s →∗Ucs(R) t is a non-empty Ucs(R)-

reduction such that s ∈ T (F , V) and the last step is due to an application of the rule
Uα
n (crn, ~xn)→ r ∈ Ucs(R) (r ∈ T (F , V)) with a substitution σn. Then, the reductions

Ci : c
l
iσ
n →∗Ucs(R) c

r
iσ

n occur as subreductions of D3 for every i ∈ {1, . . . , n}.

Proof. Let the last step of D be t′
p→Ucs(R) t. Hence, t′|p must be a U -term.

We identify the first term s′ in D such that

1. s′ contains at least one ancestor of t′|p,

2. all ancestors of t′|p in s′ are U -terms, and

3. conditions (1) and (2) also hold for all terms occurring later (but before t′) in
D.

Note that t′ itself has the demanded properties. Thus the existence of s′ is
guaranteed. We now claim:

Some ancestor s′|q of t′|p has the form Uα
1 (cl1, ~x1)σ1. (3.1)

In order to show (3.1) assume s′ did not contain a subterm of this shape. Then,
consider s0 which is the term occurring immediately before s′ in D (this subterm
exists as s′ contains U -terms but s does not, so s 6= s′). The term s0 contains
ancestors of t′|p, because s′ contains ancestors of t′|p which are U -terms. This in
turn implies the existence of one-step ancestors of t′|p in s0.

Assume some ancestor of t′|p in s0 is not a U -term. As this term has a one-step
descendant in s′ being in turn an ancestor of t′|p and thus a U -term, this very U -
term in s′ must be of the shape Uα

1 (cl1, ~x1)σ1 as it must have been introduced by an

3not necessarily consecutively, and embedded in some surrounding context, i.e. they can be
obtained by “extraction” from D

3.2. Proving Operational Termination via CS Quasi-Reductivity 31

application of the rule l → Uα
1 (cl1, ~x1). This contradicts our assumption that (3.1)

does not hold for s′. Thus all ancestors of t′|p in s0 must be U -terms.
This in turn contradicts the minimality of s′, i.e. being the first term in D

containing only U -term ancestors of t′|p. Hence, we derived a contradiction from
¬(3.1). This concludes the proof of Claim 3.1.

Let s′|q = Uα
1 (cl1, ~x1)σ1. By our choice of s′ and the fact that s′|q is an ancestor

of t′|p, every term between s′ and t′ in D contains a descendant of s′|q which is also
an ancestor of t′|p and a U -term.

Some descendant (of s′|q) must be of the shape Uα
1 (cr1, ~x1)σ′1, because otherwise

t′|p could not be reached (cf. Definition 4). We inspect D between s′ and s′′ where s′′

contains such a descendant of s′|q say at position q′. Then, s′|q and its descendants
which are also ancestors of s′′|q′ are only (syntactically) modified by rule applications
below their roots. The reason is that a term rooted by some U -symbol Ui cannot
be reduced to another term having the same root symbol with reduction steps con-
taining at least one root step, unless the reduction sequence contains a non-U -term
(cf. Definition 4).

Hence, we can extract the reduction cl1σ
1 →∗Ucs(R) c

r
1σ
′1 from D.

The same argumentation applies also to all other conditions as Uα
i (cli, ~xi)σ

i must
occur (by our choice of s′ and q), as descendants of s′|q and ancestors of t′|p in
D (in particular, in such a way that σi does not contradict σ′i−1). Moreover, by
Observation 1 the used substitutions are not contradictory and their domains are
subdomains of the one of σn, which is due to the fact that the set of variables stored
by a U -symbol Uα

i is a subset of the ones stored by Uα
j provided that i ≤ j (cf.

Definition 4).

The second lemma states that the existence of a parallel reduction sequence
s −−‖−→∗Ucs(R) t, where s is an original term, implies that for all positions p of t there is

also a parallel reduction s′−−‖−→∗Ucs(R) t|p for some original term s′ such that its length
is less than or equal to the length of the former parallel reduction sequence.

In order to formalize this proposition we introduce the notion of the minimal
parallel F-distance of a term (over T (U(F), V)) (from any original term).

Definition 6 (minimal parallel F -distance). Let R = (F , R) be a DCTRS and
t ∈ T (U(F), V). The minimal parallel F -distance of t (w.r.t. a DCTRS R) is given
by

mpdF(t) = inf{n | ∃s ∈ T (F , V).s−−‖−→n
Ucs(R) t}

where −−‖−→n
Ucs(R) means that n parallel reductions are performed and inf is the

infimum.

Note that inf ∅ = +∞, so the minimal parallel F -distance of any term t that
is not reachable from an original term is +∞. Note on the other hand that if t
is reachable from an original term, then the infimum in Definition 6 is actually a
minimum, as lengths of reductions are natural numbers and hence we can find a
concrete (parallel) reduction from an original term to t with length mpdF(t).

32 Chapter 3. Unravelings

Lemma 2. Let R = (F , R) be a DCTRS and t ∈ T (U(F), V) with mpdF(t) < ∞.
Then for every subterm t|p of t we have mpdF(t|p) ≤ mpdF(t). Moreover, if t|p
occurs strictly inside a U-term in t, then mpdF(t|p) < mpdF(t).

Proof. Let D : u −−‖−→∗Ucs(R) t where u ∈ T (F , V) be a reduction sequence of length

mpdF(t). We prove the result by induction on mpdF(t). If mpdF(t) = 0, the result
holds vacuously as t is an original term and thus every subterm of t is an original
term as well.

Assume mpdF(t) = m, then we can write D as

u−−‖−→m−1
Ucs(R) t

′ −−‖−→Ucs(R) t.

We consider the maximal U -rooted subterms u1, . . . , un of t|p s.t.

t|p = C[u1, . . . un]p1,...,pn .

Each subterm ui has at least one one-step ancestor u′i in t′ and the induction hy-
pothesis yields that mpdF(u′i) ≤ mpdF(t′) ≤ m− 1. Hence, as we are using parallel
reduction we obtain

mpdF(C[u′1, . . . u
′
n]p1,...,pn) ≤ m− 1. (3.2)

Moreover, we have u′i −−‖−→∗Ucs(R) ui with zero or one reduction steps and as all ui
are parallel in t|p we have C[u′1, . . . u

′
n]p1,...,pn −−‖−→∗Ucs(R) C[u1, . . . un]p1,...,pn = t|p with

zero or one steps. Thus, mpdF(t|p) ≤ m.
Now assume that t|p occurs strictly inside a U -term in t. We distinguish two

cases.

• If u′i 6= ui for some i ∈ {1, . . . , n} (i.e. if some reduction step from t′ to t
occurred inside an ancestor of some ui), then by the definition of the descendant
relation and the shape of the rules in Ucs(R), i.e. the fact that U -symbols occur
only at but not below the root of left- and right-hand sides of all rules, we get
that if ui occurs at position q ≥ p in t, then u′i occurs at position q in t′ and
there must have been a reduction in t′ −−‖−→Ucs(R) t at or below q. Hence, in the
same parallel step there was no reduction above p and thus all u′i occur inside
a U -term in t′ as they occur inside t′|p.
Hence, the induction hypothesis yields mpdF(u′i) ≤ m− 2 and

thus we get mpdF(t|p) ≤ m− 1.

• Otherwise, if u′i = ui for all i ∈ {1, . . . , n}, (3.2) and C[u′1, . . . u
′
n]p1,...,pn = t|p

yield mpdF(t|p) ≤ m− 1.

Indeed, Lemma 2 does not hold if one considers ordinary Ucs(R)-reduction in-
stead of parallel reduction.

3.2. Proving Operational Termination via CS Quasi-Reductivity 33

Example 19. Consider the following one-rule DCTRS R

f(x)→ b⇐ g(x, x)→∗ a

Ucs(R) is given by

f(x) → U(g(x, x), x)

U(a, x) → b

Now consider the following Ucs(R) reduction sequence of length 2

f(f(x)) → f(U(g(x, x), x))

→ U(g(U(g(x, x), x), U(g(x, x), x)), U(g(x, x), x)) = t

However, it is easy to see that at least 2 reduction steps are necessary to derive

t|1 = g(U(g(x, x), x), U(g(x, x), x))

from an original term although it occurs as subterm strictly below a U-symbol in t.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. For the first part of the theorem, we prove the equivalent result
that s −−‖−→∗Ucs(R) t implies tb(s) −−‖−→∗R tb(t) provided that s, t ∈ T (U(F), R) and s is
reachable from an original term.

In order to prove this by induction, we associate to each reduction sequence
S : s −−‖−→∗Ucs(R) t with s, t ∈ T (U(F), V) a non-negative integer (its order) k where

k = mpdF(s)+ l and l is the length (i.e. the number of parallel reduction steps) of S.
We use induction over k (note that mpdF(s) and l are both non-negative for every
reduction sequence S).

For the base case (i.e., k = 0) the theorem holds trivially, since s = t. For the
inductive step, consider a reduction sequence S : s −−‖−→∗Ucs(R) s

′ −−‖−→Ucs(R) t. The

induction hypothesis yields tb(s) →∗R tb(s′). Thus, for tb(s) →∗R tb(t) it suffices to
show that

tb(s′)→∗R tb(t) (3.3)

holds.
We prove this by (nested) induction over the number of single (non-parallel)

reduction steps in s′ −−‖−→Ucs(R) t. If this number is zero, then s′ = t and thus
tb(s′) = tb(t).

Otherwise, we split s′ −−‖−→Ucs(R) t into s′ −−‖−→Ucs(R) t
′ →Ucs(R) t and the induction

hypothesis yields tb(s′)→∗R tb(t′).
We distinguish 3 cases depending on the reduction from t′ to t.

1. Assume the step is tb-preserving. Then we have tb(t′) = tb(t) and hence
tb(s′)→∗R tb(t), i.e., (3.3).

34 Chapter 3. Unravelings

2. If the step is non-tb-preserving and using a rule l→ r which already occurred in
the DCTRS (i.e. as unconditional rule) say at position p, then t′|p = lσ. As the
reduction is non-tb-preserving, there is no U -symbol in t′ above p (cf. Definition
5). Moreover, there are no U -symbols in l (as it already occurred in R), hence
tb(t′)|p.q = tb(t′|p.q) for all variable positions q of l, i.e. tb(t′)|p = lσ′ and xσ′ =
tb(xσ) for all x ∈ Dom(σ). Thus, tb(t′) = tb(t′)[lσ′]p →R tb(t′)[rσ′]p = tb(t),
and finally (3.3).

3. Assume the step (at position p) is non-tb-preserving and using a rule

U(u, x1, . . . , xo)→ r

where root(r) ∈ F (say t′|p = U(u, x1, . . . , xo)σ). This rule stems from a
conditional rule α : l→ r ⇐ cl1 →∗ cr1, . . . clm →∗ crm ∈ R.

In order to perform the corresponding reduction in the conditional system R,
we need to make sure that tb(cliσ)→∗R tb(criσ) holds for every i ∈ {1, . . . ,m}.
We consider the following reduction sequence S ′ in Ucs(R)

S ′ : u−−‖−→∗Ucs(R) s−−‖−→∗Ucs(R) s
′

where u is some original term such that the length of the reduction from u to s
is exactly mpdF(s). Note that s′|p = U(u, x1, . . . , xo)σ), because all reduction
steps from s′ to t′ were parallel to p.

The existence of S ′ ensures that for each condition cli →∗ cri the reduction
cliσ −−‖−→∗Ucs(R) c

r
iσ occurred as subreduction of S ′, by Lemma 1.

Consider a term cliσ occurring as a subterm of some term v in S ′. We partition
the reduction sequence S ′ in reduction steps that happen before v (which we
call the head of S ′) and in reduction steps happening after v (which we call
the tail of S ′).

The reduction from cliσ to criσ is part of the tail of S ′ and thus its (parallel)
length is not longer than this tail. Moreover, Lemma 2 yields that mpdF(cliσ)
is shorter than the head of S ′, because cliσ occurs inside a U -term. Hence, the
order of the reduction sequence cliσ −−‖−→∗Ucs(R) c

r
iσ is smaller than (or equal

to) the length of the reduction sequence S ′ which is exactly the order of the
reduction from s to s′ and thus smaller than the order of our initial reduction
sequence S. Hence, the induction hypothesis (of the outer induction) applies
yielding tb(cliσ)→∗R tb(criσ) for all i ∈ {1, . . . ,m} .

Now consider t′ = t′[U(u, x1, . . . , xo)σ]p. Let τ = tb(σ), i.e. xτ = tb(xσ) for
all x ∈ Dom(σ). Then we have tb(t′) = tb(t′)[lτ]p. And since cliτ →∗R cri τ for
all i ∈ {1, . . . ,m}, we finally obtain tb(t′)[lτ]p →R tb(t′)[rτ]p = tb(t).

This concludes the inner induction and also the outer step case.

3.2. Proving Operational Termination via CS Quasi-Reductivity 35

Note that, in the inner induction above, if not all steps in a reduction sequence
S are tb-preserving, i.e. whenever items (2) or (3) apply, then the corresponding
sequence in the conditional system is non-empty. Hence, whenever s →+

Ucs(R) t and

s, t ∈ T (F , V), then tb(s)→+
R tb(t) is non-empty, too.

Next we show that for any term t that is reachable from an original one, say s,
the corresponding reduction can be factored through tb(t) such that the first part
only uses R-steps and the latter one only tb-preserving Ucs(R)-steps.

Lemma 3. Let R = (F , R) be a DCTRS. If a term t ∈ T (U(F), V) is reachable
from an original term (i.e., if mpdF(t) < ∞), then we have tb(t) →∗Ucs(R) t with
tb-preserving steps.

Proof. We prove the result by induction on mpdF(t). If mpdF(t) = 0, then t is an
original term and the result is immediate.

Otherwise, let mpdF(t) = n > 0. Then, there is a parallel Ucs(R)-reduction
sequence D : u −−‖−→n−1

Ucs(R) t
′ −−‖−→Ucs(R) t of length n with u ∈ T (F , V). Let u1, . . . , um

be the maximal U -rooted subterms of t s.t.

t = C[u1, . . . , um]p1,...,pm

Each ui has one or several one-step ancestors uji (in t′) for j ∈ {1, . . . , ki}, where
ki is the number of one-step ancestors of ui in D. For all i ∈ {1, . . . ,m} and all
j ∈ {1, . . . , ki} mpdF(uji) < n by Lemma 2, hence the induction hypothesis yields
tb(uji)→∗Ucs(R) u

j
i with tb-preserving steps.

Moreover, we get uji →0/1
Ucs(R) ui for all i ∈ {1, . . . ,m} and all j ∈ {1, . . . , ki},

and these steps are tb-preserving, because the ui’s are U -terms. Hence, we obtain
tb(ui) = tb(uji) →∗Ucs(R) u

j
i →0/1

Ucs(R) ui with tb-preserving steps and as the ui’s are
the maximal U -rooted terms in t, we finally get

tb(t) = C[tb(u1), . . . , tb(um)]p1,...,pm →∗Ucs(R) C[u1, . . . , um]p1,...,pm = t

with only tb-preserving steps.

Corollary 2. Let R = (F , R) be a DCTRS. Whenever s →∗Ucs(R) t and t, s ∈
T (U(F), V) where s is reachable from an original term, tb(s)→∗Ucs(R) tb(t)→∗Ucs(R)

t, such that tb(t)→∗Ucs(R) t consists only of tb-preserving steps.

Proof. Immediate consequence of Theorems 2, 1 and Lemma 3.

Regarding termination, the transformation of Definition 4 is sound for cs-quasi-
reductivity in the sense that µ-termination of Ucs(R) implies context-sensitive quasi-
reductivity and thus operational termination of R.

Theorem 3 (sufficiency for cs-quasi-reductivity). Let R = (F , R) be a DCTRS. If
Ucs(R) is µ-terminating, then R is cs-quasi-reductive.

36 Chapter 3. Unravelings

Proof. As Ucs(R) is µUcs(R)-terminating, �µ=→+
Ucs(R) is a µ-reduction ordering on

T (U(F), V) (where U(F) ⊇ F). Assume sjσ �µ tjσ for every 1 ≤ j ≤ i < n for
a rule α : l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn (σ : V → T (F , V)). Then we have the
following reduction sequence in Ucs(R):

lσ →Ucs(R) Uα
1 (s1,Var(l))σ

→∗Ucs(R) Uα
1 (t1,Var(l))σ

→Ucs(R) Uα
2 (s2,Var(l), EVar(t1))σ

→∗Ucs(R) Uα
2 (t2,Var(l), EVar(t1))σ

. . .

→Ucs(R) Uα
i (si,Var(l), EVar(t1), . . . , EVar(ti−1))σ

→∗Ucs(R) Uα
i (ti,Var(l), EVar(t1), . . . , EVar(ti−1))σ

→Ucs(R) Uα
i+1(si+1,Var(l), EVar(t1), . . . , EVar(ti))σ

Thus lσ �stµ si+1σ. If sjσ �µ tjσ for all 1 ≤ j ≤ n, then it is easy to see that there
is a reduction sequence lσ →+

Ucs(R) rσ, thus lσ �µ rσ.

The following corollary (of Theorem 3 and Corollary 1) has already been proved
in [18].

Corollary 3. ([18]) Let R be a DCTRS. If Ucs(R) is µ-terminating, then R is
operationally terminating.

Obviously, as U(R) and Ucs(R) differ only in that Ucs(R) uses an additional
replacement map, the context-sensitive transformation is more powerful when it
comes to verifying operational termination.

Proposition 4. ([18]) Let R be a DCTRS. If U(R) is terminating, then Ucs(R) is
µ-terminating.

Proof. The result is immediate, since we have →U(R) ⊇ →Ucs(R).

Example 20. Consider the DCTRS R of Example 16. The transformed system
Ucs(R) (which is identical to the non-terminating TRS U(R), except for the fact
that an additional replacement map is used) is µ-terminating. This can for instance
be proved by minimal counterexample and case analysis. However, we will see that in
order to verify operational termination of R, it is sufficient to prove a weaker form
of termination, which can be handled automatically (see Theorem 5 and Example 25
below).

Unfortunately, and interestingly, cs-quasi-reductivity of a DCTRS R does not
imply µ-termination of Ucs(R).

3.2. Proving Operational Termination via CS Quasi-Reductivity 37

Example 21. ([73, Ex. 7.2.51]) Consider the DCTRS R given by

g(x) → k(y)⇐ h(x)→∗ d, h(x)→∗ c(y)

h(d) → c(a)

h(d) → c(b)

f(k(a), k(b), x) → f(x, x, x)

This system is quasi-reductive (and thus cs-quasi-reductive) (cf., [73]). However, the
system Ucs(R), where the conditional rule is replaced by

g(x) → U1(h(x), x)

U1(d, x) → U2(h(x), x)

U2(c(y), x) → k(y)

with µ(Ui) = {1} for i ∈ {1, 2}, is not µ-terminating.

f(k(a), k(b), U2(h(d), d))

→Ucs(R) f(U2(h(d), d), U2(h(d), d), U2(h(d), d))

→+
Ucs(R) f(U2(c(a), d), U2(c(b), d), U2(h(d), d))

→+
Ucs(R) f(k(a), k(b), U2(h(d), d))

Note that in this counterexample the crucial subterm t′ = U2(h(d), d) which
reduces to both k(a) and k(b) does not have a counterpart in the original system,
i.e., a term t ∈ T (F , V) with t →∗Ucs(R) t

′. Hence, it seems natural to conjecture
that such counterexamples are impossible if we only consider derivations issuing
from original terms. This is indeed the case, even for quasi-decreasing systems (cf.
Theorems 4 and 5 below).

Definition 7 (µ-termination on original terms). A CSRS R = (U(F), U(R)) with
replacement map µ, obtained by the transformation of Definition 4 is called µ-
terminating on original terms, if there is no infinite reduction sequence issuing from
a term t ∈ T (F , V) in R.

Now we can state the main results of this section.

Theorem 4. Let R = (F , R) be a DCTRS. If R is quasi-decreasing, then Ucs(R)
is µ-terminating on T (F , V).

Proof. For a proof by minimal counterexample suppose that s ∈ T (F , V) initiates
an infinite →Ucs(R)-reduction D : s →Ucs(R) . . . such that there is no s′ ∈ T (F , V),
s � s′ with this property (where � is the quasi-decreasing ordering). Since �
contains the subterm ordering, this implies that every proper subterm of s is→Ucs(R)-
terminating. Hence, D must have at least one root reduction step, i.e., be of the
shape s→∗Ucs(R) t

ε→Ucs(R) u→Ucs(R) . . . where t
ε→Ucs(R) u is the first root reduction

38 Chapter 3. Unravelings

step. Since the root symbol of s is from the original signature, the left-hand side
of the rule applied to t must be a term of the original signature. There are two
possibilities now.

First, assume an unconditional rule l → r (l, r ∈ T (F , V)) was applied to t.
Then, t = lσ, u = rσ. According to Corollary 2 we have s →∗Ucs(R) tb(t) →∗Ucs(R) t.

Since t = lσ, we get tb(t) = lσ′, because the steps from tb(t) to t are tb-preserving
and xσ′ →∗Ucs(R) xσ for all x ∈ Dom(σ). Thus, we have s→∗Ucs(R) tb(t) = lσ′ →Ucs(R)

rσ′ →∗Ucs(R) rσ = u. Furthermore, by quasi-decreasingness we get s � rσ′, because of

→R ⊆ � and s→+
Ucs(R) rσ

′ ⇒ s→+
R rσ

′ ∈ T (F , V) (according to Theorem 2). This
means that in every infinite reduction sequence starting from s we eventually arrive
at rσ′ ≺ s, which hence also initiates an infinite →Ucs(R)-reduction, thus yielding
a smaller counterexample (since s � rσ′). But this contradicts our minimality
assumption.

Secondly, assume the transformed version of a conditional rule l → r ⇐ s1 →∗
t1, . . . , sn →∗ tn is applied to t. Hence, t = lσ and as before we get tb(t) = lσ′

where xσ′ →∗Ucs(R) xσ for all x ∈ Dom(σ). Thus u = U1(s1, x1, . . . , xk1)σ and

we have tb(t) →Ucs(R) U1(s1, x1, . . . , xk1)σ′. By quasi-decreasingness we get lσ′ �
s1σ

′, x1σ
′, . . . , xk1σ

′, hence all the latter terms are terminating by minimality of the
counterexample. Therefore, s1σ and x1σ, . . . , xk1σ are terminating, too, because of
yσ′ →∗Ucs(R) yσ for all y ∈ Dom(σ). Thus, the only possibility of an infinite re-

duction from u is via a next root reduction step: u = U1(s1, x1, . . . , xk1)σ →∗Ucs(R)

U1(t1, x1, . . . , xk1)σ1
ε→Ucs(R) U2(s2, x1, . . . , xk2)σ1. So s1σ

′ →∗Ucs(R) s1σ →∗Ucs(R) t1σ1,

and Corollary 2 yields s1σ
′ →∗Ucs(R) tb(t1σ1) = t1σ

′
1 →∗Ucs(R) t1σ1. Then it also holds

that U1(t1, x1, . . . , xk1)σ′1 →Ucs(R) U2(s2, x1, . . . , xk2)σ′1 and as s1σ
′
1 →∗Ucs(R) t1σ

′
1, we

have s1σ
′
1 →∗R t1σ′1 ∈ T (F , V) according to Theorem 2 and thus lσ′1 � s2σ

′
1. By min-

imality, s2σ
′
1 and x1σ

′
1, . . . , xk2σ

′
1 are terminating, hence also s2σ1 and x1σ1, . . . , xk2σ1

because of xσ′ →∗Ucs(R) xσ for all x ∈ Dom(σ). Similarly, an infinite reduction

from U2(s2, x1, . . . , xk2)σ1 is only possible via a next reduction step for which we
need s2σ1 →∗Ucs(R) t2σ2 for some σ2. By continuing this argumentation, we fi-

nally get that lσ must eventually be reduced to Un(tn, x1, . . . , xkn)σn and lσ′ can
be reduced to U(tn, x1, . . . , xkn)σ′n. We have that tnσ

′
n ∈ T (F , V) is terminat-

ing by minimality (and quasi-decreasingness) and tnσn is terminating because of
tnσ

′
n →∗Ucs(R) tnσn. Therefore, the term U(tn, x1, . . . , xkn)σn is reduced to rσn and

U(tn, x1, . . . , xkn)σ′n can be reduced to rσ′n. We have lσ′(= lσ′n) � rσ′n because of
lσ′ →+

Ucs(R) rσ
′
n ∈ T (F , V) and thus lσ′ →+

R rσ′n by Theorem 2. Hence, rσ′n (with

s →∗Ucs(R) rσ
′
n →∗Ucs(R) rσn) is terminating because of minimality and rσn is termi-

nating due to rσ′n →∗Ucs(R) rσn. But this contradicts the counterexample property
(of s). Hence, we are done.

Conversely, cs-quasi-reductivity follows from termination of the transformed sys-
tem on original terms.

3.2. Proving Operational Termination via CS Quasi-Reductivity 39

Theorem 5. Let R = (F , R) be a DCTRS. If Ucs(R) is µ-terminating on T (F , V),
then R is cs-quasi-reductive.

Proof. We define the ordering � by s � t if s →+
Ucs(R) t and s is reachable (in

→Ucs(R)) by a term of the original signature (i.e. tb(s) →∗Ucs(R) s). This relation is

well-founded, because →Ucs(R) is terminating on T (F , V). Let �µ be the µ-mono-
tonic closure of � w.r.t. T (U(F), V), i.e., C[s]p �µ C[t]p if s � t ∧ p ∈ Posµ(C[s]p).
We show that R is cs-quasi-reductive w.r.t. �µ. Note that �µ ⊆ →+

Ucs(R).
First, we will deal with well-foundedness of �µ. Consider decreasing �µ-chains

starting from a term t. If s→∗Ucs(R) t for some term s ∈ T (F , V) (i.e., t is reachable
from an original term), there cannot be an infinite decreasing �µ-chain starting from
t, because this would contradict termination of →Ucs(R) on T (F , V). Otherwise,
t = C[t1 . . . tn]p1...pn , such that si →∗Ucs(R) ti, for some si ∈ T (F , V) and pi ∈ Posµ(t)

for all i ∈ {1, . . . , n} and no proper superterm of any ti is reachable by a term
from T (F , V). Thus, if t �µ u, then u = C[t1 . . . ui . . . tn]p1...pi...pn and ti � ui.
Furthermore, if u �µ v, then v = C[t1 . . . ui . . . vj . . . tn]p1...pi...pj ...pn and tj � vj. It is
easy to see that there cannot be an infinite decreasing �µ-sequence of this shape, as
each decreasing �-sequence starting at some ti is finite. Hence, �µ is well-founded.

If we have siσ �µ tiσ for all 1 ≤ i < j, then we get (cf., the proof of Theorem 3)
lσ →∗Ucs(R) U(sj, x1, . . . , xm)σ and thus lσ �stµ sjσ for all rules l → r ⇐ s1 →∗
t1, . . . , sn →∗ tn, all 0 ≤ j ≤ n and all substitutions σ : V → T (F , V). Analogously,
if siσ �µ tiσ for all 1 ≤ i ≤ n, then we have lσ →∗Ucs(R) rσ and thus lσ �µ rσ.

Hence, R is cs-quasi-reductive.

As a corollary we obtain the following equivalences between the various notions.

Corollary 4. Let R = (F , R) be a DCTRS. The following properties of R are
equivalent: µ-termination of Ucs(R) on original terms, cs-quasi-reductivity, quasi-
decreasingness, and operational termination.

Proof. The equivalence of quasi-decreasingness and operational termination was
proved in [61]. Theorem 5, Proposition 2 and Theorem 4 show: µUcs(R)-termination
of Ucs(R) on T (F , V) ⇒ cs-quasi-reductivity of R ⇒ quasi-decreasingness of R ⇒
µUcs(R)-termination of Ucs(R) on T (F , V).

3.2.3 Disproving Operational Termination

While proving termination on original terms for a concrete CSRS Ucs(R) is (at least
theoretically) easier than proving general termination of the system (as termination
implies termination on original terms, but in general not vice versa), disproving
termination on original terms and thus disproving operational termination of the
underlying DCTRSs R might be significantly harder than ordinary non-termination
analysis.

In this section we show that the transformation of Definition 4 is complete with
respect to collapse-extended termination (CE -termination), thus solving an open

40 Chapter 3. Unravelings

problem of [18]. Hence, if a transformed system can be proved to be non-terminating,
we can deduce non-CE -operational termination of the underlying DCTRS.

Furthermore, whenever operational termination and CE -operational termination
of a DCTRSR coincide, then Ucs(R) is µ-terminating if and only ifR is operationally
terminating.

Definition 8 (CE -termination, [36, 73]). We call a CSRS R with replacement map
µ CE -µ-terminating (or just CE-terminating) if R] CE

4 with µ(G) = {1, 2} is
µ-terminating. Moreover, we define CE = {G(x, y)→ x,G(x, y)→ y}.

Definition 9 (CE -cs-quasi-reductivity). Let R be a DCTRS. We call R CE -cs-quasi-
reductive if R] CE is cs-quasi-reductive.

Lemma 4. Let Ucs(R) be a CSRS obtained by the transformation of Definition 4
from a DCTRS R = (F , R). If Ucs(R) is not µ-terminating, then there exists an
infinite reduction sequence starting from a term t, such that root(t) ∈ F and every
replacing subterm of t is µ-terminating.

Proof. In the following we call non-µ-terminating terms containing only µ-termina-
ting proper subterms minimal non-terminating.

The basic idea of the proof is to show that a minimal non-terminating term u
rooted by a U -symbol must either be reduced to a minimal non-terminating term
that is not rooted by a U -symbol, or it must contain a (forbidden) U -rooted minimal
non-terminating proper subterm. In both cases we will derive a contradiction to the
assumption that every minimal non-terminating term is rooted by a U -symbol.

Let Uα
1 , . . . , U

α
n be the U -symbols introduced when transforming a conditional

rule α (cf. Definition 2). Assume towards a contradiction that

Ucs(R) is not µ-terminating and no term t as in the lemma exists. (3.4)

Thus, there exists a non-terminating U -term u where every replacing proper subterm
of u is µ-terminating, because the existence of a non-µ-terminating term containing
only µ-terminating µ-replacing subterms is obvious and this term cannot have a root
symbol from F because of our assumption. Hence, there exists an infinite reduction
sequence D starting from u. We inspect D.

Assume u = Uα
j (u1, . . . , um). We first prove the following claim by induction on

n− j where n is the number of conditions of α.

If u is minimal non-terminating, then the forbidden subterm ui contains

an allowed minimal non-terminating subterm for some 2 ≤ i ≤ m.

First assume u = Uα
n (u1, u2, . . . , um) and u is minimal non-terminating. Hence,

eventually in every infinite reduction there will be a (first) root reduction step
u→∗Ucs(R) u

′ ε→Ucs(R) rσ where r ∈ T (F , V) (cf. Definition 4). From our assumption

4We use the notation R] CE as abbreviation for (F] {G}, R] {G(x, y)→ x,G(x, y)→ y}).

3.2. Proving Operational Termination via CS Quasi-Reductivity 41

(3.4) it follows that rσ must contain a minimal non-terminating U -subterm inside
the substitution. The arguments u2, . . . , um are forbidden for reduction in u, so for
every x ∈ Var(r) either xσ occurred as forbidden subterm in u or it occurred allowed
in u′ in which case it cannot be non-terminating as u′ is minimal non-terminating
(obviously a minimal non-terminating term cannot be reduced to a term containing
a non-terminating proper subterm by reduction steps below the root). Hence, the
claim holds.

Second, assume u = Uα
j (u1, u2, . . . , uk) with j < n and u is minimal non-

terminating. In every infinite reduction sequence issuing from u there will be a
(first) root reduction step

u→∗Ucs(R) u
′ ε→Ucs(R) u

′′ = Uα
j+1(, u2, . . . , uk, uk+1, . . . , uk+l).

The term u′′ is non-terminating (as it is part of an infinite reduction) and thus
contains an allowed minimal non-terminating subterm. We distinguish two cases

• If u′′ itself is minimal non-terminating, then we apply the induction hypothesis
yielding that an allowed subterm of ui is minimal non-terminating for some
i ∈ {2, . . . k+l}. The terms {uk+1, . . . , uk+l} occurred at allowed positions in u′

(these terms are variable bindings of variables occurring in the right-hand side
of the jth condition of α). Thus they cannot contain a minimal non-terminating
allowed subterm as this would contradict minimal non-termination of u′ and
thus of u. Hence, one of the terms u2, . . . uk contains an allowed minimal
non-terminating subterm.

• If a proper subterm of u′′ is minimal non-terminating, then this subterm must
be in the substitution part of rσ = Uα

j+1(s, x2, . . . xk+l)σ = u′′, where r is the
right-hand side of the rule applied in the root reduction, because all proper
subterms of r are either variables or rooted by symbols from F and thus cannot
be minimal non-terminating because of assumption (3.4). However, for every
x ∈ Var(r), the term xσ already occurred in u′ and as u′ is minimal non-
terminating, the terms xk+1σ, . . . , xk+lσ are terminating. Hence, an allowed
subterm of xiσ is minimal non-terminating for some i ∈ {2, . . . , k}.

Now we have shown that under assumption (3.4) it holds that every minimal
non-terminating term contains a forbidden (and thus proper) subterm with the same
property which is obviously a contradiction. Hence, assumption (3.4) cannot hold
and the lemma is proved.

The following definition will be useful in proving the subsequent completeness
result concerning termination.

Definition 10 (partial evaluation). Let Ucs(R) be a CSRS obtained from a DCTRS
R = (F , R) by the transformation of Definition 4 and let t be a term such that every

42 Chapter 3. Unravelings

maximal U-rooted subterm of t is µ-terminating (w.r.t. Ucs(R)). Then we define
pevalR(t) as

pevalR(t) =

x, if t = x ∈ V
f(pevalR(v1), . . . , pevalR(vn)), if t = f(v1, . . . , vn) and f ∈ F
G′(pevalR(u1), . . . , pevalR(um)), if t = Uα

i (v1, . . . , vn) and Uα
i 6∈ F

where G′(g1, . . . , gk) stands for G(g1, G(g2, . . . G(gk−1, G(gk, A)) . . .)) or A and

{u1, . . . , um} = {u | t→+
Ucs(R) u, root(u) ∈ F ∪ V ar}.

Moreover, the order of the terms u1, . . . , um is determined by an arbitrary but fixed
order on terms. If there is no such term, then peval(t) = A. Here, A is a fresh
constant and G is a fresh binary symbol (which will be used as non-deterministic
projection symbol, i.e., by including the rules G(x, y)→ x, G(x, y)→ y, in Theorem
6 below).

Note that whenever a term t is µ-terminating and t→∗Ucs(R) t
′, then the maximal

U -rooted subterms of t′ are µ-terminating as well. This is because maximality of
the U -rooted subterms means that all function symbols occurring above these sub-
terms are original function symbols. Hence, as all arguments of all original function
symbols are replacing, the maximal U -rooted subterms are replacing. So non-µ-
termination of the maximal U -rooted subterms of t′ would imply non-µ-termination
of t′ and thus non-µ-termination of t. Thus, as t is µ-terminating, the maximal
U -rooted subterms of t′ are µ-terminating as well. Hence, peval is well-defined.

Informally, peval(t) represents all descendants of t (w.r.t. →Ucs(R)) that do not
contain any U -symbols.

Definition 11 (correspondence w.r.t to peval). Let R = (F , R) be a DCTRS and
Ucs(R) be the system obtained by the transformation of Definition 4. Furthermore,
let s, t ∈ T (U(F)] {G,A}, V). We say that s weakly corresponds to t w.r.t. peval,
denoted by t y s, if s = C[s1, . . . , sn]p1,...,pn, t = C[t1, . . . , tn]p1,...,pn, and for all
1 ≤ i ≤ n we have that ti is a µ-terminating U-term with si = peval(ti).

Note that the context C in Definition 11 may contain U -symbols and is unique for
all terms t and s with ty s, because root(si) ∈ F]{G,A} and root(ti) ∈ U(F)\F
and thus si 6= ti for all 1 ≤ i ≤ n. Hence, C is the maximal context such that
s = C[s1, . . . , sn]p1,...,pn and t = C[t1, . . . , tn]p1,...,pn . However, note that the ti’s are
not necessarily the maximal U -rooted subterms of t.

Lemma 5. Let R be a DCTRS and let Ucs(R) be the system obtained by the trans-
formation of Definition 4. Given two terms s, t ∈ T (U(F)∪ {G,A}, V) with ty s,
i.e. t = C[t1, . . . , tn]p1,...,pn and s = C[peval(t1), . . . , peval(tn)]p1,...,pn

1. t
q→Ucs(R)∪CE t

′ and q ≥ pi for some 1 ≤ i ≤ n implies s →∗Ucs(R)∪CE s
′ and

t′ y s′, and

3.2. Proving Operational Termination via CS Quasi-Reductivity 43

2. t
q→Ucs(R)∪CE t

′ and q < pi for some 1 ≤ i ≤ n implies s →+
Ucs(R)∪CE s

′ and

t′ y s′.

Proof. (1.) Let q ≥ pj. The term peval(t′|pj) = G′(peval(u1), . . . , peval(un)) where
the set {u1, . . . , un} is the set of all terms ui satisfying that t′|pj →∗Ucs(R) ui and

root(ui) ∈ F ∪ Var according to Definition 10.

On the other hand peval(t|pj) = G′(peval(v1), . . . , peval(vm)). Whenever we have
that t′|pj →∗Ucs(R) ui, then also t|pj →∗Ucs(R) ui, because t|pj →Ucs(R) t

′|pj →∗Ucs(R)

ui. Hence, {u1, . . . , un} ⊆ {v1, . . . , vm} and peval(t|pj) →∗Ucs(R)∪CE peval(t
′|pj) by

applying G-rules to filter those vis that do not occur in {u1, . . . , un}. Hence, s =
s[peval(t|pj)]pj →∗Ucs(R)∪CE s[peval(t

′|pj)]pj = s′.

(2.) Let q < pi for some 1 ≤ i ≤ n. We have t = t[lσ]q and thus s = s[lσ′]q,
because q < pi for some i, and hence q.q′ < pi for all q′ ∈ PosU(F)∪{G}(l), because l
does not contain a U -symbol below the root and t|pi is a U -term for all i. Moreover,
for all 1 ≤ i, j ≤ n we have that ti = tj implies peval(ti) = peval(tj). Hence,
l matches s|q even if it is non-linear. Obviously, xσ y xσ′ for all x ∈ Dom(σ),
because xσ cannot be a proper subterm of t|pi for any i.

Hence, we have s = s[lσ′]q →Ucs(R)∪CE s
′ = s[rσ′]q and t′ = t[rσ]q y s′, because

s′ = C ′[peval(t′1), . . . peval(t′m)]q1,...,qm and t′ = C ′[t′1, . . . t
′
m]q1,...,qm where t′i is µ-

terminating for all 1 ≤ i ≤ m, since it is equal to tj for some 1 ≤ j ≤ n.

Theorem 6 (completeness for CE -termination). Let R be a DCTRS and let Ucs(R)
be its transformed system according to Definition 4. Then R is CE-cs-quasi-reductive
if and only if Ucs(R) is CE-µ-terminating.

Proof. Ucs(RCE) = Ucs(R)] CE and RCE = R] CE . Note that Ucs(RCE) is the
system obtained by transforming RCE .

The if part of the proof is therefore covered by Theorem 5, because µ-termination
of Ucs(RCE) implies cs-quasi-reductivity of RCE .

The only if part of the theorem will be proved indirectly by showing that non-
µ-termination of Ucs(RCE) implies non-µ-termination of Ucs(RCE) on original terms,
i.e. terms of the original signature of R (plus {G,A}), which further implies non-cs-
quasi-reductivity of RCE according to Theorem 4.

So assume Ucs(RCE) is non-terminating. According to Lemma 4 there exists
an infinite reduction sequence D : t0 →∗Ucs(RCE)

t1 →∗Ucs(RCE)
. . . starting from a

term t0 with a root symbol from F] {G,A}, such that each replacing subterm
of t0 is terminating. We will prove the existence of another infinite reduction D′

starting at t′0 = pevalRCE (t0), which does not contain any U -symbols. Note that
t0 = C[t10, . . . t

m
0]p1,...,pm y t′0 = C[peval(t10), . . . peval(tm0)]p1,...,pm where C is non-

empty, because t0 is not a U -term.

Now to prove by induction that an infinite reduction sequence D′ starting at t′0
can be constructed we show that tj y t′j implies tj+k y t′j+k for some k ≥ 1 with
t′j →+

Ucs(RCE)
t′j+k.

44 Chapter 3. Unravelings

Assume tj y t′j, i.e. let tj = C[t1j , . . . , t
n
j]p1,...,pn and let t′j = C[peval(t1j), . . . ,

peval(tnj)]p1,...,pn . Consider the subreduction tj →Ucs(RCE) tj+1 · · · →Ucs(RCE) tj+k of
D such that the last step of this subreduction occurs at a position q < pi for some
1 ≤ i ≤ n. Note that such a reduction must appear in each tail of D, because the
terms t1j , . . . t

n
j are all µ-terminating.

We get t′j →+
Ucs(RCE)

t′j+k and tj+k y t′j+k through iterated (k times) applications

of Lemma 5.
Hence, we can construct an infinite Ucs(RCE)-reduction sequence starting from

t′0 which implies non-cs-quasi-reductivity of RCE according to Corollary 4.

As corollaries of Theorem 6 we get the following modularity results.

Corollary 5. Let R and S be DCTRSs with disjoint signatures that are both CE-
cs-quasi-reductive. Then R] S is CE-cs-quasi-reductive.

Proof. According to Theorem 6, Ucs(R) and Ucs(S) are CE -µ-terminating. In [36],
modularity of CE -µ-termination is proved. Thus, Ucs(R)]Ucs(S) is CE -µ-terminat-
ing. As Ucs(R)] Ucs(S) = Ucs(R] S), R] S is CE -cs-quasi-reductive.

Corollary 6. Let R and S be DCTRSs with disjoint signatures that are both CE-
operationally terminating (which means for a DCTRS R that R]CE is operationally
terminating). Then R] S is CE-operationally terminating.

Example 22. Consider the following DCTRS R

α1 : div(x, y)→ pair(0, x) ⇐ greater(y, x)→∗ true
α2 : div(x, y)→ pair(s(q), r) ⇐ leq(y, x)→∗ true,

div(x− y, y)→∗ pair(q, r)
x− 0 → x

0− y → 0

s(x)− s(y) → x− y
greater(s(x), s(y)) → greater(x, y)

greater(s(x), 0) → true

leq(s(x), s(y)) → leq(x, y)

leq(0, x) → true

performing a simple division with remainder. Transforming the conditional rules α1

and α2 yields

div(x, y) → Uα1
1 (greater(y, x), x, y)

Uα1
1 (true, x, y) → pair(0, x)

div(x, y) → Uα2
1 (leq(y, x), x, y)

Uα2
1 (true, x, y) → Uα2

2 (div(x− y, y), x, y)

Uα2
2 (pair(q, r), x, y) → pair(s(q), r)

3.2. Proving Operational Termination via CS Quasi-Reductivity 45

Property of Ucs(R) Implied property of R Proved in

µ-Termination Operational termination
Theorem 3 and

Corollary 1
Non-µ-termination Non-(CE -operational termination) Theorem 6
µ-Termination on

Operational termination
Theorem 5 and

original terms Corollary 1
Non-µ-(termination on

Non-(operational termination) Theorem 4
original terms)
CE -termination CE -operational termination Theorem 6

Non-(CE -termination) Non-(CE -operational termination) Theorem 6

Table 3.1: Properties of Ucs(R) and the implied properties of a DCTRS R.

Ucs(R) consists of these rules and the unconditional rules from R. Indeed Ucs(R) is
non-µ-terminating

div(x, 0) → Uα2
1 (leq(0, x), x, 0)→ Uα2

1 (true, x, 0)

→ Uα2
2 (div(minus(x, 0), 0), x, 0)→ Uα2

2 (div(x, 0), x, 0)→ . . .

Hence, we deduce non-CE-operational termination of R according to Theorem 6
which points to a flaw in the specification of R allowing division by zero.

Table 3.1 summarizes the relations between a DCTRS R and Ucs(R).

3.2.4 Proving Termination on Original Terms
Automatically

Theorem 5 suggests that in order to prove operational termination of a DCTRS
R, termination of Ucs(R) on original terms has to be proved. However, although
termination on original terms is a weaker property than ordinary termination, its
analysis might be harder and has, despite being an interesting problem, to the au-
thor’s knowledge, rarely been investigated (with the notable exception of [26]).

In the following, we introduce a simple approach to deal with this problem based
on the dependency pair framework of [33, 2]. We refer to the property of a CSRS
((F , R), µ) being µ-terminating on a set of terms identified by a subsignature F ′ of
F as (F ′)-subsignature termination or just subsignature termination if F ′ is clear
from the context.

In our setting we extend the notion of dependency pair problems, in order to take
into account our intention of proving termination only on restricted sets of terms,
by adding an additional component specifying a (sub-)signature. Thus, we define
SS-CS-DP problems (subsignature context-sensitive dependency pair problems) to be
quadruples (DP,R, µ,F ′) where DP = (F , R) and R = (F , R) are TRSs, µ is a

46 Chapter 3. Unravelings

replacement map for the combined signature F ∪ F , and F ′ ⊆ F is a signature
determining the starting terms, whose µ-termination we are interested in. An SS-
CS-DP problem (DP,R, µ,F ′) is finite if there is no infinite (DP,R, µ)-chain u1 →
v1, u2 → v2, . . . using a substitution σ such that every proper subterm of uiσ and
every proper subterm of viσ is a term from T (F , V) and R-reachable by some term
from T (F ′, V). An SS-CS-DP problem is infinite if it is not finite. Note that we
do not restrict the root symbols of dependency pairs to dependency pair symbols
originating from symbols of F ′. While such a restriction would be needed for a
general approach to prove termination on a restricted set of terms with dependency
pairs, it is not needed for the particular case of CSRSs that are transformed DCTRSs
obtained by the transformation of Definition 4 (cf. the only if part of the proof of
Theorem 7 below).5

Analogously to the case without subsignature restriction dealt with in [2, The-
orem 12], we can characterize termination of a CSRS on terms identified by a sub-
signature by finiteness of a corresponding SS-CS-DP-problem.

Theorem 7. Let R′ = (F ′, R) be a DCTRS and let R = Ucs(R′). R is µ-
terminating on terms T (F ′, R) iff the SS-CS-DP-problem (DP (R, µ),R, µ,F ′) is
finite.

Proof. IF: Assume R is not µ-terminating on terms of T (F ′, V). Then there exists
an infinite sequence of terms t1, t

′
1, s1, t2, t

′
2, s2, . . . with

t1
>ε→
∗
R,µ t

′
1

ε→R,µ s1 Dµ t2
>ε→
∗
R,µ t

′
2

ε→R,µ s2 Dµ t3
>ε→
∗
R,µ t

′
3

ε→R,µ . . .

such that t1 ∈ T (F ′, V) and ti and t′i are minimal non-µ-terminating for all i, i.e.,
there is an infinite reduction sequence starting from ti (resp. t′i), but all their proper
replacing subterms are µ-terminating.

According to the proof of [2, Theorem 12] there exists also a (DP (R, µ),R, µ)-
chain u1 → v1, u2 → v2, . . . enabled by a substitution σ where every proper subterm
of uiσ and viσ appears as subterm of tj or t′j or sj for all i ≥ 1 and some j ≥ 1.
Since ti, si and t′i are either reachable from t1 or are (replacing) subterms of terms
reachable from t1, by Lemma 2 and Definition 4 it follows that all proper subterms of
tj, sj and t′j are reachable from terms from T (F ′, V) and hence all proper subterms
of uiσ and viσ are reachable by terms from T (F ′, V) for all i, j ≥ 1.

only if: Assume there is an infinite (DP (R, µ),R, µ)-chain S : u1 → v1, u2 →
v2, . . . enabled by the substitution σ, such that every proper subterm of uiσ and viσ
is R-reachable from a term of T (F ′, V) for all i ≥ 1. Note that every suffix of this
chain is a (DP (R, µ),R, µ)-chain with the same property as well.

We first prove that w.l.o.g. we can assume that root(u1) = f# for some f ∈ F ′. If
S contains some DP u→ v with root(u) = f# and f ∈ F ′ we can just use the suffix

5Our definition of finiteness of SS-CS-DP problems and Theorem 7 below slightly differ from
[81]. There, the definition of (finiteness of) SS-CS-DP problems is partially misleading and
[81][Proposition 5] is incorrect for general CSRSs and subsignatures.

3.2. Proving Operational Termination via CS Quasi-Reductivity 47

of S starting at u→ v. Second, assume S contains a DP u→ v with root(u) = D#

(where D# is the symbol introduced during the creation of the dependency pairs
(cf. Section 2.4)). From the proof of [2, Theorem 12] we learn that not every DP
on S can have a lhs rooted by D#. Hence eventually S must contain a DP u′ → v′

with root(u′) = D# and root(v′) 6= D#. However, this implies that root(v′) = f#

for some f ∈ F ′, because no U -term is hidden in the rules of R (cf. the Definition
of DP (R, µ) in Section 2.4). The lhs of the DP immediately succeeding u′ → v′ has
the same root as v′ and thus we can use the suffix of S starting at that DP.

The only possibility left is the one where the lhs’s of all DPs in S are rooted
by symbols f# with f being a U -symbol. By the proof of [2, Theorem 12] we can
construct an infinite reduction sequence in (R, µ) out of an infinite DP-chain in such
a way that every single term is U -rooted and such that there are infinitely many root
reduction steps. However, it is easy to see that such a reduction sequence cannot
exist in R. Hence, we get a contradiction.

Thus, we can assume that root(u1) = f# for some f ∈ F ′. Now consider
the infinite context-sensitive R-reduction sequence corresponding to our infinite DP
chain proved to exist in the proof of [2, Theorem 12]. This reduction sequence
starts with a term f(t1, . . . , tm). We have f ∈ F ′ and ti is reachable from a term
of T (F ′, V) for every 1 ≤ i ≤ m. Hence, f(t1, . . . , tm) is reachable from such a
term and we obtain an infinite reduction sequence in R starting from a term of
T (F ′, V).

Following the dependency pair framework of [33], an SS-CS-dependency pair
processor (SS-CS-DP-processor) is a function Proc that takes as input an SS-CS-
DP-problem and returns either a set of SS-CS-DP problems or “no”. We call an SS-
CS-DP-processor sound if finiteness of all SS-CS-DP-problems in Proc(d) implies
finiteness of the input SS-CS-DP-problem d. An SS-CS-DP-processor is complete
if for all SS-CS-DP-problems d, d is infinite whenever Proc(d) is “no” or Proc(d)
contains an infinite SS-CS-DP-problem.

Since SS-CS-DP-problems (DP,R, µ,F ′) are finite if there are no (DP,R, µ)-
chains of a certain kind, sound processors for the context-sensitive DP framework of
[2] that do not modify but at most eliminate dependency pairs, such as reduction
pair processors or the dependency graph processors are sound also for SS-CS-DP-
problems in the following sense: If (DP,R, µ,F ′) is an infinite SS-CS-DP-problem
and Proc((DP,R, µ)) = {(DP1,R, µ), . . . , (DPn,R, µ)} for a reduction pair or de-
pendency graph processor Proc that is sound for the context-sensitive DP framework
of [2], then at least one of the SS-CS-DP-problems in the set {(DP1,R, µ,F ′), . . . ,
(DPn,R, µ,F ′)} is infinite. However, by using these processors one ignores the sub-
signature component of SS-CS-DP-problems. In order to take this subsignature into
account in proofs of termination, we present several dedicated SS-CS-DP processors.

48 Chapter 3. Unravelings

3.2.4.1 Narrowing Processors

First, we introduce two SS-CS-DP-processors that build upon the well-known nar-
rowing processor for the dependency pair framework (see e.g. [33]).

The basic idea of the narrowing processor is to anticipate the first step of all
possible rewrite sequences in a potential dependency pair chain between two depen-
dency pairs. If siσ →∗ ti+1σ is part of a chain and siσ and ti+1σ are not equal
(actually we demand that si and ti+1 are not unifiable), then the rewrite sequence
siσ →∗ ti+1σ is non-empty and contains at least one reduction step at a position
p ∈ PosF(si) (see the proof of Theorem 8 below for a justification of this claim).
Thus, all possibilities of the first such step are covered by replacing ti → si by the
set {tiθj → sji | 1 ≤ j ≤ n} with s1

i , . . . s
n
i being all possible (one-step, context-

sensitive) narrowings of si and θ1, . . . , θn being the corresponding mgu’s. Theo-
rem 8 below shows that replacing a rule ti → si ∈ DP in an SS-CS-DP-problem
P = (DP,R, µ,F ′) by the set of narrowings does neither alter finiteness nor infinity
of P provided that si is linear and does not unify with a left-hand side of any rule
in DP .

Analogously, a rule ti → si occurring in a chain can be replaced under the
corresponding preconditions by the set {tji → siθj | 1 ≤ j ≤ m}, where t1i , . . . t

m
i are

the (one-step, context-sensitive) backward narrowings of ti and θ1, . . . , θm are the
corresponding mgu’s.

Applying these narrowing approaches in proofs of termination of CSRSs, obtained
from DCTRSs by the transformation of Definition 4, allows us to restrict the set of
narrowings that we have to consider.

The following lemma provides the basis for this restriction. It provides sufficient
conditions for the existence of infinite DP chains enabled by substitutions ranging
only into terms over the subsignature of an SS-CS-DP problem.

Lemma 6. Let R = (F , R) be a DCTRS. Assume that u1 → v1, u2 → v2 . . . is an
infinite (P , Ucs(R), µ)-chain enabled by σ where P = (F#, P) such that F]∩(U(F)\
F) = ∅ and every proper subterm of uiσ and viσ is reachable from a term of T (F , V)
for all i ≥ 1. Then there is also an infinite (P , Ucs(R), µ)-chain u′1 → v′1, u

′
2 → v′2

enabled by σ′, such that u′iσ
′ and v′iσ

′ are terms from T (F] ∩ (U(F) \ F), V) for all
i ≥ 1.

Proof. Consider the original DP chain u1 → v1, u2 → v2 . . . enabled by σ. According
to Theorems 2 and 1 we obtain vi tb(σ) →∗Ucs(R) ui+1 tb(σ) where tb(σ) is given by

x tb(σ) = tb(xσ) for all x ∈ Dom(σ). Hence, tb(σ) enables the same DP chain and
every term ui tb(σ) and vi tb(σ) is from T (F] ∩ (U(F) \ F), V) for all i ≥ 1.

Lemma 6 motivates the definition of two dependency pair processors based on
the standard narrowing processor.

Definition 12 (restricted forward narrowing). Let (DP,R, µ,F ′) be an SS-CS-DP-
problem with R = (F , R). If ui → vi ∈ DP , Varµ(ui) ∩ Varµ(vi) = ∅, vi is not

3.2. Proving Operational Termination via CS Quasi-Reductivity 49

unifiable with any left-hand side of a rule in DP and vi is linear, then Procrfn yields
a new SS-CS-DP-problem (DP ′,R, µ,F ′) where

DP ′ = (DP − {ui → vi}) ∪ {uki θk → vki | 1 ≤ k ≤ n}

and {v1
i , . . . , v

n
i } is the set of all (one-step, context-sensitive) narrowings of vi with

corresponding mgu’s θ1, . . . , θn, such that all subterms of vki are reducible to F ′-terms
for all 1 ≤ k ≤ n.

Theorem 8. The dependency pair processor Procrfn is sound and complete for an
SS-CS-DP-problem P = (P ,R, µ,F ′) where P = (F], S]) and R = (F , R) provided
that (R, µ′) is obtained by the transformation of Definition 4 from some DCTRS R′
(µ′(f) = µ(f) for all f ∈ Dom(µ′)) and F]∩ (F \F ′) = ∅ (i.e., F] does not contain
any U-symbols).

Proof. Soundness: Lemma 6 shows that if P is infinite, then there exists an
infinite dependency pair chain v1 → u1, . . . , vi → ui, s→ t, vi+1 → ui+1, . . . enabled
by a substitution θ such that viθ, sθ, tθ and uiθ contain no symbols from F \F ′ for
all i ≥ 1. We first show that we can assume w.l.o.g. that no term in the reduction
sequences ukθ →∗R vk+1θ (resp. uiθ →∗R sθ and tθ →∗R vi+1θ) contains a U -term
not reducible to an original term (for all k ≥ 1, k 6= i): By Theorem 2 we get
ukθ →∗R′ vk+1θ for the DCTRS R′ from which R originated (where the signature
of R′ is enriched by the symbols of F#). Now following the constructive method
of simulating R′-reductions in the proof of Theorem 1 no U -terms that are not
reducible to terms over F ′ are introduced in the reduction sequence ukθ →∗R vk+1θ
for all k ≥ 1, k 6= i.

Thus, there exist substitutions θ enabling the above DP chain such that no terms
in reductions ukθ →∗R vk+1θ (resp. uiθ →∗R sθ and tθ →∗R vi+1θ) contain U -subterms
not reducible to terms over F ′. Let S be the set of all these substitutions (note that
substitutions from S may replace variables by terms containing U -terms, but only
ones that are reducible to terms over F ′). Moreover, let σ ∈ S be the substitution
such that the reduction sequence tσ →∗Ucs(R) vi+1σ has minimal length (among all
substitutions in S).

We take a closer look at the sequence tσ →∗Ucs(R) vi+1σ and show that due to
the minimality of its length the first reduction step must take place at a position
p ∈ PosF(t): Assume that the first step is at position q 6∈ PosF(t) and t|q = x.
Thus

tσ
q→ t′ = tσ′ →∗ vi+1σ

We define a new substitution σ′ by xσ′ = t′|q and yσ′ = yσ for all y 6= x. Since all
pairs in a chain are considered to be variable disjoint, we have uiσ

′ = uiσ →∗Ucs(R)

sσ →Ucs(R) sσ
′, tσ′ →∗Ucs(R) vi+1σ

′ and vjσ
′ →∗Ucs(R) uj+1σ

′ for all {j > 0 | j 6= i}.
Thus, the reduction sequence tσ′ →∗Ucs(R) vi+1σ

′ has a smaller length than tσ →∗Ucs(R)

vi+1σ which contradicts our minimality assumption for σ. Note that the existence of
the subsequence sσ →Ucs(R) sσ

′ is guaranteed by the fact that Varµ(s)∩Varµ(t) = ∅.

50 Chapter 3. Unravelings

Hence, the sequence tσ →∗Ucs(R) vi+1σ starts with a reduction step at position

p ∈ PosF(t). We assume that the reduction sequence is non-empty, otherwise t and
vi+1 would unify. Moreover, t is assumed to be linear. We show that there is a
narrowing t of t obtained by narrowing t with mgu θ, such that v1 → u1, . . . vi →
ui, sθ → t, vi+1 → ui+1, . . . is an infinite chain and each term in this chain can be
instantiated such that it can be reduced to a F ′-term.

The reduction sequence tσ →∗Ucs(R) vi+1σ starts with a single reduction tσ =

t[lρ]pσ →Ucs(R) t[rρ]pσ using a rule l → r. Since we consider l and t to be variable
disjoint, we extend σ so that xσ = xρ for all x ∈ Dom(ρ). Thus, σ unifies l and t|p
and there is also an mgu θ for l and t|p (σ = τ ◦ θ).

Then t narrows to t = t[rθ]p and since sθ → t is assumed to be variable disjoint
from all other pairs in a chain, we can adapt σ to behave like τ on the variables of
sθ and t. Thus,

uiσ →∗Ucs(R) sσ = sθτ = sθσ

tσ = tτ = t[rθτ]pθτ = σt[σr]p = σt[rρ]p →∗Ucs(R) vi+1σ

and v1 → u1, . . . vi → ui, sθ → t, vi+1 → ui+1, . . . is an infinite chain. Moreover,
an instance (obtained through σ) of each subterm of t is reducible to a F ′-term,
because this was true for the chain we started with and all terms of the new chain
occur already in the original one. Thus, we have shown that infinity of an SS-CS-
DP-problem P implies infinity of the problem Procrfn(P).

Completeness: Let P = (P ∪ {s → t},R, µ,F ′) be an SS-CS-DP-problem
such that t is linear and does not unify with any left-hand side of a rule in P , and
let (P ∪ {sθ1 → t1, . . . sθn → tn},R, µ,F ′) be Procrfn(P). We show that if v1 →
u1, . . . , vi → ui, sθm → tm, vi+1 → ui+1, . . . is a (P ∪ {sθ1 → t1, . . . sθn → tn},R, µ)-
chain for some 1 ≤ m ≤ n, then v1 → u1, . . . , vi → ui, s → t, vi+1 → ui+1, . . . is a
chain as well.

As v1 → u1, . . . , vi → ui, sθm → tm, vi+1 → ui+1, . . . is a chain, there is substi-
tution a σ such that ujσ →∗Ucs(R) vj+1σ for all j > 0, j 6= i, uiσ →∗Ucs(R) sθmσ and
tmσ →∗Ucs(R) vi+1σ.

As s → t does not share any variables with the rules vj → uj for all j > 0, we
can define σ′ to behave like θσ on the variables of s → t and like σ on all other
variables. Thus, we have

uiσ
′ →∗Ucs(R) sθσ = sσ′

and because of tθ →Ucs(R) tm (by the definition of context-sensitive narrowing) we
get

tσ′ = tθσ →∗Ucs(R) tmσ
′ →∗Ucs(R) vi+1σ

′

Thus, v1 → u1, . . . , vi → ui, s→ t, vi+1 → ui+1, . . . is a chain and we can construct a
(P ∪{s→ t}, Ucs(R, µ)-chain out of a (P ∪{sθ1 → t1, . . . sθn → tn}, Ucs(R, µ)-chain
this way.

3.2. Proving Operational Termination via CS Quasi-Reductivity 51

Note that the precondition of the narrowed dependency pair not containing vari-
ables that are forbidden in its left-hand side but allowed in its right-hand side is
crucial as the following example illustrates.

Example 23. Consider the DP problem P = (DP,R, µ,F) given by

DP =

{
t#(f(x)) → t#(h(x))

t#(b) → t#(f(a))

R =

a → b

h(x) → U(x, x)
U(x, x) → x

F = {a, b, f, h, t} and µ(g) = {1} for all g ∈ {h, U, t, t#}, µ(g) = ∅ for all g ∈ {f}.
Note that R is the transformed version of the DCTRS {a→ b, h(x)→ x⇐ x→∗ x}.
P is infinite, because there exists an infinite DP chain:

t#(f(a))
ε→ t#(h(a))→µ t

#(h(b))→µ t
#(U(b, b))→µ t

#(b)
ε→ t#(f(a))

The right-hand side of the first pair is linear and it does not unify with a left-
hand side of any other pair. However, there are forbidden variables in its left-hand
side that occur replacing in the right-hand side. Narrowing the first pair and thus
replacing it by t#(f(x)) → t#(U(x, x)) would yield a finite DP problem. Thus the
precondition Varµ(l) ∩ Varµ(r) = ∅ for the narrowed rule l → r ∈ DP cannot be
dropped.

The second dependency pair processor makes use of backward narrowing.

Definition 13 (restricted backward narrowing). Let (DP,R, µ,F ′) be an SS-CS-
DP-problem with R = (F , R). If ui → vi ∈ DP , Varµ(vi) ∩ Varµ(ui) = ∅, ui is not
unifiable with any right-hand side of a rule in DP and ui is linear, then Procrbn
yields a new SS-CS-DP-problem (DP ′,R, µ,F ′) where

DP ′ = (DP − {ui → vi}) ∪ {uki → vki θk | 1 ≤ k ≤ n}

and {u1
i , . . . , u

n
i } is the set of (one-step, context-sensitive) backward narrowings of

ui with corresponding mgu’s θ1, . . . , θn, such that all subterms of uki are reachable
from F ′-terms for all 1 ≤ k ≤ n.

Theorem 9. The dependency pair processor Procrbn is sound and complete for an
SS-CS-DP-problem (DP,Ucs(R), µ,F ′) where DP = (F], S]) and Ucs(R) = (F , R)
provided that (Ucs(R), µ′) is obtained by the transformation of Definition 4 from
some DCTRS R (µ′(f) = µ(f) for all f ∈ Dom(µ′)) and F] ∩ (F \ F ′) = ∅ (i.e.,
F] does not contain any U-symbols).

Proof. Analogous to the proof of Theorem 8.

52 Chapter 3. Unravelings

The narrowing processors use the notions reducible to respectively reachable from
which are both undecidable in general. Thus, in order to apply these processors in
practice, we need to use heuristics to approximate these notions. A very simple
approach would be to discard only those narrowings that are U -terms and (for-
ward resp. backward) narrowing normal forms. This heuristic is also used in the
implementation of these processors in VMTL [82]. Note that when using approxi-
mations of the notions “reducible to” and “reachable from” the narrowing processors
may no longer be complete (cf. Example 24), hence they cannot be used to prove
non-termination on original terms in general.

Examples 24 and 25 below show that this simple approximation is already suf-
ficient to prove termination on original terms where ordinary termination does not
hold (Example 24), or to significantly reduce the number of narrowings that have to
be considered (Example 25).

Apart from such simple approximations one could also think of more sophis-
ticated ones. For instance in the “forward” approach non-reducibility to original
terms could be detected by root-stability6, which is still undecidable but for which
non-trivial decidable approximations exist (e.g. strong root stability [49]).

Example 24. Consider the transformed CSRS R of Example 21 and the SS-CS-
DP-problem P0 = (DP0,R, µ,F ′) where DP0 = DP (R, µ), µ has been extended
to take dependency pair symbols into account and F ′ is F minus all U-symbols.
DP (R, µ) = {f](k(a), k(b), x)→ f](x, x, x)}7. Applying Procrbn to P0, we obtain a
new problem P1 = (DP1,R, µ,F ′) where

DP1 = {f](U2(c(a), z), k(b), x) → f](x, x, x),

f](k(a), U2(c(b), z), x) → f](x, x, x)}.

P rocrbn can be applied again using either rule in DP1 for narrowing. After
iterated applications of Procrbn, all narrowings of left-hand sides of rules in DPi
contain the term U1(d, d) as their first or second argument. As this term is a back-
ward narrowing normal form, DPi+1 = ∅ and we conclude termination on original
terms according to Theorem 9.

Note that in this example it is critical to discard narrowings that contain the
term U(d, d), because this term is not reachable by an original term. If one used
too rough approximations for reachability by original terms and considered terms
containing U(d, d) as valid terms appearing on DP chains, then indeed infinite DP-
chains would exist. However, the conclusion that the system is non-µ-terminating on
original terms would be incorrect, because when using approximations for the notion
“reachable from” the backward narrowing processor is no longer complete.

6A term t is root-stable w.r.t. to a rewrite system R if there is no R-reduction issuing from t
that contains a root reduction step.

7Here, we restrict the set of dependency pairs to those that are possibly part of a cycle in the
dependency graph. See [2] for a motivation and justification of this approach.

3.2. Proving Operational Termination via CS Quasi-Reductivity 53

Example 25. Consider the transformed CSRS R of Example 16. We use forward
narrowing on the rule.

A] → h](f(a), f(b))

Thus, the pair is replaced by two new rules

A] → h](U(a, a), f(b))

A] → h](f(a), U(b, b))

Procrfn can be applied again to the resulting problem, such that the right-hand sides
of the new rules are narrowed. Eventually, one of the arguments of h] will narrow to
instances of U(d, x), U(k, x), U(l, x) or U(m,x). As all instances of these terms are
root-stable, those narrowings can be disregarded according to Definition 12. Thus,
in the row of SS-CS-dependency pair problems obtained by repeated application of
Procrfn, the size of the TRSs (to be precise of the TRS in the first component of the
tuples) will not grow as fast as it would, if no narrowings were discarded and smaller
problems are obviously easier to handle (also with other dependency pair processors)
than bigger ones. Indeed, termination of the CSRS of this example can be shown
automatically with the described method (cf. Example 27 below).

3.2.4.2 Instantiation Processors

In a sense, the transformation of Definition 4 distributes the evaluation of the condi-
tions of one conditional rule among several unconditional rules. The results of these
single evaluations are propagated through the variables from one unconditional rule
to the next one. With our narrowing approach we try to approximate the results
of single evaluations, but we still need a way to propagate these results in proofs of
termination.

To this end we propose an instantiation processor, whose informal goal is to
propagate the results of condition evaluations approximated through narrowing to
subsequent conditions (i.e. subsequent rules in the transformed system).8 The fol-
lowing lemma provides the theoretical basis for our instantiation processor.

Lemma 7. Let P = (F , R) and R = (D] C, R′) be TRSs with a combined replace-

ment map µ. If sθ
ε→P,µ tθ >ε→

∗
R,µ s

′θ′
ε→P,µ t′θ′, s′σ = t for some substitution σ,

Varµ(t′) ∩ Varµ(s′) = ∅ and all variables of s′ are contained only in constructor
subterms (w.r.t. R) (i.e. s′|p ∈ Var ⇒ ∀q < p : root(s′|q) ∈ (F ∪ C) \ D), then

s′σθ
ε→P,µ t′σθ →∗R,µ t′θ′ for some θ, such that xθ = xθ for all x ∈ Var(t).

Proof. Let {x1, . . . , xn} be the variables of t′. Assume xi occurs in s′ at position q.
Then, we have that xiσθ →∗R,µ xiθ′, as xiσθ = t|qθ and xiθ

′ = s′|qθ′ and all positions

8Note that our instantiation processor is similar, but incomparable to the one in [33], as in
[33] variables are only instantiated by constructor terms while according to Definition 14 in our
approach also terms containing defined symbols can be substituted (cf. Example 26 below).

54 Chapter 3. Unravelings

above q are constructors in t and s′. Thus, we set yθ = yθ for all y ∈ Var(Codom(σ))
and obtain t′|q′σθ →∗R,µ t′|q′θ′ for any position q′ with t′|q′ = xi.

Note that if q is replacing in s′, then so is q′ in t′. Otherwise, xiσθS = xiθ
′.

Hence, s′σθ
ε→P,µ t′σθ and we have that xσθ →∗R,µ xθ′ for all x ∈ t′ and thus

t′σθ →∗R,µ t′θ′.

Definition 14 (backward instantiation processor). Let (DP = {s → t} ∪ DP ′,
R, µ,F ′) be an SS-CS-DP-problem with R = (F , R), such that all variables of s are
contained only in constructor subterms of s (w.r.t. R) and Var

µ
(t) ∩ Varµ(s) = ∅.

The set Preds→t = {l → r ∈ DP | ∃θ.cap(ren(r))θ = cap(ren(s))θ} defines all
potential predecessors of the pair s → t on (DP,R, µ)-chains.9 If, for all l → r ∈
Preds→t, r = sσ for some σ, then the processor Procbi yields (DP ′ ∪ {sσ → tσ |
l→ r ∈ Preds→t ∧ r = sσ},R, µ,F ′).

Theorem 10. The processor Procbi is sound and complete.

Proof. Soundness: Assume there is an infinite dependency pair chain w.r.t. to a
DP problem P = (DP,R, µ,F). We show that there also exists an infinite chain
w.r.t. to the problem Procbi(P) = P ′.

Consider an arbitrary fragment of the initial infinite chain:

. . . tiθ →∗R,µ si+1θ
′ ε→DP ti+1θ

′

Then, we can construct an analogous chain fragment in Procbi(P), as either si+1 →
ti+1 is contained in the dependency pairs of the derived problem P ′, or ti = si+1σ
and thus there is a dependency pair si+1σ → ti+1σ in P ′. In the latter case the new
chain fragment is

. . . tiθ = si+1σθ
ε→P ′ ti+1σθ →∗R,µ ti+1θ

′

for some θ (according to Lemma 7).
Completeness: Consider an infinite chain w.r.t. P ′. . . . siσθ ε→ tiσθ As

we assume that all dependency pairs in chains are variable disjoint we can adapt θ
to behave like σθ and thus obtain an infinite DP chain w.r.t. to the original problem
P .

Example 26. Consider an SS-CS-DP-problem P = (DP,R, µ,F ′) where

DP =

{
d# → U#

1 (c)

U#
1 (x) → c#

R =

d → U1(c)

U1(x) → c
c → b

9To be precise this definition of Preds→t identifies a superset of potential predecessor pairs of
s → t in DP chains. The exact set is in general undecidable, however one could use other/better
approximations here as well.

3.2. Proving Operational Termination via CS Quasi-Reductivity 55

µ(U#
1) = µ(U1) = {1} and F ′ = {c, d}. The problem originates from the dependency

pair analysis of the DCTRS R :

d → x⇐ c→∗ x
c → b

The backward instantiation processor can be applied to P . The dependency pair
s→ t is U#

1 (x)→ x and its only potential ancestor is d# → U#
1 (c). Since all func-

tions in s above the variable x are constructors (i.e. x is contained in a constructor
context in s) and the variable of t is replacing (i.e. Var

µ
(t) = ∅), the additional

preconditions for the application of the processor are satisfied. Thus, according to
Definition 14 the result of the application of the processor is a new dependency pair
problem (DP ′,R, µ,F ′) where

DP ′ =

{
d# → U#

1 (c)

U#
1 (c) → c#

Note that finiteness of this resulting SS-CS-DP-problem is obvious and can easily be
shown be repeated application of the forward narrowing processor of Definition 12.

Example 27. Inside the dependency pair framework termination on original terms
of Ucs(R) and thus operational termination of R for the DCTRS R from Example
16 can be proved by repeated application of forward narrowing and backward instan-
tiation. Our experiments showed that µ-termination of Ucs(R) is hard to prove using
other, standard techniques for termination analysis, thus the introduced dependency
pair processors seem crucial for this particular example.

Analogously to the backward instantiation processor we can also define a proces-
sor for forward instantiation.

Definition 15 (forward instantiation processor). Let (DP = {s → t} ∪ DP ′,R,
µ,F ′) be an SS-CS-DP-problem with R = (F , R), such that all variables of t are
contained only in constructor subterms of t (w.r.t. R) and Varµ(t) ∩ Var

µ
(s) = ∅.

The set Succs→t = {l → r ∈ DP | ∃θ.cap(ren(t))θ = cap(ren(l))θ} defines all
potential successors of the pair s → t on (DP,R, µ)-chains.10 If, for all l → r ∈
Succs→t, l = tσ for some σ, then the processor Procfi yields (DP ′ ∪{sσ → tσ | l→
r ∈ Succs→t ∧ l = tσ},R, µ,F ′).

In order to prove soundness and completeness we proceed as for the backward
instantiation processor and show the following lemma that is dual to Lemma 7.

10To be precise this definition of Succs→t identifies a superset of potential successor pairs of
s → t in DP chains. The exact set is in general undecidable, however one could use other/better
approximations here as well.

56 Chapter 3. Unravelings

Lemma 8. Let P = (F , R) and R = (D] C, R′) be TRSs with a combined re-

placement map µ. If sθ
ε→P,µ tθ >ε→

∗
R,µ s

′θ′
ε→P,µ t′θ′, tσ = s′ for some substitution

σ, Var
µ
(s) ∩ Varµ(t) = ∅ and all variables of t are contained only in constructor

subterms (w.r.t. R) (i.e. t|p ∈ Var ⇒ ∀q < p : root(t|q) ∈ (F ∪ C) \ D), then
sθ →∗R,µ sσθ for some θ, such that xθ = xθ′ for all x ∈ Var(s′).

Proof. Let {x1, . . . , xn} be the variables of s. We distinguish two cases for each
variable xi. First, assume xi occurs in t at position q. Then, we have that xiθ →∗R,µ
xiσθ

′, as xiθ = t|qθ, xiσθ′ = s′|qθ′ and all positions above q are constructors in t and
s′. Thus, we set yθ = yθ′ for all y ∈ Var(Codomain(σ)) and obtain s|q′θ →∗R,µ s|q′σθ
for any position q′ with s|q′ = xi. Note that if q is replacing in t, then so is q′ in s.
Otherwise, xiθ = xiσθ.

Secondly, if xi does not occur in t, then it does neither occur in Dom(σ) nor in
Var(Codomain(σ)). Thus, we set xiθ = xiθ and obtain s|pθ = s|pσθ for any position
p with s|p = xi.

Theorem 11. The processor Procfi is sound and complete.

Proof. Soundness: Assume there is an infinite dependency pair chain w.r.t. to a
DP problem P = (DP,R, µ,F). We show that there also exists an infinite chain
w.r.t. to the problem Procfi(P) = P ′.

Consider an arbitrary fragment of the initial infinite chain:

. . . siθ
ε→DP tiθ →∗R,µ si+1θ

′

Then, we can construct an analogous chain fragment in Procfi(P), as either si → ti
is contained in the dependency pairs of the derived problem P ′, or si+1 = tiσ and
thus there is a dependency pair siσ → tiσ in P ′. In the latter case the new chain
fragment is

. . . siθ →∗R,µ siσθ
ε→P ′ tiσθ = si+1θ

′

(according to Lemma 8).
Completeness: Consider an infinite chain w.r.t. P ′. . . . siσθ ε→ tiσθ As

we assume that all dependency pairs in chains are variable disjoint, we can adapt θ
to behave like σθ and thus obtain an infinite DP chain w.r.t. to the original problem
P .

Note that the narrowing and instantiation approach is just one out of many
methods to analyze dependency pair problems for their finiteness in the setting of
ordinary termination analysis. However, regarding the structure of the systems that
we analyze and using the fact that they were obtained from DCTRSs, narrowing
and instantiation seem to be an adequate tool in our special setting, because they
are in some cases able to identify those instances of left-hand sides of rules for which
the conditions of the corresponding DCTRS are satisfiable.

Taking into account that finding such instances or identifying instances for which
the conditions are not satisfiable is potentially crucial for proving or disproving

3.3. Implementation and Evaluation 57

termination of (transformed) systems, narrowing and instantiation are important
tools for this task. Moreover, our narrowing dependency pair processors allow us to
reduce the number of narrowings generated and thus make the narrowing approach
more efficient in practice.

In the experiments we performed to evaluate our approach, the combination of
narrowing and instantiation was only part of the strategy for finding proofs in the
dependency pair framework. More precisely, we applied the narrowing processors
(backward and forward in parallel; cf. [82, Section 3.1]) until they were no longer
applicable and used the instantiation processors afterwards. See Section 3.3 for
details on other DP processors available in our tool VMTL.

Example 28. In Example 24, after several narrowing steps the first TRS of the
SS-CS-DP-problem is empty, thus the conditions of the conditional rule are un-
satisfiable. Note that this DCTRS R is operationally terminating while Ucs(R) is
not µ-terminating. Hence, operational termination cannot be verified with standard
ordering-based methods. Thus, again the presented narrowing processor is crucial
for a successful automatic proof of operational termination.

3.3 Implementation and Evaluation

In order to evaluate the practical use of the context-sensitive unraveling as well
as our approach to prove termination on restricted sets of terms, we implemented
both the transformation and our proposed dependency pair processors in the tool
VMTL (cf. [82] and also Chapter 5 of this thesis). In addition to the DP processors
introduced in Section 3.2.4 VMTL contains implementations of various standard
(mostly ordering based) DP processors. In addition, a simple check for infinity of
DP problems is included that can be viewed as a DP processor returning “no”, hence
enabling VMTL to prove non-termination. Note that, as the narrowing processors
(using approximations for deciding reducibility to resp. reachability from) are not
complete, infinity of a DP problem does not imply non-termination of the original
rewrite system on original terms after they have been used during the proof search.
The results and details of our tests can be found at the tool’s homepage.1 Out
of 27 tested systems our implementation was able to prove operational termination
of 17. Note that for only one DCTRS in this collection the transformed system is
not µ-terminating on all, but only on original terms (i.e. Example 21). However,
we refrained from providing more examples of this kind, since we conjecture that
they would all have a structure similar to the DCTRS in Example 21. This conjec-
ture is supported by the fact that for such TRSs R (i.e., where R is operationally
terminating while Ucs(R) is non-µ-terminating), R∪ CE is not operationally termi-
nating (cf. Theorem 6 and Corollary 4). Moreover, DCTRSs with this property are
rather pathological and do not arise naturally as program specifications. We showed,
however, that our approach is useful also for proving termination of DCTRSs not
belonging to this class. This is supported by our experiments where operational ter-

58 Chapter 3. Unravelings

mination of several DCTRSs R could be shown whereas they could not be handled
by traditional methods despite R∪ CE being operationally terminating as well.

The examples used in the experiments were taken from the termination problem
database (TPDB, cf. [1]) and from standard literature on conditional term rewriting
(e.g. [73] and [64]).

In our experiments other termination tools supporting conditional rewrite sys-
tems scored worse on this set of examples. For instance, the tool AProVE [31] was
able to prove operational termination of 15 examples through the web-interface.
However, the batch version (i.e. AProVE 1.211) could only prove operational termi-
nation of 12 examples. This illustrates that termination of CSRSs obtained by our
transformation may be hard to verify, and sophisticated and complicated proof meth-
ods (as implemented only in the most recent version of AProVE) may be needed.

Overall, VMTL was able to prove operational termination of 6 DCTRSs for which
AProVE failed. On the other hand, operational termination of 4 other DCTRSs
could only be successfully proved by AProVE. In the 6 examples where VMTL was
successful while AProVE was not, the narrowing and instantiation processors of
Section 3.2.4 played a crucial rule.

On the negative side, repeated application especially of narrowing processors
can be expensive with respect to execution time (and space). Yet, we did not
restrict the application of the narrowing and instantiation processors by imposing
complex applicability conditions as, for instance, described in [33, Section 5.2] using
the concept of safe transformations. The reason is that for the particular class of
rewrite systems obtained by transformations from conditional systems it might be
necessary to spend more time on narrowing and instantiation techniques than on the
search for applicable orderings. Still such applicability conditions tailored to systems
obtained by the transformation of Definition 4 would be an interesting direction for
future work.

Note also that inside the dependency pair framework DP processors may be
applied to DP-problems in an arbitrary order. Choosing and fixing such an order
can significantly influence the power and efficiency of a termination tool. In our
experiments, the narrowing and instantiation approach was only tried after other
ordering-based methods to prove finiteness of DP-problems, which are more efficient,
failed. This strategy turned out to be the most efficient and powerful one.

3.4 Related Work

The idea of using context-sensitivity to improve the unraveling transformation of
[64, 63, 72, 73] is not new. In [20, 70, 18] the same idea is used in conjunction with
another optimization. The second optimization is to store the bindings of only those
variables in the arguments of a Uα

j symbol that occur in a subsequent condition or

11Newer batch versions of AProVE failed to prove termination of any DCTRSs with extra vari-
ables in our experiments.

3.4. Related Work 59

in the right-hand side of the rule α.

For clarity we provide a formal definition of this optimization.

Definition 16 (optimized transformation according to [20, 70, 18]). Let R be a
DCTRS (R = (F , R)). For every rule α : l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn we use
n new function symbols Uα

i (i ∈ {1, . . . , n}). Then α is transformed into a set of
unconditional rules in the following way:

l → Uα
1 (s1, ~x1)

Uα
1 (t1, ~x1) → Uα

2 (s2, ~x2)
...

Uα
n (tn, ~xn) → r

Here the sequences of variables ~xi are given by (an arbitrary but fixed sequential-
ization of the set of variables)

(Var(l) ∪ Var(t1) . . .Var(ti−1)) ∩
(Var(ti) ∪ Var(si+1) ∪ Var(ti+1) . . .Var(sn) ∪ Var(tn) ∪ Var(r)).

The transformed system Uopt(R) = (U(F), Uopt(R)) is obtained by transforming
each rule of R where U(F) is F extended by all new function symbols. We use
a replacement map µopt given by µopt(U) = {1} for every auxiliary symbol U (i.e.
U ∈ U(F) \ F) and µopt(f) = {1, . . . , ar(f)} for every f ∈ F .

Indeed, according to [18] it holds that whenever Uopt(R) is µopt-terminating, R
is operationally terminating.12 13 Since the transformation of Definition 16 produces
smaller transformed systems than the one from Definition 4, it might be advanta-
geous to use it in termination analysis. However, there is a price to pay for this
optimization. That is, one loses the property of simulation-soundness (cf. Theorem
2).

Example 29. Consider a DCTRS R given by

f(x) → c⇐ a→∗ b
g(x, x) → g(f(a), f(b))

12The transformation we presented in Definition 16 is actually a special case of the transformation
introduced in [18]. There, the authors work in a more general setting whereR itself may be context-
sensitive and rewriting modulo an equational theory is used.

13Note, however, that in [18, p. 78] the authors introduce both Ucs(R) and Uopt(R), but do
not clearly distinguish between them subsequently. This appears to be justified in the context of
[18, Theorem 2 and Lemma 3] (because the proofs of these latter results work for both versions
of the transformation), but not in general, since the two transformations have different properties,
cf. Examples 29, 30. In particular, µopt-termination of Uopt(R) implies µUcs(R)-termination of
Ucs(R), but not vice versa.

60 Chapter 3. Unravelings

The transformed system Ucs(R) consists of the following rules

f(x) → U(a, x)

U(b, x) → c

g(x, x) → g(f(a), f(b))

Ucs(R) is µ-terminating and thus R is operationally terminating. However, Uopt(R)
given by

f(x) → U(a)

U(b) → c

g(x, x) → g(f(a), f(b))

is easily seen to be non-(µopt-)terminating (even on original terms) due to the cyclic
reduction sequence

g(f(a), f(b))→+
Uopt(R) g(U(a), U(a))→Uopt(R) g(f(a), f(b))

Hence, Theorems 2 and 4 and Corollary 4 do not hold for this optimized trans-
formation.14

Note that the DCTRS in Example 29 is not left-linear. However, this property
is not crucial as the following left-linear example shows (also the left-hand sides of
conditions are linear).

Example 30. Consider the DCTRS R given by

f(x) → y ⇐ a→∗ h(y)

g(x, b) → g(f(c), x)⇐ f(b)→∗ x, x→∗ c
a → h(b)

a → h(c)

Uopt(R) is given by

f(x) → Uf (a)

Uf (h(y)) → y

g(x, b) → U1
g (f(b), x)

U1
g (x, x) → U2

g (x, x)

U2
g (c, x) → g(f(c), x)

a → h(b)

a → h(c)

14Technically, this is reflected in the fact that the the back-translation function tb (which is
crucial for the proofs of these results) according to Definition 3 would not be well-defined for
Uopt(R) instead of Ucs(R). The reason is that the substitution σ involved in Definition 3 may
become non-well-defined due to the existence of erasing rules in Uopt(R) that forget certain variable
bindings (cf. the first rule of Uopt(R) in Examples 29 and 30, respectively). For a more general
and thorough discussion of (desirable) properties of back-translation functions in the setting of
transforming CTRSs into TRSs we refer to [34].

3.4. Related Work 61

Then R is operationally terminating (however, this has been proved by hand – via
analyzing the shape of potentially existing minimal counterexamples – as automated
termination tools currently fail to prove µ-termination of Ucs(R)), but Uopt(R) is
again non-terminating due to the following cyclic reduction sequence.

g(f(c), b) → g(Uf (a), b)→ U1
g (f(b), Uf (a))→ U1

g (Uf (a), Uf (a))

→ U2
g (Uf (a), Uf (a))→ U2

g (Uf (h(c)), Uf (a))→ U2
g (c, Uf (a))

→ g(f(c), Uf (a))→ g(f(c), Uf (h(b)))→ g(f(c), b)

In [70] it is shown that left-linearity (and right linearity in combination with non-
erasingness) of the transformed system Uopt(R) is sufficient to guarantee simulation-
soundness (even if context-sensitivity is dropped).

However, despite being an interesting question we refrain from giving a more
precise assessment of conditions under which the optimized transformation is sim-
ulation sound. Yet, solving this problem could also be useful in practice, because
automated termination provers could base the decision on which transformation to
use on this knowledge.

In [70] simulation-soundness is obtained by restricting Uopt(R)-evaluations.15 The
idea is to contract only redexes not containing auxiliary U -symbols. That is to say
that a term s rewrites to a term t under this restriction iff s

p→Uopt(R) t and s|p is a
term over the original signature of R. In order to prove operational termination of
a conditional system R it would be sufficient to prove termination of Uopt(R) under
this restriction. However, while this might be feasible, given the recent advances
in proving termination under strategies (cf. e.g. [25]), no concrete methods for this
particular task exist to the author’s knowledge.

15Note that our notion of simulation-soundness is called simulation-completeness there.

62 Chapter 3. Unravelings

Chapter 4

Generalizing Context-Sensitivity

4.1 Introduction and Related Work

The idea of using some form of evaluation strategies and replacement restrictions
in order to obtain improved termination properties as compared to naive evaluation
dates back to [28, 44]. The concept of lazy evaluation proposed there is an integral
feature of many modern functional and functional logic programming languages (e.g.
Haskell [47]). The basic idea of lazy evaluation is to evaluate arguments of func-
tions only if they are needed to compute the function and to delay their evaluation
otherwise.

Example 31. Consider the following TRS

if(true, x, y) → x

if(false, x, y) → y

Here, when evaluating a term if(c, s, t), where s and t are potentially non-normal-
izing terms, it is not desirable to compute the (possibly non-existing) results of s
and t before knowing which result is actually needed (depending on c). Instead it is
preferable to delay the evaluation of s and t until the value of c is known and thus
one of the rewrite rules is applicable.

A crucial question that immediately arises when considering Example 31 is how
to decide which arguments of a given function are to be evaluated eagerly, i.e. before
the function itself is computed and which are to be evaluated in a lazy fashion
i.e. after the function is computed. Usually, this problem is addressed by some
kind of strictness analysis. This is to say that the arguments of each function are
partitioned into strict and non-strict ones, where the values of the strict ones are
crucial to compute the function (such as the first argument of the if function in
Example 31) while non-strict arguments are (potentially) not crucial (such as the
second and third arguments of the if function in Example 31).

Unfortunately, strictness is not decidable in general and hence approximations
are needed to identify a superset of strict arguments for a given function. Canonical

63

64 Chapter 4. Generalizing Context-Sensitivity

context-sensitive rewriting can be viewed as such an approximation for left-linear
rewrite systems. However, it turned out that for some classes of TRS the formal-
ism of context-sensitive rewriting is not fine-grained enough to obtain replacement
restrictions with the desired properties.

Example 32 (e.g. [58]). Consider the following TRS R.

from(x) → x : from(s(x))

2nd(x : (y : zs)) → y

Here, it is crucial to allow reduction in the single argument of 2nd, e.g. to compute
the normal form of the term 2nd(from(0)) (which is s(0)). On the other hand one
would like to impose some replacement restrictions in order to obtain a terminating
rewrite relation.

On-demand Rewriting
Example 32 was used as the main motivating example of on-demand rewriting in

[58, 56]. On-demand rewriting is an extension of the formalism of context-sensitive
rewriting where an additional replacement map is used (so in total there are two
replacement maps). Hence, the positions in a term are partitioned into three classes,
the replacing ones, the forbidden ones and a third set of positions where evaluations
may take place only if there is a demand. Roughly, a rewrite step is demanded if it
contributes to a more outer function evaluation by creating a (part of a) redex.

While on-demand rewriting allows to impose more fine-grained restrictions of
rewriting than context-sensitive rewriting and is a conservative extension of context-
sensitive rewriting, its formal definition is rather complex and the analysis of TRSs
restricted by on-demand rewriting is hard. In [58, Section 4] a practical approach
for the automated termination analysis of on-demand TRSs based on transforma-
tions into unrestricted TRSs was proposed. One of the proposed transformations
was even complete, meaning that termination of an on-demand TRS completely co-
incides with termination of the transformed (unrestricted) TRS. However, the trans-
formations utilized there are similar in structure to the ones from [30], which are
used for transforming context-sensitive TRSs into ordinary TRSs while preserving
non-termination.

While these transformations enjoy nice theoretical properties, in practical ex-
periments it turned out that they are of limited use in the automated termination
analysis, because a considerable amount of syntax and structural complexity is in-
troduced by them (this was observed for the first time in [13] and was empirically
supported by the results of a yearly competition of automated termination tools
analyzing a set of context-sensitive rewrite systems for termination, where, starting
around 2007, direct methods began to outperform approaches based on transforma-
tions of CSRSs into TRSs).

4.2. Forbidden Patterns 65

Lazy Rewriting
Another approach to laziness in term rewriting is lazy rewriting of [27]. There, all

positions in a term are labelled with either a lazy (l) or eager an (e) flag. Rewrite
steps may only be performed at positions labelled with e. Initially, the labelling is
established by a replacement map. However, the labels of l-labelled positions may
change to e if a rewrite step at such a position might contribute to the creation of a
redex at a more outer e-labelled position.

While the idea of lazy rewriting (i.e. to allow rewrite steps at otherwise forbidden
positions if they can contribute to the creation of a more outer redex) is similar to
the one of on-demand rewriting they are “in general not (easily) comparable” ([56,
Section 5.3]). However, like on-demand rewriting, lazy rewriting is general enough
to enforce termination in the critical Examples 7 and 32, while normal forms can
still be computed.

The drawback of using lazy rewriting is the subtlety involved in the dynamic
character of the labelings that also leads to quite complex and practically inefficient
methods for the automated termination analysis of TRSs restricted by lazy rewriting
(see e.g. [79, Example 2.8, 3.3 and Definition 3.6]).

Other approaches to restrictions of rewriting, that also fix the order of the argu-
ment evaluation of functions (instead of just partitioning the arguments into eager
and lazy) such as rewriting with on-demand strategy annotations of [7], tend to
suffer from the same problems as on-demand rewriting and lazy rewriting of having
complex formal definitions and being hard to analyze. We refer to [77] for a more
in-depth analysis and comparison of the mentioned approaches to lazy evaluation in
term rewriting also with context-sensitive rewriting.

In the following we introduce the novel approach of forbidden pattern restrictions
to rewriting that we hope can avoid some of the drawbacks of other notions of
restricted rewriting while being equally (or even more) powerful.

4.2 Forbidden Patterns

4.2.1 Basic Definitions

The basic idea of forbidden patterns is to explicitly forbid reduction steps when the
corresponding redex appears in a certain context and has a certain shape expressed
by a forbidden pattern. Hence, technically rewriting with forbidden patterns only
relies on matching and comparison of positions which makes it definitorily simpler
and more intuitive than approaches like on-demand rewriting and lazy rewriting.

A unique feature of rewriting with forbidden patterns as compared to other ap-
proaches is that forbidden patterns explicitly specify the forbidden part of terms
resp. the rewrite relation while other approaches typically make the allowed part
explicit (e.g. through a replacement map). This is an important design decision
which is based on the assessment that in many cases comparatively few surgical
restrictions to a non-terminating rewrite relation are sufficient to make it terminat-

66 Chapter 4. Generalizing Context-Sensitivity

ing. Hence, specifying these restrictions explicitly seems to be more economic than
implicit definitions through the complement of allowed rewrite steps.

The forbidden patterns that we use to specify restrictions are triples consisting
of a term, a position and a flag.

Definition 17 (forbidden pattern). A forbidden pattern (w.r.t. to a signature F)
is a triple 〈t, p, λ〉, where t ∈ T (F , V) is a term, p ∈ Pos(t) and λ ∈ {h, b, a}.

The intended meaning of the last component λ is to indicate whether the pattern
forbids reductions

• exactly at position p, but not outside (i.e., strictly above or parallel to p) or
strictly below – (h for here), or

• strictly below p, but not at or outside p – (b for below), or

• strictly above position p, but not at, below or parallel to p – (a for above).

Hence, the forbidden entities of rewriting with forbidden patterns can be either
positions, subterms or contexts at resp. in which no reductions may occur. While this
offers a great deal of flexibility in the design of actual forbidden pattern restrictions,
the analysis of the resulting rewrite relation (e.g. regarding termination) tends to be
hard in the simultaneous presence of all flags in a set of forbidden patterns. Hence,
in the sequel, when providing effective methods for the analysis of rewrite systems
restricted by forbidden patterns, we usually consider subclasses of forbidden patterns
where the third component of forbidden patterns is restricted (e.g. to h as in Section
4.4.1 below).

Moreover, abusing notation we sometimes say a forbidden pattern is linear, unifies
with some term etc. when we actually mean that the term in the first component of
a forbidden pattern has this property.

We denote a finite set of forbidden patterns for a signature F by ΠF or just
Π if F is clear from the context or irrelevant. For brevity, patterns of the shape
〈 , , h/b/a〉 are also called h/b/a-patterns, or here/below/above-patterns.1

Note that if for a given term t we want to specify more than just one restriction
by a forbidden pattern, this can easily be achieved by having several triples of the
shape 〈t, , 〉.

As already mentioned, in contrast to other approaches to restricted rewriting,
forbidden patterns are supposed to explicitly define the forbidden part of a rewrite
relation, thus implicitly yielding allowed reduction steps as those that are not for-
bidden.

Definition 18 (forbidden pattern reduction relation). Let R = (F , R) be a TRS
with forbidden patterns ΠF . The forbidden pattern reduction relation →R,ΠF , or

→Π for short is given by s→R,ΠF t if s
p→R t for some p ∈ PosF(s) such that there

is no pattern 〈u, q, λ〉 ∈ ΠF , no context C and no position q′ with

1Here and subsequently we use a wildcard notation for forbidden patterns. For instance, 〈 , , i〉
stands for 〈t, p, i〉 where t is some term and p some position in t of no further relevance.

4.2. Forbidden Patterns 67

• s = C[uσ]q′ and p = q′.q, if λ = h,

• s = C[uσ]q′ and p > q′.q, if λ = b, and

• s = C[uσ]q′ and p < q′.q, if λ = a.

Note that for a finite rewrite system R (with finite signature F) and a finite set
of forbidden patterns ΠF it is decidable whether s →R,ΠF t for terms s and t. We
write (R,Π) for rewrite systems with associated forbidden patterns. Such a rewrite
system (R,Π) is said to be Π-terminating (or just terminating if no confusion arises)
if →R,Π is well-founded. We also speak of Π-normal forms instead of →R,Π-normal
forms. We denote by PosΠ(t) the set of those positions of t that are allowed and by

Pos
Π

(t) those that are forbidden according to a set Π of forbidden patterns.
Special degenerate cases of (R,Π) include e.g. Π = ∅ where →R,Π=→R, and

Π = {〈l, ε, h〉 | l→ r ∈ R} where →R,Π= ∅.
In the sequel we use the notions of allowed and forbidden (by Π) redexes. A

redex s|p of a term s is allowed if s
p→Π t for some term t, and forbidden otherwise.

Example 33. Consider the TRS of Example 32. If we use a set of forbidden pat-
terns Π given by {〈x : (y : from(z)), 2.2, h〉} the relation →Π is terminating (and
termination can be shown automatically, cf. Example 44 below). Moreover, →Π is
powerful enough to compute original head-normal forms if they exist (cf. Example
66 below).

Example 34. Consider the non-terminating many-sorted TRS R given by

take(0, y : ys) → y app(nil, ys) → ys
take(s(x), y : ys) → take(x, ys) app(x : xs, ys) → x : app(xs, ys)

take(x, nil) → 0 from(x) → from(s(x))

with two sorts S = {Nat,NatList}, where the types of function symbols are as
follows:

nil : NatList

0 : Nat

s : Nat→ Nat

“ :” : Nat,NatList→ NatList

from : Nat→ NatList

app : NatList,NatList→ NatList

take : Nat,NatList→ Nat

If one restricts rewriting in R via Π given by

〈x : from(y), 2, h〉 〈x : app(from(y), zs), 2.1, h〉
〈x : app(y : app(z, zs), us), 2, h〉,

68 Chapter 4. Generalizing Context-Sensitivity

→Π is terminating and still every well-formed ground term can be normalized with
the restricted relation →Π (provided the term is normalizing). See Examples 67 and
45 below for justifications of these claims.

Note that the pleasant behaviour (namely termination and normalization) of
rewriting with forbidden pattern restrictions in Example 34 could neither be achieved
with context-sensitive rewriting nor with on-demand rewriting or lazy rewriting, nor
by using any reduction strategy.

Proposition 5. Consider the TRS of Example 34.

1. It is non-terminating (even in the sorted version) under any reduction strategy.

2. Using context-sensitive, on-demand or lazy rewriting restrictions, the resulting
restricted rewrite system is either non-terminating or original normal forms
cannot be computed even if they exist.

Proof. ad 1: Consider the (well-formed ground) term from(0) and the infinite
rewrite sequence

from(0)→ 0 : from(s(0))→ 0 : s(0) : from(s(s(0)))→ . . . (4.1)

Each term in this rewrite sequence contains exactly one redex, hence this reduction
sequence respects every possible reduction strategy.

ad 2: For context-sensitive rewriting and lazy term rewriting a replacement map
specifies the replacing/eager arguments of function symbols. Consider the function
symbol “:”. If 2 ∈ µ(:), then the infinite reduction sequence 4.1 is a proper infinite
context-sensitive resp. lazy rewrite sequence (in the case of lazy term rewriting for
appropriately labeled terms and in particular, a canonically labelled start term;
cf. [56, 77]). On the other hand, if 2 6∈ µ(:) the normal form of the (well-formed
ground) term app(0 : nil, s(0) : nil) (which is 0 : (s(0) : nil)) cannot be computed,
since the intermediate term 0 : app(nil, s(0) : nil) is irreducible in both context-
sensitive rewriting and lazy term rewriting (cf. [56, 77] for more details on and exact
definitions of lazy term rewriting).

Finally, we consider on-demand rewriting. There we have two replacement maps
µ and µ′ where µ identifies the eager and µ′ the lazy arguments of function symbols.
If i 6∈ µ(f) ∪ µ′(f), then the ith argument of f may under no circumstances be
reduced. First, if 2 ∈ µ(:) the infinite reduction sequence 4.1 is a proper on-demand
reduction sequence and hence we have non-termination. On the other hand, if
2 6∈ µ(f), then (regardless of whether 2 ∈ µ′(f) or not) the normal form of app(0 :
nil, s(0) : nil) cannot be computed by on-demand rewriting analogous to the case
of context-sensitive and lazy rewriting.

4.2. Forbidden Patterns 69

4.2.2 Relations to Existing Approaches

Thanks to the generality of rewriting with forbidden patterns it is not surpris-
ing that several well-known approaches to restricted term rewriting as well as to
rewriting guided by reduction strategies occur as special cases of rewriting with
forbidden patterns. In the following we provide some examples. Context-sensitive
rewriting w.r.t. to a replacement map µ arises as special case of rewriting with
forbidden patterns when defining Π to contain for each function symbol f and
each j ∈ {1, . . . , ar(f)} \ µ(f) the forbidden patterns (f(x1, . . . , xar(f)), j, h) and
(f(x1, . . . , xar(f)), j, b).

Moreover, with forbidden patterns it is also possible to simulate position-based
reduction strategies such as innermost and outermost rewriting. The innermost
reduction relation of a TRSR coincides with the forbidden pattern reduction relation
if one uses the forbidden patterns 〈l, ε, a〉 for the left-hand sides l of each rule of R.
Dually, if patterns (l, ε, b) are used, the forbidden pattern reduction relation coincides
with the outermost reduction relation w.r.t. R.

On the other hand, more complex layered combinations of the aforementioned
approaches, such as innermost context-sensitive rewriting cannot be modeled by
forbidden patterns as proposed in this thesis.

Observation 2. Innermost context-sensitive rewriting can in general not be modeled
by rewriting with (a finite set of) forbidden patterns.

Proof. Consider a rewrite system

f(x) → a

a → a

over a signature F = {a, f, g} where a is a constant and f and g are unary function
symbols. Moreover, let µ(f) = {1} and µ(g) = ∅. Consider any finite set Π of
forbidden patterns and let n be the maximal term depth of any forbidden pattern.
Then consider a term s = fn+1(a) (f 0(t) = t and fm+1(t) = f(fm(t))). The
term s is not an innermost context-sensitive redex, thus if Π accurately models
innermost context-sensitive rewriting, the root position of s must be forbidden by
some forbidden pattern π = 〈t, p, λ〉. We have one of two possible situations.

First, assume t matches s, and either p = ε and λ = h, or p > ε and λ = a.
Since the term depth of t is less or equal to n, t = fk(x) for some k < n. Hence, π
also forbids the root position of the term s′ = fn+1(x). However, s′ is an innermost
context-sensitive redex, thus in this case Π is not accurate in simulating innermost
context-sensitive rewriting.

Second, assume t matches some proper subterm s|q of s and λ = a (p is irrelevant
in this case). Then, π forbids reductions at the root position of the term f(g(s))
because it matches s|q. However, the term f(g(s)) is an innermost context-sensitive
redex, thus also in this case Π is not accurate in simulating innermost context-
sensitive rewriting.

70 Chapter 4. Generalizing Context-Sensitivity

However, the generality and parameterizability of rewriting with forbidden pat-
terns comes at a certain price. In order to make the approach feasible in practice, it is
necessary to identify interesting classes of forbidden patterns that yield a reasonable
trade-off between power and simplicity. For these interesting classes of forbidden
patterns we need methods which guarantee that the results (e.g. normal forms)
computed by rewriting with forbidden patterns are meaningful, in the sense that
they have some natural correlation with the actual results obtained by unrestricted
rewriting. For instance, it is desirable that normal forms w.r.t. the restricted rewrite
system are original head-normal forms. In this case one can use the restricted reduc-
tion relation to compute original normal forms (by an iterated process) whenever
they exist (provided that the TRS in question is left-linear, confluent and the re-
stricted reduction relation is terminating) (cf. Section 4.5 below for details). Before
presenting sufficient criteria for these “completeness” properties, we investigate the
confluence and termination properties of rewrite systems with forbidden patterns.

4.3 Confluence of Rewriting with Forbidden Pat-

terns

Typically, confluence of a restricted rewrite relation is of minor importance as com-
pared to termination and the power to simulate unrestricted rewriting. The reason
for that is the fact that restricted rewriting often computes certain “parts” of the
actual result values, i.e. normal forms of terms. An example of this can be found
e.g. in [55, Section 5.3] and also in Section 4.5 below. In both cases normal forms of
the restricted rewrite relation are head-normal forms of the underlying unrestricted
rewrite relation. Hence, restricted rewriting can be used to normalize terms (w.r.t.
unrestricted rewriting) in an iterated, recursive process ([55, Theorem 23]). However,
despite this close connection of unrestricted and restricted rewriting, the restricted
rewrite relation might not be confluent even if the unrestricted one is. We provide an
example from the realm of context-sensitive rewriting to illustrate this claim (note
that this immediately yields an example for the same situation in rewriting with
forbidden patterns, since context-sensitive rewriting is a special case of rewriting
with forbidden patterns).

Example 35. Consider the left-linear TRS R = (F , R) from Example 34. It is
non-terminating but confluent. When using a replacement map µ(:) = {1} and
µ(f) = {1, . . . , ar(f)} for f ∈ F \ {:}, µ is less restrictive than the canonical
replacement map for R and R is µ-terminating. Moreover, µ-normal forms are
head-normal forms w.r.t. unrestricted rewriting according to [55, Theorem 8]. Hence,
for a given normalizing term s its unique normal form (w.r.t. to unrestricted R)
can be computed by computing some µ-normal form t and recursively µ-normalize
the arguments of root(t). Nevertheless µ-normal forms are not unique even for

4.3. Confluence of Rewriting with Forbidden Patterns 71

normalizing terms:

app(0 : nil, app(nil, nil))→µ app(0 : nil, nil)→µ 0 : app(nil, nil)

↓µ
0 : app(nil, app(nil, nil))

However, despite the limited practical relevance of confluence of restricted rewrit-
ing, from a systematic point of view confluence criteria are nice to have and may
provide an improved insight in the subtle technical details of rewriting with forbidden
patterns.

4.3.1 Confluence by Local Confluence

It is well-known that for terminating rewrite relations local confluence implies con-
fluence (Newman’s Lemma [68]). Moreover, for ordinary terminating TRSs local
confluence is decidable via the critical pair lemma of [45]. In this section we are
going to develop a similar confluence criterion for left-linear TRSs with forbidden
patterns. The main obstacle in the design of such a criterion is that local variable
overlaps may not be joinable due to the forbidden pattern restrictions (cf. also [55,
Example 7] for an example illustrating the analogous problem for context-sensitive
rewriting).

Example 36. Consider the following TRS R.

f(x) → g(x)

a → b

If one uses a set of forbidden patterns Π = {〈g(x), 1, h〉}, →Π is not locally confluent
(despite → being confluent and terminating):

g(a)←Π f(a)→Π f(b)

The term g(a) is a Π-normal form and obviously f(b) 6→∗Π g(a). Hence, →Π is not
locally confluent.

The problem in Example 36 is that the redex a changes its status (from allowed
to forbidden) in the transition from f(a) to g(a) although the term a is bound to a
variable in the necessary rewrite step and thus only copied but not modified.

In order to avoid this problem we are going to impose restrictions on the forbid-
den patterns such that critical divergences as the one in Example 36 cannot occur.
A similar approach was taken in [55] for context-sensitive rewriting. There, con-
straints on the status of variables occurring in rewrite rules were imposed in order
to guarantee joinability of divergences obtained by variable overlaps. It is not sur-
prising that the situation is more involved in the realm of rewriting with forbidden
patterns, since the restrictions on the rewrite relations are much more fine-grained

72 Chapter 4. Generalizing Context-Sensitivity

b

r

t

pq bb

r

t

q
b t

r

q
b

t

l

p
b

r’

b

q’

(1) (2.1) (2.2) (3)

b

p.o

p p

b b

Figure 4.1: Critical h-patterns

there. We develop a confluence criterion for rewriting with forbidden patterns in
the presence of h- and b-patterns. The reason we focus on these kind of patterns
is that the termination methods of Section 4.4 are restricted to h- and b-patterns
and the confluence criterion relies on termination. For simplicity reasons we define
“non-criticality” of forbidden patterns separately for the cases of h- and b-patterns.

Definition 19 (non-critical forbidden h-patterns). Let R be a TRS and Π be a
set of linear forbidden h-patterns. Π is said to be non-critical for R if for every
π = 〈t, p, h〉 ∈ Π there is no rule l→ r ∈ R with

1. t|qθ = rθ for some position q ∈ PosF(t) and mgu θ where additionally p ‖ q;

2. r|qθ = tθ (or rθ = t|qθ) for some q ∈ PosF(r) (resp. q ∈ PosF(t)) and mgu
θ where p ≥ o for some variable position q.o of r|q (resp. p ≥ q.o for some
variable position o of r);

3. t|pθ = lθ for some mgu θ and t|q′θ′ = r′θ for some rule l′ → r′ ∈ R, mgu θ′

and position q′ ≥ p.o where o ∈ PosV (l).

Figure 4.1 illustrates the cases of critical forbidden patterns described in Defini-
tion 19.

In the case of b-patterns we forbid any overlaps of forbidden patterns and right-
hand sides of rules whatsoever, because in general all such overlaps lead to non-
joinable local divergences w.r.t. rewriting with forbidden patterns for non-patholog-
ical TRSs.

Definition 20 (non-critical forbidden b-patterns). Let R be a TRS and Π be a
set of linear forbidden b-patterns. Π is said to be non-critical for R if for every
π = 〈t, p, b〉 ∈ Π there is no rule l→ r ∈ R such that t|qθ = rθ or tθ = r|q′θ for any
positions q ∈ PosF(t) and q′ ∈ PosF(r) and substitution θ.

Definition 21 (non-critical forbidden patterns). Let R be a TRS and Π be a set of
forbidden patterns. Π is non-critical for R if for all patterns π = 〈t, p, λ〉 ∈ Π we

4.3. Confluence of Rewriting with Forbidden Patterns 73

have that t is linear and λ ∈ {h, b} and additionally Πh and Πb are both non-critical
for R, where Πh is the subset of h-patterns of Π and Πb is the subset of b-patterns
of Π.

We sometimes just say that a set of forbidden patterns Π is non-critical, if the
TRS R for which Π is non-critical is clear from the context. In the presence of non-
critical forbidden patterns modifying a term at position p does not change the status
of positions q ‖ p. Note that the definition of non-criticality for h- and b-patterns
is only sufficient but not necessary in order to guarantee joinability of local diver-
gences not corresponding to critical pairs (cf. Lemma 9 below). In particular, the
context-sensitive notion of left-homogeneous replacing variables (cf. [55][Definition
5]) does not arise as special case of non-critical forbidden patterns. This suggests
that generalizations of non-critical forbidden patterns are possible that still imply
joinability of variable overlaps. Such generalizations are an interesting direction of
future research in the area of confluence of rewriting with forbidden patterns.

The following lemma shows that the status of positions in a term is not altered
from allowed to forbidden by reduction parallel to the position.

Proposition 6. Let R be a TRS and let Π be a set of linear forbidden h- and b-
patterns that are non-critical for R. If position p is allowed in a term t, then it is
also allowed in any term s obtained from t by a one-step reduction at some position
q ‖ p.

Proof. Assume to the contrary that p is forbidden in s. Hence, there is a forbidden
pattern 〈u, o, λ〉 such that s|p′ = uσ and p′.o = p if λ = h resp. p′.o < p if λ = b.

Since u does not match t|p′ (otherwise p would be forbidden in t) and is linear, it
must be overlapped by the right-hand side of the rule applied in the step from t to
s at position q′ given by p′.q′ = q. In case λ = b we get an immediate contradiction
to non-criticality of Π, since in that case a b-pattern is overlapped by the right-
hand side of a rewrite rule (cf. Definition 20). In case λ = h we have the following
situation:

s

u

r

b

b
b

p’

q p

o
q’

Since p ‖ q, we also have q′ ‖ o thus contradicting non-criticality of Π (precisely
Item 1 of Definition 19).

In systems restricted by non-critical forbidden patterns variable overlaps are non-
critical.

74 Chapter 4. Generalizing Context-Sensitivity

Lemma 9. Let R be a left-linear TRS and Π be a set of linear forbidden h- and b-
patterns that are non-critical for R. Each local divergence s1

p1←l1→r2,Π s
p2→l2→r2,Π s2

where either p1 ‖ p2 or p2 ≥ p1.q and q ∈ PosV (l1) is joinable by at most one parallel
reduction step (on each side).

Proof. First assume p1 ‖ p2. Thus, it suffices to show that p1 is allowed in s2 and p2

is allowed in s1. This is a direct consequence of Proposition 6.

Second, assume p2 = p1.q.o for some q ∈ PosV (l1). Since R is left-linear, it
suffices to show that p1 is allowed in s2 and all one-step descendants of p2 are
allowed in s1. We consider position p1 in s2 first. Graphically the situation is the
following:

r2

l1

b
p1

s2

If position p1 is forbidden in s2, then there must be some pattern 〈t, p, λ〉matching
s2|q′ at some position q′ ≤ p1 (say q′.q′′ = p1) such that either q′.p = p1 if λ = h or
q′.p < p1 if λ = b. For the latter case the situation is as follows.

r2

l1

b

p1

s2 b

q′t
p

o
b

p2

Since t does not match s|q′ and t is linear, there must be some position o ∈
PosF(t) such that t|o and r2 unify. Hence, if λ = b we get an immediate contradiction
to non-criticality of Π. Otherwise, we also get t|q′′θ = l1θ for some mgu θ, since s2|p1

is already a common instance of t|q′′ and l1. Moreover, o ≥ q′′.pV for some variable
position of l1, because p2 ≥ p1.pV . Hence, if λ = h we get a contradiction by Item 3
of Definition 19.

Finally, we show that the descendants {q1, . . . , qm} of position p2 are allowed in
s1. The situation is the following:

4.3. Confluence of Rewriting with Forbidden Patterns 75

l2

r1

b
p1

s1

b b

q1

qm...

Assume some descendant qi is forbidden in s1. Then, there is some forbidden
pattern π = 〈t, p, λ〉 matching s1|q′ at some position q′ ≤ qi, thereby forbidding qi.
Since π does not forbid the reduction of s|p2 , q′ must either be of the shape p1.pr for
some pr ∈ PosF(r2) or a prefix of p1 (i.e. q′ ≤ p1):

l2

r1 b
p1

s1

b b

q1

qm...

t

l2

r1 b

p1
s1

b b

q1

qm...

b

q′ = p1.pr
b

q′

t

In the latter case there must be some position pt ∈ PosF(t) with q′.pt ≥ p1, since
otherwise t would have matched s|q′ as t is linear. Hence, we have either r1θ = t|oθ
or r1|oθ = tθ for some o ∈ PosF(t) (resp. o ∈ PosF(r1)) and mgu θ. Thus, in case
λ = b we have a contradiction to non-criticality of Π.

If λ = h, then in the first case we have r1|prθ = tθ for some θ and p ≥ pr.o for
some variable position o of r|pr , because qi ≥ p1.o

′ for some variable position o′ of
r1. In the second case we have t|ptθ = r1θ for some pt (more precisely pt is given
by q′.pt = p1) and p ≥ pt.o

′ for some variable position o′ of r1. In both cases we
get a contradiction to Π being non-critical, more precisely to Item (2) of Definition
19.

Example 37. The forbidden patterns used in Example 33 are non-critical, while
the forbidden patterns in (the untyped version of) Example 34 are critical, since the
right-hand side r = x : app(xs, ys) and t of the forbidden pattern 〈t, p, h〉 = 〈x′ :
app(from(y′), zs′), 2.1, h〉 unify (indeed r matches t). In t the forbidden position is
p = 2.1. This position is a variable position in r. Hence, we have a violation of Item
2 of Definition 19 (more precisely there we have q = ε and p = o = 2.1).

Indeed →R,Π is not (locally) confluent despite R being non-overlapping: To see

76 Chapter 4. Generalizing Context-Sensitivity

this, consider the local divergence s1 ←Π s→Π s2 where

s = 0 : app(take(0, from(0) : nil), 0)

s1 = 0 : app(from(0), 0)

s2 = 0 : app(take(0, (0 : from(s(x))) : nil), 0)

The term s1 is a Π-normal form and s2 can be further reduced (in a unique way):

s2 = 0 : app(take(0, (0 : from(s(x))) : nil), 0)

→Π 0 : app(0 : from(s(x), 0)

→Π 0 : (0 : app(from(s(x), 0)) = s̃2

Since s̃2 is a normal form, s̃2 6= s1 and the reduction sequence from s2 to s̃2 was
unique, s1 and s2 are not joinable.

Note that the term s is not well-typed, since from(0) which is of type NatList
occurs in the first argument of “:” which demands a term of type Nat. We will
later see that divergences starting from (normalizing) well-typed terms are joinable
for this example (this is a consequence of Example 67 below and the fact that the
unrestricted TRS is orthogonal and thus confluent).

One subtlety of rewriting with forbidden patterns is that parallel rewriting can
in general not be simulated by multistep non-parallel rewriting (i.e. −−‖−→Π 6⊆→∗Π).

Example 38. Consider the TRS R = (F , R) where F = {a, b, f}, a and b are
constants, f is a function symbol of arity 2 and R is given by

a→ b.

Additionally, consider a set of forbidden patterns Π = {〈f(b, x), 2, h〉, 〈f(x, b), 1, h〉}.
Then we have

f(a, a)−−‖−→Π f(b, b) but f(a, a) 6→∗Π f(b, b),

since both f(a, b) and f(b, a) are Π-normal forms. Hence −−‖−→Π 6⊆ →∗Π.

In Example 38 the forbidden patterns Π are critical for the TRS R (because of
Item 1 of Definition 19). Indeed, it turns out that −−‖−→R,Π⊆→∗R,Π holds provided
that Π is non-critical for R.

Lemma 10. Let R be a TRS and Π a set of linear non-critical forbidden h- and
b-patterns. Then →Π⊆ −−‖−→Π⊆→∗Π.

Proof. The inclusion →Π⊆ −−‖−→Π is trivial, since every single step is by definition
also a single parallel step. The second inclusion (−−‖−→Π⊆→∗Π) is a straightforward
consequence of Proposition 6.

4.3. Confluence of Rewriting with Forbidden Patterns 77

Building upon Lemma 9 we now provide a sufficient criterion of confluence of
left-linear Π-terminating rewrite systems with non-critical forbidden patterns. To
this end we are going to prove a modified critical pair lemma for rewriting with
forbidden patterns. First we define the notion of rewrite sequences that are stable
w.r.t. substitutions and contexts.

Definition 22. Let →Π be a forbidden pattern rewrite relation and ti (1 ≤ i ≤ n)

a series of terms such that t1
p1→Π t2

p2→Π . . .
pn−1→ Π tn. This reduction sequence is

called stable w.r.t. contexts and substitutions (for →Π) if C[t1]qσ
q.p1→Π C[t2]qσ

q.p2→Π

. . .
q.p1→Π C[tn]qσ holds for every substitution σ and every context C[]q where q is not

forbidden in C[]q.

Proposition 7. For a given TRS R and a set of linear forbidden h- and b-patterns
it is decidable whether a given reduction sequence t1 →Π t2 →Π . . . →Π tn is stable
under contexts and substitutions (for →Π).

Proof. Let S be the reduction sequence t1 →Π t2 →Π . . . →Π tn. Assume there is

some substitution σ and context C[]q such that C[t1]qσ
q.p1→Π C[t2]qσ

q.p2→Π . . .
q.pn−1→ Π

C[tn]qσ does not hold (i.e. S is not stable under contexts and substitutions). We call
C and σ witnesses for non-stability of S. This means that some reduction step is
forbidden by Π, since the rewrite relation without restriction is stable under contexts
and substitutions. As we are considering only linear h- and b-patterns, this means
there is some forbidden pattern π = 〈t, pt, λ〉 such that C[ti]qσ|p = tτ for some
substitution τ , some 1 ≤ i < n and p ∈ PosF(C[ti]q), because otherwise π could not
forbid a reduction at position q.pi where pi ∈ PosF(ti).

We are going to prove that there exist a context C ′[]q′ and a substitution σ′ such
that position q′.pi is forbidden in C ′[ti]q′σ

′ and the term depth of C ′[]q′ and xσ′ is at
most equal to the largest term depth of any forbidden pattern in Π (denoted md(Π)
for maximal depth) for every x ∈ Dom(σ′): First, as q is not forbidden in C[]q we
have |q| − |p| ≤ |t| ≤ md(Π). Hence, we define the context C ′[]q′ by C[]q|o where
q = o.q′ and |q′| = md(Π). Moreover, let p′ be given by p = o.p′ (note that p ≥ o,
because there must be some position p′t ∈ PosF(t) with p.p′t ≥ q = o.q′ as otherwise
position q would be forbidden in C[]q as |p′t| ≤ |q′| = md(Π)).

...

b
p

t

ti

|t| ≤ md(Π)

C[ti]qσ

b

q

b

o

|q′|
|q| − |p|

b

p′t

78 Chapter 4. Generalizing Context-Sensitivity

Second, let θ be an mgu of C ′[ti]q′ |p′ and t (which exists because we have C ′[ti]q′σ|p′ =
tτ and ti and t are considered to be variable disjoint). We define σ′ to be θ restricted
to the variables of V ar(t1) (note that V ar(t1) ⊇ V ar(ti) for all 1 ≤ i ≤ n) and thus

C ′[ti]q′σ
′|p′ = tτ and C ′[ti]q′σ

′
q′.pi
6→ Π C ′[ti+1]q′σ

′. Since σ′ is a restriction of the mgu
θ and t is linear, xσ′ has a term depth of at most the term depth of t for every
x ∈ Dom(σ′).

Hence, if S is not stable under contexts and substitutions, then we already find
a witness context C ′[]p′ and substitution σ′ for this non-stability in the finite set of
contexts and substitutions involving only terms having a term depth not exceeding
the maximal term depth of any forbidden pattern in Π. On the other hand, if S
is stable under contexts and substitutions, then, in particular, there is no witness
(context and substitution) to the contrary in this set of contexts and substitutions.
Hence, stability of S under contexts and substitutions can be decided by checking
whether S is stable under those contexts and substitutions that involve only terms
having a term depth not exceeding the maximal term depth of any forbidden pattern
in Π.

In order to provide a modified critical pair lemma for rewriting with forbidden
patterns we first define the notion of Π-critical pairs w.r.t forbidden patterns Π and
a TRS R, which are critical pairs that arise from an →Π divergence.

Definition 23 (Π-critical pairs). Let R be a TRS and Π a set of forbidden patterns.
Moreover, let l1 → r1 and l2 → r2 be rewrite rules from R. If l1|pθ = l2θ for some
mgu θ and some position p ∈ PosF(l1) which is allowed in l1, then 〈l1[r2]pθ, r1θ〉 is
a Π-critical pair.

Lemma 11 (adapted Critical Pair Lemma for TRSs with forbidden patterns). Let
R be a left-linear TRS and Π be a set of linear non-critical forbidden h- and b-
patterns. If all Π-critical pairs 〈s, t〉 of R are joinable through →Π reductions that
are stable under contexts and substitutions, then →Π is locally confluent.

Proof. Consider a local divergence

s1
p1←l1→r1,Π s

p2→l2→r2,Π s2.

If p1 ‖ p2 we have s1 ↓Π s2 according to Lemmata 9 and 10. Otherwise, assume
w.l.o.g. that p1 ≤ p2. If p1.p ≤ p2 for some position p ∈ PosV (l1) we have s1 ↓Π s2

by Lemmata 9 and 10 again. Otherwise, the divergence is due to a critical pair
〈s, t〉 and s1 = C[s]qσ and s2 = C[t]qσ for some context C[]q and some substitution
σ. Since s and t are joinable with reductions that are stable under contexts and
substitutions, we have s1 ↓Π s2.

Finally, we obtain a confluence criterion based on this adapted critical pair
lemma.

4.3. Confluence of Rewriting with Forbidden Patterns 79

Theorem 12. Let R be a left-linear Π-terminating TRS and Π be a set of linear
non-critical forbidden h- and b-patterns. If all π-critical pairs 〈s, t〉 of R are joinable
through →Π reductions that are stable under contexts and substitutions, then →Π is
confluent.

Proof. Follows from Lemma 11 and Newman’s Lemma ([68]), since R is Π-termi-
nating.

Example 39. Consider the TRS R and forbidden patterns Π of Example 33. R
has no critical pairs and thus no Π-critical pairs. Moreover, R is left-linear Π-
terminating (cf. Example 44 below). Hence →R,Π is confluent.

4.3.2 Confluence by the Diamond Property

It is well known that the diamond property of any relation → implies confluence
of this relation. Moreover, for any two relations →1 and →2 with →1⊆→2⊆→∗1
confluence coincides. These two results have been used to establish that left-linear
non-overlapping (i.e. orthogonal) (unrestricted) rewrite systems are confluent. More
precisely it can be shown that for orthogonal TRSsR−−‖−→R has the diamond property
(this result is obtained from the so called Parallel Moves Lemma, cf. eg. [11, Lemma
6.4.4]) and as →R⊆ −−‖−→R⊆→∗R holds, →R is confluent.

Lemma 9 suggests that in the presence of non-critical forbidden patterns a mod-
ified version of the Parallel Moves Lemma might hold for rewriting with forbidden
patterns. Indeed, this is the case for Π-orthogonal rewrite systems.

Definition 24 (Π-orthogonal). A rewrite system R with forbidden patterns Π is
Π-orthogonal it R is left linear and there are no Π-critical pairs.

Lemma 12 (adapted Parallel Moves Lemma for rewriting with forbidden patterns).
Let R be a Π-orthogonal TRS and Π a set of linear non-critical forbidden h- and
b-patterns. Then −−‖−→Π has the diamond property.

Proof. First consider a local divergence

s1
p←Π s

q1,...,qn

−−‖−→ Π s2

where p ≤ qi for all 1 ≤ i ≤ n. Here s1 = s[rσ]p (for some substitution σ and
rewrite rule l → r) and s2 = s[r1σ1]p1 . . . [rnσn]qn (for some substitutions σ1, . . . , σn
and some rewrite rules l1 → r1, . . . , ln → rn).

We need to show that p is allowed in s2 and all descendants of positions from
{q1, . . . , qn} are allowed in s1. We denote this set of descendants by Descq1,...,qn .
Regarding the status of positions from Descq1,...,qn we already know by (the proof
of) Lemma 9 that in the single divergences

s1
p←Π s

qi→Π si2

80 Chapter 4. Generalizing Context-Sensitivity

the descendants of qi in s1 are allowed for all 1 ≤ i ≤ n.
Regarding the status of position p in s2 we prove by induction on n that it is

allowed. If n = 1, p is allowed according to (the proof of) Lemma 9. If n > 1, the

induction hypothesis yields that p is allowed in s′2 obtained from s by s
q1,...,qn−1

−−‖−→ Π s′2
using the rewrite rules l1 → r1, . . . , ln−1 → rn−1. Since R is Π-orthogonal, s′2|p = lσ
(for some σ) and moreover position qn is allowed in s′2 according to Proposition 6.
Hence, we have a divergence

s′1
p←Π s′2

qn→Π s2

for which again (the proof of) Lemma 9 yields that position p is allowed in s2.
Now consider a general divergence

s1

p1,...,pm

←−‖−− Π s
q1,...,qn

−−‖−→ Π s2.

Let Pmax = {pmax1 , . . . , pmaxk } be the set of maximal positions from {p1, . . . , pm,
q1, . . . , qn}We decompose the divergence into several divergences of the above shape:

si1
pmax
i← Π s

qi1,...,q
i
li

−−‖−→ Π si2

for all 1 ≤ i ≤ k where {qi1, . . . , qili} is the subset of positions from {p1, . . . , pm,
q1, . . . , qn} that are greater than pmaxi . For these divergences we already proved that
pmaxi is allowed in si2 for every 1 ≤ i ≤ k and the descendants of the positions
qi1, . . . , q

i
li

are allowed in si1 and below pmaxi for all 1 ≤ i ≤ k. By definition positions
in Pmax are pairwise parallel. Hence, we can apply Proposition 6 to obtain that all
positions from Pmax are allowed in s1 or s2 (depending on whether these positions
originally were from {p1, . . . , pm} or {q1, . . . , qn}) and all descendents of the positions
qi1, . . . , q

i
li

are allowed in s1 or s2 (depending on whether these positions originally
were from {p1, . . . , pm} or {q1, . . . , qn}). Hence, as descendants of parallel positions
are again parallel we have joinability of s1 and s2 with one −−‖−→Π step on each
side.

We obtain a confluence criterion based on Lemma 12 and Lemma 10:

Theorem 13. Let R be a Π-orthogonal TRS where Π is a set of linear non-critical
forbidden h- and b-patterns. Then →Π is confluent.

Proof. By Lemma 12, −−‖−→Π has the diamond property and thus is confluent ([11,
Lemma 2.7.4]). Moreover, we have →Π⊆ −−‖−→Π⊆→∗Π by Lemma 10 and thus obtain
confluence of →Π by [11, Lemma 2.7.7].

Example 40. Consider the TRS R and the forbidden patterns Π of Example 33.
Since R is Π-terminating and Π is non-critical for R, we conclude confluence of
→R,Π. Note that in contrast to Example 37 we did not use Π-termination of R to
obtain confluence here.

4.4. Termination of Rewriting with Forbidden Patterns 81

4.4 Termination of Rewriting with Forbidden

Patterns

We describe two different approaches for the termination analysis of TRSs restricted
by forbidden patterns. The first one is a transformative method applicable to TRSs
with linear forbidden h-patterns. In this approach we exploit the fact that for this
kind of patterns (say Π) the status of some position p in a term s is determined by
the function symbols (or variables) of s at positions q with ||q|−|p|| < max〈t,p,h〉∈Π|t|
and that this set of positions is finite.

The second approach is based on a modified dependency pair framework (cf. [33])
comparable to [2] which we also used in Section 3.2.4. The basic idea is to enrich
dependency pairs by the contexts in which the corresponding recursive function calls
take place in the right-hand sides of the rewrite rules. This additional contextual
information is used to define forbidden pattern dependency pair chains which corre-
spond to forbidden rewrite sequences such that infinite dependency pair chains exist
if and only if infinite forbidden pattern rewrite chains exist. Thus, in order to prove
forbidden pattern termination one proves the absence of infinite forbidden pattern
dependency pair chains with (some of) the usual advantages one obtains by using
the dependency pair framework.

4.4.1 Termination of Rewriting with Forbidden Patterns by
Transformation

In this subsection we are exclusively concerned with linear h-patterns. For this kind
of forbidden patterns (and assuming a finite signature) a (finite) set of allowed con-
texts and substitutions under which a rewrite rule may be applied complementing
the forbidden ones can be constructed. Thus, we can transform a rewrite system with
this kind of forbidden patterns into a standard (i.e., context-free) one by explicitly
instantiating and embedding all rewrite rules (in a minimal way) in contexts (in-
cluding a designated top-symbol representing the empty context) such that rewrite
steps in these contexts and under these substitutions are allowed.

To this end we propose a transformation that proceeds by iteratively instantiating
and embedding rules in a minimal way. This is to say that the used substitutions
map variables only to terms of the form f(x1, . . . , xar(f)) and the contexts used for
the embeddings have the form g(x1, . . . , xi−1,�, xi+1, . . . , xar(f)) for some function
symbols f ∈ F , g ∈ F] {top} and some argument position i of f (resp. g). It is
important to keep track of the position of the initial rule inside the embeddings. Thus
we associate to each rule introduced by the transformation a position pointing to the
embedded original rule. This is to say that if a rewrite rule l → r is embedded into
a context C[]p, thus yielding a rewrite rule C[l]p → C[r]p, we associate the position
p to this rewrite rule, which points to the location of the lhs resp. rhs of the original
rule in the lhs resp. rhs of the embedded rule. We denote such embedded rewrite rules
by pairs of rewrite rules and positions. For instance we write 〈C[l]p → C[r]p, p〉. To

82 Chapter 4. Generalizing Context-Sensitivity

all initial rules of R we associate ε.

Note that it is essential to consider a new unary function symbol tops for every
sort s ∈ S (of type s → s) representing the empty context. This is illustrated by
the following example.

Example 41. Consider the TRS given by

a → f(a) f(x) → x

with F = {a, f} and the set of forbidden patterns Π = {〈f(x), 1, h}〉}. This system
is not Π-terminating as we have

a→Π f(a)→Π a→Π . . .

Whether a subterm s|p = a of some term s is allowed for reduction by Π depends on
its context. Thus, according to the idea of our transformation we try to identify all
contexts C[a]p such that the reduction of a at position p is allowed by Π. However,
there is no such (non-empty) context, although a may be reduced if C is the empty
context. Moreover, there cannot be a rule l → r in the transformed system where
l = a, since that would allow the reduction of terms that might be forbidden by Π.
Our solution to this problem is to introduce a new function symbol top explicitly
representing the empty context. Thus, in the example the transformed system will
contain a rule top(a)→ top(f(a)).

Abusing notation we subsequently use only one top-symbol, while we actually
mean the tops-symbol of the appropriate sort. All forbidden patterns used in this
section (particularly in the lemmata) are linear here-patterns. We will make this
general assumption explicit only in the more important results.

The following definition introduces the function T that, given an embedded
rewrite rule 〈l → r, p〉, computes the set {〈l1 → r1, p1〉, . . . , 〈ln → rn, pn〉} of (mini-
mally) embedded and instantiated versions of this rule, where additionally li overlaps
with some forbidden pattern for all 1 ≤ i ≤ n. The intuition behind demanding that
the computed embedded and instantiated rewrite rules have to overlap with for-
bidden patterns is that in this case further embedding and instantiation of these
embedded rules might lead to rules whose left-hand sides are actually matched by
forbidden patterns.

Definition 25 (instantiation and embedding). Let F = (S,Ω) be a signature, let
〈l → r, p〉 be an embedded rewrite rule of sort s over F and let Π be a set of linear
h-forbidden patterns. The set of minimal instantiated and embedded rewrite rules

4.4. Termination of Rewriting with Forbidden Patterns 83

TΠ(〈l→ r, p〉) (or just T (〈l→ r, p〉)) is T iΠ(〈l→ r, p〉)] T eΠ(〈l→ r, p〉)2 where

T e(〈l→ r, p〉) = {〈C[l]→ C[r], i.p〉 | C = f(x1, . . . , xi−1,�, xi+1, . . . , xar(f)),

f ∈ Ω(s1,...,si−1,s,si+1,...,sar(f)),s
′ , f ∈ F] {tops | s ∈ S},

i ∈ {1, . . . , ar(f)}, ∃〈u, o, h〉 ∈ Π ∃θ. o = q.p ∧ q 6= ε ∧ u|qθ = lθ}
T iΠ(〈l→ r, p〉) = {〈lσ → rσ, p〉 | xσ = f(x1, . . . , xar(f)),

sort(x) = sort(f(x1, . . . xar(f))),

f ∈ F , y 6= x⇒ yσ = y, x ∈ RVΠ(l, p)}

and RVΠ(l, p) = {x ∈ V ar(l) | ∃〈u, o, h〉 ∈ Π.θ = mgu(u, l|q) ∧ q.o = p ∧ xθ 6∈ V }.
The variables x1, . . . , xar(f) are fresh.

We also call the elements of T (〈l→ r, p〉) the one-step T -successors of 〈l→ r, p〉.
The reflexive-transitive closure of the one-step T -successor relation is the many-step
T -successor relation or just T -successor relation. We denote the set of all many-step
T -successors of an embedded rule 〈l→ r, p〉 by T ∗(〈l→ r, p〉).

The set RVΠ(l, p) of “relevant variables” is relevant in the sense that their in-
stantiation might contribute to a matching by some (part of a) forbidden pattern
term.

Note that in the generated embedded rewrite rules 〈l′ → r′, p′〉 in TΠ(〈l→ r, p〉),
a fresh tops-symbol can only occur at the root of both l′ and r′ or not at all, according
to the construction in Definition 25.

Example 42. Consider the TRS (R,Π) where R = ({a, f, g}, {f(x)→ g(x)}) and
the forbidden patterns Π are given by {〈g(g(f(a))), 1.1, h〉}. T (〈f(x) → g(x), ε〉)
consists of the following embedded rewrite rules.

〈f(f(x)) → g(f(x)), ε〉 (4.2)

〈f(g(x)) → g(g(x)), ε〉 (4.3)

〈f(a) → g(a), ε〉 (4.4)

〈f(f(x)) → f(g(x)), 1〉 (4.5)

〈g(f(x)) → g(g(x)), 1〉 (4.6)

〈top(f(x)) → top(g(x)), 1〉 (4.7)

Note that RVΠ(f(x), ε) = {x}, because g(g(f(a)))1.1 = f(a) unifies with f(x) and
mgu θ where xθ = a 6∈ V . On the other hand RVΠ(f(f(x)), 1) = ∅.

Lemma 13 (finiteness of instantiation and embedding). Let 〈l → r, p〉 be an em-
bedded rewrite rule and let Π be a set of forbidden patterns. The set of (many-step)
instantiations and embeddings of 〈l→ r, p〉 (i.e. T ∗(〈l→ r, p〉)) is finite.

2Note that T i
Π(〈l → r, p〉) and T e

Π(〈l → r, p〉) are disjoint, because the second component (i.e.
the position) of embedded rewrite rules is p for all embedded rewrite rules in T i

Π(〈l → r, p〉), but
not equal to p for all embedded rewrite rules in T e

Π(〈l→ r, p〉).

84 Chapter 4. Generalizing Context-Sensitivity

Proof. Assume towards a contradiction that T ∗(〈l → r, p〉)) were infinite. Each
embedded rule from T ∗(〈l → r, p〉)) has the form 〈C[l]qσ → C[r]qσ, q.p〉 for some
context C and some substitution σ. Now infinity of T ∗(〈l→ r, p〉)) implies that the
term depth of its terms is not bounded. Thus, it either contains embedded rules
〈C[l]qσ → C[r]qσ, q.p〉, where the term depth of xσ is n for arbitrarily high n and
some (fixed) x, or it contains embedded rules 〈C[l]qσ → C[r]qσ, q.p〉 where |q| is
arbitrarily big.

We investigate both cases. First, assume there is some variable x such that the
term depth of xσ is not bounded in T ∗(〈l → r, p〉)). Let 〈C[l]qσ → C[r]qσ, q.p〉 be
an embedded rule such that the term depth of xσ = n for some x ∈ V ar(C[l]q)
where n > max〈u,o,h〉∈Π(depth(u)). As the term depth of xσ is not bounded in
T ∗(〈l→ r, p〉)), some embedded rule of this shape must have a one-step T -successor
〈C[l]qσ

′ → C[r]qσ
′, q.p〉 with depth(xσ′) > depth(xσ). Say σ′ = σσ′′, yσ′′ 6= y and

xσ|r = y with depth(r) = n. Thus, according to Definition 25, y ∈ RVΠ(C[l]q, q.p).
Therefore, C[l]qσ|q′θ = uθ for some 〈u, o, h〉 ∈ Π with q′ ≤ p.q and yθ 6= y. However,
because of linearity of u this means u|p′′ is non-variable where p′′ = q′′.r for some q′′.
However this contradicts the fact that the term depth of u is smaller than n = |r|.

Second, assume we have embedded rules 〈C[l]qσ → C[r]qσ, q.p〉 with arbitrarily
high |q|. Let 〈C[l]qσ → C[r]qσ, q.p〉 be an embedded rule such that |q| = n where
n > max〈u,o,h〉∈Π(depth(u)). Some embedded rule of this shape must have a one-step
T -successor 〈C[l]q′σ → C[r]q′σ, q.p〉 with |q′| > |q|. Thus, according to Definition 25
there is a forbidden pattern 〈u, o, h〉 ∈ Π such that u|p′ = l and o = p′.q.p which
contradicts |o| < |q|.

The transformation we are proposing proceeds by iteratedly instantiating and
embedding rewrite rules. The following definitions identify the embedded rules for
which no further instantiation and embedding is needed.

Definition 26 (Π-stable). Let 〈l → r, p〉 be an embedded rewrite rule and let Π be
a set of forbidden patterns. We say that 〈l → r, p〉 is Π-stable (stbΠ(〈l → r, p〉) for
short) if there is no context C and no substitution σ such that C[lσ]q|q′ = uθ and
q.p = q′.o for any forbidden pattern 〈u, o, h〉 ∈ Π and any θ.

Note that Π-stability is effectively decidable (for finite signatures and finite Π),
since only contexts and substitutions involving terms not exceeding a certain depth
depending on Π need to be considered.

Definition 27 (Π-obsolete). Let 〈l → r, p〉 be an embedded rewrite rule and let Π
be a set of forbidden patterns. We say that 〈l→ r, p〉 is Π-obsolete (obsΠ(〈l→ r, p〉)
for short) if there is a forbidden pattern Π = 〈u, o, h〉 such that l|q = uθ and p = q.o.

In Example 42, the rules (4.2), (4.3), (4.5) and (4.7) are Π-stable, while rules
(4.4) and (4.6) would be processed further. After two more steps e.g. an embedded
rule 〈g(g(f(a)))→ g(g(g(a))), 1.1〉 is produced that is Π-obsolete.

The following lemmata state some properties of Π-stable embedded rules.

4.4. Termination of Rewriting with Forbidden Patterns 85

Lemma 14. Let Π be a set of forbidden patterns and let 〈l′ → r′, p〉 be a Π-stable
embedded rewrite rule where l′ = C[lσ]p and r′ = C[rσ]p for some rewrite rule l→ r.
If s→ t with l′ → r′, then s→Π t with l→ r.

Proof. Suppose s = s[l′θ]q → s[r′θ]q = t. If s|q.p were forbidden for reduction by Π
(say through a forbidden pattern 〈u, o, h〉), then s|p′ = uθ′ and q.p = p′.o. This is a
direct contradiction to the fact that l′ → r′ is Π-stable according to Definition 26.
Hence, s|q.p is allowed according to Π and we have s = s[lθ′]q.p →Π s[rθ′]q.p = t.

Lemma 15. Let 〈l→ r, p〉 be an embedded rule and Π be a set of forbidden patterns.
If T (〈l→ r, p〉) = ∅, then 〈l→ r, p〉 is either Π-stable or Π-obsolete.

Proof. Assume 〈l → r, p〉 is neither Π-stable nor Π-obsolete. Then, there exist
a context C and a substitution σ such that C[lσ]q|q′ = uθ and q.p = q′.o for some
pattern 〈u, o, h〉 and on the other hand there is no pattern 〈u, o, h〉 such that l|q = uθ
and p = q.o. Hence, either C or σ is non-trivial (i.e. C 6= � or xσ 6= x for some x).
Assume C is non-trivial, then there exists a pattern 〈u, o, h〉 with u|qθ = lθ, q 6= ε
and o = q.p, hence T eΠ(〈l→ r, p〉) 6= ∅ and we get a contradiction.

On the other hand, assume σ is non-trivial and C is trivial (say xσ 6= x). Then
x ∈ RVΠ(l, p) and thus T iΠ(〈l→ r, p〉) 6= ∅. Hence we get a contradiction as well.

Definition 28. Let R = (F , R) be a TRS with an associated set of forbidden pat-
terns Π where F = (S,Ω). The transformation T maps TRSs with forbidden patterns
to standard TRSs T(R,Π). It proceeds iteratively using 5 basic steps.

1. Rtmp = {〈l→ r, ε〉 | l→ r ∈ R}
Racc = ∅

2. Racc = {〈l→ r, p〉 ∈ Rtmp | stbΠ(〈l→ r, p〉)}
Rtmp = {〈l→ r, p〉 ∈ Rtmp | ¬stbΠ(〈l→ r, p〉) ∧ ¬obsΠ(〈l→ r, p〉)}

3. Rtmp =
⋃
〈l→r,p〉∈Rtmp T (〈l→ r, p〉)

4. If Rtmp 6= ∅ go to 2

5. T(R,Π) = (F] {tops | s ∈ S}, {l→ r | 〈l→ r, p〉 ∈ Racc})

In the transformation embedded rewrite rules are iteratively created and collected
in Rtmp (temporary rules). Those embedded rules that are Π-stable and will thus
be present in the final transformed system are collected in Racc (accepted rules).

Lemma 16. Let R be a rewrite system and Π be a set of forbidden linear h-patterns.
If s→R,Π t for ground terms s and t, then top(s)→ top(t) in T(R,Π).

Proof. Assume the step s →Π t occurs at position p with rule l → r. If 〈l → r, ε〉
is Π-stable, we have top(s) → top(t) with l → r at position 1.p and the claim
holds. 〈l → r, ε〉 cannot be Π-obsolete, since this would contradict the fact that

86 Chapter 4. Generalizing Context-Sensitivity

p is allowed in s according to Π. Thus, according to Lemma 15, T (〈l → r, ε〉) is
non-empty and thus in particular, contains an embedded rule 〈l′ → r′, p′〉 such that
top(s)|q = l′σ and 1.p = q.p′, since all possible instantiations and embeddings are
covered by T (note that the rule is also embedded in the top(�)-context). This
embedded rule cannot be Π-obsolete, as this would imply that p is a forbidden
position in s, because l′ matches (a subterm of) top(s) and thus a forbidden pattern
matching l′ would also match s (note that forbidden pattern terms do not contain
top). Hence, again either the embedded rule is Π-stable in which case we use it for
the reduction top(s) →T (R) top(t), or it is further instantiated and/or embedded.
By repetition we obtain new sets of embedded rules each containing rules whose
left-hand sides match top(s) and thus are not Π-obsolete. By Lemmata 15 and 13
eventually one of these rules must be Π-stable and thus be in T (R,Π). Hence, we
finally get top(s)→T (R,Π) top(t).

Theorem 14. Let R be a TRS and Π be a set of linear here-patterns. We have
s→+

Π t for ground terms s and t if and only if top(s)→+
T(R,Π) top(t).

Proof. The result is a direct consequence of Lemmata 14 and 16.

Corollary 7. Let R be a TRS and Π be a set of linear h-patterns. R is ground
terminating under Π if and only if T(R,Π) is ground terminating.

Note that the restriction to ground terms is crucial in Corollary 7. Moreover,
ground termination and general termination do not coincide in general for rewrite
systems with forbidden patterns (observe that the same is true for other important
rewrite restrictions and strategies such as the outermost strategy).

Example 43. Consider the TRS R = (F , R) given by F = {a, f} (where a is a
constant) and R consisting of the rule

f(x) → f(x).

Moreover, consider the set of forbidden patterns Π = {〈f(a), ε, h〉, 〈f(f(x)), ε, h〉}.
Then R is not Π-terminating, because we have f(x)→Π f(x) but it is Π-terminating
on all ground terms, as can be shown by Theorem 14, since T (R,Π) = ∅.
Example 44. Consider the TRS of Example 33. We use two sorts NatList and
Nat, with function symbol types 2nd : NatList → Nat, inf : Nat → NatList,
top : NatList→ NatList (note that another “top” symbol of type Nat→ Nat is not
needed here), s : Nat → Nat, 0: Nat, nil : NatList and : of type Nat,NatList →
NatList. According to Definition 28, the rules of T(R,Π) are:

2nd(inf(x)) → 2nd(x : inf(s(x)))
2nd(x : (y : zs)) → y

top(inf(x)) → top(x : inf(s(x)))
2nd(x′ : inf(x)) → 2nd(x′ : (x : inf(s(x))))
top(x′ : inf(x)) → top(x′ : (x : inf(s(x))))

4.4. Termination of Rewriting with Forbidden Patterns 87

This system is terminating (and termination can be verified automatically, e.g. by
AProVE [31]). Hence, by Corollary 7 also the TRS with forbidden patterns from
Example 33 is ground terminating.

Example 45. The TRS R and the forbidden patterns Π from Example 34 yield the
following system T(R,Π). For the sake of saving space we abbreviate app by a, take
by t and inf by i.

top(i(x)) → top(x : i(s(x))) t(y, i(x)) → t(y, x : i(s(x)))
a(y, i(x)) → a(y, x : i(s(x))) top(a(i(x), y)) → top(a(x : i(s(x)), y))

t(a(i(x), y), z) → t(a(x : i(s(x)), y), z) t(z, a(i(x), y)) → t(z, a(x : i(s(x)), y))
a(a(i(x), y), z) → a(a(x : i(s(x)), y), z) a(z, a(i(x), y)) → a(z, a(x : i(s(x)), y))

top(a(x : xs, ys)) → top(x : a(xs, ys)) t(z, a(x : xs, ys)) → t(z, x : a(xs, ys))
a(a(x : xs, ys), z) → a(x : a(xs, ys), z) a(z, a(x : xs, ys)) → a(z, x : a(xs, ys))
a(x : i(zs), ys) → x : a(i(zs), ys) a(x : s(zs), ys) → x : a(s(zs), ys)

a(x : (y : zs), ys) → x : a(y : zs, ys) a(nil, x) → x
t(s(x), y : ys) → t(x, ys) t(0, y : ys) → y

t(x, nil) → 0

This system is terminating (and termination can be verified automatically, e.g. by
AProVE [31]). Hence, again by Corollary 7 also the TRS with forbidden patterns
from Example 34 is ground terminating.

4.4.1.1 Proving Termination of TRSs Obtained by T

One major practical drawback of the transformation T is that the natural partition of
function symbols into defined symbols and constructors is not preserved in general.

Example 46. Consider the (untyped) TRS R and forbidden patterns Π of Example
32. T(R,Π) is given by the following rewrite rules.

2nd(inf(x)) → 2nd(x : inf(s(x)))
s(inf(x)) → s(x : inf(s(x)))
inf(x) : y → (x : inf(s(x))) : y

top(inf(x)) → top(x : inf(s(x)))
s(x′ : inf(x)) → s(x′ : x : inf(s(x)))

top(x′ : inf(x)) → top(x′ : x : inf(s(x)))
2nd(x : y : zs) → y
inf(inf(x)) → inf(x : inf(s(x)))

(x′ : inf(x)) : y → (x′ : (x : inf(s(x)))) : y
2nd(x′ : inf(x)) → 2nd(x′ : (x : inf(s(x))))
inf(x′ : inf(x)) → inf(x′ : (x : inf(s(x))))

Note that here T(R,Π) is different from the transformed system in Example 44,
since there we used a typed version of R.

88 Chapter 4. Generalizing Context-Sensitivity

This loss of structure regarding the partition of function symbols into defined
symbols and constructors but also the fact that all function symbols occur in right-
hand sides of some rules makes a dependency pair analysis much harder in practice.
Several processors and methods (like dependency graph processors, narrowing pro-
cessors or processors relying on usable rules) are not applicable or yield weaker re-
sults in the analysis of TRSs obtained by T. This is particularly bad for dependency
graph processors, because these processors are arguably among the most important
processors used in typical dependency pair proofs of termination. Hence, in this
subsection we propose a slight optimization of this processor in order to improve its
performance for TRSs obtained by T.

Roughly, a dependency graph processor when given a DP problem (P ,R) tries
to construct the dependency graph whose nodes are the dependency pairs from R
with edges from s1 → t1 to s2 → t2 if there exist substitutions σ1, σ2 such that

t1σ1 →∗R s2σ2. (4.8)

Then, the dependency graph is decomposed into strongly connected components
(SCC) whose nodes form the subproblems the processor returns.

The major obstacle when applying this processor is the fact that (4.8) is unde-
cidable. Hence, in practice one uses (over-)approximations. Typically, these approx-
imations rely on identifying a “constant” part of the term t1, i.e. a part of t1 that
cannot be altered by reduction of t1σ1. This is to say that t1 = C[t11, . . . , t

n
1]p1,...,pn

and for every term t with t1σ1 →∗R t we have t = C[t
1
1, . . . , t

n
1]p1,...,pnτ (for some

substitution τ).
In most classical approaches to such approximations the “constant” part of t

that is identified is not only constant but irreducible, i.e. for every term t with
t1σ1 →∗R t every reduction step in this reduction sequence occurs at or below pi
for some 1 ≤ i ≤ n. However, for TRSs obtained by T this kind of approximation
is not feasible, since we have to consider many rules of the shape C[l] → C[r] for
some context C. When such a rule is applied to a term (say at the root position)
there might still be a constant part of the term (namely C) even though the term is
reducible.

To exploit this observation we need to take a closer look at the rules of TRSs
obtained by T. In particular, we are interested in function symbols f that are
constructors in some TRS R with forbidden patterns Π but defined symbols in
T(R,Π). According to Definition 28, the rules of T(R,Π), defining function symbols
f that were constructors in R, are of the shape

f(l1, . . . , ln)→ f(r1, . . . , rn)

Hence, these function symbols behave like constructors in that they cannot be altered
by reduction steps occurring at, parallel or below their occurrences in the term. This
motivates the definition of quasi-defined symbols which are function symbols that
might change through reduction.

4.4. Termination of Rewriting with Forbidden Patterns 89

Definition 29 (quasi-defined symbols). Let R = (F , R) be a TRS. For each rule
l → r (where l 6= r) the maximal context C is identified, such that l = C[s1 . . . sn]
and r = C[t1 . . . tn] (note that C might be empty) and root(si) ∈ F for all 1 ≤ i ≤ n.
Then root(si) is a quasi-defined symbol for all 1 ≤ i ≤ n.

We denote the set of quasi-defined symbols of a TRS (R,F) by Dq and the
corresponding set of quasi-constructors (i.e., F \ Dq) as Cq. Observe that quasi-
defined function symbols and quasi-constructors are incomparable with the usual
notions of defined functions and constructors.

Example 47. Consider the TRS R given by

g(f(x))→ g(f(a))

Here, f is quasi-defined but not defined and g is defined but not quasi-defined.

Like ordinary constructors, quasi-constructors have the important property that
the “top” part of a term - if it is constructed only from such constructors - cannot
be modified by reduction, i.e., whenever s = C[s1, . . . , sn] and C consists only of
functions from Cq and variables, then for all terms t with s →∗ t we have t =
C[t1, . . . , tn] for some terms t1, . . . , tn.

This motivates the definition of the function c̃ap that replaces all maximal sub-
terms rooted by functions from Dq by fresh variables. One can use this function to
approximate the existence of an edge from the DP s1 → t1 to s2 → t2 by unifying
ren(c̃ap(t1)) with s2. If ren(c̃ap(t1)) is unifiable with s2, then the edge is drawn,
otherwise there is no edge. Here, the function ren replaces each variable in the given
term by a fresh variable. Thus, ren maps terms to linear terms (cf. e.g. [33] for a
similar approximation of dependency graphs using the classical notions of defined
function symbols and constructors).

Lemma 17. Let (P ,R) be a DP problem and s1 → t1, s2 → t2 ∈ P be two de-
pendency pairs. If there exist substitutions σ1, σ2 such that t1σ1 →∗R s2σ2, then
ren(c̃ap(t1)) unifies with s2 (after renaming the variables to make the terms variable
disjoint).

Proof. Assume that ren(c̃ap(t1)) and s2 do not unify. Then, consider some term

ren(c̃ap(t1))σ and a reduction step ren(c̃ap(t1))σ
p→R t. We are going to prove that

t = ren(c̃ap(t1))σ′ for some substitution σ′. First, assume p 6∈ PosF(ren(c̃ap(t1))).
Then t = ren(c̃ap(t1))σ′ follows immediately, since ren(c̃ap(t1)) is linear.

On the other hand, if p ∈ PosF(ren(c̃ap(t1))), then the applied rewrite rule
must be of the shape C[l1, . . . , ln]p1,...,pn → C[r1, . . . , rn]p1,...,pn where for each pi (1 ≤
i ≤ n) p.pi ≥ q for some q ∈ PosV (ren(c̃ap(t1))), because otherwise ren(c̃ap(t1))
would contain a quasi-defined symbol according to Definition 29 which it does not
by the definition of c̃ap. Hence, because of linearity of ren(c̃ap(t1)) we get t =
ren(c̃ap(t1))σ′ for some σ′.

90 Chapter 4. Generalizing Context-Sensitivity

An easy induction yields that t = ren(c̃ap(t1))σ′ for some σ′ for every term t

with ren(c̃ap(t1))σ
p→∗R t.

Now assume - contradicting our assumption that ren(c̃ap(t1)) and s2 do not
unify - that there exist substitutions σ1 and σ2 such that t1σ1 →∗R s2σ2. We already
proved that this implies s2σ2 = ren(c̃ap(t1))σ′ for some σ′, which further implies
that s2 and ren(c̃ap(t1)) are unifiable after renaming their variables. Hence, we get
a contradiction to our assumption of non-unifiability of these terms.

Example 48. Consider the TRS R from Example 46. There, : ∈ Cq while : is not a
constructor (in the traditional sense). Thus, consider for instance a dependency pair
inf(x) :# y → (x : inf(s(x))) :# y ∈ DP (R) (i.e. C[inf(x)] → C[x : inf(s(x))])).
Then c̃apµ(renµ((x : inf(s(x))) :# y)) = (x : z) :# y which is not unifiable with
inf(x) : y hence there is no arc in the estimated dependency graph from this de-
pendency pair to itself. Indeed, the termination tool VMTL (cf. Chapter 5 below)
that contains an implementation of the dependency graph approximation based on
c̃ap can automatically prove termination of R but fails to do so if the use of c̃ap is
disabled.

4.4.2 A Modified Dependency Pair Framework for Rewrit-
ing with Forbidden Patterns

In this section we propose a modification of the well-known dependency pair (DP)
framework of [33] (which is in turn based on dependency pairs of [9]) that incor-
porates forbidden pattern restrictions. Compared to the transformation based ap-
proach of Section 4.4.1.1 this approach works for a more general class of forbidden
patterns, namely forbidden h- and b-patterns. Hence, in this section we are exclu-
sively concerned with these kinds of patterns.

The central observation of the (ordinary) dependency pair approach is that given
a non-terminating rewrite system R, there exists an infinite reduction sequence
(starting w.l.o.g. with a root reduction step), such that no redex contracted in this
sequence contains a non-terminating proper subterm. Such reduction sequences
roughly correspond to minimal dependency pair chains whose existence or non-
existence is analyzed in the DP framework. For rewriting with forbidden patterns
the above observation does not hold.

Example 49. Consider the following TRS R

a → f(a) f(x) → g(x)

and an associated set of forbidden patterns Π = {〈f(x), 1, h〉}. R is not Π-ter-
minating: a →Π f(a) →Π g(a) →Π g(f(a)) →Π g(g(a)) →Π . . . Note that since
position 1 is forbidden in f(a), we do not have f(a) →Π f(f(a)). Obviously, every
non-Π-terminating term s must contain exactly one a. After this a is reduced, the
single a-symbol in the contracted term is forbidden (as it occurs in the first argument
of f). Hence, the redex of the following reduction must properly contain a.

4.4. Termination of Rewriting with Forbidden Patterns 91

In Example 49 reductions whose redexes properly contain non-Π-terminating
terms are crucial for the existence of infinite Π-derivations. Hence, instead of ordi-
nary non-termination we focus on a restricted form of non-Π-termination, namely
non-Π-termination in a context.

Definition 30 (termination in a context). Let R be a TRS and Π be a set of
forbidden patterns. A term s is Π-terminating in context C[�]p if C[s]p does not
admit an infinite Π-reduction sequence where each redex contracted occurs at, below
or parallel to p and where infinitely many steps are at or below p.

We omit explicit reference to the context if it is clear which one is meant. For
instance the term s|p is Π-terminating in its context means that s|p is Π-terminating
in the context s[�]p.

We say a term s is minimal non-Π-terminating in a context C[�]q (w.r.t. a rewrite
system R and a set of forbidden patterns Π) if s is non-Π-terminating in C[�]q and
every proper subterm s|p of s is Π-terminating in C[s[�]p]q. The following lemma
provides some insight into the shape of infinite Π-reduction sequences starting from
minimal non-terminating terms.

Lemma 18. Let R be a TRS and let Π be a set of forbidden h- and b-patterns. A
term s that is minimal non-Π-terminating in a context C[�]q admits a reduction
sequence

C[s]q
6≤q→
∗

Π C ′[s′]q = C ′[lσ]q
q→Π C ′[rσ]q = C ′[t]q

such that t contains a subterm t|p that is minimal non-Π-terminating in the context
C ′[t[�]p]q.

Proof. As s is not Π-terminating in C[�]q, there is an infinite Π-reduction sequence
starting from C[s]q such that all reduction steps are at, below or parallel to q and
infinitely many reduction steps are at or below q (according to Definition 30). Since, s
is minimally non-Π-terminating in C[�]q, eventually there must be a step at position
q in this reduction sequence (as otherwise infinitely many reduction steps occurred
at or below a proper subterm of s contradicting termination of these subterms in
their contexts). Hence, we have

C[s]q
6≤q→
∗

Π C ′[s′]q = C ′[lσ]q
q→Π C ′[rσ]q = C ′[t]q

as part of our infinite Π-reduction sequence. Because of infinity of the reduction
sequence t must be non-Π-terminating in C ′[�]q. However, every term t that is
non-Π-terminating in a context C ′[�]q has a subterm t|p that is minimally non-Π-
terminating in C ′[t[�]p]q.

Note that in contrast to ordinary rewriting and standard minimal non-terminat-
ing terms one can in general not assume that p ∈ PosF(r) (this effect similarly exists
in context-sensitive rewriting, cf. [4, 2]).

92 Chapter 4. Generalizing Context-Sensitivity

Example 50. Consider R and Π of Example 49 and the term f(a) which is mini-
mal non-Π-terminating (in the empty context), since position 1 is forbidden in f(a)
according to Π. Now consider the reduction f(a) = f(x)σ

ε→Π g(a) = g(x)σ
(xσ = a). The term g(a) contains only one proper minimal non-Π-terminating
subterm g(a)|1 = a despite the fact that 1 6∈ PosF(g(x)).

In our approach we pay attention to this phenomenon by having additional de-
pendency pairs to explicitly mimic the necessary extractions of (minimal non-Π-
terminating) subterms in DP chains (cf. Vc, Ac and Sc in Definition 32 below). Tech-
nically, these rules (which we call structural dependency pairs) model the explicit
extraction of minimal non-Π-terminating terms in DP-chains and the introduction
of the suitable dependency pair symbol at the root of these terms. This mechanism
is similar to the way migrating variables are dealt with in the context-sensitive de-
pendency pair approach of [2]. However, there using the concepts of “hidden terms”
and “function symbols hiding positions” it is sufficient to perform subterm extrac-
tions out of contexts of hidden terms in right-hand sides of rewrite rules and over
arguments of functions hidden by the function.

In the case of forbidden patterns it is necessary to use a more general mechanism
of subterm extraction, since whether a term is hidden within the right-hand side
of a rewrite rule (i.e., forbidden but might eventually be activated) may depend on
the context the right-hand side of the rule is located in and the concrete instance of
this right-hand side. Hence, in sharp contrast to the context-sensitive dependency
pair framework of [2] the structural forbidden pattern dependency pairs associated
to a TRS model subterm extractions out of arbitrary contexts (cf. Vc, Ac and Sc in
Definition 32 below).

However, we cannot disregard the contexts from which minimal non-Π-termi-
nating terms are extracted in DP-chains, since these contexts may contribute to
the matching of a forbidden pattern thus influencing the status of some position
in the minimal non-Π-terminating term. In order to keep track of the subterm
extractions in dependency pair chains a context is associated to each dependency
pair. It represents the context from which a minimal non-Π-terminating term is
extracted when the dependency pair is applied.

Informally, this amounts to an extended contextual version of dependency pairs
which incorporates the full information of the given rules (especially the complete
right-hand sides) in the form of associated contexts, but which still enables the
typical DP-based reasoning enriched by structural DP-rules that can descend into
variable subterms of right-hand sides as well as to control where subsequent DP-
reductions are allowed to take place.

Before defining contextual dependency pairs we observe that sometimes positions
of right-hand sides are forbidden regardless of the instantiation or location (in a
context) of this right-hand side. In particular, positions forbidden by stable forbidden
patterns have this property. We will use this observation to reduce the number of
dependency pairs that we have to consider (cf. Definition 32 below).

4.4. Termination of Rewriting with Forbidden Patterns 93

Definition 31 (stable forbidden pattern). Given a rewrite system R, a forbidden
pattern π = (t, p, λ) is called stable if t is linear and no rule overlaps t at any
(function symbol) position parallel to p if λ = b and no rule overlaps t at any
(function symbol) position parallel to or below p if λ = h. By Stb(Π) we denote the
subset of stable forbidden patterns of Π.

Note that Definition 31 is in a certain way dual to Item 1 of Definition 19 and Def-
inition 20 where forbidden patterns were not allowed to be overlapped by right-hand
sides of rules parallel to the forbidden position in case of h-patterns not overlapped
at all by right-hand sides of rules for b-patterns. This duality is reflected in the ef-
fects the respective restrictions on forbidden patterns have on the restricted rewrite
relation. In the case of Definitions 19 and 20 this effect was that the status of allowed
positions does not change during reductions parallel to these positions (Proposition
6). Dually, in the case of stable forbidden patterns the status of forbidden positions
does not change during reductions parallel to or below these positions.

Lemma 19. Let R be a rewrite system and let π be a stable pattern matching a

subterm s|p of a term s (and thus forbidding some position p.q in s). If s
p′→R,Π t

for some p′ ‖ p.q or p′ > p.q, then p.q is also forbidden in t.

Proof. Let π = 〈u, o, λ〉. First, if λ = b, then p′ cannot be below p.q, since positions
below p.q are forbidden by π. Hence, p′ is parallel to p.q. However, since u is linear
and not overlapped by any rewrite rule from R parallel to o, u matches t|p and thus
p.q is also forbidden in t.

Second, if λ = h, then u is not overlapped by any rule of R parallel to o or below
o. Hence, (also because u is linear) u matches t|p and thus p.q is forbidden in t.

We are now ready to define the notion of contextual dependency pairs (CDPs)
associated to a rewrite system with forbidden patterns, CDP-problems and CDP-
chains.

Definition 32 (extended contextual dependency pairs). Let (F , R) be a TRS where
the signature is partitioned into defined symbols D and constructors C. The set of
(extended) contextual dependency pairs (CDPs) CDP (R) is given by DPc(R)]
Vc(R)] Ac(R)] Sc(R), where

DPc(R) = {l# → r|#p [c] | l→ r ∈ R, p ∈ PosStb(Π)
D (r), c = r[�]p}

Vc(R) = {l# → T (r|p) [c] | l→ r ∈ R, r|p = x ∈ V ar, c = r[�]p}
Ac(R) = {T (f(x1, . . . , xar(f)))→ f#(x1, . . . , xar(f)) [�] | l→ r ∈ R,

root(r|p) = f ∈ D}
Sc(R) = {T (f(~x))→ T (xi)[f(~x)[�]i] | ~x = x1, . . . , xar(f), l→ r ∈ R,

root(r|p) = f, i ∈ {1, . . . , ar(f)}} .

Here, T is a new auxiliary function symbol (the token symbol for “shifting atten-
tion”). We call Vc(R) variable descent CDPs, Sc(R) shift CDPs and Ac(R) activa-
tion CDPs.

94 Chapter 4. Generalizing Context-Sensitivity

Example 51. Consider the TRS R of Example 49. Here, CDP (R) consists of:

a# → a#[f(�)] a# → f#(a)[�] f#(x) → T (x)[g(�)]
T (a) → a#[�] T (f(x)) → f#(x)[�] T (g(x)) → g#(x)[�]

T (f(x)) → T (x)[f(�)] T (g(x)) → T (x)[g(�)]

Contextual rules of the shape l → r [c] can be interpreted as l → c[r] (provided
that V ar(c[r]) ⊆ V ar(l)) when used as rewrite rules. Slightly abusing notation, for
a set P of such contextual rewrite rules (i.e. a contextual TRS) we denote by →P
the corresponding induced ordinary rewrite relation.

Definition 33 (forbidden pattern CDP problem). A forbidden pattern CDP problem
(FP-CDP problem or just CDP problem) is a quadruple (P ,R,Π, T) where P is a
contextual TRS, R = (F , R) is a TRS, Π is a set of forbidden patterns over F and
T is a designated function symbol with T 6∈ F that occurs only at the root position
of left- and right-hand sides of rules in P (but not e.g. in contexts).

Definition 34 (forbidden pattern CDP chain). Let (P ,R,Π, T) be a CDP problem
where R = (F , R). The sequence S : s1 → t1 [c1[�]p1], s2 → t2 [c2[�]p2], . . . is a
(P ,R,Π, T)-CDP chain (we also say FP-CDP chain or just CDP chain if the CDP
problem is clear from the context) if

• there exists a substitution σ : V ar → T (F , V), such that

s1σ →P c1[t1σ]p1 = c′1[t1σ]p′1
6≤p′1→ ∗R c′′1[s2σ]p′1 →P c′′1[c2[t2σ]p2]p′1 = c′2[t2σ]p′2
6≤p′2→ ∗R c′′2[s3σ]p′2 →P c′′2[c3[t3σ]p3]p′2 = c′3[t3σ]p′3 . . .

where c′i = c′′i−1[ci] and p′i = p′i−1pi for all 1 ≤ i (s1σ = c′′0[s1σ]p′0 with p′0 = ε,
c′′0 = �),

• the R-reduction c′i[tiσ]p′i
6≤p′i→∗R c′′i [si+1σ]p′i is empty (i.e., c′i[tiσ]p′i = c′′i [si+1σ]p′i)

whenever root(ti) = T (i.e., the token symbol), and

• for each single reduction s
q→P t or s

q→R t in this reduction sequence position
q is allowed in erase(s) according to Π. Here erase(s) is obtained from s by
replacing all marked dependency pair symbols f# by their unmarked versions
f and by replacing terms T (s′) by s′.3

Moreover, S is minimal if for every i ≥ 0 every subterm of c′i[tiσ]p′i at position q > p′i
is Π-terminating in its context (w.r.t. R).

3Note that this definition makes sense since whenever a T occurs in s, then q is not below
the occurrence of T . Moreover, this definition of erase is formally not compatible with the DP
framework, since it is based on the correspondence of marked dependency pair symbols and original
function symbols they originated from. This correspondence might not exist in arbitrary CDP
problems. However, to restore full modularity the erase function could be made part of the notion
of CDP problem. We refrain from doing so for notational simplicity.

4.4. Termination of Rewriting with Forbidden Patterns 95

Example 52. Consider the TRS R and Π from Example 49 (CDP (R) is given in
Example 51) and the corresponding FP-CDP P = (CDP (R),R,Π, T). P admits
an infinite CDP chain:

a# → f#(a) [�], f#(x)→ T (x) [g(�)], T (a)→ a# [�], . . .

corresponding to

a# →DPc(R) f
#(a)→Vc(R) g(T (a))→Ac(R) g(a#)→DPc(R) g(f#(a)) . . .

We say a CDP problem is finite if it does not admit an infinite minimal CDP
chain. Indeed, the existence of infinite (CDP (R),R,Π, T)-chains coincides with
non-Π-termination of R. Before proving this we provide a lemma stating that for-
bidden rewrite steps can be extracted out of contexts.

Lemma 20 (extraction lemma). If C[s]p
≥p→Π C[t]p, then s→Π t.

Proof. Immediate by the definition of rewriting with forbidden patterns.

Theorem 15. Let R be a TRS with an associated set of forbidden h- and b-patterns
Π. R is Π-terminating if and only if the FP-CDP problem (CDP (R),R,Π, T) is
finite.

Proof. if: Let R be non-Π-terminating. According to Lemma 18, there exist terms
s, si, ti and t′i such that

S : s
>ε
′

→∗Π t1
ε→Π s1 = C ′2[t′2]p2

6≤p2→ ∗Π C2[t2]p2

p2→Π C2[s2]p2 = C ′3[t′3]p3

6≤p3→ ∗Π C3[t3]p3

p3→Π C3[s3]p3 = C ′4[t′4]p4 . . .

pi ≤ pi+1, t′i is minimally non-Π-terminating in C ′i[�]pi for all i ≥ 1, and every proper
subterm of s is Π-terminating (regardless of the context, hence s is in particular
minimal non-Π-terminating in �). Here, p1 = ε, C1 = C ′1 = Box and t′1 = t1.

We are going to construct an infinite (CDP (R),R,Π, T)-chain T by associating a

(sequence of) CDPs to each Ci[ti]pi
pi→Π Ci[si]pi step. Consider one of these reduction

steps Ci[ti]pi
pi→Π,l→r Ci[si]pi = C ′i+1[t′i+1]pi+1

. Let pi.q = pi+1; we distinguish 2 cases:
First, if q ∈ PosF(r), then the CDP l# → r|#q [c] ∈ DPc(R) is used. Note that

root(r|q) ∈ D, as t′i+1 is minimally non-Π-terminating. Moreover, q ∈ PosStb(Π), since
otherwise pi+1 would be forbidden by a stable forbidden pattern in C ′i+1[t′i+1]pi+1

and
thus also in every term obtained from C ′i+1[t′i+1]pi+1

through reduction parallel to or
below pi+1, due to Lemma 19. Hence, there could not be a further step at position
pi+1 contradicting the existence of a reduction chain of the above shape. Finally, we
also have Ci[c] = C ′i+1 by Definition 32.

Second, if q 6∈ PosF(r), let q′ ≤ q be the unique variable position of r that is
above q. Now we construct a sequence of CDPs starting with l# → T (x)[c] ∈ V (R)

96 Chapter 4. Generalizing Context-Sensitivity

where c = r[�]q′ . By using this CDP we “introduce” the token symbol T at position
q′ in si. The goal now is to shift it to position q.

In the following we say that a function symbol f is a shift symbol if there exist
CDPs T (f(~x)) → T (xi)[f(~x)[�]i] for all i ∈ {1, . . . , ar(f)}. Assume q′ 6= q (say
q′.i.o = q) and let root(si|q′) = f .

If f is not a shift symbol, then f does not occur in the right-hand side of a rewrite
rule at all (according to Definition 32). However, if f does not occur in the right-
hand side of any rule of R, si|q′ must be the descendant of some proper subterm of s.
However, si|q′ is non-Π-terminating, since it contains t′i+1 which is non-Π-terminating
in its context. Thus si|q′ cannot be a successor of such a proper subterm of s, since
these subterms were assumed to be Π-terminating (in any context) (cf. also Lemma
20).

Hence, f is a shift symbol and thus there is a CDP T (f(x1, . . . , xar(f))) →
T (xi)[c] ∈ Sc(R) where f(x1, . . . , xi−1,�, xi+1, . . . , xar(f)) = c. By adding this CDP
we shift the token symbol to position q′.i in si (more precisely with the addition of
the shift CDP we are now considering a term s′i with erase(s′i) = erase(si) where
the unique occurrence of the token symbol is at position q′.i). If q′.i 6= q we add
more CDPs from Sc(R) to shift the token symbol to q′.i.i′, q′.i.i′.i′′, . . ., until the
token is finally shifted to q.

Finally, we add the activation CDP T (g(~x)) → g#(~x)[�] ∈ Ac(R), where g =
root(si|q). Note that, as for the shift CDPs, here g must occur in the right-hand side
of some rewrite rule, since otherwise si|q would be the descendent of some proper
subterm of s which contradicts non-Π-termination of t′i+1.

Moreover, since si|q is minimal non-Π-terminating, we have root(si|q) ∈ D.
It is easy to see that the infinite sequence T of CDPs obtained by this construction

actually forms an infinite CDP chain, where σ is given by the substitutions used in
the Ci[ti]pi

pi→Π Ci[si]pi steps of S (note that we consider CDPs in chains to be
variable disjoint). The fact that we actually have a valid CDP chain is a direct
consequence of the particular choice of S.

only if: If there exists an infinite CDP-chain we obtain an infinite R-reduction
by considering the (CDP (R) ∪ R)-reduction of Definition 34. Then by applying
erase to every term in this chain, we get that every single (CDP (R) ∪R)-step can
be simulated by 0 or 1 →R-reduction steps. Here the simulating reduction is empty
only if a CDP (R)-step with rules from Sc(R) or Ac(R) occurs. However, it is easy
to see that no infinite (CDP (R) ∪ R)-reduction sequence can use only these rules,
hence the simulating R-reduction is infinite as well.

Now, following the dependency pair framework of [33] we define CDP processors
as functions mapping CDP problems to sets of CDP problems.

It is easy to observe that each FP-CDP chain w.r.t. some FP-CDP problem
(P ,R,Π, T) is also an ordinary (though not necessarily minimal) DP chain w.r.t.
(P ,R) (when disregarding the contexts of DPs). Hence, in some cases processors
that are sound in the ordinary DP framework of [33] and do not rely on minimality
can be adapted to work also in the forbidden pattern contextual extension of the

4.4. Termination of Rewriting with Forbidden Patterns 97

DP framework. One example of such a processor is the reduction pair processors
not using usable rules ([33]). Another important example is the dependency graph
processor. Both processors have been used in our experiments. In both cases, given
a CDP problem (P ,R,Π, T), the processors are applied to the ordinary DP problem
(P ′,R), where P ′ is obtained from P by stripping the contextual rules of their
contexts.

CDP Processors
In the following we develop a method to prove the absence of minimal CDP

chains by inspecting the contexts of dependency pairs. To this end we consider
the nested contexts of consecutive dependency pairs of candidates for infinite CDP
chains. Then, if for such a candidate in the obtained nested contexts of consecu-
tive dependency pairs the unique box position is forbidden (by certain forbidden
patterns), the candidate chain is not a proper FP-CDP chain. A CDP processor
can then soundly delete a CDP s→ t[c] from a CDP-problem if no candidate chain
containing s → t[c] is a proper FP-CDP chain (provided that the set of candidates
is complete).

Example 53. Consider a CDP problem (P ,R,Π, T) where

P = {a# → a#[f(�)]} R = {a→ f(a)}
Π = {〈f(f(f(x))), 1.1, b〉}.

If there were an infinite FP-CDP chain w.r.t. this CDP problem, then it would consist
of an infinite sequence of the only CDP a# → a#[f(�)]. Hence, this sequence is
the only candidate for an FP-CDP chain. Now considering the contexts occurring
in this CDP chain candidate we get f(f(...(�)...)) (for any sufficiently large finite
subsequence). However, in this term the box position is forbidden by Π. Hence,
the CDP chain candidate is not a proper FP-CDP chain and since it was the only
candidate, we conclude finiteness of the CDP problem.

Unfortunately, there are two major problems with this approach. First, in or-
der to obtain a sound CDP processor one would have to consider candidates for
CDP chains in a complete way. Second, according to Definition 34 contexts are not
constant but may be modified at positions parallel to the box position in FP-CDP
chains.

We will deal with the second problem first, starting with the observation that
the (nested) contexts are stable modulo reductions parallel to the position of the
hole, i.e. they are altered only through reductions parallel to the hole position.
Hence, if forbidden patterns oblivious to this kind of parallel reductions forbid the
hole position in such a context, the corresponding sequence of dependency pairs
cannot form an FP-CDP chain according to Definition 34. We characterize (or
rather approximate) these patterns by the definition of the subset Πorth of Π. The
name Πorth expresses that these forbidden patterns are orthogonal to a given rewrite
system R in that they are not overlapped by rules of R.

98 Chapter 4. Generalizing Context-Sensitivity

Definition 35 (Πorth). Let R be a TRS and Π be a set of corresponding forbidden
patterns. The set Πorth ⊆ Π consists of those forbidden patterns 〈t, p, λ〉 where
λ ∈ {h, b}, t is linear and not overlapped by any rule of R at any (function symbol)
position that is parallel to or below p.

Note that there is a subtle difference between the definition of stable patterns
(Definition 31) and that of patterns orthogonal to R. In the definition of Πorth, in
contrast to that of Stb(Π), also overlaps at forbidden positions are ruled out. So
we have Πorth ⊆ Stb(Π) ⊆ Π for any given set Π of forbidden patterns and rewrite
system R. The reason for this more restricted definition of Πorth becomes obvious in
Lemma 21 below, where the terms in question can be arbitrarily reduced with →R
(i.e. reductions not adhering to the forbidden pattern restrictions) while matches
by forbidden patterns are preserved. Indeed, the lemma would not hold if we used
Stb(Π) instead of Πorth.

Lemma 21 is the key result for analyzing nested contexts of CDP chain candi-
dates. It states that whenever the box position q of a nested context corresponding
to a CDP chain candidate (after substituting the right-hand side of the last CDP)
is forbidden, then this position is also forbidden in every other term obtained from
the nested context by rewriting at positions parallel to q.

Lemma 21. Let (P ,R,Π, T) be an FP-CDP problem and let s1 → t1[c1], . . . , sn →
tn[cn] be a sequence of CDPs. If position p1. · · · .pn is forbidden in the term

c1[c2[. . . cn[erase(tn)]pn . . .]p2]p1

by a forbidden pattern from Πorth, then the same position is forbidden in

c′1[c′2[. . . c′n[t′n]pn . . .]p2]p1

where ci →∗R c′i with reductions parallel to pi for all 1 ≤ i ≤ n and erase(tn)
>ε
′

→∗R t′n.

Proof. For brevity let

c[tn]q = c1[c2[. . . cn[erase(tn)]pn . . .]p2]p1 ,

where q = p1.p2. · · · .pn and let

c′[t′n]q be some c′1[c′2[. . . c′n[t′n]pn . . .]p2]p1

where ci →∗R c′i with reductions parallel to pi for all 1 ≤ i ≤ n and erase(tn)
>ε
′

→∗R t′n.
Assume the forbidden pattern 〈t, o, λ〉 forbidding the reduction of c[tn]q at po-

sition q matches the term at position q′ < q and assume moreover that the same
pattern does not match c′[tn]q. Since we consider plain R-reduction and not forbid-
den pattern reduction, we have S : c[tn]q →∗R c′[t′n]q with reductions parallel to or
strictly below q. Since t does not match c′[t′n]q|q′ and is linear, there must be some
reduction at a position q′.q′′ where q′′ ∈ PosF(t) and q′′ is either parallel to or below
o.

4.4. Termination of Rewriting with Forbidden Patterns 99

c[tn]q

t

tn
b

b

q

ob

q′

b

q′.q′′
b

Hence, t is overlapped by some rule of R at some position parallel to or below o,
and we get a contradiction to 〈t, o, λ〉 ∈ Πorth.

Lemma 21 establishes that for a CDP chain candidate it suffices to consider the
nested contexts unmodified as long as one only considers patterns from Πorth to check
whether the nested contexts forbid their hole position implying that the candidate
chain is not an actual chain.

Regarding the second problem of considering a complete set of CDP chain can-
didates, we present two solutions yielding two concrete CDP processors, that we
call “simple context processor” and “context processor (based on tree automata)”
respectively.

4.4.2.1 A Simple Context Processor

The idea of the simple context processor is to consider only CDP chain candidates
of a bounded length n. Assuming a finite set of CDPs, there are only finitely
many possible sequences of CDPs of this length. Then, if none of these sequences
containing a certain CDP s→ t[c] is an FP-CDP chain (which then cannot be part
of an infinite FP-CDP chain, cf. Lemma 22 below) it is sound to delete s→ t[c] from
the given CDP problem.

The following lemma establishes that every finite subsequence of CDPs forming
an FP-CDP chain form an FP-CDP chain in turn.

Lemma 22. Let (P ,R,Π, T) be a CDP problem and α1, α2, . . . be an FP-CDP chain
where αi ∈ P for all i ≥ 1. Then αm, αm+1, . . . , αm+n as well as αm, αm+1, . . . are
FP-CDP chains for all m,n ≥ 1.

Proof. We consider the original CDP sequence α1, α2, . . . and write α1 = s1 →

100 Chapter 4. Generalizing Context-Sensitivity

t1[c1], α2 = s2 → t2[c2], Since this CDP sequence is an FP-CDP chain, we have

s1σ →P c1[t1σ]p1 = c′1[t1σ]p′1
6≤p′1→ ∗R c′′1[s2σ]p′1 →P c′′1[c2[t2σ]p2]p′1 = c′2[t2σ]p′2

. . .
6≤p′m−1→ ∗

R c
′′
m−1[smσ]p′m−1

→P c′′m−1[cm[tmσ]pm]p′m−1
= c′m[tmσ]p′m

6≤p′m→ ∗
R c
′′
m[sm+1σ]p′m →P c′′m[cm+1[tm+1σ]pm+1]p′m = c′m+1[tm+1σ]p′m+1

. . .
6≤p′m+n−1→ ∗

R c
′′
m+n−1[sm+nσ]p′m+n−1

→P c′′m+n−1[cm+n[tm+nσ]pm+n]p′m+n−1

. . .

for some substitution σ according to Definition 34. However, according to Lemma
20 we also have

smσ →P cm[tmσ]pm = c̃′m[tmσ]p̃′m
6≤p̃′m→ ∗

R c̃
′′
m[sm+1σ]p̃′m →P c̃′′m[cm+1[tm+1σ]pm+1]p̃′m = c̃′m+1[tm+1σ]p̃′m+1

. . .
6≤p̃′m+n−1→ ∗

R c̃
′′
m+n−1[sm+nσ]p̃′m+n−1

→P c̃′′m+n−1[cm+n[tm+nσ]pm+n]p̃′m+n−1

. . .

where c̃′i (resp. c̃′′i) is obtained from c′i (resp. c′′i) through extraction, i.e. c̃′i = c′i|o
(resp. c̃′′i = c′′i |o) for some position o for all i ∈ {m, . . . ,m + n, . . .}. Hence,
αm, αm+1, . . . , αm+n resp. αm, αm+1, . . . are proper FP-CDP chains.

Using Lemma 22 we get that if no sequence of CDPs of length n involving a
certain CDP α is a proper FP-CDP chain, no infinite FP-CDP chain involves α and
hence α can be soundly deleted. Thus, by additionally using Lemma 21 we can
define an effective CDP processor, the simple context processor.

Definition 36 (simple context processor). Let Prob = ({s→ t[c[�]p]}]P ,R,Π, T)
be a CDP problem. Given a bound n the simple context processor (SCPn) returns

• {(P ,R,Π, T)} if for every sequence of CDPs

s→ t[c[�]p], s2 → t2[c2[�]p2], . . . , sn → tn[cn[�]pn]

position p.p2. · · · .pn is forbidden in the term c[c2[. . . cn[erase(tn)]pn . . .]p2]p by
a forbidden pattern of Πorth, and

• {Prob} otherwise.

Theorem 16. The CDP processor SCPn is sound and complete for every n > 1.

4.4. Termination of Rewriting with Forbidden Patterns 101

Proof. Completeness of the processor is trivial, since either one CDP is deleted or
the problem is returned unmodified. In either case infinity of the returned problem
implies infinity of the original one.

Regarding soundness assume towards a contradiction that Prob is infinite while
SCPn(Prob) is finite (i.e. the single problem contained in the set of returned prob-
lems). If SCPn(Prob) = {Prob}, then soundness is trivial. Otherwise, let Prob =
({s → t[c[�]p]}] P ,R,Π, T) and SCPn(Prob) = {(P ,R,Π, T)}, i.e. the CDP
s → t[c[�]p] has been deleted by the processor. Since Prob is infinite, there ex-
ists an infinite FP-CDP chain S : α1, α2, . . . with αi ∈ {s → t[c[�]p]}] P for all
i ≥ 1. Moreover, s → t[c[�]p] occurs infinitely often in S, since otherwise there
would exist an infinite FP-CDP chain without s → t[c[�]p] starting after the last
occurrence of s → t[c[�]p] in S (using Lemma 22), thus contradicting finiteness of
(P ,R,Π, T).

Now consider a subsequence of length n + 1 of S starting at an occurrence of
s → t[c[�]p], i.e. αm, αm+1, . . . , αm+n+1. According to Definition 36, since s →
t[c[�]p] has been deleted, the position p.pm+1. · · · .pm+n+1 is forbidden in the term
c[cm+1[. . . cm+n[erase(tm+n)]pm+n . . .]pm+1]p by a forbidden pattern of Πorth where
ci[�]pi is the context associated to the CDP αi for all i ≥ 1 and tm+n is the right-hand
side of the CDP αm+n.

Using Lemma 21 we obtain that the same position is Πorth-forbidden in every
term obtained from c[cm+1[. . . cm+n[erase(tm+n)]pm+n . . .]pm+1]p by reduction parallel
to or below p.pm+1. · · · .pm+n+1. Thus, there cannot be a subsequent CDP step
at this position and hence αm, αm+1, . . . , αm+n+1 is not a proper FP-CDP chain.
However, by Lemma 22 this implies that S is not a proper FP-CDP chain and we
get a contradiction.

Example 54. Consider the CDP problem of Example 53 and let n = 3. The only
candidate CDP sequence of length 3 is α, α, α where α = a# → a#[f(�)]. The nested
context corresponding to this CDP sequence is f(f(f(�))), the relevant position is
1.1.1 and f(f(f(erase(a#))) is f(f(f(a))). In this example Πorth = Π and thus
we observe that position 1.1.1 is forbidden in the term f(f(f(a))). According to
Theorem 16 it is sound to delete α, thus leaving us with an empty set of CDPs.
Hence, we conclude finiteness of the original CDP problem.

Definition 36 requires to consider all sequences of CDPs of a given length n as
CDP chain candidates. However, in practice it is not desirable to consider all n-tuples
of CDPs, since the number of these tuples combinatorially explodes. To counter this
problem, the sequences of CDPs that need to be considered can be obtained from
existing DP graph approximations (cf. e.g. [33, 32, 52]). By the definition of the
dependency graph, every DP-chain corresponds to a path in this graph and also
every FP-CDP chain corresponds to a path in the DP graph and thus also in every
(over-)approximation of this graph.

102 Chapter 4. Generalizing Context-Sensitivity

Example 55. Consider the TRS R from Example 32 and one forbidden pattern
Π = {〈x : (y : zs), ε, b〉}. We have CDP (R) =

{α1 : inf#(x) → inf#(s(x)) [x : �] α2 : inf# → T (x) [x : inf(s(�))]
α3 : inf# → T (x) [� : inf(s(x))] α4 : 2nd#(x : y : zs) → T (y) [�]

α5 : T (inf(x)) → T (x) [inf(�)] α6 : T (inf(x)) → inf#(x) [�]}

Now we apply the simple context processor to the CDP problem (CDP (R),R,Π, T)
with a bound of n = 3 and considering the CDP α1. By computing some DP graph
approximation one observes that all CDP chain candidates of length 3 starting with
the CDP α1 are the following:

α1, α2, α5 with corresponding context: x : (x′ : inf(s(inf(�))))

α1, α2, α6 with corresponding context: x : (x′ : inf(s(�)))

α1, α3, α5 with corresponding context: x : (inf(�) : inf(s(x′)))

α1, α3, α6 with corresponding context: x : (� : inf(s(x′)))

α1, α1, α2 with corresponding context: x : (x′ : (x′′ : inf(s(�))))

α1, α1, α3 with corresponding context: x : (x′ : (� : inf(s(x′′))))

α1, α1, α1 with corresponding context: x : (x′ : x′′ : �)

Note that CDPs in chain candidates are assumed to be variable disjoint, so the
reoccurring variables have been renamed in the example. It is easy to see that the box
position is forbidden in all above contexts, hence this position is also forbidden when
� is substituted by any term erase(t), because � does not occur in any forbidden
pattern. Thus, none of the CDP chain candidates is a proper FP-CDP chain and
thus according to Theorem 16 it is sound to delete α1.

4.4.2.2 A Context Processor Based on Tree Automata

The second way to effectively check whether all possible CDP chain candidates are
not proper FP-CDP chains is by describing the set of nested contexts associated to
these chains by a tree automaton. Then, having a finite representation of these in
general infinitely many nested contexts, one can check whether the �-positions are
forbidden in all these contexts.

We start with the simpler problem of describing the nested context of a single
given sequence of CDPs s1 → t1[c1], . . . , sn → tn[cn]. It is straightforward to con-
struct a tree automatonA accepting (only) the term c1[c2[. . . cn[erase(tn)] . . .]] where
all variables are replaced by a new constant. Replacing all variables by one single
new constant is justified by the fact that we are interested only in whether this term
is matched by another linear term (namely a forbidden pattern from Πorth). It is
easy to see that if some term s is matched by another linear term t after replacing
all variables in s by some constant not occurring in t, then s and every instance of
s is matched by t as well.

4.4. Termination of Rewriting with Forbidden Patterns 103

In order to check whether the nested context described by A is matched by some
forbidden pattern from Πorth, we construct another tree automaton B that accepts
all terms that are matched by any forbidden pattern from Πorth (or contain such a
term). Then, the idea is roughly to check whether the language accepted by A is a
sublanguage of B and if that is the case to conclude that the sequence of CDPs is
not a proper FP-CDP chain.

In the following, we discuss the construction of the involved automata in more
detail, starting with the one that accepts terms matched by some forbidden pattern
of Πorth.

The rest of the section is structured as follows:

1. First, we construct an automaton that accepts ground terms containing a fresh
unary symbol H only if the position of the occurrence of H is forbidden by
a given Π. This automaton is called the forbidden pattern automaton and
denoted by FPA(Π) (cf. Definition 38 and Lemma 27 below).

2. Second, given a finite sequence of CDPs s1 → t1 [c1], . . . , sn → tn [cn], a sig-
nature F and a term t we construct an automaton DPA((c1 . . . cn),F , t) that
accepts instances of terms of the shape c1[. . . cn[t]] (cf. Definition 39 below) and
show that in case L(DPA((c1 . . . cn),F , H(t))) ⊆ L(FPA(Πorth)) the sequence
of CDPs is not a proper FP-CDP chain (cf. Theorem 17 below).

3. Third, we show an auxiliary result about arbitrary directed graphs stating that
all cycles of such graphs can be finitely characterized by so called minimal cycle
combinations (MCCs, cf. Lemmata 28 and 29 below).

4. Finally, we show that in a given dependency graph approximation consisting of
CDPs, all terms obtained by nesting contexts of CDPs along cyclic paths in the
graph are accepted by the minimal cycle combination automaton MCCA(M, t)
(after replacing � by H(t) in the final context; cf. Definition 46 and Theorem
18 below). Thus, we derive an effective method to simplify CDP problems (cf.
Definition 47, Theorem 19 and Corollary 8 below).

The Forbidden Pattern Automaton
Starting from a CDP problem (P ,R,Π, T), the signature F ′ of the automaton we

are going to construct is the signature of R plus {H,A} where H is a new function
symbol of arity one and A is a new constant4.

The role of the symbolH is to indicate the forbidden position in terms matched by
forbidden patterns and A is needed, since the automata we use work on ground terms,
so we are going to replace variables in the occurring terms by this new constant. In
order to effectively construct an automaton accepting only terms where the positions
of H-occurrences are forbidden we need a couple of definitions and lemmas first.

4Throughout this section H and A are assumed to be a unary function symbol resp. a constant
that are fresh for the signatures resp. CDP problems in question.

104 Chapter 4. Generalizing Context-Sensitivity

Definition 37. A tree automaton A = (Q,F ,Qf ,∆) is a quadruple where Q is a
set of states, F is a signature, Qf ⊆ Q is a set of final states and ∆ is a set of
transitions of the form

f(q1, . . . , qn) → q, or

q → q′

where f ∈ F , n = ar(f) and q, q′, q1, . . . , qn ∈ Q. A term t ∈ T (F , ∅) is accepted by
A if t→∗∆ q for some q ∈ Qf . The set of all terms accepted by A is the language of
A and denoted by L(A).

Lemma 23 (automata matching terms). Given a signature F and a linear term t,
it is possible to construct an automaton with a unique end-state accepting exactly
the ground terms over F matched by t.

Proof. We prove the result by induction on the depth of t. If t is a constant, we
construct an automaton having only one state q which is an end state and one
transition t → q. If t is a variable, we construct an automaton again having only
one state q which is also an end state and containing the transitions f(q, . . . , q)→ q
for all f ∈ F . Obviously, this automaton accepts exactly all ground terms.

For the induction step consider t = f(t1, . . . , tn). We construct n automata
A1, . . . ,An accepting all instances of t1, . . . , tn respectively. The states of these
automata can be renamed to be pairwise disjoint. Now we construct an automaton
A consisting of the union of all states of Ai for 1 ≤ i ≤ n and one additional state q
which is also the only end-state. Moreover, the set of transitions of A is the union
of the transitions of Ai for 1 ≤ i ≤ n and one additional transition f(q1, . . . , qn)→ q
where qi is the unique end state of Ai for all 1 ≤ i ≤ n.

Lemma 24 (subterm closure). Given a tree automaton A accepting terms from
L(A) and a signature F , an automaton stcF(A) (subterm closure) can be constructed
accepting exactly the terms of the shape C[s] where s ∈ L(A) and C ∈ T (F]{�}, ∅)
(and C[s] does not contain any occurrence of �).

Proof. Let A = (Q,F ,Qf ,∆) and F ′ be the given signature. Then stc(A) =
(Q′,F ∪ F ′,Qf ,∆′). where Q′ = Q] {q} and q is a new state. Moreover, ∆′ =

∆ ∪
{f(q, . . . , q)→ q | f ∈ F ′} ∪

{f(q, . . . , q)[q′]i → q′ | f ∈ F ′≥1
, i ∈ {1, . . . , ar(f)}, q′ ∈ Qf}

where F ′≥1 contains all function symbols from F ′ having an arity of at least 1.

Lemma 25 (function containment). Given a signature F , a linear term t, a set
of variables X ⊆ V ar(t) and a designated function symbol H ∈ F , it is possible to
construct an automaton with a unique end-state accepting exactly the ground terms
over F matched by t, i.e., tσ, where xσ does not contain H whenever x ∈ X.

4.4. Termination of Rewriting with Forbidden Patterns 105

Proof. The proof is analogous to proof of Lemma 23 with the only difference that
in the induction base case if t = x and x ∈ X we use the automaton A containing
the transitions f(q, . . . , q)→ q for all f ∈ F \ {H}.

Lemma 26 (combination of automata). Let A and B be two tree automata ac-
cepting the languages L(A) and L(B) respectively. They can be combined into a tree
automaton accepting the language L(A)∪L(B). We denote this automaton by A∪B.

Proof. Folklore (cf. eg. [17][Theorem 1.3.1]).

Now we are ready to define an automaton accepting exactly terms containing the
new function symbol H at a forbidden position.

Definition 38 (FP automaton). Let Π be a set of linear forbidden patterns over a
signature F and let F ′ = F] {H,A} where H is unary and A is a constant. The
forbidden pattern automaton FPA(Π) is given by

⋃
π∈Π

 ⋃
p∈PosΠ(t)

stcF(Aπp)

 ∪ stcF(Ãπo)

where π = 〈t, o, λ〉 and

• Aπp is the automaton accepting ground terms t[H(t|p)]pσ (over F ′) where xσ
does not contain an H symbol for all x ∈ Dom(σ), and

• Ãπo is the empty automaton (i.e. accepting the empty language) if λ = h, and

if λ = b, then Ãπo is the automaton accepting terms tσ where additionally xσ
does not contain the symbol H if x 6∈ V ar(t|o), and xσ does not contain the
symbol H at the root position if x = t|o.

Note that in Definition 38 in case t|o = x ∈ V ar and λ = b, Ãπo is given by⋃
f∈F Bπf where Bπf is the automaton accepting terms t[f(x1, . . . , xar(f))]oσ where xσ

does not contain the symbol H for all x ∈ Dom(Σ)\{x1, . . . , xar(f)} (i.e. the variables
x1, . . . , xar(f) are fresh in t). Hence, FPA(Π) can effectively be constructed by the
Lemmata 25, 24 and 26.

The following lemma shows that with the tree automaton FPA(Π) for a given
set of forbidden patterns Π, we can describe the set of terms containing the function
symbol H at a forbidden position.

Lemma 27. The automaton FPA(Π) accepts a term C[H(t)]p over the signature
F] {H,A} only if the position p is forbidden in C[t]p by Π.

Proof. Assume a term s = C[H(t)]p is accepted such that p is not forbidden in
C[t]p = s′. Hence, s is accepted either by the automaton stcF(Aπq) for some π =

〈u, o, λ〉 ∈ Π and some q ∈ PosΠ
(u), or it is accepted by the automaton stcF(Ãπo).

for some π = 〈u, o, λ〉 ∈ Π.

106 Chapter 4. Generalizing Context-Sensitivity

In the first case, where s is accepted by stcF(Aπq), s is of the form C ′[u[H(u|o)]oσ]p′

for some position o ∈ PosΠ
(u) according to Definition 38 and Lemmata 24 and 25.

Moreover, C ′, u, and xσ do not contain the symbol H for all x ∈ Dom(σ). Hence,
the occurrence of H is unique in s and we have p = p′.o. Position p′.o = p is
forbidden in C ′[uσ]p′by π. Thus, we obtain a contradiction to our assumption of p
being allowed in s′.

In the second case s is accepted by stcF(Ãπo). We distinguish two cases. First, let
t|o 6∈ V ar. Hence, s is of the form C ′[uσ]p′ (according to Definition 38 and Lemmata
24 and 25), λ = b and p > p′.o, because C ′, u and xσ do not contain the symbol H
unless x ∈ V ar(u|o) and u|o 6∈ V ar. Hence, p is forbidden in s′ by π.

Finally, let t|o = x ∈ V ar. Then, s is of the form C ′[uσ]p′ (according to Definition
38 and Lemmata 24 and 25), λ = b and C ′, u and xσ do not contain the symbol H
unless x = u|o. Moreover, if u|oσ contains H-symbols, then they occur below the
root. Hence, p > p′.o and thus p is forbidden in s′.

Example 56. Consider a set of forbidden patterns containing the pattern

π1 : 〈f(f(x)), 1, b〉

For the automaton we use the signature {f, g,H,A} f, g and H are unary and A is
a constant. The automaton stc(Aπ1

1.1) consists of the transitions

h(q1) → q1 for all h ∈ {f, g}
A → q1

H(q1) → q2

f(q2) → q3

f(q3) → q4

h(q4) → q4 for all h ∈ {f, g}

where q4 is the unique end state. The automaton stc(Ãπ1
1) consists of the transitions

h(q1) → q1 for all h ∈ {H, f, g}
A → q1

f(q1) → q2

f(q2) → q3

h(q3) → q3 for all h ∈ {f, g}

where q3 is the unique end state.

4.4. Termination of Rewriting with Forbidden Patterns 107

The automaton FPA(Π) contains the following transitions:

A → q1

A → q′1
h(q1) → q1 for all h ∈ {f, g}
H(q1) → q′1
h(q′1) → q′1 for all h ∈ {f, g,H}
f(q1) → q2

f(q′1) → q2

f(q2) → q3

h(q3) → q4 for all h ∈ {f, g}

The unique end state is q4. Note that FPA(Π) is not deterministic.

An Automaton for Nested Contexts w.r.t. CDP Sequences
Next, we discuss the construction of an automaton accepting terms obtained by

nesting contexts of subsequent contextual dependency pairs in sequences of depen-
dency pairs where additionally the (new) function symbol H occurs at the hole
position of the context. This construction basically relies on the construction of an
automaton that accepts terms matched by a given term t, which has already been
established in Lemma 23.

Definition 39 (CDP automaton). Let (P ,R,Π, T) be an FP-CDP problem where
R = (F , R) and let S : s1 → t1, [c1] . . . , sn → tn[cn] be a sequence of CDPs. The
CDP automaton DPA((c1, . . . , cn),F , tn) corresponding to this CDP chain is the
automaton accepting ground terms of the shape c′1[. . . c′n(tn)]σ where xσ ∈ T (F ∪
{A}, ∅) for all x ∈ V ar(tn) and c′i is obtained from ci by replacing the variables of
ci by the constant A.

Replacing variables in contexts by new constants is justified by the fact that
whenever some linear forbidden pattern matches a context after replacing variables
by the new constant, every instance of the context (before substituting the new
constant) is matched as well.

Theorem 17 (analyzing nested contexts). Let (P , R,Π, T) be an FP-CDP problem
with R = (F , R) and let S : s1 → t1, [c1] . . . , sn → tn[cn] be a sequence of dependency
pairs. If L(DPA((c1, . . . , cn),F , H(tn))) ⊆ L(FPA(Πorth)), then S cannot be part
of an infinite FP-CDP chain.

Proof. L(DPA((c1, . . . , cn),F , H(tn))) ⊆ L(FPA(Π)) means by Definition 39 and
Lemma 27 that in every instance of a term t = c′1[c′2[. . . c′n[tn]pn . . .]p2]p1 (where
c′i is obtained from ci by replacing all variables by the new constant A) position
p1.p2. · · · .pn is forbidden by Π.

108 Chapter 4. Generalizing Context-Sensitivity

Now assume towards a contradiction that S is part of an infinite CDP chain.
Then we have

c0[s1]pσ →P c0[c1[t1σ]p1]p = c1[t1σ]p1

6≤p1

→ ∗R c̃1[s2σ]p1 →P c̃1[c2[t2σ]p2]p1 = c2[t2σ]p2

6≤p2

→ ∗R c̃2[s3σ]p2 →P c̃2[c3[t3σ]p3]p2 = c3[t3σ]p3

6≤p3

→ ∗R . . . →P . . .
...

6≤pn−1

→ ∗
R c̃

n−1[snσ]pn−1 →P c̃n−1[cn[tnσ]pn]pn−1 = c̃n[tnσ]pn .

for some context c0. Moreover, we have c0[c1[c2[. . . cn[tnσ]pn . . .]p2]p1]p →∗R c̃n[tnσ]pn
with reductions parallel to p or pi for some 1 ≤ i ≤ n. Hence, we also have c0′ →∗R c0′′

and c′i →∗R c′′i for all 1 ≤ i ≤ n (where c0′ is obtained from c0 by replacing all variables
by A) such that c̃n[tnσ]pn = c0′′[c′′1[. . . c′′n[tnσ]]] (after replacing variables in cn[tnσ]pn
by A). Thus , Lemma 21 is applicable and we obtain that position pn is forbidden
in c̃n[tnσ]pn . Moreover, again by Lemma 21, position pn is forbidden in every term s
obtained from c̃n[tnσ]pn by R-reduction at positions parallel to or strictly below pn.
Hence, we get a contradiction to the existence of another CDP after sn → tn[cn] in
the infinite CDP chain.

Theorem 17 enables us to check whether a given sequence of CDPs is an FP-
CDP chain. However, we did not yet tackle the problem of effectively computing a
complete set of candidate CDP sequences in order to soundly deduce non-existence
of any infinite FP-CDP chain.

In order to address this problem we are going to construct a tree automaton
accepting the language of all possible nested contexts corresponding to candidate
CDP sequences. To this end we start with the observation that every FP-CDP chain
corresponds to a path in the dependency graph (as defined e.g. in [9]), that we obtain
when we strip the contextual pairs of their contexts and consider them as ordinary
dependency pairs. Hence, we start by describing infinite paths in general graphs in
a convenient way.

Characterizing Cycles in Graphs by Minimal Cycle Combinations
First, we provide the definition of cycle and minimal cycles in a graph:

Definition 40 (minimal cycle). A cycle for a node n1 in a graph is a finite sequence
of nodes (n1, n2, . . . , nm) such that there is an edge from ni to ni+1 for all 1 ≤ i < m,
n1 = nm and n1 6∈ {n2, n3, . . . , nm−1}. Moreover, the cycle is minimal if the nodes
n1, . . . , nm−1 are pairwise distinct.

By node(C) we denote the node of the cycle C, i.e. the first and last node of the
sequence of nodes.

Example 57. Consider the graph

4.4. Termination of Rewriting with Forbidden Patterns 109

b

b b

b

b b

1 2

34

5 6

which contains the following minimal cycles:

12341 232 2532

565 6 125341

A key observation of this section is that we can describe the in general infinite set
of cycles of a graph finitely as combinations of minimal cycles. These combinations
are represented as trees and called minimal cycle combinations.

Definition 41 (minimal cycle combinations). Let G be a (finite) graph and let
C1, . . . , Cn be the set of minimal cycles of G. A minimal cycle combination (MCC)
is a tree whose nodes are minimal cycles and whose edges Ci − Cj are labeled by a
positive integer k from {1, . . . , |Ci|} if Cj is a cycle for the kth node of Ci. A minimal
cycle combination is hierarchical if node(Ci) 6∈ Cj whenever Cj is below Ci.

We say an MCC is for node n if its root is a cycle for node n. Note that the
depth of a hierarchical MCC is bounded by the number of nodes in the graph G.

Example 58. Consider the graph G from Example 57. The following is an example
of an MCC for G:

1 2 5 3 4 1

2 3 2 5 6 5

2 3

The root node of the tree is a cycle for node 1, hence the MCC is for node 1. The
children of the root node are minimal cycles for the nodes 2 and 5 respectively. Since
these minimal cycles do not contain the node 1, the MCC is hierarchical.

An important feature of MCCs is that they describe a potentially infinite set of
concrete cycles.

Definition 42 (cycles associated to MCCs). Let M be a hierarchical MCC for a
node n. The set Cyc(M) of cycles for this MCC is inductively defined by root(M)
if M consists only of the root node. Otherwise, let k be the minimal label of any
edges adjacent to the root and let M ′ be the MCC obtained from M by omitting

110 Chapter 4. Generalizing Context-Sensitivity

all direct subtrees M1, . . . ,Mm connected to the root by edges labelled with k. Then
Cyc(M) = {c[c′]k | c ∈ Cyc(M ′), c′ ∈ Seq((Cyc(M1) ∪ . . . ∪ Cyc(Mm)))} where
Seq(A) describes the set of all (finite) sequences of elements from A, Cyc(M) =
{(n1, n2, . . . , nl) | (n1, n2, . . . , nl, n1) ∈ Cyc(M)}, Seq(∅) = ε and c[c′]k means that
in the cycle c the cycle c′ is pasted before the kth element.

Note that choosing the minimal label k in Definition 42 ensures that the index
k remains valid in cycles from Cyc(M ′). These cycles differ from root(M) only at
index positions greater than k.

Example 59. Consider the hierarchical MCC M of Example 58. The smallest index
of any edge adjacent to the root node is 2. Hence, we compute Cyc(M ′) where M ′

is obtained from M by removing this edge and the corresponding child of the root
node (i.e. the cycle (232)). For M ′ there is only one edge adjacent to the root node
having index 3. We have

Cyc(M ′) = {c[c′]3 | c = root(M), c′ ∈ C56}

where C56 = Seq({(56)}) = {ε, 56, 5656, 565656, . . .}. Hence,

Cyc(M ′) = {1 2 c56 5 3 4 1 | c56 ∈ C56}.

Now Cyc(M) = {c[c′]2 | c ∈ Cyc(M ′), c′ ∈ C23} where C23 = Seq({(23)}) =
{ε, 23, 2323, 232323, . . .}. Hence, we have

Cyc(M) = {1 c23 2 c56 5 3 4 1 | c23 ∈ C23, c56 ∈ C56}.

Lemma 28. For a finite graph G there is only a finite number of hierarchical MCCs
having different sets of associated cycles.

Proof. We use induction on the (finite) depth of MCCs. The number of MCCs of
depth 1 (i.e. the ones consisting of only one (root) node), is the number of minimal
cycles in G which is finite, since no minimal cycle can be longer than the number of
nodes plus one by definition.

Now consider an MCC of depth n. The induction hypothesis yields that there
are only finitely many MCCs of depth n− 1 (say the number is m). Moreover, there
are only finitely many labels (since the root node is a minimal cycle; say the number
is l), hence each MCC of depth n either has at most m∗ l immediate sub-MCCs or it
contains identical children (of the root node) connected by edges with identical labels.
If the root node has two identical children (subtrees) connected by identical labels,
one of these subtrees can be erased without changing the associated cycles, because
of idempotency (and associativity, commutativity) of ∪ (cf. Definition 42). Hence,
there are only finitely many MCCs of depth n having different sets of associated
cycles.

The next lemma shows that every cycle is described by a hierarchical MCC.

4.4. Termination of Rewriting with Forbidden Patterns 111

Lemma 29. Let C be a cycle. Then there is a hierarchical MCC M such that
C ∈ Cyc(M).

Proof. First, if C is minimal, then M consists only of one node C. If C is not minimal
we prove the result by induction on the length of C. If |C| = 1, then C is minimal.
Otherwise, assume the length of C is n > 1 and C is not minimal. Let ni 6= n1

be the first node in C such that there exists nj = ni with j > i and nk 6= ni for
i < k < j. Then let C ′ = (ni, ni+1, . . . , nj) and C ′′ = (n1, . . . , ni−1, ni, nj+1, . . . , nm)
both have lengths smaller than n and thus by the induction hypothesis there are
hierarchical MCCs M ′ and M ′′ such that C ′ ∈ Cyc(M ′)respectively C ′′ ∈ Cyc(M ′′).
We obtain M by adding the tree M ′ as child to the root of M ′′ with label i and get
C ∈ Cyc(M) by Definition 42.

According to Lemmata 28 and 29 we can describe all cycles of a graph by a finite
set of hierarchical MCCs. In the following, we will use this result to describe all
possible sequences of CDPs w.r.t. DP graph approximations.

An Automaton Accepting Contexts of CDPs Corresponding to Cyclic DP
Graph Paths

From now on we are exclusively concerned with dependency graphs, i.e. graphs
whose nodes are CDPs. Since we are only interested in the context component of
the CDPs, we will sometimes consider graphs where the nodes are labelled by the
contexts only for notational simplicity. In a first step we are going to describe nested
contexts obtained by cycles of CDPs in a DP graph.

Definition 43 (DP cycle context). Let (P , R,Π, T) be an FP-CDP problem and
let S : s1 → t1 [c1] . . . , sn → tn [cn] be a sequence of CDPs in some DP graph
approximation. The associated overall context ctx(S) is c1[c2[. . . cn]]. Moreover,
given a hierarchical minimal cycle combination M we write ctxs(M) for the set
{ctx(s1 → t1 [c1] . . . , sn → tn [cn]) | ∃C ′ ∈ Cyc(M), C ′ = s1 → t1 [c1], . . . , sn →
tn [cn], s1 → t1 [c1]}.

Note that for given cycles n1, . . . , nk, n1 in a DP graph we are actually inter-
ested in the contexts corresponding to the sequence n1, . . . , nk of nodes. The rea-
son is that these sequences (where the last node of the cycle is omitted) can be
concatenated to form valid paths in the graph, while for instance the sequence
n1, . . . , nk, n1, n1, . . . , nk, n1 might not be a proper path if there is no edge from
n1 to n1.

Example 60. We consider the graph of Example 57 where now contexts are attached
to each node:

112 Chapter 4. Generalizing Context-Sensitivity

b

b b

b

b b

1 2

34

5 6

i()

f()

h()

g()

j()

k()

For the minimal cycle 12341 we have ctx(1234) = f(g(h(i(�)))). Moreover, we
have e.g.

f(g(h(g(j(k(j(k(j(h(i(�))))))))))) ∈ ctxs(M)

for the hierarchical MCC M of Example 58. Note that the given context corresponds
to the cycle

123256565341.

Abusing notation we write ctxs(M)[t] for the set of terms given by {c[t] | c ∈
ctxs(M)}.

The crucial result of this section is that given a hierarchical MCC M in a DP
graph and a term t we can construct a (finite) tree automaton MCCA(M, t) accept-
ing all terms from ctxs(M)[H(t)].

To construct this automaton we need some machinery. First, we define the
function CycAut, which, given automata A1, . . . ,Am each accepting a language of
contexts, computes an automaton CycAut(A1, . . . ,Am) that accepts (among others)
contexts c1[c2[. . . cn[�] . . .]] for arbitrary n where ci ∈ L(Aj) for some j ∈ {1, . . . ,m}
and all i ∈ {1, . . . , n} (cf. also Lemma 32 below).

Definition 44 (CycAut). Given tree automata A1, . . . ,Am (with disjoint sets of
states) each having a unique end state and � in their signature, CycAut(A1, . . . ,Am)
is obtained from

⋃
1≤i≤mAi as follows. The end states of all Ai are unified to a state

qend and for each 1 ≤ i ≤ m and each 1 ≤ j ≤ li a transition qend → qji is added
where {q1

i , . . . , q
li
i } are the states of Ai such that Ai contains a transition � → qji .

Moreover, a transition �→ qend is added.

Example 61. Consider two automata A and B where A consists of the transitions

� → q1

A → q2

f(q1, q2) → q3

and q3 is the (unique) end state of A, and B consists of the transitions

� → q1

g(q1) → q2

4.4. Termination of Rewriting with Forbidden Patterns 113

where q2 is the (unique) end state of B. A accepts (only) the term f(�, A) and B
accepts (only) the term g(�). Then CycAut(A,B) has the transitions

� → q1

A → q2

f(q1, q2) → qend

� → q′1
g(q′1) → qend

qend → q1

qend → q′1

and qend is the unique end state of CycAut(A,B). CycAut(A,B) accepts terms from
the following set of terms

{g(�), f(�, A), f(g(�), A), g(f(�, A)), g(g(�)), f(f(�, A), A), . . .}

Next, we define the automaton A a
 B that accepts terms of L(A) where occur-

rences of the variable a have been replaced by terms from L(B).

Definition 45 (concatenation of automata). Let A = (QA,FA,QAf ,∆A) and B =
(QB,FB,QBf ,∆B) be tree automata (where QA ∩QB = ∅) and let a be a constant of

FA. By A a
 B we denote the tree automaton (Q,F ,Qf ,∆) where

Q = QA ∪QB
F = FA ∪ FB
Qf = QAf
∆ = ∆B ∪∆′

A

and ∆′A = {l→ r | l→ r ∈ ∆A, l 6= a} ∪ {q → r | l→ r ∈ ∆A, l = a, q ∈ QBf }.

Note that we consider
a
 to be left-associative. Hence, parenthesis are omitted

in complex expressions containing
a
 .

Example 62. Consider tree automata A and B where A consists of the transitions

a → q1

b → q2

g(q2) → q3

f(q1, q3) → q4

and has the (unique) end state q4. Hence, A accepts (only) the term f(a, g(b)). B
consists of the transitions

c → q1

h(q1) → q2

114 Chapter 4. Generalizing Context-Sensitivity

and has the (unique) end state q2. It accepts (only) the term h(c). The automaton

A a
 B is given by the transitions

q′2 → q1

b → q2

g(q2) → q3

f(q1, q3) → q4

c → q′1
h(q′1) → q′2.

Note that the states of B were renamed to be disjoint from the states of A. A a
 B

accepts (only) the term f(h(c), g(b)).

Lemma 30. Let A and B be tree automata. and let a be a constant of the signature
of A. If a term t is obtained by replacing each occurrence of a in a term t′ ∈ L(A)

by some terms s ∈ L(B), then t is accepted by A a
 B.

Proof. By construction of A a
 B.

The following construction defines the tree automaton MCCA(M, t) that accepts
contexts (where the hole is replaced by some term t) obtained by paths of the DP
graph forming cycles from Cyc(M). This is the crucial step of describing the infinite
set of these cycles (and associated nested contexts) finitely to finally obtain an
effective termination criterion.

Definition 46 (automaton for MCC). Let (P , R,Π, T) be a forbidden pattern de-
pendency pair problem with R = (F , R) and M be a hierarchical MCC for a CDP
(i.e. node) s→ t [c] in some DP graph approximation. The automaton MCCA(M, t)
is inductively defined as follows.

Let M1
k , . . . ,M

lk
k be the immediate subtrees of M connected to the root of M

by an edge with label k and let (m1 . . .mn) be the minimal cycle of the root of M .
Moreover, let ci be the context associated to the node (i.e. CDP) mi for all 1 ≤ i ≤ n
in the DP graph approximation. Then MCCA(M, t) is given by

DPA((c1),F ,�)
�
 CycAut(MCCA(M1

2 ,�), . . . ,MCCA(M l2
2 ,�))

�
 DPA((c2),F ,�)

. . .
�
 CycAut(MCCA(M1

n−1,�), . . . ,MCCA(M
ln−1

n−1 ,�))
�
 DPA((cn−1),F , H(t))

Example 63. Consider the graph of Example 60 and the MCC M of Example 58.
For ease of readability we provide only the transitions of the following automata.

4.4. Termination of Rewriting with Forbidden Patterns 115

They all have a unique end state denoted by qend. Let F = {f, g, h, i, j, k} and
t = f(x) be. We have

DPA(f(�),F ,�) =

{
� → q1

f(q1) → qend

DPA(g(�),F ,�) =

{
� → q2

g(q2) → qend

DPA(h(�),F ,�) =

{
� → q3

h(q3) → qend

DPA(i(�),F ,�) =

{
� → q4

i(q4) → qend

DPA(j(�),F ,�) =

{
� → q5

j(q5) → qend

DPA(k(�),F ,�) =

{
� → q6

k(q6) → qend

DPA(i(�),F , H(t)) =

A → q7

l(q7) → q7 for all l ∈ {f, g, h, i, j, k}
f(q7) → q8

H(q8) → q9

i(q9) → qend

M2 consists only of one (root) node. Hence, MCCA(M2,�) is given by

DPA(g(�),F ,�)
�
 DPA(h(�),F ,�)

and consists of the transitions

� → q̃3

h(q̃3) → q̃′3
q̃′3 → q̃2

g(q̃2) → qend.

Analogously, MCCA(M5,�) is given by

DPA(j(�),F ,�)
�
 DPA(k(�),F ,�)

and consists of the transitions

� → q̃6

k(q̃6) → q̃′6
q̃′6 → q̃5

j(q̃5) → qend.

116 Chapter 4. Generalizing Context-Sensitivity

CycAut(MCCA(M2,�)) resp. CycAut(MCCA(M5,�)) can be obtained from the
automaton MCCA(M2,�) resp. MCCA(M5,�) by adding the transition qend → q̃3

resp. qend → q̃6 as well as the transition � → qend (to both). Hence, we have all
ingredients to construct MCCA(M, t) given by

DPA((f(�)),F ,�)
�
 CycAut(MCCA(M2,�))
�
 DPA((g(�)),F ,�)
�
 CycAut(MCCA(M5,�))
�
 DPA((j(�)),F ,�)
�
 DPA((h(�)),F ,�)
�
 DPA((i(�)),F , H(t)).

It consists of the following transitions:

A → q7 l(q7) → q7 for all l ∈ {f, g, h, i, j, k}
f(q7) → q8 H(q8) → q9

i(q9) → q′9 q′9 → q3

h(q3) → q′3 q′3 → q5

j(q5) → q′5 q′5 → q̃6

k(q̃6) → q̃′6 q̃′6 → q̃5

j(q̃5) → q̃′5 q̃′5 → q′5
q′5 → q2 g(q2) → q′2
q′2 → q̃3 h(q̃3) → q̃′3
q̃′3 → q̃2 g(q̃2) → q̃′2
q̃′2 → q′2 q′2 → q1

f(q1) → qend

In the following two lemmas we prove that any automaton MCCA(M,�) (where
M is some MCC) accepts terms containing exactly one occurrence of � and that

CycAut(MCCA(M1,�), . . . ,MCCA(Mm,�))

accepts arbitrary combinations of contexts accepted by some MCCA(Mi,�) (ob-
tained by nesting).

Lemma 31. Let (P , R,Π, T) be an FP-CDP problem with R = (F , R) and M be
a hierarchical MCC for a CDP (i.e. node) s1 → t1 [c1] in some DP graph approx-
imation. Every term accepted by MCCA(M,�) contains the constant � exactly
once.

Proof. Given a context (with unique � position) c, the automaton DPA((c),F ,�)
accepts only terms with exactly one occurrence of � by Definition 39. Hence, for a
proof by structural induction that MCCA(M,�) accepts only terms with exactly
one occurrence of �, according to Definition 46 it suffices to show that

4.4. Termination of Rewriting with Forbidden Patterns 117

• whenever two automata A and B accept only terms containing exactly one �,

then so does A �
 B; and

• whenever tree automata A1, . . . ,Ak accept only terms containing exactly one
�, then so does CycAut(A1, . . . ,Ak).

For A �
 B assume a term s is accepted that does not contain any � symbol.

Since terms accepted by A contain a � symbol and thus by Definition 45 a subterm
of s must be accepted by B, we get a contradiction to our assumption that B accepts
only terms containing a � symbol.

Second, assume a term s containing two or more � symbols is accepted by

A �
 B. According to Lemma 30, s is of the form s[s1, . . . , sl]p1,...,pl where si is

accepted by B for all 1 ≤ i ≤ l and s[�, . . . ,�]p1,...,pn is accepted by A. Now if
more than one occurrence of � in s are inside si for some 1 ≤ i ≤ l, then we
get a contradiction to B accepting only terms with exactly one �-occurrence. On
the other hand, if l > 1 or there are additional �-occurrence in s, then we get a
contradiction to A accepting only terms having exactly one occurrence of �.

Now consider CycAut(A1, . . . ,Ak). Let s be a term containing no �-position
that is accepted by CycAut(A1, . . . ,Ak). By Definition 44, s must contain a subterm
accepted by Ai for some 1 ≤ i ≤ k or must be � itself. In the latter case we get
an immediate contradiction. In the former case, by induction, the subterm of s
accepted by some Ai must contain exactly one �, thus we get a contradiction.

Second, assume s contains two or more occurrences of � and is accepted by
CycAut(A1, . . . ,Ak). Moreover, assume that no proper subterm of s contains two
or more occurrences of � and is accepted by CycAut(A1, . . . ,Ak) (thus s is a
minimal counterexample). According to Definition 44 (i.e. by the construction of
CycAut(A1, . . . ,Ak)), s is of the form s[s1, . . . , sl]p1,...,pl where si is accepted by
CycAut(A1, . . . ,Ak) for all 1 ≤ i ≤ l and s[�, . . . ,�]p1,...,pl is accepted by Ai for
some 1 ≤ i ≤ k. By minimality of s, si contains at most one occurrence of � for all
1 ≤ i ≤ l. Hence, since s contains more than one �, either l > 1 or s contains addi-
tional occurrences of � at some positions parallel to pi for all 1 ≤ i ≤ l. Either way
we get a contradiction to Ai accepting the term s[�, . . . ,�]p1,...,pl , which contains
more than one � symbol.

Lemma 32. Given automata A1, . . . ,An accepting terms (i.e. contexts) containing
exactly one occurrence of �, CycAut(A1, . . . ,An) accepts arbitrary terms of the
shape ci1 [ci2 [. . . cil [�]]] where ij ∈ {0, 1, . . . , n} for all j ∈ {1, . . . , l} and ck ∈ L(Ak)
for all 1 ≤ k ≤ n.

Proof. For brevity we denote CycAut(A1, . . . ,An) just by CycAut. We prove the
result by induction on l. If l is 0, then the result follows from Definition 44, since
there is a transition �→ qend where qend is an end state of CycAut.

Otherwise, consider a term t of the form ci1 [ci2 [. . . cil [�]]]. The induction hypoth-
esis yields that ci2 [. . . cil [�]] is accepted by CycAut. Moreover, ci1 [�] is accepted

118 Chapter 4. Generalizing Context-Sensitivity

by CycAut (as it is accepted by Ai1). Hence, ci1 [ci2 [. . . cil [�]]] itself is accepted by
CycAut, since for every transition � → q, there is also a transition qend → q in
CycAut according to Definition 44.

The next theorem shows the crucial step of describing the (possibly) infinite set
ctxs(M)[H(t)] finitely by MCCA(M, t) for some hierarchical MCC M and term t.

Theorem 18. Let (P , R,Π, T) be an FP-CDP problem with R = (F , R) where all
variables in the contexts of CDPs have been replaced by the new constant A, and
let M be a hierarchical MCC for a CDP (i.e. node) s1 → t1 [c1] in some DP graph
approximation. Every ground instance (over F∪{A}) of a term from ctxs(M)[H(t)]
is accepted by MCCA(M, t).

Proof. Let the root of the MCC M be the minimal cycle C = (s1 → t1 [c1] . . . sn →
tn [cn], s1 → t1 [c1]). We prove the result by induction on the size (number of nodes)
of M . If M consists only of the root, then ctxs(M)[H(t)] = {c1[c2[. . . cn[H(t)]]]}
whose ground instances are accepted by MCCA(M, t) =

DPA((c1),F ,�)
�
 DPA((c2),F ,�)

. . .
�
 DPA((cn),F , H(t))

according to Definition 39 and Lemma 30.

For the induction step let M ′ be the MCC obtained from M by omitting all chil-
dren of the root node connected by an edge with label k where k is the minimum label
of all edges connected to the root in M . Clearly, the size of M ′ is smaller than M .
Hence, ground instances of terms of ctxs(M ′)[H(t)] are accepted by MCCA(M ′, t)
by the induction hypothesis.

According to Definitions 42 and 43 every ground instance of a term from the
set ctxs(M)[H(t)] is obtained from a ground term c1[c2[. . . ck[. . . cm[H(t)σ] . . .] . . .]]
being an instance of a term from ctxs(M ′)[H(t)] by replacing the context ck[�] by
some context c′k[ck[�]] where c′k is a context of the set

{ctx(C) | C ∈ Seq(Cyc(M1), . . . , Cyc(Ml))}

and M1, . . . ,Ml are the MCCs connected to the root of M with label k. According
to Lemma 32, the context c′k is accepted by

CycAut(MCCA(M1,�), . . . ,MCCA(Ml,�))

.

4.4. Termination of Rewriting with Forbidden Patterns 119

Hence, the term c1[c2[. . . c′k[ck[. . . cm[H(t)σ] . . .]] . . .]] is accepted by the automa-
ton MCCA(M, t) =

DPA((c1),F ,�)
�
 DPA((c2),F ,�)

. . .
�
 DPA((ck−1),F ,�)
�
 CycAut(MCCA(M1,�), . . . ,MCCA(Ml,�))
�
 DPA((ck),F ,�)

. . .
�
 DPA((cn),F , H(t))

Lemma 33. Let (P , R,Π, T) be an FP-CDP problem with R = (F , R) and M be a
hierarchical MCC for a CDP (i.e. node) s→ t [c] in some DP graph approximation
D. Let C ∈ Cyc(M) be a cycle in D and C = (s → t[c] si1 → ti1 [ci1] . . . sin →
tin [cin] s→ t[c]). L(DPA((c ci1 . . . cin),F , H(t))) ⊆ L(MCCA(M, t)).

Proof. Direct consequence of Definition 43 and Theorem 18.

The following theorem is the basis of a dependency pair processor relying on
contexts of CDPs.

Theorem 19. Let Prob = ({s → t [c]}] P , R,Π, T) be an FP-CDP problem with
R = (F , R). If for every hierarchical MCC M for s → t [c] in some DP graph
approximation (where in contexts of CDPs variables have been replaced by the new
constant A) L(MCCA(M), t) ⊆ L(FPA(Πorth)), then Prob is finite if and only if
(P , R,Π, T) is finite.

Proof. The “only if” part is trivial. For the “if” part assume the contrary. Then
there exists an infinite FP-CDP chain S w.r.t. Prob that contains infinitely many
occurrences of s → t [c]. Two arbitrary consecutive appearances of s → t [c]
in S form a cycle C in the DP graph approximation. According to Theorem 17,
L(DPA((c1, . . . , cn),F , H(t))) 6⊆ L(FPA(Πorth)) where (c1 . . . cn) are the contexts
of the nodes in C. However, according to Lemma 29, there exists an MCC M for
s → t [c] such that C ∈ Cyc(M). Hence, we have L(DPA((c1, . . . , cn),F , H(t))) ⊆
L(MCCA(M, t)) according to Lemma 33 and as L(MCCA(M, t)) ⊆ L(FPA(Πorth))
we get a contradiction.

Note that the condition of Theorem 19 can effectively be checked in practice due
to Lemma 28.

Building on Theorem 19 we define the context processor based on tree automata.

120 Chapter 4. Generalizing Context-Sensitivity

Definition 47 (context processor). Let Prob = ({s → t[c[�]p]}] P ,R,Π, T) be a
CDP problem. The context processor CP returns

• {(P ,R,Π, T)}, if for every hierarchical MCC M for s→ t [c[�]p] in some DP
graph approximation L(MCCA(M), t) ⊆ L(FPA(Πorth)), and

• {Prob} otherwise.

Corollary 8. The context processor CP is sound and complete.

Benchmarks
We implemented the CDP framework and the context processors (i.e. the simple

context processor and the context processor based on tree automata) in the termina-
tion tool VMTL (cf. Chapter 5 below)5. In order to evaluate the practical power of
this approach we tested this implementation on the TRSs of the outermost category
of the TPDB6.Since outermost rewriting is a special case of rewriting with forbidden
patterns (in particular, rewriting with forbidden b-patterns), the CDP approach is
applicable to these systems. In our test run 291 TRS were evaluated, 158 of which
were proven to be outermost terminating in the termination competition 2008 ([1]).
Table 4.1 shows the results of VMTL on the test set. At the time of writing, VMTL
does not support non-termination analysis of outermost TRSs. Hence, Table 4.1 in-
dicates only the positive results of VMTL and various other termination tools tested
on the same set of examples. We cite the results of the termination competition 2008,
since the then most powerful tool (regarding positive termination proofs) Jambox
did not participate in the subsequent years. These other tools are

• AProVE ([31]), which proves outermost termination by transforming TRSs
such that (innermost) termination implies outermost termination of the origi-
nal TRS. The transformations used are the ones from Raffelsieper et. al. ([75])
and Thiemann ([84]).

• TrafO ([75]), which proves outermost termination by transformations either,
using the transformation of Raffelspieler et. al. ([75]) and analyzing the result-
ing TRSs with Jambox ([24]).

• “Jambox goes out”, which proves outermost termination by transforming TRS
into context-sensitive TRSs, such that their termination implies outermost
termination of the original TRS (cf. [25]).

TTT2 ([53]) participated in the outermost category of the termination competition
2008 but was specialized (exclusively) on disproving outermost termination. Hence,
the results of TTT2 are omitted in Table 4.1.

5However, at the time of writing this thesis these implementations are only prototypical and
not yet contained in the publicly available version of VMTL.

6The termination problem database, available at http://termcomp.uibk.ac.at/

4.5. Computing Useful Results via Rewriting with Forbidden Patterns 121

VMTL Simple VMTL AProVE TrafO Jambox goes out
33 60 27 46 72

Table 4.1: Number of successful outermost termination proofs of various systems.

VMTL was run in two modes. The first one, denoted “VMTL Simple” in Table
4.1, did not use the context processor CP but only the simple context processor
SCPn with n = 3 for the analysis of contexts. The second mode was full VMTL
(denoted “VMTL” in Table 4.1) which additionally used the CP . The use of CP in
the termination analysis approximately doubles the power of VMTL on the test set.
However, VMTL is outperformed by “Jambox goes out” which won the category.

The reasons for VMTL being less powerful than “Jambox goes out” are twofold.
First, the use of structural dependency pairs adds significant complexity to the
initial CDP problems. In particular, for some outermost terminating TRSs where
VMTL failed to find an outermost termination proof, we observed that the simplified
CDP problems obtained at the end of failed proof attempts by VMTL consisted of
structural CDPs only (in their first component). The second reason for the lack of
power of VMTL compared to Jambox is the use of Πorth in the context processors.
By excluding certain forbidden patterns in the context analysis performed by CP
or SCPn the power is reduced.

Addressing both of these problems appears to be an interesting and promising
way to improve the CDP framework and make it even more competitive in the future.

4.5 Computing Useful Results via Rewriting with

Forbidden Patterns

In this section we investigate the relation of normal forms obtained under reduction
with a TRSR and normal forms obtained under reduction with (R,Π) for some set of
forbidden patterns Π. An important application of restricted rewriting is to compute
(parts) of results w.r.t. the underlying unrestricted systems in a more efficient or
otherwise operationally superior way (e.g. while some rewrite relation is weakly
normalizing, a suitable restriction could be strongly normalizing, cf. e.g. Example
34). Hence, we are mainly interested in criteria that imply a certain connection
between normal forms obtained by restricted and unrestricted rewriting. In our case
this connection will be that normal forms of restricted rewriting are root-stable w.r.t.
unrestricted rewriting.

We are going to use canonical context-sensitive rewriting as defined in [55, 60] as
an inspiration for our approach. There, for a given (left-linear) rewriting system R
certain restrictions on the associated replacement map µ guarantee that→µ-normal
forms are →R-head-normal-forms. Hence, results computed by →µ and →R share
the same root symbol.

The basic idea is that reductions that are essential to create a more outer redex

122 Chapter 4. Generalizing Context-Sensitivity

should not be forbidden. In the case of context-sensitive rewriting this is guaranteed
by demanding that whenever an f -rooted term t occurs (as subterm) in the left-hand
side of a rewrite rule and has a non-variable direct subterm t|i, then i ∈ µ(f).

It turns out that for rewriting with forbidden patterns severe restrictions on the
shape of the patterns are necessary in order to obtain results similar to the ones for
canonical context-sensitive rewriting in [55, 60]. First, no forbidden patterns of the
shape 〈 , ε, h〉 or 〈 , , a〉 may be used as they are in general not compatible with the
desired root-normalizing behaviour of our forbidden pattern rewrite system.

Moreover, for each pattern 〈t, p, 〉 we demand that

• t is linear,

• p is a variable or maximal (w.r.t. to the prefix ordering ≤ on positions) non-
variable position in t, and

• for each position q ∈ Pos(t) with q||p we have t|q ∈ V .

We call the class of patterns obtained by the above restrictions simple patterns.

Definition 48 (simple patterns). Let Π be a set of forbidden patterns. The subset
Πs of simple forbidden patterns of Π is given by those forbidden patterns 〈t, p, λ〉
that satisfy

• λ = b, or both λ = h and p > ε; and

• t is linear; and

• t|p ∈ V ar or t|p = f(x1, . . . , xar(f)) for some function symbol f ; and

• for each position q ∈ Pos(t) with q||p we have that t|q is a variable.

We say that Π is a set of simple forbidden patterns if Π = Πs. Basically, these
syntactical properties of forbidden patterns are necessary to ensure that reductions
which are essential to enable other, more outer reductions are not forbidden. More-
over, these properties, contrasting those introduced in Definition 49 below, are in-
dependent of any concrete rewrite system.

The forbidden patterns of the TRS (R,Π) in Example 64 below are not simple,
since the patterns contain terms with parallel non-variable positions. This is the
reason, why it is not possible to head-normalize terms (w.r.t R) with →Π:

Example 64. Consider the TRS R given by

f(b, b) → g(f(a, a)) a → b

and forbidden patterns 〈f(a, a), 1, h〉 and 〈f(a, a), 2, h〉. f(a, a) is linear and 1 and
2 are maximal positions (w.r.t. ≤) within this term. However, positions 1 and 2 are
both non-variable and thus e.g. for 〈f(a, a), 1, h〉 there exists a position 2||1 such that
f(a, a)|2 = a 6∈ V . Hence, Π is too restrictive to compute all R-head-normal forms

4.5. Computing Useful Results via Rewriting with Forbidden Patterns 123

in this example. Indeed, f(a, a)→∗R f(b, b)→R g(f(a, a)) where the latter term is a
R-head-normal form.

The term f(a, a) is a Π-normal form, although it is not a head-normal form
(w.r.t. R). Note also that the (first components of) forbidden patterns are not unifi-
able with the left-hand side of the rule that is responsible for the (later) possible
root-step when reducing f(a, a), not even if the forbidden subterms in the patterns
are replaced by fresh variables.

Now we are ready to define canonical rewriting with forbidden patterns within
the class of simple forbidden patterns. To this end, we demand that patterns do not
overlap with left-hand sides of rewrite rules in a way such that reductions necessary
to create a redex might be forbidden.

Definition 49 (canonical forbidden patterns). Let R = (F , R) be a TRS with
simple forbidden patterns ΠF (w.l.o.g. we assume that R and ΠF have no variables
in common). Then, ΠF is R-canonical (or just canonical) if the following holds for
all rules l→ r ∈ R :

1. There is no pattern (t, p, λ) such that

• t′|q and l unify for some q ∈ OF(t) where t′ = t[x]p and q > ε, and

• there exists a position q′ ∈ OF(l) with q.q′ = p for λ = h respectively
q.q′ > p for λ = b.

2. There is no pattern (t, p, λ) such that

• t′ and l|q unify for some q ∈ OF(l) where t′ = t[x]p, and

• there exists a position q′ with q.q′ ∈ OF(l) and q′ = p for λ = h respec-
tively q′ > p for λ = b.

Here, x denotes a fresh variable.

Example 65. Consider the TRS R given by the single rule

l = f(g(h(x))) → x = r .

Then, Π = {〈t, p, h〉} with t = g(f(a)), p = 1.1 is not canonical, since t[y]p|q =
g(f(y))|1 = f(y) and l unify where q = q′ = 1 and thus q.q′ = p (hence root(l|q′) =
g). Moreover, also Π = {〈t, p, h〉} with t = g(i(x)), p = 1 is not canonical, since
l|q = g(h(x)) and t[y]p = g(y) unify for q = 1 and q.p = 1.1 is a non-variable
position in l.

On the other hand, Π = {〈g(g(x)), 1.1, h〉} is canonical. Note that all of the
above patterns are simple.

124 Chapter 4. Generalizing Context-Sensitivity

In order to prove that normal forms obtained by rewriting with simple and canon-
ical forbidden patterns are actually head-normal forms w.r.t. unrestricted rewriting,
and also to provide more intuition on canonical rewriting with forbidden patterns,
we define the notion of a partial redex (w.r.t. to a rewrite system R) as a term that
is matched by a non-variable term l′ which in turn matches the left-hand side of
some rule of R. We call l′ a witness for the partial match.

Definition 50 (partial redex). Given a rewrite system R = (F , R), a partial redex
is a term s that is matched by a non-variable term l′ which in turn matches the
left-hand side of some rule in R. The (non-unique) term l′ is called witness for a
partial redex s.

Thus, a partial redex can be viewed as a candidate for a future reduction step,
which can only be performed if the redex has actually been created through more
inner reduction steps. Hence, the idea of canonical rewriting with forbidden patterns
could be reformulated as guaranteeing that the reduction of subterms of partial
redexes is allowed whenever these reductions are necessary to create an actual redex.

Lemma 34. Let R = (F , R) be a left-linear TRS with canonical (hence, in partic-
ular, simple) forbidden patterns ΠF . Moreover, let s be a partial redex w.r.t. to the
left-hand side of some rule l with witness l′ such that l|p 6∈ V but l′|p ∈ V . Then
in the term C[s]q the position q.p is allowed by ΠF for reduction provided that q is
allowed for reduction.

Proof. Assume on the contrary that q.p is forbidden in C[s]q. As position q is
allowed, this means that there is a forbidden pattern 〈t, o, λ〉, such that λ ∈ {h, b}
and t matches C[s]q at some position q′ and q < q′.o ≤ q.p. Assume λ = b. As
s partially matches l, we have that root(s|p′) = root(l|p′) for all p′ < p. Hence, as
all positions parallel to p are variable positions in t (due to simplicity of Π) and t
is linear, we have that either t|o′ unifies with l[x]p for some position o′ such that
o′.p > o (if q′ ≤ q), or t unifies with l[x]p|o′ such that p > o′.o (if q′ > q). Either way,
we get a contradiction to the canonicity of Π (cf. Definition 49). The case where
λ = h is analogous.

Theorem 20. Let R = (F , R) be a left-linear TRS with canonical (hence, in par-
ticular, simple) forbidden patterns ΠF . Then →R,ΠF -normal forms are →R-head-
normal forms.

Proof. For a proof by minimal counterexample assume s is an →R,ΠF -normal form,
but not a →R-head-normal form, and has minimal depth.

If the depth of s is 0, then it is either a constant or a variable. In case it is
a variable, it is a →R-head-normal form. Otherwise, if it is a constant and not
→R-head-normal, then it is not a →R,ΠF -normal form, because only patterns of the
shape 〈 , ε, h〉 can forbid root reduction steps and these are not simple (cf. Definition
48).

4.5. Computing Useful Results via Rewriting with Forbidden Patterns 125

Note that s cannot be an R-redex itself, because in this case it would also be
→R,ΠF -reducible, as there are no 〈 , ε, h〉-patterns.

Now assume the depth of s is greater than 0. Since the term s is not a →R-

head-normal form, there exists a reduction sequence S : s
>ε→
∗
R t = lσ. Hence, s is a

partial redex and there is some maximal subterm s|p of s where p ∈ PosF(l) that is
not an→R-head-normal form (otherwise s would be a redex because of left-linearity
of R). According to the minimality of s, s|p must be →R,ΠF -reducible.

Thus, as s is not→R,ΠF -reducible, there must be some forbidden pattern 〈t, o, λ〉,
where t matches s at some position q < p and forbids the reduction of some position
q.o ≥ p (because of Lemma 34). We distinguish two cases. First, if s|p is a redex,
then s is →R,ΠF -reducible, because position p cannot be forbidden in s according to
Lemma 34.

Second, if s|p is not a redex, then it is a partial redex w.r.t. to some l → r ∈ R
and contains a maximal proper subterm s|p′ (p′ > p) which is →R,ΠF -reducible and
not a →R-head-normal form. Again position p′ cannot be forbidden in s according
to Lemma 34. Thus, again either s|p′ is a redex implying →R,ΠF -reducibility of s or
it contains a →R,ΠF -reducible proper subterm s|q′′ .

Eventually, either an allowed redex in s is found or there is some subterm s|p(n)

of s such that |p(n)| − |p| > n where n is the maximal term depth of all forbidden
patterns. Thus, s is reducible below p(n) if and only if s|p is reducible below o
where p.o = p(n). Since s|p is reducible below o (because by our construction this
reduction step is necessary to head-normalize s|p), we have a contradiction to s being
irreducible w.r.t. →Π.

Given a left-linear and confluent rewrite system R and a set of canonical for-
bidden patterns Π such that →Π is well-founded, one can thus normalize a term s
(provided that s is normalizing) by computing the →Π-normal form t of s which is
R-root-stable according to Theorem 20, and then do the same recursively for the
immediate subterms of t. Confluence of R assures that the unique normal form of s
will indeed be computed this way.

Example 66. As the forbidden pattern defined in Example 33 is (simple and) canon-
ical, Theorem 20 yields that →R,δ-normal forms are →R-head-normal forms. For
instance we get 2nd(inf(0))→∗Π s(0).

Example 67. Consider the TRS with R and forbidden patterns Π from Example
34. We will prove below that R is Π-terminating (cf. Example 45). Furthermore,
we show that every well-formed ground term that is reducible to a normal form in R
is reducible to the same normal form with →R,Π and that every →R,Π-normal form
is root-stable w.r.t. →R.

Proof. Regarding root-stability of→R,Π-normal forms, assume on the contrary that
there is a non-root-stable →R,Π normal-form s of minimal term depth. Since s
is non-root-stable, root(s) ∈ {app, from, take}. The immediate subterms of s are
reducible (in R) to terms t1, . . . , tn such that eventually s becomes a redex. Each ti

126 Chapter 4. Generalizing Context-Sensitivity

(for 1 ≤ i ≤ n) is rooted by a constructor, because the left-hand sides of rules in R
are patterns. Hence (because of the shape of the left-hand sides of R), if s is not a
redex, then some immediate subterm of s is not root-stable. Moreover, this subterm
is also a →R,Π-normal form as no forbidden pattern term in Π has a defined root
symbol and thus, the immediate subterms of s are allowed w.r.t. Π. Thus, we have
a contradiction to minimality of s.

Regarding the power of →R,Π to compute R-normal forms, assume on the con-
trary that there is a well-formed ground Π-normal form s that is reducible to an
R-normal form t 6= s in R, and that s has minimal depth among all such terms.

First, note that no well-formed ground R-normal form t can contain a defined
symbol, as all functions are completely defined over ground constructor arguments of
the respective types (otherwise, any subterm of t rooted by some innermost defined
symbol would have to be reducible, thus contradicting R-irreducibility of t).

Let f = root(s|p) be an outermost defined symbol in s. First, f cannot be from,
as in this case s would not be→R-normalizing. Second, assume f = root(s|p) = take.
As take is not part of any forbidden pattern term, the immediate subterms of s|p
must be →R,Π-normal forms and thus root-stable. Hence, as s|p must eventually
be reducible in some R-reduction and all immediate subterms of s|p are root-stable
(and root(s|p) is an outermost defined symbol in s) s|p itself must be a redex and we
get a contradiction to s being a →R,Π normal form, because no take-rooted redex is
forbidden by Π.

Finally, assume f = app. We distinguish two cases. First, assume s|p is not
forbidden for reduction by Π. Then either, s|p is an app-rooted →R,Π-normal form
that is reducible in R to an R-normal form (remember that there are no defined
symbols in s above p) which is a contradiction (as this R-normal form must be
rooted by a constructor and s|p can thus not be root-stable). Otherwise, s|p has the
form app(from(s1), s2) which is non-normalizing, hence we get a contradiction to
our assumption of s being R-normalizable.

Second, assume s|p is forbidden in s. thus s = C[s1 : app(s2 : app(s3, s4), s5)]q
where q.2 = p and root(C|o) is a constructor for all o ≤ q. In this case we
take a closer look at the inner app-term, i.e. at s|p.2. Again this subterm could
be forbidden by Π or allowed. We investigate the general case of having several
nested app-symbols, i.e. where s has the shape C[s1 : app(s2 : app(s3 : app(s4 :
. . . app(sn, s

′
n)), . . .), s′4), s′3), s′2)] and sn is not matched by x : app(y, z). Thus

app(sn, s
′
n) is not forbidden for reduction by Π. Either sn is rooted by from in

which case it is easy to see that s is not R-normalizing, or sn is a→R,Π normal form
in which case it must be rooted by : or nil, because it must be reducible to a :-rooted
term or nil in R in a normalizing reduction of s, since the app-symbol cannot be
erased. In the latter case s would not be a →R,Π normal form, as the innermost
(indicated) app term would be reducible, and we would have a contradiction.

4.6. Automated Synthesis of Suitable Forbidden Patterns. 127

4.6 Automated Synthesis of Suitable Forbidden

Patterns.

In this section we are going to utilize the machinery of Section 4.4.2, and in partic-
ular the simple context processor SCPn, in order to synthesize suitable forbidden
patterns for a given rewrite system R. The basic idea is to construct the CDPs of
R assuming an empty set of forbidden patterns Π and then by an analysis with the
SCPn processor synthesize the forbidden patterns needed to ensure Π-termination
of R on the fly.

More precisely, we analyze nested contexts obtained by sequences of CDPs of
bounded length (as in Definition 36). Let c1[. . . [cn[erase(tn)]pn . . .]p1 be a term
obtained by this nested context analysis. In order to successfully apply the SCPn
processor, position p1. · · · .pn must be forbidden in this term. Hence, we synthesize
a forbidden pattern 〈c1[. . . [cn[erase(tn)]pn . . .]p1 , p1. · · · .pn, h〉, that forbids exactly
this position. By doing this for every sequence of CDPs of length n starting with the
CDP corresponding to the context c1, this CDP can be soundly deleted according to
Theorem 16 provided that the generated forbidden patterns are in Πorth. However,
forbidden patterns obtained this way might not be orthogonal to the rewrite system
and thus not be in Πorth. In order to overcome this problem, terms in the first
component of synthesized forbidden patterns can be “generalized”, i.e. linearized and
subterms at positions where overlaps with the rule system occur can be replaced by
fresh variables. By doing this the rewrite relation becomes more restrictive (since
the patterns match object terms more easily). Moreover, since the patterns after
this generalization are orthogonal to R, the SCPn processor is applicable on the fly
for simplifying the termination problems.

We provide an algorithmic schema for the forbidden pattern synthesis:

1. Compute CDP (R) assuming an empty Π.

2. Choose some CDP s1 → t1 [c1].

3. For all CDP sequences

s1 → t1[c1[�]p1], s2 → t2[c2[�]p2], . . . , sn → tn[cn[�]pn]

(a) If position p1. · · · .pn is allowed in c1[. . . [cn[erase(tn)]pn . . .]p1 ,

i. Create a forbidden pattern 〈c1[. . . [cn[erase(tn)]pn . . .]p1 , p1. · · · .pn, h〉.
ii. Generalize 〈c1[. . . [cn[erase(tn)]pn . . .]p1 , p1. · · · .pn, h〉 so that it is or-

thogonal to R, obtaining 〈u, o, λ〉.
iii. Add 〈u, o, λ〉 to Π.

4. Delete the CDP s1 → t1 [c1] and continue the Π-termination analysis (e.g. at
Stage 2).

128 Chapter 4. Generalizing Context-Sensitivity

Example 68. Consider a CDP problem (P ,R,Π, T) where

P = {a# → a#[f(�)]}
R = {a→ f(a)}
Π = ∅

(cf. also Example 53). An SCP2 processor encounters e.g. the term

f(f(erase(a#)) = f(f(a)).

Thus, a forbidden pattern π = 〈f(f(a)), 1.1, h〉 could be used. This forbidden pat-
tern is orthogonal to R, hence there is no need to generalize it. Indeed, when this
forbidden pattern is used, there is no infinite FP-CDP chain.

Usually one wants to restrict the shape of the generated patterns for instance by
demanding that all forbidden patterns contain allowed redexes and do not overlap
(each other), in order to ensure that Π-normal forms are normal forms (w.r.t. R);
then termination of →Π implies weak termination of →R.

A second choice for restrictions on the shape of forbidden patterns might be
canonical forbidden patterns as defined the previous section.

Synthesis of forbidden patterns adhering to these syntactical restrictions can be
done analogously to the way patterns orthogonal to R are synthesized. Namely,
by generalizing the forbidden patterns to make them compatible with syntactical
constraints immediately after their creation.

Example 69. Consider the TRS of R of Example 32 and the contextual dependency
pair

inf#(x)→ inf#(s(x))[x : �]

and an empty set of forbidden patterns. Applying an SCP2 processor we get a term
x : (x′ : inf(s(x′))), which needs to be generalized, since it is not linear and thus
not canonical (because not simple) and not in Πorth (hence a termination proof with
the context processor would not be possible). Instead we linearize the term obtaining
x : (y : inf(s(z))) which we can use as canonical forbidden pattern. Indeed, R is
Π-terminating when choosing Π = 〈x : y : inf(s(z)), 2.2, h〉.

As an alternative to the on-the-fly generation of forbidden patterns during the
termination analysis with SCPn processors, in some cases an (iterated) two phase
process might be more efficient. There, Stage 4 of the above algorithm scheme is
not carried out, i.e. no CDPs are deleted after the generation of forbidden patterns.
Instead, in phase 2, the termination analysis starts from scratch using the generated
forbidden patterns. If it fails, new forbidden patterns are generated and termination
is analyzed again afterwards. This sequence of (separated) generation of forbidden
patterns and termination analysis continues until termination is proved.

While at first glance the two phase approach seems to be less efficient than the
on-the-fly generation of forbidden patterns during the termination analysis, it has

4.6. Automated Synthesis of Suitable Forbidden Patterns. 129

an important advantage. In the phase of the generation of forbidden patterns an
arbitrary subset of CDPs can be used for the synthesis of forbidden patterns. Since
termination is proved separately, this does not affect the soundness of the approach.
The concrete advantages of this approach are the following.

• For the termination analysis one is not restricted to the CDP framework. One
can for instance use the transformation T of Section 4.4.1.

• When disregarding structural dependency pairs during the synthesis of for-
bidden patterns, the generated patterns are more intuitive, simpler and often
suffice to obtain termination.

• When using the CDP framework, the generated (stable) forbidden patterns
can be used to compute the concrete set of CDPs.

• The generation of forbidden patterns is more fine-grained, since not all se-
quences of CDPs of a given length are considered in the SCPn processor, but
only those contained in the specified subset of CDPs (which could for instance
be specified by a human in a semi-automatic synthesis process). This results
in fewer created forbidden patterns that might still be sufficient to yield Π-
termination.

Example 70. In Example 69 exactly the only non-structural dependency pair is
used. Using the two phase approach the according forbidden pattern is found fully
automatically.

130 Chapter 4. Generalizing Context-Sensitivity

Chapter 5

VMTL - Vienna Modular
Termination Laboratory

5.1 Introduction

During the last decade, remarkable progress has been made in the field of termina-
tion analysis of term rewriting systems. Despite termination being an undecidable
property of TRSs, increasingly sophisticated methods have been developed to prove
it for given systems. From these efforts several tools have emerged that are capable
of proving termination (semi) automatically (cf. e.g. [31], [53], [3]).

The currently most powerful tools implement the dependency pair framework of
[33] based on the idea of dependency pair analysis of [9]. This approach has at least
two advantages. First, it seems to be the most powerful one, which is indicated
by the latest results of a yearly termination competition ([1]). Second, the pure
dependency pair framework is strictly modular, which means that concrete (correct)
methods to prove termination within this framework can be combined, added and
removed arbitrarily, without affecting the correctness of the tool. Thus, it is easy to
extend tools implementing this framework by new methods (called dependency pair
processors in the terminology of [33]).

VMTL (cf. http://www.logic.at/vmtl/) is a new termination tool that im-
plements the dependency pair framework and focuses on openness, modularity and
extensibility. It is easily extensible by new dependency pair processors, while pro-
viding the main technical infrastructure of termination tools such as thread and
processor scheduling, timeout handling, input parsing, output formatting etc. In
addition, VMTL contains implementations of several well-known methods of prov-
ing termination within the dependency pair framework. These include

• a reduction pair processor based on recursive path orderings,

• a reduction pair processor based on polynomial interpretations,

• narrowing and instantiation processors (see below for more details), and

131

132 Chapter 5. VMTL

• a size-change principle processor.

The two reduction pair processors are implemented via reduction to satisfiability
problems and utilizing external SAT solvers, as it is state of the art at the time of
writing. Benchmarks of VMTL on the set of TRSs used in the latest termination
competition can be found below.

Another focus during the development of VMTL was applicability to (and suit-
ability for) conditional term rewriting systems (CTRSs). Termination of such CTRSs
is usually verified by transforming them into ordinary TRSs and deriving termina-
tion of the CTRSs from termination of the transformed TRSs. VMTL provides a
public interface that allows users to plug in such transformations. Moreover, it in-
cludes the transformation of deterministic CTRSs in to context-sensitive TRSs from
Chapter 3.

VMTL is also capable of proving termination of context-sensitive term rewriting
systems (CSRSs). For this task the refined context-sensitive dependency pair ap-
proach of [2] is used. Using context-sensitive dependency pairs, and their property
that they coincide with context-free dependency pairs for context-free term rewriting
systems, allows VMTL to treat every TRS as CSRS, having a trivial replacement
map in case of a context-free TRS.

5.2 User Interface

VMTL provides a command line interface for batch execution and a web interface
that eases configuration and extension. Figure 5.1 shows a screenshot of the web
interface right after startup. It contains fields for entering a TRS or alternatively
uploading a file. VMTL exclusively accepts the input format specified for the ter-
mination competition. On the right-hand side the user can define the strategy, i.e.,
the order in which processors are applied, together with time constraints to be satis-
fied. At the bottom there are two fields allowing the user to upload new customized
dependency pair processors and transformations, respectively.

5.2.1 User Defined Strategies

Since dependency pair processors often modify and simplify dependency pair prob-
lems, it is crucial to apply them in a reasonable order. Moreover, some processors
are more time consuming than others. Thus, in order to achieve the goal of proving
termination as quickly as possible, it is important to have a good strategy for proces-
sor application. VMTL allows the user to fully configure this strategy. It provides
the following degrees of freedom in its specification.

• Dependency pair processors can be arbitrarily ordered.

• Time limits can be imposed on dependency pair processors.

5.2. User Interface 133

Figure 5.1: Snapshot of the VMTL web interface after start up.

• Dependency pair processors can be executed repeatedly (which can be helpful
for instance for narrowing processors).

• Dependency pair processors can be hierarchically grouped to an arbitrary
depth. Each group can be given a time limit. In case of contradicting time
limits the shortest is used.

• Execution of dependency pair processors can be parallelized.

The semantics of parallelization in VMTL is that if one of the parallel branches
finishes the termination proof, the whole execution is stopped immediately and the
proof is presented to the user. Otherwise, if all parallel branches fail to prove termi-
nation, the termination proof continues according to the strategy with the depen-
dency pair problems derived before the start of the parallel execution (cf. Example
1 below).

Graphically, a strategy is represented in VMTL as a tree, where each node can
either be a dependency pair processor, or a “Group node”. Group nodes are used to
build groups of processors or other groups.

Example 1. Consider the snapshot of a strategy specification given in Figure 5.2.
The basic execution order is from top to bottom and a time limit of zero means no
time limit. The given strategy tree has the following meaning. First, the dependency
graph processor (DependencyGraph) is applied. Then the execution of a processor
group starts and the immediate child processors of this group are executed in parallel.

134 Chapter 5. VMTL

Figure 5.2: Snapshot of the specification of a proof strategy in VMTL.

The child processors are again two groups, one sequentially executing the forward
narrowing processor (ForwardNarrowing) followed by the reduction pair processor
(ReductionPairSAT), the other one executing the backward narrowing processor
(BackwardsNarrowing) followed by the reduction pair processor. If one of these
groups is able to prove termination of the given (sets of) dependency pair problems,
then the execution stops and the proof is displayed. Otherwise, the execution contin-
ues with the application of the size-change principle processor (SizeChangePrinciple)
taking the output of the dependency graph processor (which was the last processor
before the parallel group) as input.

5.3 VMTL API

VMTL provides a public interface that allows a user to easily build extensions. There
are three basic functionalities that can be extended.

• New dependency pair processors can be added.

• New transformations, from (conditional/context-sensitive) TRSs to (context-
sensitive) TRSs, can be added.

• New plug-ins for output formatting can be added.

5.3.1 Adding New Dependency Pair Processors

VMTL provides two interfaces DPProcessor and ContextSensitiveDpProcessor from
which one has to be implemented by the user depending on whether the processor
takes context-restrictions into account or not. In case DPProcessor is implemented,
VMTL will make sure that the processor is not applied to context-sensitive depen-
dency pair problems (even if the processor occurs in the strategy). Note that each

5.4. Implementation Details and Benchmarks 135

context-sensitive DP processor is trivially a context-free one (as context-free DP
problems can be seen as special cases of context-sensitive ones), thus ContextSen-
sitiveDpProcessor is a “subinterface” (in an object oriented sense) of DPProcessor.
See e.g. [2] for a justification that context-free dependency pair processors may in
general not be applied to context-sensitive dependency pair problems.

A custom processor is given a dependency pair problem (that has possibly been
processed by other processors before) and a set of (processor) parameters from
VMTL and is required to return a set of derived dependency pair problems. In
VMTL, the datastructure of a dependency pair problem consists of a set of depen-
dency pairs, a rewrite system (possible context-restrictions are derivable from both
through marked forbidden positions in terms) and a subsignature (cf. Section 3.2.4).

5.3.2 Adding New Transformations

Adding transformations to VMTL can be accomplished by implementing the inter-
face TrsToTrsTransformation. Transformations in VMTL are not restricted to ones
that transform conditional systems. The interface can be used to perform arbitrary
preprocessing steps, such as semantic labelling etc. (this is the reason why the in-
terface is not called CtrsToTrsTransformation). However, in case termination of a
conditional rewrite system is to be proved, a transformation is mandatory. If none is
specified by the user, VMTL will use the context-sensitive unraveling transformation
of Chapter 3.

5.3.3 Customizing Output Formatting

The proof information accumulated by VMTL and the used dependency pair proces-
sors is represented in a simple native markup language, providing basic structuring
and formatting tags. From this intermediate representation the actual (human or
machine) readable output is created by so called OutputWriter objects. Out of the
box, VMTL only supports HTML Output. However, the user may extend VMTL
by additional OutputWriters through the OutputWriter interface and can thereby
add additional support for proof certification (see e.g. [51]).

5.4 Implementation Details and Benchmarks

VMTL is entirely written in Java. The core module (i.e., without user interface)
contains approximately 11.500 lines of code. MiniSat ([22]) is used as SAT solver.

We provide benchmarks for termination analysis of standard TRS and context-
sensitive TRSs. Table 5.1 shows the performance of VMTL on the set of stan-
dard TRSs from the TPDB. Table 5.2 shows the benchmarks on the set of context-
sensitive examples. Moreover, in Table 5.3 we compare the performance of VMTL
with AProVE (Version 1.2) on a set of 24 CTRSs (newer versions of AProVE as
well as other termination tools did not support proper deterministic conditional

136 Chapter 5. VMTL

Tool Successful Proofs Number of Systems

VMTL 588(105) 1391
AProVE 1226(231) 1391
TTT2 970(178) 1391

Jambox 810(60) 1391

Table 5.1: Benchmarks on standard TRSs from the TPDB (with a time limit of 60
seconds). The number in parenthesis shows how many of the successful proofs were
actually disproofs.

Tool Successful Proofs Number of Systems

VMTL 65(0) 109
AProVE 94(0) 109

Table 5.2: Benchmarks on context-sensitive TRSs from the TPDB (with a time limit
of 60 seconds). The number in parenthesis shows how many of the successful proofs
were actually disproofs.

rewrite systems in our experiments). These examples were taken from the TPDB as
well as [64], [73] and [34]. For several examples used in these benchmarks, proving
termination depends on the methods described in Section 3.2.4.

Note that apart from the restricted set of proof methods available in VMTL,
the inferior performance for standard and context-sensitive TRSs is due to the strict
modularity. Strategies in VMTL cannot be history aware, which for instance pre-
vents methods like safe narrowing from [33]. In addition, the proof strategy cannot
(easily) be adapted to certain classes of TRSs such as applicative ones.

Tool Successful Proofs Number of Systems

VMTL 19(3) 24
AProVE 14(2) 24

Table 5.3: Benchmarks on conditional TRSs (with a time limit of 120 seconds).
The number in parenthesis shows how many of the successful proofs were actually
disproofs.

Chapter 6

Conclusion

6.1 Summary

In Chapter 3 the successful application of context-sensitive rewriting to the problem
of simulating conditional rewriting by unconditional rewriting was illustrated. We
were able to prove that by considering a context-sensitive variant of a simple and
well-known encoding of (deterministic) CTRSs simulation soundness and simulation
completeness are guaranteed. This is to say that the transformed system allows
for exactly those reductions from old terms to old terms that are possible in the
conditional one itself.

Recently, it has been shown that the same transformation without context-
sensitivity is still simulation-sound and simulation-complete for certain classes of
CTRSs (cf. [35] for details). However, these classes are rather restricted in that
extra variables in conditions of right-hand sides of (conditional) rewrite rules may
not occur.

One potential application for a simulation-sound transformation from DCTRSs
into unconditional rewrite systems is the verification of operational termination of
DCTRSs by verifying termination of the corresponding transformed systems. To
this end we introduced the notion of context-sensitive quasi-reductivity, which is a
context-sensitive variant of quasi-reductivity and (in contrast to quasi reductivity)
proved to be equivalent to operational termination for DCTRSs. Context-sensitive
quasi-reductivity of a DCTRS in turn is shown to be equivalent to context-sensitive
termination of the corresponding unraveled system on terms over the original signa-
ture of the DCTRS, thus yielding a characterization of operational termination of
DCTRSs by a local termination property of the corresponding unraveled uncondi-
tional CSRSs.

Complementing this result, we proved that CE -operational termination of a DC-
TRS is equivalent to CE -termination of the corresponding transformed CTRS. CE -
termination is an important generalization of termination that is “more modular”
than ordinary termination and thus preferable in proofs of termination based on
divide-and-conquer strategies. For instance, CE -termination is modular for disjoint

137

138 Chapter 6. Conclusion

unions but also - more interestingly - for a certain practically relevant class of hier-
archical combinations of rewrite systems called proper extensions ([73][Chapter 8]).
These proper extensions are practically more relevant than combinations with dis-
joint signatures, since they can be understood as programs that are built upon other
programs (libraries) in a hierarchical way while still many important modularity
results hold.

In order to practically exploit the relaxed (local) termination condition of an
unraveled CSRS that suffices to imply operational termination of the corresponding
DCTRS, we provided a slight extension of the well-known dependency pair frame-
work that takes subsignatures corresponding to local termination properties into
account when dealing with CSRSs obtained by unravelings from DCTRSs. Build-
ing upon this extended DP framework we proposed narrowing and instantiation DP
processors that are able to prove local termination of termination problems that are
not globally terminating.

In Chapter 4 we introduced the notion of rewriting with forbidden patterns which
is a proper generalization of context-sensitive rewriting utilized in Chapter 3. The
basic idea is that replacements should be allowed or forbidden depending on the
concrete shape of a redex and the context it is situated in. This generalizes context-
sensitive rewriting in two dimensions. First, restrictions based on contexts in which
redexes appear can be more complex than having allowed and forbidden arguments of
functions. Second, the shape of the redex itself, i.e. the corresponding substitution,
can be used to specify its status. Moreover, the forbidden entities in rewriting with
forbidden patterns are subject to specification and not fixed. That is to say that in a
forbidden pattern it can be specified whether a whole subterm, a single position or a
set of positions above a predetermined position are forbidden for reduction, whereas
in context-sensitive rewriting arguments of functions and thus whole subterms are
forbidden by definition.

We systematically developed an infrastructure for rewriting with forbidden pat-
terns based on a series of results covering the areas of completeness w.r.t. the simu-
lation of unrestricted rewriting, confluence criteria and automated termination anal-
ysis. Moreover, we tackled the problem of automatically synthesizing suitable for-
bidden patterns for a given rewrite system.

Our main result on completeness of rewriting with forbidden patterns in simu-
lating unrestricted rewriting is based on the notion of canonical forbidden patterns.
Canonical forbidden patterns have a certain shape and properties relative to TRSs
they are used for. When performing rewriting with canonical forbidden patterns,
forbidden pattern normal forms are head-normal forms w.r.t. unrestricted rewriting.

Regarding confluence we provided two criteria based on Newman’s Lemma [68]
and the diamond property [76] of rewrite systems. It turned out that substantial
restrictions on the patterns have to be imposed in order to soundly apply these
criteria.

Finally, we provided two approaches to automatically verify termination of re-
writing with forbidden patterns. The first approach is based on the transformation T,

6.2. Related Work 139

transforming rewrite systems with forbidden linear h-patterns into ordinary rewrite
systems while preserving termination and non-termination on ground terms. The
second approach handling general h- and b-patterns is based on a modified depen-
dency pair framework taking into account contexts of function calls represented by
dependency pairs. In this contextual dependency pair framework we defined two
processors that analyze nested contexts of dependency pairs in order to identify
chains that do not adhere to the forbidden pattern restrictions and, consequently,
can be excluded from the termination analysis. The latter approach can in particular
be used to prove outermost termination of TRSs, since outermost rewriting can be
equivalently expressed by a set of associated b-patterns for any given rewrite system.

Finally, in Chapter 5 we introduced the termination tool VMTL, which incorpo-
rates implementations of all termination methods developed in this thesis as well as
a set of standard methods for ordinary and context-sensitive rewriting. The tool fea-
tures a web front end with user-definable proof search strategy. Moreover, public pro-
gramming interfaces for the modular addition of processors in the context-sensitive
dependency pair framework of [2] are available. VMTL has been participating in
the yearly competition of termination tools for TRS since 2009.

6.2 Related Work

6.2.1 Transforming Conditional Rewrite Systems

In Section 3.4 we discussed transformations of CTRSs and gave pointers to the
literature where context-sensitivity and/or other strategies have been used to obtain
soundness w.r.t. simulations when using (variants of) unraveling transformations.
In [35] it was shown that for normal 1-CTRSs several properties are sufficient to
ensure simulation-soundness of the ordinary unraveling transformation of Definition
2. Among the more important of these properties of a DCTRS are

• weak left-linearity, i.e. each rule is either left-linear or unconditional and every
non-linear variable of the lhs does not occur in the rhs, and

• non-erasingness, and

• confluence.

Hence, if analyzing conditional rewrite systems that belong to the class of normal
1-CTRSs and have either of these properties, the additional context-sensitivity of
the unraveling of Definition 4 as compared to the one of Definition 2 is not needed in
order to obtain simulation-soundness. This result is interesting, since in many cases
the use of context-sensitivity entails additional complications in the handling and
analysis of the unconditional systems obtained by the transformations. Thus, the
above results enable us to use the more complicated unraveling of Definition 4 “on
demand”, i.e. only in situations where the simpler non-context-sensitive unraveling
does not have the desired properties (e.g. simulation soundness).

140 Chapter 6. Conclusion

Other classes of transformations transforming conditional rewrite systems into
unconditional ones are the ones of [8, 85, 83, 34]. There, in contrast to unravelings,
the focus lies on simulating conditional rewriting in a practically efficient way (while
unravelings are traditionally used to reason about properties of the CTRSs such as
operational termination). The central property that these transformations are trying
to achieve is computational equivalence ([83]). Informally, if a transformation has
this property, then no backtracking is needed to compute normal forms w.r.t. the
conditional system in the unconditional one. Unravelings do not have this property.

Example 71. Consider the following conditional rewrite system R defining a func-
tion insert, inserting a number into a sorted list of numbers.

0 ≤ x → >
s(x) ≤ 0 → ⊥

s(x) ≤ s(y) → x ≤ y

insert(x, nil) → x : nil

insert(x, y : ys) → x : y : ys⇐ x ≤ y →∗ >
insert(x, y : ys) → y : insert(x, ys)⇐ x ≤ y →∗ ⊥

The unraveled CSRS Ucs(R) is obtained from R by replacing the conditional rules
of R by

insert(x, y : ys) → U1
1 (x ≤ y, x, y, ys)

U1
1 (>, x, y, ys) → x : y : ys

insert(x, y : ys) → U2
1 (x ≤ y, x, y, ys)

U2
1 (⊥, x, y, ys) → y : insert(x, ys)

and using a replacement map µ given by µ(U1
1) = µ(U2

1) = {1} and µ(f) =
{1, . . . , ar(f)} for all f 6∈ {U1

1 , U
2
1}. Now consider the following Ucs(R) reduction

insert(s(0), 0 : s(s(0)) : nil) → U1
1 (s(0) ≤ 0, s(0), 0, s(s(0)) : nil)

→ U1
1 (⊥, s(0), 0, s(s(0)) : nil)

The final term is a Ucs(R)-normal form. Hence, we cannot compute the expected
result 0 : s(0) : s(s(0)) : nil from it. In order to obtain this result, we should have
applied the rule insert(x, y : ys)→ U2

1 (x ≤ y, x, y, ys) instead of the rule insert(x, y :
ys) → U1

1 (x ≤ y, x, y, ys) in the first step of the above reduction sequence. Hence,
in order to obtain the correct result in the above reduction sequence backtracking is
needed.

When using transformations that produce TRSs that are computationally equiv-
alent to the original CTRSs, such backtracking is not needed. Indeed, R can be
transformed into a computationally equivalent TRS. The reason is that it is strongly
deterministic ([73][Definition 7.2.35]), operationally terminating (which is easily

6.2. Related Work 141

verified by the methods of Chapter 3 and VMTL) and confluent by [73][Theorem
7.3.2] (since all conditional critical pairs are infeasible [73][Definition 7.1.8] and
thus joinable). Hence, the transformation of [34] yields a computationally equivalent
TRS (by [34][Theorem 5]).

6.2.2 Restrictions in Term Rewriting

Proper restrictions of term rewriting have been studied extensively in recent years.
Ideas range from lazy rewriting [27, 79, 56], over context-sensitive rewriting [55, 60,
4, 3] and rewriting with strategy annotations [23, 59] to on-demand rewriting [58, 56]
and rewriting with on-demand strategy annotations [7]. For a detailed survey and
comparison of these approaches we refer to [77].

In particular, the approaches incorporating a notion of laziness going beyond the
blocking of certain arguments of function symbols (as in context-sensitive rewriting),
such as lazy rewriting, on-demand rewriting and rewriting with on-demand strategy
annotations have proven to be hard to understand, handle and analyze. All these
approaches rely on concepts going beyond matching and comparison of positions
in terms that are integral to term rewriting as such. In the case of lazy rewriting
function symbols (in terms) are labelled by flags indicating whether the terms rooted
by them are to be evaluated eagerly or in a lazy fashion. On-demand rewriting
relies on “partial matches” to determine the status of subterms and rewriting with
on-demand strategy annotations explicitly keeps track of positions where rewriting
takes place in terms and uses labels for function symbols as well.

Hence, context-sensitive rewriting has emerged from all these formalisms as the
most tractable and practically most relevant one. At the time of writing this thesis
the main focus in the research on context-sensitive rewriting is the automated veri-
fication of termination of context-sensitive rewrite systems [5, 41, 2, 42, 40]. There,
in particular, the use of certain variants of context-sensitive dependency pairs and
DP processors in the resulting DP frameworks are studied. Here, it is interesting
that there are several notions of context-sensitive dependency pair framework (cf.
[40]). In Section 3.2.4 of this thesis we use one particular framework, namely the one
introduced in [2]. It is a natural question whether our results there carry over also to
other frameworks. Moreover, other frameworks might be even more suitable to ana-
lyze termination of CSRSs obtained from DCTRSs by context-sensitive unravelings.
Moreover, the ideas on which these other, more general dependency pair frameworks
are based on may be generalized and reused to also improve the forbidden pattern
dependency pair framework introduced in this thesis.

Summarizing, we believe that the widespread interest in termination methods of
context-sensitive rewriting indicates that termination is a (maybe the) central aspect
that one wants to achieve when using proper restrictions of rewriting.

142 Chapter 6. Conclusion

6.3 Discussion

Term rewriting is an important theoretical tool in many fields of computer science
such as formal methods, automated deduction and programming languages. A par-
ticularly interesting and practically promising application of rewriting is the use of
rewriting logic ([65, 14, 66]) as a mathematical model of the formal specification
and programming language Maude ([15]). Having a precise formal semantics of a
programming language has many advantages and makes formal reasoning over and
verification of programs possible where it would have been impossible or considerably
harder if languages without a well-defined formal semantics had been used.

The Maude specification and programming language and rewriting logic make
use of results of term rewriting in several ways. First, an important part of Maude
programs are equations. However, since equational reasoning in Maude is carried
out in a directed way based on term rewriting, this reasoning is only complete if the
oriented equations (that thus form a rewrite system) are confluent. Moreover, in this
case termination of this rewriting system implies termination of equational reasoning.
Hence, there is a great interest in the automated verification of these properties for
Maude programs that resulted in the development of the Maude Church-Rosser
Checker (CRC [21]) and the Maude Termination Tool (MTT [19]) as parts of the
Maude formal tool environment ([16]). These tools make heavy use of available
results for the automated confluence and termination analysis of TRSs.

Second, the Maude engine executes given specifications by term rewriting. That
is to say that reasoning in the rewrite logic theories represented by Maude programs
is performed by rewriting. Hence, inevitably reduction strategies and proper restric-
tions of rewriting play an important role. For instance, Maude allows for explicit
definitions of operator evaluation strategies, also including laziness.

The reason we picked Maude to briefly describe a practical application of rewrit-
ing in the area of formal methods resp. programming languages, is that it nicely
illustrates two areas of work in term rewriting also present in this thesis. First,
there is the verification of properties of given TRSs and second there are strategies
used to efficiently compute normal forms w.r.t. a given TRS. In this sense the two
main Chapters (Chapters 3 and 4) complement each other in that they illustrate
the use of proper restrictions of rewriting in the analysis of operational termination
of DCTRSs (Chapter 3) and in defining evaluation strategies that have desirable
practical properties (Chapter 4).

Another important duality in these two main chapters of the thesis is that they
represent respective ends on the scale of scientific maturity. The field of conditional
rewrite systems dealt with in Chapter 3 is comparatively old (within the field of
term rewriting as a whole), well-studied and understood. Our work revisits the
field and turns the attention to context-sensitivity and the implications of its use in
transformations from DCTRSs into unconditional TRS. Some of the main questions
that arise when doing this are answered. Our results include soundness and com-
pleteness w.r.t. simulations of context-sensitive unravelings, the characterization of

6.3. Discussion 143

operational termination of DCTRSs by a local termination property of CSRSs and
the theoretically interesting observation that quasi-reductivity becomes equivalent to
quasi-decreasingness when additionally allowing for context-sensitivity in the used
signature extensions and considering only substitutions ranging into the original
terms in the ordering constraints (Corollary 4).

The main theorems of this chapter characterize the properties that we are inter-
ested in (e.g. operational termination and CE -operational termination) in terms of
properties of unconditional rewrite systems. We claim that these characterizations
leave little to no room for improvement regarding the encoding of operational ter-
mination by means of unraveling transformations (while the question of analyzing
local termination of course leaves much space for future research).

In contrast to that, Chapter 4 must be understood as a starting point and for-
mal basis for many areas where rewriting with forbidden patterns could be applied
successfully. While a principal infrastructure for rewriting with forbidden patterns
is provided (including criteria for confluence, termination and completeness), there
are plenty of opportunities for improving and extending our results as well as the
formalism itself. Indeed, we hope that the definitorial simplicity and great power
and flexibility of rewriting with forbidden patterns will lead to flourishing interest
in and applications of this approach.

144 Chapter 6. Conclusion

Bibliography

[1] The termination competition. http://termcomp.uibk.ac.at/.

[2] B. Alarcón, F. Emmes, C. Fuhs, J. Giesl, R. Gutiérrez, S. Lucas, P. Schneider-
Kamp, and R. Thiemann. Improving context-sensitive dependency pairs. In
Proceedings of the 15th International Conference on Logic for Programming, Ar-
tificial Intelligence, and Reasoning (LPAR’08), pages 636–651. Springer-Verlag,
2008.

[3] B. Alarcón, R. Gutiérrez, J. Iborra, and S. Lucas. Proving termination of
context-sensitive rewriting with MU-TERM. In Proceedings of the 6th Spanish
Conference on Programming and Computer Languages (PROLE’2006) - Se-
lected papers, volume 188 of Electronic Notes in Theoretical Computer Science
(ENTCS), pages 105–115. Elsevier, 2007.

[4] B. Alarcón, R. Gutiérrez, and S. Lucas. Context-sensitive dependency pairs.
In s. Arun-Kumar and N. Garg, editors, Proceedings of the 26th International
Conference on Foundations of Software Technology and Theoretical Computer
Science, FST&TCS’06, volume 4337 of Lecture Notes in Computer Science
(LNCS), pages 297–308. Springer, 2006.

[5] B. Alarcón, R. Gutiérrez, and S. Lucas. Context-sensitive dependency pairs.
Information and Computation, 208(8):922 – 968, 2010.

[6] B. Alarcón, S. Lucas, and J. Meseguer. A dependency pairs framework for
AvC termination. In P. Ölveczky, editor, Proceedings of the 8th International
Workshop on Rewriting Logic and its Applications (WRLA’10), 2010.

[7] M. Alpuente, S. Escobar, B. Gramlich, and S. Lucas. On-demand strategy
annotations revisited: An improved on-demand evaluation strategy. Theoretical
Computer Science, 411(2):504–541, 2010.

[8] S. Antoy, B. Brassel, and M. Hanus. Conditional narrowing without conditions.
In Proceedings of the 5th ACM SIGPLAN International Conference on Princi-
ples and Practice of Declaritive Programming (PPDP’03), pages 20–31. ACM,
2003.

145

146 Bibliography

[9] T. Arts and J. Giesl. Termination of term rewriting using dependency pairs.
Theoretical Computer Science, 236(1-2):133–178, 2000.

[10] J. Avenhaus and C. Loŕıa-Sáenz. On conditional rewrite systems with extra
variables and deterministic logic programs. In F. Pfenning, editor, Proceed-
ings of the 5th International Conference on Logic Programming and Automated
Deduction (LPAR’94), volume 822 of Lecture Notes in Artificial Intelligence,
pages 215–229. Springer, 1994.

[11] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University
Press, 1998.

[12] J. A. Bergstra and J. W. Klop. Conditional rewrite rules: Confluence and
termination. Journal of Computer and System Sciences, 32:323–362, 1986.

[13] C. Borralleras, S. Lucas, and A. Rubio. Recursive path orderings can be context-
sensitive. In A. Voronkov, editor, Proceedings of 18th International Conference
on Automated Deduction (CADE’02), volume 2392 of Lecture Notes in Com-
puter Science (LNCS), pages 314–331. Springer, 2002.

[14] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in
membership equational logic. Theoretical Computer Science, 236:35–132, 2000.

[15] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
J. Quesada. Maude: Specification and Programming in Rewriting Logic. SRI
International, 1999.

[16] M. Clavel, F. Durán, J. Hendrix, S. Lucas, J. Meseguer, and P. Ölveczky. The
maude formal tool environment. In Proceedings of the 2nd International Confer-
ence on Algebra and Coalgebra in Computer Science (CALCO’07), volume 4624
of Lecture Notes in Computer Science (LNCS), pages 173–178. Springer-Verlag,
2007.

[17] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi. Tree automata techniques and applications. Avail-
able on: http://www.grappa.univ-lille3.fr/tata, 2007. release October,
12th 2007.

[18] F. Durán, S. Lucas, C. Marché, J. Meseguer, and X. Urbain. Proving operational
termination of membership equational programs. Higher-Order and Symbolic
Computations, 21(1-2):59–88, 2008.

[19] F. Durán, S. Lucas, and J. Meseguer. MTT: The maude termination tool
(system description). In A. Armando, P. Baumgartner, and G. Dowek, editors,
Proceedings of the 4th International Joint Conference on Automated Reasoning
(IJCAR’08), volume 5195 of Lecture Notes in Artificial Intelligence (LNAI),
pages 313–319. Springer-Verlag, 2008.

Bibliography 147

[20] F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving termi-
nation of membership equational programs. In Proceedings of the 2004 ACM
SIGPLAN symposium on Partial evaluation and semantics-based program ma-
nipulation (PEPM’04), pages 147–158. ACM, 2004.

[21] F. Durán and J. Meseguer. A Church-Rosser checker tool for conditional
order-sorted equational maude specifications. In P. Ölvecky, editor, Proceed-
ings of the 8th International Workshop on Rewriting Logic and its Applications
(WRLA’10), 2010.

[22] N. Eén and N. Sörensson. An extensible SAT-solver. In G. Goos, J. Hartmanis,
and J. van Leeuwen, editors, Theory and Applications of Satisfiability Testing,
volume 2919 of Lecture Notes in Computer Science (LNCS), pages 333–336.
Springer, 2004.

[23] S. Eker. Term rewriting with operator evaluation strategy. In In 2nd Inter-
national Workshop on Rewriting Logic and its Applications (WRLA’98), vol-
ume 15 of Electronic Notes in Theoretical Computer Science. Elsevier, 1998.

[24] J. Endrullis. Jambox. Available at http://joerg.enrullis.de/.

[25] J. Endrullis and D. Hendriks. From outermost to context-sensitive rewriting. In
R. Treinen, editor, Proceedings of the 20th International Conference on Rewrit-
ing Techniques and Applications (RTA’09), volume 5595 of Lecture Notes in
Computer Science (LNCS), pages 305–319. Springer, 2009.

[26] J. Endrullis, R. Vrijer, and J. Waldmann. Local termination. In R. Treinen, ed-
itor, Proceedings of the 20th International Conference on Rewriting Techniques
and Applications (RTA’09), volume 5595 of Lecture Notes in Computer Science
(LNCS), pages 270–284. Springer, 2009.

[27] W. Fokkink, J. Kamperman, and P. Walters. Lazy rewriting on eager machin-
ery. ACM Transactions on Programming Languages and Systems (TOPLAS),
22(1):45–86, 2000.

[28] D. P. Friedman and D. S. Wise. CONS should not evaluate its arguments. In
I. S. Michaelson and R. Milner, editors, Proceedings of the 3rd Colloquium on
Automata, Languages and Programming, pages 257–284. Edinburgh University
Press, 1976.

[29] H. Ganzinger and U. Waldmann. Termination proofs of well-moded logic pro-
grams via conditional rewrite systems. In M. Rusinowitch and J.-L. Rémy,
editors, Proceedings of the 3rd International Workshop on Conditional Term
Rewriting Systems (CTRS’92), volume 656 of Lecture Notes in Computer Sci-
ence (LNCS), pages 430–437. Springer, 1993.

148 Bibliography

[30] J. Giesl and A. Middeldorp. Transformation techniques for context-sensitive
rewrite systems. Journal of Functional Programming, 14(4):379–427, 2004.

[31] J. Giesl, P. Schneider-Kamp, and R. Thiemann. Aprove 1.2: Automatic termi-
nation proofs in the dependency pair framework. In U. Furbach and N. Shankar,
editors, Proceedings of the 3rd International Joint Conference on Automated
Reasoning (IJCAR’06), volume 4130 of Lecture Notes in Computer Science
(LNCS), pages 281–286. Springer, 2006.

[32] J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving ter-
mination of higher-order functions. In B. Gramlich, editor, Proceedings of the
5th International Workshop on Frontiers of Combining Systems, FROCOS’05,
volume 3717 of Lecture Notes in Artificial Intelligence (LNAI), pages 216–231.
Springer, 2005.

[33] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and
improving dependency pairs. Journal of Automated Reasoning, 37(3):155–203,
2006.

[34] K. Gmeiner and B. Gramlich. Transformations of conditional rewrite systems
revisited. In A. Corradini and U. Montanari, editors, Recent Trends in Algebraic
Development Techniques (WADT’08) – Selected Papers, volume 5486 of Lecture
Notes in Computer Science, pages 166–186. Springer, 2009.

[35] K. Gmeiner, B. Gramlich, and F. Schernhammer. On (un)soundness of unrav-
elings. In C. Lynch, editor, Proceedings of the 21st International Conference on
Rewriting Techniques and Applications (RTA’10), volume 6 of LIPIcs (Leibniz
International Proceedings in Informatics), pages 119–134, 2010.

[36] B. Gramlich and S. Lucas. Modular termination of context-sensitive rewriting.
In Proceedings of the 4th ACM SIGPLAN International Conference on Princi-
ples and Practice of Declarative Programming (PPDP’02), pages 50–61. ACM,
2002.

[37] B. Gramlich and F. Schernhammer. Extending context-sensitivity in term
rewriting. In M. Fernandez, editor, Proceedings of the 9th International Work-
shop on Reduction Strategies in Rewriting and Programming (WRS’09), vol-
ume 15 of Electronic Proceedings in Theoretical Computer Science (EPTCS),
pages 56–68, 2009.

[38] B. Gramlich and F. Schernhammer. Outermost termination via contextual
dependency pairs. In P. Schneider-Kamp, editor, Proceedings of the 11th Inter-
national Workshop on Termination (WST’10), 2010.

[39] B. Gramlich and F. Schernhammer. Termination of rewriting with - and auto-
mated synthesis of - forbidden patterns. In H. Kirchner and C. Muñoz, editors,

Bibliography 149

Prelim. Proceedings of the 1st International Workshop on Strategies in Rewrit-
ing, Proving and Programming (IWS’10), pages 13–17, 2010. Full version to
appear in the Final Proceedings of IWS’10, EPTCS, 2010.

[40] R. Gutiérrez. Automatic Proofs of Termination of Context-Sensitive Rewriting.
PhD thesis, Departamento de Sistemas Informàticos i Computación, Universi-
dad Politècnica de Valencia, Valencia, Spain, 2010.

[41] R. Gutiérrez and S. Lucas. Proving termination in the context-sensitive de-
pendency pair framework. In Proceedings of the 8th International Workshop on
Rewriting Logic and its Applications (WRLA’10), volume 6381 of Lecture Notes
in Computer Science (LNCS), pages 19–35, 2010.

[42] R. Gutiérrez, S. Lucas, and X. Urbain. Usable rules for context-sensitive rewrite
systems. In A. Voronkov, editor, Proceedings of the 19th International Con-
ference on Rewriting Techniques and Applications (RTA ’08), volume 5117 of
Lecture Notes in Computer Science (LNCS), pages 126–141. Springer-Verlag,
2008.

[43] M. Hanus. The integration of functions into logic programmming. Journal of
Logic Programming, 19/20:583–628, 1994.

[44] P. Henderson and J. H. Morris Jr. A lazy evaluator. In Proceedings of the
3rd ACM SIGACT-SIGPLAN Symposium on Principles on Programming Lan-
guages(POPL’76), pages 95–103. ACM, 1976.

[45] G. Huet. Confluent reductions: abstract properties and applications to term
rewriting systems. Journal of the ACM, 24(4):797–821, 1980.

[46] G. Huet and J.-J. Lévy. Computations in orthogonal rewriting systems. Com-
putational Logic, Essays in Honor of Alan Robinson (eds. Jean-Louis Lassez
and Gordon Plotkin), pages 396–443, 1991. Previous version: Call by Need
Computations in Non-Ambigious Linear Term Rewriting Systems, report 359,
INRIA, 1979.

[47] S. P. Jones, editor. Haskell 98 Language and Libraries: The revised report.
Cambridge University Press, 2003.

[48] S. Kaplan. Conditional rewrite rules. Theoretical Computer Science, 33(2-
3):175–193, 1984.

[49] R. Kennaway. A conflict between call-by-need computation and parallelism.
In N. Derschowitz and N. Lindenstrauss, editors, Proceedings of the 4th Inter-
national Workshop on Conditional and Typed Rewriting Systems (CTRS’94),
volume 968 of Lecture Notes in Computer Science (LNCS), pages 247–261.
Springer, 1995.

150 Bibliography

[50] J. W. Klop and A. Middeldorp. Sequentiality in orthogonal term rewriting
systems. Journal of Symbolic Computation, 12:161–195, 1991.

[51] A. Koprowski. Termination of Rewriting and Its Certification. PhD thesis,
Eindhoven University of Technology, 2008.

[52] M. Korp and A. Middeldorp. Beyond dependency graphs. In Proceedings of
the 22nd International Conference on Automated Deduction, CADE’09, volume
5663 of Lecture Notes in Artificial Intelligence (LNAI), pages 339–354. Springer,
2009.

[53] M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean termination
tool 2. In R. Treinen, editor, Proceedings of the 20th International Conference
on Rewriting Techniques and Applications (RTA’09), volume 5595 of Lecture
Notes in Computer Science (LNCS), pages 295–304. Springer, 2009.

[54] A. Leitsch. The resolution calculus. EATCS Texts in Theoretical Computer
Science, Springer, 1997.

[55] S. Lucas. Context-sensitive computations in functional and functional logic
programs. Journal of Functional and Logic Programming, 1998(1):1–61, 1998.

[56] S. Lucas. Context-sensitive rewriting, lazy rewriting, and on-demand rewrit-
ing. In M. Hanus, editor, Proc. of International Workshop on Functional and
(Constraint) Logic Programming (WFLP’01), volume 2017 of Technical Report,
pages 197–210. Christian-Albrechts-Universitaet zu Kiel, September 2001.

[57] S. Lucas. Termination of on-demand rewriting and termination of OBJ pro-
grams. In Proceedings of the 3rd ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming (PPDP’01), pages 82–93,
2001.

[58] S. Lucas. Termination of on-demand rewriting and termination of OBJ pro-
grams. In H. Sondergaard, editor, Proc. of 3rd International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming (PPDP’01),
pages 82–93. ACM Press, New York, 2001.

[59] S. Lucas. Termination of rewriting with strategy annotations. In A. Voronkov
and R. Nieuwenhuis, editors, Proc. of 8th International Conference on Logic
for Programming, Artificial Intelligence and Reasoning, LPAR’01, volume 2250
of Lecture Notes in Artificial Intelligence, pages 669–684, La Habana, Cuba,
December 2001. Springer-Verlag, Berlin.

[60] S. Lucas. Context-sensitive rewriting strategies. Information and Computation,
178(1):294–343, 2002.

Bibliography 151

[61] S. Lucas, C. Marché, and J. Meseguer. Operational termination of conditional
term rewriting systems. Information Processing Letters, 95(4):446–453, 2005.

[62] S. Lucas and J. Meseguer. Order-sorted dependency pairs. In Proceedings of
the 10th international ACM SIGPLAN conference on Principles and practice
of declarative programming (PPDP’08), pages 108–119, New York, NY, USA,
2008. ACM.

[63] M. Marchiori. Unravelings and ultra-properties. Technical Report 8, University
of Padova, Italy, 1995. 37 pages, long version of [64].

[64] M. Marchiori. Unravelings and ultra-properties. In M. Hanus and M. M.
Rodŕıguez-Artalejo, editors, Proceedings of the 5th International Conference
on Algebraic and Logic Programming (ALP’96), volume 1139 of Lecture Notes
in Computer Science (LNCS), pages 107–121. Springer, 1996.

[65] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic
framework. Technical report, SRI International, 1993.

[66] J. Meseguer. Software specification and verification in rewriting logic. Models,
Algebras and Logic of Engineering Software, 191:133–194, 2003.

[67] R. Milner, M. Tofte, and D. M. Queen. The Definition of Standard ML. MIT
Press, Cambridge, MA, USA, 1997.

[68] M. H. A. Newman. On theories with a combinatorial definition of “equivalence”.
Annals of Mathematics, 43(2):223–243, 1942.

[69] N. Nishida, M. Sakai, , and T. Sakabe. On simulation-completeness of unravel-
ing for conditional term rewriting systems. In LA Symposium 2004-7 Summer,
pages 7–1–7–6, 2004.

[70] N. Nishida, M. Sakai, and T. Sakabe. Partial inversion of constructor term
rewriting systems. In J. Giesl, editor, Proceedings of the 16th International
Conference on Term Rewriting and Applications (RTA’2005), volume 3467 of
Lecture Notes in Computer Science (LNCS), pages 264–278. Springer, 2005.

[71] M. J. O’Donnell. Computing in systems described by equations. Springer-Verlag
New York, Inc., 1977.

[72] E. Ohlebusch. Transforming conditional rewrite systems with extra vari-
ables into unconditional systems. In H. Ganzinger, D. A. McAllester, and
A. Voronkov, editors, Proceedings of the 6th International Conference on Logic
Programming and Automated Reasoning (LPAR’99), volume 1705 of Lecture
Notes in Artificial Intelligence (LNAI), pages 111–130. Springer, 1999.

[73] E. Ohlebusch. Advanced topics in term rewriting. Springer, 2002.

152 Bibliography

[74] M. Oyamaguchi. NV-sequentiality: A decidable condition for call-by-need com-
putations in term rewriting systems. SIAM Journal on Computation, 22(1):114–
145, 1993.

[75] M. Raffelsieper and H. Zantema. A transformational approach to prove outer-
most termination automatically. In A. Middeldorp, editor, Proceedings of the
8th International Workshop on Reduction Strategies, volume 237 of Electronic
Notes in Theoretical Computer Science (ENTCS), pages 3–21. Elsevier, 2009.

[76] B. K. Rosen. Tree-manipulating systems and church-rosser theorems. In
Proceedings of the 2nd Annual ACM Symposium on Theory of Computing
(STOC’70), pages 117–127. ACM, 1970.

[77] F. Schernhammer. On context-sensitivity in term rewriting. Master’s thesis,
Vienna University of Technology, 2007.

[78] F. Schernhammer and B. Gramlich. On proving and characterizing operational
termination of deterministic conditional rewrite systems. In D. Hofbauer and
A. Serebrenik, editors, Informal Proceedings of the 9th International Workshop
on Termination (WST’07), pages 82–85, 2007.

[79] F. Schernhammer and B. Gramlich. Termination of lazy rewriting revisited. In
J. Giesl, editor, Preliminary Proceedings of the 7th International Workshop on
Reduction Strategies in Rewriting and Programming (WRS’07), pages 28–42,
2007. Full version in volume 204 of ENTCS (Final Proceedings of WRS’07),
pages 35–51. Elsevier, 2008.

[80] F. Schernhammer and B. Gramlich. On operational termination of deterministic
conditional rewrite systems. In T. Uustalu, J. Vain, and J. Ernits, editors,
Informal Proceedings of the 20th Nordic Workshop on Programming Theory
(NWPT’08), pages 84–86, 2008.

[81] F. Schernhammer and B. Gramlich. Characterizing and proving operational
termination of deterministic conditional term rewriting systems. Journal of
Logic and Algebraic Programming, 79(7):659–688, 2009. Revised selected papers
of NWPT 2008, Tarmo Uustalu and Jüri Vain, editors.

[82] F. Schernhammer and B. Gramlich. VMTL – A modular termination labora-
tory. In R. Treinen, editor, Proceedings of the 20th International Conference
on Rewriting Techniques and Applications (RTA’09), volume 5595 of Lecture
Notes in Computer Science (LNCS), pages 285–294. Springer, 2009.

[83] T.-F. Şerbănuţă and G. Roşu. Computationally equivalent elimination of condi-
tions. In F. Pfenning, editor, Proceedings of the 17th International Conference
on Rewriting Techniques and Applications (RTA’06), volume 4098 of Lecture
Notes in Computer Science, pages 19–34. Springer, 2006.

Bibliography 153

[84] R. Thiemann. From outermost termination to innermost termination. In
M. Nielsen, A. Kucera, P. B. Miltersen, C. Palamidessi, P. Tuma, and F. D. Va-
lencia, editors, Proceedings of the 35th Conference on Current Trends in Theory
and Practice of Computer Science (SOFSEM’09), volume 5404 of Lecture Notes
in Computer Science (LNCS), pages 533–545. Springer, 2009.

[85] P. Viry. Elimination of conditions. Journal of Symbolic Computation, 28(3):381–
401, 1999.

154 Bibliography

List of Figures

4.1 Critical h-patterns . 72

5.1 Snapshot of the VMTL web interface after start up. 133
5.2 Snapshot of the specification of a proof strategy in VMTL. 134

155

List of Tables

3.1 Properties of Ucs(R) and the implied properties of a DCTRS R. . . 45

4.1 Benchmarks on outermost TRSs of the TPDP 121

5.1 Benchmarks on standard TRSs from the TPDB 136
5.2 Benchmarks on context-sensitive TRSs from the TPDB 136
5.3 Benchmarks on conditional TRSs of the TPDB 136

157

Index

CP , see context processor
CR(.), 15
CE -cs-quasi-reductivity, 40
CE -termination, 39
Codomain(.), 16
Cyc(.), 109
CycAut, 112
Dom(.), 16
FPA(.), see forbidden pattern automa-

ton
MCC, see minimal cycle combination
MCCA(., .), 114
NF (.), 15
Pos(.), 16
PosµV (.), 18
PosµF(.), 18
Posµ(.), 18
PosV (.), 16
PosF(.), 16
SN(.), 15
U -symbol, 24
U -term, 24
U(.), 24
Ucs(.), 26
Uopt(.), 59
V , 16
V ar, 16
V ar(.), 16
WN(.), 15
Π-obsolete rewrite rule, 84
Π-stable rewrite rule, 84
Π-termination, 67
Π-critical pairs, 78
Π-orthogonal, 79
Πorth, 98
↓, 15

ε, 16
←, 15
↔, 15
T, 85
F , 16
T (., .), 16
T (., ∅), 16
Varµ(.), 18
| . |, 16
µ, 17

Pos
Π

(.), 67
Varµ(.), 18
.
 , 113
y, 42
−−‖−→, 31
→Π, see forbidden pattern rewrite rela-

tion
→, 15, 17
→∗, 15
→+, 15
→0/1, 15
 , 17
�stµ , 22
Dµ, 20
B, 19
c̃ap, 89
ar(.), 16
ctx(.), 111
ctxs(.), 111
ctxs(.)[.], 112
mpd(.), 31
peval, see partial evaluation
root(.), 16
sort(.), 16
tb-preserving reduction steps, 27
tb(.), 24

159

160 Index

abstract reduction system, 15
ancestor, 29

backward instantiation processor, 54
backward narrowing processor, 51

CDP automaton, 107
Church-Rosser property, 15
collapse-extended termination, 39
conditional rewrite system, 18

deterministic, 19
normal, 18
oriented, 18
quasi-decreasing, 19
quasi-reductive, 19

confluent, 15
constant, 16
constructor, 19
context processor, 120
context-sensitive dependency pairs, 20

chain, 20
CS-DP problem, 20

finite, 20
unhiding, 20

context-sensitive quasi-reductivity, 21, 22
context-sensitive rewrite system, 18
contextual dependency pair, 93
correspondence w.r.t. peval, 42
critical pair, 17
Critical Pair Lemma for rewriting with

forbidden patterns, 78
CSRS, see context-sensitive rewrite sys-

tem
CTRS, see conditional rewrite system

DCTRS, see deterministic CTRS
defined symbol, 19
descendant, 29
diamond property, 15

embedded rewrite rule, 81
extra variable, 19

forbidden pattern, 66
a-pattern, 66

b-pattern, 66
h-pattern, 66
automaton, 103, 105
canonical, 123
linear, 66
simple, 122
stable, 93

forbidden pattern contextual dependency
pair chain, 94

forbidden pattern contextual dependency
pair problem, 94

finite, 95
forbidden pattern dependency pair, see

contextual dependency pair
forbidden pattern rewrite relation, 66
forbidden patterns

non-critical, 73
forward instantiation processor, 55
forward narrowing processor, 48
FP-CDP, see forbidden pattern contex-

tual dependency pair problem
FP-CDP chain, 94

hidden term, 19

matching, 17
minimal cycle, 108
minimal cycle combination, 109

hierarchical, 109
minimal non-Π-termination, 91
minimal parallel distance, 31
monotonic

µ-monotonic, 18

narrowing, 17
context-sensitive, 18

normal form, 15

operational termination, 19
overlap

critical, 17
variable, 17

partial evaluation, 41
partial redex, 124

Index 161

position
active, 17
allowed, 17
non-replacing, 18
replacing, 17

proof search strategy, 132

quasi-defined symbol, 89

redex, 17
reducible, 15
replacement map, 17

canonical, 18
more restrictive, 18

rewrite rule, 17
rewrite system, 17

left-linear, 17
right-linear, 17

SCP, see simple context processor
signature, 15

many-sorted, 16
simple context processor, 99, 100
simulation-completeness, 28
simulation-soundness, 28
sort, 16
SS-CS-DP problem, 45
stable reduction sequence, 77
strongly normalizing, 15
subsignature termination, 45
substitution, 16

codomain, 16
domain, 16

term, 16
ground, 16
linear, 16
position, 16

non-variable, 16
variable, 16

well-formed, 16
termination, 15

on original terms, 37
termination in a context, 91
TPDB, 58

tree automaton, 104
TRS, see rewrite system
type, 16

unification, 17
most general unifier, 17

unraveling, 21

VMTL, 57, 131

weakly normalizing, 15
well-founded, 15

Curriculum Vitae

Felix Schernhammer

Address

Favoritenstraße 9/E185/2
A-1040 Vienna
Austria
Email: felix.schernhammer@gmx.at
Homepage: www.logic.at/people/schernhammer/

Personal Details

Date of birth: June 12, 1983
Nationality: Austrian

Education

10/2002–09/2005 Undergraduate studies in computer science at the Vienna University of Tech-
nology with a focus on software engineering, completed on September 7, 2005
with distinction.

10/2005–02/2007 Master studies in computer science at the Vienna University of Technology,
completed on February 8, 2007 with distinction.

Specialization: theoretical computer science, logics

Thesis: On context-sensitivity in term rewriting ; The thesis contains a compar-
ative analysis of several approaches to extensions/restrictions in term rewriting
and their interrelations. Supervisor: Prof. Dr. Bernhard Gramlich.

Since 03/2007 Ph.D. study at the Vienna University of Technology

Project title: Applications and Generalizations of Context-Sensitive Term Re-
writing ; Supervisor: Prof. Dr. Bernhard Gramlich.

Intended date of graduation: January 31, 2011.

PhD Thesis Topic

A novel approach to syntactic restrictions in term rewriting is proposed and analyzed. The basic
idea is that so called forbidden patterns specify positions in a term that are forbidden for reduction.
The basic goal is to develop criteria under which rewriting with this restriction is feasible in
that useful results can be computed, while being restrictive enough to have desirable operational
properties like termination.

Working Experience

07/2001–02/2002 Military service (mandatory in Austria).

05/2002–09/2002 Employed at a large Austrian pension fund (ÖPAG AG).

2003–2006 Employed part time at ÖPAG AG.

10/2004–02/2006 Employed as tutor for a basic course in theoretical computer science at the
Vienna University of Technology.

07/2007–02/2008 Employed at Smart Information Systems GmbH.

Language Knowledge

German native

English good

Publications

All of my publications are available on my homepage at
http://www.logic.at/people/schernhammer/

