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Kurzfassung

Ein elektrisch gepumpter Quantenkaskadenlaser (QCL) ist ein unipolarer Halbleiterlaser
dessen Funktionsweise auf Intersubbandübergängen und Tunneleffekt beruht. Photonen
werden aufgrund von elektronischen Intersubbandübergängen innerhalb des Leitungsban-
des emittiert. Die dazugehörige Wellenlänge ist abhängig von der Lage der Energieniveaus
und diese von den Breiten der Quantentöpfe und Barrieren in der Heterostruktur. QCLs
haben viele Anwendungsmöglichkeiten im mittleren und fernen Infrarot Bereich.

Eine detaillierte Einführung in die Modellierung des Transports in QCLs wird präsentiert.
Für die Modellierung des Ladungstransports in QCLs kann ein semi-klassischer Ansatz
verwendet werden. Basierend auf der Monte Carlo Methode wurde ein Simulator ent-
wickelt, der eine semi-klassische Transportgleichung löst. Die Zustände der Elektronen
werden mittels eines selbstkonsistenten Schrödinger-Poisson Solvers ermittelt. Es wer-
den folgende Streuprozesse berücksichtigt: Elektronstreuung durch polar-optische und
akustische Phononen, optische Deformationspotentialstreuung, Zwischentalstreuung, Gren-
zflächenstreuung, und Legierungsstreuung.

Im Allgemeinen kann der Simulator für die Untersuchung des Ladungstransports und
grundsätzlicher Eigenschaften von QCLs verwendet werden. Im Speziellen wird der Ein-
fluss der Γ-X Zwischentalstreuung auf den Ladungstransport eines GaAs/AlGaAs QCL
untersucht. Es wird gezeigt, dass die Stromdichte signifikant ansteigt, wenn ein grösserer
Überlapp zwischen dem oberen X-Zustand und dem unteren Γ-Zustand benachbarter
Stufen erzielt wird. Dies wir mittels einer Modifikation des Al Gehalts und der Bre-
ite der Sammelbarriere erreicht. In diesem Zusammenhang wird der dominante Einfluss
des Γ-X Zwischentalstreumechanismus identifiziert und die Wichtigkeit des Zwischental-
Ladungstransports für Design Überlegungen von QCLs demonstriert. Darüber hinaus
wird ein kürzlich entwickelter InGaAs/GaAsSb QCL mithilfe des Simulators untersucht.
Ein Verleich zwischen den ermittelten Simulationsresultaten und Messergebnissen wird
präsentiert. Die errechnete Strom-Spannungs Kennlinie ist in guter Übereinstimmung
mit den Messwerten und es ist ein dominanter Einfluss seitens der polar-optischen Streu-
ung, sowie der Legierungs- und Grenzflächenstreuung zu beobachten.
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Abstract

Quatum Cascade Lasers (QCLs) are electrically pumped unipolar semiconductor lasers
based on intersubband transitions and tunneling. Photons are emitted via electronic in-
tersubband transitions that take place within the conduction band, where the wavelength
is determined by the separation of the energy levels. These levels are designed by proper
engineering of the well and barrier widths in multiple quantum well heterostructures.
QCLs have potential for a wide range of applications in the mid- and far-infrared region
and these devices are still improving.

A detailed introduction into the theoretical framework relevant to transport modeling
in QCLs is presented, including the quantum ballistic transport and the density matrix
formulation. In order to model charge transport in QCLs a semi-classical approach can
be employed. A simulator has been developed which solves a semi-classical transport
equation by means of a Monte Carlo method, while the electron states are evaluated
using a selfconsistent Schrödinger-Poisson solver. The following scattering mechanisms are
included: electron scattering by polar optical and acoustic phonons, optical deformation
potential interaction, inter-valley phonons, interface roughness, and alloy scattering.

The simulator has been applied to investigate charge transport and the performance of
QCLs in general. Special focus is laid on the role of Γ-X intervalley scattering as a
mechanism for influencing charge transfer in a GaAs/AlGaAs QCL. It is shown that the
modification of the Al content and the width of the collector barrier in order to increase the
overlap between the upper X-state and the lower Γ-state belonging to two adjacent stages
results in a significant increase in current density. In this context, the Γ-X intervalley
scattering mechanism is shown to have a dominant impact, and the results demonstrate
the importance of intervalley charge transport for QCL design considerations. Further-
more, the simulator has been used to investigate a recently developed InGaAs/GaAsSb
QCL. A comparison of simulation results with measurements is presented. The calculated
and measured voltage-current characteristics are in good agreement. We have been able
to observe the dominant impact of polar optical phonon scattering and also significant
effects due to alloy scattering and interface roughness scattering.
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Chapter 1

Introduction

In 1970, Esaki and Tsu [5] proposed using heterostructures for applications in optoelec-
tronics. The first suggestion to use intersubband transitions in order to create a laser was
made by Kazarinov and Suris [6]. Over the past several years, solid-state lasers based on
intersubband transitions in semiconductor heterostructures have proved to be very viable
sources of radiation [7]. Designed by means of band structure engineering, a successfully
working quantum cascade laser (QCL) has first been reported in 1994 [8]. In the following
years many important milestones for semiconductor lasers were demonstrated using the
semiconductor system Al0.48In0.52As/Ga0.47In0.53As/InP.

The fundamentals of these devices are not bound to a particular material system. The
first demonstration of a QCL in a different material system was achieved in 1998 using
GaAs/Al0.33Ga0.67As [9]. AlGaAs based heterostructures are the most widespread and
developed ones among compound semiconductors. Moreover they show some significant
advantages for the use of processing techniques, which are more suitable for a GaAs than
an InP based device. For instance, the standard dry etching techniques, like reactive
ion etching or chemically assisted ion beam etching, become more difficult to use when
In compounds are present [10]. QCLs may also allow laser operation in materials tra-
ditionally considered to have poor optical properties. Indirect bandgap materials such
as silicon have minimum electron and hole energies at different momentum values. For
interband optical transitions, carriers change momentum through a slow, intermediate
scattering process, dramatically reducing the optical emission intensity. Intersubband op-
tical transitions, however, are independent of the relative momentum of conduction band
and valence band minima and theoretical proposals for Si/SiGe quantum cascade emitters
have been made [11].

However, the performance of QCLs has remarkably improved and devices have been con-
ceived to work in a wide range of wavelengths and temperatures by considering different
designs [12]. The emission wavelength has spanned the mid-infrared (MIR) to far-infrared
(FIR) spectral range (3 - 190 µm) and QCLs are rapidly acquiring new applications such as
free-space telecommunications [13] or chemical spectroscopy in medical applications [14].

1



INTRODUCTION

QCLs can also be applied for radio-carbon dating and monitoring atmospheric methane
levels. Since the emission frequency of intersubband lasers is determined by the design
of the widths of the quantum wells and barrier layers, it can be tailored to the applica-
tion. However, the commercialization of QCLs is in the early stages. For product specific
optimization of emitted wavelengths and output performance, simulations of the physical
processes are inevitable.

In this dissertation, we will show how the use of a Monte Carlo (MC) simulation based on
a semiclasscial transport theory is a very useful approach to investigate the physics of QCL
operation. To investigate charge transport and the performance in general, we developed a
Monte Carlo simulator which includes the relevant scattering mechanisms such as electron-
longitudinal optical phonon, acoustic and optical deformation potential, and intervalley
scattering. The electron states are evaluated using a selfconsistent Schrödinger-Poisson
solver. The simulator has been used to simulate the output characteristics of GaAs based
QCLs in the MIR and THz region, respectively.

In Chapter 2, basic fundamentals of QCLs are described and the most important mile-
stones and achievements are discussed. In Chapter 3, the selfconsistent Schrödinger-
Poisson solver is accurately described. Special emphasis is laid on the quantum ballistic
transport and the theory of open boundary value problems. Chapter 4 deals with the
theoretical framework of the density matrix formulation, and the semiclassical transport
model and especially the stationary charge transport governed by the Pauli master equa-
tion (PME) is presented. The ensemble Monte Carlo procedure is introduced as an efficient
approach for simulating transport in QCL structures according to the given Boltzmann-
like kinetic equations. The interaction mechanisms are restricted to three stages. Chapter
5 describes the scattering mechanism considered in the Monte Carlo simulator. Chapter
6 presents the simulation results obtained. In particular, current carrying states are ob-
tained by assuming Robin boundary conditions and the presented numerical simulations
show that the stationary charge transport can be well described by incorporating a rea-
sonable concept of non-selfadjoint boundary conditions. The method has been applied
to several heterostructure designs and the results obtained have been compared to other
simulations and to experimental measurements. Furthermore, the developed Monte Carlo
simulator is employed to study the output characteristics and special focus was laid on
the study of intervalley scattering effects on the carrier dynamics. The results are ana-
lyzed with a view to optimization of QCL structures. Chapter 7 summarizes the research
performed within this thesis. Furthermore, a discussion of the obtained results as well as
an outlook of envisioned and necessary future work are provided.
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Chapter 2

Basics of Quantum Cascade Lasers

2.1 Fundamentals

The QCL is an unipolar device made of a sequence of alternating wide band gap and
narrow band gap semiconductor layers with typical thicknesses of a few nanometers.
Semiconductor layers of narrow bandgap thinner than the De Broglie wavelength of the
carriers form quantum wells with quantized states. This one dimensional potential well
of finite depth confines carriers to discrete levels in the direction of growth. Orthogonal
to the growth direction the carriers are unbound resulting in an energy dispersion of each
subband.

These multi quantum well structures form repeated stages where each stage contains an
active region and a carrier injector region. Figure 2.1 illustrates the generic conduction
band profile in two adjacent stages of a QCL under an applied electric field. Depending on
the barrier thicknesses, the exponential tails of the delocalized wave functions can reach
the adjacent wells. Due to the quantum confinement multiple minibands are formed in
the injector region, whereas in the active region discrete energy levels arise. Coupling of
the wells and carrier transfer is provided by quantum mechanical tunneling. The upper
lasing level 3 in the active region is filled by electrons from the injector region, that
tunnel through the barriers. Radiative transitions from the upper level to the lower lasing
level 2 occur if the population inversion condition is satisfied, i.e. the occupation of the
upper state exceeds the number of electrons in the lower state significantly. In other
words, the relaxation time τ32 from the upper state into the lower state has to be greater
than the lifetime of the lower state τ2, i.e. τ32 > τ2. Due to interaction of electrons with
longitudinal optical (LO) phonons level 2 gets depopulated fastly to level 1. Subsequently,
the electrons escape by means of tunneling into the injector region of the adjacent stage.
While an electric current flows through a quantum cascade structure, electrons cascade
down an energy staircase emitting a photon at each step in the ideal case. Thus an
injected electron can theoretically generate as many photons as stages are present. The
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cascade of light generated in this way makes the optical power proportional to the number
of stages, which points up the capability of QCLs.

So far, we have described the principle of population inversion between the upper and
lower state, which can be achieved by designing properly the layer thicknesses and elec-
tric field in the active region, assuming the ideal carrier transport path where sufficiently
many electrons are injected into level 3 from the preceding injector region after relaxation
from level 2 to 1 via LO phonons. In reality also other scattering paths for the elec-
trons are possible. To minimize these effects of leakage currents is a task of QCL design
optimization. To achieve lasing, it is necessary to suppress unwanted escape routes by
tunneling from the upper level [15]. In order to ensure highly selective injection, electrons
are injected into the upper laser level by a resonant tunneling process. Typical tunneling
times are of the order of sub-picoseconds and can be approximated as [16]

τtunnel ≈
h

2∆E
(2.1)

where ∆E denotes the energy separation of the delocalized wave functions in the coupled
well system. At too low bias, conduction is low and only minimal current will flow.

Miniband

Active Region

Injector

Distance

E
n
er
g
y

e-

e-

e-
1
2

3

Figure 2.1: A generic conduction band profile in two stages of a QCL under an
applied bias. The arrow displays the transition 3 → 2, responsible
for the laser action, and the moduli squared of the corresponding
wave functions are denoted by solid curves.
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When the field increases, the transmission coefficient gets enhanced and the current flow
increases. At resonance, where the band edge aligns to a bound state, a local maximum
for the transmission coefficent is achieved, leading to a peak in the current flow. Further
increase in field results in a sharp decrease in the current flow. Especially in the off-
resonance case, scattering mechanisms are capable to route carriers.

Carrier transport can also be affected by thermal effects, like in short-wavelength lasers,
where the energetically high upper laser level is located close to the quasi continuum above
the barriers. There the electrons may undergo thermal excitation, and thermionic emission
from the confined states constitutes. In the continuum, the electric field accelerates the
electron freely. Thus they do not partake in the laser action any more.

In general, laser action for a wide range of electric fields can be achieved if a large gain
coefficient and a low waveguide loss can be established. The current has to be large enough
that the gain compensates the loss. The gain itself mainly depends on the dipole matrix
element between the corresponding laser levels and the phenomenological broadening of
the transition. It has been shown that a long lifetime for the upper laser level and a short
one for the lower level is essential to obtain a high peak gain in QCLs [17], the same
criterion as for an efficient population inversion.

Evidently, the understanding of numerous physical processes is essential for the design
and optimization of QCLs. Predominantly, suitable waveguiding and population inversion
with appropriate radiative transitions must be provided by tailoring the band structure
and the lifetimes.

2.2 Milestones and State-of-the-art

Progress advanced quickly after the first demonstration of an intersubband laser in 1994,
designed in the Bell Laboratories to emit at 4.2 µm wavelength with peak powers in
excess of 8 mW in pulsed operation and grown by molecular beam epitaxy [8]. This
progress is facilitated basically by the advance in growth techniques and by the improving
understanding of bandstructure engineering, resulting in a better control of the electron
transport to enable an increase in population inversion and gain. A timeline of the most
important achievements is shown in Figure 2.2.

In 1996, MIR QCLs were created that reach a high pulsed power at temperatures up to
320 K and a continuous wave (CW) operation up to 140 K [18]. An active region based
on a three-well vertical transition design and a funnel injector were used to optimize the
gain. At 300 K a peak pulsed optical power of 200 mW was obtained, where the emission
wavelength was about 5.2 µm. In the same year, long wavelength single-mode QCLs
based on an AlInAs/GaInAs heterostructure emitting at 11.2 µm were established [19].
Moreover, a continuous wave operation with powers of about 7 mW at a temperature of
10 K was sucessfully obtained.

One year later, a continuously tunable single-mode laser was provided by a distributed

5



BASICS OF QUANTUM CASCADE LASERS 2.2 Milestones and State-of-the-art

feedback (DFB) QCL operating above room temperature at 5.4 and 8 µmwavelengths [20].
Due to the alternating refractive index the periodically structured active region acts as a
diffraction grating, where the wavelength is determined by the Bragg reflection condition.
In the same year, a long wavelength QCL based on a superlattice active region was
demonstrated [21]. An intrinsic inversion is achieved by minibands in the active region.
Electrons injected by tunneling emit photons corresponding to the energy separation.

The first GaAs/AlGaAs QCL was reported in 1998 [9]. This work demonstrated the va-
lidity of QCL principles in a heterostructure material system different from the system
InGaAs/AlInAs on InP used before. This QCL structure employed 33 % Al in the bar-
riers and emitted at a wavelength of 9.4 µm under pulse operation up to 140 K. The
threshold current density of this device was reduced to an average of 5 kA/cm2 at 77 K,
and a maximum pulsed operation temperature of about 200 K was achieved with a low
loss Al-free waveguide [22]. Since the first realization of GaAs/Al0.45Ga0.55As QCLs [23]
the device performance has improved significantly. For several active region designs a
room temperature pulsed operation has been demonstrated, e.g. a superlattice active
region design with an emission wavelength at 12.6 µm [24] and a bound-to-continuum
design emitting at 82 µm [25]. Recently, a continuous wave operation with a maximum
temperature of 150 K has been achieved due to optimized device processing [26].

The first QCLs with wavelengths larger than 20 µm, in particular at 21.5 and 24 µm,
were reported in 2001 [27]. Originating from interminiband transitions in superlattice
active regions, laser action is achieved up to 140 K with a peak power of a few mW. The
structures were grown by molecular beam epitaxy using an In0.53Ga0.47As/Al0.48In0.52As
lattice matched to an InP substrate. Up to this time, these semiconductor lasers had the
longest emission wavelength.

One year later, a continuous wave operation of a MIR semiconductor laser above room
temperature was demonstrated [28]. At an emission wavelength of 9.1 µm, the optical
output power ranged from 17 mW at 292 K to 3 mW at 312 K. In the same year, a
prototype of a QCL emitting in the THz region (30 - 300 µm) was reported [29]. Emitting
a single mode at 4.4 THz, the device reached an output power of more than 2 mW.

Further notable milestones are the first broudly and continuously tunable external cavity
QCL in 2004 [30], and the first high power CW external cavity QCL at room temperature
[31].

In 2010, a 100 µm emission of a QCL to a 10◦ cone was reported [32]. Due to fabricating
a metamaterial layer on the output facet, the heavily doped semiconductor acts like a
metal at terahertz frequencies.

Nowadays, QCLs operate over a wide wavelength range of 2.9 - 250 µm [33]. Spanning
the MIR and THz region, they also operate at room temperature and in continuous wave
mode with up to 3 W of optical power.
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Figure 2.2: Timeline of significant QCL developments.
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2.3 Applications

Because of their small size, the possibility to operate at room temperature and high
spectral power density, MIR QCLs can find widespread applications in stable process
analyzers. For instance, these lasers are able to be used for liquid phase measurements
as measuring total petroleum hydrocarbons in water or the determination of glucose and
lactate in aqueous solutions [34].

Another important application of QCLs is sensitive nanosecond time-resolved spectroscopy
to probe chemical reactions [35]. External Cavity QCLs are a functional infrared source for
time-resolved infrared instrumentation and can be used to obtain high sensitive nanosec-
ond spectra in order to detect short lived reaction intermediates and the clarification of
reaction mechanisms.

Absorption spectroscopy systems are based on widely tunable QCLs. They are able to
detect and measure substances on surfaces, which allows them to identify bulk materials
and detect sub-micron films based on their absorption characteristics [36]. This enables
to analyze vapors and liquids. Fast analysis, and the ability to work at a distance either
through free space or a fiber are key factors for the ability of these systems to analyze
trace amounts of explosives.

QCL based optical methods in chemical sensing have many advantages such as high selec-
tivity and real-time detection. This allows the determination of the local concentration of
a species with high accuracy and sensitivity. Industrial applications include combustion
diagnostics in the power and automobile industries as well as medical diagnostics such
as breath analysis for the early detection of ulcer and other diseases, and additionally
process control. In the atmospheric science, spectral data are used to determine chemical
concentration profiles, which are important for the development of climate models.
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Chapter 3

Quantum Ballistic Transport

Under the condition that the size of a device structure is comparable to the De Broglie
wavelength of the electron, the transport properties of the device are described by the
laws of quantum mechanics. The quantum ballistic regime is valid if the dimension of the
structure is reduced below the mean free path of the electron [37]. The basic equations of
quantum ballistic device simulations, namely the Poisson equation and the Schrödinger
equation, are discussed in this section. Furthermore, we give attention to issues regarding
boundary value problems that arise in semiconductor transport theory.

3.1 The Effective Mass Approximation

Primarily, the effective mass approximation was extensively used to describe electronic
motion in the presence of slowly varying perturbations [38]. This condition for the validity
of the approach is not satisfied, when the differences between the potentials in the well and
barrier layers belonging to a quantum well are not small. Thus, the growing interest in
quantum well structures led to a remarkable development of the effective mass theory from
the regime of weak perturbations to the strong perturbation regime in microstructures [39].

In general, the energy levels and wave functions can be obtained by solving the Schrödinger
equation with a proper Hamiltonian. Assuming that the many-body interactions among
electrons are negligible, the motion of the electrons can be described by the one-electron
Hamiltonian.

We consider electrons in the conduction band of a QCL with an electric field applied in
the growth direction of the heterostructure. The total wave function can be written as
the product between the periodic Bloch function at the center of the Brillouin zone and
an envelope function, which is supposed to vary slowly over one period. When z is the
growth direction, the free motion in the in-plane direction can be separated and the wave
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function in the quantum well structure is given by [40]

Ψη
νλ,k‖

(x) =
1√
A
eik‖·x‖Φη

νλ(z) (3.1)

where k‖ is the in-plane wave vector, A is the cross-sectional area of the quantum well
structure, and Φη

νλ(z) is the electron envelope function of the ν-th subband in the valley
η and stage λ. Under the assumption that the periodic function is the same in all layers
and due to equation (3.1) the general form of the Schrödinger equation for the quantum
well structure is given by

ĤΦη
νλ(z) = Eη

νλΦ
η
νλ(z) (3.2)

where Eη
νλ denotes the energy and Ĥ the total Hamiltonian involving a kinetic and a

potential part. Considering a junction at z0 between the regions of two materials with
dissimilar periodic potentials the current conservation is guaranteed by use of the following
interface conditions [41]

Φη
νλ(z)

∣
∣
z→z−

0

= Φη
νλ(z)

∣
∣
z→z+

0

,

(
1

m⋆(z)

dΦη
νλ(z)

dz

) ∣
∣
∣
∣
z→z−

0

=

(
1

m⋆(z)

dΦη
νλ(z)

dz

) ∣
∣
∣
∣
z→z+

0

(3.3)
where the upscripts ”− ” and ”+ ” denote the left and right hand sides of the boundary.
The condition for matching the derivative includes the effective mass m⋆(z). Since the
derivative is the momentum operator, the equation (3.3) implies the requirement that
the velocity must be the same on both sides to conserve the current. The appropriate
hermitian Hamiltonian can be written as

Ĥ = −~
2

2

∂

∂z

1

m⋆(z)

∂

∂z
+ V (z). (3.4)

It is of Sturm-Liouville form, which implies that the eigenvalues are real and the eigen-
functions corresponding to different eigenvalues are orthogonal [42]. The potential applied
to the Schrödinger equation takes the form

V (z) = V0(z)− eFz − eϕ(z). (3.5)

Here, V0 is the conduction band edge, e is the elementary charge, F denotes the external
electric field, and ϕ is the electrostatic potential.

A derivation of the effective mass equation based on the main assumption that the enve-
lope functions are slowly varying on the scale of the lattice period, is provided in Appendix
A. In this context, it should be mentioned that there is no possibility of a rigorous deriva-
tion. It is about heuristic arguments, which is generally a common practice in quantum
mechanics. Nevertheless, for pedagogical purposes it is interesting to gain insight into
these details.
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3.2 Schrödinger-Poisson Solver

The electronic subbands of the conduction band near the zone center of the Brillouin zone
and the corresponding envelope functions are determined by solving the Schrödinger equa-
tion selfconsistently with the Poisson equation. Poisson’s equation plays a fundamental
role in semiconductor device modeling. It is one of the basic equations in electrostatics
and can be derived from the Maxwell equation

∇ ·D = ρ (3.6)

and the material relation
D = εsF (3.7)

Due to the translational symmetry of QCL structures, the electrostatic potential ϕ has
the same profile in each stage. With F = −∇ϕ it satisfies the Poisson equation [43]

∂

∂z

(

εs
∂ϕ

∂z

)

= −ρ(z) (3.8)

where εs denotes the static dielectric permittivity which is assumed to have an effective
constant value within a material segment. The space charge density ρ in stage λ is
determined from the carrier and doping concentrations, n(z) and N+

D (z).

ρ(z) = e(N+
D (z)− n(z)) (3.9)

The carrier concentration is related to the wave functions by

n(z) =
∑

ν,η

|Φη
νλ(z)|2Nνη

s (3.10)

where the sum is over the subbands and the valleys, respectively. Nνη
s is the electron

sheet density according to [44]

Nνη
s (EF ) =

2

A

∑

k‖

1

1 + exp
(

Eη
νλ

(k‖)−EF

kBT

) (3.11)

where the Fermi-Dirac distribution is used for the in-plane electron distribution in each
subband, and assuming charge conservation in each stage, a position independent quasi
Fermi level EF can be defined [45]. The presented scheme for the Schrödinger-Poisson
solver considers a subproblem not coupled to the transport equation [46]. In the parabolic
band approximation the electronic dispersion relation Eη

νλ(k‖) is given by

Eη
νλ(k‖) = Eη

νλ +
~
2k2

‖
2mη⋆

νλ

(3.12)

By means of the ”sum-to-integral” rule [47]

1

A

∑

k‖

=
1

(2π)2

∫

d2k‖ =
1

2π

∞∫

0

k‖dk‖ (3.13)
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and the intergral identity

∫
dx

1 + ex
=

∫
e−x

1 + e−x
dx = − ln(1 + e−x) (3.14)

the electron sheet density reads

Nνη
s (EF ) =

kBTm
η⋆
νλ

π~2
ln

[

1 + exp

(
EF −Eη

νλ

kBT

)]

(3.15)

The total electron sheet density Ns is determined by the sum of Nνη
s in one stage

Ns =
∑

ν,η

Nνη
s (EF ) (3.16)

For a given Ns, the quasi Fermi level EF is obtained iteratively by solving equation (3.16).
Both, the Schrödinger and the Poisson equations are discretized using the finite difference
method. The procedures for the selfconsistent calculations are illustrated in Figure 3.1.
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Figure 3.1: Flowchart of the selfconsistent Schrödinger-Poisson solver. The
initial value for the electrostatic potential is set to zero. In the
second step the envelope functions and the eigenenergies are calcu-
lated according to the Schrödinger equation. The Poisson equation
is solved after the determination of the Fermi level. A check of the
electrostatic potential update decides whether the iteration termi-
nates.
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3.3 Boundary Conditions

Stationary transport of charge carriers in semiconductor devices is modeled by means of
boundary value problems. In order to investigate systems with net current flows and to
obtain current-voltage characteristics of a quantum device, one has to impose boundary
conditions which allow current carrying states 1.

Homogeneous Neumann or Dirichlet boundary conditions yield a self-adjoint Hamiltonian
matrix and cannot be used for open systems, since there is no interaction with the envi-
ronment and the current density is identical zero [48]. A popular approach is to assume
periodic boundary conditions which ensure the continuity of the current density, but in
fact closes the system and makes the investigation of open system aspects impossible. The
simulation domain is usually taken to be finite and the boundaries are physically given
by electrical contacts. This leads to the necessity to consider open quantum systems with
non-selfadjoint boundary conditions.

In the following chapters, the focus is on boundary conditions which yield current carrying
states as solutions of the Schrödinger equation. The theoretical development is based
on a Robin boundary condition approach when a solution with the Dirichlet boundary
condition is available [49]. A transformation converts a wave function satisfying a Dirichlet
boundary condition to a wave function satisfying a Robin boundary condition, enabling
particle exchange across the boundary. We also prove that the solution of the Robin
problem converges to the solution of the Dirichlet problem, as the energy tends to infinity
[50].

3.3.1 Dirichlet and Neumann Boundary Conditions

If Ω is the domain of the device and ∂Ω denotes the corresponding boundary, it is standard
to define self-adjoint realizations of the Hamiltonian by imposing Dirichlet boundary
conditions

Φ|∂Ω = 0 (3.17)

or Neumann boundary conditions

n · ▽Φ|∂Ω = 0 (3.18)

where n is the outward normal vector of the boundary. The physical meaning of the Neu-
mann boundary condition, which fixes the normal derivative of the field at the boundary,
is the constant flux in and out of the simulation domain.

1This statement is valid for ballistic transport.
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3.3.2 Open Boundary Conditions

Let Ω = [0, L] be the domain of the QCL perpendicular to quantum well layers. Assum-
ing an incoming wave from −∞ with amplitude 1 and no wave incident from +∞, the
Schrödinger equation can be solved explicitly outside the domain Ω

Φα(z) =

{

e
i
~
z
√
2m⋆Eα +Rαe

− i
~
z
√
2m⋆Eα, z < 0

Tαe
i
~
z
√

2m⋆(Eα−V ), z > L

where V (z) = 0 on (−∞, 0) and V (z) = V (L) = VL < 0 for z > L. We can deduce
a boundary condition at ∂Ω ∈ {0, L} that does not involve reflection and transmission
coefficients [51]

~Φ′
α(0) + i

√

2m⋆EαΦα(0) = 2i
√

2m⋆Eα (3.19)

~Φ′
α(L)− i

√

2m⋆(Eα − V )Φα(L) = 0 (3.20)

In order to construct a solution to the Schrödinger equation with Robin boundary condi-
tions when a solution to the same equation with Dirichlet boundary conditions is available,
we make use of a Dirichlet-to-Robin transform [49]. If ΦR(z) satisfies the Robin boundary
condition at ∂Ω

∂

∂z
ΦR(z)

∣
∣
∂Ω
−iκΦR(z)

∣
∣
∂Ω
= 0 (3.21)

the function

ΦD(z) ≡ ∂

∂z
ΦR(z)− iκΦR(z) (3.22)

corresponds to the solution of the Dirichlet problem, ΦD(z)
∣
∣
∂Ω
= 0. For a given function

ΦD(z), the general solution to the differential equation (3.22) can be written as

ΦR(z) = eiκz
z∫

0

e−iκz′ΦD(z′)dz′ + Ceiκz (3.23)

The boundary condition (3.20) gives κ =
√

2m⋆(E − V )/~2. The constant C is evaluated
by the requirement that ΦR(z) must satisfy the boundary condition (3.19) at z = 0, which
gives

C = 2
κ̃

κ̃+ κ
(3.24)

where κ̃ =
√

2m⋆E/~2.

3.3.2.1 Asymptotic Behavior

Including a source term Q, we consider the most general effective mass Schrödinger equa-
tion in Ω̃ := Ω \ ∂Ω

[

−~
2

2

∂

∂z

1

m⋆(z)

∂

∂z
+V(z)− Eα

]

Φα(z) = Qα(z) (3.25)
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where Ω is the bounded domain with the boundary ∂Ω. The corresponding Green’s
function is given by [52]

Gαα′(z, z′) = −2

c
[Φα(z)Φ

⋆
α′(z′)Θ(z − z′) + Φα′(z)Φ⋆

α(z
′)Θ(z′ − z)] (3.26)

where Θ is the Heaviside function and c is a constant. Considering the Dirichlet boundary
value problem

ΦD
∣
∣
∂Ω
= 0 (3.27)

the solution for the effective mass Schrödinger equation at energy Eα ∈ R can be written
in terms of the Green’s function as follows

ΦD
α (x) =

∫

Ω̃

Gαα′(z, z′)Qα′(z′)dz′ +

∫

∂Ω

Gαα′(z, z′)ΦD
α′(z′)dz′ (3.28)

The solution of the Robin boundary value problem

∂

∂N
ΦR
∣
∣
∂Ω
−iκΦR

∣
∣
∂Ω
= 0 (3.29)

converges to ΦD as E → ∞.

Proof. Let

Φ̃α(z) :=

∫

Ω̃

Gαα′(z, z′)Qα′(z′)dz′ (3.30)

Then ΦR
α (z) = Φ̃α(z) + ΦT

α(z), where ΦT
α(z) satisfies

ĤΦT
α(z) = 0 in Ω̃ (3.31)

Due to the boundary condition (3.29) the following relation holds at the boundary
(

∂

∂N
ΦT

α − iκΦT
α

) ∣
∣
∣
∣
∂Ω

= −
(

∂

∂N
Φ̃α − iκΦ̃α

) ∣
∣
∣
∣
∂Ω

(3.32)

In general, ΦT
α can be written in the form

ΦT
α(z) =

∫

∂Ω

Gαα′(z, z′)ϕα′(z′)dz′ (3.33)

where ϕ can be determined by inserting equation (3.33) into the condition (3.32), which
yields the following equation

lim
z→∂Ω





∫

∂Ω

(
∂

∂N
Gαα′(z, z′)

)

ϕα′(z′)dz′ − iκ

∫

∂Ω

Gαα′(z, z′)ϕα′(z′)dz′



 =

lim
z→∂Ω

(

− ∂

∂N
Φ̃α(z) + iκΦ̃α(z)

)
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Since κ = O(
√
Eα), we get

lim
z→∂Ω

∫

∂Ω

Gαα′(z, z′)ϕα′(z′)dz′ = lim
z→∂Ω

(

−Φ̃α(z) +O

(
1√
Eα

))

(3.34)

Inserting the equations (3.27) and (3.28) yields

Tαα′ϕα′ = Tαα′ΦD
α′ +O

(
1√
Eα

)

(3.35)

where the operator T is defined as follows

Tαα′Φα′(z′) =

∫

∂Ω

Gαα′(∂Ω, z′)Φα′(z′)dz′ (3.36)

Thus,

ΦR
α(z) = Φ̃α(z) +

∫

∂Ω

Gαα′(z, z′)ΦD
α′(z′)dz′ +O

(
1√
Eα

)

= ΦD
α (z) +O

(
1√
Eα

)

(3.37)

completing the proof.

3.4 Non-Equilibrium Green’s Functions

The NEGF formalism provides a generalized microscopic theory for quantum transport.
It adresses the problem of dissipative transport and desribes open systems fully quantum
mechanically. The theory behind it is deeply rooted in the many-body theory [53].

The information of the many-particle system is put into self energies, which are part of the
equations of motion for the Green’s functions. The Green’s functions can be calculated
from perturbation theory and describe the correlation between two operators at times t
and t′. A detailed description and justification of the Green’s functions and self energies
can be found for instance in the work of Datta [54]. Here, I will only summarize the most
important definitions and provide a physical interpretaion.

The Hamiltonian of an open system coupled to a reservoir can be written as [55]

Ĥ =

(

ĤD σ

σ† ĤR

)

ĤD and ĤR denote the Hamilton operators of the device and reservoir, respectively, and σ
is the coupling matrix. The corresponding Schrödinger equation of the channel-reservoir
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system can be expressed as [56]

E

(
ψD

ψR

)

=

(

ĤD σ

σ† ĤR

)(
ψD

ψR

)

ψD and ψR denote the wave functions of the channel and the reservoir. The steady state
equation for the Green’s function is defined as

(1E − Ĥ)G = 1 (3.38)

Thus, the corresponding Green’s function to the device-reservoir system can be written
as

(
G GDR

GRD GR

)

=

(

1E − ĤD −σ
−σ†

1E − ĤR

)−1

The coupling between the device and the reservoir is described by GDR and GRD. The
retarded Green’s function G reads

G = (1E − ĤD − Σ(E))−1 (3.39)

and includes the self energy which describes the interaction between the device and the
reservoir [57]. The inclusion of the self energy reduces the Green’s function of the reservoir
to the dimension of the Hamiltonian of the device. The self energy is determined iteratively
and satisfies

Σ = σGσ† (3.40)

The matrix form of the density of states is the spectral function As which is given by

As(E) = i(G(E)−G†(E)) (3.41)

The electron density is provided by the density matrix

n =
1

2π

∞∫

0

fE(E − EF )A(E)dE (3.42)

where fE is the Fermi-Dirac distribution function and EF denotes the Fermi energy.
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Chapter 4

Quantum Dissipative Transport

Charge transport simulations according to the non-equilibrium Green’s function (NEGF)
method need enormous computation time and have to be carefully customized for each
particular structure. Since recent theoretical studies showed that the steady state trans-
port in QCLs is incoherent and the semiclassical description found to be satisfactory [58],
a simpler approach than NEGF can be used. Although coherent oscillations of the pop-
ulation inversion were observed, the resulting steady state transport is incoherent as the
oscillations are damped to the sub-picosecond timescale which is considerable shorter than
the average transit time across one stage. Here, we present a rigorous Monte Carlo method
based on a semiclassical transport description which takes much less computational time
than simulations based on the NEGF formalism.

4.1 Density Matrix Formulation

The density matrix formalism describes the statistical distribution of quantum states in
a system [59]. This method allows to treat an ensemble of particles statistically.

Pure States:

The quantum subsystem is described in a Hilbert space of basis functions {Φ1,Φ2, ...} and
a wave function Ψ represents a generic particle from the ensemble according to

|Ψ〉 =
∑

i

ci|Φi〉 (4.1)

In the linear combination, the coefficents ci are time dependent and describe the time
propagation of the quantum subsystem [60], and

ci = 〈Φi|Ψ〉 (4.2)
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QUANTUM DISSIPATIVE TRANSPORT 4.1 Density Matrix Formulation

The density operator describes the probability distribution in a system. It takes the form
of a projection operator and is defined by

ρ̂(t) = |Ψ(t)〉〈Ψ(t)| (4.3)

The probability of finding a system in state |Φi〉 is described by the diagonal elements
ρii. The degree of coherence is described by the polarization between states |Φi〉 and
|Φj〉, which is included in the off-diagonal elements ρij . The total population density is
conserved, which implies

Tr(ρ̂) =
∑

i

ρii = 1 (4.4)

The expression for the expectation value of an operator can be written as

〈Ψ|Ô|Ψ〉 =
∑

i

∑

j

c⋆i cj〈Φi|Ô|Φj〉 =
∑

i

∑

j

c⋆i cjÔij

=
∑

i

∑

j

ρ⋆jiÔij =
∑

i

∑

j

ρijÔij

= Tr[ρÔ] (4.5)

Mixed States:

A mixed state is an incoherent mixture of pure states |Ψ(j)〉, (j = 1, 2, ...N) with statistical
weights pj which obey [61]

N∑

j=1

pj = 1

The average value of Ô in the mixed state is given by

〈Ô〉 =
N∑

j=1

pj〈Ψ(j)|Ô|Ψ(j)〉 (4.6)

The density matrix depends on the pure states involved in the mixed state and their
statistical weights according to

ρ̂ =
N∑

j=1

pj|Ψ(j)〉〈Ψ(j)| (4.7)

The time evolution of the density matrix is obtained by taking the time derivative of the
density operator

i~
∂ρ̂

∂t
= [ρ̂, Ĥ] (4.8)

with Ĥ = Ĥ0+Ĥ
′, and Ĥ ′ represents a perturbation. This equation of motion is known as

the quantum Liouville equation. Due to the linear transformation of the density operator
on the r.h.s in equation (4.8), it is possible to define a linear operator L̂ which yields

∂ρ̂

∂t
= − i

~
L̂ρ̂ (4.9)
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QUANTUM DISSIPATIVE TRANSPORT 4.1 Density Matrix Formulation

where L̂ denotes the so called Liouville operator

L̂ij,mn = Ĥimδjn − Ĥ⋆
jnδim

If N is the number of states in the system, the superoperator L̂ is a N2×N2 matrix and ρ
is a N2 dimensional vector. Thus, systems with many states may give rise to insuperable
computational challenges.

4.1.1 Density Matrix Equations for Dissipative Systems

We consider a system which is open and in permanent contact with its environment.
Under certain conditions the system which is initially in a non-equilibrium state will go
over into an equilibrium state after some time. This relaxation process is irreversible.

Let S denote an open quantum system which is coupled to another quantum system R,
the environment. The density matrix characterizing the total system is denoted by ρ(t)
and the total Hamiltonian by Ĥ = ĤS+ĤR+Ĥ

′. In the Schrödinger picture, the equation
of motion for the density matrix is given by the Liouville-von Neumann equation

∂ρ(t)

∂t
= − i

~
[Ĥ0, ρ(t)]−

i

~
[Ĥ ′, ρ(t)] (4.10)

where Ĥ0 = ĤS + ĤR. Within the interaction picture, the time evolution of the density
matrix is controlled only by the interaction Hamiltonian according to

∂ρI(t)

∂t
= − i

~
[Ĥ ′(t), ρI(t)] (4.11)

Inserting the formal integration

ρI(t) = ρI(0)−
i

~

t∫

0

dt′[Ĥ ′(t′), ρI(t
′)]

into the r.h.s of equation (4.11), the equation of motion for ρI can be expressed as

∂ρI(t)

∂t
= − i

~
[Ĥ(t), ρI(0)] +

1

~2

t∫

0

dt′[Ĥ ′(t), [Ĥ ′(t′), ρI(t
′)]] (4.12)

The reduced density matrix ρSI which describes the system S is obtained by taking the
trace over all variables of system R according to [62]

ρSI (t) = TrR (ρI(t)) (4.13)

It is assumed that the interaction starts at t = 0 and that the two systems are uncorrelated
prior to this time. Thus

ρI(0) = ρS(0)ρR(0) (4.14)
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In order to have an irreversible process, it is assumed that R has so many degrees of
freedom that it is described by a thermal equlibrium distribution, independent on the
amount of energy transferred to it from the system S [63]. Hence

ρI(t) = ρSI (t)ρ
R(0) (4.15)

This is the fundamental condition for irreversibility. Using these approximations, the
equation of motion for the reduced density matrix can be written as

∂ρSI (t)

∂t
= − i

~
TrR[Ĥ

′(t), ρS(0)ρR(0)]− 1

~2

t∫

0

dt′TrR[Ĥ
′(t), [Ĥ ′(t′), ρSI (t

′)ρR(0)]] (4.16)

According to this equation, the behavior of the system depends on the past events in the
time interval [0, t], since the integral contains ρSI (t

′). However, the system S is coupled to
the reservoir which causes a damping that destroys the ”knowledge” of the past behavior.
These considerations lead to the assumption that the system loses all memory of the past.
Thus, the substitution

ρSI (t
′) → ρSI (t) (4.17)

is necessary, which is known as the Markov approximation.

4.1.1.1 Markov Approximation

In general, the interaction operator can be expressed as

Ĥ ′ =
∑

i

Q̂S
i Q̂

R
i (4.18)

where Q̂S and Q̂R denote the operators of the dynamic system and the reservoir, respec-
tively. In the interaction picture we have

Q̂S
i (t) = eiĤSt/~Q̂S

i e
−iĤSt/~ (4.19)

and
Q̂R

i (t) = eiĤRt/~Q̂R
i e

−iĤRt/~ (4.20)

Inserting the interaction operator of this form and the substitution (4.17) into the equation
(4.16) and taking into account that the operators Q̂S

i and Q̂R
i commute, yields

∂ρSI (t)

∂t
= − i

~

∑

i

[

Q̂S
i (t)ρ

S
I (0)TrR(Q̂

R
i (t)ρ

R(0))− ρSI (0)Q̂
S
i (t)TrR(Q̂

R
i (t)ρ

R(0))

]

− 1

~2

∑

ij

t∫

0

dt′
[

(Q̂S
i (t)Q̂

S
j (t

′)ρSI (t)− Q̂S
j (t

′)ρSI (t)Q̂
S
i (t))TrR(Q̂

R
i (t)Q̂

R
j (t

′)ρR(0))

− (Q̂S
i (t)ρ

S
I (t)Q̂

S
j (t

′)− ρSI (t)Q̂
S
j (t

′)Q̂S
i (t))TrR(Q̂

R
j (t

′)Q̂R
i (t)ρ

R(0))

]

(4.21)
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QUANTUM DISSIPATIVE TRANSPORT 4.1 Density Matrix Formulation

Let |r〉 denote the eigenstates of ĤR. Then, the expectation values appearing in the first
term in equation (4.21) can be written as

〈Q̂R
i (t)〉 = TrR(Q̂

R
i (t)ρ

R(0))

=
∑

r

〈r|Q̂R
i (t)ρ

R(0)|r〉

Under the assumption that the interaction operators don’t have diagonal elements in this
representation (no average energy shifts), the first term in equation (4.21) vanishes, since
〈Q̂R

i (t)〉 = 0 [64]. The time correlation functions

〈Q̂R
i (t)Q̂

R
j (t

′)〉 = TrR(Q̂
R
i (t)Q̂

R
j (t

′)ρR(0))

describe the average correlation between interactions occuring at times t and t′. The
reservoir dissipates quickly the effects of its interaction with the system S. Thus

〈Q̂R
i (t)Q̂

R
j (t

′)〉 6= 0 , for t− t′ . τR

where τR denotes the correlation time of the reservoir. For t−t′ > τR, interactions become
less correlated and the correlation functions satisfy

〈Q̂R
i (t)Q̂

R
j (t

′)〉 ≈ 0

On the basis of the last considerations we will discuss the Markov approximation. It
follows that the integral in equation (4.16) is nonzero only for t′ in the time interval
[t − τR, t]. Outside this interval, the values of ρSI (t

′) have negligible influence on the
time derivative of ρSI (t). The Markov approximation holds if τR is much smaller than
a characteristic time that is required for ρSI (t) to change considerably on a macroscopic
scale [65].

4.1.1.2 The Relaxation Equation

Since the correlation functions are stationary and depend only on the time difference
t′′ = t− t′

〈Q̂R
i (t)Q̂

R
j (t

′)〉 = 〈Q̂R
i (t− t′)Q̂R

j 〉
the equation of motion of the reduced density matrix can be written as

∂ρSI (t)

∂t
= − 1

~2

∑

ij

∞∫

0

dt′′
(

[Q̂S
i (t), Q̂

S
j (t− t′′)ρSI (t)]〈Q̂R

i (t
′′)Q̂R

j 〉

− [Q̂S
i (t), ρ

S
I (t)Q̂

S
j (t− t′′)]〈Q̂R

j Q̂
R
i (t

′′)〉
)

(4.22)

where the upper integration limit is extended to infinity with negligible error under the
Markov approximation. Let {|β〉, |β ′〉, ...} denote the eigenstates of ĤS, where |β〉 =
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|λ, η, ν,k‖〉. Here, η is the subband index, ν denotes the valley index, λ is the index of
the stage, and k‖ is the in-plane wave vector. Then

〈β ′|Q̂S
i (t)|β〉 = eiωβ′β〈β ′|Q̂S

i |β〉 , ωβ′β = (Eβ′ − Eβ)/~

one obtains after some algebra

〈β ′|∂ρ
S
I (t)

∂t
|β〉 =

∑

γ′γ

〈γ′|ρSI (t)|γ〉Rγ′γ
β′βe

i(Eβ′−Eβ−Eγ′+Eγ)t/~ (4.23)

where the following abbreviations are used

Rβ′β
γ′γ =

(

−
∑

µ

δγβΓ
+
γ′µµβ′ + Γ+

βγγ′β′ + Γ−
βγγ′β′ −

∑

µ

δγ′β′Γ−
βµµγ

)

ei(ωγ′β′+ωγβ)t

Γ+
ζµγβ =

1

~2

∑

ij

〈ζ |Q̂S
i |µ〉〈γ|Q̂S

j |β〉
∞∫

0

dt′′e−iωγβt
′′〈Q̂R

i (t
′′)Q̂R

j 〉

Γ−
ζµγβ =

1

~2

∑

ij

〈ζ |Q̂S
j |µ〉〈γ|Q̂S

i |β〉
∞∫

0

dt′′e−iωζµt
′′〈Q̂R

j Q̂
R
i (t

′′)〉

Considering the case of energy conservation, the time dependent exponential vanishes.
It can be shown that after transformation into the Schrödinger picture the equations of
motion of the reduced density matrices can be written as [66]

〈β ′|∂ρ
S(t)

∂t
|β〉 = − i

~
〈β ′|[ĤS, ρ

S(t)]|β〉+ δββ′

∑

γ

〈γ|ρS(t)|γ〉Sβγ − χβ′β〈β ′|ρS(t)|β〉 (4.24)

where
Sγβ = Γ+

βγγβ + Γ−
βγγβ (4.25)

and
χβ′β =

∑

µ

(Γ+
β′µµβ′ + Γ−

βµµβ)− Γ+
βββ′β′ − Γ−

βββ′β′ (4.26)

Equation (4.24) is called the generalized Master equation and describes the irreversible
behavior of a system. In order to get an interpretation of the occuring parameters, we
take a look at the rate of change of the diagonal elements of the density matrix. For the
diagonal elements, the Schrödinger picture is equivalent to the interaction picture. From
the results determined above, it is straightforward to obtain

d

dt
ρββ(t) =

∑

γ 6=β

ργγ(t)Sβγ − ρββ(t)
∑

γ 6=β

Sγβ (4.27)

This equation is called the Pauli Master equation which plays a fundamental role in
modern statistics and can be used in many problems in physics and chemical kinetics
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[67]. The diagonal elements of the density matrix give the probability of finding the
corresponding level occupied at time t. Since the probability increases due to transitions
from |γ〉 to |β〉, and decreases as a result of transitions from |β〉 to other states |γ〉, the
parameters Sβγ describe the probability per unit time for the transitions |γ〉 → |β〉.
Now we take a more detailed look at the transitions rates. Making use of equation (4.20),
the transition rate can be written as

Sγβ = Γ+
βγγβ + Γ−

βγγβ

=
1

~2

∑

ij

∑

rr′

〈r|Q̂S
i |γ〉〈γ|Q̂S

j |r〉〈r′|Q̂R
i |r〉〈r|Q̂R

j |r′〉〈r′|ρR|r′〉
∞∫

0

dt′′ei(Er′−Er−~ωγβ)t
′′/~

+
1

~2

∑

rr′

〈r|Q̂S
j |γ〉〈γ|Q̂S

i |r〉〈r′|Q̂R
j |r〉〈r|Q̂R

i |r′〉〈r′|ρR(0)|r′〉
∞∫

0

dt′′ei(Er′−Er−~ωβγ)t
′′/~

=
2π

~

∑

rr′

|〈γ, r|Ĥ ′|β, r′〉|2〈r′|ρR(0)|r′〉δ(Er′ − Er − ~ωγβ) (4.28)

This is the ”Golden Rule” for a transition from level |β〉 to level |γ〉. In order to ensure
the energy conservation

Er − Er′ = Eβ −Eγ

the reservoir undergoes simultaneously a transition from a state |r′〉 to |r〉. The diagonal
elements 〈r′|ρR(0)|r′〉 describe the probability of finding the reservoir in a state with
energy Er. Reservoirs are in thermal equilibrium. Hence, such a system is represented by
an incoherent sum of energy eigenstates with statistical weights 1. Equation (4.27) holds
for closed systems. For open systems, a term describing the interaction with the electrical
borders has to be added.

d

dt
ρββ(t) =

∑

γ 6=β

ργγ(t)Sβγ − ρββ(t)
∑

γ 6=β

Sγβ +

(
∂ρββ
∂t

)

res

(4.29)

4.1.1.3 From the Liouville-von Neumann Equation to the PME

The derivation of the Pauli Master equation can be simplified, if the interaction term in
equation 4.10 is approximated by a relaxation term

dρ

dt
=
i

~
[ρ, Ĥ ] +

(
∂ρ

∂t

)

res

− ρ− ρeq

τs
(4.30)

The last term on the r.h.s expresses the weak interaction with the surroundings. The limit
τs → ∞ will be taken in the end. Considering the matrix element of the above equation

1In the case of interaction with phonons, one has to consider the Bose-Einstein statistics.
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over the eigenstates |α〉 of the unperturbed Hamiltonian Ĥ0, one gets

dρββ′

dt
=

i

~
ρββ′(Eβ −Eβ′ + i~/τs) +

i

~

∑

β′′ 6=β,β′

[ρββ′′〈β ′′|Ĥint|β〉 − 〈β ′|Ĥint|β ′′〉ρβ′′β′]

+
i

~
〈β|Ĥint|β ′〉(ρββ − ρβ′β′) +

i

~
ρββ′ [〈β|Ĥint|β〉 − 〈β ′|Ĥint|β ′〉] +

(
∂ρ

∂t

)

res

Introducing renormalized energies Eβ → Eβ + 〈β|Ĥint|β〉, the time evolution of the diag-
onal elements of the density matrix can be written as

dρββ
dt

=
i

~

∑

β′ 6=β

[ρββ′〈β ′|Ĥint|β〉 − 〈β|Ĥint|β ′〉ρβ′β] +

(
∂ρ

∂t

)

res

(4.31)

(∂ρ/∂t)res is assumed to be of order O(α0
c), where αc denotes the strength of the interaction

Hamiltonian. Equation (4.31) implies that the off diagonal elements of the density matrix
are of order O(α−1

c ). To the lowest order, O(α−1
c ), one can obtain

0 =
i

~
ρββ′(Eβ′ −Eβ + i~/τs) +

i

~
〈β|Ĥint|β ′〉(ρββ − ρβ′β′)

which implies that ρββ is of the order O(α−2
c ). Rewriting the last equation as

ρββ′ =
〈β|Ĥint|β ′〉

Eβ −E ′
β − i~/τs

(ρββ − ρβ′β′)

and inserting into eqaution (4.31), yields

∂ρββ
∂t

=
i

~

∑

β′ 6=β

|〈β|Ĥint|β ′〉|2(ρββ−ρβ′β′)

(
1

Eβ − Eβ′ − i~/τs
− 1

Eβ −Eβ′ + i~/τs

)

+

(
∂ρββ
∂t

)

res

(4.32)
Making use of

lim
ς→0

1

x− iς
=

1

x
+ iπδ(x)

one gets for τs → ∞
dρββ
dt

= −2π

~

∑

β′ 6=β

|〈β|Ĥint|β ′〉|2(ρββ − ρβ′β′)δ(Eβ − Eβ′) +

(
∂ρββ
∂t

)

res

(4.33)

which is formally identical to equation 4.29.

4.2 Semiclassical Transport Description

In semiclassical transport theory, electron transport in semiconductor devices is described
by the Boltzmann equation given as [68]

∂fν
∂t

+v ·∇xfν +
dp

dt
·∇pfν =

∑

k′ν′

{Sν
ν′(k

′,k)fν′(k
′)[1−fν(k)]−Sν′

ν (k,k′)fν(k)[1−fν′(k′)]}

(4.34)
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where ν is the subband index. The electron distribution is denoted by the function
f(x,p, t) from which the macroscopic quantities of interest can be evaluated. The last
two terms on the left hand side (l.h.s) of equation (4.34) describe the net-in flow of
electrons to an elementary volume centered at x in position space and at p in momentum
space, respectively. The right hand side (r.h.s) represents the collision integral, where
the transition rate S(k,k′) from an initial state |k〉 to a final state |k′〉 can be calculated
according to the Fermis’s Golden Rule [69]

S(k,k′) =
2π

~
|〈k′|Hint|k〉|2

(

Nq +
1

2
± 1

2

)

δ(E(k′)−E(k)∓ ~ω) (4.35)

where Hint denotes the interaction Hamiltonian. In principle, this is the same equation as
(4.28) when considering the substitution |α, r〉 → |k〉. Due to the classical treatment of
particles in the l.h.s of the BTE (4.34) and the quantum mechanical one on the r.h.s, the
BTE constitutes a semiclassical description. Basically, the semiclassical characterization
is based on the assumption that the de Broglie wavelength is significantly smaller than
the spatial variation of the external potential. Furthermore, the time between collisions,
which is in the range of sub-picoseconds, must be smaller than the time. The collisions
are mutually independent and change the electron momentum instantaneously.

In the semiclassical model the transport is described via in- and out-scattering from
stationary states that are solutions of the Schrödinger equation. Since the well and barrier
structure are included in the Hamiltonian, tunneling is already considered through the
eigenstates, and transport occurs via scattering between these states.

Figure 4.1 illustrates how tunneling between two quantum well states |L〉 and |R〉 is de-
scribed by solving the coupled well system and obtaining a new set of delocalized states.
The anticrossing gap ∆0 is the minimum separation between the symmetric and anti-
symmetric states. Using such delocalized states as basis functions, there is no interwell
tunneling time, and intersubband scattering into and out of |A〉 and |S〉 from other sub-
bands govern the transport through the barrier. It is shown that this picture is accurate
for strong coupling, i.e. large ∆0 [70].

Figure 4.2 shows the difference between the semiclassical and coherent picture of coupled
quantum wells. In the semiclassical picture, the wave functions are delocalized at reso-
nance and transport through the barrier happens when electrons enter the levels |S〉 or
|A〉. In the coherent picture, the electrons are transported through the barrier with Rabi
oscillations at frequency Ω.

4.2.1 Pauli Master Equation

When the electron dephasing length in the contacts λφ ∼ ~vth/δEth is larger than the
length of the device L, the electrons are considered to be ”larger” than the device. Here,
vth and δEth denote the thermal velocity of the wave packet and the energetic broadening,
respectively. In this case, the contacts inject only diagonal elements of the density matrix
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(a)

(b)

Figure 4.1: Anitcrossing between two single well states.

ρ. Following Van Hove’s observation, the time needed to build the off-diagonal elements
of ρ is much longer than the relaxation and transit times [71]. Off-diagonal terms in ρ
are built up long after the electron has gone through the device. Thus, a master equation
considering only diagonal elements of the density matrix is sufficient to describe electron
transport in devices of size L < λφ [72]. In principle, this picture is equivalent to the
Boltzmann description.

In open systems, the equation describing transport and relaxation phenomena can be
written as [73]

d

dt
fk‖α =

(
d

dt
fk‖α

)

scat

+

(
d

dt
fk‖α

)

res

(4.36)

Here, fk‖α = ρββ, where k‖ is the in-plane wave vector and α ≡ (λ, ν, η) denotes the
generic electron state in the multi quantum well structure, i.e. λ is the stage, ν represents
the subband index and η stands for the valley index. Due to the smallness of the device
and the assumption that the electrons are injected as delocalized objects, this approach is
practically identical to the approach considered by Fischetti [74]. The second term on the
r.h.s of equation (4.36) describes the open boundary conditions of the system. It accounts
for the injection and loss contributions from and to external carrier reservoirs treated via
a relaxation-time-like term of the form

(
d

dt
fk‖α

)

res

= γk‖α(f
0
k‖α

− fk‖α) (4.37)

where γ−1
k‖α

is the device transit time of an electron and f 0
k‖α

is assumed to be the quasi-

equilibrium carrier distribution in the external reservoirs. This assumption is mainly
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Figure 4.2: Difference between the semiclassical and coherent picture of cou-
pled quantum wells.

based on the idea that the overall occupations of the ”large” reservoirs of electrons are
essentially unchanged by the addition or subtraction of a few electrons to or from the
device region.

However, the reservoirs must inject and extract electrons [75]. In the course of solving
the Schrödinger equation, a wave incident from outside the device is assumed which is
partially reflected and transmitted. It is assumed that outside the device domain a wave
is coming from −∞ and is either transmitted to +∞ or it is reflected by the potential
and travels back to −∞. The assumption that the wave function is continuous allows to
specify the boundary conditions at the contacts. Introducting a reflexion coefficient Rα

and transmission coefficient Tα, the total current flowing from the sth contact into other
contacts can be written as [74]

J =
∑

α

[

γ
(s)
k‖α

(
f
0,(s)
k‖α

− R(s)
α f

(s)
k‖α

)
−
∑

r 6=s

γ
(r)
k‖α

T (r)
α f

(r)
k‖α

]

(4.38)

The first term on the r.h.s of equation (4.36) describes the scattering dynamics and is
usually treated via collision operators. The master equation can be derived from the
Liouville-von Neumann equation using a representation of eigenstates which diagonalize
the external potential. The Markov approximation, which ensures the loss of memory
effects [76], is the main assumption for the derivation. Fischetti uses additionally the Van
Hove limit, which states that α2

ct is constant as α
2
c → 0 and the time t tends to infinity, in

order to derive the irreversible Pauli master equation and to ensure that the off-diagonal
terms of the density matrix remain negligible.

Iotti and coworkers present a somewhat different derivation of the same master equation,
calling it Boltzmann-like equation [77]. They also start from the Liouville-von Neumann
equation approach and propose the Markov approximation within a fully non-diagonal
density matrix treatment. By introducing a so-called diagonal approximation, the off-
diagonal elements of the density matrix are neglected arriving finally at the Boltzmann-
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Figure 4.3: Schematic of three adjacent stages of a QCL under an applied field.
Each time an electron in state |k‖, νηλ〉 undergoes an interstage
scattering to a state |k′

‖, ν
′η′(λ ± 1)〉, the electron is reinjected

into the central region and the corresponding electron charge con-
tributes to the current.

like or Pauli Master equation

d

dt
fk‖α(t) =

∑

k′
‖α

′

{Sα
α′(k′

‖,k‖)fk′
‖α

′(t)− Sα′

α (k‖,k
′
‖)fk‖α(t)} (4.39)

Due to the incoherent nature of the stationary charge transport in QCL heterostructures,
the time evolution of the carrier distribution function is governed by the PME (4.39) [78].
Since no electric field is applied in the in-plane direction, the equation (4.39) does not have
the in-plane drift and diffusion terms on the l.h.s like in the BTE (4.34). The electrons
are not explicitly accelerated along the growth direction, rather the electronic states are
affected through the change in the band profile which modifies the electron distribution.
Due to scattering the electrons are hopping among the subbands.

Since the QCL structure is translationally invariant, the electron transport can be simu-
lated over a generic central stage only. Due to the small wave function overlap between
the central stage and the spatially remote stages, it can be assumed that the interstage
scattering is limited only to the nearest neighbor. The electron states corresponding to a
single QCL stage are evaluated within a selfconsistent Schrödinger-Poisson solver. Given
such carrier states, we consider the multi quantum well structure as a repetition of this
periodicity region, which ensures the validity of charge conservation.

The carrier transport is simulated over the central stage and every time a carrier proceeds
an interstage scattering process, the electron is reinjected into the central region and the
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corresponding electron charge contributes to the current. The current density across the
device is given in terms of the net electron flux through the interface between the stages

J ∝
∑

k‖νη

∑

k′
‖ν

′η′

[S
(λ+1)ν′η′

λνη (k‖,k
′
‖)fλνη(k‖)− S

(λ−1)ν′η′

λνη (k‖,k
′
‖)fλνη(k‖)] (4.40)

In the Monte Carlo simulation, J is obtained by simply counting the interstage scattering
events.

4.2.2 Monte Carlo Method

The ensemble Monte Carlo method is an efficient approach for solving the PME (4.39)
and simulating electron transport in semiconductor devices in general [79]. It is based
on calculating the motion of an ensemble of particles during a short time dt, where elec-
trons are assumed to occupy a known energy state. Electrons can be subject to multiple
scattering mechanisms such as electron-longitudinal optical (LO) phonon, acoustic, and
optical deformation potential, and intervalley scattering. These scattering mechanisms
are considered to be instantaneous and to satisfy transverse momentum conservation and
total energy conservation.

Between two consecutive scattering events, which are chosen randomly under considera-
tion of the probability of each scattering mechanism, the electron flies force-free in the
in-plane direction and remains in a given subband.

At the end of each free flight a scattering mechanism is selected, where each electron
has its own probability of scattering due to its energy and momentum. A scattering
mechanism is selected by means of the function Λn defined as

Λn(k‖) =
1

Γ

n∑

i=1

1

τi(k‖)
(4.41)

which are the successive summations of the scattering rates normalized with the total
scattering rate Γ. By generating a random number r uniformly distributed in the range
[0, 1], the n-th scattering mechanism is chosen according to [80]

Λn−1(k‖) < r ≤ Λn(k‖) (4.42)

The input for the Monte Carlo transport kernel is provided by a selfconsistent Schrödinger-
Poisson solver.

The calculation of the various scattering rates and the algorithm for the determination
of the time evolution of the simulated particles are the two major parts of the Monte
Carlo simulation. The electrons belonging to one stage are tracked during the simulation.
After obtaining the wave functions belonging to the central stage and its neighboring
stages, the scattering parameters are calculated. Reinjection of the electrons that scatter
out of the central stage ensures the current continuity. Figure 4.4 illustrates the flow

31
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chart of the Monte Carlo transport kernel, whose input is provided by the selfconsistent
Schrödinger-Poisson solver.

The duration of the free flight τ is determined by random numbers, and the time interval
dt is typically chosen to be a few femtoseconds. The number of simulated electrons N
and the simulation time ttotal are chosen to allow for reasonable and accurate calculation
results, where N = 10000 and ttotal = 10ps are usually sufficient to obtain satisfactory
results. Each particle is characterized by a subband index and its in-plane momentum,
which are used to determine the available scattering processes. The electron distributions
are initialized by randomly assigning the particles to the subbands.

In order to calculate the time evolution of the ensemble of particles, all particles are time-
evolved in sequence. Due to the electron dynamics the time interval is chosen small enough
(few femtoseconds). During every time step, the initial and the final subbands of the
scattered particles are tracked. The current density is obtained from the recorded electron
flux due to scattering from the central stage into the next stage or into the previous stage,
counting the electrons scattering back as negative. The corresponding charge is weighted
by the number of simulated particles. Each simulated particle represents an effective
charge

q = e
V

N

∑

i

ND,i · di (4.43)

where V is the volume of the device, and ND,i represents the donor concentration, and di
is the thickness of the i-th layer.

In general, the ensemble average over the N electrons of the system defines the average
value of a quantity X̃ according to [81]

〈X̃〉 = 1

N

∑

i

X̃i (4.44)

This average value is compared to previous ones to determine convergence. The number
of time steps needed to reach a steady state solution depends on the simulated structure.
Usually, the required simulation time accounts for several picoseconds.
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Figure 4.4: Flow chart of the ensemble Monte Carlo algorithm. The input is
provided by a selfconsistent Schrödinger-Poisson solver.
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Chapter 5

Scattering Rates

In order to provide population inversion in QCLs, the scattering rates have to be engi-
neered properly by designing the energy levels and wave functions. The scattering events
interrupt the kinetics of electrons. Between the scattering events the acceleration is gov-
erned by the external fields. Due to scattering, electrons dissipate their momentum and
energy and can change the subband. Scattering processes are determined in terms of tran-
sition probabilities Sαα′ between an initial state |α〉 and a final state |α′〉 per unit time.
Various scattering mechanisms exist. In this chapter we will consider and discuss scatter-
ing due to lattice vibrations as well as interface roughness. More detailed derivations can
be found in Appendix B.

5.1 Phonons

In second quantization, the vibrations are treated as quasi particles which are the phonons
with an energy E = ~ωq and a momentum p = ~q. In the course of an interaction
between an electron with energy E and a phonon with energy ~ωq, the electron either
emits or absorbs a phonon and the final electron energy is given by E ′ = E ± ~ωq. In
heterostructures the two dimensional wave vectors are conserved according to

k′
‖ = k‖ + q‖

where k‖ and k′
‖ are the in-plane wave vectors of the electron before and after the electron-

phonon collision. The energy and momentum conservation reveals the particle nature of
the phonons.

A distinction is drawn between acoustic and optical phonons. Acoustic phonons corre-
spond to sound waves in a crystal lattice. Here, all atoms belonging to a basis system
move in phase and the acoustic phonons have frequencies that become small at the long
wavelengths [82]. In the case of optical phonons, the atoms belonging to a basis system
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SCATTERING RATES 5.2 From Fermi’s Golden Rule to the Totel Scattering Rate

move out of phase and the oscillation frequencies are in the range of infrared and the
visible spectrum. Optical phonons always have some minimum frequency of vibration,
independent from the largeness of the wavelength.

In thermal equilibrium, the average number of phonons Nq is given by the Bose-Einstein
distribution

Nq =
1

exp
(

~ωq

kBT

)

− 1
(5.1)

5.2 From Fermi’s Golden Rule to the Totel Scatter-

ing Rate

Fermi’s Golden Rule is a method to calculate the transition rate from an initial state
|α,k‖〉 to a final state |α′,k′

‖〉 due to a perturbation. As described in the section 4.1.1.2,
the general form of the transition probability is given by

Sα′

α (k‖,k
′
‖) =

2π

~

∑

q

|〈α′,k′
‖|〈n′

q|Ĥint|nq〉|α,k‖〉|2δ(Eα(k‖)−Eα′(k′
‖)± ~ω) (5.2)

The energy exchange between the electrons and the lattice occurs via phonons and the
Delta distribution ensures energy conservation. Here, ~ω is the energy of the absorbed or
emitted phonons. For the phonon interaction, the perturbation potential can be written
in the following form

Ĥint = Ûqe
i(q·x−ωqt) (5.3)

Inserting the wave function (3.1) into the matrix element appearing in Fermi’s Golden
Rule, gives

|〈α′,k′
‖|Ĥint|α,k‖〉| =

∫

V

1

A
Φ⋆

α′(z)|〈n′
q|Ĥint|nq〉|Φα(z)e

i(k‖−k′
‖)·xdx

=

∫

dz

∫

dx‖Φ
⋆
α′(z)Φα(z)e

iqzz|Uq|
1

A
ei(k‖−k′

‖+q‖)·x

= |Uq|Fα
α′(qz)δk‖+q‖,k

′
‖

(5.4)

where Uq = 〈n′
q|Ûq|nq〉 and the form factor is given by

Fα
α′(qz) =

∫

Φ⋆
α′(z)Φα(z)e

iqzzdz (5.5)

In equation (5.2), the summation over q can be split into a sum over qz and another
sum over q‖. Due to the momentum conservation, the sum over q‖ gives only one term
for q‖ = k′

‖ − k‖. The remaining summation in the z direction can be tranformed to an
integration over qz according to

∑

qz

→ Lz

2π

∫

dqz
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Thus, Fermi’s Golden Rule can be written as

Sα′

α (k‖,k
′
‖) =

Lz

~

∫

|Uk′
‖−k‖,qz |2|Fα

α′(qz)|2δ(Eα(k‖)− Eα′(k′
‖)± ~ω)dqz (5.6)

Finally, the total scattering rate can be calculated as follows

1

τα′

α (k‖)
=

A

(2π)2

∫

Sα′

α (k‖,k
′
‖)dk

′
‖

=
V

(2π)2~

∫

dk′
‖

∫

dqz|Uk′
‖−k‖,qz |2|Fα

α′(qz)|2δ(Eα(k‖)− Eα′(k′
‖)± ~ω)

(5.7)

5.3 Polar Optical Phonon Scattering

In polar semiconductors the electron-longitudinal optical (LO) phonon scattering is the
dominant intersubband scattering mechanism for separations of the subbands less than the
LO phonon energy [83]. Due to the polarization in polar semiconductor crystals induced
by the optical vibration mode, the electrons are scattered through the interaction of the
Coulomb field of the lattice polarization waves.

In optical vibrations the atoms in a lattice vibrate against each other, which can produce
polarization effects. For longitudinal optical vibrations there is an restoring force due
to the polarization field generated by the vibration. The lattice polarization PLat is
proportional to the lattice displacement U and the Fröhlich constant Fc

PLat = FcÛ (5.8)

where Fc is given by [84]

Fc =

[
~ωLO

2
ǫ20

(
1

ε∞
− 1

εs

)]1/2

(5.9)

Here, ǫ0 is the vacuum dielectric constant, εs and ε∞ are the static dielectric permittivity
and high frequency dielectric permittivity.

An electric displacement D is generated by the charge distribution according to

∇ ·D = ρ(x) (5.10)

The interaction potential ∆Û between the external electric displacement and the lattice
polarization reads

∆Û = −Fc

ǫ0
Û ·D (5.11)

with

Û =
1√
V

∑

q

q[âqe
iq·x + â†qe

−iq·x] (5.12)
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where âq and â
†
q denote the annihilation and creation operators. The summation over all

generated dipoles result in the total interaction Hamiltonian, hence

ĤLO
e−ph =

∫

∆Ûdx (5.13)

An electron located at x generates a displacement at x′ according to

D(x′) = − e

4π

x′ − x

|x′ − x|3 (5.14)

which yields an interaction Hamiltonian of the form

ĤLO
e−ph =

∑

q

(αLOâqe
iq·x + α⋆

LOâ
†
qe

−iq·x) (5.15)

where the coupling coefficent is given by

αLO = −ie
q

(
~ωLO

2V
(ε−1

∞ − ε−1
s )

)1/2

(5.16)

The scattering rate for an electron initially in subband ν and stage λ to a final subband
ν ′ and stage λ′, can be written as (see Appendix B.1)

1

τ ν
′λ′

νλ (k‖)
=

e2~ωLOm
⋆
ν′λ′

4~3

(
1

ε∞
− 1

εs

)(

NLO +
1

2
∓ 1

2

)

Θ(Eη
νλ(k)−Eη′

ν′λ′ ± ~ωLO +∆λλ′)

×
∫

dqz
|Fνλ

ν′λ′(qz)|2
q4z + (Qν′λ′

νλ )4± + 2q2z [2k
2
‖ ± (Qν′λ′

νλ )2±]
(5.17)

where m⋆ is the electron effective mass, ~ωLO is the longitudinal optical phonon energy.
Here, ∆λλ′ denotes the energy change due to reinjection of the electron into the central
region after an interstage scattering process

∆λλ′ = eFL(δλ′,λ+1 − δλ′,λ−1) (5.18)

5.4 Acoustic Deformation Potential Scattering

In this section, the coupling of the electrons with acoustic phonons is analyzed. Dis-
placement of the atoms from their lattice sites are induced by crystal vibrations, which
induces a modification of the bandstructure. For electrons in the conduction band, the
variation of the conduction band edge Ec can be induced by acoustic phonons and the
corresponding interaction Hamiltonian ĤAC

e−ph is given by

ĤAC
e−ph = δEc (5.19)
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For small displacements δEc can be written as

δEc = Ξac
δV

V
(5.20)

where Ξac denotes the acoustic deformation potential and δV is the variation of the
crystal volume V . The local variation of the volume results from the lattice displacement
U = x′ − x. The volume of a cube generated by the orthogonal vectors a = (δx, 0, 0),
b = (0, δy, 0) and c = (0, 0, δz), is given by

V = a · (b× c) = δxδyδz (5.21)

The cube is distorted according to the transformations

a′ =






δx+ ∂Ux

∂x
δx

∂Uy

∂x
δx

∂Uz

∂x
δx




 , b′ =






∂Ux

∂y
δy

δy + ∂Uy

∂y
δy

∂Uz

∂y
δy




 , c′ =






∂Ux

∂z
δz

∂Uy

∂z
δz

δz + ∂Uz

∂z
δz






and the new volume can be written as

V ′ = a′ · (b′ × c′) = δxδyδz

(

1 +
∂Ux

∂x
+
∂Uy

∂y
+
∂Uz

∂z
+ ...

)

(5.22)

Since
δV

V
=
V ′ − V

V
=
∂Ux

∂x
+
∂Uy

∂y
+
∂Uz

∂z
= ∇ ·U, (5.23)

where the lattice displacement is given by [85]

Û =
1√
V

∑

q

wq

(
~

2ρωq

)1/2

(âqe
iq·x + â†qe

−iq·x), (5.24)

the interaction Hamiltonian reads

ĤAC
e−ph = Ξac∇ · Û

=
∑

q

(αACâqe
iq·x + α⋆

ACâ
†
qe

−iq·x). (5.25)

Here, ρ is the mass density of the semiconductor, and wq denotes the polarization vector.
The coupling coefficient can be written as [86]

αAC = iw · q
(

~Ξ2
ac

2V ρωq

)1/2

(5.26)

The electron scattering rate with the assistance of acoustic phonons can be written in the
following form [87] (see Appendix B.2)

1

τ ν
′λ′

νλ (k‖)
=

Ξ2
acm

⋆
ν′λ′kBT

ρ~3v2s
Iν

′λ′

νλ Θ(Eνλ(k‖)− Eν′λ′ +∆λλ′) (5.27)

where Eac is the acoustic deformation potential, ρ is the density of the material, and vs
stands for the sound velocity. This equation is only valid for ~ωq ≪ kBT , i.e. when the
thermal energy is much larger than the energy of the phonon involved in the transition,
and in the elastic approximation limit ~ωq → 0 (see Appendix B.2).
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5.5 Optical Deformation Potential Scattering

In contrast to the case of acoustic vibrations where the perturbation Hamiltonian is
proportional to the derivative of the atomic displacement, the perturbation Hamiltonian
for the optical modes is assumed to be proportional to the atomic displacement. Due to
the quite flat dispersion curve, the energy associated with optical phonons is assumed to be
constant. In this case, the phonon occupation number Nop is independent on the phonon
wave vector. Since the scattering arises from the band edge variation induced by optical
phonons, we can rely on the considerations done for deformation potential scattering for
acoustic phonons. Assuming an isotropic deformation potential, the coupling coefficient
of its interaction potential can be written as

αOP =

(
~Ξ2

op

2V ρωop

)1/2

(5.28)

The scattering rate caused by optical phonons is given by (see Appendix B.3)

1

τ ν
′λ′

νλ (k‖)
=

Ξ2
opm

⋆
ν′λ′

2ρ~2ωop
Iν

′λ′

νλ

(

Nop +
1

2
∓ 1

2

)

Θ(Eνλ(k‖)− Eν′λ′ ± ~ωop +∆λλ′) (5.29)

5.6 Intervalley Scattering

Formally, the intervalley scattering is treated in the same way as the scattering due
to optical phonons with a deformation potential. It has been shown that the phonon
assisted intervalley scattering can be modeled by means of an intervalley deformation
potential [88].

1

τ ν
′λ′η′

νλη (k‖)
=
Zη′D

2
ηη′m

η′⋆
ν′λ′

2~ρEηη′

(

Nηη′ +
1

2
∓ 1

2

)

Iν
′λ′η′

νλη Θ(Eη
νλ(k‖)−Eη′

ν′λ′±Eηη′+∆λλ′) (5.30)

where η and η′ denote the initial and the final valley index, respectively. Dηη′ is the
intervalley deformation potential constant, ρ is the mass density, Eηη′ is the intervalley
phonon energy, and Zη′ denotes the degeneracy of the final valley. The overlap integral is
determined by

Iν
′λ′η′

νλη =

∫

|Φη
νλ(z)|2|Φ

η′

ν′λ′(z)|2dz (5.31)

5.7 Interface Roughness Scattering

The roughness of interfaces in a heterostructure leads to spatial fluctuations of the well
width, and consequently to fluctuations of the energy levels. These fluctuations of the
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energy levels act as a fluctuating potential for the motion of confined carriers [89]. A dis-
tribution of terraces is present at the interfaces and the electrons are scattered elastically
by them [90].

The randomness of the interface is described by a correlation function at the in-plane
position x‖ = (x, y), which is usually taken to be Gaussian with a characteristic height of
the roughness ∆, and a correlation length Λ representing a length scale for fluctuations
of the roughness along the interface [91], such that

〈∆(x‖)∆(x′
‖)〉 = ∆2e

−|x‖−x′
‖
|2/Λ2

(5.32)

The perturbation in the potential V (z) due to a position shift ∆(x‖) is given by

δV = V [z −∆(x‖)]− V (z) ≈ −∆(x‖)
dV (z)

dz
(5.33)

For the I-th interface, which is centered about the plane zI and extends over the range
[zL,I ,zR,I ], the scattering matrix element can be defined as

〈α′,k′
‖|VIR|α,k‖〉 =

〈

α′,k′
‖

∣
∣
∣
∣
δV rect

(
z − zI

zR,I − zL,I

) ∣
∣
∣
∣
α,k‖

〉

=
ϕ2
α′α,I

A

∫

∆(x‖)e
i(k‖−k′

‖)·x‖dx‖ (5.34)

where |α′〉 and |α〉 denote the final and initial wave functions, respectively. Here, ϕα′α,I

is defined as

ϕα′α,I =

∫

Φ⋆
α′(z)

dV

dz
rect

(
z − zI

zR,I − zL,I

)

Φα(z)dz (5.35)

and the rectangular function reads

rect(z) =

{
1, |z| ≤ 0.5

0, |z| > 0.5

The expectation value of the square of the matrix element is given by

〈|〈α′,k′
‖|VIR|α,k‖〉|2〉 =

ϕ2
α′α,I

A2

∫ ∫

〈∆(x′
‖)∆(x‖)〉ei(k‖−k′

‖)·(x‖−x′
‖
)dx′

‖dx‖ (5.36)

Making use of eq. (5.32) and Fermi’s Golden Rule, the interface roughness induced
scattering rates are given by [92]

1

τα′

α (k‖)
=

π∆2Λ2

~

∑

I

| ϕα′α,I |2
π∫

0

dθ

∫

dk′‖k
′
‖e

−(k′
‖−k‖)

2Λ2/4δ(Eα′(k′
‖)−Eα(k‖))

=
2π2∆2Λ2m⋆

~3



e−k2
‖ + e−

2m⋆

~2
(Eα(k‖)−Eα′ ) +

1

2π

π∫

0

e

√

8m⋆

~2
(Eα(k‖)−Eα′ )k‖ cos θ

dθ





×Θ(Eα(k‖)− Eα′) (5.37)

where k′
‖ and k‖ are the final and initial wave vectors, respectively, and θ is the scatter-

ing angle. The integral is evaluated numerically by means of the MATLAB integration
routines.
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5.8 Alloy Scattering

We consider an alloy AxB1−xC, where the atoms A and B are distributed randomly and
the crystal potential V (x‖) is not periodic. In general, the crystal potential of an alloy can
be represented in terms of an average potential V̄ (x‖), which is periodic, plus a fluctuating
potential δV (x‖) which describes the local departure of the actual alloy potential V (x‖)
from the average potential V̄ (x‖). An effective scattering process (alloy scattering) is
introduced by this fluctuating potential δV (x‖).

Here, we will introduce the most important expressions and identities for the mentioned
potentials, and the detailed derivation of the alloy scattering rate can be looked up in
Appendix B.6. The crystal potential for the alloy AxB1−xC is the superposition of the
potential contributed by the atoms A, B and C, which can be written as [93]

V (x‖) =
∑

XA

VA(x‖ −XA) +
∑

XB

VB(x‖ −XB) +
∑

XC

VC(x‖ −XC) (5.38)

By introducing the mathematical identities

VA(x‖ −XA) = xVA(x‖ −XA) + (1− x)VB(x‖ −XA) + (1− x)VA(x‖ −XA)

− (1− x)VB(x‖ −XA)

VB(x‖ −XB) = xVA(x‖ −XB) + (1− x)VB(x‖ −XB)− xVA(x‖ −XB)

+ xVB(x‖ −XB)

the crystal potential is given by

V (x‖) = V̄ (x‖) + δV (x‖) (5.39)

where the average lattice potential V̄ (x‖) can be written as

V̄ (x‖) =
∑

Xi={XA,XB}
xVA(x‖ −Xi) + (1− x)VB(x‖ −Xi) +

∑

XC

VC(x‖ −XC) (5.40)

and the fluctuating potential δV (x‖) reads

δV (x‖) =
∑

XA

(1− x)[VA(x‖ −XA)− VB(x‖ −XA)] +
∑

XB

x[VB(x‖ −XB)− VA(x‖ −XB)]

(5.41)

The alloy scattering rate can be expressed as [94]

1

τα′

α

=
2m⋆

~3
Ω0∆V

2
ABx(1− x)

∫

Φ⋆
α′(z)Φα(z)dz (5.42)

In heterostructures, the alloy scattering rate is found to be independent of the electron
kinetic energy. The volume of the elementary cell is given as Ω0 = a20/4.
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Chapter 6

Simulation Results

In this chapter the simulation results are presented. In section 6.1 results from calcula-
tions using Robin boundary conditions are demonstrated and discussed. Especially, the
tunneling current and the optical gain are analyzed. Section 6.2 contains the results of
the Monte Carlo simulations, where special focus is put on the role of interface roughness
and intervalley scattering.

6.1 Quantum Ballistic Transport Calculations

Throughout this section we consider GaAs wells and barriers composed of AlxGa1−xAs.

6.1.1 Tunneling Current Density

On the basis of the Robin boundary conditions (3.19) and (3.20) the current density is
numerically evaluated for periodic QCL structures as well for quasi-periodic systems. The
transport of charge through the structure arises as a property of the wave function, and
the current density is expressed as [1]

J(z) = −2e

A

∑

α,k‖

fα(k‖)Re

[

Φ⋆
α(z)

i~

m⋆(z)

∂

∂z
Φα(z)

]

(6.1)

where A is the cross-sectional area of the quantum well structure. The work of P. Harrison
[95] suggests that the electron distributions in both the active region and the injector
subbands are thermalized and thus the energy distribution of electrons in each subband
can be approximated by a Fermi-Dirac distribution function

fα(k‖) =
1

1 + exp
(

Eα(k‖)−EF,α

kBT

) (6.2)
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where EF,α is the quasi Fermi energy of the α-th subband and Eα(k‖) = Eα + ~
2k2‖/2m

⋆.

The electron states are evaluated using a selfconsistent Schrödinger-Poisson solver, where
the electron concentration is related to the electronic wave functions and the electron
sheet densities in the corresponding subbands which can be calculated according to the
Fermi-Dirac distribution. For a given total sheet density the quasi Fermi level is obtained
iteratively, where the initial value of the quasi Fermi level is taken to be [96]

EF,α(T ) = Ec(T )−
Eg(T )

2

while the band gap in eV is

Eg(T ) = Eg(0)− 5.41

[
T 2

(T + 204)
10−4

]

with
Eg(0) = 1.519 + 1.155x+ 0.37x2

The conduction band edge is given by

Ec(T ) = Eg(T ) for 0 ≤ x < 0.45

Ec(T ) = EX(T ) for 0x > 0.45

where

EX(T ) = EX(0)− 4.6

[
T 2

(T + 204)
10−4

]

with
EX(0) = 1.981 + 0.124x+ 0.144x2

6.1.1.1 Comparison with the Tsu-Esaki Model

The Tsu-Esaki Model describes the tunneling current density. The corresponding formula
is usually written as an integral over the product of two independent parts which only
depend on the energy component perpendicular to the interface [97].

J =
4πm⋆e

h3

Emax∫

Emin

Tc(E)N(E)dE (6.3)

Tc(E) is the transmission coefficient which characterizes the penetrability of the considered
energy barrier. The supply function N(E) describes the supply of carriers for tunneling.

Figure 6.2 compares the simulated current density using the Robin boundary condition ap-
proach with the current density calculated by the Tsu-Esaki model for a GaAs/Al0.3Ga0.7As
Fibonacci superlattice (FSL) [98] which is a quasi-periodic multibarrier system. The gen-
eralized FSL is generated by an iterative process according to the Fibonacci sequence [99]

S1 = {A} S2 = {B} ... Sn = Sn−1Sn−2
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where A and B are the blocks of the well and barrier. A special kind of FSLs with a
higher quasi-periodicity follows the iteration rule [100]

S ′
n = (2Sn−1)Sn−2

Table 6.1 presents a few initial generations of FSLs of the two different kinds.

The FSL type considered is S ′
5 which has the sequence BBABBABBBABBABBBA, where

A and B are the elementary blocks corresponding to the GaAs quantum well and the
Al0.3Ga0.7As barrier, respectively. The width of the well block is taken to be 5 unit
cells of GaAs monolayers, whereas the number of the unit cells belonging to Al0.3Ga0.7As
monolayers for the barrier block equals to 3. The lattice constants for the well and barrier
materials are 5.6533 Å and 5.65564 Å, respectively. The appearance of resonance-type
peaks in the current density curves is typical for quasi-periodic systems, and the results
obtained are in good agreement with the Tsu-Esaki model.
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Figure 6.1: Band structure of the considered FSL at an applied field of 50
kV/cm.
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Figure 6.2: Current-density voltage characteristics of a GaAs/Al0.3Ga0.7As Fi-
bonacci superlattice at T = 200K.
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n Sn S ′
n

1 A A

2 B B

3 BA BBA

4 BAB BBABBAB

5 BABBA BBABBABBBABBABBBA

Table 6.1: A few initial generalized FSLs.

6.1.1.2 Comparison with the NEGF Approach

The ability of the Robin boundary conditions to produce satisfactory current carrying
states is also verified by comparing our results for the tunneling current density with
calculations based on nonequilibrium Green’s functions (NEGF) [1]. For this purpose a
typical example of a midinfrared quantum cascade laser is considered [9].
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Figure 6.3: A schematic diagram of the conduction band profile for one and a
half periods of the GaAs/Al0.33Ga0.67As QCL for an electric field
of 48 kV/cm.
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Figure 6.3 illustrates the conduction band profile of this device. The layer sequence of
one period belonging to the GaAs/Al0.33Ga0.67As structure, in nanometers, starting from
the injection barrier is: 5.8, 1.5, 2.0, 4.9, 1.7, 4.0, 3.4, 3.2, 2.0, 2.8, 2.3, 2.3, 2.5, 2.3,
2.5, and 2.1, where normal scripts represent the wells, bold the barriers.

The comparison of the obtained current-voltage characteristics with the simulation em-
ploying the nonequilibrium Green’s functions method is illustrated in Figure 6.4. The
simulation is performed with the number of periods to be 30 and the temperature is
taken to be 77 K. As in the case of quasi-periodic superlattices, the application of our
method to calculate current carrying states proves to be very promising for periodic QCL
structures as well.

To illustrate the convergence of the solution to the Robin problem and the Dirichlet
problem as Eα → ∞, we investigated the transformations of the wave functions as a
function of the applied electric field, because the energy levels increase as the electric field
decreases. For this purpose the real part of the wave functions belonging to the Robin
problem are compared to the solutions of the Dirichlet problem. The imaginary part,
indicating the development of the current carrying states, are studied analogously.

The order of magnitude we use for the electric field is 103 kV/cm on the one hand and 10−6
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Figure 6.4: Comparison of the current-voltage characteristics of a GaAs/
Al0.33Ga0.67As QCL calculated using the Robin boundary condition
approach with a nonequlibrium Green’s functions simulation [1].
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kV/cm for the weak field calculation. The investigated structure is the same three-level
QCL design as above. The real components of the wave functions are plotted in Figure
6.5 for the electric fields F = 103 kV/cm and F = 10−6 kV/cm. For F = 103 kV/cm the
calculations show obvious deviations in the spatial dependence between the solutions of
the Robin and Dirichlet boundary value problems, unlike the weak field case F = 10−6

kV/cm, where a convergence between these solutions is observable.

The imaginary components of the wave functions corresponding to the Robin boundary
value problem are plotted in Figure 6.6. At the very small electric field F = 10−6 kV/cm
the imaginary part is almost zero everywhere except some very small peaks whose mag-
nitudes are insignificant compared to the imaginary part of the wave function at F = 103

kV/cm.

Since the imaginary part of the wave function becomes zero with increasing energy, our
results indicate that the tunneling current vanishes in this case. This behavior can be

Figure 6.5: The spatial dependences of the real parts of the envelope functions
are plotted for different values of the electric field. The solid lines
correspond to the solution of the Dirichlet problem and the dashed
lines represent the wavefunctions of the Robin problem.
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Figure 6.6: The spatial dependences of the imaginary parts of the envelope
functions belonging to the solution of the Robin Problem at F =
103kV/cm (solid line) and F = 10−6kV/cm (dashed line).

understood in terms of the transmission coefficient which expresses the probability of
tunneling and decays rapidly with energy according to [101]

Tc(E) =

(

1 +
V 2 sinh2(L

√

2m⋆|V − E|/~2)

4E(V − E)

)−1

(6.4)

where Tc denotes the transmission coefficient for an electron in a heterostructure.

As mentioned above, the energy levels increase as the electric field decreases. Due to
equation (6.4) the transmission coefficient decreases significantly with decreasing electric
field, which is illustrated in Table 6.2. The three energy levels correspond to the upper
and lower laser levels. Thus, by reducing the bias the conduction decreases and only
minimal current flows. In this low field region the open boundary condition approach
yields no significant deviation from the Dirichlet boundary value problem.
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F E1 E2 E3 Tc(E1) Tc(E2) Tc(E3)

103 9.7 11.4 24.4 0.683 0.721 0.787

10 31.5 49.8 67.8 0.524 0.611 0.672

10−2 72.3 94.7 118.2 0.337 0.375 0.384

10−6 114.6 138.8 169.3 0.118 0.133 0.171

Table 6.2: Column one contains the applied electric fields in kV/cm. The
next three columns show the corresponding energy levels given in
meV. Finally the transmission coefficients are given in the last three
columns.

6.1.2 Optical Gain

Here, we focus on the calculation of optical gain under consideration of the proposed
Robin boundary conditions. Due to the strong dependence of the dipole matrix element
on the wave function the determination of optical gain qualifies for verification of boundary
conditions.

In QCLs intersubband transitions contribute to the gain profile, especially the transitions
between the upper and the lower laser level. In general, the standard expression for optical
gain in semiconductors can be written as [102]

g(~ω) =
πe2~

nǫ0cm2
0~ω

|Mu,l|2ρ
∫

[fu(E)− fl(E)]Λ(~ω)dE (6.5)

Here, f(E) denotes the distribution function for the electrons. |Mu,l|2 represents the
transition matrix element, ρ is the density of states, and Λ is the lineshape function.
In a quantum well, the density of states can be taken as ρ = m⋆/π~2L [103] and the
transition matrix element is approximated by the dipole matix element according to Mu,l =
m2

0ω
2|zul|2. Substituting these approximations for the density of states and the dipole

matrix element, and using the line shape as proposed in [104]

Λ(~ω) =
γ(E)/π

[~ω −E]2 + γ2(E)
(6.6)

the optical gain can be estimated as [105]

g(~ω) =
e2|zul|2m⋆ω

~2cnrǫ0L

∞∫

0

dE
~γ(E)[fu(E)− fl(E)]

π[~ω −E]2 + [~γ(E)]2
(6.7)

where zul is the dipole matrix element, nr is the refractive index, ǫ0 is the vacuum per-
mittivity and c is the speed of light. The dipole matrix element depends strongly on the
wave functions of the relevant states, and so does the optical gain.
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The validity of equation (6.7) is not restricted to any particular scattering mechanism.
Certain assumptions have to be made about γ. We assume that the homogeneous broad-
ening γ is dominated by the interaction with optical phonons [106]. Thus

γ(E) = γ0 ×
{
Nph

(Nph + 1)Θ(E − ~ωph)

The top line describes optical phonon absorption and the bottom line optical phonon
emission, where γ0 = (πe2/2~)[1/ε∞ − 1/ε0]qph, qph = (2meωph/~)

1/2, and the phonon
occupation number is given by Nph = 1/(exp(~ωph/kBT ) − 1). Furthermore, εs and ε∞
are the low and high frequency dielectric constants respectively.

6.1.2.1 Calculation Results

We consider a laser consisting of 90 periods of a GaAs/Al0.15Ga0.85As heterostructure at
a temperature of 70 K [107]. The GaAs/Al0.15Ga0.85As layer sequence in nanometers is
3.8, 14.0, 0.6, 9.0, 0.6, 15.8, 1.5, 12.8, 1.8, 12.2, 2.0, 12.0, 2.0, 11.4, 2.7, 11.3, 3.5, and
11.6, where the AlGaAs layers are in bold. Figure 6.7 shows our simulation results to be
in good agreement with measurements that are performed on this QCL design [108].
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Figure 6.7: Optical gain of a THz GaAs/Al0.15Ga0.85As QCL driven at 160 A
cm−2. The solid line represents the result calculated using the
Robin boundary condition approach and the dashed line corre-
sponds to measured values.
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The dipole matrix element between states Ψα and Ψβ along the well growth direction z
is given by [109]

zαβ = A〈Ψα|z|Ψβ〉 = eik‖·x‖

L∫

0

zΦ⋆
α(z)Φβ(z)dz (6.8)

In order to obtain numerical illustrations for zαβ = ei2πk‖/k
max
‖
∫ L

0
zΦ⋆

α(z)Φβ(z)dz, the
product |x‖| cos(x‖,k‖) is set to 2π/kmax

‖ , and kmax
‖ = 0.1nm−1. The calculations of the

dipole matrix elements, which performed for the two different electric field strengths 103

kV/cm and 10−6 kV/cm, are illustrated in Figure 6.8 as functions of the wave vector k‖.
The dashed curves represent the results determined taking into account Robin boundary
conditions and the solid curves result from Dirichlet boundary conditions. A comparison
of the results belonging to the different electric fields reveals that the solutions of the Robin
and Dirichlet boundary value problems converge when lowering the electric field. Thus,
our calculations demonstrate the accuracy of the proposed Robin boundary conditions
for QCL simulations. However, for the unbiased case Dirichlet boundary conditions yield
nearly comparable results.
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Figure 6.8: Calculated values of the dipole matrix elements for F = 103 kV/cm
and F = 10−6 kV/cm. The solid lines represent the solution of the
Dirichlet problem and the dashed lines correspond to the solution
of the Robin problem.
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6.2 Design and Perfomance Investigations

6.2.1 A THz QCL

Using the Monte Carlo simulation scheme described previously, we have calculated the
steady state carrier distributions and the current-voltage characteristics of a QCL in the
THz region.

6.2.1.1 Structure

The structure considered consists of a combination GaAs wells and Al0.15Ga0.85As barriers
[110]. The layer sequence of one cascade, in nanometers, is: 9.2,3,15.5,4.1,6.6,2.7,8,5.5,
where normal scripts denote the wells and bold the barriers. Only the widest well is
n-type doped with a low density of 1.8× 1010 cm−2. Together with the squared envelope
functions of the relevant bound states, the conduction band profile is plotted under an
applied bias of 10 kV/cm in Figure 6.9.

The numerical values used for the relevant material parameters are listed in Table 6.3,
where the difference in the electron affinity χe between the two materials determines the
conduction band offset, and ǫS and ǫ∞ denote the static and high frequency dielectric
constants. For the given GaAs/AlGaAs system, these values are well established and can
be looked up in [111] and [112].

The optical transitions occur between the upper and lower laser states. The lower laser
state is rapidly depopulated into the states 5′, 4′ or 3′ via LO-phonon emission. In order

GaAs Al0.15Ga0.85As

m⋆
Γ 0.067 0.075

m⋆
X 0.32 0.311

ǫS 12.90 12.47

ǫ∞ 10.89 10.48

χe [eV] 4.07 3.905

~ωLO [meV] 36.25 35.30

ρ [g/cm3] 5.36 5.12

Eac [eV/Å] 3.6 3.49

Eop [eV/Å] 5.9 6.0

DΓX [eV/Å] 4.1 5.2

Table 6.3: Overview of the material parameters used in the simulation pre-
sented in this section, illustrated for the well and barrier material,
respectively.
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Figure 6.9: Calculated conduction band diagram and squared wave functions
for a GaAs/Al0.15Ga0.85As QCL under an applied field of 10 kV/cm.

to enhance this process, the energy separation between these subbands should be close to
the LO-phonon energy of the well material. Furthermore, the spatial overlap between the
upper state and the lower state is kept as small as possible to increase the upper state
lifetime. Figure 6.10 depicts the calculated LO-phonon rates 4 → 4 and 4 → 3. The
energy of the initial states are given on the horizontal axis, and the zero energy reference
value is taken at the bottom of subband 4.

6.2.1.2 Results

Starting with a constant population initially assigned to each subband and using a con-
stant time step of 5 fs we have monitored 10000 particles during 10 ps. Initially each
subband has an equal number of particles, and subsequently the ensemble evolves until
the simulation ends. After each time step the statistics are updated. The numerical model
for the QCL structure studied includes five subbands per stage and periodic boundary
conditions are imposed [113].

Electron-LO phonon, acoustic and optical deformation potential, and intervalley scat-
tering are included in the simulation with the relevant scattering rates computed at a
temperature of 70 K and stored for each subband pair for a discrete number of initial
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Figure 6.10: Calculated LO-phonon scattering rates 4 → 4 and 4 → 3 at an
applied bias of 10 kV/cm and an operating temperature of 70 K.

electron energies.

Figure 6.11 shows the time evolution of the current density with and without Γ-X inter-
valley scattering at an electric field of 10 kV/cm. It can be seen that the inclusion of
intervalley scattering increases the current density indicating that the Γ-X electron trans-
fer plays a significant role as a mechanism for depopulation of the lower laser level. In
Figure 6.12, the obtained electron distributions of the individual subbands are depicted
over the kinetic energy.

Figure 6.13 displays the obtained current density with and without X valley transport,
where the range of the applied field is 10 to 70 kV/cm and the chosen calculation step
is 5 kV/cm. The results demonstrate that for this QCL structure the inclusion of Γ-
X intervalley scattering leads to an increase in the current flow. Without Γ-X electron
transfer the results are up to 10 % lower.

The output characteristics of the Monte Carlo simulation show that the effect of inter-
valley scattering processes is significant for the charge transport and not negligible in
performance investigations.
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Figure 6.11: Time evolution of the current density at an electric field of 10
kV/cm, with and without Γ-X intervalley scattering, illustrating
the good convergence behavior. The current densities averaged
over the time are 3.45 · 106 A/m2 by including the X valley, and
3.08 · 106 A/m2 for the Γ valley only.
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Figure 6.12: Population of the individual subbands as a function of the kinetic
energy.
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Figure 6.13: Current density as a function of the applied electric field with and
without X valley transport.

6.2.1.3 Interface Roughness Effects

In this section, the impact of interface roughness scattering on the device performance is
of particular interest. Especially, we focus on the temperature sensitivity of the electron
transport. For this purpose, we take a look at the subband population and the current
density as a function of the temperature. Throughout the simulations, the characteristic
height and the correlation length of the interface roughness are taken as ∆ = 2.83 Å and
Λ = 70 Å respectively [114].

In Figure 6.14 and 6.15 we show the calculated electron distributions of the upper and
lower subband for different temperatures. In general, the interface roughness scattering is
found to be more dominant for higher temperatures. Moreover, it changes the occupation
of the upper and lower laser levels significantly. We observe an increase in the occupation
of the upper laser level due to interface roughness, while the occupation of the lower laser
level gets reduced. The variations of the occupation due to rough interfaces increase with
temperature, and for 300 K the variation can be as large as 27%, which illustrates their
important influence on this THz QCL design.
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Figure 6.14: Comparison of the energy distributions of subband 4 for different
temperatures. The dashed lines show the results without inter-
face roughness scattering and the solid ones illustrate the results
including scattering on rough interfaces.
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Figure 6.15: Comparison of the energy distributions of subband 3 for different
temperatures. The dashed lines show the results without inter-
face roughness scattering and the solid ones illustrate the results
including scattering on rough interfaces.
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In general, we observe a significant increase in the population of the upper laser level for
higher temperatures, while the population of the lower laser level decreases somewhat.

The effect of rough interfaces on the current voltage characteristics is illustrated in Figure
6.16 where the current density with and without interface roughness scattering is dis-
played. The temperature is taken as 70 K. Interface roughness scattering enables a better
population of the upper levels and obviously increases the current density. Moreover, this
effect gets more dominant for higher electric fields.

Figure 6.17 illustrates the dependence of the current density on the temperature for the
considered THz QCL structure at different applied biases. In the case of F = 10 kV/cm,
the inclusion of interface roughness scattering results in a significant impact only for higher
temperatures. However, for F = 70 kV/cm the effect of rough interfaces is noticeable even
for 70 K and increases with temperature.

The determined results demonstrate that interface roughness scattering plays an impor-
tant role for the electron transport in THz QCLs. This mechanism introduces a signifi-
cantly higher temperature sensitivity for the electron transport.

10 20 30 40 50 60 70
Electric Field [kV/cm]

4e+06

6e+06

8e+06

1e+07

1.2e+07

C
ur

re
nt

 D
en

si
ty

 [
A

/m
2 ]

without IR Scattering

with IR Scattering

Figure 6.16: Current density as a function of the applied electric field with and
without interface roughness scattering at 70 K.
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Figure 6.17: Current density as a function of the temperature with and without
interface roughness scattering.

6.2.2 Mid-infrared QCL

The simulator has been used to simulate a GaAs/AlGaAs MIR QCL structure and inves-
tigate the role of Γ-X intervalley scattering as a mechanism for the depopulation of the
lower laser level, since a lot of interest arose for intervalley electron transfer in quantum
well structures [115–117].

We propose to modify the Al content and the width of the collector barrier of the given
QCL design in order to increase the overlap between the upper X-state of the next stage
and the lower Γ-state of the central one.

6.2.2.1 Initial Structure

Figure 6.18 illustrates the conduction band profile under an applied field of 40 kV/cm.
In the following, we will call this design structure A, where the layer sequence of one
cascade starting from the collector barrier is, in nanometers [2]: 3.9, 2.6, 3.1, 2.8, 2.9,
2.9, 2.7, 2.9, 2.4, 2.9, 2.2, 2.9, 2.2, 3, 2, 3.2, 2, 3.5, 1.9, 4.3, 0.94, 5, 0.94, 5.4, 0.94,
and 1.6. Normal scripts denote the GaAs wells and bold ones the Al0.45Ga0.55As barriers.
The upper laser level is labeled 9, and the lower level is labeled 2.
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Figure 6.18: Conduction band diagram and squared wave functions for a
GaAs/Al0.45Ga0.55 As QCL in the MIR region under an applied
field of 40 kV/cm [2]. The conduction band discontinuity between
GaAs and AlxGa1−xAs layers is taken to be ∆Ec = 1.1x eV for
0 ≤ x ≤ 0.45, and ∆Ec = 0.43 + 0.14x eV for 0.45 < x ≤ 1.
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6.2.2.2 Optimization of the Collector Barrier

The idea is to modify the collection barrier in a way that the Γ-X intervalley scattering
mechanism can be used for an improvement of the device performance. Primarily, the
intention is to increase the overlap between the lower Γ-state of the central stage and
the upper X-state of the next stage. This is realized by modifying the width and the
Al content of the collector barrier. In the following, the modified design will be called
structure B.

Figure 6.19 shows the overlap between the lower Γ-state and the upper X-state of two
adjacent stages for different Al contents and collector barrier widths. Regarding structure
B, these results suggest to set the collector barrier width to 4.5 nm and the Al content to
35 %.

Applying these modifications, the determined Γ-X intervalley scattering between the lower
state 2 and the upper state 9′ of the next stage increases significantly. Figure 6.20 illus-
trates this circumstance by showing the corresponding scattering rate for structure A and
structure B at an electric field of 40 kV/cm.
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Figure 6.19: Overlap between the lower Γ-state of the central stage and the
upper X-state of the next stage at an electric field of 40 kV/cm
in dependence on the Al content.
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Figure 6.20: Γ-X intervalley scattering between the lower state 2 and the upper
state 9′ of the next stage at F = 40 kV/cm.
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Figure 6.21: Electron population of the Γ and X valleys in dependence on the
electric field.
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In Figure 6.21, the variation of the electron population in the Γ and X valleys with the
electric field is presented. By comparing the trends of structure A and structure B, one can
observe that the X-valley electron population increases with the field, where the increase
is obviously higher for structure B.

Our results indicate a significant increase in current density when considering Γ-X in-
tervalley scattering for the modified structure B, whereas structure A shows negligible
deviations. Figure 6.22 shows the obtained current densities for both structures in depen-
dence on the electric field and highlights the importance of intervalley charge transport
for QCL design considerations [118].

Since design modifications in terms of optimizing the overlap cause a crucial change
in charge transport properties, it is obvious that the inclusion of X-states in the QCL
dynamics introduces a new degree of freedom in the engineering of intersubband devices.
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Figure 6.22: Current density as a function of electric field for structure A and
structure B, with and without X-valley transport.
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6.2.3 Simulation of an Al-free QCL

Here, a comparison of simulation results with experimental measurements for a recently
developed InGaAs/GaAsSb QCL is presented. Aluminum-free QCLs are of big interest,
since these structures do not suffer from degradation owing to the oxidation of aluminum
during the fabrication process and laser operation [119]. Furthermore, aluminum-free
structures are resistant to dark-line defects [120], which are responsible for abrupt fail-
ures in GaAs/AlGaAs lasers. A promising candidate for an aluminum-free QCL is the
InGaAs/GaAsSb material system where the electron effective mass in the GaAsSb barri-
ers is 0.045 m0. Compared to common QCL barriers such as AlGaAs and InGaAs, this
effective mass is low and results in the growth of thicker barriers which are less sensitive
to thickness fluctuations [121–123]. This is the notable advantage of InGaAs/GaAsSb
structures compared to designs containing aluminum.

6.2.3.1 Structure

Figure 6.23 illustrates the conduction band profile for the considered QCL under an
applied bias of 30 kV/cm. The layer thicknesses of the In0.53Ga0.47As/GaAs0.51Sb0.49

structure starting from the injection barrier are, in nanometers [3]: 8.1, 2.7, 1.3, 6.7,
2.2, 5.9, 7.0, 5.0, 1.9, 1.2, 1.9, 3.8, 2.7, 3.8, 2.8, 3.2. The barriers are in bold, and the
underlined layers are Si doped (4 × 1017 cm−3). The fabricated QCL is 60 µm wide and
2 mm long.

Table 6.4 shows the numerical values for some relevant material parameters. These stan-
dard values can be looked up in the literature [124–129].

In0.53Ga0.47As GaAs0.51Sb0.49

m⋆
Γ 0.043 0.045

m⋆
X 0.279 0.26

ǫS 13.90 14.30

ǫ∞ 11.60 12.64

χe [eV] 4.06 4.46

~ωLO [meV] 34 33.20

ρ [g/cm3] 5.50 5.45

Eac [eV/Å] 6.4 5.7

Eop [eV/Å] 7.2 6.8

DΓX [eV/Å] 1.6 2.4

Table 6.4: Material parameters for the well and barrier material used in the
simulation.
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Figure 6.23: Conduction band diagram for an In0.53Ga0.47As/GaAs0.51Sb0.49

QCL under an applied field of 30 kV/cm [3]. The upper and
lower laser levels are labelled with 3 and 2, respectively.
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6.2.3.2 Results of the Monte Carlo Simulation

As in the simulations described before, we use a constant time step of 5 fs and monitor
10000 particles during 10 ps. According to the Monte Carlo algorithm presented in
this work, we calculated the current density for this device and compared the obtained
voltage-current characteristics with the measured values, which is illustrated in Figure
6.24. Electron scattering by polar optical and acoustic phonons, optical deformation
potential interaction, inter-valley phonons, and interface roughness are included. The
dashed curve displays the calculated current density for several bias points, while the
symbols represent the measured values. The calculated and measured voltage-current
characteristics are in good agreement, and the existing deviations can be attributed to
the non-optimized scattering parameters and to additional scattering mechanisms not
considered in the simulation.

Figure 6.25 shows the current density as a function of the temperature with and without
interface roughness scattering. We observe a weak dependence of the current density
on temperature, which can be explained by the dominance of electron scattering due to
PO-phonon emission.
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Figure 6.24: Voltage-current characteristics at T = 78 K.
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Figure 6.25: Current density versus temperature at 5 V and 13 V with and
without interface roughness scattering.
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The scattering rate due to emission of polar optical phonons as a function of temperature
for different bias points is plotted in Figure 6.26. A weak temperature dependence can
be seen from this diagram.

The dominance of electron scattering due to polar optical phonons is clearly illustrated by
Figure 6.27 where the energy distributions of the upper and lower laser levels are depicted.
The orange curves show the results without polar optical phonon scattering and the green
ones illustrate the results including scattering due to polar optical phonons. We observe
an increase in the occupation of the upper level and the lower level, while the increase of
the upper level is much more significant compared to the lower level. The results plotted
in this Figure fully support the notion that the polar optical phonon scattering mechanism
is essential in order to provide a good condition for population inversion.

Since one of the aims in designing QCL structures is to obtain a significant population
inversion between the upper and lower laser level, it is crucial to find out what mechanisms
are decisive to achieve it. Our modeling approach was able to demonstrate that the
scattering due to polar optical phonons is mainly accounting for this behavior regarding
this MIR QCL design.
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Figure 6.26: Scattering rate due to LO phonon emission as a function of tem-
perature at several bias points.

70



SIMULATION RESULTS 6.2 Design and Perfomance Investigations

0.05 0.1 0.15 0.2
Energy [eV]

0

0.0005

0.001

0.0015

0.002
E

ne
rg

y 
D

is
tr

ib
ut

io
n 

[1
]

with LO phonon scattering 

without LO phonon scattering 

Level 3

0.05 0.1 0.15 0.2
Energy [eV]

0

0.0001

0.0002

0.0003

0.0004

E
ne

rg
y 

D
is

tr
ib

ut
io

n 
[1

]

with LO phonon scattering 

without LO phonon scattering 

Level 2

Figure 6.27: Energy distributions of the upper and lower laser level with and
without taking into account polar optical phonon scattering.
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6.2.3.3 Inclusion of Alloy Scattering

The comparison between the calculated and the measured current density suggests that
there are also other important mechanisms which should be considered in order to get
more realistic results.

Figure 6.28 shows the calculated voltage-current characteristics when the alloy scattering
is included in the simulation which is performed at 78 K. Due to its significant effect on the
simulation results, the comparison with the experimental measurements gets sensitively
better. In the following, we will investigate the impact of alloy scattering for higher
temperatures. Table 6.5 shows the temperature dependence of the band gap energies
of In0.53Ga0.47As and GaAs0.51Sb0.49 as well as the conduction band discontinuity [4].
Figure 6.29 illustrates the effect of the alloy scattering mechanism in dependence on the
temperature. This scattering mechanism is mostly dominant at low temperatures, and
somewhat weaker at high temperatures. This circumstance is also depicted in Figure 6.30.
The ratio of the calculated current densities with and without taking into account alloy
scattering is shown. We conclude that the alloy scattering mechanism is necessary to be
considered in transport modeling of QCLs, especially in the low temperature region.
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Figure 6.28: Voltage-current characteristics at 78 K. Comparison between the
measured values and the simulation results with and without alloy
scattering.
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Figure 6.29: Current density versus temperature at 5 V and 13 V with and
without alloy scattering.
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T [K] Eg(In0.53Ga0.47As) [eV] Eg(GaAs0.51Sb0.49) [eV] ∆Ec [eV]

78 0.7756 0.7869 0.1613

100 0.7723 0.7820 0.1597

150 0.7649 0.7739 0.1590

200 0.7507 0.7590 0.1583

250 0.7360 0.7412 0.1552

300 0.7209 0.7237 0.1528

Table 6.5: Temperature dependence of band gap energies and conduction band
discontinuities [4].
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Figure 6.30: Current enhancement due to inclusion of alloy scattering for sev-
eral temperatures.
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Chapter 7

Summary and Outlook

A detailed introduction into fundamental transport models was presented, especially the
quantum ballistic transport and the density matrix formulation. Special focus was laid on
the semiclassical transport model and the stationary charge transport described by the
PME.

Thereafter, we presented numerical solutions of the Schrödinger equation based on Robin
boundary conditions in order to obtain current carrying states. Special attention has been
turned to calculations of the fundamental quantities like the tunneling current density.
The method has been applied to several heterostructure designs and the determined re-
sults have been compared to simulations using nonequilibrium Greens functions and the
TsuEsaki model and also experimental measurements. Good numerical agreement has
been obtained. In addition, we have investigated the asymptotic behavior of the wave
functions. A proof that the solution of the Robin problem converges to the solution of
the Dirichlet problem has been presented. This behavior has been also illustrated numer-
ically by comparing simulated wave functions as well as the dipole matrix elements of the
Robin and Dirichlet boundary value problems in situations with high energy levels. It
has been shown that the tunneling current vanishes with decreasing electric field, which
can be explained in terms of the transmission coefficient. The presented results indicate
the necessity to treat QCLs as open quantum systems with non-selfadjoint boundary
conditions.

In this thesis, I have described a semi-classical approach to model transport in QCLs.
Over the course of this work, a simulator has been developed which solves the PME
by means of a Monte Carlo method. As a prototypical example, we simulated a GaAs
based QCL in the THz region. We have investigated the current density in dependence
of the applied bias, and the electron distribution functions of the individual subbands
have been computed. In general, it is demonstrated that the developed Monte Carlo
simulator is an efficient approach for simulating stationary charge transport in quantum
cascade structures governed by the PME. Special focus was laid on the study of intervalley
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scattering effects on the carrier dynamics. In particular, the simulation results indicate
that the Γ-X electron transfer plays a considerable role and highlights the importance of
intervalley charge transport for QCL design considerations. It has been shown that the
modification of the Al content and the width of the collector barrier in a GaAs/AlGaAs
QCL can yield a significant increase in current density when considering Γ-X intervalley
scattering. This can be explained by an increase of the overlap between the upper X-state
and the lower Γ-state of two adjacent stages, which is particularly important for QCL
design considerations. Finally, a comparison of simulation results with measurements for
a recently developed InGaAs/GaAsSb QCL has been presented. We were able to observe
dominant impact due to optical phonon scattering and also a non negligible effect due to
alloy scattering.

However, more remains to be done for future research. A large number of states are
involved in transport, especially for THz QCLs. Subbands are close in energy and strongly
coupled by Coulomb scattering which can play an important role [130]. For more precise
simulations, a model for electron-electron scattering has to be added. Moreover, the semi-
classical picture is accurate only for strong coupling and the Boltzmann-like formalism
is sufficient for stationary states, but phase coherent phenomena are disregarded. The
scattering induced phase coherence can be described by a density matrix formulation of
the quantum transport theory. Hence, it will be important to incorporate the subband
dependent dephasing which can yield a more accurate description of the electron transport.
Furthermore, the parameters of InGaAs based material systems are not well characterized.
This may be significant when adapting the Monte Carlo simulator to InGaAs based QCLs,
which requires careful attention.
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Appendix

A Derivation of the Effective Mass Equation

In order to derive the effective mass theory it is imperative to formulate the envelope
function method. In the envelope function approximation, the electron wave functions
can be expressed by

Ψ(x) =
∑

ν

Ψν,k‖
(x) =

1√
A
eik‖·x‖

∑

ν

Φν(z)Uν(x) (7.1)

where ν is the index of the envelope function Φν and the corresponding Bloch function Uν .
This definition of the expansion is identical to the one given by Luttinger and Kohn [38].
Exact equations for the envelope functions Φν can be derived by inserting the envelope
function expansion (7.1) into the Schrödinger equation of the form

ĤΨ(x) = (T̂ + V̂ (x))Ψ(x) = EΨ(x) (7.2)

By applying the abbreviation Ũν(x) = 1√
A
eik‖·x‖Uν(x), the kinetic energy term can be

written as

T̂Ψ = − ~
2

2m0

∑

ν

[

(▽2Φν)Ũν + 2(▽Φν) · (▽Ũν) + Φν▽
2Ũν

]

(7.3)

Due to the completeness of the Ũν

∑

ν

Ũ⋆
ν Ũν = 1 (7.4)

the functions ▽Ũν and ▽2Ũν can be expressed in terms of the matrix elements of the
kinetic energy and momentum with respect to the Ũν

T̂Ψ =
∑

ν

[

− ~
2

2m0
(▽2Φν) +

∑

ν′

(−i~)
m

pνν′ ·▽Φν′ +
∑

ν′

T̂νν′Φν′

]

Ũν (7.5)
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where

pνν′ =

∫

Ũν′pŨνd
3x

T̂νν′ =

∫

Ũν′T̂ Ũνd
3x

Equating coefficients of Ũν on both sides of equation (7.2) yields

− ~
2

2m0
(▽2Φν) +

∑

ν′

(−i~)
m0

pνν′ · ▽Φν′ +
∑

ν′

Ĥνν′Φν′ = EΦν (7.6)

where Ĥνν′ denote the corresponding matrix elements of the Hamiltonian.

The elimination of “small“ envelope functions in favour of the dominant ones is the crucial
point in the derivation of the effective mass equation from the envelope function equations.
The slowly varying envelope functions are divided into two groups S and R. The functions
belonging to the group R (Φr, Φr′ , etc.) are small and thus eliminated approximately in
favour of the dominant functions which are members of the group S (Φs, Φs′, etc.). For
the slowly varying envelope functions, one gets approximately

Φr = (E − Ĥrr)
−1
∑

s′

(
(−i~)
m0

prs′ · ▽Φs′ + Ĥrs′Φs′

)

(7.7)

Substituting this expression for Φr in equation (7.6), we obtain

EΦs = − ~
2

2m0

∑

s′

▽ · [γss′ · ▽Φs′ ] +
∑

s′

(−i~)
m0

pss′ ·▽Φs′ +
∑

s′

Ĥ
(2)
ss′Φs′

+
∑

s′r

(−i~)
m0

psr · ▽[(E − Ĥrr)
−1Ĥrs′]Φs′

+
∑

s′r

(−i~)
m0

(E − Ĥrr)
−1(psrĤrs′ + Ĥsrprs′) · ▽Φs′ (7.8)

where

γss′ = 1δss′ +
2

m0

∑

r

psr[E − Ĥrr]
−1prs′ (7.9)

and
Ĥ

(2)
ss′ = Ĥss′ +

∑

r

Ĥsr[E − Ĥrr]
−1Ĥrs′ (7.10)

Neglecting interface contributions to the effective Hamiltonian, Ĥrr and Ĥrs′ are consid-
ered to be constant and the gradient of (E − Ĥrr)

−1Ĥrs′ vanishes. Thus, the fourth term
on the r.h.s of equation (7.8) is zero. Considering the case of conduction band states,
the energy is close to the conduction band edge and the envelope functions corresponding
to the conduction band-like basis states Ũc are expected to be dominant. For such an
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approximation, Ũc is chosen to be a reasonable approximation to the conduction band
minimum wavefunction of each constituent material [131]. Hence, Ũc corresponds to a
band extremum and the momentum matrix pss′ has only one element pcc which is zero.
The fifth term of equation (7.8) becomes

∑

r

(−i~)
m0

(E − Ĥrr)
−1(pcrĤrc + Ĥcrprc) · ▽Φc (7.11)

This term will be neglected, since it is dominated by the interface parts of the Hamiltonian.
Hence, the effective mass equation reads

− ~
2

2
▽ ·
(

1

mc(E)
▽Φc

)

+ Ĥ(2)
cc Φc = EΦc (7.12)

where Ĥ
(2)
cc denotes the effective band edge profile and the effective mass mc(E) is defined

by
m0

mc(E)
= 1 +

2

m0

∑

r

pcr[E − Ĥrr]
−1prc (7.13)
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B Derivation of the Scattering Rates

B.1 Polar Optical Phonon Scattering

The envelope function is given by

Ψη
νλ,k‖

(x) =
1√
A
eik‖·x‖Φη

νλ(z)

According to the hermitian interaction Hamiltonian described in 5.3, the Hamiltonian
matrix elements of the electron-phonon interaction are as follows

〈α′,k′
‖|ĤLO

e−ph|α,k‖〉 = αLO

∫

Ψ⋆
α′,k′

‖
(x)eiqaq ·xΨα,k‖

(x)dx+ c.c

= αLO

∫
1

Lx
e−i(kx−qx−k′x)xdx

∫
1

Ly
e−i(ky−qy−k′y)ydy

×
∫

Φ⋆
α′(z)eiqzzΦα(z)dzaq + c.c

= αLOδk′
‖,k‖−q‖

∫

Φ⋆
α′(z)eiqzzΦα(z)dz + c.c

The scattering rate can be calculated by integrating the transition probability over all
possible k′

‖ according to

1

τα′

α (k‖)
=

A

(2π)2

∫

Sα′

α (k‖,k
′
‖)dk

′
‖

= C±
LO

∫

dqz

∫

dk′
‖|Fα

α′(qz)|2
1

(k‖ − k′
‖)

2 + q2z
δ(Eα′(k′

‖)− Eα(k‖)∓ ~ωLO)

where

Fνλ
ν′λ′(qz) =

∫

dzΦ⋆
ν′λ′(z)Φνλ(z)e

iqzz

and C±
LO = e2ωLO(ε

−1
∞ − ε−1

S )(NLO + 1/2± 1/2)/4π. Due to the energy conservation

Eα′(k′
‖) = Eα(k‖)± ~ωLO

one gets

k′2‖ = k2‖ +
2m⋆

~2
(Eα − Eα′ ± ~ωLO)

︸ ︷︷ ︸

(Qα′
α )±

Making use of k′‖dk
′
‖ = m⋆/~2dE ′, the scattering rate can be written as

1

τα′

α (k‖)
= C±

LO

∫

dqz

π∫

−π

dθ

∫

dE ′m
⋆

~2
|Fα

α′(qz)|2
δ(Ef − E ′)

k2‖ − 2k‖k‖(E ′) cos θ + k‖(E ′)2 + q2z

= C±
LO

∫

dqz

π∫

−π

dθ
m⋆

~2
|Fα

α′(qz)|2
1

k2‖ − 2k‖k
f
‖ cos θ + kf2‖ + q2z
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With the transformation

cos θ =
1− t2

1 + t2
, dθ =

2

1 + t2
dt

we get

1

τα′

α (k‖)
= C±

LO

∫

dqz

+∞∫

−∞

dt
m⋆

~2
|Fα

α′(qz)|2
1

k2‖ + kf2‖ − 2k‖k
f
‖ + q2z + t2(k2‖ + kf2‖ + 2k‖k

f
‖ + q2z)

=
m⋆π

~2
C±

LO

∫

dqz|Fα
α′(qz)|2

1
√
[

q2z + (k‖ − kf‖ )
2
] [

q2z + (k‖ + kf‖ )
2
]

Finally, by taking into account the energy balance for the required emission and absorption
processes, the result is

1

τα′

α (k‖)
=

e2~ωLOm
⋆
α′

4~3

(
1

ε∞
− 1

εS

)(

NLO +
1

2
∓ 1

2

)∫

dqz
|Fα

α′(qz)|2
q4z + (Qα′

α )4± + 2q2z [2k
2
‖ ± (Qα′

α )2±]

×Θ(Eα(k‖)−Eα′ ± ~ωLO)

(7.14)

B.2 Acoustic Deformation Potential Scattering

Here, we consider the elastic approximation (~ω = 0). For longitudinal phonons, the
polarization vector is

w =
q

q

Thus, the interaction Hamiltonian is given by

ĤAC
e−ph =

∑

q

iqΞac

√

~

2V ρωq

(âqe
iq·x + â†qe

−iq·x) (7.15)

In the occupation number representation, the matrix element reads

〈α′,k′
‖|〈n′

q|ĤAC
e−ph|nq〉|α,k‖〉 = 〈α′,k′

‖|
∑

q

qΞac

√

~

2V ρωq
eiq·x〈n′

q|âq|nq〉|α,k‖〉

+ 〈α′,k′
‖|
∑

q

qΞac

√

~

2V ρωq
e−iq·x〈n′

q|â†q|nq〉|α,k‖〉

Since

〈n′
q|âq|nq〉 =

√
nq〈n′

q|nq − 1〉 = √
nqδn′

q
,nq−1

〈n′
q|â†q|nq〉 =

√
nq + 1〈n′

q|nq + 1〉 =
√
nq + 1δn′

q,nq+1
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one gets

〈α′,k′
‖|〈n′

q|ĤAC
e−ph|nq〉|α,k‖〉 = qΞac

√

~

2V ρωq

√
nqF

α
α′(qz)δk‖+q‖,k

′
‖

+ qΞac

√

~

2V ρωq

√
nq + 1Fα

α′(qz)δk‖−q‖,k
′
‖

Taking into account the following dispersion relation

ωq

q
= vs

Under the assumption that the phonon energy is much smaller than the thermal energy
(~ωq ≪ kBT ), the Bose-Einstein relation can be approximated according to

nq =
1

e~ωq/kBT − 1
≈ nq + 1 ≈ kBT

~ωq

Due to this approximation, the absorption and emission terms are the same and the
scattering rate becomes

1

τα′

α (k‖)
=

V

2π~

∫

dz|Φα(z)|2|Φα′(z)|2
∫

dk′
‖Ξ

2
ac

kBT

2V ρv2s
δ(Eα(k‖)− Eα′(k′

‖))

=
Ξ2
acm

⋆
α′kBT

ρ~3v2s
Iα

′

α Θ(Eα(k‖)− Eα′) (7.16)

B.3 Optical Deformation Potential Scattering

The interaction Hamiltonian is given by

ĤOP
e−ph =

∑

q

Ξop

√

~

2V ρωq

(âqe
iq·x + â†qe

−iq·x) (7.17)

The calculation of the matrix elements is mainly the same as in the case of acoustic
phonons, only the phonon energy is not equal zero. Thus

〈α′,k′
‖|〈n′

q|ĤOP
e−ph|nq〉|α,k‖〉 = Ξop

√

~

2V ρωq

√
nqF

α
α′(qz)δk‖+q‖,k

′
‖

+ Ξop

√

~

2V ρωq

√
nq + 1Fα

α′(qz)δk‖−q‖,k
′
‖

nq and ωq are considered to be constant. The scattering rate for the absorption reads

1

τα′

α (k‖)

∣
∣
∣
∣
abs

=
V

2π~

∫

dz|Φα(z)|2|Φα′(z)|2
∫

dk′
‖Ξ

2
op

~

2V ρωq

√
nqδ(Eα(k‖)− Eα′(k′

‖) + ~ω)

=
Ξ2
opm

⋆
α′

2ρ~2ωq
Iα

′

α nqΘ(Eα(k‖)−Eα′ + ~ω) (7.18)
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The emission term is treated analogously, which is

1

τα′

α (k‖)

∣
∣
∣
∣
ems

=
Ξ2
opm

⋆
α′

2ρ~2ωq

Iα
′

α (nq + 1)Θ(Eα(k‖)− Eα′ − ~ω) (7.19)

B.4 Intervalley Scattering

The derivation of the intervalley scattering is formally the same as for the optical defor-
mation potential scattering. The only difference is in the parameters in the prefactor of
the interaction Hamiltonian which is given by

Ĥ IV
e−ph =

∑

q

Dηη′

√

Zη′~
2

2V ρEηη′
(âqe

iq·x + â†qe
−iq·x) (7.20)

Hence, the calculation for the total scattering rate is totally analogous to the one done
before and the result is

1

τα′

α (k‖)
=
Zη′D

2
ηη′m

η′⋆
ν′λ′

2~ρEηη′

(

nq +
1

2
∓ 1

2

)

Iα
′

α Θ(Eα(k)−Eα′ ±Eηη′) (7.21)

B.5 Interface Roughness Scattering

Within the interface roughness scattering, the electron is scattered elastically by terraces
which are distributed at the interface. The corresponding potential at the interface can
be written as [132]

VIR =
dV (z)

dz
rect

(
z − zI

zR,I − zL,I

)

∆(x‖)

The function ∆(x‖) describes the distribution of the terraces. The matrix element of VIR
is

〈α′,k′
‖|VIR|α,k‖〉 =

∫

Φ⋆
α′(z)

dV

dz
rect

(
z − zI

zR,I − zL,I

)

Φα(z)dz

︸ ︷︷ ︸

ϕα′α,I

1

A

∫

∆(x‖)e
i(k‖−k′

‖)·x‖dx‖
︸ ︷︷ ︸

〈k′
‖|∆(x‖)|k‖〉

where ∆(x‖) can be represented as a superposition of square terraces [133]

∆(x‖) =
∑

t

rect

(

x‖ − xt
‖

Lt

)

Here, xt
‖ denotes the position of the terrace center and Lt the width of the terrace. The

scattering of electrons by the roughness of interfaces is described by a distribution of
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terraces present at the interface. The electrons scatter elastically by these terraces which
are assumed to be of Gaussian type

1

Nt

∑

t

rect

(

x‖ − xt
‖

Lt

)

= exp

(

−|x‖|2
2σ2

)

= N(x‖)

Here, σ2 is the average area of the terraces and Nt denotes the number of terraces in
A = LxLy. Assuming that the cross-correlation between different terraces is zero, the
autocorrelation function can be written as

〈∆(x‖)∆(x′
‖)〉 = lim

Lx→∞
lim

Ly→∞

1

LxLy

Lx/2∫

−Lx/2

Ly/2∫

−Ly/2

∆(x‖)∆(x′
‖)dx‖

= lim
Lx→∞

lim
Ly→∞

Nt

LxLy

Lx/2∫

−Lx/2

Ly/2∫

−Ly/2

N(x‖)N(x‖)dx‖

Using the integral

∞∫

−∞

exp

[

−(x− a/2)2

σ2

]

dx =
√
πσ exp

(

− a2

4σ2

)

yields

〈∆(x‖)∆(x′
‖)〉 = ∆2e−|x‖−x′

‖
|2/Λ2

(7.22)

with ∆2 = Ntπσ
2/A and Λ = 2σ. Except for the prefactor, this model is equivalent to

the phenomenological one of Prange and Nee [134]. Assuming that ∆(x‖) is a periodic
function according to ∆(x, y) = ∆(x+Lx, y+Ly), it can be expanded in a Fourier series

∆(x‖) =
∑

q‖

∆q‖
eiq‖·x‖

where q‖ = k‖ − k′
‖. The Fourier coefficient reads

∆q‖
= 〈k′

‖|∆(x‖)|k‖〉 =
1

A

Lx/2∫

−Lx/2

Ly/2∫

−Ly/2

ei(k‖−k′
‖)·x‖∆(x‖)dx‖

Thus, the amplitude squared of the matrix element ∆(x‖) is

|∆q‖
|2 = 1

A2

∫

dx‖

∫

dx′
‖e

i(k‖−k′
‖)·(x‖−x′

‖
)∆(x‖)∆(x′

‖)

By means of equation (7.22), the ensemble average of this matrix element can be written
as

〈|∆q‖
|2〉 = ∆2

A2

∫

dx‖

∫

dx′
‖e

i(k‖−k′
‖)·(x‖−x′

‖
)e−|x‖−x′

‖
|2/Λ2
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Using x̃‖ = x‖ − x′
‖, and extending the integration limits to infinity, we get

〈|∆q‖
|2〉 =

∆2

A

∞∫

−∞

e−x̃‖/Λ
2

eix̃‖·q‖dx̃‖

=
∆2

A

∞∫

−∞

e−x̃‖,x/Λ
2

eix̃‖,xq‖,xdx̃‖,x

∞∫

−∞

e−x̃‖,y/Λ
2

eix̃‖,yq‖,ydx̃‖,y

Making use of the identity

∞∫

−∞

e−a2x2

eiξxdx =

√
π

a
e−ξ2/4a2

with a2 = 1/Λ2 and ξ = q‖,y, the evaluated integrals are

〈|∆q‖
|2〉 = 1

A
π∆2Λ2e−q2

‖
Λ2/4 (7.23)

Thus

1

τα′

α (k‖)
=

2π

~

∑

I,k′
‖

|〈α′,k′
‖|VIR|α,k‖〉|2 δ(Eα′(k′

‖)− Eα(k‖)

=
2π2∆2Λ2

~A

∑

I,k′
‖

| ϕα′α,I |2 δ(Eα′(k′
‖)− Eα(k‖)

π∫

0

e−(k′
‖−k‖)

2Λ2/4dθ

=
π∆2Λ2

~

∑

I

| ϕα′α,I |2
π∫

0

dθ

∫

dk′‖k
′
‖e

−(k′
‖−k‖)

2Λ2/4δ(Eα′(k′
‖)− Eα(k‖)

(7.24)

B.6 Alloy Scattering

Using the abbreviation δVAB(x‖) and assuming that it can be approximated by an impulse
function δ(x‖) according to

δVAB(x‖) = Ω0∆VABδ(x‖)

the correlation function can be expressed in the following form

〈δV (x‖)δV (x′
‖)〉 = lim

A→∞

1

A

∫

δV (x‖)δV (x′
‖)dx

′
‖

= lim
A→∞

1

A

[
∑

XA

(1− x)2δ(x‖ − x′
‖)Ω

2
0∆V

2
AB +

∑

XB

x2δ(x‖ − x′
‖)Ω

2
0∆V

2
AB

]
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where ∆VAB denotes the conduction band discontinuity between the crystals AC and BC.
Considering that there is a fraction x at the XA sites and (1 − x) at the XB sites, the
correlation function can be rewritten as

〈δV (x‖)δV (x′
‖)〉 = lim

A→∞

1

A
Ω2

0∆V
2
ABδ(x‖ − x′

‖)

[

x
A

Ω0
(1− x)2 + (1− x)

A

Ω0
x2
]

= Ω0∆V
2
ABx(1 − x)δ(x‖ − x′

‖)

Under the assumption that δV (x‖) is periodic, it can be expanded in a Fourier series

δV (x‖) =
∑

q‖

Vq‖
eiq‖·x‖ (7.25)

Hence, the amplitude squared of the matrix element δV (x‖) is

|Vq‖
|2 = |〈k′

‖, α
′|δV (x‖)|k‖, α〉|2

=
1

A2

∫

dx‖

∫

dx′
‖e

i(k‖−k′
‖)·(x‖−x′

‖
)δV (x‖)δV (x

′
‖)

∫

Φ⋆
α′(z)Φα(z)dz

Making use of the correlation function obtained previously, the ensemble average is given
by

〈|Vq‖
|2〉 =

1

A2

∫

dx‖

∫

dx′
‖e

i(k‖−k′
‖)·(x‖−x′

‖
)Ω0∆V

2
ABx(1− x)δ(x‖ − x′

‖)

∫

Φ⋆
α′(z)Φα(z)dz

= Ω0∆V
2
ABx(1 − x)

∫

Φ⋆
α′(z)Φα(z)dz

Finally, the alloy scattering rate can be written as [135]

1

τα′

α

=
2π

~
〈|Vq‖

|2〉ρ2DDOS

∫

Φ⋆
α′(z)Φα(z)dz

=
2m⋆

~3
Ω0∆V

2
ABx(1 − x)

∫

Φ⋆
α′(z)Φα(z)dz (7.26)
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