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Abstract

In this thesis a three-state dynamic model of illicit drug consumption is an-

alyzed. Not only the number of people who are susceptible to initiating into

drug use and the active users but also the current throughput capacity of the

supply network of drugs is taken into consideration. Furthermore, initiation

into drug use is price dependent with the price itself depending on the relative

sizes of supply and demand capacity. We run the evaluations for two di�erent

parameterizations, i.e., for the cocaine epidemic in the United States and the

injection drug use (IDU) in Australia.

In the �rst part the uncontrolled model is described and analyzed and some

sensitivity and bifurcation analyses are carried out. The second part is devoted

to the e�ects of the control instrument "enforcement". We determine the

optimal years in the epidemic for a supply reduction by 50% and we investigate

the cost-e�ciency of such a depression with respect to several initial values.

In addition, we compare di�erent ways to measure the social costs and discuss

the diverse policy implications they imply. Moreover, we combine the di�erent

social cost functionals by weighting them appropriately and rerun our analyses.

One anticipated conclusion is that the results strongly depend on the way we

measure the social costs as well as on the initial values and the relation between

drug users and the drug stock.

Finally, we look at the price elasticity of initiation because previous work tells

us that the elasticity level has a strong impact on the policy conclusions.

In summary, the U.S. parameter case turned out to be more interesting pre-

sumably because of the convex initiation function contrary to the concave one

describing the feedback e�ect between susceptibles and users in the Australian

IDU epidemic.
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Chapter 1

Introduction

Illicit drug consumption and the adherent social costs, drug related deaths

and problems are great challenges for societies and decision makers all over

the world. Accordingly, several models in the �eld of optimal dynamic control

of drug use have been implemented and studied in recent years. Among them

we �nd the so-called SA model where the groups of susceptible non-users,

S, and the active users, A, are the states; see, e.g., [Caulkins et al., 2009a],

[Caulkins et al., 2009b], [Wallner, 2008].

My thesis is an extension of this model based on [Caulkins, 2008] using pa-

rameterizations for the U.S. cocaine epidemic and Australian injection drug

use (IDU). The enhancement involves adding a third state, C, representing

the current throughput capacity of the supply network of drugs which mea-

sures how much smugglers can bring in on an ongoing basis. One can think

of C as the capital stock of the drug smuggling industry, except that it would

primarily be social/relational capital and tacit knowledge not �xed assets as

with capital stocks in a typical manufacturing context. Hence, this model is a

dynamic three-state model of drug use and will be referred to as SAC model.

Beyond that, the SAC model makes initiation into drug use price dependent

with price itself depending on the relative sizes of demand and supply capacity.

In the �rst part of this thesis we will analyze the uncontrolled model, whereas

the second part primarily deals with the strategic examination of enforcement

and its e�ects.

Chapter 2 presents the mathematical formulation of our base model and the

parameterization for the U.S. cocaine and the Australian IDU epidemics. Fur-
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CHAPTER 1. INTRODUCTION 5

thermore, we will analyze the steady states and their stability properties, phase

portraits around the equilibria and some time paths.

In Chapter 3 we discuss the results of a sensitivity analysis. We will focus

on β, the exponent of the initiation function. In addition, we display several

three-dimensional phase portraits around the steady state.

Bifurcation analyses with respect to several parameters dominate Chapter 4.

We limit ourselves to two special cases of β. First, we set β equal to 2 to get

a convex initiation function. Later, we simulate a concave initiation function

by keeping β at the level of 1/2. Moreover, we will carry out two-dimensional

bifurcation analyses.

In Chapter 5 we will add the control instrument "enforcement". We want

to investigate if enforcement is more valuable earlier or later in an epidemic.

Furthermore, we look at some trajectories with di�erent values of enforcement

to compare the epidemic process.

Chapter 6 discusses a supply reduction of the current drug stock by 50% at a

certain time in the epidemic. On one hand, we will examine the most e�cient

year of such a supply shock and on the other hand, the bene�t-cost ratio of a

supply shock in the �rst year.

We dedicate Chapter 7 to di�erent functional forms for the social costs result-

ing from a drug epidemic. Scenarios will be compared where the emphasis is

laid on di�erent types of cost, for example leaving out the current throughput

capacity of the supply network of drugs, C, in the evaluation.

Chapter 8 deals with the question how the model behaves when the overall

elasticity level is increased. We look at the new steady states and their stabil-

ity properties and we compare the results obtained with the original model.

Finally, we'll summarize the most important results from this thesis and make

suggestions for some possible extensions for further studies in Chapter 9.

Please note that all numerical calculations in this thesis were carried out with

Matlab R2008b.



Chapter 2

The Original SAC Model

2.1 Model Formulation

My diploma thesis discusses the dynamic three state SAC model where S(t)

captures the number of people who are susceptible to initiating into drug use,

A(t) tracks the number of active drug users, and C(t) represents the current

throughput capacity of the supply network of drugs. C(t) can be understood

as the capital stock of the drug smuggling industry. For the sake of compact-

ness, we omit the time argument t, if no confusion arises.

The system dynamics we consider is

Ṡ = k − δS − f(A)Sp(A,C)a,

Ȧ = f(A)Sp(A,C)a − µA, (2.1)

Ċ = g(p)C,

where

p(A,C) = c

(
A

C

) 1
ηs−ηd

, (2.2)

g(p) = c
′
(ln(A)− ln(C)), (2.3)

f(A) = αAβ, (2.4)

c
′
=

c

ηs− ηd
. (2.5)
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CHAPTER 2. THE SAC MODEL 7

The frequency of consumption or the degree of addiction are not taken into

consideration explicitly. People enter the pool of susceptibles S with a constant

rate k, which can be understood as reaching a certain age when you become in-

terested in drugs. There is also a constant out�ow rate δ from S interpreted as

"maturing out". Furthermore, the initiation function f(A)Sp(A,C)a is price

dependent. In the U.S. base parameter case we use a convex initiation func-

tion f(A), while for the Australian IDU epidemic we have a concave initiation

function. The exit from the active use rate, µ, can, for example, be interpreted

as successful participation in a treatment program or death. The growth rate

of the supply network is described with g(p).

Table 2.1 summarizes the base case parameter values used in the analyses

presented in the following sections.

Parameter Symbol U.S. Cocaine Australian IDU

in�ow into S state k 1.3417 0.0526
exit from S state δ 0.0605 0.0952

coe�cient in initiation function α 0.0090 0.5112
exponent in initiation function β 1.5604 0.8622

price elasticity of supply ηs 0.5 0.5
price elasticity of demand ηd −0.5 −0.5
elasticity of initiation a −0.25 −0.25
exit from active use µ 0.1661 0.1136

coe�cient in growth rate c 0.15 0.15
annual discount rate r 0.04 0.04

Table 2.1: Base case parameter values for the U.S. cocaine and the Australian
IDU epidemics.

2.2 Steady States and Stability Behaviour

2.2.1 U.S. Cocaine Use

The steady states (Ŝ, Â, Ĉ) are given by the solution of the SAC model (2.1)

where the three states Ṡ, Ȧ, and Ċ are simultaneously set equal to zero which

is visualized in Figure 2.1.

We �nd two di�erent steady states: a small one, Ê1, relating to the num-

ber of active users, A, and an equilibrium with a relatively high number of
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users, Ê2.

We can see that the number of active users, A, and the current throughput

capacity of the supply network of drugs, C, are equal in the equilibrium.

Ê1 = (Ŝ1, Â1, Ĉ1) = (21.2619, 0.3332, 0.3332),

Ê2 = (Ŝ2, Â2, Ĉ2) = (3.9796, 6.6281, 6.6281).

0 2 4 6 8 10
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20

25

A

S

Figure 2.1: Isoclines and the linear relation between the steady state values
for the U.S. base parameterization.

Looking at the phase portrait, Figure 2.2, one can see that some trajecto-

ries converge towards the point (S,A,C) = (22.1769, 0, 0). By showing that

lim
A→0,C→0

(ln(A) − ln(C)) = 0 we �nd a third equilibrium Ê = (Ŝ, Â, Ĉ) =

(k/δ, 0, 0).

Now we want to investigate the local stability behaviour of the system. We

use the Jacobian matrix, the matrix of all �rst-order partial derivatives, with

J =

 ṠS ṠA ṠC

ȦS ȦA ȦC

ĊS ĊA ĊC


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Figure 2.2: Phase portrait for the U.S. base parameter set within the (A, S)-
plane.

ṠS = −δ − αAβ

(
c
A

C

) a
ηs−ηd

,

ṠA = −βαAβ−1S

(
c
A

C

) a
ηs−ηd

− αAβS
a

ηs− ηd

(
c
A

C

) a
ηs−ηd

−1
c

C
,

ṠC = −αAβS
a

ηs− ηd

(
c
A

C

) a
ηs−ηd

−1

c
A

C2
,

ȦS = αAβ

(
c
A

C

) a
ηs−ηd

,

ȦA = βαAβ−1S

(
c
A

C

) a
ηs−ηd

+ αAβS
a

ηs− ηd

(
c
A

C

) a
ηs−ηd

−1
c

C
− µ,

ȦC = αAβS
a

ηs− ηd

(
c
A

C

) a
ηs−ηd

−1

c
A

C2
,

ĊS = 0,

ĊA =
cC

(ηs− ηd)A
,

ĊC =
c

ηs− ηd
(ln(A)− ln(C))− c

ηs− ηd
.
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Using the parameters listed in Table 2.1 and evaluating at the �xed point Ê1,

the low equilibrium relating to A, we get the eigenvalues

λ1 = 0.0747,

λ2 = −0.0589,

λ3 = −0.1773.

All eigenvalues are real, and there are positive and negative values, so this

equilibrium is a saddle point.

For the high steady state Ê2 we get the eigenvalues

λ1 = −0.1815,

λ2,3 = −0.1271± 0.1311i.

Thus, we have a stable focus, because Re(λ1) and Re(λ2,3) are negative and

λ2 and λ3 are conjugate-complex numbers.

Next, we want to look at the stability of the arti�cial steady state Ê =

(Ŝ, Â, Ĉ) = (22.1769, 0, 0). Since C = A, in this case we do get a two-

dimensional system with its partial derivatives

ṠS = −δ − αAβc
a

ηs−ηd ,

ṠA = −βαAβ−1Sc
a

ηs−ηd ,

ȦS = αAβca,

ȦA = βαAβ−1Sc
a

ηs−ηd .

If we let A converge towards 0, we obtain the Jacobian matrix

J =

(
−δ 0

0 −µ

)
.

Therefore, we can conclude that our system has two stable steady states for
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the U.S. base parameterization. Ê2 is a stable focus, Ê is a stable node, and

in between there is the saddle point Ê1.

2.2.2 Australian Injection Drug Use
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Figure 2.3: Isoclines and the linear relation between the steady state values
Ŝ and Â for the Australian IDU epidemic.

To determine the steady states (Ŝ, Â, Ĉ) for the Australian base parameter

set, the system of equations (2.1) is set to zero simultaneously.

Here, we �nd only one steady state Ê with

Ê = (Ŝ, Â, Ĉ) = (0.1202, 0.3623, 0.3623)

illustrated in Figure 2.3.

The eigenvalues of this steady state are given by

λ1 = −0.3827,

λ2,3 = −0.1244± 0.0186i.
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Therefore, we have a stable focus for the Australian injection drug use epidemic

as shown in Figure 2.4 with the phase portrait around the equilibrium in the

(A, S)-plane.
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Figure 2.4: Phase portrait around the steady state for the Australian base
parameter set within the (A, S)-plane.

2.3 Time Paths

2.3.1 U.S.A.

Next, we want to look at some trajectories to get a better understanding of

the dynamics of our model.

The �rst Figure 2.5 shows trajectories where we start with the initial values

(S(0), A(0), C(0)) = (6, 3, 3). The second trajectories arise from starting with

high initial values (S(0), A(0), C(0)) = (22, 10, 10), and the last one refer to

(S(0), A(0), C(0)) = (1, 1, 1). Intentionally we choose A(0) = C(0) to see the

di�erent progress from these two states A and C over a short time before con-

verging towards the same corresponding equilibrium value.
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Figures 2.5 - 2.7 show the evolutions of S(t), A(t), C(t), and of the price func-

tion within the �rst 100 years. The number of people who are susceptible to

initiating into drug use is increasing strongly in the beginning, then decreasing

strongly in the �rst Figure 2.5. A and C are rising towards a high steady state.

Figure 2.6 visualizes the time paths where the number of susceptible people

�rst declines and then slightly rises towards the equilibrium value. The number

of active drug users is booming in the �rst 5 years and then declines towards

the steady state. The current throughput capacity of the supply network of

drugs increases in the beginning of the epidemic but decreases drastically after

10 years.
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Figure 2.5: Time paths relating to the initial values (S(0), A(0), C(0)) =
(6, 3, 3) for the U.S. parameterization.
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Figure 2.6: Time paths for the U.S. cocaine epidemic starting with the initial
values (S(0), A(0), C(0)) = (22, 10, 10).

In the last Figure 2.7, S(t) is very low at the beginning of the epidemic but

increases over the time while A(t) and C(t) are monotonously converging to-

wards zero. It is interesting to see that despite the monotonicity of S, A, and

C, the price shows a non-monotonic behaviour.
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Figure 2.7: Time paths relating to the initial conditions (S(0), A(0), C(0)) =
(1, 1, 1) for the U.S. base parameter set.
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2.3.2 Australia

For the Australian base case parameter set we look at two time paths to see

the di�erent dynamics of the model for altered initial states. The epidemic

is described with the help of trajectories. The �rst trajectories emanate from

high initial values (S(0), A(0), C(0)) = (1, 1, 1), the second occur from rather

low initial values (S(0), A(0), C(0)) = (0.5, 0.25, 0.25).

Figure 2.8 and 2.9 show the paths over the �rst 100 years. At �rst, the number

of susceptibles is declining. But then S slightly increases towards the steady

state while A and C are growing during the �rst few years and then fall down

rather rapidly.
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Figure 2.8: Time paths for the Australian IDU epidemic for the initial values
(S(0), A(0), C(0)) = (1, 1, 1).
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Figure 2.9: Time paths relating to the initial conditions (S(0), A(0), C(0)) =
(0.5, 0.25, 0.25) for the Australian parameterization.



Chapter 3

Sensitivity Analysis

In this chapter we will investigate the robustness of our model. We system-

atically change parameters contained in our model to determine the e�ects

on the model output. First of all, we want to examine a 1% variation of the

parameter values. That means that we are increasing one parameter while all

the others are kept at their original level. Then, the values of the steady state

will be recalculated, and we consider the percentage-wise e�ects. Afterwards,

we will take a closer look at the parameter β to answer the question, how the

exponent of the initiation function a�ects the steady states.

3.1 Sensitivity Analysis in the United States

Table 3.1 summarizes the percentage e�ects on the high steady state if a pa-

rameter is increased by 1%. It shows that the increases of k, β, and µ have

the strongest impact on the steady state.

Parameter Ŝ Â = Ĉ
k -0.7689 1.3868
δ 0.1402 -0.2497
α -1.1265 0.2464
β -3.3107 0.7240
a -0.5388 0.1178
µ 1.7880 -1.3773
c 0.2840 -0.0621

Table 3.1: E�ects on the high steady state of the U.S. base parameterization,
if one parameter is increased by 1%, while the others are kept unchanged.

23
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Some parameters, ηs and ηd, do not have any in�uence on the values, because

in the steady state point Â = Ĉ must be achieved. Therefore, the price e�ect

drops out of the model. These parameters will be left out in the tables.

Furthermore, Table 3.2 lists the percentage diversi�cation of a 1% increase of

a parameter on the saddle point steady state with the U.S. base parameteri-

zation.

Parameter Ŝ Â = Ĉ
k 1.1283 -1.9813
δ -1.0729 1.9436
α 0.0819 -1.9024
β -0.1409 3.2735
a 0.0397 -0.9122
µ -0.1312 2.0295
c -0.0211 0.4903

Table 3.2: Percentage alteration of the saddle point steady state of the U.S.
cocaine epidemic, if a parameter is increased by 1%, while keeping the others
at their original level.

Here, an increase of β has the greatest consequence on the steady state. The

e�ects on the steady state values are mostly as one would expect knowing the

dynamics of the model.

Table 3.3 shows how the arti�cial steady state Ŝ = k
δ
alters if the two pa-

rameters are increased by 1%.

Parameter Ŝ
k 1
δ -0.9901

Table 3.3: E�ects on the arti�cial steady state, if one parameter is increased
by 1% for the United States.

Now, we will focus on a sensitivity analysis of the parameter β, the exponent

in the initiation function.



CHAPTER 3. SENSITIVITY ANALYSIS 25

A hypothetical parameter scenario is considered, where we decrease and in-

crease β by a certain percentage while keeping the other parameters unchanged.

First, we look at the high steady state of the U.S. base parameterization, Table

3.4.

Change of β new β Ŝ Â = Ĉ
−2% 1.5292 6.9424 -1.5183

−1.75% 1.5331 6.0508 -1.3233
−1.5% 1.5370 5.1660 -1.1298
−1.25% 1.5409 4.2880 -0.9378
−1% 1.5448 3.4169 -0.7473

−0.75% 1.5487 2.5526 -0.5582
−0.5% 1.5526 1.6950 -0.3707
−0.25% 1.5565 0.8442 -0.1846
+0.25% 1.5643 -0.8376 0.1832
+0.5% 1.5682 -1.6685 0.3649
+0.75% 1.5721 -2.4929 0.5452
+1% 1.5760 -3.3107 0.7240

+1.25% 1.5799 -4.1221 0.9015
+1.5% 1.5838 -4.9270 1.0775
+1.75% 1.5877 -5.7255 1.2521
+2% 1.5916 -6.5176 1.4254

Table 3.4: Sensitivity analysis for the exponent in the initiation function, β,
on the high steady state of the U.S. base parameter set.

The impact on the high stable steady state Ê2 of the U.S. base case parameter

set is not surprising. β has a strong oppositional in�uence on Ŝ, the number

of susceptible non-users at the equilibrium. If we increase the exponent in the

initiation function, β, the number of active drug users, A, is growing somewhat

so S is decreasing, which leads to a decline of Ŝ.

Table 3.5 lists the e�ects on the saddle point equilibrium Ê1 of an alteration

of β.

In this case, the increase of β has the same in�uence on the steady state as

in the case of the stable high steady state Ê2. It has nevertheless a stronger

impact on Â and a weaker one on Ŝ than one would expect.
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Change of β new β Ŝ Â = Ĉ
−2% 1.5292 0.2921 -6.7886

−1.75% 1.5331 0.2548 -5.9223
−1.5% 1.5370 0.2178 -5.0611
−1.25% 1.5409 0.1809 -4.2049
−1% 1.5448 0.1443 -3.3539

−0.75% 1.5487 0.1079 -2.5078
−0.5% 1.5526 0.0717 -1.6668
−0.25% 1.5565 0.0358 -0.8309
+0.25% 1.5643 -0.0355 0.8259
+0.5% 1.5682 -0.0709 1.6467
+0.75% 1.5721 -0.1060 2.4626
+1% 1.5760 -0.1409 3.2735

+1.25% 1.5799 -0.1755 4.0793
+1.5% 1.5838 -0.2100 4.8803
+1.75% 1.5877 -0.2443 5.6762
+2% 1.5916 -0.2783 6.4673

Table 3.5: Sensitivity analysis for β on the saddle point steady state for the
U.S. base parameterization.
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Figure 3.1: Phase portrait around the high steady state of the U.S. cocaine
epidemic.
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For a better overview we include the phase diagrams around the steady states

in Figures 3.1 and 3.2 to see how the di�erent trajectories behave.
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Figure 3.2: Phase portrait around the small steady state for the United
States.

3.2 Sensitivity Analysis for the Australian Base

Parameter Set

We conclude this chapter with studying how the output alters if di�erent values

of the input parameters are used in the Australian case.

Parameter Ŝ Â = Ĉ
k 0.1687 1.2312
δ -0.0370 -0.2678
α -0.9539 0.2653
β 0.8485 -0.2360
a -0.4558 0.1268
µ 0.8295 -1.2185
c 0.2398 -0.0667

Table 3.6: Percentage alteration of the steady state for the Australian pa-
rameter base case if a parameter is increased by 1%.
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Table 3.6 shows the percentage e�ects on the unique Australian steady state

if a parameter is increased by 1%. As in the case of the U.S. base parameter-

ization, the increases of k, β, and µ have the strongest impact on the stable

steady state of the Australian IDU epidemic.

As for the cocaine epidemic in the United States, we will focus on a sensitivity

analysis, with respect to β, the exponent in the initiation function.

Change of β new β Ŝ Â = Ĉ
−2% 0.8450 -1.6653 0.4632

−1.75% 0.8471 -1.4594 0.4059
−1.5% 0.8493 -1.2529 0.3485
−1.25% 0.8514 -1.0457 0.2909
−1% 0.8536 -0.8379 0.2331

−0.75% 0.8557 -0.6294 0.1751
−0.5% 0.8579 -0.4203 0.1169
−0.25% 0.8600 -0.2105 0.0585
+0.25% 0.8644 0.2111 -0.0587
+0.5% 0.8665 0.4229 -0.1176
+0.75% 0.8687 0.6354 -0.1767
+1% 0.8708 0.8485 -0.2360

+1.25% 0.8730 1.0623 -0.2955
+1.5% 0.8751 1.2768 -0.3551
+1.75% 0.8773 1.4920 -0.4150
+2% 0.8794 1.7079 -0.4750

Table 3.7: E�ects on the steady state values (Ŝ, Â, Ĉ) of a change in param-
eter β for the Australian IDU epidemic.

We decrease and increase β by a di�erent percentage while �xing all other

parameters. The results are listed in Table 3.7.

It is easy to see that Ŝ is shrinking with a smaller β while Â is increasing,

and vice versa Â is decreasing with a higher value of β.

The e�ects are not as strong as in the case of the parameterization for the

United States. Presumably this is due to the fact that the parameter values

of the Australian problem are smaller and the steady state is, too.
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To better illustrate the results we �nally display the phase portrait around the

steady state of the injection drug use epidemic in Australia in Figure 3.3. This

allows for a better understanding of the dynamical system.
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Figure 3.3: Phase portrait around the steady state for the Australian pa-
rameter set.



Chapter 4

Bifurcation Analysis

Bifurcation theory is used for the study of the change in the qualitative struc-

ture of a dynamical system. Bifurcations occur if a slight change of a parameter

value causes a qualitative structural change in the model's behaviour. Exam-

ples of such changes are the gain or loss of steady states or the altered stability

of equilibria. The parameter value where a bifurcation occurs is called the

critical value of the system and will be denoted by parameterc.

A saddle-node bifurcation is a local bifurcation where two �xed points of a

dynamical system collide and annihilate. Blue sky bifurcation is another name

in reference to the sudden accumulation of two �xed points. This bifurcation

will occur in our model.

As mentioned in Chapter 3, the steady states (Ŝ, Â, Ĉ) are given by the solution

of the SAC model (2.1) when Ṡ, Ȧ, and Ċ are set equal to zero simultaneously.

Ċ is zero, if lnA = lnC, i.e., if A is equal to C. Thus, we get the following

system of equations to solve:

0 = k − δS − αAβSca,

0 = αAβSca − µA.

Adding Ṡ = 0 and Ȧ = 0 we obtain k− δS − µA = 0, and solving for S yields

Ŝ =
k − µÂ

δ
.

30
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Inserting Ŝ into the equation Ȧ = 0 produces the simpli�ed equation

0 = Â
(
αkcaÂβ−1 − αµcaÂβ − µδ

)
.

The �rst solution is Â = 0.

To get other solutions we have to solve the equation given by

rÂβ − pÂβ−1 + q = 0

with

r = αµca,

p = αkca,

q = µδ.

We want to make a bifurcation analysis for two di�erent values of β.

First, we set β equal to 2 therewith we have a convex initiation function. Sec-

ond, we will simulate a concave initiation function by changing β to 1/2.

If β = 2, we get a quadratic equation, which can be solved analytically:

Â1 =
p+

√
p2 − 4rq

2r
,

Â2 =
p−

√
p2 − 4rq

2r
.

The square root is greater than 0 if

k >

√
4µ2δ

αca
,

δ <
αk2ca

4µ2
,

α >
4µ2δ

k2ca
,

µ <

√
αk2ca

4δ
,
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or

c <
a

√
αk2

42δ
.

For β = 1/2 we get just one steady state besides the arti�cial one Â = 0.

r
√
Â− p

1√
Â

+ q = 0

After multiplying with
√

Â and transforming C =
√

Â, C2 = Â we get the

quadratic equation

rC2 − p+ qC = 0

with the solutions

Â1 = C2
1 =

−q +
√

q2 − 4rp

2r
,

Â2 = C2
2 =

−q −
√
q2 − 4rp

2r
.

Regarding that C2 is smaller than 0 and C2 =
√
A2, it is not a solution of our

problem. Hence, no bifurcations emerge if β is equal to 1/2 .

4.1 Bifurcation Analysis for the United States

For the base case parameterization of the U.S. cocaine epidemic, Table 4.1

shows the critical values for β = 2.

parameter critical value
kc 0.6795
δc 0.2359
αc 0.0023
µc 0.3280
cc 34.6733

Table 4.1: Critical values for the base parameterization of the cocaine epi-
demic in the United States and β = 2.
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These are exactly the values where the square root
√
p2 − 4rq is equal to zero.

We will also include the original parameter values, the base case parameters

parameterbc in our �gures.

4.1.1 In�ow into the State S, k

If β = 2, a change of the in�ow rate to a lower value leads to a saddle-node

bifurcation.

Figure 4.1 shows the bifurcation plots for A, the number of active users, and

S, the group of susceptible non-users. The critical parameter value is lo-

cated at kc = 0.6795 with the corresponding bifurcation point (Ŝc, Âc, Ĉc) =

(5.6154, 2.0454, 2.0454).

Note that the diagram of C would be the same as the one for A and therefore

can be omitted.
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Figure 4.1: Bifurcation diagrams with respect to the in�ow into state S, k,
for the U.S. cocaine epidemic and β = 2.
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For an example of the bifurcation analysis with a concave initiation function

we refer to Figure 4.2.

It shows that a smaller exponent of the initiation function than 1, β = 1/2,

does not lead to a modi�cation in the dynamical behaviour. The parameters k,

δ, α, µ, and c have no impact on the numbers of steady states or the stability

if β = 1/2.

Please note that we omit the �gures for these cases in this thesis.
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Figure 4.2: Bifurcation diagrams with respect to k, the in�ow into state S,
for the base parameter set of the cocaine epidemic in the United States of
America and β = 1/2.

4.1.2 Exit from the State S, δ

Again, a saddle-node bifurcation occurs at the critical value δc = 0.2359 if

β = 2 as shown in Figure 4.3.

The critical value is almost four times as high as the base case parameter

δbc = 0.0605.
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Figure 4.3: Bifurcation diagrams with respect to the exit from state S, δ, for
the U.S. cocaine epidemic and β = 2.
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Figure 4.4: Bifurcation diagrams with respect to the coe�cient in the initi-
ation function, α, for the U.S. base parameterization and β = 2.
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4.1.3 Initiation Function Coe�cient, α

Figure 4.4 displays that a blue sky bifurcation occurs at αc if β is set equal to

2. At the point (Ŝc, Âc, Ĉc) = (11.0884, 4.0388, 4.0388), the bifurcation point,

the stable focus Ê2 and the saddle point steady state Ê1 collide.

4.1.4 Exit from the Active Use, µ

If β = 2, the critical parameter is smaller than the base case parameter

µbc = 0.1661. A saddle-node bifurcation occurs at the point (Ŝc, Âc, Ĉc) =

(11.0884, 2.0454, 2.0454).
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Figure 4.5: Bifurcation diagrams with respect to the exit of active use, µ,
for the U.S. base parameter set and β = 2.

4.1.5 Coe�cient in the Growth Rate, c

Figure 4.6 illustrates that the parameter value c has to be enhanced to nearly

35 in order to cause a saddle-node bifurcation. As discussed in [Ranner, 2009]

and [Silbermayr, 2009], the adaptation of the SAC model to the original SA

model is the higher the higher the parameter value c is.
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Figure 4.6: Bifurcation diagrams with respect to the coe�cient in the growth
rate, c, for the United States and β = 2.

4.2 Bifurcation Analysis for the Australian IDU

Epidemic

By changing the exponent in the initiation function β to 2, a second and a

third steady state appear for the Australian IDU epidemic. One is the arti�cial

steady state where Â = Ĉ = 0.

Keeping β equal to 1/2 represents the case of the injection drug use in Aus-

tralia where the base case parameter βbc = 0.8622 and we have a concave

initiation function. Once more, no bifurcation occurs if the exponent in the

initiation function equals 1/2.

For the Australian base parameters the critical values for β = 2 are listed in

the Table 4.2.
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parameter critical value
kc 0.0773
δc 0.0440
αc 1.1054
µc 0.0773
cc 0.0069

Table 4.2: Critical values for the Australian IDU base parameterization.

4.2.1 In�ow into the State S, k

Increasing the parameter k upon kc evokes a blue sky bifurcation illustrated

in Figure 4.7. That means there are values of k where we have just one steady

state and some where we have 3. Exactly two steady states are reached if we

equal parameter k to the critical value kc in order to reach a congruence of√
p2 − 4rq = 0. Then, the two equilibria coincide leaving only the arti�cial

steady state.
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Figure 4.7: Bifurcation diagrams with respect to the in�ow into state S, k,
for the Australian IDU epidemic and β = 2.
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4.2.2 Exit from the State S, δ

Figure 4.8 shows that a blue sky bifurcation emerges if we roughly halve

the original value of δ. The bifurcation point is given by (Ŝc, Âc, Ĉc) =

(0.5974, 0.2315, 0.2315).
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Figure 4.8: Bifurcation diagrams with respect to the exit from state S, δ, for
the Australian base parameterization and β = 2.

4.2.3 Coe�cient in the Initiation Function, α

Two equilibria occur if we increase α by more than 50% compared to the

original parameter value αbc = 0.5112. As listed in the Table 4.2, the critical

value of α is given by αc = 1.1054. The saddle-node bifurcation is shown in

Figure 4.9.

4.2.4 Exit from the Active Use, µ

Again, two additional steady states occur if we abate the parameter for the

exit from active use if β = 2. Figure 4.10 displays the blue sky bifurcation.

(Ŝc, Âc, Ĉc) = (0.2763, 0.3404, 0.3404) denotes the bifurcation point, the point

where the number of equilibria changes.
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Figure 4.9: Bifurcation diagrams with respect to α for the Australian base
parameter set and β = 2.
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4.2.5 Coe�cient in the Growth Rate, c

Finally, we have a look at the bifurcation plots associated with the coe�cient

in the growth rate in Figure 4.11.

If β = 2, a blue sky bifurcation appears at the critical parameter value

cc = 0.0069, which is lower than the original value.

This is a big di�erence to the U.S. parameterization, where the coe�cient

in the growth rate c has to be enlarged to 34.6733 to get to the bifurcation

point.
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Figure 4.11: Bifurcation diagrams with respect to the coe�cient in the
growth rate, c, for the Australian IDU epidemic and β = 2.

4.3 Two-Dimensional Bifurcation Analysis

This part of the thesis is investigating the interplay of two parameters. We

change two parameter values simultaneously and look at the number of steady
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states.

We will see that there are parameter values where the number of equilibria is

varying from one to three.
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Figure 4.12: Two-dimensional bifurcation diagram with respect to the coef-
�cient in the growth rate, c, and the coe�cient of the initiation function, α, if
β = 2 for the U.S. base parameterization.

Theoretically there can be exactly two steady states. The arti�cial one if Â = 0

and the steady state you get if you solve the equation with the two critical

parameter values therewith the root is equal to 0 and Ê1 and Ê2 collide.

Figure 4.12 displays the interplay between c and α. These two parameters

both have an impact on the initiation function αAβS
(
cA
C

)a
.

If c is larged and α is diminished the initiation function is decreasing, meaning

that S is increasing and A is decreasing. If we increase the coe�cient of the

initiation function above the original value, the function itself increases and

consequently the number of drug users rises.
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Figure 4.13: Two-dimensional bifurcation diagram with respect to c and the
in�ow into state S, k, if β = 2 for the U.S. cocaine epidemic.

Increasing the parameters k and c leads to a higher number of people who

are susceptible to initiating into drug use. The parameter k, representing the

in�ow into the state S has an indirect e�ect on the number of active drug users

A. Due to the great number of susceptible non-users caused by a higher in�ow

rate into state S, k, more people become drug users, so the state A rises, too.

Figure 4.13 displays the two-dimensional bifurcation analysis for these two pa-

rameters.

Figure 4.14 reproduces the two-dimensional bifurcation analysis for the exit

of state S and the coe�cient in the growth rate. The boost of δ reduces the

numbers of S and A. The di�erence to the other two-dimensional bifurcation

plots is that a small value of δ is required for two additional steady states.

Finally, we want to look at a two-dimensional bifurcation analysis for the Aus-

tralian IDU parameterization.
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Figure 4.14: Two-dimensional bifurcation diagram with respect to c and the
exit from state S, δ, if β = 2 for the U.S. base case parameters.
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Figure 4.15: Two-dimensional bifurcation diagram with respect to c and the
exit from active use A, µ, if β = 2 for the Australian IDU epidemic.
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Again, the parameter β is set equal to 2, so we have a convex initiation func-

tion contrary to the initial situation of the Australian base case parameter set.

Figure 4.15 depicts the interaction between c and the parameter µ. Increasing

µ has a negative impact on the number of drug users in contrast to a higher c.



Chapter 5

Enforcement

In this chapter we will model a control instrument denoted as enforcement,

v. We let v be the amount of throughput capacity removed, which appears

linearly in the third state equation Ċ.

Ṡ = k − δS − f(A)Sp(A,C)a,

Ȧ = f(A)Sp(A,C)a − µA, (5.1)

Ċ = g(p)C − vC.

Throughput capacity measures how much smugglers can bring in on a current

basis, which now is reduced by v. Enforcement can be seen as police work

having an e�ect on the price.

However, the third state C will not be decreased for the whole epidemic. This

will only be the case for the �rst year in this chapter.

After some preliminary analyses we conclude that the e�ectiveness of reducing

C is most signi�cant at the beginning of the epidemic.

5.1 Enforcement and its E�ects in the U.S.A.

By varying v we get new equilibrium points for the high steady state and the

saddle point.

The number of active users is smaller with a higher level of enforcement v

46
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compared to the original value. In this case, the impact of enforcement is as

one would expect it to be. The number of drug users decreases because of

a higher price and the emanating smaller initiation, so the number of people

who are susceptible to initiating into drug use increases.

(Ŝv=0%, Âv=0%, Ĉv=0%) = (3.9490, 6.7201, 6.7201),

(Ŝv=10%, Âv=10%, Ĉv=10%) = (4.8290, 6.3188, 3.2442),

(Ŝv=20%, Âv=20%, Ĉv=20%) = (5.9153, 5.9231, 1.5613).

We get the eigenvalues

λ1 = −0.1802,

λ2,3 = −0.0980± 0.1255i,

if we have an enforcement policy with v = 10%. This means we still have a

stable focus as is the case for v = 20%, in which the eigenvalues are given by

λ1 = −0.1793,

λ2,3 = −0.0730± 0.1143i.

With a higher value of enforcement v the saddle point steady state is higher

with respect to the state A. This means that we have more active users if we

use enforcement to minimize the drug capital stock. On account of a smaller

value of C we get a higher price p but consequently a smaller initiation if A

and C are close to 0 and smaller than 1 and therefore a higher number of active

users A.

(Ŝv=0%, Âv=0%, Ĉv=0%) = (21.2619, 0.3332, 0.3332),

(Ŝv=10%, Âv=10%, Ĉv=10%) = (20.9077, 0.4623, 0.2374),

(Ŝv=20%, Âv=20%, Ĉv=20%) = (20.3898, 0.6509, 0.1716).

Again, the control enforcement does not change the stability behaviour of the

equilibrium and we still have a saddle point:

λ1 = 0.0729,

λ2 = −0.0583,

λ3 = −0.1773
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are the eigenvalues for the model with v = 10%. For v = 20%, the eigenvalues

are given by

λ1 = 0.0703,

λ2 = −0.0572,

λ3 = −0.1773.

If C = 0, enforcement has no impact on the equilibrium, so the arti�cial steady

state stays the same.

In addition, we are looking closer at the dynamic behaviour of the model with

di�erent enforcement rates v.
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Figure 5.1: Trajectories with v = 0% (solid line), v = 10% (dotted line),
and v = 20% (dashed line) enforcement rate per year and (S(0), A(0), C(0)) =
(3, 6, 3) for the U.S. cocaine epidemic.
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In the Figures 5.1 and 5.2 we compare the behaviour of the trajectories with

v = 0%, v = 10%, and v = 20% removal rate per year for the initial values

(S(0), A(0), C(0)) = (3, 6, 3) and (S(0), A(0), C(0)) = (4.5, 4, 2), respectively.

It is plain to see that the trajectories converge to three di�erent steady states.

Looking at the (S,A)-plane in these �gures reveals that the control v has

a strong e�ect on the number of drug users A, as the performance of the

trajectories for v = 0%, v = 10%, and v = 20% is very di�erent.
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Figure 5.2: Trajectories with v = 0% (solid line), v = 10% (dotted line),
and v = 20% (dashed line) enforcement rate per year and (S(0), A(0), C(0)) =
(4.5, 4, 2) for the U.S.A. base parameterization.

Next, we have a look at the social costs which occur during a drug epidemic.

J =

∫ ∞

0

e−rtA(t) dt
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describes the discounted amount of drug users over an in�nite time horizon.

We will use a �nite horizon (T = 500) approximation to the in�nite integral

with an in�nite error term:

J =

∫ T

0

e−rtA(t) dt+ Â

∫ ∞

T

e−rt dt.

Ĵ calculates the social costs which arise from applying v = 10% or v = 20% in

the �rst year:

Ĵ =

∫ 1

0

e−rtAv(t) dt+

∫ T

1

e−rtA(t) dt+ Â

∫ ∞

T

e−rt dt.

Figure 5.3 demonstrates the di�erence (Ĵ − J) ∗ 100 by applying the con-

trol v = 10%. One may conclude from this that enforcement leads to smaller

or equal costs because we have less users A. We �nal that the social costs can

be reduced by up to nearly 80% if we have enforcement at the level v = 10%.

Starting at initial values with a high value of S and a small value of A it is

cheaper not to use enforcement.
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Figure 5.3: Reduction in J by applying control v = 10% for the cocaine
epidemic in the United States.
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The reduction of social costs in percentage terms, if we apply the control

instrument enforcement in amount of v = 20% is shown in Figure 5.4. We can

see that a higher reduction of the state C is more e�ective. There are some

initial conditions of an epidemic where we can save more than 80% if we use

enforcement to abate the drug stock C. The black area of the graphics shows

those values of initial condition where enforcement has the strongest e�ect on

the social costs.
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Figure 5.4: Reduction in J by applying control v = 20% for the U.S. base
parameterization.

5.2 Enforcement and its E�ects in Australia

If we modify the base case model SAC by adding a new parameter v we obtain

new equilibria depending on the amount of the control enforcement v.

(Ŝv=0%, Âv=0%, Ĉv=0%) = (0.1202, 0.3623, 0.3623),

(Ŝv=10%, Âv=10%, Ĉv=10%) = (0.1411, 0.3448, 0.1770),

(Ŝv=20%, Âv=20%, Ĉv=20%) = (0.1653, 0.3245, 0.0855).

Once more, enforcement does not change the stability behaviour of our model.
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The eigenvalues imply that the equilibria are stable foci:

λ1 = −0.4540,

λ2,3 = −0.1132± 0.0271i

derive from v = 10%. The eigenvalues

λ1 = −0.35303,

λ2,3 = −0.1076± 0.0292i

come from setting v = 20%.

In Figures 5.5 and 5.6 we compare the base case scenario with trajectories with

v = 10% and v = 20% removal rate.
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Figure 5.5: Trajectories with v = 0% (solid line), v = 10% (dotted line),
and v = 20% (dashed line) enforcement rate per year and (S(0), A(0), C(0)) =
(1, 1, 1) for the Australian parameterization.
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We start with the initial conditions (S(0), A(0), C(0)) = (1, 1, 1) in Figure 5.5

and (S(0), A(0), C(0)) = (0.5, 1, 0.5) in Figure 5.6. Looking at the �rst subplot

of the �gures, the (S,A)-plane, illustrates that enforcement v hardly a�ects

A in the Australian IDU parameterization, since the trajectories for di�erent

values of v are very similar. This probably is due to the relatively small steady

state in the Australian injection drug use epidemic.
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Figure 5.6: Trajectories with v = 0% (solid line), v = 10% (dotted line),
and v = 20% (dashed line) enforcement rate per year and (S(0), A(0), C(0)) =
(0.5, 1, 0.5) for the injection drug use in Australia.

In the following analyses we will picture the reduction in social costs when

applying the control v = 10% and v = 20% versus the base case model without

enforcement. We are looking at the percental di�erence derived from initial

values where S(0) varies from 0.01Ŝ to 2Ŝ, A(0) varies from 0.01Â to 2Â, and

C(0) = A(0).
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Figure 5.7: Reduction in J by applying control v = 10% for the Australian
IDU.
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The (A, S)-plots in Figures 5.7 and 5.8 illustrate that we get the highest e�ects

on the right hand side of the graphics for those initial conditions, where we

have a high number of users A. Note that the current throughput capacity of

the supply network of drugs equals the number of active users, C(0) = A(0),

in the beginning of the epidemic.

Again, we see that a higher value of v breeds a larger reduction in social costs.

As mentioned before, enforcement in the Australian IDU epidemic is not as

successful as in the cocaine epidemic in the United States.



Chapter 6

Supply Shocks

In this chapter, a supply shock and its consequences on the optimal dynamic

drug policy are being analysed. Many illicit drug epidemics experienced such

a supply reduction, for example the Australian "heroin drought"; see, e.g.,

[Bultmann et al., 2008a], [Bultmann et al., 2008b], [Degenhardt et al., 2005],

[Weatherburn et al., 2002]. As introduced in Chapter 5, we reduce the current

throughput capacity of the supply network of drugs. One can think of such a

reduction as con�scation of a certain amount of the current drug stock or as

more investment in the control of the supply side (dealers, etc.), so the drug

price rises which consequently in�uences the consumers.

Here, we will simulate a supply shock to the extent of 50% by reducing the

state C(t) at the time t. Performing such a reduction of C at di�erent stages

of the epidemic and comparing the results will give us information about how

expedient a supply reduction is at a certain stage in the epidemic. We will

present the results in the (A, S)- and (A,C)-planes for the two di�erent pa-

rameter sets for the United States and Australia.

6.1 Supply Shocks and their E�ects in the U.S.A.

We simulate the e�ects of a supply reduction based on di�erent initial scenar-

ios. The outcome of a supply shock is examined for the �rst 50 years to detect

which years a�ords the highest e�ects on the social costs.

In addition, we look at the bene�t-cost ratio of a supply shock, which provides

insight into the e�ciency of this kind of control.
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6.1.1 (A, S)-Plane

In the (A, S)-plane we distinguish between three di�erent initial conditions for

the throughput capacity of the supply network of drugs. C(0) can either be

twice as high as, equal to, or one half of A(0) in the beginning of the epidemic.

First, we want to look at the most e�cient years for a supply shock of C by

50%. The results for the di�erent initial conditions for C(0) are very similar

so we will just present the bottom line for the case C(0) = 2A(0).

2 4 6 8 10 12

2

4

6

8

10

12

14

16

18

20

22

A

S

 

 

1

2

3

4

5

6

7

8

9

10

11

12

Figure 6.1: Most e�cient years for a supply reduction by 50% for several
initial values in the (A, S)-plane with a few trajectories for the U.S. base
parameter set, (C(0) = 2A(0)).

Figure 6.1 shows the most e�ective years, where a supply reduction for dif-

ferent initial values has the greatest impact on social costs. We include some

trajectories to see if there is a connection between the trajectories and the

most e�ective years for a reduction of C.

It appears that as long as the number of users is growing the �rst year is best

suited for a supply reduction and then a later year becomes more e�ective.

Please note that this is just an assumption but it was not proved or examined

further.
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As mentioned before, the qualitative behaviour of the solutions for C(0) = A(0)

and C(0) = A(0)/2 resemble C(0) = 2A(0). For C(0) = A(0) the latest year

for a supply shock is the eleventh, for a drug stock half as large as the number

of active users the latest most e�ective year for a supply shock is the 9th.

Next, we take a closer look at two di�erent initial values. One within the white

area, where it is optimal to have a supply reduction in the �rst year, and the

second within the black area, where the maximum e�ect of a reduction of C

by 50% is after 12 years.

Figure 6.2 illustrates the trajectories over the years for the number of suscep-

tibles, the number of current users, the capital stock of the drug smuggling

industry, the price function, and the initiation.
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Figure 6.2: Comparison of the states, the price, and the initiation over
the time for (S(0), A(0), C(0)) = (4.2184, 12.9911, 25.9822) with a supply
reduction of 50% in the �rst year (solid line) and for (S(0), A(0), C(0)) =
(3.6214, 12.9911, 25.9822) with a 50% supply reduction after 12 years (dashed
line) of the U.S. cocaine epidemic.
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If C drops, the number of users decreases as well but not as signi�cantly. Ac-

cordingly, the price increases, which is plausible, because due to the stronger

controls on the part of the police the dealers have to take higher hazards. This

in turn has an impact on the initiation.

By comparing the respective state paths we can see that the numbers of sus-

ceptibles and users are very similar over the time but the recommended control

is completely di�erent. It is reasonable to assume that in an optimal control

formulation of this model we would �nd so-called DNSS thresholds (named

after Dechert, Nishimura, Sethi und Skiba), see [Grass et al., 2008].

Until now, the social costs have always been measured by the discounted ac-

cumulation of users over an in�nite time horizon. Now we want to use another

way to measure the costs.

J2 =

∫ ∞

0

e−rtC(t) dt

measures the social costs by looking at the number of drug sellers, which is

proportional to C(t). Later, we will recur to this subject.
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Figure 6.3: Most e�cient years for a supply shock by 50% for several initial
values in the (A, S)-plane measured with J2 for United States, (C(0) = 2A(0)).
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The most e�cient years of a supply shock by 50% is shown in Figure 6.3 if we

compare the costs which emerge from the number of drug sellers computed by

using the state C instead of A.

The bottom line here is completely di�erent to the results we get using the

number of drug users to estimate the social costs.

Thus, we have to be careful with the decision which year is the most e�ective

for a supply shock.

Moreover, we want to know how e�cient the reduction of C by 50% in the

�rst year is. For that purpose, we compute

J i − Ĵ i

δ
,

which can be interpreted as a bene�t-cost ratio and gives an insight into the

e�ciency of a supply shock reducing C by 50% in the i-th year. The amount

of the supply shock of C is called δ.
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for di�erent initial values and C(0) = 2A(0) in the (A, S)-
plane for the U.S. cocaine epidemic.
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Again, we investigate three di�erent scenarios for C(0), but because of the

striking resemblance we will just look at C(0) = 2A(0).

Figure 6.4 shows the results of a supply reduction in the �rst year where we

have an initial drug stock twice as high as the number of current users. Note

that the bene�t-cost ratio is higher if we start with a smaller value of C(0)

because the denominator δ is smaller.

Once again, the e�ects of a supply reduction in the year i are measured by the

discounted number of users over an in�nite planning horizon:

Ĵ i
1 =

∫ i−1

0

e−rtA(t) dt+

∫ i

i−1

e−rtAv(t) dt+

+

∫ T

i

e−rtA(t) dt+ Â

∫ ∞

T

e−rt dt.

Next, we want to add other ways to measure the social costs. First, we consider

the number of drug sellers, which can be modeled as being proportional to C(t):

J2 =

∫ ∞

0

e−rtC(t) dt.

Secondly, we let social costs be represented by the amount of drugs consumed,

which is proportional to A(t) times price raised to the short-run elasticity of

demand ω:

J3 =

∫ ∞

0

e−rtpωA(t) dt.

Finally, we may measure the social costs by looking at the amount of money

spent for drugs:

J4 =

∫ ∞

0

e−rtp1+ωA(t) dt.

Note that ω = −0.5 is assumed for the elasticity of demand in the objective

function.
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During our investigations we noticed that the qualitative behaviour of the so-

lutions for J1, J2, J3, and J4 are very similar with changes only in the amount

of the ratio. Therefore, we omit the �gures for the di�erent ways to measure

the social costs. J2 and J4 provoke smaller bene�t-cost ratios, but valuing

with J3 causes higher ones. For J2 the highest ratios are 83.9786, for J3 we

have ratios up to 243.3547, and estimating the social cost with J4 produces

the highest bene�t-cost ratios 53.7439.

To compare the results of a supply shock in the �rst year with the outcome of

a 50% reduction of state C in the most e�cient year we refer to Figure 6.5.
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Figure 6.5: Ji−Ĵi

δ
for di�erent initial values and C(0) = 2A(0) in the (A, S)-

plane with a supply reduction in the most e�cient year for the cocaine epidemic
in the United States.

The initial values where we got the highest bene�t-cost ratio before when we

had the supply shock at the very beginning of the epidemic are now afresh the

ones where we have the best bene�t-cost ratio.

Overall, we got the impression that the saddle point steady state has a high

in�uence on the bene�t-cost analysis. For this purpose, we take a closer look

at this equilibrium in Figure 6.6.
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Figure 6.6: Zoom in on the saddle point steady state for the U.S. parameter-

ization. J−Ĵ
δ

for di�erent initial values and C(0) = 2A(0) in the (A, S)-plane.

Needless to say that the quotients arisen with initial values along the instable

manifold are the highest. It should be stressed that the qualitative behaviour

of the solution is the same if the drug stock is not halved in the beginning but

in the most e�cient year.

We �nd that there is a band of initial values where a supply shock in the

�rst year leads to a convergence towards another steady state. The U.S. co-

caine parameters generate a tipping point curve separating the high-level stable

focus from the low-level equilibrium related to the number of current users A.

These tipping points alter with a reduction of C in the �rst year of the epi-

demic, e.g. [Caulkins et al., 2009a], [Caulkins et al., 2009b].

Figure 6.7 contrasts the original trajectories and the trajectories we get with

a supply shock in the �rst year. We can see that the trajectories converge

towards di�erent steady states.
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Figure 6.7: Drug use trajectories for the U.S. cocaine parameterization start-
ing at (S(0), A(0), C(0)) = (23.08168, 0.3048926, 0.6098) without (solid line)
and with supply reduction (dashed line).
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6.1.2 (A,C)-Plane

We continue with looking at the (A,C)-plane. Here, we will determine the

results for �ve di�erent but �xed values of S(0) while C(0) varies from 0.01Ĉ

to 2Ĉ. Either the number of susceptible non-users at the beginning of the

epidemic is small, namely S(0) = 2, S(0) = Ê2, or S(0) = 12 or we start with

a relatively high number of people who are susceptible to initiating into drug

use, namely S(0) = Ê1 or S(0) = 30.

First, we want to investigate the most e�cient years for a supply shock. Fig-

ure 6.8 illustrates the best years for a 50% reduction of C if we start with the

initial condition S(0) = 2.
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Figure 6.8: Most e�cient years for a supply reduction of C by 50% if S(0) = 2
for several initial values in the (A,C)-plane for the U.S. parameterization.

The larger the number of people who are susceptible to initiating into drug

use is at the beginning of the drug epidemic, the earlier a supply reduction is

optimal.

This is shown in the next Figure 6.9 and by the fact that for the initial condi-

tions S(0) = 12, S(0) = Ê1, and S(0) = 30 the �rst year is the most e�cient

year for a supply reduction of current throughput capacity of the supply net-
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work of drugs, C, by 50%.
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Figure 6.9: Most e�cient years for a supply reduction of C in the U.S. cocaine
epidemic if S(0) = Ê2 for several initial values in the (A,C)-plane.

Next, we want to look at the bene�t-cost ratio J−Ĵ
δ

in the (A,C)-plane for dif-

ferent values of S. Once again, we just post the results for S(0) = 2, because

the other ones are very similar.

Figure 6.10 shows the bene�t-cost ratio for S(0) = 2 and for social costs mea-

sured with the discounted accumulation of users over an in�nite time horizon.

For S(0) = Ê2 we reach the value 249.8187. The bene�t-cost ratio is higher

for a higher initial value of S. For the highest considered value of S(0) = 30

we get the result 582.7231. The only exception here is the initial condition

S(0) = 2, the smallest value of S we examined.

In turn, we want to investigate the di�erence between the bene�t-cost ra-

tio of a supply reduction in the �rst year and one in the most e�ective years.

Figure 6.11 shows that the quotient is smaller if there is a reduction of C in

the most e�ective years because the costs do not get that high if there is an

intervention at the right time.
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Figure 6.10: J−Ĵ
δ

for di�erent initial values and S(0) = 2 in the (A,C)-plane
for the U.S. base parameter set.
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Figure 6.11: J−Ĵ
δ

for di�erent initial values and S(0) = 2 in the (A,C)-plane
with a supply shock in the most e�cient years for the cocaine epidemic in the
United States.
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As mentioned before in the case of the (A, S)-plane, the di�erent ways to mea-

sure the social costs lead to di�erent bene�t-costs ratios, but the qualitative

behaviour of the solution stays the same. J2 and J4 determine a smaller bene�t-

cost ratio, 469.7652 and 228.2689, and J3 breeds a higher ratio 1393.6846. Fig-

ure 6.12 exempli�es this.
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Figure 6.12: J4−Ĵ4
δ

for di�erent initial values and S(0) = 2 in the (A,C)-plane
for the U.S. base parameterization.
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6.2 Supply Shocks and their E�ects in Australia

Until now, the analyses of this chapter only featured the U.S. parameter val-

ues. Hence, we will now look at the e�ects of a supply shock in the Australian

injection drug use epidemic. Reducing C(t) at time t and comparing the dif-

ferent results will give us an indication about how valuable a supply reduction

at a certain stage in the epidemic is.

6.2.1 (A, S)-Plane

In this section we will analyse the results of a reduction of C by 50% for the

Australian parameterization when we vary the number of people who are sus-

ceptible to initiating into drug use, S(0), and the current users, A(0).

In the beginning we quest for the best year for a supply reduction in terms of

the year with the greatest e�ects on the social costs.
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Figure 6.13: Years where the reduction of C by 50% have the highest con-
sequences with the Australian base parameter set and C(0) = 2A(0) in the
(A, S)-plane.

Figure 6.13 shows the most e�cient years for a sudden reduction of the through-
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put capacity of the supply network of drugs with the initial condition C(0) =

2A(0) and di�erent initial values for A(0) and S(0). For C(0) = A(0) year 9 is

the latest most e�cient, and for C(0) = A(0)/2 year 10 is the latest we found

to be optimal.

In the next part of this section we want to inquire J−Ĵ
δ

with di�erent ini-

tial values. Once again, we look at the three di�erent initial conditions for

C(0) and the four di�erent ways to measure the social costs.

Figure 6.14 illustrates the bene�t-cost ratios for initial values where S(0) varies

from 0.01Ŝ to 2Ŝ and A(0) from 0.01Â to 2Â.
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Figure 6.14: J−Ĵ
δ

for di�erent initial values and C(0) = 2A(0) in the (A, S)-
plane with the Australian IDU parameters.

Due to the fact that the qualitative behaviour of the solution is the same for

C(0) = A(0) and C(0) = A(0)/2 we just include the previous �gure. The

bene�t-cost ratio is higher for smaller initial values of C. The only exception

is J1 with the initial condition C(0) = A(0). The bene�t-cost ratio is a little

smaller here compared to C being twice as high as A in the beginning of the

epidemic. Again, we have the same pattern as in the U.S. parameter case. J4

leads to the smallest ratio 8.4395 for C(0) = 2A(0), J2 to the second smallest.
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We get 39.5511 for the smallest value of A and the highest value of S we con-

templated. If we measure the social costs by the amount of drugs consumed

we get 104.4562 as the highest result.

6.2.2 (A,C)-Plane

Finally, let us look at the consequences of a supply shock for the injection drug

use in Australia by keeping S constant and varying C in the (A,C)-plane.

Figure 6.15 depicts the results for a high initial number of susceptible non-

users, S(0) = 2Ŝ.
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Figure 6.15: Years where a reduction of C by 50% has the most severe
consequences for the Australian base parameter set and S(0) = 2Ŝ in the
(A,C)-plane.

Figure 6.16 displays the time paths for the number of people who are sus-

ceptible to initiating into drug use, the active users, the current throughput

capacity of the supply network of drugs, the price function, and the initiation

function.
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If we compare the state paths of (S(0), A(0), C(0)) = (0.2404, 0.0036, 0.0217),

where a supply shock in the �rst year is optimal, with those of (S(0), A(0), C(0)) =

(0.2404, 0.0036, 0.0036), where the greatest e�ect of a reduction of C by 50%

is later in the 4th year, we see that the trajectories for S(t) and A(t) are very

similar, although the applied control is completely di�erent.

A reduction of C by 50% with the Australian parameter set is not as e�ec-

tive as for the cocaine epidemic in the United States of America. Here, we

have a smaller steady state level and accordingly a smaller value of through-

put capacity. Even the time paths for the drug stock C(t) look quite similar.

Interestingly, the price functions over time are signi�cantly di�erent with a

supply reduction in the �rst versus the fourth year.
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Figure 6.16: Comparison of the states S, A, and C, the price, and the
initiation over time for (S(0), A(0), C(0)) = (0.2404, 0.0036, 0.0217) with a
supply reduction in the beginning (solid line) and for (S(0), A(0), C(0)) =
(0.2404, 0.0036, 0.0036) with a supply shock of 50% after 4 years (dashed line)
for injection drug use in Australia.
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It is easy to see that suddenly the price is nearly twice as high as before the

shock, so a smaller drug stock C is leading to an increased price and therefore

to a higher value of S(t) combined with a lower number of current users A.

Initiation is delayed; �rst it is suppressed, but later on it is even somewhat

higher than in the case with the shock right at the beginning.

In contrast to the Australian case in the (A, S)-plane considering di�erent ini-

tial values of S(0) in the (A,C)-plane leads to a change in the recommended

years for a supply reduction by 50% (Figures 6.17 - 6.20).

Figure 6.17 illustrates the outcome for the initial condition S(0) = Ŝ, if we

vary A(0) from 0.01Â to 2Â and C(0) from 0.01Ĉ to 2Ĉ. Here we �nd more

initial values where a later supply reduction is better than one in the beginning

of the epidemic.
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Figure 6.17: Years where the reduction of the current throughput capacity
of the supply network of drugs by 50% has the strongest impact using the
Australian base parameter set and S(0) = Ŝ in the (A,C)-plane.

Figure 6.18 illustrates that the best years for a reduction of the throughput

capacity depends pretty much on the particular choice of the initial values.
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For most of the examined initial conditions the �rst year for a supply reduction

of C by 50% has the greatest e�ects on the social costs for a higher number of

people who are susceptible to initiating into drug use (Figure 6.17). A supply

shock later in the epidemic is more e�ective for smaller initial values of S(0)

(Figure 6.18).
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Figure 6.18: Years where a supply reduction of C by 50% has the strongest
impact for the Australian injection drug use epidemic with S(0) = Ŝ/2 in the
(A,C)-plane.

Finally, we will have a look at the bene�t-cost ratio (Figure 6.19 - 6.20). Once

again, we display only one �gure, (Figure 6.19) as an example for all initial

scenarios, because the qualitative behaviour of the solutions are the same in

the other corresponding exercises.

As mentioned before in the case of the U.S. cocaine epidemic, the bene�t-cost

ratio is smaller for smaller values of S(0) if we vary C(0) and A(0) and keep

the number of people who are susceptible to initiating into drug use, S(0),

�xed.



CHAPTER 6. SUPPLY SHOCKS 78

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A

C

 

 

0

10

20

30

40

50

60

Figure 6.19: J−Ĵ
δ

for di�erent initial values and S(0) = 2Ŝ in the (A,C)-plane
with the Australian IDU parameters.
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Figure 6.20: J2−Ĵ2
δ

for di�erent initial values and S(0) = 2Ŝ in the (A,C)-
plane for the Australian IDU parameterization.
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As before, we notice a certain pattern in the bene�t-cost ratios. J4 provokes

the smallest ratios, and J3 the highest. We will look more deeply at this phe-

nomenon in the following chapter.

The only exception here is J2. For the �rst time we get a better bene�t-cost

ratio if we measure the costs by the number of drug dealers, which is illustrated

in Figure 6.20.



Chapter 7

Social Costs

As mentioned in Chapter 6, working with di�erent functional forms for the so-

cial costs resulting from a drug epidemic may generate pretty di�erent results.

In this thesis we consider four di�erent integrands describing the social costs

over an in�nite planning horizon. In this chapter we will investigate whether

or not they lead to consistent policy recommendations.

Recall that

J1 =

∫ ∞

0

e−rtA(t) dt

describes the discounted accumulation of users,

J2 =

∫ ∞

0

e−rtC(t) dt

represents the number of drug sellers,

J3 =

∫ ∞

0

e−rtpωA(t) dt

stands for the quantity of drugs consumed, and

J4 =

∫ ∞

0

e−rtp1+ωA(t) dt

is the amount which is spent on drugs over an in�nite planning horizon.

80
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7.1 United States

For ease of comparison we �rst normalize the di�erent social cost values. For

that purpose, we weight all values to get the value represented by J1. If we

start with the high steady state of the U.S. base parameterization as initial

value we get

Social costs 1
Weight

J1 165.7029
J2 165.7028 1
J3 427.8429 2.5820
J4 64.1764 0.3873

Starting with (S(0), A(0), C(0)) = (21.2619, 0.3332, 0.3332), i.e. the saddle

point steady state, we get nearly the same weights:

Social costs 1
Weight

J1 8.2236
J2 8.2445 1.0025
J3 21.2592 2.5851
J4 3.1813 0.3869

This suggests that the weighting is stable when we start in an equilibrium.

Furthermore, we look at a whole bench of di�erent initial values and determine

the corresponding weights. In particular, we vary S(0) from 1 to 25 and let

A(0) vary from 1 to 10. We depict Figure 7.1 as one example to show how the

weights alter for varied initial values. For J2 the weights vary from 0.7594 up

to 1.8947 if we start with the initial condition (S(0), A(0), C(0) = 2A(0)).

This is similar for J3 and J4 and for C(0) = A(0) and C(0) = A(0)/2. We

can conclude that the weights for J2, J3, and J4 alter between minimum and

maximum levels as depicted in the table below:

Minimum Maximum

J2 0.6903 1.8947

J3 2.0665 3.5489

J4 0.2826 0.5312
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Figure 7.1: Weights for J2 for di�erent initial values with C(0) = 2A(0) for
the U.S. base parameter set.

Compared to the rather generous variation of initial values, the weights di�er

pretty moderately.

Table 7.1 lists the reference weights, computed as the arithmetic mean, for the

U.S. cocaine epidemic and the initial conditions C(0) = 2A(0), C(0) = A(0),

and C(0) = A(0)/2.

J2 J3 J4
RWC=2A 1.0541 2.6287 0.3876
RWC=A 0.9086 2.4376 0.4201
RWC=A/2 0.8097 2.2847 0.4564

Table 7.1: Reference weights for the U.S. cocaine epidemic for C(0) = 2A(0),
C(0) = A(0), and C(0) = A(0)/2.

In the next step, we will compare the results we got so far with the weighted

sum of all four integrands used above to measure the social costs:

Jw = J1 +RWJ2J2 +RWJ3J3 +RWJ4J4,
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where Jw denotes the weighted sum of the integrals.
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Figure 7.2: Most e�cient years for a supply reduction for the U.S. cocaine
epidemic with the initial condition C(0) = 2A(0) based on Jw.

Figure 7.2 depicts the years where a supply shock has the strongest e�ect on

the social costs which are measured by the weighted sum of J1, J2, J3, and J4.

We start with the initial condition where the amount of drugs is twice as high

as the number of users. As stated before, the recommended policy in which

year to induce a supply shock strongly depends on the way social costs are

measured.

In Chapter 6 we noticed a pattern how the di�erent ways to calculate the

bene�t-cost ratio in�uences the results. Now, we want to investigate this ratio

measured with a combination of the four distinct integrals.

Figure 7.3 shows the weighted bene�t-cost ratios for several initial values where

C(0) is twice as high as the number of users at the beginning of the epidemic.

The quotients are not four times as high as the ones measured with J1−Ĵ1
δ

although we adapted the integrals to J1. This most likely is due to the fact

that we use one reference weight over a grand �eld of initial values.
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Figure 7.3: Jw−Ĵw
δ

for di�erent initial values and C(0) = 2A(0) for the U.S.
parameter set.

In addition, we will now look at scenarios where we attach more or less impor-

tance to one method to calculate social costs and bene�t-cost ratios. The core

question of the analysis is whether leaping one component causes the strategy

to change, or not.

First, we completely omit the supply state C to measure the costs. In Figure

7.4 the costs are calculated with a weighted sum of discounted accumulation

of users, quantity of drugs consumed, and the amount spent on drugs. The

qualitative behaviour of the solution, where the bene�t-cost ratio is the high-

est, stays the same, but the amount changes, albeit not too much.

Second, we double the weight for J2 and half the one for J1. We lay more in-

terest on the costs caused by drug dealers and less on the costs breed by users.

In Figure 7.5 the bene�t-cost ratios for 1/2J1+2RWJ2J2+RWJ3J3+RWJ4J4

are illustrated. We see that the calculation of the weighted costs is consistent,

i.e. we get almost the same ratio with another weighted sum.
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Figure 7.4: Bene�t-cost ratio for the weighted sum of J1, J3, and J4 for
di�erent initial values and C(0) = 2A(0) for the United States.
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Figure 7.5: Bene�t-cost ratio for the weighted sum of J1, J2, J3, and J4, if we
lay more focus on J2 and less on J1 for di�erent initial values and C(0) = 2A(0)
for the U.S. cocaine epidemic.



CHAPTER 7. SOCIAL COSTS 86

Accordingly, we have to be careful naming the amount of the social costs as

they strongly depend on the way they are measured. However, looking at the

weighted sum of the four di�erent integrals produces similar results.

7.2 Australia

The original assumptions for the model parameters imply that we do get

the same weighting as we did for the cocaine epidemic in the United States

of America when we start with the stable steady state (S(0), A(0), C(0)) =

(0.1202, 0.3623, 0.3623) for the Australian base parameterization.

Social costs 1
Weight

J1 9.0567
J2 9.0569 1
J3 23.3845 2.5820
J4 3.5076 0.3873

Again, we calculate the weights for many di�erent initial values, where S(0)

varies from 0.0001 to 0.3, A(0) from 0.001 to 0.54, and C(0) = 2A(0), C(0) =

A(0), or C(0) = A(0)/2.

Figure 7.6 pictures the di�erent weights for J3 when we start with the initial

condition that C(0) is a half of A(0). As seen previously in the U.S. parameter

case, we notice that the weighting is fairly stable for di�erent initial values

and functional forms we use to measure the social costs resulting from a drug

epidemic.

The following table shows us that the variation of the weights for the di�erent

functional forms for the social costs resulting from a drug epidemic is closely

bounded on the considered part of the state space.

Minimum Maximum
J2 0.6934 1.303
J3 2.0906 2.9251
J4 0.3467 0.5153
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Figure 7.6: Weights for J3 for di�erent initial values with C(0) = A(0)/2 for
the Australian base parameterization.

One more time, we calculate the reference weights to rerun di�erent analyses

with a weighted sum of all four social cost measurements and compare the

obtained results. The average weights are listed in Table 7.2.

J2 J3 J4
RWC=2A 1.0752 2.6571 0.3823
RWC=A 0.9359 2.4898 0.4050
RWC=A/2 0.8413 2.3534 0.4313

Table 7.2: Reference weights for the Australian injection drug use for C(0) =
2A(0), C(0) = A(0) and C(0) = A(0)/2.

We start the analysis with computing the most e�cient years for a supply

reduction by 50% when considering the weighted sum of the functional forms

for the social costs resulting from a drug epidemic as we did for the cocaine

base parameterization for the United States.
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In turn, we come to the conclusion that we have to be prudent with the rec-

ommended control because the most e�cient years for a reduction of C by

50% strongly depend on the functional form we use to measure the social costs

resulting from a drug epidemic.

The results for the initial condition C(0) = 2A(0) are depicted in Figure 7.7.

A very big di�erence appears if we calculate the years where a supply shock

has the strongest e�ect on the costs with other initial conditions or another

weighting.
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Figure 7.7: Most e�cient years for a supply reduction of the state C by
50% calculated with Jw for the Australian injection drug use epidemic and the
initial condition C(0) = 2A(0).

Figure 7.8 illustrates the bene�t-cost ratios for the weighted sum of all four

di�erent ways to measure the social costs we examined. We get completely

di�erent results compared to the bene�t-cost ratio we got with the discounted

accumulation of users over an in�nite planning horizon, illustrated in Figure

6.4.

Next, we want to investigate how sensitive the results are with respect to the

weights used. We �rst omit the third state C to calculate the social costs.
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Figure 7.8: Jw−Ĵw
δ

for di�erent initial values and C(0) = 2A(0) for the Aus-
tralian base parameterization.
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Figure 7.9: Bene�t-cost ratio for the weighted sum of J1, J3, and J4 for
di�erent initial values and C(0) = 2A(0) for Australia.
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From Figure 7.9 we conclude that we do not get a bene�t-cost ratio three-

fourths as high as for Jw−Ĵw
δ

. As in the U.S. case, the reference weight is not

the best one on the hole considered space.

Furthermore, we �nally lay more focus on the costs caused by dealers and less

on the costs caused by active users. Figure 7.10 shows that the bene�t-cost

ratio is consistent in the sense that we get similar bene�t-cost ratios and the

identical qualitative behaviour of the solutions as for J1+RWJ2J2+RWJ3J3+

RWJ4J4.

Finally, it must be stated that the costs alter with the functional forms we

use to measure them. However, the qualitative behaviour of the solution does

not change too much, i.e., the initial values where the costs reach their highest

level or the best bene�t-cost ratio can be found are more or less the same, but

not to the same amount.

In summary, the qualitative behaviour of the policy recommendation resem-

bles, but the extent of the costs varies.
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Figure 7.10: Bene�t-cost ratio for the weighted sum of J1, J2, J3, and J4, if we
lay more focus on J2 and less on J1 for di�erent initial values and C(0) = 2A(0)
for Australia.



Chapter 8

Elasticity of Initiation

The basic motivation for this chapter is that we want to investigate how the

dynamic SAC model behaves when the overall elasticity level is increased to

−1. [Caulkins et al., 2000] �nd that the solution of a dynamical model is

strongly dependent on the elasticity levels. In other dynamic models of drug

use, the price occurs on three locations: the objective function, the initiation

function, and the exit term from active use. A prominent example is provided

by [Tragler et al., 2001]. One half of the absolute value of the overall elasticity

can be found in the objective function, the elasticity of demand, and the other

half at the initiation and the exit function. In our model, the exit rate is not

price-dependent. In this chapter we either enhance the elasticity of initiation

or we change our exit of active use to be price-dependent.

8.1 U.S. Parameterization

First, we change the parameter a, the elasticity of initiation, from a = −0.25

to a = −0.5 to make the initiation into cocaine use more dependent on price.

The modi�cation does not change the arti�cial stable node, Ê = (Ŝ, Â, Ĉ) =

(22.1796, 0, 0), because the parameter a does not impact this equilibrium. How-

ever, we get two di�erent new steady states

Ê1 = (Ŝ1, Â1, Ĉ1) = (21.8015, 0.1367, 0.1367),

Ê2 = (Ŝ2, Â2, Ĉ2) = (2.3612, 7.2176, 7.2176).
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It is obvious that the initiation and the number of users A in total are shrinking

with an increasing absolute value of a, which is illustrated in Figure 8.1.
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Figure 8.1: Isoclines and the linear relation between the steady state values
for the cocaine epidemic in the United States if the elasticity of initiation is
changed to a = −0.5.

The eigenvalues for Ê1 are given by

λ1 = 0.1729,

λ2 = −0.0594,

λ3 = −0.2112,

implying that this equilibrium is a saddle point. Ê2 turns out to be a stable

focus with the eigenvalues

λ1 = −0.2703,

λ2,3 = −0.1339± 0.1210i.

Alternatively, we may add a new parameter b = 0.25 and consequently get a

new system dynamic
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Ṡ = k − δS − f(A)Sp(A,C)a,

Ȧ = f(A)Sp(A,C)a − µ̃Apb,

Ċ = g(p)C.

At the equilibrium where Ȧ = Ċ has to be ful�lled we have p = c. In order

that the two system dynamics have the same slope we set µ̃ = µ
c
. For this

modi�ed model there is just one equilibrium, the arti�cial steady state Ê =

(Ŝ, Â, Ĉ) = (22.1796, 0, 0), the stable node which is visualized in Figure 8.2.
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Figure 8.2: Isoclines and the linear relation between the steady state values
when the out�ow of Ȧ is changed in the cocaine epidemic in the United States.

By looking at the time paths of the three di�erent system dynamics we are able

to compare the behaviour of the di�erent trajectories. Deliberately we choose

C(0) = A(0) to better explore the di�erent evolutions of the states A and C.

Firstly, we start with the initial values (S(0), A(0), C(0)) = (3, 3, 3), illustraded

in Figure 8.3. Secondly, we look at Figure 8.4 with (S(0), A(0), C(0)) =

(1, 1, 1). Finally, we will investigate the time paths for rather small initial

values, namely (S(0), A(0), C(0)) = (0.5, 0.5, 0.5) in Figure 8.5.
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Figure 8.3: Time paths for the initial values (S(0), A(0), C(0)) = (3, 3, 3)
with the basic parameterization (solid line), a = −0.5 (dashed line), and b =
0.25 (dotted line) for the United States.
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In those three �gures we notice that the trajectories of the model with the

new variable b converge to the arti�cial high equilibrium. In Figure 8.3 the

trajectories of the two other system dynamics converge to the high steady state.

Figure 8.4 illustrates that although we start with the same initial values, the

basic model and the model with the increased elasticity converge towards dif-

ferent steady states.

In Figure 8.5 all trajectories converge towards the small steady state, the arti-

�cial equilibrium. Interestingly, S looks almost the same in all three scenarios,

while the evolutions of A and C are signi�cantly di�erent.
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Figure 8.4: Time paths for the initial value (S(0), A(0), C(0)) = (1, 1, 1)
with the basic parameter set (solid line), a = −0.5 (dashed line), and b = 0.25
(dotted line) for the United States.
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Figure 8.5: Time paths for the initial value (S(0), A(0), C(0)) = (0.5, 0.5, 0.5)
with the basic parameterization (solid line), a = −0.5 (dashed line), and b =
0.25 (dotted line) for the United States.

8.2 Australian Parameterization

Finally, we want to investigate the Australian IDU epidemic with a higher

value for the elasticity of initiation. For the Australian base parameter set we

got one steady state, which is not changing with an altered elasticity.

When we increase a = −0.25 to a = −0.5 we get a stable focus

Ê = (Ŝ, Â, Ĉ) = (0.0758, 0.3995, 0.3995)

with the eigenvalues

λ1 = −0.6076,

λ2,3 = −0.1175± 0.0242i.

Due to the higher absolute value of the elasticity of initiation, the in�uence

of the price function on initiation is increased in the considered scenarios.

This implies that the number of current users, A, grows and the number of

susceptible non-user, S, shrinks. Figure 8.6 depicts the new equilibrium, a

stable focus.
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Figure 8.6: Isoclines and the linear relation between the steady state values
if a is changed to −0.5 for the Australian IDU epidemic.

Note also that we do not lose steady states by adding the new term µ̃
c
Apb to

the Australian case. However, the stability behaviour changes, because

Ê = (Ŝ, Â, Ĉ) = (0.3654, 0.0378, 0.0378)

is a saddle point with the eigenvalues

λ1 = 0.0334,

λ2 = −0.3688,

λ3 = −0.2708.

Making the exit from active use price-dependent leads to an increased out�ow

of state A. Thus, the number of people who are susceptible to drug use rises.

Figure 8.7 illustrates the linear relation between the steady state values and

the isoclines.

To compare the di�erent system dynamics we are looking at the time paths

with the initial values (S(0), A(0), C(0)) = (0.5, 0.5, 0.5), depicted in Figure

8.8.



CHAPTER 8. ELASTICITY OF INITIATION 99

0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

A

S

Figure 8.7: Isoclines and the linear relation between the steady state values
when the out�ow of Ȧ is changed in the Australian IDU model.
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Figure 8.8: Time paths for the initial value (S(0), A(0), C(0)) = (0.5, 0.5, 0.5)
with the base case model (solid line), a = −0.5 (dashed line), and b = 0.25
(dotted line) for the injection drug use in Australia.
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Note that the model with the increased absolute value of the elasticity of ini-

tiation leads to a higher number of active users, which is surprising at �rst

sight. However, in our parameterization the price basically always is a value

between 0 and 1 so that p−0.5 is larger than p−0.25. To obtain the expected

results, the model would have to be rescaled.

Adding the new parameter b causes a signi�cant change in Ŝ. It is three times

as high as the number of susceptible non-users with the base case parameteri-

zation in the steady state.



Chapter 9

Conclusions and Possible

Extensions

This thesis was devoted to the dynamic three-state SAC model of illicit drug

consumption derived from the well-known SA model discussed in [Caulkins et

al., 2009a], [Caulkins et al., 2009b], and [Wallner, 2008]. The main di�erences

are that a third state was added, i.e. the current throughput capacity of the

supply network of drugs, and that the initiation function became price depen-

dent. The analyses were performed for two di�erent drug epidemics in two

di�erent countries, i.e. the cocaine use in the United States of America and

the Australian injection drug use.

The intention of the �rst part was to analyze the uncontrolled model. Steady

states and their stability properties were investigated. Then sensitivity and

bifurcation analyses were carried out in order to deal with the inaccuracy of

the model parameterizations. We detected a strong sensitivity of the solution

with respect to the in�ow into state S, k, the exit from state S, β, and the

exit from active use, µ. In addition, we took a closer look at the interaction of

two di�erent parameter values and their in�uence on the number of equilibria.

Having completed this, we focused on the control instrument "enforcement".

We presented the results in the (A, S)- and (A,C)-planes. It appears that the

most e�cient year for a supply reduction by 50% not only depends on the

initial values and the relationship between A and C but also on the functional

form we use to measure the social costs resulting from a drug epidemic. There

is also a di�erence in the amount of the bene�t-cost ratio if we consider the
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aforementioned in�uences but not so much in the qualitative behaviour of the

solutions. In summary, we could conclude that the bene�t-cost ratio is in gen-

eral higher for small values of active users.

The recommendation which year is the most e�ective one for a supply reduc-

tion has to be well considered preconceiving the dependence on the functional

form for the examined costs resulting from a drug epidemic.

Furthermore, we investigated a weighted sum of up to four di�erent functional

forms to measure social costs. Again, we detected that the most e�cient year

for a supply shock strongly depends on the way the social costs are measured

and weighted. It is hence a tough decision for policy makers to �gure out what

to focus on because the recommended policy and the measured costs strongly

depend on the assumed functional forms. With di�erent initial values, di�er-

ent objective functionals are more suitable, which emphasizes the dynamical

character of the model.

Another important part of this thesis was to increase the overall elasticity level

to −1 and look at the signi�cant changes of the steady states. The motivation

for this analysis was the discovery in [Caulkins et al., 2000] that the results

are strongly dependent on the elasticity level.

Altogether, the U.S. base parameterization turned out to be the more inter-

esting case. This perhaps can be explained by β > 1, the exponent in the

initiation function, which leads to a convex initiation function and therefore

to multiple steady states.

Finally, we want to conclude the thesis by pointing out some possible extensions

that may be taken into consideration in future projects.

• In this thesis only enforcement as a control policy was considered. In

future work, an interesting extension could be to investigate how the

relative cost-e�ectiveness of treatment vs. prevention vs. enforcement

varies during an epidemic. This could be done twice: �rst, let the removal

of, say, users be in percentage terms and second, let it be a �xed number

of people removed.

• Probably the most important extension that should be taken into con-

sideration is to model treatment. It is commonly observed that incar-
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cerating drug dealers may not be e�ective because they can be easily

replaced. This replacement e�ect could be estimated by comparing the

actual change in the present value of future drug use years with the

no-replacement estimate.

• We chose the feedback e�ect of the initiation function to be logarithmic.

Other functional forms might be considered.

• An extension of the cost e�ectiveness-analysis of Chapter 6 seems worth-

while. Instead of illustrating the results by the bene�t-cost ratio, the

outcome could be shown in terms of impact per person removed by the

control policy. In addition, the number of active users, A, could be de-

creased by an absolute value λ, contrary to the indirect e�ect of the

reduction of C, the current throughput capacity of the supply network

of drugs, on A.
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(A,C)-plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.18 Years where a supply reduction of C by 50% has the strongest

impact for the Australian injection drug use epidemic with S(0) =
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when the out�ow of Ȧ is changed in the Australian IDU model. 99

8.8 Time paths for the initial value (S(0), A(0), C(0)) = (0.5, 0.5, 0.5)

with the base case model (solid line), a = −0.5 (dashed line),

and b = 0.25 (dotted line) for the injection drug use in Australia.100



List of Tables

2.1 Base case parameter values for the U.S. cocaine and the Aus-

tralian IDU epidemics. . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 E�ects on the high steady state of the U.S. base parameteriza-

tion, if one parameter is increased by 1%, while the others are

kept unchanged. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Percentage alteration of the saddle point steady state of the

U.S. cocaine epidemic, if a parameter is increased by 1%, while

keeping the others at their original level. . . . . . . . . . . . . . 24

3.3 E�ects on the arti�cial steady state, if one parameter is in-

creased by 1% for the United States. . . . . . . . . . . . . . . . 24

3.4 Sensitivity analysis for the exponent in the initiation function,

β, on the high steady state of the U.S. base parameter set. . . . 25

3.5 Sensitivity analysis for β on the saddle point steady state for

the U.S. base parameterization. . . . . . . . . . . . . . . . . . . 26

3.6 Percentage alteration of the steady state for the Australian pa-

rameter base case if a parameter is increased by 1%. . . . . . . . 27

3.7 E�ects on the steady state values (Ŝ, Â, Ĉ) of a change in pa-
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