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Abstract

This thesis is devoted to the explicit calculation of the star product in bosonic space as well
as in superspace and its generalization to the non-associative case. Promoting the coordinate
functions as elements of a commutative algebra to elements of a non-commutative associative
algebra is carefully reviewed and further generalized to a non-associative algebra. The coordinate
monomials as basis of the commutative algebra of functions are naturally mapped to Weyl
ordered monomials of the generators of the non-commutative algebra. Via this embedding the
non-commutative algebra product induces a non-commutative product on the space of functions,
namely the star product. Recently an effective method for the explicit calculation of the star
product to higher derivative orders has been presented, based on a representation of the non-
commutative algebra via polydifferential operators. This approach is reviewed up to third order
in the expansion parameter and generalized to the superspace. Comments on a possible extension
of the method to the non-associative case are given. In one of the proposed approaches the non-
associative star product is calculated to the second order and a cyclicity condition is imposed.
Once we have the star product at every order, it is compelling to look for its different properties.
Diffeomorphisms on commutative coordinate space are defined with the help of comultiplication
of the Hopf algebra and deformed diffeomorphisms are introduced on noncommutative coordinate
space by deforming the comultiplication and hence the Hopf algebra. Quantum corrections to the
classical transformation of the star product under Lie derivative are proposed via the formality
theorem and computed to the second order in the star product expansion parameter. Although
all the calculations are done with graded objects, equations look as in the bosonic case due to
the use of a graded Einstein summation convention. However, different components of the star
product on the non(anti)commutative superspace are explicitly computed at the end. The twist
representation of the star product on non(anti)superspace is given in the appendix.
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financial support.

I am grateful to my fiancée Anum Humayun, to my sister Nosheen Humayun, to the wife
of my brother Shewana Waqar, to my nice Zarwa Waqar, to my brothers Waqar Ahmad, Nasir
Mehmood, Zohaib Humayun and Akhlaq Ahmad for their love.

I thank my parents Muhammad Humayun and Hafeeza Jan for every thing they did for me
and for my education and for all their prayers.

I will always remember the generous Austrian hospitality especially of Christoph Mayrhofer.
Finally, I thank Allah for his blessings and kindness.

3



Chapter 1

Introduction

Historically, Heisenberg was the first to propose a radical idea of the spacetime noncommuta-
tivity in late 1930’s. However, it somehow got passed to Snyder, see [1] for the story about it,
who published the first article in 1947 about the noncommutative spacetime [2]. This noncom-
mutativity of spacetime coordinates xm, or more generally of any arbitrary space, is expressed
by promoting the coordinate functions as elements of a commutative algebra to elements of a
non-commutative associative algebra

[x̂m, x̂n] = iωmn(x̂) (1.1)

where the parameter of noncommutativity ωmn is an antisymmetric tensor.
On the other hand Weyl in 1927 gave a general rule for associating an operator in the Hilbert

space to the function f(q, p) of phase space conjugate variables [3]. Eugene Wigner discovered
the inverse to the Weyl rule that maps an operator into what is called symbol of the operator
f(q̂, p̂) [4].

Some years later Blackett assigned the problem of a physical interpretation of the phase
space function f(q, p) and symbol f(q̂, p̂) of a quantum operator Ô(q, p) to his student Moyal
who found what is now called Moyal star product [5]. A similar product for symbols of the
operator f(q̂, p̂)g(q̂, p̂) was found by Groenewold [6]. See [7] for an overview. Although the main
purpose of introducing noncommutative spacetime (1.1) was to cure the Quantum Field Theories
of divergences, the noncommutativity of quantum phase space operators q̂m and momentum p̂n
[q̂m, p̂n] = i~δmn , served as a motivational example from Quantum Mechanics.

The star product as a tool of deforming the usual ordinary product of functions is a main
ingredient of the deformation quantization. The existence of the star product and deforma-
tion quantization is established on different spaces and mainfolds. For Poisson manifolds it is
established via the formality theorem [8]

However, only very recently an efficient procedure, based on [9], for calculating a star product
order by order in a expansion parameter is developed in [10].

During 1970’s due to the discovery of supersymmetry, the structure of bosonic spacetime
was extended by including fermionic coordinates θµ and θ̄µ̄. The resulting space was called
superspace [11] XM = (xm, θµ, θ̄µ̄). The deformation of this superspace is done in [12] and also
from string theory perspective in [13][14] to get non(anti)commutative superspace. In [15] a
star product for a class of general superfields is constructed, but the star product is associative
only up to second order of the deformation parameter ~. One of the subjects of this thesis is to
extend the procedure of [10] to the non(anti)commutative superspace where the star product is
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associative to all orders of the deformation parameter. Only after that the possibility to relax
the associativity constraint in a controlled manner will be discussed.

In this thesis the notion of non(anti)commutative superspace is introduced by promoting
coordinate functions ϕM (X) = XM as elements of a graded commutative algebra on superspace
to elements of a graded non-commutative associative algebra with generators X̂M = (x̂m, θ̂µ, ˆ̄θµ̄)
in the same sense as in the bosonic case

[X̂M , X̂N ] = iωMN (X̂) (1.2)

implies, at most general, the following relations1

[x̂m, x̂n] = iωmn(X̂), [x̂m, θ̂µ] = ωmµ(X̂), [x̂m, ˆ̄θµ̄] = ωmµ̄(X̂),

[θ̂µ, θ̂ν ] = ωµν(X̂), [ ˆ̄θµ̄, ˆ̄θν̄ ] = ωµ̄ν̄(X̂), [θ̂µ, ˆ̄θν̄ ] = ωµν̄(X̂) (1.3)

We call such a space with above relations a non(anti)commutative superspace. For a pedagogical
introduction of superspace see [16] and for calculus on superspace see for example [17].

This thesis is divided in seven chapters and three appendices. The brief overview of every
chapter is as follows.

In chapter 2 we define commutative coordinate space [18] and then we define a noncom-
mutative space of the coordinate operators and generalize it to the nonassociative case. This
chapter provides the basis for the whole approach we develop in this thesis. We expand the
noncommutativity parameter ω in symmetrically ordered coordinate operators and read off the
constraints imposed by the Jacobi identity and do the same for the modified Jacobi identity in
the nonassociative case.

We introduce the operator algebra whose element maps the algebra of functions into them-
selves. We present then a useful polydifferential representation of coordinate operators. We give
the explicit expansion of a function in algebra of operator functions in coordinate operators up
to second order in the formal expansion parameter.

In chapter 3 we define a map which orders the coordinate operators in the noncommutative
space which are in one to one correspondence with coordinates in commutative space . We
give different ordering prescriptions for the ordering map namely Weyl ordering, Index-value-
ordering and Anti-index-value-ordering. The star product is then defined by mapping an algebra
of functions to the noncommutative space and bringing them in particular ordering using the
algebra relations 1.2 which is possible due to the Poincare-Birkoff-Witt property of the algebra.

In chapter 4 we explain in detail the procedure developed in [10] for calculating star product
order by order. The star product is defined via a polydifferential representation developed in
chapter 3. We explicitly calculate the star product to third order and give a consistency check
at every order.

In chapter 5 we first briefly review the notion of diffeomorphisms in coordinate space and
deformed diffeomorphism in noncommutative coordinate space based on [19]. We define the star
product defeomorphisms based on formality theorem and give the results up to second order in
the expansion parameter. However, we put the results for our anstaz in to appendix B.

In chapter 6 we introduce the graded structures and define a non(anti)commutative super-
space. Graded Einstein Summation Convention give us all the components of a star product on
superspace. This allows us to treat the graded star product in the same way as a bosonic star
product. The star product at second order of the expansion parameter becomes quite lengthy

1We understand (1.2) as a graded commutator. In the first chapters we consider purely bosonic coordinates
only later in chapter 6 we introduce the explicit grading and give different components of superspace separately
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after splitting into bosonic and fermionic components and we put the results into the appendix
C.

In the last chapter 7 we generalize the ordering map defined in chapter 3 to the nonassociative
case and define a nonassociative star product by reordering noncommutative nonassociative
coordinate operators. We give results to first order expansion and check the cyclicity property
of the resulting star product.

Finally we give in appendix A a twist representation of the star product on
non(anti)commutative superspace. We begin with brief review of Hopf algebra and define the
graded twist element of Hopf algebra. We use then Graded Einstein Summation Convention to
get different components of the graded twist and hence of a graded star product via a twisting
procedure.
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Chapter 2

Coordinate Space

2.1 Coordinate Space

Let F be some arbitrary field such as the real numbers R or the complex numbers C. Later
on we will further allow F to be the space of super numbers S . For any positive integer n the
space of all n-tuples of elements of F forms an n-dimensional vector space over F which we call
a coordinate space and denote it by Fn. Let XM be the coordinates of an element X ∈ Fn (this
can also be generalized to a manifold by the usual patching). For the moment let us consider
XM to be simply bosonic coordinates. Only later in the chapter 6 we will reinterpret XM to be
superspace coordinates. The algebra of functions on the space Fn

A = {f : Fn → F} (2.1)

is commutative with the pointwise product, simply because the product in F is commuting:

∀f, g ∈ A : fg(X) ≡f(X)g(X) = g(X)f(X) = gf(X) ∀X ∈ Fn (2.2)
⇒ fg =gf ∀f, g ∈ A (2.3)

We denote the unit element of this algebra by e:

e(X) = 1, eg = ge = g ∀g ∈ A (2.4)

Let further ϕM be the coordinate function

ϕM (X) ≡ XM (2.5)

The monomials

ϕM1...Mn(X) ≡ ϕM1 ...ϕMn(X) = XM1 ...XMn (2.6)

provide a natural basis for the algebra A. The indices are automatically symmetrized. For the
special case n = 0, the map is defined to be a a constant map

ϕ(0)(X) ≡ 1 (2.7)

Thus any function f ∈ A can be expanded as in the following

f =
∞∑
n=0

1
n!
fM1...Mnϕ

M1...Mn (2.8)
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which has pointwise the usual form of the power series

f(X) =
∞∑
n=0

1
n!
fM1...Mn

XM1 ...XMn (2.9)

2.2 Non-Commutative Coordinate Space

Let us generalize the commutative algebra A of functions on Fn defined in the previous section
to a non-commutative coordinate space Â [20] by promoting the coordinate functions defined in
(2.5) to the noncommutative coordinate X̂M .

X̂M are now generators of the algebra Â and obey the following relations

[X̂M , X̂N ] = 2αωMN (X̂) (2.10)

where α is some formal expansion parameter. If the product in Â is associative then the Jacobi
identity for the above commutator puts some constraints on the form of ωMN

[[X̂ [M , X̂N ], X̂P ]] = 0 (2.11)

In order to see these constraints we assume that ωMN depend analytically on X̂ with F valued
expansion-coefficients. We thus can expand ωMN in a power series

ωMN (X̂) =
∞∑
n=0

1
n!
ω̃MN
K1...KnX̂

K1 ...X̂Kn (2.12)

where the expansion coefficients are now just numbers, i.e. ω̃MN
K1...Kn

∈ F . Plugging equation
(2.10) into equation (2.11) gives

2α[ω[MN , X̂P ]] = 0 (2.13)

and turns via (2.12) into

2α
∞∑
n=0

1
n!
ω̃

[MN |
K1...Kn

[X̂K1 ...X̂Kn , X̂ |P ]] =0 (2.14)

where now equation (2.14) is a consistency condition on the algebra coefficients ω̃MN
K1...Kn

.
Although a priori the coefficients ω̃MN

K1...Kn
are not symmetric in K1...Kn, we can symmetrize

them by Weyl ordering the monomials X̂K1 ...X̂Kn in equation (2.12)1. We denote then the
symmetrized coefficients without tilde i.e. ωMN

K1...Kn
.

ωMN (X̂) =
∞∑
n=0

1
n!
ω̃MN
K1...KnX̂

K1 ...X̂Kn =
∞∑
n=0

1
n!
ωMN
K1...KnX̂

(K1 ...X̂Kn) (2.15)

1We can do so because of the so called PWB property of the algebra explained in the next section. The
expansion (2.16) in the symmetrized (or Weyl ordered) basis can also be written as

ωMN (X̂) = exp
`
X̂K∂YK

´
ωMN (Y )|Y =0
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ωMN
K1...Kn

is now symmetric in its lower indices and we denote the symmetrized indices by repeated
indices at the same vertical position.

ωMN (X̂) =
∞∑
n=0

1
n!
ωMN

(n)K...K(X̂K)n (2.16)

The non-commutative coordinates are now symmetrically ordered and build what is known as
Weyl ordered basis. Let us write the Jacobi identity in equation (2.14) with ω expanded in the
Weyl ordered basis as in (2.16):

2α
∞∑
n=0

1
n!
ω

[MN |
(n)K...K

[(X̂K)n, X̂ |P ]] =0 (2.17)

4α2
∞∑
n=1

1
n!
ω

[MN |
(n)K...K

n−1∑
k=0

(X̂K)kωK|P ](X̂)(X̂K)n−1−k =0 (2.18)

Dividing equation (2.18) by 4α2 and inserting the expression for ωK|P ] in the Weyl ordered basis,
we obtain

∞∑
n=1

∞∑
m=0

1
n!m!

ω
[MN |
(n)K...K

ω
K|P ]
(m)L...L

n−1∑
k=0

(X̂K)k(X̂L)m(X̂K)n−1−k =0 (2.19)

Generally, the non-commutative coordinates X̂ in the above expression are not in the Weyl
ordering. However, for m = 1 generators are always in the Weyl ordering

n−1∑
k=0

(X̂K)k(X̂L)m(X̂K)n−1−k =X̂LX̂K . . . X̂K + X̂KX̂LX̂K . . . X̂K + · · ·+

+ X̂K . . . X̂KX̂L = nX̂(LX̂K . . . X̂K) (2.20)

In principle we can also always write (2.19) in Weyl ordering, but it is very hard to give an
explicit expression for it. Let us show this with the simple example.
For n = 3,m = 2

2∑
k=0

(X̂K)k(X̂L)2(X̂K)2−k =X̂LX̂LX̂KX̂K + X̂KX̂LX̂LX̂K + X̂KX̂KX̂LX̂L (2.21)

=
1
2

(X̂LX̂LX̂KX̂K + X̂KX̂LX̂LX̂K + X̂KX̂KX̂LX̂L+

+ X̂KX̂LX̂KX̂L + X̂LX̂KX̂LX̂K + X̂LX̂KX̂KX̂L)+

+
1
2

(X̂LX̂LX̂KX̂K + X̂KX̂LX̂LX̂K + X̂KX̂KX̂LX̂L−

− X̂KX̂LX̂KX̂L − X̂LX̂KX̂LX̂K − X̂LX̂KX̂KX̂L) (2.22)

=
6
2
X̂(LX̂LX̂KX̂K) +

1
2
X̂L[X̂L, X̂K ]X̂K+

+
1
2

[X̂KX̂L, X̂LX̂K ] +
1
2
X̂K [X̂K , X̂L]X̂L (2.23)

=3X̂(LX̂LX̂KX̂K) + α
(
X̂KωKL(X̂)X̂L − X̂LωKLX̂K+

+ ωKL(X̂)X̂KX̂L − X̂KX̂LωKL(X̂)
)

(2.24)
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For this example we see that reordering becomes very quickly quite nasty, and also that one is
never done with reordering, this is because the terms of order α are still not in correct ordering.
Reordering them leads to the unordered terms of the order α2 and so on. But, in a formal power
series in α, this can be done order by order iteratively. A convergent series in alpha as a real
parameter can be obtained only in special cases and for sufficiently small alpha.

As every reordering produces terms of higher order in α, it is also clear that to lowest order
in α, we can treat X̂ like a commuting variable. Equation (2.19) then becomes

∞∑
n=1

∞∑
m=0

1
n!m!

ω
[MN |
(n)K...K

n(X̂K)n−1ω
K|P ]
(m)L...L(X̂L)m +O(α) =0 (2.25)

ω[P |K∂Kω
K|P ](X̂) +O(α) =0 (2.26)

The antisymmetric 2-vector ωMN is thus required to be a Poisson-structure. Or to be more
precise (as Poisson structures are usually defined with commuting coordinates): The expansion
coefficients of ωMN are equal to the expansion coefficients of the Poisson structure.

2.3 Non-Associative Non-Commutative Coordinate Space

We can further generalize the coordinate space by relaxing the associativity of the noncommu-
tative coordinates X̂M (the generators of the algebra Â) as in the following

(X̂M X̂N )X̂K − X̂M (X̂N X̂K) = βκMNK(X̂, α) (2.27)

In general the commutator-tensor ωMN will now also depend on the new non-associativity pa-
rameter β

[X̂M , X̂N ] = 2αωMN (X̂, β) (2.28)

The ansatz is such that for α → 0 we recover a commutative (but not necessarily associative)
algebra and for β → 0 we recover an associative but not necessarily commutative algebra. Both
tensors, κMNK and ωMN are assumed to depend analytically on the generators X̂M of the
algebra, otherwise the latter would not be proper generators of the algebra. For the explicit
expansion in powers of the generators, we have to decide not only about the ordering, but also
about the bracketing. We will take again Weyl ordering as reference order of the operators. For
the brackets it is natural to start bracketing from one side and work through one’s way to the
other side. We decide to start from the right, so that the expansion of the tensors in powers of
the generators looks as follows (compare to the associative case (2.15):

ωMN (X̂, β) ≡
∞∑
n=0

1
n!
ωK1...Kn(β) · X̂(K1(· · · (X̂Kn−2(X̂Kn−1X̂Kn)))) (2.29)

κMNK(X̂, α) ≡
∞∑
n=0

1
n!
κK1...Kn(α) · X̂(K1(· · · (X̂Kn−2(X̂Kn−1X̂Kn)))) (2.30)
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Jacobi identity for a non-associative algebra

The Jacobi identity also gets modified in a non-associative algebra

[[X̂ [M , X̂N ], X̂P ]] =2
[
(X̂ [M , X̂N ), X̂P ]

]
= (2.31)

=2(X̂ [M X̂N )X̂P ] − 2X̂ [M (X̂N X̂P ]) (2.32)

⇒ [[X̂ [M , X̂N ], X̂P ]] =2βκ[MNP ](X̂, α) (2.33)

Note that in the associative case the Jacobi identity can also be seen as a Leibniz rule of the
commutator acting on a product (another commutator)

[[X̂M , X̂N ], X̂P ] = [X̂M , [X̂N , X̂P ] + [[X̂M , X̂P ], X̂N ] (associative case) (2.34)

In a non-associative coordinate space, equation (2.34) is due to (2.33) modified to the following
form [

[X̂M , X̂N ], X̂P
]

=
[
X̂M , [X̂N , X̂P ]

]
+
[
[X̂M , X̂P ], X̂N

]
+ 6βκ[MNP ](X̂, α) (2.35)

We obtain the opposite sign for the non-associativity-term βκMNP when we act from the left
instead from the right:[

X̂P , [X̂M , X̂N ]
]

=
[
[X̂P , X̂M ], X̂N

]
+
[
X̂M , [X̂P , X̂N ]

]
− 6βκ[PMN ](X̂, α) (2.36)

Although the above equations are just equivalent rewritings of (2.33), they are instructive when
comparing to the action of a commutator on a product of generators. In the associative case
such an action also follows a Leibniz rule

[X̂P , X̂M X̂N ] = [X̂P , X̂M ]X̂N + X̂M [X̂P , X̂N ] (associative case) (2.37)

In the non-associative case we expect also this Leibniz rule to be modified. In order to find the
deviation, let us first calculate the expressions on the left and on the right side independently.
The left side reads [

X̂P , (X̂M X̂N )
]

= X̂P (X̂M X̂N )− (X̂M X̂N )X̂P (2.38)

Now we can do the calculation from the righthand side[
X̂P , X̂M

]
X̂N + X̂M

[
X̂P , X̂N

]
=

= (X̂P X̂M )X̂N −(X̂M X̂P )X̂N + X̂M (X̂P X̂N )︸ ︷︷ ︸
−βκMPN (X̂,α)

−X̂M (X̂N X̂P ) = (2.39)

=
[
X̂P , (X̂M X̂N )

]
− βκMPN (X̂, α) + βκPMN (X̂, α) + βκMNP (X̂, α) (2.40)

The modified Leibniz rule therefore reads[
X̂P , (X̂M X̂N )

]
=

[
X̂P , X̂M

]
X̂N + X̂M

[
X̂P , X̂N

]
+

+βκMPN (X̂, α)− βκPMN (X̂, α)− βκMNP (X̂, α) (2.41)

After completely antisymmetrizing the indices P,M and N , we recover the modified Jacobi-
identity in the form (2.36).
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In the associative case the Jacobi identity imposes the consistency condition (2.13) on the
commutator tensor ωMN . This is also true for the modified Jacobi-identity, but the new consis-
tency condition will of course also contain the associator. Plugging the commutator (2.28) into
the modified Jacobi-identity (2.33), we obtain[

2αω[MN (X̂, β), X̂P ]
]

= 2βκ[MNP ](X̂, α) (2.42)

We could now plug the expansions (2.29) and (2.30) into this consistency condition, in order to
determine conditions on the expansion coefficients. To this end one would need to iteratively use
commutator and associator, in order to rewrite both sides of the above equation order by order
in the parameters α and β in our reference basis. In the associative case this procedure was
sketched starting from equation (2.19) and arriving at lowest order in α at the Poisson-condition
on ωMN . In the non-associative case this is getting much more involved and one might expect
(apart from modified Poisson-conditions on ωMN ) also some conditions on κMNP .

2.4 Operator Representation of the Algebra

For the associative case operators provide a natural choice for the representation of the non-
commutative coordinates X̂M . Let us consider the operator algebra Ô where an operator Ô ∈ Ô
is a linear map from the algebra of functions to itself

Ô 3 Ô : A 3 f 7→ Ôf ∈ A (2.43)

Let m̂f(X) ∈ Ô be the multiplication operator which multiplies an arbitrary function g ∈ A
by an another function f ∈ A.

Ô 3 m̂f : A 3 g 7→ m̂fg = fg ∈ A (2.44)

This gives us an embedding of the commutative algebra A into the non-commutative algebra Ô

f 7→ m̂f ⇒ A ↪→ Ô (2.45)

in this way A can be thought as a subset of Ô

(2.46)

2.4.1 Polydifferential Basis

The algebra of operators Ô can be generated by {m̂ϕM , ∂M} , where in this case the natural basis
is given by {m̂ϕM1...Mn , ∂K1 ...∂Kp |n, p ∈ N0}. The non-commutative operators X̂ can, therefore,
be expanded in this basis and it is natural to make an ansatz where higher derivatives come with
higher powers of the expansion parameter α

X̂M = XM +
∞∑
k=1

αkΓMK1...Kk(α,X)∂K1 ...∂Kk (2.47)

Here, we roughly follow the notation of [10]. Expression (2.47) can also be written as

X̂M =
∞∑
k=0

αkΓMK1...Kk(α,X)∂K1 ...∂Kk (2.48)
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if one defines

ΓM (α,X) = XM (2.49)

This ansatz assumes that every derivative comes with at least one power of α. In addition we
recover XM for α → 0. This would also be true for a choice of ΓM (α,X) = XM + O(α). We
have to expand Γ further in powers of α to get an actual expansion of X̂ in terms of α

ΓMK1...Kk(α,X) =
∞∑
n=0

αnΓMK1...Kk
n (X) (2.50)

X̂ can then be rewritten as

X̂M = XM +
∞∑
n=1

αn
n−1∑
k=0

ΓMK1...Kn−k
k (X)∂K1 ...∂Kn−k (2.51)

In order to have a valid representation, the expansion coefficients ΓMK1...Kn−k
k (X) have to be

determined in such a way that the algebra (2.10) is satisfied. This will be done order by order in
the expansion parameter α. It is, therefore, convenient to introduce a symbol for the coordinate
operator whose α-expansion is truncated after the n-th order.

X̂M
n ≡ XM +

n∑
p=1

αp
p−1∑
k=0

ΓMK1...Kp−k
k (X)∂K1 ...∂Kp−k (2.52)

If we further denote the difference that is added when going from order n to order (n + 1) by
αn+1γMn+1, we obtain

X̂M
n+1 =X̂M

n + αn+1γMn+1 (2.53)

=XM +
n+1∑
k=1

αkγMk (2.54)

The explicit form of the difference operator γMn is thus given by

γMn ≡
n−1∑
k=0

ΓMK1...Kn−k
k (X)∂K1 ...∂Kn−k (2.55)

Assume that we obey algebra (2.10) already up to the nth order. At (n+1)st order we have to
fulfil

[X̂M
n+1, X̂

N
n+1] != 2αωMN

n +O(αn+2) (2.56)

where ωMN
n is defined by

ωMN (X̂) = ωMN
n +O(αn+1) (2.57)

Note that the α-expansion of ωMN (X̂) is based completely on the α-dependence of X̂M . For a
given algebra (with given ωMN

K...K) fixing X̂M
n therefore also fixes ωMN

n . So the commutator in
equation (2.56) becomes

[X̂M
n + αn+1γMn+1, X̂

N
n + αn+1γNn+1] != 2αωMN

n +O(αn+2) (2.58)

[X̂M
n , X̂N

n ] + [X̂M
n , αn+1γNn+1] + [αn+1γMn+1, X̂

N
n ] != 2αωMN

n +O(αn+2) (2.59)

[X̂M
n , X̂N

n ] + 2αn+1[γ[M |
n+1, X̂

|N ]
n ] != 2αωMN

n +O(αn+2) (2.60)

13



Let us now define

γMN
n+1 ≡ [γ[M |

n+1, X
|N ]] =

n∑
p=0

(p+ 1)Γ[MN ]K1...Kp
n−p (X)∂K1 ...∂Kp (2.61)

and

GMN
n+1 ≡2αωMN

n − [X̂M
n , X̂N

n ] +O(αn+2) (2.62)

The O(αn+2) in the definition has to be understood such that Gn+1 contains maximally (n+1)st
order terms and higher order terms coming from the commutator are dropped. Note that the
above defined object Gn+1 at order n + 1 contains only objects which have already been de-
termined at order n, namely ωn and X̂n. From (2.53 ) and (2.55) it is instead visible that
γn+1 contains only objects that have not yet been determined at order n. At (n+1)st order we
thus obtain the following condition for the above defined γMN

n+1 and, therefore, implicitly for the
antisymmetric part Γ[MN ] of our expansion coefficients

2αn+1γMN
n+1

!= GMN
n+1 (2.63)

The operators GMN
n+1 can be expanded in powers of differential operator as in the following

GMN
n+1 =

∑
p≥0

G
MNK1...Kp
n+1 ∂K1 . . . ∂KP (2.64)

Plugging equation (2.61) together with equation (2.64) into the equation (2.63) we obtain

2αn+1(p+ 1)Γ[MN ]K1...Kp
n−p

!= G
MNK1...Kp
n+1 (2.65)

As mentioned above, this should be a condition on the coefficients Γ on the lefthand side and
not on G which contains objects that have already been determined at order n. Both sides are
antisymmetric in the first two indices and symmetric in the remaining ones. However, on the
left-hand side we have the additional symmetry-property Γ[MNK1]K2...Kp = 0. G should obey the
same property already from its definition (2.62) via n-th order objects, otherwise (2.65) would
be a new condition on the n-th order that we already assume to be complete. Luckily, according
to Lemma 1 in [10] this is indeed the case and can be seen as follows:

The anti-symmetrization of the functions GMNK1...Kp
n+1 in its first three indices vanishes.

G
[MNK1]...Kp
n+1 = 0 (2.66)

In order to prove this statement let us start with

[[X̂ [M
n+1, X̂

N
n+1], X̂P ]

n+1] = 0 (2.67)

Plugging equation (2.56) in to equation (2.67) we obtain

[2αω[MN
n +O(αn+2), X̂P ]

n+1] = 0 (2.68)

[2αω[MN
n , X̂P ]

n ] +O(αn+2) = 0 (2.69)

Plugging equation (2.62) into equation (2.69) we get

[G[MN |
n+1 + [X̂ [M

n , X̂N |
n ], X̂ |P ]

n ] +O(αn+2) = 0 (2.70)

[G[MN
n+1 , X̂

P ]
n ] + [[X̂ [M

n , X̂N
n ], X̂P ]

n ] +O(αn+2) = 0 (2.71)
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Since

[[X̂ [M
n , X̂N

n ], X̂P ]
n ] = 0 (2.72)

We obtain

[G[MN
n+1 , X̂

P ]
n ] +O(αn+2) = 0 (2.73)

Now substituting equation (2.64) in equation (2.73) we obtain

[G[MN |K1...Kp
n+1 ∂K1 . . . ∂KP , X̂

|P ]] +O(αn+2) = 0 (2.74)

and the lowest order in α yields the equation ( 2.66). Since from equation (2.64) it is clear that
G
MNK1...Kp
n+1 are symmetric in last p indices, therefore, this property holds for all permutations

of [MNKl] where l = 1, . . . , p.
We have now seen that (2.65) is consistent with the symmetries of Gn+1 and therefore is only

a condition on the antisymmetric part of the expansion coefficients ΓMNK1...Kp
n−p that contribute

at (n + 1)st order to X̂M
n+1. Because of the symmetries of these expansion coefficients, know-

ing this antisymmetric part determines the complete coefficients already up to the completely
symmetric term, as we will argue in the following. To this end, let us spell out the completely
symmetrized part of the coefficients and then try to rewrite them in terms of the full ones and
the antisymmetrized part:

Γ(MNK1...Kp)
k =

1
(p+ 2)

(
ΓMNK1...Kp
k + ΓNMK1...Kp

k + ΓK1NMK2...Kp
k + · · ·+ ΓKpN...Kp−1M

k

)
(2.75)

We can rewrite each of the last (p+ 1) terms on the righthand side as a term with first index M
(like the first term) and a term antisymmetric in two indices.

Γ(MNK1...Kp)
k =

1
(p+ 2)

(
(p+ 2)ΓMNK1...Kp

k + 2Γ[NM ]K1...Kp
k + 2Γ[K1M ]K2...KpN

k +

+ · · ·+ 2Γ[KpM ]NK1...Kp−1
k

)
=ΓMNK1...Kp

k +
2

(p+ 2)

(
Γ[NM ]K1...Kp
k + Γ[K1M ]K2...KpN

k + · · ·+

+ Γ[KpM ]NK1...Kp−1
k

)
(2.76)

As claimed before, the full coefficients can now be written as a sum of the completely symmetrized
part and terms that are antisymmetrized in two indices:

ΓMNK1...Kp
k =Γ(MNK1...Kp)

k +
2

(p+ 2)

(
Γ[MN ]K1...Kp
k + Γ[MK1]K2...KpN

k + · · ·+

+ Γ[MKp]NK1...Kp−1
k

)
(2.77)

We can also write equation (2.75) more compactly using the symmetrization brackets and then
can anti-symmetrize the last (p + 1) terms by writing antisymmetrization bracket explicitly as
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in the following

Γ(MNK1...Kp)
k =

1
(p+ 2)

(
ΓMNK1...Kp
k + (p+ 1)Γ(N |M |K1...Kp)

k

)
=

1
(p+ 2)

(
(p+ 2)ΓMNK1...Kp

k + (p+ 1)
(
Γ(N |M |K1...Kp)
k − ΓM(NK1...Kp)

k

))
=ΓMNK1...Kp

k +
(p+ 1)
(p+ 2)

(
Γ(N |M |K1...Kp)
k − ΓM(NK1...Kp)

k

)
(2.78)

So we obtain the same result as in (2.77), just written in a slightly different way:

ΓMNK1...Kp
k =Γ(MNK1...Kp)

k +
(p+ 1)
(p+ 2)

(
ΓM(NK1...Kp)
k − Γ(N |M |K1...Kp)

k

)
(2.79)

Now by plugging condition (2.65) into equation (2.77) or (2.79) we obtain the final constraint
which the expansion coefficients Γ have to obey such that X̂ fulfils the correct algebra:

ΓMNK1...Kp
n−p

!=Γ(MNK1...Kp)
n−p +

α−(n+1)

(p+ 2)

(
G
M(NK1K2...Kp)
n+1

)
(2.80)

!=Γ(MNK1...Kp)
n−p +

α−(n+1)

(p+ 1)(p+ 2)

(
G
MNK1K2...Kp
n+1 +

+G
MK1N...Kp
n+1 + · · ·+G

MKpNK1...Kp−1
n+1

)
(2.81)

The completely symmetric part of Γ is still undetermined and can be chosen in such a way that
the calculations simplify. If we set the completely symmetric part of Γ to zero, we arrive at the
statement of Lemma 2 in [10].

2.4.2 Expansion of a Function in the Non-Commutativity Parameter

So far we have found a recursive formula (2.65) or equivalently (2.80) and (2.81) for the expansion
coefficients Γ at order n + 1 in terms of Gn+1, which according to its definition (2.62) contains
only objects at order n. The latter includes ωMN

n , which is in principle determined, as soon as
X̂M
n is fixed, but we have to perform the expansion of ωMN (X̂) in the parameter α in order to

obtain their explicit form. In this section we would like to present the α-expansion of ωMN (X̂)
or any other function f(X̂) explicitly up to second order by a brute force calculation in order to
get a feeling what is going on. Later we will follow [10] and use a more elegant method including
the so-called Duhamel formula. This will be presented in section 4. In general we can expand
f(X̂) as in the following.

f(X̂) =
∞∑
n=0

1
n!
f

(n)
K1...Kn

X̂K1 ...X̂Kn (2.82)

For the symmetrized basis we can write

f(X̂) =
∞∑
n=0

1
n!
f

(n)
K...KX̂

K ...X̂K (2.83)

f(X̂) =
∞∑
n=0

1
n!
f

(n)
K...K(X̂K)n (2.84)
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Let us substitute the expansion of X̂ (2.47) up to order α2 and sum up the results once again

f(X̂) =
∞∑
n=0

1
n!
f

(n)
K...K(XK)n+

+ α

∞∑
n=1

1
n!
f

(n)
K...K

n∑
i=1

(XK)n−iΓKL0 (X)∂L((XK)i−1 . . . )+

+ α2
∞∑
n=1

1
n!
f

(n)
K...K

n∑
i=1

(XK)n−iΓKL1 (X)∂L((XK)i−1 . . . )+

+ α2
∞∑
n=1

1
n!
f

(n)
K...K

n∑
i=1

(XK)n−iΓKLL0 (X)∂L∂L((XK)i−1 . . . )+

+ α2
∞∑
n=2

1
n!
f

(n)
K...K

n∑
j=2

j−1∑
i=1

(XK)n−jΓKL1
0 (X)∂L1((XK)j−i−1ΓKL2

0 ∂L2((XK)i−1) . . . )+

+O(α3) (2.85)

and consequently we obtain

f(X̂) =f(X) + α

∞∑
n=2

1
n!
f

(n)
K...K

n∑
i=2

(i− 1)(XK)n−2ΓKK0 (X)+

+ α

∞∑
n=1

1
n!
f

(n)
K...K

n∑
i=1

(XK)n−1ΓKL0 (X)∂L+

+ α2
∞∑
n=2

1
n!
f

(n)
K...K

n∑
i=2

(i− 1)(XK)n−2ΓKK1 (X))+

+ α2
∞∑
n=1

1
n!
f

(n)
K...K

n∑
i=1

(XK)n−1ΓKL1 (X)∂L+

+ α2
∞∑
n=3

1
n!
f

(n)
K...K

n∑
i=3

(i− 1)(i− 2)(XK)n−3ΓKKK0 (X)+

+ 2α2
∞∑
n=2

1
n!
f

(n)
K...K

n∑
i=2

(i− 1)(XK)n−2ΓKKL0 (X)∂L+

+ α2
∞∑
n=1

1
n!
f

(n)
K...K

n∑
i=1

(XK)n−1ΓKLL0 (X)∂L∂L+

+ α2
∞∑
n=4

1
n!
f

(n)
K...K

n∑
j=4

j−1∑
i=2

(i− 1)(j − 3)(XK)n−4ΓKK0 (X)ΓKK0 (X)+

+ α2
∞∑
n=3

1
n!
f

(n)
K...K

n∑
j=3

j−1∑
i=2

(i− 1)(XK)n−3ΓKL0 (X)(∂LΓKK0 (X) + ΓKK0 (X)∂L)+

+ α2
∞∑
n=3

1
n!
f

(n)
K...K

n∑
j=3

j−1∑
i=1

(j − 2)(XK)n−3ΓKK0 (X)ΓKL0 (X)∂L)+
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+ α2
∞∑
n=2

1
n!
f

(n)
K...K

n∑
j=2

j−1∑
i=1

(XK)n−2ΓKL1
0 (X)(∂L1ΓKL2

0 (X)∂L2 + ΓKL2
0 (X)∂L1∂L2)+

+O(α3) (2.86)

which is simplified to the following expression

f(X̂) =f(X) +
α

2
ΓKK0 ∂K∂Kf(X) + α∂Kf(X)ΓKL0 ∂L + α2∂K∂Kf(X)ΓKK1 (X)+

+
α2

3
∂K∂K∂Kf(x)ΓKKK0 (X) +

α2

8
∂K∂K∂K∂Kf(X)ΓKK0 (X)ΓKK0 (X)+

+
α2

6
∂K∂K∂Kf(X)ΓKL0 (X)∂LΓKK0 (X) + α2∂Kf(X)ΓKL1 (X)∂L+

+ α2∂K∂Kf(X)ΓKKL0 (X)∂L +
α2

3
∂K∂K∂Kf(X)ΓKK0 (X)ΓKL0 (X)∂L+

+
α2

2
∂K∂Kf(X)ΓKL1

0 (X)∂L1ΓKL2
0 (X)∂L2 + α2∂Kf(X)ΓKLL0 (X)∂L∂L+

+
α2

2
∂K∂Kf(X)ΓKL1

0 (X)ΓKL2
0 (X)∂L1∂L2 +O(α3) (2.87)

Expansion of ω: Now let us put f(X̂) = ωMN (X̂) and find out the expression for ωMN (X̂)
up to order α2. Equation (2.82) then takes the following form

ωMN (X̂) =
∞∑
k=0

1
k!
ωMN
K1...Kk

X̂K1 ...X̂Kk (2.88)

and the expansion (2.87) turns into

ωMN (X̂) =ωMN (X) +
α

2
ΓKK0 ∂K∂Kω

MN (X) + α∂Kω
MN (X)ΓKL0 ∂L+

+ α2∂K∂Kω
MN (X)ΓKK1 (X) +

α2

3
∂K∂K∂Kω

MN (X)ΓKKK0 (X)+

+
α2

8
∂K∂K∂K∂Kω

MN (X)ΓKK0 (X)ΓKK0 (X)+

+
α2

6
∂K∂K∂Kω

MN (X)ΓKL0 (X)∂LΓKK0 (X)+

+ α2∂Kω
MN (X)ΓKL1 (X)∂L + α2∂K∂Kω

MN (X)ΓKKL0 (X)∂L+

+
α2

3
∂K∂K∂Kω

MN (X)ΓKK0 (X)ΓKL0 (X)∂L+

+
α2

2
∂K∂Kω

MN (X)ΓKL1
0 (X)∂L1ΓKL2

0 (X)∂L2+

+
α2

2
∂K∂Kω

MN (X)ΓKL1
0 (X)ΓKL2

0 (X)∂L1∂L2+

+ α2∂Kω
MN (X)ΓKLL0 (X)∂L∂L +O(α3) (2.89)

As mentioned at the beginning of this subsection, we will later use a more effective tool to do the
α-expansion. This will be presented in section 4 along with the calculation of the star product.
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2.4.3 Commutator at n-th Level

Equations (2.80) or (2.81) recursively determine (up to the completely symmetric part) the ex-
pansion coefficients Γ of the non-commutative coordinates X̂ in terms of the object Gn+1. Gn+1

in turn consists of ωn, which we have discussed in the previous subsection, and the commutator
[X̂M

n , X̂N
n ]. The latter commutator is therefore the last missing ingredient for the explicit calcu-

lation of X̂M at order n+1 and we are going to calculate it in the following. As we are assuming
that the algebra [X̂M

n , X̂N
n ] = 2αωn−1 + O(αn+1) is already obeyed up to order n, we need to

calculate only the contribution of this commutator to the order n+ 1:

[X̂M
n , X̂N

n ] =
[
XM +

n∑
p=1

αp
p−1∑
k=0

ΓMK1...Kp−k
k (X)∂K1 ...∂Kp−k , X

N+

+
n∑
q=1

αq
q−1∑
l=0

ΓNL1...Lq−l
l (X)∂L1 ...∂Lq−l

]
(2.90)

where we have used equation (2.52) for the expansion of X̂M
n . The commutator of XM with the

sum
∑n
q=1 α

q(. . .) on the other side is maximally of order n and is therefore fully contained in
2αωn−1. The same is true for [

∑n
p=1 α

p(. . .) , XN ]. In order to extract the order (n+1) from
the remaining commutators [

∑n
p=1 α

p(. . .),
∑n
q=1 α

q(. . .)], we need to make a reparametrization
of the summation variables such that

p̃ ≡ q + p (2.91)

(the total power of α) becomes a summation variable. As second summation variable we keep q.
Starting from 1 ≤ p, q ≤ n, the new summation variables have to obey the following inequalities
in the summation

1 ≤ q ≤ p̃, n , 2 ≤ p̃ ≤ 2n (2.92)

We thus obtain the following equation for the reparametrized summation that is valid for any
p, q-dependent summand Cp,q:

n∑
p=1

n∑
q=1

α

p̃︷︸︸︷
q+p Cp,q =

2n∑
p̃=2

αp̃
min{p̃,n}∑
q=1

Cp̃−q,q (2.93)

We are interested only in the contribution at order p̃ = n + 1 to the commutator. So applying
the above equation to (2.90), using that we know the result 2αωn−1 up to order n, we obtain

[X̂M
n , X̂N

n ] =2αωn−1 + αn+1
n∑
q=1

n−q∑
k=0

q−1∑
l=0

×

×
[
ΓMK1...Kn+1−q−k
k (X)∂K1 . . . ∂Kn+1−q−k , ΓNL1...Lq−l

l (X)∂L1 ...∂Lq−l

]
+

+O(αn+2) = (2.94)

=2αωn−1 + 2αn+1
n∑
q=1

n−q∑
k=0

q−1∑
l=0

×

× Γ[M |K1...Kn+1−q−k
k (X)

[
∂K1 . . . ∂Kn+1−q−k , Γ|N ]L1...Lq−l

l (X)
]
∂L1 . . . ∂Lq−l+

+O(αn+2) (2.95)
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Note that for n = 0 the commutator vanishes identically. We can include this case in the above
formula, if we use

ω−1 ≡ 0,
0∑
q=1

(. . .) ≡ 0 (2.96)

Remember now the formula (valid in one dimension)

∂m (A ·B) =
m∑
p=0

(
m

p

)
∂m−pA∂pB (2.97)

This equation implies for the commutator of higher order derivatives with some function that

[∂m, A](. . .) =
m∑
p=0

(
m

p

)
∂m−pA∂p −A∂m = (2.98)

=
m−1∑
p=0

(
m

p

)
∂m−pA∂p ∀m ≥ 1 (2.99)

In higher dimensions the formula can be used likewise, when the derivatives are totally sym-
metrized, as it is the case in our commutator (with m replaced by n+ 1− q − k):

[X̂M
n , X̂N

n ] =2αωn−1 + 2αn+1
n∑
q=1

n−q∑
k=0

q−1∑
l=0

n−q−k∑
p=0

(
n+ 1− q − k

p

)
Γ[M |K1...Kn+1−q−k
k (X)×

× ∂Kp+1 . . . ∂Kn+1−q−kΓ|N ]L1...Lq−l
l (X)∂K1 . . . ∂Kp∂L1 . . . ∂Lq−l +O(αn+2) =

(2.100)

=2αωn−1 + 2αn+1
n∑
q=1

n−q∑
k=0

q−1∑
l=0

n−q−k∑
p=0

(
n+ 1− q − k

p

)
×

× Γ[M |L1...LpK1...Kn+1−q−k−p
k (X)∂K1 . . . ∂Kn+1−q−k−p×

× Γ|N ]L1...Lq−l
l (X)∂L1 . . . ∂Lp+q−l +O(αn+2) (2.101)

Finally we would like to do a last reparametrization of the summation variables, such that p+q−l
becomes one of the summation variables. Let us call it m, although it has nothing to do with
the m in the general formula (2.97):

m ≡ p+ q − l (2.102)

Let us replace p by it and keep the other variables. The old variables were restricted to 1 ≤ q ≤
n, 0 ≤ k ≤ n − q, 0 ≤ l ≤ q − 1, 0 ≤ p ≤ n − q − k. The inequality for p gets replaced by
(1 ≤) q − l ≤ m ≤ n− k − l (≤ n).

We want to see its left part as an inequality for l, i.e. (q − 1 ≥) l ≥ q −m and its right part
as an inequality for k, i.e. (0 ≤ ) k ≤ n −m − l . This implies also that l ≤ n −m. The new
variables thus have to obey

1 ≤ m ≤ n , 1 ≤ q ≤ n,
max{0, q −m} ≤ l ≤ min{q − 1, n−m}, 0 ≤ k ≤ min{n− q, n−m− l} (2.103)
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Our commutator can therefore be rewritten as

[X̂M
n , X̂N

n ] = 2α

{
ωn−1 + αn

n∑
m=1

n∑
q=1

min{q−1,n−m}∑
l=max{0,q−m}

min{n−q,n−m−l}∑
k=0

(
n+ 1− q − k
m− q + l

)
×

×Γ[M |Lq−l+1...LmK1...Kn+1−m−k−l
k (X)∂K1 . . . ∂Kn+1−m−k−l ×

×Γ|N ]L1...Lq−l
l (X)∂L1 . . . ∂Lm

}
+O(αn+2) (2.104)

2.4.4 Solving the Recursion Relation at Lowest Orders

Now we are almost ready to solve at lowest orders the recursion relation (2.80) or (2.81) which
determines the expansion coefficients ΓM of X̂M at order αn+1 in terms of objects known from
order n. The recursion relation contains the object GMN

n+1 which is defined in (2.62) and which
we can give now explicitly, using (2.104):

GMN
n+1 = 2αωMN

n − [X̂M
n , X̂N

n ] +O(αn+2) = (2.105)

= 2α
{
ωMN
n − ωn−1 − αn

n∑
m=1

n∑
q=1

min{q−1,n−m}∑
l=max{0,q−m}

min{n−q,n−m−l}∑
k=0

(
n+ 1− q − k
m− q + l

)
×

×Γ[M |Lq−l+1...LmK1...Kn+1−m−k−l
k (X)∂K1 . . . ∂Kn+1−m−k−l ×

×Γ|N ]L1...Lq−l
l (X)∂L1 . . . ∂Lm

}
(2.106)

where ωMN
n was derived up to second order in (2.89) and will (as mentioned before) be derived to

higher order along with the calculation of the star product. For the moment let us just remember

ωMN
0 =ωMN (X) (2.107)

ωMN
1 − ωMN

0 =
α

2
ΓKK0 ∂K∂Kω

MN (X) + α∂Kω
MN (X)ΓKL0 ∂L (2.108)

ωMN
2 − ωMN

1 =α2∂K∂Kω
MN (X)ΓKK1 (X) +

α2

3
∂K∂K∂Kω

MN (X)ΓKKK0 (X)+

+
α2

8
∂K∂K∂K∂Kω

MN (X)ΓKK0 (X)ΓKK0 (X)+

+
α2

6
∂K∂K∂Kω

MN (X)ΓKL0 (X)∂LΓKK0 (X)+

+ α2∂Kω
MN (X)ΓKL1 (X)∂L + α2∂K∂Kω

MN (X)ΓKKL0 (X)∂L+

+
α2

3
∂K∂K∂Kω

MN (X)ΓKK0 (X)ΓKL0 (X)∂L+

+
α2

2
∂K∂Kω

MN (X)ΓKL1
0 (X)∂L1ΓKL2

0 (X)∂L2+

+
α2

2
∂K∂Kω

MN (X)ΓKL1
0 (X)ΓKL2

0 (X)∂L1∂L2+

+ α2∂Kω
MN (X)ΓKLL0 (X)∂L∂L (2.109)

• Let us start the recursion at order n = 0 , where we know that X̂0 = X and where the
commutator relation is trivially obeyed (ω−1 ≡ 0):

[X̂0, X̂0] = [X,X] = 0 (2.110)
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In order to do the step to n+ 1, we need G1 given according to (2.106) and (2.96) by

GMN
1 = 2αωMN

0 = 2αωMN (X) (2.111)

In order to determine X̂1 we need to make use of the recursion relation (2.80) or (2.81)

ΓMN
0

!= Γ(MN)
0 + α−1

2 GMN
1 = (2.112)

= Γ(MN)
0 + ωMN (X) (2.113)

Γ
(K...K)
k =0

= ωMN (X) (2.114)

• Now we switch to n = 1 . The above condition implies

X̂M
1 = XM + α

(
Γ(MN)

0 + ωMN (X)
)
∂N (2.115)

ωMN
1 − ωMN

0 = α
2 Γ(KK)

0 ∂K∂Kω
MN (X) +

+α∂KωMN (X)
(
Γ(KL)

0 + ωKL(X)
)
∂L (2.116)

[X̂M
1 , X̂N

1 ] = 2αωMN (X) +O(α2) (2.117)

In order to go to n+ 1 we need the object Gn+1 = G2 which is given according to (2.106)
by

GMN
2 = 2α

{
ωMN

1 − ωMN
0 − αΓ[M |K

0 (X)∂KΓ|N ]L
0 (X)∂L

}
= (2.118)

= 2α2
{

1
2Γ(KK)

0 ∂K∂Kω
MN (X) + ∂Kω

MN (X)
(

Γ(KL)
0 + ωKL(X)

)
∂L

−
(

1
2

(
Γ[M |K

0 + ΓK[M |
0

)
+ ω[M |K(X)

)
∂K ×

×
(

1
2

(
Γ|N ]L

0 + ΓL|N ]
0

)
+ ω|N ]L(X)

)
∂L

}
(2.119)

If we choose the completely symmetrized coefficients Γ(K...K)
k to vanish, the expression

further simplifies to

GMN
2 = −2α2

{
ωLK(X)∂KωMN (X) + ω[M |K(X)∂Kω|N ]L(X)

}
∂L (2.120)

The recursion relation (2.80) finally tells us that

ΓMNL
0

!= Γ(MNL)
0 + α−2

6

(
GMNL

2 +GMLN
2

)
= (2.121)

Γ
(K...K)
k =0

= − 1
3

(
ωLK(X)∂KωMN (X) + ω[M |K(X)∂Kω|N ]L(X) +

+ωNK(X)∂KωML(X) + ω[M |K(X)∂Kω|L]N (X)
)

= (2.122)

= − 1
6

(
ωLK(X)∂KωMN (X) + ωNK(X)∂KωML(X)

)
(2.123)

ΓMN
1

!= Γ(MN)
1 + α−2

2 GMN
2 = (2.124)

Γ
(K...K)
k =0

= 0 (2.125)
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Chapter 3

Star Product

In this section, we define the star product by ordering the monomials in non-commutative coor-
dinate space. We use three different examples of the ordering prescriptions namely Symmetric
or Weyl ordering and two other orderings that we will call index-value-ordering and anti-index-
value-ordering. For details on ordering prescriptions in context of quantum mechanics see [21].
We then realize that different orderings correspond to different star products. See [22] for similar
considerations in case of a constant Poisson structure and the Moyal-Weyl star product.

3.1 Ordering the Monomials

There exists a one to one map of the algebra A of analytic functions on commutative coordinate
space Fn to the non-commutative algebra Â

M(O) : A 7→ Â (3.1)

if one defines a reference ordering of the generators. M(O) maps the monomials in the commuta-
tive coordinate space to the monomials in the non-commutative coordinate space in a particular
ordering, where the superscript indicates some particular ordering prescription. The map M(O)

in equation (3.1) can explicitly be written as

XM1 . . . XMp
M(O)

7→ (X̂M1 . . . X̂Mp)Ordered

XM1 . . . XMp
M(O)

7→ (X̂M1 . . . X̂Mp)O (3.2)

XM1 . . . XMp
M−1(O)

← [ (X̂M1 . . . X̂Mp)O (3.3)

1
M(O)



M−1(O)

1 (3.4)

Strictly speaking we have to understand XM1 . . . XMp on the left hand side as ϕM1 . . . ϕMp , where
ϕM (X) = XM . However, it is quite common and convenient to ignore the distinction between
XM and ϕM .
Weyl-ordering of the monomials : Symmetric or Weyl-ordering is a natural choice for a refer-
ence ordering of the monomials. The mapM(O) ≡M(W ) in equation (3.2) in this representation
maps monomials in commutative coordinate space to the symmetrically ordered monomials

(X̂M1 . . . X̂Mp)W ≡ X̂(M1 . . . X̂Mp) (3.5)
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in the non-commutative coordinate space and the explicit form of the map M(O) ≡ M(W ) in
equations (3.2) and (3.3) takes the form

XM1 . . . XMp
M(W )

7→ X̂(M1 . . . X̂Mp) (3.6)

XM1 . . . XMp
M−1(W )

← [ X̂(M1 . . . X̂Mp) (3.7)

Index-value-ordering of the monomials : One can also have some different ordering e.g.
index-value-ordering of the monomials . By index-value-ordering of the monomials we mean

putting X’s with higher indices to the right. For example X̂M2X̂M1
M(I)

7→ X̂M1X̂M2 if M1 ≤M2

and similar to the definition (3.5) in this case we define

(X̂M1 . . . X̂Mp)I ≡ X̂ :M1 . . . X̂Mp: (3.8)

Where

: MP (1)...MP (p) :≡M1...Mp ∀ permutations P, ∀ M1 ≤ · · · ≤ Mp (3.9)

Also note that we will use here the notation “: · · · :” for index ordering of the monomials
independently of its usual use for normal ordered operators in Quantum mechanics and Quantum
Field theory. The map M(O) in equations (3.2) and (3.3) looks in this case as in the following

XM1 . . . XMp
M(I)

7→ X̂ :M1 . . . X̂Mp: (3.10)

XM1 . . . XMp
M−1(I)

← [ X̂ :M1 . . . X̂Mp: (3.11)

Anti-index-value-ordering of the monomials: One can equally define anti-index-value-
ordering by putting X’s with higher indices to the very left.

For example X̂M1X̂M2
M(AI )

7→ X̂M2X̂M1 if M1 ≤M2. Where again similar to the definitions (3.5)
and (3.8) we define

(X̂M1 . . . X̂Mp)AI ≡ X̂ ;M1 . . . X̂Mp; (3.12)

and

;MP (p)...MP (1);≡Mp...M1 ∀ permutations P, ∀ M1 ≤ · · · ≤ Mp (3.13)

The map M(O) in equations (3.2) and (3.3) looks in this case as in the following

XM1 . . . XMp
M(AI )

7→ X̂ ;M1 . . . X̂Mp; (3.14)

XM1 . . . XMp
M−1(AI )

← [ X̂ ;M1 . . . X̂Mp; (3.15)

Poincaré-Birkhoff-Witt (PBW) property: We have now described different ordering pre-
scriptions for the monomials with non-commutative coordinates X̂. We will use in practice,
to put monomials with noncommutative coordinate operator X̂ in some specific ordering, the
property of the algebra called Poincaré-Birkhoff-Witt property. This property of the algebra Â
allows one to reorder the elements using the commutator in equation (2.10). Note that it is
always possible when α is formal expansion parameter. In contrast, the form of ω and size of α
are severely constrained if α is instead a (small) real parameter. For details see [23] [18] [24].
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3.2 Star Product Via Isomorphism

Since the map M(O) defined in the last section is a vector space isomorphism whose inverse
M−1(O) can be used to map the multiplicative structure of Â to the A. We use this isomorphism
to define the star product in the commutative space by the following commutative diagram.

f(X), g(X) M7−→f(X̂), g(X̂)
↓ (Ordinary operator product)

f ? g(X)M
−1

←− [f(X̂)g(X̂) ≡ f ? g(X̂) =M(f ? g(X)) (3.16)

The star product in commutative space is then defined by

f ? g(X̂) =f(X̂)g(X̂) (3.17)
M(f ? g(X)) =M(f(X))M(g(X)) (3.18)

or

f ? g(X) =M−1(M(f(X))M(g(X)))

=M−1((f(X̂))(g(X̂))) (3.19)

Assuming that f(X) is an analytical function, we can expand

f(X) =
∞∑
n=0

fM1...Mn
XM1 · · ·XMn (3.20)

This is mapped with M to an f(X̂) of the form

f(X̂) =
∞∑
n=0

fM1...MnM(O)(XM1 . . . XMn)

=
∞∑
n=0

fM1...Mn
(X̂M1 . . . X̂Mn)O (3.21)

The star product defined in equation (3.17) becomes

∞∑
n=0

(f ? g)M1...Mn
(X̂M1 . . . X̂Mn)O =

=
∞∑
p=0

∞∑
q=0

fM1...Mp
gMp+1...Mp+q (X̂

M1 . . . X̂Mp)O(X̂Mp+1 . . . X̂Mp+q )O (3.22)

In order to get the explicit expression for the star product defined in equation (3.22) one has to
put the monomials on the right hand side in the same ordering as on the left hand side. However,
as seen in the example (2.24) reordering lower order α terms leave higher order terms unordered
and, therefore, to obtain explicit expression for the star product at higher α orders becomes
very hard. In the examples below to show the procedure we will give the star product examples
ordered only up to order α terms. It is important to note that unit element of A, i.e. the constant
map ϕ(0) ∈ A with ϕ(0)(X) = 1 is mapped to the unit element in Â, i.e. ϕ(0)(X̂) = 1 ∈ Â.

ϕ(0) ∈ A M(O)

7−→ ϕ(0)(X̂) = 1 ∈ Â (3.23)

25



and hence the star product of any function f(X) with constant function (C(X) = c) C = c·ϕ(0)

coincides with the ordinary product

f ? C = C ? f = Cf (3.24)

3.2.1 Weyl-Ordered Star Product

When we choose the ordering prescription to be Weyl ordering i.e. M(O) = M(W ) the star
product in equation (3.22) becomes

∞∑
n=0

(f ? g)M1...Mn
(X̂M1 . . . X̂Mn)W =

=
∞∑
p=0

∞∑
q=0

fM1...Mp
gMp+1...Mp+q (X̂

M1 ...X̂Mp)W (X̂Mp+1 . . . X̂Mp+q )W (3.25)

∞∑
n=0

(f ? g)M1...Mn
(X̂(M1 ...X̂Mn)) =

=
∞∑
p=0

∞∑
q=0

fM1...MpgMp+1...Mp+q (X̂
(M1 . . . X̂Mp))(X̂(Mp+1 . . . X̂Mp+q)) (3.26)

Now one needs to reorder the monomials at the right hand side of equation (3.26) into Weyl
ordering. This can be done by the use of a commutator. Let us show this with some simple
examples.

Examples The simplest example that can still show the basic procedure for calculating the
star product is the star product of the coordinates functions ϕM (X) = XM .

ϕM1 ? ϕM2(X̂) =X̂M1X̂M2 =

=
1
2

(
X̂M1X̂M2 + X̂M2X̂M1

)
+ αωM1M2(X̂) (3.27)

This is mapped back to

ϕM1 ? ϕM2(X) = XM1XM2 + αωM1M2(X) M−1(W )

←− [
1
2

(
X̂M1X̂M2 + X̂M2X̂M1

)
+ αωM1M2(X̂)

(3.28)

The star product commutator then coincides with the commutator of the non-commutative
coordinates

[ϕM1 , ϕM2 ]? = ϕM1 ? ϕM2 − ϕM2 ? ϕM1 = 2αωM1M2 (3.29)

Another instructive example is the star product of monomials with unity of the algebra
i.e.f(X) = ϕM1M2(X) ≡ XM1XM2 and g(X) = e(X) = 1

ϕM1M2 ? e(X̂) =X̂(M1X̂M2)e(X̂)

=X̂(M1X̂M2)1

=X̂(M1X̂M2) = ϕM1M2(X̂) (3.30)
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which is expected because of (3.24) and the result is mapped back to the commutative coordinate
space A

ϕM1M2 ? e(X) = ϕM1M2(X) = XM1XM2 M−1(W )

←− [ X̂(M1X̂M2) (3.31)

A slightly more complicated example would be the star product of functions f = ϕM1(X) and
g = ϕM2M3(X)

ϕM1 ? ϕM2M3(X̂) =X̂M1X̂(M2X̂M3) (3.32)

=
1
3

(
X̂M1X̂(M2|X̂ |M3) + X̂(M2|X̂M1X̂ |M3) + X̂(M2|X̂ |M3)X̂M1

)
+

+
1
3

[X̂M1 , X̂(M2|]X̂ |M3) +
1
3

[X̂M1 , X̂(M2|X̂ |M3)]

=X̂(M1X̂M2X̂M3) +
2
3
αωM1(M2|(X̂)X̂ |M3) +

2
3
αωM1(M2|(X̂)X̂ |M3)+

+
2
3
αX̂(M2|ωM1|M3)(X̂)

=X̂(M1X̂M2X̂M3) + 2αωM1(M2|(X̂)X̂ |M3)+

+
4
3
α2ω(M3|N (X̂)∂NωM1|M2)(X̂) +O(α3) (3.33)

Which is mapped back to commutative coordinate space

ϕM1 ? ϕM2M3(X) =XM1XM2XM3 + 2αωM1(M2|(X)X |M3)+

+
4
3
α2ω(M3|N (X)∂NωM1|M2)(X) +O(α3) (3.34)

Exponential representation of the Weyl ordered expansion If we choose an ordering to
be the Weyl ordering the function in equation (3.21) takes the form

f(X̂) =
∞∑
n=0

fM1...Mn

∑
pn

1
n!
Pn(X̂M1 ...X̂Mn) (3.35)

where Pn are all permutations of the of n elements. The second sum is just the definition of the
symmetrization brackets, i.e.

f(X̂) =
∞∑
n=0

fM1...MnX̂
(M1 · · · X̂Mn) (3.36)

A particular property of the Weyl-ordered basis is that we can drop the symmetrization brackets
when we contract the generator-monomials with the completely symmetric expansion coefficients
of some analytic function in A:

f(X̂) =
∞∑
n=0

fM1...Mn
X̂M1 · · · X̂Mn (3.37)
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Using this property, we can write f(X̂) as

f(X̂) =
∞∑
n=0

1
n!
X̂M1 . . . X̂Mn∂YM1 . . . ∂YMn f(Y )|Y=0

=
∞∑
n=0

1
n!

(X̂M∂YM )nf(Y )|Y=0

f(X̂) =eX̂
M∂YM f(Y )|Y=0 (3.38)

and the star product can be written as

f ? g(X̂) =f(X̂)g(X̂) (3.39)

=eX̂
K∂YK eX̂

K∂ZK f(Y )g(Z)|Y=Z=0 (3.40)

=eX̂
K∂YK+X̂K∂ZK+ 1

2 [X̂K ,X̂K ]∂YK ∂ZK+...f(Y )g(Z)|Y=Z=0 (3.41)

In contrast to [10], we will not use a Fourier-expansion, but will instead work with the represen-
tation (3.38), as it generalizes easily to the superspace.

3.2.2 Index-Value-Ordered Star Product

Let us now choose a differnet ordering prescription i.e. index-value-ordering i.e. M(O) =M(I)

the star product in equation (3.22) becomes

∞∑
n=0

(f ? g)M1...Mn(X̂M1 ...X̂Mn)I =

=
∞∑
p=0

∞∑
q=0

fM1...Mp
gMp+1...Mp+q (X̂

M1 ...X̂Mp)I(X̂Mp+1 ...X̂Mp+q )I (3.42)

∑
n

(f ? g)M1...Mn(X̂ :M1 ...X̂Mn:) =

=
∑
p

∑
q

fM1...Mp
gMp+1...Mp+q (X̂

:M1 ...X̂Mp:)(X̂ :Mp+1 ...X̂Mp+q :) (3.43)

Now again one needs to reorder the right hand side of equation (3.43) into index-value-ordering.
This can again be done by the use of a commutator. Let us repeat this with same examples. The
example of the star product of the coordinate functions ϕM (X) = XM in case of index-value-
ordering reads then

ϕM1 ? ϕM2(X̂) =X̂M1X̂M2 = (3.44)

=X̂ :M1X̂M2: − X̂ :M1X̂M2: + X̂M1X̂M2 (3.45)

At this point one needs to make a case distinction. If M1 ≤ M2, the second and third term
cancel, while if M1 > M2, they combine to the commutator. The result can be written without
case distinction as follows:

ϕM1 ? ϕM2(X̂) =X̂ :M1X̂M2: + αωM1M2(X̂)− αω:M1M2:(X̂) (3.46)
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This is mapped back to A

ϕM1 ? ϕM2(X) =

= XM1XM2 + αωM1M2(X)− αω:M1M2:(X) M−1(I)

←− [ X̂ :M1X̂M2: + αωM1M2(X̂)− αω:M1M2:(X̂)
(3.47)

The star product commutator coincides with the the commutator of the non-commutative coor-
dinates

[ϕM1 , ϕM2 ]? = ϕM1 ? ϕM2 − ϕM2 ? ϕM1 = 2αωM1M2 (3.48)

Let us also repeat other two examples to have better feeling of the difference of the two star
products. The star product of monomials with unity of the algebra i.e.f = ϕM1M2(X) and
g = e(X)

ϕM1M2 ? e(X̂) =X̂ :M1X̂M2:e(X̂)

=X̂ :M1X̂M2: · 1
=X̂ :M1X̂M2: (3.49)

which is mapped back to the commutative coordinate space

ϕM1M2 ? e(X) = XM1XM2 M−1(I)

←− [ X̂ :M1X̂M2: (3.50)

Next example is of the star product of f = ϕM1M2(X) and g = ϕM3(X)

ϕM1M2 ? ϕM3(X̂) = X̂ :M1X̂M2:X̂M3 = (3.51)
= X̂ :M1X̂M2X̂M3: − X̂ :M1X̂M2X̂M3: + X̂ :M1X̂M2:X̂M3 = (3.52)

=



→ X̂ :M1X̂M2X̂M3: if M3 is biggest index
→ X̂ :M1X̂M2X̂M3: + [X̂ :M1X̂M2:, X̂M3 ]︸ ︷︷ ︸

2αX̂:M1ωM2:M3 (X̂)+2αω:M1|M3 (X̂)X̂|M2:

if M3 is smallest index

→ X̂ :M1X̂M2X̂M3: + X̂ :M1| [X̂ |M2:, X̂M3 ]︸ ︷︷ ︸
2αω|M2:M3 (X̂)

if M3 is between M1 and M2

(3.53)

3.2.3 Anti-Index-Value-Ordered Star Product

Let us now show all our results in yet another ordering prescription i.e. anti-index-value-ordering:
M(O) =M(AI). The star product in equation (3.22) becomes

∞∑
n=0

(f ? g)M1...Mn(X̂M1 . . . X̂Mn)AI =

=
∞∑
p=0

∞∑
q=0

fM1...Mp
gMp+1...Mp+q (X̂

M1 . . . X̂Mp)AI (X̂
Mp+1 . . . X̂Mp+q )AI (3.54)

∞∑
n=0

(f ? g)Mp+q...M1(X̂ ;Mp+q . . . X̂M1;) =

=
∞∑
p=0

∞∑
q=0

fM1...Mp
gMp+1...Mp+q (X̂

;M1 . . . X̂Mp;)(X̂ ;Mp+1 . . . X̂Mp+q ;) (3.55)
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Now once again one needs to reorder the right hand side of equation (3.55) into anti-index-value-
ordering. This can be done by the use of a commutator. Let us again repeat this with same
simple examples of the last two sections. The example of the star product of the coordinates
functions ϕM (X) = XM (X) in case of anti-index-value-ordering becomes

ϕM2 ? ϕM1(X̂) =X̂M2X̂M1 = (3.56)

=X̂ ;M2X̂M1; − X̂ ;M2X̂M1; + X̂M2X̂M1 (3.57)

Again we need to make a case distinction. If M1 ≤M2, the second and third term cancel, while if
M1 > M2, they combine to the commutator. The result can be written without case distinction
as follows:

ϕM2 ? ϕM1(X̂) =X̂ ;M2X̂M1; + αωM2M1(X̂)− αω;M2M1;(X̂) (3.58)

This is mapped back to A

ϕM2 ? ϕM1(X) =

= XM2XM1 + αωM2M1(X)− αω;M2M1;(X) M−1(I)

←− [ X̂ ;M2X̂M1; + αωM2M1(X̂)− αω;M2M1;(X̂)
(3.59)

The star product commutator coincides with the commutator of the non-commutative coordi-
nates

[ϕM1 , ϕM2 ]? = ϕM1 ? ϕM2 − ϕM2 ? ϕM1 = 2αωM1M2 (3.60)

and the example of the star product of monomials with unity of the algebra i.e.f = ϕM2M1(X)
and g = e(X) in this case would be

ϕM2M1 ? e(X̂) =X̂ ;M2X̂M1;e(X̂)

=X̂ ;M2X̂M1; · 1
=X̂ ;M2X̂M1; (3.61)

which is mapped back to the commutative coordinate space A

ϕM2M1 ? e(X) = XM2XM1 M−1(AI )

←− [ X̂ ;M2X̂M1; (3.62)

and the last example is of the star product of g = ϕM3(X) and f = ϕM1M2(X)

ϕM1M2 ? ϕM3(X̂) = X̂ ;M1X̂M2;X̂M3 = (3.63)
= X̂ ;M1X̂M2X̂M3; − X̂ ;M1X̂M2X̂M3; + X̂ ;M1X̂M2;X̂M3 = (3.64)

=



→ X̂ ;M1X̂M2X̂M3; if M3 is smallest index
→ X̂ ;M1X̂M2X̂M3; + [X̂ ;M1X̂M2;, X̂M3 ]︸ ︷︷ ︸

2αX̂;M1ωM2;M3 (X̂)+2αω;M1|M3 (X̂)X̂|M2;

if M3 is biggest index

→ X̂ ;M1X̂M2X̂M3; + X̂ ;M1| [X̂ |M2;, X̂M3 ]︸ ︷︷ ︸
2αω|M2;M3 (X̂)

if M3 is between M1 and M2

(3.65)
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Chapter 4

Star Product Order by Order

In the last chapter we defined the star product in the commutative space A by reordering the
monomails in the non-commutative space Â and mapping them back to the commutative space.
In this section we want to describe a method for calculating the star product order by order. For
this reason we are working from now on only with Weyl-ordered star product.

4.1 Polydifferential Representation

It turns out that the Weyl ordered star product given by (3.26) and also in (3.41) simplifies in the
polydifferential representation (2.47) if one puts the additional requirement that the completely
symmetrized expansion coefficients vanish:

Γ(MK1...Kp)
k = 0 (4.1)

As we have seen after (2.81), such a choice is still possible without changing the algebra. Ac-
cording to [10], the star product defined in equation (3.17) then takes the useful form

f ? g(X) =f(X̂)g(X) (4.2)

This has to be understood as the operator f(X̂) acting on the function g(X) and not as the
operator product of a differential and a multiplication operator! To show this let us compute a
simple example. Let us choose f(X̂) = ϕM1M2(X̂) = X̂(M1X̂M2) and g(X) = e(X) ∈ A and use
the polydifferential representation (2.47) of X̂.

X̂(M1X̂M2)(e(X)) =X̂(M1XM2)(1)

=
(
X(M1| +

∞∑
p=1

αpΓ(M1|K1...Kp(α,X)∂K1 . . . ∂Kp

)
X |M2)

=X(M1XM2) +
∞∑
p=1

αpΓ(M1|K1...Kp(α,X)∂K1 . . . ∂KpX
|M2)

=X(M1XM2) +
∞∑
p=1

αpΓ(M1M2)(α,X) (4.3)

Note that if the above condition (4.1) is not obeyed, we could still use equation (4.2) as a definition
of a star product. However, it will be a different star product then, as the one naturally defined
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in (3.26). In particular it will not be an associative star product any longer! We will discuss this
(somewhat artificial) approach to relax associativity in section 7.2. Now in order to calculate
the star product using this particular representation (4.2) we have to first calculate f(X̂) via
equation (3.38). However, to calculate eX̂

M∂YM order by order in α we will use the following
formula derived from Duhmael formula in [10].

eA+B =eA
{

1 +B +
1
2

[B,A] +
1
2
B2+

+
1
6

[[B,A], A] +
1
3

[B,A]B +
1
6
B[B,A] +

1
6
B3+

+
1
24

[[[B,A], A], A] +
1
8

[[B,A], A]B +
1
8

[B,A]2+

+
1
24
B[[B,A], A] +

1
8

[B,A]B2 +
1
12
B[B,A]B+

+
1
24
B2[B,A] +

1
24
B4

}
+O(α5) (4.4)

Where A = XM∂YM is of order of α0 and B = (X̂M − XM )∂YM is of order α1 and each
commutator is at least one order higher, [B,A] = O(α2), [[B,A], A] = O(α3), [[[B,A], A], A] =
O(α4). In order to demonstrate the procedure for computing commutators let us compute the
lowest order commutator [B,A] in the following

A ≡ XM∂YM , B ≡ (X̂N −XN )∂Y N (4.5)

[B,A] = (X̂N −XN )∂Y N
(
XM∂YM . . .

)
−XM∂YM

(
(X̂N −XN )∂Y N . . .

)
= (4.6)

=
(
X̂NXM −XM X̂N

)
∂YM∂Y N = (4.7)

=
∞∑
k=1

αkΓN K1...Kk(α,X)
(
∂K1 . . . ∂Kk(XM∂YM∂Y N . . .)− (4.8)

−XM∂K1 . . . ∂Kk∂YM∂Y N
)

=

=
∞∑
k=1

αkkΓ(N M)K1...Kk−1(α,X)∂K1 . . . ∂Kk−1∂YM∂Y N = (4.9)

=
∞∑
k=1

k−1∑
l=0

αk(k − l)Γ(N M)K1...Kk−l−1
l (X)∂K1 . . . ∂Kk−l−1∂YM∂Y N (4.10)

Writing the result explicitly up to second order in α yields

[B,A] = αΓ(N M)
0 (X)︸ ︷︷ ︸

=0

∂YM∂Y N +

+α22Γ(N M)K1
0 (X)∂K1∂YM∂Y N + α2 Γ(N M)

1 (X)︸ ︷︷ ︸
=0

∂YM∂Y N +O(α3) (4.11)

This demonstrates that [B,A] is indeed of order α2 if Γ(N M)
0 = 0.

4.1.1 Zeroth Order Star Product

In the zeroth order (α→ 0), the commutator in equation (2.10) reads

[X̂M , X̂N ] = 0 (4.12)
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so that we have an undeformed commutative algebra, X̂M = XM , and as expected the star
product coincides with ordinary product

f ?0 g = f · g (4.13)

4.1.2 First Order Star Product

In order to calculate the first order star product first of all we have to expand the coordinate
operator X̂ up to the first order in α

X̂M
1 = XM + αΓMK

0 (X)∂K +O(α2) (4.14)

Since we know ΓMK
0 (X) = ωMN (X) from (2.114) using it we can determine eX̂

M∂YM up to the
order α using formula (4.4).

eA+B =eA + eAB +O(α2)

=eX
M∂YM + eX

M∂YM ((X̂K −XK)∂YM ) (4.15)

eX̂
M∂YM =eX

M∂YM + eX
M∂YM (αΓKL0 ∂XL)∂Y K

eX̂
M∂YM =eX

M∂YM + eX
M∂YM (αωKL(X)∂XL)∂Y K (4.16)

and by using equation (3.38) we obtain

f(X̂) =(eX
M∂YM + eX

M∂YM (αωKL(X)∂XL)∂YM )f(Y )|Y=0

=eX
M∂YM f(Y )|Y=0 + eX

M∂YM (αωKL(X)∂XL)∂YM )f(Y )|Y=0

=eX
M∂YM f(Y )|Y=0 + αωKL(X)∂XL(∂XK (eX

M∂YM )f(Y )|Y=0 (4.17)

f(X̂) =f(X) + αωMN (X)∂XM f(X)∂XN (4.18)

As we have calculated now the function f(X̂) up to the order α, we use definition (4.2) to
calculate the star product at this order

f ?1 g =αωIJ(X)∂XIf(X)∂XJ g(X) +O(α2) (4.19)

Consistency Condition :
The operator product is an associative product and therefore the commutators of our operators
X̂M obey the Jacobi-identity (2.11). This puts the consistency condition (2.13) on ωMN (X̂),
i.e.:

[X̂M , ωNP (X̂)] + cycl.(MNP ) = 0 (4.20)

It implies the quite complicated condition (2.19) on the expansion coefficients of ωMN . We have
derived in (2.26) that at lowest order it forces ωMN (X) to be a Poisson-structure. At higher
orders we obtain corrections, all captured in (2.19). We will recover the lower orders of these
corrections, by checking (4.20) explicitly after every step. At order α equation 4.20 becomes

XM ?1 ω
NP − ωNP ?1 X

M + cycl.(MNP ) = 0 (4.21)

which gives

2αωMJ(X)∂XJω
NP (X) + cycl.(MNP ) = 0 (4.22)

This is indeed the integrability condition for a Poisson-structure and thus agrees with (2.26).
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4.1.3 Second Order Star Product

We first expand ω using the expansion of the function f(X̂) in equation (4.18) in order to
determine the constraints on the Γ(X)’s

ω(X̂)MN =ω(X)MN + αωKL(X)∂XKω(X)MN∂XL +O(α2) (4.23)

which shows that we can not have the first order part of γMn . The coordinate operators X̂M are
now expanded up to the second order in α as in the following.

X̂M
2 = XM + αωMN (X)∂XN + α2ΓMNP

0 (X)∂XN∂XP (4.24)

To use (4.4) we first calculate the commutator

[B,A] =− 2α2∂YM∂Y NΓMNP
0 (X)∂XP +O(α3).

[B,A] =− α2

3
∂YM∂Y Nω

KM (X)∂XKω
NL(X)∂XL +O(α3). (4.25)

Using ΓMNL
0 = − 1

6

(
ωLK(X)∂KωMN (X) + ωNK(X)∂KωML(X)

)
in (2.123) along with above

commutator we can now calculate the star product up to second order. From equation (4.4) at
second order in α we have

eA+B =
1
2
eA[B,A] +

1
2
eAB2 (4.26)

eX̂
M∂YM =

α2

2
eX

M∂YM (∂Y I∂Y Kω
KL(X)ωIJ(X)∂XJ∂XL)+

+
α2

3
eX

M∂YM (∂Y I∂Y Kω
KL(X)∂XLω

IJ(X)∂Y J )−

− α2

6
eX

M∂YM ∂Y I (ω
KL(X)∂XKω

IJ(X)+

+ ωKJ(X)∂XKω
IL(X))∂XJ∂XL +O(α3) (4.27)

and now similar to the first order star product we use equation (4.18) to obtain f(X̂) at order
α2

f(X̂) =
(α2

2
eX

M∂YM (∂Y I∂Y Kω
KL(X)ωIJ(X)∂XJ∂XL)+

+
α2

3
eX

M∂YM (∂Y I∂Y Kω
KL(X)∂XLω

IJ(X)∂Y J )

− α2

6
eX

M∂YM ∂Y I (ω
KL(X)∂XKω

IJ(X)+

+ ωKJ(X)∂XKω
IL(X))∂XJ∂XL

)
f(Y )|Y=0 +O(α3) (4.28)

=
(α2

2
eX

M∂YM (∂Y I∂Y Kω
KL(X)ωIJ(X)∂XJ∂XL)

)
f(Y )|Y=0+

+
(α2

3
eX

M∂YM (∂Y I∂Y Kω
KL(X)∂XLω

IJ(X)∂Y J )
)
f(Y )|Y=0−

−
(α2

6
eX

M∂YM ∂Y I (ω
KL(X)∂XKω

IJ(X)+

+ ωKJ∂XKω
IL(X))∂XJ∂XL

)
f(Y )|Y=0 +O(α3) (4.29)
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=
α2

2
ωKL(X)ωIJ(X)∂XJ∂XL(∂XI∂XK (eX

M∂YM ))f(Y )|Y=0+

+
α2

3
ωKL(X)∂XLω

IJ(X)∂XJ (∂XI∂XK (eX
M∂YM ))f(Y )|Y=0−

− α2

3
ωKL(X)∂XKω

IJ(X)∂XJ∂XL(∂XI (e
XM∂YM ))f(Y )|Y=0 +O(α3) (4.30)

=
α2

2
ωKL(X)ωIJ(X)∂XI∂XKf(X)∂XJ∂XL+

+
α2

3
ωKL(X)∂XLω

IJ(X)∂XI∂XKf(X)∂XJ−

−α
2

3
ωKL(X)∂XKω

IJ(X)∂XIf(X)∂XJ∂XL +O(α3) (4.31)

and using (4.2) we obtain

f ?2 g =
α2

2
ωKL(X)ωIJ(X)∂XI∂XKf(X)∂XJ∂XLg(X)+

+
α2

3
ωKL(X)∂XLω

IJ(X)∂XI∂XKf(X)∂XJ g(X)−

− α2

3
ωKL(X)∂XKω

IJ(X)∂XIf(X)∂XJ∂XLg(X) +O(α3) (4.32)

Consistency Condition :
At order α2 equation (4.20) becomes

XM ?2 ω
NP (X)− ωNP (X) ?2 X

M + cycl.(MNP ) = 0 (4.33)

where we are using the fact that all symmetrized Γ vanish due to equation (4.1). Hence the
consistency condition is fulfilled without putting additional restrictions on ωMN at this order in
α.

4.1.4 Third Order Star Product

Calculations go in the same way as in the last two sectons. Therefore, in this section we only
give the main results. Now again we have to expand ω using the expansion of the function f(X̂)
in equation (4.31) in order to calculate the constraints on the Γ(X)’s.

ωMN (X̂) =− α2

3
(ωIK(X)∂XIω

LJ(X) + ωIL(X)∂XIω
KJ(X)∂XJ )ωMN (X)∂XK∂XL+

+
α2

3
ωIJ(X)∂XJω

KL(X)∂XI∂XKω
MN (X)∂XL+

+
α2

2
ωIJ(X)ωKL(X)∂XI∂XKω

MN (X)∂XJ∂XL +O(α3) (4.34)

which shows that we can not have the zeroth and first order part of γMn in equation (2.55). The
coordinate operators X̂M are now expanded to the third order in α as in the following.

X̂M
3 =XM + αΓMN

0 (X)∂XN + α2ΓMNP
0 (X)∂XN∂XP +

+ α3ΓMNP
1 (X)∂XN∂XP + α3ΓMNPQ

0 (X)∂XN∂XP ∂XQ (4.35)
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In order to determine ΓMNP
1 (X) and ΓMNPQ

0 (X) we calculate the commutator for X̂M
3 and

compare the results with (4.34) at order α3. As a result we obtain

ΓMNP
1 (X) =

1
6
ωIL(X)∂XLω

JP (X)∂XI∂XJω
MN (X)+

+
1
6
ωIL(X)∂XLω

JN (X)∂XI∂XJω
MP (X) (4.36)

and

ΓMNPQ
0 (X) =

1
12

(
GMNPQ

3 +GMPNQ
3 +GMQPN

3

)
(4.37)

where

GMNPQ
3 = α3

(
ωIP (X)ωJQ∂XI∂XJω

MN (X) +
1
3
ωPI∂XIω

JQ(X)∂XJω
MN (X)+

+
1
3
ωQI(X)∂XIω

PJ(X)∂XJω
MN (X) +

1
6
ωNI(X)∂XIω

JQ(X)∂XJω
MP (X)+

+
1
6
ωNI(X)ωJQ(X)∂XI∂XJω

MP (X) +
1
6
ωNI(X)∂XIω

JP (X)∂XJω
MQ(X)+

+
1
6
ωNI(X)ωJP (X)∂XI∂XJω

MQ(X)− 1
6
ωMI(X)∂XIω

JQ(X)∂XJω
NP (X)−

− 1
6
ωMI(X)ωJQ(X)∂XI∂XJω

NP (X)− 1
6
ωMI(X)∂XIω

JP (X)∂JωNQ(X)−

− 1
6
ωMI(X)ωJP (X)∂XI∂XJω

NQ(X) +
1
6
ωIJ(X)∂XJω

NP (X)∂JωMQ(X)+

+
1
6
ωIP (X)∂XIω

NJ(X)∂XJω
MQ(X) +

1
6
ωIJ(X)∂XIω

NQ(X)∂XJω
MP (X)+

+
1
6
ωIQ(X)∂XIω

NJ(X)∂XJω
MP (X)− 1

6
ωIJ(X)∂XJω

MP (X)∂XJω
NQ(X)−

− 1
6
ωIP (X)∂XIω

MJ(X)∂XJω
NQ(X)− 1

6
ωIJ(X)∂XJω

MQ(X)∂XJω
NP (X)−

− 1
6
ωIQ(X)∂XIω

MJ(X)∂XJω
NP (X)

)
(4.38)

From equation (4.4) at third order in α we have

eA+B =
1
6

[[B,A], A] +
1
3

[B,A]B +
1
6
B[B,A] +

1
6
B3 (4.39)

and calculations similar to the first and second order star product gives the following results

f ?3 g =α3

(
1
3
ωNL∂XLω

MK∂XN∂Mω
IJ
(
∂XIf∂XJ∂Kg − ∂XIg∂XJ∂XKf

)
+

+
1
6
ωNL∂XNω

JM∂XMω
IL
(
∂XI∂XJ f∂XK∂XLg − ∂XI∂XJ g∂XK∂XLf

)
+

+
1
3
ωLN∂XLω

JMωIK
(
∂XI∂XJ f∂XK∂XN∂Mg − ∂XI∂XJ g∂XK∂XN∂Mf

)
+

+
1
6
ωJLωIMωKN

(
∂XI∂XJ∂XKf∂XL∂XN∂XM g

)
+
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+
1
6
ωNKωML∂XN∂XMω

IJ
(
∂XIf∂XJ∂XK∂XLg − ∂XIg∂XJ∂XK∂XLf

))
Consistency Condition :
At the order α3 equation 4.20 becomes

XR ?3 ω
ST (X)− ωRS(X) ?3 X

T + cycl.(RST ) = 0 (4.40)

which gives

=α3

(
2
3
ωNL(X)∂XLω

MK(X)∂XN∂XMω
RJ(X)∂XJ∂XKω

ST (X)+

+
1
3
ωNK(X)ωML(X)∂XN∂XMω

RJ(X)∂XJ∂XK∂XLω
ST (X)

)
+ cycl.(RST ) = 0 (4.41)

where again we are using the fact that all symmetrized Γ vanish due to equation (4.1).
Corrections to Star product :
In order to fulfil the consistency condition we have to correct the ω according to the following
equation

ω = ω0 + αn−1ωn−1 (4.42)

At order α3 this has to be

ω = ω0 + α2ω2 (4.43)

So the star product becomes at order α3

f?̃3g = f ?3 g + α3∂XIf(X)ωIJ2 (X)∂XJ g(X) (4.44)

where ?̃ means the corrected star product. Correction to the ω in equation (4.43) will change
X̂3 in (4.35) to the following

X̂M
3 =XM + αΓMN

0 (X)∂XN + α2ΓMNP
0 (X)∂XN∂XP + α2ΓMN

2 (X)∂XN+

+ α3ΓMNP
1 (X)∂XN∂XP + α3ΓMNPQ

0 (X)∂XN∂XP ∂XQ (4.45)

where

Γ[MN ]
2 (X) =2ωMN

2 (X)⇒ ΓMN
2 (X) = ωMN

2 (X) (4.46)

Now the ω2 has to be determined from the consistency condition which in this case becomes

XR ?3 ω
ST
0 (X)− ωRS0 ?3 X

T + α2
(
XR ?1 ω

ST
2 (X)− ωRS2 (X) ?1 X

T + cycl.(RST )
)

= 0

(4.47)

=

(
2ωRU0 (X)∂XUω

ST
2 (X) + 2ωRU2 (X)∂XUω

ST
0 (X)+

+
2
3
ωNL0 (X)∂XLω

MK
0 (X)∂XN∂XMω

RJ
0 (X)∂XJ∂XKω

ST
0 (X)+

+
1
3
ωNK0 (X)ωML

0 (X)∂XN∂XMω
RJ
0 (X)∂XJ∂XK∂XLω

ST
0 (X)

)
+ cycl.(RST )

)
= 0 (4.48)
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where ωST2 (X) determined in [10] is given by

ωST2 (X) =c1∂XMω
NL
0 (X)∂XNω

MK
0 (X)∂XL∂XKω

ST
0 (X)+

+ c2∂XKω
SM
0 (X)∂XLω

TN
0 (X)∂XN∂XMω

KL
0 (X)+

+ c3∂XN∂XKω
SM
0 (X)∂XM∂XLω

TN
0 (X)ωKL0 (X) (4.49)

with c1 = − 1
12 , c2 = 0 and c3 = 1

6 ,
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Chapter 5

Diffeomorphisms

In this section we construct the diffeomorphisms on the noncommutative space using the formality
theorem. For description of the formality theorem see [25] [9]. In [26] diffeomorphism covariant
star product is constructed with covariant derivatives. Here, we give quantum corrections to the
classical transformations of the star product under formal Lie derivative. In the following two
sections we give a brief review of the diffeomorphisms and deformed diffeomorphisms based on
[19].

5.1 Diffeomorphisms on CS

On the coordinate space (CS) Fn, introduced in the section 2.1, diffeomorphisms are generated
by vector fields ξ. These vector fields are represented as a linear combination of differential
operators ξ = ξM (X)∂M on Fn and under the Lie bracket multiplication these vector fields form
a Lie algebra G.

[ξ, η] = ξ × η (5.1)

where ξ × η is again a vector field defined by its action on the function f(X) ∈ A

(ξ × η)(f(X)) =
(
ξM (∂MηN )∂N − ηM (∂MξN )∂N

)
f(X) (5.2)

The Lie algebra of vector fields can be extended to the Universal enveloping algebra U(G) which
is an associative algebra and can further be extended to the Hopf algebra. Comultiplication of
the Hopf algebra (A.3) can be realized on vector fields as

∆(ξ) := ξ ⊗ 1 + 1⊗ ξ (5.3)

under the infinitesimal coordinate transformations

X −→ X + δX (5.4)

A function f(X) ∈ A transforms as

f(X) −→ f(X) + δξf(X) +O(ξ2) (5.5)

where

δξf(X) = Lξf(X) = ξR∂Rf(X) (5.6)
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Lξ is the Lie derivative and the product of two functions transforms with the Leibniz rule

δξ(f(X)g(X)) = (δξf(X))g(X) + f(X)(δξg(X)) = ξM∂M (f(X)g(X)) (5.7)

so that product of two functions transforms again as a function. Whereas for (co)vector fields
transformation reads

δξV
M (X) =LξVM (X) = ξP (∂PVM (X)) + (∂P ξM )V P (X) (5.8)

δξVM (X) =LξVM (X) = ξP (∂PVM (X))− (∂P ξM )V P (X) (5.9)

This can be easily generalized to arbitrary tensor fields

δξT
M1...Mk

N1...Nk
(X) =LξTM1...Mk

N1...Nk
(X) = ξP (∂PTM1...Mk

N1...Nk
(X)) + (∂P ξM1)TP...Mk

N1...Nk
(X)+

+ · · ·+ ∂P ξ
Mk(TM1...P

N1...Nk
(X))− (∂N1ξ

P )TM1...Mk

P...Nk
(X)−

− · · · − ξP (∂NkT
M1...Mk

N1...P
(X)) (5.10)

The infinitesimal transformations δξ satisfy the relation

[δξ, δη] = δξ×η (5.11)

and the Hopf algebra A U(G) acts on a product of fields via comultiplication

∆(δξ) = δξ ⊗ 1 + 1⊗ δξ (5.12)

5.2 Deformed Diffeomorphisms on NCS

Let us denote the infinitesimal transformations on the non-commutative coordinate space (NCS)
introduced in chapter 2.2 by δ̂ξ. The Lie bracket of such transformations is left undeformed

[δ̂ξ, δ̂η] = δ̂ξ×η (5.13)

while we deform the comultiplication (5.12)

∆(δ̂ξ) = e−αω
MN ∂̂M⊗∂̂N (δ̂ξ ⊗ 1 + 1⊗ δ̂ξ)eαω

MN ∂̂M⊗∂̂N (5.14)

where ∂̂M = ∂X̂M and [∂̂M , δ̂ξ] = δ̂∂(Mξ) and ω is constant. The deformed comultiplication (5.14)
reduces to the undeformed comultiplication (5.12) in the limit ω → 0.

Now to represent the deformed Hopf algebra U(Ĝ) on the non-commutative algebra Â we
introduce the differential operator

D̂ξ :=
∞∑
n=0

1
n!
αωM1N1 . . . ωMkNk(∂̂M1 . . . ∂̂Mk

ξ̂P )∂̂P ∂̂N1 . . . ∂̂Nk (5.15)

Then

[D̂ξ, D̂η] = D̂ξ×η (5.16)

and, therefore, we can define the transformation δ̂ξ for functions f(X̂) ∈ Â by

δ̂ξf(X̂) = D̂ξf(X̂) (5.17)
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See [18] for details. D̂ξ act on product of two functions via deformed Liebniz rule

D̂ξ(f(X̂)g(X̂)) = m ◦
(
e−αω

MN ∂̂M⊗∂̂N (δ̂ξ ⊗ 1 + 1⊗ δ̂ξ)eαω
MN ∂̂M⊗∂̂N f(X̂)⊗ g(X̂)

)
(5.18)

where we have used (A.1). We can see that the deformed Leibniz rule of the differential operator
D̂ξ is the same as induced by the comultiplication (5.14). On the product of two functions it
looks as

δ̂ξ(f(X̂)g(X̂)) = e−αω
MN ∂̂M⊗∂̂N (δ̂ξ ⊗ 1 + 1⊗ δ̂ξ)eαω

MN ∂̂M⊗∂̂N (f(X̂)g(X̂)) (5.19)

So, therefore, deformed Hopf algebra U(Ĝ) is represented by the differential operator D̂ξ. Where
as on vector and tensor fields it is represented by

δ̂ξV̂
M (X) =L̂ξV̂M (X) = (D̂ξV̂M (X)) + (D̂ξξM )V̂ P (X) (5.20)

δ̂ξV̂M (X) =(D̂ξV̂M (X))− (D̂ξξM )V̂P (X) (5.21)

and for arbitrary tensor fields

δ̂ξT̂
M1...Mk

N1...Nk
(X) =L̂ξT̂M1...Mk

N1...Nk
(X) = (D̂ξT̂M1...Mk

N1...Nk
(X)) + (D̂(∂P ξM1 ))T̂

P...Mk

N1...Nk
(X)+

+ · · ·+ D̂(∂P ξ
Mk )(T̂

M1...P
N1...Nk

(X))− (D̂(∂P ξN1 ))T̂
M1...Mk

P...Nk
(X)−

− · · · − D̂(∂P ξ
Nk )T̂

M1...Mk

N1...P
(X)) (5.22)

5.3 Diffeomorphisms of the Star Product

Position dependent Poisson structure ω(X) also transform tensorially

ωMN (X) −→ ωMN (X) + δξω
MN (X) +O(ξ2) (5.23)

where the transformation is

δξω
MN (X) = LξωMN (X) = ξR∂Rω

MN (X)− ∂RξMωRN (X)− ωMR(X)∂RξN (5.24)

However, the star product does not transform as a function

δξ(f ? g)(X) = ξR∂R(f ? g)(X) 6= (ξR∂Rf) ? g(X) + f ? (ξR∂Rg)(X) (5.25)

According to Kontsevich’s formality theorem this can be repaired by a similarity transformation
on C∞

f(X) −→ f(X) +Dξf(X) +O(ξ2) (5.26)

which is of the order ω2(X) as the first order expression of star product is manifestly covariant.
Here the Poisson structure ω(X) continues to transform covariantly. Dξ is the sum of classical
and quantum transformations. So that the transformation of f(X) is modified by a “quantum
correction” D′ξ

Dξf(X) = δξf(X) +D′ξf(X) (5.27)

where Dξ(ω2(X)) is a formal sum of the differential operators of unbounded order. Since the
total infinitesimal change of f ? g(X) is a sum of three terms, namely the variations of the f(X)
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and g(X) and the change ?ξ of the star product that is due to the transformation (5.24) of the
ω(X), we impose

Dξ(f ? g)(X) = (Dξf(X)) ? g + f(X) ? (Dξg) + f(X) ?ξ g(X) (5.28)

In order to split off the (classically) covariant part of the transformation of the building blocks
of the star product we define the operator

Ωξ = δξ − Lformalξ (5.29)

The formal Lie derivative Lformalξ acts on partial derivatives of f(X) and ω(X) according to
their index structure as if they were tensors. In particular

Ωξ(∂Mf(X)) =δξ(∂Mf(X))− Lformalξ (∂Mf(X)) (5.30)

=∂Mδξf(X) + (∂Mδξ)f(X)− Lformalξ (∂Mf(X)) = 0 (5.31)

and repeated differentiation of (5.6) gives

Ωξ(∂M∂Nf(X)) =δξ
(
∂M∂Nf(X)

)
− Lformalξ

(
∂M∂Nf(X)

)
(5.32)

=∂M∂Nδξf(X) + ∂M∂Nξ
R∂Rf(X) + 2∂(Mξ

R∂N)∂Rf(X)−

− Lformalξ

(
∂M∂Nf(X)

)
(5.33)

Ωξ(∂M∂Nf(X)) =∂M∂NξR∂Rf(X) (5.34)

and so on. While repeated differentiation of (5.24) gives

Ωξ(∂PωMN (X)) =− ∂P∂KξMωKN (X)− ωMK(X)∂P∂KξN (5.35)

Ωξ(∂P∂QωMN (X)) =∂RωMN (X)∂P∂QξR − 2∂R∂(P ξ
M∂Q)ω

RN − 2∂(Pω
MR∂Q)∂Rξ

N−
− ∂P∂Q∂RξMωRN − ωMR∂P∂Q∂Rξ

N (5.36)

Now since Dξ on f ? g(X) should actually read as

Dξ(f ? g(X)) = (Lξ +D′ξ)(f ? g(X)) (5.37)

where

Lξ = ξR∂R(f ? g(X)) (5.38)

The covariance condition (5.28) implies that

D′ξ(f ? g(X))−((D′ξf) ? g)(X)− (f ? (D′ξg))(X) =

=δξf ? g + f ? δξg + f ?ξ g − ξR∂R(f ? g(X)) (5.39)
=δξf ? g + f ? δξg + f ?ξ g − δξ(f ? g(X)) + Ωξ(f ? g(X)) (5.40)
=Ωξ(f ? g(X)) (5.41)

as the classical variation of the of the δξ(f ? g(X)) is the sum of the first three terms on the r.h.s
of the (5.40). So, therefore, equation (5.37) can be written in the most general form as
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n∑
m=0

2m∑
p=0

D
(m)
ξ (∂)p+1(f ? g(X))n−m =Lξ(f ? g(X))n +

n∑
m=0

D
′(m)
ξ (f ? g(X))n−m (5.42)

and this becomes

n∑
m=0

2m∑
p=0

D
(m)
ξ (∂)p+1(f ? g(X))n−m = Lξ(f ? g(X))n + Ωξ(f ? g(X))n+

+
n∑

m=0

((D′mξ f) ? g(X))n−m +
n∑

m=0

(f ? (D′mξ g(X))n−m (5.43)

As by now we already know how to calculate the star product order by order. We will use it to
calculate the diffeomorphisms at every order.

5.4 Zeroth and First Order Diffeomorphisms

At zeroth and first order the star product transform tensorially and does not need any quantum
corrections. i.e

(f ? g(X))(0) = fg (5.44)

and

(f ? g(X))(1) = αωMN (X)∂Mf∂Ng (5.45)

5.5 Second Order Diffeomorphisms

At second order the formal Lie derivative of the star product (4.32) is

Lξ
(
(f ? g)(X)

)(2) =ξR∂R((f ? g)(X)
)(2) (5.46)

=ξR∂R

(
α2

2
ωKL(X)ωIJ(X)∂XI∂XKf(X)∂XJ∂XLg(X)+

+
α2

3
ωKL(X)∂XLω

IJ(X)∂XI∂XKf(X)∂XJ g(X)−

− α2

3
ωKL(X)∂XKω

IJ(X)∂XIf(X)∂XJ∂XLg(X) +O(α3)

)
(5.47)

We use (5.34) and (5.36) to calculate
(
(f ? g)(X)

)(2)

Ωξ
(
(f ? g)(X)

)(2) =
α2

2
ωKL(X)ωIJ(X)∂I∂KξR

(
∂J∂Lf∂Rg + ∂Rf∂J∂Lg

)
+

+
α2

3
ωKL(X)

(
ωRJ∂R∂Lξ

I + ωIR(X)∂R∂LξJ
)(
∂I∂Kf∂Jg + ∂If∂J∂Kg

)
+

+
α2

3
ωKL(X)∂KωIJ(X)∂J∂LξR

(
∂Rf∂Ig + ∂If∂Rg

)
(5.48)
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So, therefore, we can write

D
′(2)
ξ =J JLR∂J∂L∂R +KIKJ∂I∂L∂J + LRI∂R∂I (5.49)

where

J JLR =
α2

2
ωKL(X)ωIJ(X)∂I∂KξR (5.50)

KIKJ =
α2

3
ωKL(X)

(
ωRJ∂R∂Lξ

I + ωIR(X)∂R∂LξJ
)

(5.51)

LRI =
α2

3
ωKL(X)∂KωIJ(X)∂J∂LξR (5.52)

Ansatz for the Gauge Operator: The most general operator that gives the second order ω
terms when it acts on f ? g(X) is given by

Dξ =D(0)P
ξ ∂P +D

(1)P
ξ ∂P +D

(1)PQ
ξ ∂P∂Q +D

(1)PQR
ξ ∂P∂Q∂R+

+D
(2)P
ξ ∂P +D

(2)PQ
ξ ∂P∂Q +D

(2)PQR
ξ ∂P∂Q∂R+

+D
(2)PQRS
ξ ∂P∂Q∂R∂S +D

(2)PQRST
ξ ∂P∂Q∂R∂S∂T (5.53)

We have

D
(0)P
ξ = ξP (5.54)

D
(1)P
ξ = ∂Rω

PQ∂Qξ
R (5.55)

D
(1)PQ
ξ = ωPR∂Rξ

Q (5.56)

D
(2)P
ξ =∂RωMN∂Mω

RQ∂N∂Qξ
P + ∂Q∂Rω

MN∂Nω
PQ∂Mξ

R+

+ ∂Qω
MN∂R∂Nω

PQ∂Mξ
R + ωMN∂N∂Rω

PQ∂M∂Qξ
R+

+ ∂Rω
MN∂Mω

PQ∂N∂Qξ
R + ∂Rω

PN∂Mω
RQ∂N∂Qξ

M (5.57)

D
(2)(PQ)
ξ =ωMN∂Mω

RP∂N∂Rξ
Q + ∂Rω

MN∂Nω
RP∂Mξ

Q

+ ∂Mω
PN∂Rω

MQ∂Nξ
R + ∂N∂Rω

MP∂Mω
NQξR

+ ωMP∂Nω
RQ∂M∂Rξ

N + ωMP∂M∂Rω
NQ∂Nξ

R (5.58)

D
(2)(PQR)
ξ =ωPM∂MωQN∂NξR + ∂Nω

PM∂Mω
QNξR + ωPMωQN∂M∂Nξ

R (5.59)

Where D(1)PQR
ξ = 0, D(2)PQRS

ξ = 0, D(2)PQRST
ξ = 0.

We have put the detailed calculation of the equation (5.43) in to the appendix B. At third
and higher orders the star diffeomorphisms can be computed by straight forward extension of
the calculations at second order star diffeomorphisms. The above anstaz for the gauge operator
can also be represented graphically with Konstsevich-type graphs with D acting on the star
product as in the following. See[25] [27] [28] [29] [30] [31]for details of graphical representation
of the star product.
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Figure 5.1:Graphical representation of the gauge operator acting on the star product
up to second order. Where we have not shown the derivatives on functions.
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Chapter 6

Star Product On
Non(Anti)Commutative
Superspace

All the calculations so far have been performed as if our coordinates XM were just bosonic.
However, all these calculations can be reinterpreted as superspace equations, if we make use of
the conventions developed in [32]. When choosing a capital index M for the coordinates we
therefore had already in mind to split it into bosonic and fermionic part. We will write the
star product using functions of graded coordinates and then obtain its different components on
the non(anti)commutative superspace by using graded Einstein summation convention described
below.

6.1 Graded Structures

6.1.1 Graded Einstein Summation Convention

As we know, superspace XM = (xm, θµ, θ̄µ̄) has bosonic and fermionic components where bosonic
coordinates commute among themselves and with fermionic coordinates

xmxn =xnxm (6.1)
xmθν =θνxm (6.2)
xmθ̄ν̄ =θ̄ν̄xm (6.3)

and fermionic coordinates anti-commute among themselves

θµθν =− θνθµ (6.4)
θ̄µ̄θ̄ν̄ =− θ̄ν̄ θ̄µ̄ (6.5)
θµθ̄ν̄ =− θ̄ν̄θµ (6.6)

Here we assign a grading to the index of our superspace coordinates according to following rule

|XM | ≡ |M | ≡

{
0 for M = m

1 for M = µ, µ̄
(6.7)
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We can also assign a grading to the body (rumpf) of XM by the following rule. It is helpful
when superforms are involved. Assume that we have given the following one-form

aM =dXM (6.8)

The exterior derivative d turns commuting functions into anti-commuting one-forms and therefore
carries itself the grading 1. It is thus clear that the grading of aM differs by 1 from the grading
of XM . As we want the grading that is assigned to the index M to stay unique, we have to think
of the additional grading to sit not in the index, but in the rumpf of aM :

|aM | ≡ |a|+ |M | ≡ 1 + |M | ≡

{
1 for M = m

0 for M = µ, µ̄
(6.9)

We can use now (6.7) to combine (6.1), (6.2), (6.3) and (6.4), (6.5),(6.6) into a single equation
XMXN = (−)MNXNXM for the graded commuting superspace coordinates XM . If we forget
about the specific example (6.8) and take two general objects aM and bM with arbitrary rumpf-
grading we can further generalize this equation to arbitrary graded commuting objects:

aMbN = (−)(a+M)(b+N)bNaM (6.10)

There are two possibilities while defining Graded Einstein Summation Convetion. aMbM (Northwest-
Southeast NW for short) and aMb

M (Northeast-Southwest NE for short).
In NW convention contraction is chosen in such a way that there is no additional sign if

the contraction of indices is from upper left to the lower right; while in NE there is no sign for
contracting from lower right to the upper right. One can of course choose mixed convention
different for different index set.

Here now we grade the Einstein summation convention: repeated indices in opposite ver-
tical position are summed over their complete range taking into account the additional signs
corresponding to either NE,NW or mixed conventions.

aMbM =

{∑
M (−)bMaMbM for NW,∑
M (−)bM+MaMbM for NE

(6.11)

bMa
M =

{∑
M (−)aM+MbMa

M for NW,∑
M (−)aMbMaM for NE

(6.12)

6.1.2 Graded Equal Sign

If we have a naked index in the equation it can produce some bad signs. To avoid such a
situation we introduce the graded equal sign which states that the equality holds if for each term
a mismatch in some common ordering of the indices is taken care of by an appropriate sign factor.
Consider the following equation where we have considered only bosonic rumpfs for simplicity.

XMY NYNXM −XMY NXMYN = 0 (6.13)

∀graded commutingXM , Y N , YN , XM

⇒XMY N (YNXM −XMYN ) = 0 (6.14)

∀graded commutingXM , Y N , YN , XM

47



In order to avoid wrong assumptions like YNXM −XMYN = 0, we introduce the graded equal
sign in the following.

YNXM −XMYN =g 0 :⇐⇒ YNXM − (−)MNXMYN = 0 (6.15)

We can now include the graded rumpfs in the definition of the graded equal sign.

aMbNbNaM − (−)abaMbNaMbN = 0 (6.16)

∀graded commutingaM , bN , bN , aM
⇒aMbN (bNaM − (−)abaMbN ) = 0 (6.17)

∀graded commutingaM , bN , bN , aM

which suggests the following definition:

bNaM − (−)abaMbN =g 0, :⇐⇒ (−)NabNaM − (−)MN+Mb(−)abaMbN = 0 (6.18)

All the equations in the previous chapters have to be understood with this graded equal sign
=g. In order to keep the notation simpler, we have not put this subscript in these chapters.
This should not lead to any ambiguity, because (as just mentioned) all these equations should
be understood with graded equal sign (and graded summation convention).

6.2 Star Product on Non(Anti)Commutative Superspace

Here, we give both the Moyal-Weyl (spacetime independent Poisson structure) and the Kont-
sevich (spacetime dependent Poisson structure) star products up to the second order of the
expansion parameter α. Both zeroth order star products coincide with the ordinary point wise
product and at the first order of α both star products are of similar form, therefore, we give
results only for the Moyal-Weyl star product. At second order the Kontsevich star product
has more terms than the Moyal-Weyl star product so, therefore, we give results for only the
Kontsevich star product.

6.2.1 Moyal-Weyl Star Product

For spacetime independent ω the star product is the Moyal-Weyl star product given by the closed
formula.

f ?M g =
(
eαω

MN∂M∂N
)
f(X)g(X) (6.19)

Expanding ( 6.19) up to second order in α, we obtain

f ?M g = fg + αωMN∂Mf(X)∂Ng(X) + α2ωMNωKL∂M∂Kf(X)∂N∂Lg(X) +O(α3) (6.20)

Now we can use the summation convetions in equations (6.11) and (6.12) to write out explicitly
the different parts of the star product on the non(anti)commutative superspace. Let us do it
order by order in α.

Zeroth Order Moyal-Weyl Star Product:

f ?M0 g = f(X)g(X) (6.21)
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which coincides with the ordinary pointwise product and ω and derivatives of the functions are
absent so our Einstein summation convention are not applicable in this trivial case.

First Order Moyal-Weyl Star Product:

f ?M1 g = αωMN∂Mf(X)∂Ng(X) (6.22)

Let us split the first order Moyal-Weyl star product (6.22) on non-anti-commutative superspace
to get bosonic, fermionic and mixed components

f ?M1 g =αωmn∂Xmf(X)∂Xng(X) + αωmν∂Xmf(X)∂Xνg(X)+ (6.23)
+ αωµn∂Xµf(X)∂Xng(X) + αωµν∂Xµf(X)∂Xνg(X)+
+ αωmν̄∂Xmf(X)∂Xνg(X) + αωµ̄n∂Xµ̄f(X)∂Xng(X)+
+ αωµν̄∂Xµf(X)∂X ν̄g(X) + αωµ̄ν∂Xµ̄f(X)∂Xνg(X)+
+ αωµ̄ν̄∂Xµ̄f(X)∂X ν̄g(X)

We apply now the summation convetions in equations (6.11) to get the explicit star product on
superspace

f ?M1 g
NW=

∑
m,n

αωmn∂Xmf(X)∂Xng +
∑
m,ν

αωmν∂Xmf(X)∂Xνg+

+
∑
µ,n

αωµn∂Xµf(X)∂Xng(X)−
∑
µ,ν

αωµν∂Xµf(X)∂Xνg(X)+

+
∑
m,ν̄

αωmν̄∂Xmf(X)∂X ν̄g(X) +
∑
µ̄,n

ωµ̄n∂Xµ̄f(X)∂Xng∂Xνg(X)−

−
∑
µ,ν̄

ωµν̄∂Xµf(X)∂X ν̄g(X)−
∑
µ̄,ν

αωµ̄ν∂Xµ̄f(X)∂Xνg(X)−

−
∑
µ̄,ν̄

αωµ̄ν̄∂Xµ̄f(X)∂X ν̄g(X) (6.24)

6.2.2 Kontsevich Star Product

The Kontsevich star product belongs to a very large equivalence class of star products. The
different star products in this class are related by gauge transformations[33]. In the chapter 4
we have calculated the associative star product for spacetime dependent ω. Here we just give its
explicit form on the non(anti)commutative superspace.

Zeroth and First Order Star Products: Zeroth order star product just coincides with
the Moyal-Weyl star product we have calculated in the last section.i.e.

f ?K0 g = f ?M0 g (6.25)

and for the first order Kontsevich star product ω depends on the spacetime X but since it is
undifferentiated at this order the first order Kontsevich star product is of the same form of the
Moyal-Weyl star product.

f ?K1 g ' f ?M1 g (6.26)
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Second Order Star Product: The second order Kontsevich Star Product is given in equa-
tion (4.32) gives extremely lengthy equation when written down on the non(anti)commutative
superspace explicitly. Therefore, we have put the results in the appendix C .
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Chapter 7

Non-Associative Star Product

In this chapter we first define the nonassociative star product by generalizing the map M(O)

defined in the section 3.1 to the map M(O)
R/L which embeds the commutative coordinate space

into the noncommutative nonassociative coordinates space defined in the section 2.3. We then
proceed to calculate the star product using the method elucidated in the chapter 4, but with
relaxing condition (4.1) introduced in the chapter 4. It turns out that this star product is also
nonassociative . At the end of this chapter we will introduce the so-called cyclicity condition.
It is weaker than associativity and of interest in the context of string theory [27]. We check the
condition on our representation, in order to obey cyclicity at first order in α.

7.1 Non-Associative Star Product Via Isomorphism

In order to define the noncommutative nonassociative star product we have to define the reference
position of the brackets. We have two obvious choices for such ordering. Either to put the brackets
starting from the very right or from the very left.

Having a given associator with another formal parameter, means that we can change the
bracketing of our products arbitrarily by iterative use of the associator. This is similar to the
PBW-property for non-commutativity. This implies that we can again map monomials 1:1 from
the commutative and associative algebra to the non-commutative and non-associative algebra.
The map M(O) in equation (3.2) can be modified to:

XM1 . . . XMp
M(O)

R7→ (X̂M1 . . . (X̂Mp−2(X̂Mp−1X̂Mp)))O (7.1)

XM1 . . . XMp
M−1(O)

R←[ (X̂M1 . . . (X̂Mp−2(X̂Mp−1X̂Mp)))O (7.2)

1
M(O)

R



M−1(O)

R

1 (7.3)

We can then have all three different orderings we defined in chapter 3 for nonassociative mono-
mials as well. For Weyl ordering of monomials we have

XM1 . . . XMp
M(W )

R7→ (X̂(M1 . . . (X̂Mp−2(X̂Mp−1X̂Mp)))) (7.4)

XM1 . . . XMp
M−1(W )

R←[ (X̂(M1 . . . (X̂Mp−2(X̂Mp−1X̂Mp)))) (7.5)
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and for index-valued ordering of monomials

XM1 . . . XMp
M(S)

R7→ (X̂ :M1 . . . (X̂Mp−2(X̂Mp−1X̂Mp:))) (7.6)

XM1 . . . XMp
M−1(S)

R←[ (X̂ :M1 . . . (X̂Mp−2(X̂Mp−1X̂Mp:))) (7.7)

and also for anti-index-valued ordering of monomials

XM1 . . . XMp
M(AS)

R7→ (X̂ ;M1 . . . (X̂Mp−2(X̂Mp−1X̂Mp;))) (7.8)

XM1 . . . XMp
M−1(AS)

R← [ (X̂ ;M1 . . . (X̂Mp−2(X̂Mp−1X̂Mp;))) (7.9)

Let us give a simple example of such a nonassociative Weyl ordered star product for functions
f(X) = ϕM1(X) = XM1 and g(X) = ϕM2M3(X) = XM2XM3

f ? g(X̂) = ϕM1 ? ϕM2M3(X̂) =
= X̂M1(X̂(M2X̂M3)) = (7.10)

= 1
3

(
X̂M1(X̂(M2|X̂ |M3)) + X̂(M2|(X̂M1X̂ |M3)) + X̂(M2|(X̂ |M3)X̂M1)

)
︸ ︷︷ ︸

X̂(M1 (X̂M2 X̂M3))

+

+ 1
3 [X̂M1 , X̂(M2|]︸ ︷︷ ︸

2αωM1(M2|

X̂ |M3) + 1
3

(
X̂M1(X̂(M2X̂M3))− (X̂M1X̂(M2)X̂M3)

)
︸ ︷︷ ︸

−βκM1(M2M3)

+

+ 1
3

(
(X̂(M2|X̂M1)X̂ |M3) − X̂(M2|(X̂M1X̂ |M3))

)
︸ ︷︷ ︸

βκ(M2|M1|M3)

+

+ 1
3

[
X̂M1 , X̂(M2|X̂ |M3)

]
+ 1

3

(
(X̂(M2|X̂ |M3))X̂M1 − X̂(M2|(X̂ |M3)X̂M1)

)
︸ ︷︷ ︸

βκ(M2M3)M1

=(7.11)

= X̂(M1(X̂M2X̂M3)) +
+ 2

3αω
M1(M2|X̂ |M3) − 1

3βκ
M1(M2M3) + 1

3βκ
(M2|M1|M3) + 1

3βκ
(M2M3)M1 +

+ 1
3

[
X̂M1 , X̂(M2|

]
︸ ︷︷ ︸

2αωM1(M2|

X̂ |M3) + 1
3X̂

(M2|
[
X̂M1 , X̂ |M3)

]
︸ ︷︷ ︸

2αωM1|M3)

+

+ 1
3βκ

(M2|M1|M3)(X̂, α)− 1
3βκ

M1(M2M3) − 1
3βκ

(M2M3)M1 (7.12)

= X̂(M1(X̂M2X̂M3)) + 4
3αω

M1(M2|X̂ |M3) + 2
3αX̂

(M2|ωM1|M3) +

− 2
3βκ

M1(M2M3) + 2
3βκ

(M2|M1|M3) (7.13)

Mapped back into the commutative space, this particular non-associative star product takes to
lowest orders in the formal parameters the following form:

ϕM1 ? ϕM2M3(X) =
= XM1XM2XM3 + 2αωM1(M2|X |M3) +
− 2

3βκ
M1(M2M3) + 2

3βκ
(M2|M1|M3) +O(α2, αβ, β2) (7.14)

For β → 0 this agrees with (3.34). One can avoid to evaluate this star product at a certain point
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in coordinate space, if one rewrites it as

ϕM1 ? ϕM2M3 =
= ϕM1 · ϕM2M3 + α∂Lϕ

M1ωLK∂Kϕ
M2M3 +

− 1
3β∂K1ϕ

M1
(
κK1K2K3 − κK2K1K3

)
∂K2∂K3ϕ

M2M3 +O(α2, αβ, β2) (7.15)

Note that the calculation of ϕM2M3 ? ϕM1(X) will be more involved, because we would already
be starting with an expression that does not have our reference bracketing (brackets starting
from the right).

7.2 Non-Associative Star Product Order by Order

As we have seen in the chapter 4 that the star product defined by the equation (4.2)

f ? g(X) = f(X̂)g(X) (7.16)

gives the associative star product only if

Γ(K1...Kk)(X) = 0 (7.17)

and some other coefficient functions like ΓIJ1 (X) are excluded due to the consistency condition
in equation (2.13). If we relax these conditions the star product becomes non-associative. Let
us first check this for relaxing all the constraints on the coefficient functions Γ’s in the following.

7.2.1 First Order Star Product

At first order α expansion of the polydifferential operator looks

X̂M = XM + αΓML
0 (X)∂L +O(α2) (7.18)

Since in principle we would like to calculate the star product of three functions f(X), g(X) and
h(X) and would like to see how the results are effected by choosing the different order of the
functions for calculating the star product.i.e.

(f ? g) ? h− f ? (g ? h) =? (7.19)

Let us first check (7.19) for a simple choice of the functions f(X) = XM , g(X) = XN

and h(X) = XK . Calculations go as in the following

(f ? g)(X) =X̂MXN = (XM + αΓML
0 (X)∂L +O(α2))XN = (7.20)

=XMXN + αΓML
0 (X)∂L(XN ) +O(α2) = (7.21)

=XMXN + αΓMN
0 (X) +O(α2) (7.22)

and

(g ? h)(X) = XNXK + αΓNK0 (X) +O(α2) (7.23)

so, we get

(f ? (g ? h))(X) =X̂M (XNXK + αΓNK0 +O(α2)) = (7.24)

=(XM + αΓML
0 (X)∂L +O(α2))(X)(XNXK + αΓNK0 (X) +O(α2)) = (7.25)

=XMXNXK + αXMΓNK0 (X) + αΓML
0 (X)∂L(XNXK) +O(α2) = (7.26)

=XMXNXK + αXMΓNK0 (X) + 2αΓM(N
0 XK)(X) +O(α2) (7.27)
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(f ? g) ? h)(X) =(f ? g(X))|X→X̂h(X) (7.28)

=
(
X̂(M X̂N) + αΓMN (X̂) +O(α2)

)
XK (7.29)

=XMXNXK + αX(MΓN)K
0 (X) + αΓ(MN)

0 (X)XK+

+ αΓ(M |K
0 (X)X |N) + αΓMN

0 (X)XK +O(α2) (7.30)

The condition (7.19) gives

(f ? (g ? h))(X)− (f ? g) ? h)(X) = −αΓ(MN)(X)XK +O(α2) (7.31)

Now let us repeat the above procedure for slightly more general functions. The operator function
f(X̂) to this order in α is given by the equation (2.87)

f(X̂) =f(X) +
α

2
ΓKK(X)∂K∂Kf(X)+

+α∂Kf(X)ΓKL(X)∂L +O(α2) (7.32)

so star product of f(x) and g(X) is

(f ? g)(X) =f(X̂)g(X) = (7.33)

=f(X)g(X) +
α

2
ΓKK0 (X)∂K∂Kf(X)g(X)+

+ α∂Kf(X)ΓKL0 (X)∂Lg(X) +O(α2) (7.34)

and

(g ? h)(X) =g(X̂)h(X) = (7.35)

=g(X)h(X) +
α

2
ΓKK0 (X)∂K∂Kg(X)h(X)+

+ α∂Kg(X)ΓKL0 (X)∂Lh(X) +O(α2) (7.36)

(f ? (g ? h)(X) =f(X̂)

(
g(X)h(X) +

α

2
ΓKK0 (X)∂K∂Kg(X)h(X)+

+ α∂Kg(X)ΓKL0 (X)∂Lh(X)

)
+O(α2) (7.37)

=

(
f(X) +

α

2
ΓKK(X)∂K∂Kf(X) + α∂Kf(X)ΓKL(X)∂L +O(α2)

)
×

×

(
g(X)h(X) +

α

2
ΓKK0 (X)∂K∂Kg(X)h(X)+

+ α∂Kg(X)ΓKL0 (X)∂Lh(X)

)
+O(α2) (7.38)

=f(X)g(X)h(X) +
α

2
ΓKK(X)∂K∂Kf(X)g(X)h(X)+

+ α∂Kf(X)ΓKL(X)∂Lg(X)h(X)+ (7.39)

+ α∂Kf(X)g(X)ΓKL(X)∂Lh(X)+

+
α

2
f(X)ΓKK0 (X)∂K∂Kg(X)h(X) + αf(X)∂Kg(X)ΓKL0 (X)∂Lh(X) (7.40)
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((f ? g) ? h)(X) =(f ? g(X))|X→X̂h(X) (7.41)

=
(
f(X)g(X) +

α

2
ΓKK0 (X)∂K∂Kf(X)g(X)+

+ α∂Kf(X)ΓKL0 (X)∂Lg(X)
)
|X→X̂h(X) +O(α2) (7.42)

=
(
f(X)g(X)h(X) +

α

2
ΓKK0 (X)∂K∂Kf(X)g(X)h(X)+

+ α∂Kf(X)ΓKL0 (X)∂Lg(X)h(X)+

+
α

2
ΓPP0 (X)∂P∂P (f(X)g(X))h(X)+

+ α∂P (f(X)g(X))ΓPQ0 (X)∂Qh(X) +O(α2) (7.43)

=
(
f(X)g(X)h(X) +

α

2
ΓKK0 (X)∂K∂Kf(X)g(X)h(X)+

+ α∂Kf(X)ΓKL(X)
0 ∂Lg(X)h(X) +

α

2
ΓPP0 (X)∂P∂P f(X)g(X)h(X)+

+
α

2
ΓPP0 (X)∂P f(X)∂P g(X)h(X) +

α

2
ΓPP0 (X)f(X)∂P∂P g(X)h(X)+

+ α∂P f(X)g(X)ΓPQ0 (X)∂Qh(X) + αf(X)∂P g(X)ΓPQ0 (X)∂Qh(X) +O(α2)
(7.44)

The condition (7.19) gives

(f ? (g ? h))(X)− (f ? g) ? h)(X) = (7.45)

= −α
2
f(X)ΓKK0 (X)∂K∂Kg(X)h(X)− αΓPP0 (X)∂P f(X)∂P g(X)h(X) +O(α2) (7.46)

Cyclicity: Cyclicity is a bit weaker condition than associativity but, we can use it to find some
further constraints on the coefficient functions Γ(X)’s. Cyclicity for some arbitrary measure is
given by ∫

f ? (g ? h)(X)µ(X) =
∫

(f ? g) ? h(X)µ(X) ∀f, g, h (7.47)

⇒
∫ (

f ? (g ? h)(X)− (f ? g) ? h(X)
)
µ(X) = 0 (7.48)

At this order of α the cyclicity condition (7.48) becomes∫ (
− α

2
f(X)ΓKK0 (X)∂K∂Kg(X)h(X)− αΓPP0 (X)∂P f(X)∂P g(X)h(X) +O(α2)

)
µ(X) = 0

(7.49)

We can see that restrictions on the totally symmetrized Γ(X)’s depend upon the measure of
integration µ(X) and on the class of the functions f(X), g(X) and h(X). For example, for
f(X) = fMX

M , g(X) = gNX
N and for arbitrary choice of function h(X) (7.49) will give

−
∫
αΓPP0 (X)∂P f(X)∂P g(X)h(X)µ(X)+O(α2) = 0 ∀f, g, h (7.50)

⇒ ΓPP0 (X)µ(X) = 0 (7.51)

⇒ ΓPP0 (X)
µ(X)6=0

= 0 (7.52)
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As an another example we can also choose f(X) = XM , g(X) = XN and h(X) = XK for which
(7.49) will give

−
∫
αΓPP0 (X)XKµ(X)+O(α2) = 0 (7.53)

We can now choose µ(X) = e
1
2X

KCKLX
L

with some invertible matrix CKL and thus ∂K((C−1)KLµ) =
XKµ(X) to force ΓPP0 (X) = 0. For the physical interpretation of cyclicity see [27] and for deriva-
tion of the non-associative star product from string theory see [34], [35] , [36] [37].
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Conclusions

In this thesis we have defined different star products depending on an ordering prescription for the
coordinate monomials of the generators of the non-commutative algebra. We obtained along with
the Weyl-ordered star product by symmetrically ordering the monomials, two other star products
which we call the index-value-ordered star product and the anti-index-value-ordered star product.
The index-value-ordered star product comes from ordering the monomials by putting the higher
index to the very right and in contrast the anti-index-value-ordered star product comes from
ordering the monomials by putting the higher index to the very left. An interesting extension
of this approach of defining the star product by embedding the commutative coordinate algebra
into a non-commutative algebra is to define the non-associative star product. This is possible
by embedding the commutative coordinate algebra into a (non-commutative) non-associative
algebra. In future we intend to find a representation for our (non-commutative) non-associative
algebra which could be used to effectively calculate the star product up to an arbitrary order.

We were able to do order by order calculations of the Weyl-ordered star product by using the
method developed in [10] based on the polydifferential representation of the coordinate operators.
We have, however, presented a more detailed explanation of the properties of the expansion
coefficients. Relaxing some conditions on these expansion coefficients gave a more general star
product which is non-associative . We have discussed at lowest order alternative conditions on
the representation which implement the weaker cyclicity condition instead of associativity. Both
approaches, embedding and polydiffernetial representation of the coordinate operators, to get
the non-associative star product are quite independent of each other.

One of the important results of the thesis is the star product on the non(anti)commutative
superspace. We obtained this by avoiding the Fourier transformation performed in [10] and by
using the conventions about graded objects developed in [32]. We could also write down the
twisted representation for the graded star product using these conventions.

We also obtained corrections to the transformation of the star product under the Lie derivative
which we call quantum correction.
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Appendix A

Twist Representation of the Star
Product on
Non(Anti)Commutative
Superspace

In this appendix we define the star product on a non(anti)commutative superspace via twisting
Procedure. For details see [38],[39],[40] [41] [42][43].

A.1 Universal Envelope of a Lie Algebra

As under Lie bracket multiplication, Lie algebras are non-associative, it is natural and quite
useful in some applications to extend these non-associative Lie algebras to unital associative
algebras with tensor product multiplication which is associative see for details [44]. Universal
enveloping Lie algebra provides one such example of the extension of the non-associative Lie
algebra G over some field F to the associative and unital algebra U(G) over F through universal
property explained belove.

A.1.1 Hopf Algebra

We will briefly review the concept of Hopf algebra in this section. We will explain how the usual
structure of the algebra is extended by the Hopf algebra. To define Hopf algebra we start with
the usual vector space H over a field F and define the following operations on it.

m :H ⊗H → H (Multiplication) (A.1)
i :F → H (Unit) (A.2)

The above two maps give a vector space A the usual structure of the algebra over a field F . To
extend this to Hopf algebra we define three more operations on A in the following.

∆ :H → H ⊗H (Comultiplication) (A.3)
ε :H → F (Counit) (A.4)
γ :H → H (Antipode) (A.5)
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A.1.2 Twisting the Hopf Algebra

A systematic way to transform a Hopf algebra into an another Hopf algebra is known as the
twisting of the algebra and was first developed by Drinfel’d. If we have some Hopf algebra
(H,F,m, i,4, ε, γ) we can twist it by choosing a biproduct element F ∈ H ⊗ H called a twist
element.

A.1.3 Graded Twist

Since we are using ωMN whose indices carry the gradings. We call the twist element constructed
out of it a graded twist. In order to deform the superspace we use the following twist which is
an element of the Hopf algebra.

FG = e
i
2ω

MN∂M⊗∂N (A.6)

where the inverse of the above twist is given by

(FG)−1 = e−
i
2ω

MN∂M⊗∂N (A.7)

The graded star product is defined by the following formula

f ? g =m?(f ⊗ g) (A.8)

=m((FG)−1f ⊗ g) (A.9)

=m(e−
i
2ω

MN∂M⊗∂N f ⊗ g) (A.10)

=f.g − i

2
ωMN∂Mf∂Ng −

1
8
ωMNωKL∂M∂Kf∂N∂Lg +O(ω3) (A.11)

This star product gives us a deformation of the superspace for non-degenerate constant ω.

[XM , XN ] =ωMN (A.12)

We can get different components of the above graded twist element by applying (6.11) to the
(A.6) and to its inverse (A.7).

A.1.4 Bosonic twist

We obtain the bosonic component of the twist (A.6) when both the indices of ω are bosonic

Fb =e
i
2ω

mn∂m⊗∂n (A.13)

and its inverse

F−1b =e−
i
2ω

mn∂m⊗∂n (A.14)

Bosonic component of the graded star product becomes

f ?b g =m?(f ⊗ g) (A.15)

=m((Fb)−1f ⊗ g) (A.16)

=m(e−
i
2ω

mn∂m⊗∂nf ⊗ g) (A.17)

=f.g − i

2
ωmn∂mf∂ng −

1
8
ωmnωpq∂m∂pf∂q∂ng +O(ω3) (A.18)

This component of the star product gives the deformation of the bosonic coordinates

[xm, xn] =ωmn(X) (A.19)
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A.1.5 Fermionic Twist

Similarly we get fermionic component of the twist (A.6) when both the indices are fermionic

Ff = e
i
2ω

µν∂µ⊗∂ν (A.20)

and its inverse

F−1f =e−
i
2ω

µν∂µ⊗∂ν (A.21)

Fermionic component of the graded star product becomes

f ?f g =m?(f ⊗ g) (A.22)

=m((Ff )−1f ⊗ g) (A.23)

=m(e−
i
2ω

µν∂µ⊗∂νf ⊗ g) (A.24)

=f.g − i

2
ωµν∂µf∂νg −

1
8
ωµνωρσ∂µ∂ρf∂ν∂σg +O(ω3) (A.25)

f ?f g =m?(f ⊗ g) (A.26)

=m((Ff )−1f ⊗ g) (A.27)

=m(e−
i
2ω

µ̄ν̄∂µ̄⊗∂ν̄f ⊗ g) (A.28)

=f.g − i

2
ωµ̄ν̄∂µ̄f∂ν̄g −

1
8
ωµ̄ν̄ωρ̄σ̄∂µ̄∂ρ̄f∂ν̄∂σ̄g +O(ω3) (A.29)

f ?f g =m?(f ⊗ g) (A.30)

=m((Ff )−1f ⊗ g) (A.31)

=m(e−
i
2ω

µν̄∂µ⊗∂ν̄f ⊗ g) (A.32)

=f.g − i

2
ωµν̄∂µf∂ν̄g −

1
8
ωµν̄ωρσ̄∂µ∂ρf∂ν̄∂σ̄g +O(ω3) (A.33)

This component of the star product gives the deformation of the fermionic coordinates

{θµ, θν} = ωµν(X), {θ̄µ̄, θ̄ν̄} = ωµ̄ν̄(X), {θµ, θ̄ν̄} =ωµν̄(X) (A.34)

A.1.6 Mixed Twist

In mixed case we get mixed component of the twist (A.6) when one of the indices is bosonic and
the other one is fermionic

Fm = e
i
2ω

mν∂m⊗∂ν (A.35)

and its inverse

F−1m =e−
i
2ω

mν∂m⊗∂ν (A.36)

mixed component of the graded star product becomes

f ?m g =m?(f ⊗ g) (A.37)

=m((Fm)−1f ⊗ g) (A.38)

=m(e−
i
2ω

mν∂m⊗∂νf ⊗ g) (A.39)

=f.g − i

2
ωmν∂mf∂νg −

1
8
ωmνωnσ∂m∂nf∂ν∂σg +O(ω3) (A.40)

60



f ?m g =m?(f ⊗ g) (A.41)

=m((Fm)−1f ⊗ g) (A.42)

=m(e−
i
2ω

mν̄∂m⊗∂ν̄f ⊗ g) (A.43)

=f.g − i

2
ωmν̄∂mf∂ν̄g −

1
8
ωmν̄ωnσ̄∂n∂nf∂ν̄∂σ̄g +O(ω3) (A.44)

this component of the star product gives the deformation of the mixed coordinates

[xm, θν} =ωmν(X), [xm, θ̄ν̄} = ωmν̄(X) (A.45)

For twisted represention of star product on ordinary spacetime see [37],[45] [46],[47],[48].
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Appendix B

Diffeomorphisms Coefficients

For n = 2 the equation (5.43) becomes

2∑
m=0

2m∑
p=0

D
(m)
ξ (∂)p+1(f ? g(X))2−m = Lξ(f ? g(X))2 + Ωξ(f ? g(X))2+

+ ((D′2ξ f) ? g(X))0 + (f ? (D′2ξ g)(X))0 (B.1)

We first calculate the L.H.S of the equation (B.1) and put coefficients infront of every term which
are to be determined latter from the corresponding terms on the R.H.S of the equation (B.1).

The (m=0, p=0) part of the L.H.S of the equation (B.1) is

A
(2)
1

α2

2
ξP∂Pω

KL(X)ωIJ(X)∂I∂Kf∂J∂Lg +A
(2)
2

α2

2
ξPωKL(X)∂PωIJ(X)∂I∂Kf∂J∂Lg+

+A
(2)
3

α2

2
ξPωKL(X)ωIJ(X)∂P∂I∂Kf∂J∂Lg +A

(2)
4

α2

2
ξPωKL(X)ωIJ(X)∂I∂Kf∂P∂J∂Lg+

+A
(2)
5

α2

3
ξP∂Pω

KL(X)∂LωIJ(X)∂I∂Kf∂Jg +A
(2)
6

α2

3
ξPωKL(X)∂P∂LωIJ(X)∂I∂Kf∂Jg−

−A(2)
7

α2

3
ξP∂Pω

KL(X)∂KωIJ(X)∂If∂J∂Lg −A(2)
8

α2

3
ξPωKL(X)∂P∂KωIJ(X)∂If∂J∂Lg+

(B.2)

The (m=1, p=0) part of the L.H.S of the equation (B.1) is

B
(2)
1 α∂Rω

PQ(X)∂QξR∂PωMN (X)∂Mf∂Ng +B
(2)
2 α∂Rω

PQ(X)∂QξRωMN (X)∂P∂Mf∂Ng+

+B
(2)
3 α∂Rω

PQ(X)∂QξRωMN (X)∂Mf∂P∂Ng+ (B.3)

The (m=1, p=1) part of the L.H.S of the equation (B.1) is
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C
(2)
1 αωPR(X)∂RξQ∂P∂QωMN (X)∂Mf∂Ng + C

(2)
2 αωPR(X)∂RξQ∂QωMN (X)∂P∂Mf∂Ng+

+ C
(2)
3 αωPR(X)∂RξQ∂QωMN (X)∂Mf∂P∂Ng + C

(2)
4 αωPR(X)∂RξQ∂PωMN (X)∂Q∂Mf∂Ng+

+ C
(2)
5 αωPR(X)∂RξQωMN (X)∂M∂P∂Qf∂Ng + C

(2)
6 αωPR(X)∂RξQωMN (X)∂M∂Qf∂P∂Ng+

+ C
(2)
7 αωPR(X)∂RξQ∂PωMN (X)∂Mf∂Q∂Ng + C

(2)
8 αωPR(X)∂RξQωMN (X)∂P∂Mf∂Q∂Ng+

+ C
(2)
9 αωPR(X)∂RξQωMN (X)∂Mf∂P∂Q∂Ng (B.4)

The (m=2, p=0) part of the L.H.S of the equation (B.1) is

∂Rω
MN∂Mω

RQ∂N∂Qξ
P (E1∂P fg + E2f∂P g)+

+ ∂Q∂Rω
MN∂Nω

PQ∂Mξ
R(E3∂P fg + E4f∂P g)+

+ ∂Qω
MN∂R∂Nω

PQ∂Mξ
R(E5∂P fg + E6f∂P g)+

+ ωMN∂N∂Rω
PQ∂M∂Qξ

R(E7∂P fg + E8f∂P g)+

+ ∂Rω
MN∂Mω

PQ∂N∂Qξ
R(E9∂P fg + E10f∂P g)+

+ ∂Rω
PN∂Mω

RQ∂N∂Qξ
M (E11∂P fg + E12f∂P g) (B.5)

The (m=2, p=1) part of the L.H.S of the equation (B.1) is

ωMN∂Mω
RP∂N∂Rξ

Q
(
F

(2)
1 ∂P f∂Qg + F

(2)
2 ∂Qf∂P g + F

(2)
3 ∂P∂Qfg + F

(2)
4 f∂P∂Qg

)
+

+ ∂Rω
MN∂Nω

RP∂Mξ
Q
(
F

(2)
5 ∂P f∂Qg + F

(2)
6 ∂Qf∂P g + F

(2)
7 ∂P∂Qfg + F

(2)
8 f∂P∂Qg

)
+

+ ∂Mω
PN∂Rω

MQ∂Nξ
R
(
F

(2)
9 ∂P f∂Qg + F

(2)
10 ∂Qf∂P g + F

(2)
11 ∂P∂Qfg + F

(2)
12 f∂P∂Qg

)
+

+ ∂N∂Rω
MP∂Mω

NQξR
(
F

(2)
13 ∂αf∂Qg + F

(2)
14 ∂Qf∂P g + F

(2)
15 ∂P∂Qfg + F

(2)
16 f∂P∂Qg

)
+

+ ωMP∂Nω
RQ∂M∂Rξ

N
(
F

(2)
17 ∂P f∂Qg + F

(2)
18 ∂Qf∂P g + F

(2)
19 ∂P∂Qfg + F

(2)
20 f∂P∂Qg

)
+

+ ωMP∂M∂Rω
NQ∂Nξ

R
(
F

(2)
21 ∂P f∂Qg + F

(2)
22 ∂Qf∂P g + F

(2)
23 ∂P∂Qfg + F

(2)
24 f∂P∂Qg

)
(B.6)

The (m=2, p=2) part of the L.H.S of the equation (B.1) is

ωPM∂Mω
QN∂Nξ

R
(
G

(2)
1 ∂R∂P f∂Qg +G

(2)
2 ∂P f∂R∂Qg +G

(2)
3 ∂R∂Qf∂P g +G

(2)
4 ∂Qf∂R∂P g+

+G
(2)
5 ∂R∂P∂Qfg +G

(2)
6 ∂P∂Qf∂Rg +G

(2)
7 ∂Rf∂P∂Qg +G

(2)
8 f∂R∂P∂Qg

)
+

+ ∂Nω
PM∂Mω

QNξR
(
G

(2)
9 ∂R∂P f∂Qg +G

(2)
10 ∂P f∂R∂Qg +G

(2)
11 ∂R∂Qf∂P g +G

(2)
12 ∂Qf∂R∂P g+

+G
(2)
13 ∂R∂P∂Qfg +G

(2)
14 ∂P∂Qf∂Rg +G

(2)
15 ∂Rf∂P∂Qg +G

(2)
16 f∂R∂P∂Qg

)
+
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+ ωPMωQN∂M∂Nξ
R
(
G

(2)
17 ∂R∂P f∂Qg +G

(2)
18 ∂P f∂R∂Qg +G

(2)
19 ∂R∂Qf∂P g +G

(2)
20 ∂Qf∂R∂P g+

+G
(2)
21 ∂R∂P∂Qfg +G

(2)
22 ∂P∂Qf∂Rg +G

(2)
23 ∂Rf∂P∂Qg +G

(2)
24 f∂R∂P∂Qg

)
(B.7)

Coefficients: We can now use (B.1) to determine the coefficients A(2), B(2), C(2), E(2), F (2) and
G(2) in equations (B.2),(B.3) ,(B.4) , (B.5), (B.6) and (B.7).

A
(2)
1 , . . . , A

(2)
8 = 1 (B.8)

B
(2)
1 , . . . , B

(2)
3 = 0 (B.9)

C
(2)
1 , . . . , C

(2)
9 = 0 (B.10)

E
(2)
1 , . . . , E

(2)
12 = 0 (B.11)

F
(2)
1 , . . . , F

(2)
4 =

α2

3
(B.12)

G
(2)
22 , G

(2)
23 =

2α2

3
(B.13)

F
(2)
5 , . . . , F

(2)
24 = 0 (B.14)

G
(2)
1 , . . . , G

(2)
16 = 0 (B.15)

G
(2)
17 = G

(2)
18 , G

(2)
19 = G

(2)
20 =

α2

6
(B.16)

G
(2)
21 = G

(2)
24 =

7α2

6
(B.17)
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Appendix C

Second Order Star Product on
Non(Anti)Commutative
Superspace

Applying the graded summation convention (6.11) to the second order star product in equation
(4.32) gives the following extremely lengthy equation. Where for the purpose of brevity we have
not shown the derivatives acting on functions.

(f ? g)(2) =
α2

2

( ∑
m,n,k,l

ωmnωkl +
∑

m,n,κ,l

ωmnωκl +
∑

m,n,k,λ

ωmnωkλ −
∑

m,n,κ,λ

ωmnωκλ +
∑

m,n,k,λ̄

ωmnωkλ̄−

−
∑

m,n,κ̄,λ

ωmnωκ̄λ −
∑

m,n,κ̄,λ̄

ωmnωκ̄λ̄ −
∑

m,n,κ,λ̄

ωmnωκλ̄ +
∑

m,n,κ̄,l

ωmnωκ̄l +
∑

m,ν,k,l

ωmνωkl+

+
∑

m,ν,κ,l

ωmνωκl +
∑

m,ν,k,λ

ωmνωkλ −
∑

m,ν,κ,λ

ωmνωκλ +
∑

m,ν,k,λ̄

ωmνωkλ̄ −
∑

m,ν,κ̄,λ

ωmνωκ̄λ−

−
∑

m,ν,κ̄,λ̄

ωmνωκ̄λ̄ −
∑

m,ν,κ,λ̄

ωmνωκλ̄ +
∑

m,ν,κ̄,l

ωmνωκ̄l +
∑
µ,n,k,l

ωµnωkl +
∑
µ,n,κ,l

ωµnωκl+

+
∑

µ,n,k,λ

ωµnωkλ −
∑

µ,n,κ,λ

ωµnωκλ +
∑

µ,n,k,λ̄

ωµnωkλ̄ −
∑

µ,n,κ̄,λ

ωµnωκ̄λ −
∑

µ,n,κ̄,λ̄

ωµnωκ̄λ̄+

+
∑
i,j,κ,λ̄

ωµnωκλ̄ +
∑
µ,n,κ̄,l

ωµnωκ̄l −
∑
µ,ν,k,l

ωµνωkl −
∑
µ,ν,κ,l

ωµνωκl −
∑

µ,ν,k,λ

ωµνωkλ+

+
∑

µ,ν,κ,λ

ωµνωκλ −
∑

µ,ν,k,λ̄

ωµνωkλ̄ +
∑

µ,ν,κ̄,λ

ωµνωκ̄λ +
∑

µ,ν,κ̄,λ̄

ωµνωκ̄λ̄ +
∑

µ,ν,κ,λ̄

ωµνωκλ̄−

−
∑
µ,ν,κ̄,l

ωµνωκ̄l +
∑

m,ν̄,κ,l

ωmν̄ωκl +
∑

m,ν̄,k,λ

ωmν̄ωkλ −
∑

m,ν̄,κ,λ

ωmν̄ωκλ +
∑

m,ν̄,k,λ̄

ωmν̄ωkλ̄−

−
∑

m,ν̄,κ̄,λ

ωmν̄ωκ̄λ −
∑

m,ν̄,κ̄,λ̄

ωmν̄ωκ̄λ̄ −
∑

m,ν̄,κ,λ̄

ωmν̄ωκλ̄ +
∑

m,ν̄,κ̄,l

ωmν̄ωκ̄l +
∑

m,ν̄,k,l

ωmν̄ωkl+

+
∑
µ̄,n,κ,l

ωµ̄nωκl +
∑

µ̄,n,k,λ

ωµ̄nωkλ −
∑

µ̄,n,κ,λ

ωµ̄nωκλ +
∑

µ̄,n,k,µ̄

ωµ̄nωkµ̄ −
∑

µ̄,n,κ̄,λ

ωµ̄nωκ̄λ−
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−
∑

µ̄,n,κ̄,λ̄

ωµ̄nωκ̄λ̄ −
∑

µ̄,n,κ,λ̄

ωµ̄nωκλ̄ +
∑
µ̄,n,κ̄,l

ωµ̄nωκ̄l +
∑
µ̄,n,k,l

ωµ̄nωkl −
∑
µ,ν̄,κ,l

ωµν̄ωκl−

−
∑

µ,ν̄,k,λ

ωµν̄ωkλ +
∑

µ,ν̄,κ,λ

ωµν̄ωκλ −
∑

µ,ν̄,k,λ̄

ωµν̄ωkλ̄ +
∑

µ,ν̄,κ̄,λ

ωµν̄ωκ̄λ +
∑

µ,ν̄,κ̄,λ̄

ωµν̄ωκ̄λ̄+

+
∑

µ,ν̄,κ,λ̄

ωµν̄ωκλ̄ −
∑
µ,ν̄,κ̄,l

ωµν̄ωκ̄l +
∑
µ,ν̄,k,l

ωµν̄ωkl −
∑
µ̄,ν,κ,l

ωµ̄νωκl −
∑

µ̄,ν,k,λ

ωµ̄νωkλ+

+
∑

µ̄,ν,κ,λ

ωµ̄νωκλ −
∑

µ̄,ν,k,λ̄

ωµ̄νωkλ̄ +
∑

µ̄,ν,κ̄,λ

ωµ̄νωκ̄λ +
∑

µ̄,ν,κ̄,λ̄

ωµ̄νωκ̄λ̄ +
∑

µ̄,ν,κ,λ̄

ωµ̄νωκλ̄−

−
∑
µ̄,ν,κ̄,l

ωµ̄νωκ̄l −
∑
µ̄,ν,k,l

ωµ̄νωkl −
∑
µ̄,ν̄,κ,l

ωµ̄ν̄ωκl −
∑

µ̄,ν̄,k,λ

ωµ̄ν̄ωkλ +
∑

µ̄,ν̄,κ,λ

ωµ̄ν̄ωκλ−

−
∑

µ̄,ν̄,k,λ̄

ωµ̄ν̄ωkλ̄ +
∑

µ̄,ν̄,κ̄,λ

ωµ̄ν̄ωκ̄λ +
∑

µ̄,ν̄,κ̄,λ̄

ωµ̄ν̄ωκ̄λ̄ +
∑

µ̄,ν̄,κ,λ̄

ωµ̄ν̄ωκλ̄ −
∑
µ,ν̄,κ̄,l

ωµν̄ωκ̄l−

−
∑
µ̄,ν̄,k,l

ωµ̄ν̄ωkl

)
+
α2

3

( ∑
m,n,k,l

ωmn∂nω
kl +

∑
m,n,κ,l

ωmn∂nω
κl +

∑
m,n,k,λ

ωmn∂nω
kλ−

−
∑

m,n,κ,λ

ωmn∂nω
κλ +

∑
m,n,k,λ̄

ωmn∂nω
kλ̄ −

∑
m,n,κ̄,λ

ωmn∂nω
κ̄λ −

∑
m,n,κ̄,λ̄

ωmn∂nω
κ̄λ̄−

−
∑

m,n,κ,λ̄

ωmn∂nω
κλ̄ +

∑
m,n,κ̄,l

ωmn∂nω
κ̄l +

∑
m,ν,k,l

ωmν∂νω
kl +

∑
m,ν,κ,l

ωmν∂νω
κl+

+
∑

m,ν,k,λ

ωmν∂νω
kλ −

∑
m,ν,κ,λ

ωmν∂νω
κλ +

∑
m,ν,k,λ̄

ωmν∂νω
kλ̄ −

∑
m,ν,κ̄,λ

ωmν∂νω
κ̄λ−

−
∑

m,ν,κ̄,λ

ωmν∂νω
κ̄λ̄ −

∑
m,ν,κ,λ̄

ωmν∂νω
κλ̄ +

∑
m,ν,κ̄,l

ωmν∂νω
κ̄l +

∑
µ,n,k,l

ωµn∂nω
kl+

+
∑
µ,n,κ,l

ωµn∂nω
κl +

∑
µ,n,k,λ

ωµn∂nω
kλ −

∑
µ,n,κ,λ,

ωµn∂nω
κλ +

∑
µ,n,k,λ̄

ωµn∂nω
kλ̄−

−
∑

µ,n,κ̄,λ

ωµn∂nω
κ̄λ −

∑
µ,n,κ̄,λ̄

ωµn∂nω
κ̄λ̄ −

∑
µ,n,κ,λ̄

ωµn∂nω
κλ̄ +

∑
µ,n,κ̄,l

ωµn∂nω
κ̄l−

−
∑
µ,ν,k,l

ωµν∂νω
kl −

∑
µ,ν,κ,l

ωµν∂νω
κl −

∑
µ,ν,k,λ

ωµν∂νω
kλ +

∑
µ,ν,κ,λ

ωµν∂νω
κλ−

−
∑

µ,ν,k,λ̄

ωµν∂νω
kλ̄ +

∑
µ,ν,κ̄,λ

ωµν∂νω
κ̄λ +

∑
µ,ν,κ̄,λ̄

ωµν∂νω
κ̄λ̄ +

∑
µ,ν,κ,λ̄

ωµν∂νω
κλ̄−

−
∑
µ,ν,κ̄,l

ωµν∂νω
κ̄l +

∑
m,ν̄,κ,l

ωmν̄∂ν̄ω
κl +

∑
m,ν̄,k,λ

ωmν̄∂ν̄ω
kλ −

∑
m,ν̄,κ,λ

ωmν̄∂ν̄ω
κλ+

+
∑

m,ν̄,k,λ̄

ωmν̄∂ν̄ω
kλ̄ −

∑
m,ν̄,κ̄,λ

ωmν̄∂ν̄ω
κ̄λ −

∑
m,ν̄,κ̄,λ̄

ωmν̄∂ν̄ω
κ̄λ̄ −

∑
m,ν̄,κ,λ̄

ωmν̄∂ν̄ω
κλ̄+

+
∑
mν̄,κ̄,l

ωmν̄∂ν̄ω
κ̄l +

∑
mν̄,k,l

ωmν̄∂ν̄ω
kl +

∑
µ̄,n,κ,l

ωµ̄n∂nω
κl +

∑
µ̄,n,k,λ

ωµ̄n∂nω
kλ−

+
∑

µ̄,n,k,λ̄

ωµ̄n∂nω
kλ̄ −

∑
µ̄,n,κ̄,λ

ωµ̄n∂nω
κ̄λ −

∑
µ̄,n,κ̄,λ̄

ωµ̄n∂nω
κ̄λ̄ −

∑
µ̄,n,κ,λ̄

ωµ̄n∂nω
κλ̄+

+
∑
µ̄,n,κ̄,l

ωµ̄n∂nω
κ̄l +

∑
µ̄,n,k,l

ωµ̄n∂nω
kl −

∑
µ,ν̄,κ,l

ωµν̄∂ν̄ω
κl −

∑
µ,ν̄,k,λ

ωµν̄∂ν̄ω
kλ+
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+
∑

µ,ν̄,κ,λ

ωµν̄∂ν̄ω
κλ −

∑
µ,ν̄,k,λ̄

ωµν̄∂ν̄ω
kλ̄ +

∑
µ,ν̄,κ̄,λ

ωµν̄∂ν̄ω
κ̄λ +

∑
µ,ν̄,κ̄,λ̄

ωµν̄∂ν̄ω
κ̄λ̄+

+
∑

µ,ν̄,κ,λ̄

ωµν̄∂ν̄ω
κλ̄ −

∑
µ,ν̄,κ̄,l

ωµν̄∂ν̄ω
κ̄l −

∑
µ,ν̄,k,l

ωµν̄∂ν̄ω
kl −

∑
µ̄,ν,κ,l

ωµ̄ν∂νω
κl−

−
∑

µ̄,ν,k,λ

ωµ̄ν∂νω
kλ +

∑
µ̄,ν,κ,λ

ωµ̄ν∂νω
κλ −

∑
µ̄,ν,k,λ̄

ωµ̄ν∂νω
kλ̄ +

∑
µ̄,ν,κ̄,λ

ωµ̄ν∂νω
κ̄λ+

+
∑

µ̄,ν,κ̄,λ̄

ωµ̄ν∂νω
κ̄λ̄ +

∑
µ̄,ν,κ,λ̄

ωµ̄ν∂νω
κλ̄ −

∑
µ̄,ν,κ̄,l

ωµ̄ν∂νω
κ̄l −

∑
µ̄,ν,k,l

ωµ̄ν∂νω
kl−

−
∑
µ̄,ν̄,κ,l

ωµ̄ν̄∂ν̄ω
κl −

∑
µ̄,ν̄,k,λ

ωµ̄ν̄∂ν̄ω
kλ +

∑
µ̄,ν̄,κ,λ

ωµ̄ν̄∂ν̄ω
κλ −

∑
µ̄,ν̄,k,λ̄

ωµ̄ν̄∂ν̄ω
kλ̄+

+
∑

µ̄,ν̄,κ̄,λ

ωµ̄ν̄∂ν̄ω
κ̄λ +

∑
µ,ν̄,κ̄,λ̄

ωµ̄ν̄∂ν̄ω
κ̄λ̄ +

∑
µ,ν̄,κ̄,λ̄

ωµ̄ν̄∂ν̄ω
κλ̄ −

∑
µ,ν̄,κ̄,l

ωµν̄∂ν̄ω
κ̄l−

−
∑
µ̄,ν̄,k,l

ωµ̄ν̄∂ν̄ω
kl −

∑
m,n,k,l

ωmn∂mω
kl −

∑
m,n,κ,l

ωmn∂mω
κl −

∑
m,n,k,λ

ωmn∂mω
kλ+

+
∑

m,n,κ,λ

ωmn∂mω
κλ −

∑
m,n,k,λ̄

ωmn∂mω
kλ̄ +

∑
m,n,κ̄,λ

ωmn∂mω
κ̄λ +

∑
m,n,κ̄,λ̄

ωmn∂mω
κ̄λ̄+

+
∑

m,n,κ,λ̄

ωmn∂mω
κλ̄ −

∑
m,n,κ̄,l

ωmn∂mω
κ̄l −

∑
m,ν,k,l

ωmν∂mω
kl −

∑
m,ν,κ,l

ωmν∂mω
κl−

−
∑

m,ν,k,λ

ωmν∂mω
kλ +

∑
m,ν,κ,λ

ωmν∂mω
κλ −

∑
m,ν,k,λ̄

ωmν∂mω
kλ̄ +

∑
m,ν,κ̄,λ

ωmν∂mω
κ̄λ+

+
∑

m,ν,κ̄,λ̄

ωmν∂mω
κ̄λ̄ +

∑
m,ν,κ,λ̄

ωmν∂mω
κλ̄ −

∑
m,ν,κ̄,l

ωmν∂mω
κ̄l −

∑
µ,n,k,l

ωµn∂µω
kl−

−
∑
µ,n,κ,l

ωµn∂µω
κl −

∑
µ,n,k,λ

ωµn∂µω
kλ +

∑
µ,n,κ,λ

ωµn∂µω
κλ −

∑
µ,n,k,λ̄

ωµn∂µω
kλ̄+

+
∑

µ,n,κ̄,λ

ωµn∂µω
κ̄λ +

∑
µ,n,κ̄,λ̄

ωµn∂µω
κ̄λ̄ +

∑
µ,n,κ,λ̄

ωµn∂µω
κλ̄ −

∑
µ,n,κ̄,l

ωµn∂µω
κ̄l+

+
∑
µ,ν,k,l

ωµν∂µω
kl −

∑
µ,ν,κ,l

ωµν∂µω
κl +

∑
µ,ν,k,λ

ωµν∂µω
kλ −

∑
µ,ν,κ,λ

ωµν∂µω
κλ+

+
∑

µ,ν,k,λ̄

ωµν∂µω
kλ̄ −

∑
µ,ν,κ̄,λ

ωµν∂µω
κ̄λ −

∑
µ,ν,κ̄,λ̄

ωµν∂µω
κ̄λ̄ −

∑
µ,ν,κ,λ̄

ωµν∂µω
κλ̄+

+
∑
µ,ν,κ̄,l

ωµν∂µω
κ̄l −

∑
m,ν̄,κ,l

ωmν̄∂mω
κl −

∑
m,ν̄,k,λ

ωmν̄∂mω
kλ +

∑
m,ν̄,κ,λ

ωmν̄∂mω
κλ−

−
∑

m,ν̄,k,λ̄

ωmν̄∂mω
kλ̄ +

∑
m,ν̄,κ̄λ

ωmν̄∂mω
κ̄λ +

∑
m,ν̄,κ̄,λ̄

ωmν̄∂mω
κ̄λ̄ +

∑
m,ν̄,κ,λ̄

ωmν̄∂mω
κλ̄−

−
∑

m,ν̄,κ̄,l

ωmν̄∂mω
κ̄l +

∑
µ̄,ν̄,k,l

ωµ̄ν̄∂µ̄ω
kl −

∑
µ̄,n,κ,l

ωµ̄n∂µ̄ω
κl −

∑
µ̄,n,k,λ

ωµ̄n∂µ̄ω
kλ+

+
∑

µ̄,n,κ,λ

ωµ̄n∂µ̄ω
κλ −

∑
µ̄,n,k,λ̄

ωµ̄n∂µ̄ω
kλ̄ +

∑
µ̄,n,κ̄,λ

ωµ̄n∂µ̄ω
κ̄λ +

∑
µ̄,n,κ̄,λ̄

ωµ̄n∂µ̄ω
κ̄λ̄+

+
∑

µ̄,n,κ,λ̄

ωµ̄n∂µ̄ω
κλ̄ −

∑
µ̄,n,κ̄,l

ωµ̄n∂µ̄ω
κ̄l −

∑
µ̄,n,,k,l

ωµ̄n∂µ̄ω
kl +

∑
µ,ν̄,κ,l

ωµν̄∂µω
κl−
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+
∑

µ,ν̄,k,λ

ωµν̄∂µω
kλ −

∑
µ,ν̄,κ,λ

ωµν̄∂µω
κλ +

∑
µ,ν̄,k,λ̄

ωµν̄∂µω
kλ̄ −

∑
µ,ν̄,κ̄,λ

ωµν̄∂µω
κ̄λ−

−
∑

µ,ν̄,κ̄,λ̄

ωµν̄∂µω
κ̄λ̄ −

∑
µ,ν̄,κ,λ̄

ωµν̄∂µω
κλ̄ +

∑
µ,ν̄,κ̄,l

ωµν̄∂µω
κ̄l +

∑
µ̄,ν̄,k,l

ωµ̄ν̄∂µ̄ω
kl+

+
∑
µ̄,ν,κ,l

ωµ̄ν∂µ̄ω
κl +

∑
µ̄,ν,k,l

ωµ̄ν∂µ̄ω
kλ −

∑
µ̄,ν,κ,λ

ωµ̄ν∂µ̄ω
κλ +

∑
µ̄,ν,k,λ̄

ωµ̄ν∂µ̄ω
kλ̄−

−
∑

µ̄,ν,κ̄,λ

ωµ̄ν∂µ̄ω
κ̄λ −

∑
µ̄,ν,κ̄,λ̄

ωµ̄ν∂µ̄ω
κ̄λ̄ −

∑
µ̄,ν,κ,λ̄

ωµ̄ν∂µ̄ω
κλ̄ +

∑
µ̄,ν,κ̄,l

ωµ̄ν∂µ̄ω
κ̄l+

+
∑
µ̄,ν,k,l

ωµ̄ν∂µ̄ω
kl −

∑
µ̄,ν̄,κ,l

ωµ̄ν̄∂µ̄ω
κl −

∑
µ̄,ν̄,k,λ

ωµ̄ν̄∂µ̄ω
kλ −

∑
µ̄,ν̄,κ,λ

ωµ̄ν̄∂µ̄ω
κλ−

+
∑

µ̄,ν̄,k,λ̄

ωµ̄ν̄∂µ̄ω
kλ̄ −

∑
µ̄,ν̄,κ̄,λ

ωµ̄ν̄∂µ̄ω
κ̄λ −

∑
µ̄,ν̄,κ̄,λ̄

ωµ̄ν̄∂µ̄ω
κ̄λ̄ −

∑
µ̄,ν̄,κ,λ̄

ωµ̄ν̄∂µ̄ω
κλ̄−

−
∑

µ,ν̄,κ̄,λ

ωµν̄∂ν̄ω
κ̄λ +

∑
µ̄,ν̄,k,l

ωµ̄ν̄∂µ̄ω
kl

)
(C.1)
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