
D IP LO M A R B E IT

Using Penalized Logistic Regression

Models for Predicting the Effects of

Advertising Material

ausgeführt am Institut für

Wirtschaftsmathematik

der Technischen Universität Wien

unter der Anleitung von

O. Univ. Prof. Dipl.-Ing. Dr. techn. Manfred Deistler

durch

Stefan Grosswindhager

Thalerstrasse 20

4452 Ternberg

Wien, am 19. Oktober 2009

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Contents

Abstract iv

Acknowledgements v

1 Introduction 1
1.1 Focus of Thesis . 1
1.2 Organization of Thesis . 1

2 An Introduction to Data Warehouses and Data Mining 3
2.1 Data Warehouse Definition 3
2.2 Architecture of Data Warehouses 5
2.3 Data Mining in Data Warehouses 7

2.3.1 Tasks of Data Mining 9

3 Regression Methodology 12
3.1 Biased Estimation Methods 13

3.1.1 Stepwise Regression 13
3.1.2 Principal Component Analysis 13
3.1.3 Partial Least Squares 18
3.1.4 Ridge Regression . 21
3.1.5 Lasso Regression . 24

3.2 Logistic Regression Model . 29
3.2.1 Model Specification . 29
3.2.2 Maximum Likelihood Estimation of the Logit Model . 30
3.2.3 Penalized Logistic Regression 33
3.2.4 Logistic Regression with PCA and PLS 36

4 Regression Diagnostics 39
4.1 Training Error and Test Error 40
4.2 Theoretical Methods for Model Selection 41

4.2.1 Akaike Information Criterion 42
4.2.2 Bayesian Information Criterion 42

4.3 Empirical Methods for Model Selection 43
4.3.1 Cross Validation . 43

ii

Contents iii

4.3.2 Bootstrapping . 43
4.4 Measures of Goodness-of-Fit 44

4.4.1 Receiver Operating Characteristics (ROC) 44

5 Real Data Analysis 47
5.1 Data set Description . 47
5.2 Method Description . 49

5.2.1 Principal Component Logistic Regression (PCLR) . . 49
5.2.2 General Partial Least Squares (GPLS) 50
5.2.3 Elastic Net . 51

5.3 Simulations . 52
5.3.1 Test Scenario 1 . 52
5.3.2 Test Scenario 2 . 71
5.3.3 Summary . 73

6 Conclusion 74

A Algorithms and Methods 76
A.1 Newton Rapson Method . 76
A.2 Predictor-Corrector Method 77

A.2.1 Predictor step . 77
A.2.2 Active step . 77

A.3 Forward Stepwise Regression 78
A.4 Iteratively Reweighted Partial Least Squares (IRPLS) 79
A.5 Principal Component LR - Cross Validation 80
A.6 Stratification . 80

B Simulations (Continued) 81
B.1 Figures of Test Scenario 2 . 81
B.2 Miscellaneous . 91

B.2.1 Scenario 1: Linear Combination of the 1st Principal
Component . 91

B.2.2 Scenario 1: Covariates of elastic net α = 0.5 92
B.2.3 Scenario 2: Covariates of elastic net α = 0.5 and α = 1 93

C Source Code 94
C.1 main.r . 94
C.2 function.r . 98

Bibliography 102

Abstract

Marketing problems commonly involve classification of customers into “buyer”
versus “non-buyer” or “responders” versus “non-responders”. These cases usu-
ally require binary classification models such as logistic regression. This thesis
reviews promising biased estimation techniques applied to logistic regression
for the purpose of profiling and classifying higher-dimensional marketing
data. The main objective of the thesis is the comparison of the predictive
performance of the individual classifiers, taking widely used quantitative and
qualitative measures into account, including receiver operating characteris-
tics (ROC) and expected cost curves.

iv

Acknowledgements

First and foremost I offer my sincerest gratitude to my supervisor, Prof.
Manfred Deistler, who has supported me throughout my thesis with his pa-
tience and knowledge whilst allowing me the room to work in my own way.

I also want to offer my regards and blessings to Dr. Margarete Über-
wimmer, Dipl.-Ing. Kerstin Pöttinger and Dipl.-Ing. Oliver Fränzl for their
steady support in all matters.

I should not forget to say thanks to my friends, my student colleagues
and the stock market for succeeding - thank goodness - in preventing me
from finishing this thesis too quickly.

Finally, I want to thank my parents for everything they ever did for me
and for always being there for me.

v

Chapter 1

Introduction

1.1 Focus of Thesis

This thesis is centered on logistic regressions applied to higher-dimensional
binary classification problems. There are many fields of study, such as mar-
keting, where it is important to predict a binary response variable, or equiv-
alently the probability of occurrence of an event, in terms of the values of
a set of explicative variables related to it. Logistic regressions often have a
very high number of predictor variables so that appropriate methods for the
reduction of the dimension are necessary. For this purpose and the purpose of
strategical feature selection principal component logistic regression (PCLR),
general partial least squares (GPLS) and elastic net models, including lasso
regression, are introduced. The performance of these methods is tested on
real marketing data, where the objective is to estimate probabilities of or-
der of each individual customer and correctly classify them into potential
responders and non-responders. For final model evaluation multiple criteria
are proposed, including error rates like deviance and misclassification rate,
the area under the receiver operating characteristic curve (AUC) and the
widely used Akaike information criterion (AIC).

1.2 Organization of Thesis

The thesis is divided into six chapters. Following this introductory part is
Chapter 2, which presents background information about Data Warehouses
in general and briefly discusses the architecture of Data Warehouses. At the
end of this chapter, a section gives insight into Data Mining and its main
tasks.

The first part of Chapter 3 individually introduces biased estimation
methods for dimension reduction in the linear setting. The second part
of Chapter 3 covers the logistic regression model as well as the maximum
likelihood procedure for the estimation of its parameters. Furthermore, ap-

1

1. Introduction 2

proaches for the application of biased estimation techniques to logistic re-
gressions are outlined. Chapter 4 elucidates the role of regression diagnostics
as a tool for appropriate model selection.

Chapter 5 deals with performance tests on real marketing data and in-
cludes a summary of the results. A brief conclusion is drawn in Chapter 6.
Following this concluding chapter are several appendices.

Appendix A collects important methods and particular algorithms used
throughout the thesis. Appendix B contains additional simulation results and
miscellaneous, which did not fit elsewhere. For the sake of completeness, the
entire source code is placed into Appendix C.

Chapter 2

An Introduction to Data
Warehouses and Data Mining

2.1 Data Warehouse Definition

‘Building the Data Warehouse’ [41], published by B. Inmon, provides, rather
than giving a scientific definition, a step-by-step how-to guide on building a
data warehouse. This book contains the most widely used definition [30]:

A data warehouse is a subject-oriented, integrated, nonvolatile,
and time-variant collection of data in support of management’s
decisions.

Subject Oriented Data: Subjects to a data warehouse are data elements
that are used to summarize information by [58]. The scale and varieties
of subjects, for instance in retail business - products are sold to customers
at certain times in certain amounts and at certain prices - strengthen the
position of using multidimensional modeling. Queries then aggregate measure
values over ranges of dimension values to produce results such as the total
sales per month and product type.

Integrated Data: Integration may be considered as the process of map-
ping dissimilar codes to a common base, ensuring consistent and standard-
ized data element presentations. The main difficulty is the maintenance in
a consistent fashion, due to the fact that usually data warehouses are not
loaded from one source of data, but multiple operational databases and even
external sources [58]. Figure 2.1 illustrates an integration path from the
application-oriented operational environment to the data warehouse. In the
past, however, application designers did not consider the eventuality that
the data representations they were operating on, would ever have to be inte-
grated with other data. For instance, ‘male’ and ‘female’ could be coded by

3

2. An Introduction to Data Warehouses and Data Mining 4

Figure 2.1: The issue of integration [41].

‘M’ and ‘F’ or ‘0’ and ‘1’. Regardless of the method of coding in the opera-
tional environment, the primary issue is that warehouse encoding is done in
a consistent way.

Time Variant Data: A data warehouse is time variant in the sense that
it maintains both historical and current data. In contrast, operational envi-
ronments only contain current-value data, or data whose accuracy is valid
as of the moment of access [41]. For example, the current money on the cus-
tomer’s deposit is known by the bank at any time, whereas data warehouses
are trying to store series of snapshots of the money on your deposit in daily,
weekly, monthly or yearly time frames, leading to a sequence of historical
data of events and activities. These historical information is vitally impor-
tant for the decision making in the higher management, which are mainly
based upon the understanding of trends and relationships between data,
pointing out the practical relevance of statistical methods.

Non Volatile Data: The next characteristic of data warehouses is non-
volatility, meaning that data is loaded into the warehouse in static format,
hence changes, inserts or deletes are no longer performed unsystematically.
In the case of subsequent changes, a new snapshot record is written, keeping
the historical record of data in the data warehouse. In practice, updates are
performed on a periodic basis, like weekly or monthly. Considering figure 2.2
in operational environments, as opposed to data warehouses, data records
are regularly accessed and manipulated [41].

Besides these four primary principals, the challenging role of data warehouses
is the support of management decisions and the supply with strategic infor-
mation. Access to vital strategic information can substantially increase the
quality of the decision-making process and can help in developing successful
business strategies.

2. An Introduction to Data Warehouses and Data Mining 5

Figure 2.2: The issue of non-volatility [41].

2.2 Architecture of Data Warehouses

Architecture is the proper arrangement of the components.1

Data warehouses are typically built by a dozen of blocks of different hard-
ware and software components, resulting in difficulties for the companies to
arrange these building blocks benefit maximizing, but also given vast vari-
ation possibilities. Figure 2.3 illustrates the basic architecture, showing the
Source Data component on the left, followed by the Data Staging and Data
Storage component, which manage the data warehouse data. The final block
Information Delivery, as the name implies, makes the information of the data
available to potential users.

Source Data Component: Generally, source data components can be
grouped into four categories, namely Production, Internal, Archived and Ex-
ternal Data [55]. Production data arises out of numerous heterogeneous op-
erational systems of the company. Heterogeneity in this context refers to
the variations in the data formats (no standardization) and different hard-
ware and software platforms, making it difficult for information queries to
run across different operational systems. Hence, the significant and disturb-
ing characteristic of production data is disparity. Business reports, customer
profiles and company related documents are stored as internal data. Par-
ticularly the data privacy of customer profiles is a touchy issue, despite its
importance for marketing consideration, such as making specific offerings to
individual customers. Any historical information or snapshots of historical
data, vital for time series analysis, is kept in the archive data. The time hori-
zon of storage and the frequency of periodical data update depends on the

1Paulraj Ponniah [55].

2. An Introduction to Data Warehouses and Data Mining 6

Figure 2.3: Data warehouse: building blocks or components [55].

requirements of the company. Production data and archived data, however,
only provide a limited picture of the industry based on what the enterprise is
doing or has done. In order to spot industry trends and compare performance
against other organizations also external data is needed.

Data Staging Component: The data staging block deals with Data
Extraction, Data Transformation and Data Loading. The former may be-
come quite complex, due to, as already mentioned previously, numerous data
sources and possible difficulties in employing an appropriate extraction tech-
nique for each data source. Even more challenging than data extraction seems
to be the part of data transformation, which comprises cleaning and correc-
tion of misspelling of source data and standardization of data elements. For
example, consider the problem of semantic standardization. Whether two or
more terms from different source systems mean the same thing or a single
term means many different things in different source systems, has to be re-
solved as synonym or homonym, respectively. Anyway, the goal of the data
transformation function is to have a collection of integrated data at the end.
Finally, the data loading function initially loads the data into the data ware-
house storage and refreshes the data based on fixed (e.g. yearly, monthly,
daily,...) cycles.

Data Storage Component: The data storage component is responsible
for the data repositories of historical and current data. For the matter of user
convenience many data warehouses also employ multidimensional database
management systems, allowing data extraction from the data warehouse stor-
age and summarizing the aggregated data in multidimensional databases.

2. An Introduction to Data Warehouses and Data Mining 7

Figure 2.4: Information delivery component [55].

Information Delivery Component: The range of interest in informa-
tion delivery is fairly comprehensive. It goes from ad hoc reports and complex
queries to statistical analysis (fig. 2.4). First the progress in modern means of
communication and information platforms made it possible, or rather more
easier, to provide a wide community with essential data. Entering requests
or queries online and receiving the results or reports online is not only con-
venient for the users, but also efficient in terms of work.

Metadata Component: Metadata in a data warehouse is similar to a
data dictionary that keeps information about the logical data structures and
about file addressing and indexing. A commonly used definition describes the
metadata component as the data about the data in the data warehouse [55].

Management and Control Component: Sitting on top of all other
components and coordinating the services and activities within the data
warehouse, the management and control component has to interact with the
metadata component to be able to perform these tasks successfully.

2.3 Data Mining in Data Warehouses

Data mining is defined as the process of discovering interesting knowledge
and meaningful patterns from large amounts of data stored in data ware-
houses and other information repositories [31, 69]. Or in other words [32]:

Data mining is the analysis of (often large) observational data
sets to find unsuspected relationships and to summarize the data
in novel ways that are both understandable and useful to the data
owner.

2. An Introduction to Data Warehouses and Data Mining 8

In the last years the amount of data in our lives increased rapidly, and there is
still no end in sight. Whether we are surfing the World Wide Web or buying
groceries at the supermarket, our behavior, all the decisions and choices
are recorded and stored in explosively growing databases. Take the search
engine google.com as an example. Malicious tongues even claim that Google
knows more about you than your spouse. Nowadays, however, a growing gap
between the generation of data and our understanding of it can be observed.
Despite the fact that we are inundated with data in most fields there are not
enough trained analysts available who are skilled at translating all of this
data into knowledge, and thence up the taxonomy tree into wisdom [47].

Further we shall take a closer look at data mining in customer relationship
management (CRM) [7], where data mining can be used to improve the
company’s ability to form beneficial learning relationships with its customers.
Let us assume a company is able to “understand” each customer individually,
then it will surely have an advantage over potential competitors, because the
company will know which customers are worth investing money and effort
to hold on to and which not. Consider, for instance, mail order companies
using order histories to decide which (type of) customer should be included
in future mailings. If a specific segment of customers only orders from the
catalog at Christmas time, the overall response rate could be increased by not
mailing to this segment the rest of the year. However, forming a profitable
learning relationship with the customers is far from being an easy job. To
succeed in CRM a company must be able to [7]:

• Notice and remember what its customers are doing and have done over
time

• Learn from what has been remembered

• Act on what has been learned to make customers more profitable

The first bulletpoint is about storing details of the customers’ orders such as
type of product, order prices or the size of the order. Typically, as discussed
previously, these information is standardized and formatted kept in large
databases in data warehouses, so that each customer has its own historical
record. These days information gathering is a whole business branch and,
believe it or not, a quite profitable one. Supermarkets selling the data of
customers’ buying habits gained through the customers’ usage of the incon-
spicuous discount cards, also called “loyalty” cards, earning good money. The
learning issue is probably the most challenging part by the fact that finding
patterns in the historical data is not only difficult by reasons of noisy his-
torical data, missing data or inconsistent data, but also because of troubles
occurring in the context of not knowing what is the best method or model
to apply. Let us assume we built a successful model producing meaningful

2. An Introduction to Data Warehouses and Data Mining 9

scores2. The result allows to increase the response rate to mailings by tar-
geting fewer customers and therefore save money, but also permits precisely
targeted special offers to be mailed out to a specific segment of customers.

2.3.1 Tasks of Data Mining

In this section we briefly discuss the main tasks that data mining is usually
called upon to accomplish, and also give algorithmic insight to well known
data mining methods without going to deep into the underlying theory.

Classification

Classification is characterized as a two-step process, in which in the first step
(training phase) a classifier is built describing a predetermined set of data
classes (training set). It also goes by the name of supervised learning, since the
classification algorithm builds the classifier by learning from the training set,
in contrast to unsupervised learning, in which class labels and the number
of classes are not known in advance. The second step is about building some
model that can be applied to unclassified data in order to classify it [31]. Well
known classification methods are amongst others: Decision Tree Induction,
Neural Networks, k-Nearest-Neighbor or Bayesian Classification. For more
details we refer the reader to [31]. Let us just sketch the basic idea of the
latter.

Naive Bayesian Classification Assume that D is a training set of tuples
X = (x1, x2, · · · , xn) representing a n-dimensional attribute vector, depicting
n measurements made on the tuple from n database attributes, respectively,
A1, A2, · · · , An. Each tuple X is assumed to belong to a predefined class as
determined by another database attribute called the class label attribute.
For example, let X = (45, 35000e), where A1 and A2 are the attributes
age and yearly income, respectively. Let the class label attribute be buys
car. The associated class label for X might be yes or no (i.e., buys car =
yes). Furthermore, supposing m classes C1, C2, · · ·Cm and given X, the naive
Bayesian classifier will predict that X belongs to the class having the highest
posterior probability, conditioned on X, thus we have to maximize P(Ci|X).
By Bayes’ theorem P(Ci|X) is given through

P(Ci|X) =
P(X|Ci)P(Ci)

P(X)
(2.1)

As P(X) is constant for all classes, only the term P(X|Ci)P(Ci) needs to be
maximized. However, computing P(X|Ci) in data sets with many attributes

2A score is a way of expressing the findings of a model in a single number. Scores
can be used to sort a list of customers from most to least loyal or most to least likely to
respond [7].

2. An Introduction to Data Warehouses and Data Mining 10

would be computationally expensive. Hence, the naive assumptions, which is
where the name originates from, of class conditional independence is usually
made: P(X|Ci) =

∏n
k=1 P(xk|Ci).

Estimation and Prediction

By far the most widely used approach for estimation and prediction of un-
known variables, the outcome to some input data, is regression analysis.
Ranging from linear regression, where the continuous output is a linear func-
tion of the input variables, to nonlinear and generalized linear models like
logistic regression having categorical outcome. The latter will be broadly
discussed in the following chapters. As a real example consider a mail or-
der company budgeted for a mailing of 100,000 pieces. One option would
be to send the mailings to randomly chosen customers from the company’s
customers pool. A clever company, however, would estimate “propensity to
order” scores for each customer, and would send the available mailings to
candidates with the highest scores.

Affinity Grouping

Affinity grouping, also known as Association rules, may concisely be ex-
pressed as the job of finding which attributes go together, i.e., the task of
association seeks to uncover rules for quantifying the relationship between
different attributes [7, 47]. It is commonly used to analyze the purchasing
patterns of customers, which are of great assistance in the fields of product
placement, catalog design and cross-marketing.

Let us have a look how association rules are defined. Assume D is a data
set of observation tuples described by n attributes, A1, A2, · · · , An, and class
label attribute C = Aclass. An item p is an attribute-value pair of the form
(Ai, v), i.e., Ai is the attribute taking the value v. Then association rules
are of the form P = (p1 ∧ p2 ∧ · · · ∧ pl) ⇒ C, where the rule antecedent
is a conjunction of items p1, p2, · · · , pl (l ≤ n) associated with a class label
C. The support s for association rule P ⇒ C is the fraction of observations
in the union of the antecedent and consequent, and can be stated as the
following

s = P(P ∩ C). (2.2)

The confidence c, as measure of the accuracy of the rule, is defined as

c = P(C|P) =
P(P ∩ C)

P(P)
. (2.3)

Association rules are called “strong”, if those meet or surpass certain mini-
mum support and confidence criteria. A mail order company analyzing their
order histories may find out that of the 100 customers ordered from the sum-
mer catalog 20 bought swimwear, and of those 20 who bought swimwear 5

2. An Introduction to Data Warehouses and Data Mining 11

bought suncream. Thus, a possible association rule could be “If buy swimwear,
then buy suncream” with a support of 5/100 = 5% and a confidence of
5/20 = 25%.

Clustering

Clustering is the process of grouping a set of physical or abstract objects
into classes of similar objects [31]. It falls into the category of unsuper-
vised learning, as contrary to the methods of classification, it does not rely
on predefined classes and is often connected with data segmentation, since
clustering partitions large heterogeneous data sets into a number of more
homogeneous groups. Alternatively, this technique may also be applied for
outlier (values that are “far” away from any cluster) detection or serves as
a preprocessing step for some other form of data mining or modeling, such
as the previously introduced technique of classification, which would then
operate on the detected clusters and the selected attributes. Although there
are multiple methods of clustering, most of them focus on the so called
distance-biased cluster analysis. [31]. In the following the widely used k -
means clustering method is presented.

The k-Means Method The k -means method partitions a set of n objects
into k clusters, so that the resulting intracluster similarity is high, but the
intercluster similarity is low. The similarity is measured in regard to the mean
value of the objects in a cluster. In the first step, the algorithm randomly
selects k objects, each of which initially represents a cluster mean. Then for
each of the remaining objects an object is assigned to the cluster to which
it is the most similar. After this the new mean for each cluster is computed
and the whole process is iterated until some convergence criterion is met.
Typically, the square-error criterion is used [31], which is defined as the
summed squared distances from the objects to its center mean and can be
written as

Err =
k∑

i=1

∑

p∈Ci

|p−mi|2 (2.4)

where p is the point in space representing a given object and mi is the mean
of cluster Ci.

In concluding this chapter, it is quite appropriate to quote D. T. Larose
[47], who writes in the context of data mining that the latter is not so much
magic but rather depends on the human factor:

Without skilled human supervision, blind use of data mining
software will only provide you with the wrong answer to the wrong
question applied to the wrong type of data. The wrong analysis is
worse than no analysis, since it leads to policy recommendations
that will probably turn out to be expensive failures.

Chapter 3

Regression Methodology

Databases stored in data warehouses typically used in data mining may have
millions of records and thousands of variables to choose from. However, the
use of too many variables for modeling unnecessarily complicates the in-
terpretation of the analysis, may lead to overfitting and may violate the
principle of parsimony1. Furthermore, it is quite unlikely that there is any
correlation structure among a huge set of variables, leading to instability
in the solution space and incoherent results, such as in multiple regression,
where a multicollinear set of variables can result in a regression that is signif-
icant overall, even when none of the individual variables are significant [48].
To overcome these problems a class of alternative methods, which settle into
a category called biased estimation methods, has been proposed. This class
includes, amongst others, ridge regression, the so-called lasso, partial least
squares, and also approaches based on principal component analysis.

Variable selection methods like subset regression tackle the problem of
too many predictors by only taking a subset of variables into the regression.
Principal component is a technique based on explaining the set of correlated
predictors by a reduced number of uncorrelated ones with maximum vari-
ance. As per definition, principal component does not take the relationship
between response variable (outcome) and the predictors into account, in con-
trast to partial least squares, seeking directions that have high variance and
have high correlation with the response. Ridge and lasso regression, on the
other hand, incorporate a regularization method to the predictors via adding
a L2 or L1 penalty term, respectively, to the residual sum of squares in order
to be able to control the complexity of the model.

The overall quality of an estimate β̂ of β is usually measured by the
mean square error (MSE) and is calculated as the sum of the variance of the

1Principle of parsimony or principle of simplicity: One should always choose the sim-
plest explanation of a phenomenon, the one that requires the fewest leaps of logic.

12

3. Regression Methodology 13

estimate and the squared bias.

MSE(β̂) = E[(β̂ − β)2] = Var(β̂) +
(
Bias(β̂, β)

)2
(3.1)

According to the MSE quality criteria biased estimation methods are pre-
ferred over unbiased estimation methods, like ordinary least squares under
certain conditions, in situations where the reduction in variance exceeds the
increase in bias.

3.1 Biased Estimation Methods

3.1.1 Stepwise Regression

Forward stepwise regression [15, 24] starts off with the intercept and then
sequentially adds into the model the predictor that most improves the fit. A
partial F-value or AIC2 score, for example, compared to a selected or default
enter criterion value determines if the variable is allowed to enter the model
or not. Then the equation is examined to see if any variable should be deleted.
The basic structure of forward stepwise is summarized in the pseudo - code
in appendix A.3. Variations of stepwise regression include backward stepwise
regression, which starts with a larger model and sequentially removes vari-
ables that contribute least to the fit, and techniques based on Efroymson’s
procedure [19], which combines forward and backward steps. One of these so
called hybrid (consider both forward and backward moves at each step and
select the “best” of the two) stepwise-selection procedures is implemented
in the R-package stats in the function step. This procedure uses the AIC
criterion for weighting the choice, i.e., at each step an add or drop will be
performed that minimizes the AIC score.

Stepwise regression comes under criticism mainly for the unstable be-
havior of the process, in fact that relatively small changes in the data might
cause one variable to be selected instead of another after which subsequent
choices may be completely different. Moreover, G. Edirisooriya [16] discusses
the vulnerability of (ordinary) stepwise regression to specification, sampling
and measurement errors, and concludes that stepwise regression may derive
a theoretically and practically useless explanation of the underlying model.

In the following biased estimation methods are introduced as an alternative
to stepwise regression and other unbiased regression techniques, hoping that
the former may provide an improvement in terms of prediction performance.

3.1.2 Principal Component Analysis

Principal component analysis (PCA) is a common technique for finding pat-
terns in data of high dimension in situations when the variables are very

2AIC is the abbreviation for Akaike Information Criterion. See subsection 4.2.1.

3. Regression Methodology 14

correlated. The basic idea is to build linear combinations of the original
variables that capture most of the information, and using a subset of these
transformed variables (principal components) for further modeling, thus re-
ducing the dimensionality of the data. First introduced by Pearson (1901)
and developed independently by Hotelling (1933) it success began, like other
computationally intensive methods, with the advent of electronic computers.

Derivation of Principal Components

The computation of the principal components is straightforward, since it
reduces to the solution of an eigenvalue-eigenvector problem for a positive-
semidefinite symmetric matrix [42]. Consider a vector of random variables
x = (x1, x2, . . . , xp) and a coefficient vector3 α1 = (α11, α12, . . . , α1p) which
maximizes Var(α

′

1x) = α
′

1Σα1, where Σ is the p × p variance/covariance
matrix of x. As it stands the optimization problem is unbounded. Therefore,
for further derivations the normalization constraint α

′

1α1 = 1 (the sum of
squares of α is restricted to one) must be imposed. Moreover, employing the
approach of Lagrangian multipliers for the optimization problem yields

Max α
′

1Σα1 − λ(α
′

1α1 − 1), (3.2)

where λ is a Lagrange multiplier. Differentiation with respect to α1 gives

Σα1 − λα1 = 0

or
(Σ− λIp)α1 = 0 (3.3)

where Ip is the p × p identity matrix. Thus λ is an eigenvalue of Σ with
corresponding eigenvector4 α1 [33]. The quantity to be maximized is now

α
′

1Σα1 = α
′

1λα1 = λα
′

1α1 = λ. (3.4)

Hence, for an optimum λ must be as large as possible, which is exactly when
α1 represents the eigenvector corresponding to the largest eigenvalue of Σ.
Generally spoken, α

′

kx is called the kth principal component (pc) of x with
Var(α

′

kx) = λk, where λk denotes the kth largest eigenvalue of Σ, and αk

is the corresponding eigenvector. A proof for k = 2 is elucidated in [42, p.
5–6].

3These vectors are also called loadings and can be interpreted as eigenvectors multiplied
by the square root of the corresponding eigenvalue.

4Note that eigenvectors corresponding to different eigenvalues are linearly independent.

3. Regression Methodology 15

Principal Components in Regression Analysis

Principal component regression tries to overcome the problem of multi-
collinearity, occurring when there are near linear functions of two or more
of the predictor variables, as already briefly outlined in the introduction to
this chapter, by simply using the principal components (pc’s) in place of the
original predictor variables. Due to the fact that the pc’s are by definition
uncorrelated exist no multicollinearities between them. If all of the pc’s are
included in the regression, the resulting model will be equivalent to that ob-
tained by least squares, so the large variances caused by multicollinearities
have not gone away [42]. Detailed strategies5 for deciding which pc to delete
from the regression equation are, amongst others, discussed in [42, Sec. 8.2]
and [66]. Consider the standard regression model

y = Xβ + ǫ (3.5)

where y is a vector of n observations on the predictor variables, X is the
n × p design matrix whose (i, j)th element is the value of the j th predictor
variable for the ith observation, β is a vector of p regression coefficients and
ǫ is a vector of white noise error terms. Further assume that the model has
been mean centered6 and the predictor variables have been standardized7,
so that (1

n−1)X
′

X is proportional to the (sample)8 population correlation
matrix of the predictor variables. The values (scores) of the pc’s for each
observation are given by

Z = XA (3.6)

where the (i, k)th element of Z is the value of the kth pc for the ith obser-
vation9 and A is a p× p (also called loading) matrix whose columns are the
unit-norm eigenvectors of X

′

X. Bearing in mind that A is an orthonormal
matrix, equation (3.5) may be rewritten as follows

y = XAA
′

β + ǫ

= ZA
′

β + ǫ

= Zγ + ǫ (3.7)

which simply replaces the predictor variables by their pc’s in the regres-
sion model. Principal component regression can also be defined as a reduced

5For instance, choosing the first M pc’s whose variances are less than some cut - off
level l∗.

6Mean-centering is achieved by subtracting the mean of the variable vector from all
the columns of X.

7Standardization is accomplished by dividing each element of the mean centered X by
the root sum of squares of that variable vector.

8One should always differentiate between population principal components and sample
principal components [42, chap. 2/3].

9The matrix Z is orthogonal and referred to as the score matrix.

3. Regression Methodology 16

model of (3.7) with m < p

y = Zmγm + ǫm (3.8)

where Zm and γm are the corresponding subsets of the original elements and
ǫm is the appropriate error term. Applying least squares to estimate γ in
(3.7) and after this estimate β from equation

β̂ = Aγ̂ (3.9)

is equivalent to estimate β̂ by applying least squares to (3.5). The main
advantage of pc regression over ordinary least squares is in the case when
multicollinearities are present. By deleting a subset of the pc’s, especially
those with small variances, much more stable estimates of β̂ can be obtained.
Consider the following restatements of equation (3.9):

β̂ = Aγ̂

= A(Z
′

Z)−1Z
′

y

= AL−2Z
′

y

= AL−2A
′

X
′

y

=

p∑

k=1

l−2
k aka

′

kX
′

y

(3.10)

where l2k, the kth diagonal element of L2 (L is the diagonal matrix of the
singular values), is the kth largest eigenvalue10 of the matrix (X′X)−1 and
ak for k = {1, 2, . . . , p}, the columns of A, are the unit-norm eigenvectors of
(X′X)−1. Furthermore, making the usual assumption that Cov(y) = σ2In,
the covariance of β̂ can be written as [42]

σ2A(Z
′

Z)−1Z
′

Z(Z
′

Z)−1A
′

= σ2A(Z
′

Z)−1A
′

= σ2AL−2A
′

= σ2
p∑

k=1

l−2
k aka

′

k.

(3.11)

The last equation depicts that any predictor variable having moderate or
large coefficients in any of the principal components, associated with small
eigenvalues, will have large variance in the elements of β̂. To overcome this
dilemma one could utterly delete terms in (3.10) that correspond to very
small l2k, which may lead to the following estimator with m < p

β̃ =
m∑

k=1

l−2
k aka

′

kX
′

y. (3.12)

10Note that the eigenvectors of (X′X)−1 are the same as those of (X′X), and that the
eigenvalues of (X′X)−1 are the reciprocals of those of (X′X).

3. Regression Methodology 17

However, decreasing the variance of the estimator β̂ by omitting terms is
achieved at the expense of introducing bias into the estimator β̃. It follows
from

β̃ = β̂ −
p∑

k=m+1

l−2
k aka

′

kX
′

y

with E[β̂] = β and X
′

X =
∑p

i=1 l
2
i aia

′

i
11, that

E(β̃) = E(β̂)− E
[

p∑

k=m+1

l−2
k aka

′

kX
′

y

]

= β −
p∑

k=m+1

l−2
k aka

′

kX
′

Xβ

= β −
p∑

k=m+1

aka
′

kβ.

(3.13)

The last term, in general, is non-zero, implying that E(β̃) 6= β, thus we lost
the unbiasedness property. Nevertheless, in situations where multicollinearity
is a severe problem, the reduction in variance can outweigh the loss of unbi-
asedness of the estimator, as the often discussed issue of trade-off between
bias and variance.

PCA by Singular Value Decomposition

Additional insights and a different way of interpretation of PCA is gained by
showing mathematical relations to singular value decomposition (SVD). Af-
ter some knowledge about PCA it suggests itself to use SVD as a widespread
implemented and computationally efficient method for solving eigenvalue
problems of square and symmetric matrices, and, moreover, for the deriva-
tion of the the principal components [42,67]. Let X be a centered matrix of
dimension n× p with rank12 k. We can write the SVD of X as the following

X = ULV
′

. (3.14)

Where U, V are the n× p, p× p orthonormal matrices, respectively, and L

denotes, as earlier in this section, the p × p diagonal matrix with the high-
to-low sorted singular values of X. The columns of U are also called the left
singular vectors and the rows of V′ the right singular vectors. Furthermore,
due to rank(X) = k, li = 0 for (k + 1) ≤ i ≤ p. One import result of SVD
is that

X(k) =
k∑

i=1

uiliv
′

i (3.15)

11Is the outcome of the well-known spectral decomposition of X
′

X [42]. Proof can be
found in any good book on functional analysis or linear algebra.

12The rank of a matrix is the number of linearly independent rows or columns.

3. Regression Methodology 18

minimizes the euclidean distance of the elements of X and X(k), ||X−X(k)||2,
over all n× p matrices with rank k [42]. A feasible way to calculate the SVD
is first to compute V′ and L by diagonalizing X

′

X

X
′

X = VL2V
′

(3.16)

and subsequently calculate U out of

U = XVL−1. (3.17)

Through centering of X is X
′

X proportional to the covariance matrix. So,
by equation (3.16), diagonalization of X

′

X yields V
′

, which also yields the
principal components. In other words it can be stated that the right singular
vectors are the same as the principal components of X. Moreover, the eigen-
values of X

′

X are equivalent to l2k, which are proportional to the variances of
the principal components, and finally the matrix UL contains the principal
component scores.

3.1.3 Partial Least Squares

Partial least squares (PLS) was developed by W. Hold (1966) and other
researchers at the University Institute of Statistics in Uppsala in Sweden.
Initially intended for social science problems [60] having scarce information,
PLS is recently also gaining popularity in chemometrics [12] and other fields,
where its ability, handling data sets with more predictor variables than ob-
servations, is of great avail.

In short, partial least squares is a technique that generalizes and combines
features from principal component analysis and least squares regression.
Stone and Brooks [64] introduced a general class of regression procedures
called continuum regression, in which ordinary least squares and principal
component regression occupy the opposite ends of the continuous spectrum,
with partial least squares lying in between. The intrinsic difference between
PCA and PLS is that the former tries to find (principal) components that
provide the best explanation of the predictor variables in X, whereas the
dependent variable Y is not taken into account. Partial least squares, on
the other hand, is seeking for components from X that are also relevant for
Y. More precisely, PLS regression searches for a set of components (called
latent vectors13), which perform a simultaneous decomposition of X and Y

with the constraint that these components explain as much as possible of
the covariance between X and Y [1]. The definition and derivations below
mainly follow those by [34,45] and [1,27], providing a theoretical and a more
practical algorithmic insight into the structure of PLS regressions.

13PLS is also sometimes called “Projection to Latent Structures” [5].

3. Regression Methodology 19

Derivation of Partial Least Squares

Consider a bilinear decomposition, named as outer relation, of the centered
n× p data matrix X and the centered n×m (multivariate) response matrix
Y in the following form

X = TP′ + E (3.18)

Y = UQ′ + F (3.19)

where, by analogy with PCA, T, U are called the score matrices of size
n×k, collecting the k (k ≤ p)14 extracted score vectors also termed as latent
variables or PLS components. Furthermore, P of size p×k and Q of sizem×k
are the orthogonal loading matrices (unlike to PCA, P and Q do not have to
be orthonormal cp. equ. (3.6)), and finally the n×p matrix E and the n×m
matrix F denote the matrices of residuals caused by dimension reduction.
In the extreme case k = p we would deduce as much components as given
predictors, hence E = 0. The same applies to Y and F, respectively. One
important question is how to choose the latent vectors. In theory any set of
orthogonal vectors spanning the column space of X could be used to play the
role of T, although this choice may be suboptimal for prediction purposes.
PLS, on the other hand, specifies T and U with additional conditions, and
in its classical form it is based on the nonlinear iterative partial least squares
(NIPALS) algorithm introduced by W. Hold (1975). Consider weight vectors
w, c and denote the corresponding score vectors by t = Xw and u = Yc,
then the basic idea behind the PLS method may be stated as the following
optimization problem

(w, c) = argmax
||w||=||c||=1

{Cov(Xw,Yc)}2 . (3.20)

It can be proven that w corresponds to the first eigenvector, the one with the
largest eigenvalue, of X′YY′X [49], and similarly, eigenvalue problems for
the extraction of c, t or u estimates can be derived [1]. An iterative solution
to (3.20) is given by the classical NIPALS algorithm 3.1, using instead of
singular value decomposition, as it is done in the classical PCA, only a series
of least squares regressions.

Partial Least Squares Regression

Based on the iterative process of the NIPALS algorithm slightly different PLS
regression methods have been proposed. In the following we shall concentrate
on the so called PLS2 method and try to gain insight into the algorithmic
structure. For more detailed explanations one could confer [39] or [43]. In

14Without loss of generality, we assume that X and Y have full column rank.

3. Regression Methodology 20

Algorithm 3.1: NIPALS.

1: Initialize u with random numbers ⊲ Univariate case: u = y

2: for until convergence of t do
3: w = X′u/u′u ⊲ estimate X weights
4: ||w|| → 1 ⊲ normalize u

5: t = Xw ⊲ estimate X factor scores
6: c = Y′t/t′t ⊲ estimate Y weight
7: ||c|| → 1 ⊲ normalize c

8: u = Yc ⊲ estimate Y scores
9: end for

addition to the outer relation defined in equation (3.19), we assume there
exists a linear inner relation between the score vectors t and u as follows

U = TD + H (3.21)

where D is a k × k diagonal matrix and H denotes the matrix of residuals
with dimension n × k. These two relations allow now to express the final
model with a mixed relation

Y = TDQ′ + F∗ (3.22)

where again F∗ = HQ
′

+ T denotes the matrix of residuals. Our objective
is to obtain estimates for the unknown matrices T,D,U,Q and P. Let E0

and F∗
0, the initial matrices, be the centered and scaled matrices of X and

Y, respectively. First of all, at each step h, h = 1 . . . k, the vectors th and
uh are computed according to the NIPALS algorithm 3.115. Then the factor
loadings for X and Y are determined by the following regressions

ph = E
′

h−1th/t
′

hth

qh = F∗′

h−1uh/u
′

huh

Afterwards
dh = t

′

huh/t
′

hth

is calculated, which represents the hth diagonal element of D. In the next
step the matrices are updated (“deflated”) by subtracting the effects of t from
both Eh−1 and F∗

h−1 as below

Eh = Eh−1 − thp
′

h

F∗
h = F∗

h−1 − thdhq
′

h.

15In the algorithm the matrices X and Y have to be replaced with Eh−1 and F∗

h−1.

3. Regression Methodology 21

Finally, the entire procedure is iterated until all the k (h = 1 . . . k) latent
variables have been found.

We are now in the same position as in PCA. Instead of directly regressing
Y on X, we use T to calculate the regression coefficients and later convert
the coefficient vectors back to the realm of the original variables. Consider
equation (3.22) and (3.18), then an estimator for Y can be written as

Ŷ = XBPLS with BPLS = P
′+DQ

′

(3.23)

where P
′+ is the Moore-Penrose pseudo-inverse of P

′

[1]. Another repre-
sentation of Ŷ is given by taking the relationship T = XW(P

′

W)−1 into
account [49]. Plugging this into (3.22) yields

Ŷ = XW(P
′

W)−1DQ
′

= X
′

U(T
′

XX
′

U)−1T
′

Y (3.24)

in which in the last equality the relations among T, U, W, P and DQ
′

are
taken care of.

Beside the advantages of PLS like, for instance, the ability to handle
multicollinearity and robustness in the face of data noise, difficulties occur in
interpreting the loadings of the latent variables and in testing the significance
of the variables, since distributional properties of estimates are hardly known.
Criticism is also coming due to the algorithmic structure of PLS compared to
other more straightforward approaches. Overall one could state that PLS, as
well as PCA, is favored as a predictive technique and not as an interpretive
technique.

3.1.4 Ridge Regression

Ridge Regression [15, 24] is a variant of ordinary multiple linear regression
whose goal is to circumvent the problem of instability arising, amongst oth-
ers, from collinearity of the predictor variables. As already discussed, PCA
and PLS build uncorrelated linear combinations of the predictor variables
in order to handle the problem of multicollinearity. Ridge regression, on the
contrary, works with the original variables and tries to minimize a penalized
residual sum of squares

β̂ridge = argmin
β





n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑

j=1

β2
j



 (3.25)

where λ ≥ 0 is the complexity parameter, also referred to as regulariza-
tion parameter, that controls the amount of shrinkage. Like ordinary least
squares, ridge regression includes all predictor variables, but typically with
smaller coefficients, depending upon the value of the complexity parameter.
As it can be seen in (3.25), λ = 0 corresponds to the least squares regres-
sion. To further illustrate this, the very equation may be equivalently written

3. Regression Methodology 22

as objective function which minimizes the least squares sum and constraint
which is the restricted sum of the squared coefficients. In practice, no penalty
is applied to the intercept β0, and variables are scaled to ensure invariance of
the penalty term to the scale of the original data. It can be shown, assuming
centered data and estimating β0 by the mean of the response variable y,
that the solution to equation (3.25), in the following written in matrix form

RSS(λ) = (y −Xβ)
′

(y −Xβ) + λβ
′

β (3.26)

is given by
β̂ridge = (X

′

X + λI)−1X
′

y (3.27)

where I is the p×p identity matrix. Adding λ to the diagonal of X
′

X makes
the problem non-singular, even if multicollinearity is present.

Further insight into the nature of ridge regressions is gained by employing
singular value decomposition, as before in PCA. Let X = ULV

′

be the SVD
of the centered n × p design matrix X, where U and V are the n × p and
p×p orthonormal matrices and L is a diagonal matrix of size p×p consisting
of the singular values of X ordered by value. So we may rewrite the least
squares equation

Xβ̂ls = X(X
′

X)−1X
′

y (3.28)

to
Xβ̂ls = UU

′

y. (3.29)

Now the ridge solutions are

β̂ridge = (X
′

X + λI)−1X
′

y

= UL(L2 + λI)−1LU
′

y

=

p∑

j=1

uj

l2j

l2j + λ
u

′

jy

(3.30)

where the uj are the columns of U and l2j are the diagonal entries of L2.
According to equation (3.30), ridge regression shrinks the coordinates of y

with respect to the orthonormal basis U by the factor l2j/(l
2
j + λ), which

implies that greater amount of shrinkage is applied to basis vectors with
smaller eigenvalues l2j .

Methods for the Choice of λ

The fundamental idea of ridge regression is to choose a value of λ for which
the reduction in total variance is not exceeded by the increase in bias. Since
λ is directly related to the amount of bias introduced, it is desirable to select
the smallest value of λ for which instability occurred due to the presence of
multicollinearity is eliminated. To follow the notation and terminology used

3. Regression Methodology 23

in [36], we denote with β̂ridge(k) the class of ridge estimators indexed by
a parameter k, where k simply plays the role of λ. According to equation
(3.27), β̂ridge(k) can be written as

β̂ridge(k) = (X
′

X + kI)−1X
′

y = (X
′

X + kI)−1X
′

Xβ̂ls. (3.31)

Furthermore, employing equations (3.6) and (3.7) allow to restate ridge
regression in terms of principal component analysis. First applying least
squares to (3.7) yields

γ̂ = (Z
′

Z)−1Z
′

y = (L2)−1c (3.32)

as estimator for γ, where L2, as earlier in this chapter, denotes the diagonal
matrix with the (positive) eigenvalues of X′X and c is a substitute for Z

′

y.
Likewise a general ridge procedure for γ̂ is defined from

γ̂ridge = (Z
′

Z + K)−1Z
′

y = (L2 + K)−1c (3.33)

where K is a diagonal matrix with non-negative elements. Noting that the
relationship between the equations (3.31) and (3.33) can be written as (cp.
equ. (3.9))

β̂ridge(k) = Aγ̂ridge (3.34)

with K = kI and where A consists of the unit-norm eigenvectors of X′X [36].
In order to determine the unknown matrix K and to find the optimal diagonal
elements we want to minimize the mean square error (MSE) of γ̂ridge relative
to γ

MSE(γ̂ridge, γ) = E[(γ̂ridge − γ)′(γ̂ridge − γ)] =

p∑

i=1

E(γ̂ridge
i − γi)

2. (3.35)

Bearing in mind that if the error term is white noise ǫ ∼ N (0, σ2I), the
vector c = Z

′

y = Z
′

Zγ + Z
′

ǫ = L2γ + Z
′

ǫ in equation (3.33) is multivariate
normal distributed with parameter L2γ and σ2L2

c ∼ N (L2γ, σ2L2).

Hence, rewriting the very equation (3.33) in scalar term and plugging this
into (3.35) yields [36]

MSE(γ̂ridge, γ) =

p∑

i=1

E

[
ci

l2i + ki

− γi

]2

=

p∑

i=1

σ2l2i
(l2i + ki)2

E

[
ci − l2i γi

σli
− γiki

σli

]2

=

p∑

i=1

σ2l2i
(l2i + ki)2

[
1 +

γ2
i k

2
i

σ2l2i

]

=

p∑

i=1

σ2l2i + γ2
i k

2
i

(l2i + ki)2
.

(3.36)

3. Regression Methodology 24

Let us differentiate the last equation with respect to the k′is to obtain the
optimal value of ki :

ki =
σ2

γ2
i

. (3.37)

Verifying the second order conditions shows that the values for k in equation
(3.37) indeed constitute a minimum for equation (3.36). Conclusively, one
may state that Hoerl and Kennard [36] have proven the existence of k > 0,
so that the ridge estimator produces lower mean square error than the least
squares estimator [15]. However, this result is relatively useless in practice,
since σ and γ in (3.37) are unknown parameters the optimal values for k are
also unknown. On account of this, they proposed more pragmatic methods for
the choice of k. These methods include, amongst others, (detailed description
can be found in [10, p. 271]): Fixed Point Method, Iterative Method and the
so-called Ridge Trace16. Other common procedures for estimating the “ridge
parameter” are methods based on cross validation introduced in the next
subsection.

3.1.5 Lasso Regression

The least absolute shrinkage and selection operator introduced by Tibshirani
[65] and abbreviated as lasso is a hybrid of variable selection and shrinkage
estimator. This technique shrinks the coefficients of some of the variables
not simply towards zero like ridge regression, but exactly to zero, giving an
implicit form of variable selection. More formally, the method minimizes the
residual sum of squares subject to a constraint on the sum of absolute values
(L1 penalty term) of the regression coefficients

∑p
j=1 |βj | ≤ t, which can be

equivalently written as

β̂lasso = argmin
β





n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑

j=1

|βj |



 . (3.38)

The similarity to ridge regression should be noticed, wherein the L2 ridge
penalty

∑p
j=1 β

2
j in equation (3.25), is replaced by the L1 lasso penalty term∑p

j=1 |βj |.
With an adaptation of PCA, as discussed in [42], even a relationship between
PCA and lasso can be constructed. Consider the linear combinations a

′

kx k =
1, 2, . . . , p, of the pmeasured variables x that have maximum variance subject
to a

′

kak = 1, a solution to equation (3.2), respectively. The adaptation of
PCA is given through the additional constraint

∑p
j=1 |akj | ≤ t, where akj is

16The ridge trace constitutes a graphical representation of the ridge estimator β̂ridge(k)
as a function of k. By varying k, typically in the range between 0 to 1, and plotting the
results of the estimation against k, an appropriate value can be found.

3. Regression Methodology 25

the j th element of the kth vector ak and t is the “tuning” parameter. It can
easily be seen that for t ≥ √p we would obtain the (ordinary) PCA solution.
As per definition of lasso, making t sufficiently small in the constraint will
cause some of the coefficients to be exactly zero. On the other hand, if t is
chosen large enough, the lasso estimates equal the least squares solution, thus
the lasso performs a kind of continuous subset selection [24]. Further insight
into the shrinkage behavior can be gleaned from the orthonormal design case.
Let X be a n×p design matrix and suppose that X

′

X = I. Then it can easily
be shown that solutions to equation (3.38) have the following form [23]

β̂lasso
j = sgn(β̂ls

j)(|β̂ls
j | − γ)+ (3.39)

where γ is determined by the condition
∑p

j=1 |β̂lasso
j | ≤ t and β̂ls

j is
the ordinary least squares estimate.17 Similarly, one can prove that in the
orthogonal setting the solutions to the ridge regression (3.31) are

β̂ridge
j =

β̂ls
j

1 + γ
(3.40)

where γ depends on λ or t, respectively. Comparing (3.39) with (3.40) shows
that ridge regression scales the least squares coefficients by a constant factor,
whereas the lasso translates by a constant factor, truncating at zero. In the
literature the latter is often termed as “soft thresholding” in the context of
wavelet-based smoothing too [24].
In the first part of this subsection it was argued that lasso shrinks coefficients
in the general (non-orthonormal) setting exactly to zero, in contrast to ridge
regression. At least for the two dimensional case, figure 3.1 will provide some
visual insight, whether this statement holds. The criterion

∑n
i=1(yi − β0 −∑p

j=1 xijβj)
2 equals the quadratic function

(β − β̂ls)
′

X
′

X(β − β̂ls) (3.41)

plus a constant error term, which may simply be derived from the normal
equations. The elliptical contours of this function are shown by the full curves
in figure 3.1, centered at the least squares estimates. The constraint regions
are the rotated square (L1 lasso penalty) in 3.1(a) and the circle (L2 ridge
penalty) in 3.1(b). The lasso solution is the first place that the contours
touch the square, and this will sometimes happen at a corner, corresponding
to a zero coefficient, whereas in ridge regression there are no corners for the
contours to hit, thus zero solution will rarely result.

Estimation of the Regularization Parameter λ

The optimal regularization (shrinkage) parameter λ in ridge regression was
derived by minimizing a squared error. Similarly, Tibshirani et al. [65] pro-

17(|β̂ls
j | − γ)+ = max(|β̂ls

j | − γ, 0).

3. Regression Methodology 26

(a) (b)

Figure 3.1: Estimation picture for the lasso (a) and the ridge (b) regression.

posed three methods that can be used for the purpose of minimizing some
error criterion, and hence finding optimal lasso parameters λ and t, respec-
tively: Cross validation, general cross validation and an analytical unbiased
estimate of risk. In k-fold cross validation the data set is randomly divided
into k subsets (subsamples) of roughly equal size. Then the model is fitted
k times, each time leaving out one of the subsets from the available data,
and for testing only the omitted subset is used to compute an error crite-
rion. More detailed, let κ : {1, . . . , n} → {1, . . . , k} be an indexing function
that indicates the partition to which the observation i is allocated by the
randomization. Denote by f̂−k(x) the fitted function calculated with the kth
part of the data removed. Accordingly, the cross-validation estimate of the
prediction error can be phrased as [24]

CV =
1

n

n∑

i=1

(yi − f̂−κ(i)(xi))
2. (3.42)

Note that the prediction error of the model y = f(X) + ǫ with E(ǫ) = 0 and
Var(ǫ) = σ2

ǫ is defined by

PE = E[y − f̂(X)]2 = MSE + σ2
ǫ . (3.43)

Typically, the CV estimates are calculated over a grid of values of the nor-
malized parameter s = t/

∑
β̂ls and the value ŝ yielding the lowest estimated

PE is selected.
The second method may be derived from a linear approximation18 to

the ridge estimate. Let us write the constraint
∑ |βj | ≤ t as

∑
β2

j /|βj | ≤ t,

18The lasso estimate is a non-linear and non-differential function of the response values
even for fixed values of t.

3. Regression Methodology 27

being equivalent to a Lagrangian penalty λ
∑
β2

j /|βj | with λ depending on
t. Thus, substituting the new penalty term for λ

∑
β2

j in the ridge equation
(3.25) yields

β̃ = (X
′

X + λW−)−1X
′

y (3.44)

where W = diag(|β̂lasso
j |), W− denotes the generalized inverse of W and λ

is chosen so that
∑ |β̃j | = t. Then, according to Hastie [24] and also broadly

discussed in [75], the number of effective parameters (effective degrees of
freedom) in the constrained fit β̃, which is considered to be an informative
measurement of the model complexity, may be approximated by

p(t) = trace(X(X
′

X + λW−)−1X
′

). (3.45)

Let rss(t) be the residual sum of squares for the constrained fit with con-
straint t. The generalized cross-validation statistic may be constructed as
the following

GCV (t) =
1

n

rss(t)
(1− p(t)/n)2

. (3.46)

However, the last few lines may be easier to understand by having a look at
the least squares setting. We can write the predictions of the standard model
as

ŷ = Xβ̂ = X(X′X)−1X′y = Sy. (3.47)

The effective number of parameters, corresponding to equation 3.45, is de-
fined as

df(ŷ) = trace(S). (3.48)

Furthermore, one can show that
∑n

i=1 Cov(ŷi, yi) = trace(S)σ2
ǫ , which moti-

vates the more general definition

df(ŷ) =

∑n
i=1 Cov(ŷi, yi)

σ2
ǫ

. (3.49)

The third method is based on Stein’s unbiased estimate of risk [62], in which
equation (3.50) (z ∼ N (µ, I); µ̂ is an estimate for µ written as µ̂ = z+g(z);
g is an almost differentiable19 function from Rp → Rp) is basically applied
to the lasso estimate in the orthonormal setting (equ. (3.39)). Then from

minimization of E
[
β̂(γ)− β

]2
one may derive an estimate for the shrinkage

parameter t.

Eµ||µ̂− µ|| = p+ Eµ

(
||g(z)||2 + 2∇g(z)

)
. (3.50)

19A function h : Rp → R is called almost differentiable if there exists a function
∆h : Rp → Rp, such that for all z ∈ Rp,

h(x + z) − h(x) =

∫
1

0

z · ∆h(x + tz)dt

for almost all x ∈ Rp. Moreover, a function g : Rp → Rp is almost differentiable if all its
coordinate functions are [62, def. 1].

3. Regression Methodology 28

As Tibshirani [65] argues, the last method, although assuming orthonor-
mality, may also be tried to be used in general settings. Because with a
standardized design matrix X one could state that the optimal value of the
shrinkage parameter is roughly a function of the signal-to-noise ratio in the
data, and relatively insensitive to the covariance of X.

3. Regression Methodology 29

3.2 Logistic Regression Model

Logistic regressions (LOGIT) [11, 38], originated in the epidemiological re-
search and now commonly employed in fields ranging from engineering to
finance, are settled in the class of probability models. In contrast to ordi-
nary linear regression, where the dependent variable has continuous nature,
logistic regressions are dealing with qualitative response variables, specially
the case of a binary (dichotomous) response. Let us examine, for instance,
a mail order company more closely. Assume that the independent variable
(or also called covariate) is household income, which is continuous, and the
dependent variable (or response variable) is ’order from last mailing’, be-
ing discrete. In our case the outcome Y is a scalar, which can take only
two values, conventionally assigned the values 0 and 1. The event Y = 1 is
designated as a success of the experiment and Y = 0 as a failure.

Yi = 1 if household ordered from last mailing, and

Yi = 0 otherwise.

Trying to find a linear relationship between the Yi’s and the Xi’s, the house-
hold income, using least squares, may not be appropriate and is hardly jus-
tifiable. One reasonable way would be to construct the probability of Yi = 1,
not the value of Yi itself, as suitable function of the covariate.

3.2.1 Model Specification

We consider a binary random variable y having Bernoulli distribution

y ∼ B(1, π(x)) (3.51)

where x ∈ Rp is a vector of p independent variables and π : Rp → [0, 1]
is the response probability function. The latter represents the conditional
probability P(y = 1|x) of y = 1, given x20. Let e := y − E(y|x) = y − π(x)
be an error term. Hence, we can rewrite our model as

y = π(x) + e (3.52)

with E(e) = 0 and Var(e) = π(x)[1− π(x)], which can be deduced from the
characteristics of the Bernoulli distributed variable y. It is important to note
that the variance of e depends on x. Furthermore, the logistic transformation
G(z) := Rp → [0, 1] defined by the following

G(z) =
exp(z)

1 + exp(z)
(3.53)

20If P(y = 1|x) = π(x) then P(y = 0|x) = 1 − π(x).

3. Regression Methodology 30

allows us to express π(x) as a linear function of the independent variables x,
π(x) = G(x

′

β), which yields the final form of our logistic regression model

y = G(x
′

β) + e. (3.54)

Note that the inverse of G(z), called logit transformation, is denoted by

logit π(x) = ln
π

1− π = x
′

β. (3.55)

3.2.2 Maximum Likelihood Estimation of the Logit Model

The general method of estimation of logit models is maximum likelihood [38],
in which we basically want to maximize the so-called likelihood function to
find an estimator agreeing most closely with the observed data. Consider the
model (cp. equation (3.54))

y = G(Xβ) + e (3.56)

where X ∈ Rn×(p+1), β ∈ Rp+1 are the design matrix, including the column
of the constants, and coefficient vector, respectively, along with y ∈ {0, 1}n
denoting the response variable. Note that y is mutually independent but
not identically Bernoulli distributed, because the probability of success and
failure depends on xi. Finally, as before, ei equals either 1−G(x

′

iβ) if yi = 1
or G(x

′

iβ) if yi = 0, thus e has mean zero and heteroscedastic variance:
G(Xβ)

′

[1 − G(Xβ)]. The conditional likelihood function can be written as
a product of the n univariate probability densities21

L(β|xi, yi) =
n∏

i=1

P(yi|xi, β)

=
n∏

i=1

G(x
′

iβ)yi [1−G(x
′

iβ)]1−yi . (3.57)

However, it is mathematically easier to work with the log of equation (3.57),
termed as (conditional) log-likelihood

l(β|xi, yi) = ln[L(β|xi, yi)] =
n∑

i=1

{
yi ln[G(x

′

iβ)] + (1− yi) ln[1−G(x
′

iβ)]
}
.

(3.58)
To find the optimal β we differentiate equation (3.58) with respect to β and
set the resulting expression to zero, yielding the so-called scoring equations

X
′

(y −G(Xβ̂)) = 0 (3.59)

21The constant binomial term has been disregarded.

3. Regression Methodology 31

which constitute not only a necessary but also sufficient condition for β̂
being the maximum likelihood estimator of β, so it can easily be shown
that the log-likelihood function l(β) is a concave function. For the remainder
of the thesis we will denote the maximized log-likelihood with l(y, G(Xβ̂))
or just with l(β̂). It is worth noting, since the first component of each xi

is one, that the first equation of (3.59) specifies
∑
yi =

∑
G(xiβ̂), hence

the expected number of ones matches the observed number. Although being
very similar to its least squares counterpart, equation (3.59) is non-linear in
β and iterative methods are required to solve it. For instance, employing the
Newton-Raphson algorithm22 [8], which tries to find the optimum through
repeated linear approximations, may lead to the following iterative update
scheme [57,71, p. 708, p. 373]

βt+1 = βt −
(
∂2l(β)

∂β∂β′

)−1
∂l(β)

∂β

= βt + (X
′

VX)−1X
′

(y −G(Xβt)) (3.60)

with V = diag{∂G
∂β

(xi
′

βt) = G(x
′

iβ
t)[1 − G(x

′

iβ
t)]} being a weight ma-

trix23 and completed by a starting value β0 and a convergence criterion.
Re-expressing the Newton step with zi = xi

′βt + (yi − E[yi])/Var(yi) =
x

′

iβ
t + (yi −G(xiβ

t))/vii yields

βt+1 = (X
′

VX)−1X
′

Vz (3.61)

which is referred to as iteratively reweighted least squares (IRLS), because
each iteration solves a weighted least squares problem VXβ = Vz. The
elements of z are often called the adjusted dependent covariates. Note that
the Hessian matrix Φ = X

′

VX24 has other uses as well. Its expected value
with reverse sign is called the Fisher information matrix

I = −E(Φ). (3.62)

Hence, the use of Newton’s method to find the solution to the conditional
log-likelihood equation is also referred to as Fisher scoring.

In the context of logistic regression it is essential to allude the terms of
odds and odds ratios as counterparts to probabilities and probability ratios.
Suppose the event A has probability π and so the complementary event Ac

has probability 1 − π. Then the odds are defined as the ratio of these two
probabilities.

22The Newton-Raphson algorithm, which is named after the mathematicians Newton
and Raphson, is a well-known technique used in numerical analysis when one wants to
find the zero(s) of a function taking real values.

23In fact, the diagonal elements of V equal the variance terms of the error e and response
y, respectively.

24Bear in mind that all methods based on the iterative structure discussed above have
problems in case of a near singular Hessian matrix, due to the necessary calculation of the
inverse.

3. Regression Methodology 32

−8 −6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Figure 3.2: Logistic function with one attribute x.

odds(A) :=
P(A)

P(Ac)
=

π

1− π . (3.63)

While probabilities are confined to the interval [0, 1], odds range over the
positive half of the real number axis. By taking logarithms we obtain the log
odds, which are usually allowed to take the values −∞ and +∞ in order to
establish an one-to-one relationship with the respective probabilities 0 and
1. Note that in case of logistic probabilities the odds are

odds(z) =
exp(z)/(1 + exp(z))

1− [exp(z)/(1 + exp(z))]
= exp(z).

Thus, for the log odds we get

log odds(z) = log exp(z) = z.

Finally, the odds ratio, as the name suggests, is simply the ratio of the
odds of two events and may be considered as a measure of the effect size
describing the degree of association between two events. For the sake of
clarity and a better understanding of the basic idea behind odds ratios we
shall consider the following example. Assuming a logit model with only one
binary covariate, we may define X = 1 for “wearing a ski helmet” versus X =
0, if the skier does not wear a helmet. The response variable Y equals one, if
a skier sustained severe head injuries from a ski accident and zero, if the head
injuries were not severe, thus Y comprises only accidents with head injuries.
The underlying data, taken from the Freizeitunfallstatistik 2007, Kuratorium

3. Regression Methodology 33

Y = 0 Y = 1

X = 0 1363 1625
X = 1 1475 697

Table 3.1: 2 × 2 contingency table.

für Schutz und Sicherheit, is summarized in table 3.1. However, keep in mind
that the number of the accidents with helmets is an approximate, because
unfortunately the exact number was not listed in the statistic. Nevertheless,
we may calculate the odds like the following: odds(Y |X = 0) = 1625/1363 =
1.19 and odds(Y |X = 1) = 697/1475 = 0.47, respectively, and the odds ratio
is odds(Y |X = 0)/odds(Y |X = 1) = 1.19/0.47 = 2.53. The result may be
interpreted that the risk of a severe head injury not wearing a helmet is 2.53
times as great as for other skiers wearing helmets.

3.2.3 Penalized Logistic Regression

Analogous to ridge and lasso regression, where the objective was to minimize
a penalized residual sum of squares, we may incorporate a penalty term to
the log-likelihood function for the same purpose of achieving a stable, as
well as accurate, regression model from higher-dimensional data. The so-
called penalized log-likelihood [22, 28, 54] function may be generally written
as follows

lp(β0;β;λ) = −l(β0;β) + λJ(β) (3.64)

where l(β0;β) denotes the unrestricted log-likelihood function phrased in
(3.58), λ is the regularization parameter controlling the amount of shrinkage
and J(.) is a penalty function on the coefficient parameter β. Note that the
parameter β0, the intercept, is not penalized explicitly. There exist various
approaches to choose the penalty function, for instance, J(β) =

∑p
j=1 β

2
j is

directly leading to the ridge approach, whereas J(β) =
∑p

j=1 |βj | to lasso.
Some further detailed insights on the choice of the penalty term are discussed
in [4], though it should explicitly be pointed out that choosing a “proper”
penalty function is not trivial. Ridge penalties do not go hand in hand with
the need for variable selection!

In a similar fashion, as in the non-penalized case, the Newton-Raphson
algorithm may be applied to equation (3.64) to obtain an estimator of β in
an iterative way. However, the result depends heavily on the choice of λ, as
outlined in section 3.1.5. For λ→ 0 we obtain unconstrained logit estimates,
as with higher regularization imposed (increased λ) we can reduce the ef-
fective size of the model through reducing the effective degrees of freedom
(cp. equation (3.45) and [24, p. 66]). Appropriate techniques for choosing λ
are, amongst others, cross validation introduced in subsection 3.1.5 or meth-
ods based on the AIC (Information Criterion of Akaike) or BIC (Bayesian

3. Regression Methodology 34

Information Criterion of Schwarz), which shall be further discussed in the
following section.

Logistic regression with L1 penalization (3.65) has been introduced and
applied by many researchers.

β̂lasso = argmin
β

{−l(β0;β) + λ||β||1} (3.65)

Hastie and Park [54], for instance, developed an algorithm that implements
the so-called predictor-corrector method of convex optimization to deter-
mine the entire path of the coefficient estimates as λ varies, i.e., to find
β̂lasso(λ) : 0 < λ <∞. In the next subsection I give a brief description of the
predictor-corrector method for penalized logistic regression as implemented
in the contributed R-package glmpath.

Predictor-Corrector Method

The predictor-corrector method, related to the Newton-Raphson algorithm,
is a technique for solving nonlinear equations that are traced through an
one dimensional parameter. Hastie and Park [54] employed this method for
tracing the curve H(β, λ) = 0 through λ in p + 2 - dimensional space with
β ∈ Rp+1 (β0 included) and λ ∈ R+, where H(β, λ) is the differential of the
log-likelihood function lp(β;λ) with respect to β under the assumption that
none of the components of β are zero.25

H(β, λ) =
∂lp(β;λ)

∂β
= X′(y −G(Xβ)) + λ sgn

(
0

β

)
26 (3.66)

Thus, we want to find an unique solution β(λ) that minimizes the convex27

function lp(β, λ) for each λ ∈ R+. For a proof of the existence of such
mappings λ → β(λ) see, for example, Implicit Function Theorem [52, p.
940].

The predictor-corrector method may roughly be summarized in the fol-
lowing steps. In the first step the λ - step length is determined. Given some
λk, the next smallest λ at which the active set changes, denoted by λk+1, is
approximated. The active set is a synonym for the set of coefficients being
non-zero. The second step is called predictor step, in which the corresponding
change in β, due to the decrease in the λ value, is linearly approximated. In
the third step, termed as corrector step, an exact solution of β(λk+1) has to
be iteratively obtained. The linear approximate from the predictor step is
taken as starting value for the algorithm, so the computational cost for the
exact solution reduces to a minimum, because we do not have to make an

25Otherwise we would encounter problems with the ||.||1 - term, since f(x) = |x| is not
differentiable at x = 0.

26The 0 corresponds to the intercept β0.
27If f(x) is concave then −f(x) is convex; l(.) vs. lp(.).

3. Regression Methodology 35

initial guess of the starting value. Finally, the current active set is reevalu-
ated, which may lead, if there are possible changes in the set, to a reiteration
of the corrector step.

Elastic Net Estimator

In case of strong collinearities of the columns of X, the predictor-corrector
algorithm and related iterative schemes might get unstable [54]. More pre-
cisely, the Hessian matrix of lp(.) (see app. A.2) calculated in the predictor
step might be ill-conditioned. To overcome this problem it was suggested,
originally proposed in [74], to incorporate a quadratic penalty term to equa-
tion (3.65). Accordingly, differentiation with respect to β yields

H̃(β, λ1, λ2) = X′(y −G(Xβ)) + λ1 sgn

(
0

β

)
+ λ2

(
0

β

)
(3.67)

where λ1, λ2 > 0. This modification goes by the name of elastic net and is
considered as a compromise between ridge regression and lasso, meaning that
elastic net selects variables like the lasso, i.e., more coefficients will be zero,
and shrinks the coefficients of correlated covariates like ridge regression [24,
p. 73]. In particular when p >> n, i.e., the number of covariates is much
bigger than the number of observations, Zou and Hastie [74] showed that the
elastic net is a promising extension of lasso. The latter’s limitations lie in
group selection28 and simply in the nature of convex optimizations problems.
Which means that lasso can select at most n (p > n) variables before it
saturates, also implying that it can not have more than n variables with
non-zero coefficient in the regression equation [18].29 Recently, Friedman et.
al. [25] introduced a coordinate descent approach for elastic net.30 A linear
combination of the lasso and ridge term was suggested as penalty function.
For instance, λ1 is replaced by λ ·α and λ2 by λ · (1−α), i.e., if α was close
to one we would obtain lasso characteristics and for α = 0 the ordinary ridge
penalty. Thus, as α increases from zero to one, the sparsity of the solution
increases monotonically to the sparsity of the lasso solution [25, p. 4].

β̂elastic−net = argmin
β

{−l(β0;β) + λ[α||β||1 + (1− α)||β||2]} (3.68)

In coordinate descent [8], as the name suggests, the objective function is
minimized along one coordinate direction at each iteration. Depending on in
which order the coordinates are chosen (for example cyclical or greedy [72]),

28If there is a group of variables among which the pairwise correlations are high, then
the lasso tends to select only one variable from the group and does not care which one is
selected (for example dummy variables). See [74, sec. 2.3].

29Of course, the number of different variables ever to have entered the model can be
greater than n.

30An implementation is available in the R - package glmnet.

3. Regression Methodology 36

slightly different variants of the algorithm exist. This approach was recently
re-discovered to the field of data mining, where its computational speed31

is quite remarkable. Especially the sparsity of the lasso estimates allows a
dramatical speedup, since many coefficients are zero, and iterations can be
restricted to the active set. Suppose we have estimates for β̃l for l 6= j,
then a coordinate descent step boils down to a partially optimization of the
penalized log-likelihood function equ. (3.64) with respect to β̃j (β̃j 6= 0).
One can show that the coordinate-wise update reduces to the following form
(with standardized design matrix, fixed α ∈ [0, 1] and fixed λ > 0) [23]

β̃j ←
S

(∑n
i=1 viixij(zi − z̃(j)

i), λα
)

∑n
i=1 viix2

ij + λ(1− α)
(3.69)

where the vii’s are the entries of the diagonal weight matrix V defined as in
equation (3.60), z denotes the so-called adjusted response defined as in equa-
tion (3.61) and S(γ, δ) = sgn(γ)(|γ| − δ)+ represents the soft-thresholding

operator (cp. equ. (3.39)). Furthermore, the term zi − z̃(j)
i = zi − ẑi + xij β̃j

may be considered as the partial residual for fitting βj . This update pro-
cedure can basically be divided into three steps. As a first step, the un-
penalized log-likelihood is approximated using iteratively reweighted least
squares. Then soft-thresholding is applied to take care of the lasso contribu-
tion to the penalty. And finally, a proportional shrinkage is applied for the
ridge penalty. Moreover, enclosing this update procedure in two nested loops,
an outer loop dealing with a decreasing sequence of values of λ, and an inner
loop in which we cycle through all p variables till some convergence criterion
is met, would yield the fundamental structure of the pathwise coordinate
descent algorithm, as proposed in [25].

3.2.4 Logistic Regression with PCA and PLS

Lasso, as well as principal components and partial least squares, introduced
in section 3.1.2 and 3.1.3, respectively, are appropriate techniques for di-
mension reduction in linear settings. In the following it is shown that it is
also possible to extend PCA (and even PLS) to logistic regressions, which
shall be further abbreviated as PCLR (Principal Component Logistic Re-
gression). The basic idea is to first employ PCA on the data, and afterwards
to build the logistic regression model with the principal components obtained
before [2, 51].

Let us use the same notation as in section 3.1.2. The probabilities of
success of the logit model as stated in equation (3.56) may be equivalently

31For specific run time tests concerning the cyclical/greedy coordinate descent algorithm
compared to competing methods, we refer the technically interested reader to [25] and [72].

3. Regression Methodology 37

expressed in terms of all pc’s as

P(yi = 1|xi) =
exp{β0 +

∑p
k=1 zikγk}

1 + exp{β0 +
∑p

k=1 zikγk}
(3.70)

or rewritten in matrix form (cp. equation (3.7)) this becomes

logit G(Xβ) = Xβ = ZA
′

β = Zγ. (3.71)

The original parameters of the logit model can be obtained in terms of those
of the model that has as covariates all the pc’s included. Since, due to the
invariance property of maximum-likelihood, γ̂ can be estimated from y =
G(Zγ)+e, and then the coefficient vector β̂ can be calculated from β̂ = Aγ̂.
In order to possibly improve the model, one could just take a subset of the
principal components of the original covariates. Let us decompose Zγ as
Zγ = Zsγs + Ztγt, with t = p− s, γ = {γ1, · · · , γs|γs+1, · · · , γp}, so that the
first s pc’s are the most explicative ones. After removing the last term the
PCLR model can be restated as the following

y = G(Zsγs) + e∗. (3.72)

In a similar manner we obtain an estimate for γs using maximum likelihood
and an estimate for the original parameters by β̂s = Asγ̂s. The main dif-
ference between ordinary principal component regression and PCLR is that
the estimator γ̂s in terms of the first s pc’s is not the vector of the first s
components of the estimator γ̂ in terms of all the pc’s32 [2]. Hence, each
time we enter or remove a new principal component the model has to be
readjusted, resulting in additional computational expenses.

One criticism of PCLR or principal component regression in general is
that the pc’s are obtained without taking any dependence between response
and predictor variables into account. This issue is tackled by partial least
squares, introduced in section 3.1.3, defining latent uncorrelated variables
(PLS components) and uses them instead of the original covariates in the
regression model. In the linear setting the PLS components are obtained by a
sequential maximization of the covariance between linear spans of predictor
and response variables. However, in the case of logistic regressions, due to the
nonlinear link function, conceptually modification are required. For instance,
Bastien et. al. [6] proposed a quite pragmatic approach to deal with the
dilemma of non-linearity. They introduced a modification to the classical
PLS method in which they merely replaced the series of linear regressions
for obtaining the PLS components by a series of logistic regressions. A more
sophisticated technique was proposed by Marx [50], termed as iteratively
reweighted partial least squares, and recently adapted by Ding and Gentleman

32γ̂s = {γ̂1(s), γ̂2(s), · · · , γ̂s(s)} 6= {γ̂1, γ̂2, · · · , γ̂s}.

3. Regression Methodology 38

[14] to the task of classification based upon gene expression data.33 Below
I want to address Marx’s method, henceforth simply denoted by general
partial least squares and abbreviated as GPLS, in greater detail, because it
is one of the models applied in the simulation part. GPLS is more or less an
embedding of IRLS into the framework of PLS. Consider a decomposition
of the centered n × p design matrix X and the adjusted response vector
z = Xβ∗+(y−E[y])/diag{Var(y)} = Xβ∗+[y−G(Xβ∗)]/V in the following
form (cp. equ. (3.18) and (3.19)) with k < p:

X =
k∑

i=1

tip
′

i + Ek (3.73)

z =
k∑

i=1

qiti + ek (3.74)

where the ti’s are latent variables, pi’s are loadings, qi’s are scalar coefficients
and Ek, ek are residual terms, respectively. The relevant latent variables are
obtained by a sequence of iteratively reweighted least squares regressions
(with weight matrix V), maximizing the correlation between X and adjusted
response vector z (rather than working with the original response y) in a
weighted metric. After this the original response variable is fitted on the
constructed latent variables in a general least squares sense. For a better
understanding a slightly modified (the notation was changed for the sake
of consistency with our logit model) version of Marx’s algorithm has been
placed into the appendix A.4.

33An implementation of this method can be found in the R-package gpls.

Chapter 4

Regression Diagnostics

In the previous chapter I introduced methods for the purpose of developing
good predictive relationships between response variables and covariates. The
task of validating such predictive capabilities and issues addressing model se-
lection and model assessment, especially for logistic regressions using biased
estimation methods [10,24,38,57], shall be discussed in the following.

Model selection has to be understood as an estimation procedure for
determining the performance of different models in order to choose the “best”
one. In the lasso case that would simply run to a series of estimations over
a grid of regularization parameter values λ, and the best λ according to
some error criterion is chosen. The assessment of the resulting model is then
performed on new data (out-of-sample testing) by calculating the prediction
error. A common approach in data-rich situation is to randomly divide the
data set into three subsets: a training set for fitting, a validation set1 to
estimate prediction error for model selection and a test set for assessment of
the generalization error (prediction error over an independent subsample).
Such scheme would bypass the circumstance that in case of using the same
data for fitting and testing, the prediction error would be underestimated
substantially, and usually a tendency towards overfitting the model can be
observed. Coming up with a general “dividing rule” is far from being an easy
job, by reasons of, among other things, the dependence on the signal-to-noise
ratio in the data, the training sample size and the complexity of the model.
For instance, a typical split might be 50% of the data used for training
and 25% each for validation and testing. Besides quantitative issues, like
the question of how many observations each subset should contain, one has
to overcome qualitative problems concerning a proper representation of all
classes in each subset. For instance, if we consider a binary response vector
y of a logit model where each observation yi i ∈ In can be classified into

1The validation step will be skipped in the simulation part in the next chapter, and I
will just divide the data set into a training set for model selection and a test set for model
assessment.

39

4. Regression Diagnostics 40

responders yi = 1 and non-responders yi = 0, it will be essential to have a
certain number of responders and non-responders in each subset, otherwise
the model will not learn to classify correctly. Such strategies go by the name
of stratification and are described in [71, p. 590].

4.1 Training Error and Test Error

Given our standard model y = f(X) + ǫ with E(ǫ) = 0 and Var(ǫ) = σǫ

and a training set τ , the training error (loss over the training set) may be
defined as, following the notation of Hastie et. al. [24, p. 220f]

err =
1

n

n∑

i=1

L(yi, f̂(xi)) (4.1)

where L(. , .) is some appropriate loss-function. Moreover, the test error,
also referred to as generalization error, may be written as the prediction
error over the test sample

Errτ = E[L(y, f̂(X))|τ]. (4.2)

Note that the test error refers to the error for the specific training set, since τ
is fixed. A related quantity is the expected test error Err = E[Errτ], averaging
over everything that is random, including the randomness in the training set.
In case of a squared error-loss, the expected test error can be expressed in
terms of a bias and variance decomposition

Err = E[y − f̂(X)]2

= σǫ + [Ef̂(X)− f(X)]2 + E[f̂(X)− Ef̂(X)]2

= σǫ + Bias2(f̂(X)) + Var(f̂(X)). (4.3)

The first term is the variance of the error ǫ and can not be avoided.
The second term is the squared bias, the amount by which the average of
our estimate differ from the true mean, and the last term represents the
variance of our estimate. Typically, an increase in the complexity of a model
results in a lower bias but higher variance, in the literature well known as
the bias-variance trade-off. In other terms, it is commonly said, that a model
with large bias but low variance underfits the data while a model with low
bias but large variance tends to overfit the model. However, for the sake
of completeness, it should be mentioned that the behavior of the trade-
off may depend on the chosen loss-function L(. , .) [24]. In particular for
classification tasks appropriate loss-functions include the so called 0–1 loss
function (output is either one if correctly classified and zero if not)

L(y, Ĝ(X)) = I
y 6=Ĝ(X) (4.4)

4. Regression Diagnostics 41

and one based on the maximum log-likelihood

L(y, Ĝ(X)) = −2 l(y; Ĝ(X)) (4.5)

where the term “−2 ×maximum log-likelihood” is also known as the deviance
or cross entropy. In logistic regressions with binary response variables the
(binomial) deviance reduces to

deviance = −2
∑

i

yi log[Ĝ(xi)] + (1− yi) log[1− Ĝ(xi)]. (4.6)

Various methods have been proposed for the purpose of estimating the
prediction error. Few of these techniques are introduced in the next part,
divided into empirical and theoretical methods.

4.2 Theoretical Methods for Model Selection

Let us define with op the optimism as the difference between the training
error err over the training data set τ = (ytrain,Xtrain) and the in-sample
error Errin over (ynew,Xtrain) (see Hastie et. al [24, p. 229])

op ≡ Errin − err. (4.7)

The in-sample error rate is defined as Errin = 1
n

∑
Eynew [L(ynew

i , f̂(xtrain
i))|τ],

meaning that new response values yi are observed at each of the training
points. Furthermore, the average optimism ω is the expectation of the opti-
mism over the training set outcome values with fixed predictors ω = Ey(op),
and can generally be written as [24]

ω =
2

n

n∑

i=1

Cov(ŷi, yi). (4.8)

The last equation simply indicates that the harder we fit the data, the greater
the covariance between ŷi and yi will be, thus increasing the expected op-
timism ω. Upon taking the expectation of equation (4.7) we may rewrite it
to

Ey[Errin] = Ey[err] +
2

n

n∑

i=1

Cov(ŷi, yi) (4.9)

which in the linear case2 for additive models y = f(X) + ǫ can be reduced
to [24]

Ey[Errin] = Ey[err] +
2d

n
σ2

ǫ (4.10)

where d should capture the model complexity. Expression (4.10) is considered
as the underlying idea of the information criteria introduced in the next

2Versions of (4.9) hold approximately in the non-linear case too.

4. Regression Diagnostics 42

subsection, which is first estimating the optimism and then adding it to the
training error to get an approximate for the in-sample error.3

4.2.1 Akaike Information Criterion

The Akaike information criterion abbreviated as AIC was developed by
Akaike in 1971 and proposed in [3] for the purpose of statistical identification
as a measure of the goodness of fit of estimated models. Akaike suggested
to take the log-likelihood estimate as a criterion of the “fit” of a model, by
reasons of being a quantity which is most sensitive to deviations of the model
parameters from the true values, and add a correction term (similar to the
expected optimism in equations (4.9) and (4.10)).

AIC = − 2

n
l(y;G(Xβ̂)) + 2 · d

n
(4.11)

If the maximum likelihood is identical for two competing models it will be
the best choice, when focusing on the principle of parsimony, to take the
less complex one, i.e., the model with fewer parameters. Since d in equation
(4.11) acts as a measure of the model complexity or in Akaike’s words, d
is the number of independent adjusted parameters, the model with the low-
est AIC score should be preferred. Furthermore, AIC is by definition an
asymptotically unbiased estimator of the mean expected log-likelihood, but
is in general not asymptotically consistent in terms of selection criterion,
i.e., given a family of models, including the true model, the probability that
AIC will select the correct model is strictly smaller than one as the sample
size n→∞ [29]. Typically, AIC tends to choose too complex models as the
sample size increases, given room for further modifications, as for instance
the Bayesian information criterion (BIC).

4.2.2 Bayesian Information Criterion

BIC was developed by Schwarz 1978 [59] and is applicable like AIC in settings
where the fitting is done by maximization of a log-likelihood function.

BIC = −2 l(y;G(Xβ̂)) + log(n) · d (4.12)

In spite of the similarity to AIC (4.11) (the factor 2 is replaced by log(n))
BIC is motivated differently. More precisely, it it motivated in a Bayesian
framework, originating from approximating the evidence ratios of models
known as the Bayes factors [24, p. 234]. Another difference is that BIC
enjoys the consistency property in terms of selecting the true model [73], but
often chooses models that are too simple in the finite sample case, due to its
heavy penalty on complexity.

3That the in-sample error is not exactly brilliant is evident, since future values are not
likely to coincide with their training set values, but, especially for model comparison, the
in-sample error is a convenient alternative.

4. Regression Diagnostics 43

4.3 Empirical Methods for Model Selection

Cross validation [9, 24] and Bootstrapping [17, 44] are resampling methods
for estimating the expected prediction (generalization) error. Although be-
ing numerically intensive, and thus making resampling only applicable in an
environment with access to fast hardware, its advantage lies in the conceptu-
ally simplicity, i.e., resampling requires fewer assumptions and has a greater
generalizability than traditional parametric approaches.

4.3.1 Cross Validation

In k-fold cross validation the data set, further denoted by D, is randomly
split into k mutually exclusive subsets D1, D2 · · · , Dk of roughly equal size.
Then the model is fitted k times. Each time t = 1, · · · , k it is fitted on
D/Dt and for testing the prediction error is calculated when predicting Dt

(cf. equation (3.42)). The type of partitioning (the number of folds) allows
a specific classification of cross validation. For instance, k = n goes by the
name of leave-one-out cross validation (LOOCV), and here, as the name
suggests, in each fit one observation is left out from the training data set.
However, LOOCV induces not only high computational costs, since n fits are
necessary, but also high variance in the cross validation estimate, because the
Di’s i = 1, · · · , k are so similar to one another [24, p. 242]. It is interesting
to note that the LOOCV technique is asymptotically equivalent to AIC [63],
thus the latter can be used as a “fast and (computationally) cheap” substitute
for LOOCV, especially for huge data sets. Decreasing the number of folds
(smaller k) may considerably decrease the variance in the estimates (Di’s are
less similar), but leads to an increase in biasness (smaller data set D/Dt for
fitting). Kohavi [44] recommended to take 5-fold or 10-fold cross validation
as a good compromise, and suggested for further bias reduction to use a
stratification approach or repeated runs.

4.3.2 Bootstrapping

The bootstrap family was introduced by Efron [17], and analogous to cross
validation it seeks to estimate the expected generalization error. Apart from
that, the intrinsic difference between these two techniques is that the boot-
strap re-samples the available data at random with replacement, whereas
cross validation does it without replacement. Suppose we have a training set
τ and want to fit a model to this data. The basic idea of bootstrapping is
to randomly draw data sets with replacement from the training data, each
sample the same size as τ , and to repeat this process B (e.g. B = 50) times,
producing B bootstrap data sets Sb b = 1, · · · , B. Then the model is refitted
to each of the bootstrap data sets, providing a holistic picture of the behavior
over the fits. Common methods for estimating the expected prediction error

4. Regression Diagnostics 44

include the leave-one-out bootstrap estimate (cp. LOOCV) and the 0.632
estimate, which is an extended and improved, in terms of bias reduction,
variant of the former. Let the leave-one-out bootstrap estimate be denoted

by Êrr
(1)

and defined like the following [24, p. 251]

Êrr
(1)

=
1

n

n∑

i=1

1

|C−i|
∑

b∈C−i

L(yi, f̂
∗b(xi)) (4.13)

where C−i is the set of indices (|C−i| the number) of the bootstrap samples
Sb b = 1, · · · , B that do not contain observation i. Bearing in mind that
the probability of any observation not being chosen after n samples is (with
p = 1/n):

P(obs. i /∈ Sb) =

(
n

0

)
p0(1− p)n−0 = (1− 1/n)n ≈ exp−1 ≈ 0.368. (4.14)

Hence, the average number of distinct observations in each bootstrap sample
is about 0.632 ·n, from which one may infer that leave-one out bootstrapping
has similar characteristics (low variance/high bias) as 2-fold cross validation
[24, p. 252]. To alleviate the high bias of the last estimate another bootstrap
method was proposed, which is referred to as “.632 estimator” (0.632 =
1− 0.368 relates to (4.14)).

Êrr
(.632)

= 0.368 · err + 0.632 · Êrr
(1)

(4.15)

The derivation of (4.15) is relatively complicated and is not a necessity for
understanding the basic idea behind it, which may be considered to be the

attempt to reduce the bias of the leave-one-out bootstrap estimate Êrr
(1)

by
pulling it towards the training error rate of the training set.

4.4 Measures of Goodness-of-Fit

4.4.1 Receiver Operating Characteristics (ROC)

The ROC [38] graph, originating from signal detection theory4, is a concep-
tually simple technique for visualizing, organizing and selecting classifiers
based on their performance. In general, a classification model (classifier) is
a mapping from instances to predicted continuous (e.g. an estimate of an
instances class membership probability) or discrete classes. Let us consider
a two-class prediction problem (binary classification), in which the outcomes
y either are “positive” (yi = 1) or “negative” (yi = 0). For instance, if the

4One of the first uses was during World War II for the analysis of radar signals. Fol-
lowing the attack on Pearl Harbor in 1941, the United States army began new research to
increase the prediction of correctly detected Japanese aircraft from their radar signals.

4. Regression Diagnostics 45

Figure 4.1: 2 × 2 confusion matrix.

outcome from a prediction is ŷi = 1 and the actual value is also yi = 1, then
it is called a true positive (tp). In figure 4.1 the four possible outcomes from
a binary classifier are illustrated, from which several common metrics may
be derived.

true positive rate =
Positives correctly classified

Total positives
(4.16)

false positive rate =
Negatives incorrectly classified

Total negatives
(4.17)

specificity =
True negatives

False positives + True negatives
(4.18)

The ROC graph plots the probability of detecting true signal (true positive
rate on the y-axis) versus a false signal (false positive rate on the x-axis) for
an entire range of possible cut points5, and may also be considered as a tool
for visualizing the trade-off between benefits (tp rate) and costs (fp rate).
Points in the “north west” of the ROC space reflect higher tp rate and lower
fp rate and are therefore regarded as desirable.6 For instance, if the objective
is to maximize the classification by choosing an appropriate cut point, one
would select a cutoff level that maximizes the correctly and minimizes the
incorrectly classified outcomes. The ROC graph, however, is as a quantita-
tive measure of predictiveness of competing models only useful to a limited
extent. A common alternative way is to calculate the area under the ROC
curve (AUC), which ranges from 0 to 1 and provides a scalar measurement of
the classifier’s ability to discriminate. Generally spoken, 0.7 ≤ AUC < 0.8 is

5As the cut points vary, the elements of ŷ are different classified. E.g. cut point: 0.5: If
ŷ ≥ 0.5 → ŷ = 1 else ŷ = 0.

6Simple random class guessing would produce a diagonal line in the ROC space.

4. Regression Diagnostics 46

considered as an acceptable and 0.8 ≤ AUC as an excellent discrimination.
For a deeper insight into this topic, such as multi-class ROC graphs or ROC
curve averaging (cp. cross validation), we refer the interested reader to [20].

In concluding this chapter, I particularly want to point out that seeking the
“true” model is searching for an impossibility. Rather it is important to seek
for a model, which is easily understandable7, parsimonious, appropriate for
the situation and which gives a plausible approximation to reality.

7That is usually not the case with biased estimation methods, what should not bar us
from using them for estimation purposes in the next chapter.

Chapter 5

Real Data Analysis

Thankfully, the data set for the real data tests was provided by a mail order
company, consisting of purchase history information of 68210 customers. The
main objective is to select customers who should receive the winter catalog
2009. All testing and modeling were performed in R 2.9.1 (http://www.r-
project.org/) and as a computing platform a Quad Core i920 Intel Processor
with 6GB system memory was available. The following R-packages were in
use throughout the analysis: ROCR [61], GLMNET [26], PLS [68], GPLS [13] and
gregmisc.

5.1 Data set Description

The characteristics of each individual customer is summarized in 388 con-
tinuous and categorical candidate covariates, ranging from buying behav-
ior (products, product quantities, ...) to product specific variables (product
prize, ...) and to customer’s personal data (age, gender, ...), causing a quite
messy design matrix X. Categorical variables, in general, can be grouped
into quantitative discrete and qualitative ordinal/nominal variables (cp. fig-
ure 5.1). Powers and Xie [56] describe the distinction between quantitative
and qualitative as that the former measurements closely index the substan-
tive meanings of a variable with numeric values, whereas numerical values
for qualitative measurements are substantively less meaningful. The quanti-
tative discrete category includes variables which may only assume integer
values. The covariates bas0_YYaXX 1, for instance, the number of orders of
a specific product type (XX stands for the product type) from a single cus-
tomer during a predetermined time period (YY stands for the season) falls
into this group. The second group comprises variables such as kaufkraftkl,
which indicates the class of purchasing power and goes from one to nine or
ortsgroesse, classifying the customers according to the size of the city where

1Discussing all covariates in detail would go beyond the scope of this thesis.

47

5. Real Data Analysis 48

Quantitative

{
Continuous ⇒ Non-Categorical

Discrete ⇒ Categorical

Qualitative

{
Ordinal ⇒ Categorical

Nominal ⇒ Categorical

Figure 5.1: Typology of the four types of measurement.

age

F
re

qu
en

cy

20 40 60 80 100

0
20

00
40

00
60

00
80

00
10

00
0 Q

5

Q
4

Q
3

Q
2

Q
1

Figure 5.2: Histogram of variable age (alter1) with colored quintiles.

they are living. Qualitative nominal variables, on the other hand, possess no
inherent ordering. Examples are gender or marital status.

Transformation of covariates is commonly applied in regression analysis,
when the variance or mean of the original variables differ to any significant
degree. I decided to standardize (center and scale) all continuous candidate
variables, due to the different units and keep the categorical candidate co-
variates unchanged. The variable age, although being considered as concep-
tually continuous, is often categorized or discretized, i.e., it is divided into
subintervals of, for example, 5 years and each subinterval is represented by
a categorical covariate. The length of these intervals and where to place the

5. Real Data Analysis 49

cut points, although appearing to be straightforward at first glance, should
be chosen wisely. I also want to follow this discretization approach for the
variable age (alter1) and use the quintiles2 as cut points. To be able to state
the full model we need observed outcomes as well, which are further com-
bined in the binary response vector y. If for an individual customer i the
outcome takes the value one (yi = 1), then this person has ordered anything
during the recorded purchase history, and if customers have not ordered any-
thing, then the corresponding outcome takes the value zero. It should also be
mentioned that the data set for each test setup has been split into a training
set and a test set. The size of the former is about 2/3 of the whole data set
and the remaining observations are used for the final model assessment. To
ensure diversity across the population of the sets a stratification approach,
stratifying on response, has been applied.

5.2 Method Description

5.2.1 Principal Component Logistic Regression (PCLR)

On the one hand, one would like to capture most of the variance in X and
don’t “loose” too much information by replacing the covariates with a smaller
number of principal components, but on the other hand, for the sake of par-
simony, it is essential to retain as few principal components as possible. Some
rules for this balancing act are summarized in [42] and [66]. Further, I want
to focus on cross validation, already discussed in the context of empirical
methods for model selection sec. 4.3, and also applicable for selecting a sig-
nificant subset of principal components. For instance, the cross validatory
scheme presented by Eastment and Krzanowski [46] tries to quantify the
idea of “acceptable accuracy” in terms of prediction of individual elements
of X. The scheme hinges on the fact that each element xij of X is predicted
from an equation like the SVD, but based on a submatrix of X that does not
include xij . The sum of squared differences between predicted and observed
xij acts as measure of predictive accuracy and may be written as

PRESS(m) =
n∑

i=1

p∑

j=1

(mx̂ij − xij)
2 (5.1)

where mx̂ij is predicted from a m-components model. A valuable alterna-
tive from a computational point of view and especially for huge data matrices
would be to divide X into k subsets (cp. k-fold CV) instead of calculating
each x̂ij separately. Hence, predicting the kth set from the projection matrix
constructed from the remaining k − 1 sets [35,40]. In general, PRESS(m) is
expected to fall as m increases, since the predicted values will become more

2Quintiles divide the distribution into fifths. For example, the first quintile divides a
distribution such that 20% of the observations lie below it.

5. Real Data Analysis 50

accurate as more pc’s are included into the model. So PRESS by itself is not
a satisfying selection criterion. In order to remedy to this problem Wold [70]
suggested an additional statistic (R-statistic)

R(m) =
PRESS(m)∑n

i=1

∑p
j=1((m−1)x̂ij − xij)2

. (5.2)

This compares the PRESS after fitting m components with the sum of
squared differences between observed and estimated data points based on
all the data using (m − 1) components. Important components were felt to
be those for which R < 1. It should be mentioned, however, that even the R
statistic is not the last conclusion of wisdom and the unity cutoff level should
be considered to be taken with cautiousness and flexibility. As an alternative
criterion for an appropriate selection of the pc’s an approach developed by
Mertens et al. [53] was implemented (for the pseudo code see appendix A.5).
They use a version of PRESS equation (5.1) which also takes the response
variable y into account by calculating the mean-squared error of probabilities
(MSEP). It is defined as the following

PRESS-MSEP(m) =

n∑

i=1

(yi −m ŷi)
2 (5.3)

where mŷi denotes the estimate of yi obtained from a PCLR based on a subset
m and using X with the ith observation deleted. The third criterion, here
presented due to its wide use and conceptually simplicity, is called Kaiser’s
rule. This criterion accepts all eigenvalues above the average eigenvalue and
rejects those below the average eigenvalue. That is why it also referred to
as Average Eigenvalue Rule. The average eigenvalue is 1/p · tr(Σ), which is,
for correlation-based PCA, equal to 1. Additionally, it should be mentioned
that for PCLR to work properly the entire (categorical covariates too) design
matrix X has to be centered, due to technical reasons.

5.2.2 General Partial Least Squares (GPLS)

From a modeling point of view general partial least squares seems to be
most challenging. Not only because the underlying theory is complicated
and difficult to understand, but rather because the complexity of the algo-
rithm is a huge computational burden for any hardware and that there is
not much literature about GPLS being applied to real data. Especially, it
is unusual to deal with such huge and mixed design matrix like in our case.
Nevertheless, by setting the convergence criteria of the algorithm for the co-
efficients relatively moderate and restricting the set of GPLS components to
a minimum, one was able to calculate cross validation estimates in a feasi-
ble computing time. For the interested reader are the R-source code (App.
C) and the pseudo code (app. A.4) placed into the appendix. Additional

5. Real Data Analysis 51

convergence problems3 were eluded by enabling the Firth bias reduction op-
tion [21]. Firth developed a procedure to remove the first-order term of the
asymptotic bias of maximum likelihood estimates based on a modification
of the score function (3.59). Furthermore, binomial deviance- and 0-1 loss
function are employed for computing the GPLS cross validation estimates.
I will, henceforth, denote the cross validation error with 0-1 loss function
simply by misclassification rate and the other one by deviance.

5.2.3 Elastic Net

Elastic net testing is focused on three different values for the “mixing” pa-
rameter of the penalties, namely α = 0.05, α = 0.5 and α = 1. From an
optimization point of view, of course, one could work with a range of α-
values and take the value which performs best in terms of an appropriate
error criterion. Let us reminisce that α = 1 corresponds to lasso, α = 0.5
to a linear combination of the lasso and ridge penalty and α = 0 to ridge
regression. For the latter, however, instead of exactly 0 a small value was
chosen. First, because of algorithmic stability reasons and second, that ridge
normally shrinks the variables but do not set them zero. So all covariates,
although with small magnitude, would enter the regression, and this is pre-
cisely what is not intended. The second tuning parameter regarding elas-
tic net issues is the regularization parameter λ. This parameter is due to
the enormous time necessary for computing, especially in a cross validation
scheme, restricted to a set of 20 different values for each α. These values are
chosen uniformly on the log scale covering the entire range only limited by
the size of the active set4 (the covariates with non-zero coefficients). Which
is set to 280 again due to computing feasibility, i.e., values for λ where the
number of non-zero covariates exceed 280 are not taken into account. Finally,
for measuring the prediction error, serving as basis for determining the op-
timal model, 10-fold cross validation estimates with binomial deviance- and
0-1 loss function are calculated. Note that if one also wanted to use α as a
tuning parameter, cross validation on a 2D surface would be necessary (see
sec. 5.3.1).

3For instance, due to complete separation [14], i.e., there exists a vector that correctly
classifies all observations (perfect prediction), thus the maximum likelihood estimator does
not exist. Especially with high-dimensional data this problem is common.

4The size of the active set can be considered as an estimate for the degree of freedoms
of the model [75].

5. Real Data Analysis 52

5.3 Simulations

5.3.1 Test Scenario 1

In the first scenario a random sample of size 10000 without replacement is
chosen from the population. The rate of responders in the sample is 49%,
i.e., 4900 customers out of the 10000 were potential buyers. The training set
for parameter tuning consists of 6666 customers, which is about 2/3 of the
sample size, and the remaining individuals are kept for the test set. Due to
stratification is the rate of responders in the training sample about the same
as in the entire sample: 48.48%.

Parameter Tuning

First of all we shall have a closer look at the eigenvalues of the sample train-
ing covariance matrix. The value of the largest eigenvalue is l21 = 3.14 · 103,
whereas the smallest eigenvalue with l2392 = 1.07 · 10−29 may be considered
to be numerically zero. Moreover, the last 89 eigenvalues are smaller than
1 · 10−27, which may be interpreted as a significant sign of collinearities
between the covariates. The condition number of the sample covariance ma-
trix, which is defined as the positive square root of the ratio of the largest
to the smallest eigenvalues, adds up to the enormous value of 1.17 · 1016

and is, without doubt, another indication of an ill-conditioned matrix. Bear

Avg. Eigenvalue

0 10 20 30 40 50 60 70

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Number of Components

C
um

ul
at

iv
e

P
ro

po
rt

io
n

of
 V

ar
ia

nc
e

E
xp

la
in

ed

Figure 5.3: Eigenvalues of the sample training covariance matrix.

5. Real Data Analysis 53

in mind that the eigenvalues of the covariance matrix equal the variances
of linear combinations5 of the covariates. The average eigenvalue rule, in-
troduced in subsection 5.2.1, recommends that only eigenvalues above the
average eigenvalue are worth considering.6 The value of the mean eigenvalue
acting as threshold in the training sample is 24.4. Therefore, the criterion
would retain the first 37 principal components accounting for 96.6% of the
total variation in the data. As a second “stopping” criterion the prediction
sum of squares statistic PRESS(m) is taken into account, which is evaluated
by 10-fold cross validation. The corresponding curve, demonstrated in figure
5.4, is monotonic decreasing for all m = 1 . . . 80. Therefore, this approach
seems unfeasible for retaining an optimal7 number of components. As ex-
posed by [46] and also experienced by [35], departures from monotonicity
tend to be slight in practice.

0 20 40 60 80

0
5

10
15

Number of Components

P
R

E
S

S

Figure 5.4: PRESS evaluated by 10 fold cross validation and averaged over
20 consecutive runs.

Nevertheless, in certain circumstances it could be argued that removing
principal components from the regression equation where the slope of the
PRESS curve is small or near constant (i.e., the gain of information through

5As per definition, principal components are linear combinations of the predictor vari-
ables.

6Illustrated in figure 5.3: Black filled circles are pc’s above avg. eigenvalue; red filled
squares are pc’s below avg. eigenvalue.

7Minimum of the press curve.

5. Real Data Analysis 54

adding additional pc’s into the regression equation is marginal) is feasible.
For example, regarding figure 5.4, one may retain only the first 50 principal
components. However, I would strongly recommend to take alternative cri-
teria into consideration. Such as the R-statistic presented by S. Wold [70],
which is more or less built by the fraction of the PRESS statistic and the
residual sum of squares of Xtrain (see equ. (5.2)). The R-statistic calculated
with included pc’s ranging from 30 to 80 is illustrated in figure 5.5, where
pc’s below the cutoff level (black filled circles) are felt to be the important
ones and pc’s above the cutoff level (red filled squares) may be omitted. The
first 52 pc’s are, according to this method, worthwhile to be kept, which ex-
plain about 98.75% of the total information in the training matrix. It should
be mentioned that the unity cutoff level was suggested by S. Wold and may
situationally be modified.

30 40 50 60 70 80

0.
96

0.
98

1.
00

1.
02

1.
04

1.
06

1.
08

Number of Components

R
 −

 S
ta

tis
tic

Cut−off level

Figure 5.5: R - Statistic.

The last criterion of interest is the so-called PRESS-MSEP. Contrary to
the two previous methods, this approach works with the response variable by
computing the mean squared error (L2 error) between the predicted prob-
abilities and the observed outcome. Considering figure 5.6, the minimum
averaged L2 cross validation error occurs at 56 components, i.e., in case of
using the first 56 pc’s for predicting purposes, the resulting model has lower
L2 error than any other PCLR model in a 10-fold CV estimation scheme.
The length of the two bars at each point equals the standard deviation of

5. Real Data Analysis 55

30 40 50 60 70 80

0.
21

80
0.

21
85

0.
21

90
0.

21
95

0.
22

00
0.

22
05

Number of Components

P
R

E
S

S
 −

 M
S

E
P

Figure 5.6: PRESS-MSEP evaluated by 10 fold cross validation and aver-
aged over 20 consecutive runs.

the CV estimates and may be considered as the significance bound. As it can
be seen, there is no relevant significant difference between a model with 51
pc’s and 56 pc’s included, because the mean error for the former lies at the
upper end of the significance bound of the latter. In such issues one should
always choose the most parsimonious model. Hence, for the PRESS-MSEP
criterion the optimal number of components is 51, accounting for 98.45%
of the total variance. Let us summarize the three presented methods: The
avg. eigenvalue rule would suggest to retain the first 37 pc’s, on the other
hand, the R-statistic would choose the first 52 pc’s and the PRESS-MSEP
discussed in the end would take the first 51 pc’s into the final regression
model. Surprisingly, the optimal numbers of components proposed by the
last two methods are contiguous, which is, at least in my opinion, a good
argument to enter the final testing for PCLR with about 50 pc’s. In fact I
take excactly 50 pc’s.

Let as further examine the linear combination of the first principal com-
ponent, the most explanative one. Due to the huge set of variables only the
covariates with coefficients greater than 0.1 are printed below. The full lin-
ear combination can be found in the appendix B.2.1. Needless to say, since
not all covariates have been scaled to have variance one (categorical vari-
ables remained unchanged), the following selected variables may possibly

5. Real Data Analysis 56

not represent the most important ones. It should be just an example of how
appropriate analysis could be applied to the pc’s, and it shows that pc’s are
not appearing from nowhere.

rqs00 rqs03 rqs05 rqs06 rqs08 badob_8

0.2220719 0.3274624 0.3973186 0.3725015 0.3303159 0.1021969

badob_9 batex_7 batex_8 batex_9

0.1262883 0.1023475 0.1443726 0.1806760

The variables rgs00/03/05/06 and rgs08 seem to play a significant role,
where rgs refers to the rate of returns of products and the last two fig-
ures stand for the specific time period.8 Furthermore, badob_8 and badob_9
capture information about the number of products the customer has ordered
from the assortment of ladies’ fashion, and the covariates batex_7, batex_8
and batex_9 include not only ladies’ fashion but also men’s fashion and
kids’ fashion.9 Interestingly, all these variables are also included in the set of
optimal candidate covariates determined by the three elastic net models.

The general partial least squares procedure implemented in the R-package
gpls, attesting to its complexity, may be referred to as a black box with in-
put X, y and output ŷ, the fitted probabilities. The internal structure, even
though a detailed pseudo code is presented in appendix A.4, is somewhat dif-
ficult to understand and as a technique for interpretation purposes to a great
extent inappropriate. Hence, it is not a surprise that partial least squares is
considered to be an algorithm than anything else. As discussed previously,
(general) partial least squares seeks for components that explain as much
of the relationship between X and y as possible. Similar to PCLR, these
components are then used for the further modeling process. The procedure
implemented in the R-package gpls, however, does not allow to explicitly
extract information about the general partial least squares components, thus
no detailed analysis can be applied on the components. The procedure re-
turns just the entire coefficient vector β̂gpls

s (s = number of GPLS comp.),
which has already been converted back to the realm of the original covari-
ates. This issue rises the problem of determining the degrees of freedom of
the model correctly. Since, regardless of how many GPLS components are
used to calculate β̂gpls, the prediction equation always contains the full set
of covariates. And as Marx [50] argues, it may be improper to simply use the
number of covariates as a measure for the degrees of freedom.

8“00”:=fall/winter season 2008; “03”:=spring/summer season 08; “05”:=s/s 08 - f/w 08;
“06”:=f/w 07 - f/w 08; “08”:=f/w 06 - f/w 08.

9“_07“:=f/w 07 - f/w 08; “_08“:=s/s 07 - f/w 08; “_09“:=f/w 06 - f/w 08.

5. Real Data Analysis 57

5 7 9 11 13 15 17 19 21 23 25 27 29

1.
24

8
1.

25
0

1.
25

2
1.

25
4

1.
25

6
1.

25
8

Number of Components

D
ev

ia
nc

e

5 7 9 11 13 15 17 19 21 23 25 27 29

0.
34

8
0.

35
0

0.
35

2
0.

35
4

0.
35

6
0.

35
8

Number of Components

M
is

cl
as

si
fic

at
io

n
R

at
e

Figure 5.7: General partial least squares training tests: (top) Boxplot of 10-
fold CV estimates with binomial deviance loss function over 10 consecutive
runs; (bottom) Boxplot of 10-fold CV estimates with 0–1 loss function over
10 consecutive runs.

5. Real Data Analysis 58

The training results for GPLS are presented in figure 5.7, where box-
plots10 of 10-fold CV estimates with binomial deviance loss function (equ.
(4.6)) and with 0–1 loss function (equ. (4.4)) are plotted. It seems, when
inspecting figure 5.7, that there is no statistically significant difference in
cross validation error (deviance) between models having 11 gpls components
included and models with more components. Due to the parsimony issue, I
choose as optimal tuning value 11 components, which is confirmed by the
fact that the selected model greatly outperforms the rest in terms of misclas-
sification rate. Preferred are obviously candidate models with low deviance
and low misclassification rate. The latter one should be believed only partly,
though, because the cutoff level was fixed to 0.5, i.e., outcome probabilities
greater than 0.5 are classified with ones and otherwise with zeros. A better
performance measure are the ROC curves employed to final testing, due to
the consideration of an entire interval of cutoff levels. Throughout the train-
ing step I will consider the deviance as the main selection criterion, while
taking the classification only to some extent into account.

The graph on the top in figure 5.8 shows the coefficient paths of elastic net
regression with λ = 0.05. The red dashed line marks the optimal parameter
value determined by 10-fold cross validation. A low λ value puts more weight
to the ridge penalty as to the lasso penalty, which means that in general, as
already several times discussed, the covariates are mainly shrunken but not
set exactly zero. Hence, the solution has more non-zero coefficients than lasso,
but with smaller magnitudes. The graph in the middle and on the bottom
should illustrate the other case, where ridge penalty and lasso penalty are
equally weighted, and the lasso term is on its own, respectively. Friedman et.
al. [25] argue that the coefficient profile of the latter shows typically more
“wild” characteristics and a scattered, less concentrated distribution. This
being one reason for adding shrinkage behavior through an additional L2
penalty to ensure potentially more stable coefficient paths. A comparison of
the graphs in figure 5.8 should confirm this finding in practice, at least in the
low λ range it is observable. For the sake of clarity (due to the huge number
of covariates) I did not label each coefficient path with the corresponding
name of the covariate, although, for more detailed analysis, it would indeed
be interesting and informative. For instance, the covariate with the biggest
absolute coefficient is bas0_4a02 (the number of products the customer has
ordered between fall/winter season 06 and fall/winter season 08) over almost
the whole range of λ values, and this in all three elastic net coefficient paths.

10Recall that the box stretches from the first quartile to the third quartile and the
median is shown as a line across the box.

5. Real Data Analysis 59

2 0 −2 −4 −6

−
0.

2
0.

0
0.

1
0.

2
0.

3
0.

4

Log Lambda

C
oe

ffi
ci

en
ts

17 27 80 232 318

degrees of freedom

0 −2 −4 −6 −8

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Log Lambda

C
oe

ffi
ci

en
ts

6 21 58 180 295

degrees of freedom

0 −2 −4 −6 −8

−
0.

6
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

Log Lambda

C
oe

ffi
ci

en
ts

4 16 41 127 267

degrees of freedom

Figure 5.8: Coefficient profile plot of the coefficient paths (training set):
(top) Elastic net α = 0.05; (middle) Elastic net α = 0.5; (bottom) Lasso
(elastic net α = 1).

5. Real Data Analysis 60

0.13 −0.36 −0.84 −1.33 −1.81 −2.29 −2.78 −3.26 −3.75 −4.23 −4.72

1.
23

5
1.

24
0

1.
24

5
1.

25
0

1.
25

5

Log Lambda

D
ev

ia
nc

e

0.13 −0.36 −0.84 −1.33 −1.81 −2.29 −2.78 −3.26 −3.75 −4.23 −4.72

0.
34

5
0.

35
0

0.
35

5

Log Lambda

M
is

cl
as

si
fic

at
io

n
R

at
e

[%
]

Figure 5.9: Elastic net α = 0.05 training tests: (top) Boxplot of 10-fold
CV estimates with binomial deviance loss function over 20 consecutive runs;
(bottom) Boxplot of 10-fold CV estimates with 0–1 loss function over 20
consecutive runs.

5. Real Data Analysis 61

−1.69 −2.17 −2.66 −3.14 −3.63 −4.11 −4.60 −5.08 −5.57 −6.05 −6.54

1.
23

0
1.

23
5

1.
24

0
1.

24
5

1.
25

0
1.

25
5

1.
26

0

Log Lambda

D
ev

ia
nc

e

−1.69 −2.17 −2.66 −3.14 −3.63 −4.11 −4.60 −5.08 −5.57 −6.05 −6.54

0.
34

0
0.

34
5

0.
35

0
0.

35
5

0.
36

0

Log Lambda

M
is

cl
as

si
fic

at
io

n
R

at
e

[%
]

Figure 5.10: Elastic net α = 0.5 training tests: (top) Boxplot of 10-fold
CV estimates with binomial deviance loss function over 20 consecutive runs;
(bottom) Boxplot of 10-fold CV estimates with 0–1 loss function over 20
consecutive runs.

5. Real Data Analysis 62

−2.38 −2.87 −3.35 −3.84 −4.32 −4.81 −5.29 −5.78 −6.26 −6.74 −7.23

1.
23

0
1.

23
5

1.
24

0
1.

24
5

1.
25

0
1.

25
5

1.
26

0

Log Lambda

D
ev

ia
nc

e

−2.38 −2.87 −3.35 −3.84 −4.32 −4.81 −5.29 −5.78 −6.26 −6.74 −7.23

0.
34

5
0.

35
0

0.
35

5
0.

36
0

Log Lambda

M
is

cl
as

si
fic

at
io

n
R

at
e

[%
]

Figure 5.11: Elastic net α = 1 training tests: (top) Boxplot of 10-fold
CV estimates with binomial deviance loss function over 20 consecutive runs;
(bottom) Boxplot of 10-fold CV estimates with 0–1 loss function over 20
consecutive runs.

5. Real Data Analysis 63

The optimal tuning parameters may easily be read of the boxplots figures
5.9, 5.10 and 5.11. Apparently, in case of α = 0.05, log(λ) = −2.78 has the
lowest mean deviance. Adding the standard deviation of the cross validation
estimates to the mean error shows that there is no significant difference
in performance between models with log(λ) = −2.78 and log(λ) = −2.29,
though. Therefore, due to the ambition too choose the less complex one, I
take as optimal tuning parameter for the elastic net model with α = 0.05 the
latter. The best model in terms of misclassification rate is not necessarily easy
to clearly identify (fig. 5.9, graph on the bottom), since there are a couple of
candidate models with nearly the same mean misclassification rate. At least
log(λ) = −2.29 does not perform significant worse than the others. Moreover,
setting log(λ) = −2.29 results in a model with degrees of freedom of 99, i.e.,
99 of the 392 covariates have non-zero coefficients. Obviously, log(λ) = −4.11
performs best in the α = 0.5 case. This value for λ corresponds to a model
with degrees of freedom of 62. Our last setup, elastic net with α = 1, equals
a regression with lasso penalty and according to fig. 5.11 one may suggest to
take for the value of the tuning parameter log(λ) = −4.81 (df = 61).

As one can observe, the complexity of the optimal model reduces with
increasing value of α. More precisely, from 99 covariates with α = 0.05 to
61 covariates with α = 1. In scenario 2 we will make the finding that the
optimal models are even more sparser, i.e., the cross validation procedure
suggests higher values for the regularization parameter. Furthermore, it is
quite interesting to note that lasso and elastic net α = 0.5 select almost
the same set of candidate covariates. In the latter only the variable askzs6
(the number of different assortments the customer has ordered from between
fall/winter season 07 and fall/winter season 08) is additionally added to the
regression equation. For the entire set of chosen covariates by elastic net
α = 0.5 see appendix B.2.2.

Parameter Testing

For final testing the models were first fit to the training data using the
optimal parameters being determined in the tuning step and then applied to
predict the test set. The quantitative performances are summarized in table
5.1, and for qualitative results one may have a closer look at the receiver
operating characteristic curves 5.13, 5.14 and 5.15 . Furthermore, I plotted a
cost curve dealing with unequal cost of misclassification and give an example
of expected cost curves introduced by Holte and Drummond [37].

As already discussed, a model with perfect discrimination has a ROC
plot that passes through the upper left corner. Therefore, the closer the
ROC curve is to the upper left corner, the better. Considering the ROC
figures, all our models produce curves above the dashed line, representing
a model with simple random class guessing having an area under the ROC
curve (AUC) of 0.5. The training ROC curves are, of course, slightly “better”

5. Real Data Analysis 64

Table 5.1: Test Results for Scenario 1.

Mis. Rate Deviance AUC AIC

Principal Component LR 37.28% 1.273 0.6851 1.303
General Partial Least Squares 36.50% 1.267 0.6909 -
Elastic net α = 0.05 36.02% 1.253 0.7003 1.312
Elastic net α = 0.5 35.72% 1.250 0.7032 1.287
Lasso (elastic net α = 1) 35.72% 1.249 0.7036 1.286

PCLR GPLS El.(0.05) El.(0.5) Lasso

Misclassification Rate

[%
]

35
.0

36
.0

37
.0

PCLR GPLS El.(0.05) El.(0.5) Lasso

Deviance

1.
23

1.
25

1.
27

PCLR GPLS El.(0.05) El.(0.5) Lasso

AUC

0.
68

0
0.

69
0

0.
70

0

PCLR GPLS El.(0.05) El.(0.5) Lasso

AIC

1.
24

1.
26

1.
28

1.
30

1.
32

Figure 5.12: Test Results for Scenario 1.

than the test ROC curves, because the models were fitted to the training
data set. However, one could state that precisely this slight difference is
an indication for a very good predictive ability. Or, to put it differently,
a passable trade-off between fitting and predicting can be observed, which
can definitely be regarded as the result of the successful parameter tuning
through cross validation. In overfitting scenarios, for instance, one could
yield near perfect discrimination in the training step, but the prediction

5. Real Data Analysis 65

performance would suffer greatly (not always, but in most cases). At first
glance it is nearly impossible to find significant differences in the ROC curves
of the proposed models. Alternatively, the AUC value in table 5.1 should
be taken into consideration. The AUC values, ranging from 0.6851 (GPLS)
to 0.7036 (lasso), are not excessively high, but in my opinion acceptable.
Furthermore, lasso and elastic net α = 0.5 have with 35.72% the lowest
misclassification rate. PCLR reachs 37.28% based on the 0.5 cutoff. Even if
one would vary the cutoff level, the misclassification rate would not improve
seriously (37.01% with 0.49 cutoff), which interestingly also applies to the
other models. The AIC score should reflect the trade-off between the fitting
ability and the model complexity. Especially the latter is not always easy to
work out, which shows GPLS, where I was not able to calculate the AIC score.
Because, as also argued by Marx [50] who introduced GPLS, that the model
complexity (degrees of freedom) can not be determined with certainty in this
context. Lasso has the lowest AIC value (lower is considered to be better),
closely followed by elastic net α = 0.5 and elastic net α = 0.05 trails behind
the rest. This corresponds exactly with the complexity of the models, ordered
from the lowest to the highest. Summing up, we successfully employed the
procedure of cross validation to prevent overfitting in the training step, and
we have seen the superiority of L1 penalty over L2 penalty (lasso vs. elastic
net α=0.05).

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Training Curve
Test Curve

Figure 5.13: ROC training and test curves plus cutoff levels: Principal
Component Logistic Regression (PCLR).

5. Real Data Analysis 66

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Training Curve
Test Curve

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Training Curve
Test Curve

Figure 5.14: ROC training and test curves plus cutoff levels: (top) General
Partial Least Squares (GPLS); (bottom) Elastic net α = 0.05.

5. Real Data Analysis 67

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Training Curve
Test Curve

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Training Curve
Test Curve

Figure 5.15: ROC training and test curves plus cutoff levels: (top) Elastic
net α = 0.5; (bottom) Lasso (elastic net α = 1).

5. Real Data Analysis 68

Probability cost function

N
or

m
al

iz
ed

 e
xp

ec
te

d
co

st

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Random Classifier
GPLS Classifier

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability cost function

N
or

m
al

iz
ed

 e
xp

ec
te

d
co

st

Figure 5.16: (top) Expected cost curve: GPLS classifier vs. random clas-
sifier; (bottom) Elastic net α = 1: Expected cost curve plus ROC convex
hull.

Cost Curves and 2-D Parameter Tuning

Holte and Drummond [37] argue that the ordinary ROC curves are inade-
quate for the needs of researchers in several aspects. For instance, the ques-

5. Real Data Analysis 69

Cutoff Level

E
xp

lic
it

C
os

ts

0.2 0.4 0.6 0.8 1.0

6.
5

7.
0

7.
5

8.
0

8.
5

9.
0

Equal Costs
Unequal Costs

Figure 5.17: Lasso (elastic net α = 1: Explicit cost of misclassification per
customer.

tion about the cutoff level on which the classifier outperforms the random
classifier also called trivial classifier. For this reason a different way of visual-
izing classifier performance - the expected cost curve - is introduced in [37].
The conception is based on the point/line duality between ROC space and
cost space. Remember that each point in the ROC space is determined by a
normalized (fp,tp) tuple. The corresponding line in the cost space has y = fp
when x = 011 and y = 1− tp when x = 1, thus the set of points defining the
ROC curve become a set of lines in cost space. The expected cost curve is
the lower envelope of the given cost lines, due to the objective to minimize
the normalized expected misclassification cost for any classifier. These curves
are excellent tools for visualizing the performance of competing classifiers,
allowing to easily determine the classifier with the least cost at any cutoff
level. Note that, as with ROC graphs, the dashed diagonal lines in figure
5.17, joining (0,0) to (1,1) and (1,1) to (0,0), respectively, represent the ran-
dom classifier performance. Figure 5.16 shows that the GPLS classifier does
not perform much better than a random classifier with cutoff levels in [0, 0.2]
and in [0.8, 1].

For the sake of simplicity, I have always assumed equal losses when cal-
culating the misclassification rate so far, i.e., I did not distinguish between

11The sequence of cutoff levels are plotted on the x-axis, also, in the broader sense,
referred to as probability cost [37].

5. Real Data Analysis 70

false positives (fp), ŷ = 1 and y = 0, and false negatives (fn), ŷ = 0 and
y = 1. However, this is rarely the case in practice. To take account of unequal
losses, I calculated the average order price over the last season of the entire
population (68210 customers), which is about 45e. Furthermore, one may
assume that the cost for one catalog (cost for printing, shipping,...) are not
more than 15e. So the misclassification cost for a false negative adds up to
15e (the mail order company ships a catalog to a customer not willing to buy
anything) and for a false positive to 30e (loss of profit may also be considered
as misclassification “cost”). The resulting cost curve for lasso is illustrated in
figure 5.17. The explicit costs on the y-axis are calculated as the following: A
cutoff level of 0.5 results in 491 false positives and 700 false negatives, hence
the cost per customer are 700 · 30+491 · 15 = 28365/3334 = 8.51. According
to figure 5.17, minimum cost can be realized with a cutoff level of about
0.25, i.e., due to the fact that false positives are more cost-intensive than
false negatives, winter catalogs should already be shipped to customers with
a probability of order greater than or equal to 0.25. The misclassification
cost of the “equal cost” curve is set to 18.5 e , for visualization reasons only.

0.5
0.6

0.7
0.8

0.9
1

−8

−6

−4

−2

0
1.22

1.23

1.24

1.25

1.26

1.27

1.28

AlphaLog Lambda

D
ev

ia
nc

e

Figure 5.18: Surface and contour plot of 10-fold CV estimates.

Although lasso is in undisputed first place after testing, it seems rea-
sonable to ask the question, if there exist elastic net models with α values
smaller than one performing better (inner optimum). For this purpose a sur-
face plot of 10 - fold cross validation estimates with a sequence of 21 values
of α between 0.5 and 1 fitted to the training data is illustrated in figure 5.18.
As one can see, the deviance is extremely sensitive to λ but relatively insen-

5. Real Data Analysis 71

sitive to α. In fact, it is quite a surprise that there is virtually no significant
difference in terms of deviance between elastic models with α ∈ [0.5, 1]. One
can also observe that when choosing λ too large, values of α closer to 0.5
yield slightly better results. This seems reasonable, since the parameters α
and λ are directly related to the model complexity, and the combination of
too large regularization term and lasso would produce too sparse solutions.

5.3.2 Test Scenario 2

The second test scenario should examine the ‘more predictors than observa-
tions’ issue and should hopefully provide us with interesting insight into the
performance of the different candidate models on such problems. For this
purpose, a random sample of size 200 without replacement was chosen from
the population. The fraction of responders in the sample is 45,5%, i.e., we
have 91 responders and 109 non-responders. The training set size is again
about 2/3 of the entire sample size. The rest is used for final model testing.
I do not want to address this scenario as detailed as the first scenario. I just
want to comment on the optimal tuning parameters and briefly discuss the
test results. All necessary graphs can be found in the appendix B.1.

As known, the covariance matrix can have utmost n non-zero eigenvalues
in the n < p setup. The value of the largest eigenvalue is l21 = 3.50 · 103, and
the value of the nth-smallest eigenvalue is l2133 = 6.90 · 10−28 (n = 133). The
next larger eigenvalue is already almost 25 orders of magnitude bigger, l2132 =
5.65 · 10−3. The average eigenvalue rule (fig. B.1) would suggest to keep the
first 18 pc’s for further modeling. On the other hand, taking the R-statistic
and PRESS-MSEP (fig. B.2) into account, three and two components are
sufficient to be retained, respectively. Interestingly, in the first scenario the
avg. eigenvalue rule proposed to use less pc’s for further modeling than the
other two criteria and in the second scenario it is the opposite way around.
Finally, I decided to pick the first five pc’s for testing, explaining about
66,5% of the total variance in the training data set. In the GPLS setup the
model of interest seems to have only two components (fig. B.4), performing
best in terms of deviance and also yielding an acceptable misclassification
rate. The optimal λ’s for the elastic net models were obtained the same
way as before: Accepting the most parsimonious model including the lowest
mean CV error in its significance band. Hence, the values are log(λ) = 2.12
(df=15), log(λ) = −0.34 (df=13) and log(λ) = −1.04 (df=13) for elastic net
α = 0.05, α = 0.5 and α = 1, respectively. One should note that the latter
two only differ in the coefficients of the covariates (for the set of covariates
see B.2.3.).

The test results in table 5.2 reveal that lasso is the best performing model
in terms of misclassification rate and deviance. PCLR is found at the end,
being not a surprise, since the parameters of the other models were chosen so
at to minimize exactly these two criteria. We can also observe the reversed

5. Real Data Analysis 72

picture when taking the AIC score into account. Following it, PCLR would
be the model of interest. The ROC curves are due to the small sample size
(see appendix B.1) relatively difficult to interpret. One might spot that lasso
and elastic net α = 0.5 have better classifier performance than the other
models, especially in the training step.

Table 5.2: Test Results for Scenario 2.

Mis. Rate Deviance AUC AIC

Principal Component LR 38.81% 1.290 0.6857 1.439
General Partial Least Squares 37.31% 1.266 0.7045 -
Elastic net α = 0.05 35.82% 1.225 0.6982 1.698
Elastic net α = 0.5 35.82% 1.216 0.7161 1.604
Lasso (elastic net α = 1) 34.33% 1.203 0.7196 1.591

PCLR GPLS El.(0.05) El.(0.5) Lasso

Misclassification Rate

[%
]

34
35

36
37

38
39

PCLR GPLS El.(0.05) El.(0.5) Lasso

Deviance

1.
18

1.
22

1.
26

1.
30

PCLR GPLS El.(0.05) El.(0.5) Lasso

AUC

0.
68

0.
69

0.
70

0.
71

0.
72

PCLR GPLS El.(0.05) El.(0.5) Lasso

AIC

1.
3

1.
4

1.
5

1.
6

1.
7

Figure 5.19: Test Results for Scenario 2.

5. Real Data Analysis 73

5.3.3 Summary

In this chapter we studied the use of biased estimation methods to fit higher-
dimensional marketing data. We considered two simulation scenarios. In the
first scenario a sample of size 10000 was drawn and in the second scenario a
sample of size 200. Each sample was split into a training set for parameter
tuning and test set for model assessment. If we compare the training steps
of the two test scenarios, it becomes apparent that the optimal parameters
(λ values, PCLR and GPLS components) depend heavily on the size of the
training sample. It seems that in p > n cases (Scenario 2), more regular-
ization is necessary to achieve good prediction performances. Furthermore,
the plotted ROC curves provided us with meaningful results concerning the
qualitative performance and pointed to a very good predictive ability of all
proposed models. From the latter we can also infer that the training sample
is a condign representative of the entire population (see stratified sampling),
and moreover, that the training and test sample may be considered to be
relatively homogeneous to each other. To assess ranking ability we scored
the models using the “area under ROC curve” (AUC), deviance, misclassifi-
cation rate and the Akaike information criterion (AIC). We discussed cost
curves and incorporated unequal losses. Hence, showing that by varying the
cutoff levels appropriate, misclassification cost can be reduced significantly.
Concluding we can say that all models achieved comparatively good results
with lasso standing on the top. However, we should keep in mind the fact
that it is most likely that there exist elastic net models with α values smaller
than one, performing equally well than lasso.

Chapter 6

Conclusion

A conclusion is the place where you get tired of thinking.1

In this thesis we discussed three different dimension reduction approaches
to fitting logistic regression models for classification purposes. First of all,
Principal Component Logistic Regression (PCLR), where we proposed two
different methods based on cross validation, namely R-statistic and PRESS-
MSEP, and the average eigenvalue rule for determining the significant set of
principal components. As was only to be expected, there exist no ultimate
rule for choosing the optimal number of pc’s, and it is suggested to take three
or at least two criteria into consideration. The next method introduced was
General Partial Least Squares (GPLS). The derivation of the components
of partial least squares is relatively straightforward in the linear setting,
however, substantial algorithmic modifications are required in the general
linear setting. Moreover, employing the cross validation procedure to GPLS
to seek for the important components is from a computational point ex-
tremely costly, and it is not recommended to use this approach in case of
huge data sets. The third approach is referred to as elastic net and includes
ridge (L2 penalty) and lasso (L1 penalty) regression. The ability of lasso
to shrink and select the features simultaneously shows superior performance
compared to PCLR and GPLS. Linear combinations of the two penalties
(elastic net α = 0.5/0.05) did not lead to any further improvement in terms
of prediction performance. However, determining the proper value for the
regularization parameter is one of the most relevant problems of elastic net
and can be troublesome or demand heavy computation (cross validation).
We have demonstrated that all proposed techniques are powerful methods
(if properly used) for feature selection in classification problems. Before con-
cluding this chapter, we should also discuss the main points of criticism.
These are considered to be the lack of transparency and accessibility, diffi-
culties in understanding some of the concepts and problems in interpreting

1Arthur Bloch

74

6. Conclusion 75

the results, especially for researches with little mathematical background.
This somewhat limits the utility in practice.

Appendix A

Algorithms and Methods

Appendix A gives on overview about certain methods and algorithms, but
does not contain any claim to completeness. For any further detailed infor-
mation please check the reference page.

A.1 Newton Rapson Method

Beginning with an initial guess for the solution, the Newton method uses
the first terms of the Taylor polynomial evaluated at the initial guess to find
another estimate being closer to the solution and continuing this process until
convergence. Recall that the Taylor polynomial of degree n for a function f
at the point x0 may be written as (assuming that the first n derivatives of
f at x0 all exist)

n∑

i=0

f (i)(x0)

i!
(x− x0)

i. (A.1)

The first step in Newton’s method is to take the first degree Taylor polyno-
mial as an approximation for f and set it equal to zero.

f(x0) + f
′

(x0)(x− x0) = 0 (A.2)

Solving for x, we get

x = x0 −
f(x0)

f ′(x0)
. (A.3)

Let x1 = x and continue in the same manner for obtaining x2, x3, · · · until
successive approximations converge.

76

A. Algorithms and Methods 77

A.2 Predictor-Corrector Method

A.2.1 Predictor step

A linear approximation of β(λk+1) is given by

β̂k+ = β̂k + (λk+1 − λk)
∂β(λ)

∂λ
(A.4)

where ∂β(λ)
∂λ

may be computed from ∂H(β(λ),λ)
∂λ

= ∂H
∂λ

+ ∂H
∂β

∂β
∂λ

= 0, like the
following

∂β(λ)

∂λ
= −

(
∂H

∂β

)−1 ∂H

∂λ
= (X

′

AVkXA)−1 sgn

(
0

β̂k

)
, (A.5)

where Vk = diag{∂G
∂β

(Xβ̂k)} and XA denotes the columns of X for the
covariates in the current active set. It can be shown, that for a small step
length h = ∆k the approximated solution β̂k+ differs from the real solution
β̂k+1 by O(h2).

Assume that β(λ) is a continuously differentiable function with respect to
λ ∈ (λk+1, λk], β̂k+ is the linear approximate of β̂k+1 as defined in (A.4) and
h = (λk+1−λk) is the step length. With the aid of the Taylor approximation

β̂k+1 = β̂k + h
∂β

∂λ

∣∣∣∣
λk

+O(h2) = β̂k+ +O(h2). (A.6)

it can easily be seen that β̂k+ differs from the real solution β̂k+1 by O(h2).

A.2.2 Active step

After each corrector step the active set A, starting with the intercept, has to
be checked whether A should have been augmented. In [54] it was suggested
to take as test procedure

∣∣∣x′

j(y −G(Xβ̂))
∣∣∣ > λ for any j ∈ Ac ⇒ A← A∪ j (A.7)

which may be derived from the Karush-Kuhn-Tucker (KKT) optimality con-
ditions [52, p. 959]. The corrector step with the modified active set is repeated
until condition A.7 suggests no further augmentation of the active set. Fi-
nally the the variables with zero coefficients are removed from the active
set.

Minimizing expression (3.65) is equivalent to minimizing

−l(β) + λ
∑

j

(β+
j + β−j)−

∑

j

λ+
j β

+
j −

∑

j

λ−j β
−
j (A.8)

A. Algorithms and Methods 78

where β = β+ +β−, β+
j ≥ 0, β−j ≥ 0, for all j, i.e., splitting β in positive and

negative coefficients, and λ, λ+
j , λ

+
j ≥ 0 are the corresponding Lagrangian

multipliers. Setting up the KKT conditions to this problem

−x
′

j(y −G(Xβ̂)) + λ− λ+
j = 0 (A.9)

+x
′

j(y −G(Xβ̂)) + λ− λ−j = 0

λ+
j β̂

+
j = 0, λ−j β̂

−
j = 0 ∀j = 1, · · · , p

imply that [24, p. 98]
∣∣∣x′

j(y −G(Xβ̂))
∣∣∣ < λ⇒ β̂j = 0 for j = 1, · · · , p

from which expression (A.7) can be derived.

A.3 Forward Stepwise Regression

Algorithm A.1: Forward Stepwise Regression.

1: Find predictor Xi most correlated with response variable Y
2: Build linear regression equation Ŷ = f(Xi) and test significance
3: for stopping criteria not met do ⊲ e.g. When no predictor can

be removed and the next best variable candidate cannot hold it’s place
in the equation

4: Choose Xj with highest partial F-Value (or AIC score,...) out of the
set of predictors not in regression

5: Fit Ŷ = f(X1, · · · , Xj) and examine significance, F-Values and R2

of regression

6: if partial F - Value of any predictor currently in the equation ≤
certain threshold α then ⊲ e.g. smaller than the 90th or 95th percentile
of the F - distribution

7: Remove this predictor from current equation
8: end if
9: end for

A. Algorithms and Methods 79

A.4 Iteratively Reweighted Partial Least Squares
(IRPLS)

Algorithm A.2: IRPLS.

1: E0 ← scaled X; z0 ← ψ(y); V← {G′

[ψ(y)]2/Var[y]} ⊲ Initialization
2: for until ∆β̂ small do
3: for k=1 to R do ⊲ R = rank(X

′

VX)
4: wk ← (z

′

k−1VEk−1E
′

k−1Vzk−1)
0.5E

′

k−1Vzk−1 ⊲ unit length
orthog. loadings

5: tk = Ek−1wk ⊲ latent variables
6: tk ← center(wt : V); ||tk|| → 1 ⊲ center with weighted mean +

normalize
7: qk ← (t

′

kVtk)
−1t

′

kVzk−1 ⊲ weighted lsfit
8: zk ← zk−1 − tkqk ⊲ Update adjusted response
9: pk ← (t

′

kVtk)
−1t

′

kVEk−1 ⊲ weighted lsfit
10: Ek ← Ek−1 − tkp

′

k ⊲ Update residual matrix
11: end for
12: Xβ̂ ← intercept(= wt.mean(z0) wt : V) +

∑R
i=1 qiti

13: V← G′[Xβ̂]/Var[y]
14: z0 ← Xβ̂ + diag{G′[Xβ̂]−1}(y −G[Xβ̂])
15: E0 ← X; X← center(wt.V); ||X|| → 1
16: end for
17: glm(y ∼ (t1, · · · , ts) s ≤ R ⊲ general least squares fit

A. Algorithms and Methods 80

A.5 Principal Component LR - Cross Validation

Algorithm A.3: PCA-CV.

1: cv.fold← fold-number; max.comp← number max. components; ⊲
Initialization

2: for k = 1 to cv.fold do
3: Xtest ← X{k}

4: ytest ← y{k}

5: Xtrain ← X/X{k}

6: ytrain ← y/y{k}

7: (Ztrain,Atrain)← PCA(Xtrain) ⊲ Calc. score- and loading matrix
8: Ztest ← (Xtest − µtrain)Atrain ⊲ Calc. score matrix test set
9: for comp = 1 to max.comp do

10: X̂test ← Ztest[, 1 : comp](Atrain[, 1 : comp])
′

+ µtrain

11: PRESS(comp)←∑
i,j(x̂

test
ij − xtest

ij)2

12: glmfit ← glm(ytrain ∼ Ztrain[, 1 : comp]) ⊲ general ls fit
13: ŷtest ← glmfit(Ztest[, 1 : comp]) ⊲ Prediction using test set
14: PRESS-MSEP(comp)←∑

i(ŷ
test
i − ytest

i)2

15: end for
16: end for
17: return (PRESS,PRESS-MSEP)

A.6 Stratification

Algorithm A.4: Stratification.

1: train.sample← NULL; obs← NULL; frac← Fraction of responders
of total population ⊲ Initialization

2: for train.sample ≤ train.size do
3: obs← Draw an observation at random without replacement from the

population
4: if obs is in stratum of responders then
5: Keep obs with probability frac and if so add obs to train.sample
6: else ⊲ obs is in stratum of non-responders
7: Keep obs with prob. (1− frac) and if so add obs to train.sample
8: end if
9: end for

10: return (train.sample)

Appendix B

Simulations (Continued)

Appendix B mainly contains figures of the simulation results of the second
test scenario, which are tried to be consistent with the figures produced in
the first scenario.

B.1 Figures of Test Scenario 2

Parameter Tuning

Avg. Eigenvalue

0 10 20 30 40 50 60

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Number of Components

C
um

ul
at

iv
e

P
ro

po
rt

io
n

of
 V

ar
ia

nc
e

E
xp

la
in

ed

Figure B.1: Eigenvalues of the sample training covariance matrix.

81

B. Simulations (Continued) 82

0 20 40 60 80

0
5

10
15

Number of Components

P
R

E
S

S

5 10 15 20

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Number of Components

R
 −

 S
ta

tis
tic

Cut off level

Figure B.2: (top) PRESS evaluated by 10 fold cross validation and averaged
over 30 consecutive runs; (bottom) R - Statistic.

B. Simulations (Continued) 83

5 10 15 20

0.
20

0.
21

0.
22

0.
23

0.
24

0.
25

Number of Components

P
R

E
S

S
 −

 M
S

E
P

Figure B.3: PRESS-MSEP evaluated by 10 fold cross validation and aver-
aged over 30 consecutive runs.

B. Simulations (Continued) 84

1 2 3 4 5 6 7 8 9 10

1.
25

1.
30

1.
35

1.
40

Number of Components

D
ev

ia
nc

e

1 2 3 4 5 6 7 8 9 10

0.
30

0.
35

0.
40

0.
45

Number of Components

M
is

cl
as

si
fic

at
io

n
R

at
e

Figure B.4: (top) General partial least squares training tests: Boxplot of
5-fold CV estimates with binomial deviance loss function over 20 consecutive
runs; (bottom) General partial least squares training tests: Boxplot of 5-fold
CV estimates with 0-1 loss function over 20 consecutive runs.

B. Simulations (Continued) 85

4.0 3.5 3.0 2.5 2.0 1.5 1.0

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

Log Lambda

C
oe

ffi
ci

en
ts

0 3 10 14 16 22 28

degrees of freedom

1.5 1.0 0.5 0.0 −0.5 −1.0

−
0.

05
0.

00
0.

05
0.

10

Log Lambda

C
oe

ffi
ci

en
ts

1 3 9 12 13 17

degrees of freedom

1.0 0.5 0.0 −0.5 −1.0 −1.5 −2.0

−
0.

05
0.

00
0.

05
0.

10
0.

15

Log Lambda

C
oe

ffi
ci

en
ts

0 3 6 11 13 12 20

degrees of freedom

Figure B.5: Coefficient profile plot of the coefficient paths (training set):
(top) Elastic net α = 0.05; (middle) Elastic net α = 0.5; (bottom) Lasso
(elastic net α = 1).

B. Simulations (Continued) 86

3.22 3.06 2.90 2.75 2.59 2.43 2.27 2.12 1.96 1.80 1.64 1.49 1.33 1.17 1.01

1.
20

1.
25

1.
30

1.
35

Log Lambda

D
ev

ia
nc

e

3.22 3.06 2.90 2.75 2.59 2.43 2.27 2.12 1.96 1.80 1.64 1.49 1.33 1.17 1.01

0.
28

0.
30

0.
32

0.
34

0.
36

0.
38

0.
40

0.
42

Log Lambda

M
is

cl
as

si
fic

at
io

n
R

at
e

[%
]

Figure B.6: Elastic net α = 0.05 training tests: (top) Boxplot of 10-fold
CV estimates with binomial deviance loss function over 30 consecutive runs;
(bottom) Boxplot of 10-fold CV estimates with 0–1 loss function over 30
consecutive runs.

B. Simulations (Continued) 87

0.76 0.60 0.44 0.29 0.13 −0.03 −0.19 −0.34 −0.50 −0.66 −0.82 −0.97 −1.13 −1.29

1.
15

1.
20

1.
25

1.
30

1.
35

1.
40

Log Lambda

D
ev

ia
nc

e

0.76 0.60 0.44 0.29 0.13 −0.03 −0.19 −0.34 −0.50 −0.66 −0.82 −0.97 −1.13 −1.29

0.
25

0.
30

0.
35

0.
40

Log Lambda

M
is

cl
as

si
fic

at
io

n
R

at
e

[%
]

Figure B.7: Elastic net α = 0.5 training tests: (top) Boxplot of 10-fold
CV estimates with binomial deviance loss function over 30 consecutive runs;
(bottom) Boxplot of 10-fold CV estimates with 0–1 loss function over 30
consecutive runs.

B. Simulations (Continued) 88

0.07 −0.09 −0.25 −0.41 −0.56 −0.72 −0.88 −1.04 −1.19 −1.35 −1.51 −1.67 −1.83 −1.98

1.
15

1.
20

1.
25

1.
30

1.
35

Log Lambda

D
ev

ia
nc

e

0.07 −0.09 −0.25 −0.41 −0.56 −0.72 −0.88 −1.04 −1.19 −1.35 −1.51 −1.67 −1.83 −1.98

0.
25

0.
30

0.
35

0.
40

Log Lambda

M
is

cl
as

si
fic

at
io

n
R

at
e

[%
]

Figure B.8: Elastic net α = 1 training tests: (top) Boxplot of 10-fold CV
estimates with binomial deviance loss function over 30 consecutive runs; (bot-
tom) Boxplot of 10-fold CV estimates with 0–1 loss function over 30 consec-
utive runs.

B. Simulations (Continued) 89

Testing

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.10.2

0.3

0.4

0.5

0.6
0.7

0.8

0.9

Training Curve
Test Curve

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.10.20.3

0.4

0.5

0.6

0.7

0.8
0.9

Training Curve
Test Curve

Figure B.9: ROC training and test curves plus cutoff levels: (top) Princi-
pal Component Logistic Regression (PCLR); (bottom) General Partial Least
Squares (GPLS).

B. Simulations (Continued) 90

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.10.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Training Curve
Test Curve

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.10.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Training Curve
Test Curve

Figure B.10: ROC training and test curves plus cutoff levels: (top) Elastic
net α = 0.05; (bottom) Elastic net α = 0.5.

B. Simulations (Continued) 91

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.10.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Training Curve
Test Curve

Figure B.11: Lasso (elastic net α = 1): ROC training and test curves plus
cutoff levels.

B.2 Miscellaneous

B.2.1 Scenario 1: Linear Combination of the 1st Principal
Component

ortsgroesse kaufkraftkl adresseseit BA_Lebzeit BW_Lebzeit vskunde_seit smxbw02 smxbw07

-3.057491e-03 -1.015385e-03 4.642219e-04 4.642219e-04 4.410654e-03 4.642219e-04 -6.523387e-03 -3.821938e-02

smxbw08 smxbw09 datltztbest_vs dlbvsakt01 dlbvsakt11 dlbvsakt12 dlbvsakt13 dlbvsakt14

-5.676676e-02 -5.676676e-02 -3.645743e-02 -8.680965e-02 -8.813133e-03 -1.929355e-02 -5.053309e-03 -2.688091e-05

dlbvsakt15 dlbvsakt16 dlbvsakt17 dlbvsakt18 dlbvsakt19 dlbvsakt26 dlbvsakt27 dlbvsaktspz

-9.697076e-03 -5.731993e-02 -9.235419e-03 -8.060835e-02 -1.580062e-02 -3.716416e-02 -9.953108e-03 -1.178826e-01

dlbvsaktlux dlbvs04 dlbvs05 dlbvs07 dlbvs08 dlbvs37 dlbvdob dlbvtextil

-1.253481e-02 -9.293923e-02 -1.372964e-01 -1.088260e-01 -1.190257e-01 -7.436322e-02 -1.344804e-01 -1.081510e-01

dlbvjung dlbvalt dlbvbig ashp03 ass01 ass02 ass03 ass04

-1.531877e-01 -1.469667e-01 -9.348576e-02 4.956100e-03 1.066389e-02 1.656113e-02 1.041044e-02 6.875257e-03

ass05 ass06 ass07 ass08 ass09 asdob ashob assport

1.446233e-02 7.388546e-03 7.913962e-03 9.739431e-03 2.251825e-04 1.961697e-02 1.272801e-02 6.106641e-03

astextil asjung asalt asbig asindiv asindiv2 bwhp1_3 bavs0

1.820246e-02 1.438002e-02 1.466989e-02 7.016506e-03 1.968459e-02 1.257013e-02 9.013318e-03 5.803014e-03

bavs1 bavs2 bavs3 bavs4 bwvs0 bwvs1 bwvs2 bwvs3

2.083600e-02 1.873044e-02 1.740546e-02 1.552158e-02 2.929308e-03 4.611599e-03 4.372544e-03 3.822845e-03

bwvs4 bavs0_1 bavs0_2 bavs0_3 bavs0_4 bavs0_5 bwvs0_1 bwvs0_2

3.478589e-03 2.663901e-02 4.536945e-02 6.277491e-02 7.829649e-02 3.956643e-02 4.870608e-03 5.353290e-03

bwvs0_3 bwvs0_4 bwvs0_5 bwvs0_6 bwvs0_7 vsum0 vsum1 vsum2

5.476919e-03 5.389876e-03 5.231081e-03 5.381912e-03 5.303917e-03 5.852286e-04 1.035568e-03 1.283460e-03

vsum0_4 rqs00 rqs03 rqs05 rqs06 rqs08 neukundenart nkbw

1.424326e-03 2.220719e-01 3.274624e-01 3.973186e-01 3.725015e-01 3.303159e-01 -2.983557e-03 -1.172813e-03

nkbestellw nkbw_dob nkbw_technik nkbw_alt nkbw_dobalt nkbw_big nkbw_dobbig nkbw_hp1

-2.285446e-03 4.721503e-04 -1.436693e-03 -1.383545e-04 1.669990e-04 1.647344e-04 2.145563e-04 3.394007e-04

bas0a01 bas0a09 bas0a16 bas0a18 bas1a01 bas1a09 bas1a16 bas1a18

2.936339e-03 6.897370e-04 2.306772e-04 3.422163e-04 7.701879e-03 3.193930e-03 8.003494e-04 1.316546e-03

bas2a01 bas2a09 bas2a16 bas2a18 bas3a01 bas3a09 bas3a16 bas3a18

6.457226e-03 1.898196e-03 6.086095e-04 1.200885e-03 6.641066e-03 1.688576e-03 7.072711e-04 9.979396e-04

bas4a01 bas4a09 bas4a16 bas4a18 bas0_1a01 bas0_1a09 bas0_1a16 bas0_1a18

6.058506e-03 1.669972e-03 6.522066e-04 4.707256e-04 1.063822e-02 3.883667e-03 1.031027e-03 1.658762e-03

bas0_1a26 bas0_2a01 bas0_2a09 bas0_2a16 bas0_2a26 bas0_3a01 bas0_3a09 bas0_3a18

B. Simulations (Continued) 92

4.080511e-04 1.709544e-02 5.781862e-03 1.639636e-03 7.006175e-04 2.373651e-02 7.470439e-03 3.857587e-03

bas0_3a26 bas0_4a01 bas0_4a02 bas0_4a06 bas0_4a09 bas0_4a16 bas0_4a18 bas0_4a26

9.179499e-04 2.979502e-02 7.146680e-04 2.825691e-03 9.140410e-03 2.999114e-03 4.328312e-03 1.159595e-03

bas0_5a09 bas0_6a09 bas0_7a09 bas0_8a09 bas0_9a09 bas0_10a09 bws0a01 bws0a16

5.092125e-03 6.780702e-03 8.450673e-03 3.586772e-03 5.256743e-03 3.358548e-03 3.029926e-03 1.841022e-03

bws1a01 bws1a16 bws2a01 bws2a16 bws3a01 bws3a16 bws4a01 bws4a16

4.286115e-03 2.814084e-03 3.950949e-03 1.924614e-03 3.670332e-03 2.279765e-03 2.858476e-03 2.134733e-03

bws0_1a01 bws0_1a16 bws0_1a26 bws0_2a01 bws0_2a16 bws0_2a26 bws0_3a01 bws0_3a16

4.704537e-03 3.118011e-03 1.778519e-03 5.104384e-03 3.149428e-03 2.219730e-03 5.241563e-03 3.324592e-03

bws0_4a01 bws0_4a07 bws0_4a16 bws0_4a17 bws0_4a18 bws0_10a01 bws0_10a16 bwenrs0a16

5.062464e-03 4.621644e-03 3.435996e-03 1.593176e-03 4.902329e-03 3.842637e-03 2.777203e-03 2.110821e-03

bwenrs1a16 bwenrs2a16 bwenrs3a16 bwenrs0_1a16 bwenrs0_1a24 bwenrs0_2a16 bwenrs0_2a26 bwenrs0_3a16

3.295019e-03 2.542089e-03 2.830886e-03 3.639110e-03 4.051948e-03 3.764590e-03 2.603576e-03 3.929585e-03

bwenrs0_3a24 bavs1_2 bavs1_3 bavs1_4 bavs1_5 bavs2_2 bavs3_2 bavs3_3

5.932330e-03 8.012504e-03 1.234007e-02 1.541975e-02 1.889480e-02 1.207257e-02 6.180200e-03 1.047350e-02

bavs3_4 bavs3_5 bavs3_6 bavs4_2 bavs4_3 bavs4_4 bavs5_2 bavs7_2

1.474996e-02 1.766792e-02 9.054608e-03 2.320947e-03 4.765247e-03 8.039448e-03 1.024187e-02 4.628759e-03

bavs7_3 bavs9_3 bavs9_4 bavs29_5 badob_2 badob_3 badob_4 badob_6

7.562278e-03 6.043293e-05 1.337267e-04 2.868918e-03 3.442574e-02 2.853250e-02 3.019223e-02 4.347217e-02

badob_7 badob_8 badob_9 bahob_1 bahob_2 bahob_3 bahob_4 bahob_5

7.200466e-02 1.021969e-01 1.262883e-01 1.987524e-03 9.575247e-03 1.053063e-02 8.662658e-03 8.842939e-03

bahob_6 bahob_7 bahob_8 bahob_9 bahob_10 bahob_11 bahob_12 bahob_13

1.156277e-02 2.209340e-02 3.075606e-02 3.959900e-02 2.010588e-02 2.876853e-02 3.761147e-02 1.919329e-02

bahob_14 bahob_15 bakob_1 bakob_2 bakob_3 bakob_4 bakob_5 bakob_6

2.803623e-02 1.750560e-02 9.937730e-04 3.790366e-03 4.707726e-03 3.495288e-03 4.160259e-03 4.784139e-03

bakob_7 bakob_8 bakob_9 bakob_10 bakob_11 bakob_12 bakob_13 bakob_14

9.491865e-03 1.298715e-02 1.714741e-02 8.498092e-03 1.199338e-02 1.615364e-02 8.203014e-03 1.236327e-02

bakob_15 batec_4 badaj_2 badaj_3 badaj_4 badaj_5 badaj_9 baspo_9

7.655548e-03 1.516969e-04 1.594965e-02 1.285555e-02 1.235753e-02 1.128864e-02 5.658678e-02 9.893218e-03

batex_2 batex_3 batex_4 batex_5 batex_6 batex_7 batex_8 batex_9

4.749625e-02 4.287227e-02 4.202513e-02 3.630339e-02 5.947519e-02 1.023475e-01 1.443726e-01 1.806760e-01

bwvs1_5 bwvs2_2 bwvs2_5 bwvs3_2 bwvs3_3 bwvs3_4 bwvs3_5 bwvs3_6

7.752882e-03 7.969712e-03 9.033786e-03 6.122327e-03 6.715985e-03 6.954477e-03 7.098410e-03 6.305032e-03

bwvs3_7 bwvs3_8 bwvs4_2 bwvs4_3 bwvs4_4 bwvs4_5 bwvs5_4 bwvs6_5

6.636742e-03 6.832818e-03 3.846313e-03 4.515058e-03 5.129543e-03 5.467054e-03 7.625831e-03 7.091079e-03

bwvs7_2 bwvs7_3 bwvs8_2 bwvs8_4 bwvs8_5 bwvs9_4 bwvs28_3 bwdob_6

5.182645e-03 5.797819e-03 4.145132e-03 6.435001e-03 6.530224e-03 7.344205e-04 2.584875e-03 9.974655e-03

bwdob_7 bwdob_8 bwdob_9 bwhob_6 bwhob_7 bwkob_6 bwkob_9 bwkob_15

1.023400e-02 1.040400e-02 1.024482e-02 5.667262e-03 6.646296e-03 3.176700e-03 3.382390e-03 2.782135e-03

bwtec_15 bwhtx_1 bwson_5 bwson_6 bwson_7 bwson_8 bwdaj_8 bwmst_6

-1.090276e-03 1.359535e-03 2.779100e-03 3.609468e-03 4.016534e-03 4.000359e-03 9.478541e-03 5.548807e-03

bwmst_7 bwmst_8 bwtfk_6 bwtfk_7 bwtfk_8 bwtex_6 bwtex_7 bwtex_8

6.672549e-03 7.007979e-03 -2.698959e-04 -4.256755e-04 -5.528323e-04 1.012085e-02 1.030126e-02 1.038874e-02

bwtex_9 bwntx_2 vsums4_2 vsums7_2 vsums4_3 vsums7_3 vsums1_4 vsums3_4

1.011119e-02 3.785499e-04 2.233547e-03 3.462249e-03 2.642301e-03 3.804877e-03 4.574302e-03 4.148098e-03

vsums4_4 vsums3_5 vsums3_6 vsumsodob_2 vsumsodob_3 vsumsodob_5 vsumsotec_6 vsumsospo_6

2.956406e-03 4.241543e-03 3.905543e-03 5.925771e-03 5.422329e-03 4.425672e-03 -1.141557e-03 1.017177e-03

vsumsodob_8 vsumsodob_9 dbws5s01 dbws5s03 dbws5s04 dbws5s24 dbws6s01 dbws6s03

6.689268e-03 6.601336e-03 6.455879e-03 5.820303e-03 3.866689e-03 -8.376052e-05 6.618576e-03 6.009587e-03

dbws6s04 dbws7s01 dbws7s03 dbws7s04 dbws10s07 dbws10s08 dbwsdob02 dbwsdob03

4.707682e-03 6.581515e-03 6.169873e-03 5.326063e-03 4.799423e-03 5.376299e-03 6.934170e-03 5.824953e-03

dbwsdob04 dbwsdob05 dbwsdob06 dbwsdob07 dbwsdob08 dbwsdob09 dbwskob05 dbwstec06

5.606261e-03 4.717913e-03 7.121010e-03 6.024886e-03 5.126665e-03 4.485849e-03 1.076405e-03 -1.063851e-03

dbwstec07 dbwsdaj06 dbwstex06 dbwstex07 askzs0 askzs1 askzs2 askzs3

-1.356933e-03 6.882827e-03 6.637537e-03 5.245344e-03 1.367076e-02 3.586637e-02 3.421513e-02 3.109441e-02

askzs4 askzs5 askzs6 askzs7 askzs8 bwdob14_01 bavsjgs0_1 bwvsdamen_9

2.824557e-02 4.077300e-02 5.185829e-02 5.624529e-02 5.689765e-02 9.619449e-03 1.264126e-02 1.014422e-02

bwvsherren_9 bwjungs34 dlbhob1 dlbhob dlbvsaltsk antbw5 bwsortalt_4 bwsorthob_4

6.826565e-03 6.007829e-03 -1.234286e-01 -1.283316e-01 -1.104300e-01 2.264064e-03 8.337286e-03 7.014336e-03

bwsorttxt_4 dbws234 dbws789 bwson2_7 bavm0_3 bavm0_4 bavm5_10 bavm0_2

1.036207e-02 4.326749e-03 2.984160e-03 4.053136e-03 3.370807e-02 3.730214e-02 2.073375e-02 3.028270e-02

bwvm0_3 bwvm0_4 bwvm0_2 bwa18 bwa07 bwa17 pbwwas08 lba24_9

4.240564e-03 4.467496e-03 4.053057e-03 4.902329e-03 4.621644e-03 1.593176e-03 1.927845e-03 -9.570050e-02

bwdob2_6 pbwsdob09 pbwstex08 bwhaustex ass0_3s34 ba2hpkz167 bw4skz3489 ba4hpkz127

9.619449e-03 5.835650e-03 5.699994e-03 4.053136e-03 1.063391e-02 1.456024e-02 8.337286e-03 4.720232e-02

dbw2skz234 dlbvdaj anrede_code age_1 age_2 age_3 age_4 age_5

7.175426e-03 -1.583034e-01 1.047477e-03 -1.309251e-04 2.953192e-04 5.051845e-04 3.849514e-05 -7.059489e-04

B.2.2 Scenario 1: Covariates of elastic net α = 0.5

[1] "ortsgroesse" "smxbw02" "smxbw07" "smxbw08" "smxbw09" "datltztbest_vs" "dlbvsakt01"

[8] "dlbvsakt11" "dlbvsakt12" "dlbvsakt13" "dlbvsakt15" "dlbvsakt16" "dlbvsakt17" "dlbvsakt19"

[15] "dlbvsakt26" "dlbvsakt27" "dlbvsaktspz" "dlbvs04" "dlbvs05" "dlbvs08" "dlbvs37"

[22] "dlbvdob" "dlbvtextil" "dlbvjung" "bavs3" "bavs0_1" "rqs00" "rqs03"

[29] "rqs05" "rqs06" "rqs08" "neukundenart" "nkbw_alt" "bas4a01" "bas0_4a01"

[36] "bas0_4a02" "bas0_9a09" "bavs1_5" "bavs3_5" "bavs29_5" "badob_9" "bakob_12"

[43] "badaj_2" "badaj_9" "baspo_9" "batex_3" "batex_6" "batex_9" "bwtfk_8"

[50] "dbws5s03" "dbwsdaj06" "askzs2" "askzs4" "askzs6" "askzs7" "askzs8"

[57] "dlbhob1" "dlbvsaltsk" "dbws234" "bavm0_4" "lba24_9" "dlbvdaj"

B. Simulations (Continued) 93

B.2.3 Scenario 2: Covariates of elastic net α = 0.5 and α = 1

[1] "smxbw02" "dlbvsakt16" "dlbvsakt18" "dlbvsakt26" "dlbvsaktspz" "dlbvs37" "dlbvtextil" "dlbvjung"

[9] "bavs0_4" "rqs08" "batex_9" "askzs6" "askzs8"

Appendix C

Source Code

Appendix C includes the R - Source code divided into a main file and a
function file. In case of difficulties in understanding or ideas for improvements
one should not hesitate to contact me.

C.1 main.r

#***

Main File

#---

#Author: Grosswindhager Stefan

#Last Update: 26.09.09

#Title: Dimension reduction techniques for micro array data

#***

library(glmnet) #load libraries

library(gpls)

library(pls)

library(ROCR)

library(gregmisc)

source("C:\\USERS\\STEFAN\\Diplomarbeit\\R\\function.r") #load the function r file

path = 'C:\\USERS\\STEFAN\\Desktop\\' #Specify path of dataset

filename = "DBAB3135_VTK_VAR3_0002.csv" #Specify filename of dataset

dataset <- init_data(path,filename) #Read the data

#---

#Draw random sample

sample_size=10000 #Scenario 1 # sample_size=200 #Scenario 2

dataset<-dataset[sample(1:nrow(dataset),sample_size,replace=FALSE),]

#---

Dataset manipulation

#categorize variable: alter1

index<-1:length(dataset$alter1)

age_1=age_2=age_3=age_4=age_5<-rep(0,length(dataset$alter1))

qu<-quantile(dataset$alter1, probs = c(0, 0.2, 0.4, 0.6, 0.8, 1))

age_cut<-(cut(dataset$alter1, breaks=qu,right = FALSE,left=TRUE,labels=FALSE))

age_1[index[age_cut==1]]=1

age_2[index[age_cut==2]]=1

age_3[index[age_cut==3]]=1

age_4[index[age_cut==4]]=1

age_5[index[age_cut==5]]=1

#Delete variables which should not be in the regression model

dataset$plzl = dataset$nkumsant = dataset$lvsreakt = dataset$alter1=NULL

dataset<- data.frame(cbind(dataset, age_1,age_2,age_3,age_4,age_5))

X <- data.matrix(dataset[,2:ncol(dataset)]) #Get the design matrix. In the first column is the response variable

y <- dataset$REAGIERER #y <- response variable

rownames(X)<-1:nrow(X)

names(y)<-1:length(y)

del <- NULL

X_temp <- X

X_temp <- scale(X_temp,scale=FALSE) # center the matrix

sum <- colSums(abs(X_temp)) # calculate columns sums

index<-1:ncol(X)

94

C. Source Code 95

del <- index[sum==0] #check if i have zero columns

X <- subset(X, select = -del) #remove zero columns

X_temp<-X

#filter categorical covariates

X_temp<-X_temp%%1

sum <- colSums(abs(X_temp))

index<-1:ncol(X_temp)

categorical <- index[sum==0]

#scale continuous variables

X[,-categorical]<-scale(X[,-categorical],center=FALSE,scale=TRUE)

X[,3]<-scale(X[,3],center=FALSE,scale=TRUE) # variable adresseseit:: conceptually continuous

X[,4]<-scale(X[,3],center=FALSE,scale=TRUE) # variable BA_Lebzeit: conceptually continuous

X[,6]<-scale(X[,3],center=FALSE,scale=TRUE) # variable vskunde_seit: conceptually continuous

X_temp=NULL

#--

#Stratification

train_size <- 6666 #Scenario 1 #train_size <- 133 #Scenario 2

frac<-sum(y)/length(y) #fraction of responders

train_sample <- strat(y,trains_size,frac)

frac_temp<-sum(y[train_sample])/train_size

#---

#Elastic net training

#---

runs <- 30 #number of runs

n_lambda<-20 #number of max lambda values

cv_pred_dev<-matrix(nrow = n_lambda, ncol = runs)

cv_pred_cr<-matrix(nrow = n_lambda, ncol = runs)

for (i in 1:runs) {

elastic_output<-elastic_net_train(X[train_sample,],y[train_sample],n_lambda,FALSE,1,10)

cv_pred_dev[1:length(elastic_output[[1]]),i]<-elastic_output[[1]]

cv_pred_cr[1:length(elastic_output[[2]]),i]<-elastic_output[[2]]

}

lambda_seq<-elastic_output[[3]]

#---

Elastic net graphs(boxplots of CV estimates)

le_index <- 7

re_index <- 0

filename<- "P:\\elastic_dev_05_scen1.eps"

postscript(filename,horizontal=FALSE,paper="special",width=10,height=7)

box <- boxplot(t(cv_pred_dev[le_index:(length(lambda_seq)-re_index),]),outline=FALSE,

main="",col=c(8,8,8,8,2,8,8,8,8,8), xlab="Log Lambda", ylab="Deviance", names=sprintf("%.2f",

log(lambda_seq[le_index:(length(lambda_seq)-re_index)])))

plotCI(x=1:(length(lambda_seq[le_index:(length(lambda_seq)-re_index)])) +0.2,

y=rowMeans(cv_pred_dev[le_index:(length(lambda_seq)-re_index),]), barcol="blue", lwd=1,sfrac=0.005,

uiw=sd(t(cv_pred_dev[le_index:(length(lambda_seq)-re_index),])),add=T,col="blue", gap=0,pch=8,cex=1)

dev.off();

filename<- "P:\\elastic_cr_05_scen1.eps"

postscript(filename,horizontal=FALSE,paper="special",width=10,height=7)

box<-boxplot(t(cv_pred_cr[le_index:(length(lambda_seq)-re_index),]),outline=FALSE,

main="",col=c(8,8,8,8,8,2,8,8,8,8), xlab="Log Lambda", ylab="Misclassification Rate [%]",

names=sprintf("%.2f", log(lambda_seq[le_index:(length(lambda_seq)-re_index)])))

plotCI(x=1:(length(lambda_seq[le_index:(length(lambda_seq)-re_index)])) +0.2,

y=rowMeans(cv_pred_cr[le_index:(length(lambda_seq)-re_index),]),barcol="blue", lwd=1,sfrac=0.005,

uiw=sd(t(cv_pred_cr[le_index:(length(lambda_seq)-re_index),])),add=T,col="blue", gap=0,pch=8,cex=1)

dev.off();

#coefficients path plot

filename<- "P:\\elastic_path_05_scen1.eps"

postscript(filename,horizontal=FALSE,paper="special",width=10,height=5)

glm_fit = glmnet(X[train_sample,],y[train_sample], family="binomial",alpha=0.5,standardize=FALSE,nlambda=100)

plot(glm_fit,xva="lambda", type="l",col="black",pch=19,lwd='0.5',label=F,

xlim=c(log(glm_fit$lambda[1]),log(glm_fit$lambda[100])))

mtext("degrees of freedom",side=3,cex=0.9)

abline(v=-4.11,lty=2,col="red",lwd=2)

grid(col = "gray", lty = "dotted",nx=NULL,ny=NULL)

dev.off();

#---

#Elastic net testing

#---

opt_lambda <- exp(-4,81) #optimal value for the regularization parameter

elastic_output<-elastic_net_test(X[train_sample,],y[train_sample],X[-train_sample,],y[-train_sample],FALSE,1,opt_lambda)

#---

#Principal component LR training

#---

max_pc <- 80 #number of maximal included pc in the model

runs <- 20

press_msep <- matrix(nrow = max_pc, ncol = runs)

press <- matrix(nrow = max_pc , ncol = runs)

C. Source Code 96

press_all <- matrix(nrow = max_pc+1 , ncol = runs)

for (i in 1:runs) {

pca_output <- princ_comp_train(X[train_sample,],y[train_sample],max_pc,10)

press[,i]<-pca_output[[2]]

press_msep[,i]<-pca_output[[1]]

press_all[,i]<-pca_output[[3]]

}

singular<-pca_output[[4]] #singular values

press<-rowMeans(press)

press_all<-rowMeans(press_all)

#--

R statistic

press_r<-vector(length=max_pc)

for (comp in 1:max_pc) {

press_r[comp]<- press[comp]/press_all[comp]

}

#--

Graphs

filename<-"P:\\press_pca_scen1.eps"

postscript(filename,horizontal=FALSE,paper="special",width=10,height=7)

plot(press, main="",type="b", col="blue",pch=19,ylab="PRESS", xlab="Number of Components")

dev.off()

filename<-"P:\\press_r_pca_scen1.eps"

postscript(filename,horizontal=FALSE,paper="special",width=10,height=7)

plot(press_r, main="",bg=(as.numeric(press_r > 1)+1),cex=1.0,pch=(as.numeric(press_r > 1)+21),

type="b",lty=3,ylab="R - Statistic", xlab="Number of Components",col=(as.numeric(press_r > 1)+1))

abline(h=c(1),lty=2,col="blue",lwd=2)

text(2,1.05,"Cutoff level", cex=0.8, col="blue")

dev.off()

filename<-"P:\\press_msep_pca_scen1.eps"

postscript(filename,horizontal=FALSE,paper="special",width=10,height=7)

mean_cv <- rowMeans((press_msep[,1:runs]),na.rm = TRUE) #na.rm removes Na entries

sd_cv <- sd(t(press_msep),na.rm=TRUE)

plot(mean_cv, main="",type="b",pch=19,lty=4,cex=1.0,

ylab="PRESS - MSEP", xlab="Number of Components",ylim=c(min(mean_cv-sd_cv),max(mean_cv+sd_cv)))

plotCI(x=1:max_pc,y=mean_cv,uiw=sd_cv,add=TRUE,col="black", barcol="blue", lwd=0.5,sfrac=0.005,gap=0.5)

dev.off()

pca<-prcomp(X[train_sample,],center=TRUE,scale.=FALSE)

varexpl<-cumsum(pca$sdev^2)/sum(pca$sdev^2)

eigenval<-pca$sdev^2 #calculate eigenvalues

filename<-"P:\\eigenvalues_scen2.eps"

postscript(filename,horizontal=FALSE,paper="special",width=10,height=7)

plot(eigenval[1:60], main="",type="b",lty=3,col=(as.numeric(eigenval[1:60]<mean(eigenval))+1),

ylab="", xlab="",pch=19,axes=F)

abline(h=mean(eigenvalues$values),lty=2,col="blue",lwd=2)

text(6,mean(eigenval)+30,"Avg. Eigenvalue", cex=0.8, col="blue")

par(new=T)

plot(varexpl[1:60], main="",type="l",lwd=2,ylab="Cumulative Proportion of Variance Explained",

xlab="Number of Components")

grid()

dev.off()

#---

#Principal component LR testing

#---

opt_pc<-50 #number of optimal pc due to training results

pca_output_tests <- princ_comp_test(X[train_sample,],y[train_sample],X[-train_sample,],y[-train_sample],opt_pc)

#---

General Partial Least Squares training

#---

runs<-10

max_gpls_comp <- 29 #max. number of gpls components

cv_fold<-10

cv_pred_dev<-matrix(nrow = max_gpls_comp, ncol = runs)

cv_pred_cr<-matrix(nrow = max_gpls_comp, ncol = runs)

for(i in 1:runs) {

gpls_output<-gen_pls_train(X[train_sample,],y[train_sample],max_gpls_comp,cv_fold)

cv_pred_dev[1:length(gpls_output[[1]]),i]<-gpls_output[[1]]

cv_pred_cr[1:length(gpls_output[[2]]),i]<-gpls_output[[2]]

print(runs)

}

gpls_comp_seq<-gpls_output[[3]]

#---

Graphs of training results (boxplots)

filename<- "P:\\gpls_dev_scen1.eps"

postscript(filename,horizontal=FALSE,paper="special",width=10,height=7)

boxplot(t(cv_pred_dev[1:length(gpls_comp_seq),]), main="",col=c(8,2,8,8,8,8,8,8,8,8),outline=FALSE,

xlab="Number of Components", ylab="Deviance", names=sprintf("%d", gpls_comp_seq[1:length(gpls_comp_seq)]))

C. Source Code 97

plotCI(x=1:(length(gpls_comp_seq)) + 0.2,y=rowMeans(cv_pred_dev),uiw=sd(t(cv_pred_dev)),add=T,col="blue",

barcol="blue", lwd=1,sfrac=0.005,gap=0,pch=8,cex=1)

dev.off()

filename<- "P:\\gpls_cr_scen1.eps"

postscript(filename,horizontal=FALSE,paper="special",width=10,height=7)

boxplot(t(cv_pred_cr[1:length(gpls_comp_seq),]), main="",col=c(8,2,8,8,8,8,8,8,8,8),outine=FALSE,

xlab="Number of Components", ylab="Misclassification Rate", names=sprintf("%d", gpls_comp_seq[1:length(gpls_comp_seq)]))

plotCI(x=1:(length(gpls_comp_seq)) + 0.2,y=rowMeans(cv_pred_cr),uiw=sd(t(cv_pred_cr)),add=T,col="blue",

barcol="blue", lwd=1,sfrac=0.005,gap=0,pch=8,cex=1)

dev.off()

#---

General Partial Least Squares testing

#---

opt_gpls<-11 #number of optimal components for gpls

gpls_output_tests <- gen_pls_test(X[train_sample,],y[train_sample],X[-train_sample,],y[-train_sample],opt_gpls)

#---

Some additional Graphs

#---

Age histogram

index<-1:length(dataset$alter1)

age<-alter1[-index[dataset$alter1==0]]

h <- hist(age)

postscript("c:\\test.eps",width=7,height=7,paper="special",horizontal=FALSE)

plot(h,xlab="age",main="")

col<-c("antiquewhite2","antiquewhite3","antiquewhite4","gray20","gray60")

Q5 <- quantile(age, 0.80)

Q5.x <- c(Q5, h$breaks[h$breaks > Q5])

Q5.y <- h$counts[(h$breaks > Q5)[-1]]

rect(Q5.x[-length(Q5.x)], 0, Q5.x[-1], Q5.y, col=col[1], border=NA)

text(Q5+10, max(h$counts), "Q5", srt=90, adj=1.1, cex=0.7)

Q4 <- quantile(age, 0.80)

Q4.x <- c(h$breaks[h$breaks < Q4], Q4)

Q4.y <- h$counts[h$breaks <Q4]

rect(Q4.x[-length(Q4.x)], 0, Q4.x[-1], Q4.y, col=col[2], border=NA)

text(Q4-3, max(h$counts), "Q4", srt=90, adj=1.1, cex=0.7)

Q3 <- quantile(age, 0.60)

Q3.x <- c(h$breaks[h$breaks < Q3], Q3)

Q3.y <- h$counts[h$breaks <Q3]

rect(Q3.x[-length(Q3.x)], 0, Q3.x[-1], Q3.y, col=col[3], border=NA)

text(Q3-3, max(h$counts), "Q3", srt=90, adj=1.1, cex=0.7)

Q2 <- quantile(age, 0.40)

Q2.x <- c(h$breaks[h$breaks < Q2], Q2)

Q2.y <- h$counts[h$breaks <Q2]

rect(Q2.x[-length(Q2.x)], 0, Q2.x[-1], Q2.y, col=col[4], border=NA)

text(Q2-7, max(h$counts), "Q2", srt=90, adj=1.1, cex=0.7)

Q1 <- quantile(age, 0.20)

Q1.x <- c(h$breaks[h$breaks < Q1], Q1)

Q1.y <- h$counts[h$breaks <Q1]

rect(Q1.x[-length(Q1.x)], 0, Q1.x[-1], Q1.y, col=col[5], border=NA)

text(Q1-10, max(h$counts), "Q1", srt=90, adj=1.1, cex=0.7)

dev.off()

#---

Test results visualized as barplots

results_scen1 <- matrix(c(37.28,1.273,0.6851,1.303, 36.50,1.267,0.6909,0,36.02,1.253,0.7003,1.312,

35.72,1.250,0.7032,1.287,35.72,1.249,0.7036,1.286), nrow = 5, ncol=4, byrow=TRUE,

dimnames = list(c("PCLR","GPLS","El.(0.05)", "El.(0.5)","Lasso"),

c("Mis. Rate [%]", "Deviance", "AUC","AIC")))

results_scen2 <- matrix(c(38.81,1.290,0.6857,1.439, 37.31,1.266,0.7045, 0, 35.82,1.225,0.6982,1.698,

35.82,1.216,0.7161,1.604, 34.33,1.203,0.7196,1.591), nrow = 5, ncol=4, byrow=TRUE,

dimnames = list(c("PCLR","GPLS","El.(0.05)", "El.(0.5)","Lasso"),

c("Mis. Rate [%]", "Deviance", "AUC","AIC")))

results<-results_scen1

mybarcol <- "gray20"

par(mfrow = c(2, 2))

barplot2(results[,1],

col = c("gray"), width=c(0.1,0.1,0.1,0.1,0.1),space=2,xlab=" ", main = "Misclassification Rate",

font.main = 4,sub = "", col.sub = mybarcol,cex.names = 0.8, plot.ci = FALSE, ci.l = ci.l,

ci.u = ci.u,plot.grid = TRUE,ylim=c(min(results[,1]-0.8),max(results[,1])+0.5),xpd=FALSE,ylab="[%]")

barplot2(results[,2],

col = c("gray"), width=c(0.1,0.1,0.1,0.1,0.1),space=2, ,xlab=" ",main = "Deviance",

font.main = 4,sub = "", col.sub = mybarcol, cex.names = 0.8, plot.ci = FALSE, ci.l = ci.l,

ci.u = ci.u,plot.grid = TRUE,ylim=c(min(results[,2]-0.02),max(results[,2])+0.01),xpd=FALSE)

barplot2(results[,3],

col = c("gray"), width=c(0.1,0.1,0.1,0.1,0.1),space=2,horiz=F,xlab=" ",

main = "AUC", font.main = 4,sub = "", col.sub = mybarcol, cex.names = 0.8, plot.ci = FALSE,

ci.l = ci.l, ci.u = ci.u,plot.grid = TRUE,ylim=c(0.68-0.001,max(results[,3])+0.005),xpd=FALSE)

C. Source Code 98

barplot2(results[,4],

col = c("gray"), width=c(0.1,0.1,0.1,0.1,0.1),space=2,horiz=F,xlab=" ",

main = "AIC", font.main = 4,sub = "", col.sub = mybarcol, cex.names = 0.8, plot.ci = FALSE,

ci.l = ci.l, ci.u = ci.u,plot.grid = TRUE,ylim=c(1.25-0.015,max(results[,4])+0.01),xpd=FALSE)

#***

C.2 function.r

dw #***

Function File

#---

#Author: Grosswindhager Stefan

#Last Update: 26.09.09

#Title: Dimension reduction techniques for micro array data

#***

#---

Read the data

#---

init_data <- function(path,filename) {

setwd(path) #Set the directory

dataset <- read.csv(filename,header=TRUE, sep = ";",dec=".") #Load the data from a csv. file

}

#---

Elastic net(ridge, lasso,..) training

#---

elastic_net_train <- function(X,y,n_lambda,std,alpha_val,cv_fold) {

elastic_fit = glmnet(X,y, family="binomial",alpha=alpha_val,standardize=std,nlambda=n_lambda,dfmax=280)

cv<-cvsegments(length(y), cv_fold, type = "random") #get the random cv sets

cv_pred_dev<-matrix(ncol = length(elastic_fit$lambda), nrow = cv_fold)

cv_pred_cr<-matrix(ncol = length(elastic_fit$lambda), nrow = cv_fold)

for (i in 1:length(elastic_fit$lambda)) {

for (k in 1:cv_fold) {

glm_fit = glmnet(X[-cv[[k]],],y[-cv[[k]]], family="binomial",alpha=alpha_val,standardize=std,

lambda=elastic_fit$lambda[i])

y_hat <- predict(glm_fit,newx=X[cv[[k]],],type="response",s=elastic_fit$lambda[i])

cv_pred_dev[k,i] <- (1/length(y_hat)) * sum(y[cv[[k]]]*log(y_hat) + (1-y[cv[[k]]])*log(1-y_hat)) #deviance

y_hat <- sapply(y_hat,classifier) # 0, 1 loss function if y_hat 0.5 -> 1 y_hat < 0.5 0

cv_pred_cr[k,i] <- (1/length(y_hat))*sum((y[cv[[k]]]*y_hat) + (1-y[cv[[k]]])*(1 - y_hat))

}

}

cv_pred_dev<-colMeans(cv_pred_dev) #calculate column means

cv_pred_cr<-colMeans(cv_pred_cr)

return(list(-2*cv_pred_dev,(1-cv_pred_cr),elastic_fit$lambda)) #return the data

}

#---

Elastic Net testing

#---

elastic_net_test <- function(X_train,y_train,X_test,y_test,std,alpha_val,lambda_val) {

glm_fit = glmnet(X_train,y_train, family="binomial",alpha=alpha_val,standardize=std,lambda=lambda_val)

y_hat_train <- predict(glm_fit,newx=X_train,type="response",s=lambda_val) #predict probabilities

y_hat_test <- predict(glm_fit,newx=X_test,type="response",s=lambda_val)

degree_f<-glm_fit$df #get model complexity

filename<- "D:\\elastic_roc_$alpha_scen2.eps" #filename of figure

filename<-sub("$alpha",alpha_val,filename,fixed=TRUE)

return(testing(filename,y_test,y_hat_test,y_train,y_hat_train,degree_f)) #return values

}

#---

Principal component LR training

#---

princ_comp_train <- function(X,y,max_pc,cv_fold) {

cv <-cvsegments(length(y), cv_fold, type = "random")

press_mse<-matrix(nrow = cv_fold, ncol = max_pc) #initialization

press<-matrix(nrow = cv_fold, ncol = max_pc)

press_all<-vector(length=(max_pc+1))

singular<-vector(length=ncol(X))

pca<-prcomp(X,center=TRUE,scale.=FALSE) #perform PCA

Z<- pca$x[,1:max_pc] #score matrix

singular<-pca$sdev #get singular values

#calculate 'press all' for r-statistic

press_all[1]<-sum(X^2) # = PRESS(0)

C. Source Code 99

for (comp in 1:max_pc) {

x_proj <- (Z[,1:comp,drop=FALSE]) %*% t(pca$rotation[,1:comp]) + outer(rep(1,nrow(X)),pca$center)

res<-x_proj-X

press_all[comp+1] <- sum(res^2)

}

for (k in 1:cv_fold) {

X_train = X[-cv[[k]], ,drop=FALSE]

X_test = X[cv[[k]], , drop= FALSE]

Y_train = y[-cv[[k]]]

Y_test = y[cv[[k]]]

pca_train<-prcomp(X_train,center=TRUE,scale.=FALSE)

Z_train<- pca_train$x[,1:max_pc] #training score matrix

Z_test <- (X_test - outer(rep(1,nrow(X_test)),pca_train$center)) %*% (pca_train$rotation[,1:max_pc])

for (comp in 1:max_pc) {

x_test_proj <- (Z_test[,1:comp,drop=FALSE]) %*% t(pca_train$rotation[,1:comp])

+ outer(rep(1,nrow(X_test)),pca_train$center)

res<-x_test_proj-X_test

press[k,comp] <- sum(res^2)

glm_reg <- glm.fit(cbind(rep(1,nrow(Z_train[,1:comp, drop = FALSE])),

Z_train[,1:comp, drop = FALSE]),Y_train, family=binomial())

Y_hat <- exp(glm_reg$coefficients[1] + Z_test[,1:comp,drop=FALSE] %*% glm_reg$coefficients[-1])/

(exp(glm_reg$coefficients[1] + Z_test[,1:comp,drop=FALSE] %*% glm_reg$coefficients[-1])+1)

res<-Y_hat-Y_test

press_msep[k,comp] <- (1/length(res))*sum(res^2)

}

}

press<- colSums(press)

press<-press/(nrow(X)*ncol(X))

press_all<-press_all/(nrow(X)*ncol(X))

press_msep<-colMeans(press_msep)

return(list(press_msep,press,press_all,singular))

}

#---

Principal component LR testing

#---

princ_comp_test<-function(X_train,y_train,X_test,y_test,num_pc) {

pca_train<-prcomp(X_train,center=TRUE,scale.=FALSE)

Z_train<- pca_train$x[,1:num_pc]

Z_test <- (X_test - outer(rep(1,nrow(X_test)),pca_train$center)) %*% (pca_train$rotation[,1:num_pc])

glm_reg <- glm.fit(cbind(rep(1,nrow(Z_train)),Z_train),y_train, family=binomial())

y_hat_train <- exp(glm_reg$coefficients[1] + Z_train %*% glm_reg$coefficients[-1])/

(exp(glm_reg$coefficients[1] + Z_train %*% glm_reg$coefficients[-1])+1)

y_hat_test <- exp(glm_reg$coefficients[1] + Z_test %*% glm_reg$coefficients[-1])/

(exp(glm_reg$coefficients[1] + Z_test %*% glm_reg$coefficients[-1])+1)

degree_f = num_pc #degrees of freedom

filename<- "D:\\roc_$num_pclr_scen1.eps"

filename<-sub("$num",num_pc,filename,fixed=TRUE)

return(testing(filename,y_test,y_hat_test,y_train,y_hat_train,degree_f))

}

#---

General partial least squares training

#---

gen_pls_train <- function(X,y,max_gpls_comp,cv_fold) {

cv<-cvsegments(length(y), cv_fold, type = "random")

gpls_comp<-seq(1, max_gpls_comp, by=1)

cv_pred_dev<-matrix(nrow = cv_fold, ncol = length(gpls_comp))

cv_pred_cr<-matrix(nrow = cv_fold, ncol = length(gpls_comp))

n_comp=1 #count variable

for (comp in gpls_comp) {

for (k in 1:cv_fold) {

X_train = X[-cv[[k]],,drop=FALSE]

X_test = X[cv[[k]], , drop= FALSE]

Y_train = y[-cv[[k]]]

Y_test = y[cv[[k]]]

gpls_fit <- gpls(X_train, Y_train, K.prov=comp, family="binomial", br=TRUE,link="logit",lmax=50,eps=1e-2)

Y_hat <- exp(gpls_fit$coefficients[1] + X_test %*% gpls_fit$coefficients[-1])/

(exp(gpls_fit$coefficients[1] + X_test %*% gpls_fit$coefficients[-1])+1)

cv_pred_dev[k,n_comp] <- (1/length(Y_hat)) * sum(Y_test*log(Y_hat) + (1-Y_test)*log(1-Y_hat)) #deviance

Y_hat <- sapply(Y_hat,classifier)

cv_pred_cr[k,n_comp] <- (1/length(Y_hat))*sum((Y_test*Y_hat) + (1-Y_test)*(1 - Y_hat)) #0,1 loss

C. Source Code 100

}

n_comp<-n_comp + 1

}

cv_pred_dev=colMeans(cv_pred_dev)

cv_pred_cr=colMeans(cv_pred_cr)

return(list(-2*cv_pred_dev,(1-cv_pred_cr),gpls_comp))

}

#---

General partial least testing

#---

gen_pls_test<-function(X_train,y_train,X_test,y_test,num_gpls) {

gpls_fit <- gpls(X_train, y_train, K.prov=num_gpls, family="binomial", br=TRUE,link="logit",lmax=50,eps=1e-2)

y_hat_train <- exp(gpls_fit$coefficients[1] + X_train %*% gpls_fit$coefficients[-1])/

(exp(gpls_fit$coefficients[1] + X_train %*% gpls_fit$coefficients[-1])+1)

y_hat_test <- exp(gpls_fit$coefficients[1] + X_test %*% gpls_fit$coefficients[-1])/

(exp(gpls_fit$coefficients[1] + X_test %*% gpls_fit$coefficients[-1])+1)

degree_f = 0 #problems with df of gpls models

filename<- "P:\\roc_$num_gpls_scen1.eps"

filename<-sub("$num",num_gpls,filename,fixed=TRUE)

return(testing(filename,y_test,y_hat_test,y_train,y_hat_train,degree_f)) #return values

}

#---

Binary classification with cut off level 0.5

#--

classifier <- function(x) { # x in [0,1]

if (x<=0.5) {

x = 0

}

else

x = 1

}

#---

Sample Stratification

#---

strat <- function(y,trainsize,frac_resp) {

train_sample <- NULL

sample_index <- NULL

while (length(train_sample)<train_size) {

sample_index <- sample.int(length(y), 1, replace = FALSE)

while (any(train_sample==sample_index)) { #without replacement!!

sample_index <- sample.int(length(y), 1, replace = FALSE)

}

if (y[sample_index] == 1) {

if (runif(1,0,1)<=frac_resp) #runif creates a random uniform distributed variable

train_sample<- c(train_sample,sample_index)

}

else {

if (runif(1,0,1)<=(1-frac_resp)) {

train_sample<- c(train_sample,sample_index)

}

}

}

return(train_sample) #returns the training sample index set

}

#---

Test block for the methods

#---

testing <- function(filename,y_test,y_hat_test,y_train,y_hat_train,degree_f) {

#calculate akaike information criterion

dev <- -2* sum(y_test*log(y_hat_test) + (1-y_test)*log(1-y_hat_test))

dev <- dev/length(y_hat_test)

aic <- dev + (2*degree_f)/length(y_hat_test)

#ROC curves (calculation and plotting)

pred_train <- prediction(y_hat_train, y_train)

pred_test <- prediction(y_hat_test, y_test)

perf_train <- performance(pred_train,"tpr", "fpr")

perf_test <- performance(pred_test,"tpr", "fpr")

auc <- performance(pred_test,"auc") #area under roc curve

acc_roc<- performance(pred_test,"acc")

postscript(filename,horizontal=FALSE,paper="special",width=7,height=7)

plot(perf_train,main="",col="red")

plot(perf_test,col="blue",add=TRUE,print.cutoffs.at=seq(0.1,0.9,0.1),points.pch=19,text.cex=0.8,

C. Source Code 101

text.pos=1,text.offset=0.2,points.cex=0.7)

lines(c(0,1),c(0,1),lty=2,lwd=1)

legend("bottomright", inset=.05, c("Training Curve", "Test Curve") , lty=c(1,1),col=c("red","blue"), horiz=FALSE)

grid(lwd=2)

dev.off()

y_hat_test <- sapply(y_hat_test,classifier)

class_rate <- (1/length(y_hat_test))*sum((y_test*y_hat_test) + (1 - y_test)*(1 - y_hat_test))

return(list(degree_f,aic,auc,(1-class_rate),dev,acc_roc))

}

#---

Cost Curves

fp=false positive (yhat=1;y=0); fn=false negative (yhat=0,y=1)

#---

cost_curves <- function(y_test,y_hat_test) {

#---Explicit Costs---

pred_test <- prediction(y_hat_test, y_test)

perf_cost_unequal <- performance(pred_test,"cost",cost.fp=15,cost.fn=30)

perf_cost_equal <- performance(pred_test,"cost",cost.fp=18.5,cost.fn=18.5)

plot(perf_cost_equal,add=F,xlab="Cutoff Level",ylab="Explicit Costs",col="blue",lty=2)

plot(perf_cost_unequal,add=T,xlab="",ylab="",col="red",lty=1)

legend("bottomright", inset=.05, c("Equal Costs", "Unequal Costs") , lty=c(2,1),col=c("blue","red"), horiz=FALSE)

grid(lwd=2)

#---Expected Costs---

perf_fpr_fnr <- performance(pred_test,'fpr','fnr')

perf_cost <- performance(pred_test,"ecost")

plot(0,0,xlim=c(0,1),ylim=c(0,1),xlab='Probability cost function',

ylab="Normalized expected cost",pch="",main="")

lines(c(0,1),c(0,1))

lines(c(0,1),c(1,0))

for (i in 1:length(perf_fpr_fnr@x.values)) { #plot cost lines

for (j in 1:length(perf_fpr_fnr@x.values[[i]])) {

lines(c(0,1),c(perf_fpr_fnr@y.values[[i]][j], perf_fpr_fnr@x.values[[i]][j]),col="gray",lty=3)

}

}

plot(perf_cost,add=T,lwd=2,col="blue")

plot(perf_cost_random,add=F,xlab="Probability cost function",ylab="Normalized expected cost",col="blue",lty=2)

plot(perf_cost_gpls,add=T,xlab="",ylab="",col="red",lty=1)

legend("topright", inset=.05, c("Random Classifier", "GPLS Classifier") , lty=c(2,1),col=c("blue","red"), horiz=FALSE)

grid(lwd=2)

}

Bibliography

[1] Abdi, H.: Partial least squares regression. In Lewis-Beck M., Bry-
man A., F.T. (ed.): Encyclopedia of Social Sciences Research Methods.
Thousand Oaks (CA): Sage, Nov. 2003.

[2] Aguilera, A.M., M. Escabias, and M.J. Valderrama: Using principal
components for estimating logistic regression with high-dimensional mul-
ticollinear data. Computational Statistics and Data Analysis, 50:1905–
1925, 2006.

[3] Akaike, H.: A new look at the statistical model identification. IEEE
Transactions on Automatic Control, 19(6):716–723, 1974.

[4] Antoniadis, A. and J. Fan: Regularization of wavelet approximations.
Amer. Statist. Assoc., 96:939–967, 2001.

[5] Baffi, G., E.B. Martin, and A.J. Morris: Non-linear dynamic projection
to latent structures modeling. Chemometrics and Intelligent Laboratory
Systems, 52(1):5–22, 2000.

[6] Bastien, P., V.E. Vinzi, and M. Tenenhaus: Pls generalised linear regres-
sion. Computational Statistics and Data Analysis, 48(1):17–46, 2005.

[7] Berry, M.J. and G. Linoff: Data mining techniques : for marketing, sales,
and customer relationship management. Wiley Publishing, 2004.

[8] Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, 1995.

[9] Browne, M.W.: Cross-validation methods. Journal of Mathematical Psy-
chology, 44:108–132, 2000.

[10] Chatterjee, S., A.S. Hadi, and B. Price: Regression Analysis by Example.
Wiley Series in Probability and Statistics, 2006.

[11] Cramer, J.S.: Logit Models from Economics and other Fields. Cambridge
University Press, 2003.

[12] Cramer, R.: Chemometric Techniques for Quantitative Analysis. Marcel
Dekker, Inc, 1998.

102

Bibliography 103

[13] Ding, B.: Classification using generalized partial least squares, May 2009.
http://cran.r-project.org/web/packages/gpls/index.html.

[14] Ding, B. and R. Gentleman: Classification using generalized partial least
squares. Journal of Computational and Graphical Statistics, 14(2):280–
298, 2005.

[15] Draper, N.R. and H. Smith: Applied Regression Analysis 3rd edition.
Wiley Publishing, 1998.

[16] Edirisooriya, G.: Stepwise regression is a problem, not a solution. In
Proceedings of the Annual Meeting of the Mid-South Educational Re-
search Association, Nov. 1995.

[17] Efron, B.: The bootstrap and modern statistics. Journal of the American
Statistical Association, 95(452):1293–1296, 2000.

[18] Efron, B., T. Hastie, and R. Tibshirani: Least angle regression. Ann.
Statist., 32:407–499, 2004.

[19] Efroymson, R.: Multiple regression analysis. In Mathematical Methods
for Digital Computers, vol. 1, pp. 191–203. Wiley Publishing, 1960.

[20] Fawcett, T.: An introduction to roc analysis. Pattern Recognition Let-
ters, 27:861–874, 2006.

[21] Firth, D.: Bias reduction, the jeffreys prior and glim. In Advances in
GLIM and Statistical Modelling, pp. 91–100, New York, Springer.

[22] Fokianos, K.: Comparing two samples by penalized logistic regression.
Electronic Journal of Statistics, 2:564–580, 2008.

[23] Friedman, J., T. Hastie, H. Höfling, and R. Tibshirani: Pathwise co-
ordinate optimization. The Annals of Applied Statistics, 1(2):302–332,
2007.

[24] Friedman, J., T. Hastie, and R. Thibshirani: The Elements of Statistical
Learning 2nd ed. Springer, 2009.

[25] Friedman, J., T. Hastie, and R. Tibshirani: Regularization paths for gen-
eralized linear models via coordinate descent. Techn. rep., Department
of Statistics, Stanford University, Standford, 2008.

[26] Friedman, J., T. Hastie, and R. Tibshirani: Lasso and elastic-net reg-
ularized generalized linear models, Jan. 2009. http://cran.r-project.org/
web/packages/glmnet/index.html.

[27] Geladi, P. and B.R. Kowalski: Partial least squares regression: A tuto-
rial. Analytica Chimica Acta, 185:1–17, 1986.

Bibliography 104

[28] Genkin, A., D. Madigan, and D.D. Lewis: Large-scale bayesian logis-
tic regression for text categorization. Techn. rep., Rutgers University,
Piscataway, 2004.

[29] Giombini, G. and J. Szroeter: Quasi akaike and quasi schwarz criteria
for model selection: A surprising consistency result. Economics Letters,
75:259–266, 2007.

[30] Haisten, M.: The real-time data warehouse: The next stage in data ware-
house evolution, 1999.

[31] Han, J. and M. Kamber: Data Mining: Concepts and Techniques 2nd
edition. Morgan Kaufmann, 2006.

[32] Hand, D.J., P. Smyth, and H. Mannila: Principles of data mining. MIT
Press, 2001.

[33] Havlicek, H.: Lineare Algebra II. Institut für Geometrie Technische
Universität Wien, 2003.

[34] Helland, S.I.: On the structure of partial least squares regression. Com-
munications in Statistics, Simulation and Computation, 17(2):581–607,
1988.

[35] Himes, D.M., R.H. Storer, and C. Georgakis: Determination of the num-
ber of principal components for disturbance detection and isolation. In
Proceedings of the American Control Conference, vol. 2, pp. 1279–1283,
Baltimore, Maryland, June 1994.

[36] Hoerl, A.E. and R.W. Kennard: Ridge regression: Applications to
nonorthogonal problems. Technometrics, 12(1):69–82, 1970.

[37] Holte, R.C. and C. Drummond: Cost-sensitive classifier evaluation. In
International Conference on Knowledge Discovery and Data Mining, pp.
3–9. ACM, 2005.

[38] Hosmer, D.W. and S. Lemeshow: Applied Logistic Regression. Wiley
Publishing, 200.

[39] Höskuldson, A.: Pls regression methods. Journal of Chemometrics,
2:211–228, 1988.

[40] Hubert, M. and S. Engelen: Fast cross-validation of high-breakdown re-
sampling methods for pca. Computational Statistics and Data Analysis,
51:5013–5024, 2007.

[41] Inmon, W.H.: Building the Data Warehouse 4th edition. Wiley Publish-
ing, 2005.

Bibliography 105

[42] Jolliffe, I.: Principal Component Analysis, Second Edition. Springer,
2002.

[43] Kavšek, B.: Partial least squares regression and its robustification. Mas-
ter’s thesis, Technische Universität Wien, May 2002.

[44] Kohavi, R.: A study of cross-validation and bootstrap for accuracy esti-
mation and model selection. In International Joint Conference on Arti-
ficial Intelligence, 1995.

[45] Kraemer, N.: An overview on the shrinkage properties of partial least
squares regression. Computational Statistics, 22:249–273, 2007.

[46] Krzanowski, W.J. and P. Kline: Cross-validation for choosing the num-
ber of important components in principal component analysis. Multi-
variate Behavioral Research, 30(2):149–165, 1995.

[47] Larose, D.T.: Discovering knowledge in data : an introduction to data
mining. Wiley Publishing, 2005.

[48] Larose, D.T.: Data Mining Methods and Models. Wiley Publishing, 2006.

[49] Manne, R.: Analysis of two partial-least-squares algorithms for multi-
variate calibration. Chemometrics and Intelligent Laboratory Systems,
2:187–197, 1987.

[50] Marx, B.D.: Iteratively reweighted partial least squares estimation for
generalized linear regression. Technometrics, 38(4):374–381, 1996.

[51] Marx, B.D. and E.P. Smith: Principal component estimation for gener-
alized linear regression. Biometrika, 77(1):23–31, 1990.

[52] Mas-Colell, A., M.D. Whinston, and J.R. Green: Microeconomic Theory.
Oxford University Press, 1995.

[53] Mertens, B., T. Fearn, and M. Thompson: The efficient cross-validation
of principal components applied to principal component regression. In
Statistics and Computing, vol. 5, pp. 227–235. Springer Netherlands,
Sept. 1995.

[54] Park, M.Y. and T. Hastie: L1-regularization path algorithm for general-
ized linear models. J. R. Statistical Society B, 69(4):659–677, 2007.

[55] Ponniah, P.: Data Warehousing Fundamentals - A Comprehensive Guide
for IT Professionals. Wiley Publishing, 2001.

[56] Powers, D.A. and Y. Xie: Statistical Methods for Categorical Data Anal-
ysis. Academic Press, 1999.

Bibliography 106

[57] Pregibon, D.: Logistic regression diagnostic. The Annals of Statistics,
9(4):705–724, 1981.

[58] Puhr, C.: The clinical data warehouse. Master’s thesis, Medizin Univer-
sität Wien, 2002.

[59] Schwarz, G.: Estimating the dimension of a model. The Annals of Statis-
tics, 6(2):461–464, 1978.

[60] Sellin, N.: Partial least squares modeling in research on educational
achievement. Reflections on Educational Achievement, pp. 256–297,
1995.

[61] Sing, T., O. Sander, N. Beerenwinkel, and T. Lengauer: Rocr: visualizing
classifier performance in r. Bioinformatics, 21(20):3940–3941, 2005.

[62] Stein, C.M.: Estimation of the mean of a multivariate normal distribu-
tion. The Annals of Statistics, 9(6):1135–1151, 1981.

[63] Stone, M.: Cross-validatory choice and assessment of statistical predic-
tions. Journal of the Royal Statistical Society, 36:111–147, 1974.

[64] Stone, M. and R.J. Brooks: Continuum regression: Cross-validated se-
quentially constructed prediction embracing ordinary least squares, par-
tial least squares and principal components regression. Journal of the
Royal Statistical Society. Series B (Methodological), 52(2):237–269,
1990.

[65] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological), 58(1):267–
288, 1996.

[66] Valle, S., W. Li, and S.J. Quin: Selection of the number of principal
components: The variance of the reconstruction error criterion with a
comparison to other methods. Industrial and Engineering Chemistry
Research, 38:4389–4401, 1999.

[67] Wall, M.E., A. Rechtsteiner, and L.M. Rocha: Singular value decom-
position and principal component analysis. In D.P. Berrar, W. Dub-
itzky, M.G. (ed.): A Practical Approach to Microarray Data Analysis,
pp. 91–109. Kluwer: Norwell, Mar. 2003.

[68] Wehrens, R. and B.H. Mevik: The pls package: Principal component
and partial least squares regression in r. Journal of Statistical Software,
18(2):1–24, 2007.

[69] Witten, I.H. and E. Frank: Data mining : practical machine learning
tools and techniques. Morgan Kaufmann, 2005.

Bibliography 107

[70] Wold, S.: Cross-validatory estimation of the numbers of components in
factor and principal components models. Technometrics, 20:397–405,
1978.

[71] Wooldridge, J.M.: Econometric Analysis of Cross Section and Panel
Data. The MIT Press, 2002.

[72] Wu, T.T. and K. Lange: Coordinate descent algorithms for lasso penal-
ized regression. The Annals of Applied Statistics, 2(1):224–244, 2008.

[73] Yang, Y.: Can the strengths of aic and bic be shared? Techn. rep.,
Department of Statistics, Iowa State University, 2003.

[74] Zou, H. and T. Hastie: Regularization and variable selection via the
elastic net. J. R. Statist. Soc. B, 67(2):301–320, 2005.

[75] Zou, H., T. Hastie, and R. Tibshirani: On the “degrees of freedom” of
the lasso. Technical report, Stanford University, 2001.

