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The purpose of this thesis is to give an introductory overview on operational risk, and in 

particular some applications of extreme value theory and methods using ruin probabilities. 

The latter approach is studied in detail, based on the article [DIK08]. 

 

The thesis consists of 5 chapters. 

 

In chapter 1 we have present some tools that are often used in operational risk and in ruin 

theory. We recollect some important probability distributions and their properties. Then we 

review the risk measures, Value-at-risk and expected shortfall. Next we introduce the basics 

of the theory of copulas and the basic notions of Extreme Value Theory 

 

In chapter 2 is give the framework of operational risk. We describe three approaches: the 

Basic Indicator Approach (BIA), the Standardized Approach (SA) and the Advanced 

Measurement Approaches (AMA). 

Here we give a typical Advanced Measurement Approach solution for calculating of an 

operational risk charge for one year, using historical losses. 

 

In chapter 3 we discuss two methods of the Advanced Measurement Approaches: Extreme 

Value Theory in Operational risk and Ruin theory in operational risk.  

 

In chapter 4 contained the main results of the thesis. In this chapter we have given the 

Kaishev–Dimitrov formula in two cases: for discrete claim distribution and continuous claim 

distribution. We have calculated the probability of non-ruin in a finite time  for each of these 

two cases. 

 

In chapter 5 we have considered three alternative distributions of consecutive losses: 

Logarithmic, Exponential and Pareto. We have given solutions with graphs. The solutions are 

presented with Mathematica programs. For calculation purposes we also use a formula from 

Picard –Lefevre [PL97]. 
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1. Introduction 
 

1.1 Some important probability distributions 

 
In this section we summarize some important probability distributions that are used often 

in operational risk and ruin theory.( See [Cru02] ) 

 

 

Normal (Gauss) Distribution 

 

The normal distribution with mean  μ and variance  has distribution with probability 

density function (p.d.f) 

 

 

 

and cumulative distribution function (c.d.f) 

 

 

 

on the Interval . 

 

For  and  

 

 

This formula is known as the standard normal.  

 

 

Log-normal Distribution 

 

The log-normal distribution is a single-tailed probability distribution of any random 

variable whose logarithm is normally distributed. The probability density function of the 

lognormal distribution is given by 

 

 

 

where μ and σ are the mean and standard deviation of the variable's natural logarithm. 

 

The Cumulative distribution function is given by 

 

 

 

where  denotes the cumulative distribution function of the standard normal distribution. 

 

 

http://mathworld.wolfram.com/Mean.html
http://mathworld.wolfram.com/Variance.html
http://mathworld.wolfram.com/ProbabilityDensityFunction.html
http://mathworld.wolfram.com/ProbabilityDensityFunction.html
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Logarithm
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Exponential Distribution 

 

The exponential distributions are a class of continuous probability distributions. The 

probability density function of an exponential distribution is 

 

 

 

where  is the parameter of the distribution (the rate parameter). The distribution is 

supported on the interval . 

 

The cumulative distribution function is given by 

 

 

 

 The inverse cumulative distribution function (quantile function) is: 

 

 

 

for . 

 

 

 

Pareto Distribution 

 

The Pareto distribution was named after the Italian economist Vilfredo Pareto, who 

formulated an economic law (Pareto´s Law) dealing with the distribution of income over a 

population. 

 

The probability density function is 

 

 

 

for . 

 

The classical cumulative distribution functions of a Pareto random variable with 

parameters and  is 

 

 

 

for all , where  is the (necessarily positive) minimum possible value of , and  is 

a positive parameter. 

 

The quantile function is: 

 

 
 

http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Quantile_function
http://en.wikipedia.org/wiki/Economist
http://en.wikipedia.org/wiki/Vilfredo_Pareto
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The family of generalized Pareto distributions (GPD) has three parameters μ, σ and ξ. 

The cumulative distribution function is 

 

 

 

for , and  when , where  is the location parameter,  

the scale parameter and  the shape parameter. Note that some references give the 

"shape parameter" as . 

 

The probability density function is 

 

 

 

for , and  when . 

 

 

Beta Distribution 

 

The beta distribution is a family of continuous probability distributions defined on the 

interval  parameterized by two positive shape parameters, typically denoted by  and . 

It is the special case of the Dirichlet distribution with only two parameters. 

 

The probability density function of the beta distribution is: 

 

 

 

where  is the gamma function. The beta function, , appears as a normalization constant to 

ensure that the total probability integrates to unity. 

 

The cumulative distribution function is 

 

 

 

where  is the incomplete beta function and is the regularized incomplete beta 

function. 

 

 

g-and-h distribution 

 

Let  be a standard normal random variable. A random variable  is said to 

have a g-and-h distribution with parameters , , , , if  satisfies 

 

 

http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Shape_parameter
http://en.wikipedia.org/wiki/Dirichlet_distribution
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Gamma_function
http://en.wikipedia.org/wiki/Beta_function
http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function
http://en.wikipedia.org/wiki/Regularized_incomplete_beta_function
http://en.wikipedia.org/wiki/Regularized_incomplete_beta_function
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for . And 

 

 

 

for . 

 

We write -and- , or when  has distribution function 

 

 

 

where 

 

 

 

and  denotes the standard normal distribution function. 

 

For applications of -and-  in operational risk see [DEL09]. 

 

 

 
Poisson Distribution 

 

The Poisson distribution is named after the French mathematician and physicist 

Simeon Denis Poisson. The Poisson distribution has probability mass function: 

 

 

 

where  . 

 

The cumulative function ( a step function ) is given by  

 

 

 

The probability generating function is: 
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Logarithmic distribution  

 

The logarithmic distribution (also known as the logarithmic series distribution or the 

log-series distribution) is a discrete probability distribution. The probability mass function of 

a  is 

 

 

 

for i , and where . 

 

The cumulative distribution function is 

 

 

where B is the incomplete beta function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Discrete_probability_distribution
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1.2  Important risk measures 

 

 Value-at-Risk (VaR) ( See [EFMcN05] ) 

 

Value-at-Risk is probably the most widely used risk measure in financial institutions 

and has also made its way into the Basel II capital-adequacy framework-hence it merits an 

extensive discussion. 
 

“VaR answers the question: how much can I lose with  probability over a pre-set horizon” 

 

Given some confidence level . The  at the confidence level α is given by 

the smallest number l such that the probability that the loss  exceeds l is no larger than 

. 

 

 
 

In probabilistic terms,  is thus simply a quantile of the loss distribution. 

 

Typical values for  are  or ; in market risk management the time horizon 

 is usually  or  days, in credit risk management and operational risk management  is 

usually one year. 

 

 

Mean-VaR: Denote by μ the mean of the loss distribution. Sometimes the statistic  

 

 
 

is used for capital-adequacy purposes instead of ordinary . If the time horizon  equals 

one day,  is sometimes referred to as daily earnings at risk. The distinction between 

ordinary  and  is of little relevance in market risk management, where the time 

horizon is short and  is close to zero. It becomes relevant in credit where the risk-

management horizon is longer. In particular, in loan pricing one uses  to determine 

the economic capital needed as a buffer against unexpected losses in a loan portfolio. 

 

 

Given some increasing function , the generalized inverse of  is defined by  

 

, 

 

where we use the convention that the infimum of an empty set is . 

 

Given some distribution function , the generalized inverse is called the quantile 

function of . For  the -quantile of  is given by 

 

. 

 

For a random variable  with distribution function  we often use the alternative notation 

 

. 
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If  is continuous and strictly increasing, than 

 

, 

 

where  is the ordinary inverse of .  

 

 

 

 

 Expected shortfall (ES) 

 

Expected shortfall is closely related to . 

For a loss  with  and distribution function  the expected shortfall at 

confidence level  is defined as 

 

 

 

where  is the quantile function of . 

 

Expected shortfall is thus related to  by 

 

 

 

 

Instead of fixing a particular confidence level  we average  over all levels  and 

thus “look further into the tail” of the loss distribution. Obviously  depends only on the 

distribution of  and obviously . 

 

For continuous loss distributions an even more intuitive expression can be derived which 

shows that expected shortfall can be interpreted as the expected loss that is incurred in the 

event that  is exceeded. 
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1.3 Introduction to copulas 

 

Copulas help in the understanding of dependence at a deeper level. They allow us to see 

the potential pitfalls of approaches to dependence that focuses only dependence measures. 

Copulas express dependence on a quantile scale, which is useful for describing the 

dependence of extreme outcomes and is natural in a risk-management context, where  has 

led us to think of risk in terms of quantiles of loss distributions. ( See [EFMcN05] )  

 

 

A copula is a multivariate joint distribution defined on the -dimensional unit cube  

such that every marginal distribution is uniform on the interval . 

Specifically, 

 

 
 

is an -dimensional copula (briefly, -copula) if: 

 

1.  is increasing in each component  

2.  for all ,  

3. For all ,  with  is 

 

 

 

where  and  for all . 

 

The first property is clearly required of any multivariate distribution function and the second 

property is the requirement of uniform marginal distributions. The third property is less 

obvious, but the so-called rectangle inequality in  

 

 

 

ensures that if the random vector  has distribution function , then 

 

 
 

is non-negative. 

 

 

The importance of copulas is summarized by the following Sklar’s theorem, which 

shows that: 

 all multivariate distribution functions correspond to copulas; 

 copulas may be used in conjunction with univariate distribution functions to 

construct multivariate distribution functions. 

 

 

 

http://en.wikipedia.org/wiki/Joint_distribution
http://en.wikipedia.org/wiki/Unit_cube
http://en.wikipedia.org/wiki/Marginal_distribution
http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29
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Sklar’s theorem (1959). 

 

Let  be a joint distribution function with margins . 

Then there exists a copula  such that, for all  in  

 

. 

 

If the margins are continuous, then  is unique; otherwise  is uniquely determined on 

 

 
 

where  denotes the range of . 

Conversely, if  is a copula and  are univariate distribution functions, then the 

function  defined in  

 

 

is a joint distribution function with margins . 

 

Copulas subdivided into three categories: 

 fundamental copulas represent a number of important special dependence structures; 

 implicit copulas are extracted from well-known multivariate distributions using 

Sklar’s Theorem, but do not necessarily possess simple closed form expressions; 

 explicit copulas have simple closed-form expressions and follow general mathematical 

constructions known to yield copulas. 

 

 

 

Fundamental copulas. 
 

Random variables with continuous distributions are independent if and only if their 

dependence structure is given by  

 

 

The copula  is independence copula. 

 

 

The comonotonicity copula is the Fréchet upper bound copula from 

 

 

 

 
 

Observe that this special copula is the joint distribution function of the random vector 

, where . Suppose that the random variables  have continuous 

distribution functions and are perfectly positively dependent in the sense that they are almost 

surely strictly increasing functions 
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The countermonotonicity copula is the two-dimensional Fréchet lower bound copula 

from 

 

 

 
 

 

This copula is the joint distribution function of the random vector , where 

. If  and  have continuous distribution functions and are perfectly negatively 

dependent in the sense that  is almost surely a strictly decreasing function of . 
 

 

Implicit copulas: 

 the Gauss copula 

 the  copula 

 

The Gaussian and  copulas are copulas implied by well-known multivariate distribution 

functions and do not themselves have simple closed forms. 

 

 

Explicit copulas: 

 the bivariate Gumbel copula 

 

 

 

If  we obtain the independence copula as a special case, and the limit of as  

is the two-dimensional comonotonicity copula. Thus the Gumbel copula interpolates between 

independence and perfect dependence and the parameter  represents the strength of 

dependence. 

 

 the bivariate Clayton copula 

 

 

 

In the limit as  we approach the independence copula, and as  we approach the 

two-dimensional comonotonicity copula. 

 

The bivariate Gumbel copula and bivariate Clayton copula have simple closed forms. 

 

The Gumbel copula and the Clayton copula belong to the family of so called Archimedean 

copulas. 

 

 

 

 

 



14 
 

A -dimensional Clayton copula is 

 

 

 

 

where  and  is a parameter. 

 

The limiting case  should be interpreted as the -dimensional independence copula. 

 

The density is given by 

 

 

 

As , the Clayton copula converges to the product copula with density . 

 

The Clayton copula has lower tail dependence with coefficient , which 

makes it convenient for modeling dependence in the left tails of the marginal distributions, i.e. 

between very small claims. 

 

Based on the Clayton copula, one can model upper tail dependence using the 

multivariate Rotated Clayton copula, defined as 

 

 

 

with density  and . The value  

corresponds to independence as for  

 

The Rotated Clayton copula has upper tail dependence with coefficient  

and is suitable for modeling dependence between extreme insurance losses. 
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1.4 Basics of extreme value theory 
 

The reason for use of the EVT lies in the fact that EVT has solid foundations in the 

mathematical theory of the behavior of extremes and, moreover, many applications have 

indicated that EVT appears to be a satisfactory scientific approach in treating rare, large 

losses. ( See [EKM97] ) 

EVT is applied to real data in two related ways. 

 

The first approach (see Reiss and Thomas, 2001, p. 14 ff) deals with the maximum 

(or minimum) values the variable takes in successive periods, for example months or years. 

These observations constitute the extreme events, also called block (or per-period) maxima. 

 

Classical EVT is concerned with limiting distributions for normalized maxima 

 of i.i.d. random variables. The only possible non-degenerate limiting 

distributions for normalized block maxima are in the GEV family. 

 

At the heart of this approach is the “Limit laws for Maxima” (Fisher – Tippet 

Theorem), which states that there are only three types of distributions which can arise as 

limiting distributions of extreme values in random samples: the Weibull type, the Gumbel 

type and the Fréchet type. 

 

Fisher – Tippet Theorem 

Let  be a sequence of i.i.d. random variables. If there exist norming constants 

,  and some non degenerate distribution function H such that 

 

where , 

then H belong to the type of one of the following three distribution functions: 

 

Fréchet   

 

 

Weibull  

 

 

Gumbel . 

 

 

This result is very important, since the asymptotic distribution of the maxima always 

belongs to one of these three distributions, regardless of the original one. Therefore the 

majority of the distributions used in finance and actuarial sciences can be divided into these 

three classes, according to their tail-heaviness: 

 

 light-tail distributions with finite moments and tails, converging to the Weibull curve 

(Beta, Weibull); 

 medium-tail distributions for which all moments are finite and whose cumulative 

distribution functions decline exponentially in the tails, like the Gumbel curve 

(Normal, Gamma, Lognormal); 
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 heavy-tail distributions, whose cumulative distribution functions decline with a power 

in the tails, like the Fréchet curve (T-Student, Pareto, Log-Gamma, Cauchy). 

 

The Weibull, Gumbel and Fréchet distributions can be represented in a single three 

parameter model, known as the Generalized Extreme Value distribution: 

 

 

 
where: . 

 

A three-parameter family is obtained by defining  for a 

location parameter  and a scale parameter . The parameter  is known as the 

shape parameter of the generalized extreme value distribution and  defines a type of 

distribution, meaning a family of distributions specified up to location and scaling. 

 

When , the distribution is a Fréchet distribution; when , it is a Gumbel 

distribution and when  it is a Weibull distribution. 

 

The role of the generalized extreme value distribution in the theory of extremes is 

analogous to that of the normal distribution (and more generally the stable laws) in the central 

limit theory for sums of random variables. More generally, the generalized extreme value 

distribution given by  describes the limit distribution of suitably normalized maxima. 

Observe that the Weibull distribution is a short-tailed distribution with a so-called finite right 

endpoint. The right endpoint of a distribution will be denoted by 

 

. 

 

The Gumbel and Fréchet distributions have infinite right endpoints, but the decay of the tail of 

the Fréchet distribution is much slower than that of the Gumbel distribution. Suppose that 

block maxima  of i.i.d. random variables converge in distribution under an appropriate 

normalization. Recalling that 

 

, 

 

we observe that this convergence means that there exist sequences of real constants  and 

, where  for all , such that 

 

 

 

for some non-degenerate distribution function . 
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The distributions lead to limits for maxima. 

 

The Fréchet case: The distributions that lead to the Fréchet limit  for  have a 

particularly elegant characterization involving slowly varying or regularly varying functions. 

Slowly varying functions are functions which, in comparison with power functions, change 

relatively slowly for large , an example being the logarithm . Regularly 

varying functions are functions which can be represented by power functions multiplied by 

slowly varying functions, i.e. . 

 

Distributions giving rise to the Fréchet case are distributions with tails that are regularly 

varying functions with a negative index of variation. Their tails decay essentially like a power 

function and the rate of decay  is often referred to as the tail index of the distribution. 

These distributions are of particular interest in financial applications because they are heavy-

tailed distributions with infinite higher moments. 

 

The Gumbel case: The characterization of distributions in this class is more complicated 

than in the Fréchet class. The distributions in this class have tails that have an essentially 

exponential decay. A positive-valued random variable with a distribution function in 

MDA  has finite moments of any positive order, i.e.  for every  

([EKM97], p. 148). 
 

If  

 

 

holds for some non-degenerate distribution function , then  is said to be in the maximum 

domain of attraction of , written  

 

However, there is a great deal of variety in the tails of distributions in this class, so, for 

example, both the normal and the lognormal distributions belong to the Gumbel class (EKM, 

pp. 145–147). The normal distribution is thin tailed, but the lognormal distribution has much 

heavier tails and we would need to collect a lot of data from the lognormal distribution before 

we could distinguish its tail behavior from that of a distribution in the Fréchet class. The 

Gumbel class is also interesting because it contains many distributions with much heavier tails 

than the normal, even if these are not regularly varying power tails. Examples are hyperbolic 

and generalized hyperbolic distributions (with the exception of the special boundary case that 

is Student t ). 

 

The Weibull case. This is perhaps the least important case for financial modeling, at 

least in the area of market risk, since the distributions in this class all have finite right 

endpoints. 
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The second approach to EVT is the Peaks Over Threshold (POT) method, tailored for 

the analysis of data bigger than preset high thresholds. 

The severity component of the POT method is based on a Generalized Pareto Distribution. 

 

The so-called POT model makes the following assumptions: 

 exceedences occur according to a homogeneous Poisson process in time; 

 excess amount above the threshold are i.i.d. and independent of exceedance times; 

 the distribution of the excess amounts is generalized Pareto. 

 

The interpretation of in the generalized Pareto distribution 

 

 

where , and  when  and  when , is the same as in the 

Generalized Extreme Value distribution: 

 

when  than the generalized Pareto distribution is known as the Pareto “Type II” 

distribution; 

 

when the generalized Pareto distribution corresponds to the Exponential 

distribution; 

 

when  is probably the most important for operational risk data, because the 

generalized Pareto distribution takes the form of the ordinary Pareto distribution with 

tail index  and indicates the presence of heavy-tail data. 

 

 

The role of the GPD in EVT is as a natural model for the excess distribution over a 

high threshold. We define this concept along with the mean excess function, which will also 

play an important role in the theory. 

 

There are various alternative ways of describing this model. It might also be called a 

marked Poisson point process, where the exceedance times constitute the points and the GPD-

distributed excesses are the marks. It can also be described as a (non-homogeneous) two-

dimensional Poisson point process, where points  in two-dimensional space record times 

and magnitudes of exceedances 

 

The basic result underlying the POT method is that the marked point process of 

excesses over a high threshold , under fairly general (though very precise) conditions, can be 

well approximated by a compound Poisson process: 

 

 

 

where  iid have a generalized Pareto distribution and  denotes the number of 

exceedances of  by . The exceedances of  form (in the limit) a homogeneous Poisson 

process and both are independent. 
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2 Operational risk 
 

This Chapter is based on [DIK08], [ECB04], [EKM97], [EFMcN05], [Mos04]. 

 

The actuarial community working on Solvency 2 so far defied a precise definition, and as 

a consequence a detailed quantitative capital measurement for operational risk. The situation 

in the banking world is very different indeed, not only did Basel II settle on a precise 

definition. 

“Operational risk is defined as the risk of loss resulting from inadequate or failed internal 

processes, people and systems or from external events. This definition includes legal risk, but 

excludes strategic and reputational risk.” (BCBS128) 

 

In consultative document on the New Basel Capital Accord (also referred to as Basel II or 

the Accord), the Basel Committee for Banking Supervision continues its drive to increase 

market stability in the realms of market risk, credit risk and, most recently, operational risk. 

The approach is based on a three pillar concept where Pillar 1 corresponds to a Minimal 

Capital Requirement, Pillar 2 stands for a Supervisory Review Process and finally Pillar 3 

concerns Market Discipline. Applied to credit and operational risk, within Pillar 1, 

quantitative modeling techniques play a fundamental role, especially for those banks opting 

for an advanced, internal measurement approach. 

 

The framework outlined below presents three methods for calculating operational risk 

capital charges in a continuum of increasing sophistication and risk sensitivity: 

 the Basic Indicator Approach (BIA); 

 the Standardized Approach (SA); 

 Advanced Measurement Approaches (AMA). 

 

2.1 The Basic Indicator Approach 

 

The Basic Indicator Approach and the Standardized Approach are two elementary 

approaches to operational risk measurement. Under the Basic Indicator Approach, banks must 

hold capital for operational risk equal to the average over the previous three years of a fixed 

percentage (denoted by α) of positive annual Gross Income (GI). Figures for any year in 

which annual gross income is negative or zero, should be excluded from both the numerator 

and denominator when calculating the average. Hence the risk capital under the Basic 

Indicator Approach for operational risk in year t is given by 

 

 

 

where 

 

 

and  stands for Gross Income year  ( See [EFMcN05] ). 

An operational risk-capital charge is calculated on a yearly basis. The Basic Indicator 

Approach gives a fairly straightforward, volume-based, one-size-fits-all capital charge. Based 

on the various Quantitative Impact Studies, the Basel Committee suggests that α = 15%. 
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2.2 The Standardized Approach 

 

Under the Standardized Approach, banks’ activities are divided into eight business lines: 

 

1. corporate finance; 

2. trading & sales; 

3. retail banking; 

4. commercial banking; 

5. payment & settlement; 

6. agency services; 

7. asset management; 

8. retail brokerage. 

 

Precise definitions of these business lines are to be found in the Basel Committee’s 

final document (Basel Committee on Banking Supervision 2004).Within each business line, 

gross income is a broad indicator that serves as a proxy for the scale of business operations 

and thus the likely scale of operational risk exposure. The capital charge for each business 

line is calculated by multiplying gross income by a factor (denoted by ) assigned to that 

business line. The total capital charge is calculated as a three-year average over positive gross 

incomes, resulting in the following capital charge formula: 

 

 

 

Here in any given year , negative capital charges (resulting from negative gross income) 

in some business line j may offset positive capital charges in other business lines (albeit at the 

discretion of the national supervisor). This kind of “netting” should induce banks to go from 

the basic indicator to the standardized approach. 

 

 

2.3 Advanced Measurement Approach 

 

Under an Advanced Measurement Approach, the role of insurance in mitigating 

operational risk is recognized and the regulatory capital is determined by a bank’s own 

internal risk-measurement system according to a number of quantitative and qualitative 

criteria set forth in documentation produced by the Basel Committee (Basel Committee on 

Banking Supervision 2004). The Advanced Measurement Approach lays down general 

guidelines. In the words of the Basel Committee (Basel Committee on Banking Supervision 

2004): 

 

“Given the continuing evolution of analytical approaches for operational risk, the 

Committee is not specifying the approach or distributional assumptions used to 

generate the operational risk measure for regulatory capital purposes. However, a bank 

must be able to demonstrate that its approach captures potentially severe “tail” loss 

events. Whatever approach is used, a bank must demonstrate that its operational risk 

measure meets a soundness standard comparable to that of the internal ratings-based 

approach for credit risk (comparable to a one year holding period and the 99.9 percent 

confidence interval).” 
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In an Advanced Measurement Approach, operational losses should be categorized 

according to the eight business lines mentioned in Standardized Approach as well as the 

following seven loss-event types: 

 internal fraud; 

 external fraud; 

 employment practices & workplace safety; 

 clients, products & business practices; 

 damage to physical assets; 

 business disruption & system failures; 

 execution, delivery & process management. 

 

Banks are expected to gather internal data on repetitive, high-frequency losses (three to 

five years of data), as well as relevant external data on non-repetitive low-frequency losses. 

Moreover, they must add stress scenarios both at the level of loss severity (parameter shocks 

to model parameters) and correlation between loss types. In the absence of detailed joint 

models for different loss types, risk measures for the aggregate loss should be calculated by 

summing across the different loss categories. In general, both so-called expected and 

unexpected losses should be taken into account (i.e. risk-measure estimates cannot be reduced 

by subtraction of an expected loss amount). 

 

 

Skeletal version of a typical Advanced Measurement solution for the calculation of 

an operational risk charge for year : 

 

Assume that historical loss data from previous years have been collected in a data 

warehouse with the structure 

 

 

 

where  stands for the -th loss of type  for business line  in year ;  is the 

number of such losses ( See [FEMcN05] ). Thresholds may be imposed for each  

category and small losses less than the threshold may be neglected; a threshold is typically of 

the order of €10 000. 

 

The total historical loss amount for business line b in year  is obviously 

 

 

 

and the total loss amount for year  is 

 

 

 

The problem in the Advanced Measurement Approach is to use the loss data to estimate 

the distribution of  for year  and to calculate risk measures such as  or expected 

shortfall for the estimated distribution. The joint distributional structure of the losses for any 
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given year is generally unknown, we would typically resort to simple aggregation of risk 

measures across loss categories to obtain a formula of the form 

 

 

 

where  is the regulatory capital and  the risk measure at a confidence level . 

 

When  and , then a capital charge under the Advanced 

Measurement Approach requires the calculation of a quantity of the type: 

 

 

 

where  is some sequence of loss severities and  is an random variable describing the 

frequency with which operational losses occur. 

 

Exploratory data analysis reveals the following stylized facts (confirmed in several 

other studies): 

 

• loss severities have a heavy-tailed distribution; 

• losses occur randomly in time; 

• loss frequency may vary substantially over time. 

 

The several classes of loss may have a considerable cyclical component and/or may depend 

on changing economic co-variables. 

 

The Advanced Measurement Approach focuses on using internal and external loss 

data, among other techniques, and is often referred to as the Loss Distribution Approach 

(LDA). There are several examples of works under the Loss Distribution Approach. 

 

Loss Distribution Approach methods are becoming important for internal risk 

modeling purposes and at Basel-defined business line and event type level modeling in order 

to improve the stability of the financial services industry. 

Loss Distribution Approach methods are flexible and could be used within the whole financial 

industry sector, by central and commercial banks, insurance companies and supervisory 

bodies. No doubt, a great potential for developing such methods lies within the paradigm of 

ruin theory as has already been noted by Embrechts et al. (2004).  

 

Reference and works under the Loss Distribution Approach: 

 

the common Poisson shock models: 

• [EVMNAF01] 

• [EVMNAF02] 

• [B04] 

 

the ruin probability based models: 

• [EKS04] 

• [ES03] 
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A more recent paper, considering the effect of insurance on setting the capital charge 

for operational risk is that of [BCPS06]. 

 

The LDA approach has recently been used by Dutta and Perry, who have considered 

fitting appropriate loss distributions to operational loss data under the 2004 Loss Data 

Collection Exercise (LDCE) and the Quantitative Impact Study 4 [DP06]. 

 

 

 

Methods for Advanced Measurement Approach, which we discuss in the next chapter,  are: 

 Ruin theory in operational risk 

 EVT in operational risk 
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3 Methods for Advanced Management Approach 
 

3.1 Extrem Value Theory in Operational risk 
 

The key attraction of EVT is that it offers a set of ready-made approaches to the most 

difficult problem in operational risk analysis: how can risks that are both extreme, and 

extremely rare, be modeled appropriately? But applying EVT to financial institution 

operational risk raises some difficult issues. Some of these arise from the nature of the data 

that is available to analysts. Others relate to the purpose of any operational risk analysis, the 

definition of an “extreme” event, and the meaning of the term operational risk. [M01] 

 

In fact, operational risk data appear to be characterized by two “souls”: the first one, 

driven by high-frequency low impact events, constitutes the body of the distribution and 

refers to expected losses; the second one, driven by low-frequency high-impact events, 

constitutes the tail of the distribution and refers to unexpected losses. In practice, the body and 

the tail of data do not necessarily belong to the same, underlying, distribution or even to 

distributions belonging to the same family. More often their behavior is so different that it is 

hard to identify a unique traditional model that can at the same time describe, in an accurate 

way, the two “souls” of data. [Mos04] 

 

The need for clarification of the new Basel alternative operational risk quantification is 

obvious. The complexity of the originating causes of operational risk, the “rare event” nature 

of significant losses and the desire to integrate operational risk capital provision with that for 

market and credit risks all lead us to capital allocation rules based on results from extreme 

value theory. Application of EVT to operational risk modeling serves as the principal 

objective of regulation: 

 

“A real concern of supervisors is the low-probability, high-severity event that can produce 

losses large enough to threaten a financial institution’s health". [M01] 

 

Consequently, in all the cases in which the tail tends “to speaks for itself”, EVT 

appears to be an useful inferential instrument with which to investigate the large losses, owing 

to its double property of focusing the analysis only on the tail area (hence reducing the 

disturbance effect of the small/medium-sized data) and treating the large losses by an 

approach as scientific as the one driven by the Central Limit Theorem for the analysis of the 

high-frequency low-impact losses. Unlike traditional methods, EVT does not require 

particular assumptions on the nature of the original underlying distribution of all the 

observations, which is generally unknown. EVT is applied to real data in two related ways. 

The first approach deals with the maximum (or minimum) values the variable takes in 

successive periods, for example months or years. The second approach to EVT is the Peaks 

Over Threshold (POT) method, tailored for the analysis of data bigger than preset high 

thresholds. [Mos04] 

 

On the basis of the POT tail severity and frequency estimates, an aggregate figure for 

each business line and for the eight business lines as a whole is computed by means a semi 

parametric approach. The POT approach appears to be a viable solution to reduce the estimate 

error and the computational costs related to the not analytical techniques, like the Monte Carlo 

simulation, usually implemented in the financial industry to reproduce the highest percentiles 

of the aggregate loss distribution. The findings clearly indicate that operational losses 
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represent a significant source of risk for banks, given a 1-year period capital charge against 

expected plus unexpected losses at the 99.9th percentile. 

 

The advantage of the POT approach in the estimate of the tail of the aggregated losses 

therefore appears directly connected to the two following properties: 

 

1. the POT method takes into consideration the (unknown) relationship between the 

frequency and the severity of large losses up to the end of the distribution; 

 

2. the POT method makes it possible to employ a semi parametric approach to compute 

the highest percentiles of the aggregated losses, hence reducing the computational cost 

and the estimate error related to a not analytical representation of the aggregated losses 

themselves. In the POT model, it suffices to select a suitable (high) threshold, on 

which basis the model can be built and the relevant parameters estimated. Once the 

model is correctly calibrated, the total losses (and their percentiles) are easily 

obtainable by proper analytical expressions. [Mos04] 

 

The estimation of the parameters of the POT model is usually based on the maximum 

likelihood method, which requires a relatively large number of observations above the 

threshold (e.g., more than 100). But operational risk data sets are not homogeneous and are 

often classified into several subsamples, each associated with a different risk factor or 

business unit. It might be more realistic to think in terms of 20 or 30 excesses. [MK01] 

 

The conventional maximum likelihood (ML) estimation method performs unstably when 

it is applied to small or even moderate sample sizes, i.e. less than fifty observations. Bayesian 

simulation methods for parameter estimates allow one to overcome problems associated with 

lack of data through intensive computation. [MK01] 

 

 

 

To justify the modeling of operational risk using EVT, many obstacles must be overcome. 

But not all the obstacles are technical in nature. Many are caused by the fact that operational 

risk continues to be ill-defined for the purpose of calculating risk capital. [Med00] 

 

For example, one might ask how any approaches to operational risk using extreme value 

theory relate to definitions of “normality” and the problem of internal bank controls and 

external supervision? More topically, how does EVT relate to the Basel Committee on 

Banking Supervision’s present proposals for controlling operational risk? The Committee has 

attempted to clarify the complex issues of risk management by adopting a “three – pillared” 

approach. The first pillar concerns capital allocation, the second supervision and controls, and 

the third transparency and consistency of risk management procedures. What is the relation of 

EVT to these three pillars – most problematically, the second and third pillars? Another 

problem is that, while risk capital is generally understood as a way of protecting a bank 

against “unexpected” losses – expected losses are covered by business-level reserves – it is 

not clear to what degree it is used to cover the most extreme risks. Some practitioners and 

regulators have made it clear that they do not intend to include the risk of the most extreme 

losses in their calculations of either economic risk capital or regulatory risk capital. So in 

what way is extreme value theory useful in measuring operational risk? Lastly, how can an 

analyst deal with market and credit risk management without double counting? Some 

framework that identifies the roles of credit, market, and other risks must be constructed. 
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The first step in operational risk management should be a careful analysis of all available 

data to identify the statistical patterns of losses related to identifiable primal and secondary 

risk factors. 

 

Ideally, this analysis would form part of the financial surveillance system for the bank. In 

the future, perhaps such an analysis might also form part of the duties of bank supervisors. In 

other words, at a conceptual level, it relates to the second of the Basel Committee’s three 

pillars. Here, the important point for analysts is that this surveillance is concerned with the 

identification of the “normality” of business processes. The identification of suitable of 

market and credit risk models also forms a natural part of this operational risk assessment. 

 

Such an analysis should allow an analyst to classify banks losses into two categories: 

1. significant in value but rare, corresponding to extreme loss events distributions; 

2. low value but frequently occurring corresponding to “normal” loss event distributions. 

 

Next, we might take the view that controls procedures will be developed for the reduction 

of the low value/frequent losses, and for their illumination and disclosure (the third pillar of 

the Basel approach). 

 

These control procedures, and any continuing expected level of loss, should be accounted 

for in the operational budget. This allows us to assume that only losses of large magnitude 

need be considered for operational risk economic capital provision. [Med00] 
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3.2 Ruin theory in operational risk 
 

A new methodology for modeling operational risk based on risk and ruin theory. 

 

 

 

 

 

 

 

 

 

 

Ruin theory may be viewed as the theoretical foundation of insolvency risk modeling. 

Under the classical ruin theory model, the (premium) income to an (insurance) company is 

modeled by a straight line 

, 

 

where  is the company's initial risk capital at time  and  is the premium income per 

unit of time, received by the company. 

 

Embrechts et al. (2004) proposed to take an actuarial point of view and directly apply 

the (classical) ruin probability model to the context of operational risk, under the LDA (Loss 

Distribution Approach) approach. Thus, the random variables ,  in model  

 

 

 

are viewed as representing operational risk losses and the aggregate loss amount, , due to 

different types of operational risk, is expressed as a superposition of the risk processes, 

corresponding to each type of risk. The rate  is seen "as a premium rate paid to an external 

insurer for taking (part of) the operational risk losses or as a rate paid to (or accounted for by) 

a bank internal office". In order to reserve against operational risk, it is proposed to set the 

initial capital  and the income rate  in such a way that it satisfies the equation 

 

 

 

where the probability of ruin, , over a finite time interval, ,  is set to 

a pre-assigned appropriate (small) value . As noted, if the time interval is of length  

and , the risk capital  is equal to the operational value at risk at significance level of  

i.e., 

 
 

which is another popular risk measure considered in defining the capital charge for 

operational risk. Although Embrechts et al. (2004) extend the applicability of the classical 

ruin probability model; the following major limitations may still be outlined: 

 

 the function  is represented by a straight line, which is a simple but not a realistic 

assumption for the premium income; 

Ruin theory Operational risk 

Claims 

Claim frequency 

Claim size 

Risk capital accumulation 

Operational losses 

Operational frequency 

Loss severity 

Premium income 
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 the losses, ,  are assumed independent and identically distributed which 

is also a restrictive assumption, not expected to hold for operational risk losses; 

 the ruin probability estimates quoted are asymptotic approximations, i.e., for ruin on 

infinity, and as mentioned by the authors, "are not fine enough for accurate numerical 

approximations" and their numerical properties are "far less satisfactory", since these 

estimates are in an integral form. 

 

A more general ruin probability model [IK00] assumes 

 

 any non-decreasing (premium) income function  as an alternative to the classical 

straight line case; 

 any joint distribution of the losses , , allowing dependency between the 

loss amounts, as an alternative to the i.i.d. classical assumption; 

 finite time ruin probabilities, as an alternative to the asymptotic approximations of 

infinite time ruin probabilities. 
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4 Ruin probability for finite horizon 

 
4.1 Kaishev Dimitrov formula 

 

4.1.1 Discrete claim distribution 
 

Let as consider the counting process , where # in the right-

hand side denotes the number of elements in the set , and  are independent, 

exponentially distributed random variables with mean , i.e.,            

 for  and  for  . 

 

Consider the integer valued random variables  are independent of . The 

joint distribution of  denoted by , where 

 . Then the risk reserve process of an insurance 

company is 

, 

 

where  is a function, representing the premium income and  is the aggregate loss 

amount at time t, defined as 

 

 

We will assume, that  is a non-negative, increasing, real function, defined on  and 

such that 

 

 

The function  may be continuous or not. If the  is discontinuous we will assume that  

 

 
 

We will denote , for . We observe   . 

 

Under the classical ruin theory model, the (premium) income of an (insurance) company is 

modeled by a straight line 

 

 
 

where  is the company’s initial risk capital at time  and  is the premium 

income per unit of time. 

 

The time of ruin  is defined as 

 

 
 

In other words the instant of ruin  is the time in which the trajectory  of first crosses 

the boundary  (disregarding the origin, when ). 
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The probability  called the infinite-time probability of ruin of the company. 

In other word, this is the probability that the risk process  will become negative in some 

future moment, within an infinite time horizon. 

 

 

 

where value  and the probability of ruin  in a finite time interval , 

 
 

We will be interested in the probability of non-ruin (survival), i.e.,  in a finite 

time interval , . [IKK01] have shown, that if  – discrete, than the probability of 

non-ruin in a finite time  is 

 

 

 

 

 

where ,  is the integer part of , , where  is 

such that 

 

, , , 

 

,  and 

 

 

 

, 

 

 

with , , . 

 

 

The non-ruin probability on the left-hand side can be rewritten as: 
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4.1.2 Continuous claim distribution 
 

Let the random variables have a joint distribution for which 

 

, 

 

i.e. let the joint density of  have the form 

 

 

 

where  when  

and where 

 

 

 

Introduce that the sequence of random variables , , … which represent 

the consecutive moments of arrival of claims to an insurance company. The Severities of the 

claims will correspondingly be represented by the ransom variables , , … . Assume that 

the claim severities are related to the random variables , , … through the equalities 

, , , … , in other words, , , … can be viewed as the 

partial sums of the consecutive claim amounts. The joint density  of the random 

variables , , …  can be expressed as 

 

 
 

or as 

 

 
 

 

[IK04] have shown, when claims have any continuous joint distribution, than the 

probability of non-ruin within a finite time  has representation: 
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where  and  are the classical Appell polynomials 

 of degree  with a coefficient in front of  equal to  . These polynomials are defined 

by 

 

, 

, 

. 

 

 

 

 

Proof: 

 

The risk process at time  is given by 

 

 
 

with  

 

 

The partial sums of consecutive claims is 

 

 

Cause on the number of claims the probability of non-ruin represent with 

 

 

 

We know that: 

 
 

 

 

 

If up to time  occur exactly  claims, when  is valid exactly then when 
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This equivalent 

 
 

Obviously  

 
 

hence equivalent 

 

 
 

and almost surely 

 
 

And so 

 

 
 

 

The  are assumed to be independent of  and  and thus it follows: 

 

 

 

 

 

 

The joint density of random variables  is  

 

 

 

Therefore 
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We can write: 

 

 
 

 

 

 

 

 

 

 

Let 

 

 

then 

 

 

And it follows that 

  

 
 

. 

 

Also we can rewrite the probability of non-ruin as: 
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 Appell Polynomials 

 

A polynomial sequence  has a generalized Appell representation if the generating 

function for the polynomials takes on a certain form: 

 

 

 

where the generating function or kernel  is composed of the series 

 

 

 

 

 

 

 

and  is a polynomial of degree . 

 

 

The generalized Appell polynomials have the explicit representation 

 

 

 

The constant is 

 

 

 

where this sum extends over all partitions of  into  parts; that is, the sum extends over 

all . 

 

For the Appell polynomials, this becomes the formula 
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4.2  Picard – Lefévre Formula 
 

( See [PK97] ) 

 

The family of polynomials  is defined by formal generating function: 

 

 

 

where 

 

 

Then we define the operator  by 

 

 

 

The powers of  being built recursively from , , with  as the identity 

operator. 

 

Clearly  is a polynomial of degree n, , ,  and 

, respectively to the operator , is e family of generalized Appell polynomials. 

 

 

General  

 

When : 

 

where polynomial’s  are given by 

 

when . 

 

But this can be also calculated by the formula  

 

 

for  and the  ’s are built recursively from  
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 being a polynomial of degree  defined for any , and we shall keep the two conditions 

 

 
 

and 

 

 

which together determine the ’s uniquely. 

 

 

 

 

 

The linear boundary case 
 

Let us examine the special case of a constant premium rate . Here thus  

 

, 

and 

 

 
 

 

 

In the linear case 

 

 

 

 

The two simple cases of this formula are worth noticing: 

 

when  

 

 

 

when  
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and 

 

 

 

 

 

 

where  is the integer part of . 

 

 

 

When  

 

 

 

 

When  
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5 Numerical Illustration 
 

 

In this section we consider three alternative distributions of the consecutive losses. 

 

We discuss interarrival times , which are i.i.d.  for all illustrations. Thus the 

number of losses  in is . 

 

Then the Expected value and Variance of  are given by 

 

 
 

 
 

 

For  und , we have: 

 

,   

 

and plus/minus three standard derivatives 

 

 

 

 

 

Typically  losses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 
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5.1 Logarithmic i.i.d. losses. 
 

Assume, that operational risk losses have logarithmic distribution. 

 

If losses are  and , then 

 

,   

 

and 

 

 

 

 

 

Thus typically losses of size 1,2,..,8. 

 

A set of operational losses arriving in the interval  with inter-arrival times 

distributed as  and with severities simulated from the  distribution are 

presented in the Fig. .  and  

 

 

We have two Methods to simulate losses. 

 

In Method I we have simulated operational loss data, where the number of losses had 

Poisson distribution and in Method II we have simulated with exponential distribution for 

interarrival time. 

 

We use the same simulation methods for all examples and change only the claim distribution. 
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Method I with Poisson Distribution 

 

 

fn="log.nb"; Remove["Global`*"]; 

(* Figure 1a *) 

(* SeedRandom[1234]; *) 

la=20.; al=0.73; x=2.; 

nx=RandomInteger[PoissonDistribution[la*x]] 

t=Sort[RandomReal[{0,x}, nx]] 

w=RandomInteger[LogSeriesDistribution[al], nx] 
ListPlot[Table[{t[[k]], w[[k]]}, {k,1,nx}],Filling Axis, PlotRange  {{0,2}, {0,11}}] 
 

 
 
{0.00839501, 0.0646646, 0.101015, 0.116138, 0.11776, 0.177927, 0.207163, 

  0.232146, 0.235277, 0.345728, 0.346841, 0.35419, 0.368867, 0.370268, 

  0.435546, 0.441798, 0.446491, 0.499636, 0.526316, 0.571584, 0.638295, 

  0.796619, 0.820702, 0.845062, 0.849002, 0.850851, 0.893697, 0.904163, 

  0.962739, 0.973639, 1.01526, 1.15179, 1.16659, 1.20285, 1.21865, 1.2348, 

  1.24104, 1.30498, 1.36861, 1.48231, 1.52011, 1.52192, 1.5516, 1.60997, 

  1.61405, 1.64038, 1.6572, 1.72499, 1.80092, 1.87666, 1.87803, 1.93877, 1.94443, 

  1.95511, 1.99264} 
 
{1,7,1,1,1,1,1,1,7,1,8,1,1,1,4,1, 

  1,1,1,1,1,1,1,3,2,2,1,2,1,1,1,1,1,3,1, 

  3,1,7,1,5,2,1,3,4,1,1,4,1,1,1,1,4,1,1,2} 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1a: simulated operational  losses 
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Method II with Exponential Distribution 

 

 

fn="log.nb";Remove["Global`*"]; 

(* Figure 1a *) 

(* SeedRandom {1234]; *) 

la=20.; al=0.73; 

For[n=0; t[0]=0, t[n] 2, n++; 

  t[n]=t[n-1]+RandomReal[ExponentialDistribution[la]]; 

  w[n]=RandomInteger[LogSeriesDistribution[al]] 

  ]; 
ListPlot[Table[{t[k], w[k]}, {k, 1, n – 1}], Filling Axis, PlotRange {{0, 2},{0, 11}}] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1a: simulated operational  losses 

 

 

Fig 1b: initial capital  for choices  of equal to 

90%,95%, 99%, 99,5% and 99,9% 
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fn = "fig1b.nb"; Remove["Global`*"]; 

(*Picard and Lefévre*) 

c = 25; 

x = 2; 

al = 73/100; 

la = 20; 

rh = −1 / Log[1 – al]; 

e[ n_, z_ ] = Binomial[−la * rh * z, n]*( −al ) ^ n; 

pr[ u_ ] := Exp[−la * x] * 

Sum[e[j, x] + Sum[e[j, (j – u) / c]*(u + c*x–n) / (u + c*x – j)*e[n − j, x + (u–j) / c], 

n, Floor[u] + 1, Floor[u + c *x]}],{j, 0, Floor[u]}]; 

ep = {0.1, 0.05, 0.01, 0.005, 0.001}; 

(*preassigned small epsilon*) 

tmp = Table[{N[N[pr[u], 40]], u}, {u, 50, 100}] 

 
{{0.815784, 50}, {0.829467, 51}, {0.842396, 52}, {0.854587, 53}, {0.866055, 54}, 

  {0.876819, 55},{0.8869, 56}, {0.896322, 57}, {0.905108, 58}, {0.913285, 59}, {0.920881, 60}, 

  {0.927921, 61}, {0.934434, 62}, {0.940447, 63}, {0.94599, 64}, {0.951088, 65}, {0.955769, 66}, 

  {0.960059, 67},{0.963984, 68}, {0.96757, 69}, {0.970838, 70}, {0.973813, 71}, {0.976517, 72}, 

  {0.978969, 73}, {0.981191, 74}, {0.983199, 75}, {0.985013, 76}, {0.986648, 77}, {0.98812, 78}, 

  {0.989443, 79}, {0.99063, 80}, {0.991693, 81}, {0.992645, 82}, {0.993496, 83}, {0.994255, 84}, 

  {0.994931, 85}, {0.995533, 86}, {0.996068, 87}, {0.996543, 88}, {0.996964, 89}, {0.997337, 90}, 

  {0.997666, 91}, {0.997957, 92}, {0.998214, 93}, {0.99844, 94}, {0.998638, 95}, {0.998813, 96}, 

  {0.998966, 97}, {0.999101, 98}, {0.999219, 99}, {0.999322, 100}} 

 

ip = Interpolation[tmp] (*interpolation*) 
 

InterpolatingFunction[{{0.815784, 0.999322}}, < >] 

 

res = Table[{1 – ep[[i]], ip[1 – ep[[i]]]}, {i, 1, 5}] 

 
{{0.9, 57.41}, {0.95, 64.7793}, {0.99, 79.4559}, {0.995, 85.108}, {0.999, 97.2371}} 

 

(*Fig 1b*) 

 

ListLinePlot[res, PlotRange  {{0.895, 1.0025}, {55, 103.5}}, 

AxesOrigin  {0.895, 55}, PlotMarkers  {" ", Medium}, AxesLabel  "u"] 
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In the Fig 1b, for  

 
 

we have presented values of the initial capital  for different choices of the probability of 

survival , for fixed value of the rate . 

 

In particular,  is achieved for . The same 

probability 0.99 can be achieved by alternative choices of the capital accumulation 

function . Assumed that  belongs to the subclass of all piecewise linear functions on 

, with one jump of size J , at some instant , that is: 

 

 

 

 

 

We have two choices of : 

 

 Without jump 

 

 
and 

 

 With jump 

 

 

 

(See Fig 2a) 

 

Now, move the location  of the jump  from  to  and keep the rest of 

the parameters fixed. (Fig 2b). A maximum of  is achieved for . 

Indeed, both functions  and  provide equal chances of survival, 99% and also, 

accumulate equal risk capital at the end of the time interval , that is 

. But the choice  is obviously preferable since it requires less capital, , 

to be put aside initially, compared to  for the choice . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the calculation of  with capital accumulation function  we need 

1. . 

 

We know from  what  

 

d 

 

 

 

 

Let , then . 

 

Also  

 , for . 

 

 

Let , then  

 

  

 

 

If , then 

 

 

 

 

(See Table 1.) 

 

 

Fig.2a: The capital accumulation function  
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Also, , where  

 

 

 

Let . Here we have a jump  

 

  

  

 

Also   

          
 

 

Let , then 

 

  

 . 

 

Also    

         
 

 

2.  calculation according  for  is given as: 

 

 

 

 

 

 

where ,  and 

 

 

 

 

 

 

For  and , we have 

 

 
and 
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3.  calculation according  

4.  calculation according  

 

 

The calculation of  and  are given in text. 

 

 

Here, we give the solution with Mathematica for calculating of Floors up to time 0, 1, 

and 2 for Fig 2a. For Fig 2b we have used Picard-Lefévre Formula. 
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fn="fig2a.nb"; Remove["Global`*"]; 

u=59.4; 

x=2.0; 

J=20.0; 

c1=27.0; 

s1=23.0; 

tj=1.0; 

 

(* Computation of v[n] *) 

n0=Floor[u] 
59 

 

Table [v[n]=0, {n,0,n0} 
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 

 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 

 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 

 

n1=Floor[u+c1*tj] 
86 

 

Table [v[n]=(n-u)/c1, {n,n0+1,n1} 

 
{0.0222222, 0.0592593, 0.0962963, 0.133333, 0.17037, 0.207407, 0.244444, 

  0.281481, 0.318519, 0.355556, 0.392593, 0.42963, 0.466667, 0.503704, 

  0.540741, 0.577778, 0.614815, 0.651852, 0.688889, 0.725926, 0.762963, 

  0.8, 0.837037, 0.874074, 0.911111, 0.948148, 0.985185} 

 

n2=Floor[u+c1*tj+J] 
106 

 

Table [v[n]=tj, {n,n1+1,n2}] 
{1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.} 

 

n3=Floor[u+c1*tj+J+s1*(x-tj)] 
129 

 

Table [v[n]=(n-u-c1*tj-J)/s1+tj, {n,n2+1,n3}] 

 
{1.02609, 1.06957, 1.11304, 1.15652, 1.2, 1.24348, 1.28696, 1.33043,  

  1.37391, 1.41739, 1.46087, 1.50435, 1.54783, 1.5913, 1.63478, 1.6782, 

  1.72174, 1.76522, 1.8087, 1.85217, 1.89565, 1.93913, 1.98261} 

 

ListPlot[Table [{v[n],n}, {n,0,n3}]] 
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fn = " fig2b.nb"; Remove["Global`*"]; 

(* Picard and Lefévre *) 

u = SetPrecision[594/10, 80] 

c1 = 27; 

jj = 20; 

s1 = 23; 

x = 2; 

 

59.4000000000000000000000000000000000000000000000000000000000000000000000000

00000 

 

al = SetPrecision[73/100, 80]; 

la = 20; 

 

rh = −1/Log[1 – al]; 

e[n_, z_] = Binomial[−la * rh * z, n] * (−al)^n; 

 

h2[t_, tj_] := If[t < tj, u + c1 * t, u + c1 * tj + jj + s1 * (t – tj)] 

 

pr[tj_] := Module[ 

{n0, n1, n2, n3, v, b, a}, 

n0 = Floor[u]; 

n1 = Floor[u + c1 * tj]; 

n2 = Floor[u + c1 * tj + jj]; 

n3 = Floor[u + c1 * tj + jj + s1 * (x – tj)]; 

; 

Table[v[n] = 0, {n, 0, n0}]; 

Table[v[n] = (n – u)/c1, {n, n0 + 1, n1}]; 

Table[v[n] = tj, {n, n1 + 1, n2}]; 

Table[v[n] = tj + (n − u − c1 * tj – jj) / s1, {n, n2 + 1, n3 + 1}]; 

; 

b[n_] := b[n] = If[n == 0, 1, −Sum[b[i] * e[n − i, v[n]], {i, 0, n – 1}]]; 

; 

Table[a[n] = Sum[b[i] * e[n − i, x], {i, 0, n}], {n, 0, n3 + 1}]; 

; 

Exp[−la _ x] * Sum[a[n], {n, 0, n3}] 

]; 

 

ll = Table[SetPrecision[k / 10, 80], {k, 0, 20}]; 

 

pr[ll[[1]]] 
0.98445307785074882959902622467450405796183123662717 

 

tmp = Table[{ll[[i]], pr[ll[i]]]}, {i, 1, 21}]; 

 

N[tmp] 

{{0., 0.984453}, {0.1, 0.985095}, {0.2, 0.985775}, {0.3, 0.986453}, {0.4, 0.986944}, 

  {0.5, 0.987654}, {0.6, 0.988158}, {0.7, 0.988667}, {0.8, 0.989117}, {0.9, 0.98932}, 

  {1., 0.989522}, {1.1, 0.989263}, {1.2, 0.988602}, {1.3, 0.987314}, {1.4, 0.98502}, 

  {1.5, 0.981691}, {1.6, 0.977023}, {1.7, 0.970701}, {1.8, 0.962476}, {1.9, 0.952905}, 

  {2., 0.941531}} 
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plt1 = ListPlot[tmp]; 

 

plt2 = ListLinePlot[{{1.0, 0}, {tmp[[11, 1]], tmp[[11, 2]]}}]; 

 

Show[plt1, plt2] 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2b: as a function of jump in  
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5.2  Exponential i.i.d. losses. 
 

The severities of the consecutive risk losses ,  are assumed i.i.d. following 

, so that their mean mathes the mean of the 2002 LDCE data. 

Also the Expected Value and Variance of an exponentially distributed random variable 

 with rate parameter  are given by 

 

 

 

 

 

And 

 

 

 

 

 

 

Now, we performed the simulation of exponential operational losses, where the 

number of losses had Poisson distribution. 
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fn = "fig3.nb"; Remove["Global`*"]; 

la = 20.0; 

be = 0.5; 

x = 2.0; 

nx = RandomInteger[PoissonDistribution[la*x]] 

 

37 

 

t = Sort[RandomReal[{0, x}, nx]] 

 

{0.251113, 0.272001, 0.346121, 0.429404, 0.430883, 0.447037, 0.495517, 0.53443, 

  0.562677, 0.607895, 0.656842, 0.678083, 0.680966, 0.691327, 0.693063, 0.739811, 

  0.838745, 0.878367, 0.886294, 0.888972, 1.03823, 1.04278, 1.11817, 1.2166, 1.25536, 

  1.3035, 1.32231, 1.32929, 1.35001, 1.47228, 1.62822, 1.74475, 1.83042, 1.85391, 1.86735, 

  1.87441, 1.96648} 

 

w = RandomReal[ExponentialDistribution[be], nx] 

 

{1.15821, 0.824682, 0.0109363, 0.0419599, 2.41516, 1.07307, 6.90254, 

  1.57801, 0.811676, 1.46206, 1.46109, 2.64482, 0.609949, 0.649267, 

  0.155679, 0.134245, 0.233637, 5.2117, 0.484376, 0.946768, 1.19508, 

  1.99953, 3.36536, 9.95494, 1.00209, 1.26196, 4.12289, 2.29586, 0.566376, 

  0.0723781, 0.17224, 5.45774, 1.95689, 0.709713, 1.02519, 1.71098, 0.0492167} 

 

ListPlot[Table[{t[[k]], w[[k]]}, {k, 1, nx}], Filling  Axis, PlotRange  {{0, 2}, {0, 12}}] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: simulated operational  losses 
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We can evaluate the example with i.i.d.  losses with the formulae of Seal [G79]. 

 

 
 

where  the initial surplus. 

 

The losses are  with distribution function 

 

 
 

with density 

 

 
 

for . 

 

Distribution function of the risk process is given by 

 

 

 

 

We know that  for  and  

 

 

 

where 

 

 

 

is a distribution function of . 

 

When then we have not losses. 

 

So 

 

 

 

is 
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If  is replaces by , then  

 

 

 

 

Now consider the case of a positive initial surplus of . If the claim is absolutely 

continuous, this means that 

 

 

 

 

 

 

 

 

 

 

 

 

 

For  and  we have inverse function  (See Table 2) 

 

Instead of Newton Algorithm we use interpolation for  
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Fig 4 illustrate the value of the initial capital charge , given  

and Poisson inter-arrival times . As can be seen , in order to achieve survival 

probability  the capital charge  in the case of i.i.d.  

assuming dependence. Furthermore, if a probability of  is to be achieved 

the corresponding values are  for i.i.d. losses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here we present the solution, where we have used Bessel formula and for calculating 

of survival probabilities  and  we use the Seal formula and interpolation instead 

to Newton-Algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4: initial capital  for choices  of equal to 

 90%,95%, 99%, 99,5% and 99,9% in the case of i.i.d. 

 losses 

u, for choices of PT 2equal to 90%, 95%, 99%, 99.5% and 

99.9% in the case of i.i.d. 

Exp(0.5) losses, htu 25 t, i Exp20u, for choices of 

PT 2equal to 90%, 95%, 99%, 99.5% and 99.9% in the 

case of i.i.d. 

Exp(0.5) losses, htu 25 t, i Exp20 
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fn="exp.nb"; Remove["Global`*"]; 

c=25; (* premium rate *) 

la=20; (* jump intensity lambda *) 

be=0.5; (* parameter beta for exponential losses *) 

ep={ 0.1, 0.05, 0.01, 0.005, 0.001 }; (* preassigned small epsilon *) 

 

(* random sum density f *) 

f[y_, t_ ] = Exp[-la*t–be*y] *Sqrt[be*la*t/y]*BesselI[1, 2 *Sqrt[be*la*t*y]] 

3.16228 BesselI[1, 6.32456 ] 

 

(*random sum distribution function F*) 

F[y_, t_ ]: = Exp[-la*t]+NIntegrate[f[z, t], {z, 0, y}] 

 

(*Survival probability  according to Seal's first formula *) 

 

U0[t_ ]:= 

   Exp[-la*t]+1/(c*t)*NIntegrate[(c*t-y)*f[y, t], {y, 0, c*t}] 

 

(* Survival probability  according to Seal's second formula *) 

 
U[x_,t_]:= 

   F[x+c*t, t]- 

      c*NIntegrate[Exp[-la*(t-w)]*f[x+c*w, w], {w, 0, t}]- 

      c*NIntegrate[(c*(t-w)-y)/(c*(t-w))*f[y, t-w]* 

f[x+c*w, w], {w, 0, t}, {y, 0, c*(t-w)}] 

 

tmp=Table[{U[x, 2], x}, {x, 50, 100}] (* inverse function table *) 

 
{{0.84068,50},{0.852882,51},{0.864375,52},{0.875176,53},{0.885304,54},{0.894781,55}, 

  {0.90363,56},{0.911875,57},{0.919542,58},{0.926657,59},{0.933247,60},{0.939339,61}, 

  {0.944959,62},{0.950134,63},{0.95489,64},{0.959253,65},{0.963249,66},{0.966901,67}, 

  {0.970233,68},{0.973269,69},{0.976029,70},{0.978534,71},{0.980805,72},{0.982859,73}, 

  {0.984714,74},{0.986387,75},{0.987894,76},{0.989248,77},{0.990463,78},{0.991552,79}, 

  {0.992526,80},{0.993397,81},{0.994173,82},{0.994865,83},{0.99548,84},{0.996027,85}, 

  {0.996512,86},{0.996941,87},{0.997321,88},{0.997656,89},{0.997952,90},{0.998213,91}, 

  {0.998442,92},{0.998643,93},{0.99882,94},{0.998975,95},{0.999111,96},{0.999229,97}, 

  {0.999333,98},{0.999423,99},{0.999501,100}} 

 

ip=Interpolation[tmp] (* interpolation *) 

InterpolatingFunction[{{0.84068, 0.999501}}, < >] 
 

res=Table[{1-ep[[i]], ip[1-ep[[i]]]}, {i, 1, 5}] 
(* table with inital capital for given ruin probability *) 

 
{{0.9, 55.5813}, {0.95, 62.9731}, {0.99, 77.606}, {0.995, 83.2093}, {0.999, 95.1737}} 

 

(*Fig 4, thick line graph*) 

ListLinePlot[res, PlotRange  {{0.9, 1}, {0, 450}}, PlotMarkers  {"○", Medium}] 

 

(*Fig4*) 
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5.3 Dependent exponential losses. 
 

Now the ,   are assumed to be dependent, with joint distribution function 

given by the Rotated Clayton copula,  and the marginal are assumed to be 

 or Pareto  distributed.  

  

The Rotated Clayton copula is defined as 

 

 

 

with density  and parameter . The 

value  corresponds to independence. The Rotated Clayton copula has upper tail 

dependence with coefficient  and is suitable for modeling dependence between 

extreme operational losses. 

We ( see [DIK08] ) report the heavy impact of dependence between loss severities on 

the value of the initial capital charge , given ,  and Poisson inter-

arrival times . In order to achieve survival probability  the 

capital charge  in the case of i.i.d.  and  assuming 

dependence. Furthermore, if a probability of  is to be achieved, the 

corresponding values are  for i.i.d. losses and , for dependent losses, which 

is  higher. The values of the capital charge  have been calculated solving 

 

 

 

 

for , with  given by  
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5.4  Pareto i.i.d. losses 
 

The severities of the consecutive risk losses ,  are assumed i.i.d. following 

Pareto , so that their mean matches the mean of the 2002 LDCE data. 

Also the Expected Value of a random variable following a Pareto distribution with  

is 

 

 

 

 

And 

 

 

 

 

 

 

Now, we performed the simulation of Pareto operational losses, where the number of 

losses had Poisson distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Random_variable
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fn = "fig5.nb"; Remive["Global`*"]; 

la = 20.0; 

al = 2.41; 

m = 1.17; 

x = 2.0; 

nx = RandomInteger[PoissonDistribution[la*x]] 

 

34 

 

t = Sort[RandomReal[{0, x}, nx]] 
{0.180763, 0.184665, 0.210628, 0.241765, 0.264662, 0.325136, 0.725517, 0.83033, 

  0.869769, 0.906698, 0.947523, 0.955314, 0.971087, 1.02506, 1.06194, 1.06436, 

  1.11558, 1.16973, 1.3499, 1.35464, 1.45061, 1.46714, 1.47632, 1.49235, 1.50408, 

  1.51717, 1.56326, 1.62723, 1.64433, 1.69646, 1.74403, 1.77731, 1.80965, 1.86779} 

 

w = RandomReal[ParetoDistribution[k, m], nx] 
{4.01421, 5.11758, 3.90763, 3.65179, 60.0096, 3.25332, 2.6235, 6.52475, 

  2.95423, 7.33319, 2.41153, 2.71996, 22.5071, 5.01423, 3.37687, 3.36069, 

  3.2747, 4.08698, 8.90636, 5.99028, 2.9879, 16.29, 6.24734, 4.15028, 3.86768, 

  2.48354, 3.0344, 3.47868, 21.6089, 2.98171, 2.55807, 6.42044, 14.4792, 4.99283} 

 

ListPlot[Table[{t[[a]], w[[a]]}, {a, 1, nx}], Filling  Axis, PlotRange  {{0, 2}, {0, 10}}] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5: simulated operational  losses 
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5.5  Dependent Pareto 
 

The data for this case we have taken from paper of Kaishev and Dimitrova. 

 

Comparing it with the exponential case, one can see that a lower level of capital is 

required for probabilities 0.90 and 0.95 and similar or greater u is needed for higher 

probabilities (between 0.99 and 0.999) for the independent and dependent case, owing to the 

effect of the heavy-tailedness of the Pareto distribution and its left truncation, which rules out 

losses smaller than 1.17. 

 

 

The results can be extreme, if the choice of the Rotated Clayton copula with parameter 

, leads to Kendall's  and upper tail dependence , which tailors a 

reasonably strong dependence. 
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Table 1. for  and  

 

  

0 0 

1 0 

2 0 

3 0 

4 0 

5 0 

6 0 

7 0 

8 0 

9 0 

10 0 

11 0 

12 0 

13 0 

14 0 

15 0 

16 0 

17 0 

18 0 

19 0 

20 0 

21 0 

22 0 

23 0 

24 0 

25 0 

26 0 

27 0 

28 0 

29 0 

30 0 

31 0 

32 0 

33 0 

34 0 

35 0 

36 0 

37 0 

38 0 

39 0 

40 0 

41 0 
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42 0 

43 0 

44 0 

45 0 

46 0 

47 0 

48 0 

49 0 

50 0 

51 0 

52 0 

53 0 

54 0 

55 0 

56 0 

57 0 

58 0 

59 0 

60 0,0222222 

61 0,0592593 

62 0,0962963 

63 0,133333 

64 0,17037 

65 0,207407 

66 0,244444 

67 0,281481 

68 0,318519 

69 0,355556 

70 0,392593 

71 0,42963 

72 0,466667 

73 0,503704 

74 0,540741 

75 0,577778 

76 0,614815 

77 0,651852 

78 0,688889 

79 0,725926 

80 0,762963 

81 0,8 

82 0,837037 

83 0,874074 

84 0,911111 

85 0,948148 

86 0,985185 

87 1 

88 1 

89 1 

90 1 
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91 1 

92 1 

93 1 

94 1 

95 1 

96 1 

97 1 

98 1 

99 1 

100 1 

101 1 

102 1 

103 1 

104 1 

105 1 

106 1 

107 1,02609 

108 1,06957 

109 1,11304 

110 1,15652 

111 1,2 

112 1,24348 

113 1,28696 

114 1,33043 

115 1,37391 

116 1,41739 

117 1,46087 

118 1,50435 

119 1,54783 

120 1,5913 

121 1,63478 

122 1,67826 

123 1,72174 

124 1,76522 

125 1,8087 

126 1,85217 

127 1,89565 

128 1,93913 

129 1,98261 
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Table 2: Inverse function  

 

  

0.901450 55 

0.909622 56 

0.917242 57 

0.924333 58 

0.930917 59 

0.937021 60 

0.942667 61 

0.947881 62 

0.952686 63 

0.957107 64 

0.961168 65 

0.96489 66 

0.968297 67 

0.971409 68 

0.974248 69 

0.976833 70 

0.979184 71 

0.981318 72 

0.983252 73 

0.985002 74 

0.986583 75 

0.988011 76 

0.989297 77 

0.990454 78 

0.991494 79 

0.992428 80 

0.993265 81 

0.994014 82 

0.994684 83 

0.995283 84 

0.995817 85 

0.996293 86 

0.996717 87 

0.997094 88 

0.99743 89 

0.997728 90 

0.997992 91 

0.998226 92 

0.998434 93 

0.998618 94 

0.99878 95 

0.998924 96 

0.999051 97 

0.999164 98 
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0.999263 99 

0.999351 100 

  

0.851557 50 

0.862803 51 

0.873397 52 

0.883358 53 

0.892702 54 

0.901450 55 

0.909622 56 

0.917242 57 

0.924333 58 

0.930917 59 

0.937021 60 

0.942667 61 

0.947881 62 

0.952686 63 

0.957107 64 

0.961168 65 

0.96489 66 

0.968297 67 

0.971409 68 

0.974248 69 

0.976833 70 

0.979184 71 

0.981318 72 

0.983252 73 

0.985002 74 

0.986583 75 

0.988011 76 

0.989297 77 

0.990454 78 

0.991494 79 

0.992428 80 

0.993265 81 

0.994014 82 

0.994684 83 

0.995283 84 

0.995817 85 

0.996293 86 

0.996717 87 

0.997094 88 

0.99743 89 

0.997728 90 

0.997992 91 

0.998226 92 

0.998434 93 

0.998618 94 

0.99878 95 
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0.998924 96 

0.999051 97 

0.999164 98 

0.999263 99 

0.999351 100 
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