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L’algèbre n’est qu’une géométrie écrite – la géométrie n’est qu’une algèbre figurée.

-Sophie Germain (1776–1831)
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In Zürich, Professor Dr. Evelina Viada proved to be an invaluable help in many con-
versations. Many thanks also to Professor Dr. Jürg Kramer for discussing parts of his
habilitation with me. Moreover, I appreciated the many conversations with my col-
leagues in the research group in Zürich.
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Introduction

In this work, we deal with a number of issues related to Arakelov theory. Arakelov
theory originally was developed as a tool for solving problems in diophantine geome-
try. It combines Grothendieck’s theory of schemes with Hermitian complex geometry:
schemes give a geometric interpretation of diophantine problems and Hermitian complex
geometry serves as a tool for controlling the height of points on such schemes.

In 1974, Suren Y. Arakelov introduced an intersection theory on so-called arithmetic
surfaces, [Ara74], [Ara75]. His ground-breaking idea was to “complete” an arithmetic
surface over a ring of integers OK of a number field K by taking the places at infinity,
i.e. the embeddings σ : K C, into account. He “added” the complex manifolds Xσ C ,
where σ : K C is an embedding and Xσ X K,σ C. Instead of considering divisors
on X as a formal linear combination of points in X as in the classical way, he adds an
infinite part to the sum, i.e. D Dfin Dinf

k

i 0 niPi σ:K C λσXσ, where Xσ

is seen as a formal symbol and λσ R. This has an interpretation as line bundles on
X: Dfin defines a line bundle L O Dfin on X, and the addition of Dinf corresponds
to defining a metric on L. Along these lines, the main objects of study in Arakelov
geometry, and in particular in this thesis, are Hermitian vector bundles on arithmetic
varieties.

Arakelov’s approach was taken up and extended by Gerd Faltings in his seminal paper
[Fal84]. In this paper, he proved analogs of the Riemann-Roch theorem, the Hodge index
theorem, and Noether’s formula for arithmetic varieties. Furthermore, the work on this
paper eventually led Faltings to his proof of the Mordell conjecture, now called Faltings’
theorem.

Finding a generalization of Arakelov’s intersection product for higher dimensional arith-
metic varieties is not straightforward and was given by Henri Gillet and Christoph Soulé
in a series of papers, among them [GS90]. In a joint paper with Jean-Benôıt Bost,
[BGS94], they further introduced the notion of a height of an arithmetic variety as a
special case of the intersection product.

Throughout the last three decades, the methods of Arakelov theory have been used as
a tool to solve a number of hitherto unsolved problems in arithmetic geometry, e.g. the
Bogomolov conjecture by Emmanuel Ullmo in 1998, [Ull98], and Serge Lang’s general-
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Introduction

ization of Mordell’s conjecture by Faltings in 1991, [Fal91]. They were also used by Paul
Vojta for a new proof of Mordell’s conjecture, [Voj91].

One of the most-studied problems in arithmetic is to determine the number of integral
or rational points on a curve. Faltings’ proof of the Mordell conjecture gave solutions to
these problems for curves of genus greater than one. For curves of genus one, i.e. elliptic
curves, this already had been achieved in the 1920s by the Mordell-Weil theorem for
rational points, and by Siegel’s theorem for integral points. However, these results are not
effective in the sense that the Mordell-Weil theorem does not give an explicit value for the
rank of the finitely generated Abelian group of rational points and Siegel’s theorem does
not give a bound for the height of the finitely many integral points. While the effectivity
of Mordell-Weil’s theorem remains unsolved, for Siegel’s theorem the effectivity was
established in 1970 by Alan Baker and John Coates in [BC70].

In this context, Arakelov theory seems to provide a viable, new ansatz to finding an
effective bound for the heights of the finite number of integral points on a given elliptic
curve. While solving this problem is by far beyond the scope of this thesis, we, in this
work, give an introduction to the necessary subset of tools drawn from Arakelov theory
that we hope can be used to tackle this issue.

This work is structured as follows: in part I, i.e. chapters 1 to 3, we introduce the basic
notions from algebraic geometry needed throughout this thesis. Part II, i.e. chapters 4
to 9, deals with Arakelov geometry. Part III, i.e. chapter 10, gives an overview of the
problem of finding integral points on elliptic curves and contains an outlook on possible
future work using Arakelov geometry.

To be more precise, chapter 1 deals with sheaves, a tool for keeping track of local
data on a topological space; in chapter 2, we introduce schemes, the main objects of
study in modern algebraic geometry. They are generalizations of classical varieties and
form the means to use algebraic geometry in the study of problems in arithmetic. In
chapter 3, vector bundles are defined both on a complex manifold and on a variety.
We illustrate the connections between vector bundles, projective modules, sheaves, and
divisors. Subsequent to chapters 1 to 3, we give a summary of the most important
notions and connections.

Chapter 4 first deals with Hermitian complex geometry, i.e. endowing a vector bundle on
a complex manifold with a Hermitian metric; in particular, we impose the Fubini-Study
metric on the so-called twisting sheaf O 1 on projective space to obtain the Hermitian
vector bundle O 1 . Then, we extend these techniques to vector bundles on arithmetic
varieties and impose metrics on them, thus defining the main objects of study in Arakelov
geometry.

Chapter 5 is on the arithmetic degree of a Hermitian vector bundle on an arithmetic
variety. We define the degree and give some properties. Furthermore, as an example,
we calculate the arithmetic degree of O 1 on the projective n-space over OK , P

n

OK
. In

chapter 6, we introduce heights of Jean-Benôıt Bost, Henri Gillet, and Christoph Soulé,
[BGS94]; more precisely, the height of a point in P

n

OK
and, recursively, the height of P

n

OK
,
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Introduction

both with respect to O 1 . We follow [BGS94] in calculating the height of P
n

OK
. We

refrain from introducing the arithmetic intersection product on arithmetic varieties in
this thesis, as this would require too much background material; but we give remarks on
how it is related to the degree and the height in section 6.3, and thus give a connection
between our results on the arithmetic degree of O 1 on projective n-space over OK and
the height of P

n

OK
with respect to O 1 .

We discuss canonical polygons in chapter 7, and thus draw a link to geometry of numbers.
In this context, we present recent results of Thomas Borek [Bor05] and slope inequalities,
following [Via05].

In chapter 8, we explain a more geometric interpretation of Hermitian vector bundles,
as used in [Sou92]. We first introduce geometric Chow groups as in classical intersection
theory and then extend them to arithmetic Chow groups using the Poincaré-Lelong
formula. We give a sketch of proof of the correspondence between the first arithmetic
Chow group and the arithmetic Picard group.

Chapter 9 first deals with the problem of attaching an arithmetic surface to an elliptic
curve and general properties of arithmetic surfaces such as divisors and integral points
on them. Secondly, we introduce theta functions and, using them, impose a metric on
the line bundle O OE on an elliptic curve, where OE is the origin. Thirdly, we briefly
present a result of Jürg Kramer on the degree of the resulting Hermitian line bundle.

Finally, the last chapter, chapter 10, serves as an introduction to the problem of (effec-
tively) determining the integral points on an elliptic curve. We give a historical overview
of the existing results and briefly discuss the idea of applying the techniques in Arakelov
theory to this problem. This chapter is intended to be an outlook on future work.

We also provide two appendices for reference, one on algebraic number theory – basic
definitions, the product formula, and the height of a point – and the other on elliptic
curves – Weierstrass equations, the Weierstrass ℘-function, and curves of genus one.
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Chapter 1

Sheaves

Schemes allow us to translate arithmetic problems into geometric problems and thus look
at them from a different perspective. Therefore, we first need some basic definitions from
algebraic geometry. We present the most important definitions and theorems in the first
three sections. We omit many of the proofs here, as the intention of this chapter is to
recall the most important notions needed. Nevertheless, we give references as to where
to find more details, further explanations, and illustrative examples.

We first need to introduce the notion of a sheaf. Sheaves provide an important tech-
nical tool for the study of algebraic geometry. They form a tool to keep track of local
(algebraic) data on a topological space and to pass from local information to global
information.

1.1 Definition

Definition 1.1.1. A presheaf F over a topological space X consists of the following
data:

(i) For every open set U X a set F U ,

(ii) For every pair U, V of open subsets of X such that V U , a restriction homomor-
phism

ρU,V : F U F V ,

satisfying the following conditions:

(a) ρU,U idU , and

(b) given open subsets U V W of X, restriction is compatible, i.e.

ρU,W ρV,W ρU,V .

7



Chapter 1. Sheaves

Remark 1.1.2. We usually additionally require that our presheaf has some algebraic
structure (e.g. presheaf of Abelian groups, of rings). By that, we mean that the F U
have the given structure and that the restriction homomorphisms preserve the structure
(e.g. group homomorphism, ring homomorphism).

Remark 1.1.3. Sometimes one also requires that F 0, where 0 is the trivial
group, ring, etc. (e.g. [Har77]), but, as is pointed out in [Sha94c], p. 16, a presheaf (up
to isomorphism) does not depend on the choice of the element F .

Definition 1.1.4. Let F ,G be two presheaves over X. Then a morphism (of presheaves)

h : F G

is a collection of maps
hU : F U G U

for each open set U in X such that the hU commute with the restriction maps. If a
morphism has a two-sided inverse, we call it an isomorphism.

If the maps hU are inclusions, we say that F is a subpresheaf of G.

Example 1.1.5. If F is a presheaf on X and U X open, then we define the restriction
of the presheaf F to be the presheaf defined by

V U open, V F V .

We denote it by F U .

Definition 1.1.6. Let F be a presheaf on X, and let x X be a point. Then the stalk
Fx of F at x is defined as the direct limit of the groups F U taken over all open sets
U containing x, with respect to the restriction maps ρU,V for V U , i.e.

Fx limF U .

Definition 1.1.7. A presheaf is called a sheaf, if for every open covering Ui i of an
open subset U X such that i : Ui U , F satisfies the following:

1. If s, t F U and i : ρU,Ui s ρU,Ui t , then s t.

2. If si F Ui and if for all i, j such that Ui Uj ,

ρUi,Ui Uj si ρUj ,Ui Uj sj ,

then there exists an s F U such that ρU,Ui s si.

Morphisms of sheaves are simply morphisms of the underlying presheaves. A subsheaf is
a subpresheaf of a sheaf which itself is a sheaf.

An isomorphism of sheaves is a morphism which has a two-sided inverse.

8



1.2. Construction of sheaves

Definition 1.1.8. Given a presheaf or a sheaf F , we call the elements s F U sections
of F U over U . A global section is an element of F X . The set of global sections is
often denoted by Γ X,F .

Example 1.1.9. Let X be a complex manifold. Let U be an open subset of X. Define
OX U to be the set of holomorphic maps on U . This clearly defines a sheaf on X. This
sheaf is called the structure sheaf of the manifold X and is denoted by OX .

1.2 Construction of sheaves

Given a presheaf F , it is possible to uniquely (up to isomorphism) associate a sheaf F
and a morphism θ : F F to it, satisfying a certain universal property. This allows
us to construct sheaves out of given sheaves.

Theorem 1.2.1. Given a presheaf F , there is a sheaf F and a morphism θ : F F ,
with the property that for any sheaf G, and any morphism ϕ : F G, there is a unique
morphism ψ : F G such that ϕ ψ θ. Furthermore, the pair F , θ is unique up
to isomorphism.

Proof. See [Har77], Proposition-Definition II.1.2.

Definition 1.2.2. F is called the sheaf associated to the presheaf F , or sheafification
of F .

Example 1.2.3. Given a morphism of sheaves, ϕ : F G, we can use the construction
above to define the image im ϕ of the morphism ϕ to be the sheaf associated to the
image presheaf of ϕ. By the universal property of the sheafification, there is a morphism
im ϕ G. The kernel kerϕ of the morphism ϕ already is a sheaf, so we do not need
sheafification in this case. A morphism is called injective if kerϕ 0. Then the morphism
im ϕ G from above is injective.

Example 1.2.4. Let f : X Y be a continuous map of topological spaces and F be a
sheaf on X. The direct image sheaf f F on Y is defined by mapping an open set V Y
to

f F V F f 1 V .

This sheaf (or rather the vector bundle associated with this sheaf, see section 3.4), is
often called the pushforward of F .

Definition 1.2.5. Let R be a presheaf of commutative rings and let F be a presheaf
of Abelian groups over a topological space X such that for every open subset U X,
F U is an R U module. Furthermore, let the module structure be compatible with
the restriction homomorphisms ρ of F via the restriction ring homomorphisms σ of R,
i.e. for all open subsets U, V of X such that V U ,

ρU,V αs σU,V α ρU,V s α R U , s F U .

Then F is called a presheaf of R-modules. If F is a sheaf, it is called a sheaf of R-modules.

9



Chapter 1. Sheaves

We can use now use algebraic constructions of modules for constructing new sheaves of
modules, e.g. given a sheaf R of commutative rings over a topological space X and two
sheaves of R-modules F and G, we can define the direct sum of F and G to be the sheaf
associated to the presheaf F G U F U G U .

Definition 1.2.6. Given two sheaves F and G and using the corresponding algebraic
construction and sheafification, we get the following:

- the dual sheaf F ,

- the direct sum of sheaves F G,

- the tensor product of sheaves F R G,

- the m-th exterior product of a sheaf k F ,

- the tensor, symmetric, and antisymmetric algebra of a sheaf F , etc.

See [Har77], chapter II.5 for details.

Definition 1.2.7. A sheaf of R-modules F over X is free if it is isomorphic to a direct
sum of copies of R. It is locally free if there is a covering of X by open sets U such that
for every U , F U is a free R U -module. In particular, a locally free sheaf is a sheaf of
R-modules. A locally free sheaf of rank 1 is called an invertible sheaf.

Locally free sheaves and, in particular, invertible sheaves will be our main objects of
study in the following chapters. We will study locally free sheaves and invertible sheaves
from another point of view in chapter 3.

10



Chapter 2

Schemes

In algebraic geometry, the definition of the basic object of study, varieties, changed
throughout the different stages of development. Yet, the intuition should always be
that one can think of a variety as the zero set of a system of polynomial equations.
The simplest and thus best studied case, of course, is that of a zero set of just one
polynomial equation. However, the setting can be quite different, for example a variety
can be a subset of affine or projective space (affine and projective varieties). A good
introduction to varieties as zero sets of equations is [Sha94b]. In this thesis, we consider
a more general notion, the notion of a scheme. Schemes turn out to be interesting
for us because, contrary to the “classical” definition of a variety, they can be defined
over the integers Z, or, more generally, over the ring of integers OK of a number field
K. Therefore, schemes are very useful for applications in number theory and allow
introducing geometric intuitions to problems in number theory.

2.1 The spectrum of a ring

Definition 2.1.1. Let R be a ring, commutative with one. As a set, we define the
spectrum Spec R of the ring R to be the set of all prime ideals of R. The prime ideals of
R are called points of Spec R.

If a R is any ideal of R, let

V a p Spec R : a p .

It is easy to see that the V a form the closed sets of a topology on Spec R, the Zariski
topology, see [Har77] p. 70, Lemma II.2.1. The topological space Spec R is compact. In
general, it is not Hausdorff, but it always is T0. The closure of a point p is homeomorphic
to SpecR p, so a point is closed if and only if p is maximal. In particular, Spec R may
contain non-closed points.

11



Chapter 2. Schemes

Definition 2.1.2. A point is called a generic point of a topological space if it is dense
(as a set).

Remark 2.1.3. We will sometimes denote a point in X Spec R by x, if we want to
stress the fact that it is a point of the topological space X, and sometimes by p, if we
consider it as a prime ideal in R.

Example 2.1.4. Let R Z. Then SpecR 0 p : p prime . The closed sets
of Spec R are the finite sets of prime ideals not containing the zero ideal. In particular,
the point 0 is not closed; in fact, it is a generic point.

Remark 2.1.5. Note that every homomorphism of rings, ϕ : A B, induces a contin-
uous map aϕ : SpecB Spec A, see [Sha94c], p. 6 and 10. As every ring R allows a
natural map Z R, we always get a map Spec R Spec Z.

Definition 2.1.6. The residue field at a point x Spec R, where x is the point given
by a prime ideal p, is the field of fractions of the quotient ring R p and is denoted by
k x . Thus, given a point x Spec R which corresponds to the prime ideal p, there is a
homomorphism

R k x

with kernel p. The image of an element f A is denoted by f x .

Next we define a sheaf of rings O on Spec R, the structure sheaf of Spec R.

Definition 2.1.7. Let Rp be the localization of R in the prime ideal p. Then define
a sheaf of rings on Spec R, denoted by O, and called the structure sheaf of Spec R, by
sending an open set U Spec R to the ring O U consisting of functions

s : U
p Spec R

Rp,

satisfying

1. s p Rp, p U , and

2. s locally is a quotient of elements in R.

This means that for each p U , there are a neighborhood V of p in U and elements
r, f R, f p 0, such that for every q V , s q r f Rq.

The ring O U is commutative and the element 1 which gives 1 in each Rp is an identity
element. The restriction map is the obvious restriction, which is a ring homomorphism.
Therefore, O is a presheaf of rings, and, since it is defined locally, it even is a sheaf of
rings.

Remark 2.1.8. Sometimes, e.g. in [Har77], the spectrum of a ring is defined as the pair
Spec R,O .

12



2.2. Ringed spaces and schemes

The global sections of this sheaf form a ring which is isomorphic to R, i.e.

Γ Spec R,O R.

Furthermore, the stalk of the structure sheaf at a point p is isomorphic to the local ring
Rp, i.e.

Op Rp,

see [Har77], p. 71, Proposition II.2.2.

Remark 2.1.9. The construction above is similar to the construction of the sheafifica-
tion of a presheaf, namely constructing a sheaf out of its stalks, which in this case are
the localizations Rp. We will see several constructions like this one.

2.2 Ringed spaces and schemes

Definition 2.2.1. A ringed space is a pair X,OX , where X is a topological space and
OX is a sheaf of rings on X. X is called the underlying topological space and OX is
called the structure sheaf.

A morphism of ringed spaces from X,OX to Y,OY is a pair f, f# , where f : X Y
is a continuous map and f# : OY f OX is a morphism of sheaves of rings on Y .

A ringed space X,OX is a locally ringed space, if for every point x X, the stalk OX,x is
a local ring. A morphism of locally ringed spaces is a morphism f, f# of ringed spaces,
such that at every point, the induced map between the stalks is a local homomorphism
of local rings. That is, a homomorphism such that the preimage of the maximal ideal of
the codomain is the maximal ideal of the domain (see [Har77], p. 72, for an explanation
of the induced map on the stalks).

An isomorphism is a morphism with a two-sided inverse.

Proposition 2.2.2. (Proposition II.2.3 in [Har77])

1. If R is a ring, then Spec R,O is a locally ringed space.

2. If ϕ : A B is a homomorphism of rings, then ϕ induces a natural morphism of
locally free ringed spaces

f, f# : Spec B,OSpec B Spec A,OSpec A .

3. If A and B are rings, then any morphism of locally ringed spaces from Spec B to
Spec A is induced by a homomorphism of rings ϕ : A B as in 2.

Definition 2.2.3. A locally ringed space X,OX which is isomorphic (as a locally
ringed space) to the spectrum of a ring together with its structure sheaf is called an
affine scheme.

13



Chapter 2. Schemes

A scheme is a locally ringed space X,OX in which every point x has an open neigh-
borhood U , called an affine neighborhood of x, such that the pair U,OX U is an affine
scheme. X is called the underlying topological space of the scheme X,OX and OX is
called the structure sheaf.

A morphism of schemes is a morphism as locally ringed spaces. An isomorphism is a
morphism with a two-sided inverse.

Let x X be a point. Then the local ring in x is the stalk OX,x. This indeed is a
local ring. Its maximal ideal usually is denoted by mX,x, and the residue field in x X,
denoted by k x , is OX,x mX,x. In case X is affine, i.e. X Spec R, this definition
coincides with that in definition 2.1.6.

Remark 2.2.4. Let X be a scheme and x X. Let U be an affine neighborhood of
x. The residue field of x with respect to the affine scheme U was defined in definition
2.1.6. In fact, it is independent of U , and therefore well-defined on the whole scheme X.
Moreover, this coincides with the residue field in x defined above.

Example 2.2.5. Let R be a ring. Then A
n

R
: Spec R x1, . . . xn is called the affine

space over the ring R, see [EH00], p. 33, chapter I.2.4.

Let k be a field. Then the affine line over k, A
1
k
, is Spec k x . It has one generic point,

namely the zero ideal. The other points correspond to the maximal ideals of k x and
therefore are closed points. They are in one-to-one correspondence with the nonconstant
irreducible monic polynomials. Furthermore, if k is algebraically closed, they are of the
form x a for some a k, so the closed points of A

1
k

are in one-to-one correspondence
to the elements of k.

The affine plane over k, A
2
k
, is Spec k x, y . Let k be algebraically closed. Then the

closed points correspond to the ordered pairs of elements of k. There is a generic point
which corresponds to the zero ideal. Furthermore, every irreducible polynomial f x, y
defines a prime ideal of Spec k x, y , and so gives a point in A

2
k
. Its closure consists of

the point together with all closed points a, b such that f a, b 0.

This definition of affine space over an algebraically closed field gives us a generalization
of the “classical” affine space. The closed points correspond to the points in the classical
case, but here we get additional, non-closed points.

Remark 2.2.6. Schemes and classical algebraic geometry

We now explain how the notion of a scheme fits to the intuition of a variety being the zero
set of polynomial equations, as stated in the beginning of this chapter. For simplicity,
we just consider one equation. See [Har77], Proposition II.2.6 for more details.

Let R be a ring and assume that the polynomial f R x1, . . . , xn is irreducible.
We consider the zero set of f , i.e. the set of all n-tupels a1, . . . , an A

n such that
f a1, . . . , an 0. This usually is denoted by Z f .

14



2.2. Ringed spaces and schemes

The affine coordinate ring of Z f is defined to be R x1, . . . , xn f . The elements of
this ring define functions on Z f , as f x 0 on Z f . Note that the affine coordinate
ring is the set of global sections of the structure sheaf OX on X Spec R x1, . . . , xn f .

Given a point P a1, . . . , an Z f , define m x1 a1, . . . , xn an , a point
in Spec R x1, . . . , xn . Then by Hilbert’s Nullstellensatz, f m, so f m. This in
turn means that m defines a prime ideal in Spec R x1, . . . , xn f . Thus, every point
P Z f determines a point in the affine scheme Spec R x1, . . . , xn f .

On the other hand, if R k is an algebraically closed field, every maximal ideal m̄ of
k x1, . . . , xn f determines a maximal ideal m of k x1, . . . , xn which is of the form
m x1 a1, . . . , x1 an (see [Eis95] Corollary 1.6) and contains f . Therefore,
f a1, . . . , an 0.

Thus, for an algebraically closed field k we get a one-to-one correspondence between the
points of the zero set of the polynomial f and the closed points of the affine scheme
Spec k x1, . . . , xn f .

Definition 2.2.7. The dimension of a scheme is the dimension of the underlying topo-
logical space. If Z is an irreducible closed subset of X, then the codimension of Z in X
is the supremum of integers n such that there exists a chain of distinct irreducible closed
subsets of X above Z, i.e.

Z Z0 Z1 Zn.

If Y is a closed subset of X, the codimension of Y in X is the infimum of the codimensions
of all irreducible closed subsets of Y in X.

Remark 2.2.8. The dimension of the spectrum of a ring R is equal to the Krull dimen-
sion of R.

Definition 2.2.9. Let S be a fixed scheme. Then a scheme over S is a scheme X
together with a morphism X S. If R is a ring and S Spec R, we say the X is a
scheme over R or an R-scheme. If X and Y both are schemes over S, a morphism of X
to Y as schemes over S is a morphism of schemes which is compatible with the given
morphisms to S.

Example 2.2.10. Every spectrum of a ring R, SpecR, is a scheme over S Spec Z,
see remark 2.1.5.

Definition 2.2.11. Let R be a ring and X an R-scheme. The set of R-valued points of
X is defined as the set

X R R-morphisms Spec R X .

Note that for an affine scheme X Spec B,

X R R-morphisms Spec R X

ring homomorphisms B R ,

by proposition 2.2.2.

15
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Example 2.2.12. This notion agrees with our intuition, see also remark 2.2.6: If X is
given by the equation f 0, where f R x1, . . . , xn , i.e. X Spec R x1, . . . , xn f ,
then

X R R-algebra homomorphisms R x1, . . . , xn f R

P Rn : f P 0 .

Remark 2.2.13. We sometimes call X R the set of sections of the R-scheme X.

Definition 2.2.14. A geometric point of a scheme X over a field K is a morphism
Spec K̄ X, where K̄ is the algebraic closure of K.

Remark 2.2.15. The addendum “geometric” usually means that the object somehow
is considered over the algebraic closure, e.g. the geometric fiber of a morphism or
geometrically irreducible [Har77], [EH00].

Next we need to define a projective construction to define the generalization of projective
space. We first need some basic definitions, see [Har77], chapter I.2:

A graded ring is a ring R, together with a decomposition R
d 0 Rd of R, where Rd

are Abelian groups, such that for any d, e 0, Rd Re Rd e. This decomposition is
called a grading of the ring R. An element of Rd is called a homogeneous element of
degree d. An ideal a R is called a homogeneous ideal if a

d 0 a Rd . Denote by
R the ideal

d 0 Rd.

Definition 2.2.16. Let R be a ring, commutative with one. Let the set ProjR be the
set of all homogeneous prime ideals p, which do not contain all of R .

If a is a homogeneous ideal of R, we define the subset

V a p Proj R : a p .

These sets satisfy the axioms of closed sets of a topology, which is not difficult to prove.

A sheaf of rings is given on ProjR by the following construction: for every homogeneous
prime ideal p, we consider the ring R p which is the ring of elements of degree 0 in the
localization T 1R, where T is the multiplicative system consisting of all homogeneous
elements of R which are not in p. Then we proceed as in the case of the structure sheaf
of the spectrum of a ring. Let O U be the set of functions

s : U
p Proj R

R p ,

satisfying

1. s p R p , p U , and

2. s locally is a quotient of elements in R.

16



2.3. The projective space associated to a projective module

This means that for every p U , there is a neighborhood V of p in U and homogeneous
elements r, f R of the same degree, such that for all q V, f q, and s q r f R p .
This clearly defines a presheaf of rings, with the natural restrictions, and, since it is
defined locally, it even is a sheaf of rings.

For any graded ring R, the pair ProjR,O is a scheme and, similar to the case of the
spectrum of a ring, the stalk of O in a point p Proj R is isomorphic to the local ring
R p ([Har77], p. 76, Proposition II.2.5).

Example 2.2.17. Let R be a ring. The projective n-space over R is defined to be
P

n

R
: ProjR x0, . . . , xn . The arithmetic projective n-space is P

n

OK
, where K is a number

field and OK its ring of integers.

2.3 The projective space associated to a projective module

Let R be a ring (e.g. OK) and M a finitely generated projective R-module. Denote by
S M the symmetric algebra on M ,

S M
k 0

Sk M , Sk M T k M m n n m ,

where T k M M k, and m n n m is the ideal generated by the elements
m n n m, for m, n M . S M is a finitely generated commutative algebra and
therefore, in particular, a ring. If M is a free R-module of finite rank r, S M is the
polynomial ring in r variables, see [Eis95], Appendix A.2.3.

We define the associated projective space to be P M : ProjS M .

In fact, P M is a scheme over SpecR ([Har77], p. 162 in chapter II.7).

Remark 2.3.1. In the literature, sometimes P M is defined to be ProjS M , where
M Hom M,R , e.g. in [BGS94]. We will stay with above as is used in e.g. [Gro61],
4.1 and [Har77].

An R-valued point in P M is an injection ξ : Spec R P M . Equivalently, a point
is given by a ring homomorphism ξ# : S M R. Consider the elements of M as
elements of S M . Then ξ# is induced by ξ# : M R, i.e. ξ# M Hom M,R .
This, in turn, is equivalent to fixing the projective module Mξ Ker ξ# M of corank
one, see [EH00], p.103.
Summing up, a point in P M can be identified with a projective submodule of M of
corank 1.

Example 2.3.2. Let R be a ring and M Rn 1. Then S M R x0, . . . , xn , and the
projective n-space over R is P

n

R
P M .

17



Chapter 2. Schemes

2.4 Properties of schemes

In the following sections, we need some properties of schemes. We now define the most
important ones in this and the next section. We refer to [Har77], chapters II.3 and II.4,
[Sha94c], and [EH00].

Some properties are based on those of the underlying topological space:

Definition 2.4.1. A scheme is connected or irreducible if the underlying topological
space has this property.

Other properties come from the covering of the scheme by affine sets:

Definition 2.4.2. A scheme X over a ring R is of finite type over R if X has a finite
covering by open affine sets Ui, i.e. Ui Spec Ai for some rings Ai, such that the Ai are
algebras of finite type over R. An algebraic scheme is a scheme X of finite type over a
field k.

Definition 2.4.3. A scheme X is Noetherian if X has a finite covering by open affine
sets which are the spectra of Noetherian rings.

Some properties come from the analogous property of the rings OX U for open sets
U X or of the stalks OX,x:

Definition 2.4.4. A scheme X is reduced if for every open set U , the ring OX U is
reduced, i.e. has no non-trivial nilpotent elements.

Definition 2.4.5. A scheme X is integral if for every open set U , the ring OX U is an
integral domain. This is equivalent to being both reduced and irreducible.

Definition 2.4.6. A scheme X is called normal if for every point x X, the local ring
OX,x is an integrally closed domain.

Definition 2.4.7. Let X be a Noetherian scheme. Then X is regular (or nonsingular)
at a point x X, if the local ring OX,x at x is a regular local ring. X is regular (or
nonsingular), if it is regular at every point. The scheme is called singular if it is not
regular.

Definition 2.4.8. Let X be an integral scheme and η a generic point of X. Then the
local ring OX,η is a field, the function field of X, and is denoted by k X . If U Spec A
is an open affine set of X, then k X is isomorphic to the quotient field of A. The
elements of k X are called rational functions on X.

Definition 2.4.9. An open subscheme of a scheme X is a scheme whose underlying
topological space U is an open subset of X and whose structure sheaf OU is isomorphic
to the restriction sheaf OX U .

18



2.5. Fiber product

Definition 2.4.10. A closed immersion is a morphism f : Y X of schemes such
that f induces a homeomorphism of the underlying topological space of Y onto a closed
subset of the underlying topological space of X, and furthermore, the induced map
f# : OX f OY of sheaves on X is surjective. A closed subscheme of a scheme X is
an equivalence class of closed immersions, where two closed immersions f : Y X and
f : Y X are equivalent if there is an isomorphism i : Y Y such that f f i.
A morphism i : Y X is an immersion if it gives an isomorphism of Y to an open
subscheme of a closed subscheme of X.

2.5 Fiber product

As a set, the fiber product of two sets over a third set is defined in an analogous way
to the construction of the pullback of a vector bundle which we will see in example
3.2.5 in the next section (see also [Sha94c] or [EH00]). This construction satisfies a
universal property, which we take as the definition for the fiber product of schemes. In
fact, the construction is a categorical construction, called the (categorial) pullback. The
fiber product is the pullback in the category of schemes and the pullback bundle is the
pullback in the category of vector bundles.

Definition 2.5.1. Let S be a scheme, and let X and Y be two schemes over S. The
fiber product of X and Y over S, X S Y , is a scheme together with morphisms pX :
X S Y X and pY : X S Y Y such that the compositions of these morphisms
with the given maps X S and Y S, respectively, coincide, i.e. pX and pY make
the diagram below commutative. Furthermore, given any scheme Z over S and given
morphisms f : Z X and g : Z Y , which make the following diagram commute,
there exists a unique morphism θ : Z X S Y such that f pX θ and g pY θ.

The definition is much easier to see in the commutative diagram:

Z

g

��

f

��

θ

��
X S Y

pY

��

pX
�� X

��
Y �� S

If X and Y are any schemes without reference to a base scheme S, we take S Spec Z

and define the product of X and Y to be X Y : X S Y .

Since we defined the fiber product by a universal property, the uniqueness of the fiber
product up to isomorphism is clear. However, it is a priori not clear that such a scheme
exists. A proof for the existence can be found in e.g. [Har77], Theorem II.3.3.
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A few interesting applications of fiber products lead us to definitions we need in the next
chapters.

Definition 2.5.2. Let f : X Y be a morphism of schemes, and let y Y be a point
with residue field k y . Let Spec k y Y be the natural morphism, which, as a map
between sets, sends the only point of Spec k y to y Y . Then the fiber of the morphism
f over the point y is the scheme

Xy X Y Spec k y .

This is a scheme over k y and furthermore, the underlying topological space is homeo-
morphic to the inverse image f 1 y X.

If η is a generic point of Y , the scheme Xη is called the generic fiber of the scheme X.

Example 2.5.3. Let X be a scheme over Z. Then the fiber over the generic point 0 ,
XQ : X 0 , is a scheme over Q, and the fiber over a closed point corresponding to a
prime p Z is a scheme Xp over the finite field Fp. Xp is called the reduction mod p of
the scheme X.

Definition 2.5.4. Let S be a fixed scheme, the base scheme. Let X be a scheme over
S. If S S is another scheme over S, let X X S S . This is a scheme over S and
is said to be obtained from X by making a base extension.

Next we define a property which, in a certain sense, is analogous to that of the Hausdorff
separation axiom. However, the underlying topological space of a scheme is usually not
Hausdorff, since it is endowed with the Zariski topology.

Definition 2.5.5. Let f : X Y be a morphism of schemes. The diagonal morphism
is the unique morphism ∆ : X X Y X such that the composition with the projection
maps pX , pY is the identity map on X. The morphism f is called separated if the diagonal
morphism ∆ is a closed immersion. One also says that X is separated over Y . A scheme
is called separated if it is separated over Spec Z.

We now define the notion of flatness of a morphism of schemes. This property intuitively
means that the fibers vary “smoothly”. We will not elaborate on this, but one should
keep the intuitive idea in mind; see [Eis95], chapter 6, for some illustrative examples
and [Har77] for an extensive study of flat morphisms. First we define flat modules, an
important property of modules in commutative algebra and algebraic geometry.

Definition 2.5.6. Let R be a ring and M an R-module. The module M is flat over R
if the functor N M R N is an exact functor for R-modules N . That means that,
given an exact sequence of R-modules

0 N1 N2 N3 0,

the following sequence also is exact:

0 M R N1 M R N2 M R N3 0.
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The analogon for schemes is the following:

Definition 2.5.7. Let π : X Y be a morphism of schemes. We say X is flat over Y ,
or π is a flat morphism, if for every x X, the stalk OX,x is a flat OY,y-module,1 where
y π x .

2.6 Varieties

We can now formulate the definition of a variety in the language of schemes. This is
an extension of the classical definition of a variety, as is shown in [Har77], Propositions
II.2.6 and II.4.10 or in [Sha94c], Example 5 in chapter V.3.1.

Definition 2.6.1. A variety over an algebraically closed field k is a reduced separated
scheme of finite type over k.

Remark 2.6.2. This definition is the one used in e.g. [Sha94c]. [Har77] additionally
requires the scheme to be irreducible, and therefore integral. Furthermore, note that
varieties are, by definition, algebraic schemes.

Definition 2.6.3. A morphism of varieties is a morphism of schemes over k. A variety
X that is an affine scheme is called an affine variety.

Definition 2.6.4. If Y is a scheme and n a non-negative integer, we define projective
n-space over Y to be P

n

Y
: P

n

Z Spec Z Y . A morphism f : X Y of schemes is called
projective, if it factors into a closed immersion i : X P

n

Y
, for some n, and the projection

pY from the fiber product, pY : P
n

Y
Y . A morphism f : X Y is quasi-projective if

it factors into an open immersion j : X X and a projective morphism g : X Y .
One also says that X is (quasi-)projective over Y . A scheme is called (quasi-)projective
if it is (quasi-)projective over Z.

Remark 2.6.5. Note that a projective scheme is a scheme which allows a closed im-
mersion into P

n

Z, i.e. f : Y P
n

Z. It therefore is homeomorphic to a closed subset of P
n

Z.
In fact, if Y is a projective, integral and irreducible scheme over a field k, it corresponds
to a projective variety in the sense of classical algebraic geometry, i.e. the zero set of
homogeneous elements of the polynomial ring over k, see [Har77], Proposition II.4.10.

Interestingly, schemes which are projective over an affine scheme arise from the Proj
construction.

Proposition 2.6.6. (Corollary II.5.16 b in [Har77]) Let A be a ring. A scheme Y over
Spec A is projective if and only if it is isomorphic to ProjS for some graded ring S,
where S0 A, and S is finitely generated by S1 as an S0-algebra.

Definition 2.6.7. An irreducible variety of dimension one is called a curve. Surfaces
are irreducible varieties of dimension two.

1
Note that the stalk OX,x always can be given an OY,y-module structure using the natural map

π#
: OY,y OX,x.
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2.7 Čech cohomology and the genus

Cohomology is a standard tool in topology, geometry and, in particular, algebraic geom-
etry. There are quite a lot of cohomology theories in different contexts, e.g. De Rham
cohomology, sheaf cohomology, Étale cohomology, crystalline cohomology, and many
more. In this section, we define Čech cohomology, which is an important tool for cal-
culating global sections of a given sheaf. We will need it for the definition of the genus
of a projective algebraic curve. There are several notions of “genus”, which in certain
cases are equal. We use [Har77], chapter III.4 and the course notes [Wüs08].

Let X be a topological space, and let U Ui i I be an open covering of X. We choose
a well-ordering of I. For any integer n 0 consider the set In of n 1-tupels of elements
in I such that i0 i1 . . . in. Then, for every 0 k n, there is a natural
projection πk : In In 1 which maps the n 1-tupel i i0, . . . , in to the n-tuple
πk i i0, . . . , ik, . . . , in , where the element ik is omitted. We denote the intersection
Ui0 . . . Uin by Ui0,...,in .

Let F be a sheaf of Abelian groups on X with restriction maps ρU,V . We define a
complex C U,F :

Cn U,F
i0,...,in In

F Ui0,...,in ,

i.e. an element s Cn U,F is a family s si such that i i0, . . . , in In. It is
called a cochain.

We define the coboundary maps d : Cn U,F Cn 1 U,F by setting

ds i :
n 1

k 0

1 kρUπk i ,Ui sπk i

for every i In 1.

To understand all the indices, we describe this briefly. ρUπk i ,Ui sπk i means that for an
i In 1 and a 0 k n 1 we take the image of sπk i F Uπk i under the restriction
map, an element in F Ui . For fixed i and every k this is in F Ui , which is an Abelian
group, so we can add them.

Actually, the map d depends on n, but by abuse of notation we omit the specification
and simply write d. One can check that d d 0, and therefore the coboundary maps
define a complex of Abelian groups:

C0 d
C1 d

C2 d d
Cn d

,

where Cn : Cn U,F .
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The cohomology groups of this complex are called Čech-cohomology groups and are
defined as follows:

Again, we denote Cn U,F by Cn. Then the image of Cn 1 under d in Cn is a group,
denoted by Bn U,F , whose elements are called coboundaries. The kernel of d in Cn

also is a group, denoted by Zn U,F , whose elements are called cocycles. Furthermore,
for negative n, we set Bn U,F Zn U,F 0.

Since d d 0, Bn U,F Zn U,F and we define the n-th Čech-cohomology group
with respect to the covering U as the quotient group

Hn U,F Zn U,F Bn U,F .

Lemma 2.7.1. (e.g. Lemma III.4.1 in [Har77]) Let X be a topological space, F a sheaf
of Abelian groups on X, and U an open overing of X. Then,

H0 U,F Γ X,F .

Proof. Since H0 U,F Z0 U,F , we need to study the kernel of the map d : C0 U,F
C1 U,F . If α C0 U,F is in the kernel, and if α αi i, where αi F Ui , then for
each i j, dα i,j ρUi,Ui Uj αi ρUj ,Ui Uj αj “ αi αj Ui Uj” 0. Thus, αi

and αj coincide on Ui Uj . By the glueing axiom of the sheaf F , they define a global
section of F .

There is an ordering of open coverings with respect to refinements and one can show that
this defines maps of the respective cohomology groups. Furthermore, if the covering U
is fine enough, the cohomology group is independent of the chosen covering and we set

Hn X,F : Hn U,F .

This is the same as defining

Hn X,F : lim
U

Hn U,F

as the direct limit of the cohomology groups with respect to the ordering of open cover-
ings.

This purely abstract concept gives us the definition of the genus of a projective algebraic
curve.

Definition 2.7.2. Let X be a projective algebraic curve. Then the genus of X is defined
as

g dim H1 X,OX .

Example 2.7.3. This rather abstract approach coincides with an easy definition if the
curve is given as the zero set of an irreducible polynomial f x, y 0 of degree d. Then
g 1

2 d 1 d 2 . In this case, if g 0, then d 1 or d 2. Thus curves of genus 0
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are lines and conics. The degree of a curve of genus one satisfies the following quadratic
equation: 2 d2 3d 2, i.e. 0 d d 3 . Thus curves given by a polynomial and of
genus one are given by a polynomial of degree 3. They are called elliptic curves, see also
appendix B.

Remark 2.7.4. We will not discuss this rather abstract notion of the genus in more
detail, as it is more useful for the following to keep in mind the above example. One
should just remember that one can define it for general varieties; we will need this in
the last section, but usually the intuition given above will suffice.
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Chapter 3

Vector bundles

In this chapter, we give the definition and properties of vector bundles, both on a complex
manifold and on a variety. Several connections between vector bundles and other objects,
and the connection between vector bundles on a variety and on a complex manifold are
of particular importance for us in the following chapters.

3.1 Definition

We use [Wel07] and [Sha94c] for the following definitions.

Definition 3.1.1. Let k be the field1
C. A continuous map π : E X of Hausdorff

spaces is a vector bundle if

1. the fiber over every p X, Ep : π 1 p , is a k-vector space, and

2. for every p X there is a neighborhood U of p and a homeomorphism

h : π 1 U U kr

such that
q U : h Eq q kr

and such that U, h is a local trivialization, i.e. the composition

hp : Ep

h
p kr p2 kr

is a k-vector space isomorphism, where p2 is the projection on the second coordi-
nate.

1
In general, one can also consider k R. However, for our purposes, k C suffices.
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Chapter 3. Vector bundles

E is called the total space and X is called the base space. One often says that E is a
vector bundle over X.

We call a vector bundle holomorphic if

• the underlying spaces E and X are holomorphic complex manifolds,

• π is a holomorphic morphism,

• and the local trivializations are holomorphic.

In the following, if not specified otherwise, we usually mean holomorphic vector bundles
over complex manifolds, but omit this specification.

Let Ui, hi , Uj , hj be two trivializations of a given vector bundle π : E X. Consider
the map

hi h 1
j

: Ui Uj kr Ui Uj kr.

It induces a map
gij : Ui Uj GL r, k ,

where
gij p hp

i
hp

j

1 : kr kr.

The functions gij are called the transition functions of the vector bundle with respect to
the local trivializations Ui, hi , Uj , hj .

The transition functions satisfy the compatibility conditions

(a) gij gjk gki 1 on Ui Uj Uk,

(b) gii 1 on Ui.

In fact, suppose we are given an open covering Ui of X, and we have maps gij : Ui

Uj GL r, k for every non-empty intersection Ui Uj which satisfy the compatibility
conditions, then we can define a vector bundle π : E X having these transition
functions. This process is often called “glueing”.

In the following definition we introduce the analogon of a vector bundle over a (complex)
manifold in the context of algebraic geometry, vector bundles over varieties.

Definition 3.1.2. A family of vector spaces over a variety X is a morphism π : E X
such that every fiber over a point x X, Ex π 1 x , is a vector space over k x , and
the algebraic variety-structure of Ex as a vector space coincides with that of Ex E as
the inverse image of x under π.

A family of vector spaces is trivial, if E X V , where V is a vector space over a field
k. (In this case, k k x , x X.)

A family of vector spaces π : E X is a vector bundle if every point x X has a
neighborhood U such that the restriction E U , defined as π 1 U U , is trivial.
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3.1. Definition

Remark 3.1.3. Note that condition 1 in the definition of a vector bundle over a Haus-
dorff space, 3.1.1, corresponds to the condition in a family of vector spaces and condition
2 in definition 3.1.1 corresponds to the additional condition for a vector bundle over a
variety to be locally trivial. Therefore we do not, in general, distinguish between vector
bundles on complex manifolds or on varieties if we say vector bundle, unless explicitly
specified. We sometimes call vector bundles on varieties algebraic vector bundles to
distinguish them from holomorphic vector bundles on complex manifolds.

Remark 3.1.4. Transition functions for a vector bundle over a variety are defined in
an analogous way to the above. Furthermore, also in this case, we can obtain a vector
bundle by glueing together trivial bundles by the data of transition functions over an
open covering of the variety.

Example 3.1.5. Let X be a complex manifold and V a k-vector space. Then X V
p1

X, where p1 denotes the projection onto the first coordinate, is a vector bundle. In fact,
if X C

n, every vector bundle is trivial, see [GH78], p. 307.

Definition 3.1.6. The dimension of the fiber Ex over a point x X of a vector bundle
is a locally constant function on X. In particular, if X is connected, the dimension of
the fibers is constant. In this case, it is called the rank of the vector bundle E.

Definition 3.1.7. A morphism of a vector bundle πE : E X to a vector bundle
πF : F X is a morphism f : E F such that the diagram

E F

X

f

πE πF

commutes and for every p X, fp : Ep Fp is k-linear in the case of holomorphic vector
bundles and k x -linear in the case of vector bundles over a variety.

An isomorphism of vector bundles is a morphism of vector bundles which is an iso-
morphism on the total spaces and a vector space isomorphism on the fibers. Being
isomorphic defines an equivalence relation on the set of vector bundles over a given base
space X.

Using the notion of isomorphic bundles, the condition that a holomorphic vector bundle
is locally trivial becomes the following:

2 . For every x X there is an open neighborhood U of x and a bundle isomorphism

h : E U U kr,
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Chapter 3. Vector bundles

respectively the same condition with k k x if the vector bundle is over a variety.

Remark 3.1.8. Let X be a non-singular n-dimensional variety over the field of complex
numbers C. Then, the topological space X C of complex points on X is, in fact, an
orientable complex manifold, [Sha94c], p. 117ff, chapters VII.1 and VII.2. There are some
basic relationships between properties of X and those of X C , e.g. if X is irreducible,
X C is connected. The correspondence between complex analytic spaces and schemes
was partially established by Serre in his famous paper GAGA, [Ser56]. Furthermore,
if X is a variety as above, and E X is a vector bundle, then E C X C is a
topological vector bundle. This will be important in the next chapter.

3.2 Construction of holomorphic vector bundles

Let X be a complex manifold and π : E X be a surjective map such that

1. Ep is a k-vector space,

2. for each p X there is a neighborhood U of p and a bijective map

h : π 1 U U kr such that h Ep p kr, and

3. hp : Ep

h
p kr p2 kr is a k-vector space isomorphism.

If for every Ui, hi , Uj , hj as in 2., hi h 1
j

is an isomorphism, we can make E into a
vector bundle over X by giving it the topology such that the hi are homeomorphisms,
see the remark in [Wel07], p. 16.

Definition 3.2.1. Given two k-vector spaces A and B, we can form new vector spaces
such as the direct sum, the tensor product, the vector space of linear maps from A to
B, the dual space, and the symmetric and antisymmetric tensor products of a certain
degree. By the construction above, we can extend these constructions to vector bundles
over X and define the dual, tensor product, direct sum, exterior product, etc. of vector
bundles.

As an example, we give the construction for the direct sum of vector bundles E and F ;
the other constructions are similar.

Example 3.2.2. Given two vector bundles E and F over a complex manifold X of ranks
r and s, respectively, we define the total space of the direct sum of vector bundles to be

E F
p X

Ep Fp.

We then get a canonical surjective map π : E F X. We now need to show that the
properties required for the construction from above are satisfied.
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3.2. Construction of holomorphic vector bundles

We can assume that the open coverings coincide, so denote the local trivializations of E
and F as U, hE and U, hF , respectively. We define

hE F : π 1 U U kr s.

For q U , e Eq, and f Fq, we define

hE F e f q, hE e hF f U kr ks U kr s.

This map satisfies the conditions for the construction of a vector bundle given above.

Remark 3.2.3. We define analogous constructions for vector bundles on varieties in
the next section in remark 3.4.2, using the concept of locally free sheaves. One can
also define these construction without using locally free sheaves, straight by the help of
transition functions.

Example 3.2.4. We now define the natural bundle on projective space, the tautological
(or canonical) bundle T . It is both a holomorphic vector bundle over the complex space
P

n

C and a vector bundle over the variety P
n

C. In this example we define T as a holomorphic
vector bundle and later – in the examples 3.4.6, 3.4.7, and in remark 3.4.12 – we give
the algebraic interpretation and a generalization of this concept.

Let T be the disjoint union of the lines, i.e. one-dimensional subspaces, in C
n 1. Consider

the natural projection
π : T P

n

C,

given by π v p, if v is a vector in the line in C
n 1 determined by the point p x0 :

. . . : xn P
n

C, i.e. v and x0, . . . , xn are linearly dependent. So, we define the fiber
Tp p C

n 1. We may identify T with the subset of P
n

C C
n 1 containing all pairs

p, v such that v p, where we consider p as a line in C
n 1.

To define a vector bundle T P
n

C, we need to define local trivialization maps. Let Ui

be the standard open sets in P
n

C, i.e. Ui x0 : . . . : xn P
n

C : xi 0 . Since

π 1 Ui v t x0, . . . , xn C
n 1 : t C, xi 0 ,

we can uniquely write any v π 1 Ui in the form

v ti
x0

xi

, . . . , 1, . . . ,
xn

xi

.

Let the local trivialization
hi : π 1 Ui Ui C

be defined as
hi v x0 : . . . : xn , ti .

These maps are bijective and C-linear.
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Chapter 3. Vector bundles

To apply the construction above to define a vector bundle, we need to show that hi h 1
j

is an isomorphism. Suppose that v t x0, . . . , xn π 1 Ui Uj . Then,

hi v x0 : . . . : xn , ti ,

hj v x0 : . . . : xn , tj ,

with ti txi and tj txj ; and therefore ti
xi
xj

tj . Setting gij : Ui Uj GL 1, C

C C 0 ,

gij x0 : . . . xn

xi

xj

,

we get well-defined transition functions and hi h 1
j

is an isomorphism as required.

Example 3.2.5. Let f : X Y be a morphism and π : E Y a bundle. The pullback
of the vector bundle E, denoted by f E X, is defined as follows: we define the space

E x, e X E : f x π e .

Let x X and give Ex x Ef x the structure of a k-vector space induced by Ef x .
Set

f π : E X, x, e x.

Then E is a fibered family of vector spaces. The local trivializations arise from those
for E, i.e. if U, h is a local trivialization for E, E U U kn, then

E f 1 U f 1 U kn

is a local trivialization of E . Then, setting g : E E, x, e e, the following diagram
commutes:

E

f π

��

g �� E

π

��
X

f �� Y

In fact, the pullback of a vector bundle is unique up to isomorphism.

More generally, the pullback is defined by a universal property using the fact that the
pullback makes the above diagram commutative. This construction is a categorical
construction, e.g. the pullback in the category of schemes over a given scheme is the
fiber product, see section 2.5. The dual construction in the sense of category theory is
that of the pushforward, see example 1.2.4.

3.3 Global sections

Definition 3.3.1. A global section of a vector bundle π : E X is a morphism
s : X E such that π s idX . We denote by Γ X,E the set of global sections
of E over X. Furthermore, elements of Γ U,E : Γ U, E U are called sections of E.
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3.3. Global sections

Remark 3.3.2. We often identify a section s : X E with its image s X E. An
important example is that of the zero section 0 : X E which is given by s x 0x Ex,
where 0x is the zero element in the vector space Ex. The image of the zero section, in
fact, is isomorphic to the base space X.

Example 3.3.3. Let X be an algebraic variety and consider the trivial bundle X k
over X. A section of this bundle, s : X X k, corresponds to a regular function
on X. Therefore, Γ X,X k OX X . In particular, Γ P

n k k. Similarly,
Γ P

n V V , where V is a k-vector space. As every vector bundle is locally trivial,
we can consider sections of a vector bundle over P

n as “twisted” vector-valued functions.
This will be the intuition for the definition of Serre’s twisting sheaf, see examples 3.4.6,
3.4.7, and remark 3.4.12.

Example 3.3.4. The global sections of the dual of the tautological bundle on P
n

C corre-
spond to the homogeneous polynomials in n 1 variables of degree 1, i.e. Γ P

n

C, E
Cx0 Cxn. For an explicit calculation of the global sections of the powers of the
tautological bundle on P

n

C, see [Wel07], p. 22, Example 2.13.

Module of global sections

The set of global sections can be given an algebraic structure: if s1 and s2 are sections
of a vector bundle π : E X, then

s1 s2 x : s1 x s2 x Ex

defines a section of E and thus gives Γ X,E an additive structure.

Moreover, setting
fs x : f x s x ,

where f OX X and s Γ X,E , gives Γ X,E an OX X -module structure.

The module of global sections is very interesting because it, in fact, determines the vector
bundle on a given variety.

Proposition 3.3.5. (Corollary A.3.3 in [Eis95]) Given a vector bundle E on a variety
X, its module of global sections Γ X,E forms a finitely generated projective module.
Furthermore, any finitely generated projective module arises uniquely from a vector bun-
dle in this way.

Thus, one can identify vector bundles with projective modules. In the next chapters, we
will identify them and we will not distinguish between the two, except where necessary.

Definition 3.3.6. Let E X be a vector bundle over a complex manifold or over a
variety. For every open U X let LE U Γ U, E . Then this, together with the
natural restriction maps, defines a presheaf on X. This even is a sheaf, called the sheaf
of sections of the vector bundle E. In fact, since Γ U, E is an OX U -module, LE is
a sheaf of modules. Moreover, since vector bundles are locally trivial, it is locally free.
(See [Wel07], p. 40 for a proof of the last assertion.)
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Chapter 3. Vector bundles

3.4 Locally free sheaves and vector bundles

Theorem 3.4.1. Let X be a complex manifold or a variety. Then there is a one-to-one
correspondence between (isomorphism classes of) vector bundles over X and (isomor-
phism classes of) locally free sheaves over X.

Proof. We follow [Wel07] respectively [Sha94c]. Given a locally free sheaf F , we con-
struct a vector bundle. This construction turns out to be the inverse of the map E LE .
We can assume that X is connected, otherwise consider the connected components sep-
arately.

Take an open covering Uα α of X such that the F Uα are free sheaves of rank rα.
Since X is connected, the rank is independent of the choice of α, and we set r rα.
Let ϕα : FUα Or

Uα
be the corresponding isomorphisms. Define gαβ ϕα ϕ 1

β
on

Or

Uα Uβ
. Then,

gαβ : Or

Uα Uβ
Or

Uα Uβ
.

Furthermore, gαβ determines an invertible mapping of vector-valued functions gαβ Uα Uβ ,
which we can write as

gαβ : OX Uα Uβ
r OX Uα Uβ

r,

which is given by a nonsingular r r matrix of functions in OX Uα Uβ . The matrices
of the functions gαβ satisfy the compatibility conditions (see section 3.1). Hence one
obtains a vector bundle E X by “glueing”. This construction gives F LE and
furthermore preserves isomorphism classes.

Remark 3.4.2. Constructions of the dual, sum, tensor product, etc. of vector bundles
and of locally free sheaves on complex manifolds are preserved under this correspon-
dence. Furthermore, we define these constructions on vector bundles on varieties by the
corresponding construction on the associated locally free sheaf.

Example 3.4.3. Let E be a vector bundle over X and let f : X Y be a continuous
map of topological spaces. We call the vector bundle corresponding to the pushforward
of the sheaf corresponding to E the pushforward of the vector bundle E, and denote it
by f E. Compare also examples 1.2.4 and 3.2.5.

Note that, as a special case of the above theorem, invertible sheaves correspond to line
bundles. Therefore invertible sheaves are sometimes called line sheaves. They play a
special role because of the following proposition:

Proposition 3.4.4. (Propostion II.6.12 in [Har77]) If L and M are invertible sheaves
on a ringed space X, so is L M. If L is any invertible sheaf on X, then there exists an
invertible sheaf L 1 on X such that L L 1 OX . In particular, the invertible sheaves
on X form a group.
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3.4. Locally free sheaves and vector bundles

Definition 3.4.5. The group of locally free sheaves of rank one on a ringed space X is
called the Picard group of X. It is denoted by Pic X.

Example 3.4.6. In example 3.2.4, we saw an important line bundle on P
n

C, the tau-
tological bundle. The line sheaf associated to the dual of this vector bundle is called
the twisting sheaf of Serre and denoted by O 1 . This can also be defined in another
approach, in a more general way, which is more suitable in the context of sheaves, see
the next example and [Har77], p. 117 in chapter II.5. Tensor products O 1 m, denoted
by O m , for m Z, also are line bundles on P

n

C by the above proposition.

Example 3.4.7. Let M be a finitely generated projective module. To define the twisting
sheaf of Serre on P M , consider the trivial bundle

M P M

P M

and define the subbundle H M as follows: for ξ P M , let Mξ be the associated
projective submodule of corank 1 (see section 2.3). We define the fiber H M ξ Mξ,
and H M Mξ, ξ . Then the twisting sheaf of Serre O 1 is the dual of the quotient
bundle Q in the following exact sequence:

0 H M M P M Q 0

P M

i.e. O 1 Q .

Remark 3.4.8. For M C
n 1, in fact, C

n 1 H C
n 1

ξ Lξ, where Lξ is the line
represented by ξ P

n

C. So we can also describe the twisting sheaf as the dual of the line
bundle L which is a subbundle of the trivial bundle C

n 1
P

n

C, where the fiber over a
point ξ P

n

C is given by the line represented by ξ in C
n 1, i.e. Lξ Lξ. We then have

an exact sequence of vector bundles,

0 L C
n 1

P
n

C Q̃ 0

P
n

C

and O 1 L .

Remark 3.4.9. For M Rn, P M P
n

R
. In this case, the global sections of O 1 can

be identified with Rn, i.e. Γ P
n

R
,O 1 Rx0 Rxn. Note that this is analogous to

the complex case, see example 3.3.4.
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Chapter 3. Vector bundles

In particular, we just defined the twisting sheaf on P
n

k
for some field k. This is an

important invertible sheaf on P
n

k
since it in fact generates the Picard group:

Proposition 3.4.10. (Corollary II.6.17 in [Har77]) If X P
n

k
for some field k, then

every invertible sheaf of X is isomorphic to O m : O 1 m for some m Z.

As vector bundles correspond to projective modules, the projective bundle of a vector
bundle is defined as follows:

Definition 3.4.11. Let E X be a vector bundle over a scheme X or a holomorphic
vector bundle over a complex space X. Let E be the finitely generated projective module
of global sections of E . Then the associated projective bundle is defined as

P E : P E .

This is a bundle π : P E X and the fiber over a point x X is the projective space
P Ex (see [GH78], p. 515, [Har77], p. 162ff in section II.7, and [Laz04], Appendix A).

Remark 3.4.12. In this case, the tautological bundle T P E , in fact, is the sub-
bundle of the pullback bundle π E P E whose fiber at a point x, v P E , where
x X and v P Ex , is the line in Ex represented by v, see [GH78], p.605. Also in this
case, the twisting sheaf is defined to be the dual of the tautological bundle.

Using the twisting sheaf, we can define an important property of an invertible sheaf.

Definition 3.4.13. Let X be a scheme over another scheme S. Furthermore, let L be
an invertible sheaf over X. Then L is very ample relative to S, if there is an immersion
i : X P

n

S
for some n such that

i O 1 L.

Let X be a scheme of finite type over a Noetherian ring A, and let L be an invertible
sheaf on X. Then L is ample if L m is very ample over Spec A for some m 0.

Remark 3.4.14. Let the corresponding immersion of a very ample invertible sheaf L
over a scheme X over Spec A be i : X P

n

A
. Then L admits global sections s0, . . . , sn

which define i. Furthermore, these sections generate L, i.e. for each x X, the stalk Lx

is generated by the images of the si in Lx as an OX,x-module. Furthermore, si i xi,
where the xi are the homogeneous coordinates on P

n

A
, which give rise to global sections.

There is a more general definition of ampleness which is independent of the base scheme,
see [Har77], p. 153, section II.7.

3.5 Divisors

We now introduce the notion of a divisor on a scheme X. For this, we need the scheme
to satisfy some properties. Throughout this section, we assume that the schemes we
consider all have these properties. However, first we need a definition.
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3.5. Divisors

Definition 3.5.1. A scheme X is regular in codimension one if every local ring OX,x of
X of dimension one is regular.

Assumption 3.5.2. X is a Noetherian integral separated scheme which is regular in
codimension one.

Definition 3.5.3. Let X be a scheme satisfying assumption 3.5.2. A prime divisor on
X is a closed integral subscheme Y of codimension one. A Weil divisor D is an element
of the free Abelian group Div X generated by prime divisors. We can write D as a finite
sum D

i
niYi, where the Yi are prime divisors, and the ni are integers. A divisor

D
i
niYi is called effective if all ni 0.

If Y is a prime divisor on X, let η be its generic point (it exists by [Har77], Exercise
II.2.9). Then its local ring OX,η has Krull dimension one ([Liu02], Exercise 2.5.2, com-
pare also Example 7.2.6) and therefore is regular by the assumption about X. Thus,
OX,η is a discrete valuation ring ([Eis95], Proposition 11.1). Furthermore, the quotient
field of OX,η is the function field k X of X. Denote the corresponding discrete valuation
by vY . If f k X , vY f Z. If it is positive, we say f has a zero along Y of order
vY f , and if it is negative, we say f has a pole along Y of order vY f . An alternative
notation for vY f is ordY f , the order of vanishing of f , see also definition 8.1.3.

Using this, we can define the divisor of a function.

Definition 3.5.4. Let X satisfy the assumption and let f k X . Then let the divisor
of f , denoted by div f , be

div f ordY f Y,

where the sum is taken over all prime divisors of X. One can show that this sum indeed
is finite ([Har77], Lemma II.6.1) and therefore div f is well-defined. Any divisor which is
equal to the divisor of a rational function is called principal divisor. Often one denotes
it by f div f .

Note that if f, g k X , div f g div f div g, and therefore sending a function
to its divisor is a homomorphism from the multiplicative group k X to the additive
group Div X. Its image P X is a subgroup of Div X. The quotient group

Cl X Div X P X

is called the divisor class group of X. Two divisors D,D are called linearly equivalent
if there exists a nonzero rational function f such that D D div f .

Divisors are interesting for us because, in fact, by the following theorem, they correspond
to invertible sheaves and therefore, by theorem 3.4.1, to line bundles. So, we can identify
line bundles, line sheaves, and divisors. Sometimes it is useful to consider our object of
study as a vector bundle or sheaf, sometimes it is more useful to regard it as a divisor.

Theorem 3.5.5. (Corollary II.6.16 in [Har77]) If X is a Noetherian, integral, sepa-
rated scheme whose local rings are unique factorization domains, then there is a natural
isomorphism ClX Pic X.
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Chapter 3. Vector bundles

Remark 3.5.6. The proof of this theorem requires the theory of Cartier divisors, which,
if the scheme satisfies certain properties, correspond to Weil divisors. The proof then
is quite straightforward. For a different proof of this theorem, see [Sha94c], VI.1.4 or
[Wel07], III.4, p. 107.

Example 3.5.7. The prime divisor in P
n

k
which is given by a hyperplane corresponds

to the invertible sheaf O 1 , compare proposition 3.4.10.

Remark 3.5.8. For projective curves we give an explicit construction of the sheaf
corresponding to a divisor D. We follow [Wüs08].

Let X̄ be a projective non-singular curve. In particular, X̄ is integral. The prime divisors
of X̄ are points of X̄. Let D

P X̄
nP P . Every point of X̄ is contained in an affine

open set in X̄. We define

O D P functions f k X such that ordP f nP .

This is an O
X̄,P

-module and, in fact, finitely generated. O
X̄,P

is a regular local ring
since X̄ is projective, and of dimension one. Therefore, the maximal ideal of O

X̄,P
is

generated by one element, π, called a uniformizing element in P . Therefore O D P is a
fractional ideal of the form

O D P π nP .

This defines a sheaf O D similar to the construction in definition 2.2.16:

For any open subset of X̄ we define O D U as the set of functions

s : U
P U

O D P

such that

1. s P O D P for every P U , and

2. for every P U there is an affine open set U Spec R such that P U and an open
neighborhood V of P in X and elements g, h R such that g

h
O D Q π

nQ

Q

and s Q g

h
for every Q V . Here πQ is a uniformizing element for Q.
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Summary

We briefly summarize the most important concepts from part I for reference. First, we
recall the connections, especially those used for identifications in the following. Then,
we give a résumé of the definitions of projective space and its twisting sheaf.

Connections

Vector bundles on varieties – vector bundles on complex manifolds

In remark 3.1.8, we discussed the correspondence between complex analytic spaces and
schemes established in Serre’s paper GAGA, [Ser56]. Furthermore, we noted that, if E
is a vector bundle on a variety X, then E C X C is a topological vector bundle.

Vector bundles – projective modules

Given a (fixed) variety X, proposition 3.3.5 establishes the connection between vector
bundles on X and their finitely generated projective modules of global sections:

Proposition. (Corollary A.3.3 in [Eis95]) Given a vector bundle E on a variety X, its
module of global sections Γ X,E forms a finitely generated projective module. Further-
more, any finitely generated projective module arises uniquely from a vector bundle in
this way.

Thus, throughout the thesis, we identify vector bundles and finitely generated projective
modules. We only explicitly differentiate between the two when necessary.

Vector bundles – locally free sheaves

Theorem 3.4.1 asserts the one-to-one correspondence between isomorphism classes of
vector bundles on a fixed complex manifold or variety and isomorphism classes of locally
free sheaves on that complex manifold or variety.
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Summary

Theorem. Let X be a complex manifold or a variety. Then there is a one-to-one cor-
respondence between (isomorphism classes of) vector bundles over X and (isomorphism
classes of) locally free sheaves over X.

Therefore, we will talk about vector bundles and locally free sheaves interchangeably.

Line bundles – invertible sheaves – divisors

Subject to certain assumptions on the base space, theorem 3.5.5 relates isomorphism
classes of line bundles to the class group, i.e. equivalence classes of divisors.

Theorem. (Corollary II.6.16 in [Har77]) If X is a Noetherian, integral, separated
scheme whose local rings are unique factorization domains, then there is a natural iso-
morphism ClX Pic X.

Later on, we particularly need the line bundle O D associated to a divisor D from
remark 3.5.8.

Projective space and the twisting sheaf of Serre

We briefly recall the construction of the projective space associated to a finitely generated
projective module and its twisting sheaf.

In section 2.3 we defined the projective space P M associated to a finitely generated
projective module M :

Definition. Let R be a ring and M a finitely generated projective R-module. Denote
by S M the symmetric algebra on M ,

S M
k 0

Sk M , Sk M T k M m n n m ,

where T k M M k, and m n n m is the ideal generated by the elements
m n n m, for m, n M . Then the associated projective space is P M : ProjS M .
If n is a non-negative integer, then the projective n-space over R is P

n

R
P Rn 1 .

If Y is a scheme and n a non-negative integer, then the projective n-space over Y is
P

n

Y
: P

n

Z Spec Z Y .

In example 3.2.4, we introduced the tautological bundle. This is a line bundle on complex
projective space:

As a topological space, the total space of the tautological bundle T P
n

C is a disjoint
union of lines. Furthermore, using the open cover Ui i of P

n

C by the standard open
sets Ui x0 : . . . : xn P

n

C : xi 0 , the tautological bundle is determined by the
transition functions gij : Ui Uj GL 1, C C , gij x0 : . . . : xn

xi
xj

.
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The line bundle which is dual to the tautological bundle corresponds to a locally free
sheaf, the twisting sheaf O 1 . More generally, we defined the twisting sheaf for the
projective space associated to a finitely generated projective module M in example 3.4.7
as follows:

Definition. Let H M be the subbundle of the trivial bundle over P M such that for
ξ P M , the fiber H M ξ Mξ, where Mξ is the projective submodule of corank
1 associated to ξ (see section 2.3). Then H M Mξ, ξ . The twisting sheaf of
Serre O 1 is the dual of the quotient bundle Q, i.e. O 1 Q , in the following exact
sequence:

0 H M M P M Q 0

P M

In example 3.3.4 and remark 3.4.9 we saw that for P
n

R
, the projective n-space over a ring

R, the corresponding finitely generated projective module of global sections is

Γ P
n

R,O 1 Rx0 Rxn.
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Chapter 4

Hermitian vector bundles

In this chapter, we introduce Hermitian vector bundles on an arithmetic variety over
S SpecOK . First, however, we need to define the notion of a Hermitian vector bundle
on a complex manifold. We construct metrics on the constructions of holomorphic vector
bundles of section 3.2 and define an important example of a Hermitian metric on a vector
bundle, the Fubini-Study metric on O 1 on complex projective space.

4.1 Hermitian vector bundles on complex manifolds

Definition 4.1.1. A Hermitian metric on a complex manifold M of dimension n is
given by a positive definite Hermitian inner product

hz , : Tz M Tz M C

for every z M , which depends smoothly on z, i.e. given local coordinates zi on M , the
functions

hij z hz
zi

,
zj

are smooth. Writing zj xj iyj , Tz M
xj

C is the holomorphic tangent space

at z. Given a basis dzi dz̄j for Tz M Tz M , the Hermitian metric is given by

ds2

i,j

hij z dzi dz̄j .

The (1,1)-form associated to the metric is

ω z
i

2
j,k

hjk z dzj dz̄k.

(See [GH78], p. 27ff.)
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Chapter 4. Hermitian vector bundles

Remark 4.1.2. The associated differential form determines the metric; in fact, any
positive differential form ω of type 1, 1 on a manifold M gives a Hermitian metric on
M , see [GH78].

Remark 4.1.3. The real part of a Hermitian inner product gives a Riemannian metric,
the induced Riemannian metric.

Example 4.1.4. The standard or Euclidean Hermitian metric on C
n is given by

ds2
n

i 1

dzi dz̄i.

We will see another example in section 4.1.2.

Definition 4.1.5. Let X be a complex variety and E a holomorphic vector bundle on
X. A Hermitian metric h on E is a Hermitian inner product on each fiber Ez of E such
that the functions representing h locally are C .
A Hermitian vector bundle Ē on a complex variety X is a pair E , h , where E is a locally
free sheaf of finite rank on X and h is a Hermitian metric on E .

Example 4.1.6. Let M be a complex manifold. Consider the trivial bundle π : E
C

n M M where π is the projection onto the second coordinate. Then every fiber
over a point z M is Ez C

n, and thus can be endowed with the standard metric.
This turns E into a Hermitian vector bundle.

4.1.1 Construction of metrics

Given a Hermitian vector bundle on a complex variety X, we construct a metric on the
dual, the tensor product, the direct sum, the pullback, and the (m-th) exterior product
of Hermitian vector bundles on X. We then, given a Hermitian bundle and a subbundle,
induce a metric on the subbundle and on the quotient. Using these constructions and
the definition in example 3.4.7, a Hermitian metric on O 1 is defined by the standard
metric on C.

We follow the rather abstract approach in [Bos99], [Via05].

Notation. Let Ec be the complex conjugate vector bundle of E , i.e. let its C-structure be
given by the one of E composed with complex conjugation. Let E be the dual bundle,
i.e. the bundle of homomorphisms from E to the trival bundle. Let Γ X, E be the space
of global smooth sections of E .

Remark 4.1.7. A Hermitian metric h is an element of Γ X, E Ec : The metric h
is sesquilinear on each fiber, so we can consider it as a linear form from Ez Ec

z to C,
i.e. an element of the dual space Ez Ec

z . Since the fiber Ez is finite-dimensional,
Ez Ec

z Ez Ec
z . Furthermore, h varies smoothly in z X, so h is a smooth

global section of E Ec .
Furthermore, a Hermitian metric is positive, i.e. the induced quadratic form hz is positive
definite for all z.
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4.1. Hermitian vector bundles on complex manifolds

The dual E

We first define the canonical metric h on the dual E of a given Hermitian vector
bundle E , h , i.e. a positive element h Γ X, E Ec .

For every z X, h induces an isomorphism Φz : Ec
z Ez , a hz , a , where

hz , a : Ez C

b hz b, a .

Now define
hz : Ez E c

z C

v, v hz Φ 1
z v ,Φ 1

z v .

To check that h is a Hermitian metric on E , we need to check that h is smooth and
that it is positive. Since h is smooth, all maps defined above are smooth, and therefore
h also is smooth, i.e. h Γ X, E Ec . Now, to show that h is positive, let us fix a
z X. We choose an orthogonal basis of Ez. By the definition of h , one sees that the
dual basis is orthogonal in Ez . Therefore, h is positive.

The tensor product Ē Ē

Let Ē E, h and Ē E , h be Hermitian vector bundles on X. We define a
Hermitian metric h h on E E , i.e. a positive element in Γ X, E E E E c ,
canonically depending on h and h .

Since E Ec E E c E E E E c , we can consider the natural
embedding

Φ : Γ X, E Ec Γ X, E E c Γ X, E E E E c .

Define the metric h h (by abuse of notation) as the image of

h h Γ X, E Ec Γ X, E E c

under Φ. We give h h z explicitly for fixed z X:

h h
z

: E E
z

E E c

z
C

i
ei ei ,

i
fi fi i,j

hz ei, fj hz e
i
, f

j
,

which is exactly what one expects the metric of the tensor product to be. By this we see
the positivity of h h and therefore we get a canonical metric on the tensor product
E E .
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Chapter 4. Hermitian vector bundles

The direct sum Ē Ē

Again, let Ē E , h and Ē E , h be Hermitian vector bundles on X. To canonically
induce a metric on the direct sum, we need to find a positive element in Γ X, E E
E E c . We will denote the Hermitian metric on the direct sum as h h .

By commuting the dual and the direct sum as well as using the distributive law, we get

E E E E c E Ec E E c E Ec E E c
.

Therefore, we get a canonical embedding of global sections:

Γ X, E Ec Γ X, E E c Γ X, E E E E c .

Like in the previous section, we define the metric h h (by abuse of notation) as the
image of

h h Γ X, E Ec Γ X, E E c
.

We can give this metric explicitly as

h h
z

: E E
z

E E c

z
C

e, e , f, f hz e, f hz e , f ,

which, again, is exactly what one expects.

By this, we see the positivity of h h and therefore get a well-defined metric on the
direct sum.

The pullback f Ē

Let f : Y X be a morphism of complex manifolds and Ē a Hermitian vector bundle
on X. Since

f E f Ec f E f E c f E f Ec f E Ec ,

f h defines an element of Γ X, f E f E c which is positive by the definition of
the pullback of a morphism, and therefore defines a Hermitian metric on f Ē .

Exact metric sequences

Let Ē E , h be a Hermitian vector bundle. Given an exact sequence of vector bundles

0 E α E β E 0,

we canonically induce Hermitian metrics h , h on E , E ; respectively. By the exact
sequence, we get induced maps

α αc : E E c E Ec
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4.1. Hermitian vector bundles on complex manifolds

and
β βc : E Ec E E c

.

Dualizing the first map, we get the surjective map

α αc : E Ec E E c
.

Now we define h to be the image of h under the map α αc .

In section 4.1.1, we canonically constructed a metric h Γ X, E Ec on the dual.
Define h to be the dual of h : β βc h . Then, h h Γ X, E E c

is the desired Hermitian metric on the quotient bundle.

Naturally, we can think of h as the restriction norm. Furthermore, h is the restriction
norm on the orthogonal complement of E in E , which is canonically isomorphic to E E .
Therefore, h and h are positive.

Definition 4.1.8. Given Hermitian vector bundles Ē E , h , E E , h1 , and E
E , h2 , we define the sequence

0 E α Ē β E 0, (4.1)

to be metric exact, if h1 and h2 are the metrics induced on E and E by the metric h
on E as described above, i.e. in the above notation, h1 h and h2 h .
Metric exact sequences have interesting additivity properties (e.g. proposition 5.1.8)
which, in general, do not hold when the sequence is just exact.

Remark 4.1.9. Not all exact sequences of Hermitian vector bundles are metric exact.
In the above notation, if h1 h or h2 h , then (4.1) is not metric exact. It is
an interesting question to study h1 h and h2 h . This leads to the study of the
Bott-Chern secondary characteristic class, see e.g. [Sou92].

The exterior product
m Ē

Since
m

Ē T m Ē e e ,

we get a metric on m Ē by inducing a metric on T m Ē and then on the quotient by
the construction in the previous sections. Thus, we obtain a metric on the m-th exterior
product.

By this and the construction of a metric on the direct sum of Hermitian vector bundles,
we get a metric on the exterior product

Ē
m 1

m

Ē ,
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Chapter 4. Hermitian vector bundles

and on the determinant bundle

det Ē
rk E

Ē .

Furthermore, the metric on the determinant bundle is, for z X, explicitly given by
r h z : r Ez

r Ez C

e1 . . . er, f1 . . . fr det hz ei, fj i,j ,

where r rk E .

4.1.2 The Fubini-Study metric

In this section, we construct a metric on P
n

C and on the twisting sheaf O 1 OPn
C 1 ,

which we deduce from the standard Hermitian metric on C
n. We use [GH78], [Huy05],

[Voi02], and [Laz04].

The Fubini-Study metric on P
n

C

We start by inducing a metric on P
n

C.

Let x0, . . . , xn be coordinates on C
n 1 and let π : C

n 1 0 P
n

C be the natural
projection. Given an open set U P

n

C, let Z : U C
n 1 0 be a lift of U , i.e. a

holomorphic map with π Z id U , and define the differential form

ωFS

i

2π
¯ log Z 2.

Here is the norm on C
n 1.

This differential form is, in fact, independent of the lifting: if Z : U C
n 1 0 is

another lifting, then there is a nonzero holomorphic map f : C C such that Z f Z.
Then,

i

2π
¯ log Z 2 i

2π
¯ log f Z 2

i

2π
¯ log Z 2 ¯ log f 2

ωFS ,

(4.2)

since ¯ log ff̄ ¯f ¯ f̄ 0 0 0 ([GH78], p. 30)).

Liftings always exist locally, so this defines a global differential form ωFS on P
n

C of type
1, 1 . In fact, ωFS is positive ([Huy05], Example 3.1.9).

We now derive a local representation of ωFS : choosing coordinates, let

P
n

C

n

k 0

Uk
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4.1. Hermitian vector bundles on complex manifolds

be the standard open covering with the sets Uk x x0 : . . . : xn P
n

C : xk 0 .
Clearly, Uk C

n by the map αk : x0 : . . . : xn
x0
xk

, . . . , xk
xk

, . . . , xn
xk

, where means
that this coordinate is omitted.

We define the differential forms ωk on Uk, which are local representations of ωFS :

ωk

i

2π
¯ log

n

l 0

xl

xk

2

.

Under αk, if zl are the coordinates in C
n, this corresponds to the form

ωk

i

2π
¯ log 1

n

l 1

zl
2 .

It is immediate that the ωk glue together to a well-defined differential form on P
n

C,
i.e. ωk Uk Uj ωj Uk Uj : since ¯ log z 2 1

zz̄
¯ zz̄ 1

zz̄
z dz̄ 0,

log
n

l 0

xl

xk

2

log
xj

xk

2

log
n

l 0

xl

xj

2

.

Using this, we get the local representation of ωFS :

ωFS

i

2π
¯ log 1

j

zj z̄j

i

2π
j

zj

1 zj
2
dz̄j

i

2π

dzj dz̄j

1 zj
2

z̄jdzj zjdz̄j

1 zj
2 2

. (4.3)

(See [GH78] p. 30, [Voi02] p.76, and [Laz04] p.43.)

In fact, the differential form ωFS is positive, and thus defines a Hermitian metric on P
n

C.
It is called the Fubini-Study metric, see [GH78].

The Fubini-Study metric on OPn
C 1

By the construction given in section 4.1.1 applied to M C
n 1 endowed with the

standard metric, we define a Hermitian metric on O 1 OPn
C 1 , the Fubini-Study

metric on OPn
C 1 .

We give the norm explicitly:

Consider the point x x0 : . . . : xn P
n

C represented by x x0, . . . , xn C
n 1 0 ,

and a section s Γ P
n

C,O 1 . In example 3.3.4 we saw that the global sections of O 1
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Chapter 4. Hermitian vector bundles

are the homogeneous polynomials of degree one, i.e. Γ P
n

C,O 1 Cx0 Cxn. By
the construction of the metric on O 1 , the norm h is determined by

h x s x , s x
s x 2

x 2
, (4.4)

where s x denotes the evaluation of the corresponding linear functional in Cx0

Cxn, see [Laz04], p. 43.

To derive a local representation of the metric, again take Ui to be the standard open
sets Ui x P

n

C : xi 0 . Consider the commutative diagram

ϕ
i
O 1

��

�� O 1

��
Ui

ϕi s

��

ϕi
�� Pn

C

s

��

where ϕi denotes the inclusion. Since Ui C
n, and using the remark in example 3.1.5,

we obtain that ϕ
i
O 1 is trivial. Note that ϕ

i
O 1 C

n 1 Ui.

Identifying Ui C
n, let si : Ui C

n 1, si z1, . . . , zn : z1, . . . , zi 1, 1, zi, . . . , zn .
Since ϕ

i
s z C

n 1 z , we can regard ϕ
i
s : Ui C

n 1 Ui as a function ϕ
i
s :

Ui C
n 1. Furthermore, setting ϕ

i
s : si defines a global section s : P

n

C O 1 .

The dual of O 1 , the tautological bundle, inherits the standard metric from C
n 1 since

it is a subbundle of the trivial bundle, so the norm h on O 1 is hz s
i

z , s
i

z
1

j
zj

2, where s
i

is the section dual to si. Therefore, since O 1 O 1 ,

i : hz si z , si z
1

1
j

zj
2
.

Note that this is independent of the choice of i. (See also e.g. [Voi02], p. 76, chapter
3.2.2.)

One obtains the same result by using the section s x0 (under the identification
Γ P

n

C,O 1 Cx0 Cxn) in (4.4) and local coordinates on Ui.

4.2 Hermitian vector bundles on arithmetic varieties

Now we can turn to arithmetic and define the arithmetic analogon of complex varieties
and Hermitian vector bundles. Throughout this section, let K be a number field of
degree K : Q , OK its ring of integers and S SpecOK the associated scheme.

Let X be an S-scheme. We denote by XC the scheme XC σ:K C Xσ, where Xσ

X S,σ Spec C is the fiber product of X and Spec C over S using the map Spec C

Spec K which is induced by an embedding σ : K C. Denote this map, by abuse of
notation, also by σ : Spec C Spec K.

50



4.2. Hermitian vector bundles on arithmetic varieties

Example 4.2.1. Let X S SpecOK . We show that SC Spec K Q C, see [Via01],
p. 73. Clearly Sσ Spec C, so SC σ:K C Spec C. Since K is an algebraic number
field, there is an f x Q x such that K Q x f x . Tensorizing with C, we get
that K Q C Q x f x Q C C x f x . The polynomial f x splits over C

and its roots correspond to the embeddings of K into C. Therefore f x is of the form
f x

σ:K C x ασ . We deduce that

K Q C C x f x
σ:K C

C x x ασ

σ:K C
C.

Thus, SC σ:K C Spec C Spec K Q C .

Definition 4.2.2. The set of complex points of the scheme X is X C : XC C

σ:K C Xσ C . Note that Xσ is a complex scheme, so this is well-defined. Moreover,
the complex conjugation on the coordinates of complex points in X induces an antiholo-
morphic involution F : X C X C .

In the following, we use the definitions1 of [BGS94]:

Definition 4.2.3. An arithmetic variety X is a scheme over S, i.e. there is a map
π : X S, such that π is flat and quasiprojective, and whose generic fiber XK

X S Spec K is regular.

Example 4.2.4. ([Sou92], p. 3, chapter 0.2.2) Let f1, . . . , fk Z x0, . . . , xn be ho-
mogeneous polynomials with integer coefficients. Consider the system of polynomial
equations

f1 x0, . . . , xn fk x0, . . . , xn 0.

Similar to the construction in remark 2.2.6, we define the projective scheme

X Proj Z x0, . . . , xn f1, . . . , fk .

Then, under certain conditions on f1, . . . , fk, e.g. Z x0, . . . , xn f1, . . . , fk is torsion-
free, this is an arithmetic variety.

For more examples of spectra of rings finitely generated over Z and their properties, see
[EH00].

Definition 4.2.5. A Hermitian vector bundle Ē on an arithmetic variety X over S is a
pair E, h , where E is a locally free sheaf of finite rank on X and h is a C Hermitian
scalar product on the holomorphic vector bundle E C on X C (see remark 3.1.8) which
is invariant under F .

Remark 4.2.6. A Hermitian vector bundle Ē on S is the same as a finitely generated
projectiveOK-module E together with Hermitian scalar products on the K : C complex
vector spaces Eσ E OK ,σ C associated to the embeddings σ : K C, which are
invariant under F .

1
The notion of an arithmetic variety is not consistent in the literature. In e.g. [Sou92], an arithmetic

variety is a regular scheme which is projective and flat over Z.
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Chapter 4. Hermitian vector bundles

Definition 4.2.7. Since the dual, the tensor product, the direct sum, the pullback, and
the exterior product of locally free sheaves is locally free ([Har77], Propositions II.5.5,
II.5.7, II.5.8, and Example II.5.16), we can apply the constructions of the previous section
to the setting on an arithmetic variety and obtain the dual, the tensor product, the direct
sum, the pullback, and the m-th exterior product of vector bundles on arithmetic varieties.

One should keep the following picture in mind:

p q. . .

π

Spec Z

XXX p X q

P

σ

We “add” the complex variety X : X C to an arithmetic variety X. Points on X
are sections of π and determine a point on X (definition 2.2.11). Thus, to control the
“size” of points on an arithmetic variety as suggested in the introduction, we need to
introduce metrics. In Arakelov geometry, given an algebraic vector bundle E X, this
is done by endowing the vector bundle E X with a Hermitian metric.

Example 4.2.8. Let R OK and M be a finitely generated projective OK-module. Let
MC M Z C. Given a Hermitian metric on MC, we construct a metric on the twisting
sheaf O 1 of the projective space P M associated to M . First of all, we see that the
metric on MC induces a Hermitian metric on the trivial bundle M P M P M : every
fiber M P M P M , and so we have a Hermitian metric on M P M P σ C.
Then we apply the constructions of metrics from the previous sections and deduce a
metric on O 1 .

Example 4.2.9. The Fubini-Study metric induces a metric on the tautological bundle
OPn

OK
1 of P

n

OK
, i.e. on every fiber at infinity.

The Hermitian line bundles on a fixed arithmetic variety with the tensor product form
a group, the arithmetic analogon of the Picard group of invertible sheaves:

Definition 4.2.10. The set of Hermitian line bundles on a fixed arithmetic variety
forms a group under the operation of the tensor product of Hermitian line bundles with
neutral element the trivial bundle OX endowed with the metric induced by 1 σ 1 and
inverse element the dual bundle. This group is called the arithmetic Picard group of X
and is denoted by Pic X .
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4.2. Hermitian vector bundles on arithmetic varieties

Remark 4.2.11. Note that this is an extension of the classical Picard group on an
arithmetic variety. The underlying vector bundles on the arithmetic variety X form the
Picard group of X.
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Chapter 5

The Arakelov degree

This chapter deals with the concept of the Arakelov degree of a Hermitian vector bundle
over an arithmetic variety. The degree is an important notion in Arakelov geometry. We
first consider Hermitian vector bundles over affine schemes and then extend this concept
to arbitrary schemes. As an example, we compute the degree of the twisting sheaf over
P

n

OK
, the projective n-space over a ring of integers of a number field K, endowed with

the Fubini-Study metric.

5.1 The Arakelov degree of a Hermitian vector bundle over
SpecOK

Definition 5.1.1. Let L̄ L, h be a Hermitian line bundle over S, i.e. a Hermitian
vector bundle of rank 1. Then the Arakelov degree of L̄ is defined as

deg L̄ : log # L sOK

σ:K C
log s σ,

where s is any non-zero global section of L. Let Ē E, h be a Hermitian vector bundle
of rank r over S, then the Arakelov degree of Ē is defined to be

deg Ē : deg det Ē ,

which can be expressed as

deg Ē log # E s1OK srOK

1
2

σ:K C
log det si, sj σ , (5.1)

where s1, . . . , sr Er is a base of EK over K.

Remark 5.1.2. The independence of this definition of the choice of s, respectively
s1, . . . , sr, essentially follows from the product formula (theorem A.2.14) and the follow-
ing lemma (e.g. [Via05]).
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Chapter 5. The Arakelov degree

Lemma 5.1.3. Let L̄ be a Hermitian line bundle. Then

deg L̄
p�

log s p

σ:K C
log s σ,

where p runs over the prime ideals of OK and p is the norm corresponding to the
non-archimedean valuation vp.

Proof. We need to prove that

log # L sOK

p�
log s p.

First of all,
L sOK

p

L sOK p
p

Lp sOKp.

Then, since L has rank one, there exists an isomorphism ip : Lp OKp for every prime
ideal p of OK . Therefore,

Lp sOKp OKp ip s OKp OK ip s ord p ip s .

Since ord p ip s ord p s vp s , we get that

# L sOK

p

Npvp s .

By definition, s p Np vp s , see definitions A.1.5 and A.2.12.

In the next propositions we follow [Via05]:

Proposition 5.1.4. Let Ē and F̄ be Hermitian vector bundles and L̄ a Hermitian line
bundle over S. Furthermore, OK is endowed with the norms 1 σ 1, σ : K C.
Then,

(i) deg Ē F̄ m deg Ē n deg F̄ , for n rk Ē and m rk F̄

(ii) deg Ē F̄ deg Ē deg F̄

(iii) deg L̄ deg L̄, for L̄ the dual of L̄.

Proof. See [Bos99], [Via05].

(i) Let s, t be non-zero global sections of Ē, F̄ , respectively. Then s t is a non-zero
global section of Ē F̄ .

Since
nm

Ē F̄
n

Ē m

m

F̄ n,
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5.1. The Arakelov degree of a Hermitian vector bundle over SpecOK

(see e.g. [Neu99], p. 233, Exercise III.4.3), we can reduce the proof to the case in
which Ē, F̄ are line bundles.

The induced metric on the tensor product (4.1.1) is

s t σ s σ t σ,

so
log s t σ log s σ log t σ.

Lemma 5.1.3 and the definition of the norm, s p Np vp s , reduce the claim to

vp s t vp s vp t .

By the construction of the tensor product of two line bundles, a local trivialization
of E F is given by the product of the trivializations of E and F . So, if ip : Ep

OKp is a trivialization of E in p and jp : Fp OKp is a trivialization of F in p,
then the trivialization of E F in p is kp s t ip s jp t . This yields the
desired result.

(ii) From [Bou70], Proposition A.III §7.10, we know that

E F E F,

and therefore,

n m

E F
n m

i 1

i

E
n m

j 1

n m j

F
n

E
m

F. (5.2)

So,

deg Ē F̄ deg
n

Ē
m

F
(i) deg Ē deg F̄ .

(iii) This follows from (i) since the isomorphism L̄ L OK is an isomorphism by
the choice of the norm on OK .

Definition 5.1.5. A submodule F of an OK-module E is said to be saturated if F
F OK K E. Otherwise, we define its saturation Fs F OK K E.

Remark 5.1.6. Let E be a finitely generated projective module over OK and F a sub-
module. Then F OK K is torsion-free and thus its saturation is torsion-free. Moreover,
it is finitely generated, and therefore it even is projective ([Neu99], Proposition III.4.3).
Thus, if Ē is a Hermitian vector bundle over SpecOK and F is a subbundle of Ē, Fs

also is a subbundle of Ē and inherits a metric. Furthermore, for r rkFs rkF , since
r F r F , we get the inequality deg F̄ deg F̄s.
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Proposition 5.1.7. Let E be a finitely generated projective module over a ring of in-
tegers OK of a number field K and let F be a saturated submodule of E. Then F and
E F are torsion-free, and the exact sequence

0 F E
p

E F 0,

splits.

Proof. By remark 5.1.6, F is torsion-free and moreover projective. Assume that E F
has non-trivial torsion T . Then F p 1 T and the following sequence is exact:

0 F p 1 T
p

T 0.

Since K is a flat OK-module ([Har77], Example III.9.1.1) and T is torsion, it follows
that T OK K 0. Therefore, we obtain

F OK K p 1 T OK K.

However, F is saturated, so

p 1 T F p 1 T OK K E,

which is a contradiction. Recall that over OK , torsion-free implies projective. Thus, the
exact sequence splits.

Proposition 5.1.8. Let Ē be a Hermitian vector bundle on SpecOK and F a saturated
submodule of Ē. Endow F and E F with the metrics induced by Ē. Then,

deg Ē deg F̄ deg E F.

Proof. From the previous proposition, we know that

E F E F .

Let m rkF and n rk E F . By (5.2), we get an isomorphism

m

F
n

E F
m n

E,

given by

m F n E F m n E
f1 . . . fm e1 . . . en f1 . . . fm e1 . . . en .

By the definitions of the metrics induced on F and E F , this isomorphism is an isometry.
Furthermore, it is canonical, because it does not depend on the choice of representatives
of e1, . . . , en.
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5.2 The Arakelov degree of a Hermitian vector bundle over
an arithmetic variety

Let Ē E, h be a Hermitian vector bundle on an arithmetic variety X over S
SpecOK .

We first define a metric on the pushforward of the vector bundle Ē under the map
π : X S. We will then define the Arakelov degree of Ē as the Arakelov degree of the
pushforward.

Moret-Bailly showed in [MB85] that the pushforward π E of a locally free sheaf on an
arithmetic variety to SpecOK also is locally free. The vector bundle π E on S is given
as the projective module Γ S, π E Γ X,E . We now induce a metric on π E. Let
s Γ S, π E Γ X,E and define

s 2
σ

Xσ C
sx

2
Eσ

dµσ x ,

where dµσ is a measure on Xσ C and 2
Eσ

hσ,x , . In the case of a projective
space X we use the Fubini-Study metric as the measure dµσ.

Definition 5.2.1. The Arakelov degree of a Hermitian vector bundle Ē over an arith-
metic variety X is

deg Ē : deg π Ē ,

where π : X SpecOK .

5.3 An example: the Arakelov degree of OP
n
OK

1

Consider P
n

OK
ProjOK x0, . . . , xn from example 2.2.17 and the metric on OPn

OK
1

which is induced by the Fubini-Study metric from section 4.1.2. In this section, we
compute the Arakelov degree of OPn

OK
1 . For simpler notation, we omit the index P

n

OK

and simply write O 1 for OPn
OK

1 .

Theorem 5.3.1. The Arakelov degree of OPn
OK

1 is

deg OPn
OK

1
K : Q

2
n 1 log n 1 .

Proof. Recall that the global sections of O 1 are the homogeneous polynomials of degree
one, i.e. Γ P

n

OK
,O 1 OKx0 OKxn (see e.g. [Wel07], p. 22, Example 2.13).

To compute the Arakelov degree of OPn
OK

1 , by the definition above we need to choose
a global section s OKx0 OKxn. Then,

s 2
O 1 ,σ

Pn
C,σ

s p 2
FS ω p , (5.3)
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Chapter 5. The Arakelov degree

where FS is the Fubini-Study metric and ω is the differential form associated to the
Fubini-Study metric (section 4.1.2).

Recall that the matrix representation of the Fubini-Study metric is given by hz

1
1 i zi

2 on O 1 z O 1 c
z.

First, we compute the first part of formula (5.1) in the definition of the Arakelov degree
(section 5.1). Choosing si xi, we get

log # Γ P
n

OK
,O 1 s1OK srOK

log # x0OK xnOK x0OK xnOK

0.

For the second part of formula (5.1) in the definition of the Arakelov degree, we need to
construct the matrix si, sj σ to compute its determinant. The computation is similar
for every σ, so we omit the index in the following.

Since the standard open set Uj p P
n

C,σ
: xj 0 is dense in P

n

C,σ
, we can calculate

the integral in (5.3) as follows:

xj
2
O 1

Uj

xj
2
FS ω

C

1
1

j
zj

2
ω,

and, using the explicit formula for the differential form ω in (4.3) from section 4.1.2, we
get

xj
2
O 1

i

2π C

1
1 zk

2

dzk dz̄k

1 zk
2

z̄kdzk zkdz̄k

1 zk
2 2

. (5.4)

Similarly, one can compute the inner product of two sections:

xi, xj O 1 ,σ xi, xj O 1
Pn

C

Re xi p , xj p FS ω p . (5.5)

We compute the norms and the inner products in the following lemma and using this,
we obtain the desired result,

deg OPn
OK

1
1
2

K : Q log
1

n 1

n 1 K : Q

2
n 1 log n 1 .
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OK

1

Lemma 5.3.2. Consider the sections xi of O 1 . Then, for every σ : K ,

j : xj
2
O 1 ,σ

1
n 1

,

i j : xi, xj O 1 ,σ 0.

Proof. We calculate the integrals in (5.4) and (5.5) using the rotation invariant measure
on S

2n 1.

First, we calculate

x0
2
O 1 ,σ

Pn
C

x0
2
FS ωn.

By the definition of the Fubini-Study metric,

Pn
C

x0
2
FS ωn

S2n 1
x0

2 dv, (5.6)

where dv is the unique U n 1 -invariant probability measure on the unit sphere S
2n 1

in C
n 1, see [Laz04], p. 42.

We compute the integral on the right hand side as follows: let u u1, . . . , um Rm

and let u r and ϕ1, . . . ϕm 1 be the angles defining u. Then the polar coordinates of
u p r, ϕ1, . . . , ϕm 1 are given by

p r, ϕ1, . . . , ϕm 1

r cos ϕ1

r sin ϕ1 cos ϕ2
...
r sin ϕ1 sin ϕ2 . . . sin ϕm 2 cos ϕm 1

r sin ϕ1 sin ϕ2 sin ϕm 2 sin ϕm 1

.

Moreover, the Jacobian of this transformation is

Jp r, ϕ1, . . . , ϕm 1 rm 1 sinm 2 ϕ1 sinm 3 ϕ2 sin2 ϕm 3 sin ϕm 2.

Therefore the rotation invariant measure σm on Sm 1
R

m is given by

Sm 1
g u dσm u

0,π m 2 0,2π

g p 1, ϕ1, . . . , ϕm 1 Jp 1, ϕ1, . . . , ϕm 1 d ϕ1, . . . , ϕm 1 .

This measure is uniquely defined up to a constant. We normalize it, i.e. we consider the
unique probability measure. Recall that the volume of the unit sphere is

Vm σm S
m 1 mπm 2

Γ m

2 1
.
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Therefore, since U n 1 SO 2 n 1 and the U n 1 -invariant probability measure
is unique, the measure v σm

Vm
, where m 1 2n 1, i.e. m 2 n 1 , is the measure

we are looking for. Thus,

Sm 1
x0

2 dv

1
Vm

2π

0

π

0
. . .

π

0
cos ϕ1

2 sin ϕ1 cos ϕ2
2

sinm 2 ϕ1 sinm 3 ϕ2 sin ϕm 2 dϕ1 . . . dϕm 1

1
Vm

π

0
cos2 ϕ1 sinm 2 ϕ1 dϕ1

π

0
sinm 3 ϕ2 dϕ2

π

0
sin ϕm 2 dϕm 2

2π

0
1 dϕm 1

2π

1
Vm

π

0
sinm ϕ1 dϕ1

π

0
cos2 ϕ2 sinm 3 ϕ2 dϕ2

π

0
sinm 3 ϕ3 dϕ3

2π

0
1 dϕm 1

2π

: I m J m ,

where I m denotes the first summand and J m the second one.

Claim:

I m J m
1
2

1
n 1

.

We start by computing the inner integrals. Set Ik : π

0 sink ϕ dϕ.
By partial integration,

Ik k 1
π

0
cos2 ϕ sink 2 ϕ dϕ, (5.7)

and, using cos2 ϕ 1 sin2 ϕ, we get

Ik

k 1
k

Ik 2, (5.8)

and therefore

Ik

k 1 k 3 1
k k 2 2 π, k even

k 1 k 3 2
k k 2 3 1 2, k odd.

For k 2, we obtain

Ik Ik 1
2π

k
. (5.9)

Since m 2 n 1 , m is even. Using (5.7),

I m
2π

Vm

1
m 1

Im Im 3 Im 4 I3 I2 I1.
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OK

1

and
J m

2π

Vm

Im

1
m 2

Im 1 Im 4 Im 5 I2 I1 .

By (5.8), 1
m 2Im 1

1
m 1Im 3, and comparing the two lines, we see that

I m J m .

We now compute I m J m . By (5.9) and using the fact that m is even, we get

I m
2π

m 1 Vm

Im

2π

m 3
2π

m 5
2π

3
2

4π

Vm

Im

2π
m 4

2

m 1 m 3 3

4π

Vm

m 1 m 3 1
m m 2 2

π
2π

m 4
2

m 1 m 3 3
1

Vm

2π
m
2

m m 2 2
.

Recall that m 2 n 1 , and since V2 n 1
2π

n 1

n! ,

I m
n!

2πn 1

2π n 1

2n 1 n 1 !
1
2

1
n 1

.

Therefore we obtain the first assertion,

x0
2
O 1 I m J m

1
n 1

.

The norms of the other xi are computed similarly, and, using the same notation, we get

xi
2
O 1

1
Vm

2π

0

π

0
. . .

π

0
u2

i u2
i 1 sinm 2 ϕ1 sinm 3 ϕ2 sin ϕm 2 dϕ1 . . . dϕm 1,

and the calculation of this integral also results in

xi
2
O 1

1
n 1

.

By another similar computation, since k : π

0 cos ϕ sink ϕ dϕ 0, we get

xi, xj O 1
Sm 1

Re xi, xj dv 0, i j.
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Chapter 5. The Arakelov degree

Example 5.3.3. The special case of n 1 yields m 4 and ω4 2π2. Therefore,

xi
2
O 1

P1
C

xi
2
FS ω

1
2
,

and
deg OP1

OK
1 log 2 K : Q .

In the following example, we calculate the degree of OP1
OK

1 by hand with the differential

form ω without using the rotation invariant measure on S
2n 1. Note that the result is

the same as in the previous example.

Example 5.3.4. For n 1 we can also explicitely calculate (5.4) and (5.5): expression
(4.3) from section 4.1.2 for ω simplifies to

ω
i

2π

1
1 z 2 2

dz dz̄.

Passing to polar coordinates ρ, ϑ , dz dz̄ 2ρi dρ dϑ, we get

x0
2
O 1 ,σ

i

2π C

1
1 z 2 3

dz dz̄

1
2π

2π

0 0

2ρ

1 ρ2 3
dρ dϑ

1

1
u3

du

1
2
.

Similarly,

x1
2
O 1 ,σ

1
2
.

Using the same coordinate change,

x0, x1 O 1 ,σ

U0 U1

Re x0 p x1 p

xj p 2
ω

i

2π C 0

Re z̄

1 z 2 3
dz dz̄

1
2π 0

2π

0

2ρ2

1 ρ2 3
Re cos ϑ i sin ϑ dρ dϑ

1
2π 0

2ρ2

1 ρ2 3

2π

0
cos ϑ dϑ

0

dρ

0.
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1

So,

deg OP1
OK

1 0
1
2

σ

log det xi, xj σ

1
2

K : Q log
1
2

2

log 2 K : Q .
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Chapter 6

The height of P
n
OK

Height is an important concept in diophantine geometry. It allows using descent argu-
ments as used in the proof of the Mordell-Weil theorem. In this chapter, we discuss the
notion of the height of projective space as a special case of the height of an arithmetic
variety as defined by Jean-Benôıt Bost, Henri Gillet, and Christophe Soulé in [BGS94].

6.1 The height of a point in P
n
Z

Definition 6.1.1. Let L̄ be a Hermitian line bundle on SpecOK . Then the height of
SpecOK with respect to L̄ is

h
L̄

SpecOK : deg L̄ .

Let X be an arithmetic variety, L̄ a Hermitian line bundle on X, and P a point on X.
Then P corresponds to a section εP : SpecOK X.

Definition 6.1.2. Let P X be a point corresponding to the section εP : SpecOK X.
We define the height of P with respect to the line bundle L̄ as

h
L̄

P : deg εP L̄ .

Consider X P
n

Z and its universal bundle O 1 . In section 4.1.2 we defined the Fubini-
Study metric and gave an explicit formula on Ui x0 : . . . : xn : x0 0 .

Let P X C be a point. Recall that the metric on O 1 P is the dual of the restriction
of the standard metric on C

n to the line corresponding to P . For an arbitrary section s
of O 1 associated to the homogeneous polynomial λjXj we then get

λjXj
P

λjzj

zi
2

1
2

.
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n
OK

Example 6.1.3. Let x0, . . . , xn be a n 1 -tuple of relatively prime integers and let
P be the associated point in P

n

Z. Then,

h
O 1 P log x2

i
.

Proof. (See [Bos99], section 3.3.2.) The morphism associated to P , εP : Spec Z P
n

Z,
corresponds to a morphism of graded rings,

ε#
P

: Z X0, . . . ,Xn Z Y

Xi xiY.

Furthermore, we have a canonical isomorphism of line bundles ε
P
OPn 1 OSpec Z

associating ε
P
Xi to xi. Under this map, a global section s λjXj is sent to λjxj .

By scaling of the λj (the section is independent of the scaling) we get λjxj 1.
Therefore the norm at infinity of ε

P
s is

λjXj
P

λjxj

x2
i

1

x2
i

.

Now the product formula and the definition of the Arakelov degree complete the proof.

Remark 6.1.4. For an arbitrary point P x0 : . . . : xn P
n K , the height defined

above coincides with the classical height in Arakelov theory (definition A.3.6)

h P
p�

log max
i

xi p

σ:K C
log

i

σ xi
2

1
2

,

where p runs over the prime ideals of OK and p is the absolute value corresponding
to the non-archimedean valuation vp. (See [BGS94], p. 947.)

In the case K Q, this coincides with our result in the lemma above because Z is a
principal ideal domain and therefore the finite primes do not contribute to the sum.

Example 6.1.5. Consider the point 0 : 1 P
1
OK

:

h 0 : 1 log 1 0.

6.2 The height of P
n
OK

In this section, for simpler notation, we often omit the index P
n

OK
and simply write O 1

for OPn
OK

1 as in section 5.3
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n
OK

Definition 6.2.1. The height of P
n

OK
with respect to OPn

OK
1 with the metric induced

by the Fubini-Study metric is

h
O 1 P

n

OK
h
O 1 div s

div s
Pn
OK

C
log s ωn, (6.1)

where s is a non-zero section of OPn
OK

1 and ω is the differential form associated to the
Fubini-Study metric (section 4.1.2).

Remark 6.2.2. For s x0, OPn
OK

1 div s OPn 1
OK

1

Lemma 6.2.3. In the above notation,

h
O 1 P

1
OK

1
2

K : C .

Proof. We choose the section s x0.

1. The divisor div x0 0 : 1 , and by example 6.1.5, h
O 1 div x0 0.

2. We now need to compute the integral in formula (6.1). Recall that

P
1
OK

C

σ:K C
P

1
OK σ

C ,

and that for each σ the computation is similar. Thus,

h P
1
OK

K : Q

P1
C

log s ω, (6.2)

where ω is the differential form (4.3) from section 4.1.2.

This integral can be taken over the standard open set U0 x0 : x1 : x0 0
C. By setting z x1

x0
,

P1
C

log s ω
C

log 1 z 2 1
2

i

2π

1
1 z 2 2

dz dz̄

i

2π C

log 1 z 2

2 1 z 2 2
dz dz̄.

Passing to polar coordinates ρ, ϑ and dz dz̄ 2ρi dρ dϑ,

i

2π

2π

0 0

log 1 ρ2

2 1 ρ2 2
2ρi dρ dϑ,
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n
OK

and changing the coordinates to µ ρ2, we obtain 2ρ dρ dϑ dµ dϑ and

1
2π

2π

0 0

log 1 µ

2 1 µ 2
dµ dϑ

0

log 1 µ

2 1 µ 2
dµ

log 1 µ

2 1 µ

1
2 1 µ 0

1
2
.

So,

h
O 1 P

1
OK

K : Q
1
2
.

Theorem 6.2.4. (Bost, Gillet, Soulé, [BGS94]) The height of P
n

OK
is

h
O 1 P

n

OK
K : Q σn,

where σn is the Stoll number, i.e. σn

1
2

n

k 1

k

l 1

1
l
.

Proof. Choose the section s x0. Then, div s P
n 1
OK

.

Let dv be the unique U n 1 -invariant probability measure on the unit sphere S
2n 1

in C
n 1. Then, by [BGS94], p. 924,

Pn
C

log x0 ωn

S2n 1
log x0 dv.

One can compute the integral on the right-hand side as in section 5.3 to be

S2n 1
log x0 dv

1
2

n

l 1

1
l

.

By definition 6.2.1,

h P
n

OK
h P

n 1
OK

K : Q

S2n 1
log x0 dv

h P
n 1
OK

K : Q
1
2

n

l 1

1
l

. (6.3)
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The desired result is obtained by induction on n:
In example 6.1.5, we explicitly computed the base case, namely for n 1,

div x0 0 : 1 P
1.

The induction step follows from equation (6.3).

6.3 Arakelov degree and height – intersection theory

In the light of the historic development of Arakelov Theory, we now discuss the result
of theorem 6.2.4 above in detail.

Intersection theory is a branch of algebraic geometry, which studies linear combinations
of subvarieties of algebraic varieties and their intersections. Their intersections, on the
one hand, are motivated by the set-theoretic intersection, but on the other hand, this is
extended such that one can e.g. compute the intersection product of two lines. We will
not discuss intersection theory here, as this would go beyond the scope of this thesis,
but we will touch it now and then (see e.g. remark 8.1.7 and section 10.4).

In the paper that led to the theory named after him, [Ara74], Arakelov introduced an
intersection theory on arithmetic surfaces and thus extended the theory on varieties
over fields to a theory on arithmetic surfaces. Gerd Faltings, in his seminal paper
[Fal84], pushed this theory further and proved a Riemann-Roch theorem, a Hodge index
theorem, and a Noether’s formula for arithmetic surfaces. Moreover, this eventually led
him to his proof of the Mordell conjecture (now called Faltings’ theorem), the Shafarevich
conjecture, and a conjecture of Tate.

Henri Gillet and Christophe Soulé later generalized this to a product on arithmetic
varieties in a series of papers, among them [GS90], and proved a version of the Riemann-
Roch theorem in this context in [GS89] and [GS92].

In the context of this arithmetic intersection product on arithmetic varieties, the height
of an arithmetic variety with respect to a Hermitian vector bundle was defined to be the
degree of a certain intersection product in [BGS94], and therefore the height is a special
case of the degree.

In fact, for P
n

OK
respectivelyOPn

OK
1 , the degree and the height should actually coincide.

Now, our results in theorem 5.3.1 and theorem 6.2.4 are not the same, and we will now
elaborate on what leads to this difference.

In [BGS94], Proposition 3.3.2, it is shown that, when changing the metric, the height
essentially only changes up to a constant. We furthermore observe that, indeed, our
results are asymptotically equivalent as n tends to infinity:

Recall that

deg OPn
OK

1
K : Q

2
n 1 log n 1 ,
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n
OK

and

h
O 1 P

n

OK

K : Q

2

n

k 1

k

l 1

1
l
.

Since

n

k 1

k

l 1

1
l

n

k 1

k

1

1
l

dl
n

k 1

log k
n

1
log k dk n log n n 1 log n 1 ,

the degree and the height indeed are asymptotically equivalent, i.e.

deg OPn
OK

1 h
O 1 P

n

OK
.

This puts close the assumption that the metrics used in the two calculations were not
the same.

Indeed, we used the Fubini-Study metric on the fibers in both cases, but in section 5.2
we defined the norm on the pushforward of a vector bundle to be the L2-norm, i.e.

s 2

X C
s x 2dµ x .

However in [BGS94], apparently another norm is used. On the line bundle O 1 on
X P V for an n-dimensional vector space V , they define the norm

s 0 exp
X C

log s x dv x ,

where v is the U n -invariant probability measure.
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Chapter 7

The canonical polygon

Canonical polygons form a tool to bridge between Arakelov theory and geometry of
numbers. We first give the definition and, as a continuation of the example in section
5.3, we consider the canonical polygon for the twisting sheaf. We then look at successive
minima and discuss morphisms between vector bundles.

In this chapter, if we do not state otherwise, we always use the induced metric on
subbundles of a given Hermitian vector bundle Ē.

7.1 Definition

Definition 7.1.1. The normalized Arakelov degree is

deg Ē
1

K : Q
deg Ē,

and the normalized slope is

µ Ē
1

rkE
deg Ē.

Remark 7.1.2. It is sometimes more natural to consider the normalized Arakelov degree
or the normalized slope instead of the Arakelov degree since they are invariant under
the pullback under the morphism f associated to an extension of number fields [Bos96].
In the literature, the normalized Arakelov degree often is denoted by deg n Ē .

Definition 7.1.3. Let Ē be a Hermitian vector bundle over SpecOK . Consider the set
of points rk F̄ , deg F̄ , F is a subbundle of Ē 0, rk Ē R. The convex hull of this
set is bounded from above ([Bos96], A.3). Its upper boundary defines a piecewise linear
function PE : 0, rkE R, which is called the canonical polygon. If PE is linear, we
say that Ē is semi-stable.
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Chapter 7. The canonical polygon

Furthermore, for each i 1, . . . , rk Ē , we define the i-th slope of Ē to be

µi Ē P
Ē

i P
Ē

i 1 ,

so µi Ē is the slope of P
Ē

in the interval i 1, i .

The maximal and minimal slopes are denoted by µmax Ē , µmin Ē , respectively.

Remark 7.1.4. Note that P
Ē

0 0, P
Ē

rk Ē deg Ē , and
i
µi Ē deg Ē .

Moreover, since P
Ē

is a concave function,

i 1, . . . , rk Ē : µi 1 Ē µi Ē .

In particular,

µmax Ē µ1 Ē

µmin Ē µrk E Ē .

Example 7.1.5. We want to calculate the canonical polygon of Ē π OP1
Z

1 , hFS ,
where hFS is the metric induced by the Fubini-Study metric.

Recall that Γ Spec Z, π OP1
Z

1 Γ P
1
Z,OP1

Z
1 Zx0 Zx1. In example 5.3.4 we

calculated
x0

2
OP1

Z
x1

2
OP1

Z

1
2
,

x0, x1 OP1
Z

0,

and
degOP1

Z
1 log 2.

Since Q : Q 1, degĒ deg Ē; so PE 2 log 2.

Subbundles of π OP1
Z

1 correspond to submodules of Zx0 Zx1. We now consider the
submodules of rank 1:
All submodules of Zx0 Zx1 of rank 1 are of the form N Z ax0 bx1 , where a, b Z,
not both 0. We calculate the degree using the section s ax0 bx1 in definition 5.1.1.

1. Clearly, log # Z ax0 bx1 Z ax0 bx1 0.

2. Since x0, x1 OP1
Z

0,

ax0 bx1
2 a 2 x0

2 b 2 x1
2 1

2
a 2 b 2 .

Therefore,

deg Z ax0 bx1
1
2

log
1
2

a 2 b 2 1
2

log 2
1
2

log
1

a 2 b 2
.
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Since a, b Z, log 1
a 2 b 2 0, and so

deg Z ax0 bx1 deg Z ax0 bx1
1
2

log 2
1
2

log
1

a 2 b 2

1
2

log 2.

This bound is attained at e.g. a 1, b 0: deg Zx0
1
2 log 2.

The point 1, 1
2 log 2 already lies on the line between 0, PE 0 0, 0 and 2, PE 2

2, log 2 , so taking the convex hull does not change the upper boundary of the set
rk F̄ ,deg F̄ , F is a subbundle of Ē . So PE 1 1

2 log 2.

In particular, µ1 Ē µ2 Ē 1
2 log 2, so PE is linear. Thus, π OP1

Z
1 is semi-stable.

y

x

1, PE 1

2, PE 2

0 1 2

1
2 log 2

log 2

7.2 Slopes and successive minima

We start this section by looking at an example.

Example 7.2.1. Consider the lattice Λ Z a, b Z c, d R
2, where a, b, c, d R.

Λ is a Z-module and we endow Λ Z C C
2 with the standard Hermitian metric. We

compute the degree of Λ and the degree of a given submodule.

Let e1 a, b and e2 c, d . Clearly,

e1
2 a2 b2, e2

2 c2 d2 and e1, e2 ac bd.

We compute the determinant det ei, ej :

det ei, ej a2 b2 c2 d2 ac bd 2 ad bc 2 det ei, ej
2.

So the Arakelov degree of Λ is

degΛ log Vol P ,

where P is the fundamental parallelogram of the lattice Λ.
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y

x

e2
e1

P

Let Λ1 be a sublattice of Λ. Then, Λ1 αe1 βe2 Z for some α, β Z, and

deg αe1 βe2 Z log αe1 βe2 .

So maximizing the degree of a submodule of Λ is equivalent to finding a shortest vector
in the lattice Λ. This leeds to the problem of successive minima.

Definition 7.2.2. Let C be a convex body which is symmetric with respect to the
origin and Λ a lattice in R

n. The successive minima λi λi C, L , i 1, . . . n, of C
with respect to Λ are defined by

λi min λ 0 : λC contains i linearly independent points of L .

See [Gru07] for more on successive minima.

In the example above, we considered a Hermitian vector bundle E over Spec Z, i.e. a
Z-module E endowed with a metric . We take C Bn, where Bn is the closed
unit ball in R

n endowed with the standard metric, and, since we were dealing with a
Z-module, we get the following equality:

Let λ Ze1 Zen R
n. Then

µ1 PΛ 1 sup
rk N 1

degN

sup
a1,...,an Zn

log a1e1 anen

log min
a1,...,an Zn

a1e1 anen

log λ1.

For arbitrary K, we just get an inequality:
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Lemma 7.2.3. Let Ē be a Hermitian vector bundle on SpecOK , i.e. an OK-module
endowed with a Hermitian metric. Then

log λ1 Ē µ1 Ē .

Proof. See [Bor05]. Let s E be an element such that maxσ:K C s σ λ1 Ē . Then,
using the section s of sOK ,

deg sOK log # sOK sOK

0
σ:K C

log s σ log λ1 Ē K : Q .

Since sOK is a subbundle of Ē, we get the desired result by the definition of µ1 Ē .

One can show even more: in fact, the inequality holds for all i.

Proposition 7.2.4. (Borek, [Bor05]) Let Ē be a Hermitian vector bundle on SpecOK .
Then,

i : log λi Ē µi Ē .

Example 7.2.5. We take a, b 2, 0 and c, d 3, 4 in the previous example.
Then

degΛ log det 2 3
0 4 log

1
8

3 log 12.

The shortest vector in the lattice is 2, 0 , and the degree of the generated sublattice is

deg 2, 0 Z log
1
2
.

So we get

PΛ 1 log
1
2
, PΛ 2 3 log

1
2
.

Note that Λ is not semi-stable.

y

x

1, PΛ 1

2, PΛ 2

0 1 2

3 log 1
2

log 1
2
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7.3 The Arakelov degree and morphisms

In this section, we want relate the Arakelov degrees of Hermitian vector bundles Ē and
F̄ which are connected via a morphism φ. We follow the appendix of [Via05].

Definition 7.3.1. Let Ē, F̄ be two Hermitian vector bundles over SpecOK and φ : Ē
F̄ a morphism. Then, the norm of φ is the operator norm of φ, i.e.

φ σ : sup
0 s E

φ s σ

s σ

.

Proposition 7.3.2. Let φ : Ē F̄ be a non-trivial injective morphism. Then

degĒ
rk E

i 1

µi F̄
1

K : Q
σ:K C

log rk E φ σ.

Proof. We start by proving the statement for a line bundle L̄ Ē. Let s be a non-zero
section of L. By the injectivity of φ, φ s is a non-zero section of φ L , and

# φ L φ s OK # L sOK .

Therefore,

deg L̄
1

K : Q
log # L sOK

σ:K C
log s σ

1
K : Q

log # φ L φ s OK

σ:K C
log s σ

deg φ L
1

K : Q
σ:K C

log
φ s σ

s σ

deg φ L
1

K : Q
σ:K C

log φ σ.

Now for a Hermitian vector bundle Ē with r : rkE rkφ E 1, consider the
injective map rφ : rE rφ E . rE is a line bundle, so by the above we get

deg
r

E deg
r

φ E
1

K : Q
σ:K C

log r φ σ.

As φ E F , i : µi φ E µi F̄ , and we get

deg φ E
rk E

i 1

µi φ E
rk E

i 1

µi F̄ ,

which concludes the proof.
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Corollary 7.3.3. Under the assumptions above,

degĒ
rk E

i 1

µi F̄
rkE

K : Q
σ:K C

log φ σ.

Proof. By e.g. [Bos99], r φ φ r.

Proposition 7.3.4. Let φ : Ē F̄ be a non-trivial injective morphism. Then

µmax Ē µmax F̄
1

K : Q
σ:K C

log φ σ.

Proof. Let r, PE r be the point of discontinuity of PE such that r 0 is minimal.
Let Er be a submodule of E of rank r such that PE Ēr deg Er r µmax Ē . By
applying corollary 7.3.3 to the morphism φ Er : Er φ Er ,

µmax Ē
deg Er

r

1
r

r

i 1

µi φ Er

r

K : Q
σ:K C

log φ Er σ ,

and since µi φ Er µmax φ Er µmax F̄ and φ Er σ φ σ, we get the desired
result.
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Chapter 8

Chow groups

In this chapter, we give an outlook on an alternative, more geometric, interpretation
of isomorphism classes of Hermitian vector bundles as used e.g. in [BGS94]. We start
by considering the classical case of algebraic cycles on algebraic varieties over a field k,
e.g. a number field. Then, to bring in arithmetic, we extend this notion to arithmetic
varieties, i.e. varieties over the ring of integers of a number field with some additional
properties. In 8.2, we introduce arithmetic cycles and Chow groups. We then sketch the
proof showing that the first arithmetic Chow group and the arithmetic Picard group are
isomorphic and thus, this approach indeed represents a new interpretation.

We will be brief on technical details, as the intention of this section is to give an in-
troduction to this setting. However, the technicalities can be found in [Ful98], [Sou92],
[BGS94], and [Lan88].

8.1 Geometric Chow groups

Chow rings are a geometric analogon of cohomology rings of a variety in topology. They
are a generalization of the divisor class group, which has a long history in the study of
algebraic geometry. The notion of rational equivalence was first introduced by Severi.
For an overview of the historic development of Chow rings, see [Ful98].

Definition 8.1.1. Let X be an algebraic scheme. An algebraic cycle on X is a for-
mal linear combination of irreducible closed subvarieties on X with integer coefficients,
i.e. element of the group

Z X
V X

Z V,

where V runs over the irreducible closed subvarieties of X. An algebraic cycle of dimen-
sion p or p-cycle on X is an algebraic cycle on X such that all subvarieties of X which
have non-zero coefficient have dimension p. The group of algebraic cycles of dimension
p is denoted by Zp X .
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Chapter 8. Chow groups

A cycle Z ni Vi is called positive if it is not zero and each of its coefficients ni is a
non-negative integer.

Remark 8.1.2. The divisors of X are the algebraic cycles of codimension 1, i.e.

Div X Zdim X 1 X .

We introduce the order of vanishing of r along V for a subvariety V of X of codimension
one to define the cycle associated to a rational function. The construction is similar to
that of principal divisors in definition 3.5.4.

Let X be a variety which is non-singular in codimension one and V a subvariety of X of
codimension one. Then the local ring of X along Y, OX,V , is a discrete valuation domain.
Furthermore, k X QuotOX,V . Let r k X be a nonzero rational function on X.
This can be written as r a b, where a, b OX,V .

Definition 8.1.3. The order of vanishing of r along V is defined to be

ordV r ordV a ordV b ,

where the orders on the right are those with respect to the valuation of the discrete
valuation ring OX,V .

Remark 8.1.4. In case that X possibly is singular, one can define

ordV r lOX,Y OX,Y r ,

where lOX,Y denotes the length of the OX,Y -module OX,Y r .

Definition 8.1.5. For any p 1-dimensional subvariety W of X, and any r k W ,
i.e. a non-zero rational function on W , let div r be the p-cycle

div r ordV r V,

where the sum is taken over all subvarieties of codimension one of W . A p-cycle Z is
called rationally equivalent to zero if there exist p 1-dimensional subvarieties Wi of X
and ri k Wi such that

Z div ri.

Note that the set of p-cycles rationally equivalent to zero form a subgroup of Zp X
since div r 1 div r, denoted by Rp X .

Definition 8.1.6. The group of p-cycles modulo rational equivalence is called the (ge-
ometric) Chow group of dimension p,

CHp X Zp X Rp X .

The (geometric) Chow group is the direct sum

CH X
dim X

p 0

CHp X .
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8.2. Arithmetic Chow groups

Remark 8.1.7. One can equip CH X with a product to make it into a ring, the Chow
ring. This product is called the intersection product. In section 6.3, we briefly mentioned
intersection theory and its generalization to arithmetic varieties. Even though it will be
mentioned several times in this thesis, we will not go into the details of intersection
theory, as this would be beyond the scope. For a thorough reference on intersection
theory, see [Ful98].

8.2 Arithmetic Chow groups

Throughout this section, let X be an arithmetic variety and X be a smooth projective
complex equidimensional variety of dimension d.

To define the arithmetic counterpart of algebraic cycles, we first need some terminology
of complex geometry. In particular, we need the notions of Green currents on smooth
projective complex varieties.

Notation. Let X be a smooth projective complex equidimensional variety of dimension
d. We denote by Ap,q X the vector space of complex valued differential forms of type
p, q . A current δ is a smooth linear functional on Ap,q X , i.e. a differential form with

distribution coefficients. We denote by Dp,q X the set of all currents. Note that there is
an inclusion Ap,q X Dp,q X given by ω α

X
ω α . We remark that, more

generally, just like in the theory of distributions, any locally L1 form of type p, q on X
defines a current on X (see [Sou92], p. 39, chapter II.1 and [BGS94], p. 908 for details).

For any irreducible analytic subvariety Y of X , we can define a current δY by setting

δY α :
Yns

i α α Ad p,d q,

where i : Y X and Yns is the smooth part of Y. We extend this definition by linearity
to any analytic cycle of X .

Definition 8.2.1. A Green current for an analytic cycle Z of codimension p on X is
an element g Dp 1,p 1 X such that

ddcg δZ App X ,

where d ¯ and dc i

4π
¯ .

Now we can define the arithmetic analogs. For an arithmetic variety X, we denote by
App XR the vector space of real differential forms in App X C and by Dpp X the set
of real currents in Dpp X C . We can associate a current δZ to a cycle Z

i
niZi by

setting δZ i
niδZi C .

Definition 8.2.2. A Green current for a cycle Z of codimension p on X is a current
g Dp 1,p 1 XR such that ddcg δZ is smooth, i.e. a Green current for Z C which
lies in Dp 1,p 1 XR .
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Definition 8.2.3. An arithmetic cycle of dimension p on X is a pair Z, gZ , where Z
is a cycle of codimension p and gZ is a Green current for Z. Let Zp X be the group of
arithmetic cycles of dimension p, where addition is defined componentwise.

Giving examples for arithmetic cycles is not easy, and we only sketch the idea of an
example for an arithmetic cycle. For this, we need the following theorem, the Poincaré-
Lelong formula. For more details on this example and a proof of the theorem, see [Sou92],
p. 41, Theorem II.2 and p. 54ff, Chapter III.

Theorem 8.2.4. (The Poincaré-Lelong formula) Let L̄ L, be a holomorphic line
bundle on X and s a meromorphic section of L. Then log s 2 L1 X and hence
induces a distribution in D00 X which furthermore is a Green current for div s .

Example 8.2.5. Let y be a point on an arithmetic variety X such that Y y
is a closed integral subscheme of X of codimension p 1. Let f k y . Then
div f , log f 2 is an arithmetic cycle on X, where log f 2 is a certain Green

current on X associated to log f 2.

Definition 8.2.6. We denote by Rp X Zp X the subgroup generated by the pairs
div f, log f 2 from the example above and by pairs 0, u ¯ v , where u and v

are currents of type p 2, p 1 and p 1, p 2 , respectively.
Then the arithmetic Chow group of codimension p of X is defined as the quotient

CH
p

X : Zp X Rp X .

Remark 8.2.7. Arithmetic Chow groups clearly are a generalization of geometric Chow
groups in classical algebraic geometry as defined in the previous section. To the classical,
“geometric”, part, an additional, “analytic”, part is added.

We now come to the main proposition of this section, namely we discuss the correspon-
dence between the first arithmetic Chow group and the arithmetic Picard group of an
arithmetic variety.

Proposition 8.2.8. Using the notation of the example above, there is an isomorphism

c1 : Pic X CH
1

X ,

mapping the class of L, to the class of div s, log s 2 for any rational section
s of L.

Sketch of proof. We first show the well-definedness of this map. Since L is a line bundle,
the set of global sections of L has rank 1. Therefore, any other rational section of L can be
written as s fs, where f is a rational function on X. So, div s div s. Furthermore,
a calculation similar to the one in (4.2) in section 4.1.2 shows that c1 L, does not
depend on the choice of the section.
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8.2. Arithmetic Chow groups

We consider the inverse map. This is given by sending a cycle Z, gZ to the isomorphism
class of OX Z , , where the metric is locally given by f 2 f 2e gZ . Since gZ

is a Green current for Z, this defines a smooth metric and hence this defines a smooth
metric.

Remark 8.2.9. c1 L, is called the first (arithmetic) Chern class of L, . The
concept of Chern classes comes from classical differential geometry and is a topological
invariant of Hermitian vector bundles; e.g. given a Hermitian line bundle L, , the
associated first Chern form is the differential form given by c1 L, ddc log s z 2.
Note that in section 4.1.2, we calculated the first Chern form of the Fubini-Study metric
on O 1 . The Chern class then is the class of the first Chern form in the second de
Rham cohomology group, [GH78, Lan88, Deb05].
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Chapter 9

Arithmetic surfaces and the
degree of an elliptic curve

In this chapter, we introduce the notions needed to apply Arakelov theory to elliptic
curves. We show how to attach a scheme over Z – or, more precisely, an arithmetic surface
– to an elliptic curve. We define theta functions and examine how they correspond to
global sections of line bundles on complex tori, i.e. elliptic curves. Using theta functions,
we define a norm on the line sheaf O P for P OE . Finally, we state a result of Jürg
Kramer on the Arakelov degree of a special line bundle on an elliptic curve.

9.1 Arithmetic surface attached to an elliptic curve

Definition 9.1.1. Let R be a Dedekind domain and K its field of fractions. Then, an
arithmetic surface over R is a scheme C over R whose generic fiber is a non-singular
connected projective curve C K and whose special fibers are unions of curves over the
appropriate residue fields. Furthermore, we require some technical conditions: C is
integral, normal, excellent, and is flat and of finite type over R.

Remark 9.1.2. One can consider an arithmetic surface as a curve over Spec R since the
relative dimension is one, i.e. the fibers are one-dimensional. Note that the fibers are
not necessarily regular, they can also be reducible. Nevertheless, an arithmetic surface
is regular in codimension one and therefore has a theory of Weil divisors. See [Sil94] for
details.

Now let C P
2
Z be the Z-scheme defined by the equation

Y 2 X3 aX b,

where a, b Z and ∆ 16 4a3 27b2 0. Then the generic fiber of C is the elliptic
curve over Q defined by the equation above.
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The fibers over closed points p are given by prime ideals, and the fiber then is

Cp C Z p,

the reduction modulo p.

If p pZ, for a prime p Z, then Cp is exactly what “reduction mod p” should be,
namely the scheme over Z p Fp given by Y 2 X3 āX b̄, where ā a mod p and
b̄ b mod p.

Furthermore, the scheme C is proper over Z, since C is a closed subscheme of projective
space over Spec Z ([Sil94], Theorem IV.2.8.). This is a rather technical condition, but
we need it below to extend rational points on the elliptic curve which is the generic fiber
of an arithmetic surface.

Example 9.1.3. Consider the elliptic curve Y 2 X3 3X 6 over Z. The fibers over
primes p are given by reduction modulo p, i.e. by the equation Y 2 X3 3̄X 6̄ over
Fp, where 3̄ 3 mod p, and 6̄ 6 mod p. The discriminant is ∆ 27 33 5, so
for every prime p 2, 3, 5, C p is an elliptic curve over Fp; in particular, the fiber is
non-singular.

• For p 2, we get the curve C 2 : Y 2 X X 1 2, which has a double point,

• for p 3, we get C 3 : Y 2 X3, which has a cusp,

• and for p 5 we get C 5 : Y 2 X 1 X 2 2, which also has a double point.

We can illustrate this in the following figure:

0 2 3
. . . p . . . q . . .

π

Spec Z

C

C 0 C 2 C 3 C p C q

The fibers over 2 , 3 , and 5 are singular. The generic fiber is the fiber over 0 . The
fibers over other primes p , q are regular. See [Sil94], p.300, Examples IV.2.2.1-2.2.3
and p. 311ff for more details and similar examples.

88
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As stated in the remark above, there is a theory of Weil divisors on arithmetic surfaces.
In fact, irreducible divisors only have two possible forms: horizontal or fibral divisors.
For this, we need the following result of algebraic geometry.

Proposition 9.1.4. Let φ : C1 C2 be a morphism of curves. Then φ is either constant
or surjective.

Proof. [Sil86], p. 24, Theorem II.2.3 or [Har77], Proposition II.6.8.

Proposition 9.1.5. Every irreducible divisor on an arithmetic surface C R is either

1. contained in a special fiber (fibral divisor) or,

2. maps surjectively onto Spec R (horizontal divisor).

Proof. If D is an irreducible divisor which is not contained in a special fiber, consider the
projection map π : D Spec R induced by the projection map of the scheme C . This
is not constant, since D does not lie in a special fiber, so, by the previous proposition,
it is surjective.

We now consider rational points on the generic fiber of an arithmetic surface. If R is a
ring, recall definition 2.2.11 of R-valued points of an R-scheme X:

If R is a ring and X an R-scheme, the set of R-valued points of X is the set

X R R-morphisms Spec R X .

Remark 9.1.6. Note that one can identify the image of a section σ : SpecR C with
a horizontal divisor on C .

We can identify rational points on the generic fiber of an arithmetic surface, i.e. points
in C K , with R-valued points of C :

Theorem 9.1.7. ([Sil94], Corollary IV.4.4 (a)) Let R be a Dedekind domain and K its
field of fractions, let C R be an arithmetic surface and C K its generic fiber. If C is
proper over R,

C K C R .

This theorem tells us that rational points on an elliptic curve “extend” to a section of
the associated arithmetic surface, i.e. define a horizontal divisor on C .

The following theorem/definition is a bit technical, but we need the result for the example
in the next section. The first assertion was proven by Abhyankar and Lipman, the second
is due to Lichtenbaum and Shafarevich.

Theorem 9.1.8. ([Sil94] p. 317, Theorem IV.4.5) Let R be a Dedekind domain and K
its field of fractions, and let C K be a non-singular projective curve of genus g. Then
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1. (Resolution of Singularities for Arithmetic Surfaces) There exists a regular arith-
metic surface C R, proper over R, whose generic fiber is isomorphic to C K. We
call C R a proper regular model for C K.

2. (Minimal Models Theorem) Assume that g 1. Then there exists a proper regular
model C min R for C K with the following minimality property:

Let C R be another proper regular model for C K. Fix an isomorphism from the
generic fiber of C to the generic fiber of C min. This induces an R-birational map
C C min, which is an R-isomophism. C min is called the minimal proper model
for C K. It is unique up to isomorphism.

9.2 Theta functions

Theta functions play an important role in the theory of elliptic curves, or – more generally
– in the theory of Abelian varieties. They are related to the Weierstrass ℘-function (see
[Sha94a], p. 145, 152) and give a projective embedding of tori C Λτ , where Λτ Z τZ

(Lefschitz Theorem, see e.g. [Mur93], p. 51).

Remark 9.2.1. For higher dimensional tori, they do not aways give such an embedding.
In this case, this holds if there is a positive line bundle on the torus, i.e. a line bundle
with positive first Chern class, see e.g. [Mur93]. This is a special case of the Kodaira
theorem [GH78], p. 181, which gives a projective embedding for a compact complex
manifold with a positive line bundle.

9.2.1 Jacobi theta functions

Definition 9.2.2. Let H denote the complex upper half plane, i.e.

H τ C : Im τ 0 .

Definition 9.2.3. The standard theta function on C H is defined as

ϑ z, τ
m Z

eπim
2
τ 2πimz.

Proposition 9.2.4. For every k Z, the theta function satisfies the following:

1. ϑ z k, τ ϑ z, τ and

2. ϑ z kτ, τ ϑ z, τ e πik
2
τ 2πikz.

Proof. The first assertion is clear since e2πik 1 for k Z.
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Since

ϑ z kτ, τ
m Z

eπim
2
τ 2πim z kτ

m Z
eπi m k

2
τ 2πi m k z e πik

2
τ 2πikz

ϑ z, τ e πik
2
τ 2πikz,

the second property follows.

Often it is useful to also consider the related theta functions with characteristics:

Definition 9.2.5. The theta functions with characteristics α, β are given on C H by

ϑα,β z, τ
m Z

eπi m α
2
τ 2πi m α z β ,

for α, β C. If l Z such that α, β 1
l
Z, we say that ϑα,β has level l. A special case

are the Jacobi theta functions, which have level 2. They are usually written as

ϑ00 z, τ ϑ0,0 z, τ

ϑ01 z, τ ϑ0,
1
2

z, τ

ϑ10 z, τ ϑ 1
2 ,0 z, τ

ϑ11 z, τ ϑ 1
2 ,

1
2

z, τ .

Remark 9.2.6. Note that ϑα,β z, τ ϑ z ατ β, τ eπiα
2
τ 2πiα z β , in particular,

ϑ0,0 z, τ ϑ00 z, τ ϑ z, τ . Often one uses the more general Riemann theta function,
which is defined on C

n
Hn, where Hn is the Siegel upper half space. Even, more general,

one defines a theta function by means of a functional equation, as we will see later.

We use [Mur93] for the following propositions.

Proposition 9.2.7. Let l Z, l 2, and let α, β 1
l
Z. The theta functions with

characteristics α, β satisfy

1. ϑα,β z l, τ ϑα,β z, τ and

2. ϑα,β z lτ, τ ϑα,β z, τ e πil
2
τ 2πilz.

Proof. Both properties follow from proposition 9.2.4 and remark 9.2.6:

ϑα,β z l, τ ϑ z l ατ β, τ eπiα
2
τ 2πiα z l β

ϑ z ατ β, τ eπiα
2
τ 2πiα z β e2πiαl

ϑα,β z, τ e2πiαl

ϑα,β z, τ ,
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since α l Z. The second property is shown similary:

ϑα,β z lτ, τ ϑ z lτ ατ b, τ eπiα
2
τ 2πiα z lτ β

ϑ z ατ β, τ e πil
2
τ 2πil z ατ β eπiα

2
τ 2πiα z lτ β

ϑ z ατ β, τ eπiα
2
τ 2πiα z β e πil

2
τ 2πil z β

ϑα,β z, τ e πil
2
τ 2πilz,

since β l Z.

Proposition 9.2.8. The Jacobi theta functions satisfy the following properties for every
k Z:

1. ϑij z k, τ
ϑij z, τ if i 0
ϑij z, τ if i 1,

and

2. ϑij z kτ, τ
ϑij z, τ e πik

2
τ 2πikz if j 0

ϑij z, τ e πik
2
τ 2πikz if j 1.

Proof. The proof is analogous to the one above.

Theorem 9.2.9. Let τ H be fixed, and, for simpler notation, denote ϑα,β z, τ simply
by ϑα,β z . Then the holomorphic map ϕ : C Λτ P

2
C defined by

ϕ z ϑ0,0 z ϑ1,1 z 2 : ϑ1,0 z ϑ0,1 z ϑ1,1 z : ϑ0,0 z 3

induces an isomorphism from C Λτ onto the smooth cubic with homogeneous equation

Y 2Z X αX βZ βX αZ ,

where α ϑ1,0 0 2

ϑ0,0 0 2 , and β ϑ0,1 0 2

ϑ0,0 0 2 .

Proof. See [Deb05], p. 12. The proof is similar to the one for the embedding of an elliptic
curve using the Weierstrass ℘-function, see B.1.4.

Note that this gives us a projective embedding of a torus onto an elliptic curve in P
2
C

using theta functions.

9.2.2 Theta functions

The definition of Jacobi theta functions can be extended to a more general notion of theta
functions. The transformation properties of the Jacobi theta functions in propositions
9.2.8 and 9.2.4 are taken as a model for a more general transformation behaviour. We
follow [Deb05], chapter 4, and [Mur93], chapter 5. These more general theta functions
are used in the next section to examine global sections of line bundles on complex tori,
i.e. on elliptic curves.
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9.2. Theta functions

Definition 9.2.10. Let V be a complex vector space, and let Λ be a lattice in V . A
theta function of type (T,J) associated to Λ is an entire function ϑ on V , not identically
zero, such that there is a function T : V Λ C which is C-linear in the first variable
and a function J : Λ C such that for all z V and λ Λ,

ϑ z λ e2πi T z,λ J λ ϑ z .

Example 9.2.11. For fixed τ H, the standard theta function ϑ z, τ is a theta function
for V C and Λ Z τZ. In this case, if λ k lτ , T z, λ lz zIm λ 1

Im τ

and J λ 1
2 Im λ Im τ 2τ .

By evaluating ϑ z λ1 λ2 in two different ways, one obtains the following identities
for the function T :

T λ1, λ2 T λ2, λ1 mod Z,

and
T z, λ1 λ2 T z, λ1 T z, λ2 mod Z.

We now use the identity above to extend T . Since Λ is a lattice in V , we get an
isomorphism Λ R C

n, and, identifying the two, we can extend T to a form

T : V V C

which is C-linear in the first variable and R-linear in the second variable.

Setting ω x, y T x, y T y, x gives an R-bilinear form on V which is alternating,
real, takes on integral values on Λ Λ, and satisfies ω ix, iy ω x, y , see [Mur93],
Proposition 5.1.

Furthermore, a Hermitian form H is defined on V by

H x, y ω x, iy iω x, y .

Definition 9.2.12. Let V be a vector space, and let Λ be a lattice in V . A normalized
theta function of type H,α associated to Λ is a theta function ϑ on V such that for
every λ Λ

T
1
2i

H and Im J
1
4
H λ, λ .

A normalized theta function satisfies

ϑ z λ α λ eπH λ,z
π
2 H λ,λ ϑ z

for every λ Λ, where α : Λ z C : z 1 is a function such that

α λ1 λ2 α λ1 α λ2 1 ω λ1,λ2

for every λ1, λ2 Λ. Note that here it is important that ω takes on integral values on
Λ Λ.
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9.2.3 Sections of line bundles over tori

As already suggested in the previous section, theta functions are used to explicitly de-
scribe line bundles on a torus C Λ, in particular sections of line bundles. In this section,
we follow [GH78], p. 307ff, and explain this correspondence.

Let L V Λ be a line bundle over a torus given by a one-dimensional C-vector space1

V and a lattice Λ. Denote by π : V V Λ the projection map. Then π L C is a
trivial line bundle by example 3.1.5. Thus, we can find a global trivialization

ϕ : π L V C.

For z V , λ Λ, we can identify the fibers π L z π L z λ Lπ z . Then the
trivialization ϕ, considered at z and z λ, ϕz : π L z C and ϕz λ : π L z λ C,
determines an automorphism of C:

C
ϕz π L z Lπ z π L z λ

ϕz λ
C.

Automorphisms of C are given as multiplications by nonzero complex numbers, and we
denote the complex number determining the automorphism above by eλ z . This gives
a collection of functions

eλ O V λ Λ.

These functions are called multipliers for L.

By definition, they satisfy the compatibility condition

eλ z λ eλ z eλ z λ eλ z eλ λ z

for all λ, λ Λ.

On the other hand, given a set of nonzero entire functions eλ λ Λ satisying the com-
patibility condition above, we define a vector bundle over V Λ as follows: the lattice Λ
acts on V C by sending a λ Λ to the map

V C V C, v, t v λ, eλ v t .

This indeed is an action by the compatibility condition.

In fact, it suffices to specify the multipliers for a basis of the lattice (of course satisfying
the compatibility conditions). Then the compatibility conditions determine the other
multipliers eλ.

Note that the function ϑ z λ ϑ z , where ϑ is a normalized theta function of type
H,α on V C, satisfies the compatibility conditions. Thus, for every type H,α , we

get multipliers

eλ z
ϑ z λ

ϑ z
α λ eπH λ,z

π
2 H λ,λ .

1
Clearly, V C, but we use this notation as this can be generalized to higher-dimensional vector

spaces.
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By the construction above, we get a line bundle L H,α . In fact, by the theorem of
Apell-Humbert ([Deb05], Theorem 5.17), any line bundle on a complex torus is obtained
in this way.

Now, given any line bundle L on the complex torus V Λ, consider a section σ : V Λ L.
Then, we get a section π σ : V π L V C and, by the trivialization of π L, a map
σ̄ : V V C:

V C �� π L

��

�� L

��

V
σ̄

��

π σ

��

π
�� V Λ

σ

��

Then, since L L H,α V C , where is the relation v, t v λ, eλ v t ,
we get an entire function ϑσ such that σ̄ v v, ϑσ v , and

ϑσ z λ eλ z ϑσ z α λ eπH λ,z
π
2 H λ,λ ϑσ z .

Thus, we establish a correspondence between normalized theta functions and global
sections of line bundles on a complex torus.

Remark 9.2.13. Note that the the theta functions ϑα,β z also are normalized theta
functions. In fact, if V Λ E is considered as an elliptic curve with origin OE , ϑ00 has
just the transformation properties to correspond to a global section of O OE , the line
bundle associated to the prime divisor given by the origin OE .

9.3 An example: the arithmetic degree of an elliptic curve

To apply the methods in Arakelov geometry, we need to define a metric on line bundles
over complex tori, i.e elliptic curves. We first define such a metric on the bundle O OE

and then, as an example, we present a result of Jürg Kramer, [Kra92].

Let E be an elliptic curve over Q with origin OE having semistable reduction2. Semistable
reduction just means that the reductions mod p behave nicely. There might be primes p
where Ep is singular, but it allows only double points, i.e. it excludes cusps. Furthermore,
let p : E Spec Z denote the minimal regular model of E Q, and let E C C Z τZ.

Denote by LE the line bundle O 2OE , see 3.5.8. The line bundle O OE , in fact, is the
line bundle on E giving E principal polarization. This is an important concept in the
theory of Abelian varieties, see e.g. [Deb05], [Mur93].

Using the construction of global sections of line bundles on tori given in the previous
section, we now endow LE with a Hermitian metric. Let σ be a section of LE , and let
y Im z. We equip LE with the Hermitian metric given by

σ E z σ z e πy
2 Im τ Im τ

1
2 .

2
This condition is needed for the example of Jürg Kramer from [Kra92].
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In this case, ϑ2 ϑ2
00 gives a global section of LE . For ϑ ϑ00, we can show explicitely

that the norm indeed is invariant under translation in the lattice and thus is well-defined:

ϑ z τ, τ ϑ z τ, τ e π y Im τ
2 Im τ Im τ

1
2

ϑ z, τ e πiτ 2πiz e πy
2 Im τ e 2πy πIm τ Im τ

1
2

ϑ z, τ e2πy πIm τ e 2πy πIm τ e πy
2 Im τ Im τ

1
2

ϑ z, τ e πy
2 Im τ Im τ

1
2

ϑ z, τ .

The first arithmetic Chern class of this Hermitian line bundle can be represented by
div σ, g z , where σ is any section, and g(z), by abuse of notation, is the Green current

associated to

g z log σ 2
E z log σ z 2 2πy2

Im τ
log Im τ.

In his habilitation, Kramer explicitely calculated the “analytic part” of the degree of an
elliptic curve equipped with this Hermitian line bundle. The analytic part of the degree
is the part coming from the points at infinity.

Theorem 9.3.1. (Kramer) Let E Z be the minimal regular model of an elliptic curve
E Q having semistable reduction. If 4 m, the arithmetic degree deg L m

E , m

E is given
by

deg L m

E , m

E
4m2

3
Σgeo Σana .

Here,
Σgeo D0,0 D1,1 2 D0,1 D1,1 2 D1,0 D1,1 2 log 2,

where Dj,k D1,1 2 means the intersection number of Dj,k and D1,1 in the fiber over
2 Spec Z, and

Σana log η τ 6 Im τ
3
2 log 2.

Here η τ is Dedekind’s eta function, i.e. η τ q
1
24

n 1 1 qn , where q e2πiτ .

Thus, the difficulty is to calculate the geometric part of the degree, the intersection
product in the formula above. This corresponds to the “classical” part of the degree.
The analytic part, which corresponds to the part at infinity, can be calculated explicitely.

This was extended by Jay Jorgenson and Jürg Kramer to the case of Abelian varieties,
see [JK98]. Also in this case, their result is only on the analytic part of the degree.
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Part III

A view towards integral points
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Chapter 10

An application to integral points
on elliptic curves

In this chapter, we give an outlook on how Arakelov theory could potentially be used
in the context of integral points on elliptic curves. More precisely, the idea is to apply
the methods of Arakelov geometry to the problem of finding an effective proof for the
finiteness of integral points on elliptic curves and thus giving a bound for their height.

We first give an overview of the existing finiteness results in the context of the number
of integral points on elliptic curves. Subsequently, we define integral points on a curve
and then extend this definition. We discuss Siegel’s theorem and Baker’s method of
using a bound for linear forms in logarithms. To turn to modern methods from Arakelov
geometry, we consider the modern notion of an integral point on an arithmetic surface.
Finally, we briefly sketch the ideas of how to apply the presented theory to this problem.

10.1 Integral points

We first discuss the concept of an integral point on an elliptic curve. This notion has
changed throughout history – it was extended slowly to fit in with modern mathematics.
We start with the “classical” definition and work up to the one we need in our work.
We mostly use [Ser89] for the definitions and statements.

Definition 10.1.1. Let f x, y 0 be an irreducible plane curve X over Q. Then an
integral point on X is a pair a, b Z Z such that f a, b 0.

This definition can be extended to the following:

Definition 10.1.2. Let K be a number field and S a finite set of places p of K containing
the infinite places. A rational point P x1, . . . , xn of a variety X given by an equation
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Chapter 10. An application to integral points on elliptic curves

with integral coefficients is S-integral if all coordinates xi satisfy

vp xi 0, p S.

Remark 10.1.3. Note that if K Q and S p1, . . . , pk S , where S is the set
of infinite places, this means that the denominators of coefficients of the point P are at
most divisible by pi.

Lemma 10.1.4. If K Q, X is an irreducible plane curve over Q, and S , then
the definitions 10.1.1 and 10.1.2 coincide.

Proof. Let x Q, x a

b
, where a, b Z. Then

primes p : vp x 0 primes p : p b b 1 x Z.

Definition 10.1.5. Let L be a field with a family of absolute values satisfying the
product formula. Let K L be a finite field extension. Denote by S the set of all
infinite valuations of K. Let S be a finite set of absolute values of K containing S .
Then the ring of S-integers, RS, is the set of elements x of K such that

v x 0, v S.

We can go even further and extend this definition even further as done in [Ser89]:

Definition 10.1.6. Let K be a number field and S a finite set of places p of K containing
the infinite places. Let X be an affine variety over K. Then, the set of global sections
Λ Γ X,OX is a finitely generated algebra over K. Furthermore, let M be a set
of rational points of X, i.e. M X K . We call M quasi-integral relative to the ring
RS , if for alle f Λ there is an a K such that f M aRS . In other words, the
denominators of f x , where x M , are bounded.

Note that since Λ is finitely generated, one can check this condition for a set of generators
of Λ. Furthermore, if we choose an embedding of X into A

n (this is possible since X
is an affine variety) and fix coordinates z1, . . . zn, then the condition that a set M is
quasi-integral is equivalent to saying that the coordinates (in A

n) of the points of M
have a common denominator.

This relates to the concept of R-valued points from definition 2.2.11:

Lemma 10.1.7. ([Ser89], section 7.1) The following properties are equivalent:

1. The set M is quasi-integral relative to RS.

2. There is an RS-scheme X of finite type such that

(a) X X RS K,
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10.2. Siegel’s theorem

(b) every point x of M extends to an RS-valued point of X .

3. There is an affine RS-scheme X of finite type satisfying (a) and (b).

Proof. 1. 3. If M is quasi-integral, first choose an immersion of X into A
n. Mul-

tiply the coordinate functions in A by a common denominator, which is possible since
M is quasi-integral. Then take the RS-subalgebra generated by these, and take the
corresponding affine RS-scheme. This satisfies the asserted properties.

3. 2. is trivial

2. 1. Let f Λ. Then there is an a RS , a 0 such that af extends to X . The values
of af at RS-integral points of X (morphisms x : SpecRS X ) are S-integers.

10.2 Siegel’s theorem

Siegel used his earlier work on diophantine approximation to give a first proof of the
finiteness of integral points on affine curves which are not exceptional.

The original statement of the theorem in [Sie29] was the following:

“Die algebraische Gleichung f x, y 0 sei nicht dadurch identisch in einem
Parameter t lösbar, daß man entweder x A Ln, y B Ln oder x C Qn,
y D Qn setzt, wo A, B,C, D ganzzahlige Polynome in t, L ein lineares,
Q ein indefinites quadratisches Polynom in t bedeuten. Dann hat sie nur
endlich viele Lösungen in ganzen rationalen Zahlen.”

In this paper, he also formulates the result for algebraic numbers:

“Damit f x, y 0 in einem algebraischen Zahlkörper unendlich viele ganzar-
tige Lösungen besitzt, ist notwendig und hinreichend, daß sich die Gleichung
f 0 entweder in u 0 oder in ut 1 überführen läßt, und zwar durch
eine birationale Transformation, welche alle ganzartigen Paare x, y und u, t
miteinander verknüpft.”

Here, “ganzartig” means that x and y are elements of the algebraic number field such
that cx, cy are integral, where c ist a fixed natural number.

A more modern formulation of the statement can be found e.g. in [Ser89]:

Theorem 10.2.1. (Siegel’s theorem) Let K be a number filed. If the smooth affine
curve X is not isomorphic to P

1 0 or P
1 0, 1 , then every subset of X K which is

quasi-integral relative to RS is finite.
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Note that the asymptotic behavior for the exceptional cases P
1 0 K Ga K K

and P
1 0, 1 K Gm K K is fundamentally different. We illustrate this for Z:

# x Ga Z : H x x N 2N 1

but
# x Gm Z : H x x N 2.

For arbitrary OK , the asymptotic of # x Gm Z : H x N depends on the struc-
ture of the unit group of OK . By Dirichlet’s unit theorem it is a finitely generated
Abelian group, and can be either finite or infinite. In the infinite case, the asymptotic
is logarithmic, as we see in the following example.

Example 10.2.2. We make this explicit for K Q m , where m 0. Then, by
[Wüs04], the group of units Um : Gm OK µ2 Z, where µ2 denotes the group of
second roots of unity.

Let u Um such that u Z. Since u u 1 1 and, since u is a fundamental unit and
u 1, we can assume that u 1. Then, an element v Um can be written uniquely
as v ξun, where n N. Furthermore, v u n. Since H v 1 H v , we can choose
n 0. Then,

H v max u n, 1 max u n, 1
1
2 .

So, H v u n
1
2 , and the condition H v N is equivalent to

n

2
log u log N.

Therefore,
# x Gm OK : H x N log N.

The proof of Siegel’s theorem uses the Thue-Siegel-Roth theorem on the approximation
of irrational numbers and the approximation of rational points on Abelian varieties
and on curves of genus at least one. In 1929, Siegel originally had a weaker form of
the approximation theorem which made the proof more complicated. Furthermore, he
proved the theorem only for the usual integers, with S S . In 1933, Mahler extended it
to S-integral points, but only for genus equal to one and over the rational numbers Q. In
1955, Roth proved his theorem which also led to a further extension of Siegel’s theorem.
Lang extended Roth’s theorem, under reasonable hypotheses, to any field equipped with
a product formula. Siegel’s theorem then holds for all rings of characteristic 0 of finite
type over Z. (See the end of section 7.5 of [Ser89] for the historical overview.)

10.3 Baker’s method

From a computational point of view, the weakness of Siegel’s theorem is that even though
it ensures the finiteness of the number of integral points, it does not give a bound for
this number. In other words, the result is not effective.
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Baker’s method gives an answer to the problem of effectivity of Siegel’s theorem in all
cases in which it applies. However, it does not apply in all cases.

The first step is to reduce solutions of the given equation to solutions of a so-called
S-unit equation.

Definition 10.3.1. Let K be a number field and S a finite set of places containing all
infinite ones. An element u K is called an S-unit of K if

vp x 0, p S.

The S-units form a finitely generated multiplicative group US . If S S , US is the set
of units in OK .

The inhomogeneous S-unit equation in two variables is the equation

αx βy 1,

where α, β are non-zero elements of K.

The main result on S-unit equations is the following:

Theorem 10.3.2. (Baker, Theorem 3.1 in [BW07]) There are only finitely many solu-
tions of the equation in S-units x and y and all of these can be effectively determined.

This result is established using a lower bound for non-zero linear forms of logarithms.
This bound was obtained by Baker. A more recent refinement of this result on the bound
was given by Baker and Wüstholz in [BW93]:

Theorem 10.3.3. (Baker-Wüstholz) Let the linear form of logarithms Λ b1 log α1

bn log αn 0, where b1, , bn are integers and α1, , αn are algebraic numbers
with heights at most A1, , An (all e), respectively, and we assume that the logarithms
have their principal values. Furthermore, let b1, , bn have absolute values at most B
( e). Then,

log Λ 16nd 2 n 2 log A1 log An log B,

where d denotes the degree of Q α1, . . . , αn .

This result is best possible with respect to each of A1, . . . , An and B. Moreover, the
function in n and d is quite sharp. Baker and Wüstholz gave an even stronger result,
see [BW07], section 7.2. For a historical discussion of these results, see [BW07].

The main idea of this approach to the number of integral points on a curve is to reduce
the problem to solving an S-unit equation. Then, by theorem 10.3.2 the unit equation
has finitely many solutions and thus, the original curve has only finitely many solutions.
The problem therefore is to reduce the integral points on the given curve to solutions of
the S-unit equation.
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The first success in finding an effective version of Siegel’s theorem was accomplished by
Alan Baker in [Bak69] for curves of the type

y2 f x ,

where f x is a polynomial with at least three distinct roots.

For a curve of genus one given by a polynomial with coefficients over Z which is irre-
ducible over C, Alan Baker and John Coates gave a proof of the effectivity of Siegel’s
theorem in 1970, [BC70]. Their result was the following:

Theorem 10.3.4. (Baker, Coates, [BC70]) Let f x, y 0 be an absolutely irreducible
polynomial with degree n and with integer coefficients having absolute values at most H
such that the curve f x, y 0 has genus 1. Then all integer solutions x, y of f x, y 0
satisfy

max x , y exp exp exp 2H 10n10

.

They give an algorithm to transform the given equation to Weierstrass form in such
a way that integral solutions of the original equation become integral solutions of the
Weierstrass equation and that this process is effective. This involves an effective ver-
sion of the Riemann-Roch theorem for function fields, see [Coa70], which uses so-called
Puiseux expansions for the construction of rational functions on the curve, and is rather
technical. Then, the result is obtained by applying the work in [Bak69] to get a unit
equation.

Some further work has been done for curves other than curves of genus one, as for the
Thue equation, see e.g. [BW07], chapter 3.3 or the work of Schmidt [Sch92]. For more
details, see [BW07], chapter 3.

10.4 A modern definition of integral points

In section 10.1, we already saw several definitions of integral points. We now extend this
to arithmetic surfaces.

Definition 10.4.1. Let K be a number field with ring of integersOK . Let X SpecOK

be a curve, i.e. X is an arithmetic surface over OK . Let D SpecOK be an effective
ample divisor. An OK-valued point ξ : SpecOK X is called integral, if the arithmetic
intersection product ([BGS94]) Eξ, D of Eξ ξ SpecOK and D is zero.

Intuitively, one should think of the intersection product as the formal sum of the dis-
joint irreducible components of the intersection (as sets) with multiplicities. So if the
intersection product is zero, the divisor D and Eξ should not intersect. Recall also the
remarks in section 6.3 and remark 8.1.7 on the intersection product.

One can picture the setting as follows:
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0 2 3 5
. . .

ξ

SpecOK

X
D

Eξ

0 2 3 5
. . .

ξ
SpecOK

X

D

Eξ

The left picture shows an integral point ξ, as the divisors D and Eξ do not intersect. In
the right picture, ξ is not an integral point, as D and Eξ intersect.

Example 10.4.2. One should think of D as the “divisor at infinity”. Then, thinking
of the fibers over a point p SpecOK as the reduction mod p of e.g. a given equation, it
is clear that if we want a point to be integral, we want it not to go to infinity in any of
the fibers, as that would translate to the point having a “denominator divisible by p”.
We illustrate this intuitively by the example

E : y2 x3 x 1,

considered as an arithmetic surface over Spec Z. Then P 2, 3 E Z , and the
point σ : Spec Z E associates a prime p Spec Z to the point with coordinates
2̄, 3̄ , where 2̄, 3̄ are the reductions of 2, 3 mod p. So e.g. σ 2 0, 1 E 2 F2

and σ 3 2, 0 E 3 F3 . Now consider 2P E Q . This point has coordinates
2P 145

6 , 1825
36 . Thus, in the fiber over e.g. 2, this point “goes to infinity”. Thus,

if e.g. the x-coordinate of a point has a denominator divisible by a prime p, then this
point “goes to infinity” when reducing mod p. This is exactly what we want to exclude
by the definition above.

10.5 Outlook: from Arakelov theory to integral points

While an answer to the problem of giving an effective upper bound for the height of the
finite number of integral points on elliptic curves was given by Alan Baker and John
Coates in [BC70] (see section 10.3), the main “limitation” of the existing results is that
they depend on the choice of coordinates. In the elliptic curve case, this means that
the bound depends on the chosen equation for the curve. In the case of the curves as
in the result in [Bak69], the bound depends on the chosen Weierstrass equation of the
curve. However, the equation of a curve is not uniquely determined. Therefore, an
interesting question for future work is to find a result which is independent of the choice
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of coordinates. In the following, we briefly discuss an idea how it may be possible to
succeed to find such a result using Arakelov theory.

Arakelov geometry allows us to examine the projective module of global sections of a line
bundle L on an arithmetic surface over a ring of integers in a number field more closely.
It can be seen as a lattice in the sense of geometry of numbers as was used by Enrico
Bombieri and Jeffrey D. Vaaler in their fundamental article [BV83]. Arakelov geometry
gives a metric which allows to define convex bodies in the usual way. This allows the
application of the techniques of geometry of numbers; in particular, successive minima
are defined and one may use Minkowski’s first and second theorem, see also chapter
7. The successive minima depend, of course, on the given line bundle L. Geometrical
considerations make it necessary to consider the t-th powers L t of L, and one has to
determine the successive minima of these line bundles in terms of the successive minima
of L – this dependence will be in terms of the first arithmetic Chern class c1 L of L
(remark 8.2.9). For this, one needs to apply the arithmetic Riemann-Roch theorem of
Henri Gillet and Christoph Soulé, [GS89], [GS92].

This appears to give a promising approach to replacing the rather technical and tedious
method of studying Puiseux series as in [Coa70] and [Sch92] to obtain an effective version
of the Riemann-Roch theorem for function fields. We suggest to use the modern, new,
arithmetic-geometric techniques in Arakelov geometry discussed above instead of making
use of Puiseux series. With such a substitute for the old methods, we hope to succeed in
modifying the proof of Alan Baker and John Coates in [BC70] to give a coordinate-free
result.

However, this is not only a l’art pour l’art approach to the problem. It could be a starting
point for extending the proposed approach to more complicated geometric situations such
as higher dimensional varieties. The first natural, practically unexplored, case would
be the study of points on algebraic surfaces, which would correspond to arithmetic
threefolds. Although things become much more difficult in these cases, very interesting
questions and problems certainly would arise.
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Appendix A

Algebraic number theory

Throughout this thesis, we rely on several notions from algebraic number theory. In this
chapter, we give the needed definitions and briefly discuss some results. We mostly use
[Neu99] for this chapter.

A.1 Number fields and rings of integers

Definition A.1.1. A number field is a finite field extension over Q.

Definition A.1.2. Let A B be a ring extension. An element x B is called integral
over A, if it satisfies a monic equation over A, i.e. a0, . . . , an 1 A such that

xn an 1x
n 1 a1x a0 0.

The set of integral elements of B is, in fact, a ring, the ring of integers of B over A.
The ring of integers of a number field K over Q usually is denoted by OK .

Throughout the rest of this section, let K be a number field and OK its ring of integers.

Theorem A.1.3. (Theorem I.3.3 in [Neu99]) Every non-trivial ideal a of OK (a
0 , 1 ) has a factorization in prime ideals which is unique up to ordering.

Remark A.1.4. The connection between the prime ideals of the respective rings of
integers when passing from a field to its extension is very important. In particular,
given a prime ideal p of OK , it is not hard to see that p Z again is a non-zero prime
ideal, i.e. there is a prime p Z such that p Z pZ.

Definition A.1.5. Let a 0 be an ideal of OK . Then, the norm of a is defined as

N a OK : a ,
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where OK : a denotes the index of a in OK . This indeed is finite by [Neu99], theorem
I.2.12. Furthermore, by the Chinese remainder theorem it is multiplicative ([Neu99],
theorem II.6.2), i.e. for a non-trivial ideal a pv1

1 pvn
n ,

N a N p1
v1 N pn

vn .

A.2 Absolute values and places

Definition A.2.1. Let k be a field. An absolute value on k is a function

: k R

with the following properties:

1. x 0, and x 0 x 0,

2. xy x y , and

3. x y x y (triangle inequality).

In the following, we will exclude the trivial absolute value defined by 0 0 and x 1
if x 0.

Note that using we can define a topology defined by a metric on k by setting

d x, y x y .

Definition A.2.2. Two absolute values 1 and 2 are called equivalent if they define
the same topology on k. By [Neu99], proposition II.3.3, this is the case if and only if
there is a real number s 0 such that

x 1 x s

2, x k.

Definition A.2.3. An absolute value is called non-archimedean, if the set n : n
N is bounded; otherwise it is called archimedean.

Non-archimedean absolute values satisfy a stronger version of the triangle inequality, the
ultra-metric inequality (see theorem II.3.6 in [Neu99]):

x y max x , y .

Definition A.2.4. A valuation on a field k is a function

v : k R

with the following properties:
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1. v x x 0,

2. v xy v x v y , and

3. v x y min v x , v y .

We will exclude the trivial valuation defined by v 0 and v x 0 if x 0 in the
following.

Remark A.2.5. The denotation of ‘absolute value’ and ‘valuation’ is not consistent
throughout the literature. Sometimes, one calls an absolute value a valuation and a
valuation an exponential valuation. The reason for this is the following:

Let be an absolute value on F . Setting

v x log x for x 0, and v 0

defines a valuation on F .

On the other hand, given a valuation v on F , we can define an absolute value by fixing
a real number q 1 and setting

x q v x .

Definition A.2.6. A valuation ring R is an integral domain with fraction field F such
that for every x F , either x R, x 1 R, or both. A discrete valuation ring is a
valuation ring with a value group isomorphic to the integers under addition. A valuation
v is called discrete, if it has a smallest value s R.

There are several definitions of a discrete valuation ring equivalent to the one we gave
above, see e.g. [Eis95] for other equivalent definitions1. Moreover, if a valuation v is
discrete, v F sZ. We can normalize the valuation by dividing by s; the new valuation
is equivalent to v.

Given any valuation v on a field F , we get a ring O x F : v x 0 . Its units
are the elements O x F : v x 0 and it is a local ring with maximal ideal
p x F : v x 0 ([Neu99], proposition II.3.8). O is an integral domain with
quotient field F and is a valuation ring. The field k p O p is called the residue field
(see also 2.2.3).

The statement of the following theorem actually is a classification of so-called Dedekind
domains. In particular, OK is a Dedekind domain.

Theorem A.2.7. (Theorem I.11.5 in [Neu99]) The localizations of OK in prime ideals
p are discrete valuation rings.

1
A very good overview of equivalent definitions of a discrete valuation ring can be found on the corre-

sponding Wikipedia entry, http://en.wikipedia.org/wiki/Discrete_valuation_ring (last retrieved

on August 15, 2009).
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Appendix A. Algebraic number theory

Example A.2.8. The valuation on a number field K corresponding to a prime ideal p
of OK is defined by

vp a νp,

if a p pνp . Thus, we get a non-archimedean valuation for each prime p which
furthermore are not equivalent. The associated valuation ring is the localization OK p.

Definition A.2.9. A prime or place p of an algebraic number field K is an equivalence
class of absolute values on K. The non-archimedean equivalence classes are called finite
primes or finite places, denoted by p � , and the archimedean ones infinite primes or
infinite places, denoted by p .

Theorem A.2.10. (Theorem 7.14 in [Mil08]) Let K be an algebraic number field. There
exists exactly one prime of K

1. for each prime ideal p,

2. for each real embedding, and

3. for each conjugate pair of complex embeddings.

The primes in 2. are called real primes and the primes in 3. are called complex primes.

Remark A.2.11. Compare these notions to the setting of an affine scheme in algebraic
geometry (definitions 2.1.1 and 2.2.3). The points of an affine scheme are the prime
ideals of the underlying ring. Then again, recall the observation in example A.2.8 that
every prime ideal of OK induces a non-archimedean valuation.

Definition A.2.12. The p-adic absolute values p for a prime p are defined as follows:
for a finite prime, let

vp : K R

be the normalized valuation induced by the valuation defined as in A.2.8, and for an
infinite prime corresponding to an embedding σ : K C, set

vp a log σ a .

Moreover we define p separately for the different types of primes:

1. For a finite prime, let
a p N p vp a .

2. For a real embedding σ : K C respectively the corresponding prime we let

a p σ a .

3. For a non-real complex embedding, we define

a p σ a 2.
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For K Q, OK Z, the finite absolute values are simply the p-adic absolute values
and the (only) infinite absolute value is the normal real absolute value.

In this context, an important tool is the product formula: it gives a relation between
the absolute values of an element. We first consider it in Q and later extend this to an
arbitrary number field.

Theorem A.2.13. (Theorem II.2.1 in [Neu99]) Let a 0 be a rational number. Then

p

a p 1.

Here p runs over all primes in Z and the symbol .

Proof. Consider the prime factorization of a,

a
p

pvp a .

Since a p p vp a ,

a
p

1
a p

.

Moreover, the sign of a is a a , so the equation above gives

a
a

a
p

1
a p

,

which yields the desired result.

The product formula for arbitrary number fields K follows from the product formula for
Q given in the theorem above.

Theorem A.2.14. (Product formula) For any nonzero a K,

p

a p 1,

where the product is taken over all primes (finite and infinite) of K.

For a proof, see e.g. [Neu99], Proposition III.1.3 or [Mil08], chapter 8.

A.3 The height of a point

Heights play an important role in diophantine geometry. They make it possible to
“count” rational or integral points; they measure the arithmetic complexity of a point
on a variety.

We start with the definition of the height of an algebraic number.
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Definition A.3.1. Let α be an algebraic number and let p x adxd a1x a0

be the minimal polynomial of α, so ai Z and a0, , ad are relatively prime. Then the
(absolute) height of α is

H α ad

d

i 1

max αi , 1 ,

where is the complex absolute value and α1, . . . , αd are the distinct conjugates of
α C. The logarithmic height of α is

h α log H α .

Remark A.3.2. For a rational number α a

b
, where a, b are relatively prime integers,

the height is h α max a , b .

Definition A.3.3. Let P be a point in P
n

Q given by coordinates P x0 : . . . : xn

such that all xi Z and x0, . . . , xn are relatively prime. Then the height of P is defined
to be

H P max x0 , . . . , xn .

The logarithmic height of P is
h P log H P .

Note that for any C R, the set

P P
n

Q : h P C

is finite.

For an arbitrary number field K, this can be generalized to the following:

Definition A.3.4. Let K be a number field and let P x0 : . . . : xn P
n K such

that all xi K. Then the height of P is

H P
p

max x0 p, . . . , xn p ,

and
h P log H P

p

log max
i

xi p .

Here, p runs over all primes of K and the well-definedness follows from the product
formula (see [HS00], lemma B.2.1).

Note that this height depends on the number field K; therefore one often denotes it
by HK and hK , respectively. Sometimes one also uses a normalized version similar to
the normalized Arakelov degree as in definition 7.1.1. In case K Q, this definition
coincides with the one above, since the finite places do not contribute to the product or
sum, respectively.
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Remark A.3.5. The notion of the height of an algebraic number is a special case of
the one above. This definition is equivalent to the one given above.

In Arakelov theory, it turns out to be more natural to consider the following height,
which uses the �2-norm instead of the maximum norm at infinity.

Definition A.3.6. Let K be a number field and let P x0, . . . , xn P
n K such that

all xi K. Then

h P
p�

log max
i

xi p

σ:K C
log

i

σ xi
2

1
2

,

where p runs over all primes of K.

Sometimes, yet other versions are used ([BG06], 2.8), depending on the context. For
details on height functions and the relations between them, see [Lan83].
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Elliptic Curves

Elliptic curves have been long studied in number theory and algebraic geometry. In this
chapter, we give a set of basic definitions related to elliptic curves. For a more detailed
reference, see [Sil86] and [Sil94].

B.1 Weierstrass equations

Definition B.1.1. An elliptic curve over a field K with char K 2, 3 is the set in
P

2 K determined by an equation

Y 2Z X3Z aXZ2 bZ3, (B.1)

with discriminant ∆ 16 4a3 27b2 0.

Remark B.1.2. 1. We defined an elliptic curve by a Weierstrass equation (B.1). We
will see later that we can also define an elliptic curve over K as a pair E,OE ,
where E is a smooth projective algebraic curve of genus 1 over K and OE E K .
By the theorem of Riemann-Roch, one can deduce a Weierstrass equation from
this definition. However, this Weierstrass equation is not unique.

2. One often equivalently defines an elliptic curve by an equation of the form

Y 2Z 4X3 g2XZ2 g3Z
3, (B.2)

with non-zero discriminant g3
2 27g3

3 0.

In this case, g2 and g3 are multiples of certain values of Eisenstein series. One
obtains one equation type from the other by a linear transformation. In fact, given
any cubic equation, if char K 2, 3, we can obtain an equation of the form (B.1)
or (B.2) by a linear transformation.
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Appendix B. Elliptic Curves

Definition B.1.3. Let Λ be a lattice in C, of rank 2 over R, i.e. Λ Zω1 Zω2, see
[Deb05]. Then the Weierstrass ℘-function is defined as

℘ z
1
z2

w Λ 0

1
z w 2

1
w2

.

It is meromorphic on C (e.g. [Kna92]) and its derivative is computed term by term:

℘ z 2
w Λ

1
z w 3

.

The complex structure of an elliptic curve is just given by the structure of a complex
torus, as we see in the following proposition.

Proposition B.1.4. ([Kna92], Theorems 6.14, 6.15, 6.16) Let Λ be a lattice in C. The
map of C Λ into P

2
C given by

z
℘ z : ℘ z : 1 , z Λ,
0 : 1 : 0 , z Λ

and its inverse map are holomorphic. They bijectively map C Λ onto the elliptic curve
E C , where E is given by a Weierstrass equation of type (B.2).

By this map, the elliptic curve inherits a group structure with neutral element 0 : 1 : 0
corresponding to OE from the remark above. One can geometrically describe the group
law by the Chord-Tangent Construction ([Kna92], p. 10).

Proposition B.1.5. Let Λ C Zω1 Zω2 and Λ C Zω1 Zω2. Then C Λ and
C Λ are isomorphic if and only if there is a γ a b

c d
SL2 Z such that

aω1 bω2

cω1 dω2

ω1

ω2

.

Let H denote the complex upper half plane, i.e. H τ C : Im τ 0 . Setting τ w1
w2

,
by the above proposition, the elliptic curve over C corresponds to a lattice Λτ Z Zτ ,
where we can take τ H.

B.2 Curves of genus one

In a more abstract approach, an elliptic curve is defined as follows:

Definition B.2.1. An elliptic curve is a nonsingular projective curve of genus one
together with a distinguished point P .
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B.2. Curves of genus one

We will see how this definition fits to the one in definition B.1.1. For this we need a
corollary of the Riemann-Roch theorem.

Theorem B.2.2. ([Sha94b], III.6.5, corollary 2) Let E be an elliptic curve and P a
point on E, e.g. the distinguished point. Furthermore, let n Z, n 0. Then

dim Γ E,O nP n,

where O nP is the sheaf defined in remark 3.5.8.

By this, we can derive a Weierstrass equation for any elliptic curve over a field k, provided
that char k 2.

Theorem B.2.3. ([Har77], proposition IV.4.6) Let E be an elliptic curve over a field
k, with char k 2, and let P E be a given point. Then there is a closed immersion
E P

2 such that the image is the curve

y2 x x 1 x λ

for some λ k, and the point P goes to the point at infinity, more precisely, to the
projective point 0 : 1 : 0 on the y-axis.

Proof. By [Har77], theorem II.5.19, Γ E,O nP is a vector space. Think of the vector
spaces Γ E,O nP as contained in each other, i.e.

Γ E,O P Γ E,O 2P

Now choose an x Γ E,O 2P such that 1, x form a basis of Γ E,O 2P . Furthermore,
choose a y Γ E,O 3P such that 1, x, y form a basis of Γ E,O 3P . Then the seven
elements

1, x, y, x2, xy, y2, x3

are all in Γ E,O 6P and therefore satisfy a linear relation. Moreover, y2, x3 are both
only in Γ E,O 6P , so their coefficients in the equation are both non-zero. By, if
necessary, replacing x and y by scalar multiples, we may assume that their coefficients
are equal to 1. Then we have a relation

y2 a1xy a3y x3 a2x
2 a4x a6

for certain ai k. By a suitable linear transformation (here we need that char k 2) we
get the required form

y2 x x 1 x λ .

Since x and y both have a pole at P , P goes to the unique point at infinity 0 : 1 : 0 .
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[GS90] Henri Gillet and Christophe Soulé. Arithmetic intersection theory. Institut des
Hautes Études Scientifiques. Publications Mathématiques, 72:93–174, 1990.
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space over a ring, 14
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algebraic cycle, 81
of dimension p, 81
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ample sheaf, 34
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normalized Arakelov degree, 73
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OK
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arithmetic Chow group, 84
arithmetic surface

minimal proper model, 90
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of dimension p, 82
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n

OK
, 70

of P
n

OK
, definition, 69

of SpecOK , 67
of a point in projective space, 68, 114
of a point on an arithmetic variety, 67
of an algebraic number, 114

Hermitian metric, 44
on a manifold, 43
positive, 44
standard, 44

Hermitian vector bundle
m-th exterior product, 47
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section
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scheme, 20
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locally free, 10
of R-modules, 9
of sections of a vector bundle, 31
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pushforward, 9
restriction, 8
structure sheaf, 9
tensor product of sheaves, 10

slope
ith slope, 74
maximal slope, 74
minimal slope, 74
normalized slope, 73

spectrum of a ring, 11
points, 11

stalk of a (pre-)sheaf, 8
structure sheaf

of a ringed space, 13
of a scheme, 14
of an affine scheme, 12
of the spectrum of a ring, 12

successive minima of a lattice, 76
surface, 21

tautological bundle, 29, 34
theta function, 90, 93

normalized, 93
with characteristics, 91

twisting sheaf, 34
global sections, 31

twisting sheaf of Serre, 33

ultra-metric inequality, 110
uniformizing element, 36
upper half plane, 90, 118

valuation, 110
discrete, 111

valuation ring, 111
discrete, 111

variety, 21
affine, 21

vector bundle
direct sum, 28
dual, 28
exterior product, 28
over a Hausdorff space, 25
over a variety, 26

pullback, 30
pushforward, 32
rank, 27
tensor product, 28
zero section, 31

very ample sheaf, 34

Weierstrass ℘-function, 118
Weierstrass equation, 117
Weil divisor, 35

Zariski topology, 11
zero set of a polynomial, 14
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