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Kurzfassung

Diese Dissertation beschäftigt sich mit verschiedenen Aspekten der Cluster Analyse zur

Auswertung von Zeitreihen Microarray Daten. Seit einigen Jahren ist die Interpretation

von riesigen Datenmengen aus Microarray Experimenten eine große Herausforderung für

die Statistik und Bioinformatik. Zeitreihen Microarray Experimente machen es möglich,

die Genexpression von tausenden von Genen simultan zu studieren. Da Gene mit ähn-

lichem Expressionsmuster häufig auch koreguliert sind, kann das Clustern von Genex-

pressionsverläufen dabei helfen, koregulierte Gene zu finden. Letztendlich kann die Clus-

ter Analyse dabei unterstützen, funktionale Stoffwechselwege und Interaktionen zwischen

Genen zu finden.

In dieser Dissertation werden sowohl partitionierende Cluster Methoden wie K–Means

und der qualitätsbasierte Cluster Algorithmus QT–Clust als auch modellbasiertes Clustern

untersucht. Es werden entweder die Originaldaten geclustert oder die funktionalen Daten.

In der funktionalen Datenanalyse wird eine Kurve an jede Beobachtung angepasst, um die

Zeitabhängigkeit zu berücksichtigen. In Simulationsstudien auf künstlichen Datensätzen

werden die Eigenschaften unterschiedlicher Clustermethoden untersucht und auf ihre Nüt-

zlichkeit für Echtdaten getestet. Neue Clustermethoden für diese Art von Daten werden

vorgestellt sowie einige Methoden zur Evaluierung von Clusterlösungen. Alle Cluster Al-

gorithmen and Evaluierungsmethoden wurden in R implementiert, und alle Simulationen

wurden in R durchführt.

Ein wesentlicher Teil der Arbeit konzentriert sich auf die explorative Analyse von

Clusterlösungen. Da genetische Interaktionen sehr komplex sind, ist die Definition von

Genclustern schwierig. Beziehungen zwischen Clustern sind von großer Bedeutung, da

koexprimierte Gene sehr leicht in unterschiedliche Cluster gruppiert werden können. Die

Visualisierung von Clusterlösungen hilft dabei, ein besseres Verständnis für die Cluster-

struktur der Daten zu bekommen und erleichtert die Interpretation der Clusterlösun-

gen. Nachbarschaftsgraphen ermöglichen eine graphische Darstellung der Beziehungen

zwischen angrenzenden Clustern. Unterschiedliche Visualisierungsmethoden zur interak-
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tiven Untersuchung von Clusterlösungen wurden entwickelt und im R Paket gcExplorer

implementiert. Die Funktionalität des Pakets beinhaltet die Visualisierung der Cluster-

struktur, die Darstellung einzelner Cluster in Form von Graphiken oder HTML Tabellen,

das Hervorheben bestimmter Eigenschaften von Clustern sowie einige Testprozeduren zur

Beurteilung der Qualität von Clusterlösungen. Schließlich wird die Anwendung der ver-

schiedenen Clustermethoden und die Verwendung des Pakets an mehreren Beispielen mit

E. coli Daten vom Department für Biotechnologie an der Universität für Bodenkultur in

Wien veranschaulicht.



Abstract

This thesis is concerned with different aspects of the analysis of gene expression time–

course data using cluster techniques. The interpretation of enormous amounts of data from

microarrays has been a challenging task in statistics and bioinformatics for the past few

years. Time–course microarray experiments make it possible to look at the gene expression

of thousands of genes at several time points simultaneously. Genes with similar expression

pattern are likely to be co–regulated. Hence clustering gene expression patterns may help

to find groups of co–regulated genes or to identify common temporal or spatial expression

patterns. Finally cluster results can suggest functional pathways and interaction between

genes.

The cluster methods investigated in this thesis include partitioning cluster methods

like the well–known K–Means or the quality–based cluster algorithm Stochastic QT–Clust

as well as model–based clustering. Clustering is either carried out on the raw data or on

functional data. In functional data analysis a curve is fit to each observation in order

to account for time dependency. In simulation studies on artificial and real data sets

from publicly available databases the properties of different cluster methods are compared

and evaluated using the adjusted Rand index, the sum of within cluster distances as

well as the likelihood criterion. Additionally, test procedures are developed allowing to

judge the biological relevance of cluster solutions. All cluster algorithms and evaluation

procedures are implemented in the statistical computing environment R and all simulations

are performed in R.

An essential part of this thesis deals with the visualization of cluster solutions. The

definition of gene clusters is not very clear as genetic interactions are extremely complex.

For this reason the relationships between clusters are very important as co–expressed genes

can end up in different clusters. The visualization of cluster solutions helps to get an un-

derstanding of the cluster structure of the data and makes it easier to interpret the cluster

results. Neighborhood graphs allow for visual assessment of relationships between adjacent

clusters. A new visualization toolbox for the interactive exploration of cluster solutions
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is implemented in R package gcExplorer. The functionality of the package includes the

visualization of the cluster structure in form of neighborhood graphs, the display of gene

clusters in graphics or HTML tables, highlighting additional properties of the clusters as

well as test procedures to judge the quality of cluster solutions. Finally, the methods are

applied to E. coli data sets from the Department of Biotechnology at the University of

Natural Resources and Applied Life Sciences in Vienna.



Acknowledgement

During my work on this thesis is was supported by the Austrian Kind/Knet Center of

Biopharmaceutical Technology (ACBT).

I would like to thank my supervisor Friedrich Leisch for his many suggestions and

fruitful discussions. Many thanks to Karl Bayer for his vision about bioinformatics in the

working group of Microbial Fermentation and constant support during this work. Many

thanks to Bettina Grün and all my colleagues at the Boku, especially to Karin Dürrschmid,
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Chapter 1

Introduction

The implementation of comprehensive analysis tools from systems biology into bioprocess

development concepts enables the change from empirical to rational knowledge based ap-

proaches in host engineering and process design. As protein synthesis is a complex process

genome wide understanding of cellular stress reactions due to recombinant gene expression

is highly desirable. DNA microarrays are powerful, state of the art tools for the monitor-

ing of cellular systems on transcriptome level providing insight into cellular response to

defined changes in cultivation conditions, e.g induction of recombinant protein production.

As recombinant proteins differ from endogenous proteins and have a distinct composition

it is of high interest to reveal the most relevant pathways which are mainly concerned

with recombinant protein production. To enable interpretation of results the most signifi-

cant information must be extracted from the acquired microarray data by using optimally

suited methods of statistics and bioinformatics. The enormous amounts of data from gene

expression microarray experiments are typically controlled by dividing the whole data set

into homogeneous subgroups with distinct properties, i.e., by cluster analysis.

This thesis is concerned with cluster analysis of gene expression time–course microarray

data. Depending on the objective of a grouping e.g., clusters of highly correlated genes

or tight clusters, different cluster approaches have to be used. The behavior of selected

cluster methods including partitioning and model–based clustering is investigated on var-

ious artificial as well as real time–course data sets. Classification criteria are presented as

well as inferential methods to judge the quality of a given clustering. Further, external

information about the genes like gene function or association to gene sets are integrated

into the exploration.

To complement the simulation results visualization tools are presented to interactively
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CHAPTER 1. INTRODUCTION 2

investigate the goodness of cluster results. Neighborhood graphs are used for visual assess-

ment of the cluster structure. Several node functions and panel functions are implemented

allowing to explore cluster solutions is more detail.

The new visualization methods as well as the test procedures are implemented in

the package gcExplorer (Scharl and Leisch 2009a) in R, an environment for statistical

computing and graphics (R Development Core Team 2009). The package design and

implementational details are described and illustrated in applications. All computations

in this thesis are made in R using packages flexclust (Leisch 2006) and flexmix (Grün and

Leisch 2008).

1.1 Microarray data

DNA-microarrays are tools to study the expression level of thousands of individual DNA

sequences simultaneously. They are now used in many different contexts to compare

Messenger–RNA (mRNA) levels between two or more samples of cells. The two cell sam-

ples to be compared for gene expression are often cells subject to some treatment and

normal cells. Microarray experiments typically give expression measurements on a large

number of genes but with only few replicates for each gene. Reviews of microarray data

analysis include Speed (2003), Parmigiani et al. (2003) and Gentleman et al. (2005).

Using microarrays different properties of gene expression can be studied, such as expres-

sion at the transcription or translation level, and subcellular localization of gene products.

In this thesis attention focusses on expression at the transcription level, i.e., on mRNA

levels. Although the regulation of protein synthesis in a cell is by no means controlled

solely by mRNA levels, mRNA levels sensitively reflect the type and state of the cell.

Microarrays derive their power and universality from a key property of DNA molecules:

complementary base–pairing. The term hybridization refers to the annealing of nucleic

acid strands from different sources according to the base–pairing rules. To utilize the hy-

bridization property of DNA, complementary DNA or cDNA is obtained from mRNA by

reverse transcription. There are different types of microarray systems, including cDNA

microarrays and high–density oligonucleotide arrays.

Oligonucleotide microarrays consist of thousands of short sequences designed to match

parts of the sequence of known or predicted open reading frames printed in a high–density

array on a glass microscope slide using a robotic printer or arrayer. In order to evaluate

the relative abundance of these spotted oligo sequences in two DNA or RNA samples the

differential hybridization of the two samples has to be controlled. For mRNA samples, the
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two targets are reverse–transcribed into cDNA, labelled using different fluorescent dyes

(usually a red–fluorescent dye, Cyanine 5 or Cy5, and a green–fluorescent dye, Cyanine 3

or Cy3), then mixed in equal proportions and hybridized with the arrayed oligo sequences

or probes (following the definition of probe and target adopted in“The Chipping Forecast”,

a January 1999 supplement to Nature Genetics). After this competitive hybridization, the

slides are imaged using a scanner and fluorescence measurements are made separately for

each dye at each spot on the array. The ratio of the red and green fluorescence intensities

for each spot is indicative of the relative abundance of the corresponding DNA probe in

the two nucleic acid target samples.

1.2 Cluster analysis

Cluster analysis is frequently used in gene expression data analysis to find groups of co–

expressed genes which can finally suggest functional pathways and interactions between

genes. Clusters of co–expressed genes can help to discover potentially co–regulated genes

or genes associated to conditions under investigation, e.g., different induction strategies.

Usually cluster analysis provides a good initial investigation of microarray data before

actually focusing on smaller gene groups of interest.

Clustering is commonly used to reduce the complexity of the data from multidimen-

sional space to a single nominal variable, the cluster membership. In the analysis of

microarray data clustering is used as vector quantization because no clear density clusters

exist in the data. Genetic interactions are so complex that the definition of gene clusters

is not clear. Additionally microarray data are very noisy and co–expressed genes can end

up in different clusters. Therefore the set of genes is divided into artificial subsets where

relationships between clusters play an important role. Depending on the purpose of the

cluster analysis different numbers of clusters can be appropriate. Few large clusters are

typically used for a broad overview of a data set and many small clusters are more suitable

to detect co–regulated genes (e.g., over 25 clusters in Heyer et al. (1999)).

In the literature numerous methods for clustering gene expression data have been

proposed. Detailed reviews of currently used methods and challenges with gene expression

data are given in Sheng et al. (2005); Androulakis et al. (2007); Kerr et al. (2008). Besides

traditional methods like hierarchical clustering , K–means (MacQueen 1967; Hartigan and

Wong 1979), partitioning around medoids (PAM, K–medoids, Kaufman and Rousseeuw

(1990)) or self–organizing maps (Kohonen 1989) there are several algorithms dealing with

time–course gene expression data (e.g., Heyer et al. (1999), De Smet et al. (2002), Ben-



CHAPTER 1. INTRODUCTION 4

Dor et al. (1999), and Bickel (2003)). Additionally model–based clustering (eg., Fraley

and Raftery (1998) or McLachlan et al. (2002)) is frequently used.

The display of cluster solutions particularly for a large number of clusters is very

important in exploratory data analysis. See Leisch (2008) for an overview of cluster vi-

sualization. Visualization methods are necessary in order to make cluster analysis useful

for practitioners. They give an understanding of the relationships between segments of a

partition and make it easier to interpret the cluster results. In hierarchical clustering den-

drograms and heatmaps are routinely used (e.g., Eisen et al. (1998)). The most popular

group of partitioning cluster algorithms are centroid–based cluster algorithms (e.g., K–

means or PAM). Once a set of centroids has been found centroid–based cluster solutions

are usually visualized by projection of the data into two dimensions (e.g., by principal

component analysis). Silhouette plots (Rousseeuw 1987) can be used to check whether

clusters of points are well separated whereas topology representing networks (Martinetz

and Schulten 1994) reveal similarity between clusters. Neighborhood graphs (Leisch 2006)

combine these two approaches to visualize cluster structure. They can be used for visual

assessment of the cluster structure of centroid–based cluster solutions. In a neighborhood

graph each cluster is represented by a node. The similarity of two clusters is measured by

the weighted percentage of data points that have one of the corresponding cluster centroids

as closest and the other as second-closest, respectively.

1.3 Recombinant protein production

The optimization of manufacturing processes for biopharmaceutical products, i.e., the

integrated development from “Gene to Product” is the major challenge in the biophar-

maceutical industry. Host/vector systems are adapted to process needs by tuning of the

recombinant gene expression rate in relation to metabolic capabilities of the host organism.

Main objective is to achieve a significant improvement of the efficiency of biopharmaceu-

tical process development in order to provide widely optimized manufacturing processes

for clinical trials and mass production of biopharmceuticals in as short as possible time.

This shall reduce development times drastically providing a faster access to innovative

and highly effective biopharmaceutical drugs. The produced proteins are therapeutically

active and have individual effects on the host cell metabolism.

The successful application of microarrays as monitoring tool in bioprocess development

strongly depends on concerted design of cultivation experiments as well as array experi-

ments and systematic data analysis. The development of a process monitoring and control
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platform allows reproducible cultivation conditions with reliable and defined samples.

Process Optimization for Escherichia coli host/vector systems is performed in a sys-

temsbiological approach using transcriptome and proteome methods (Dürrschmid et al.

2008). A systems based understanding of the interaction between the host metabolism

regulatory pathways, recombinant gene expression and the environment is necessary to

identify key analytes, marker genes and proteins. Genome and proteome platforms are

applied to monitor the impact of recombinant gene expression on the host metabolism,

e.g., stress response and metabolic bottlenecks.

Several E. coli data sets from the Department of Biotechnology at the University of

Natural Resources and Applied Life Scienes in Vienna are used in this thesis. In Chapter

5 as well as Section 6.1 and Appendix A the data of two cultivation processes is used.

Two recombinant E. coli processes with different induction strategies were conducted

in order to evaluate the influence of the expression level of the inclusion body forming

protein NproGFPmut3.1 on the host metabolism. The standard strategy with a single

pulse of inducer yielding in a fully induced system (in the following called experiment A

or PS17) was compared to a process with continuous supply of limiting amounts of IPTG

(Isopropyl–β–D–thiogalactopyranosid) inducer resulting in a partially induced system (in

the following called experiment B or PS19) (Striedner et al. 2003). Comparative analysis

of data sets from independent experiments provide additional information and contributes

to the optimal exploitation of microarray data. Details about the two data sets can be

found in Section 6.1.1.

In Section 6.2 another E. coli data set is used. The goal of this experiment is the de-

tailed investigation of the cellular response of E. coli BL21(DE3) to high level expression

of recombinant human super–oxide–dismutase (SOD) on the transcriptional level. Three

biological replicates were generated by using a carbon limited exponential feedbatch culti-

vation similar to industrial setups for large scale production. For induction of the system

a single pulse of IPTG yielding in a fully induced system is applied one doubling past feed

start. In order to achieve a proper time–resolution of cellular responses sampling starts

with a high frequency for the first hours past induction and decreases in the course of the

experiment.

1.3.1 E. coli databases

Cluster analysis is used to find groups of co–expressed genes in the microarray data without

prior knowledge about the gene functions. However, by clustering expression profiles of
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co–expressed genes groups of genes with similar function are often found.

The annotation of genes to categories or classes is a very important aspect in the

analysis of gene expression data. The genes can for example be mapped to functional

groups like Gene Ontology (GO, The Gene Ontology Consortium (2000)) classifications

or to protein complexes. Gene functions are very complex, therefore genes are usually

mapped to multiple classes. In any case the mapping is known a priori and does not

depend on the data of the currently investigated experiment.

External information about the annotation of genes to functional groups can easily be

included in exploratory and inferential analysis of gene expression data, e.g., the accumu-

lation of gene ontology (GO) classifications in certain gene clusters. In microarray data

analysis gene ontology classifications about Biological Process, Molecular Function and

Cellular Component are typically investigated. Further sources of external knowledge for

data from E. coli are the GenProtEC (Serres et al. (2004), http://genprotec.mbl.edu/)

classification system for cellular and physiological roles of E. coli gene products and the

RegulonDB (Salgado et al. (2006), http://regulondb.ccg.unam.mx/) for detailed infor-

mation about operons and regulons.

1.4 Overview of the thesis

This thesis focuses on different aspects of cluster analysis. Starting with different cluster

algorithms and distance measures used it discusses the evaluation and validation of cluster

solutions as well as the graphical exploration using the gcExplorer (Scharl and Leisch

2009a).

Chapter 2 presents the cluster methods used including the stochastic QT–Clust algo-

rithm (Scharl and Leisch 2006b), quality–based clustering of functional data (Scharl and

Leisch 2009b) as well as new Jackknife distance measures (Scharl and Leisch 2006a). Addi-

tionally initialization strategies for model–based clustering of time–course gene expression

data are described (Scharl et al. 2009a).

Chapter 3 presents different evaluation methods for cluster solutions including modified

versions of the adjusted Rand index (Hubert and Arabie 1985) and test procedures for

external validation of a given clustering (Scharl et al. 2009c).

In Chapter 4 several simulation studies on various artificial as well as real time–course

data sets are presented.

Chapter 5 discusses the implementation in R (R Development Core Team 2009).

http://genprotec.mbl.edu/
http://regulondb.ccg.unam.mx/
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Chapter 6 gives results of applications of the investigated methods on E. coli data

(Scharl et al. 2009b; Scharl and Leisch 2008a).

Chapter 7 summarizes the main findings of the thesis. Appendix A contains the vi-

gnette of gcExplorer and Appendix B contains the documentation of the package.
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This thesis is based on several publications as well as unpublished work.

Scharl, T., Grün, B., and Leisch, F. (2009a). Model–based clustering of time–course

gene expression data: Evaluation of initialization and random effects. Submitted.

Scharl, T. and Leisch, F. (2006a). Jackknife distances for clustering time–course gene

expression data. In 2006 JSM Proceedings, pages 346–353. American Statistical Associa-

tion, Alexandria, USA.

Scharl, T. and Leisch, F. (2006b). The stochastic qt-clust algorithm: evaluation of

stability and variance on time-course microarray data. In Rizzi, A. and Vichi, M., edi-

tors, Compstat 2006—Proceedings in Computational Statistics, pages 1015–1022. Physica

Verlag, Heidelberg, Germany.

Scharl, T. and Leisch, F. (2008a). Using neighborhood graphs for the investigation

of E. coli gene clusters. In Ahdesmäki, M., Strimmer, K., Radde, N., Rahnenführer, J.,

Klemm, K., Lähdesmäki, H., and Yli-Harja, O., editors, Proceedings of the 5th Inter-

national Workshop on Computational Systems Biology, WCSB 2008 (June 11-13, 2008,

Leipzig, Germany), pages 157–160. Tampere University of Technology, Tampere, Finland.

Scharl, T. and Leisch, F. (2008b). Visualizing gene clusters using neighborhood graphs

in r. In Brito, P., editor, Proceedings of COMPSTAT’2008, International Conference on

Computational Statistics, Porto - Portugal, August 24th-29th 2008, pages 51 –58. Physica–

Verlag.

Scharl, T. and Leisch, F. (2009a). gcExplorer: Interactive exploration of gene clusters.

Bioinformatics, 25(8):1089–1090.

Scharl, T. and Leisch, F. (2009b). Quality–based clustering of functional data: Appli-

cations to time course microarray data. In Fink, A., Lausen, B., Seidel, W., and Ultsch,

A., editors, Advances in Data Analysis, Data Handling and Business Intelligence, Pro-

ceedings of the 32nd Annual Conference of the Gesellschaft für Klassifikation e.V., Joint

Conference with the British Classification Society (BCS) and the Dutch/Flemish Classifi-

cation Society (VOC), Helmut–Schmidt–University, Hamburg, July 16–18, 2008, Studies

in Classification, Data Analysis, and Knowledge Organization. Springer Verlag. Accepted
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Scharl, T., Striedner, G., Pötschacher, F., Leisch, F., and Bayer, K. (2009b). Interac-

tive visualization of clusters in microarray data: an efficient tool for improved metabolic

analysis of E. coli. Microbial Cell Factories, 8:37.

Scharl, T., Voglhuber, I., and Leisch, F. (2009c). Exploratory and inferential analysis

of gene cluster neighborhood graphs. BMC Bioinformatics. Accepted for publication.



Chapter 2

Methods

2.1 Partitioning cluster methods

2.1.1 K–Means

For a given data set XN = {x1, . . . , xN} the distance between points x and y is given by

d(x, y), e.g., the Euclidean or absolute distance. CK = {c1, . . . , cK} is a set of centroids

and the centroid closest to x is denoted by

c(x) = argminc∈CK
d(x, c).

The set of all points where ck is the closest centroid is given by

Ak = {xn|c(xn) = ck}.

Minimizing the average distance between each data point and its closest centroid

D(Xn, CK) =
1

N

N∑
n=1

d(xn, c(xn))→ min
CK

is the task of most cluster algorithms.

The well–known K–Means algorithm (MacQueen 1967; Hartigan and Wong 1979) works

as follows. First the number k of clusters has to be specified:

1. Start with k randomly chosen centers.

2. Assign each point to its nearest center.

9
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3. Compute new centroids minimizing the average distance.

4. If there have been changes from the previous iteration,

goto 2.

2.1.2 Quality threshold clustering

The quality–based cluster algorithm stochastic QT–Clust (Scharl and Leisch 2006b) is an

adaptation of the original QT–Clust algorithm proposed by Heyer et al. (1999). In contrast

to cluster algorithms like K–means where the number of clusters is defined a priori the

quality of clusters is the central parameter now. The quality of a cluster is given by the

maximum diameter of the cluster. The possibility to tune the quality of clusters is very

helpful for practitioners. Depending on the goal of the experiment different properties of

the clusters are desirable which can either be a few rather large clusters or many small

clusters with very specific expression patterns. Additionally the minimum number of

points that form a single cluster is chosen. Microarray data are noisy data and outliers

can easily distort cluster solutions. Stochastic QT–Clust is robust to outliers as outlier

observations will not be added to any cluster. Hence the number of clusters is controlled

indirectly through these two parameters. A further tuning parameter is the number ntry

of candidate clusters generated in each run. The algorithm works as follows:

1. Start with a randomly chosen centroid.

2. Iteratively add the gene that minimizes the increase in cluster diameter.

3. Continue until no gene can be added without surpassing the diameter threshold.

4. Repeat from 1. for ntry− 1 further centroids.

5. Select the largest candidate cluster and remove the genes it contains from further

consideration.

6. Goto 1. on the smaller data set.

7. Stop when the largest remaining cluster has fewer than some prespecified number of

elements.

If ntry is equal to the number of genes G the original QT–Clust algorithm is obtained.

Stochastic QT–Clust speeds up the procedure and yields different local maxima of the
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objective function. The original algorithm will always converge in the same local optimum.

The impact of the hyperparameter ntry is evaluated in Section 4.2.1. Throughout the

remaining simulations ntry is equal to 5.

In order to gain maximum information the choice of the cluster diameter and the

minimum number of points has to be carefully chosen as both have a large impact on the

resulting clustering and its interpretation. A small diameter will yield a cluster solution

with many small clusters containing genes with very similar expression patterns whereas

a larger diameter will result in a smaller number of less tight clusters. Additionally, if

the diameter is chosen too small many genes cannot be added to a cluster and will be

treated as outliers. The minimum number of points also has a big influence on the number

of clusters and the number of outliers. If small clusters are allowed (e.g., the minimum

number of points is 2) there will be less outliers than in the case of a larger minimum

number of points. There is a tradeoff between the number of clusters, the size of the

clusters and the number of outliers. Therefore it is necessary to finetune these parameters

for each data set to obtain a cluster solution that fits the needs of the current experiment.

The relationship between the radius, the number of clusters and the number of outliers is

investigated in Section 4.1.3.

2.1.3 Distance measures

The distance measure used has major impact on the resulting clusters (Gentleman et al.

2005). The properties of different distance measures have to be investigated to be able to

answer biological questions more precisely. A comparison of different distance measures

which are commonly used in the context of clustering time–course microarray data was

performed in Scharl and Leisch (2006a).

Four distance measures were chosen which are commonly used in the context of clus-

tering time–course microarray data (see for example Chipman et al. (2003); Jiang et al.

(2004); Sheng et al. (2005); Gentleman et al. (2005)). Here three geometric distances and

“1 - Correlation” distance are used.

One of the most commonly used methods to measure the distance between two data

objects is Euclidean distance which is given by

dxy =

√√√√ T∑
i=1

(xi − yi)2,
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where x and y are T–dimensional vectors and T is the number of time points in the

experiment. Manhattan distance

dxy =
T∑
i=1

|xi − yi|

is more robust to outliers than Euclidean distance. Both Euclidean and Manhattan dis-

tance yield clusters with a certain band width which can vary from one time point to the

next. Maximum distance

dxy = max |xi − yi|

looks at the maximum differences between time points and yields clusters of a fixed band

width.

If one is interested in the relative changes of gene expression a correlation–based dis-

tance measure is more appropriate as correlation is invariant to location and scale. The

dissimilarity between two gene profiles can be defined as

dxy = 1− ρxy = 1−
∑T

i=1(xi − x̄)(yi − ȳ)

[
∑T

i=1(xi − x̄)2]1/2[
∑T

i=1(yi − ȳ)2]1/2

where ρxy is the Pearson sample correlation coefficient. This distance measure removes

changes in the average or range of the expression level from one gene to the next. Both

strongly positively correlated as well as negatively correlated genes are considered co–

expressed.

Jackknife distance measures

A possible problem using these distance measures for clustering time–course gene expres-

sion data is that single outlier variables can completely change the expression pattern of

certain genes. There are several algorithms which are able to deal with outlier observa-

tions. Partitioning around medoids described in Kaufman and Rousseeuw (1990) is a more

robust version of k–means for arbitrary distance measures. Trimmed K-means (Cuesta-

Albertos et al. 1997) is a robust version of the original algorithm. All these algorithms

can handle outliers in the data points. Our goal is to identify outliers in the variables.

Outliers at special time points are very common in microarray experiments as technical

problems like dust or a scratch on the slide can easily distort the data. In such a case

these outlier variables can lead to unwanted correlations between genes and to incorrect
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assignment to clusters. There is a need for distance measures which are robust against

outlier variables. The idea of Jackknife (Efron 1982) distance measures is not to exclude

the whole observation for such a gene but rather one or several variables. We want to in-

troduce so–called ”Jackknife” distance measures which can handle one outlier time point.

The Jackknife correlation was first used by Heyer et al. (1999) to cluster gene expression

data. It is defined as

dxy = 1−min(ρ(1)
xy , ρ

(2)
xy , . . . , ρ

(T )
xy )

where ρ
(t)
xy is the correlation of pair x,y computed with the tth time point deleted.

Now we want to extend this concept and introduce robust versions of the three geomet-

ric distance measures Euclidean, Manhattan and Maximum distance. Jackknife Euclidean

distance is defined as

dxy = min(d(1)
xy , d

(2)
xy , . . . , d

(T )
xy )

where d
(t)
xy is the Euclidean distance of pair x,y computed with the tth time point deleted.

Jackknife Manhattan distance and Jackknife Maximum distance can be defined in the

same way. The impact of Jackknife distance measures is evaluated in Section 4.2.2.

2.1.4 Clustering of functional data

The standard application of K-Means is to assign data points to clusters based on min-

imal Euclidean distance to the cluster centers. However, observations over time are not

just ordinary points in Euclidean space but curves with distinct shapes. Clustering func-

tional data using the K–Means algorithm (Tarpey 2003, 2007) is very useful to determine

representative curve shapes in a functional data set. This approach is frequently used in

clustering microarray data (e.g., Abraham et al. (2003); de Hoon et al. (2002); Hakamada

et al. (2006); Serban and Wasserman (2005)) where different methods are used to fit curves

to the data.

In the simulation study a cubic spline using a B–spline basis is fit to each gene expres-

sion profile in order to account for time dependency. The estimated regression coefficients

are then plugged into both the K–Means and the QT-Clust algorithm.

Additionally a K–Means–like algorithms is included in the study where splines are used

for the computation of cluster centroids in order to account for the time–dependence of

time course gene expression data.
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Table 2.1: Overview of the partitioning methods used

algorithm dist cent type

kmeans eucl mean orig
kmeans man median orig
kmeans cor optim orig
kmeans max optim orig

qtclust eucl mean orig
qtclust man mean orig
qtclust cor mean orig
qtclust max mean orig

kmeans euc spline orig
kmeans euc mean fd
qtclust euc mean fd

2.1.5 Summary

The partitioning methods used in the simulation study on artificial data are summarized

in Table 2.1. The two algorithms used are K–Means and QT–Clust, the four distance

measures used are Euclidean, Manhattan, “1 - Correlation” and Maximum distance. For

K–Means different types of centroid computation are used: cluster–wise means and cluster–

wise medians are used for Euclidean distance and for Manhattan distance. A general

purpose optimizer is used for “1 - Correlation” and Maximum distance. Additionally a new

cluster algorithms is included with Euclidean distance and splines as centroid computation

method. Finally clustering is performed either on the original data or on the functional

data.

2.2 Model–based clustering

Finite mixtures of regression models are the state-of-the-art technique for modeling time

course microarray data. The Expectation-Maximization (EM) algorithm (Dempster et al.

1977) is the most common method for maximum likelihood (ML) estimation despite its

drawbacks such as convergence only to local optima in dependence of the initialization.

Good starting values are therefore crucial for the EM algorithm to perform well. A common

strategy is to use random initialization and to run the algorithm several times in order to

overcome the convergence to local optima already determined by the initalization.
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2.2.1 Model specification

The mixture density h of a finite mixture model with K components is given by

h(y|x,w, ψ) =
K∑
k=1

πk(w)f(y|x, θk).

y is the response, x the predictor, w the concomitant variables and ψ denotes the vector of

all parameters for the mixture density h. For the component weights πk(w) it holds that

πk(w) > 0 for all k and
∑K

k=1 πk(w) = 1. θk is the component-specific parameter vector

for the density function f .

Recently, many model-based clustering approaches have been applied to microarray

data. Mixtures of multivariate normal models are for example used by Fraley and Raftery

(1998, 2002); Yeung et al. (2001); Ghosh and Chinnaiyan (2002) and mixtures of t distri-

butions are used by McLachlan et al. (2002).

Mixtures of mixed-effects models are used to account for different kinds of heterogeneity

between individuals. The components of the mixture correspond to different groups with

distinct parameterizations while the random effects allow for individual differences which

cluster around a common mean value.

The data of each individual i is given by (Yi, Xi, Zi, wi) which consists of ni obser-

vations on the dependent variables Yi = (yij)j=1,...,ni
, the covariates for the fixed effects

Xi = (x′ij)j=1,...,ni
and the covariates for the random effects Zi = (z′ij)j=1,...,ni

. wi denote

the individual specific concomitant variables. The finite mixture density of mixed effects

models with K components is given for the observations of individual i by

h(Yi|Xi, Zi, wi,Θ) =

=
∑K

k=1 πk(wi)
∫∏ni

j=1 φ1(yij;x
′
ijβk+ z′ijb

k
i , σ

2
k)φq(b

k
i ; 0,Ψk)db

k
i

=
∑K

k=1 πk(wi)φni
(Yi;Xiβk, ZiΨkZ

T
i + σ2

kIni
).

φd(.;µ,Σ) denotes the d-dimensional multivariate normal distribution with mean µ

and variance-covariance matrix Σ.

� Fixed effects: x′ijβk with βk deterministic

� Random effects: z′ijb
k
i with bki ∼ N(0,Ψk)
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Splines are frequently included in mixed-effects models to treat the gene expression

level as a continuous function of time. They are used with B-splines (Luan and Li 2003;

Bar-Joseph et al. 2003) and smoothing splines (Ma et al. 2006). For smoothing splines the

degree of smoothness is chosen automatically by cross-validation.

In the simulation study (see Section 4.1.6) smoothing splines and B-splines are used

to fit finite mixtures of linear regression models to time course gene expression data. The

normal mixture model in combination with smoothing splines is compared to the mixed-

effects model with a random intercept with B-splines using various initialization strategies.

2.2.2 Parameter estimation

The EM algorithm (Dempster et al. 1977) is the standard tool for ML estimation of finite

mixture models. In the E-step the expectation of the complete likelihood is taken, i.e., the

a-posteriori probabilities are computed. In the M-step the expected complete likelihood is

maximized where the missing memberships are replaced by the a-posteriori probabilities.

The likelihood is increased in each step and convergence of the algorithm is guaranteed

for bounded likelihoods. Detection of the global optimum however cannot be ensured.

2.2.3 Initialization strategies

Up to our knowledge different initialization strategies have only been investigated in multi-

variate normal settings. In Scharl et al. (2009a) the performance of initialization strategies

is investigated for mixtures of regression models with respect to time course microarray

data. The goal of this study is to find good starting values for clusterwise regression using

mixtures of linear models and mixtures of linear mixed models.

Biernacki et al. (2003) give an overview of simple initialization strategies including ran-

dom initialization, classification EM (CEM) algorithms, stochastic EM (SEM) algorithms

and preliminary short runs of EM itself. Their aim is to identify a simple method that

gives the highest likelihood in a fixed number of iterations.

Wehrens et al. (2004) present an approach for large data sets where a random sub-

sample is clustered prior to applying the model to the whole data set. A modification

of this method is given in Fraley et al. (2005). They propose incremental model-based

clustering for large data sets with small clusters and apply it to image data. The situation

of large data sets with small clusters is also characteristic of microarray data.
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� True cluster membership: For simulated data the true cluster memberships can

be used for initialization in order to investigate the behaviour of the EM algorithm

when starting in the optimal solution.

� Random initialization: A commonly used approach is to run EM x times with

random starting values and to select the solution maximizing the likelihood among

those x runs.

� Classification EM algorithm: CEM (Celeux and Govaert 1992) is a three step

procedure where the E-step is equivalent to the standard algorithm. In the C-step a

partition is designed by assigning each point to the component with the maximum

a-posteriori probability. In the M-step the ML estimates are computed using the

clusters of the C-step as sub-sample of the mixture components. CEM converges

in a finite number of iterations and tends to produce a mixture with well separated

components (Biernacki et al. 2003). It is not maximizing the observed log-likelihood

but the complete likelihood.

As an initialization strategy CEM is run from x random starting positions and the

one providing the highest complete data log-likelihood is chosen as an initial solution

for EM. CEM is started with K much larger than the actual number of clusters in

the data as hard classification tends to omit too small clusters whereas the large ones

dominate.

� Stochastic EM algorithm: SEM (Diebolt and Ip 1996) includes a restoration of

the unknown component labels by drawing them at random from their current a-

posteriori probabilities. The E-step is equivalent to the standard algorithm. In the

S-step a partition is designed by assigning each point at random to one of the mixture

components according to the multinomial distribution with parameter equal to the

a-posteriori probabilities. In the M-step the ML estimates are computed using the

clusters of the S-step as sub-sample of the mixture components. Random drawing

at each iteration prevents the SEM from being trapped in local optima.

For initialization SEM is run x times keeping the position leading to the highest

maximum likelihood value. The stopping criterion for SEM is the maximum number

of iterations which is set to 100.

� Short runs of EM: This procedure is suggested by Biernacki et al. (2003). EM is

run x times from random starting positions before passing to EM without waiting
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for convergence using the threshold value (Lq − Lq−1)/(Lq − L0) ≤ tol, where the

tolerance (tol) is set to 10−2. Lq is the log-likelihood at the qth iteration.

� Sampling: In Wehrens et al. (2004) the simple strategy to cluster larger data sets

by clustering a small random sample of the data and to apply the resulting estimated

model to the full data set is modified. The sampling methods starts with drawing

x samples of size 100 from the full data set. Next, the EM algorithm is run 3 times

on the x samples and the ML solution is used to initialize the EM algorithm for the

full data set. Finally, the ML solution of the x models is selected.

� Incremental Method: Fraley et al. (2005) developed incremental model-based

clustering which is an extension of the sampling method. The method starts at

drawing a random sample of the data, selecting and fitting a clustering model to the

sample that underestimates the number of components, and extending the model to

the full data set by additional EM iterations. New clusters are then added incremen-

tally, initialized with the observations that are poorly fit by the current model. The

algorithm stops if adding further components does not increase the log-likelihood or

if an a-priori fixed maximum number of components is reached.

In the simulation study (see Section 4.1.6) the incremental method is started on

x samples of size 100 with K equal to 6. As in the sampling method EM is

started 3 times and the ML solution is applied to the full data set. New clusters

are added incrementally and initialized with those observations with the lowest 5%

log-likelihoods.

� Spectral clustering: A completely different approach is given by spectral cluster-

ing (e.g., Ng et al. (2001)) which does not make any assumptions on the form of

the clusters. In spectral clustering data points are clustered using eigenvectors of

matrices derived from the data. Spectral clustering is implemented in R package

kernlab (Karatzoglou et al. 2004).

In the simulation study the algorithm of Ng et al. (2001) is applied where the K

eigenvectors are used simultaneously. The cluster solution from spectral clustering

is used as starting value for the EM algorithm.

An overview of the investigated initialization strategies is given in Table 2.2. Throughout

all computations the minimum component weight of clusters (Leisch 2004) is 0.005 and

the maximum number of iterations is 5000 (except for SEM where it is 100). In Table
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Table 2.2: Overview of the initialization strategies and parameters used where e.g. cem.em
indicates the procedure of initializing the EM algorithm in the cluster solution of CEM
providing the highest log-likelihood.

Method k nrep

rep.em Random initialization 16 10
true True cluster membership 16 1
cem Classification EM 30 10
cem.em CEM.EM result from cem 1
sem Stochastic EM 16 10
sem.em SEM.EM result from sem 1
tol Short runs of EM 16 10
tol.em Short.EM result from tol 1
sam Sampling 16 10 · 3
inc Incremental Method 6 10 · 3
sc Spectral clustering 16 1
sc.em SC.EM result from sc 1

2.2 K is the number of clusters the algorithm starts with and nrep is the number of

times the algorithm is started keeping only the solution with maximum likelihood. For

the incremental method the number of starts is 10 · 3, i.e., 10 samples are drawn from the

full data sets and the algorithm is started 3 times with random initialization on each of

the samples.
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2.3 Neighborhood graphs

The neighborhood graph (Leisch 2006) is a method for the visual assessment of centroid–

based cluster solutions. It uses the idea of topology–representing networks (TRNs, Mar-

tinetz and Schulten (1994)) to count the number of data points a pair of centroids is

closest and second–closest. In TRNs the counts are used as weights for the edges of the

graph. Silhouette plots (Rousseeuw 1987) are diagnostic plots revealing the goodness of

a partition. The distance from each point to the points in its own cluster is compared to

the distance to points in the second closest cluster. The larger the silhouette values the

better a cluster is separated from the other clusters. But silhouette plots do not show

the proximity of clusters. They only give an indicator how well-separated single points

are from other clusters. Neighborhood graphs combine these two approaches and use the

mean relative distances as edge weights in order to measure how separated pairs of clusters

are. Hence they display the distance between clusters. In the graph each node corresponds

to a cluster centroid and two nodes are connected by an edge if there exists at least one

point that has these two as closest and second–closest centroid.

For a given data set XN and a set of centroids CK the centroid closest to x is denoted

by

c(x) = arg min
c∈CK

d(x, c).

The second closest centroid to x is denoted by

c2(x) = arg min
c∈CK\{c(x)}

d(x, c).

The set of all points where ck is the closest centroid is given by

Ak = {xn|c(xn) = ck}.

Now the set of all points where ci is the closest centroid and cj is second–closest is given

by

Aij = {xn|c(xn) = ci, c2(xn) = cj}.

For each observation x the shadow value s(x) is defined as

s(x) =
2d(x, c(x))

d(x, c(x)) + d(x, c2(x))
.
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s(x) is small if x is close to its cluster centroid and close to 1 if it is almost equidistant

between the two cluster centroids. The average s–value of all points where cluster i is

closest and cluster j is second closest can be used as a proximity measure between clusters

and as edge weight in the graph.

sij =

|Ai|−1
∑

x∈Aij
s(x), Aij 6= ∅

0, Aij = ∅

|Ai| is used in the denominator instead of |Aij| to make sure that a small set Aij consisting

only of badly clustered points with large shadow values does not induce large cluster

similarity.

Observations that have similar distances to both centroids get a larger weight than

observations which are close to one and far away from the other. Note that as a percentage

the cluster similarity is always between 0 and 1. If we remove one of the two cluster

centroids, all points contributing to the cluster similarity of the centroid pair would be

re-assigned to the remaining centroid. Thus it can also be used as an indication which

clusters are candidates for being merged.

Neighborhood graphs are generally applicable to various partitioning cluster algorithms

like the well–known K–means or PAM. In order to use the neighborhood graph for the visu-

alization of a cluster solution obtained from QT–Clust the corresponding cluster centroids

are computed. Neighborhood graphs are a useful tool for the visualization of the structure

of a cluster solution. Additionally they can be used as exploratory tool to determine the

quality of a given clustering and to validate the number of clusters. Too fine partitions

show very high connectivity in the graph, while too coarse clusterings are identified if

different expression profiles show up in one cluster.
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Evaluation

For the evaluation of cluster solutions the Rand index is typically used as classification

criterion. The likelihood criterion as well as the AIC or BIC can be used to compare

cluster results from model–based clustering.

3.1 Rand index

For a given data set X = {x1, . . . , xn} let PT = {t1, . . . , tT} and PC = {p1, . . . , pC} be two

partitions with ∪Ti=1ti = X = ∪Cj=1pj and ti ∩ t′i = ∅ = pj ∩ p′j for 1 ≤ i 6= i′ ≤ T and

1 ≤ j 6= j′ ≤ C. Suppose PT is the true underlying grouping and PC some cluster result.

The agreement between the two partitions can be measured by the Rand index (Hubert

and Arabie 1985) which is given by
A

A+D

where A is the number of all pairs of data points which are either in the same cluster in

both partitions or in different clusters in both partitions. D is the number of all pairs of

data points that are in the same cluster in one partition, but in different clusters in the

other partition. Hence, D is the number of disagreements whereas A is the number of

agreements between PT and PC .

Let nij be the number of objects that are in both class ti and cluster pj. Let ni. and n.j

be the number of objects in class i and cluster j respectively. The Rand index corrected

for agreement by chance (Hubert and Arabie 1985) is given by

R =

∑
i,j

(
nij

2

)
− [
∑

i

(
ni.

2

)∑
j

(
n.j

2

)
]/
(
n
2

)
0.5 · [

∑
i

(
ni.

2

)
+
∑

j

(
n.j

2

)
]− [

∑
i

(
ni.

2

)∑
j

(
n.j

2

)
]/
(
n
2

) .
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An adjusted Rand index of 1 corresponds to identical partitions and a Rand index of 0

corresponds to agreement by chance given cluster size.

One of the benefits of the QT–Clust algorithms is that outliers are not forced into

clusters. However, the adjusted Rand index cannot deal with missing cluster memberships.

Hence objects which are not assigned to a cluster in either partition PT or PC are omitted

from the calculation. Thalamuthu et al. (2006) suggest a modified version of the adjusted

Rand index where outliers form an additional cluster, i.e., the numbers of clusters are T+1

and C+1 and the number of outliers are |tR+1| and |pC+1| respectively. The adjusted Rand

index ignoring missing values in a cluster solution is

R1 =

∑
i,j

(
nij

2

)
− [
∑

i

(
ñi.

2

)∑
j

(
ñ.j

2

)
]/
(
ñ
2

)
0.5 · [

∑
i

(
ñi.

2

)
+
∑

j

(
ñ.j

2

)
]− [

∑
i

(
ñi.

2

)∑
j

(
ñ.j

2

)
]/
(
ñ
2

)
where ñi. = ni. − ni(C+1) and ñ.j = n.j − n(T+1)j. Additionally, Thalamuthu et al. (2006)

propose to include the clusters of outliers in the calculation of the Rand index, i.e., R2 = R

for i = 1, . . . , T + 1 and j = 1, . . . , C + 1.

In order to give less weight to outliers they propose to form a weighted Rand index

R∗ = λ ·R1 + (1− λ) ·R2

where λ = |tR+1 ∪ pC+1|/n.
A further possibility is to allow clusters of size 1 and to put each outlier into a single

clusters, i.e. the number of clusters in partitions PT and PC is T + |tR+1| and C + |pC+1|
respectively. The corresponding Rand index is R3 = R for i = 1, . . . , T, T+1, . . . , T+|tR+1|
and j = 1, . . . , C, C + 1, . . . , C + |pC+1|.

The performance of the different versions of the modified Rand index is evaluated on

artificial data in Section 4.1.2.

3.2 Sum of within cluster distances

The sum of within cluster distances W is an indicator for the tighness of a given clustering.

It is given by

W =
K∑
j=1

∑
x∈Xj

d(x, cj)
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where x is an element of cluster Xj, d is the distance measure and cj is the centroid of

cluster j.

3.3 Inferential analysis

3.3.1 Functional relevance test

The obtained similarity between clusters and the neighborhood graph can be used to

evaluate a cluster result at hand. The cluster structure can be used to decide whether

the clustering is too coarse and needs further subdivision to respect the data or if it is

too fine and some clusters should be merged. On the one hand this can be accomplished

by defining some threshold t for the shadow value s above which two clusters are merged.

In the case of too large clusters more accurate clusters can for instance be obtained by

running the algorithm again with larger K.

On the other hand external knowledge about the data can be used to validate a given

clustering. In the case of microarray data a priori information about gene function or

the association to functional groups can be used as functionally related genes are more

likely to be co–expressed. Clusters with similar expression pattern are connected in the

neighborhood graph. If functional group F is independent of the experimental setup genes

classified to group F will be assigned to arbitrary clusters, i.e., they are assumed to be

spread all over the neighborhood graph. Further, genes functionally independent of the

experimental setup do not have a common expression pattern. If functional group F plays

a role in the experiment the corresponding genes are more likely to show a typical pattern

of either up– or down–regulation and there should be clusters with accumulation of such

genes.

Assigning all genes in the clustered data set to some functional group F yields propor-

tions π1, . . . , πK where K is the number of clusters or nodes and NF is the total number

of genes in the data set assigned to group F . If there is no association between the func-

tional group and the cluster solution then all proportions are the same, i.e., the differences

between proportions dij = 0 where

dij = |πi − πj|, i, j = 1, . . . , K.

If there is an association then some πk will be large and others small. The test for functional

relevance of a given clustering is conducted in a stepwise way.
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Step 1: Perform a global test of the equality of proportions, i.e., test the null hypothesis

that all proportions πFk are the same

H0 : dij = 0 ∀i, j = 1, . . . , K.

The test procedure stops if there is no difference in proportions. But if there are significant

differences in proportions each single difference has to be investigated in more detail. If the

proportion of functionally related genes is the same in two clusters these two clusters are

similar with respect to functional group F and can therefore be merged. This procedure

yields separated subgraphs with common gene function within the neighborhood graph.

Without knowledge about the cluster structure and the similarities between clusters

given in the neighborhood graph G each pair of clusters has to be tested for a significant

difference in proportions, i.e., K(K − 1)/2 tests have to be conducted. Using the neigh-

borhood structure only a fraction of all possible pairs, i.e., clusters connected by an edge

have to be tested. A further reduction of tests can be achieved by taking into account only

nodes where the number of functionally assigned genes is above a threshold m.

Step 2: Assess the significance of the observed differences with respect to a reference

distribution by permuting the function labels. The null hypothesis is again no difference

in proportions.

� Select all clusters where the number of functionally assigned genes is above the

predefined threshold m and conduct all further calculations on the resulting subgraph

G′.

� Calculate the difference between proportions dij, i, j = 1, . . . , K for each edge in the

subgraph.

� Permute the function labels, i.e., randomly assign N ′F genes to functional group

F , where N ′F is the number of assigned genes in the subgraph G′ with N ′F ≤ NF .

Compute the resulting differences in proportions dlij, i, j = 1, . . . , K and keep the

respective maximum

M l = maxi,jd
l
ij

as used in Zeileis et al. (2007) to form a reference distribution {M l}Ll=1 where L is

the number of permutations considered.

� Compute marginal tests whether a particular dij is extreme relative to the joint

distribution M l, i.e., compute how often the maximum of the permuted differences
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in proportions is larger than the observed one.

In other words, if the observed difference in proportions is very unlikely with respect to

the reference distribution of the maxima M l the edge will be removed. In this procedure a

modified neighborhood graph is formed for the cluster solution and functional group under

investigation. In this modified graph two clusters are only connected if they have

1. a large similarity value s and

2. no significant difference in proportions of functionally related genes.

3.3.2 Compare cluster results

Validation of microarray cluster results is a challenging task (e.g., Androulakis et al. (2007))

as there is in general no true cluster membership. The quality of a cluster solution should

be judged based on its ability to provide insight into the underlying mechanistic biology.

As described in the previous section the validity of a cluster solution can be judged based

on its ability to find groups of functionally related genes. Another approach is to find

genes with common mechanism of regulation by searching for groups of genes that show a

common response in different experiments.

For that purpose another test procedure was developed. We test how valid a given

cluster solution is on a different data set taking into account the average within cluster

distance W = (w1, . . . , wK) where

wk =
1

|Ak|
∑
n∈Ak

d(xn, ck).

Let XN be the data matrix of N genes for a given experiment and let M be the vector of

length N of the corresponding cluster memberships. Further let YN be the data matrix of

the same N genes in a different experiment. In order to test if the cluster memberships

M found for data set XN are also valid in data set YN the following procedure is used.

1. Compute the new cluster centroids C̃K for data set YN using the vector of cluster

memberships M .

2. For each cluster k compute the average within cluster distance of data points yn to

their assigned centroid c̃k, i.e.,

w̃k =
1

|Ak|
∑
n∈Ak

d(yn, c̃k).
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3. Permute the cluster memberships, i.e., randomly assign the genes to clusters but do

not modify cluster sizes. Compute the resulting average within cluster distance w̃lk for

each cluster and keep the W̃k = (w̃1
k, . . . , w̃

L
k ) where L is the number of permutations

considered.

4. Compute marginal tests for each cluster of whether a particular w̃k is extreme relative

to the joint distribution of W̃k.

For each k where k = 1, . . . , K a single test is performed with the null hypothesis

H0 : w̃k = w̃lk ∀l = 1, . . . , L

and the alternative hypothesis is

H1 : w̃k < w̃lk.

The null hypothesis is rejected if the propability of observing a smaller within cluster

distance by randomly assigning genes to clusters is less than e.g. 5%. In this case there is

a relationship between the investigated cluster solution on the original data set and on the

new data set and genes with common expression pattern across experiments are found.
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Simulations

4.1 Artificial data

The performance of the different cluster methods is now evaluated on artificial data sets

which are designed to resemble time course gene expression patterns. The number of

clusters is 15 (as used in Thalamuthu et al. (2006)) plus an additional noise cluster of

genes. The number of time points is 16 (equal to the number of time points in the E. coli

data set used in Section 6.2). This is a common length for time series microarray data

(see for example Cho et al. (1998)). The cluster sizes vary between 10 and 100 yielding a

total of 630 genes with defined cluster pattern.

Typical time course microarray data have the following form

yij = bi + εij

where bi ∼ N(µk, σ
2
b ) and εij ∼ N(0, σ2

ε ).

The expression pattern y of each gene i at time point j in a given cluster k is assumed

to follow the shape of the cluster center µk but with a gene specific shift bi (specified by

the noise parameter “SD of RI” (σb) where SD denotes standard deviation and RI is the

Random Intercept). Additionally a normally distributed measurement error εij (specified

by the noise parameter “SD of mean of genes” (σε)) is added to each observation (time

point) j.

As typical gene clusters do have arbitrary cluster sizes all simulated data sets consist

of clusters of sizes between 10 and 100. Finally an additional noise set of genes of specified

size N (given by the noise parameter “number of noise genes”) is added to the data. For

each noise gene µk ∼ N(0, σ2
m) and σb ∼ U(0.1, 0.3). σm is specified by the noise parameter

28
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Table 4.1: Overview of the varying noise parameters.

Noise level low medium high

N number of noise genes 100 500 1000
σε SD of mean of genes 0.1 0.3 0.5
σm SD of mean of noise genes 0 1 2
σb SD of RI 0.1 0.7 1.5

“SD of mean of noise genes”.

An overview of the different noise parameters used is given in Table 4.1. One set of

cluster centers is used to generate 81 data sets using all possible combinations of noise

parameters.

The framework of this simulation study is the following:

1. generate 100 sets of centroids using integrated AR processes (see Section 4.1.1),

2. add the 81 combinations of noise presented in Table 4.1 to the centroids,

3. perform all presented cluster methods on these data sets and

4. evaluate the performance of the different methods ignoring the noise cluster.

4.1.1 Integrated AR processes for simulated data

In this simulation setup cluster centers are created using integrated autoregressive mod-

els. These have been used before to describe gene expression time series (e.g., Ramoni

et al. (2002)) as autoregressive processes resemble the shape of gene expression over time

observed in real time course data very well. An autoregressive process Aj of order 1 is

defined by

Aj = αAj−1 + εj

where εj is a series of uncorrelated random variables with mean 0 and variance σ2. It

describes how each observation is a function of the previous observation.

An integrated AR(1) process is a process whose dth difference is an AR(1) process. If

d = 0 the observations are modeled directly, if d = 1 the differences between consecutive

observations are modeled, i.e.,
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Figure 4.1: Artificial data set with low noise level where integrated AR processes are used
to create cluster centers.
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Aj = Aj−1 + α(Aj−1 − Aj−2) + εj.

If d = 2 the differences of differences are modeled, etc.

In this study parameter d is either 1 or 2 in order to get different degrees of smoothness.

Half of the generated time series are then reversed and finally transformed to the range of

typical gene expression profiles.

One set of cluster centers consists of 15 expression patterns yielding data sets of 15

clusters with dimension (number of time points) 16. An artificial data set where low noise

is added to the cluster centers is given in Figure 4.1 where cluster 16 is a noise cluster of

genes showing no differential expression.

4.1.2 Modifications of the adjusted Rand index

In this section the impact of outliers on the agreement between the true cluster membership

and the cluster solutions is investigated using the modified versions of the adjusted Rand

index presented in Section 3.1. Figure 4.2 shows the four different version of the adjusted

Rand index (panel (a)) and the number of outliers (panel(b)) on 100 data sets with low

noise level for the five investigated QT–Clust methods, i.e., QT–Clust on the original data

using Euclidean, “1 - Correlation”, Manhattan and Maximum distance and QT–Clust on

the functional data using Euclidean distance. It can be seen from panel (a) that ignoring

the missing values (outliers) in the cluster solutions yields the highest Rand index whereas

combining the outliers to a single cluster and treating each outlier as a separate cluster

yield smaller Rand indices. The weighted Rand index is very similar to ignoring the outliers

except for “1-Correlation” distance. This is due to the fact that the number of outliers is

much larger for “1-Correlation” distance (see panel (b)). When the number of outliers is

very small (e.g., QT–Clust on functional data) the impact of the different versions of the

Rand index is very low. In the following the adjusted Rand index ignoring outliers is used.
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Figure 4.2: Different versions of the adjusted Rand index when outliers are identified by
the cluster algorithm.
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4.1.3 The choice of a radius for QT-Clust

In contrast to K–Means it is not possible for QT–Clust to specify the number of clusters

when calling the algorithm. The number of clusters for QT–Clust is controlled indirectly by

the choice of the quality threshold (radius). Data points that exceed the threshold are not

assigned to any cluster and treated as outliers. A data set with low noise level is now used to

investigate the impact of the radius for QT–Clust on the number of clusters, the number of

outliers, the tightness of clusters (given by the sum of within cluster distances (SOWCD)

and the adjusted Rand index between partitions generated with the same radius. In

Figure 4.3 comparative plots are shown for Euclidean, Manhattan, “1-Correlation” and

Maximum distance. The left and right axis of the single plots correspond to the number

of clusters and number of outliers respectively. The Rand index is rescaled that 40 on the

left axis corresponds to a Rand index of 1. The SOWCD is rescaled that the maximum is

approximately 40.

For all four distance measures the number of outliers explodes if the radius is set too

small. In this case only a few objects are assigned to clusters but the majority are outliers.

On the other hand the SOWCD increases very fast if the radius is too large. The adjusted

Rand index between repeated calls of QT–Clust is close to 1 in the region where the

SOWCD is small and decreases very fast as soon as the SOWCD increases. The optimal

radius is in the region where the number of clusters and the SOWCD cross and the Rand

index starts to decrease. For the geometric distance measures the number of outliers is

close to zero in this region but for “1-Correlation” (panel (c) of Figure 4.3) the number

of outliers is still very high. Additionally the region of high agreement between repeated

calls of QT–Clust is very small for “1-Correlation”. This indicates that “1-Correlation”

distance is much more sensitive to the choice of the radius than the remaining distance

measures. A general suggestion for a suitable radius is not possible. The radius has to be

tuned separately for each data set and each distance measure used.



CHAPTER 4. SIMULATIONS 34

●

●●

●●●

●

●●●

●●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●

●

●●●

●

●●

●

●

●●

●●

●●●●●●

●

●●

●●

●●●●●●

●●

●●

●

●●

●●●●●

●

●●

●●

●●●

●

●●

●

●

●

●

●

●●●●●

●

●●

●●

●

●●

●●

●

●●●●●

●

●●

●

●

●●

●●●●

●

●

●●●

●

●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●

●

●●

●

●●

●

●●●●●●

●

●●●●

●●●

●●●

●●

●●●●

●●

●●

●

●

●●

●●●●

●

●●●

●●●●

●●

●

●

●●●

●

●

●

●

●

●●

●●

●●

●

●●●

●

●●●●●●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●●

●

●

●●●●●

●●

●●●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●●

●●

●●●

●●

●●

●●

●

●●

●●●

●●

●

●●●●

●

●●

●

●●●

●●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●●●

●●●●●●

●

●●

●

●

●●

●●●●

●

●

●●

●●●

●

●

●

●●●●

●●●

●●●●

●

●●

●

●

●●●

●●

●●

●●

●●●

●

●

●

●

●

●●●

●●

●●

●●

●●●

●

●

●

●

●

●

●●●

●

●

●●●●

●

●

●

●●●

●●●●●●

●

●●

●

●●●

●

●●●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●●●●

●

●

●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

0 2 4 6 8 10

radius

0
10

20
30

0
10

0
20

0
30

0

● numb. of clusters
numb. of NA
SOWCD
Rand

(a) Euclidean

●●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●●●

●●●

●

●

●●●

●

●●

●

●●

●

●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●●

●●●●●

●

●●●

●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●

●●●●

●

●

●●●●●

●●●●

●

●

●●

●●●●●●●

●●●●●●

●

●●

●

●

●●

●●●●●

●●

●

●

●

●

●

●●

●

●●●●●●●

●●●●

●●●●●

●

●●●

●●

●

●

●●●●

●

●

●●

●

●●

●●

●

●

●●●

●

●●●

●

●

●

●

●●

●

●

●

●●

●

●●●●

●

●

●

●●

●●●●●

●●●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●●

●●●

●

●

●

●●●

●●

●●●

●

●●●

●

●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●

●●

●●

●

●

●

●●●

●

●

●●●

●

●●●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●

●

●●●●●

●

●●●●●●

●

●●

●●●

●●●

●●●

●●●●●●●●

●

●●

●

●

●

●●

●

●●●

●

●●●

●●

●●●

●

●

●

●●●●●●●●●●●

●●

●●●●●

●

●

●

●●●●●●

●

●

●

●●●●

●

●●●●●●●●●

●

●●●●●●

●

●●●●

●●

●

●

●●●●●●●●●

●

●●●

●

●

●

●●●●●

●

●●●●●●●●●●●

●●

●●●●●●●●

●●

●

●●

●●●●●●

●

●

●●

●●●

●

●●●●

●

●

●

●●●●●●●●●●●●●

●

●●●●

●

●●●●

●

●

●

●

●

●●●●●●●●●

●

●●

●

●●

●●

●

●●

●

●●

●●●●●

●

●

●

●

●

●●●

●

●●●

●

●●●●●●

●

●●

●

●●

●

●●●●

●

●●

●

●●●●

●

●●●●●●●●●●●●

●

●●

●

●●

●

●

●●

●●●●●●●

●

●●●●●●●●●●●●●●●

●●

●●●●

●

●●●

●

●●●●●●

●●

●●●●

●

●●●●●

●●

●

●

●●

●●

●●●●●●●

●

●●●●

●●●●●●●●●●

0 10 20 30 40 50

radius

0
10

20
30

0
10

0
20

0
30

0

● numb. of clusters
numb. of NA
SOWCD
Rand

(b) Manhattan

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●●

●●●

●●●●●●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●●

●

●●●

●●●

●●●●

●●●

●●●

●

●

●

●●●

●●

●●

●

●●●

●

●

●●●●●

●

●●●●●

●

●●●●●●●●●

●

●●●●●●●

●

●

●●

●

●●

●

●●●●●●●

●

●

●●●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●●

●●

●

●

●

●

●

●

●

●●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●●●●

●●

●

●

●

●

●

●●●

●●

●

●

●●

●

●●

●●

●●●

●●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●

●

●●●●●●

●●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●●●

●●

●

●

●●

●●

●

●

●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●●●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●●

●

●●

●

●

●●●

●

●

●

●

●

●●

●●

●●

●●

●

●●

●

●

●

●●●

●

●●●

●

●●

●●●

●

●●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●●●●

●●

●●

●

●

●●●

●

●●

●●

●

●

●

●●

●

●

●●

●

●●●

●

●●●●

●

●●

●

●

●

●

●●●

●●●

●●

●

●

●●●●

●

●●

●

●●

●

●

●●●●

●

●

●●●

●

●

●

●

●

●●●●

●

●●●●●●●

●●

●●●

●

●●●●●●●

●

●

●

●●●

●●●

●

●

●●●●●●

●●

●●●●

●●●

●

●

●●●

●

●●●●●●●●

●

●

●

●●●●●

●

●

●

●

●●

●●

●

●

●

●●●●●●●

●

●●

●

●●

●●

●●

●

●●●●●●

●●●

●●●

●

●●

●

●

●

●●●●●●●●●●

●

●

●

●

●●

●●●●●●●●●●

●

●

●

●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●

●

●●

●

●

●

●●

●

●●●●●●●●

●●

●

●

●●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●

●

●●●●●●

●

●●●●●

●

●●

●

●●●

●

●

●●

●

●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8

radius

0
10

20
30

0
10

0
20

0
30

0

● numb. of clusters
numb. of NA
SOWCD
Rand

(c) 1-Correlation

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●

●●

●

●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●●

●

●●●

●●●●

●

●●●●●

●

●

●

●

●

●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●

●

●

●

●●

●

●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●●●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●

●●●

●

●●

●

●

●

●●

●●

●●

●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●●

●●●●●●

●

●●

●●

●

●

●

●

●

●

●●●●

●

●●●●

●●●●

●●

●●●●●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●●

●●

●●

●●●

●●●●●

●●●

●●

●

●

●

●●●

●

●●●

●

●

●●

●●●

●●●●●●

●●●

●●●

●

●

●●●●●

●

●●●

●

●

●

●

●●●

●

●●

●

●●●●●●●●●●●

●●

●●●●

●●●

0 1 2 3 4

radius

0
10

20
30

0
10

0
20

0
30

0● numb. of clusters
numb. of NA
SOWCD
Rand

(d) Maximum

Figure 4.3: The impact of the radius chosen for QT–Clust on the number of clusters, the
number of outliers, the sum of within cluster distances (SOWCD) and the adjusted Rand
index between partitions of repeated calls of QT–Clust.
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4.1.4 Comparison of distance measures for K–Means and QT-

Clust

In Figures 4.4 and 4.5 the agreement between the true cluster membership and different

cluster solutions of QT–Clust and K–Means is given for the four investigated distance

measures. In Figure 4.4 the cluster methods are investigated when low, medium and high

noise is present in the data. In all three cases the performance of K–Means is better

than the performance of QT–Clust and “1–Correlation” distance outperforms the other

distance measures. For a medium and high noise level only “1-correlation” distance can be

recommended whereas the other distance measures perform very poorly.

In Figure 4.5 the goodness of partitioning cluster methods is investigated when only one

type of noise is present in the data. In the top left panel of Figure 4.5 the performance of the

different cluster methods is displayed when the genes deviate very much from their cluster

centroid (“large SD of mean of genes”). In this case Euclidean distance and Manhattan

distance as well as centroid computation using splines for K–Means perform best whereas

the worst results are found for “1–Correlation” distance. In the case of a large gene specific

shift (“large SD of random intercept”) the picture is very different and “1–Correlation”

distance clearly outperforms all other methods. It can be seen from the bottom left and

right panel that noise genes do not affect the clustering of the relevant genes much.

4.1.5 Comparison of clustering functional data vs. original data

Next the impact of clustering functional data is investigated for Euclidean distance. In

Figure 4.6 K–Means and QT–Clust cluster solutions on the functional and original data

are investigated when low, medium and high noise is present in the data. For low noise

level QT–Clust on functional data performs best. For medium and high noise level the

best cluster method is K–Means clustering on functional data. In all three cases clustering

functional data outperforms clustering the original data.

In Figure 4.7 the four different methods are investigated when only one type of noise

is present in the data. For a large SD of the mean of genes clustering the original data is

clearly the method of choice and clustering the functional data wrongly groups the gene

expression profiles to clusters. For a large SD of the random intercept the results are very

different as expected. In this case the expression profiles are very similar but with a gene

specific shift and clustering the functional data is much better suited in this situation.

However, the adjusted Rand index is smaller than 0.80 for all methods. Again the impact
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Figure 4.4: Comparison of distance measures for K–Means and QT-Clust using the ad-
justed Rand index on 100 data sets with low, medium and high noise level added to the
cluster centers.
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Figure 4.5: Comparison of distance measures for K–Means and QT-Clust using the ad-
justed Rand index on 100 data sets when only one type of noise is present in the data.
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Figure 4.6: Comparison of clustering functional data vs. original data using the adjusted
Rand index on 100 data sets with low, medium and high noise level.
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of adding noise genes to the data sets is very small and all four methods perform very well

(bottom left and right panel of Figure 4.7). If the noise genes are spread over the whole

expression range (large mean of noise genes) QT–Clust on functional data performs best

and if a large number of noise genes is present in the data K–Means slightly outperforms

QT–Clust on functional data.

4.1.6 Model-based clustering: Evaluation of initialization and

random effects

Mixtures of linear models

In this section the cluster results of the mixtures of linear models (mixtures of LMs)

without RI are summarized for the different initialization strategies presented in Table 2.2.

Figure 4.8 shows the adjusted Rand index of cluster solutions of the different initialization

strategies and the true cluster membership when low, medium and high noise level is

present in the data. For a low noise level starting in the true cluster solution yields

the best results as expected. In this case sampling and spectral clustering are also good

initialization strategies whereas CEM performs worst. For medium or high noise level the

performance of all models is not good and even starting in the true solution yields adjusted

Rand indices smaller than 0.5. For these noisy data sets spectral clustering outperforms

model-based clustering.

In Figure 4.9 the adjusted Rand index is used to compare the performance of the

different methods when only one type of noise is present in the data. The corresponding

log-likelihoods and runtimes are displayed in Figures 4.10 and 4.11. Figure 4.10 shows

that hardly any increase in log-likelihood is observed when starting EM in the solution of

CEM, SEM or short runs of EM. Runtimes are only shown in Figure 4.11 for the three

noise scenarios where the number of genes is equal, i.e., large SD of mean of genes, large SD

of RI and large mean of noise genes. As the number of noise genes added to a data set is

much larger in the forth noise scenario (yielding a total of 1630 genes) the longer runtimes

cannot directly be compared to the other scenarios where the number of genes is always

730. Therefore the resulting runtimes are displayed in a separate plot (see Figure 4.12).

For a large SD of the mean of genes the true cluster solution is again the best starting

partition, followed by SEM and sampling (see Figure 4.9). The overall performance is good.

However, the runtimes of SEM and the incremental method are the longest, followed by

sampling and random initialization.
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Figure 4.7: Comparison of clustering functional data vs. original data using the adjusted
Rand index on 100 data sets when only one type of noise is present in the data.
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Figure 4.8: Adjusted Rand Index of the different initialization strategies for mixtures of
LMs for low, medium and high noise level.
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Figure 4.9: Adjusted Rand Index of the different initialization strategies for mixtures of
LMs when only one type of noise is present in the data.
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Figure 4.10: Log-likelihood of the different initialization strategies for mixtures of LMs
when only one type of noise is present in the data.
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Figure 4.11: System time of the different initialization strategies for mixtures of LMs when
only one type of noise is present in the data, i.e., large mean of noise genes, large SD of
RI or large mean of noise genes.
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Figure 4.12: System time of the different initialization strategies for mixtures of LMs for
a large number of noise genes.

In the case of a large SD of the random intercept the models without RI cannot identify

the components no matter what initialization strategy is used. In this case the runtimes

of the incremental method, SEM, sampling and random initialization are again very large.

Furthermore, spectral clustering outperforms model-based clustering.

For clusters with large mean of the noise genes the agreement between the cluster

solutions and the true cluster memberships is in general very high. This indicates that

noise genes do not affect the clustering of differentially expressed genes. In this case the

incremental method and CEM yield the worst results. Again, the incremental method and

SEM have the longest runtimes.

Finally, in the case of a large number of noise genes the true cluster solution clearly

outperforms the other initialization strategies but the performance of all methods is very

good. However, due to the increase in data size from 730 for a small set of noise genes

to 1630 for a large set of noise genes the runtimes of most methods increase dramatically,

especially for sampling, the incremental method, random initialization and SEM.

Mixtures of linear mixed models

Next the cluster results of mixtures of linear mixed models (mixtures of LMMs) with

RI are summarized in boxplots. Figure 4.13 shows the adjusted Rand index of cluster
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solutions of the different initialization strategies and the true cluster membership when

low, medium and high noise level is present in the data. In contrast to the model without

RI (Figure 4.8) where the quality of the cluster solutions decreases tremendously when

medium or high noise is added to the data sets now the overall impression of the cluster

solutions is much better. Even for high noise level the agreement between the cluster

solutions and the true cluster membership is about 60%. CEM and the incremental method

perform among the worst whereas starting in the true cluster solution and SEM yield the

best results. Additionally mixture models with a random intercept clearly outperform

spectral clustering.

The performance of the mixture of LMMs when only one type of noise is present in

the data (see Figure 4.14 and 4.15 is also much better compared to the mixture of LMs

(Figure 4.9). As expected the performance of all initialization strategies is very good for

data generated with a large SD of the random intercept.

The big disadvantage of mixture models with random intercept are the long run times

(see Figures 4.16 and 4.17) which are by a factor of 10 longer than the runtimes of the

models without RI (see Figure 4.11). However, the trend is the same for models with

and without RI. Random initialization, SEM, the sampling and the incremental method

cannot be recommended due to the extremely long run times.
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Figure 4.13: Adjusted Rand Index of the different initialization strategies for mixtures of
LMMs for low, medium and high noise level.
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Figure 4.14: Adjusted Rand Index of the different initialization strategies for mixtures of
LMMs when only one type of noise is present in the data.
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Figure 4.15: Log-likelihood of the different initialization strategies for mixtures of LMMs
when only one type of noise is present in the data.
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Figure 4.16: System time of the different initialization strategies for mixture models with
RI when only one type of noise is present in the data, i.e., large mean of noise genes, large
SD of RI or large mean of noise genes.
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Figure 4.17: System time of the different initialization strategies for mixture models with
RI for a large number of noise genes.
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4.1.7 Overall comparison

Finally the best cluster methods found in the single comparisons are summarized in Figures

4.18 and 4.19. The selected methods are K–Means and QT–Clust clustering of the original

data using Euclidean and “1-Correlation” distance, K–Means and QT–Clust clustering of

the functional data as well as mixtures of linear mixed models using the cluster solution of

short runs of EM as starting value. In Figure 4.18 the different methods are compared for

low, medium and high noise level. For a low noise level QT–Clust on functional data as

well as mixture of LMMs yield the best results. For medium and high noise level mixtures

of LMMs and K–Means clustering using “1-Correlation” distance are the methods of choice

whereas K–Means and QT–Clust clustering of the original data as well as functional data

using Euclidean distance perform very poorly.

In Figure 4.19 the different methods are compared when only one type of noise is

present in the data. For a large SD of the mean of genes (top left panel) the best method

is mixtures of LMMs followed by the classical K–Means clustering of the original data

using Euclidean distance. The methods performing worst are clustering the functional

data using K–Means and QT–Clust. In the case of a large SD of the random intercept

(top right panel) mixtures of LMMs are again the method of choice but K–Means clustering

using“1-Correlation”distance yields almost as good results. In this noise setting Euclidean

distance should not be used on both the original as well as the functional data.

For a large mean of the noise genes (bottom left panel of Figure 4.19) all methods

perform very well. Mixtures of LMMs as well as clustering the functional data yield better

results than clustering the original data using Euclidean distance. More or less the same

is true for a large number of noise genes (bottom right panel).

4.1.8 Conclusions

In this simulation study several cluster methods for time course gene expression data were

evaluated on artificial data sets with different types of noise. For the quality–based clus-

tering approach QT–Clust the impact of the radius on the number of clusters, the number

of outliers, the sum of within cluster distances and the Rand index between repeated calls

of QT–Clust was investigated. A small radius yields a large number of outliers and a

large number of clusters. On the other hand, for a larger radius the sum of within cluster

distances increases and the Rand index decreases rapidly. The region of good values for

the radius is rather small and needs to be investigated individually for each data set and

distance measure used.
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Figure 4.18: Comparison of selected methods using the adjusted Rand index on 100 data
sets with low, medium and high noise level added to the cluster centers.
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Figure 4.19: Comparison of selected methods using the adjusted Rand index on 100 data
sets when only one type of noise is present in the data.
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The behaviour of different versions of the adjusted Rand index was investigated and it

was found that only a very large number of outliers has an impact on the modified Rand

index.

Some general observations about model–based clustering were made for this type of

data:

� For noisy data sets mixtures of LMs should not be used.

� Mixtures of LMMs clearly outperform mixtures of LMs and spectral clustering on

noisy data sets. However, the user should be aware of the much longer runtimes.

� Running SEM, CEM or short runs of EM and using their best solution for the

initialization of EM does hardly increase the performance already reached by these

strategies. This was observed using the classification criterion as well as the likelihood

criterion.

� Computationally intensive methods like the sampling or incremental method are

hardly worth the effort.

� Random initialization yields very long runtimes compared to CEM or short runs of

EM. However, the cluster results are similar.

� The impact of the cluster method used is much larger than the impact of the initial-

ization strategy.

� For short runs of EM the tradeoff between the quality of the cluster solutions and

runtime is very good.

The results of the overall comparison of cluster methods are the following:

� For a low noise level there was not so much difference between the methods.

� However, for a high noise level only K–Means clustering of the raw data using “1-

Correlation”and mixtures of linear mixed models performed well and had an adjusted

Rand index larger than 0.5.

� In the case of a large SD of the mean of genes the best method was mixtures of LMMs

followed by the classical K–Means clustering of the original data using Euclidean

distance. The methods performing worst were clustering the functional data using

K–Means and QT–Clust.
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� In the case of a large SD of the random intercept mixtures of LMMs were again

the method of choice but K–Means clustering using “1-Correlation” distance yielded

almost as good results. In this noise setting Euclidean distance should not be used

on both the original as well as the functional data.

� For a large mean of the noise genes and a large number of noise genes all methods

performed well. Mixtures of LMMs as well as clustering the functional data yield

better results than clustering the original data using Euclidean distance.
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4.2 Yeast data

For the simulations presented in this section a publicly available data set from yeast was

used (in the following called the “yeast data set”). It is the seventeen time point mitotic

cell cycle data (Cho et al. 1998) available at http://genome-www.stanford.edu. This

data set was preprocessed adapting the instructions given by Heyer et al. (1999).

4.2.1 Evaluation of stability and variance of QT–Clust

In this section the sum of within cluster distances and stability of the stochastic variant of

QT–Clust are investigated in order to compare it to the original algorithm. The yeast data

was preprocessed removing the outlier time points 10 and 11 from the original 17 variables.

Then genes that were either expressed at very low levels or did not vary significantly over

the time points were removed. This procedure yields gene expression data on G = 3722

genes (observations) for T = 15 time points (variables).

100 replicates of QT–Clust each are computed for increasing values of the hyper pa-

rameter ntry between 1 and 3300. For ntry equal to the number of genes the algorithm is

deterministic and equivalent to the original algorithm. Figure 4.20 shows boxplots of the

sum of within cluster distances for all five distance measures after rescaling. On this data

set the parameter ntry has major impact on the quality of the partition. Even though

on this data set the variability is higher for small values of ntry this may lead to better

results. Smaller values of the sum of within cluster distances can be obtained using small

values of ntry. Additionally the different distance measures show different patterns and

all suggest different values of ntry. Values between 1 and 100 always lead to to better

results than the original algorithm on this data set. Figure 4.21 shows boxplots of all

consecutive pairwise comparisons of cluster results for 100 replicates using the adjusted

Rand index (Hubert and Arabie 1985). The stability of QT–Clust increases for increasing

values of ntry except for ”1-Jackknife Correlation”. This distance measure is different to

all others as it allows single outliers. It would be interesting to see if Jackknife versions

of Euclidean, Manhattan and Maximum distance show similar characteristics. So if one is

interested in clusters with small sum of within cluster distances stochastic QT–Clust per-

forms better than the original algorithm on this data set. If reproducibility is important

then the deterministic algorithm is preferable.

As there is no general ”best” value for ntry different numbers have to be tested for

each data set and each distance measure in order to find a suitable value. Now the
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simulations for ntry = 5, 100, 1000 and 3300 were compared for all distances. Figure 4.22

shows boxplots of the stability within a single value of ntry and between results for

different values of ntry. ”1–Jackknife Correlation” reveals fewer differences than the other

distance measures. This may indicate that the instability originates from outliers in single

coordinates. For all further simulations on this data set ntry = 5 is used to obtain cluster

results with small sum of within cluster distances. Additionally the use of smaller values

of ntry speeds up the procedure.
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Figure 4.20: Sum of within cluster distances of QT–Clust for increasing values of the hyper
parameter ntry after rescaling.
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Figure 4.21: Stability of the stochastic approximation of QT–Clust for increasing values of
the hyper parameter ntry. Pairwise comparison of the results using boxplots of the Rand
indices.
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4.2.2 The impact of Jackknife distance measures

In this section the new distance measure presented in Section 2.1.3 are evaluated. In

this case the yeast data was preprocesses differently. The genes were again rescaled.

Additionally genes that were expressed at very low levels and did not vary significantly

over the time points were removed. This time the filtering was more stringent in order

to get a smaller data set. This procedure yields gene expression data on G = 2090 genes

(observations) for T = 17 time points (variables). As time point 10 was reported to be an

outlier variable the simulations were conducted on the 17 time point data set as well as

on a data set with time point 10 removed to investigate the functionality of the Jackknife

distance measures.

The goal of this simulation study is to compare the four classical distance measures

to the Jackknife distance measures using both K–Means and stochastic QT–Clust. For

K–Means the following procedure is used

1. draw 100 bootstrap samples from the original data,

2. cluster them into 50 clusters using each of the distance measures, and

3. compare the obtained results using the sum of within cluster distances and the

adjusted Rand index.

The sum of within cluster distances is computed as a measure of the quality of a partition.

The Rand index is used as a measure of stability and reproducibility of the resulting

clusters and the agreement between partitions.

The number of clusters for K–Means is chosen arbitrarily. As biologists prefer to work

with smaller groups of genes to be able to take a closer look at the resulting clusters

the genes were grouped into 50 clusters for K–Means. For QT–Clust 100 replicates of

the algorithm were computed for each distance measure on the original data because the

algorithm has no prediction step. It was tried to find an appropriate radius for QT–Clust

to get a similar numbers of clusters like in K–Means. As observed in Section 4.1.3. The

number of clusters of QT–Clust is changing with the diameter of the clusters and the

minimal number of points that form a single cluster. Therefore the number of clusters of

QT–Clust is varying between distance measures and even between replicates of QT–Clust

using the same distance measure.
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Figure 4.23: The clusters of gene YDL223C (yellow) for Maximum, “1 - Correlation” and
Euclidean distance and their Jackknife versions using K–Means algorithm. Time points
are shown on the x–axis and gene expression is shown on the y–axis.
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Figure 4.24: The clusters of gene YDR044W (yellow) for Maximum, “1 - Correlation” and
Euclidean distance and their Jackknife versions using QT–CLUST algorithm.
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Figure 4.25: The clusters of gene YDR006C (yellow) for Maximum, “1 - Correlation” and
Euclidean distance and their Jackknife versions using K–Means algorithm.

Some example clusters

Some example clusters of the yeast data can be seen in Figures 4.23, 4.24 and 4.25. The

clusters of the genes YDL223C, YDR044W and YDR006C are observed for Maximum

distance, “1 – Correlation” distance and Euclidean distance and their Jackknife versions

using the two different cluster algorithms. Figure 4.23 shows gene expression profiles with a

clear peak at time point 10. Figure 4.24 shows genes with high activity at time point 3 and

Figure 4.25 contains genes with high gene expression at time point 3 as well as time point

10. As Figure 4.25 shows genes might fall into different clusters when allowing for outlier

variables. Using Jackknife distance measures the clusters of gene YDR006C (Figure 4.25)

have a stronger peak at time point 3 and a new peak at time point 11 instead of time

point 10.

Stability of the resulting clusters

As researchers want to know how reliable the resulting clusters are the stability of the

cluster results is investigated in this section. For that purpose all consecutive pairwise

comparisons of cluster results are computed using the adjusted Rand index. 100 replicates

on the original data for QT–Clust and 100 bootstrap samples of K–Means are used. Box-
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Figure 4.26: Boxplots of the Rand indices for all pairwise comparisons of 100 replicates of
QT–Clust (left panel) and 100 bootstrap samples of K–Means (right panel) within different
distance measures.

plots of the Rand index of all consecutive pairwise comparisons are shown in Figure 4.26.

It can be seen that the reproducibility of cluster results is in general very high for

K–Means. The Rand index for consecutive comparisons within distance measures is over

0.95 for all distance measures. For QT–Clust the stability of cluster results is smaller that

for K–Means. Here the stability is highest for “1 – Jackknife Correlation” distance followed

by Jackknife Maximum distance. The reproducibility of cluster results using Manhattan

and Euclidean distance is much lower on this data set. For QT–Clust it can be clearly

seen that for all distance measures the stability of the Jackknife version of the distance

measure is higher than the stability of the original distance measure.

Quality of the partitions

As a measure of the quality of a partition the sum of within cluster distances is used. It

was computed for each distance measure for all of the 100 replicates on the original data

using QT–Clust and 100 bootstrap samples of K–Means. Figure 4.27 shows boxplots of

the sum of within cluster distances for all distance measures.

The sum of within cluster distances is not directly comparable between distance mea-

sures. But Figure 4.27 shows that using the Jackknife version of any of the four distance
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Figure 4.27: Boxplots of the sum of within cluster distances for 100 replicates of QT–Clust
and 100 bootstrap samples of K–Means for the different distance measures.

measures leads to a smaller sum of within cluster distances for both QT–Clust and K–

Means. This means that the similarity between genes within a cluster is higher using

Jackknife distance measures. Additionally the sum of within cluster distances is smaller

for K–Means than for QT–Clust for all distance measures.

Comparing different distance measures

Now the differences between cluster results of different distance measures are investigated.

The agreement between partitions is computed using the Rand index. The results are

shown in Figure 4.28.

For QT–Clust the agreement between“1 - Correlation”distance and Maximum distance

and their Jackknife versions is very high as well as the agreement between these Jackknife

versions. The results obtained using Manhattan and Euclidean distance disagree most.

For K–Means the impact of the distance measure used is much smaller on this data set.

The agreement between cluster results using different distance measures is very high for this

cluster algorithm. Here the partitions agree most for the Jackknife versions of Maximum

distance and “1 - Correlation” distance and disagree most for Maximum distance and “1 -

Correlation” distance.
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Figure 4.28: Rand index for pairwise comparison of 100 replicates of QT–Clust (left panel)
and 100 bootstrap samples of K–Means (right panel) between different distance measures.

Excluding one outlier time point

As time point 10 was reported not to be dependable (Heyer et al., 1999) the simulations

were repeated on a smaller data set with this time point deleted. Again the partitions are

compared using the Rand index. First the cluster results obtained on each data set are

compared for all distance measures. The results are shown in Figure 4.29. For K–Means

the agreement between results on the full data set and on the data set with one time point

removed is again very high (over 0.95). For QT–Clust the pattern of agreement is very

similar to Figure 4.26. This means that the cluster results agree between the two data sets

and excluding the outlier time point does not change the results significantly.

Finally we want to find out how good the Jackknife distance measures work and how

frequently the outlier time point 16 is detected and excluded from calculating the distance

between two gene expression profiles. For that purpose the original data set using Jackknife

distance measures is compared to the 16 time point data set using the original distance

measures (see Figure 4.30). It was found that on this data set the agreement between

cluster results for Jackknife distance measures on the original data set and original distance

measures on the data set with one outlier time point deleted is very high for Maximum

distance and “1 - Correlation” distance using QT–Clust. Therefore Jackknife distance
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Figure 4.29: Rand index for pairwise comparison between the full data set and the 16
time point data set for QT–Clust (left panel) and K–Means (right panel) using different
distance measures.

measures are applicable when outliers at special time points distort the gene expression

data.

As the example clusters in Figure 4.24 show time point 10 is not the most extreme

observation for all genes. For those genes other observations than time point 10 will be

detected by the Jackknife distance measures.

4.2.3 Conclusions

On the yeast data set it was found that stochastic QT–Clust leads to better results than the

original QT–Clust algorithm if one is interested in a small sum of within cluster distances.

If stability and reproducibility are more important then the original algorithm is preferable

even though it results only in a local optimum.

The impact of Jackknife distance measures is summarized as follows

� The distance measure used for clustering time–course gene expression data has major

impact on the resulting clusters.

� The sum of within cluster distances is smaller for the Jackknife versions of the dis-

tance measures. This might be an indicator that Jackknife distance measures lead
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Figure 4.30: Rand index for pairwise comparison between the full data set using Jackknife
distance measures and the 16 time point data set using the original distance measures for
QT–Clust (left panel) and K–Means (right panel).

to tighter clusters with more similar gene expression profiles.

� The partitions on the original data set using Jackknife distance measures agree very

well with the partitions on the smaller data set using the classical distance measures.

� The influence of the distance measure is much higher for QT–Clust than for K–

Means.
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Implementation in R

All cluster algorithms and visualization methods used are implemented in R (R Develop-

ment Core Team 2009), a free software environment for statistical computing and graphics.

5.1 flexclust

R package flexclust (Leisch 2006) is a flexible toolbox to investigate the influence of dis-

tance measures and cluster algorithms. It contains extensible implementations of the

K–centroids and QT–Clust algorithm and offers the possibility to try out a variety of

distance or similarity measures as cluster algorithms are treated separately from distance

measures. New distance measures and centroid computations can easily be incorporated

into cluster procedures. The default plotting method for cluster solutions in flexclust is

the neighborhood graph.

Function kcca uses a family concept similar to the implementation of generalized linear

models in S (Chambers and Hastie 1992). A KCCA family consists of the following two

parts:

dist : A function taking N observations and K centroids as inputs and returning the

NxK matrix of distances between all observations and centroids.

cent : An (optional) function computing the centroid for a given subset of the observa-

tions.

An example for a new distance measure is given by

distJackknife <- function(x, centers)

{

69
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m = array(dim=c(ncol(centers),nrow(x),nrow(centers)))

for(i in 1:ncol(centers)){

m[i,,] = distCor(x[,-i,drop=FALSE],centers[,-i,drop=FALSE])

}

apply(m,2:3,min)

}

For Jackknife Correlation a closed form for centroid computation does not exist up

to our knowledge. If cent is not specified a general purpose optimizer is used (at some

speed and precision penalty). The canonical centroids cluster–wise means and cluster–wise

medians are used for Euclidean distance and for Manhattan distance. The KCCA family

objects are also used for function qtclust.

5.2 flexmix

The EM algorithm for ML estimation of finite mixture models is for example implemented

in the R package flexmix (Leisch 2004; Grün and Leisch 2008). The E-step is treated as

fixed whereas arbitrary models can be fitted by modifying the M-step. For mixtures of

linear mixed models FLXMRlmer() and for mixture of linear models with smoothing splines

FLXMRsmooth.spline() are used as model drivers for the M-step.

5.3 gcExplorer

R package gcExplorer (Scharl and Leisch 2009a) is a new visualization toolbox for the

interactive exploration of cluster solutions. gcExplorer is based on infrastructure from R

package flexclust (Leisch 2006). Arbitrary centroid–based cluster solutions using for ex-

ample the standard functions kmeans or pam can also easily be used as input by converting

them to flexclust objects. Bioconductor packages graph and Rgraphviz (Gentleman et al.

2005) are used for non–linear arrangement of the graph nodes. Rgraphviz is an interface

to the open source software project GraphViz (http://www.graphviz.org).

gcExplorer offers several possibilities for the interactive exploration of gene clusters.

The functionality of the package includes the visualization of the cluster structure in

form of neighborhood graphs, the display of gene clusters in graphics or HTML tables,

highlighting additional properties of the clusters as well as test procedures to judge the

quality of cluster solutions. There are different methods to include information about

http://www.graphviz.org
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the clusters in the representation of nodes by using color coding defined by argument

node.function. External information about pathways or functional groups (e.g., gene

ontology terms) can be included in the call to gcExplorer. This allows to search for

accumulation of functionally related genes in clusters. The association between clusters

can be explored by using different cutoff values for the edges to be drawn. This can be

used to find the appropriate number of clusters for a given problem.

The most important feature is that the data points in a given cluster can be explored

interactively using panel functions. When clicking on the nodes of the neighborhood graph,

the panel.function() is executed for the observations in the corresponding cluster. Users

can define arbitrary new panel functions, or use the ones already defined in the package.

Any R graphic can be used as panel function, the example below shows gene expression

profiles. Another possibility are HTML tables of all genes in a cluster with links to

databases.

5.3.1 Artificial data generator

R package gcExplorer contains functionality to generate arbitrary time course gene ex-

pression data. The idea is to start with a set of cluster centers which are created by some

data generating process. The following data generating processes are possible:

� simulate from a normal distribution,

� simulate from an integrated autoregressive process, and

� manually define patterns.

The gene cluster simulator gcSim() is used as follows to generate the set of centers

cent <- gcSim(sim = "arima", time = 16, sd = 0.1,

sd.ri = 0, size = 1, n = 15)

where

� sim: data generating process

� time: number of time points

� sd: SD of the measurement error
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� sd.ri: SD of the RI

� size: number of genes in a cluster

� n: number of clusters

A set of centers can be used to form different data sets using various combinations of noise

parameters, e.g.,

data1 <- gcData(

gcSim(sim = "pattern", cent = cent,

sd = 0.1, sd.ri = 0.1,

size = rep(c(10, 20, 30, 50, 100),

each = 3)),

gcSim(sim = "noise", time = 16, size = 100))

where cent is the set of centers

5.3.2 Non–linear layout algorithms

A linear projection of the data into 2 dimensions using for example linear discriminant

analysis (LDA) has the advantage that the lengths of edges in the graph are directly inter-

pretable. However, LDA does not scale well in the number of clusters, and relationships

between the centroids of more than 15 clusters can hardly be displayed in the plane. As

shown in Scharl and Leisch (2008b) linear methods cannot be used for high–dimensional

gene expression data and a large number of clusters. R package gcExplorer (Scharl and

Leisch 2009a) uses non–linear layout algorithms implemented in the open source graph

visualization software Graphviz (http://www.graphviz.org/) for the display of neighbor-

hood graphs. Bioconductor packages graph and Rgraphviz (Carey et al. 2005) provide tools

for creating, manipulating, and visualizing graphs in R as well as an interface to Graphviz.

Rgraphviz returns the layout information for a graph object, x- and y–coordinates of the

graph’s nodes as well as the parameterization of the trajectories of the edges. Several

layout algorithms can be chosen.

dot: hierarchical layout algorithm for directed graphs

neato and fdp: layout algorithms for large undirected graphs

twopi: radial layout

http://www.graphviz.org/
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circo: circular layout

The default layout algorithm in gcExplorer is “dot”. Even though distances between nodes

and length of edges are no longer interpretable when using non–linear layout algorithms

the increase in readability and clear arrangement is obvious.

The latest release of gcExplorer is always available at the Comprehensive R Archive

Network CRAN: http://cran.R-project.org/package=gcExplorer. Details on how to

use the gcExplorer and how to perform the analysis described in Sections 5.4 and 5.5

can be found in the Appendix A (Scharl et al. 2009d) which will also be contained in the

package as a vignette. Appendix B contains the help pages of the functions.

http://cran.R-project.org/package=gcExplorer
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5.4 Exploratory analysis of cluster solutions using the

gcExplorer

The PS19 data (described in Section 1.3) is now used to demonstrate the functionality of

gcExplorer. The data is clustered using stochastic QT–Clust (Scharl and Leisch 2006b)

yielding a cluster object which consists of 14 clusters.

In Figure 5.1 the cluster solution is displayed using LDA. Nodes correspond to clus-

ter centroids and the thickness of an edge between two clusters is proportional to their

similarity. Data points are displayed as well as cluster hulls. This is the display method

provided in flexclust. For this data set linear projection of the data into two dimensions

works quite well. However, the nodes corresponding to cluster centroids are already very

small and will become even smaller for more than 14 clusters.

The neighborhood graph shown in Figure 5.2 uses the non–linear layout algorithm

“dot” and allows a detailed view on the cluster structure even for a large number of clus-

ters. Again the nodes in the graph correspond to cluster centroids and the shadow values

between clusters defined in Section 2.3 are used as edge weights. The thickness of an edge

between two clusters is proportional to their similarity. Related clusters are not forced to

lie next to each other in the graph as edges can have various lengths. For example cluster

13 located at the right end of the graph is related to cluster 1 located in the top of the

graph. Several groups of clusters can be found. The clusters in the bottom left corner of

the graph (e.g., clusters 3, 6, 12 and 14) are not connected to the clusters in the right part

of the graph (e.g., clusters 5, 9, 10 and 13) indicating that the corresponding genes show

very different expression profiles over time.

5.4.1 Interactive exploration

An schematic view of the interactive usage of the gcExplorer is given in Figure 5.3. By

clicking on the nodes of the neighborhood graph new graphics devices pop up showing the

corresponding cluster by using the stated panel function. In this example clusters 3, 4, 7,

13 and 14 are visualized by plotting the corresponding gene expression profiles and cluster

3 is also displayed in form of an HTML table.
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Figure 5.1: Neighborhood graph of a cluster solution of the PS19 data where nodes corre-
spond to cluster centroids and the thickness of an edge between two clusters is proportional
to their similarity. Data points are displayed as well as cluster hulls.
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Figure 5.2: Neighborhood graph of a cluster solution of the PS19 data where nodes corre-
spond to cluster centroids and the thickness of an edge between two clusters is proportional
to their similarity.
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Figure 5.3: Neighborhood graph with some of the clusters displayed using panel functions
gcProfile and gcTable.
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5.4.2 Node functions

Color coding

In the graph shown above one single kind of node symbol is used for all nodes. This way

no information about the different clusters is revealed. There are several possibilities how

to include additional information in the representation of nodes. The most simple method

is to use color coding, e.g., to color nodes by size or tightness of the corresponding clusters.

In this case the color of a node depends on the distribution of a certain property over all

nodes where the maximum will get the darkest and the minimum will get the brightest

color. Usually the smaller or tighter clusters are more interesting and can more easily be

explored.

The percentage of genes in a cluster assigned to a functional group under investigation

can also be used for color coding. The visualization of functional groups in the graph is

not only a validation of the cluster method. It is also a very helpful tool for practitioners

to quickly find subgroups of genes related to specific functions under study.

Some examples of color coding are shown in Figure 5.4. In the top left panel cluster

size is highlighted, i.e., dark node symbols indicate large clusters and light node symbols

indicate small clusters. In the top right panel cluster tightness is used where dark nodes

correspond to tight clusters which usually correspond to groups of genes with clearly

defined gene expression profiles. In the bottom left and right panels two functional groups

are investigated. In the bottom left panel clusters with accumulation of σ32–regulated

genes are highlighted which are related to heat shock. In the bottom right panel the GO

term “flagellar motility” is shown which is part of the biological process classification.

Flagellar motility is an example of a functional group where the corresponding genes

have similar expression profiles and are therefore grouped into similar clusters (i.e., clusters

11, 3 and 14) which are connected by edges in the neighborhood graph. In the case of

σ32–regulated genes (bottom left panel) there is no clear relationship between the cluster

solution and the functional group as the corresponding genes are located in various clusters.

Node symbols

The second option for adding further information to the display of the neighborhood

graph is to use different graphical symbols for the representation of nodes. For that

purpose gcExplorer makes use of R package symbols (Voglhuber (2008), http://r-forge.

r-project.org/projects/symbols). symbols is based on Grid (Murrell 2006), a very

http://r-forge.r-project.org/projects/symbols
http://r-forge.r-project.org/projects/symbols
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Figure 5.4: Different options for color coding. Top left panel: cluster size, top right panel:
cluster tightness, bottom left panel: Sigma 32 regulated genes, bottom right panel: genes
involved in flagellar motility.
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flexible graphics system for R. Grid features viewports, i.e., rectangular areas allowing the

creation of plotting regions all over the R graphic device. Due to the layout algorithms used

in the gcExplorer nodes remain quite large allowing large viewports for the visualization

of nodes. Several grid–based functions are implemented in package symbols which can

directly be used as node functions in the gcExplorer.

The most natural node symbols in the case of time–course gene expression data are

line plots showing the gene expression profiles over time for either the cluster centroids or

the whole group of genes in a certain cluster. Figure 5.5 gives a very good overview of the

cluster solution and the single gene clusters where similarities in gene expression profile

can directly be investigated. It can be seen that clusters containing down–regulated genes

are located in the bottom left part of the graph whereas up–regulated genes are located

in the right part of the graph. Further, there are no edges between clusters of up- and

down–regulated genes.

In order to visualize group memberships pie charts are frequently used. Figure 5.6 leftn

panel shows the portion of genes with F statistic (F) > 20 and F ≤ 20 respectively. In the

right panel of Figure 5.6 boxplots of the log F statistic are shown.

5.4.3 Edge options

Directed vs. undirected graph

The neighborhood graph is a directed graph as the similarity of cluster 1 to cluster 4 is

different from the similarity of cluster 4 to cluster 1 and so on. Besides plotting the original

directed graph there are several options how to plot edges taking into account for instance

the mean, minimum or maximum of the similarities between two clusters. In practice

the mean similarity is frequently used especially when testing the functional relationship

between clusters (see Figure 5.9).

5.4.4 Graph modifications

The non–linear layout algorithms implemented in Graphviz are optimized for the given

set of nodes and edges. Removing an edge or a node will result in a different graph which

makes comparisons between graphs rather complicated. R package gcExplorer contains

the function gcModify which allows to modify a given graph without changing the original

layout. There are several possibilities how to modify a given graph. However, it is only

possible to remove nodes and edges from a larger graph. Adding new nodes and edges is
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Figure 5.5: Neighborhood graph using line plots as node symbols where the genes expres-
sion profiles are plotted in grey and the cluster centroids are plotted in red.
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F <= 20

F >  20

Figure 5.6: Neighborhood graph using pie charts (left panel) and boxplots (right panel)
as node symbols.

not allowed. The node symbols are independent of the graph structure so different node

functions can be used in each modified graph.

Node modifications

Sometimes only a subgraph of the original graph is of interest, e.g., clusters of all up–

regulated genes. A subgraph can be created specifying either the set of nodes which

should remain in the graph or by specifying the nodes which should be removed from the

graph. In the next step manual or automatic zooming can be used to enlarge certain parts

of the plot. An example of a subgraph is given in Figure 5.7.

Edge modifications

Filtering by cluster similarity can be used to simplify the original neighborhood graph.

Edges between nodes are only drawn if the similarity between clusters is above a certain

threshold, e.g., at least 10%. This prevents the graph from being too complex. Examples

of the neighborhood graph where different cutoff values for drawing edges are shown are

given in Figure 5.8.

Comparisons of different cutoff values as shown in Figure 5.8 are only possible when
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Figure 5.7: A subgraph of the neighborhood graph before zooming without specified node
function (left panel) and after zooming with a node function (right panel).

starting with the largest set of edges.
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Figure 5.8: Use of different cutoff values for drawing edges in the neighborhood graph.
Top left panel: all edges, top right panel: similarity > 10%, bottom left panel: similarity
> 20%, bottom right panel: similarity > 30%.
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5.5 Inferential analysis of cluster solutions with the

gcExplorer

5.5.1 Compare cluster solutions

In this section the goodness of the cluster solution of the PS19 data investigated in Sec-

tion 5.4 is judged based on its validity when applied to the PS17 experiment (see Section

1.3) where the same set of genes was exposed to different experimental conditions. Ta-

ble 5.1 gives the results of the comp_test described in Section 3.3.2 consisting of cluster

size, observed average within cluster distance, the 5% quantile of the permuted average

distances and the probability of observing a lower within cluster distance by randomly

assigning the genes to clusters. In this case 10 out of 14 clusters have a significantly

smaller within cluster distance when using the cluster solution of the PS19 experiment

compared to random assignment. In other words these 10 groups of genes form clusters

under different experimental conditions and are more likely to contain co–regulated genes.

Table 5.1: Judge the validity of the PS19 cluster solution for the PS17 data using the
comp test.

size obs.av.dist 5%quantile.perm p.val.lower
1 302 0.58 0.95 0.00
2 299 0.55 0.94 0.00
3 41 0.65 0.83 0.00
4 59 0.62 0.85 0.00
5 52 0.73 0.84 0.00
6 31 0.61 0.79 0.00
7 30 0.66 0.78 0.00
8 26 0.82 0.77 0.10
9 14 0.52 0.68 0.00

10 10 0.38 0.62 0.00
11 10 0.70 0.63 0.12
12 5 0.49 0.45 0.07
13 12 0.96 0.66 0.53
14 10 0.62 0.63 0.04
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5.5.2 Functional relevance test

For the functional relevance test presented in Section 3.3.1 another E. coli experiment

was used where various mutants were investigated under oxygen deprivation (Covert et al.

2004). The mutants were designed to monitor the response from E. coli during an oxygen

shift in order to target the a priori most relevant part of the transcriptional network by

using six strains with knockouts of key transcriptional regulators in the oxygen response.

These experiments provide expression profiles for 4205 genes derived from the original data

set downloaded from the Gene Expression Omnibus (Barrett et al. 2007) with accession

GDS680 by applying the altering steps described in Castelo and Roverato (2009).

Another possibility for external validation of a cluster solution is to test the functional

relevance of single edges, i.e., to test the relationship between a functional grouping and a

cluster solution. In this example the E. coli oxygen data set (Covert et al. 2004) is used

and the GO term GO:0009061 (anaerobic respiration) is investigated. The accumulation

of genes involved in anaerobic respiration is displayed in Figure 5.9 left panel. In the case

of edge tests undirected graphs are used instead of the original directed graphs as each

pair of nodes is only tested once.

The output of function edgeTest (see Table 5.2) gives detailed information about the

tested edges, i.e., the corresponding cluster sizes, the difference in proportions and the

p–value. Additionally, function edgeTest gives the 95% quantile of the maxima of the

permuted average distances which is 0.22 in this case. The p-values are now used to form

a new similarity matrix using function newclsim. If the p–value of an edge is smaller

than 0.05 the edge weight is set to 0. This new similarity matrix based on the p–values of

the functional relevance test is finally used to draw a modified neighborhood graph where

significant edges are removed. In this case 11 edges have significant p–values and differences

in proportions larger than 0.23. In Figure 5.9 right panel the modified neighborhood graph

is displayed. It can be seen that clusters 32, 43, 36, 34, 21 and 22 contain most of the

genes involved in anaerobic respiration and form a disconnected subgraph after testing the

functional relevance of the edges.

5.5.3 Power simulations for the functional relevance test

The power of the functional relevance test is simulated on artificial cluster solutions. For

defined

� datasize
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Figure 5.9: Left Panel: Neighborhood graph of the oxygen data set where the mean edge
method is used. Right Panel: Neighborhood graph where significant edges are removed
using the functional relevance test.

� number of clusters

� difference in proportions between cluster 1 and 2

� proportion of grouped genes in cluster 1

� proportion of grouped genes in the total data set

a cluster solution is simulated where the difference in proportions between clusters 1 and

2 is fixed and the remaining proportions are random. For a given setup the functional

relevance test is run 1000 times where only the power for the edge between clusters 1 and

2 is observed (see Table 5.3). It can be seen that the test performs best if the proportion

of grouped genes in cluster 1 is large and the proportion of grouped genes in the total data

set is small.
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Table 5.2: Functional relevance test of the E. coli oxygen data for functional group
GO:0009061 (anaerobic respiration). The 95% quantile of the maxima of the permuted
average distances is 0.22.

Clsize1 Clsize2 Diff.in.Prop. P-value
1˜2 671 526 0.02 1.00
1˜3 671 424 0.01 1.00
4˜6 378 209 0.02 1.00
2˜7 526 121 0.01 1.00
4˜7 378 121 0.02 1.00
6˜8 209 108 0.01 1.00

4˜12 378 16 0.11 0.59
1˜14 671 33 0.14 0.51
2˜14 526 33 0.16 0.50
1˜16 671 13 0.11 0.59
3˜16 424 13 0.12 0.57
1˜21 671 9 0.40 0.00
3˜21 424 9 0.41 0.00

14˜21 33 9 0.26 0.05
14˜22 33 12 0.48 0.00
21˜22 9 12 0.22 0.13
4˜25 378 10 0.19 0.29
6˜25 209 10 0.17 0.34

12˜25 16 10 0.08 0.93
2˜32 526 11 0.34 0.01
7˜32 121 11 0.33 0.03

12˜32 16 11 0.24 0.05
22˜32 12 11 0.30 0.03
3˜34 424 6 0.30 0.03
5˜34 263 6 0.33 0.03

21˜34 9 6 0.11 0.77
2˜35 526 17 0.09 0.81

21˜36 9 5 0.04 1.00
34˜36 6 5 0.07 0.94
22˜43 12 9 0.44 0.00
32˜43 11 9 0.14 0.51
36˜43 5 9 0.18 0.33
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Table 5.3: Power simulations for the functional relevance test using differences in propor-
tion between 0.05 and 0.4. The number of clusters is 10.
Data size prop.c1 prop.all d 0.05 d 0.1 d 0.15 d 0.2 d 0.25 d 0.3 d 0.35 d 0.4
100 0.50 0.50 0 0.000 0.000 0.000 0.004 0.043 0.062 0.108
100 0.50 0.33 0 0.000 0.000 0.000 0.010 0.044 0.095 0.179
100 0.50 0.25 0 0.000 0.000 0.000 0.011 0.074 0.129 0.229
100 0.50 0.20 0 0.000 0.000 0.001 0.018 0.078 0.186 0.300
100 0.33 0.50 0 0.000 0.001 0.005 0.033 0.051 0.033 0.029
100 0.33 0.33 0 0.000 0.000 0.006 0.035 0.068 0.071 0.044
100 0.33 0.25 0 0.000 0.000 0.013 0.049 0.065 0.074 0.062
100 0.33 0.20 0 0.000 0.001 0.020 0.064 0.087 0.088 0.080
500 0.50 0.50 0 0.000 0.010 0.084 0.276 0.653 0.999 1.000
500 0.50 0.33 0 0.000 0.015 0.137 0.442 0.918 1.000 1.000
500 0.50 0.25 0 0.000 0.010 0.180 0.606 0.996 1.000 1.000
500 0.50 0.20 0 0.000 0.025 0.248 0.700 1.000 1.000 1.000
500 0.33 0.50 0 0.001 0.026 0.159 0.384 0.747 0.764 0.450
500 0.33 0.33 0 0.001 0.069 0.242 0.551 0.978 0.889 0.669
500 0.33 0.25 0 0.002 0.074 0.301 0.733 1.000 0.909 0.905
500 0.33 0.20 0 0.000 0.098 0.414 0.903 1.000 0.935 0.976



Chapter 6

Applications of cluster methods to

E. coli data

6.1 Comparison of induction strategies

In this section the utility of the interactive visualization toolbox gcExplorer is demon-

strated for the interpretation of E. coli microarray data (Scharl et al. 2009b). The data

sets used derive from two independent fedbatch experiments conducted in order to inves-

tigate the impact of different induction strategies on the host metabolism and product

yield. The goal of the comparison is to identify genes and pathways that act similar in

both settings and more importantly to identify groups of genes with differential reaction

to the two induction strategies. For this reason cluster analysis followed by comparative

graphical investigation of the different groups of genes is performed. The graphical explo-

ration of clusterings is applicable to arbitrary partitioning cluster solutions. In this case

the stochastic quality cluster algorithm QT–Clust (Scharl and Leisch 2006b) is used. The

data sets used are described in Section 6.1.1. In the following several steps of the analysis

of the given data sets are presented including the visualization of the cluster structure

and the direct graphical comparison of these two experiments. It is shown that the iden-

tification of potentially interesting gene candidates or functional groups is substantially

accelerated and eased.

6.1.1 Data

The E. coli cultivation data were collected at the Department of Biotechnology at the

University of Natural Resources and Applied Life Sciences in Vienna. Two recombinant

90
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E. coli processes with different induction strategies were conducted in order to evaluate

the influence of the expression level of the inclusion body forming protein NproGFPmut3.1

on the host metabolism. The standard strategy with a single pulse of inducer yielding in

a fully induced system (in the following called experiment A or PS17) was compared to

a process with continuous supply of limiting amounts of inducer resulting in a partially

induced system (in the following called experiment B or PS19) (Striedner et al. 2003).

The time point of induction of the partially induced system was set one doubling past

feed start. The bioreactor, the used equipment as well as the on- and offline analysis

was published in detail by Achmüller et al. (2007). The resulting process data shown

in Figure 6.1 clearly emphasize the central impact of induction strategies on the cellular

response of strong expression systems and their behavior in production processes. The

product formation rate triggered by full induction is too high and the thereby provoked

metabolic overload impedes cellular growth. The increase in the total cell dry weight

(CDW) attained past induction was mainly caused by the formation of the recombinant

protein. This means that growth and product formation were decoupled completely. In

consequence of these reactions product formation and process control were maintained

only for a short period. However, in the experiment with limited induction cells were

able to cope with the metabolic load triggered by the recombinant gene expression level

for more than one doubling. Product formation was tightly coupled to cellular growth

but approximately 9 hours past induction the metabolic load level exceeded the cellular

capacities. The glucose yield coefficient (YX/S) decreased and the cells lost their ability to

divide. The net cell mass generated in this phase was channeled into cell size and the cells

entered a similar state as in the process with full induction.

In order to analyze the cellular response to different induction strategies on the tran-

scription level two independent DNA microarray experiments were performed. A dye–swap

design was used and the cells in the non-induced state of each experiment were compared

to samples past induction. Since the production period of the fully induced system was

limited to approximately one generation (7h at a growth rate of 0.1h−1) samples were

drawn in a frequency of 1h−1. To cover the production period of the process with lim-

ited induction the sampling frequency was reduced to one sample every two hours. The

used microarrays were epoxide-coated slides (Corning R© Epoxide Coated Slides) with se-

lective probes (50-mer oligos) for all 4289 open reading frames of the E. coli K12 genome

(MWG E. coli K12 V2 oligo set; MWG Biotech AG, Germany) spotted in duplicates. The

two experiments (including all processing protocols) have been loaded into ArrayExpress

(http://www.ebi.ac.uk/microarray-as/ae/). The ArrayExpress accession number of

http://www.ebi.ac.uk/microarray-as/ae/
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Figure 6.1: Protein production process with E. coli HMS174(DE3)(pET30aNProGFP).
Fully induced system (experiment A, left panel) and partially induced system (experiment
B, right panel). Vertical line indicates time point of induction.

the array design is A-MARS-10. The experiment with fully induced E. coli expression

system (experiment A) has accession number E-MARS-16 and the experiment with par-

tially induced system (experiment B) has accession number E-MARS-17. For standard

low level analysis the data were preprocessed using print–tip loess normalization. Differ-

ential expression estimates were calculated using Bioconductor (Gentleman et al. (2005),

http://www.bioconductor.org) package limma (Smyth 2005). The two data sets were

filtered by excluding genes expressed at a very low level (average log2 intensity smaller 8),

genes not showing differential expression (log–ratio M smaller ±1.5) at least at one time

point and genes with p-value of the corresponding F-statistic smaller 0.05. After filtering

the data acquired from the experiment with a fully induced E. coli expression system

(experiment A) consists of 733 genes and the data acquired from the process with limited

induction (experiment B) consists of 429 genes where 311 genes are differentially expressed

in both experiments. The filtered data sets were clustered using stochastic QT–Clust and

further analysis and visualization was conducted using the gcExplorer.

6.1.2 Cluster visualization and interpretation

The major goal of this study is to identify differences between two independent microarray

experiments which cannot be compared directly. For this purpose the two data sets are

http://www.bioconductor.org
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Figure 6.2: Neighborhood graph of the QT–Clust cluster solutions for experiment A (left
panel) and experiment B (right panel).

clustered into small and tight subgroups of genes with common expression pattern which

can easily be investigated. The diameter of the clusters is tuned in such a way to get

in the range of 15 clusters and 10 outliers. The minimum number of points that form a

single cluster is set to 2. These parameter settings lead reasonable cluster solutions that

can directly be interpreted. The data sets of experiments A and B were separated into

19 and 15 clusters respectively with 20 and 9 outliers. Next these two cluster solutions

are investigated independently and combined in the following section. In case of very

similar clusters the neighborhood graph can be used to combine the clusters after proofing

the similarity. However, in this exploratory approach it is advantageous to merge similar

clusters than to split large ones.

The resulting cluster solutions are visualized as neighborhood graphs in Figure 6.2

using the gcExplorer where nodes correspond to cluster centroids. In the two graphs

relationships between clusters can easily be explored as similar clusters are connected by

edges. The thicker and darker an edge is drawn the more similar two clusters are. Several

groups of clusters can be found. In the neighborhood graph of experiment A the clusters in

the top left corner (e.g., 1,2,3) are not connected to the clusters in the bottom right corner

(e.g., 17,18,19) indicating that the corresponding genes show very different expression

profiles. This can be confirmed by looking at the expression profiles of the corresponding

genes of experiment A (see Figure 6.3).
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Figure 6.3: Neighborhood graph of experiment A with selected gene expression profiles
displayed.
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The genes in the bottom right clusters are all up–regulated (e.g., clusters 17 and 19)

whereas the genes in the top left clusters are down–regulated (e.g., clusters 1, 3, and 4).

The obtained results clearly show that the information gain of this work benefits from

splitting the data sets in many small clusters at the beginning. For example, cluster 17, 18

and 19 contain genes with similar expression profiles. However, the level of up–regulation

is much higher in cluster 19. If interpretation of a general trend is required these small

clusters can be treated as a large one as it is often easier to investigate the smaller ones.

The cluster profiles with immediate and stern up or down regulation followed by con-

stant values for the rest of the process definitely reflect the macroscopic outcome of the

experiment with full induction. The irreversibility of the cellular response to the applied

load level is mirrored in the transcriptome data. The only exception are the transcription

profiles of genes related to phage shock grouped in cluster 15 which show continuously

increasing gene expression until the end of the process.

A more detailed view on the cluster solution of experiment B is given in Figure 6.4.

The neighborhood graph of this cluster solution consists of two unconnected subgraphs

and shows a higher degree of differentiation.

The subgraph on the left contains all down–regulated genes whereas the subgraph on

the right contains all clusters with up–regulated genes. Beside clusters with direct response

to induction (e.g cluster 2 and 15) additional cluster profiles with immediate up–regulation

followed by a downregulation after 9 hours past induction (e.g. cluster 9 and 13) or

profiles with a 9 hour–delayed response to induction (e. g. cluster 6 and 3) were obtained.

Furthermore, a large number of genes belongs to clusters with continuously increasing

or decreasing trends past induction. These findings distinctly contradict the results of

experiment A where only few genes show such a behavior. Again, the transcription data

precisely reproduce the major changes in the experiment, the induction and the incipient

metabolic overload.

The new visualization toolbox offers various possibilities for the analysis of microarray

data which cannot all be shown here. In the graphs shown so far simple node symbols are

used including the number of the corresponding cluster but there are several possibilities

how to include additional information in the representation of nodes. The most simple

method is to use color coding, e.g., to color nodes by size or tightness of the corresponding

clusters. Another possibility is to use different shapes or symbols for nodes representing

clusters with specific properties. The neighborhood graph is implemented in an interactive

way and gene clusters can be investigated by clicking on the nodes. Plots of the expression

profiles of the corresponding genes pop up and HTML tables giving further information



CHAPTER 6. APPLICATIONS TO E. COLI DATA 96

Figure 6.4: Neighborhood graph under limited conditions (experiment B) with selected
gene expression profiles displayed.
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about the genes link to databases like Ecocyc (http://ecocyc.org/). The gcExplorer

is applicable up to a very high number of clusters. Related clusters are not forced to lie

next to each other in the graph as edges can have various lengths (e.g., the edge between

clusters 18 and 19 in the left panel or the edge between clusters 2 and 3 in the right panel).

6.1.3 Functional grouping

Cluster analysis is used to find groups of co–regulated genes in the microarray data

without prior knowledge about the gene functions. However, by clustering expression

profiles of co–expressed genes groups of genes with similar function are found. Exter-

nal information about the annotation of genes to functional groups can easily be in-

cluded in the neighborhood graph, e.g., the accumulation of gene ontology (GO, The

Gene Ontology Consortium (2000)) classifications in certain gene clusters can be high-

lighted in the node representation. For E. coli GO classifications about biological process

(GOBP), molecular function (GOMF) and cellular component (GOCC), the GenProtEC

(Serres et al. (2004), http://genprotec.mbl.edu/) classification system for cellular and

physiological roles of E. coli gene products and the RegulonDB (Salgado et al. (2006),

http://regulondb.ccg.unam.mx/) providing information about operons and regulatory

networks were implemented. These knowledge–based functional mappings can be used to

study cellular functions in individual clusters.

In the left panel of Figure 6.5 clusters of experiment A with genes controlled by σ32, the

main regulator of heat shock response are highlighted. In the right panel gene expression

profiles of the closely related clusters 16 and 17 are displayed. 21 of 66 genes of the

two clusters are under control of σ32. Further functional characterization of these two

clusters using GOMF yields the assignment of 26 genes to the GO–term GO:0005515

(protein binding) and of 16 genes to GO:0005524 (ATP binding). GOBP maps 11 genes

to GO:0006950 (response to stress) and 10 genes to GO:0006457 (protein folding). On the

other hand, a considerable number of 18 genes of these clusters is not mapped by the GO

classification system as their molecular function is unknown or uncertain. Their cluster

membership provides hints how these genes are embedded in the regulatory network of the

cell and suggests potential cellular functions. A good example is ybbN, a thioredoxin–like

protein with chaperone properties recently demonstrated in in–vitro experiments (Caldas

et al. 2006; Kthiri et al. 2008; Soni et al. 2007). The relevance of the thus determined

properties for cell physiology is still unknown but the cluster result strongly supports the

suggested function as chaperone. Construction of a ybbN deletion mutant, a clone with

http://ecocyc.org/
http://genprotec.mbl.edu/
http://regulondb.ccg.unam.mx/
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Figure 6.5: Neighborhood graph of experiment A where clusters containing σ32–regulated
genes are highlighted (left panel). Gene expression profiles of the corresponding genes of
clusters 16 and 17 are shown in the right panel.

plasmid encoding ybbN and conduction of experiments similar to the described cultivations

will provide the information which is required to confirm these assumptions.

6.1.4 gcExplorer - a tool for comparative graphical analysis of

microarray experiments

One typical application of the gcExplorer is the comparative graphical analysis of different

and independent µ–array experiments. It is exemplified in the following workflow. A

cluster solution of a single experiment (e.g., experiment A) can easily be compared to other

experiments (e.g., experiment B) in order to find genes or groups of genes with similar as

well as different behavior. This is achieved by clustering the genes of experiment A and

using this partition to investigate experiment B. This procedure helps to quickly identify

groups of genes that cluster in both experiments and on the other hand to reveal differences

between the experiments. An example of a gene cluster which is very similar between the

two experiments is shown in the top panels of Figure 6.6. In the top left panel cluster 15

of experiment A is shown for the full induction data. In the top right cluster the same

set of genes is shown under limited conditions. An example of a tight cluster of genes

showing a strong and direct down–regulation in response to induction is given by cluster
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Figure 6.6: Comparison of cluster 15 and 6 of experiment A under fully induced conditions
(left panels) and limited conditions (right panels).
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Figure 6.7: Motor Activity (GO:0003774) in experiment A (left panel) and experiment B
(right panel).

6 (see Figure 6.6 bottom left panel). In experiment B the majority of genes grouped to

cluster 6 of experiment A show a delayed rather than a direct down regulation in response

to induction (bottom right panel of Figure 6.6) whereas a considerable number of genes

shows no common behavior. In the following fliE, fliA and lpp, three genes with deviating

profiles were selected to be examined in more detail.

fliA and flgE are the only genes of cluster 6 showing strong and direct down–regulation

under limited induction conditions. These genes belong to the GO group GO:0003774

(motor activity). The expression patterns of all genes of this group are shown in Figure 6.7.

In the experiment with limited induction (right panel) all these genes were down regulated

in contrast to experiment A (left panel) where no common response was detected. A

possible explanation of these findings is that cells exposed to high but tolerable induction

levels (experiment B) were able to compensate for depletion of cellular resources and

capacities by reduction or cessation of non essential branches of the metabolism. In the

defined environment of a bioreactor motility provides no benefits but demands energy and

metabolites. Consequently, the cells cut down these expenses to maintain central cellular

functionality.

Another interesting transcription profile in cluster 6 of experiment A is given by the

murein lipoprotein lpp. Under fully induced conditions this gene is down–regulated whereas
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Figure 6.8: Cluster 9 of experiment B under fully induced conditions (left panel) and
limited conditions (right panel).

under limited induction conditions the expression level of this gene follows a distinct up-

and down trend coinciding with the process phenomenons described in Section Data. In

the cluster solution of experiment B lpp is assigned to a cluster of 25 genes (Figure 6.8)

comprising genes involved in membrane lipid synthesis (gnsB, rfaZ), membrane sysnthesis

(rhsA), cell division (zapA) cold shock response (cspBCI) but also 8 predicted genes of

unknown function. Lpp is the major lipoprotein of the outer membrane and one of the

most abundant proteins in E. coli. It is essential for the stabilization and integrity of the

bacterial cell envelope (Hirashima et al. 1974). The gnsB gene increases the membrane

fluidity and flexibility (Sugai et al. 2001). Cells activate an energy demanding protective

strategy by synthesis and translocation of Lpp which is in contrast to the cut–back strategy

described above.

This comparative analysis of the two experiments clearly reveals the irreversible over-

load of metabolism in the experiment with full induction. Cells were not able to respond

in a concerted and accurate way. On the other hand, cells exposed to limited induc-

tion of recombinant gene expression cope with emerging stress by different strategies in

order to survive. The described cellular responses are similar to transitional changes of

cells entering the stationary phase. This spore–like multiple–stress resistance state en-

ables maintenance of viability under bad conditions (Ramirez Santos et al. 2005). The
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identified genes involved in these defense mechanisms are potential candidates for indepth

investigation and provide clues about the regulatory mechanisms involved.

6.1.5 Conclusions

The interactive visualization tool gcExplorer was developed in order to make cluster anal-

ysis useful for practitioners. It allows not only to visualize the cluster structure, beyond

that the gene clusters are plotted or shown in HTML tables with links to databases. Ad-

ditional properties of the clusters like cluster size or cluster tightness can be highlighted

as well as external information like functional grouping. Furthermore gcExplorer provides

functions for comparative graphical analysis of different µ–array experiments. gcExplorer

is a userfriendly software tool for the analysis of gene expression data and very helpful for

practitioners to get an overview on the output of µ–array experiments.

In this study microarray data from two processes with a strong recombinant E. coli

expression system were analyzed. Neighborhood graphs enable the investigation of the

underlying cluster structure and relationships between clusters. The implemented features

for functional grouping allowed the assignment of cellular functions to clusters and provided

hints about the functionality of other genes belonging to a certain cluster. Comparative

graphical analysis of these two experiments resulted in the identification of differences in

the cellular response and a number of interesting gene candidates involved. It was shown

that the cellular strategies are different in the two DNA–µ–array experiments. Useful

information was extracted for the further advancement of the expression system by means

of genetic engineering or by means of process engineering.
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6.2 Comparison of cluster algorithms for E. coli

BL21 data

6.2.1 Data

The goal of this experiment is the detailed investigation of the cellular response of E. coli

BL21(DE3) to high level expression of recombinant human super–oxide–dismutase (SOD)

on the transcriptional level. Three biological replicates were generated by using a carbon

limited exponential feedbatch cultivation similar to industrial setups for large scale produc-

tion. For induction of the system a single pulse of IPTG yielding in a fully induced system

is applied one doubling past feed start. In order to achieve a proper time–resolution of

cellular responses sampling starts with a high frequency for the first hours past induction

and decreases in the course of the experiment. The resulting process data shown in Figure

6.9 demonstrate that the experimental setup provides highly reproducible samples opti-

mally suited for the intended application in DNA-microarray experiments. The deviation

of the total cell dry weight from the calculated course is caused by the rapidly increasing

specific content of recombinant protein and the thereby triggered metabolic load on the

cellular system. The recovery of growth around eight hours past induction is due to the

proliferation of a non-producing plasmid free cell population (Figure 6.9 A). Figure 6.9

B shows that the capacity of the cellular protein processing machinery gets overstrained

and bit by bit more of the recombinant protein accumulates in miss-folded form in protein

aggregates (inclusion bodies).

The data consists of 530 genes at 16 time points after filtering genes not differentially

expressed at least at one time point (p-value < 0.05, log ratio M > 2 and average intensity

A > 8).

In the case of time course microarray data the definition of clusters is not clear and

therefore the quality of a cluster solution is difficult to evaluate. Even the number of

components is hard to specify as practitioners usually prefer small clusters which can

easily be investigated. However, too many cluster are even harder to control.

Biologically meaningful partitions are usually those where co–expressed genes of oper-

ons are grouped together. For that purpose a set of 77 genes was identified containing

selected subsets of operons. The subset is summarized in Table 6.1 and displayed in Fig-

ure 6.10. In this case the adjusted Rand index is calculated on this control set of 77 genes

and not on the complete partitions.
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Figure 6.9: Protein production process with E. coli BL21(DE3). Vertical line indicates
time point of induction.

Table 6.1: A–priori grouping of 77 genes of the E. coli data set using operon information.

Operon Name Number of Genes

atpIBEFHAGDC 8
nuoABCEFGHIJKLMN 13
dnaKJ 2
thiCEFSGH 6
pspABCDE 4
flgBCDEFGHIJ 3
gatYZABCD 5
cyoABCDE 4
manXYZ 3
sdhCDAB–sucABCD 8
malEFG 3
malK-lamB-malM 3
malXY 1
dppABCDF 2
mraZW-ftsLI-murEF-mraY-murD-ftsW-murGC-ddlB-ftsQAZ 1
rpsJ-rplCDWB-rpsS-rplV-rpsC-rplP-rpmC-rpsQ 1
yceD-rpmF-plsX-fabHDG-acpP-fabF 1
thrS-infC-rpmI-rplT-pheMST-ihfA 2
ilvLG 1G 2MEDA 2
arnBCA-yfbH-arnT-yfbWJ 2
sufABCDSE 2
hinT-ycfLM-thiK-nagZ-ycfP 2
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Table 6.2: Results of the partitioning methods on the E. coli data set.

algorithm dist cent type k NA time crand

kmeans eucl mean orig 30 0 0 0.31
kmeans man median orig 30 0 0 0.26
kmeans cor optim orig 30 0 0.32 0.51
kmeans max optim orig 30 0 1.63 0.39

qtclust eucl mean orig 24 27 0 0.15
qtclust man mean orig 25 32 0.02 0.26
qtclust cor mean orig 21 12 0 0.21
qtclust max mean orig 22 31 0.06 0.19

kmeans euc spline orig 30 0 0.15 0.32
kmeans euc mean fd 30 0 0 0.45
qtclust euc mean fd 21 26 0.01 0.15

6.2.2 Partitioning methods

Cluster solutions of the partitioning methods are summarized in Table 6.2. For each

method the algorithm is started 10 times keeping the best solution. Table 6.2 gives the

number of clusters (“k”), the number of outliers identified by QT–Clust (“NA”), the system

time and the adjusted Rand index. It can be seen that no method is able to correctly group

all the operons into separate clusters. However, K–Means clearly outperforms QT–Clust.

The best agreement between the a–priori grouping and a cluster solution is found for K–

Means and “1-Correlation” distance yielding an adjusted Rand index of 0.51. The second

best method is K–Means clustering of the functional data with an adjusted Rand index

of 0.45. The worst methods in this comparison are QT–Clust using Euclidean distance on

the original data as well as on the functional data where the Rand index is only 0.15.

6.2.3 Model-based clustering

Different cluster solutions using random initialization were compared starting with 5 to 60

components and yielding up to 29 components (see Figure 6.11). The likelihood criterion

selects the model starting with k = 58 where 27 components are found.

The data was clustered using the methods investigated in the simulation study using 58

components in model-based clustering and 30 centers in spectral clustering. Cluster results

using the different initialization strategies are given in Table 6.3 where k is the number of

components found. The different cluster solutions are compared using the log-likelihood,
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BIC and AIC. Again the adjusted Rand index is computed only for the subset of 77 genes.

For mixtures of LMs the number of components found is between 15 (sampling method)

and 31 (short runs of EM). Initializing EM in the solution of short runs of EM is also the

method with the largest log-likelihood and smallest AIC. BIC selects the solution of SEM

where 23 clusters are found. The agreement between the cluster solution and the a–priori

grouping of the 77 genes is highest for random initialization (0.38).

In the case of mixture models with RI the number of components found varies between

10 (incremental method) and 35 (random initialization and short runs of EM). AIC, BIC

and log-likelihood select the results of random initialization as the best solution where the

agreement between the a–priori grouping and the cluster solution is 0.39. The classification

criterion selects the cluster solution of short runs of EM as the best partition with an

adjusted Rand index of 0.48 which is slightly smaller than the Rand index of the best

partitioning method.

6.2.4 Conclusions

The different cluster methods were applied to real microarray data from E. coli. For the

real data set a subset of 77 genes where the grouping to operons is known a–priori was

used to evaluate the goodness of the partitions. The results agree very well with simulation

results on artificial data where high noise level is present in the data. K–Means clustering

of the original data with “1-Correlation” distance, K–Means clustering of the functional

data as well as mixtures of LMMs yield the best results.
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Table 6.3: Results of the initialization strategies used on the E. coli data set using mixtures
of LMs and mixtures of LMMs when starting with k = 58 components.

RI k time iter logLik BIC AIC crand

sc N 30 16 - - - - 0.27

rep.em N 28 1305 39 -4045 12603 9088 0.38
sc.em N 30 104 48 -3814 12464 8698 31
cem N 18 305 21 -5080 12500 10678 0.29
cem.em N 18 99 68 -4954 12800 10547 0.32
sem N 23 1638 96 -4437 12038 9573 0.29
sem.em N 23 16 9 -4403 12502 9623 0.29
tol N 31 260 9 -3893 12765 8886 0.33
tol.em N 31 155 74 -3683 12347 8468 0.31
sam N 15 24410 47 -5303 13010 11138 0.32
inc N 18 4357 20 -5202 13243 11031 0.27

rep.em Y 35 31666 37 -3113 8748 6783 0.39
sc.em Y 30 2142 53 -3455 9072 7388 0.38
cem Y 23 5115 21 -3799 9253 7964 0.29
cem.em Y 23 2969 88 -3717 9090 7800 0.44
sem Y 31 25464 96 -3267 8769 7029 0.38
sem.em Y 31 568 14 -3261 8757 7017 0.36
tol Y 35 5302 10 -3256 9036 7071 0.48
tol.em Y 35 2251 48 -3124 8772 6806 0.42
sam Y 13 11434 90 -4559 10049 9323 0.19
inc Y 10 23870 12 -4990 10695 10139 0.24
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Conclusions

Clustering gene expression profiles is a helpful tool for finding biologically meaningful

groups of genes without prior information from databases. In this thesis several cluster

methods for time course gene expression data are evaluated on artificial data sets where

the true cluster membership is known in order to find the most appropriate methods for

real microarray data. The different methods are compared when different types of noise

are present in the data as technical problems and measurement errors can easily distort

the data. As expected the performance of the algorithms differs the most when high noise

is added to the data sets. In this case only K–Means clustering of the original data using

“1 - Correlation” distance and mixtures of linear mixed models yield reliable results.

On a real microarray data set the true cluster membership is unknown. Therefore the

likelihood criterion is used to evaluate the cluster solutions. Additionally a subset of 77

genes was selected where the grouping to co–regulated operons is known. The results on

simulated data agree very well with the real world example. Again K–Means clustering

of the original data using “1 - Correlation” distance and mixtures of linear mixed models

yield the best results.

Beside the evaluation of different cluster methods tools for the interactive exploration of

gene cluster solutions are presented in this thesis. The interactive visualization toolbox gc-

Explorer allows not only to visualize the cluster structure in form of neighborhood graphs,

beyond the gene clusters are plotted or shown in HTML tables with links to databases.

Examples of the utility of this package for practitioners are presented in several examples.

The functionality of the package includes different node representations using node color-

ing and the choice of node symbols. Additional properties of the clusters like cluster size or

cluster tightness are highlighted as well as external information like functional grouping.
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Graphs can be modified by removing nodes and edges or by zooming into a subgraph of

interest. Further, the functional relevance test is presented which can be used to test the

association of a functional grouping and cluster solution. Finally, the validity of a cluster

solution is judged based on its performance on another data set where the same set of

genes is investigated under different experimental conditions.

Furthermore gcExplorer provides functions for comparative graphical analysis of dif-

ferent microarray experiments. This resulted in the identification of differences in the

cellular response and a number of interesting gene candidates involved. It was shown that

the cellular strategies are different in the two DNA microarray experiments. Useful infor-

mation was extracted for the further advancement of the expression system by means of

genetic engineering or by means of process engineering.



Appendix A

Vignette: How to use the gcExplorer

A.1 Overview

In this Chapter the R code for the analysis described in the Sections 5.4 and 3.3 is given.

Details about the different options and arguments can be found in the corresponding

sections and in the help pages of the functions (also given in Appendix B). gcExplorer

depends on R package flexclust (Leisch 2006) and Bioconductor package Rgraphviz (Carey

et al. 2005).

A.2 Exploratory Analysis

A.2.1 Interactive exploration

First the E. coli PS19 data is clustered using the stochastic QT–Clust algorithm imple-

mented in function qtclust of package flexclust.

> library("gcExplorer")

> data("ps19")

> set.seed(1111)

> cl1 <- qtclust(ps19, radius = 2, save.data = TRUE,

+ control = list(min.size = 5))

> cl1

kccasimple object of family 'kmeans'
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call:

qtclust(x = ps19, radius = 2, control = list(min.size = 5),

save.data = TRUE)

cluster sizes:

1 2 3 4 5 6 7 8 9 10

302 299 41 59 52 31 30 26 14 10

11 12 13 14 <NA>

10 5 12 10 17

The resulting cluster object consisting of 14 clusters is visualized using gcExplorer (see

Figure 5.2). A color theme can be specified using argument theme. Argument filt can

be used to specify which edges should be plotted, i.e., two centroids are only connected in

the graph if the similarity is above a certain threshold. Argument layout can be used to

specify one of the non–linear layout algorithms implemented in Rgraphviz:

dot: hierarchical layout algorithm for directed graphs

neato and fdp: layout algorithms for large undirected graphs

twopi: radial layout

circo: circular layout

> gcExplorer(cl1, layout = "dot", theme = "blue", filt = 0)

The resulting neighborhood graph of this cluster solution of the PS19 data is displayed

in Figure 5.2.

The interactive gcExplorer can be called using an arbitrary panel function, e.g.,

> gcExplorer(cl1, theme = "blue", filt = 0,

+ panel.function = gcProfile)

for line plots showing the corresponding gene expression profiles. An example of the

interactive usage of the gcExplorer is given in Figure 5.3. By clicking on the nodes of the

neighborhood graph new graphics devices pop up showing the corresponding cluster by

using the stated panel function. In this example clusters 3, 4, 7, 13 and 14 are visualized

by plotting the corresponding gene expression profiles and cluster 3 is also displayed in

form of an HTML table using panel function gcTable.



APPENDIX A. GCEXPLORER VIGNETTE 114

A.2.2 Node Functions

Color coding

Further information can be added to the neighborhood graph by the use of color coding

specified by argument node.function. Some examples of color coding are shown in Figure

5.4. The color theme can be modified using argument theme. In panel (a) cluster size is

highlighted using function node.size, i.e., dark node symbols indicate large clusters and

light node symbols indicate small clusters. A legend is added if the position of the legend

is specified using argument legend.pos.

> gcExplorer(cl1, filt = 0, theme = "blue",

+ node.function = node.size,

+ legend.pos = "bottomright")

In panel (b) cluster tightness (node function node.tight) is used where dark nodes cor-

respond to tight clusters which usually contain groups of genes with clearly defined gene

expression profile.

> gcExplorer(cl1, filt = 0, theme = "red",

+ node.function = node.tight,

+ legend.pos = "bottomright")

In panels (c) and (d) two functional groups are investigated. In panel (c) clusters with

accumulation of σ32–regulated genes are highlighted which are related to heat shock re-

sponse. The assignment of E. coli genes to Sigma factors is given in data sigma. In this

case node function node.go is used where further arguments are passed using argument

node.args. gonr is the name of the functional group under investigation, source.id and

source.group contain gene identifiers and their assigned groups for the organism and id

is the vector of identifiers for the clustered data set.

> data("sigma")

> gcExplorer(cl1, filt = 0, theme = "green",

+ node.function = node.go,

+ node.args = list(gonr = "Sigma32",

+ source.id = sigma[,4],

+ source.group = sigma[,1],

+ id = bn_ps19),

+ legend.pos = "bottomright")
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In panel (d) the GO term ”flagellar motility” which is part of the gene ontology biological

process classification is shown. The assignment of E. coli genes to GO biological process

terms is given in data set gobp.

> data("gobp")

> gcExplorer(cl1, filt = 0,

+ node.function = node.go,

+ node.args = list(gonr = "flagellar motility",

+ id = bn_ps19,

+ source.group = gobp[,3],

+ source.id = gobp[,1]),

+ legend.pos = "bottomright")
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Node symbols

Another option for adding information to the display of the neighborhood graph is to use

different graphical symbols for the representation of nodes. For that purpose gcExplorer

makes use of R package symbols (http://r-forge.r-project.org/projects/symbols).

The most natural node symbols in the case of time–course gene expression data is to

use line plots showing the gene expression profiles for either the cluster centroids or the

whole group of genes in a certain cluster.

First, a grid–based node.function has to be defined, e.g.,

> gmatplot <- function (object, cluster, bgdata) {

+ grid.rect()

+ data <- object@data@get("designMatrix")

+ ylimits <- c(min(data, na.rm = TRUE), max(data, na.rm = TRUE))

+ index <- (object@cluster == cluster)

+ nodedata <- data[index,]

+ symb.matplot(1:ncol(nodedata), t(nodedata), type = "l",

+ col = "gray", ylim = ylimits, pch = 1)

+ center <- object@centers[cluster,]

+ symb.matplot(1:ncol(object@centers), center, type = "l",

+ col = "red", ylim = ylimits, pch = 1)

+ }

Now this node function is used in the gcExplorer by setting argument doViewPort =

TRUE which enables the use of viewports.

> gcExplorer(cl1, filt = 0,

+ node.function = gmatplot,

+ doViewPort = TRUE)

Figure 5.5 gives a very good overview of the cluster solution and the single gene clusters

where similarities in gene expression profile can directly be investigated. It can be seen

that clusters containing down–regulated genes are located in the bottom left part of the

graph whereas up–regulated genes are located in the right part of the graph. Further,

there are no edges between clusters of up- and down–regulated genes.

Another example for node symbols are pie charts. Here is a user–defined grid pie

function

http://r-forge.r-project.org/projects/symbols
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> gpie <- function (object, cluster, bgdata) {

+ clusterindex <- object@cluster

+ clusterindex[is.na(clusterindex)] <- 0

+ index <- (clusterindex == cluster)

+ A2.cl <- bgdata[index,]

+ NOgroup <- length(A2.cl[A2.cl])

+ groupA <-length(A2.cl[!A2.cl])

+ symb.pie(c(NOgroup,groupA), labels = "",

+ radius = 1.1,

+ col = c("white", "skyblue"))

+ }

For demonstration purpose the F–statistic for differential expression for each gene is used

here where the amount of genes with F–statistic ≤ 20 is given in white and the amount of

genes with F–statistic > 20 is given in skyblue (see Figure 5.6) left panel.

> f2 <- f<20

> gcExplorer(cl1, filt = 0, theme = "blue",

+ node.function = gpie,

+ bgdata = as.data.frame(cbind(as.numeric(f2))),

+ doViewPort = TRUE)

> legend("topleft", inset = 0.05,

+ legend = c("F <= 20", "F > 20"),

+ fill = c("white", "skyblue"))

Grid–based boxplots can be used as node symbols using the following user–defined func-

tion.

> gbxp <- function (object, cluster, bgdata) {

+ ylim <- c(min(bgdata), max(bgdata))

+ index <- (object@cluster == cluster)

+ nodedata <- bgdata[index,]

+ symb.bxp(boxplot(nodedata, plot = FALSE),

+ frame.plot = TRUE, ylim = ylim)

+ }

In the right panel of Figure 5.6 boxplots of the log F statistic are shown.
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> gcExplorer(cl1, filt = 0,

+ node.function = gbxp,

+ bgdata = as.data.frame(log(f)),

+ doViewPort = TRUE)
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A.2.3 Graph Modifications

Node modifications

In order to modify an existing graph the graph structure has to be saved.

> graph <- gcExplorer(cl1, filt = 0,

+ node.function = gmatplot,

+ doViewPort = TRUE)

Now the graph structure of object graph can be modified using function gcModify. In

this example argument kpNodes is used to keep only the stated nodes.

> graph1 <- gcModify(graph,

+ kpNodes = c("k5", "k7", "k9", "k10", "k13"),

+ doViewPort = FALSE)

The remaining subgraph is now investigated in detail using the zoom argument.

> graph2 <- gcModify(graph1, zoom = "auto")

In the left panel of Figure 5.7 the subgraph is shown with no node function setting argument

doViewPort=FALSE. In the right panel the zoomed subgraph is shown.

Edge modifications

Filtering by cluster similarity can be used to simplify the original neighborhood graph.

Edges between nodes are only drawn if the similarity of a cluster to another cluster is

above a certain threshold, e.g., at least 10%. This prevents the graph from being too

complex.

Now the similarity matrix is modified.

> d1 <- clusterSim(cl1)

> d1[d1 < 0.1] <- 0

> d2 <- d1

> d2[d2 < 0.2] <- 0

> d3 <- d2

> d3[d3 < 0.3] <- 0
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Here d1 is the original cluster similarity matrix which can be extracted from the cluster

object using function clusterSim, d2 is the similarity matrix where all values smaller 0.1

are set to 0 and so on.

Again we save the original neighborhood graph to object graph. In order to modify

the edges of an existing graph function gcModify is used specifying argument clsim.

> graph <- gcExplorer(cl1, filt = 0)

> gcModify(graph, clsim = d1)

> gcModify(graph, clsim = d2)

> gcModify(graph, clsim = d3)

Examples of the neighborhood graph where the different cutoff values for drawing edges

are shown are given in Figure 5.8.

A.3 Inferential Analysis

A.3.1 Compare Cluster Solutions

Function comp_test is now used to test the goodness of the cluster solution obtained for

the PS19 data when applied to the PS17 data where the same set of genes was investigated

under different experimental conditions.

> data(comp19)

> ct1 <- comp_test(comp17, clusters(cl1), N = 1000)

> ct1

size obs.avdist 5%qu.perm p.val

[1,] 302 0.5796572 0.9464934 0.000

[2,] 299 0.5542297 0.9405271 0.000

[3,] 41 0.6524593 0.8282290 0.001

[4,] 59 0.6163776 0.8537883 0.000

[5,] 52 0.7345407 0.8358843 0.003

[6,] 31 0.6134388 0.7862977 0.000

[7,] 30 0.6578180 0.7783083 0.002

[8,] 26 0.8185665 0.7699189 0.098
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[9,] 14 0.5215982 0.6766737 0.004

[10,] 10 0.3789129 0.6203714 0.001

[11,] 10 0.6966036 0.6304406 0.115

[12,] 5 0.4900756 0.4534873 0.069

[13,] 12 0.9621026 0.6575232 0.529

[14,] 10 0.6162787 0.6281170 0.038

The test result consists of cluster size, observed average within cluster distance, the

5% quantile of the permuted average distances and the probability of observing a lower

within cluster distance (“p.val”) by randomly assigning the genes to clusters. In this case

10 out of 14 clusters have a significantly smaller within cluster distance when using the

cluster solution of the PS19 experiment compared to random assignment. These 10 groups

of genes form tight clusters under both conditions and therefore likely to be co–regulated.

A.3.2 Functional Relevance Test

Another possibility for external validation of a cluster solution is to test the functional

relevance of single edges, i.e., to test the relationship between a functional grouping and a

cluster solution. In this example the E. coli oxygen data set Covert et al. (2004) is used

and the GO term GO:0009061 (anaerobic respiration) is investigated.

The data set is loaded and clustered into 43 clusters using qtclust.

> data(oxygen)

> set.seed(1111)

> cl2 <- qtclust(oxygen, radius = 3, save.data = TRUE,

+ control = list(min.size = 5))

> cl2

kccasimple object of family 'kmeans'

call:

qtclust(x = oxygen, radius = 3, control = list(min.size = 5),

save.data = TRUE)

3288 points in 43 clusters, 100 outliers

Distribution of cluster sizes:
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Min. 1st Qu. Median Mean 3rd Qu. Max.

5.00 8.00 13.00 76.47 37.50 671.00

Function Group2Cluster is used to find the cluster membership of all genes involved

in anaerobic respiration and the functional relevance test is implemented in function

edgeTest. An edge is only tested if the number of functionally related genes is above

a predefined threshold given by argument min.size. Argument filt can be used to filter

edges which are smaller than a predefined similarity threshold.

> g1 <- Group2Cluster(cl2, gonr = "GO:0009061",

+ source.group = gobp[,3], source.id = gobp[,1],

+ id = bn_oxy)

> eT <- edgeTest(cl2, group = g1, min.size = 2, filt = 0, N = 1000)

> eT$res

Clsize1 Clsize2 Diff.in.Prop. P-value

1~2 671 526 0.015523621 1.000

1~3 671 424 0.009578073 1.000

4~6 378 209 0.018126123 1.000

2~7 526 121 0.008343022 1.000

4~7 378 121 0.022475841 1.000

6~8 209 108 0.008328903 1.000

4~12 378 16 0.114417989 0.593

1~14 671 33 0.141579732 0.509

2~14 526 33 0.157103353 0.502

1~16 671 13 0.113607704 0.593

3~16 424 13 0.123185776 0.568

1~21 671 9 0.404205994 0.000

3~21 424 9 0.413784067 0.000

14~21 33 9 0.262626263 0.046

14~22 33 12 0.484848485 0.000

21~22 9 12 0.222222222 0.129

4~25 378 10 0.189417989 0.289

6~25 209 10 0.171291866 0.335

12~25 16 10 0.075000000 0.931

2~32 526 11 0.338921535 0.008

7~32 121 11 0.330578512 0.029

12~32 16 11 0.238636364 0.049
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22~32 12 11 0.303030303 0.029

3~34 424 6 0.302672956 0.030

5~34 263 6 0.325728771 0.029

21~34 9 6 0.111111111 0.769

2~35 526 17 0.092932230 0.814

21~36 9 5 0.044444444 0.999

34~36 6 5 0.066666667 0.938

22~43 12 9 0.444444444 0.000

32~43 11 9 0.141414141 0.509

36~43 5 9 0.177777778 0.329

The output of function edgeTest gives detailed information about the tested edges,

i.e., the corresponding cluster sizes, the difference in proportions and the p–value. The

95% quantile of the maxima of the permuted average distances is 0.22 and can be extracted

by

> eT$quant

95%

0.2222222

The accumulation of genes involved in anaerobic respiration is displayed in Figure 5.9

left panel. Here edge.method = "mean" is used to draw an undirected graph. In this case

a different layout algorithm is selected using layout = "neato".

> graph <- gcExplorer(cl2, filt = 0, theme = "blue",

+ node.function = node.group,

+ node.args = list(group = g1),

+ layout = "neato",

+ edge.method = "mean",

+ legend.pos = "bottomleft")

The p-values are now used to form a new similarity matrix using function newclsim. If

the p–value of an edge is smaller than 0.05 the similarity value is set to 0.

> clsim1 <- newclsim(eT = eT$res, object = cl2, p.filt = 0.05)

> gcModify(graph, clsim1)
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In Figure 5.9 right panel the modified neighborhood graph is displayed. It can be seen

that clusters 32, 43, 36, 34, 21 and 22 contain most of the genes involved in anaerobic

respiration and form a disconnected subgraph after testing the functional relevance of the

edges.
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together with version 2.20.2 of graphviz.
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Documentation of gcExplorer

gcSim Create artificial cluster data

Description

Functionality to create artificial time course gene cluster data.

Usage

gcSim(sim=c("arima","norm","pattern","noise","outlier"), time=10,

sd=0.1, sd.ri=0, size=50, n=10, ar=NULL, o=NULL, cent)

gcData(...)

Arguments

sim simulation method used

time number of time points

sd standard deviation of the expression profiles

sd.ri standard deviation of the random intercept or gene specific shift

size cluster size, either one value for all clusters or a vector of cluster sizes of

length n

n number of clusters

ar any value between -1 and 1

125
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o the degree of differencing

cent a data matrix giving expression profiles in rows, only used if sim="pattern"

or sim="outlier"

... Several "gcSim" objects can be combined using function gcData.

Details

gcSim is a unifying function to call different data simulators.

arima generates expression patterns that come from an integrated AR-process with AR order

1 that can be controlled via ar and the degree of differencing o. sim="norm" and sim="noise"

generate normally distributed expression patterns where sim="noise" is used to form a noise

set of genes.

sim="pattern" and sim="outlier" can be used to generate clusters based on a set of cluster

centers which are passed to the functions using the argument cent. sim="outlier" can be

used to test Jackknife distance measures.

gcData can be used to combine different artificial data generators.

Value

a data matrix

Author(s)

Theresa Scharl

See Also

pattern

Examples

## generate 10 clusters with normally distributed expression patterns:

data <- gcSim(sim="norm", time=16, sd=0.1, sd.ri=0.5,

size=50, n=10)

matplot(t(data),type="l",pch=1)

## combine expression patterns that follow an ARIMA process and a null cluster:

data <- gcData(gcSim(sim="arima", time=16, sd=0.1, sd.ri=0.5,
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size=c(20,50,100,100), n=4),

gcSim(sim="noise",time=16, size=100))

matplot(t(data),type="l")

clusterPlot Cluster solution plot

Description

Plot the expression profiles of the smallest clusters of an object of class "kccasimple".

Usage

## S4 method for signature 'kccasimple':

clusterPlot(object, method = c("size", "tight"), layout = c(3, 4),

xlabels = NULL, xlab = "time", ...)

Arguments

object An object of class "kccasimple".

method Which clusters should be plotted: either small clusters or tight clusters.

layout A vector of the form c(nr, nc). Only a subset of nr x nc clusters will be

drawn. The arrangement of nr rows and nc columns is passed to the layout

argument of lattice function xyplot.

xlabels Either a numeric vector of time points giving the positions on the x-axis or

a character vector with names of the positions on the x-axis.

xlab Character string or expression giving label for the x-axis

... Further arguments can be passed to function xyplot.

Author(s)

Theresa Scharl
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Examples

data("hsod")

cl1 <- qtclust(hsod, radius = 2, save.data = TRUE)

clusterPlot(cl1, method = "tight",layout = c(3,2))

comp_test Compare Cluster Results

Description

Cluster validation by testing the validity of a cluster solution under different experimental

conditions.

Usage

comp_test(data, cll, N = 500, quant=0.05, ...)

Arguments

data data set with the same number of rows as the clustered data set.

cll Vector of cluster memberships of the clustered data set.

N Number of permutations.

quant The defined quantile for the permuted average distances.

... Further arguments can be passed to the subfunctions.

Value

A matrix giving for each cluster the size of the cluster, the observed average within cluster

distance to the computed cluster center in the new data set, the defined quantile for the

permuted average distances and the p-values, i.e., the proportion of permutations where the

observed within cluster distance is lower than the permuted.

Author(s)

Theresa Scharl
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Examples

data(comp19)

set.seed(1111)

cl3 <- qtclust(comp19,radius=1.5,family=kccaFamily(dist=distEuclidean,

cent=colMeans),save.data=TRUE,control=list(min.size=5))

cl3

ct1 <- comp_test(comp17, clusters(cl3), N=1000)

ct1

edgeTest Functional Relevance Test

Description

Perform a functional relevance test on the edges of a neighborhood graph

Usage

edgeTest(object, min.size = 1, group, N = 500, filt = 0.1,

useNH = TRUE, quant = 0.95)

Arguments

object An object of class "kccasimple".

min.size Minimum number of grouped genes in a cluster to be considered for testing

group Vector of cluster memberships of functionally grouped genes (from function

Group2Cluster).

N Number of permutations.

filt Threshold for edges in the neighborhood graph to be considered for testing.

useNH Use the neighborhood structure or test all combination of nodes?

quant The defined quantile of the maxima of the permuted average distances.

Value

A list consisting of the matrix res and the defined quantile quant of the maxima of the per-

muted average distances. The matrix res gives the cluster sizes, the difference in proportions

and the corresponding p-value for each edge considered.
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Author(s)

Theresa Scharl

See Also

Group2Cluster

Examples

data("hsod")

data("gobp")

set.seed(1111)

cl1 <- qtclust(hsod, radius = 2, save.data = TRUE)

g1 <- Group2Cluster(cl1, gonr = "GO:0009061",

source.group = gobp[,3], source.id=gobp[,1],

id = bn_hsod)

test1 = edgeTest(cl1, group=g1, min.size=2, useNH=TRUE, filt=0.1, N=1000)

fitsod E. coli Fermentation Data

Description

E. coli Fermentation Fit Data Object containing M-values, P-values, GeneNames and Links

zu NCBI. Output of limma function write.fit with links to NCBI added for each gene.

Usage

data(fitsod)

data(hsod)

data(gobp)

Format

A data frame with 4368 observations on the following variables.

A a numeric vector giving the mean A-values
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Coef.stress3A a numeric vector for each coefficient giving the estimated coefficient for a

particular gene for the contrast to the reference

Coef.stress3B a numeric vector for each coefficient giving the estimated coefficient for a

particular gene for the contrast to the reference

Coef.stress3C a numeric vector for each coefficient giving the estimated coefficient for a

particular gene for the contrast to the reference

Coef.stress3F a numeric vector for each coefficient giving the estimated coefficient for a

particular gene for the contrast to the reference

Coef.stress4 a numeric vector for each coefficient giving the estimated coefficient for a

particular gene for the contrast to the reference

Coef.stress4A a numeric vector for each coefficient giving the estimated coefficient for a

particular gene for the contrast to the reference

Coef.stress5A a numeric vector for each coefficient giving the estimated coefficient for a

particular gene for the contrast to the reference

Coef.stress6 a numeric vector for each coefficient giving the estimated coefficient for a

particular gene for the contrast to the reference

t.stress3A a numeric vector giving the t-statistic to the coefficient estimate

t.stress3B a numeric vector giving the t-statistic to the coefficient estimate

t.stress3C a numeric vector giving the t-statistic to the coefficient estimate

t.stress3F a numeric vector giving the t-statistic to the coefficient estimate

t.stress4 a numeric vector giving the t-statistic to the coefficient estimate

t.stress4A a numeric vector giving the t-statistic to the coefficient estimate

t.stress5A a numeric vector giving the t-statistic to the coefficient estimate

t.stress6 a numeric vector giving the t-statistic to the coefficient estimate

p.value.stress3A a numeric vector giving the corresponding p-value

p.value.stress3B a numeric vector giving the corresponding p-value

p.value.stress3C a numeric vector giving the corresponding p-value

p.value.stress3F a numeric vector giving the corresponding p-value

p.value.stress4 a numeric vector giving the corresponding p-value

p.value.stress4A a numeric vector giving the corresponding p-value

p.value.stress5A a numeric vector giving the corresponding p-value
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p.value.stress6 a numeric vector giving the corresponding p-value

F a numeric vector giving the overall F-statistik

F.p.value a numeric vector giving the corresponding F-p-value

Genes.Block first block position of the gene

Genes.Row first row position of the gene

Genes.Column first column position of the gene

Genes.GeneName Short genename

Genes.ID Gene ID

Genes.AccessionReference Blattner numbers

Genes.Status status of the gene: always gene

links link to NCBI

Details

The data set hsod is a filtered subset of the original data. It contains 527 differentially ex-

pressed genes at the 8 time points. The vector bn_hsod contains the corresponding identifiers

which can be used to search for functional groups in the data set gobp. links_hsod contains

the corresponding links to the NCBI database.

gobp is a data set listing functional groups to gene identifiers. The data set consists of 8726

observations, the first column gives the gene identifier, the second column gives the gene

name and the third column gives the functional group.

References

Duerrschmid, K., Reischer, H., Schmidt-Heck, W., Hrebicek, T., Guthke, R., Rizzi, A.,

Bayer, K. (2008). Monitoring of transcriptome and proteome profiles to investigate the

cellular response of E. coli towards recombinant protein expression under defined chemostat

conditions. Journal of Biotechnology 135, 34–44.

Examples

data(fitsod)
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gcExplorer Graphical Cluster Explorer

Description

Plot a neighborhood graph for "kccasimple" cluster solutions.

Usage

## S4 method for signature 'kccasimple':

gcExplorer(object, layout = c("dot", "neato", "twopi","circo","fdp"),

theme = "grey", edge.method=c("orig","mean","min","max"),

node.function = NULL, node.args = NULL, doViewPort = FALSE,

filt = 0.1, interactive = !is.null(panel.function), dev=c("one","many"),

panel.function = NULL, panel.args = NULL, bgdata = NULL,

colscale = NULL, mfrow = c(1,1), legend.pos = "none")

Arguments

object Object of class "kccasimple".

layout Layout method used: One of "dot", "neato", "twopi", "circo", and "fdp".

theme Color theme used.

edge.method Several methods are available to draw edges: "orig", "mean", "min", and

"max", see details below.
node.function

Optional. Additional information about the clusters can be included in the

representation of nodes. Either a function calculating node colors or a grid-

based function (see doViewPort).

node.args List of arguments which should be passed to node.function.

doViewPort Currently not used in release version of the package. Call a grid-based func-

tion specified by argument node.function and use it for node representa-

tion?

filt Cutoff value for similarities between clusters, edges above the threshold will

be displayed.

interactive Should the plot be interactive?
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dev Only used if interactive=TRUE. Display each cluster plot (specified by

panel.function) in one device or open new devices for each cluster when

clicking on a node.
panel.function

Only used if interactive=TRUE. The panel function which should be used

to display the corresponding cluster

panel.args List of arguments which should be passed to panel.function.

bgdata Background data to be plotted by panel.function or node.function.

colscale A vector of length 2 specifying the color range for edges and nodes, e.g.

c(0,0.5).

mfrow Only used if interactive=TRUE. The panel layout in which the panel plots

should be displayed.

legend.pos Position of the legend.

Details

A neighborhood graph is the default plot method for cluster objects of package flexclust.

For large and highdimensional data sets like microarray data linear projection of the data

into two dimensions may not scale well in the number of clusters. In this case non-linear

arrangement of the nodes using layout algorithms from Graphviz can be helpful. An interface

to Graphviz is provided in Bioconductor package Rgraphviz. One of the implemented layout

algorithms can be selected using layout.

In a neighborhood graph each node corresponds to a cluster centroid. Two nodes are con-

nected by an edge if there exist data points that have these two centroids as closest and second

closest. The edge weights are taken from clusterSim(object). The similarity between two

clusters is bounded between 0 and 1 where well-separated clusters have values close to 0. The

larger the similarity between clusters the stronger the edge will be drawn in the graph. The

cutoff value for drawing the edge between two centroids can be chosen by argument filt.

The larger the filt value the fewer edges will be drawn.

Originally the neighborhood graph is a directed graph. An edge will be drawn from centroid 1

to centroid 2 if there exists at least one data point that has centroid 1 as closest and centroid

2 as second closest. But there need not necessarily be a data point that has centroid 2 as

closest and centroid 1 as second closest centroid. For this reason there are several methods

for plotting the edges between nodes. The default edge.method is ’orig’ where each edge is

drawn separately with its corresponding weight. This method will result in a directed graph.
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All other edge methods yield undirected graphs where the mean, minimum or maximum of

the similarities between two clusters is used.

Additional information about the clusters can be included in the graph using node.function

and panel.function. node.function is used for the node representation. If no

node.function is given all nodes will be drawn in one color. The node.function can be used

to calculate different colors for the nodes like cluster size or cluster tightness. Additionally

node.function can be a grid–based function displaying the data in the underlying cluster,

e.g. a scatterplot or a boxplot.

gcExplorer is implemented interactively. If interactive=TRUE panel.function is used to

plot a cluster when clicking on the corresponding node. An example of a panel.function is

given by function gcProfile.

Function calcHCL is used to calculate a HCL–based color.

Value

Object of class "graphdata" with the following slots: an object of class "Ragraph" (see

package Rgraphviz), object, bgdata, node.function, edge.method, theme and colscale.

Author(s)

Theresa Scharl and Ingo Voglhuber

References

Theresa Scharl and Friedrich Leisch. gcExplorer: Interactive Exploration of Gene Clusters.

Bioinformatics, 25(8): 1089-1090, 2009.

See Also

node.tight

Examples

data("hsod")

cl1 <- qtclust(hsod, radius = 2, save.data = TRUE)

gcExplorer(cl1, theme = "blue", node.function = node.size)



gcModify 136

gcModify Modify Ragraph objects and replot them

Description

gcModify is a function to modify and plot an object of class "graphdata":

- remove edges/nodes

- zoom

- draw custom node plots

Usage

## S4 method for signature 'graphdata':

gcModify(graphdata, clsim = NULL, rmNodes = NULL,

kpNodes = NULL, edgeDep = TRUE, nodeDep = FALSE,

zoom = c("none", "manual", "auto"),

keepAspectRatio = TRUE, node.function = NULL,

doViewPort = TRUE, bgdata = NULL)

Arguments

graphdata List, containing object of class "Ragraph", object of class "kcca" and other

parameters of graph created by gcExplorer).

clsim Matrix, new clsim to define removal or modification of edges.

rmNodes Character vector, names of nodes to remove. (can not be used in combination

with kpNodes)

kpNodes Character vector, names of nodes to keep. (can not be used in combination

with rmNodes)

edgeDep Logical. If TRUE edges are removed, if they do not connect two nodes.

nodeDep Logical. If TRUE nodes are removed, if they are not connected to other nodes.

zoom One of:

"none" - no zoom.

"manual" - activate manual zoom, user interaction needed to specify area to

be enlarged.

"auto" - auto zoom, automatically enlarges graph to size of graphic device.
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keepAspectRatio

Logical. If TRUE aspect ratio is preserved.
node.function

Grid based function for node plotting. To work correctly, the function will

take three arguments:

object is an object of class "kcca".

cluster is an integer giving the node (i.e., cluster) number.

bgdata is a data.frame of external data.

doViewPort Logical. If TRUE node.function ist called to draw nodes.

bgdata Data.frame. external data for node drawing. (passed to node.function).

Details

gcModify is a tool to modify and plot graphs created by gcExplorer, zoom certain areas of

the plot and use grid-based functions to draw custom node plots.

Value

Object of class "graphdata" with the following slots: an object of class "Ragraph" (see

package Rgraphviz), object, bgdata, node.function, edge.method, theme and colscale.

Author(s)

Ingo Voglhuber

See Also

gcExplorer

Examples

data("hsod")

library(flexclust)

set.seed(1111)

cl1 <- qtclust(hsod, radius = 2,

family = kccaFamily(dist = distEuclidean,

cent = colMeans), save.data = TRUE)

## create Ragraph object from kcca object with gcExplorer
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graph <- gcExplorer(cl1, theme = "blue", node.function = node.size)

## extract and modify clsim

clsim <- clusterSim(cl1)

clsim[clsim < 0.5] <- 0

## use modified clsim on Ragraph object to remove edges (<0.5)

gcModify(graph, clsim)

## use nodeDep=TRUE to delete nodes without edges

gcModify(graph, clsim, nodeDep = TRUE, zoom = "none")

## use zoom="auto" to center and maximize subgraph

gcModify(graph, clsim, nodeDep = TRUE, zoom = "auto")

## Not run:

## R package symbols is available from Rforge:

## http://r-forge.r-project.org/projects/symbols/

require("symbols")

## create a grid based plotting function: plot cluster data and centers in matplot.

gmatplot <- function (object, cluster, bgdata) {

grid.rect()

data <- object@data@get("designMatrix")

ylimits <- c(min(data, na.rm = TRUE), max(data, na.rm = TRUE))

index <- (object@cluster == cluster)

nodedata <- data[index,]

symb.matplot(1:ncol(nodedata), t(nodedata), type = "l",

col = "gray", ylim = ylimits, pch = 1)

center <- object@centers[cluster,]

symb.matplot(1:ncol(object@centers), center, type = "l",

col = "red", ylim = ylimits, pch = 1)

}

## use grid based node function to draw nodes

gcModify(graph, clsim, nodeDep = TRUE, zoom = "auto",

node.function = gmatplot)
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## End(Not run)

gcOffline Offline gcExplorer

Description

Save gcExplorer plots or tables to a file.

Usage

## S4 method for signature 'kccasimple':

gcOffline(object, panel.function, panel.args=NULL,

type=pdf, file="gcOffline", which=NULL, html=FALSE, ...)

Arguments

object Object of class "kccasimple".
panel.function

Only used if interactive=TRUE. The panel function which should be used

to display the corresponding cluster

panel.args List of arguments which should be passed to panel.function.

type Create graphics of type type, e.g., pdf, postscript, jpeg, png.

file File name prefix used for graphics files. Of the form file-which.type and

file-graph.type.

which A vector specifying if all cluster plots (default) or only a subset should be

created.

html Logical. Does the panel.function produce HTML tables.

... Further arguments can be passed to gcExplorer.

Author(s)

Theresa Scharl

See Also

gcTable, gcProfile
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Examples

data("hsod")

set.seed(1111)

cl1 <- qtclust(hsod, radius=2, save.data=TRUE)

# create three files: hsod-003.pdf, hsod-005.pdf, hsod-graph.pdf

gcOffline(cl1,panel.function=gcProfile, file="hsod", which=c(3,5))

# create two files: hsod-003.html, hsod-005.html

gcOffline(cl1, panel.function = gcTable, html = TRUE,

panel.args = list(links = links_hsod),

file = "hsod", which=c(3,5))

# tidy up

unlink(list.files()[grep("hsod-",list.files())])

gcProfile Plot for cluster results

Description

Plot a single cluster of a ’kccasimple’ object.

Usage

## S4 method for signature 'kccasimple':

gcProfile(object, which, data = NULL, cexl = 0.8, xlab = "",

ylab = "M", ylim=c(-6,6), cex.axis=1, xlabels=NULL,

opar = par(las=1, mar=c(5, 4, 2, 0.5) + 0.1),

data.type=c("time", "other"), legend=TRUE, main=NULL, ...)

Arguments

object an object of class "kccasimple"

data Plot either the data stored in object or external data.

which Number of the cluster.

cexl Point size of the legend.
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xlab Label for the x-axis.

ylab Label for the y-axis.

ylim Range of the y-axis.

cex.axis Point size of x-axis.

xlabels Positions on the x-axis. Default is 1:ncol(data).

opar Graphical parameters.

data.type If the data come from arbitrary source (default) colnames of the data are

used as xlabels if not stated otherwise using xlabels. If the data comes from

a time course experiment x-values start at 0 and different time intervals are

supported.

legend Logical. Should a legend be drawn?.

main Main title of the plot. If null ”Cluster i” is used.

... Further arguments can be passed to matplot.

Author(s)

Theresa Scharl

Examples

data("hsod")

cl1 <- qtclust(hsod, radius=2, save.data=TRUE)

gcProfile(cl1, which=5)

gcProfile(cl1, which=5, xlabels=c(0,8,15,22,45,68,90,150,180),

xlab="time after induction [min]",data.type="time")

gcTable HTML table for cluster results

Description

Create HTML table for a single cluster of a "kccasimple" object.
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Usage

## S4 method for signature 'kccasimple':

gcTable(object, which, links, file="gcTable", ...)

Arguments

object an object of class "kccasimple"

which Number of the cluster.

links Vector of the same length as rows in the data with links to a database.

file File name prefix used for HTML tables. Of the form file-which.html.

... Further arguments can be passed to write.htmltable.

Author(s)

Theresa Scharl

See Also

write.htmltable

Examples

data("hsod")

cl1 <- qtclust(hsod, radius=2, save.data=TRUE)

gcTable(cl1, which=5, links = links_hsod, file = "hsod")

## Not run:

gcExplorer(cl1, theme = "blue", panel.function = gcTable,

panel.args = list(links = links_hsod, file="hsod"),

node.function = node.size)

## End(Not run)
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go.details Functional Group Methods

Description

Plot or extract size, members or data of a functional group

Usage

## S4 method for signature 'data.frame':

go.details(object, mvalues, gn, id, stats, links, gonr,

source.id, source.group, details = c("size", "names", "id", "data"),

table = TRUE, file = "go.details", plot = TRUE, cexl = 0.8,

xlab = "", xlabels = NULL, ylab = "M", ylim = c(-6,6), cex.axis = 1,

main = NULL, data.type = c("time", "other"), legend = TRUE, ...)

Arguments

object An object of class "data.frame".

mvalues Vector giving the columns in object which correspond to the gene expression

values.

gn Column of object which corresponds to the gene names used for represen-

tation.

id Column of object which corresponds to the unique IDs of the same type as

given in source.id.

links Column of object which corresponds to links to database.

stats Column(s) of object which correspond to statistics.

gonr Unique identifier from source.group giving the group of genes to be ex-

tracted.

source.id Vector of gene IDs assigned to functional groups given in source.group.

source.group Vector of the same length as source.id.

details The type of details to be extracted.

table Logical. Should an HTML table be created.

file The file where the output of ’gotable’ will be written.
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plot Logical. Should the genes be plotted.

cexl Point size of the legend.

xlab Label for the x-axis.

xlabels Either a numeric vector of time points giving the positions on the x-axis or

a character vector with names of the positions on the x-axis.

ylab Label for the y-axis.

ylim Range of the y-axis.

cex.axis Point size of the axis.

main The main title of the plot or HTML table. If null the name of the functional

group is used.

data.type The data type is either on a time scale (default) or something else (”other”).

legend Draw a legend?

... Further arguments can be passed to matplot or write.htmltable.

Author(s)

Theresa Scharl

See Also

fitsod

Examples

data(fitsod)

data(gobp)

## Plot the functional group

go.details(fitsod, mvalues = 2:9, gn = 31, id = 33, links = 35, stats = 26,

gonr = "flagellar", source.group = gobp[,3], source.id = gobp[,1],

plot = TRUE)

## A file named "go.details.html" will be created in the current

## working directory.

go.details(fitsod, mvalues = 2:9, gn = 31, id = 33, links = 35, stats = 26,

gonr = "flagellar", source.group = gobp[,3], source.id = gobp[,1],
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table = TRUE)

## Names of the genes in functional group "flagellar"

go.details(fitsod, mvalues = 2:9, gn = 31, id = 33, links = 35, stats = 26,

gonr = "flagellar", source.group = gobp[,3], source.id = gobp[,1],

details = "names")

## Gene expression values of the functional group

d1 <- go.details(fitsod, mvalues = 2:9, gn = 31, id = 33, links = 35, stats = 26,

gonr = "flagellar", source.group = gobp[,3], source.id = gobp[,1],

details = "data")

dim(d1)

Group2Cluster Find clusters to a group

Description

Find the cluster memberships for a group and create the vector of all cluster memberships

where the grouped elements are assigned to.

Usage

Group2Cluster(object, gonr, source.group, source.id, id)

Random2Cluster(object, perc)

DefinedCluster(object, filt=0, numEdges=6, perc=1, noise=0)

Arguments

object An object of class kccasimple

gonr Unique identifier from source.group giving the group of genes to be ex-

tracted

source.group Vector of functional groups where source.id are assigned to

source.id Corresponding vector of identifiers to source.group

id Vector of identifiers of the same length as rows in the clustered data of the

same type as given in source.id
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perc For artificial assignment: the percentage of elements in a cluster that should

be assigned to the group

filt Edges above this threshold are taken into account

numEdges Number of edges chosen where clusters are assigned similar amount of af-

fected elements

noise The percentage of noise that should be added (i.e., further assigned elements

in different clusters)

Value

A vector of cluster memberships.

Author(s)

Theresa Scharl

See Also

edge.test

Examples

data("hsod")

data("gobp")

set.seed(1111)

cl1 <- qtclust(hsod, radius = 2, save.data = TRUE)

g1 <- Group2Cluster(cl1, gonr = "GO:0009061",

source.group = gobp[,3], source.id=gobp[,1],

id = bn_hsod)

table(g1)

jkdist Further Distance and Centroid Computations

Description

Helper functions to create ’kccaFamily’ objects.
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Usage

distJackCor(x, centers)

distJackEuc(x, centers)

distJackMan(x, centers)

distJackMax(x, centers)

centSpline(d)

Arguments

x A data matrix

d A data matrix

centers A matrix of centroids

Details

A possible problem using classical distance measures for clustering time–course gene expres-

sion data is that single outlier variables can completely change the expression pattern of

certain genes. Outliers at special time points are very common in microarray experiments as

technical problems like dust or a scratch on the slide can easily distort the data. In such a

case these outlier variables can lead to unwanted correlations between genes and to incorrect

assignment to clusters. There is a need for distance measures which are robust against outlier

variables. The idea of Jackknife (Efron, 1982) distance measures is not to exclude the whole

observation for such a gene but rather one or several variables. We want to introduce so–

called ”Jackknife” distance measures which can handle one outlier time point. The so-called

Jackknife correlation was first used by Heyer et al. (1999) to cluster gene expression data. It

is defined as

dxy = 1−min(ρ(1)
xy , ρ

(2)
xy , . . . , ρ

(T )
xy )

where ρ(t)
xy is the correlation of pair x,y computed with the t-th time point deleted.

This concept can be extended for the three geometric distance measures Euclidean, Manhat-

tan and Maximum distance. Jackknife Euclidean distance is defined as

dxy = min(d(1)
xy , d

(2)
xy , . . . , d

(T )
xy )

where d(t)
xy is the Euclidean distance of pair x,y computed with the t-th time point deleted.

Jackknife Manhattan distance and Jackknife Maximum distance can be defined in the same

way.
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Author(s)

Theresa Scharl

References

Theresa Scharl and Friedrich Leisch: Jackknife distances for clustering time–course gene

expression data, in JSM Proceedings 2006

node.tight Node Methods for Neighborhood Graphs

Description

Several methods how to color nodes of a neighborhood graph.

Usage

## S4 method for signature 'kccasimple':

node.tight(object, theme, colscale)

## S4 method for signature 'kccasimple':

node.size(object, theme, colscale)

## S4 method for signature 'kccasimple':

node.go(object, theme, colscale, gonr, source.group, source.id, id)

## S4 method for signature 'kccasimple':

node.group(object, theme, colscale, group)

## S4 method for signature 'kccasimple':

legend.size(object, theme, colscale=NULL, pos="bottomleft")

## S4 method for signature 'kccasimple':

legend.tight(object, theme, colscale=NULL, pos="bottomleft")

Arguments

object An object of class "kccasimple"

theme A color theme, eg. theme="blue".

colscale Range of luminescence lum of hcl colors, default is min to max.

gonr Unique identifier from source.group giving the group of genes to be ex-

tracted.



node.tight 149

source.id Vector of gene IDs assigned to functional groups given in source.group.

source.group Vector of the same length as source.id.

id Vector of identifiers of the same length as rows in the clustered data of the

same type as given in source.id.

group Vector of integers giving the cluster membership of grouped genes.

pos Position where the legend should be placed.

Details

Function node.size is used to highlight large clusters where the largest cluster will be as-

signed the darkest color.

Function node.tight is used to highlight tight clusters where the tightest cluster will be

assigned the darkest color.

Function node.go is used to highlight clusters with accumulation of the functional group

given by gonr where the highest proportion will be assigned the darkest color.

Function node.group is used to highlight clusters with accumulation of a functional group

where the class membership are passed by argument group. Again the highest proportion

will be assigned the darkest color.

Author(s)

Theresa Scharl and Ingo Voglhuber

See Also

gcExplorer

Examples

data("hsod")

set.seed(1111)

cl1 <- qtclust(hsod, radius = 2, save.data = TRUE)

gcExplorer(cl1, theme = "blue", node.function = node.size,

legend.pos= "topleft")

gcExplorer(cl1, theme = "red", node.function = node.tight,

legend.pos= "topleft")
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data("gobp")

gcExplorer(cl1, theme = "green", node.function = node.go,

node.args = list(gonr = "transport", source.group = gobp[,3],

source.id = gobp[,1], id = bn_hsod),

legend.pos= "topleft")

oxygen Preprocessed microarray oxygen deprivation data

Description

Normalized gene expression microarray data from E. coli.

Usage

data(oxygen)

Format

oxygen is a data matrix containing n=43 experiments of various mutants under oxygen

deprivation (Covert et al., 2004). The mutants were designed to monitor the response

from E. coli during an oxygen shift in order to target the a priori most relevant part of

the transcriptional network by using six strains with knockouts of five key transcriptional

regulators in the oxygen response (arcA, appY, fnr, oxyR and soxS ). The data was ob-

tained by downloading the corresponding CEL files from the Gene Expression Omnibus

(http://www.ncbi.nlm.nih.gov/geo) under accession GDS680 and then normalized using

the rma() function from the affy package. Following the steps described in (Castelo and

Roverato, 2008) probesets were mapped to Entrez Gene Identifiers and filtered such that

the ExpressionSet in the qpgraph package names EcoliOxygen contains a total of p=4205

genes. Here a subset of the EcoliOxygen data was used containing all genes where Blattner

numbers were available.

Note

This data set was taken from Bioconductor package qpgraph and modified

http://www.ncbi.nlm.nih.gov/geo
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Source

Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J., and Palsson, B.O. Integrating high-

throughput and computational data elucidates bacterial networks. Nature, 429(6987):92-96,

2004.

Gama-Castro, S., Jimenez-Jacinto, V., Peralta-Gil, M., Santos-Zavaleta, A., Penaloza-

Spinola, M.I., Contreras-Moreira, B., Segura-Salazar, J., Muniz-Rascado, L., Martinez-

Flores, I., Salgado, H., Bonavides-Martinez, C., Abreu-Goodger, C., Rodriguez-Penagos,

C., Miranda-Rios, J., Morett, E., Merino, E., Huerta, A.M., Trevino-Quintanilla, L., and

Collado-Vides, J. RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12

beyond transcription, active (experimental) annotated promoters and Textpresso navigation.

Nucleic Acids Res., 36(Database issue):D120-124, 2008.

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from mi-

croarray data with qp-graphs. J. Comp. Biol., 16(2):213-227, 2009.

Examples

data(oxygen)

pattern Expression pattern

Description

Expression patterns that can be used to generate artificial gene expression data.

Usage

pattern(time = 8, v = 5)

Arguments

time number of time points

v absolute value of maximum gene expression

Value

a data matrix
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Author(s)

Theresa Scharl

See Also

gcSim

Examples

cent <- pattern(time=15)

data <- gcSim(sim="pattern", cent=cent)

matplot(t(data),type="l")

ps19 E. coli Fermentation Data

Description

E. coli Fermentation Data - Transcription profiling of E. coli

HMS174(DE3)(pET30aNproGFPmut3.1) - cellular response to limited induction with

IPTG

Usage

data(ps19)

Format

A data frame with 918 observations on the following 10 variables.

10 Estimated coefficient for a particular gene for the contrast of the sample 10 hours past

induction to the sample before induction

12 Estimated coefficient for a particular gene for the contrast of the sample 12 hours past

induction to the sample before induction

14 Estimated coefficient for a particular gene for the contrast of the sample 14 hours past

induction to the sample before induction

16 Estimated coefficient for a particular gene for the contrast of the sample 16 hours past

induction to the sample before induction
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18 Estimated coefficient for a particular gene for the contrast of the sample 18 hours past

induction to the sample before induction

20 Estimated coefficient for a particular gene for the contrast of the sample 20 hours past

induction to the sample before induction

22 Estimated coefficient for a particular gene for the contrast of the sample 22 hours past

induction to the sample before induction

24 Estimated coefficient for a particular gene for the contrast of the sample 24 hours past

induction to the sample before induction

26 Estimated coefficient for a particular gene for the contrast of the sample 26 hours past

induction to the sample before induction

28 Estimated coefficient for a particular gene for the contrast of the sample 28 hours past

induction to the sample before induction

Source

Two experiments (including all processing protocols) have been loaded into ArrayExpress

(http://www.ebi.ac.uk/microarray-as/ae/). The ArrayExpress accession number of the array

design is A-MARS-10. The experiment with fully induced E. coli expression system (ps19)

has accession number E-MARS-16 and the experiment with partially induced system (ps17)

has accession number E-MARS-17.

References

T. Scharl, G. Striedner, F. Poetschacher, F. Leisch and K. Bayer: Interactive visualization

of clusters in microarray data: an efficient tool for improved metabolic analysis of E. coli.

Microbial Cell Factories, 8:37, 2009.

Examples

data(ps19)

sigma E. coli Sigma Factors and Global Regulators

Description

The E. coli sigma factors and the genes they regulate.
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Usage

data(sigma)

Format

A data frame with 1851 observations on the following 6 variables.

SigmaFactor a factor with levels Sigma19 Sigma24 Sigma28 Sigma32 Sigma38 Sigma54

Sigma70.

SigmaGene a factor with levels fecI fliA rpoD rpoDS rpoE rpoH rpoN rpoS and more.

RegulatedGeneName The genename of the regulated genes.

RegulatedGenebnumber The Blattner numbers of the regulated genes.

function a factor with levels +, - and +-.

GeneType a factor with levels Phantom Gene Pseudo Gene.

Source

http://regulondb.ccg.unam.mx/LicenseRegulonDBd.jsp

References

Salgado H, Gama-Castro S, Peralta-Gil M, Diaz-Peredo E, Sanchez-Solano F, Santos-Zavaleta

A, Martinez-Flores I, Jimenez-Jacinto V, Bonavides-Martinez C, Segura-Salazar J, Martinez-

Antonio A, Collado-Vides J. RegulonDB (version 5.0): Escherichia coli K-12 transcriptional

regulatory network, operon organization, and growth conditions Nucleic Acids Res. 2006 Jan

1;34(Database issue):D394-7

Examples

data(sigma)

data(reg)
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write.htmltable Write a data frame into an HTML table within a HTML page

Description

Write a "data.frame" into an HTML table within a HTML page

Usage

write.htmltable(x, filename, title="", sortby=NULL, decreasing=TRUE,

open="wt", formatNumeric=function(x) paste(signif(x, 3)))

Arguments

x data.frame.

filename character. File name.

title character. Title of HTML page.

sortby character. Name of column by which to sort the table rows.

decreasing logical. Should the sort order be increasing or decreasing?

open character. This argument is passed on to file.
formatNumeric

function that takes a numeric and returns a character. This function is called

for all numeric values in the table.

Details

This function is taken from package arrayMagic.

Value

The function is called for its side effect: writing a file.

Author(s)

Wolfgang Huber http://www.dkfz.de/mga/whuber

http://www.dkfz.de/mga/whuber
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Examples

out = tempfile()

n = 10

ex = data.frame(genename=paste("Gene", 1:n, sep=""), score=

signif(16*runif(n)), database=paste("http://super.data.base/?id",

round(1e9*runif(n)), sep=""))

write.htmltable(ex, out, "Hi there", sortby="score")

cat("Now have a look at ", out, ".html\n", sep="")
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