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Abstract

The main motivation for any paraconsistent logic is the idea that reasoning
with inconsistent information should be allowed and possible in a controlled and
discriminating way. The principle of explosion makes this inviable, and as such
must be abandoned. In non-paraconsistent logics, only one inconsistent theory
exists: the trivial theory that contains every sentence as a theorem. Paraconsis-
tent logic allows distinguishing between inconsistent theories and to reason with
them. Sometimes it is possible to revise a theory to make it consistent, however in
other cases (e.g., large software systems) it is currently impossible to attain con-
sistency. Some philosophers and logicians take a radical approach, holding that
some contradictions are true, and thus a theory being inconsistent is not some-
thing undesirable.

We investigate possible characterizations of existing semantics for paracon-
sistency using semantic structures that have been proposed in non-monotonic
logic programming more recently, while seeking for possible ways of implemen-
tation by means of transformation to standard non-monotonic logic programming.
In this way, we characterize and present a new way of calculating the semi-stable
models of a program (which are paraconsistent in the presence of incoherence)
without having to explicitly perform a syntactical transformation as the ones in
the characterizations available in the literature. We do this by dealing with strong
negation and then calculating the program’s Routley models. Afterwards we only
need to perform a selection according to some criteria.

Keywords Paraconsistency, inconsistency, incoherence, semi-stable models,
Routley models, here-and-there models.
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CHAPTER 1
Introduction

1.1 Introduction

This section is divided in a few small subsection from which, in subsection 1.2 we
present a motivation for this work while in subsection 1.3 we list a few projects where
the same sort of problems stated in subsection 1.4 were addressed in the past.

1.2 Motivation

On modular logic programs where multiple persons introduce different and possibly
conflicting knowledge, inconsistencies or incoherences can show up.

Example 1.1 A program P is incoherent if in some rule a literal is implied by its
default negation:

P = { a ← not a. }

While a program P is inconsistent if both an atom and its strongly negated version are
implied:

P = { a.
¬a. }

Some of the usual assumptions taken in traditional ASP must be withdrawn, by gen-
eralizing modular answer-set programming, if one wants to allow multiple programs
exchanging data. Since multiple programs are involved, possibly built by different
people, inconsistencies will most likely arise. In this case there are better ways than
to declare the whole composition as inconsistent. Thus, some form of paraconsistent
reasoning (see, e.g., [Ari02, DLMPea, Sak92, SI95]) should be introduced in such a
framework allowing modular logic programming.
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In [PT09], a good motivation for paraconsistency is presented pretty much as fol-
lows: The reasons for paraconsistency that have been suggested in the literature appear
to be connected to the development of specific formal systems of paraconsistent forms
of logic. There are, however, several reasons for considering that some logics should
be paraconsistent. The primary motivation for such logics is the conviction that it
should be possible to reason with inconsistent information in a controlled and dis-
criminating way. The principle of explosion makes this impossible and as such must
be abandoned. In standard non-paraconsistent logics, there is only one inconsistent
theory: the trivial theory; where every sentence holds as a theorem. Paraconsistent
logic makes it possible to distinguish between inconsistent theories and to reason with
them. Sometimes it is possible to revise a theory and make it consistent (Belief revi-
sion). In other cases (e.g., large software systems) it is currently impossible, due to
computational complexities involved, to achieve consistency.

We must highlight the fact that there are theories which are inconsistent but still
non-trivial as one of the main reasons for paraconsistent logics. Once we admit the
existence of such theories, their underlying logics must be paraconsistent. Examples
of inconsistent but non-trivial theories are easy to produce and we present some inter-
esting examples ahead. A very interesting example is presented by the authors, which
can be derived from the history of science.

• Consider Bohr’s theory of the atom. According to this, an electron orbits the
nucleus of the atom without radiating energy. However, according to Maxwell’s
equations, which formed an integral part of the theory, an electron which is
accelerating in orbit must radiate energy.

• Hence Bohr’s account of the behavior of the atom was inconsistent. Yet, patently,
not everything concerning the behavior of electrons was inferred from it, nor
should it have been. Hence, whatever inference mechanism that was used, it
must have been paraconsistent.

Paraconsistent logic is motivated by philosophical considerations as well as by its
applications and implications. One of the applications is automated reasoning (infor-
mation processing) for which another example is presented by the authors:

• Consider a computer which stores a large amount of information. While the
computer stores the information, it is also used to operate on it, and, crucially,
to infer from it. Now it is quite common for the computer to contain inconsistent
information, because of mistakes by the data entry operators or because multiple
sources are involved.

• This is certainly a problem for database operations with theorem-provers, and so
has drawn much attention from computer scientists. Techniques for removing
inconsistent information have been investigated. Yet all have limited applica-
bility, and, in any case, are not guaranteed to produce consistency. (There is no
algorithm for logical falsehood.)

Hence, even if we take some measures to deal with contradictions when we find them,
an underlying paraconsistent logic is desirable if hidden contradictions are not to gen-
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erate spurious answers to queries.

We will develop an approach for handling inconsistency in knowledge bases based
in logic programs. To this aim, we will establish theoretical results on alternative
semantics (compared to the exact answer-set semantics), where we plan to utilize
techniques from paraconsistent reasoning in logic programming [DLMPea, Sak92,
SI95] and epistemic logic.

1.3 Background and previous projects

In [OP05], Odintsov and Pearce introduce the notion of strong equivalence for pro-
grams with paraconsistent answer-set semantics (not only programs but propositional
theories to be precise) and show that Routley models exactly capture strong equiv-
alence for these paraconsistent answer-set (PAS) programs. They have also shown
how both ordinary and paraconsistent answer-sets can be captured via possible worlds
models, devised by Routley.

In [ADP05], the authors defined frames based on point sets to capture and charac-
terize PAS semantics. They introduce point sets as P = 〈 Q, ≤ 〉, with Q a set and ≤ a
partial ordering on Q. Propositions on P are upwards closed subsets of Q. Frames are
point sets together with accessibility relations.

1.4 Research issues and questions

If one aims at developing a modular, possibly distributed, paraconsistent semantics
for dealing with incoherencies and inconsistencies that may arise from combining
different programs, several issues need to be resolved that currently pose challenging
research problems:

1. How to deal with inconsistency? Combining multiple programs may lead
to inconsistent information. This is an important problem when it comes to
how different modules are programmed in a modularized program composition.
Usually, a team of programmers builds a program and the knowledge encoded
this way is in some way coordinated, but taking a distributed approach it is pos-
sible and even sometimes desirable that some program module can be created by
an a priori unknown user, which means that conflicting information may arise
when combining multiple knowledge bases or programs. While this is tightly
connected to the consistency checking reasoning task, it gives rise to the inter-
esting question of whether it is possible to relax the definition of consistency,
i.e., ’hiding’ conflicting information to gain consistent program modules.

The inconsistency issue can for instance be tackled by weakening the semantics,
i.e., by using a semantic approximation of a program’s answer-sets. For exam-
ple, this could be done by using partial models, as defined by the well-founded
semantics, instead of the usual answer-set semantics. We might also make a
distinction between local program modules’ models and the overall program
semantics of the compound program. Here, the idea is that local models, rather
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than global models, could be considered relevant for some application in some
context. Additionally, techniques for paraconsistent reasoning, such as the ones
that rely on multi-valued semantics, might help dealing with inconsistency (we
refer the reader to [Ari02, DLMPea, Sak92, SI95]) from which we highlight In-
oue and Sakama’s semi-stable models as the ones obviously of greater relevance
to us.

2. Which models can capture incoherence and can thus be considered para-
consistent? Well founded semantics or answer-set semantics? Due to the ex-
tension of the topic (close to twenty semantics have been described in [DLMPea])
we organize the following short discussion in a few general features that we
consider being the most important:

Semantical Concepts - We can pin the first studies of extended logic program-
ming to the works of Blair and Subramanian on paraconsistent logic programs
[BS87]. They have shown that their Generalized Horn Programs are equivalent
to extended logic programs without default negated literals. This is a common
basis on which almost all extended logic programming semantics agree, and has
its roots in the works on paraconsistent constructive logics [Nel49]. Belnap’s
logic provides the underlying model theory for this semantics.

With the introduction of default negation some problems, and different views
on how to solve them appeared. Two main different approaches are identifiable,
the coherence view and the weak negation view.

• The first adopts the coherence principle [Mon92] relating the two forms
of negation as basic and provides a localized explosion of consequences
when faced with contradiction. WFS Xp and its extensions are the amongst
the only representative of this type of semantics.

• The second view sustains more or less firmly the complete independence
of an atom A from its explicit negation ¬A. The authors state that every
other semantics that they are aware of embrace it.

As for the basic inference relation for the weak negationist view, it can be at-
tributed to Wagner’s liberal reasoning, except for his conservative, credulous,
and skeptical forms of reasoning. As in standard normal logic programming
semantics, the differences mainly lie in the way we can take care of infinite neg-
ative recursions. The well-founded semantics like the ones in [PM93, Sak92]
assign the logical value undefined to literals involved in such recursions. Przy-
musinski’s semantics has an explosive behavior in face of contradiction, while
Sakama’s extended well-founded semantics does not.

The followers of Weak negation have proposed several non-explosive semantics
(e.g. [SI95]) which are variants of the answer-sets semantics [GL90]. To over-
come the problem of non-existing models for some extended logic programs,
Sakama and Inoue defined the semi-stable model semantics, which suffers from
problems in the treatment of undefined literals manifested in the need of having
different languages for the program itself and for it’s models.
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An important remark that we must make is that most of the paraconsistent se-
mantics proposed for extended logic programs use fairly standard techniques
of normal logic programming semantics. First, the semantics is defined for the
default negation free case. Then, if the behavior of default negation is to be sim-
ilar to the one in Well Founded Semantics, an alternating fixpoint definition can
be defined. If the not is like the one in stable-models, then a corresponding fix-
point equation is used to define the semantics for the general case. The notable
exception, and also the one of greater interest to us, is semi-stable semantics
which is based on a semantics for disjunctive logic programs.

It is sometimes necessary to block the propagation of contradiction, besides
detecting unsafe conclusions. An argumentation approach to this problem is
adopted by Wagner in [Wag93] with his credulous, conservative and skeptical
inference relations. The last two are in themselves consistent. However, all
three inference relations do not obey to Modus Ponens and are not reflexive.

The family tree of the semantics surveyed in Damasio and Pereira’s paper [DLMPea]
can be found in Figure 1.1. The non-obvious abbreviations on that figure that
are of relevance to us are as follows; PSM, WAS and SE stand for respectively
paraconsistent stable models, weak answer-sets and stable environments. Sus-
picious well-founded and p-stable models are shortened to WFS s and PSM
respectively. The well founded and stable structures take the names WS and SS
respectively.

Still dealing with the question of which models can capture incoherence and
can be considered paraconsistent, a particular question must be posed:

• Can Routley models capture incoherence? Roughly speaking, inco-
herency arises when a literal is implied by its default negation in a pro-
gram. Since incoherency is viewed as a kind of inconsistency, it is desir-
able to provide a framework which is paraconsistent for such incoherency.
In the case of PAS, the underlying logic N9 introduced in [OP05] belongs
to the lattice of logics studied by Odintsov [Odi05].
In [SI95] the authors introduce, in order to present incoherent facts, five
extra truth values bt, b f , b>, tcb, and f cb which respectively denote be-
lieved true, believed false, believed contradictory1, true with contradictory
belief and false with contradictory belief. These values together with the
values in their logic IV constitute a lattice of nine-valued logic IX such
that ⊥ � bx � x � xcb � > and bx � b> � xcb for x ∈ t, f . The set
of truth values of their four-valued logic is defined as IV = t, f ,>,⊥, in
which t, f , >, ⊥ are propositions over the language of a program and re-
spectively denote true, false, contradictory, and undefined as can be seen
in Figure 1.2 on Page 24.
So, apparently the two lattices are compatible even though at this point
more study and some work must be put into it.

1Usually, the truth value contradictory is represented with ⊥ but the authors chose to use >.
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Figure 1.1: Paraconsistent semantics genealogy

3. Is a Language transformation enough? A language transformation might
allow us to deal with incoherence through a ’syntactical transformation’. In
fact, [SI95] introduces an epistemic transformation along the way, including an
operator K similar to the modal operator K in epistemic logic that is used for
capturing that a given literal is believed, for reducing programs with default
negation to positive programs. Thus, the original set of literals is expanded with
the set of literals that are believed to be true.

This raises the following question:

• Can we calculate semi-stable models without having to perform an ex-
plicit program transformation? Improving results presented in [SI95],
the present work has the goal to provide a definition of semi-stable mod-
els grounded in logical terms. Unlike the original definition, this should
be attained without employing any kind of logic syntactic transformation
over the original program at hand.

• Can we have such a characterization of semi-stable models in terms
of here-and-there models? This question posed itself along the way as
we were looking for a good way to characterize semi-stable models and
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we were able to conjecturize the characterization the we present in Propo-
sition 2.10 after looking at some examples. So, yes, if a program has a
semi-stable model then there are always semi-stable here-and-there mod-
els that embed it and a characterization is possible.

1.5 Contributions

We provide several embeddings of here-and-there and Routley models and we prove
their equivalences. Furthermore, towards a new characterization of semi-stable mod-
els in terms of here-and-there models, we provide in Definition 2.1 a simple way of
dealing with strong negation that suits our purposes and we reuse the way Sakama and
Inoue deal with default negation by means of the epistemic transformation described
in Definition 1.9. The prime transformation and its modified version that we present
in 2.1 will allow us to compute models containing both L and L′ (instead of ¬L),
that would otherwise be inconsistent. We define a seven-valued interpretation for the
language that derives from these transformations in 2.2.

In 2.3, to an interpretation I′κ of a transformed program P′κ we define its equivalent
here-and-there model.

Then we state a fixpoint equivalence in Lemma 2.1. The fixpoint semantics that
we will be using to calculate both semi-stable models and answer-sets reuses the def-
inition presented in [SI95] and characterizes operational aspects of logic programs.
This is also implemented using bottom-up model generation techniques as presented
in [Sak92].

Having all the auxiliary definitions in place, we moved to stating an equality be-
tween a transformed program’s minimal sets calculated with the fixpoint operator
µ(τP′κ ↑ w) and its answer-sets. More formally: AS (P′κ) = min(µ(τP′κ ↑ w)).

Having this, we can generalize the previous lemma. Then, having a transformed
program, its answer-sets will coincide with its semi-stable models after selecting
the maximally canonical interpretations ob j′κmc. As such, ob jκ

′

mc(AS (Pκ′ )) = S S TP′κ .
Proposition 2.3 follows trivially from Lemma 2.2 and from our definition of semi-
stable (S S T ) models as S S TP′κ = ob jκ

′

mc(min(µ(τPκ′ ↑ ω))). This is our first major
result - A characterization of semi-stable models of a modified program as its maxi-
mally canonical answer-sets.

In Subsection 2.2 we provide several embeddings, correspondences and defini-
tions revolving around here-and-there and Routley models of transformed programs
before we present our second major result - A fully declarative new characterization
of semi-stable models in the logic of here-and-there.

In Section 2.4 we will also describe two prototypical implementations of our two
characterizations of semi-stable models.

1.6 Road map

Still in Part 1, in Section 1.8 we present a comprehensive introduction and establish a
framework for the research task at hand.
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In Part 2 we resent our contributions, divided in the following sections: Section
2.1 where we, besides introducing the problem of dealing with both default and strong
negation, present our contribution towards dealing with them; In Section 2.2 we pro-
vide several embeddings for the different models we have at hand as well as prepara-
tory results that we need for Section 2.3 where we finally present a new characteriza-
tion of semi-stable models in terms of here-and-there models.

Part 3 is divided in Section 3.2 where we will present some complexity results
for paraconsistent logics and a complexity study for our contributions. In Section 3.2
we discuss the work presented and we outline possible guidelines for future work.
Finally, in Section 3.1 we provide a summary of relevant related work.

1.7 Constraint types, inconsistency and incoherence

In answer-set programming, we can write constraints both in the canonical way e.g.,

{p← a, b, not p.}

as well as in a simplified way:

{← a, b.}

Under the usual stable model semantics they yield the same result - eliminating models
containing all the positive literals in the constraint’s body. If we evaluate the same
programs under the semi-stable semantics, the classical constraints are transformed
by the epistemic transformation but not its simplified version. This way, under the
semi-stable semantics, the two types of constraints must be distinguished. We can
clearly see this in a good motivating example - Example 1.2:

Example 1.2 (For checking incoherence without ’simplified constraints’)

P1 = {a. p← a, not p.}

• (a, ap) S S T model {a,Ka,K p}

• (ap, ap)

This program, having a classic constraint, has no stable-models but still allows
one semi-stable model. The program with the simplified version of the same constraint
has no stable nor semi-stable models:

P2 = {a. ← a.}

As a result, the simplified writing of a constraint does not yield the same models
as the extended one. As for its Routley models, for T � P to hold, the there part of the
model must contain {a} but this is disallowed by the constraint. Therefore, there are
no candidate Routley interpretations and as such no Routley models.
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Roughly speaking, incoherency arises when a literal is implied by its default nega-
tion in a program. Since incoherency is viewed as a kind of inconsistency, it is desir-
able to provide a framework which is paraconsistent for such incoherency. In Section
1.8, we described the notion of semi-stable models which are paraconsistent for inco-
herent programs [SI95].

Despite the fact that dialetheism and paraconsistency needs to be distinguished, di-
aletheism can be a motivation for paraconsistent logic. If there are true contradictions
(dialetheias), i.e. there are sentences such that both A and ¬A are true, then some
inferences of the form {A,¬A} |= B must fail. Because only true and not arbitrary
conclusions follow validly from true premises, logic has to be paraconsistent. One
candidate for a dialetheia is the liar paradox. Consider the sentence: ’This sentence is
not true’. There are two options: either the sentence is true or it is not. Suppose it is
true. Then what it says is the case. Hence the sentence is not true. Suppose, on the
other hand, it is not true. This is what it says. Hence the sentence is true. In either
case it is both true and not true making it so that non paraconsistent semantics will
trivialize the program.

1.8 Preliminaries

Lets start with a short foreword about Model Theory. Generally speaking, a set of
sentences in some logic is called a theory. A theory T is satisfiable if it has a model
M |= T , i.e. a structure (of the appropriate signature) which satisfies all the sentences
in the set T . Consistency of a theory is usually defined in a syntactical way, but in
first-order logic by the completeness theorem there is no need to distinguish between
satisfiability and consistency. Therefore model theorists often use ’consistent’ as a
synonym for ’satisfiable’.

Logic of here-and-there

Linear, rooted frames with two nodes are also called here-and-there frames. They
characterize a super-intuitionistic logic called here-and-there, in short HT, and some-
times referred to as Gödel’s 3-valued logic.

In the semantics for intermediate or super-intuitionistic logics, the so-called logic
of here-and-there can be captured by rooted frames with two elements, commonly
denoted by h and t and called ’here’ and ’there’, with h ⊆ t. As presented by Pearce
and Odintsov [OP05], if we work in the lattice of extensions of Nelson’s logic N−, we
can consider here-and-there models as a special kind of Routley models. Therefore, a
Routley here-and-there model can be represented as a Routley model M = (W∪W∗,⊆
, ∗,V), where W = {h, t} comprises two worlds ’here’ and ’there’, such that h ⊆ t, and
W∗ = {h∗, t∗} comprises the ’starred’ worlds. It follows that t∗ ⊆ h∗.

Now, a total model that is minimal over the here-and-there frames has been called
an equilibrium model. Evidently, if a model M is not an equilibrium model, there is a
smaller HT-model which clearly also models the same program; hence M is not stable.
While if M is not stable, there is a smaller HT-model, and so M is not in equilibrium.
So we can conclude that stable models and equilibrium models coincide.
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We will often use (H,T ) as notation for a here-and-there interpretation and HT (P)
for a here-and-there model of a program P. Here, H corresponds to the here part and
T to the there part of the model.

The answer-set programming paradigm

T. Eiter et al. present a very comprehensive summary of the answer-set programming
paradigm in their description of the project Modular HEX-Programs [ea08]. We adapt
and summarize it in the following: Over the last few years, the answer-set Program-
ming (ASP) paradigm [EFL+01, Tru04, Lif02, MT99, Nie98] developed as one of the
most important methods for declarative knowledge representation and reasoning.

This approach is based in semantic notions and there are several methods to com-
pute models. More specifically, problems are represented in terms of nonmonotonic
logic programs, such that models of the latter compose solutions for the original prob-
lem. This is, in some way, similar to the method of reducing problems to Satisfiability
Solving (SAT) but with clear advantages for certain instances. In this context, the
most commonly used model notions are the ones of stable models [GL88] or, as a
generalization, the answer-sets of a (possibly disjunctive) logic program [GL91b].

Both notions are in their basis nonmonotonic because the set of logical conse-
quences from all stable models (respectively, all answer-sets) in general does not nec-
essarily grow monotonically with increasing information. This can happen because of
the usage of the negation as failure operator. Contrasting with semantics containing
strong procedural elements, like the cut operator in Prolog, they are fully declara-
tive. answer-set semantics extends stable model semantics to a syntactically richer
class of logic programs. The answer-set semantics is defined for Extended Logic Pro-
grams (ELPs), in which negation as failure can occur in program rules, as well as
often named classical negation - strong negation - and disjunctions. The stable model
semantics, instead, is associated with normal logic programs (NLPs), which contain
only negation as failure as a basic operator.

In general, ASP as a formalism suits the task of handling inconsistent and incom-
plete information, as well as the one of capturing nondeterministic features. However,
the major problem of the usual answer-set semantics is that the answer-set becomes
trivial in case of an inconsistent program and every formula can be implied from the
program. This also happens with most of the traditional logic programming semantics
in which one local inconsistency can make the whole program unusable.

Positive Extended Disjunctive Programs

A positive extended disjunctive program is a finite set of clauses of the form:

L1 ∨ . . . ∨ Ll ← Ll+1 ∧ . . . ∧ Lm (m ≥ l ≥ 0)

where Li’s are positive or negative literals. When L is a positive (resp. negative)
literal, ¬L denotes its complementary negative (resp. positive) literal and L = ¬¬L
holds as usual. The left-hand side of the clause is called the head and the right-hand
side of the clause is called the body. A clause is called disjunctive if its head contains
more than one literal. A clause is called an integrity constraint if it has the empty
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head and a non-empty body. A positive extended disjunctive program containing no
disjunctive clause is called a positive extended logic program. A positive extended
disjunctive program is called a positive disjunctive program if all Li’s are atoms.

Stable model semantics

In the case of disjunctive programs, we say that a set I of atoms is a stable model of P
if I is minimal (with respect to set inclusion) among the models of the reduct PI .

In Sixty Years of Stable Models [Pea08], Pearce gives a very good overview of Sta-
ble models which we next adapt to our purposes: The author considers two different
techniques for studying the mathematical foundations of stable reasoning and ASP.

• One of these is based on classical, propositional and predicate logic. Its main
advantages are its familiarity to logic programming users, its wealth of results
and the fact that it is very suitable for rapid prototyping. Its drawbacks start
with the fact that it lies, in a sense that can be made precise, one level removed
from the action. We first have to translate, manipulate and modify, before we
obtain relevant representations in classical logic that we could have obtained
in simpler fashion using a non-classical logic. This need not but sometimes
can add an ad hoc flavor to the modeling unless it is carefully spelt out why
certain features are attached to the formalism at hand. Moreover in some cases
it can add an unnecessary layer of complexity that also increases the difficulty
of establishing properties and theorems.

• The second approach to understanding stable models is a more direct and im-
mediate one. It it characterized by the usage of a non-classical logic in which
stable models can be represented as minimal models as well as for the fact that
formulas, programs and theories that are in a robust sense equivalent under sta-
ble reasoning can be shown to be logically equivalent. As Pearce shows in the
remainder of his paper, by using logical and meta-logical results this approach
to the foundations of stable reasoning has considerable explanatory power.

Usual definitions

The minimal models of a definite P can be computed (bottom-up) via operator TP and
they correspond to the stable models of P:

Definition 1.1 (TP operator (2-valued case)) Let I be an interpretation of definite P.
TP(I) = {H : (H ← Body) ∈ P ∧ Body ⊆ I}

If P is definite, TP is monotone and continuous. Its minimal fixpoint can be built by:
I0 = and In = TP(In−1) with n > 0.

The least model of a definite P is T ↑ωP ({}) i.e., the limit that is achieved by iterating
operator T ω times.

A fixpoint semantics for stable models Let’s first start by introducing some nota-
tion:
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• Let P be a disjunctive logic program. For each rule r in P of the form:

L1 ∨ . . .∨ Ll ← Ll+1 ∧ . . .∧ Lm ∧ not Lm+1 ∧ . . .∧ not Ln (m ≥ l ≥ 0) (1)

– HeadP(r) = {L1, . . . , Ll} is the set containing all the literals in the head of
(1).

– Body+
P(r) = {Ll+1, . . . , Lm} is the set containing all the positive literals in

the body of (1).

– Body−P(r) = {Lm+1, . . . , Ln} is the set containing all the negative literals in
the body of (1).

– Body∗P(r) = {Lm+1, . . . , Ln} is the set containing all literals in the body of
(1).

• If a program is positive we will omit the superscript + in Body+
P(r) and write

simply BodyP(r). Also, if the context is clear enough we will omit the subscript
mentioning the program and write simply Head(r) and Body(r).

Definition 1.2 ([LRS97]) Let I be an interpretation for a program P. A set X ⊆
BodyP of ground atoms is an unfounded set for P w.r.t I if, for each a ∈ X, for each
rule r ∈ ground(P) such that a ∈ Head(r), at least one of the conditions holds:

1. Body∗(r) ∩¬.I , ∅, that is, the body of r is false w.r.t. I.2

2. Body+(r) ∩ X , ∅, that is, some positive body literal belongs to X.

3. (Head(r) − X) ∩ I , ∅, that is, an atom in the head of r, distinct from a and
other elements in X, is true w.r.t. I.

Conditions 1 and 2 are the same as in the classical definition of unfounded sets
[GRS91]. Intuitively, the third condition expresses that an atom a, occurring in the
head of rule r, is not derivable from r if the head of r is already true; in other words,
there exists an atom b in the head of r which is true in I (indeed, inferences follow a
minimality criterion). However, the truth of the atom b in the head is not taken into
account (for the unfoundedness of a) if b itself is unfounded, that is, b ∈ X.

Definition 1.3 ([LRS97]) Let I be an interpretation for a program P. Then I is
unfounded-free if I ∩ X = ∅ for each unfounded set X for P w.r.t. I.

In traditional logic programming, the union of all unfounded sets w.r.t. an inter-
pretation I is also an unfounded set w.r.t. I (called the greatest unfounded set) that
includes all unfounded sets w.r.t. I [GRS91]. There, the authors show that in disjunc-
tive logic programming, this is not generally true. They denote by IP the set of all
interpretations of P which possess this property.

Then Leone et al. state the following proposition:

2¬.I is the set formed by individually applying ¬ to each literal in I.
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Proposition 1.3 ([LRS97]) Let I be an unfounded-free interpretation for a program
P. Then

a P has the greatest unfounded set GUS P(I) (i.e., I ∈ IP), and

b GUS P(I) is computable in polynomial time if P is a propositional program.

As for the fixpoint semantics for stable models, the authors start by providing an
extension of the immediate consequence operator TP defined in [GRS91] for three-
valued interpretations of normal logic programs to disjunctive logic programs.

Definition 1.4 ([LRS97]) Let P be a program. Define the TP operator as follows:
TP : 2BodyP∪¬.BodyP → 2BodyP

I 7→ {a ∈ BodyP | ∃r ∈ ground(P) s.t. a ∈ Head(r),Head(r) − {a} ⊆ ¬.I,
and Body(r) ⊆ I}.

Intuitively, given an interpretation I, TP derives a set of atoms belonging to every
model containing I (i.e. atoms that are surely needed to extend I to a model). Note
that, unlike other extensions of TP to disjunctive logic programs, TP is deterministic.
That is, its result is a single set of atoms rather than a family of sets of atoms.

Definition 1.5 ([LRS97]) Let P be a program. Define the WP operator as follows:3

WP: IP → 2BodyP∪¬.BodyP

I 7→ TP(I) ∪ ¬.GUS P(I).

The next proposition confirms the intuition that Definition 1.5 extends the WP

operator defined in [GRS91] for disjunction-free programs (whose least fixpoint is the
well-founded model) to disjunctive logic programs.

Proposition 1.4 ([LRS97]) Let P be a disjunction-free program. Then the WP oper-
ator of Definition 1.5 exactly coincides with WP operator defined in [GRS91].

Program reduct

Definition 1.6 (Program reduct) Let P be an extended disjunctive program and I be
a subset of LP. The reduct of P with respect to I is the positive extended disjunctive
program PI such that a clause

L1 ∨ . . . ∨ Ll ← Ll+1 ∧ . . . ∧ Lm

is in PI if and only if there is a ground clause of the form

L1 ∨ . . . ∨ Ll ← Ll+1 ∧ . . . ∧ Lm ∧ not Lm+1 ∧ . . . ∧ not Ln (l ≥ 0)

from P such that {Lm+1, . . . , Ln} ∩ I = {}.

Notice that:

3Recall that IP is the set of interpretations having the greatest unfounded set.
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• A literal L is true in an HT-model (H,T ) just in case L ∈ H
⋃
−H∗.4

• A Routley model M can be denoted only by (H,T ) with H = (H,H∗) and
T = (T,T ∗) if the program it models is positive.

• The set I in Definition 1.6 is called a paraconsistent answer-set of P (Section
1.8) if and only if the sets i = H

⋃
−H∗ and j = T

⋃
−T ∗ are models of the

reduct PI .

Relation to other theories of negation as failure

Program completion According to [Marek and Subramanian, 1989], any stable
model of a finite ground program will be not only a model of the program itself,
but also a model of its completion. However, the converse is not true. For instance,
the completion of a program with only one-rule

{p← p.}

is the tautology p ↔ p. This tautology’s model ∅ is stable, but its other model {p}
is not. In 1994, François Fages found a syntactic condition on logic programs that is
able to eliminate such counterexamples and ensures the stability of every model of the
program’s completion. The programs that satisfy his condition are called tight.

Then, in 2004, Fangzhen Lin and Yuting Zhao showed how to obtain a stronger
completion of a non-tight program so that all its nonstable models are eliminated. The
additional formulaes that they added to the completion are called loop formulas.

Well-founded semantics The well-founded model of a logic program splits all ground
atoms into three sets. They correspond to true, false and unknown. If an atom is true in
the well-founded model of P then it belongs to every stable model of P. The converse
however, generally, does not hold. For instance, the program:

{p← not q. q← not p. r ← q. r ← p.}

has two stable models, {p, r} and {q, r}. Even though r belongs to both of them,
its value in the well-founded model is unknown. Furthermore, if an atom is false
in the well-founded model of a program then it does not belong to any of its stable
models. Thus the well-founded model of a logic program provides a lower bound on
the intersection of its stable models and an upper bound on their union.

Equilibrium logic

Equilibrium Logic [Pea97] is a logical characterization of the stable models (or answer-
set) semantics for logic programs [GL88]. As shown in [LPV00], it allows capturing
the important property of strong equivalence of logic programs, that is, when a piece
of program can be safely replaced by another regardless the context they are included

4H denotes the complement of H.

14



in. Furthermore, it can also characterize as logical formulas most extensions and syn-
tactic constructions defined for answer-set Programming. In fact, the current most
general definitions of stable models for arbitrary propositional or first order theories
are equivalent to the definition of Equilibrium Models.

Like answer-sets, Equilibrium Logic is a nonmonotonic formalism, but unlike
answer-sets, which are defined in terms of a syntactic program transformation (the
Gelfond-Lifschitz program reduct), Equilibrium Logic is defined in terms of a mod-
els selection criterion for a monotonic intermediate logic: the logic of here-and-there
[Hey30].

Equilibrium models and strong equivalence

A total model that is minimal over the here-and-there frames is called an equilibrium
model.

Equilibrium models are special kinds of minimal N3-models. Let Π be a theory
and (H,T ) a model of Π. (H,T ) is said to be total if H = T . (H,T ) is said to be an
equilibrium model if it is total and there is no model (H′,T ) of Π with H′ ⊂ H. The
expression Eq(V,Π) denotes the set of the equilibrium models of theory Π on signature
V. Equilibrium logic is the logic determined by the equilibrium models of a theory. It
generalizes answer-set semantics in the following sense. For all the usual classes
of logic programs, including normal, disjunctive and nested programs, equilibrium
models correspond to answer-sets. The ’translation’ from the syntax of programs to
N3 propositional formulas is the trivial one, eg. a ground rule of a disjunctive program
of the form:

q1 ∨ . . . ∨ qk ← p1, . . . , pm, not pm+1, . . . , not pn

where the pi and q j are atoms, corresponds to the N3 sentence

p1 ∧ . . . ∧ pm ∧ ¬pm+1 ∧ . . . ∧ ¬pn → q1 ∨ . . . ∨ qk

Following this short introduction, Cabalar, Pearce and Valverde present in [CPV08]
two very interesting propositions that illustrate Equilibrium models in a comprehen-
sive way.

Proposition 1 ([Pea97, LPV00]). For any logic program Π, an N3 model (H,T ) is an
equilibrium model of Π if and only if T is an answer-set of Π.

Two theories, Π1 and Π2 are said to be logically equivalent, in symbols Π1 ≡ Π2, if
they have the same N3 models. They are said to be strongly equivalent, in symbols
Π1 ≡s Π2, if and only if for any Π, Π1 ∪ Π is equivalent to (has the same answer-sets
as) Π2 ∪ Π. The two notions are connected as follows:

Proposition 2 ([LPV00]). Any two theories Π1 and Π2 are strongly equivalent if and
only if they are logically equivalent, ie. Π1 ≡s Π2 if and only if Π1 ≡ Π2.

strong equivalence is important because it allows us to transform programs or theories
to equivalent programs or theories independent of any larger context in which the
theories concerned might be embedded.
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Paraconsistent semantics in logic programming

In [PT09] we can find a very good introduction to paraconsistency and also a good
motivation for it

Main stream contemporary logic says that from contradictory premises anything
can be inferred. To be more specific, let |= be a relation of logical consequence,
either defined semantically or proof-theoretically. Let’s call |= explosive if it validates
{A,¬A} |= B for every A and B (called in philosophical logic as ex contradictione
quodlibet (ECQ)). The usual contemporary logic, i.e., classical logic, is explosive but
also some ’non-classical’ logics such as intuitionist logic and most other standard
logics are.

Still in [PT09], they argue that the major motivation behind paraconsistent logic is
to challenge this orthodoxy. A logical consequence relation, |=, is said to be paracon-
sistent if it is does not possess the principle of explosion. Thus, if |= is paraconsistent,
then even if we are in certain circumstances where the available information is in-
consistent, an inference relation does not explode into triviality. Thus, paraconsistent
logic accommodates inconsistency in a sensible manner that treats inconsistent infor-
mation as valid and informative. There are several reasons driving such motivation.
The development of the systems of paraconsistent logic has depended on these. This
subsection is not meant to be a complete survey of paraconsistent logic because this
field is historically vast even if the modern history of paraconsistent logic may be
relatively short. Nevertheless, the development of the field has grown to the extent
that a complete survey goes beyond the scope of the present thesis. We solely aim to
providing some aspects and features of the field that are philosophically noticeable.
This does not mean that paraconsistent logic has no mathematical significance or sig-
nificance in such areas as computer science and linguistics. Indeed, the development
of paraconsistent logic in the last two decades or so indicates that it has important
applications in those areas. However, we shall tread over them lightly and focus more
on the aspects that are of central interest for philosophers and philosophically trained
logicians.

Motivation for paraconsistency

Throughout this subsection we will present an adaptation of the introduction in [PT09].
The reasons for paraconsistency that have been put forward appear to be specific

to the development of the particular formal systems of paraconsistent logic. However,
there are several general reasons for thinking that logic should be paraconsistent. The
primary motivation for such logics is the conviction that it ought to be possible to
reason with inconsistent information in a way that is controlled but at the same time
allows to discriminate such inconsistencies. The principle of explosion makes this
impossible and hence must be abandoned.

In non-paraconsistent logics, there is only one inconsistent theory: the trivial the-
ory that has every sentence as a theorem. Paraconsistent logic makes it possible to
distinguish between inconsistent theories and to reason with them. Sometimes it is
possible to revise a theory to make it consistent. In other cases (e.g., large software
systems) it is currently impossible to attain consistency.
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One prominent view known as dialetheism is motivated by several considerations,
most notably an inclination to take certain paradoxes such as the Liar and Russell’s
paradox at face value. Not every advocate of paraconsistent logic is a dialetheist. On
the other hand, being a dialetheist rationally commits one to some form of paraconsis-
tent logic, on expense of otherwise having to accept everything as true (i.e. trivialism).

Before we summarize some systems of paraconsistent logic and their motivations,
we present some general motivations for paraconsistent logic.

Inconsistent but non-trivial theories A most telling reason for paraconsistent logic
is the fact that there are theories which are inconsistent but not trivial. Once
we admit the existence of such theories, their underlying logics must be a para-
consistent one. Examples of inconsistent but non-trivial theories are easy to
produce. An example that can be derived from the history of science (In fact,
many examples can be given from this area.) is Bohr’s theory of the atom, as
presented in Section 1.1.

Dialetheias (true contradictions) Despite the fact that dialetheism and paraconsis-
tency needs to be distinguished, dialetheism can be a motivation for paracon-
sistent logic. If there are true contradictions (dialetheias), i.e., there are sen-
tences, A, such that both A and ¬A are true, then some inferences of the form
{A,¬A} |= B must fail. For only true, and not arbitrary, conclusions follow
validly from true premises. Hence logic has to be paraconsistent. One candi-
date for a dialetheia is the liar paradox. Consider the sentence: ’This sentence is
not true’. There are two options: either the sentence is true or it is not. Suppose
it is true. Then what it says is the case. Hence the sentence is not true. Suppose,
on the other hand, it is not true. This is what it says. Hence the sentence is true.
In either case it is both true and not true.

Automated reasoning Paraconsistent logic is motivated not only by philosophical
considerations, but also by its applications and implications. One of the ap-
plications is automated reasoning (information processing) also called machine
learning. Consider a computer which stores a large amount of information. As
the computer stores information, it is also used to operate on it and, very im-
portantly, to infer from it. Now, it is very common for such knowledge base to
contain inconsistent information, because of mistakes by the data entry opera-
tors or because of multiple sourcing. This is certainly a problem for database
operations with theorem-provers, and so has drawn much attention from com-
puter scientists. Thus, some techniques for removing inconsistent information
have been investigated. Yet all have limited applicability, and, in any case, are
not guaranteed to produce consistency. (There is no algorithm for logical false-
hood.) Hence, even if measures are taken to dismiss of contradictions when
they are found, an underlying paraconsistent logic is desirable if hidden contra-
dictions are not to generate trivial answers to queries.

Belief revision As a part of artificial intelligence research field, belief revision is one
of the areas that have been more widely studied. Belief revision consists of
rationally revising bodies of belief when in the presence of new evidence. No-
toriously, people have inconsistent beliefs while they may even be rational in
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doing so. For example, there may be apparently overwhelming evidence for
both something and its negation. There may even be cases where it is in prin-
ciple impossible to eliminate such inconsistency. For example, consider the
’paradox of the preface’ as presented by the authors in [PT09]. A rational per-
son, after thorough research, writes a book in which they claim A1, . . . , An. But
they are also aware that no book of any complexity contains only truths. So
they rationally believe ¬(A1 ∧ . . . ∧ An) too. Hence, principles of rational be-
lief revision must work on inconsistent sets of beliefs. Standard accounts of
belief revision, e.g., that of Gärdenfors et al. [Gär90], all fail to do this, since
they are based on classical logic. A more adequate account is one based on a
paraconsistent logic.

Nelson’s logic N−

N− is the weak, paraconsistent version of Nelson’s constructive logic with strong nega-
tion. Formulas of N− are built-up in the usual way using the logical connectives for
atoms: ∧, ∨,→, ∼, standing respectively for conjunction, disjunction, implication and
strong negation. The only rule of inference for N− is modus ponens and the axioms
are the axiom schemata of positive logic:

• P1. α→ (β→ α)

• P2. (α ∧ β)→ α

• P3. (α→(β→ γ))→((α→ β)→(α→ γ))

• P4. (α ∧ β)→ β

• P5. (α→ β)→((α→ γ)→(α→(β ∧ γ)))

• P6. α→(α ∨ β)

• P7. (α→ γ)→ ((β→ γ)→ ((α ∨ β)→ γ))

• P8. β→ (α ∨ β)

plus the following axiom schemata involving strong negation taken from the calculus
of Vorob’ev (where ′α↔ β′ abbreviates (α→ β) ∧ (β→ α)):

• N1. ∼ (α→ β)↔ α∧ ∼ β N2. ∼(α ∧ β)↔∼ α∨ ∼ β

• N3. ∼(α ∨ β)↔∼ α∧ ∼ β N4. ∼∼ α↔ α

Paraconsistent answer-set (PAS) [SI95]

The Paraconsistent answer-set semantic (PAS) is a straightforward extension of the
answer-set semantic. In fact, we can see PAS as a version of answer-sets where con-
tradictory interpretations are admitted in the evaluation of the semantics. PAS is not
defined for every extended logic programs, and cannot be used to determine the infor-
mation depending on contradictions.
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In [SI95] Sakama and Inoue defined paraconsistent answer-sets5 for extended dis-
junctive logic programs by permitting contradictory interpretations to be taken into
account when determining the answer-sets. In order to achieve this aim, the author
presented the notion of satisfaction (denoted by �), which is inductively defined as
follows:

Definition 1.7 ([SI95](Sakama & Inoue, 1995)) Let P be an extended disjunctive logic
program and I be an extended interpretation. Then

1. For an objective literal L

(a) I � L if and only if L ∈ I

(b) I � not L if and only if L < I

2. For any disjunction of objective literals F = L1 ∨ . . . ∨ Ln, I � F if and only if
I � Li for some i(1 ≤ i ≤ n).

3. For any conjunction of objective literals G = L1 ∧ . . . ∧ Ln, I � F if and only if
I � Li for every i(1 ≤ i ≤ n).

4. For any rule r = L1 ∨ . . . ∨ Ll ← Ll+1 ∧ . . . ∧ Lm ∧ not Lm+1 ∧ . . . ∧ not Ln, I � r
if and only if I � L1 ∨ . . . ∨ Ll or I 6|= Ll+1 ∧ . . . ∧ Lm ∧ not Lm+1 ∧ . . . ∧ not Ln.

We say I is a model of P if and only if I satisfies every rule of P.

An interpretation I settles the set of true objective literals. If L ∈ I then the objec-
tive literal L has the truth value true; otherwise its truth value is false. As expected, if
an objective literal L is false, then not L is true.

For extended interpretations, the so-called knowledge ordering collapses into the
ordinary subset ordering inclusion, i.e. given the extended interpretations I and J,
I ⊆k J if and only if I ⊆ J. We say I <k J when I ⊆k J but I , J. A model I of P is
p-minimal if there is no model J of P such that J <k I.

The paraconsistent stable model semantics of an extended disjunctive logic pro-
gram is defined as follows.

Definition 1.8 ([SI95](Sakama & Inoue, 1995)) Let P be an extended disjunctive logic
program and I be an extended interpretation. The program division P

I is an extended
positive disjunctive logic program such that L1 ∨ . . . ∨ Ll ← Ll+1 ∧ . . . ∧ Lm ∈

P
I if

and only if there is a rule L1 ∨ . . .∨ Ll ← Ll+1 ∧ . . .∧ Lm ∧ notLm+1 ∧ . . .∧ notLn ∈ P
such that {Lm+1, . . . , Ln} ∩ I = ∅. So I is a paraconsistent answer-set (PAS) of P if I is
a p-minimal model of P

I .

After all, the notion of PAS reduces to that of p-minimal models in extended pos-
itive disjunctive logic programs, as illustrated in the next example:

Example 1.5 (Sakama & Inoue, 1995) Let P1 be the extended logic program {a ∨
b,¬a,¬b, c← notd}. Then P1 has two PASs {a,¬a,¬b, c} and {b,¬a,¬b, c}.

5In their original work [SI95], the authors prefer the term paraconsistent stable models.
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A PAS I is contradictory if {L,¬L} ⊆ I for at least one L ∈ HBP. In the program P1
of Example 1.5, both PAS are contradictory. Like with answer-sets, it is also possible
that a program has no PAS:

Example 1.6 (Sakama & Inoue, 1995) The extended logic program P2 = {a ← nota.
b.} has no PAS.

Routley Semantics

Routley semantics for N− The main idea of Routley semantics is that the validity
of negation ∼ α at a world w is equivalent to the falsity of α not at w as in classi-
cal logic but at some adjacent world w∗1. To define Routley semantics for N− we
have additionally to divide the set of possible worlds into parts, unstarred and starred
worlds.

A Routley model for N− is a quadruple M = 〈W∪W∗,⊆, ∗,V〉 such that: W∪W∗ is
a non-empty set (of worlds), W ∩W∗ = ∅, ⊆ is a partial ordering on W, ∗ is a bijection
on W ∪ W∗, ∗(W) = W∗, and V is a valuation function from Atoms × W → {0, 1}
satisfying the following conditions:

1. u ⊆ w⇒ w∗ ⊆ u∗,

2. w = w∗∗,

3. V(p, u) = 1 and u ⊆ w imply V(p, w) = 1.

V is extended to a valuation on all formulas via the following conditions:

• V(ϕ ∧ (∨)ψ, w) = 1 if and only if V(ϕ, w) = 1 and (or) V(ψ, w) = 1

• V(∼ ϕ, w) = 1 if and only if V(ϕ, w∗) = 0

For implication, one distinguishes between starred and unstarred worlds as follows.

• For w ∈ W, V(ϕ → ψ, w) = 1 if and only if for every w′ ∈ W such that w ⊆ w′,
V(ϕ, w′) = 1⇒ V(ψ, w′) = 1.

• For w ∈ W∗, V(ϕ→ ψ, w) = 1 if and only if V(ϕ,W∗) = 1⇒ V(ψ, w) = 1.

A proposition ϕ is said to be satisfiable in a Routley model M = 〈W,⊆, ∗,V〉, if
V(ϕ, v) = 1, where v is an arbitrarily selected unstarred element of W. A formula
is valid if it is true in every interpretation. It is easy to prove by induction that condi-
tion 3 above holds for any formula ϕ, ie V(ϕ, u) = 1 plus u ⊆ w⇒ V(ϕ, w) = 1.

Defining/characterizing Routley models in terms of program reducts: SE-models,
defined by H. Turner, serve as an analogy on how we want to define Routley models
without referring to (Kripke-like) entailment. In [OP05], the proof sketch for Propo-
sition 3 gives us a hint at how this can be done.

For any Routley here-and-there model (H,T), by Theorem 1 of [ADP05], (H,T)
is a model of a disjunctive program P if and only if for the sets J = T

⋃
T ∗ and

I = H
⋃

H∗, J is a model of P and I is a model of the reduct PJ .
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Summary on Routley models In [OP05], the authors have shown how both ordi-
nary and paraconsistent answer-sets can be captured via possible worlds models due to
Routley [Rou74]. In the case of PAS, the underlying logic, N9, has been identified ax-
iomatically and algebraically, and an important metalogical property - interpolation -
has been proved. A consequence of their analysis is that PAS can easily be defined for
arbitrary theories. An interesting feature to emerge is that the underlying logic of PAS,
although paraconsistent, still extends intuitionistic inference (unlike say well-founded
semantics), and is still a conservative extension of the logic of here-and-there.

semi-stable Semantics

Sakama and Inoue have introduced the notion of semi-stable models, which are para-
consistent for incoherent programs, in [SI95]. We will cite this article extensively
throughout this thesis and particularly in this introduction to the semi-stable Seman-
tics.

Some important notions must be introduced before we can explain the concept
of semi-stable models. First, the definition of the epistemic transformation of non
positive programs presented in Definition 3.2 of [SI95]:

Definition 1.9 (Epistemic Transformation) Let P be an extended disjunctive pro-
gram. Then its epistemic transformation is defined as the positive extended disjunc-
tive program Pκ obtained from P by replacing each clause (of the following form) in
P containing default negation:

L1 ∨ . . . ∨ Ll ← Ll+1 ∧ . . . ∧ Lm ∧ not Lm+1 ∧ . . . ∧ not Ln(n , n)

with the following not-free clauses in P:

(1) λ1 ∨ . . . ∨ λl ∨ KLm+1 ∨ . . . ∨ KLn ← Ll+1 ∧ . . . ∧ Lm,

(2) Li ← λi for i = 1, . . . , l,

(3) ← λi ∧ L j for i = 1, . . . , l and j = m + 1, . . . , n,

(4) λi ← Li ∧ λk for i = 1, . . . , l and k = 1, . . . , l.

In particular, each integrity constraint containing default negation is transformed into

KLm+1 ∨ . . . ∨ KLn ← Ll+1 ∧ . . . ∧ Lm.

Note here that each not-free clause in P is included in Pκ as it is.

Let Iκ be an interpretation of Pκ. Then Iκ is called canonical if KL ∈ Iκ implies
L ∈ Iκ for any L ∈ LP. That is, in a canonical interpretation each believed literal has
a justification. Given a set of interpretations IPκ , let

ob jc(IPκ ) = {Iκ ∩ LP | Iκ ∈ IPκ and Iκ is canonical }.
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Another important notion is the one of maximally canonical sets:
Let IPκ be a set of interpretations of a program Pκ obtained by the epistemic

transformation of an extended disjunctive program P. Then an interpretation Iκ ∈ IPκ

is said maximally canonical if there is no interpretation Jκ ∈ IPκ such that {KL |
KL ∈ Jκ and L < Jκ} ⊂ {KL | KL ∈ Iκ and L < Iκ}. That is, a maximally canonical
interpretation is an interpretation such that the canonical condition is satisfied as much
as possible. In particular, if IPκ contains an interpretation Iκ which is canonical, it is
also maximally canonical. Now, let

ob jκmc(IPκ ) = {Iκ ∩ LPκ | Iκ ∈ IPκ and Iκ is maximally canonical}.

Theorem 1.7 ([SI95]) Let P be an extended disjunctive program. Then, any interpre-
tation included in S S T (P) = ob jκmc(min(µ(τPκ ↑ ω))) is a model of P.

This way, intuitively, it is possible to define one of the values in the nine-valued
logic above for each literal L in a set L in terms of L, ¬L, KL and ¬KL. Recall that
not L corresponds to ¬KL.

Accordingly, if the logic N9 underlying the Routley models and the logic IX used
to capture the semi-stable models are interchangeable, we can use the results applica-
ble to either.

Sakama and Inoue introduced a new fixpoint semantics of positive extended dis-
junctive programs. In contrast to logic programs containing only definite information,
a positive extended disjunctive program has multiple p-minimal models in general. In
order to characterize such non-deterministic behavior of disjunctive programs, they
first introduced a closure operator which acts over the lattice of sets of Herbrand in-
terpretations 22L

P

.

Definition 1.10 ([SI95]) Let P be a positive extended disjunctive program and I be a
set of interpretations. Then, a mapping τP : 22L

P

→ 22L
P

is defined as:

τP(I) =
⋃

I∈I τP(I)

where the mapping TP : 2L
P
→ 22L

P

is defined as follows:

TP(I) =



∅, if {L1, . . . , Lm} ⊆ I for some ground integrity constraint
← L1 ∧ . . . ∧ Lm from P;

{J | for each ground clause
Ci : L1 ∨ . . . ∨ Lli ← Lli+1 ∧ . . . ∧ Lmi

from P such that
{Lli+1, . . . , Lmi } ⊆ I, J = I ∪

⋃
Ci
{L j}(1 ≤ j ≤ li)}, otherwise.

Thus, TP(I) is the set of interpretations J’s such that for each clause Ci whose
body is satisfied by I, I is expanded into J by adding one disjunct L j from the heads
of every such Ci. In particular, if I does not satisfy an integrity constraint from P, I is
removed in TP(I).

Example 1.8 ([SI95]) Let P be the program:
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{a ∨ b← c, ¬ d ← c, c←, ← a ∧ b}.

Then,

TP({c}) = {{c,¬d, a}, {c,¬d, b}} and
TP({{c,¬d, a}, {c,¬d, b}}) = {{c,¬d, a}, {c,¬d, b}, {c,¬d, a, b}}.

Definition 1.11 ([SI95]) The ordinal powers of τP are defined as follows:

τP ↑ 0 = {∅},
τP ↑ n + 1 = τP(τP ↑ n),
τP ↑ ω = ∪α<ω ∩α≤n<ω τP ↑ n,

where n is a successor ordinal and ω is a limit ordinal.

The above definition means that at the limit ordinal ω the closure retains interpre-
tations which are persistent in the preceding iterations. That is, for any interpretation
I in τP ↑ ω, there is an ordinal α smaller than ω such that, for every n(α ≤ n < ω), I is
included in τP ↑ n. Such a closure definition is also used in other works for computing
stable models of normal logic programs.

We now refer the reader to the properties (stated as lemmas, corollaries and theo-
rems) from this fixpoint operator that are presented in the remaining parts of Section
2.2 of [SI95].

Underlying logic and further definitions: There is an extended disjunctive pro-
gram which has no p-stable model but still contains useful information. For instance,
in Example 1.9, P has no p-stable model but it seems reasonable to conclude the truth
of b.

Example 1.9 The program

P = {a← not a. b←}

has no p-stable model.

Roughly speaking, incoherency arises when a literal is implied by its default negation
in a program. Since incoherency is viewed as a kind of inconsistency, it is desirable
to provide a framework which is paraconsistent for such incoherency. In this section,
we introduce the notion of semi-stable models which is paraconsistent for incoherent
programs.

To present incoherent facts, we first introduce five extra truth values bt, bf, b>,
tcb, and fcb which respectively denote believed true, believed false, believed con-
tradictory, true with contradictory belief and false with contradictory belief. These
values together with the values in IV constitute a lattice of nine-valued logic IX such
that ⊥ � bx � x � xcb � > and bx � b> � xcb for x ∈ {t, f}.

Let LPκ = LP ∪ {KL | L ∈ LP} and Iκ be a subset of LκP. Then, an interpretation
under the logic IX is defined as a function Iκ : LPκ → IX such that for each literal
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Figure 1.2: Logic IX

L ∈ LP,

I′κ(L) = lub{x | x = t if L ∈ Iκ,

x = f if ¬L ∈ Iκ,

x = bt if KL ∈ Iκ,

x = bf if K¬L ∈ Iκ,

x = ⊥ otherwise }

Thus, Iκ(L) = b> if and only if both KL ∈ Iκ and K¬L ∈ Iκ; Iκ(L) = f cb if and
only if both KL ∈ Iκ and ¬L ∈ Iκ; Iκ(L) = tcb if and only if both K¬L ∈ Iκ and L ∈ Iκ,
and so on. Note that Iκ(L) = bt if and only if Iκ(¬L) = b f , Iκ(L) = b> if and only if
Iκ(¬L) = b>, and Iκ(L) = tcb if and only if Iκ(¬L) = f cb.

The intuitive reading of each newly introduced truth value is that if Iκ(L) = bt, Iκ

contains a belief KL without its justification L. On the other hand, if Iκ(L) = tcb, Iκ

contains a fact L with its opposite belief K¬L. Under this logic, satisfaction of literals
and default negation is defined in the same way as Section 3 of [SI95], i.e., I |= L if
and only if t 6|= I(L); I |= ¬L if and only if f 6|= I(L); I |= not L if and only if I(L) 6|= f ;
and I |= not¬L if and only if I(L) 6|= t. Satisfaction of clauses is also defined as before.

According to the above definition, when I(L) = bt or I(L) = b>, it holds that I 6|= L
and I 6|= not L. This means when L is believed true, it is too weak to conclude the truth
of L, but enough to reject not L.6 Else when I(L) = tcb, I |= L while I 6|= not ¬L. This
means when L is true with contradictory belief, I concludes the truth of L but rejects
not ¬L in the presence of its opposite belief K¬L.

6Recall that not L corresponds to ¬KL.
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Next, let IPκ be a set of interpretations of a program Pκ obtained by the epistemic
transformation of an extended disjunctive program P. Then an interpretation Iκ ∈ IPκ

is said maximally canonical if there is no interpretation Jκ ∈ IPκ such that {KL |
KL ∈ Jκ and L < Jκ} ⊂ {KL | KL ∈ Iκ and L < Iκ}. That is, a maximally canonical
interpretation is an interpretation such that the canonical condition is satisfied as much
as possible. In particular, if IPκ contains an interpretation Iκ which is canonical, it is
also maximally canonical. Now, let

ob jκmc(IPκ ) = {Iκ ∩ LPκ | Iκ ∈ IPκ and Iκ is maximally canonical}.

Next, they introduce their notation for the global minimization operation (min)
and for the the fixpoint operator τ iterated n times (µ(τ ↑ n)).

Theorem 1.10 (Semi-stable model theorem [SI95, Theorem 4.4] ) Let P be an ex-
tended disjunctive program. Then, any interpretation included in

SST(P) = ob jκmc(min(µ(τkappa
P ↑ ω)))

is a model of P.

We call models S S T (P) the semi-stable models of P. The notion of semi-stable mod-
els can be reduced to the one of p-stable models in coherent programs.

Corollary 1.11 (p-stable model corollary [SI95, Corollary 4.5]) Let P be a coher-
ent program. Then its semi-stable models coincide with the p-stable models.

The existence of semi-stable models is guaranteed for any program which has
models. Then, Theorem 4.6 in [SI95] states: When a program has a model, it has a
semi-stable model. Thus incoherent programs get the meaning by considering semi-
stable models. We now refer the reader to the examples in Subsection 2.3 and in
particular to Example 1.12 where we present the Barber’s paradox and its models
according to the semi-stable semantics.

Example 1.12 (The Barber’s Paradox) P = {shaves(noel, X) ← not shaves(X, X).
mayor(casanova).} 7

The models for the grounded program are:

• (m(c),m(c)s(c, c)s(n, n))

• (m(c)s(c, c),m(c)s(c, c)s(n, n))

• (m(c)s(n, n),m(c)s(c, c)s(n, n))

• (m(c)s(c, c)s(n, n),m(c)s(c, c)s(n, n))

• (m(c)s(n, c),m(c)s(n, n)s(n, c)) S S T Model {m(c),Ks(n, n), s(n, c)}

• (m(c)s(n, n)s(n, c),m(c)s(n, n)s(n, c))

7 We will be using predicates s and m for Shave and Mayor, constants n and c for Noel and Casanova.
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Note that the above program has neither standard two-valued stable models nor
answer-sets.

As such, after performing the epistemic transformation described above to a pro-
gram with default negation, therefore transforming it in a positive program, we can
evaluate it with the usual paraconsistent stable model semantics. In fact the fixed
point operator min(µ(τP′κ ↑ ω)), where the minimization is performed in the end of
the iterative process, is equivalent to the way the minimality is assured in the usual
fixed point operator for stable models presented in Definition 1.5.

This is so because the transformed program is a positive disjunctive program and
the authors state that: for positive disjunctive programs, their fixpoint construction
characterizes Minker’s minimal model semantics. Let MMP be the set of all minimal
models of a positive disjunctive program P. Then, their Theorem 2.9 says:

Theorem 1.13 ([SI95]) Let P be a positive disjunctive program. Then,

• MMP = min(µ(τP ↑ ω)).

Because of this and because the minimal models of a positive disjunctive program are
also its answer-sets, we can add that AS ′κP = MM′κP = min(µ(τ′κP ↑ ω)).
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CHAPTER 2
Contributions

2.1 Dealing with default and strong negation

Introduction

In [Pea08], David Pearce draws a very comprehensive introduction to the problem of
multiple negations in logic programming which we adapt in this section.

After the first presentation of their stable model semantics, Michael Gelfond and
Vladimir Lifschitz contributed with a further paper to the 1990 ICLP conference
[GL90]. This paper introduced for the first time the answer-set nomenclature. These
authors observed that, besides the typical logic programming negation-as-failure or
negation-by-default operators, it would be very useful to have an additional form of
negation that could directly correspond to falsity. They named this form of negation
’classical’ negation which might have seemed appropriate at first glance but turned
out to be slightly misleading after closer examining. Several fundamental properties
of classical logic like the excluded middle, contraposition and modus tollens did not
hold for this operator. The notion of strong negation was a much closer logical con-
ceptual fit.

Rather than specifying a particular logic containing strong negation as one of its
operators, it may, at first, seem odd to speak of an axiomatic system for strong nega-
tion. In fact some axiomatic systems, like the Vorob’ev axioms, contain a very inter-
esting property of allowing one to add them to any super-intuitionistic logic, including
classical logic, and still obtaining a conservative extension of that logic. Furthermore
many key properties of a logic are preserved when passing to its least strong negation
extension.

Vorob’ev managed to establish in this way an important property of strong nega-
tion. The same property became, many years later, a design feature of the way the
second negation operator was introduced into answer-set semantics: the new sort of
negation was allowed only to stand directly in front of an atom. This convention was
maintained throughout successive extensions of a programs’ syntax, from normal pro-
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grams, through to disjunctive programs and even the more recent concept of programs
with nested expressions. Hence, in each case the only difference between a program
rule with or without strong negation was that in the first case the basic elements were,
instead of atoms, literals.1 This convention allowed for a very simple stable model
definition extension and an easy proof of some of its important properties.

As soon as someone studying answer-set programming encounters this new sec-
ond operator, strong negation, then one learns a reduction technique that shows how
answer-sets can be characterized in terms of the stable models of a program without
strong negation. This technique for reduction consists of introducing a new atom or
predicate symbol for each strongly negated literal.

An earlier version of this idea has its roots in Nelson’s constructive logic as well.
There, one associates with any formula ψ of the original language a strong negation-
free formula, say ψ′. If T is any theory in the language of constructive logic, set
T ′ = {ψ′ : ψ ∈ T }. Let S stand for the set of all formulas of the form P′(x) → ¬P(x).
Then this early technique establishes that

T `N ψ if and only if T ′ ∪ S `I ψ
′ (1)

where `N (resp. `I ) stands for inference in Nelson’s logic N (respectively intuitionistic
predicate logic I). It is easy to see that (1) continues to hold if we replace intuitionistic
inference by that of here-and-there logic and replace N by the least strong negation
extension of here-and-there. By the method mentioned before, one can quickly derive
the main property of Gelfond and Lifschitz’s second negation, established in [GL91b]
in which the answer-sets of T can be obtained from the answer-sets or stable models
of T ′, by translating the primed atoms back into strongly negated literals.

As a conclusion, a very positive aspect of this technique (and one of great impor-
tance to us) is its generality: since it works for arbitrary theories it covers the case of
answer-sets for any syntactical class of logic program.

Contribution towards dealing with strong negation

Sakama and Inoue dealt with default negation by means of the epistemic transforma-
tion described in 1.9. However, we must still deal with strong negation. As suggested
previously, we can do that by transforming negated literals into their primed version:

Definition 2.1 (Prime Transformation) Let l be a literal, then we define its prime
transformation as:

l′ =

{
if l = q then l′ = q;
if l = ¬q then l′ = q′.

Now, let L be a set of literals. Then its prime transformation is defined as the set of
literals L′ obtained from L by applying the prime transformation to every literal in L.

L′ = {l′ | l ∈ L}

1Here a literal should be taken to be an atom or its strong negation.
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Let now P be an extended disjunctive program. Then its prime transformation is
defined as the disjunctive program P′ obtained from P by replacing every literal by its
prime transformation in each clause contained in P.

This transformation will allow us to compute models containing pairs of the same
atom in their unprimed L and primed L′ (instead of ¬L) forms. Those models would
otherwise be inconsistent. This notion has a direct translation into Routley’s starred
worlds being that the H and T (H∗ and T ∗) correspond to, respectively, known and
believed literals. In this case we define a seven-valued interpretation for this logic as
follows:

Definition 2.2 (Interpretation I′κ) An interpretation I′κ is defined as a function I′κ :
LP′κ → VII such that for each literal L ∈ LP,

I′κ(L) = lub{x | x = t if L ∈ I′κ,

x = f if L′ ∈ I′κ,

x = bt if KL ∈ I′κ and L < I′κ,

x = bf if KL′ ∈ I′κ and L′ < I′κ,

x = b> if both KL ∈ I′κ and K¬L ∈ I′κ,

x = > if both L and L′ ∈ I′κ,

x = ⊥ otherwise. }

Notice that, in the original definition of semi-stable models, Sakama and Inoue
introduced the logic IX that we refer in Figure 1.2 as the underlying logic of semi-
stable models. In our approach, since we eliminate strong negation with the prime
transformation, we can simplify the underlying logic without loss of generality with
this logic VII.

2.2 Model Transformations / Embeddings

In this section, we provide several embeddings as well as some results that will be
necessary for the next section. From these definitions and lemmas, we highlight
Proposition 2.3 where we establish an equivalence between semi-stable models and
maximally canonical answer-sets and Lemma 2.5 where a here-and-there and Routley
models correspondence is presented.

semi-stable model semantics equivalences

Definition 2.3 (Constructing an HT Model from I′κ) Let P′κ be a program obtained
from P after preforming both the prime and the epistemic transformations. To an in-
terpretation I′κ of P′κ we define its equivalent here-and-there model HTI′κ (P′κ) as a
pair (H,T ) such that:

• H = {L | I′κ(L) = > ∨ I′κ(L) = t ∨I′κ(L) = f }

• T = {L | I′κ(L) , ⊥}
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The fixpoint semantics that we will be using to calculate both semi-stable models
and answer-sets reuses the definition presented in [SI95] and characterizes operational
aspects of logic programs and is also implemented using bottom-up model generation
techniques as presented in [IKH92].

Lemma 2.1 (Fixpoint equivalence) Let Pκ be a program obtained after applying the
epistemic transformation K in Definition 1.9 to a program P and P′κ be its prime trans-
formation according to Definition 2.1. Then, the results of the fixpoint calculations are
semantically equivalent µ(τPκ ↑ w)′ = µ(τP′κ ↑ w).

Proof Intuitively, S ∈ µ(τPκ ↑ w) if and only if S ′ ∈ µ(τP′κ ↑ w). We can show this by
induction:

Basis: For S 0 ∈ µ(τPκ ↑ 0), S 0 = {∅} and also S ′0 = {∅}

Hypothesis: Assume that if S n ∈ µ(τPκ ↑ n), then S ′n ∈ µ(τP′κ ↑ n).

Using the hypothesis,

S n+1 ∈ µ(τPκ ↑ n) ∪ τPκn+1
and

S ′n+1 ∈ µ(τP′κ ↑ n) ∪ τP′κn+1
are equivalent iff

τ′Pκn+1
= τP′κn+1

.

For any S n ∈ µ(τPκ ↑ n), considering S n+1 such that S n+1 is a minimal set of
head atoms h from Pκ such that for each r ∈ Pκ of the form a1 ∧ . . . ∧ an ←

b1, . . . , be, not be+1, . . . , not nm where:

b1, . . . , be ∈ S n and
be+1, . . . , bm < S n

there is a h ∈ S n+1.

Then r′ ∈ P′κ and by hypothesis:

b′1, . . . , b
′
e ∈ S ′n and

be+1, . . . , bm < S ′n

Therefore, ∃h′ such that h′ ∈ S ′n+1. S n+1 is a minimal set of atoms h in the head
of the rule r such that Body(r) � S n and S ′n+1 is a minimal set of atoms h′ in the
head of the rule r′ such that Body(r′) � S ′n
So, if l is a literal derived by such rule r, then l′ is an atom derived by rule r′:

(∀¬L ∈ τPκn+1
→ L′ ∈ τPκ′n+1

) ∧ (∀L ∈ τPκn+1
→ L ∈ τPκ′n+1

).

�

Lemma 2.2 (AS(P′κ) = min(µ(τP′κ ↑ w))) Let P′κ be a program obtained after trans-
forming program P as in Definitions 1.9 and 2.1. Then, the minimal sets of literals
calculated with the fixpoint operator µ(τP′κ ↑ w) will be the same as its answer-sets.
More formally: AS (P′κ) = min(µ(τP′κ ↑ w)).
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Proof Let’s start by noticing that given an arbitrary extended disjunctive program
P, its primed epistemic transformation P′κ will, by definition, be positive - without
default negation - and strong negation free.

Furthermore, definition 2.2 in [SI95] deals with positive extended disjunctive pro-
grams where the literals can be either strongly negated or not. So, in this case, strong
negation is dealt with syntactically without any explicit semantics which is provided a
posteriori in Definition 2.2. Now, we have AS (P′κ) = min(µ(τP′κ ↑ w)) if and only if:

(1) There is a model S ∈ AS (P′κ) implies that there is a model S ∈ min(µ(τP′κ ↑ w))

(2) There is a model S ∈ min(µ(τP′κ ↑ w)) implies that there is a model S ∈ AS (P′κ)

(1) Let’s start by assuming a set of literals I such that AS (P′κ) = I. Since after the
epistemic transformation is performed we obtain a positive and strong negation
free disjunctive program such that I is minimal among the models of the reduct
P
′κI

, then the minimal set of interpretations obtained with the operator µ(τP′κ ↑

w) will also contain I. This is the case because the usual fixpoint semantics
used to characterize answer-sets that we pointed in Definition 1.5 ([LRS97])
turns out to be equivalent to the one presented in 1.10 ([SI95]) after selecting
the interpretations that are minimal2.

So, (1) holds.

(2) Let’s now assume an interpretation Iκ = min(µ(τPκ ↑ w)).3 The prime transfor-
mation we introduced is merely a syntactical transformation so each maximally
canonical interpretation I′κ included in min(µ(τP′κ ↑ w)) is also a model of P.

To prove this, for each transformed clauses (1) and (2), {Ll+1, . . . , Lm} ⊆ I′κ

implies either Li ∈ I′κ(1 ≤ i ≤ l) or KL j ∈ I′κ(m + 1 ≤ j ≤ n). In case of
Li ∈ I′κ, I′κ satisfies the corresponding clause (2) in P. In case of KL j ∈ I′κ,
when L j ∈ I′κ, I′κ satisfies the clause (2) in P. So, I′κ satisfies the clause (2) in
P. Else when L j < Iκ

′

,

(i) if L′j < I′κ, the truth value of L j is bt, then I′κ 6|= not L j.

(ii) Else if ¬L j ∈ I′κ, the truth value of L j becomes fcb, then I′κ 6|= not L j.

Therefore, I′κ satisfies each clause in P. As follows, I′κ∩LP′κ , which is obtained
from I′κ by removing every λi, is also a model of P.

Let’s now assume that I′κ is not a minimal model of P′κ. Then, there will be
a subset I∗, such that I∗ ⊂ I′κ, that is a model of P′κ. But, because of the
minimality condition used to calculate interpretation I′κ, this is not possible

2Notice that both operators are non deterministic in a sense that they result in multiple sets of atoms.
The one for semi-stable models is reported in [SI95] as being equivalent to the one used to calculate answer-
sets if the program in not disjunctive. As for the disjunctive case, the selection of the atoms to include
in each model is virtually the same except for the minimality condition that is enforced step-by-step in
[LRS97] and not in [SI95]. So, the fixpoint operator presented for semi-stable models potentially produces
multiple sets of atoms from which some are not minimal. Selecting the minimal one leaves us with the
same sets as with the answer-sets fixpoint operator.

3The proof of Theorem 4.4 in [SI95] is very similar to what we need.
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and as such I′κ is a minimal model of P′κ. This is the case because the TP

operator in Definition 1.10 does not encode a minimization in each step, this
minimization is performed after the fixpoint is reached.

�

Proposition 2.3 (Semi-stable models as maximally canonical answer-sets) Let P′κ

be a program obtained after applying the epistemic and the prime transformations to
a program P as in Definitions 1.9 and 2.1. Then, its answer-sets will coincide with the
semi-stable models of the same program Pκ′ after selecting the maximally canonical
interpretations ob j′κmc. That is, ob jκ

′

mc(AS (Pκ′ )) = S S T (P).

Proposition 2.3 follows trivially from Lemma 2.2 and from the modified definition of
S S T models as S S TP′κ = ob jκ

′

mc(min(µ(τPκ′ ↑ ω))).

Here-and-there and Routley models embeddings

Corollary 2.4 For any strong negation free program P, the starred worlds in its Rout-
ley models will be empty and so the validity of every ¬ free formulae will be defined
via unstarred worlds only. As such, for any strong negation free program P we have
that for a here-and-there model (H,T ) we will have a Routley model (H,∅,T,∅).

We must still introduce some definitions, that will allow us to make some crucial corre-
spondences, before arguing the equivalence between HT-models of a primed program
P′ and the Routley models of the original program P.

Definition 2.4 (RP(H, T, P′) Transformation) Let P′ be a primed disjunctive logic
program and (H,T ) a here-and-there interpretation of P′. We can construct a corre-
spondent Routley interpretation of P as follows:

RP(H,T, P′) = 〈{h | h ∈ H ∧ h ∈ LP}, {t | t ∈ T ∧ t ∈ LP}, {h | h′ ∈ H ∧ h′ ∈ LP′ }, {t |
t′ ∈ T ∧ t′ ∈ LP′ }〉.

Definition 2.5 (HTP′ (R, P) Transformation) Let P be a disjunctive logic program
and (Rh,Rt,Rh∗,Rt∗) be a Routley interpretation of P. Now let P′ be the program
obtained from P by applying the transformation in Definition 2.1. We can construct a
here-and-there interpretation of P′ as follows:

HT P′ (R, P) = 〈 Rh ∪ Rt∗′, Rt ∪ Rh∗′ 〉.

The next lemma follows from the previous definitions and the one of prime trans-
formation:

Lemma 2.5 (Here-and-there and Routley models correspondence) Let P′ be the
program obtained from P by applying the Prime transformation in Definition 2.1.
Then,

(a) If R is a Routley model of P there will be a here-and-there pair HT P′ (R, P) that is
a model of P′.
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(b) If (H,T ) is a here-and-there model of P′, then RP(H,T, P′) is a Routley model of
P.

Proof The Routley models for any program P and the here-and-there models for its
prime transformation P′ will be equivalent in a sense that the truth value for any
formula, modulo the prime transformation, will be the same.

The proof for this lemma is in fact very simple since this equivalence is based on a
syntactical transformation of the model’s representation. As such, the way the validity
of formulae is checked is accordingly equivalent. The starred and unstarred worlds
in the Routley model are merged, ’priming’ all the literals in the starred worlds as
presented in Definition 2.5.

(a) In order to prove this direction of the lemma, assume R = (J,K, J∗,K∗) is a Rout-
ley model of a program P. Towards a contradiction, assume that HT P′ (R, P) =

(H,T ) (where H = J ∪ J∗′ and T = K ∪ K∗′) is not an HT-model. Then:

1. T 6|= P′ implies that there is a rule r′ ∈ P′ such that T |= BodyP(r′) ∧ T 6|=
HeadP(r′). Now, consider the unprimed version of the same rule r ∈ P.
Then, by construction K ∪ K∗′ |= BodyP(r) ∧ K ∪ K∗′ 6|= HeadP(r) which
is contradictory to the assumption that R is a model of P.

2. 6|= P′
T

implies that there is a rule r′ ∈ P′
T

in the reduct of P according to
T , such that H |= BodyP(r′) ∧ H 6|= HeadP(r′).
This implies that given the unprimed version of the same rule r ∈ PK ,
J ∪ J∗′ |= Body(r) ∧ J ∪ J∗′ |= Body(r) ∧ J ∪ J∗′ 6|= Head(r) which
contradicts the assumption.

(b) As for the second direction, assume (H,T ) is an HT-model of P′, then T |= P′ ∧
H |= P′

T
. Now let a Routley model R such that RP(H,T, P′) = (J,K, J∗,K∗)

constructed from (H,T ) according to Definition 2.4, such that K ∪ K∗ |= P ∧
J ∪ J∗ |= PK∪K∗ .

1. Towards a contradiction, let’s assume K ∪ K∗ 6|= P then there is an r ∈ P
s.t. K ∪ K∗ |= BodyP(r) ∧ K ∪ K∗ 6|= HeadP(r). Now let’s take an r′ as in
Definition 2.1 such that: r′ ∈ P′ and T |= BodyP(r′) but H 6|= HeadP(r′).
This contradicts the assumption that (H,T) models P′.

2. Towards a contradiction, let’s assume J 6|= PK . Let r ∈ PK be a set of
literals such that J |= BodyP(r)∧ J 6|= HeadP(r). Now consider an r′ such
that r′ ∈ P′, H |= BodyP′ (r′) and H 6|= HeadP′ (r′).
This contradicts the assumption because this way H 6|= P′

T
.

�

By using Lemma 2.5, we get HT-models with both primed and unprimed literals.
The validity of any formulae can now be defined in the usual way after matching the
unprimed and the primed literals. We present in Example 2.6 a simple illustration of
this operation:

Example 2.6 R({a}, {b, c}, {a}, {b}) = HT ({a, b′}, {a, b′, c′})
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Where, as expected, in both cases a = t, b = f, c = bf.

Let’s now introduce a relaxed notion of here-and-there interpretations that we will
call semi-stable here-and-there interpretations (SHT):4

Definition 2.6 (Semi-stable here-and-there interpretations and models (SHT)) We
call any pair (H,T ) of interpretations over LP′ an semi-stable here-and-there inter-
pretation (SHT-interpretation).

We then define SHT-models as SHT-interpretations such that:

(a) H |= P′T and

(b) if H ∩ Body−(r) , ∅ and H |= Body+(r), then T ∩ Body−(r) , ∅, for any rule
r ∈ P′.

Hence, SHT(P) is the set of semi-stable here-and-there models of P.

With these semantic structures, we will be able characterize SST-models exactly
(i.e., there will be a one-to-one correspondence between SHTand SST models). Let’s
start by defining some syntactical transformations between such models.

Definition 2.7 (Transformation Yκ) Given an SHT-interpretation (H,T ) we define a
corresponding interpretation YK(H,T ) over the language L′κ as

YK(H,T ) = H ∪ {KL | L ∈ T }

and a corresponding interpretation Yκ(H,T ) over L′κ (i.e., the ”epistemic language”
including lambdas) as

Yκ(H,T ) = YK(H,T ) ∪ {λr,i | Body−(r) , ∅, Li ∈ H, H |= Body+(r),
(H ∪ T ) ∩ Body−(r) = ∅}

We will use simply the implicit notations YK and Yκ if both sets H and T from (H,T )
are understood.

Intuitively, the set of believed literals introduced in the previous definition will
contain every literal that belongs to the set T but not to H. It will also contain the
minimum sets of literals such that if there is a rule with default negated literals in its
body, at least one of them will be included in previously mentioned set.

The complete Yκ set will be formed by the set of believed literals together with all
literals in H and the lambda literals λr,i such that Li is the i-th literal in the head of rule
r, L belongs to H and T models the negative part of the rule’s body which, in turn,
cannot be empty.

Definition 2.8 (Transformation SHTY(Y)) Given an interpretation YK over L′κ, re-
spectively an interpretation Yκ over L′κ, a corresponding SHT-interpretation is ob-
tained by

4It is not required for T to be a model of P′
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H = {L ∈ LP′ | L ∈ YK}

and

T = {L ∈ LP′ | KL ∈ YK},

where YK is the restriction to LK in case of a given interpretation over L′κ (symboli-
cally, YK = Yκ

LK ).

Lemma 2.7 (Yκ |= P′κ ⇔ (H, T) ∈ SHT(P)) If (H,T ) is an SHT-model of P, then Yκ

is a model of P′κ.
Conversely, if Yκ is a model of P′κ, then (H,T ) is an SHT-model of P.

Proof (⇒) If (H,T ) is an SHT-model of P, then Yκ is a model of P′κ.

Towards contradiction assume the contrary. For a rule r:

L1 ∨ . . . ∨ Ll ← Ll+1 ∧ . . . ∧ Lm ∧ not Lm+1 ∧ . . . ∧ not Ln(m , n)

Case (0): Body−(r) = ∅

Some rule r that in the original program P had no default negation (as
such was not transformed by the epistemic transformation) is not satisfied.
If this is the case then there is a literal L ∈ Head(r) s.t. L < Yκ which
implies that L < H by Definition 2.8. Now, r has no default negation so
P is the same as its reduct PT . Hence, H 6|= PT and (H,T ) is not an
SHT-model of P which contradicts the assumption.

Case (1): Yκ 6|= (1) λ1 ∨ . . . ∨ λl ∨ KLm+1 ∨ . . . ∨ KLn ← Ll+1 ∧ . . . ∧ Lm
5

Then, the following holds:

• Yκ |= Body+(r). Hence, H |= Body+(r) because Body+(r) contains
plain literals which are in YK and as such in H = {L | L ∈ YK}.
And,

• Yκ 6|= HeadLK (r). Hence, T ∩ Body−(r) = ∅ because the head of the
transformed rule HeadLK (r) contains believed literals KL such that
negated literals not L were in Body−(r) and because by construction
T = {L | KL ∈ YK}, T ∩ Body−(r) = ∅.

We conclude that rT in P′T
′

, and since H |= Body+(r) and (H,T ) is an
SHT-model, it follows that H |= Head(r).
Now consider two cases. First assume that (H ∪ T ) ∩ Body−(r) , ∅.
Then, H ∩ Body−(r) , ∅ follows, since we already know T ∩ Body−(r) =

∅. However, since (H,T ) is an SHT-model, this implies T ∩ Body−(r) ,
∅ which is a contradiction to condition b) of the SHT-models definition.
Therefore, (H ∪ T ) ∩ Body−(r) = ∅ has to hold.

5The notation (1) - (4) refers to the respective types of rules generated by the epistemic transformation
in Definition 1.9.
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Consequently λr,i ∈ Yκ for some i because by definition Yκ contains {λr,i}

such that Body−(r) is not empty, Li ∈ H, H |= Body+(r) and (H ∪ T ) ∩
Body−(r) = ∅ conditions which all hold.
But then, Yκ models the head of (1) which is a contradiction to our as-
sumption that Yκ 6|= (1) λ1 ∨ . . .∨ λl ∨ KLm+1 ∨ . . .∨ KLn ← Ll+1 ∧ . . .∧ Lm.

Case (2): Yκ 6|= (2) Li ← λi for i = 1, . . . , l
This implies that Yκ |= Body+(r) and Yκ 6|= HeadLK (r). By definition, the
set Body+(r) is formed by one literal λr,i. As such, λr,i ∈ Yκ which by con-
struction implies that Li ∈ H which makes Li be in Yκ. The set HeadLK (r)
is formed by a single literal Li so Yκ |= HeadLK (r) which contradicts our
assumption.

Case (3): Yκ 6|= (3)← λi ∧ L j for i = 1, . . . , l and j = m + 1, . . . , n
Then, λr,i and L j in Yκ for some i and j. The former implies (H ∪ T ) ∩
Body−(r) = ∅ because, by Definition 2.7, Yκ = YK ∪ {λr,i | Body−(r) , ∅,
Li ∈ H, H |= Body+(r), (H ∪ T ) ∩ Body−(r) = ∅} and thus if we have λr,i

then the conditions including (H ∪ T ) ∩ Body−(r) = ∅ must be fulfilled.
The latter implies H ∩ Body−(r) , ∅, and thus (H ∪ T ) ∩ Body−(r) , ∅.
We thus have a contradiction.

Case (4): Yκ 6|= (4) λi ← Li ∧ λk for i = 1, . . . , l and k = 1, . . . , l
Then, λr,k and Li in Yκ and λr,i < Yκ for some i and j.
Since λr,k ∈ Yκ, (H∪T )∩Body−(r) = ∅, Body−(r) , ∅, and H |= Body+(r)
hold by construction. Since Li ∈ Yκ, it also is the case that Li ∈ H.
Hence, again by construction, λr,i ∈ Yκ has to hold which once again is a
contradiction.

(⇐) If Yκ is a model of P′κ, then (H,T ) is an SHT-model.

Towards contradiction assume the contrary.

Case (a): H 6|= P′T
′

. Then, there is some r in P′T
′

, such that H 6|= rT . If
Body−(r) = ∅, then, since r is not transformed by the epistemic transfor-
mation, H 6|= r implies Yκ 6|= r which is a contradiction.
So let Body−(r) , ∅. Then, T ∩ Body−(r) = ∅ (since if some literal in
Body−(r) would also be in T , the reduct rT would be void), H |= Body+(r)
and H 6|= Head(r). It follows that Yκ |= Body+(r).
Moreover, Yκ 6|= HeadLK (r). We have this because the transformed rule of
type (1) will contain in its head the believed form of the literals that were
in the Body−(r). Now, because T ∩ Body−(r) = ∅ and remembering the
construction in Definition 2.7: YK = H∪{KL | L ∈ T } and Yκ contains YK

( plus some lambda literals), we have that Yκ will not contain the believed
literals it should in order to model the HeadLK (r).
In addition, Li < H for all i since H 6|= Head(r). Consequently, λr,i < Yκ

for all i. Thus, Yκ does not model the head of a rule of type (1) which is a
contradiction.
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Case (b): We have that:

• H |= Body+(r) because by construction Yκ contains all literals in H,
which implies that Yκ |= Body+(r).

• H ∩ Body−(r) , ∅, implies that Li ∈ Yκ for some i. This is so because
having all conditions satisfied in {λr,i | Body−(r) , ∅, Li ∈ H, H |=
Body+(r), (H ∪ T ) ∩ Body−(r) = ∅} (according to Definition 2.7 of
Yκ), this λ j will be in Yκ. Now, because of our assumption that this
set Yκ models P′κ L j has to be also Yκ in order to satisfy transformed
rules of type (2) which enforce that Li ← λi for i = 1, . . . , l.
And,

• T ∩ Body−(r) = ∅ for some r in P′ implies that Yκ 6|= HeadLK (r)
because, for rules of type (1), each literal in Body−(r) will appear
as a believed literal KL in the HeadLK (r). This is so because ,since
these KL literals appear (by Definition 2.7 in Yκ because the latter
contains {KL | L ∈ T }, having that L is not in Body−(r) means that
KL is not in Yκ.

Since H ∩ Body−(r) , ∅ implies (H ∪ T ) ∩ Body−(r) , ∅, we conclude
that λr,i < Yκ for all i. Thus, Yκ does not model the head of (1). Note
that H ∩ Body−(r) , ∅ implies H ∩ Body−(r) , ∅, i.e., (1) is in P′κ. This
presents a contradiction to our assumption.

This proves both directions of Lemma 2.7, i.e., that if (H,T ) is an SHT-model of P,
then Yκ is a model of P′κ and vice-versa. �

We will now establish a relation between answer-sets Yκ of P′κ and its correspond-
ing SHT-interpretation (H,T ) of P.

Lemma 2.8 If Yκ is an answer-set of P′κ, then the corresponding SHT-interpretation
(H,T ) is an SHT-model of P that satisfies condition (i).

(i) @H′ ⊂ H such that (H′,T ) ∈ SHT(P)

Proof If Yκ is an answer-set of P′κ, then the corresponding SHT-interpretation (H,T )
is an SHT-model that satisfies (i). Furthermore, if Yκ is an answer-set of P′κ then it is
a model hence, by Lemma 2.7, (H,T ) is an SHT-model.

Let now Ȳκ be the interpretation over Lκ obtained from (H,T ) by the construction
given by the construction given.

Ȳκ = Yκ: We first show that Ȳκ = Yκ. Obviously, Ȳκ and Yκ coincide on LK because
the construction in Definition 2.7: YK = H ∪ {KL | L ∈ T } and Yκ contains YK

( plus some lambda literals not in LK).

Suppose they differ, and first assume Ȳκ ⊂ Yκ. Since Ȳκ |= P′κ by Lemma 2.7,
this contradicts the assumption that Yκ is an answer-set of P′κ. Hence, assume
Ȳκ * Yκ such that both Ȳκ 1 Yκ and Ȳκ , Yκ. Then, there exists some λr,i ∈ Ȳκ,
such that λr,i < Yκ. This implies, by the construction given, that Body−(r) , ∅,
Li is in H, H |= Body+(r), and (H ∪ T ) ∩ Body−(r) = ∅.
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This further implies that Li ∈ Ȳκ, and thus Li ∈ Yκ, as well as Ȳκ |= Body+(r)
and hence Yκ |= Body+(r). (H ∪ T ) ∩ Body−(r) = ∅ implies T ∩ Body−(r) = ∅,
and hence Ȳκ 6|= Head(r)|LK . Consequently, also Yκ 6|= Head(r)|LK . Note that
since Body−(r) , ∅, there are negated literals in the body of the rule r as so it
is transformed by the epistemic transformation.

Now:

• First, assume that there is some k such that λr,k ∈ Yκ. Then, Li and λr,k in
Yκ and λr,i < Yκ implies that Yκ does not model (4), a contradiction.

• Therefore, there is no k such that λr,k ∈ Yκ. But then Yκ does not model
the head of (1), again a contradiction.

We thus conclude that neither Ȳκ ⊂ Yκ nor Ȳκ * Yκ can hold. This proves
Ȳκ = Yκ.

Contradiction: So for the remainder of the proof, we identify Yκ with the interpre-
tation over Lκ obtained from (H,T ). Towards a contradiction with the claim of
Lemma 2.8, assume that (H,T ) does not satisfy (i), i.e., there exists (H′,T ) such
that H′ ⊂ H and (H′,T ) is an SHT-model:

By Lemma 2.7, we know that then Y ′κ is a model of P′κ. We show that {λr,i | λr,i ∈

Y ′κ} ⊆ {λr,i | λr,i ∈ Yκ}. Assume that this is not the case. Then, there exists some
λr,i in Y ′κ, such that λr,i < Yκ. Then, by construction Body−(r) , ∅, Li is in H′,
H′ |= Body+(r), and (H′ ∪ T )∩ Body−(r) = ∅. It follows that Li ∈ Y ′κ, and thus
Li ∈ Yκ, as well as Y ′κ |= Body+(r), H |= Body+(r), and hence Yκ |= Body+(r).

Now consider two cases for (H ∪ T ) ∩ Body−(r).

• First assume that this set is empty. Then, by construction λr,i ∈ Y ′κ, a
contradiction to our assumption that this is not the case. Hence (H ∪T )∩
Body−(r) is nonempty.

• Then, since we know that (H′ ∪ T ) ∩ Body−(r) = ∅ which implies trivially
that T ∩ Body−(r) = ∅, H ∩ Body−(r) , ∅. Together with H |= Body+(r)
and the fact that T ∩ Body−(r) = ∅, we get a contradiction with the fact
that (H,T ) is an SHT-model according to condition (b) on the definition
of SHT-models.

This proves {λr,i | λr,i ∈ Y ′κ} ⊆ {λr,i | λr,i ∈ Yκ}. As a consequence, Y ′κ ⊂ Yκ which
contradicts our assumption that Yκ is an answer-set of P′κ.

This proves Lemma 2.8, i.e., that (H,T ) is an SHT-model that satisfies (i). �

Lemma 2.9 If (H,T ) is an SHT-model that satisfies (i), then there exists an answer-
set Y ′κ of P′κ, such that the corresponding SHT-interpretation is of the form (H,T ′)
such that T ′ ⊆ T, and (H,T ′) is an SHT-model that satisfies (i).

(i) @H′ ⊂ H such that (H′,T ) ∈ SHT(P)
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Proof Let (H,T ) be an SHT-model satisfying (i), and let Yκ be the interpretation over
Lκ obtained from (H,T ) as given by construction in Definition 2.7. If Yκ is an answer-
set of P′κ, then we are done, since its corresponding SHT-interpretation is (H,T ),
T ⊆ T, and (H,T ) satisfies (i).

So, assume that Yκ is not an answer-set of P′κ. Since by Lemma 2.7 Yκ it is a
model, we conclude that there is an answer-set Y ′κ of P′κ, such that Y ′κ ⊂ Yκ (Recall
that, because of the prime transformation in Definition 2.1, P′κ is default negation
free). Let (H′,T ′) be the SHT-interpretation obtained from Y ′κ. By Lemma 2.7, we
know that (H′,T ′) is an SHT-model of P′. Note that Y ′κ ⊂ Yκ implies T ′ ⊆ T, by
construction.

Now, towards a contradiction assume that H′ ⊂ H. We show that (H′,T ) is an
SHT-model of P′, as well.

Case (a) H′ 6|= P′T implies H′ 6|= P′T
′

. Now, if some rule in P′T is not satisfied by H′

it means that its body is satisfied but not its head. As we know by construction
of the reduct three things can happen to a rule that is not satisfied by H′ in P′T :

• The rule was not changed because it contained no default negation in
its body. In this case H′ 6|= Head(rT ′ ) trivially implies H′ 6|= Head(rT )
because Head(r) = Head(rT ) = Head(rT ′ ).

• The original rule contained default negation but T ∩ Body−(r) = ∅. Then,
the rule’s body is deleted from its reduct rT . In this case (because T ′ ⊆ T)
T ′ ∩ Body−(r) = ∅ and as such the rule’s body is also deleted from the
reduct rT ′ . This way, because the transformed rule that is not satisfied is
the same in both reducts, H′ 6|= P′T implies H′ 6|= P′T

′

.

• The original rule contained default negation and T ∩Body−(r) , ∅. Then,
this rule was deleted from the program’s reduct PT in the first place and
so it was trivially satisfied by H′ and is not to be considered here.

This presents a contradiction to (H′,T ′) being an SHT-model of P′. Hence,
H′ |= P′T

′

.

Case (b) Assume that there is some r in P′ such that the following hold: H′ |=
Body+(r), H′ ∩ Body−(r) , ∅, and T ∩ Body−(r) = ∅. Then, H |= Body+(r)
and H ∩ Body−(r) , ∅, follow. Together with T ∩ Body−(r) = ∅, this is in
contradiction with our assumption that (H,T ) is an SHT-model of P′ according
to condition (b) in the SHT-models definition. Therefore, H′ |= Body+(r) and
H′ ∩ Body−(r) , ∅ implies T ∩ Body−(r) , ∅, for all r in P′.

This proves that (H′,T ) is an SHT-model of P′. However, this contradicts our as-
sumption that (H,T ) satisfies (i). We thus conclude that H′ = H.

Carrying trough with our indirect argument, assume that (H,T ′) (which we have
seen that equals (H′,T ′)) does not satisfy (i), i.e., there exists an SHT-model (H′′,T ′)
such that H′′ ⊂ H. We show that then (H′′,T ) is an SHT-model of P′, as well. The
argument is the same as above replacing H′ with H′′. Again, this contradicts our
assumption that (H,T ) satisfies (i).

Therefore, we conclude that (H,T ′) satisfies (i), which proves Lemma 2.9. �

39



2.3 Characterization of semi-stable models

A one to one characterization of semi-stable models as semi-stable here-and-there
models where to one SST model corresponds an SHTmodel is easy to obtain, but the
opposite is not quite as easy.

Characterization of semi-stable models as HT or Routley models

Proposition 2.10 If (H,T ) is an SHT-model that satisfies (i), (ii) and (iii), then the
corresponding interpretation YK overLK is an SST-model. If YK is an SST-model then
the corresponding SHT-interpretation (H,T ) is an SHT-model that satisfies (i), (ii),
and (iii).

(i) There is no (H′,T ) such that H′ ⊂ H and (H′,T ) is an SHT-model of P′.

(ii) T\H is subset-minimal among the semi-stable HT-interpretations (SHT) satisfy-
ing (i), i.e.,

• @(H′,T ′) ∈ SHT(P′), s.t. (H′,T ′) satisfies (i) and T ′\H′ ⊂ T\H.

(iii) There is no (H,T ′) such that T ′ ⊂ T and (H,T ′) is an SHT-model of P′.

Proof Throughout this proof we will extensively use Definition 2.8 (as well as its
inverse Definition 2.7) and Lemma 2.7, but we will omit these references when their
usage is clear.

(⇒) In order to prove the if direction, let’s assume (H,T ) is an SHTmodel of P′ such
that (H,T ) satisfies conditions (i), (ii) and (iii). Therefore, we claim that the set of
literals YK is an S S T model.

Towards a contradiction, assume that YK is not a semi-stable model. Then, by
Proposition 2.3:

Yκ < ob j′κmc(AS (P′κ)) 6

In order for this to happen, either that:

Case 1: Yκ < AS (P′κ) which implies either that:

(a) According to the characterization of answer-sets as Equilibrium Models,
the total model (Yκ,Yκ) < EQ(P′κ) and consequently (Yκ,Yκ) is not an
SHT-model of P′κ which implies that Yκ 6|= P

′κY
.

In fact program P′κ and its reduct P
′κY

are equivalent because P′κ is pos-
itive so Yκ 6|= P′κ. Hence, according to Lemma 2.7, the set (H,T ) =

HT Yκ

(Yκ) will not be an SHT-model of P′ which contradicts the assump-
tion.
Or:

6Yκ is the set constructed from the SHTmodel, containing Yκ plus the lambdas, according to definition
2.7.
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(b) There will be a model Yκ∗ such that Yκ∗ ⊂ Yκ and the pair SHTYκ

(Yκ∗) =

(H′,T ′) is an SHTmodel of P′.
Now, according to the construction presented in Definition 2.8 we have
that H′ = {L | L ∈ YK∗ } and T ′ = {L | KL ∈ YK∗ }. We now have to
distinguish between several possibilities for the construction of Yκ∗:

1. if YK∗ ⊂ Yκ because one or more lambda literals λL were removed
from Yκ, in which case (H′,T ′) = (H,T ). By construction, though,
a set Yκ constructed from (H,T ) will have one correspondent set of
lambdas. Deterministically always the same. As such, Yκ∗ cannot
be a subset of Yκ but instead has to be equal. So, this case where
lambdas are removed from the set can be discarded.

2. if Yκ∗ ⊂ Yκ because one or more literals L were removed from Yκ

then H′ ⊂ H because H = {L | L ∈ YK} which is contradictory to the
assumption that (H,T ) satisfies (i). Or:

3. if Yκ∗ ⊂ Yκ because one or more K-believed literals KL were removed
from Yκ, then T ′ ⊂ T because T = {L | KL ∈ YK} which implies that
T ′\H′ ⊂ T\H which is a contradiction to the assumption that (H,T )
satisfies (ii). Or:

4. if Yκ∗ ⊂ Yκ because one or more literals L and K-believed literals KL
were removed from Yκ then three things might have occurred7:
• more believed literals KL were removed from Yκ, making it so

that T ′\H′ ⊂ T\H which is a contradiction to the assumption
that (H,T ) satisfies (ii). Or:

• more literals L were removed from Yκ, in which case H′ ⊂ H
because H = {L|L ∈ Y} which is contradictory to the assumption
that (H,T ) satisfies (i). Or:

• the same set of believed and normal literals were removed from
Yκ (the same set of literals must have been removed from H and
from T). In this case conditions (i) and (iii) are violated.

Or:

Case 2: YK is not maximally canonical according to ob j′κmc. Then, there is a model
YK∗ ⊂ Y that can be transformed into a semi-stable here-and-there model
(H′,T ′) = SHTY (YK∗).

Having that the set YK is not maximally canonical (remember that an inter-
pretation IK ∈ IP′K is said maximally canonical if there is no interpretation
JK ∈ IP′K such that {KL | KL ∈ JK and L < JK} ⊂ {KL | KL ∈ IK and
L < IK}.) implies that a given (H′,T ′) will be such that T ′\H′ ⊂ T\H which is
a contradiction to the assumption that (H,T ) satisfies (ii).

Hence, the if direction of Proposition 2.10 holds.

7Note that because we assumed that (H′,T ′) is an SHTinterpretation of P′, H′ ⊆ T ′ and so it cannot
contain literals in the H part without being also in the T part.
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(⇐) As for the only-if direction, given an SST-model YK , let YK be the corresponding
AS of P′κ and let (H,T ) be its corresponding SHT-interpretation. We need to show
that (H,T ) is an SHT-model that satisfies (i), (ii), and (iii). We first prove that (H,T )
is an SHT-model such that:

(H,T) satisfies (i) and (ii): According to Proposition 2.3, YK ∈ AS (P′κ) and it is
also an Equilibrium model YK ∈ EQ(P′κ). Because of this (YK ,YK) ∈ SHT(P′κ).

Towards a contradiction, assume that (H,T ) does not satisfy (i) or (ii). Then:

Case (i): Assume (i) is not satisfied, then there is an H′ ⊂ H such that (H′,T ) ∈
SHT(P′). Let YK∗ be the set constructed from (H′,T ). We can show that YK∗ ⊂

YK because it is constructed from the SHT-model as follows: YK = YK ∪ {λr,i |

Body−(r) , ∅, Li ∈ H, H |= Body+(r), (H ∪ T ) ∩ Body−(r) = ∅} where YK =

H ∪ {KL | L ∈ T }.

As such, if the here part of the semi-stable here-and-there model (H′,T ) is a
subset of the one in (H,T ), we trivially have that YK∗ ⊂ YK .

In line with the assumption that (H′,T ) ∈ SHT(P′), we have that (YK∗,YK) is
an SHT-model.

Having YK∗ ⊂ YK and (YK∗,YK) is an SHT-model implies evidently that be-
cause there is a smaller SHT-model, (YK ,YK) is not an equilibrium model hence
it is not stable. Having that (YK ,YK) is not an equilibrium model of P′κ further
implies that YK < AS (P′κ) which contradicts the assumption that it is a semi-
stable model.

Case (ii): Assume (ii) is not satisfied. Then, there is an (H′,T ′) such that T ′\H′ ⊂
T\H i.e., a set YK∗ = YK constructed from (H,T ) according to Definition 2.7
will not be maximally canonical and as such YK∗ < ob j′κmc(AS (P′κ)). Because
YK∗ = YK (both are constructed in the same way, from the same SHTmodel),
this is contradictory to the assumption that YK ∈ S S TP′κ .

Next, let Ȳκ be the interpretation over Lκ obtained from (H,T ) by the construction
given. We prove that Ȳκ = Yκ.8

Ȳκ = Yκ: We first show that Ȳκ = Yκ. Obviously, Ȳκ and Yκ coincide on LK because
the construction in Definition 2.7: YK = H ∪ {KL | L ∈ T } and Yκ contains YK

( plus some lambda literals not in LK).

Suppose they differ, and first assume Ȳκ ⊂ Yκ. Since Ȳκ |= P′κ by Lemma 2.7,
this contradicts the assumption that Yκ is an answer-set of P′κ. Hence, assume
Ȳκ * Yκ such that both Ȳκ 1 Yκ and Ȳκ , Yκ. Then, there exists some λr,i ∈ Ȳκ,
such that λr,i < Yκ. This implies, by the construction given, that Body−(r) , ∅,
Li is in H, H |= Body+(r), and (H ∪ T ) ∩ Body−(r) = ∅.

This further implies that Li ∈ Ȳκ, and thus Li ∈ Yκ, as well as Ȳκ |= Body+(r)
and hence Yκ |= Body+(r). (H ∪ T ) ∩ Body−(r) = ∅ implies T ∩ Body−(r) = ∅,
and hence Ȳκ 6|= Head(r)|LK . Consequently, also Yκ 6|= Head(r)|LK . Note that

8The proof is as in the proof of Lemma 2.8. We recall this part here anyway to make the reading easier.
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since Body−(r) , ∅, there are negated literals in the body of the rule r as so it
is transformed by the epistemic transformation.

Now:

• First, assume that there is some k such that λr,k ∈ Yκ. Then, Li and λr,k in
Yκ and λr,i < Yκ implies that Yκ does not model (4), a contradiction.

• Therefore, there is no k such that λr,k ∈ Yκ. But then Yκ does not model
the head of (1), again a contradiction.

We thus conclude that neither Ȳκ ⊂ Yκ nor Ȳκ * Yκ can hold. This proves
Ȳκ = Yκ.

(H,T) satisfies (iii): Towards a contradiction assume that (H,T ) does not satisfy
(iii). Then, there exists an SHT-model (H,T ′) of P′, such that T ′ ⊂ T.

We first show that (H,T ′) satisfies (i): Otherwise there exists an SHT-model
(H′,T ′) of P′, such that H′ ⊂ H. But then, also (H′,T ) is an SHT-model of P′.
To see the latter, observe that H′ |= P′T

′

implies H′ |= P′T because for every rT which
is not void in P′T (i.e., which is not deleted because T contained no literal in the rule’s
negative body), it holds that rT ′ = rT (i.e., it is equal and hence also not deleted).

So, whenever H′ ∩ Body−(r) , ∅ and H′ |= Body+(r) implies T ′ ∩ Body−(r) , ∅,
then (since T ′ ⊂ T) also T ∩ Body−(r) , ∅ follows. This proves that if (H,T ′) does
not satisfy (i), then (H,T ) does not satisfy (i), and since we have established above
that (H,T ) satisfies (i), so does (H,T ′).

From this, we can conclude that T ′ \ H = T \ H (Otherwise (H,T ) does not
satisfy (ii), which we have established above) i.e., H ∪ T ′ = H ∪ T. It follows that
Y ′κ, as constructed from (H,T ′) according to Definition 2.7, coincides with Yκ on
the lambdas, i.e., {λr,i | λr,i ∈ Y ′κ} = {λr,i | λr,i ∈ Yκ}. This is so because (recall
the construction) Yκ = YK ∪ {λr,i | Body−(r) , ∅, Li ∈ H, H |= Body+(r), (H ∪
T ) ∩ Body−(r) = ∅}, Y ′κ = Y ′K ∪ {λr,i | Body−(r) , ∅, Li ∈ H, H |= Body+(r),
(H∪T ′)∩Body−(r) = ∅} and since H is the same in both models and H∪T ′ = H∪T,
all conditions for the inclusion if a given lambda in the sets Yκ and Y ′κ are equivalent.

Consequently, Y ′κ is a proper subset of Yκ (and a model of P′κ), a contradiction to
our assumption that Yκ is an AS of P′κ. Therefore, (H,T ) satisfies(iii) as well. Hence,
the only-if direction also holds. This ends our proof of Proposition 2.10. �

As a remark also serving as a conclusion to this section, with this characterization
we can easily see that because of the global condition (ii) in Proposition 2.10, the
unfounded sets will be as small as possible i.e., the knowledge that is preserved will
be as big as possible. This is a very nice property of semi-stable models that the
original definition is not able to make completely clear.

Examples

Using the prototypical implementation described in Section 2.4, we obtained both the
here-and-there and the semi-stable models of some programs. From these models and
after we were confident about the basic properties described earlier, we conjecturized
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the characterization presented in Proposition 2.10. Some examples were also explored
in order to verify the equivalence of Stable and semi-stable semantics when no incon-
sistency or incoherence is present and also some basic examples that hopefully allow
getting a better intuition of the semi-stable semantics behavior.

Notice that Routley models are quadruples (H,H∗,T,T ∗) of interpretations (sub-
sets) over some language L, such that H ⊆ T and T ∗ ⊆ H∗ and here we present
the equivalent here-and-there interpretations whenever it is more convenient for the
reader.9

Example 2.11 Let P = {a← not ¬a} over the language L = {a}.
The program is not inconsistent nor incoherent and has an answer-set a. This

corresponds to its semi-stable model.

• (a,∅, a,∅) S S T model {Ka, a}.

• (a, a, a,∅)

• (∅, a,∅,∅)

• (∅, a, a,∅)

• (a, a, a, a)

• (∅, a,∅, a)

• (∅, a, a, a)

For strong-negation free programs, we can omit the starred parts of the Routley
models. Hence, we can work solely with semi-stable here-and-there models.

Example 2.12 P = {e← not f . f ← not e.}
In this example, the program has answer-sets and they coincide (by definition)

with the semi-stable models.

• ( f , f ) S S T model {K f , f }

• (e, e) S S T model {Ke, e}

• (e, e f )

• ( f , e f )

• (∅, e f )

• (e f , e f )

Example 2.13 P = {a← not a.} (For checking inconsistency)

• (∅, a) S S T model {Ka}

9To ease notation, we write instead of {a, b, c} just ’abc’, etc.
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• (a, a)

In this incoherent program P it is known that interpretations ’oscillate’ between∅ and
{a} under the stable class semantics [BS92]. Accordingly, it is interesting to observe
that the truth value I(a) = bt in its semi-stable model correspondingly lies between ⊥
and t.

In Example 2.14, a Depth 3 loop through negation, we get a clear idea of how
the characterization of semi-stable models presented in Proposition 2.10 works. We
get several here-and-there interpretations (and their corresponding Routley versions)
from which only the ones where @H′ ⊂ H such that (H′,T ) ∈ HT (P) and the ones
where [T\H] is globally minimal are semi-stable models.

Example 2.14 [Depth 3 loop through negation.]
P = {a← not b. b← not c. c← not a.}
We have the following semi-stable here-and-there interpretations.

• (∅, abc)

• (a, abc)

• (b, abc)

• (c, abc)

• (ab, abc)

• (ac, abc)

• (bc, abc)

• (abc, abc)

• (b, ab) S S T Model {Ka,Kb, b}

• (ab, ab)

• (a, ac) S S T Model {Ka, a,Kc}

• (ac, ac)

• (c, bc) S S T Model {Kb,Kc, c}

• (bc, bc)

Example 2.15 P = {a← b. b← a. ← a, b.}
There are no S S T nor any SHT models.

Let’s end this section with an example that clearly shows how traditional here-
and-there models would be too strong to characterize semi-stable models and instead
we need semi-stable here-and-there models:
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Example 2.16 P = {b← a. a← not a.}
We have the following semi-stable here-and-there interpretations.

• (∅, a)

• (∅, ab)

• (b, ab)

• (ab, ab)

Selected semi-stable here-and-there Models:

• (∅, a)

semi-stable models:

• {Ka}

2.4 Implementation

Two prototypes were developed, one for each of the characterizations presented.

Prototype for SST characterization as maximally canonical answer-sets. For this
implementation, we have used the dlv system as the answer-set solver in order
to obtain the answer-sets of a transformed program.

In Figure 2.1 we present the static dependencies between the modules of which
our system is composed.

Figure 2.1: Implementation Diagram

The process of calculating the semi-stable models for a given program consists,
in this case, of three steps:

1. We start by producing the epistemic and prime transformation P′κ for a
given program P. The resulting program is already in the language LP′κ .

2. After this transformation, we evaluate P′κ with dlv and get its answer-sets.

3. Afterwards, we just need to select the models that are maximally canonical
as defined before in Section 1.8.
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Example 2.17 Reconsider the loop-through-negation in Example 2.14:

P = {a← not b. b← not c. c← not a.}

This program is translated into:

P′κ = {λa ∨ Kb. a← λa. ← λa, b.
λb ∨ Kc. b← λb. ← λb, c.
λc ∨ Ka. c← λc. ← λc, a.}

For this program, the answer-sets are:

• {Ka,Kb, b, λb}

• {Kb,Kc, c, λc}

• {Kc,Ka, a, λa}

• {Ka,Kb,Kc}

We can easily see that {Ka,Kb,Kc} is not maximally canonical, hence cannot
correspond to a semi-stable model.

After removing the λ atoms we get, as expected, three semi-stable models:

• {Ka,Kb, b}

• {Kb,Kc, c}

• {Kc,Ka, a}

Prototype for SST characterization in the logic of here-and-there. We developed
a prototypical implementation that allowed us to obtain both the semi-stable
here-and-there interpretations (as well as the corresponding Routley interpreta-
tions) and the semi-stable models for disjunctive logic programs. We depict the
components that form its implementation in Figure 2.2.

For obtaining quick results we started by reusing a module that calculates here-
and-there models10 but afterwards we developed an HT-Model generator in or-
der to have the whole prototype integrated in one piece of software.

The following Figure 2.3 depicts the sequence of actions that are performed
in order to calculate the semi-stables models of a program according to this
characterization.

1. We start the computation of a program’s semi-stable models by generat-
ing all possible combinations of literals in the original language of the
program we have in hand (LP)).

10Our thanks to Stefan Woltran woltran@dbai.tuwien.ac.at for making his implementation available for
us as well as for his kind help in using it.
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2. Then, the candidate semi-stable here-and-there interpretations will be the
ones where H ⊆ T and H |= PT . In order to do this we need to calculate
the reduct PT of P for each set of literals T and check if the model’s
corresponding H part satisfies this reduct.

3. Then, having finally a set of candidate SHT interpretations (over the lan-
guageLP) for a program P, we only need to apply the conditions in Propo-
sition 2.10 thus selecting the here-and-there interpretations that are able to
be converted into semi-stable models.

4. Now, each of the models in the resulting set of SHTmodels are trans-
formable into semi-stable models (over the language LP′κ ) by performing
the transformation in Definition 2.7.

We now present an example of a step-by-step computation of the semi-stable
models of a program with our implementation.

Example 2.18 The loop through negation program presented before:

P = {a← not b. b← not c. c← not a.}

Has the following semi-stable here-and-there models, obtained from a set of all
possible interpretations where H ⊆ T and T |= P ∧ H |= PT :

• ({}, {abc})

• ({a}, {ac})

• ({a}, {abc})

• ({b}, {ab})

• ({b}, {abc})

• ({c}, {bc}) ({c}, {abc})

• ({ab}, {abc})

• ({ac}, {abc})

• ({bc}, {abc})

• ({ab}, {ab})

• ({ac}, {ac})

• ({bc}, {bc})

• ({abc}, {abc})

After selecting the SHTModels according to the two conditions in our charac-
terization, we get:

• ({a}, {ac})

• ({b}, {ab})

• ({c}, {bc})
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Let’s remember that in accordance to Definition 2.7 a semi-stable interpreta-
tion can be constructed from a semi-stable here-and-there interpretation in the
following way:11

Yκ = YK ∪ {λr,i | Body−(r) , ∅, Li ∈ H, H |= Body+(r),

(H ∪ T ) ∩ Body−(r) = ∅} where YK = H ∪ {KL | L ∈ T }

and that after removing the λ atoms, the corresponding semi-stable models for
the selected here-and-there interpretations will respectively be:

• {Ka,Kc, a}

• {Ka,Kb, b}

• {Kb,Kc, c}

Note that, our characterization of semi-stable models is computationally very
straightforward and of easy implementation. We chose Java for its portability and
because a prototype could be produced with reasonable effort.

In Figure 2.3 we depict the three operations necessary to calculate the semi-stable
models of a program P. The first is formally defined by definition of semi-stable here-
and-there models. The second is defined in this document in Proposition 2.10 and the
third in Definition 2.7.

11Once again, note that in the epistemic transformation, the lambdas are uniquely associated with each
ground instance of a clause (cf. [SI95] p.12). This means, we can have different lambdas for the same
literal if it appears in different rule heads. Hence the additional subscript r for the lambdas above.
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CHAPTER 3
Discussion

3.1 Related work

In their trail blazing paper [SI95], Inoue and Sakama presented declarative semantics
for extended disjunctive programs. They have introduced the paraconsistent mini-
mal and stable model semantics for extended disjunctive programs based on lattice-
structured multi-valued logics. The paraconsistent semantics were characterized by a
new fixpoint semantics of extended disjunctive programs. They have also discussed
applications of the paraconsistent semantics for reasoning with inconsistency. Further-
more, they argue that the paraconsistent minimal/stable model semantics are natural
extensions of the usual minimal/stable model semantics for disjunctive programs, and
compared with Gelfond and Lifschitz’s answer-set semantics, the proposed semantics
do not trivialize a program in the presence of inconsistent information. The paracon-
sistent semantics presented in that paper generalizes previous studies of paraconsistent
logic programming and provides a uniform framework of logic programming possi-
bly containing inconsistent information, disjunctive information, integrity constraints,
and both explicit and default negation in a program.

To overcome the problem of non-existing models for some extended logic pro-
grams, Sakama and Inoue defined the semi-stable model semantics, which suffers
from problems in the treatment of undefined literals manifested in the need of having
different languages for the program itself and for it’s models.

In [ADP05] Alcantara, Damasio and Pereira defined a fully declarative approach
for paraconsistent answer-sets. They achieved this by resorting to a framebased se-
mantics while claiming this was the first time a complete declarative characterization
was presented for paraconsistent answer-sets. No syntactic transformation was used in
their approach. In fact, paraconsistent answer-sets are obtained simply by minimizing
models satisfying some conditions. They have also shown how to embed answer-sets
and stable models via frames. They introduced point sets as P = 〈Q,v〉, with Q a set
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and v a partial ordering on Q. Propositions on P are upwards closed subsets of Q.
Frames are point sets together with accessibility relations. According to [ADP05], an
HT 2 frame is defined as follows: The underlying point set P = 〈Q,v〉 is such that Q
has four elements that [OP05] denote by h, h∗, t, t∗, where h v t and t∗ v h∗. Secondly,
three accessibility relations are defined on P that we will denote here by R, R∼, R¬. R
is a ternary relation and R∼ and R¬ are binary relations determined by:

R(h, h, h),R(h, h, t),R(h, t, t),R(t, t, t),R(t, h, t),
R(t∗, t, t∗),R(t∗, t, h∗),R(t∗, h, t∗),R(t∗, h, h∗),R(h∗, h, h∗).
R∼(h, h∗),R∼(t, t∗),R∼(h∗, h),R∼(t∗, t),R∼(h, t∗),R∼(t∗, h).
R¬(h, h),R¬(t, t),R¬(h, t),R¬(t, h),R¬(h∗, h),R¬(t∗, h),R¬(t∗, t).

An HT 2 model M is formed from an HT 2 frame by assigning atoms to the four
points in accordance with the interpretation that propositions form upwards closed
sets. In other words if we denote the set of atoms true in w by W, then we have w ⊆ w′

implies W ⊆ W ′. The assignment of atoms to points is extended to all propositions
via standard conditions for conjunction and disjunction and the following clauses:

(M, w) � ϕ→ ψ if and only if ∀w′, w′′ s.t. R(w, w′, w′′), (M, w′) � ϕ⇒ (M, w′′) � ψ.

(M, w) � ¬ϕ if and only if ∀w′ s.t. R¬(w, w′), (M, w′) 6|= ϕ.

(M, w) �∼ ϕ if and only if ∀w′ s.t. R∼(w, w′), (M, w′) 6|= ϕ.

Odintsov and Pearce in [OP05] extended the results of [Pea97] and [ADP05] and
showed how both ordinary and paraconsistent answer-sets can be captured via possible
worlds models due to Routley. In the case of PAS, the underlying logic N9 has been
identified axiomatically and algebraically, and an important metalogical property -
interpolation - was proved. They also showed that it is straightforward to check that
HT 2 models are equivalent to Routley here-and-there models which in turn are much
simpler and easy to use:

• Let M be an HT 2 model. Then the corresponding Routley model

M = 〈W,W∗,⊆, ∗,V〉

consists of the same four points or worlds h, h∗, t, t∗, such that for any proposi-
tional atom p and world w, V(p, w) = 1⇔ (M, w) � p, and vice versa.

Osorio and his research group have been working on characterizations as well as
some other practical usages of Pstable models which are also paraconsistent in the
presence of inconsistencies but not in the presence of incoherence. In their paper
[OL06], the authors were able to prove that Pstable model semantics can express the
stable model semantics within the class of normal programs, although they conjecture
that the expressiveness of Pstable model semantics is even greater than that of stable
semantics. They propose to explore the possibility to extend the theorem to the context
of disjunctive programs. The main contributions were two theorems where the authors
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argue that if they have a stable model of P then M∪M′ is a Pstable model of a program
transformed (according to a definition they present) and vice versa.

Still on P-Stable models, Eiter; Leone and Sacca in [ELS97] extended the notion
of unfounded set from normal programs to disjunctive programs. They presented the
notion of P-stable model for acceptable partial models for a disjunctive program by
using unfounded sets. They also showed that P-stable models coincide with the 3-
valued stable models (extended with a third, undefined, truth value) of Przymusinski.
Afterwards, they investigated improvements of P-stable models under the principle
of minimal undefinedness. This principle has been used in the context of normal
programs as well as for disjunctive programs. Maximal P-stable (M-stable) models
were proposed and analyzed as well as the more restrictive concept of least undefined
P-stable (L-stable) models. In particular, they obtained a result stating that the M-
stable models can be computed bottom-up for a normal program LP. This property is
important in practice. However, L-stable models do not have this property.

3.2 Conclusions and Open issues

Conclusions

We characterize and present a new way of calculating the semi-stable models of a pro-
gram, without having to perform an epistemic transformation. We do this by calcu-
lating a program’s semi-stable here-and-there models and then performing a selection
according to Proposition 2.10. No manner of syntactic transformation is used over the
program itself but obviously the resulting models contain literals over the language
LP′κ and not over LP. This must be so because of the definition of semi-stable mod-
els itself where, since the logic N9 is underlying these models, there will be literals
that have for instance the truth value believed true and as such must be epistemically
marked with the belief operator K.

Semi-stable models are obtained simply by selecting semi-stable here-and-there
models satisfying some conditions. This is done over a modified language of the
original program, following the original definition in [SI95]. As no further restriction
is imposed, our proposal not only captures semi-stable models for disjunctive logic
programs, but also models for any theory composed by formulae definable for all
program connectives.

We also characterized SST models as being maximally canonical answer-sets of
an epistemically transformed program.

Furthermore, we have shown how one can embed semi-stable models into here-
and-there interpretations as well as into Routley HT-models.

Future work

The computational complexity of this approach to semi-stable models must still be
thoroughly investigated. The implementations must be improved and perhaps inte-
grated in some existing answer-set solver.
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Complexity A complete complexity study for the main reasoning tasks in our ap-
proach is still to be done, but we refer the reader to a survey Damasio presented in
[DLMPea] where many complexity results for a great deal of semantics related with
ASP are listed.

Table 3.1: Complexity results

Semantics Complexity of the Propositional case
PSM / PAS Co-NP-complete

Anyway, one question that arises is if we can argue that our characterization is in
the same complexity class as ASP or if it lies one level above it.

Furthermore, in terms of the computational complexity of both implementations,
we can say that from a computational point of view, our prototypical implementation
of the new characterization is not the most efficient due to immaturity when compared
to the first implementation of the original definition of semi-stable models due to
[SI95]. Still, our approach characterization in the logic of here-and-there is more
elegant and declarative than the previous ones.

In particular, the conditions that are imposed in Proposition 2.10 are of great im-
portance for this study because the last transformation from here-and-there to semi-
stable models is linear on the size of the model. Furthermore, the complexity of
calculating the HT-models of a program is known already and its most difficult part
resides mostly in calculating the program reduct.

After improving the implementations, making them more mature and optimized,
we must also perform a study for some practical computations using both of our pro-
totypes.
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[Nie98] Ilkka Niemelä. Logic programs with stable model semantics as a con-
straint programming paradigm. Annals of Mathematics and Artificial In-
telligence, 25:72–79, 1998.

[Odi05] Sergei P. Odintsov. The class of extensions of nelson’s paraconsistent
logic. Studia Logica, 80(2-3):291–320, 2005.

[OL06] Mauricio Osorio and Alejandra López. Expressing the stable semantics
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