
M.Sc. Arbeit

Simplification of Herbrand Sequents

ausgeführt am

Institut für Computersprachen

Arbeitsgruppe Theoretische Informatik und Logik

der Technischen Universität Wien

unter der Anleitung von

Univ.Prof. Dr.phil. Alexander Leitsch

durch

Tsvetan Chavdarov Dunchev

Wien, 9.September 2009 .
Tsvetan Dunchev Alexander Leitsch

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Master Thesis

Simplification of Herbrand Sequents

carried out at the

Institute of Computer Languages

Theory and Logic Group

of the Vienna University of Technology

under the instruction of

Univ.Prof. Dr.phil. Alexander Leitsch

by

Tsvetan Chavdarov Dunchev

Vienna, September 9, 2009 .
Tsvetan Dunchev Alexander Leitsch

Simplification of Herbrand Sequents

Tsvetan Chavdarov Dunchev

Contents

1 Kurzfassung 3

2 Abstract 4

3 Dedication 5

4 Acknowledgements 6

5 Introduction 7

6 Definitions and notations 8
6.1 Basic notations . 8
6.2 Sequent calculus for classical logic (LK) 11
6.3 Derivations and proofs . 16
6.4 LKDe . 17
6.5 The Mid-sequent theorem . 18
6.6 Term Rewriting Systems . 18

7 Algorithms for extracting a Herbrand Sequent from a proof 22
7.1 Extraction via Mid-Sequent Reduction 22
7.2 Extraction via Collection of Instances 23
7.3 Extraction via Proof Transformation to Quantifier-free LKA . 24
7.4 Extraction via Collection of Sub-Formula Instances 27

8 Simplification of Herbrand Sequents 28
8.1 Simplification on the term level 29
8.2 Simplification on the formula level 31

1

9 Description of the implementation 37

10 Experiments 39
10.1 Simplification of the Herbrand Sequent of the lattice proof . . 39
10.2 Simplification of an arithmetic Herbrand Sequent 43

11 Conclusion and future work 46

2

1 Kurzfassung

Eines der wichtigsten Resultate der mathematischen Logik ist der Satz von
Herbrand, welcher besagt dass ein skolemisiertes Sequent S = A1, . . . , An `
C1, . . . , Cm gültig ist genau dann wenn es ein Herbrand Sequent S′ zu S
gibt welches aus Instanzen der Ai and Cj besteht (nach Entfernung der
Quantoren) und aussagenlogisch gültig ist. Herbrand Sequente welche aus
mathematischen Beweisen extrahiert werden sind ein wichtiges Werkzeug
um essentielle mathematische Argumente aus einem formalen LK-Beweis zu
gewinnen. Im CERES-System (cut-elimination by resolution) gibt es einen
Algorithmus zur Extraktion von Herbrand Sequenten. Das extrahierte Se-
quent ist allerdings meist sehr redundant und daher schwer interpretierbar.
Die Hauptaufgabe dieser Arbeit ist die Entwicklung und Implementation von
Algorithmen zur Vereinfachung von Herbrand Sequenten. Vereinfachungen
werden dabei auf dem Term-Level und auf dem Formel-Level angewendet.
Die Vereinfachungen beruhen auf Termersetzungsystemen welche vom Be-
nutzer des Systems spezifiziert werden. Die entwickelten und getesteten Al-
gorithmen verbessern die Funktionalität von CERES deutlich und ermögli-
chen damit eine bessere interaktive Beweisanalyse von Beweisen nach der
Schnittelimination.

3

2 Abstract

One of the most important results in mathematical logic is Herbrand’s the-
orem, which says that a skolemized sequent S = A1, . . . , An ` C1, . . . , Cm

is valid if and only if there exists a Herbrand sequent for S (i.e. a sequent
consisting of instances of the Ai and Cj which is propositionally valid).
Herbrand sequents which are extracted from an LK-proof are a very useful
tool for summarizing and analyzing the essential mathematical information
of the proof. Only a few algorithms of Herbrand sequent extraction are
known. They differ in some restrictions on the end-sequent (e.g. prenex
form) and in the form of admitted proofs (cut-free, or atomic cuts admit-
ted). In the CERES system (cut-elimination by resolution) there exists an
algorithm for Herbrand sequent extraction. But the extracted Herbrand
sequent is not always the minimal one. It can be minimized in terms of
formula occurrences, and minimization of the term complexity of formu-
las occurrences when a set of rewriting rules (for simplifying equations) is
provided. The main topic of this master thesis is to find, investigate and
implement an algorithm for the simplification of already extracted Herbrand
sequents within the CERES system (Cut-Elimination by Resolution). Sim-
plifications are performed both on the level of formulas and on the level of
terms. For term simplification a set of rewriting rules is used which can be
extracted from a background theory specified by the user. The simplifica-
tion of Herbrand sequents is important to the mathematical interpretations
of the Herbrand sequents (obtained from proofs after cut-elimination) by
humans and increases the quality of interactive proof analysis.

4

3 Dedication

I dedicate this diploma thesis to my parents.

5

4 Acknowledgements

I am very thankful to my supervisor Prof. Alexander Leitsch for accept-
ing me in Vienna University of Technology for my second year in EMCL
program. I also would like to thank him for the great opportunity to partic-
ipate in his CERES project as well as for providing me a project work and
diploma thesis. His support made my stay in Vienna much easier.

I would like to express my gratitude to the PhD. students of Prof.Leitsch
- Bruno Woltzenlogel Paleo, Daniel Weller and Tomer Libal, who helped me
a lot with their advices, experience and explanations during my study, my
project work and my diploma thesis. The regular project and office hour
meetings with them and Prof. Leitsch were very helpful and gave me a
motivation to do my project work with a pleasure discovering the area of
automated theorem proving which was new for me.

Many ideas in the theoretical part of this diploma thesis I owe to Bruno
Woltzenlogel Paleo. Daniel Weller was supervising me during the implemen-
tation of this thesis and its integration in CERES.

I also would like to express my thankfulness to Prof. Grabriella Dodero,
Prof. Diego Calvanese and Prof. Enrico Franconi from the Free Univer-
sity of Bozen-Bolzano who supported me during my first year in the EMCL
program. The work together with Prof. Calvanese, Prof. Davide Marti-
nenghi and my colleague Timofey Asyrkin on the INFOMIX project was
very interesting and broadened my knowledge in the are of Databases.

I would like to thank the administration of Province of Bozen-Bolzano,
South Tirol, which supported me with a local-ordinary scholarship during
my first year in EMCL program.

Finally, I would like to thank all my friends and colleagues for the nice
time spent together in Bozen-Bolzano and in Vienna.

6

5 Introduction

This diploma thesis describes an algorithm for simplification of Herbrand
sequents extracted from LK-proofs. Simplifications are performed on the
term- and formula level. The simplified sequent should have two properties:

• All terms in the sequent should be in normal form with respect to a
given confluent and terminating term-rewriting system.

• The number of the formula occurrences in the simplified sequent should
be minimal and the sequent should be still valid.

The basic definitions needed for the first item are presented in the next
chapter. Informally, the normal form of the terms and formulas is achieved
by introducing a binary ordering relation between terms. This relation is ex-
tended also to formulas. The idea behind the term rewriting system should
be thought of as an orientation of the background theory equations.

Regarding the second item, reduction of the number of formula occur-
rences (defined in next chapter) is possible because the extracted Herbrand
sequent may contain some irrelevant information for the mathematical math-
ematical analysis formulas (for example, tautologies) which does not play
a role in the validity of the sequent with respect to the background the-
ory. This goal is achieved by using an automated theorem prover (ATP).
As an input to the ATP we give the negation of the formula representing
the Herbrand sequent. Since the Herbrand sequent is valid, its negation will
be unsatisfiable. Transforming the negated Herbrand sequent to a (unsat-
isfiable) set of clauses allows us to get a refutation of this set. Analyzing
the clauses appearing in the refutation allows us to remove the irrelevant
formula occurrences from the Herbrand sequent. As ATP we use Otter[2]
and its successor Prover9. Here we should mention that the first idea to
reduce the number of formula occurrences of the Herbrand sequent was to
use a SMT-solver (Sat Modulo Theory). This approach faced some diffi-
culties with the implementation of the interface between CERES and the
application of the SMT-solver. Since the background theory was encoded
into the term-rewriting system, a better approach which uses the already
implemented interface between CERES and Otter was suggested [11].

Finally two experiments are presented which illustrate the simplification
of Herbrand sequent. In both cases simplified sequent indeed corresponds
to the theoretical analysis.

7

6 Definitions and notations

6.1 Basic notations

Definition 6.1 (The language). Our language will consist of the following
symbols:

1. Constants:

(a) Individual constants: ki for i ∈ N.

(b) Function constants with i argument-places f i
j for i, j ∈ N.

(c) Predicate constants with i argument-places Ri
j for i, j ∈ N.

2. Variables:

(a) Free variables: ai for i ∈ N.

(b) Bound variables xi for i ∈ N.

3. Logical symbols: ¬,∨ and ∀.
4. Auxiliary symbols: ’(’,’)’,’[’,’]’ and ’,’.

• Remarks

1. For convenience we might sometimes omit superscripts and sub-
scripts of functions and predicates, or denote them by a single
quote instead of natural numbers.

An expression is any finite sequence of symbols from the language defined
above. The next definition is about terms and is given inductively. All
inductive definitions will implicitly mean that the objects, which are defined,
are only those given by the definition.

Definition 6.2 (Terms and semi-terms). Semi-terms are defined inductively
as follows:

1. Every individual constant is a semi-term.

2. Bound and free variable are semi-terms.

3. If f i is a function constant with i argument-places and t1,..,ti are semi-
terms, then f i(t1, .., ti) is a semi-term.

Semi-terms which do not contain bound variables are called terms.

8

Definition 6.3 (Formulas and semi-formulas). If Ri is a predicate con-
stant with i argument-places and t1, .., ti are terms, then Ri(t1, .., ti) is an
atomic formula. Formulas and their outermost logical symbols are defined
as follows:

1. Every atomic formula is a formula.

2. If A and B are formulas, then ¬A and A∨B are formulas with ¬ and
∨ as their outermost logical symbol.

3. If A(a) is a formula with a free variable ’a’ being not necessarily fully
indicated in A, then ∀xA(x) is a formula with x a bound variable
replacing each occurrence of ’a’ in A. The outermost logical symbol is
∀.

Semi-formulas differ from formulas in containing semi-terms, which are not
bound by a quantifier.

• Remarks

1. A formula or a term without free variables will be called ’closed’.
A closed formula is also called a sentence.

2. A(x) in the above definition is called the scope of the formula
∀xA(x).

3. For convenience we might sometimes omit parentheses while hav-
ing ¬ and ∀ take precedence over ∨.

Replacement on positions play a central role in proof transformations.
We first introduce the concept of positions for terms.

Definition 6.4 (Positions). Positions within semi-terms are defined induc-
tively:

• If t is a variable or a constant symbol then 0 is a position in t and
t.0 = t.

• Let t = f(t1, ..., tn) then 0 is a position in t and t.0 = t. Let µ :
(0, k1, ..., kl) be a position in a tj (for 1 ≤ j ≤ n) and tj .µ = s, then
v : (0, j, k1, ..., kl) is a position in t and t.v = s.

A sub-semi-term s of t is a semi-term t.v = s for some position v in t.
Positions will be denoted by [,], i.e. t[r]v denotes the term t after replacing
t.v with r.

9

• Remarks

1. Sub-formulas are defined in a similar way to sub-terms. However,
they are defined up to replacing previously bound variables.

2. We will use P (a) to represent a term, formula, sequence of formu-
las or a whole proof where the variable or term a is fully indicated.
P [a]λ, where λ can be a single position or a set of positions, will
represent the case where a is indicated only at position(s) λ.

Example 6.5 (Sub-semi-formula). The following are sub-semi-formulas of
the formula ∀xA(x) ∨B: ∀xA(x), A(t), A(x), etc.

Definition 6.6 (Substitutions). A substitution is a mapping σ from the set
of free and bound variables to the set of semi-terms such that σ(v) 6= v for
only a finite number of variables.

Definition 6.7 (Logical complexity of formulas). If F is a formula then
the complexity comp(F) is the number of occurrences of logical symbols in
F. Later in the thesis we will identify this definition with the definition of
grades of formulas.

Definition 6.8 (prenex form). We say that a formula F is in prenex form
if it is of the form Q1x1 . . . Qnxn(F ′), where F ′ is a quantifier-free formula
and Qi ∈ {∃, ∀}, for 0 ≤ i ≤ n.

Theorem 6.9 (prenex form). For each first-order formula F there exists an
equivalent formula F ′ which is in prenex form.

Definition 6.10 (strong and weak quantifiers). Let B = (Qx)B′ be a sub-
formula of A. We classify Q as strong or weak according to the following
cases:

• If Q = ∀ and B is a positive sub-formula of A, then Q is strong in A.

• If Q = ∀ and B is a negative sub-formula of A, then Q is weak in A.

• If Q = ∃ and B is a positive sub-formula of A, then Q is weak in A.

• If Q = ∃ and B is a negative sub-formula of A, then Q is strong in A.

Definition 6.11 (formula skolemization). Let F be a first-order formula.
Then the skolemization Sk(F) of F , is defined inductively as follows:

1. If F does not have strong quantifiers, then Sk(F) := F .

10

2. If F has strong quantifiers, (Qy) is its first strong quantifier, each
quantifier occurs at most once in F and F is rectified, then:

• If (Qy) is not in the scope of weak quantifiers, then Sk(F) :=
Sk(F−(Qy){y ← cy})

• If (Qy) is in the scope of the weak quantifiers (Qx1)(Qx2) . . . (Qxn)
appearing in this order, then
Sk(F) := Sk(F−(Qy){y ← fy(x1, x2, . . . , xn)})

where:

1. cy is a constant symbol not occurring in F and is called a skolem
constant.

2. fy is a function symbol not occurring in F and is called a skolem
function.

3. F−(Qy) means the omission of the quantifier Qy from F .

Skolemization is widely used in the area of automated theorem proving.
The advantage is that the operation of skolemization preserves satisfiability,
but the resulting formula is not necessary equivalent.

6.2 Sequent calculus for classical logic (LK)

LK is a formal proof system for first-order logic [3]. It was introduced in
1934 by Gerhard Gentzen as a tool for studying natural deduction. It turned
out to be a very useful calculus for constructing logical derivations. Here
we use an extension of Gentzens Sequent Calculus LK, called LKDe, which
has in addition definition and equality rules as well as the axioms of equal-
ity [10]. LKDe is more convenient then LK because it has higher practical
value. In LKDe we need not eliminate non-atomic cut formulas. The basic
syntactic element in LK as is the sequent.

Sequences of formulas are represented by the greek letters: Γ, ∆, Π and
Λ with possible superscripts and subscripts.

Definition 6.12 (Sequents). For arbitrary Γ and ∆, Γ ` ∆ is called a
sequent with ` called the sequent symbol. Γ and ∆ are called the antecedent
and the succedent of the sequent. Each formula in Γ and ∆ is called a
sequent-formula. A sequent will be denoted by the letter ’S’ with or without
subscripts, i.e. A `S B.

11

Definition 6.13 (Semantics of sequents). Semantically a sequent

A1, .., An `S B1, ..., Bm

stands for formula F (S):
∧n

i=1 Ai →
∨m

j=1 Bj .

In particular, we define M to be the interpretation of S if it is the inter-
pretation of F (S). If n = 0 (i.e. the antecedent is empty), we assign > to∧n

i=1 Ai. If m = 0 (i.e. the succedent is empty), we assign ⊥ (falsum) to∨m
j=1 Bj . The empty sequent ` is represented by > → ⊥ which is equivalent

to ⊥. S is true in M if F (S) is true in M and S is valid if F (S) is valid.

Definition 6.14 (Atomic sequents). A sequent A1, ..., An ` B1, ..., Bm is
called atomic if for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, Ai and Bj are atomic.

Definition 6.15 (Prenex Form). . A formula A is in prenex form if and
only if it is of the form (Q1x1)(Q2x2) . . . (Qnxn)B, for some n ≥ 0, for
Q1, . . . , Qn ∈ {∀, ∃} , and for B quantifier-free. A sequent is in prenex form
if and only if all its formulas are in prenex form. An LK-Proof is in prenex
form if and only if all its sequents are in prenex form.

Definition 6.16. (sequent skolemization). Let S = A1, . . . , An ` C1, . . . , Cm

be a sequent such that Sk(A1∧· · ·∧An → B1∨· · ·∨Bm) = A′1∧· · ·∧A′n →
B′

1 ∨ · · · ∨ B′
m. Then Sk(S) = A′1, . . . , A

′
n ` C ′

1, . . . , C
′
m is the skolemized

sequent of S.

Theorem 6.17 (Validity preservation of skolemization). Let S be a sequent.
S is a valid sequent if and only if Sk(S) is a valid sequent.

The basic advantage of the skolemization is that it removes the strong
quantifiers of a sequent.

Definition 6.18 (closed sequent). A sequent S is closed iff all formulas
occurring in S are closed.

Definition 6.19 (instance of a sequent). Let S = A1, . . . , An ` C1, . . . , Cm

be a sequent without strong quantifiers. Let A0
i (C

0
i) is Ai(Ci) after omission

of the quantifiers. An instance of S is the sequent
S′ = A1

1, . . . , A
1
k1

, . . . , An
1 , . . . , An

kn
` C1

1 , . . . , C1
l1
, . . . , Cm

1 , . . . , Cm
lm

, where
Ai

1, . . . , A
i
ki

is a sequence of instances of A0
i and Cj

1 , . . . , C
j
lj

is a sequence of
instances of C0

j , for i ∈ {1, n}, j ∈ {1,m}.

12

Definition 6.20 (Herbrand sequent). Let S be a closed sequent containing
weak quantifiers only and A be a theory. Let S′ be the sequent S after
removal of all its quantifiers. Any sequent valid with respect to the theory
A which is an instance of S′ is called Herbrand sequent of S.

Example: Let S = P (0), (∀x)(P (x) → P (s(x))) ` P (s(s(0))). Then
the following sequents are Herbrand Sequents of S:

• P (0), P (0), P (0) → P (s(0)), P (s(0)) → P (s(s(0))) ` P (s(s(0)))

• P (0), P (0) → P (s(0)), P (s(0)) → P (s(s(0))),

P (s(s(0))) → P (s(s(s(0)))) ` P (s(s(0)))

• P (0), P (0) → P (s(0)), P (s(0)) → P (s(s(0))) ` P (s(s(0)))

The last sequent is the minimal Herbrand sequent.

Definition 6.21 (Axiom set). A (possibly infinite) set A of sequents is
called an axiom set if it is closed under substitution. I.e. for every S ∈ A
and a substitution σ we have σ(S) ∈ A. If A consists only of atomic sequents
it is called an atomic axioms set.

Definition 6.22 (Standard axiom set). The standard axiom set is the small-
est axiom set containing all sequents of the form A ` A for arbitrary atomic
formulas A.

Definition 6.23 (formula occurrence). Let S = A1, . . . , An ` C1, . . . , Cm be
a sequent. Then each element of the set of tuples {< l, i > |i ∈ {1, n}}⋃{<
r, j > |j ∈ {1,m}} is called a formula occurrence for S, where l and r stand
for antecedent and consequent part of the sequent respectively.

Definition 6.24. A formula occurrence < l, i > (< r, i >) corresponds to a
formula F iff F is a subformula of Ai (Ci).

Definition 6.25 (Inference). An inference is an expression of the form:

S1

S
or S1 S2

S

where S1, S2 and S are sequents. S1 and S2 are called the upper sequents
and S is called the lower sequent of this inference.

13

Definition 6.26 (Standard LK). The standard (multiplicative) sequent
calculus LK contains the standard axiom set and the following rules of
inference.

14

1. Structural rules:

(a) Weakenings:

Γ ` ∆
(w : l)

D, Γ ` ∆
Γ ` ∆

(w : r)
Γ ` ∆, D

(b) Contractions:

D, D,Γ ` ∆
(c : l)

D, Γ ` ∆
Γ ` ∆, D, D

(c : r)
Γ ` ∆, D

(c) Exchanges:

Γ, C,D,Π ` ∆
(e : l)

Γ, D, C,Π ` ∆
Γ ` ∆, C, D,Λ

(e : r)
Γ ` ∆, D, C,Λ

These three rules will be called weak inferences while the others
will be called strong inferences.

(d) Cuts:

Γ ` ∆, D D,Π ` Λ
(cut : D)

Γ, Π ` ∆,Λ

D is also called the cut formula of the inference.

2. Logical rules:

(a) ¬-introduction:

Γ ` ∆, D
(¬ : l)¬D, Γ ` ∆

D,Γ ` ∆
(¬ : r)

Γ ` ∆,¬D

(b) ∨-introduction:

C, Γ ` ∆ D,Π ` Λ
(∨ : l)

(C ∨D), Γ,Π ` ∆, Λ
Γ ` ∆, C

(∨ : r1)
Γ ` ∆, (C ∨D)

Γ ` ∆, D
(∨ : r2)

Γ ` ∆, (C ∨D)

(c) ∧-introduction:

Γ ` ∆, C Π ` Λ, D
(∧ : r)

Γ, Π ` ∆, Λ, (C ∧D)

15

C ` Γ,∆
(∧ : l1)

(C ∧D), Γ ` ∆
C ` Γ,∆

(∧ : l2)
(D ∧ C), Γ ` ∆

(d) →-introduction:

Γ ` ∆, A B,Π ` Λ
(→ : l)

(A → B),Γ, Π ` ∆, Λ
A, Γ ` ∆, B

(→ : r)
Γ ` ∆, A → B

The ¬ : , ∧ : , ∨ : and → : -rules are called propositional infer-
ences.

(e) ∀-introduction:

F (t), Γ ` ∆
(∀ : l)

(∀xF (x)),Γ ` ∆
Γ ` ∆, F (a)

(∀ : r)
Γ ` ∆, (∀xF (x))

(f) ∃-introduction:

F (a),Γ ` ∆
(∃ : l)

(∃xF (x)),Γ ` ∆
Γ ` ∆, F (t)

(∃ : r)
Γ ` ∆, (∃xF (x))

Where t is an arbitrary term and a does not occur in the lower
sequent. The a in ∀ : r is called the eigenvariable of the inference.
The condition that a does not occur in the lower sequent is called
the eigenvariable condition of the inference. We will also say that
the quantifiers in the lower sequents eliminate the eigenvariable
or the term in the upper sequents.

Theorem 6.27 (soundness and completeness of LK). LK is sound and
complete with respect to the first-order logic.

6.3 Derivations and proofs

Definition 6.28 (LK-derivations). An LK-derivation is defined as a di-
rected labelled tree where the nodes are labelled by sequents (via the func-
tion seq) and the edges by inference rules. The label of the root is called
the end-sequent. Sequents occurring at the leaves are called initial sequents
or axioms. The formal definition is:

• Let v be a node and seq(v) = S for an arbitrary sequent S. Then v is
an LK-derivation and v is the root node.

16

• Let ψ be a derivation tree and v be a leaf in ψ. Let ξ(S1, S2, S) be
an instance of the binary rule ξ. We extend ψ to ψ′ by appending
the edges e1 : (v, µ1) and e2 : (v, µ2) to v such that seq(µ1) = S1,
seq(µ2) = S2 and the label of (e1, e2) is ξ. ψ′ is an LK-derivation with
the same root as ψ but with v no longer a leaf. v in ψ is called a
ξ-node and µ1 and µ2 are leaves.

• The extension by a unary rule is defined analogously.

Definition 6.29 (LK-sub-derivations). Let ψ be an LK-derivation. An
LK-sub-derivation of ψ is any sub-tree of ψ.

Definition 6.30 (Formal proof). A proof P in LK is an LK-derivation
where the leaves are mapped to initial sequents:

The following terminology and conventions will be used all along this
thesis:

• If there exists a proof of S in LK, then S is said to be provable in LK.

• A proof without the cut rule is called cut-free.

Definition 6.31 (Subproofs). Let ψ be a proof. a subproof of ψ is a sub-
derivation of ψ which is also a proof.

6.4 LKDe

Now we extend LK to LKDe by new rules, namely definition rule and
equality rule, and the axiom ` s = s, for terms s :

(a)Definition rule:

A(t1, . . . , tk), Γ ` ∆
(defP : l)

P (t1, . . . , tk),Γ ` ∆
Γ ` A(t1, . . . , tk), ∆

(defP : r)
Γ ` P (t1, . . . , tk),∆

where t1, . . . , tk are terms.
b)Equality rule:

Γ ` ∆, s = t A[s]Σ, Π ` Λ
(=: l1)

A[t]Σ,Γ, Π ` ∆, Λ
Γ ` ∆, t = s A[s]Σ,Π ` Λ

(=: l2)
A[t]Σ, Γ,Π ` ∆,Λ

for inference on the left and

17

Γ ` ∆, t = s Π ` Λ, A[s]Σ
(=: r1)

Γ,Π ` ∆,Λ, A[t]Σ

Γ ` ∆, t = s Π ` Λ, A[s]Σ
(=: r2)

Γ, Π ` ∆, Λ, A[t]Σ

for inference on the right, where Σ denotes a set of positions of subterms
where replacement of s by t has to be performed. The equality rule is sound
with respect to first order logic with equality (FOL=). The definition rule
is sound with respect to the axiom (∀x)(A(x) ↔ P (x)).

6.5 The Mid-sequent theorem

One possible way for obtaining a Herbrand sequent from a cut-free proof is by
applying the Mid-sequent theorem. The proof of this theorem is constructive
algorithm for obtaining the Herbrand sequent from a proof.

Theorem 6.32 (Mid-sequent theorem or Sharpened Hauptsatz). Let ϕ be a
prenex LK-Proof without non-atomic cuts. Then there is an LK-Proof ϕ′ of
the same end-sequent such that no quantifier rule occurs above propositional
and cut rules[10].

6.6 Term Rewriting Systems

In order to describe the simplification in term level we start with some
preliminaries and terminology related with Term Rewriting Systems.

Definition 6.33 (Signature). A signature Σ is a set of function symbols,
where each f ∈ Σ is associated with non-negative integer n (the arity of f).
Elements of Σ with arity zero are called constants.

From now on, we assume that a signature Σ is fixed.
We should mention that the term-rewriting is not possible in a variable

position. If it was possible, then we could not guarantee termination of the
term-rewriting.

Definition 6.34 (substitution). Let V be a set of free variables. Substitu-
tion is a function g : V → T (Σ, V), such that σ(x) 6= x for finitely many
x ∈ V . Domain of σ is the set Dom(σ) = {x ∈ V | σ(x) 6= x}. Range of σ
is the set Range(σ) =

⋃
x∈Dom(σ) V ar(σ(x)).

Definition 6.35 (instance). We say that a term t is an instance of a term
s iff there exists a substitution σ such that σ(s) = t.

18

The next definitions play key-role in the term rewriting theory. We will
pay more attention to the identities because the input of our simplification
algorithm in term level will expect ”oriented” equality. They are used to
transform a term into another equivalent term by replacing instances of
the left-hand side of the equality with the corresponding instance of the
right-hand side and vice versa. Detailed information about Term-rewriting
systems can be found in [4].

Definition 6.36 (equation). Equation is a pair (s, t) ∈ T (Σ, V)× T (Σ, V)
(write s ≈ t)

Definition 6.37 (Equational theory). The equational theory E of a class of
structures is the set of universal atomic formulas that hold in all members of
the class. For a class of algebras, this is simply the collection of all equations
that hold in all members of the class.

Definition 6.38 (Reduction relation). Let E be a set of equalities over a
signature Σ. The reduction relation →E⊆ T (Σ, V) × T (Σ, V) is defined as
follows: s →E t iff there exist (l, r) ∈ E, p ∈ Pos(s) and σ-substitution,
such that s |p= σ(l) and t = s[σ(r)]p.

Definition 6.39 (closure). Let E be a set of equalities. With→∗
E we denote

the reflexive transitive closure of →E . With ↔∗
E we denote the reflexive

transitive symmetric closure of →E .

The relation ↔∗
E is of great interest in term rewriting theory because

it is the smallest equivalent relation containing →E and it is closed under
substitution. One of the important goals in equational theory is to design
decision procedures for ↔∗

E .

Definition 6.40 (Term rewriting system). Let T be a set of terms over a
fixed signature Σ. Then, any binary relation R over T is called rewriting
system over T . Each element (l, r) ∈ R is called a rule (usually written as
l → r).

Depending on the structure of the rewrite rules one distinguishes differ-
ent systems. In our case, we impose some requirements on the term rewriting
system such as confluence and termination. We also want V ar(r) ⊆ V ar(l),
for each rule l → r.

Definition 6.41 (termination). A term rewriting system T is called ter-
minating (or noetherian), if there is no infinite sequence of terms t0, t1, . . . ,
such that ti → ti+1, for i ≥ 0.

19

Definition 6.42 (confluence). A term rewriting system T is called confluent
if for all terms l, r1 and r2 such that l →∗ r1 and l →∗ r2, then there exists
a term s, such that r1 →∗ s and r2 →∗ s.

Definition 6.43 (Local confluence). A term rewriting system T is called
locally confluent if for all terms l, r1 and r2 such that l → r1 and l → r2,
then there exists a term s, such that r1 →∗ s and r2 →∗ s.

Important result in Term Rewriting Systems is the following lemma:

Lemma 6.44 (Newman). If a terminating Term Rewriting System is locally
confluent, then it is confluent.

We are now ready to introduce an ordering relation over terms and to
extend it over formulas.

Definition 6.45 (term ordering). Let T be a set of terms over the signature
Σ. The binary relation >t⊆ T×T is defined as follows : (s, t) ∈≥t iff s →∗ t.

The term-rewriting system which we use is obtained after orienting the
equations in such a way that the resulting rules set up a confluent and
terminating rewriting system. In general, not all of the equations can be
oriented. For example, if an equation such as the commutativity axiom,
∀x∀y(xy = yx) belongs to the background theory, then no orientation pre-
serving termination property is possible. In order to orient such equalities,
for example, an ordering relation among terms could be defined. In our
algorithm we do not consider such cases. Nevertheless, such unorientable
equations are not avoidable because the theorem prover may use them to
produce a refutation.

Definition 6.46 (=E). Let E be a set of equalities over the signature Σ
which are oriented and the resulting term-rewriting system is confluent and
terminating. The binary relation =E⊆ T×T is defined as follows : (s, t) ∈=t

iff s ↔∗ t.

Since =E is and equivalence relation, we can split it to a union of equiva-
lence classes. For each equivalence class we define a binary ordering relation
>τ among terms in the following way : s >τ t if s → t. Since → is terminat-
ing and confluent relation, the relation >τ is well founded and hence each
equivalence class has a smallest element, called a normal form.

Definition 6.47 (=f
E). Let =f

E is a binary relations such that
P (x1, . . . , xn) =f

E P (y1, . . . , yn) iff xi =E yi, for i = 1, . . . , n.

20

=f
E is an equivalence relation. Hence, in each equivalence class there

exists a smallest element which is a formula with terms in normal form.

Definition 6.48 (sequent ordering). Let =seq
E be a binary relation be-

tween quantifier ground sequents and S = A1, . . . , An ` C1, . . . , Cm, S′ =
A′1, . . . , A

′
n ` C ′

1, . . . , C
′
m are quantifier ground sequents, then we define

S =seq
E S′ iff Ai =f

E A′i and Cj =f
E C ′

j , for i = 1, . . . , n, j = 1, . . . , m.

If S is a sequent, then in the equivalence class [S]=seq
E

there exists a
minimal element Smin. We are interested in those Herbrand sequents (valid
with respect to the background theory) of Smin that consist of minimal
number formula occurrences.

21

7 Algorithms for extracting a Herbrand Sequent
from a proof

In CERES [12] we work with LKDe-proofs only. The importance of ex-
tracting Herbrand sequents from proofs lies on the fact that a Herbrand
sequent summarizes the creative content of a proof. Here we present four
algorithms for Herbrand sequent extraction. They differ in some restrictions
on the end-sequent and the form of admitted proofs. A detailed description
and deep analysis of these algorithms can be found in [8]. The algorithms
are classified according to two requirements:

• a proof transformation is required

• a prenex form of the end-sequent is required

Proof transformation means that the shape of the proof tree may be
modified. For example, some rules can be permuted, added or dropped in a
specific way.

7.1 Extraction via Mid-Sequent Reduction

This algorithm requires proof-transformation in such a way that propositional-
rules or cut-rules appear below quantifier-rules. This idea was explained in
the previous section. A detailed description of the algorithm can be found
in [8]. Specific feature is that the algorithm requires prenex form of the
end-sequent of the proof. Here we just present a simple example. Consider
the following proof:

ϕ :

P (0) ` P (0)

P (s(0)) ` P (s(0)) P (s2(0)) ` P (s2(0)) →: l
P (s(0)), P (s(0)) → P (s2(0)) ` P (s2(0)) ∀ : l
P (s(0)), ∀x(P (x) → P (s(x))) ` P (s2(0)) →: l

P (0), P (0) → P (s(0)), ∀x(P (x) → P (s(x))) ` P (s2(0)) ∀ : l
P (0), ∀x(P (x) → P (s(x))),∀x(P (x) → P (s(x))) ` P (s2(0))

c : l
P (0), ∀x(P (x) → P (s(x))) ` P (s2(0))

We do the following proof transformation which permutes the second
→: l rule with the first ∀ : l rule.

22

ϕ′ :

P (0) ` P (0)
P (s(0)) ` P (s(0)) P (s2(0)) ` P (s2(0)) →: l
P (s(0)), P (s(0)) → P (s2(0)) ` P (s2(0)) →: l

P (0), P (0) → P (s(0)), P (s(0)) → P (s2(0)) ` P (s2(0)) ∀ : l
P (s(0)), ∀x(P (x) → P (s(x))) ` P (s2(0)) ∀ : l

P (0), ∀x(P (x) → P (s(x))), ∀x(P (x) → P (s(x))) ` P (s2(0))
c : l

P (0), ∀x(P (x) → P (s(x))) ` P (s2(0))

Obviously, in ϕ′ no propositional rule appears below a quantifier rule.
The conclusion of the last →: l inference is the so-called mid-sequent which
is the extracted Herbrand sequent, namely:

P (0), P (0) → P (s(0)), P (s(0)) → P (s2(0)) ` P (s2(0))

7.2 Extraction via Collection of Instances

This algorithm requires a prenex end-sequent. It is much more efficient com-
pared then the Mid-sequent transformation. The Extraction via Collection
of instances does not transform the original proof but just analyzes it. The
computed Herbrand sequent of both algorithms is the same. The idea is to
notice that quantifier-free substitution instances in occurrences of Herbrand
sequent are necessarily the auxiliary occurrences of some quantifier-rules in
the proof. Therefore we can compute the Herbrand sequent just by ana-
lyzing the proof, collecting its appropriate auxiliary occurrences and then
constructing a sequent by composing the quantifier-free subsequent with the
sequent formed from these collected auxiliary occurrences. In other words,
we remove the quantified occurrences of the end-sequent and replace them by
substitution instances given by the auxiliary occurrences of the quantifier-
rules. The detailed description of the algorithm can be found in [10]. Here
we present a simple example. Consider again the proof ϕ from the previous
algorithm:

23

ϕ :

P (0) ` P (0)

P (s(0)) ` P (s(0)) P (s2(0)) ` P (s2(0)) →: l
P (s(0)), P (s(0)) → P (s2(0)) ` P (s2(0)) ∀ : l
P (s(0)), ∀x(P (x) → P (s(x))) ` P (s2(0)) →: l

P (0), P (0) → P (s(0)), ∀x(P (x) → P (s(x))) ` P (s2(0)) ∀ : l
P (0), ∀x(P (x) → P (s(x))),∀x(P (x) → P (s(x))) ` P (s2(0))

c : l
P (0), ∀x(P (x) → P (s(x))) ` P (s2(0))

We proceed as follows. Consider all quantifier rules. In this example
they are two:

P (s(0)), P (s(0)) → P (s2(0)) ` P (s2(0)) ∀ : l
P (s(0)), ∀x(P (x) → P (s(x))) ` P (s2(0))

P (0), P (0) → P (s(0)),∀x(P (x) → P (s(x))) ` P (s2(0)) ∀ : l
P (0), ∀x(P (x) → P (s(x))), ∀x(P (x) → P (s(x))) ` P (s2(0))

We build a new sequent S′ = Γ′ ` ∆′, where Γ′ is a set of all auxiliary
antecedent occurrences of the two rules above and ∆′ is the set of all auxiliary
consequent occurrences of the two rules above(∆′ is empty). Hence, we get:

S′ = P (0) → P (s(0)), P (s(0)) → P (s2(0)) `

The next step is to get a subsequent S′′ of the end-sequent of ϕ which
contains no quantified formula occurrences. Hence, we get:

S′′ = P (0) ` P (s2(0))

The extracted Herbrand sequent from ϕ is the composition:
S′ ◦ S′′ = P (0), P (0) → P (s(0)), P (s(0)) → P (s2(0)) ` P (s2(0)).

7.3 Extraction via Proof Transformation to Quantifier-free
LKA

This Herbrand sequent extraction algorithm is the most important one for
this thesis because it is implemented in the CERES system. Using the

24

interface in CERES, the output of this algorithm serves as input for the
simplification algorithm which is described in details in the next section.
The algorithm is for non-prenex end-sequent of the proof.

The method of extraction via proof transformation to quantifier-free
LKA-calculus basically consists of transforming the LK-Proof into a quan-
tifier free proof in a modified version of Sequent Calculus called LKA, which
admits sequents containing so-called array-formulas. Then the end-sequent
of this LKA-Proof is transformed back to a sequent without array-formulas.
This final sequent is indeed a Herbrand sequent of the end-sequent of the
original LK-Proof, and thus the algorithm is sound. Here we give the basic
definitions and present an example. A detailed description of the algorithm
as well as proofs of its soundness and determinism can be found in [1].

Definition 7.1 (array formula). An array formula is defined by induction:

1. any first order formula is an array formula

2. If A1, A2, . . . , An are array formulas, then 〈A1, A2, . . . , An〉 is an array
formula

3. If A and B are Array formulas, then ¬A, A ∨ B, A ∧ B and A → B
are Array formulas.

Definition 7.2 (sequent calculus LKA). If A1, A2, . . . , An and B1, B2, . . . , Bm

are Array formulas, then A1, A2, . . . , An ` B1, B2, . . . , Bm is called an Ar-
ray sequent. The Sequent Calculus LKA is the Sequent Calculus LK with
addition of the following rules:

A,B,∆,Γ, Π ` Λ 〈〉 : l〈A,B〉, ∆, Γ, Π ` Λ
Λ ` ∆, Γ, Π, A, B 〈〉 : r

Λ ` ∆, Γ, Π, 〈A,B〉

The idea of the algorithm is that it uses two kind of mappings. The
first one is Ψ which transforms an LK-proof to a quantifier-free LKA-proof
applying the following steps:

1. From the LK-proof we remove all quantifier rules.

2. Replace c : l rules with 〈〉 : l rules and c : r rules with 〈〉 : r rules.

The second mapping is Φ. It maps an array formula to a sequence of
first order formulas in the following way:

1. if A is a First-order logic formula, the Φ(A) = A

25

2. Φ(〈A,B〉) = Φ(A),Φ(B)

3. if Φ(A) = A1, . . . , An, then Φ(¬A) = ¬A1, . . . ,¬An

4. if Φ(A) = A1, . . . , An and Φ(B) = B1, . . . , Bm, then Φ(A ◦ B) =
A1 ◦B1, . . . , A1 ◦Bm, . . . , An ◦B1, . . . , An ◦Bm, for ◦ ∈ {∨,∧,→}

5. if Φ(A) = A1, . . . , An, then Φ((Qx)A) = (Qx)A1, . . . , (Qx)An, for
Q ∈ {∀, ∃}

6. if Φ(A1, . . . , An ` B1, . . . , Bm) = Φ(A1), . . . ,Φ(An) ` Φ(B1), . . . , Φ(Bm)

If ϕ is an LK-Proof, then the extracted Herbrand sequent is obtained
applying the Φ-operation to the end sequent of the proof Ψ(ϕ).

Consider the proof:
ϕ :

P (0) ` P (0)

P (s(0)) ` P (s(0)) P (s2(0)) ` P (s2(0)) →: l
P (s(0)), P (s(0)) → P (s2(0)) ` P (s2(0)) ∀ : l
P (s(0)), ∀x(P (x) → P (s(x))) ` P (s2(0)) →: l

P (0), P (0) → P (s(0)), ∀x(P (x) → P (s(x))) ` P (s2(0)) ∀ : l
P (0), ∀x(P (x) → P (s(x))),∀x(P (x) → P (s(x))) ` P (s2(0))

c : l
P (0), ∀x(P (x) → P (s(x))) ` P (s2(0)) ∧ : l
P (0) ∧ ∀x(P (x) → P (s(x))) ` P (s2(0))

We apply the transformation Ψ to ϕ and get a proof without quantifier
rules and contractions replaced by 〈〉 : l rules:

ϕ′ :

P (0) ` P (0)
P (s(0)) ` P (s(0)) P (s2(0)) ` P (s2(0)) →: l
P (s(0)), P (s(0)) → P (s2(0)) ` P (s2(0)) →: l

P (0), P (0) → P (s(0)), P (s(0)) → P (s2(0)) ` P (s2(0))
<>: l

P (0), 〈P (0) → P (s(0)), P (s(0)) → P (s2(0))〉 ` P (s2(0)) ∧ : l
P (0) ∧ 〈P (0) → P (s(0)), P (s(0)) → P (s2(0))〉 ` P (s2(0))

Now, we apply the Φ transformation to the end-sequent of ϕ′. The result
a Herbrand sequent:

26

Φ(P (0) ∧ 〈P (0) → P (s(0)), P (s(0)) → P (s2(0))〉 ` P (s2(0))) =

= Φ(P (0))∧Φ(〈P (0) → P (s(0)), P (s(0)) → P (s2(0))〉) ` Φ(P (s2(0))) =

= P (0) ∧ P (0) → P (s(0)), P (0) ∧ P (s(0)) → P (s2(0)) ` P (s2(0))

7.4 Extraction via Collection of Sub-Formula Instances

This algorithm generalizes the algorithm of Extraction via Collection of
Instances for the case of non-prenex end-sequents. It does not need to
transform the proof in order to extract the Herbrand sequent. We notice
that the latter collects all the instances of all quantified occurrences of the
end-sequent and then it constructs a Herbrand sequent by removing all
those quantified occurrences of the end-sequent and inserting all the collected
instances. However, in the non-prenex case, one difficulty arises: we need
to substitute collected instances not for occurrences in the end-sequent, but
for specific sub-formulas in the end-sequent. Here we just mention this
algorithm. Detailed description the reader can find in [1] as well as example.

27

8 Simplification of Herbrand Sequents

Simplification of Herbrand Sequents is needed in order to improve the read-
ability of the sequent as well as to delete the information which is useless
for interpreting the mathematical meaning encoded in it. The simplification
goes through two different steps. The first one is simplification on term
level. The second one is simplification on logical (formula) level.

• In the first step we try to rewrite each term in each atom formula
to a term which is in normal form according to a given confluent
and terminating system of rewriting rules. As a result we obtain the
minimal sequent Smin, where S be the sequent to be simplified.

• The simplification in formula level takes Smin and tries to remove all
formula occurrences which are irrelevant for the validity with respect
to the background theory. The following steps are executed:

1) transforms Smin to a formula and negate it. Let the resulting for-
mula be F

2) remove all implications from F . The resulting formula F ′ contains
∧,∨ and ¬ as logical symbols only.

3) F ′ is transformed to a formula F ′′ in Negation Normal Form (NNF).

4) to each atomic formulas in F ′′ is assigned a unique label (a natural
number) and this label is encoded into the name of the corresponding
atomic formula.

5) F ′′ is transformed to a formula F ′′′ in Conjunctive Normal Form
(i.e. F ′′′ is in Clause Form).

6) F ′′′ is given to the theorem prover (Otter[1] or Prover9) which
returns a resolution refutation ρ.

7) ρ is analyzed and all atomic formulas in F ′′ which are also in ρ are
marked with a special marker (in our case ?).

8) decode the names of all atomic formulas in F ′′, i.e. remove the label
from the predicate name of each atomic formula. Keep the marker of
all marked atomic formulas. Call the sequent F ′?

9) for each formula occurrence in F ′? check whether all atomic formu-
las are NOT marked. If this is the case, remove the whole formula
occurrence. Call the sequent F ?. This is the simplified Herbrand
sequent.

28

For Otter[1] and Prover9 there is already written an interface in CERES
[2] which allows manipulation and visualization of the obtained result with
the Prooftool[7].

The next two subsection describe the term and formula simplification in
details.

8.1 Simplification on the term level

The simplification of the Herbrand sequent in term level is an algorithm
which rewrites the sequent to a minimal one with respect to the ordering
≥seq. That means that we firs have to rewrite all terms to a normal form.
The rewriting of the terms is done according to a term-rewriting system. In
order to guarantee the existence of unique normal form for each term, we
assume that the term-rewriting system is confluent and terminating.

The term-rewriting algorithm is described as follows:

INPUT: a Herbrand Sequent S
OUTPUT: a minimal Herbrand Sequent with respect to ≥seq

VARIABLES:
occ : a formula occurrence in the sequent
pos : a term position in a term
P : atomic formula
l → r : a rule
σ : substitution
t : term
TRS : set of rules

29

Algorithm 8.1: RewritingTermsInHerbrandSequent(S)

for each occ ∈ S

do

for each P ∈ occ

do

repeat
for each pos ∈ P

do

for each (l → r) ∈ TRS

do

t ← P.pos
if unifiable(t, l)
then{
σ ← mgu(t, l)
P.pos ← σ(r)

until noFurtherReductionIsPossble

return (S)

The implementation of the algorithm in C++ can be seen in the file
opHerbrandSequentSimiplication which contains a all operation classes. It
is a part of the prooflib library of the CERES system.

Theorem 8.1 (correctness). The algorithm for term-rewriting a Herbrand
Sequent returns the minimal sequent with respect to the ordering ≥seq.

Proof:

Since we are using a terminating and confluent term-rewriting system,
then each term has a normal form. This normal form is the minimal unique
term with respect to the ordering ≥τ .

Once all terms in all atomic formulas in a formula occurrence are in
normal form, then according to the definition of =f

E , the whole formula
corresponding to this formula occurrence is the minimal one with respect
to >f= {(P (t1, . . . , tn), P (s1, . . . , sn))| si is the normal form of ti, for i =
1, . . . , n, s, t ∈ T, P ∈ PS}.

Since each formula corresponding to each formula occurrence is the min-
imal one, then Smin is the smallest sequent according to. the ordering
>seq= {(S, S′)| S′ is the result of substitution a formula with the mini-
mal one}. ¤

30

8.2 Simplification on the formula level

Simplifying a sequent in logical (formula) level consists in removing all for-
mula occurrences in a Herbrand sequent which are irrelevant for the validity
of the sequent as well as marking these atom formulas that are not essential
for the validity of the sequent but which can not be deleted. A formula occur-
rence can be deleted only in the case that all atom formulas in it are marked
by the algorithm. Formally, let S = A1, . . . , An ` C1, . . . , Cm be a Herbrand
sequent. Our goal is to find a sequent Socc

min = Ai1 , . . . , Aik ` Cj1 , . . . , Cjr ,
{i1, . . . , ik} ⊆ {1, . . . , n} and {j1, . . . , jr} ⊆ {1, . . . , m}, such that Socc

min is
minimal with respect to the number of formula occurrences and is still a
valid sequent. Hence, according to the definition, it is also a Herbrand se-
quent. The general idea is that we negate the extracted Herbrand sequent
S and transform it into a formula ϕ = A1 ∧ · · · ∧An ∧ (¬C1) ∧ · · · ∧ (¬Cm).
Then, we transform ϕ into equivalent formula ϕ′ in Negation Normal Form
(NNF). For this purpose we apply the De-Morgan rules to each disjunct in
ϕ pushing the negation as much as possible according to the following rules
(we apply them to each conjunct in ϕ till no further reduction is possible):

1)(F1 → F2) ⇒ (¬F1 ∨ F2)

2)¬(F1 ∧ F2) ⇒ (¬F1 ∨ ¬F2))

3)¬(F1 ∨ F2) ⇒ (¬F1 ∧ ¬F2))

4)¬¬F ⇒ F

The formulas F , F1 and F2 are quantifier-free and only conjunction,
disjunction and negation signs can appear. The cases for quantifier for-
mula are omitted because the extracted Herbrand sequent contains grounded
quantifier-free formulas only.

The last transformation applies the distributivity laws. The obtained
formula in clause form, i.e. ϕCNF = H1 ∧ · · · ∧ Hp, such that each Hi,
i ∈ {1, . . . , p} is a clause, i.e. Hi = Bk1 ∨ · · ·∨Bkq , where each Bj is a literal
(atom formula or its negation). In fact this is exactly the conjunctive-normal
form of ϕ.

Then, we transform ϕCNF to a clause set. Then we give this clause
set and the axioms of the background theory to the theorem prover. The
result of the theorem prover is a refutation tree. The atom formulas in the
Herbrand sequent which occur in formulas which are used in a particular

31

refutation are marked. All non-marked formula can be removed from the
Herbrand sequent, in the following two cases:

1)if the corresponding formula occurrence consists of only this atom for-
mula

2)if all atom formulas in a corresponding formula occurrence are not
marked. Then the whole formula occurrence can be dropped.

Otherwise we just keep the marked formula. The algorithm in pseu-
docode for the simplification in formula level looks as follows:

INPUT: a Herbrand Sequent S with terms in normal form
OUTPUT: minimal Herbrand Sequent
VARIABLES:
S = A1, . . . , An ` C1, . . . , Cm : a sequent with quantifier-free grounded

formulas only
S′ : the empty sequent
ϕ,ϕ′F1, F2, F

′
1, F

′
2 : quantifier-free ground formulas

clauseSet, axiomClauseSet : sets of clauses
resProof : a resolution proof

32

Algorithm 8.2: SequentToClause(S)

ϕ ← A1 ∧ · · · ∧An ∧ (¬C1) ∧ · · · ∧ (¬Cm)
for each (i ∈ {1, n}, j ∈ {1,m})
do

{
Ai ← RemoveImplication(Ai)
Cj ← RemoveImplication(Cj)

for each (i ∈ {1, n}, j ∈ {1,m})
do

{
Ai ← TransformToNNF(Ai)
Cj ← TransformToNNF(Cj)

ϕ′ ← LabelingAtomFormulas(ϕ)

ϕ′ ← RenameAtomFormulasToLabels(ϕ′)

clauseSet ← makeEqualities(ϕ,ϕ′)

ϕCNF ← TransformToCNF(ϕ′)

clauseSet ← union(clauseSet,TransformToClauseSet(ϕCNF))

resProof ← theoremProver(clauseSet)

axiomClauseSet ← getAxiomClauses(resProof)

ϕ′ ← markAtomFormulas(axiomClauseSet, ϕ′)

ϕ′′ ← un-renameAtomFormulas(ϕ′)

S′ ← TransformFormulaToSequent(ϕ′′)

for each (occ ∈ S′)

do
{
if (allAtomFormulasInOccurrenceAreMarked(occ))
then delete(occ, S′)

return (S′)

Now we give an explanation about the function which are called in the

33

pseudo-code above. Function RemoveImplication applies the De Morgan’s
rules to transform a formula to a formula containing only conjunction, dis-
junction and negation.

Function TransformToNNF transforms a formula into a negation-normal
form applying the rules described above.

Function LabelingAtomFormulas sets unique labels to all atom formulas.
The labels are set linearly with respect to the formula seen as a linear text,
not as a binary tree.

The function RenameAtomFormulasToLabels renames all atom formulas
in a way such that the corresponding label is coded into the new predicate
name. The reason for this renaming is because we want to keep an eye
on each atom formula in the returned from the theorem prover refutation
tree. Since it is quite possible the same atom formula to occur in formulas in
different formula occurrences, it is impossible to understand where a formula
in the refutation tree comes from if there are many such formulas in the
Herbrand sequent. We illustrate this with the following simple example.
Assume that this is a Herbrand sequent :

(A → B), A ` ¬A,B, where A and B are atomic formulas. We can
see that the formulas A and B occur in different occurrences. We can only
notice that there is a redundancy of the formula A in the first and in the
second formula occurrences in the antecedent part of the sequent. How can
we decide which A could be removed and the sequent to be still a Herbrand
sequent? According to the Herbrand sequent definition, only whole formula
occurrences can be removed. So, we have to see whether the second formula
occurrences A in the antecedent part can be removed. Indeed, it can be
removed. To see this, we transform the sequent to a formula (¬A ∨ B) ∧
A ∧ A ∧ ¬B. The theorem prover produces a refutation from the clauses
(¬A ∨ B), A,¬B. But now the system does not know where the second A
comes from. Exactly for this reason we label the atom formulas and encode
the labels into their names. Then of course, we add the clauses which say
that if a formula has two labels, then the renamed formulas are equivalent.

The function makeEqualities returns a set of clauses representing an
equalities between all renamed formulas which have the same un-renamed
origin formula.

The function TransformToCNF transforms a formula to a conjunctive-
normal form. This is needed in order to obtain it as a set of clauses. Each
conjunct is a clause. The atom formulas with negative polarity in each con-
junct go to antecedent part of the sequent and those with positive polarity
go in the consequent part of the sequent.

The function union performs a union of the two sets of clauses.

34

The function theoremProver calls the theorem prover and returns the
refutation tree.

The function getAxiomClauses takes the axioms from the resolution refu-
tation tree. In fact we take only axioms because all other nodes of the
resolution refutation are subsequents of the axioms.

The function markAtomFormulas marks with a marker those atom for-
mulas in the renamed Herbrand sequent which occur in the set of axioms
obtained from the resolution refutation.

The function un-renameAtomFormulas renames the renamed atom for-
mulas with their original names. It keeps the marker of all marked formulas.

The function TransformFormulaToSequent transforms the negation of
the formula to a sequent. In this way we obtain the original Herbrand
sequent but with marked atom formulas. This allows us to remove those
formula occurrences of the Herbrand sequent whose atom formulas are all
marked.

allAtomFormulasInOccurrenceAreMarked is a predicate which checks
whether all atom formulas in a formula occurrence are marked.

The function delete deletes the whole formula occurrences from the se-
quent.

Consider the following

Example 8.2. Let S = P (0), P (0), P (0) → P (1) ` P (1), P (1) ∧ P (2)

Construct the negation of S and transform it to a formula:

F = P (0) ∧ P (0) ∧ (P (0) → P (1)) ∧ (¬P (1)) ∧ ¬(P (1) ∧ P (2))

Labeling and renaming of the atom formulas:

F ′ = P1(0) ∧ P2(0) ∧ (P3(0) → P4(1)) ∧ (¬P5(1)) ∧ ¬(P6(1) ∧ P7(2))

Transform F ′ to a NNF and then to CNF:

F ′′ = P1(0) ∧ P2(0) ∧ (¬P3(0) ∨ P4(1)) ∧ (¬P5(1)) ∧ (¬P6(1) ∨ ¬P7(2))

Transform F ′′ to a clause set:

C = {P1(0) `; P2(0) `; P3(0) ` P4(1);P5(1) `;P6(1), P7(2)) `}

35

Create the set of equivalences (”;” is the separator instead of ”,”):

C′ = {P1(0) ` P2(0); P2(0) ` P1(0); P2(0) ` P3(0); P3(0) ` P2(0);

P4(1) ` P5(1); P5(1) ` P4(1); P5(1) ` P6(1); P6(1) ` P5(1)}

The set C ∪ C′ is given to theorem prover and the following refutation is
returned:
{P2(0), ¬P2(0) ∨ P3(0), P3(0), ¬P3(0) ∨ P4(1),

P4(1), ¬P4(1) ∨ P5(1), P5(1),¬P5(1), ¤}

Hence, we mark the following atom formulas in F ′:

F = P1(0) ∧ PF
2 (0) ∧ (PF

3 (0) → PF
4 (1)) ∧ (¬PF

5 (1)) ∧ ¬(P6(1) ∧ P7(2))

The next step is to unlabel the formulas, negate it and transform it back
to a sequent :

S = P (0), PF(0), PF(0) → PF(1) ` PF(1), P (1) ∧ P (2)

The last step is to delete the formula occurrences which can be deleted :

PF(0), PF(0) → PF(1) ` PF(1)

36

9 Description of the implementation

The implementation of the simplification algorithm is integrated in the
CERES system. It goes through the following stages:

• Term-rewriting simplification part

• Formula simplification part

1. Labeling linearly all atomic formulas in the sequent

2. Transforming the negation of the sequent to a set of clauses
(including NNF and CNF transformation of the formula occurrences)

3. Calling the SAT-solver (in this case Otter or Prover9) giving
the transformed sequent as an input

4. Analyzing the output of the SAT-solver and marking the for-
mula occurrences that are used in the resolution refutation

5. Removing those formula occurrences whose all atomic formulas
are marked.

All steps and substeps in the implementation follow the main object
oriented architecture of the CERES system, namely the visitor design pat-
tern technique[9]. The main advantage of this approach is the ability to add
new operations to existing object structures such as ProofTrees, DataNodes,
Sequents, Clauses, Functions, Formulas etc., without modifying those struc-
tures. Thus, using the visitor design pattern helps conformance with the
open/closed principle of the object oriented programming. In essence, the
object called ”visitor” allows one to add new virtual functions to a set of
classes without modifying the classes themselves. Instead, one creates a visi-
tor class that implements all of the appropriate specializations of the virtual
function. The visitor takes the instance reference as input, and implements
the goal through the programming technique called double dispatch.[9]

The term-rewriting implementation part starts with the definition of an
object representing a term-rewriting system, namely a set of rules and in-
terface (functions, methods) for manipulating with those rules. The rules
are defined as pairs of two terms. The basic operations over terms such
as substitution and unification have been provided by the CERES system.
The most important classes are OpDFSTermRewriting which rewrites a
term according to a given rule, OpOpSimplifyingGroundedFormulaIn-
TermLevel which rewrites all terms in a formula to terms in normal form

37

according to the term-rewriting system, and OpSimplifyingSequentIn-
TermLevel which is applied to the whole Herbrand sequent and includes
the operations above.

The formula simplification part is done by several operations over formu-
las, sequents and set of clauses. The first of them, transformSequentTo-
Formula operation, is an operation whichtransforms the negation of the se-
quent to a formula. The renaming of the atom formulas is done by the opera-
tion OpRenameFormaulasToLabelsInSequent which calls the formula
operation OpRenameToLabels in it. It uses the operation which labels
the atom formulas OpLabelAtomsInFormula.Then, we apply the nega-
tion normal form operation OpTransformFormulaToNNF which trans-
forms the formula to an equivalent formula in NNF (push the negation as
much as possible into the formula). Then, we apply conjunctive normal
form operation OpTransformFormulaToCNF to the formula. The result is
a formula which is a conjunction of disjunction of literals. The opeartion
OpDisjFormulaToClause transforms the CNF formula to a set of clauses
which are given to the theorem prover together with the set of the clauses
obtained by the function MakeEqualities. The theorem prover returns a
resolution proof which is analyzed by the operation OpGetInitialsFromR-
Proof. With the operation OpMarkResFormaulasInSequent we mark
those atom formulas in the Herbrand sequent which occur in the leafs of
the resolution refutation and delete the those formula occurrences that are
irrelevant.

38

10 Experiments

10.1 Simplification of the Herbrand Sequent of the lattice
proof

Here we test the simplification algorithm giving as an input the extracted
Herbrand Sequent. Detailed description and analysis of the Herbrand Se-
quent extracted from the Lattice proof can be found in [5] and we are not
going into these details. We start directly with the extracted Herbrand se-
quent , S = A1, A2, A3, A4, A5 ` C1, where

A1 : s1 ∪ (s1 ∪ (s1 ∩ s2)) = s1 ∪ (s1 ∩ s2) → s1 ∩ (s1 ∪ (s1 ∩ s2)) = s1

A2 : s1 ∩ s1 = s1 → s1 ∪ s1 = s1

A3 : (s1 ∩ s2) ∩ s1 = s1 ∩ s2 → (s1 ∩ s2) ∪ s1 = s1,
A4 : (s1 ∪ (s1 ∩ s2)) ∪ s1 = s1 → (s1 ∪ (s1 ∩ s2)) ∩ s2 = s1 ∪ (s1 ∩ s2)
A5 : s1 ∪ (s1 ∪ s2) = s2 ∪ s4 → s1 ∩ (s1 ∪ s2) = s1

C1 : (s1 ∩ s2) ∪ s1 = s1 ∧ (s1 ∪ s2) ∩ s1 = s1

Before we proceed we introduce the following

Definition 10.1 (L1-lattice). A L1-lattice is a set L together with the
operations meet (∩) and join (∪) such that both (L,∪) and (L,∩) are semi-
lattices and the following property holds:

(∀x)(∀y)x ∩ y = x ↔ x ∪ y = y

Definition 10.2 (L2-lattice). A L1-lattice is a set L together with the
operations meet (∩) and join (∪) such that both (L,∪) and (L,∩) are semi-
lattices and the following absorption laws hold:

(∀x)(∀y)(x ∩ y) ∪ x = x and (∀x)(∀y)(x ∪ y) ∩ x = x

Our goal is to see whether the simplified Herbrand sequent corresponds
to the theoretical observation that formula occurrences A1, A2 and A4 are
not essential for the conclusion C1 [5]. According to the theory all L1-lattices
are L2-lattices. Indeed, A3 and A5 together imply the formula (∀)(∀)x∩y =
x ↔ x ∪ y = y which is the property for L1-lattices. From another hand,
C1 represents the formula (∀x)(∀y)(x∩ y)∪ x = x∧ (∀x)(∀y)(x∪ y)∩ x = x
which is the property for L2-lattices.

In this case the term-rewriting system consists of the rules x ∩ x → x
and x ∪ x → x. Then A2 immediately can be removed:

A1 : s1 ∪ (s1 ∪ (s1 ∩ s2)) = s1 ∪ (s1 ∩ s2) → s1 ∩ (s1 ∪ (s1 ∩ s2)) = s1

39

A3 : (s1 ∩ s2) ∩ s1 = s1 ∩ s2 → (s1 ∩ s2) ∪ s1 = s1,
A4 : (s1 ∪ (s1 ∩ s2)) ∪ s1 = s1 → (s1 ∪ (s1 ∩ s2)) ∩ s2 = s1 ∪ (s1 ∩ s2)
A5 : s1 ∪ (s1 ∪ s2) = s2 ∪ s4 → s1 ∩ (s1 ∪ s2) = s1

C1 : (s1 ∩ s2) ∪ s1 = s1 ∧ (s1 ∪ s2) ∩ s1 = s1

We give the background theory for the semi-lattices:

• x ∩ y = y ∩ x

• (x ∩ y) ∩ z = x ∩ (y ∩ z)

• x ∩ x = x

• x ∪ y = y ∪ x

• (x ∪ y) ∪ z = x ∪ (y ∪ z)

• x ∪ x = x

The next step is to create a set of clauses from these axioms. We write
the equality formulas like an atom formulas with predicate symbol = :

axiom-Clause-Set:

{`= (x ∩ y, y ∩ x);
`= ((x ∩ y) ∩ z, x ∩ (y ∩ z));
`= (x ∩ x, x);
`= (x ∪ y, y ∪ x);
`= ((x ∪ y) ∪ z, x ∪ (y ∪ z));
`= (x ∪ x, x)}

Now, we should mark the atom formulas in the extracted Herbrand se-
quent S. Again, the reason is because we would like to distinguish all for-
mulas in S, even those which are syntactically equivalent. This would elimi-
nate the confusion which of those syntactically identical formulas should be
deleted if the formula does not appear in the refutation tree produced by the
theorem prover. The marking is linearly labeling of the atomic formulas of
the sequent. For this purpose we call the operation class OpMarkAtom-
FormulasInHerbrandSequent which calls for each formula occurrence
the operation class OpLabelAtomsInFormula. The result is the follow-
ing Herbrand Sequent Slab = A′1, A

′
3, A

′
4, A

′
5 ` C ′

1, where :

A′1 : s1 ∪ (s1 ∪ (s1 ∩ s2)) =1 s1 ∪ (s1 ∩ s2) → s1 ∩ (s1 ∪ (s1 ∩ s2)) =2 s1

40

A′3 : (s1 ∩ s2) ∩ s1 =3 s1 ∩ s2 → (s1 ∩ s2) ∪ s1 =4 s1,
A′4 : (s1 ∪ (s1 ∩ s2)) ∪ s1 =5 s1 → (s1 ∪ (s1 ∩ s2)) ∩ s2 =6 s1 ∪ (s1 ∩ s2)
A′5 : s1 ∪ (s1 ∪ s2) =7 s1 ∪ s2 → s1 ∩ (s1 ∪ s2) =8 s1

C ′
1 : (s1 ∩ s2) ∪ s1 =9 s1 ∧ (s1 ∪ s2) ∩ s1 =10 s1

Since these labels can not be given as an argument to the theorem prover,
we should encode them into the atom-formula’s name. This is done by the
operation class OpRenameFormaulasToLabelsInSequent. The result
is the sequent Sren

lab = A′′1, A
′′
3, A

′′
4, A

′′
5 ` C ′′

1 , where:

A′′1 : P1(s1 ∪ (s1 ∪ (s1 ∩ s2)), s1 ∪ (s1 ∩ s2)) → P2(s1 ∩ (s1 ∪ (s1 ∩ s2)), s1)
A′′3 : P3((s1 ∩ s2) ∩ s1, s1 ∩ s2) → P4((s1 ∩ s2) ∪ s1, s1)
A′′4 : P5((s1 ∪ (s1 ∩ s2))∪ s1, s1) → P6((s1 ∪ (s1 ∩ s2))∩ s2, s1 ∪ (s1 ∩ s2))
A′′5 : P7(s1 ∪ (s1 ∪ s2), s1 ∪ s2) → P8(s1 ∩ (s1 ∪ s2), s1)
C ′′

1 : P9((s1 ∩ s2) ∪ s1, s1) ∧ P10((s1 ∪ s2) ∩ s1, s1)

The next steps of the algorithm transform the sequent Sren
lab to a se-

quent with formula occurrences in Negated Normal Form and Conjunctive
Normal Form. The operations that we use for this purpose are class Op-
TransformFormulaToNNF and class OpTransformFormulaToCNF.
This allows us to transform the negated sequent to set of clauses :

{P1(s1 ∪ (s1 ∪ (s1 ∩ s2)), s1 ∪ (s1 ∩ s2)) ` P2(s1 ∩ (s1 ∪ (s1 ∩ s2)), s1) ;
P3((s1 ∩ s2) ∩ s1, s1 ∩ s2) ` P4((s1 ∩ s2) ∪ s1, s1) ;
P5((s1 ∪ (s1 ∩ s2)) ∪ s1, s1) ` P6((s1 ∪ (s1 ∩ s2)) ∩ s2, s1 ∪ (s1 ∩ s2)) ;
P7(s1 ∪ (s1 ∪ s2), s1 ∪ s2) ` P8(s1 ∩ (s1 ∪ s2), s1) ;
P9((s1 ∩ s2) ∪ s1, s1), P10((s1 ∪ s2) ∩ s1, s1) `}

calling the function transformNegatedSequentToClauseSet.
We notice that the formulas P4((s1∩s2)∪s1, s1) and P9((s1∩s2)∪s1, s1)

are renamed version of the formula (s1∩s2)∪s1 = s1 of the original Herbrand
sequent. In general one atom formula can have a lot of renamed versions.
In order not to loose this important information we should to the clause set
above the following clauses :

{P4((s1 ∩ s2) ∪ s1, s1) ` (s1 ∩ s2) ∪ s1 = s1 ;
(s1 ∩ s2) ∪ s1 = s1 ` P4((s1 ∩ s2) ∪ s1, s1) ;
(s1 ∩ s2) ∪ s1 = s1 ` P9((s1 ∩ s2) ∪ s1, s1) ;
P9((s1 ∩ s2) ∪ s1, s1) ` (s1 ∩ s2) ∪ s1 = s1}

41

Analogously, we do this for all formulas which are renamed versions
of some atomic formula from the original Herbrand sequent. Since here
we have ten atomic formulas, we need twenty clauses in order to encode
the equivalences. We should that this way of making equivalences is not
complete because we loose some properties of the equalities. Nevertheless,
in the worst case the obtained sequent till be a simplification of the original
Herbrand sequent but not necessary the smallest one.

This set of clauses is stored in the eqList which is a member of the
OpRenameFormaulasToLabelsInSequent operation (we create this
list during the renaming in order to safe computational time).

The last essential information, namely the background theory(axioms)
axiom-Clause-Set which we defined above, is also added to the set of clauses.
Now, we can give this set of clauses to the theorem prover using the Write()
member function of the class ExportOtter . The prover returns a resolu-
tion proof. From this resolution proof we are interested only of the axioms
on the leafs of the proof-tree. Using the operation OpGetInitialsFromR-
Proof we collect these axioms (all of them are atom formulas) and compare
which of them corresponds to the renamed atom formulas from the renamed
Herbrand sequent. We mark those of the atom formulas of the renamed
Herbrnd sequent which occur in the leafs of the resolution proof. This is
done by the OpMarkResFormaulasInSequent operation. The last step
is to unrename the formulas in the renamed Herbrand sequent keeping the
marker of those formulas which are marked. The result is the sequent:
Smin = A′′′1 , A′′′2 , A′′′3 , A′′′4 , A′′′5 ` C ′′′

1 , where

A′′′1 : s1 ∪ (s1 ∪ (s1 ∩ s2)) = s1 ∪ (s1 ∩ s2) → s1 ∩ (s1 ∪ (s1 ∩ s2)) = s1

A′′′3 : (s1 ∩ s2) ∩ s1 =F s1 ∩ s2 → (s1 ∩ s2) ∪ s1 =F s1,
A′′′4 : (s1 ∪ (s1 ∩ s2)) ∪ s1 = s1 → (s1 ∪ (s1 ∩ s2)) ∩ s2 = s1 ∪ (s1 ∩ s2)
A′′′5 : s1 ∪ (s1 ∪ s2) =F s1 ∪ s2 → s1 ∩ (s1 ∪ s2) =F s1

C ′′′
1 : (s1 ∩ s2) ∪ s1 =F s1 ∧ (s1 ∪ s2) ∩ s1 =F s1

One can notice that all atomic formulas in the formula occurrences A′′′1
and A′′′4 are not marked (with the marker F). Then, according to the defini-
tion of Herbrand sequent we can remove this formula occurrences from the
extracted Herbrand sequent S. Hence, we obtain as a simplified Herbrand
sequent :

(s1 ∩ s2) ∩ s1 =F s1 ∩ s2 → (s1 ∩ s2) ∪ s1 =F s1

s1 ∪ (s1 ∪ s2) =F s1 ∪ s2 → s1 ∩ (s1 ∪ s2) =F s1

`

42

(s1 ∩ s2) ∪ s1 =F s1 ∧ (s1 ∪ s2) ∩ s1 =F s1

Indeed, the result shows that L1-lattices are L2-lattices [5].

10.2 Simplification of an arithmetic Herbrand Sequent

The next example shows the simplification of a Herbrand sequent in for-
mula level as well as in term level. The signature Σ consists of one constant
symbol 0 interpreted as a 0 ∈ N, a unary function symbol s interpreted
as a succesor function over N, and two binary function symbols + and ∗
interpreted as a sum and multiplication operation over N respectively. The
sequent is :

S : A1, A2, A3, A4 ` C1, C2, where

A1 : P ((s(0) + s(0)) + s(0))
A2 : P (s(0) + s(s(s(0) + s(0))))
A3 : P (s(0) + s(s(s(0) + s(0)))) → P (s(s(0)) ∗ s(s(0) + s(0)))
A4 : P (s(s(0) + s(0)) ∗ s(s(0) + 0)) → P (s(s(s(0)) ∗ s(s(s(0)))))
C1 : P (s(s(0)) ∗ s(S(0)))
C2 : P (s(s(s(s(0))) ∗ s(s(0))))

In this case the background theory consists of the following Axiom
schema:

• x + 0 = x

• x ∗ 0 = 0

• x + s(y) = s(x + y)

• x ∗ s(y) = x ∗ y + x

The sequent can be taught of as P (3), P (4), P (4) → P (5), P (5) →
P (7) ` P (4), P (7). The idea is to show that P (3) from the antecedent
part and P (4) from the consequent part are irrelevant for the validity of the
sequent.

This background theory can be turned into a Term-rewriting system.
Furthermore, this term-rewriting system is confluent and terminating. Once

43

we have all terms in normal form, we do not need the background theory
anymore. We orient the equation from left to right and add them in the
data structure which is a list of TermRewritingRules. Then we call the
operation class OpSimplifyingSequentInTermLevel which apply the
rewrite rules till no further reduction is possible. The result is a sequent
Strw : A′1, A

′
2, A

′
3, A

′
4 ` C ′

1, C
′
2, where

A′1 : P (s3(0))
A′2 : P (s5(0))
A′3 : P (s5(0)) → P (s6(0))
A′4 : P (s6(0)) → P (s7(0))
C ′

1 : P (s4(0))
C ′

2 : P (s7(0))

Now we transform the formulas in Conjunctive-normal forma and label
the atom formulas. After that, we rename the sequent in such a way that we
encode the labels of the atom formulas into the names of the same atom for-
mulas calling the operation OpRenameFormaulasToLabelsInSequent.
The result is the sequent:

P1(s3(0)),
P2(s5(0)),
¬P3(s5(0)) ∨ P4(s6(0)),
¬P5(s6(0)) ∨ P6(s7(0))
`
P7(s4(0)),
P8(s7(0))

Now we negate the sequent and transform in to a set of clauses call-
ing the transformNegatedSequentToClauseSet operation. The result
is the following set of clauses:

{` P1(s3(0)),` P2(s5(0)), P3(s5(0)) ` P4(s6(0)), P5(s6(0)) ` P6(s7(0)),
P7(s4(0)) `, P8(s7(0)) `}

Since the formula pairs P2(s5(0)) and P3(s5(0)), P4(s6(0)) and P5(s6(0))
and P6(s7(0)) and P8(s7(0)) are renamed version of the formulas P (s5(0)),
P (s6(0)) and P (s7(0)) respectively, we construct the union of the set of
clauses above with the following set of clauses representing the equivalence

44

of the formulas in each pair:

{P2(s5(0)) ` P3(s5(0)), P3(s5(0)) ` P2(s5(0)), P4(s6(0)) ` P5(s6(0)),
P5(s6(0)) ` P4(s6(0)), P6(s7(0)) ` P8(s7(0)), P8(s7(0)) ` P6(s7(0))}

Now we are ready to give the new set of clauses as an input to the the-
orem prover. The outcome is a refutation tree from which we collect all the
axioms. The marked sequent is:

P (s3(0)), P ?(s5(0)), P ?(s5(0)) → P ?(s6(0)), P ?(s6(0)) → P ?(s7(0))
`
P (s4(0)), P ?(s7(0))

The unmarked formulas P (s3(0)) and P (s4(0)) correspond to formula
occurrence that can be dropped. Hence, the simplified Herbrand sequent is:

P ?(s5(0)), P ?(s5(0)) → P ?(s6(0)), P ?(s6(0)) → P ?(s7(0)) ` P ?(s7(0))

45

11 Conclusion and future work

The main contribution of this thesis is the development and the implementa-
tion of an algorithm for simplification of a Herbrand sequent. The algorithm
is integrated into the CERES system. It simplifies the extracted Herbrand
sequent in both term- and formula level.

As an input the algorithm expects a sequent only. Hence, it does not
take into account the LK-proof from which more information for further
simplification could be concluded. But analyzing the LK-proof could even
help finding the minimal Herbrand sequent directly from the proof without
further need to call the algorithm described in this thesis after extracting the
Herbrand sequent from the proof. However, this is a possible approach for
future investigation of different Herbrand sequent simplification methods.

46

References

[1] M.Baaz; A.Leitsch, On skolemization and proof complexity. Funda-
menta Informaticae, (20):353379, 1994.

[2] William McCune; Automated theorem prover for first-order and equa-
tional logic. Argonne National Laboratory 9700 South Cass Avenue
Argonne, IL 60439, http://www.cs.unm.edu/ mccune/otter/

[3] Gerhard Gentzen, Untersuchungen ueber das logische Schliessen. Math-
ematische Zeitschrift 39: 405431

[4] F. Baader, T. Nipkow; Term Rewriting and All That. Cambridge Uni-
versity Press, 1998

[5] S. Hetzl, A. Leitsch, D. Weller, B. Woltzenlogel Paleo; Herbrand
Sequent Extraction. in: S. Autexier et al. (Eds.), Intelligent Com-
puter Mathematics, Vol. 5144 of Lecture Notes in Computer Science,
Springer, 2008, pp. 462-477

[6] Gaisi Takeuti, Proof Theory . North Holland, 2nd Edition, 1987.

[7] Theory and Logic Group; A program to review sequent calculi proofs .
Vienna University of Technology, http://www.logic.at/prooftool/

[8] B. Woltzenlogel Paleo, Herbrand Sequent Extraction . VDM Verlag Dr.
Mueller e.K. (February 7, 2008), ISBN-10: 3836461528

[9] Robert C. Martin, The Principles, Patterns, and Practices of Agile
Software Development . Prentice Hall

[10] S. Hetzl, A. Leitsch, D. Weller, B. Woltzenlogel Paleo;, Proof Analysis
with HLK, CERES and ProofTool. Vienna University of Technology

[11] Personal communication from Bruno Woltzenlogel Paleo, 3th of June,
2009

[12] M. Baaz, A. Leitsch; Cut-elimination and Redundancy-elimination by
Resolution. Journal of Symbolic Computation, 149-176 (2000)

47

