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Abstract

In this diploma thesis, we present di�erent methods to realize the visualization
of the spatio-temporal evolution of an epileptic seizure's focus based on multi-
channel ECoG data. Furthermore, our methods allow for a precise localization
of the seizure's initial focus, which is possible, as that focus exists because all
our data stems from patients su�ering from temporal lobe epilepsy.

Two main methods are presented, starting with a frequency domain ap-
proach. Based on the coe�cients of a �tted AR-model, modern measures like
partial directed coherence (PDC) are derived and discussed. Exhaustive analy-
sis of PDC's problems further leads to a generalized and far better performing
version of PDC.

In the second part, a Recursive Least Squares (RLS) Algorithm is performed
instead of the ordinary least squares approach in frequency domain. This RLS-
Algorithm helps us to cope with the instationarities of the ECoG signals far
better.

Based on the time-dependent AR-model, Granger causality is used to in-
dicate interactions between channels of the multivariate signals. Starting with
Granger's basic idea and the analysis of coupling e�ects between two signals,
stepwise partialization leads to improved results.

Generalized PDC as well as the Granger causality �nally lead to a visualiza-
tion of the seizure's evolution. The results presented are in excellent accordance
with descriptions from clinical experts.

This diploma thesis is the work of two authors, where

� Chapter 2, which is the frequency domain approach, was written by
Thomas Schuster, as well as the Medical Introduction in Section 1.1,
Conclusion and Outlook,

� Chapter 3, which shows the Granger causality approach, Section 1.2 and
the Appendix were written by Ulrike Kalliauer,

� the other chapters of the work have been elaborated cooperatively.

ii



Summary

In this diploma thesis, we present di�erent methods for the epileptic seizure
propagation analysis. They allow to track the temporal evolution of the seizure
focus. Especially the initial focus can be localized, which is essential if an
epilepsy surgical intervention is necessary.

We will start in this work with a medical introduction in Chapter 1, where
the reader will be made familiar with all the medical and mathematical termi-
nology. Temporal lobe epilepsy is explained in more detail, which is one of the
most common types of epilepsy, and furthermore one of the most promising for
mathematical analysis. Consequently, all data used in our experiments stem
from patients su�ering from temporal lobe epilepsy.

Further, connections between mathematical and medical analysis are pre-
sented. The di�erences between EEG and ECoG data are explained, as well as
the characteristic coupling e�ects between those signals during epileptic seizures,
which will be identi�ed by mathematical measures.

Basic information about our data and the doctors estimate about the evo-
lution of the epileptic seizures are given. Figures will be presented, which will
clarify the resulting plots from all our analysis.

In Chapter 2 (the frequency domain approach) classical measures like ordi-
nary coherence are used as well as more recent ones, which are based on the
coe�cients of �tted AR-models. Partial directed coherence will be derived from
the parametric representation of ordinary coherence. The problems of both
measures are explained exhaustively and possible corrections are presented.

Next, generalized partial directed coherence is developed and proven to be
an adequate measure for seizure propagation analysis. Results derived from
that measure are visualized and will turn out to coincide quite good with the
opinion of clinical experts.

In Chapter 3 a Recursive Least Squares Algorithm (RLS) will be used, which
allows us to cope with the instationarity of the given biosignals even better.
Based on the resulting time-dependent AR-model coe�cients, we will recognize
that Granger causality is an appropriate approach to track epileptic seizures.
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Analysis will start with a simple bivariate Granger causality approach, whereas
interactions between channels are analyzed pairwise without any respect to all
the other channels available. Stepwise partialization then will lead to condi-
tional and further partial Granger causality.

Again, results of all three measures will be visualized. Especially results
from partial Granger causality will turn out to be in perfect accordance with
the clinical epileptic seizure descriptions. Due to RLS and the partialization,
the evolution of the seizure focus could be visualized even better than when
using the frequency domain approach.

Finally in Chapter 4 the main achievements are summarized and results from
Chapters 2 and 3 are compared. Critical assumptions made are emphasised and
combined with ideas for improvements. Additionally a list of possible approaches
for further research is given.
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Chapter 1

Introduction

We hope, that our work will give a lot of suggestions to medics and to mathe-
maticians. Thus we want to use the �rst chapter to clarify the whole terminol-
ogy: the medical as well as the mathematical one.

If the reader is not familiar with some common mathematical expressions,
we recommend [5]. For any medical questions, a standard medical dictionary
like [1] would be helpful.

1.1 Medical background

As the reader might have a mathematical or at least a technical background,
but not necessarily any medical knowledge, we want to start this diploma thesis
with a medical introduction.

We want to give a short overview, which contains the information necessary
to understand the basic idea behind the given task: localizing the focus of
epileptic seizures. This overview is based on [19] and [4], which are recommended
to the interested reader.

1.1.1 Basic facts

In industrial countries, year by year, some kind of epilepsy is diagnosed by be-
tween 24 and 53 out of 10,000 inhabitants. Thus it is one of the most common
serious neurological disorders, nearly comparable with diabetes.

For most people a�ected, symptoms start either during their �rst year of
life, or after the age of 70. Based on statistics, the risk of falling ill is minimal
in adulthood. Furthermore, it is slightly smaller for women than for men.

As for many diseases the relationship holds, that the better the socioeco-
nomic status, the lower the risk of getting infected. Consequently, the number
of incidences lies approximately three times higher in developing countries, com-
pared with the numbers mentioned for industrial countries. In fact, that might
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also be the reason, why blacks tend to su�er from epilepsy more often than
whites.

1.1.2 De�nition of epilepsy and epileptic seizures

Although those terms are mixed up quite often, medics clearly di�erentiate
between epilepsy and epileptic seizures

De�nition 1.1 (Epileptic seizure). An epileptic seizure is the clinical mani-
festation of excessive hyper-synchronous discharges of neurons in the cerebral
cortex.

Symptoms mostly depend on the function of the a�ected brain area. Epilep-
tic seizures can lead, for example, to the disorder of advanced brain functions,
unconsciousness, abnormal sensory perceptions or spasms.

Epileptic seizures may also lead to severe complications. First of all, they
might cause a lot of damage to a�ected brain regions, which is probably based
on a high concentration of calcium within the nerve cells. On the other hand,
the inability to control the extremities within a seizure may cause car accidents
as well as downfalls from ladders or even drowning.

De�nition 1.2 (Epilepsy). Epilepsy is a chronic disease, a heterogeneous group
of a�ections with various syndromes and di�erent causes. All of them have one
characteristic in common: recurrent, unprovoked seizures.

In other words, medics speak of epilepsy, if seizures appear (without any
exogenous reasons) repeatedly.

1.1.3 Classifying epileptic seizures

At �rst, a basic classi�cation of epileptic seizures was presented by the Com-
mission on Classi�cation and Terminology of the International League against
Epilepsy nearly thirty years ago. It is still in use and quite simple to understand.

1. Focal (partial) seizures: The initial focus of the epileptic seizure is
localized only in one part of one cerebral hemisphere. It does not matter,
whether the epileptic activity later is proceeding to di�erent regions of the
brain, or not.

2. Generalized seizures: They initially involve signi�cant parts of both
cerebral hemispheres. It is impossible to localize an initial focus.

3. Not-classi�able seizures: They do not �t into one of the �rst two points
due to missing data.

1.1.4 Temporal lobe epilepsy

Temporal lobe epilepsy is one of the most common forms of focal epilepsy. Con-
sequently all data used in this work stem from patients su�ering from this form
of focal epilepsy. As we will see in the result sections, some of the seizures may
generalize, i.e. both hemispheres may be a�ected as epileptic activity expands.
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Figure 1.1: The 4 lobes of the cortex. Pictures represent the brain as seen
from the right side (left picture) or from above (right picture). The temporal
lobe (Lobus temporalis), we are mainly interested in, is indicated in green.

But, as classi�ed before, it is in fact possible to �nd an initial focus for all of
them.

The temporal lobe (Lobus temporalis) is located on both sides of the brain.
Its position is painted with green color in Figure 1.1. The temporal lobe contains
important brain regions, e.g. the auditory cortex and structures important for
the brain's memory function.

Patients su�ering from temporal lobe epilepsy mostly report the so called
Aurea at the beginning of the seizure, which is a special, hard to describe, kind
of feeling. Other typical symptoms are (which of course coincides with the brain
functions located in the a�ected area) a limitation of consciousness, movements
of the whole body, confusion or speech disorder.

For every patient su�ering from temporal lobe epilepsy, medicamentous ther-
apy is what doctors try �rst and helps for a majority of them. On the other hand,
if the administration of drugs could not help to control seizures, an epilepsy
surgical intervention (if possible) might be necessary. Obviously, for that in-
tervention it is necessary to know the position of the initial focus as precise as
possible. Thus the localization of the focus is exactly what we want to realize
using measures from multivariate time series analysis.

Furthermore, not every surgical intervention is successful. Mathematical
analysis might help to increase the number of operations which go well.

1.2 The link between medical and mathematical

analysis

1.2.1 Data recording: EEG and ECoG

Before a surgical intervention can take place, the patient has to make long-
lasting presurgical tests (lasting on average one week), as, obviously, a precise
localization of the initial focus is needed. The surgical intervention is not re-
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versible and may leave long lasting consequences (for example if the speech
region is a�ected).

The �rst part of this long-lasting process is to analyze the epileptic activ-
ity with the help of the Electroencephalography (EEG) to receive an idea,
where the initial focus (the source of the seizure) might be located. The EEG
records electric cortical activity (caused by neurons within the brain). Usually,
about 20 electrodes are placed along the scalp.

Medics analyze the EEG data and try to �nd abnormal activities and oscil-
lation (like typical spikes or synchronous oscillations of neurons) between the
variety of frequencies, which appear in the data.

Afterwards, to localize the focus in a more precise way, the electrocor-
ticography (ECoG) is used. Therefore, a surgeon has to remove a part of
the skullcap to expose the brain surface, where the electrodes will be directly
implanted. The previous examination with the EEG is needed to constrain the
exposure of the brain and to guide the placement of the electrodes.

Contrary to the EEG signal, we see low voltage and high frequency compo-
nents more clearly in the ECoG data, because in the EEG data the measured
signals are attenuated due to the bone's low conductivity. In fact, this is exactly
the reason why only ECoG data will be used in our work.

Furthermore, the distance between two electrodes is less than one centimeter
and therefore the medics obtain a precise localization of the focus. This is im-
portant because the di�culty of the surgery intervention is to avoid neurological
de�cits caused by the operation.

For about 30 to 50% of the patients, the epileptic region cannot be localized
and the electrodes are removed without any surgery. The problem of analyzing
the ECoG data is, that medics with a high experience are necessary to identify
the epileptic activity. This is done through a visual interpretation of the ECoG
data and problems will arise especially if there is a rapid seizure generalization.

Although signals of the a�ected electrodes show simultaneous oscillations or
typical patterns (like spikes), for someone who is not specialized on analyzing
this sort of data, there seems to be no chance of �nding epileptic activity. To
have an idea how di�cult this is, we want to present in �gure the ECoG data
of one hemisphere, where channels 7, 8 and 9 show epileptic actions after �ve
seconds in �gure 1.2.

Contrary to the other channels, could be the same rhythm in the graph of
channel 7, 8 and 9. Furthermore, they seem to have regular and simultaneous,
high frequented oscillations compared to the other graphs. One e�ect which
occurs often with channels showing epileptic activity is the tendency to have
a higher amplitude, but this phenomenon is not signi�cant for these channels.
(This data belongs to the �rst seizure of patient 2.)

The di�culty of �nding the initial focus just based on visualized ECoG
signals combined with the fact, that even experts themselves often are not sure,
where the focus exactly is located, has led to our diploma thesis. An automatic
tool for the localization of the patient's epileptic �epicenter� would be extremely
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Figure 1.2: ECoG data during an epileptic seizure: After 5 seconds an epileptic

activity at channels 7, 8 and 9 is identi�ed. (simultaneous oscillation).

helpful.

1.2.2 Data basis

The ECoG recordings used in this diploma thesis, stem from three patients1

(patient 1, patient 2 and patient 4) su�ering from temporal lobe epilepsy. For
patients 1 and 4, a number of 32 electrodes was used to �nd the focus, whereas
for patient 2 only 28 electrodes were implanted.

ECoG signal recordings were made using a frequency of 256Hz and after �l-
tering the line interference (50 Hz), the data was down-sampled to 128 Hz. As
a reference value a not a�ected channel was chosen (far away from the focus).
Every data point describes the potential di�erence between the chosen and the
reference channel. For our analysis we use slightly adjusted time series, whereas
the potential di�erence to the average data signal is measured for each data
point2.

Exemplary we want to give a detailed description of seizure 3 of patient 2,
because this one is used often in the later analysis. Figure 1.3 gives a median
view of the brain's surface, with circles indicating electrodes mounted on bands
and marked with di�erent colors.

The information provided by clinical experts (shown in Figure 1.3) might
sound a bit cryptic to the reader. In fact, it means nothing else than

1. Seizure onset takes place at channels 26 and 27 at 12:31:41.

2. At 12:31:52 (11 seconds after the beginning) the epileptic activity prop-
agates to the other half of the hemisphere and infects channels 10 and
11.

3. After the infection of channels 10 and 11, channel 12 shows epileptic ac-
tivity, too.

4. At 12:32:39 (nearly one minute after the beginning) the seizure ends.

1treated at Vienna General Hospital, Department of Neurology
2for a detailed discussion of common average data see Section 3.5.1.1
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Time Activity Electrodes

12:31:41 start channel 26, 27
12:31:52 (after 11 sec.) prop channels 10, 11

prop channels 12
12:32:39 end channel 10, 11, 12

Figure 1.3: Channel numbers of ECoG electrodes of patient 2: Upper plot

visualizes the ECOG electrodes as mounted on the brain's surface. The left half of the

plot corresponds with the right hemisphere and vice versa. Channel numbers used in

the analysis are situated next to the electrode nodes. Furthermore the table under the

plot shows all the information provided from clinical experts.

Similar �gures and recordings for all other seizures analyzed can be found in
the Appendix.

1.2.3 Finding appropriate measures

The whole work is mainly based on the fact, that synchronization mechanisms
play a major role during long-lasting epileptic activities. (Synaptic) e�ects have
a positive feedback and lead to synchronization. Depending on the location of
the temporal focus, further regions of the cortex might be a�ected. Thus ob-
viously the localization of the initial focus and the tracking of its evolution are
two coinciding activities.

In a more mathematical context those synchronization e�ects suggest the
use of measures indicating causality. C.W. Granger introduced an appropriate
measure, a lot of extensions have been applied and representations in time as
well as in frequency domain have been derived.
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1.3 Notation and Terminology

Before starting with any mathematical analysis, we have to clarify some expres-
sions, that will be used in our work quite often.

We will always deal with discrete real-valued time series of length T consist-
ing of K components. Thus, we may write for short

xt ∈ RT×K with t = 1, ..., T.

As most publications related to are established in the context of neurological
signal treatment, the notation used here does not always coincide with that
mathematicians are used to. To avoid confusion we will present a list of the
most common terms.

1.3.1 Terminology

The following terminology will be used in our work repeatedly:

� We call any discrete real-valued time-series a signal.

� Each value of any given signal at a certain time, x[n = n0] is called a
sample. Consequently, the index of the time axis is termed the sample
index n.

� The frequency de�ned by

fs =
number of samples

length of the signal in seconds

is called the sampling frequency.

� Every component of any signal is called a channel, and its index is called
channel index.

1.3.2 Conventions for Notation

In contrast to the last section, the reader with mathematical background will
be quite familiar with the following conventions:

� Sample indices: when describing the k-th channel at time n = n0, we
will shortly write xk[n0] or (to avoid confusion) even xk.

� Stochastic symbols: As usual, the expected value is denoted by E, the
variance by V and the variance-covariance-matrix by

∑
. Estimated values

will further be marked by .̂

� xN will denote the sample mean: xN = 1
N

∑N
i=1 xi

� Based on the di�erent authors and the di�erent approaches used it seemed
more appropriate to use in each chapter a slightly di�erent notation. In
Chapter 3, matrices and vectors are denoted by bold letters, whereas in
Chapter 2 it was decided not to use bold letters. We hope, that will not
confuse the reader.
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Chapter 2

Localizing the focus of

epileptic seizures using

measures in Frequency

Domain

2.1 Frequency domain basics

De�nition 2.1 (process with orthogonal increments). A stochastic process
(z(λ) | λ ∈ [−π, π]) with random variables z(λ) : Ω → Cn is called a process
with orthogonal increments, if1

(i) z(−π) = 0, z(π) = xo a.e.

(ii) l.i.mε↓0z(λ+ ε) = z(λ) for λ ∈ [−π, π)
(iii) Ez(λ)∗z(λ) <∞ for all λ ∈ [−π, π)
(iv) E (z(λ4)− z(λ3)) (z(λ2)− z(λ1)) = 0 for all λ1 < λ2 ≤ λ3 < λ4.

Theorem 2.2 (Spectral Representation Theorem). For every stationary process
(x[n]), there exists a process with orthogonal increments (z(λ) | λ ∈ [−π, π]) such
that2

x[n] =
ˆ π

−π
eiλndz(λ) a.e. (2.1)

holds, where i =
√
−1 is the imaginary unit. The process (z(λ)) is a.e. uniquely

determined from (x[n]).

De�nition 2.3 (spectral distribution function). The function de�ned by

F (λ) = Ez(λ)z(λ)∗,

whereas F : [−π, π]→ C, is called the spectral distribution function.

1the symbol l.i.m denotes convergence in the mean squares sense
2�a.e.� means �almost everywhere�
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Theorem 2.4. For every covariance function γ(n) of a stationary process
(x[n]), there exists a spectral distribution function F (λ) such that

γ(n) =
ˆ π

−π
eiλndF (λ),

where F (λ) is uniquely determined from γ(n).

Proof. Without any loss of generality, assume that Ex[n] = 0. Thus, according
to Theorem 2.2

γ(n) = Ex[n]x[0]∗

= E
(ˆ π

−π
eiλndz(λ)

)(ˆ π

−π
eiλ0dz(λ)

)∗
=
ˆ π

−π
eiλnd (Ez(λ)z(λ)∗)

=
ˆ π

−π
eiλndF (λ).

A proof for the uniqueness can be found e.g. in [5].

De�nition 2.5 (spectral density function). If a function f : [−π, π] → Cn×n,
such that

F (z) =
ˆ z

−π
f(λ)dλ

exists at least almost everywhere, it is called the spectral density function of the
stationary process (x[n])3.

Proposition 2.6. If (x[n]) is a stationary process and (z(λ)) denotes the cor-
responding process with orthogonal increments, we have (λ1 < λ2)

ˆ λ2

λ1

f(λ)dλ = F (λ2)− F (λ1)

= E (z(λ2)− z(λ1)) (z(λ2)− z(λ1))∗

= E |z(λ2)− z(λ1)|2 .

Thus,
´ λ2

λ1
f(λ)dλ measures the expected amplitude for the spectrum of frequen-

cies between λ1 and λ2.

Theorem 2.7. If the stationary process (x[n]) has a spectral density4, then it
is given by (−π ≤ λ ≤ π)

f(λ) =
1

2π

∞∑
n=−∞

e−iλnγ(n)

3Obviously, not every stationary process has a spectral density function
4For example, according to [5], a stationary process with absolutely additive autocovariance

has a spectral density
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and the autocovariance function can be expressed by

γ(n) =
ˆ π

−π
eiλnf(λ)dλ.

2.2 Measures derived from nonparametric spec-

trum estimators

2.2.1 Nonparametric estimation of the spectrum

2.2.1.1 Periodogram

The Periodogram, although introduced by A. Schuster [30] more than 100 years
ago, is still one of the most common and established spectrum estimators in
time series analysis. Clearly, modi�cations have been developed and will be
discussed during this sections, but the main idea is still the same.

In this section, let x[n] denote a scalar time series, with n = 1, ..., N .

De�nition 2.8. The Periodogram IN (λ) at one speci�ed frequency λ is de�ned
by

IN (λ) =
1
N

∣∣∣∣∣
N∑
n=1

x[n]e−iλn
∣∣∣∣∣
2

, (2.2)

where i =
√
−1 is the imaginary unit. In the following, we will mainly consider

the so called Fourier frequencies

λj =
2πj
N

, j = −
⌊
N − 1

2

⌋
, ..., 0, ...,

⌊
N

2

⌋
.

Here, bxc denotes the largest integer that is less than or equal to x. Therefore,
for example,

⌊
N
2

⌋
is either N

2 if N is even or N−1
2 for odd N.

The use of Fourier frequencies instead of arbitrarily chosen frequencies re-
lieves some of the analysis5:

Theorem 2.9. The complex N-vectors

ej =
1√
N


e−iλj1

e−iλj2

...
e−iλjN

 , j = −
⌊
N − 1

2

⌋
, ..., 0, ...,

⌊
N

2

⌋
(2.3)

form an orthonormal basis for CN .
5As a frequency's property of being a Fourier frequency depends only on the value of N ,

any �xed frequency can be approximated arbitrarily close by a Fourier frequency by simply
increasing N . Thus, when talking about asymptotic (N → ∞) properties, each frequency λ
might be called a Fourier frequency.
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Proof. Let us take a look at the scalar product:

< ej , ek >=
1
N

N∑
n=1

e−iλjneiλkn =
1
N

N∑
n=1

ei(λk−λj)n (2.4)

and therefore
< ej , ek >= 1 if j = k.

Furthermore,

N∑
n=1

ei(λk−λj)n =
N∑
n=1

(
ei(λk−λj)

)n
= ei(λk−λj)

N−1∑
n=0

(
ei(λk−λj)

)n
= ei(λk−λj)

1−
(
ei(λk−λj)

)N
1− ei(λk−λj)

= 0

because
(
ei(λk−λj)

)N
= ei(λk−λj)N = ei2π(k−j) = 1. Thus, < ej , ek >= 0 if j 6=

k, which completes the proof.

Clearly, IN (λj) = |< ej , XN >|2 holds for every Fourier frequency, where
XN = (x[1], ..., x[N ])′. Using the property of orthogonality proven above espe-
cially for k = 0,

< ej , e0 >= 0 j 6= 0,

this leads further to

IN (λj) = |< ej , XN − ce0 >|2 , (2.5)

for any c ∈ C . In fact, all the entries of e0 are the same: e0 = 1√
N
1, with

1 = (1, ..., 1)′. Thus, when choosing c =
√
NxN :

IN (λj) =
1
N

∣∣∣∣∣
N∑
n=1

e−iλjn(x[n]− xN )

∣∣∣∣∣
2

. (2.6)

Based on (2.6), which is even used as the Periodogram's de�nition in some pub-
lications, it is quite easy to �nd an interpretation for the whole concept: the
Periodogram is nothing else than a frequency dependent squared complex co-
variance (between x and an harmonic oscillation).

(2.6) yields

IN (λj) =
1
N

(
N∑
n=1

eiλjn(x[n]− xN )

)(
N∑
m=1

e−iλjm(x[m]− xN )

)

=
1
N

N∑
m,n=1

e−iλj(m−n)(x[n]− xN )(x[m]− xN ).

As, obviously, x[m] = x[n + (m − n)], each additive part of the expression on
the right hand side does not depend on the current value of m, but only on the
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di�erence (m−n) between m and n. Therefore, by substituting u = m−n and
rearranging the elements of the sum

IN (λj) =
1
N

N−1∑
u=−N+1

N−u∑
n=1

e−iλju(x[n]− xN )(x[n+ u]− xN )

=
∑
|u|<N

γ̂(u)e−iλju. (2.7)

Thus the Periodogram IN (λj) for any Fourier frequency λj 6= 0 is the Fourier
transform of the sample autocovariance function γ̂. Because of the representa-
tion of the spectral density from theorem 2.7,

f(λ) =
1

2π

∞∑
s=−∞

γ(s)e−iλs,

the Periodogram (2.7) seems to be a suitable estimator for 2πf(λj). In fact,
it is even an asymptotically unbiased estimator for the spectral density (for
frequencies unequal to zero)6. Unfortunately, as the following example shows,
the Periodogram is not a consistent estimator of the spectral density, i.e. its
variance does not converge to zero.

Example 2.10. For simplicity let x[n] be Gaussian white noise, i.e. each �nite
vector xc[n] = (x[n− c], ..., x[n])′ is normally distributed:

xc[n] ∼ N(0, σ2I). (2.8)

The N vectors de�ned by

cj =

√
2
N

 cosλj1
...

cosλjN

 and sj =

√
2
N

 sinλj1
...

sinλjN


for 1 ≤ j ≤ N

2 and

ck =

√
1
N

 cosλk1
...

cosλkN


for k = 0 and k = N

2 if N2 is integer form an orthonormal basis for RN similar
to the one de�ned for CN in (2.3). Thus,

αj =< cj , XN >

and
βj =< sj , XN >

are independent random variables with zero mean and variance σ2.

6A proof can be found in Deistler [7] for example
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Let λj be any Fourier frequency, di�erent from 0 and π, in the following
context.7 Furthermore frequencies larger than π or lower than zero need not be
treated separately because of the spectral density's symmetry.

The Periodogram's de�nition (2.6) may now be expressed in terms of the
scalar products αj and βj :

α2
j + β2

j

2
=

1
2

(
|< cj , XN >|2 + |< sj , XN >|2

)
=

1
2

∣∣∣∣∣
N∑
n=1

√
2
N
x[n] cosλjn

∣∣∣∣∣
2

+

∣∣∣∣∣
N∑
n=1

√
2
N
x[n] sinλjn

∣∣∣∣∣
2


=
1
N

∣∣∣∣∣∣∣
N∑
n=1

x[n] (cosλjn− i sinλjn)︸ ︷︷ ︸
=e−iλjn

∣∣∣∣∣∣∣
2

= IN (λj).

Thus, as 1
σαj ∼ N(0, 1) and therefore 1

σ2α
2
j ∼ χ2

1 (and 1
σ2 β

2
j ∼ χ2

1 ), it follows
that the process's Periodogram is Chi-squared distributed with two degrees of
freedom,

2
σ2
IN (λj) ∼ χ2

2.

Note, that, because the αj and βk are independent, IN (λj) and IN (λk) are in-
dependent too, i.e. Cov(IN (λj), IN (λk)) = 0 for j 6= k.

The expectation and the variance8 of the Periodogram can now be calculated
easily9:

EIN (λj) =
σ2

2
2 = σ2 (= 2πf(λj))

and

VIN (λj) =
σ4

4
4 = σ4 (= 2πf(λj))

2
.

Like we wanted to show, the Periodogram is an unbiased, but not a consistent
estimator for the spectral density, because its variance does not converge to
zero as N →∞. As the property of consistency is quite important in statistics,
modi�cations have been made to the upper approach and will be presented
during the following sections.

7Our example would apply for both frequencies too, but we would have to deal with them
separately. For the sake of clarity, we will concentrate on Fourier frequencies unequal to 0 and
π.

8if X is Chi-squared distributed with n degrees of freedom, its expectation is equal to n
and its variance is equal to 2n.

9Note, that the spectral density of white noise is constant and equal to σ2

2π

13



2.2.1.2 Smoothed spectral estimates

Let (x[n]) be a scalar stationary process of the form

x[n] =
∞∑

j=−∞
bjε[n− j], (2.9)

where

(ε[n]) ∼ IID(0, σ2) and
∞∑

j=−∞
|bj |
√
|j| <∞. (2.10)

Let IN (λ) denote the Periodogram of (x[1], ..., x[N ])′. If the spectral density
f(λ) of (x[n]) is greater than zero for every λ ∈ [−π, π] and 0 < λ1 < · · · < λm <
π, according to Brockwell & Davis [5], the random vector (IN (λ1), ..., IN (λm))′

converges in distribution to a vector of independent and exponentially distributed
random variables whose i-th component has mean 2πf(λi), i = 1, ...,m.

Using this result, we may write the Periodogram in the form

IN (λj) = 2πf(λj) + u[j], (2.11)

where the sequence (u[j]) is asymptotically white noise WN(0, 1). The spectral
density estimation problem therefore might be interpreted as a regression prob-
lem in the frequency domain. f(λj) is nothing else than the trend, which we
want to estimate. Hence, representation (2.11) suggests that we might reduce
the Periodogram's variance by averaging over frequencies, i.e. smoothed Peri-
odograms are used as an estimate for f(λ).

De�nition 2.11 (direct spectral estimate). A smoothed Periodogram

f̂(λj) =
1

2π

∑
|u|≤mN

wu,NIN

(
λj −

2πu
N

)
︸ ︷︷ ︸

=:λj−u

(2.12)

is named a direct spectral estimate, if the so called �lter weights wu,N are sym-
metric, i.e. wu,N = w−u,N , and non-negative. IN (λ) is the periodic extension
of the Periodogram (2.2) from the interval (−π, π] to R.10

First of all, as

Ef̂(λj) =
∑
|u|≤mN

wu,N
1

2π
EIN (λj−u)︸ ︷︷ ︸

N→∞→ f(λj−u)≈f(λj)

N→∞→ f(λj)
∑
|u|≤mN

wu,N ,

the direct spectral estimate in (2.12) is an asymptotically unbiased estimate, if∑
|u|≤mN

wu,N = 1 (2.13)

10Therefore, IN

(
2π(T+1)

T

)
= IN

(
2π
T

)
for example
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and
mN

N

N→∞→ 0 (2.14)

because the spectral density is a continuous function (Together with (2.14) this
assumptions guarantees, that f(λj−u) = f(λj) holds asymptotically.). The in-
�nite sum exists, because of (2.10).

Furthermore, if (2.10) holds and Eε[n]4 < ∞, an asymptotic result for the
covariance can be derived11 (λj , λk ≥ 0):

Cov (IN (λj), IN (λk)) N→∞→


2(2π)2f(λj)2 if λj = λk ∈ {0, π}
(2π)2f(λj)2 if 0 < λj = λk < π

0 if λj 6= λk.

Thus, when using (2.20),

Vf̂(λj) =
∑
|u|≤mN

w2
u,N V

(
1

2π
IN (λj−u)

)
︸ ︷︷ ︸

→f2(λj)

+

∑
|u|,|v|≤mN ,u6=v

wu,Nwv,N Cov

(
1

2π
IN (λj−u),

1
2π
IN (λj−v)

)
︸ ︷︷ ︸

→0

N→∞→ f2(λj)
∑
|u|≤mN

w2
u,N ,

obviously the direct spectral estimate is a consistent estimate for the spectral
density, if ∑

|u|≤mN

w2
u,N → 0. (2.15)

Let us state our results in a formal theorem:

Theorem 2.12 (asymptotic properties of smoothed spectral estimates). Let
(x[n]) be a stationary process of the form x[n] =

∑∞
j=−∞ bjε[n− j], where (ε[n])

is white noise with variance σ2,
∑∞
j=−∞ |bj |

√
|j| <∞ holds12 and Eε[n]4 <∞

is ful�lled. If f̂(λ) is a direct spectral estimate with mN
N

N→∞→ 0,
∑
|u|≤mN wu,N =

1 and
∑
|u|≤mN w

2
u,N → 0 then

(i) f̂N is asymptotically unbiased, i.e. Ef̂N (λ) = f(λ)

(ii) limN→∞
Cov(f̂N (λ),f̂N (ω))∑

|u|≤mN
w2
u,N

=


2f(λ)2 if λ = ω ∈ {0, π}
f(λ)2 if 0 < λ = ω < π

0 else.

Proof. A detailed proof of this theorem can be found in [5].

11for a proof see e.g. [5]
12this condition holds especially for every ARMA process.
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Figure 2.1: Illustration of data segmentation. The whole time series is splitted

into overlapping segments of length L.

Nevertheless the presented concept here might be a bit abstract. Thus we
want to consider the following example for demonstration:

Example 2.13. The simplest example possible for a direct spectral estimate is
the Daniell estimate, which is in fact just a moving average of the Periodogram:

wu,N =

{
1

2mN+1 for |u| ≤ mN

0 else.

Clearly, the Daniell estimate is a consistent spectral density estimate according
to Theorem 2.12 if mN →∞ and mN

N → 0.

2.2.1.3 Welch's Method

The idea behind Welch's Method [33] is similar to that of smoothing in the
previous section, but adds some kind of segmentation of the stochastic process
x[n], n = 1, ..., N to the basic concept.

For simplicity assume, that x[n] is a stationary process with Ex[n] = 0 and
spectral density f(λ). Let λj again denote the Fourier frequencies.

Now take K segments of length L, that might overlap, but cover the whole
record. Assume, that the di�erence between two starting points of a segment
is always equal to D (Figure 2.1 illustrates the whole segmentation concept). If
xk[l], l = 1, ..., L; k = 1, ...,K describes the part of the stochastic process in
the i-th segment, we get for any 1 ≤ l ≤ L

x1[l] = x[l]
x2[l] = x[l +D]

...

xK [l] = x[l + (K − 1)D].

16



Next let us select a data window W [l], l = 1, ..., L similar to the �lter weights
in Section 2.2.1.2, form sequences xk[l]W [l] for every k = 1, ...,K and transfer
them into frequency domain. The resulting Fourier transforms Ak(λn) are equal
to

Ak(λn) =
1
L

L∑
l=1

xk[l]W [l]e−iklλn , (2.16)

where λn = 2πn
L , n = 0, ..., L2 in this context. Welch's K modi�ed Periodograms

are further de�ned by

IK(λn) =
L2∑L

l=1W [l]2
|Ak(λn)|2 (2.17)

and lead directly to

De�nition 2.14 (Welch's spectral estimate). The average of Welch's modi�ed
Periodograms,

f̂(λn) =
1
K

K∑
k=1

IK(λn), (2.18)

is called Welch's spectral estimate.

As shown in [33], Welch's spectral estimate is just a special direct spectral
estimate and therefore asymptotically unbiased and consistent.

For practical use, not only asymptotic properties are important - �nite sam-
ple considerations are crucial too. Thus we want to analyze the variance of
Welch's spectral estimate in detail now.

If we de�ne13

d(j) = Cov (Ik(λn), Ik+j(λn)) , (2.19)

and consider the common formula for the variance of a sum of random variables
Xi (ai is an arbitrarily chosen real number),

V

(
n∑
i=1

aiXi

)
=

n∑
i=1

a2
iVXi + 2

n−1∑
i=1

n∑
j=i+1

aiajCov(Xi, Xj), (2.20)

which is simpli�ed to

V

(
n∑
i=1

Xi

)
= nγ(0) + 2

n−1∑
i=1

(n− i)γ(i) (2.21)

if X is a stationary process, γ denotes its covariance function and ai = 1. Then
13note, that the exact value of k does not matter as (x[n]) is a stationary process
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an expression for the estimator's variance can be derived:

Vf̂(λn) = V

(
1
K

K∑
k=1

Ik(λn)

)

=
1
K2

Kd(0) + 2
K−1∑
j=1

(K − j)d(j)


=

1
K

d(0) + 2
K−1∑
j=1

K − j
K

d(j)

 .

After de�ning the correlation coe�cient ρ(j) = d(j)
d(0) we may further write

Vf̂(λn) =
d(0)
K

1 + 2
K−1∑
j=1

K − j
K

ρ(j)

 . (2.22)

Clearly, correlation is equal to zero if and only if the segments of x[n] do not
overlap, i.e. D ≥ L. In that case, Vf̂(λn) = d(0)

K = Ld(0)
N and the variance con-

verges to zero for N →∞. Therefore, non-overlapping segments are optimal, if
N can be made su�ciently large.

Concluding, the best we can achieve by the use of segments which do not
overlap, is a reduction of the variance by the factor 1

K . In practice, the total
number of points K cannot be made arbitrarily large, therefore an even greater
reduction might be possible, if segments do in fact overlap. Welch suggests that
they might overlap by exactly one half of their length, i.e. D = L

2 .

Further analysis depends on the chosen data window W [l]. One of the rea-
sonable choices14 is the shape 1 − t2, −1 ≤ t ≤ 1. When using that window,
we get ρ(1) ≈ 1

9 and ρ(j) = 0 for any j > 1. Inserting all that assumptions into
equation (2.22) yields

Vf̂(λn) =
d(0)
K

1 + 2
K − 1
K︸ ︷︷ ︸

=1− 1
K

1
9

 ≈ 11
9
d(0)
K

,

because the second term 2d(0)
9K2 usually is insigni�cantly small. At �rst sight,

the factor 11
9 in�ates the variance compared to the non-overlapping segments

approach. However, an overall reduction in variance is achieved, because for
non-overlapping segments,

K =
N

L/2
− 1 ≈ 2N

L

14another reasonable choice might be the Parzen spectral window, which has the shape
1− |t| , −1 ≤ t ≤ 1
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instead of K = N
L if segments do not overlap. Therefore,

Vf̂(λn) =
11
18
d(0)L
N

.

Thus, for �xed N and L, by overlapping a reduction of the variance by the
factor 11

18 was achieved.

2.2.2 Coherence

Coherence is a frequency dependent measure based on the concept of cross
spectra between the components of multivariate time series. In this section,
we shall consider only stationary bivariate processes x[n] = (x1[n], x2[n])′ with
mean zero and covariances

γi,j(h) = Exi[n+ h]xj [n] (2.23)

satisfying
∞∑

h=−∞

|γi,j(h)| <∞ ∀i, j = 1, 2. (2.24)

As mentioned earlier, condition (2.24) guarantees the existence of the spectral
densities f11 and f22 for the component processes x1[n] and x2[n]. The matrix
Γ(h) = (γi,j)i,j=1,2 is called the covariance matrix function of the time series

(x[n]).

De�nition 2.15 (cross spectrum). If (x[n]) is a stationary process like discussed
above, the function

f12(λ) =
1

2π

∞∑
h=−∞

e−ihλγ1,2(h)

is called the cross spectrum of x1[n] and x2[n]. The matrix f(λ) = (fi,j(λ))i,j=1,2

is called the spectral density matrix or the spectrum of the process (x[n]).
Clearly,

f(λ) =
1

2π

∞∑
h=−∞

e−ihλΓ(h).

Note, that the covariances γi,j if i 6= j (which is di�erent to the case i = j) are
not in general symmetric around zero. Therefore, the cross spectrum fi,j(λ) is
typically a complex-valued function.

Let (zi(λ) | λ ∈ [−π, π]) denote the process with orthogonal increments cor-
responding to the univariate component process (xi[n]), where i = 1, 2, as dis-
cussed in the Spectral Representation Theorem 2.2. Thus,

xi[n] =
ˆ π

−π
eiλndzi(λ).

Furthermore, as shown in Proposition 2.6,

ˆ λ2

λ1

fi,i(λ)dλ = E |zi(λ2)− zi(λ1)|2 , (2.25)
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whereas −π ≤ λ1 ≤ λ2 ≤ π. The cross spectrum fi,j(λ) has a similar represen-
tation, namely

ˆ λ2

λ1

fi,j(λ)dλ = E (zi(λ2)− zi(λ1)) (zj(λ2)− zj(λ1))′. (2.26)

>�>From (2.26) we can see, that

fi,j(λ) = fj,i(λ)′ a.e. (2.27)

This implies, that the spectral density matrix f(λ) is in fact a Hermitian matrix,
i.e. f(λ) = f(λ)∗.

If the expression dzi(λ) denotes zi(λ2) − zi(λ1), where λ1 < λ < λ2, the
correlation between dzi(λ) and dzj(λ) is equal to

Cor (dzi(λ), dzj(λ)) =
Cov (dzi(λ), dzj(λ))

Vdzi(λ)Vdzj(λ)

=
Edzi(λ)dzj(λ)′√

E |dzi(λ)|2 E |dzj(λ)|2
.

Making the di�erence λ2 − λ1 in�nitesimally small while using representations
(2.25) and Proposition 2.6 yields

Cor (dzi(λ), dzj(λ)) =
fi,j(λ)√

fi,i(λ)fj,j(λ)
,

which results in the following

De�nition 2.16 (ordinary coherence). The squared (ordinary) coherence be-
tween two components xi[n] and xj [n] of a multivariate stationary process (x[n])
at one �xed frequency λ ∈ [−π, π] is de�ned by

χ2
i,j(λ) =

|fi,j(λ)|2√
fi,i(λ)fj,j(λ)

. (2.28)

According to (2.27), χ2
i,j(λ) = χ2

j,i(λ) a.e..

The Cauchy-Schwarz equality ensures, that 0 ≤ χ2
i,j(λ) ≤ 1, where a value of

χ2
i,j(λ) near 1 indicates a strong linear relationship between dzi(λ) and dzj(λ).

Obviously, due to its symmetric de�nition, the ordinary coherence cannot be a
directed measure.

Example 2.17. Let x1[n] be the single input and x2[n] the single output of a
linear system. If the system has constant parameters only, the coherence χ2

1,2(λ)
will be equal to one. If x1[n] and x2[n] are completely unrelated, the coherence
will be equal to zero. If χ2

1,2(λ) is greater than zero, but less than one, either
noise is entering the measurements, the function relating input and output is
not really linear, or in fact more inputs are a�ecting x2[n].

In other words: the coherence of a linear system is nothing else than the
fractional part of the output power that is a�ected by the input at one speci�ed
frequency.
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Figure 2.2: Coherence and its inability to di�er between direct and indirect

in�uences. When simulating any model, where channel 1 (represented by X1) causes

channel 2 and channel 2 further causes channel 3, according to the coherence's de�ni-

tion (2.28), ordinary coherence will always indicate coupling e�ects between channel 1

and 3, too.

2.2.3 Partial (spectral) coherence (PSC)

The ordinary coherence concept, which we presented during the previous section,
is one of the least complicated concepts when analyzing coupling e�ects between
components of multivariate time series. Unfortunately it simply does not work
in many cases. One weakness of coherence is its inability to distinguish between
direct and indirect in�uences (Figure 2.2 illustrates this problem). Dahlhaus'
approach [6] to avoid the indication of indirect in�uences is partialization of
time series.

In the following context, x[n] = (x1[n], ..., xk[n])′ is a multivariate stationary
time series. Our goal is to achieve only direct in�uences between two of the time
series's components xi[n] and xj [n]. The remaining components are denoted by

yi,j [n] = {xk[n] | k 6= i, j} .

First of all, we want to remove the linear e�ects of yi,j from the component
xi[n]. Thus, we set up a linear model, namely

xi[n] =
∞∑

r=−∞
di[r]yi,j [n− r] + εi[n], (2.29)

where εi[n] denotes the remaining (i.e. nonlinear) parts of xi[n]. Obviously,
our problem (i.e. withdrawing the linear e�ects optimally) is now equivalent to
minimizing

E

(
xi[n]−

∞∑
r=−∞

di[r]yi,j [n− r]

)2

, (2.30)

where optimal values of the �lter (di[r]) are to be determined.

We will discuss two di�erent cases to �nd a solution of the minimization
problem (2.30). First, assume that our linear model is not an in�nite one, i.e.
only a �nite number of values appears in equation (2.29). This assumption sim-
pli�es calculations and might even help to understand the proof of the second
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(in�nite) case, because methods are similar. Furthermore, Theorem 2.18 helps
to understand Partial Granger causality in Section 3.3.

Theorem 2.18. Let X (r-dimensional) and Y (s-dimensional) denote random
variables with mean zero15 and covariance matrix

E
(
X
Y

)(
X
Y

)′
=
(

EXX ′ EXY ′
EY X ′ EY Y ′

)
=
(

Σxx Σxy
Σ′xy Σyy

)
.

Then the optimal value for the (r + s) × s-matrix d, that is solving the mini-
mization problem

min
d

E (X − dY ) (X − dY )′ (2.31)

is given by d = ΣxyΣ−1
yy .

Proof. After rearranging, we can �nd a di�erent representation for our mini-
mization problem (2.31):

E (X − dY ) (X − dY )′ =

= E (XX ′ −XY ′d′ − dY X ′ + dY Y ′d′)
= Σxx − Σxyd′ − dΣ′xy + dΣyyd′

= Σxx − Σxyd′ − dΣyyΣ−1
yy︸ ︷︷ ︸

=Is

Σ′xy + dΣyyd′ + ΣxyΣ−1
yy Σ′xy − ΣxyΣ−1

yy Σ′xy︸ ︷︷ ︸
=0

= Σxx + (dΣyy − Σxy)d′ − (dΣyy − Σxy)Σ−1
yy Σ′xy − ΣxyΣ−1

yy Σ′xy
= Σxx − ΣxyΣ−1

yy Σ′xy + (dΣyy − Σxy)(d′ − Σ−1
yy Σ′xy)

= Σxx − ΣxyΣ−1
yy Σ′xy + (dΣyy − Σxy)Σ−1

yy (dΣyy − Σxy)′.

Thus obviously

E (X − dY ) (X − dY )′ ≥ Σxx − ΣxyΣ−1
yy Σ′xy,

where equality holds, if dΣyy = Σxy and therefore d = ΣxyΣ−1
yy , which completes

the proof.

We can now �nd the optimal solution for the complete optimization problem
(2.30): The result of Theorem 2.19 is called the Wiener �lter formula.

Theorem 2.19. Let (x[n]) and (y[n]) denote stationary processes with mean
zero and covariance functions γi,j(h) = Ei[n + h]j[h]′, where i ∈ {x, y} and
j ∈ {x, y}. Assume further, that all the covariance functions are absolutely
additive. The optimal �lter (di[r]) solving minimization problem (2.30) is then
given by

di[r] =
1

2π

ˆ π

−π
fxy(λ)fyy(λ)−1eirλdλ,

where fij(λ) are cross spectra, i.e. Fourier transforms of the corresponding
covariance functions γi,j.

15if EX = µx > 0 and/or EY = µy > 0, the theorem can be applied similarly to centered
variables X − µx and Y − µy
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Proof. Again, we want to �nd a di�erent representation for minimization prob-
lem (2.30). For simplicity, we will write d[r] instead of di[r] and neglect the
expression '(λ)' for all frequency dependent terms:

E
(
x[n]−

∑∞
j=−∞ d[j]y[n− j]

) (
x[n]−

∑∞
k=−∞ d[k]y[n− k]

)′ =

= γx,x(0)−
∞∑

j=−∞
γx,y(j)d′j −

∞∑
j=−∞

djγy,x(−j) +
∞∑

j=−∞

∞∑
k=−∞

djγy,y(k − j)d′k

=
ˆ π

−π
fxx − fxy

∞∑
j=−∞

eiλjd′j −
∞∑

j=−∞
dje
−iλj

︸ ︷︷ ︸
=:A

fyx +
∞∑

j,k=−∞

dje
iλ(k−j)fyyd

′
k dλ

=
ˆ π

−π
fxx − fxyA−Afyx +AfyyA− fxyf−1

yy fyx + fxyf
−1
yy fyx︸ ︷︷ ︸

=0

dλ

=
ˆ π

−π
fxx − fxyf−1

yy fyx − fxy
(
A− f−1

yy fyx
)
−Afyy

(
f−1
yy fyx −A

)
dλ

=
ˆ π

−π
fxx − fxyf−1

yy fyx + (Afyy − fxy)
(
A− f−1

yy fyx
)
dλ

=
ˆ π

−π
fxx − fxyf−1

yy fyx + (Afyy − fxy) f−1
yy (Afyy − fxy)′︸ ︷︷ ︸
≥0

dλ.

Thus, an optimum is given, if the underbraced expression on the right side is
equal to 0, i.e. Afyy − fxy = 0 and therefore

A(λ) = fxy(λ)fyy(λ)−1. (2.32)

As A(λ) was de�ned by
∑∞
j=−∞ d[j]e−iλj , the spectral representation theorem

(2.7) yields the optimal values for the linear �lter:

d[j] =
1

2π

ˆ π

−π
A(λ)eijλdλ. (2.33)

>�>From now on, εi[n] denotes the remainder of the linear model, i.e.

εi[n] = xi[n]−
∞∑

r=−∞
di[r]yi,j [n− r] (2.34)

(clearly, εj [n] is de�ned in the same way), where values for the �lter di[r] are
chosen optimally, like discussed in Theorem 2.18. εi[n] contains all the informa-
tion from the time series component xi[n], but in�uences from other components
(i.e. from yi,j [n]) have been removed, which makes the following de�nition ob-
vious.
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De�nition 2.20 (partial covariance and partial correlation). The partial co-
variance between two components xi[n] and xj [n] of a stationary time series is
de�ned by the ordinary covariance between xi[n] and xj [n] after all the in�u-
ences from the remaining components yi,j [n] have been removed, i.e.

Cov(xi[n], xj [n] | yi,j [n]) , Cov(εi[n], εj [n]). (2.35)

As correlation is just a normalized covariance, the partial correlation between
xi[n] and xj [n] is therefore equal to

r2
i,j|y ,

Cov(εi[n], εj [n])
Vεi[n]Vεj [n]

. (2.36)

The coherence de�nition (2.28) was directly based on the concept of cross
spectra, which are Fourier transforms of corresponding covariance function. Par-
tial coherence will be de�ned similarly. Let �rst denote

γi,j|y(h) = Cov(εi[n+ h], εj [n])

the partial covariance function between the two components xi[n] and xj [n] of
our stationary time series. If γi,j|y is absolutely additive, i.e.

∑∞
h=−∞

∣∣γi,j|y(h)
∣∣ <

∞ ∀i, j, the so called partial cross spectrum between xi[n] and xj [n] exists and
is de�ned by

fi,j|y(λ) ,
1

2π

∞∑
h=−∞

γi,j|y(h)e−iλh (2.37)

like discussed in Theorem 2.7. Clearly, this is exactly the cross spectrum be-
tween the two residuals εi[n] and εj [n] from equation (2.34). Rescaling leads to
the partial coherence.

De�nition 2.21 (Partial coherence). The (squared) partial (spectral) coherence
(PSC) between two components xi[n] and xj [n] of a stationary time series is
de�ned by the normalization of the partial spectrum (2.37), i.e.

R2
i,j|y(λ) ,

∣∣∣f2
i,j|y(λ)

∣∣∣
fi,i|y(λ)fj,j|y(λ)

(2.38)

for any frequency λ ∈ [−π, π]. Again, partial coherence is a symmetric and
therefore undirected measure for coupling e�ects between components of multi-
variate time series. Like ordinary coherence it is bounded by 0 and 1.

2.2.4 A simple signal model

Before discussing further improvements for the calculation of partial coherences,
we want to look at a simple signal model. It will demonstrate some of the co-
herence's problems during the previous sections and will show, that partial
coherences in fact might be a solution.
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Figure 2.3: The signal model.

Our signal model is shown in Figure 2.3. We arbitrarily picked the �rst 2000
observations of one of the ECoG signals from the results section and de�ned it
the input signal X1 of the signal model. Furthermore, every arrow describes a
shift of the data vector to the right for two times. Thus, for example

X̃2[1] = X̃2[2] = 0

and
X̃2[i] = X1[i− 2] for i > 2.

After shifting the signal, white noise of approximately half of the signal's am-
plitude is added to X̃2. The remaining time series is called X2. Executing the
same procedure with X2 as input signal yields X3 and X4.

Of course, we cannot expect arrows to be a result from any analysis using
PSC or ordinary coherence. They both are not directed measures and therefore
can indicate only interactions between two channels.

As expected and shown in Figure 2.4, ordinary coherence cannot distinguish
between direct and indirect in�uences. Thus, it indicates interactions between
channels 1 and 3 and between channels 1 and 4. Unfortunately, it also suggests
that there is interaction between channels 3 and 4, which is in contrast to the
model's de�nition. Of course, both signals are similar in the way that they
both are derived from channel 2 by shifting and adding noise, which leads to a
high correlation between them. However, it is not satis�able that this similarity
yields our measure to indicate interactions between the two channels.

Fortunately, partial spectral coherence meets all the expectations. As shown
in Figure 2.5, it only indicates direct interactions between channels that in fact
do interact. PSC therefore is a de�nitive improvement compared to ordinary
coherence.

2.2.5 Computational formula for the partial coherence

Without any doubt, partial coherence is a useful tool in numerous di�erent ap-
plications. On the other hand, it is quite computation-intensive to perform all
the linear optimization problems and Fourier transformations necessary to ob-
tain partial cross spectra as de�ned above. Therefore, Dahlhaus [6] developed
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Figure 2.4: The signal model and ordinary coherences. Analyzing pairwise

interactions between di�erent channels of our signal model. Ordinary coherences indi-

cate coupling e�ects between any pair of channels, which is in contrast to the model's

de�nition.

Figure 2.5: The signal model and partial spectral coherences. Analyzing pair-

wise interactions between di�erent channels of our signal model. Partial spectral coher-

ence indicates only coupling e�ects between pairs of channel if they are in accordance

with the signal model's de�nition.
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a simple computational formula to calculate partial coherences.

First of all, we need a di�erent representation for the partial cross spectral
density fij|y(λ).

Theorem 2.22. The partial cross spectral density (2.37) can be obtained by
calculating

fij|y(λ) = fij(λ)− fi,y(λ)fyy(λ)−1fy,j(λ),

where fi,y is the cross spectral density between xi[n] and yi,j [n].

Proof. The proof is quite similar to the one shown for the Wiener �lter formula
in Theorem 2.19. Again, for simplicity we will omit the expression '(λ)'. We
have

γi,j|y(h) = Eεi[h]εj [0]′

= E

(
xi[h]−

∞∑
r=−∞

di[r]yi,j [h− r]

)(
xj [0]−

∞∑
s=−∞

dj [s]yi,j [−s]

)′

= Exi[h]xj [0]′︸ ︷︷ ︸
=γi,j(h)

−
∞∑

s=−∞
Exi[h]yi,j [−s]′︸ ︷︷ ︸

=γi,y(h+s)

dj [s]′ −
∞∑

r=−∞
di[r] Eyi,j [h− r]xj [0]′︸ ︷︷ ︸

=γy,j(h−r)

+
∞∑

r,s=−∞
di[r] Eyi,j [h− r]yi,j [−s]′dj︸ ︷︷ ︸

=γyy(h−r+s)

[s]′

=
ˆ π

−π
eiλh

(
fij − fi,y

∞∑
s=−∞

eiλsdj [s]′ −
∞∑

r=−∞
e−iλrdi[r]fy,j

+

( ∞∑
r=−∞

di[r]e−iλr
)
fyy

( ∞∑
s=−∞

ejλsdj [s]

)′)

According to the Wiener �lter formula proven before,

∞∑
r=−∞

di[r]e−iλr = fi,yf
−1
yy

and
∞∑

s=−∞
dj [s]e−iλs = fj,yf

−1
yy , Aj .

Thus,

γi,j|y(h) =
ˆ π

−π
eiλh

(
fij − fi,yA′j − fi,yf

−1
yy fy,j + fi,yf

−1
yy fyyA

′
j

)
dλ

=
ˆ π

−π
eiλh

(
fij − fi,yf−1

yy fy,j
)
dλ,

which �nishes our proof, because γi,j|y(h) =
´ π
−π eiλhfi,j|y dλ and therefore

fi,j|y = fij − fi,yf−1
yy fy,j a.e.
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Using this result will �nally help to prove the computational formula. It
shows, that partial coherences are in fact just negative values of the rescaled
inverse spectrum.

Theorem 2.23 (computational formula for partial coherences). Let (x[n]) de-
note a k-dimensional stationary process with existing cross spectra fij(λ), i, j =
1...k. The matrix fxx(λ) is de�ned by (fij(λ))i,j=1...k. Assume, that fxx has
full rank, then g(λ) = f−1

xx (λ) is its inverse. Let further denote

d(λ) =

 g11(λ)−
1
2 0

. . .
0 gkk(λ)−

1
2

 g(λ)

 g11(λ)−
1
2 0

. . .
0 gkk(λ)−

1
2

 .

The partial coherence Ri,j|y(λ) can then be calculated by Ri,j|y(λ) = −dij(λ) for
any i 6= j.

Proof. Without loss of generality assume, that i = 1 and j = 2. The stationary
process x[n] might be written as (x1[n], x2[n], z[n])′16. This notation yields17

fxx =

 (
f11 f12

f21 f22

)
fz,(2,1)

fz,(1,2) fzz

 , (2.39)

where fz,(1,2) =
(
fz1
fz2

)
is the cross spectrum between x1 and the rest. f(1,2),z

is de�ned in the same way. As the inverse of any regular matrix of the form

B =
(
B11 B12

B21 B22

)
is given by

B−1 =
(

E−1 −E−1B12B
−1
22

−B−1
22 B21E

−1 B−1
22 +B−1

22 B21E
−1B12B

−1
22

)
with E = (B11−B12B

−1
22 B21)−1, we can �nd a representation for the inverse of

the spectral matrix fxx:

f−1
xx =

(
E−1 −E−1f(1,2),zf

−1
zz

−f−1
zz fz,(1,2)E

−1 f−1
zz + f−1

zz fz,(1,2)E
−1f(1,2),zf

−1
zz

)
, (2.40)

where

E =
(
f11 f12

f21 f22

)
− f(1,2),zf

−1
zz fz,(1,2)

=
(
f11 − f1zf

−1
zz fz1 f12 − f1zf

−1
zz fz2

f21 − f2zf
−1
zz fz1 f22 − f2zf

−1
zz fz2

)
(2.41)

and, according to Cramer's rule, the inverse of matrix E is given by

E−1 =
1

E11E22 − E12E21

(
E22 −E12

−E21 E11

)
. (2.42)

16During this proof, we are only interested in the �rst two time series components, thus z
simply denotes the rest

17we will abandon from writing (λ) again
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We have now �nished all the necessary preparations and can �nally prove the
statement we wanted to prove:

d =


(fxx)−

1
2

11 0

(fxx)−
1
2

22

0
. . .

 f−1
xx


(fxx)−

1
2

11 0

(fxx)−
1
2

22

0
. . .



=


1

(f−1
xx )12√

(fxx)11(fxx)22
(f−1
xx )21√

(fxx)11(fxx)22
1

×

× ×



=


1

(f−1
xx )12√

(fxx)11(fxx)22
(f−1
xx )21√

(fxx)11(fxx)22
1

×

× ×


=

 1 −E12√
E11E22

−E21√
E11E22

1
×

× ×

 , (2.43)

where the symbol '×' characterizes matrix entries we are not interested in during
this proof. Combining (2.43) with the expression for E (2.41) and the results
from Theorem 2.22 �nally yields the desired results:

d12 =
−E21√
E11E22

= − f12 − f1zf
−1
zz fz2√(

f11 − f1zf
−1
zz fz1

) (
f22 − f2zf

−1
zz fz2

) = −R12|z

and analog for d21.
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2.3 Measures derived from parametric spectrum

estimators

Deriving measures from parametric spectra is a quite common approach in lit-
erature and can be found in numerous publications (e.g. [20, 21, 26]). Its main
idea is to �t an autoregressive (AR) model to preselected EEG/ECoG data,
to transform the estimated AR-coe�cients into frequency domain and then to
calculate dependency measures, which are based on this coe�cients.

2.3.1 Parametric estimation of the spectrum

Two major steps are necessary to compute parametric spectrum estimators:

2.3.1.1 Setting up a parametric model

In this section, we will always consider a linear approach, i.e. an AR model with
order p. We therefore assume, that the value of the signal x at moment n de-
pends only on the p previous values and a random component, i.e. it especially
does not depend on the signal's present or future values.

We further assume, that K channels are left after channel preselection (chan-
nel selection will be discussed in Section 2.4.3). At each moment n, we will de-
note those channels by a K-dimensional vector x[n] = (x1[n], . . . , xK [n])′, such
that the �tted AR(p) model can than be expressed as

x[n] =
p∑
j=1

Ajx[n− j] + ε[n], (2.44)

where the K × K-matrices Aj are the AR model's coe�cients and the K-
dimensional vector ε[n] represents white noise with mean zero and covariance
matrix Σε. Note, that the AR coe�cient A0 is set to identity in the upper
de�nition.
As result this �rst step delivers the model's p estimated coe�cient matrices.
They will be represented by Âj in the following context.

Despite its simplicity this approach is widely and successfully used in many
di�erent applications and especially in the analysis of EEG/ECoG signals (we
will ourselves use a similar approach again in Chapter 3, when dealing with
Granger causalities).

Unfortunately, using an autoregressive model implies the assumption of sta-
tionarity and therefore a constant variance. At our application, obviously, the
signal's variance at least changes when the seizure starts and ends. Further-
more, Graef showed [12], that the assumption of stationarity does not even hold
in short windows. Nevertheless, we will use this approach because numerous
publications (for example [10, 21]) detected, that it might be su�cient for the
approximation of EEG/ECoG signals and works quite well in practice.
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2.3.1.2 Transformation into frequency domain

We may write the de�nition of our AR model (2.44) in a di�erent, equivalent
way, by using the backshift operator z, which is de�ned as zx[n] = x[n− 1]:

x[n] =
p∑
j=1

Ajz
jx[n] + ε[n].

After moving x[n] completely to the equation's left hand side, we further receiveI − p∑
j=1

Ajz
j

x[n] = ε[n]. (2.45)

When denoting the expression between the brackets by A(z), we receive the
standard Z-transformation of our AR model, which holds in fact for every z ∈ C,
such that

detA(z) 6= 0 ∀ |z| ≤ 1. (2.46)

According to Deistler [7] or Brockwell and Davis [5], this assumption guarantees
stationarity of our model (furthermore it also assures the invertibility of A(z),
which will be used in the following context).

Transformation from Z-domain to frequency domain can now be managed
by setting z = e−iλ, where λ ∈ [−π, π] represents the (angular) frequencies18

and i is the imaginary unit. Like in Z-domain, we will denote

A(λ) = I −
p∑
j=1

Aje
−iλj . (2.47)

Therefore, we obtain the frequency domain representation of equation (2.45):19

A(λ)X(λ) = E(λ),

and further
X(λ) = H(λ)E(λ),

where the complex-valued matrix H(λ) = A(λ)−1 is called the transfer function
of our autoregressive model.

We can now easily calculate the power spectrum S(λ) (a proof can be found
in Brockwell and Davis [5] for example):

S(λ) = H(λ)ΣεH∗(λ), (2.48)

where ∗ denotes the transposed of the complex conjugate. Note, that the vari-
ance of noise, Σε, does not depend on the frequency in our model.

18In literature, frequencies are often represented by the expression 2πf, f ∈ [0, 1]. Obviously,
both representations are equivalent.

19Fourier transformed vectors are set in capital letters like matrices. However, di�erences
should be quite obvious.
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Finally, we obtain the desired estimated power spectrum Ŝ(λ), by inserting
the estimated model coe�cients Âj from the �rst step into equation (2.48).
When talking about measures derived from nonparametric spectra in this sec-
tion, we always talk about measures that are derived either from Ŝ(λ), from the
estimated transfer function or directly from the estimated model coe�cients Âj .

2.3.2 Ordinary coherence

De�nition of coherence is similar to the one we already discussed exhaustively
in Section 2.2.2. A parametric estimator for cross-spectral densities has already
been derived in the last section, because the non-diagonal elements of the esti-
mated power spectrum are in fact nothing else than cross-spectral densities of
the signals xi(n), i = 1, . . . ,K:20

S(λ) =


S11(λ) S12(λ) · · · S1K(λ)
S21(λ) S22(λ) · · · S2K(λ)

...
...

. . .
...

SK1(λ) SK2(λ) · · · SKK(λ)

 .

So (squared) ordinary coherence between two channels i and j is de�ned by

Cij(λ) =
|Sij(λ)|2

Sii(λ)Sjj(λ)
.

For frequencies λ, where Cij(λ) is high, interactions between the two signals Xi

and Xj can be modeled using a linear operator Tij , so that

Xi(λ) = TijXj(λ),

and further (because Tji = T−1
ij )

Xj(λ) = T
−1

ij Xi(λ).

Thus, obviously, ordinary coherence is an undirected measure again.

Unfortunately, high coherence does not necessarily explain the development
of epileptic seizures. Two neighboring electrodes might show similar behavior
over time, because distance between them is small and not because of epileptic
activity.

Surprisingly, although ordinary coherence has been a quite common ap-
proach in literature for years, only little attention has been given to its evo-
lution. Baccalá and Sameshima determined a new concept in neural structure
determination in 2001 [3], which is based on the decomposition of the inter-
actions between two signals into a �feedback� and a �feedforward� e�ect and
�nally leads to a measure called partial directed coherence. We will discuss the
necessary steps in detail during the following sections.

20For the sake of clarity, we will denote estimated values of power spectra without using
the symbol ^.
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2.3.3 The partial coherence function

Before starting with the desired decomposition of interactions between two sig-
nals, we �rst have to establish a de�nition similar to partial spectral coherence
from Section 2.2.3. According to the Computational formula for the partial
coherence (2.23), we have already proven before that the partial spectral coher-
ences can be obtained as the negative rescaled inverse of the power spectrum
matrix. Thus,

R2
XiXj |Yi,j =

∣∣∣∣∣ gij(λ)√
gii(λ)gjj(λ)

∣∣∣∣∣
2

, i 6= j, (2.49)

where g(λ) = fxx(λ)−1 represents the nonparametric estimation of the inverted
power spectrum.

Using the parametric approach, the inverse spectrum can easily be derived
from (2.48):

S(λ)−1 = (H(λ)ΣεH∗(λ))−1

= H∗(λ)−1Σ−1
ε H(λ)−1

= A∗(λ)Σ−1
ε A(λ).

Therefore element (i, j) of the inverse spectrum is[
S(λ)−1

]
i,j

= a∗•i(λ)Σ−1
ε a•j(λ), (2.50)

where a•j(λ) denotes the j-th column of the matrix A(λ).

Inserting the resulting expression for the elements of the inverse spectrum
(2.50) into the computational formula for partial coherence (2.49) leads to the
following representation of partial spectral coherence:∣∣∣∣∣∣∣

a∗•i(λ)Σ−1
ε a•j(λ)√

a∗•i(λ)Σ−1
ε a•i(λ)

√
a∗•j(λ)Σ−1

ε a•j(λ)

∣∣∣∣∣∣∣
2

.

Now, we can summarize this derivation with the following

De�nition 2.24 (partial coherence function). The partial coherence function

is given by21 κi,j(λ) = a∗•i(λ)Σ−1
ε a•j(λ)√

a∗•i(λ)Σ−1
ε a•i(λ)

√
a∗•j(λ)Σ−1

ε a•j(λ)
for any i 6= j.22 As

proven above, the squared partial coherence function is exactly the parametric
approach representation of partial spectral coherence (2.34).

21Note that Baccalá and Sameshima use a slightly di�erent notation in their de�nition [3]
of κi,j(λ). In fact, their matrix Aij(λ) is exactly the same as our matrix Aij(λ).

22we always study interactions between two di�erent channels, therefore the case i = j is
not an interesting one.
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Unfortunately, the partial coherence function is still an undirected measure.
It describes the direct in�uence between Xi and Xj at one speci�c frequency,
i.e. in�uences from all the other K − 2 channels are eliminated during calcula-
tions, but it still does not provide any information about the direction of those
in�uences.
Although partialization is a key result on our way to partial directed coher-
ence, the provided result is still not what we wanted to derive. The desired
factorization will �nally take place in the next section.

2.3.4 The partial directed coherence factor (PDCF)

2.3.4.1 PDCF and factorization of the partial coherence function

De�nition 2.25 (partial directed coherence factor). The partial directed co-
herence factor (PDCF) from j to i is given by

πi,j(λ) ,
Aij(λ)√

a∗•j(λ)Σ−1
ε a•j(λ)

, (2.51)

where a•j(λ) denotes the jth column of matrix A(λ) like de�ned in (2.47) and
Aij(λ) is element (i, j) of A(λ). The partial directed coherence factor matrix is

then represented by Π , (πi,j)i=1...K, j=1...K .

The partial directed coherence factor ensures the desired factorization as we
will see in the following

Theorem 2.26. The partial coherence function can be expressed in terms of
partial directed coherence factors by

κi,j(λ) = π∗•iΣ
−1
ε π•j ,

where, in analogy to the previous notation, π•i denotes the ith column of the
partial directed coherence factor matrix Π.

Proof. For every i, j with i 6= j we have

π∗•iΣ
−1
ε π•j =

=


A1i(λ)√

a∗•i(λ)Σ−1
ε a•i(λ)

...
AKi(λ)√

a∗•i(λ)Σ−1
ε a•i(λ)


∗

Σ−1
ε


A1j(λ)√

a∗•j(λ)Σ−1
ε a•j(λ)

...
AKj(λ)√

a∗•j(λ)Σ−1
ε a•j(λ)


=

1√
a∗•i(λ)Σ−1

ε a•i(λ)
√
a∗•j(λ)Σ−1

ε a•j(λ)

(
A∗1i(λ) · · · A∗Ki(λ)

)
Σ−1
ε

 A1j(λ)
...

AKj(λ)


=

1√
a∗•i(λ)Σ−1

ε a•i(λ)
√
a∗•j(λ)Σ−1

ε a•j(λ)
a∗•i(λ)Σ−1

ε a•j(λ)

= κi,j(λ),
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which is exactly what we wanted to show.

Obviously, the partial directed coherence factor is an asymmetric measure
as long as A(λ) is not a symmetric matrix. In practice, A(λ) is derived from
the AR model's estimated coe�cients and therefore, without much doubt, not
symmetric.

Unfortunately, the appearance of Σε in the denominator mixes the desired
e�ects with so called instantaneous causality. As we want to investigate the
development of epileptic seizures over time, we need to completely remove those
instantaneous e�ects to derive a meaningful measure. In the following section,
we will therefore exhaustively discuss the concept of instantaneous causality and
�nd a characterization that helps us to remove all the instantaneous e�ects from
the PDCF.

2.3.4.2 Instantaneous causality

Suppose, x[n] and z[n] are two stochastic processes and Ωn is a set containing
all the relevant information available up to period n. Furthermore, we denote by
ẑ[n|Ωn] the optimal 1-step prediction error of the process z[n] given the informa-
tion in Ωn, i.e. the 1-step predictor that minimizes MSE23. The corresponding
forecast MSE itself will be denoted by Σ̂z[n|Ωn] in the following context.

De�nition 2.27 (instantaneous causality). We say that there is instantaneous
causality between x[n] and z[n] if, in period n, adding the future value x[n+ 1]
to the information set improves the forecast of z[n+ 1], i.e. 24

Σ̂z [n|Ωn ∪ {x[n+ 1]}] < Σ̂z [n|Ωn] . (2.52)

According to Lütkepohl [23] this concept of causality is a symmetric one,
i.e. whenever there is instantaneous causality between x[n] and z[n], there is
also instantaneous causality between z[n] and x[n]. So, of course, the notion
�instantaneous causality from x[n] to z[n]� is not used in our de�nition. This is
in contrary to the de�nition of Granger causality in section 3.1.

Our goal (according to Lütkepohl [23] again) is to study the concept of
instantaneous causality in the framework of a K-dimensional AR process of
order p, represented by

y[n] =
p∑
j=1

Bjy[n− j] + u[n], (2.53)

where the K×K-matrices Bj are the model coe�cients and the K-dimensional
vector u[n] denotes a white noise process. We suppose, that the AR process
(2.53) has the canonical MA representation

y[n] = µ +
∞∑
j=0

Φju[n− j] = µ + Φ(z)u[n]. (2.54)

23MSE=mean squared error. If θ denotes the estimated parameter and θ̂ denotes its esti-
mator, the mean squared error is given by MSE(θ, θ̂) = E(θ − θ̂)2

24For two matrices A and B, the notation A < B means, that B − A is a positive de�nite
matrix.
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Again, the K×K-matrices Φj are the model coe�cients, with Φ0 set to identity
IK . Furthermore, Φ(z) =

∑∞
j=0 Φjzj where z is the backshift operator. The

(nonsingular) covariance matrix of the white noise process u[n] will be denoted
by Σu in the following context.

For further investigation, we need a MA representation with orthogonal
residuals (i.e. noise errors have uncorrelated components). As Σu is a covariance
matrix and therefore positive (semi-)de�nite, it can be written as

Σu = PP ′,

where P is a nonsingular lower triangle matrix.25 Obviously, representation
(2.54) is equivalent to

y[n] = µ +
∞∑
j=0

ΦjPP−1u[n− j] = µ +
∞∑
j=0

Θjw[n− j], (2.55)

with Θj = ΦjP and w[n] = P−1u[n]. The process's residuals are now orthogonal
because (Σw denotes the covariance matrix of w[n])

Σw = E [w[n]w[n]′] = E
[
P−1u[n]u[n]′

(
P−1

)′]
= P−1Σu

(
P−1

)′
= P−1PP ′

(
P−1

)′
= IK .

As a �nal assumption, we claim that the K-dimensional process y[n] consists of
the M -dimensional process z[n] (with M < K) and the (K −M)-dimensional

process x[n], i.e. y[n] =
(
z[n]
x[n]

)
. Applying this partitioning to the MA

representation (2.55) of the AR model therefore leads to

y[n] =
(
z[n]
x[n]

)
=
(
µ1

µ2

)
+
(

Θ11(z) Θ12(z)
Θ21(z) Θ22(z)

)(
w1[n]
w2[n]

)
. (2.56)

Clearly, as we supposed Φ0 = IK , the matrix Θ0 is equal to the triangle matrix
P which we have used to decompose Σu. Hence, representation (2.56) is equal
to(
z[n]
x[n]

)
=
(
µ1

µ2

)
+
(

Θ11,0 0
Θ21,0 Θ22,0

)(
w1[n]
w2[n]

)
+
(

Θ11,1 Θ12,1

Θ21,1 Θ22,1

)(
w1[n− 1]
w2[n− 1]

)
+· · ·

This representation of the AR model holds for every n, so

z[n+ 1] = µ1 + Θ11,0w1[n+ 1] + Θ11,1w1[n] + Θ12,1w2[n] + · · ·

and

x[n+ 1] = µ2 + Θ21,0w1[n+ 1] + Θ22,0w2[n+ 1] + Θ21,1w1[n] + Θ22,1w2[n] + · · ·
25A prove can be found in [3] for example.
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Using this result, we now can derive the one-step prediction error for x[n]:

x̂ [n|{y[s]|s ≤ n} ∪ {z[n+ 1]}] = x̂ [n|{w[s]|s ≤ n} ∪ {w1[n+ 1]}]
= Θ21,0w1[n+ 1] + µ2 + Θ21,1w1[n] + Θ22,1w2[n] + · · ·︸ ︷︷ ︸

=x̂[n|{y[s]|s≤n}]

.

The latter equality holds because of E [w2[n+ 1]] = 0. Apparently, the instan-
taneous causality condition

x̂ [n|{y[s]|s ≤ n} ∪ {z[n+ 1]] = x̂ [n|{y[s]|s ≤ n}] (2.57)

holds, if and only if
Θ21,0 = 0

and consequently

P = Θ0 =
(

Θ11,0 0
Θ21,0 Θ22,0

)
=
(

Θ11,0 0
0 Θ22,0

)
.

Hence, the covariance matrix

Σu = PP ′ =
(

Θ′11,0Θ11,0 0
0 Θ′22,0Θ22,0

)
has to be a block-diagonal matrix, too.

We can conclude this derivation with the following

Proposition 2.28 (characterization of instantaneous causality in VAR models).
Let a stochastic process y[n] be de�ned as in (2.53) and (2.56). Then there is no
instantaneous causality between x[n] and z[n] if and only if the corresponding
residuals u1[n] and u2[n] are uncorrelated, i.e.26

E [u1[n]u2[n]′] = 0.

Generalization of Proposition 2.28 �nally leads to

Proposition 2.29 (a further characterization of instantaneous causality in VAR
models). Let a K-dimensional stochastic process y[n] be de�ned like in (2.53).
Assume, that y[n] consists of K one-dimensional components yi[n], i = 1...K,
i.e. y[n] =

(
y1[n], y2[n], ..., yK [n]

)′
. Let Σu again be the covariance

matrix of the white noise process u[n] =
(
u1[n], u2[n], ..., uK [n]

)′
.

Then there is no instantaneous causality between any pair of components yi[n]
and yj [n] with i 6= j if and only if Σu is a diagonal matrix, i.e.

E [ui[n]uj [n]′] = 0 ∀i 6= j.

The latter proposition will help to explain the crucial step from the PDCF to
partial directed coherence in the following section.

26u[n] =

(
u1[n]
u2[n]

)
is partitioned in the same way as w[n] =

(
w1[n]
w2[n]

)
was earlier in

this section
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2.3.5 Partial directed coherence (PDC)

As we have seen in the previous section, removing all the instantaneous e�ects
from the partial directed coherence factor can be obtained by simply removing
all the non-diagonal elements from our covariance matrix Σε.
Beyond that, Baccalá and Sameshima [3] even made one extra step and de�ned
partial directed coherence by simply setting the covariance matrix equal to iden-
tity, i.e. Σε = IK , which leads to the following

De�nition 2.30 (partial directed coherence). The partial directed coherence
from j to i is de�ned by

π2
i,j(λ) ,

|Aij(λ)|2∑K
k=1 |Akj(λ)|2

, (2.58)

where Aij(λ) is element (i, j) of the matrix A(λ) de�ned in (2.47).

2.3.5.1 Characteristics and interpretation of PDC

We will start our analysis of PDC with the derivation and interpretation of some
of its basic characteristics:

� First, we want to show that partial directed coherence is well-de�ned, i.e.
the denominator

∑K
k=1 |Akj(λ)|2 is greater than zero, if the stability con-

dition (2.46) holds for the AR-model (2.44).

By de�nition of the stability condition, detA(z) 6= 0 ∀ |z| ≤ 1, where
A(z) = IK −A1z −A2z

2 − . . .−Apzp, z ∈ C is a polynomial matrix. As
the stability condition assures, that A(z) is not a singular matrix, all of
its eigenvalues are di�erent from zero. Replacing z with e−iλ proves, that
all the eigenvalues of A(λ) are di�erent from zero, too.

Obviously, A(λ)∗A(λ) is a positive semi-de�nite matrix as x∗A(λ)∗A(λ)x =
(A(λ)x)∗(A(λ)x) ≥ 0 for every vector x. Furthermore,

x∗A(λ)∗A(λ)x = (A(λ)x)∗(A(λ)x) = 0

for an arbitrarily chosen x 6= 0 if and only if A(λ)x = 0, i.e. if one of the
eigenvalues of A(λ) is equal to zero. So, if the stability condition (2.46)
holds, A(λ)∗A(λ) is a strictly positive de�nite matrix, i.e.

A(λ)∗A(λ) > 0 (2.59)

Now, let ej =
(

0, ..., 0, 1, 0, ..., 0
)′

be the jth base vector
consisting of zeros except for a single 1 on the jth position. Let ‖.‖
further denote the Euclidean norm. Using this notation, the denominator
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Figure 2.6: Normalization of the PDC. Exemplary 3-dimensional system with

source channel x2[n] and two target channels x1[n] and x3[n]. Partial directed coher-

ences π2
1,2(λ) and π2

3,2(λ) are both normalized with respect to the sum of all out�ows

from the source channel, i.e. |A1,2(λ)|2 + |A2,2(λ)|2 + |A3,2(λ)|2.

of partial directed coherence is equal to

K∑
k=1

|Akj(λ)|2 = ‖A(λ)ej‖2

= (A(λ)ej)∗(A(λ)ej)
= e′j A(λ)∗A(λ)︸ ︷︷ ︸

>0

ej > 0.

� As the denominator cannot be zero, clearly, π2
i,j(λ) is bounded by 0 and

1, i.e.
0 ≤ π2

i,j(λ) ≤ 1 (2.60)

for every λ, i, j.

� Partial directed coherence is a normalized measure, therefore, if one chan-
nel j is chosen, all the partial directed coherences from j to i, i = 1...K
sum to 1, i.e.

K∑
i=1

π2
i,j(λ) =

K∑
i=1

|Aij(λ)|2∑K
k=1 |Akj(λ)|2

= 1. (2.61)

� According to Baccalá [3], because of the normalization condition (2.61),
the partial directed coherence π2

i,j(λ) represents the relative coupling strength
of the interactions between a given signal source channel j and another
channel i compared to j´s interactions to all other channels.

In other words, π2
i,j(λ) is the ratio of the out�ow from source channel

j to channel i normalized to all the out�ows from the source channel. Fig-
ure 2.3.5.1 illustrates this concept using a 3-dimensional system (i.e. the
number of channels is equal to 3).

� Furthermore, when studying the normalization conditions (2.60) and (2.61),
another interpretation of PDC is obvious:
PDC ranks the relative interactions between two channels with respect to
one given signal source. So, values of π2

i,j(λ) near one indicate, that source
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channel j has high in�uence onto channel i. On the other hand, values
near27 zero indicate, that there might not be any in�uence from j onto
i28.

� Clearly, there could be high in�uence from channel j onto i for one fre-
quency λ1, i.e.

π2
i,j(λ1) ≈ 1

but nearly no in�uence for some di�erent frequency λ2 6= λ1, i.e.

π2
i,j(λ2) ≈ 0.

In practice, we will need a general, frequency independent measure for
the interactions between two channels. Mostly, this problem is solved
by summation or integration. We will go into even more detail when
discussing the implementation of PDC in Section 2.4.

� Interpretation of PDC for i = j is slightly di�erent from the interpretations
mentioned before at i 6= j. π2

i,i(λ) describes the fraction of out�ow from
channel i that is not explicable by the other measured time series. In other
words, π2

i,i(λ) represents how much of the ith channel's current state is
explained by it's own past.

� To obtain PDC, there is no need to calculate the matrix H(λ), i.e. it's not
necessary to invert A(λ). As A(λ) could be close to singular in practice,
this property provides a huge computational advantage of PDC compared
to di�erent measures that might be derived from parametric spectral es-
timators.

2.3.5.2 Link to Granger causality

Up to now, we always considered PDC as the factorization of partial spectral co-
herence. Actually, Baccalá and Sameshima's idea behind the de�nition of PDC
[3] was completely di�erent - the initial intention was to create a frequency do-
main representation of Granger causality, which is a fundamental tool in the
analysis of multivariate time series. Casually spoken, an observed time series
x[n] Granger causes another time series y[n] if knowledge of past values of x[n]
signi�cantly improves the prediction of y[n]29.

Let's take a look at the de�nition (2.58) of PDC, again:

π2
i,j(λ) ,

|Aij(λ)|2∑K
k=1 |Akj(λ)|2

,

where the matrix A(λ) was de�ned by A(λ) = IK −
∑p
j=1Aje

−iλj . As

Aij(λ) =

{
1−

∑p
r=1(Ar)ije−iλr j = k

−
∑p
r=1(Ar)ije−iλr j 6= k

,

27In practice, as we already discussed, partial directed coherences are derived from estimated
AR coe�cients. Therefore, it's rather unrealistic, that π2

ij(λ) is exactly equal to zero for any
chosen frequency λ.

28Of course, as PDC is not a symmetric measure, there could be high in�uence from channel
j onto channel i.

29We will de�ne and discuss the concept of Granger causality more accurate in Chapter 3.
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partial directed coherence depends mostly on the elements (Ar)ij of the esti-
mated AR model coe�cients Ar, which are, in fact, K × K matrices. In our
autoregressive model (2.44), x[n] =

∑p
r=1Arx[n−r]+ε[n], the coe�cients (Ar)ij

describe, how the present values of one channel xi depend linearly on the past
values of all the other channels xj .

As discussed and partially proven in Section 3.1.2, zeros in the coe�cient
matrices Ar(λ) indicate, that there is no Granger causality between the cor-
responding channels, i.e. (Ar)ij = 0 ∀r is equivalent to the statement �the
time series xj [n] does not Granger cause xi[n], given all the other components
xk[n], k = {1...K} \ {i, j}�.

Putting the pieces together leads to the following, very important

Theorem 2.31 (Link between partial directed coherence and conditional Granger
causality). The partial directed coherence (2.58) indicates conditional Granger
causality in the multivariate AR model (2.44):

π2
i,j(λ) ≡ 0 ∀λ ⇔ xj [n] G; xi[n],

where, i 6= j30 and the symbol
G; denotes, that there is no Granger causality.

2.3.5.3 Alternative normalizations

Although PDC has been derived carefully from partial spectral coherence and,
hopefully, all steps in this derivation sound plausible to the reader, one might
suggest di�erent normalizations in the PDC de�nition (2.58).

As discussed in Section 2.3.5.1, according to de�nition (2.58) π2
i,j(λ) is the

normalized out�ow from source channel j to channel i. On the other hand
it is expected, that the in�uence of a source channel j on another channel i
decreases, if the number of channels, that a�ect i increases. Therefore, partial
directed coherence could also be de�ned using a di�erent normalization term:

π̃2
i,j(λ) ,

|Aij(λ)|2∑K
k=1 |Aik(λ)|2

. (2.62)

This alternative de�nition of PDC represents the �ow from source channel j
to another channel i normalized to all the other in�ows at channel i. It could
be derived from partial coherence similarly, using adequate factorization terms.
In some applications, de�nition (2.62) might in fact be more suitable than the
mostly used genuine de�nition (2.58). Figure 2.3.5.3 illustrates this alternative
normalization concept.

Furthermore, it might not be clear, why all the interactions between two
channels are weighted equally. As discussed in Section 2.3.5, Baccalá and
Sameshima simply set Σε = IK to remove all instantaneous e�ects and therefore
received the PDC de�nition (2.58). Using Theorem 2.29, we can indeed prove,

30as already mentioned earlier, the case i = j is not an interesting one, because we want to
analyze interactions between di�erent ECoG channels.
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Figure 2.7: Alternative Normalization of the PDC. Exemplary 3-dimensional

system with target channel x2[n] and two source channels x1[n] and x3[n]. Partial

directed coherences π2
2,1(λ) and π2

2,3(λ) are both normalized with respect to the sum of

all in�ows into the target channel, i.e. |A2,1(λ)|2 + |A2,2(λ)|2 + |A2,3(λ)|2.

that all the non-diagonal elements of the model's covariance matrix should be
set to zero to remove instantaneous e�ects, but it cannot explain, why all the
diagonal elements have to be equal (to one).
In fact, as we will see in Section 2.3.5.5, this simpli�cation leads to a severe
problem which might even make PDC useless in some applications. Correction
of the PDC de�nition, using the diagonal elements of Σε for normalization will
lead to Generalized PDC in Section 2.3.6.

2.3.5.4 Statistical tests and con�dence intervals

Typically, statistical tests and con�dence intervals for modern measures of mul-
tivariate time series analysis can only be determined by simulation. However,
for PDC, as it depends mostly on estimated AR model coe�cients, it is possible
to derive the necessary signi�cance levels (according to Schelter et al. [26], the
AR-model coe�cients are usually asymptotically normally distributed and un-
biased). We will omit some details here as a few parts of the prove are extremely
complex, but want to present the concept behind this derivation here.

First, we need a special kind of covariance matrix31 for our AR process x[n]
de�ned in (2.44):

R(k, l) =

 R11(k, l) · · · R1K(k, l)
...

. . .
...

RK1(k, l) · · · RKK(k, l)

 (2.63)

with entries
Rij(k, l) = cov(xi[n− k], xj [n− l]) (2.64)

for every i, j = 1...K and k, l = 1...p. Let further denote H(k, l) = R−1(k, l) the
inverse of covariance matrix (2.63).

For the sake of clarity, the diagonal elements of the AR process's covariance
matrix, (Σε)ii = Vεi[n] are represented simply by σ2

i in the following context.

31this representation traces back to Lütkepohl [23]

42



Schelter et al. proved in their paper [26], that under the null hypothesis

H0 : |Aij(λ)|2 = 0 (and therefore π2
ij(λ) = 0) the expression

K
∣∣∣Âij(λ)2

∣∣∣
Ĉij(λ)

∼̇χ2(1) (2.65)

is asymptotically Chi-squared distributed with one degree of freedom, where

Cij(λ) = σ2
i

 p∑
k,l=1

Hjj(k, l) (cos(kλ) cos(lλ) + sin(kλ) sin(lλ))

 (2.66)

and the symbolˆ in the nominator and denominator denotes, that the values of
the AR model coe�cients (Ak)ij have been replaced by estimated ones.

If α is the signi�cance level and χ2
1,1−α represents the (1 − α)-quantile of a

Chi-squared distribution with one degree of freedom,

P

K
∣∣∣Âij(λ)2

∣∣∣
Ĉij(λ)

≤ χ2
1,1−α

 = 1− α (2.67)

holds. According to de�nition (2.58),

π2
i,j(λ) ,

|Aij(λ)|2∑K
k=1 |Akj(λ)|2

.

Simple usage of Taylor's Theorem shows32, that under the null hypothesis,

π̂2
i,j = π2

ij(λ) +R, (2.68)

where the remainder R is negligible compared with the main term (i.e. the real
value of PDC). Putting (2.67), (2.58) and (2.68) together leads to

P

Kπ2
i,j(λ)

∑K
k=1

∣∣∣Âkj(λ)
∣∣∣2

Ĉij(λ)
≤ χ2

1,1−α

 = 1− α (2.69)

and further

P

π2
i,j(λ) ≤

Ĉij(λ)χ2
1,1−α

K
∑K
k=1

∣∣∣Âkj(λ)
∣∣∣2
 = 1− α. (2.70)

Hence, PDC is signi�cantly (at a α% probability of failure) di�erent from
zero, if

π2
i,j(λ) >

Ĉij(λ)χ2
1,1−α

K
∑K
k=1

∣∣∣Âkj(λ)
∣∣∣2 (2.71)

32Details can be found in Schelter et al. [26], again
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for every given frequency λ ∈ [−π, π]. The right hand side of this equation is
called the α-signi�cance level for PDC.

Unfortunately, as the signi�cance level depends on the current frequency λ,
PDC mostly will be signi�cant for some frequencies and non-signi�cant for the
remaining frequencies. Beyond that, the largest value of

{
π2
i,j(λ), λ ∈ [−π, π]

}
could be non-signi�cant, while at other frequencies smaller values of π2

i,j(λ) are
signi�cant.

Applied to our problem, we need a frequency independent measure derived
from PDC, i.e. we need to know if coupling e�ects between a source channel j
and a target channel i are signi�cantly di�erent from zero. As it is not quite
clear how to derive a suitable measure from PDC combined with the signi�-
cance level as long as signi�cance is only given for a short range of frequencies
(of course, this range can even di�er if two di�erent channels are chosen), we
will not use the information that is provided by the signi�cance level in the
implementation Section 2.4.

Nevertheless further research should be based on the idea behind the con-
struction of a signi�cance level in (2.71). For example, Schelter et al. even
de�ned a completely di�erent kind of PDC using normalization conditions de-
rived from (2.65) [25].

2.3.5.5 Problems and disadvantages of PDC and its construction

During the last subsections, we carefully have explained and derived the concept
of PDC. Up to now, we mostly talked about pros and ignored cons. In fact, PDC
is used in numerous publications. It works rather good in a lot of applications,
so it does in its generalized form in the localization of the focus of epileptic
seizures (as we will see in Section 2.5.3). Nevertheless, the construction gives
several problems, which we want to discuss now:33

(i) PDC measures the strength of in�uences between time series relative to
one given signal source. Thus, comparison of PDC values for di�erent
source processes might be di�cult, as well as comparison for di�erent fre-
quencies, as the denominator in PDC de�nition (2.58) depends on the
chosen frequency λ.

In addition, the strength of coupling e�ects between two channels i and j
depends on the number of channels involved in our analysis, i.e. the value
of PDC decreases if the number of channels K increases even if the added
channels do not a�ect both, i and j. This property of PDC might cause
severe problems in practice.

(ii) We showed, that the partial directed coherence function (2.51) and partial
coherence (2.34) are exactly the same. Unfortunately, it is not quite clear,

33a detailed discussion of PDC problems can also be found in [14]
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why the property of partialization still holds after factorization in Section
2.3.4.

(iii) It is obvious, that PDC is an asymmetric measure, but is it also a directed
measure? In our context, we assumed that asymmetric and directed mea-
sures are in fact the same. If, in contrast, the de�nition of a directed
measure would somehow be based on causal aspects, asymmetry might
not be a su�cient condition.

(iv) PDC is not scale-invariant, i.e. it depends on the units of measurement of
the processes involved. Even worse, changing the scale can lead to values
of partial directed coherence arbitrarily near to zero. We want to illustrate
that problem using a simple example:

Assume a 2-dimensional (i.e. K = 2) autoregressive model of order p = 1,
where element (2, 1) of the AR model coe�cient A1 is set to zero. Fur-

thermore denote x[n] =
(
xn
yn

)
during this example. The AR(1) model

can therefore be written as(
xn
yn

)
︸ ︷︷ ︸

=x[n]

=
(
a11 a12

0 a22

)
︸ ︷︷ ︸

=A1

(
xn−1

yn−1

)
︸ ︷︷ ︸

=x[n−1]

+
(
εx,n
εy,n

)
︸ ︷︷ ︸

=ε[n]

, (2.72)

where ε[n] denotes a stochastic component with zero mean34.

Assume further, that the second row of equation (2.72) is scaled by a
factor α ∈ R, i.e.

αyn = a22αyn−1 + αεy,n. (2.73)

After de�ning
un , αyn, (2.74)

we receive a di�erent AR model in x and u with a di�erent coe�cient
matrix Ã1:

xn = a11xn−1 +
a12

α
un−1 + εx,t (2.75)

un = a22un−1 + αεy,t︸︷︷︸
=εu,t

. (2.76)

Normally, if x Granger causes y, it should also Granger cause u, indepen-
dent from the value of α. Therefore, we would expect π2

xy(λ) to be equal
to π2

xu(λ) for any chosen frequency λ. We will now show, that, unfortu-
nately, this expectation does not hold for PDC.

By de�nition, the elements of the matrix A(λ) we need to calculate PDC
are equal to

Aij(λ) =

{
1− (A1)ije−iλ i = j

−(A1)ije−iλ i 6= j

34Note, that ε[n] need not necessarily be white noise in this context.
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Hence,

|Aij(λ)| =

{∣∣1− (A1)ije−iλ
∣∣ i = j

|(A1)ij | i 6= j
(2.77)

and therefore

π2
xu(λ) =

∣∣∣(Ã1

)
12

(λ)
∣∣∣2∣∣∣1− (Ã1

)
22

(λ)e−iλ
∣∣∣2 +

∣∣∣(Ã1

)
12

(λ)
∣∣∣2

=

∣∣a12
α

∣∣2
|1− a22(λ)e−iλ|2 +

∣∣a12
α

∣∣2 α→∞−→ 0.

As shown in this example, simple scaling of channel y results in an arbi-
trarily small value of PDC. In practice, this problem becomes important
especially when variables are not measured on common scale.

To put things right, we may de�ne an alternative version of PDC:

π2
xu(λ) =

σ2
u

σ2
x

∣∣a12
α

∣∣2
|1− a22(λ)e−iλ|2 + σ2

u

σ2
x

∣∣a12
α

∣∣2 , (2.78)

where σ2
u = Vεu,t and σ2

x = Vεx,t are the variance's of the AR model's
stochastic components. As

σ2
u = α2σ2

y, (2.79)

α cancels out in the nominator and in the denominator. Therefore, π2
xu(λ)

remains unchanged even if the scaling factor α changes.

Finally, (2.78) is equivalent to

π2
xy(λ) =

1
σ2
x
|a12|2

1
σ2
y
|1− a22(λ)e−iλ|2 + 1

σ2
x
|a12|2

, (2.80)

which is exactly the generalized partial directed coherence from y to x we
will de�ne in Section 2.3.6.

46



2.3.6 Generalized partial directed coherence (GPDC)

Generalization of equation (2.80) leads to

De�nition 2.32 (generalized partial directed coherence). The generalized par-
tial directed coherence from j to i is de�ned by

π2
i,j(λ) ,

1
σ2
i
|Aij(λ)|2∑K

k=1
1
σ2
k
|Akj(λ)|2

, (2.81)

where Aij(λ) stands for element (i, j) of the matrix A(λ) de�ned in (2.47) and
σ2
i denotes the ith diagonal element of the AR model's covariance matrix Σε as

discussed in (2.44).35

GPDC can be obtained from the partial directed coherence factor (2.51), if
instantaneous e�ects are removed by setting all non-diagonal elements of the
covariance matrix Σε equal to zero. This approach is in perfect accordance with
Proposition 2.29 and does therefore sound more plausible than the approach
used to obtain PDC de�nition (2.58).

Hence in GPDC de�nition, all elements are weighted by corresponding pre-
cisions 1

σ2
i
from the AR model's de�nition (2.44). Obviously, as GPDC in fact

does not di�er from PDC except for di�erent weights in the denominator's sum,
PDC characteristics and interpretations discussed in Section 2.3.5 remain the
same, as well as the critics do.

2.3.7 Comparing PDC and GPDC using signal models

We already discussed some problems of the partial directed coherence in Section
2.3.5.5 and proved, that PDC is not invariant to simple scaling of time series
components. Nevertheless, the scenario might sound unrealistic to the reader.
Therefore we want to discuss the impacts of di�erently scaled components using
simple signal models.

Example 2.33. We want to start the analysis using a simulated 2-dimensional
AR(1)-process x[n] = (x1[n], x2[n])′ = Ax[n − 1] + ε[n], where the coe�cient
matrix A is de�ned by

A =
(
a11 a12

a21 a22

)
=
(

0.5 0.5
0 0.5

)
(2.82)

and ε[n] denotes white noise with mean zero and variance one. An initial value
x[0] = 0 was chosen for the simulation of this process in Matlab. As a21 = 0,
we await, that x2[n] is only a�ected by its own past and not by the past of the
�rst channel, whilst x1[n] itself is in�uenced by the past of both channels, as
a11 and a12 are both greater than zero.

Clearly, PDC and GPDC indicate this system, which is extremely simple,
correctly. Unfortunately, that changes (for PDC) if the second channel is scaled
by a positive factor. We will discuss two di�erent scenarios:

35Baccalá presented the idea of GPDC in [2]
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Figure 2.8: Scale-invariance of PDC. If the unscaled system is analyzed by using

either PDC or GPDC or if GPDC is used in the scaled system, interaction from channel

2 to channel 1 is identi�ed correctly (1). If scaling is added using scenario (i), values

of PDC decrease rapidly, but the direction is still correct (2). Implementing scenario

(ii) lets PDC indicate either no interaction between 1 and 2 if the second component

of x[n] is scaled by a factor 10 (3) or interaction even in the wrong direction, if it is

scaled by a factor 100 (4).

(i) The coe�cient matrix A is held constant, whilst only the simulated values
of x2[n] are scaled. This is exactly the situation discussed in Section 2.3.5.5
and leads to a sharp decrease in the values of PDC in practice, although
we did not manage to reach values of zero as proven in 2.3.5.5. Plot (2)
of Figure 2.8 shows the results of our simulation.

(ii) The coe�cient matrix A is estimated separately for the simulated and for
the scaled system. Of course, none of the estimated coe�cients is equal
to those de�ned in (2.82) - Matlab returns an estimated coe�cient matrix

Â =
(

0.5024 0.5188
0.0146 0.5039

)
(2.83)

for the unscaled system.

All the values of channel 2 are now scaled by a factor 10 and a new AR-
model is �tted. Obviously, a11 and a22 will not di�er for the scaled system,
as the optimal derivation of x[n] from its own past does not change, and
y[n] is obtained from its past value in the same way as 10y[n] is obtained
from 10y[n−1]. Unfortunately, those are the coe�cients of matrix A that
do not really matter when calculating the PDC.
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On the other hand, the values of the o�-diagonal elements (the more im-
portant ones for PDC calculation) do change. In the old system, a12

described the optimal explanation of x[n] from the past value y[n−1]. As
the values of x[n] are not a�ected by scaling, it is obvious that a reduction
of a12 by a factor of 10 must equalize the increase in y[n − 1]. For the
same reason, a21 increases by a factor 10, too.

Consequently, Matlab returns estimated coe�cients

Âs =
(

0.5024 0.0519
0.1458 0.5039

)
for the scaled system. As PDC is based on those coe�cients only, it
will indicate (depending on the chosen threshold) no interactions between
channels 1 and 2, or36 even interaction from channel 2 to channel 1 instead
of the opposite direction.

Fortunately, GPDC is able to resolve this problem because the coe�cients
are weighted by the variances of the corresponding residuals. Clearly, the
variance of 10y[n] is 100-times larger than the variance of y[n], thus the
variance of the residual error of channel 2 will increase by a factor 100
too, while the variances of x[n] and the residuals of channel 1 are not
a�ected. (3) and (4) in Figure 2.8 illustrate that circumstances using a
Matlab simulation.

Although this �rst example already illustrated the PDC's scale invariance prob-
lems, we will now show an even more impressive one:

Example 2.34. A 4-dimensional AR(1) model x[n] = (x1[n], x2[n], x3[n], x4[n])′ =
Ax[n− 1] + ε[n] is chosen, with coe�cient matrix

A =


0.5 0 0 0
0 0.5 0 0

0.5 0 0.5 0
0 0.5 0.5 0.5

 .

Again, ε[n] denotes white noise with mean zero and variance one. The model
was simulated using Matlab, again, with initial value x[0] = (0, 0, 0, 0)′.

Obviously, we await interactions from channel 1 to channel 3 and further
from channel 2 and channel 3 to channel 4. The whole model was identi�ed
correctly by both, PDC and GPDC. Clearly, we did not expect them to fail in
any simple AR(1) model.

Like in the previous example, we will scale the second channel of our time
series by a factor 100. Again, the scaled model is identi�ed correctly when using
generalized PDC, as shown in Figure 2.9, which is in perfect accordance with
the results from Example 2.33 and the theoretical considerations from Section
2.3.5.5.

36interaction in the wrong direction is obtained at least if the second channel is scaled by
an even higher factor
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Figure 2.9: Analyzing the signal model using GPDC . All interactions are iden-

ti�ed correctly.

PDC is not able to identify the scaled model correctly, but the results, that
are presented in Figure 2.10, are worse than expected. None of the interactions
was identi�ed correctly (without leaving any doubt, if PDC values are not too
low according to the chosen threshold37).

First of all, like in the two-dimensional model from example 2.33, coupling
e�ects from all the other channels to the scaled channel are indicated. Expla-
nation is still the same - scaling leads to AR model coe�cients which are scaled
themselves, either by a factor 100 or by its inverse. Unfortunately, zeros in the
coe�cient matrix A will be estimated by a small number, which is di�erent from
zero. If this number is multiplied by the factor 100, completely wrong arrows
will appear.

Secondly, PDC values for the interactions between channels 1 and 3 and
channels 3 and 4 are small. Fortunately, the system here is quite simple, there-
fore it is still possible to recognize the di�erence compared to channel pairs
without any interactions to be noticed. In practice systems are much more
complicated with a lot of noise and unobservable variables. Thus it is necessary
to suppress those disturbing factors by choosing a su�ciently high threshold.
Under this circumstances it is obvious, that the interactions between 1, 3 and 4
would in fact not be identi�ed.

37In practice, we need a frequency-independent measure. Therefore, PDC values are added
(or integrated) over the whole spectrum. An interaction is then indicated if the resulting value
is greater than the chosen threshold.
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Figure 2.10: Analyzing the signal model using PDC. Interactions from 1 to 3

and from 3 to 4 are identi�ed correctly, but PDC values are small. On the other hand

it is completely wrong, that channel 2 is in�uenced by any of the other channels. The

arrow from X2 to X4 from the correctly identi�ed Figure 2.9 even changed its direction.

2.4 Implementation

2.4.1 The Fast Fourier transform (FFT) algorithm

When taking a close look onto the discrete Fourier transform's de�nition (2.84),
it is obvious that the calculation of a �long�38 vector's Fourier transform is really
computation intensive. Although, nowadays most computers are quite powerful,
computational time still is an important factor when implementing mathemat-
ical methods.

Thus, the Fast Fourier transform algorithm was one key factor in the rapid
development of spectral analysis during the last decades. The algorithm itself
was developed by Cooley and Tukey in 1965. Obviously, a lot of modi�cations
and extensions exist, but we want to present a quite simple version that makes
clear the idea behind FFT.

2.4.1.1 Deriving the algorithm

Assume, that the number of observations n is of the form

n = 2m,

where m is a natural number, too. The discrete Fourier transform (DFT) of a
complex vector x = (x0, ..., xn−1)′ ∈ Cn is given by

ak =
n−1∑
j=0

xje
− 2πijk

n =
n−1∑
j=0

xjw
kj , (2.84)

38By �long�, we mean a vector containing at least more than thousand elements. Figure
2.11 shows, how long those computations might need in practice.
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if we substitute w = e−
2πi
n to simplify the notation.

The idea behind the Fast Fourier transform is the reduction of the number
of elements in the summation in equation (2.84) from n to n

2 . Thus, we need to
�nd suitable representations for even numbers n :

a2l =
n−1∑
j=0

xjw
2lj =

n
2−1∑
j=0

(
xjw

2lj + xj+n
2
w2l(j+n

2 )
)

=

n
2−1∑
j=0

w2lj

xj + xj+n
2
wln︸︷︷︸
=1


and for odd numbers n :

a2l+1 =
n−1∑
j=0

xjw
(2l+1)j =

n
2−1∑
j=0

(
xjw

(2l+1)j + xj+n
2
w(2l+1)(j+n

2 )
)

=

n
2−1∑
j=0

w2lj

xjwj + xj+n
2
wj w

n
2︸︷︷︸

=−1

wln︸︷︷︸
=1


=

n
2−1∑
j=0

(xj − xj+n
2

)wjw2lj ,

whereas l = 0, ...,m− 1. Clearly, if the number of observations n is of the form
n = 2p with p ∈ N, the idea from above can be applied recursively for p times.
The whole concept will be described in more detail in algorithm 2.1.

Algorithm 2.1 The Fast Fourier transform (FFT) algorithm

Inputs: number of observations n = 2p, p ∈ N, vector x = (x0, ..., nn−1)′ ∈ Cn
Output: vector a = (a0, ..., an−1), which is the discrete Fourier transform of x

function FFT (n, x)
if n = 1

a0 = x0

else
w = e−

2πi
n

m = n
2

gj = (xj + xj+m) ∀j = 0, ...,m− 1
hj = (xj − xj+m)wj ∀j = 0, ...,m− 1

(a0, a2, ..., an−2)′ = FFT
(
m, (g0, ..., gm−1)′

)
(a1, a3, ..., an−1)′ = FFT

(
m, (h0, ..., hm−1)′

)
end
return a

end
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2.4.1.2 Computational time savings

We want to discuss the amount of computational time, that might be saved by
the use of FFT algorithm compared to the calculation of DFT values as de�ned
in (2.84). Therefore let C(n) denote the number of operations necessary to
perform a FFT for a vector of length n. If k denotes a constant, whose exact
value does not matter in this context, algorithm 2.1 yields (n = 2p)

C(2p) ≤ 2C(2p−1) + k2p

≤ 2
(
2C(2p−2) + k2p−1

)
+ k2p = 22C(2p−2) + 2k2p

≤ 23C(2p−3) + 3k2p

...

≤ 2pC(20) + pk2p

and further, if k2 denotes another constant,

C(n) ≤ nk2 + log2 (n) kn.

Therefore O(n log n) operations are necessary to calculate a FFT for any n-
dimensional vector x. Clearly this is a relevant reduction in computational time,
as O(n2) operations were required to compute the DFT as shown in (2.84)39.
Figure 2.11 gives an illustrative example of concrete time savings during a Mat-
lab simulation.

2.4.1.3 Using FFT to compute the autocovariance function and the
Periodogram

We already know, that the Periodogram is simply the Fourier transform of the
autocovariance function. Thus, it is obvious, that FFT helps to save compu-
tational time whenever the Periodogram is needed. On the other hand, the
autocovariance function itself might be interpreted as the Fourier transform of
some expression, too. We want to derive that expression during this section.

Let γ(k), |k| < n denote the sample autocovariance function for any given
time series x = (x1, ..., xn). As n need not be of the form 2p in general, we want
to expand this time series. To simplify calculations we further use a centered
version of x:

yi =

{
xi − xi i ≤ n
0 n < i ≤ 2n− 1

,

where x = 1
n

∑n
i=1 xi as usual. Obviously, y =

∑2n−1
i=1 yi = 0.

According to de�nition (2.84), the discrete Fourier transform of y is given
by

ak =
2n−1∑
j=1

xje
−ijλk ,

39for any of the n components of the Fourier transformed vector a, (n− 1) summations and
n multiplications are needed.
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Figure 2.11: Comparing DFT and FFT. Time needed to compute the Fourier

transform of a complex vector of length 2p, if either DFT according to its de�nition

(upper, red line), or the FFT (lower, blue line) algorithm is used. If 212 = 4096 obser-

vations are available, ordinary DFT needs approximately one second to be computed,

whereas FFT is �nished after 0.1 milliseconds.

with λk = 2πk
2n−1 , where k ∈ F2n−1 , {j ∈ Z : −π < λj ≤ π}. The Periodograms

de�nition (2.2) yields

I2n−1(λk) =

∣∣∣∣∣∣
2n−1∑
j=1

xje
−ijλk

∣∣∣∣∣∣
2

= |ak|2 , (2.85)

and, because the Periodogram is just the Fourier transformation of the autoco-
variance function γy (of the vector y), we may write

I2n−1(λk) =
∑

|j|<2n−1

γy(j)e−iλjk =
n

2n− 1

∑
|j|<n

γ(j)e−iλjk (2.86)

We know from Theorem 2.9, that

T∑
t=1

ei(λj−λk)t =

{
T if j = k

0 else.

Thus, ∑
j∈Fn

eiλjse−iλjt =

{
2π if s = t

0 else.
(2.87)
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Figure 2.12: Using FFT to compute the Periodogram. Computational time used,

when calculating the Periodogram either by following exactly the de�nition (upper red

line) or by Fast Fourier transformation of the data vector. If 212 = 4096 observations

are available, calculating the Periodogram according to its de�nition (2.2) needs ap-

proximately one second, whereas calculation is �nished after less then one millisecond

if FFT is used.

Combining (2.85), (2.86) and (2.87) �nally leads to∑
k∈F2n−1

|ak|2 eimλk =
∑

k∈F2n−1

n

2n− 1

∑
|j|<n

γ(j)e−iλkjeiλkm

=
∑

k∈F2n−1

n

2n− 1
2πγ(m)

= 2πnγ(m).

We now have proved that the autocovariance function is the rescaled discrete
Fourier transform of the vector a = (a1, ..., an)′, which is itself the discrete
Fourier transform of our data vector x. When calculating the Periodogram, this
might therefore be realized by applying Fourier transformation for three times.

It is obvious, that FFT would save a lot of computational time compared
to the realization of the DFT de�nition (2.84). In fact, it is even much faster
than the calculation of the Periodogram based on its de�nition (2.2) if n is not
too small. Brockwell [5] suggests a minimum number of available observations
of approximately 200 to be necessary. Our Matlab simulation in Figure 2.12
shows even more impressive results.
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2.4.2 Estimating the parameters of an AR-model

For the estimation of all the parameters of our AR-models, the Matlab module
ARFIT is used, which is based on a stepwise least squares algorithm, presented
by Schneider and Neumaier in [27] and [28]. Given the time series, a lower
bound pmin and an upper bound pmax for the model order, ARFIT automati-
cally computes the optimal coe�cient matrices and the optimal model order.

As usual, the optimum order of an AR model is chosen by an order selection
criterion. The default selection criterion of ARFIT, which was in fact used for
all calculations in this diploma thesis, is Schwarz's Bayesian Criterion [31], as
this has led, on average, to the smallest one-step prediction error of the �tted
AR models, compared to several other criteria40.

The stepwise least squares algorithm is computationally e�cient, especially
for higher-dimensional systems. It uses a normalized QR factorization for an AR
model of order pmax. Optimal parameters are calculated by stepwise downdating
of this factorization (i.e. the QR factorization for an AR model of order pmax−1
is calculated recursively from the QR factorization of the model of order pmax,
and so on), instead of calculating a new one for each model order between pmin
and pmax, which would be the typical procedure implemented in AR-model
estimation algorithms.

2.4.3 Channel selection

When talking about the analysis of ECoG signals, this always includes a neces-
sary processing of multivariate time series with at least 28 channels. As already
explained during the introduction, these channels correspond with electrodes,
whereas 6 or 8 electrodes are mounted onto the same band, and a handful of
bands is attached on the patient's brain surface. Obviously, as we want to �nd
the epileptic seizure's focus as precise as possible, the distance between two
neighboring electrodes is quite small, which leads to correlation between them.

On one hand, we appreciate those coupling e�ects, as they are exactly what
we want to analyze during the diploma thesis. On the other hand, the large
number of channels combined with signi�cant correlation between many of them
leads to variance-covariance-matrices which are scaled badly. To avoid falsely
estimated parameters of the AR model, we have to restrict ourselves to a smaller
amount of channels selected for the analysis.

During our work, the set of selected channels was always chosen manually,
whereas not less then a third but not more then one half of the available chan-
nels have been omitted. Obviously, it is sometimes quite easy to surrender some
channels, as the corresponding electrodes are located far distant from any epilep-
tic activity. A quick look on the time series graphs helps to �nd an approximate
choice, �ne-tuning is then based on the overall results from the analysis of dif-
ferent patients, seizures and measures.

40Lütkepohl presented that comparison in [22]

56



Figure 2.13: Typical graphs for frequency-dependent measures. Upper plots

yield from GPDC calculations, indicating no or weak interactions in the �rst two plots

and stronger interactions in the third and fourth plot. x-axis values are normalized

frequencies, i.e a value of 1 means 1π.

Of course, the perfect way of channel selection would be given if an auto-
matic algorithm was used. In fact, we have tried a quite simple version of a
channel selection algorithm, which is based on an idea of Hartman et al [17] and
presented in more detail in Graef [12]. But, unfortunately, that approach seems
to be too simple for our demands and leads to really bad results. Thus, none of
those results are presented in this diploma thesis.

2.4.4 Windowing and the signal instationarity

As already mentioned in Section 2.3.1.1, every ECoG signal's variance rises dur-
ing an epileptic seizure. Thus, obviously, time series cannot be stationary over
the whole time frame, which leads to the idea to split them into shorter windows
of just a few seconds.

Graef unfortunately showed in his diploma thesis [12] (which is based on the
same ECoG data we use in our work), that ECoG signals are not even short
time stationary, i.e. the assumption of stationary is wrong even within a time
frame of just one second for example. On the other hand, results in Section 2.5
will justify the assumption as well as numerous publications41 do.

During our work with measures in frequency domain, we always have used
time windows with three or four seconds length. At the given sampling frequency
of 128 Hz, this is equal to 384 and 512 samples respectively.

2.4.5 Derivation of a frequency independent measure and
the choice of a suitable threshold

All the measures presented during this section have one thing in common: they
all depend on the chosen frequency. In principle, we only need a binary mea-
sure, indicating if there is interaction between two channels, or not (clearly, the
direction of the interaction should be indicated too, if this is supported by the
chosen measure). Thus, we have to �collect� all the information of the given
range of frequencies in one measure. As the reader might have expected, that
will be done by integration.

Figure 2.13 shows a typical graph of any of the frequency dependent mea-
sures, which we applied to ECoG data. Surprisingly, graphs are similar for

41see [10, 21] for example
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PSC, PDC and GPDC. On the x-axis, we have normalized frequencies, whereas
a range between 0 and π

2 has been chosen. A rise in PDC values always takes
place at low frequencies (approximately in the interval I1 = [0, 0.2]) and around
the normalized frequency 1 (approximately within I2 = [0.8, 1.2]).

Clearly, we have four plausible areas, where integrals could be calculated:
I1, I2, a combination of both or the whole range from 0 to π

2 . In fact, we tried
all of those possibilities and could not �nd signi�cant di�erences. Thus, we
decided to use all the available information and will therefore always integrate
from frequency 0 to π

2 .

After the integral has been calculated, it is necessary to decide, whether its
value is big enough to indicate interaction between the selected channels. Thus,
a threshold has to be chosen. For simplicity reasons, the choice will be made
manually during our analysis, although it is a bit heuristic. We always start
with a very low threshold and raise it until most of the unwanted arrows have
disappeared. Clearly, only the arrows remain, that coincide with the highest
values of the chosen measure, which justi�es the whole procedure in some way.

Obviously, for an even more exact analysis, the calculation of a frequency
dependent con�dence interval would be necessary for each graph and measure.
One possible approach could be based on the idea of surrogate data, which is
presented for example in [32]. As that calculation is quite complex, it has not
been implemented within our analysis.
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2.5 Results

We want to start with some remarks. During this section we will often use plots
with small circles and crosses (we call them brainplots). Both represent elec-
trodes, at which ECoG signals are measured, whereas circles stand for channels
selected for calculations and crosses represent ignored channels.

The reader has to take care especially about one fact: At all brainplots we
look onto the brain from above (�median view�). Thus, when talking about the
right half of the brain, this is in fact the left half of our brainplot and vice
versa.42

2.5.1 Partial coherence (nonparametric)

Partial spectral coherence is the only undirected measure we used to analyze
epileptic seizures. Furthermore, it is somehow a �classic measure� compared to
PDC or Granger causality. As it indicates in fact not more than correlation
in frequency domain, before calculating the presented Figures we were quite
skeptic, if it really could help to track the propagation of epileptic seizures.

To anticipate the conclusion of the PSC analysis, some of the results were
better than awaited. On the other hand, none of them was good enough to
mark one single focus. We could impossibly base our decision, where a patient
would have to be treated for surgery, on PSC results only.

2.5.1.1 Patient 1, seizure 1

We want to start the presentation of partial spectral coherence results with pa-
tient 1, which is, as we will see later, in fact the only patient where useful results
could be obtained using PSC.

According to medics, the seizure should start at channel 25 and proceed to
the surrounding channels 26, 17 and 18 between seconds 25 and 30 after kick-
o�. We can see in Figure 2.14, that the area of the seizure's focus is obtained
correctly. In all six time windows presented, there is heavy action with chan-
nels 17, 18 and 25 involved. Thus, PSC would suggest the seizure's focus to be
somewhere between those channels.

On the other hand, PSC indicates several interactions that should not be
taken into account because they do not result from epileptic activity. While
coupling e�ects between channels 27 and 28 could be identi�ed with all mea-
sures used in this diploma thesis, those on the left side of the brain have not.
Especially the high values of PSC between channels 9, 10 and 11 starting in the
third time window from Figure 2.14 cannot be based on epileptic activity, be-
cause the corresponding electrodes are located far away from the focus channels.

Our hypothesis now is, that PSC �prefers� neighboring channels, i.e. ob-
tained values tend to be higher, if the distance between the electrodes is low.
Results from patient 2 presented in the next section will prove that hypothesis

42the interested reader might �nd an introduction to graphical modeling in [9]
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Figure 2.14: Resulting brainplots for partial coherence using the �rst 24

seconds of data from patient 1, seizure 1 . Lines indicate interactions between

a�ected channels. Thus, partial spectral coherence might locate the focus near channels

17, 18 and 25 which is in accordance with the medics' opinion.

in an impressing way.

Due to those doubts, the reader might take Figure 2.14 as a quite good result.
We want to notice, that it is in fact not that hard to �nd an approximate location
for the focus here. All the channels involved in epileptic activity (according to
the medics) are located nearby each other. Comprising the fact that PSC does
not give any information about the direction of interactions, results are not that
powerful anymore. Some could also interpret channel 19 or channel 1 to be the
seizure focus - one of them is located far distant from seizure onset, the other
one is located even on the wrong side of the brain.

2.5.1.2 Patient 2, seizure 3

We will focus ourselves on the left half of the brain, as interactions on the other
half are negligible, according to the medics opinion and our results from di�er-
ent measures. Furthermore, the resulting �gures from this analysis show the
problem of our measure derived from PSC perfectly.

According to Figure 2.15, we cannot �nd the seizure's focus based on PSC
analysis. Seizure onset should take place at channels 7, 8 and 9. Clearly, we
can identify interactions between those channels, but they are not signi�cantly
higher than the interactions between channels 1 and 2, and 3 and 4 respectively.

Epileptic activity should further proceed to channels 10 and 11 after 22 sec-
onds. Actually, we could �nd high values of PSC between channels 10 and 11
after second 20, but those values were not higher than in the second or third
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Figure 2.15: Resulting brainplots for partial coherence using data from pa-

tient 2, seizure 3. Squares in plots on the lower half indicate the intensity of inter-

actions between the channels involved, whereas darker values indicate higher values of

PSC. All graphs show, that PSC values tend to be higher for neighboring channels.

time window shown in �gure 2.15 for example. And again, coherences between
those two focus channels are not signi�cantly higher than between a lot of other
channels on the left brain half. In fact we can see nearly the whole electrode
bands connected due to high PSC values.

As mentioned before, when analyzing the results from patient 1's data, we
see, that PSC values between neighboring channels tend to be high, although
there is no epileptic activity on the channels involved. To clarify that hypoth-
esis, we present a second diagram for each time window in �gure 2.15, where
darker squares correspond with high values of PSC and lighter squares indicate,
that there might be only weak interaction between the channels concerned.
Obviously, most black squares are located on the line directly above the square's
diagonal, i.e. they indicate interactions between neighboring electrodes. Fur-
thermore, the dark squares not located on that line, e.g. between channels 1-10
or 2-11, mostly correspond to neighboring channels, too. The di�erence between
the channel numbers is higher than 1, just because the electrodes are mounted
on di�erent bands (A detailed description of the channels and their numbers
may be found in the appendix.).

Figure 2.16 tries to give an explanation for that behavior of PSC. We have
drawn a few seconds of the time series graphs for channels 1 to 4. Obviously,
the graphs for the chosen channel couples are nearly identical. As PSC is in fact
just a correlation in frequency domain, high PSC values are not really surprising.
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Figure 2.16: Channel pairs with high PSC values, but no epileptic activity.

The graphs of channels 1 and 2, and 3 and 4 respectively, are nearly identical within

the shown time frame. (128 samples (drawn on the x-axis) are equal to one second).

As PSC is some kind of correlation, this leads to high PSC values.

Of course we cannot give a positive summary for all the PSC results pre-
sented. In fact, the Figure shown for patient 2, seizure 3 is even far the worst
compared to all the other measures we have used during our analysis in this
diploma thesis.

Mostly, interactions suggested by the medics could be con�rmed by PSC.
But on the other hand we were not able to �nd the focus channels - PSC values
simply do not di�er from the values obtained from a lot of di�erent channel
pairs. Of course, it is our goal to realize that direction. We want to present a
mathematical method to track epileptic seizures and indicate channels as focus
channels. Unfortunately, PSC cannot help to achieve this aim.

2.5.2 Partial directed coherence (parametric)

Although we already discussed several problems of the partial directed coher-
ence, we want to apply that measure to our ECoG data. We choose three
epileptic seizures from three di�erent patients and present the resulting Matlab
calculations.

Clearly, none of the calculations delivered great results, but some of them
were much better than expected. They all ful�ll at least one expectation: they
justify generalized PDC's de�nition.

2.5.2.1 Patient 4, seizure 1

We want to start our evaluation of PDC results with patient 4's �rst recorded
seizure. According to the medics opinion, that seizure has its focus on the right
hemisphere at channels 27 and 28. Channels 21 and 22 should be a�ected about
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Figure 2.17: Resulting Brainplots for PDC and residual error variances

for patient 4, seizure 1 . Residual variances are the highest for focus channels 27

and 28, therefore many arrows point towards the focus. Furthermore, as suggested by

medics, an expansion of the seizure to the left hemisphere can be obtained as more and

more arrows start on the brain's left side.

one second later, and the whole left side of the brain is concerned 20 seconds
after the beginning of the epileptic activity.

Results in Figure 2.17 show, that the residual error variance is the highest
for the focus channels 27 and 28. Variances of other channel's residuals are
signi�cantly lower, at least 20 times and 10 times respectively. Thus we have
lots of arrows (indicating interactions according to PDC) pointing towards the
seizure's expected focus channels, which is in perfect accordance with examples
2.33 and 2.34.

That result seems to be plausible. The time series's instationarity increases if
epileptic activity becomes �heavier�, therefore its explanation by any AR-model
gets worse, which results in a rise of the residuals and their variance. As PDC
does only work (see example 2.33) if all the residual's variances are approxi-
mately equal, results are not correct here - with arrows pointing towards badly
approximated channels.

When comparing the three time windows presented in Figure 2.17, we can
see a rise in arrows starting on the left hemisphere in the second and third
period, compared to the �rst four seconds observed, which might coincide with
the seizure's expansion to the brain's left half. Unfortunately, PDC indicates
nearly no interactions between neighboring channels on the left hemisphere,
which makes those results implausible.
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Figure 2.18: Resulting Brainplots for PDC and residual error variances for

patient 2, seizure 3. Interactions with channel 26 involved are identi�ed correctly,

but arrows pointing towards channel 17 cannot be explained. Although, channel 17

is located next to channel 26, none of our other measures indicated it to be a focus

channel, neither did the medics.

2.5.2.2 Patient 2, seizure 3

According to the medics, the seizure's focus should be located at channels 26
and 27. Expansion to channels 10 and 11 should take place after 12 seconds,
with channel 12 a�ected a bit later.

Now residual error variances, as presented in Figure 2.18, are signi�cantly
higher for four channels compared to the rest. Two of them (26 and 27) are
focus channels according to the medics opinion, and the third one (channel 15)
seems to a�ect surrounding channels according to results from Granger causality
and GPDC. Furthermore, channel 15 is a focus channel for the same patient's
fourth observed seizure. But, unfortunately, channel 17, which is the fourth
channel with higher residual error variances here, could not be identi�ed as a
focus channel during any of our analysis.

Thus, arrows indicating interactions on the right hemisphere around chan-
nels 26 and 15 are plausible, expansion of the epileptic activity towards the left
hemisphere (channels 10, 11 and 12) is indicated perfectly in the third time win-
dow, but all the arrows pointing towards channel 17 are in principle not valid.
Clearly, the electrode corresponding to channel 17 lies next to the electrode for
channel 26 on the brain's surface and therefore could be a�ected as well. But,
as GPDC and Granger causality will indicate better results (compared to the
medics opinion), PDC seems to be a poor measure to locate the seizure's focus.

Concluding, analysis for patient 2, seizure 3 showed, that poor tracking of
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Figure 2.19: Resulting Brainplots for PDC and residual error variances

for patient 1, seizure 1 . Variances are similar during the �rst four seconds and

brainplots con�rm the medics opinion. Later, the residual error variance for channel

2 is the highest, leading to lots of arrows pointing towards channel 2, which cannot be

con�rmed by either the medics opinion or any of our other methods.

ECoG signals need not be based on epileptic activity. Clearly this result is
no surprising one, as instationarities may be caused by an in�nite number of
reasons.

2.5.2.3 Patient 1, seizure 1

The �rst of the three time windows presented in Figure 2.19 seems to be plau-
sible. Medics suggest channel 25 to be the focus channel of that seizure, and
channel 18 to be a focus channel for di�erent seizures of the same patient. Acti-
vations implicating channel 28 have been approved at least by Granger causality,
but not by the medics.

Problems start in the second window. According to the medic's opinion,
the epileptic seizure stays local around channels 17, 18, 25 and 26, whose cor-
responding electrodes are located next to each other on the brains surface. In
contrast to that opinion (which has been approved by our analysis when dif-
ferent measures were used), arrows tend to start and end on the left hemisphere.

In the third time window, one would even suggest channel 2 to be the
seizure's focus. Again, clearly, all the arrows pointing towards channel 2 are
based on a very high variance of the corresponding residuals. And, as discussed
for patient 2, seizure 3, the high variance is not based on epileptic activity.

While the �rst two presented results in this section did either suggest the
correct focus, or at least a channel located next to the focus, we have a com-

65



Figure 2.20: GPDC results for patient 2, seizure 1. A threshold of 0.13 has

been chosen. Upper plots represent the �rst 36 seconds after seizure onset.

pletely wrong result here. Finally, it is clear, that PDC cannot be the right
measure to track epileptic seizures.

2.5.3 GPDC results for patient 2

We want to conclude Chapter 2 with the results from generalized PDC. As
awaited, they were far the best we could obtain from any measure in frequency
domain we presented in this work. Only Granger causality will be able to deliver
an even more helpful outcome.

At �rst the reader might be confused by the sequence of our result's presenta-
tion. In fact, it will simplify interpretation, as some of the indicated interactions
between channels not suggested by the doctors might possibly be an important
part of other seizures from the same patient, too. Thus, it is quite assumable
that those interactions are in fact correct and the mathematical analysis is even
superior to the medics opinion in some cases.

2.5.3.1 Seizure 1

We start the presentation of GPDC results with a seizure, that is quite out of
normal behavior, as none of the other seizures from the same patient showed a
similar result.

According to the medics, our results seem perfect. Seizure onset should
take place at channels 7 to 9, which is in accordance with the �rst plot in Fig-
ure 2.20, where arrows from channels 9 to channels 8 and 7 were calculated.
Doctors further see a di�usion of epileptic activity to channels 10 and 11 after
approximately 22 seconds. Again, the sixth plot of Figure 2.20, which represents
seconds 20-24 after seizure onset, approves that hypothesis, represented by an
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Figure 2.21: GPDC results for patient 2, seizure 3. A threshold of 0.17 has

been chosen. Upper plots represent the �rst 24 seconds after seizure onset.

arrow pointing from channel 11 to 10.

Although GPDC results and the opinion of the doctors �t together perfectly,
we are not completely happy with that plots. First of all, it is quite unrealistic
that there is no epileptic activity between seconds 4 and 20 after seizure onset.
And, second, all the other seizure's focuses from patient 1 will be located on the
other half of the brain, either at channel 15 or around channel 26. Thus, the
outcome of seizure 1's analysis is not very helpful if the exact location of the
focus has to be located.

Furthermore, the chosen threshold (0.13) is far lower than for all other
seizures presented for patient 2, because GPDC values are lower. Thus, one
could argue that there is in fact no activity according to GPDC in the �rst �ve
plots (i.e. 20 seconds) of Figure 2.20. On the other hand, that argumentation
might even help us, as we do not really want to locate the focus on the left
hemisphere, as explained before.

Anyway, our �rst results seem to be at least promising.

2.5.3.2 Seizure 3

Seizure 3 is somehow the �typical� seizure from patient 2, as three out of four
seizures from that patient proceeded similarly.

The medics told us, that the seizure's focus should be located around chan-
nels 26 and 27. We can see in the �rst plot of Figure 2.21, that GPDC indicates
interaction between those channels. Furthermore, channel 15 is causing sur-
rounding channels during the �rst approximately 15 seconds. This action has
not been identi�ed by the medics for seizure 3. But in fact, it has been identi�ed
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Figure 2.22: GPDC results for patient 2, seizure 4. A threshold of 0.17 has

been chosen. Upper plots represent the �rst 24 seconds after seizure onset.

for the same patient's seizures 2 and 4. Thus, it is quite realistic, that epileptic
action takes place at that channel, too.

After 12 seconds, we recognize an expansion of epileptic activity to channels
10, 11 and 12. Again, that coincides with the information received from the
doctors. The only disturbing arrow drawn in Figure 2.21 might be the one from
channel 7 to 8 in the third plot presented, although we already mentioned for
seizure 1, that those channels might be involved in epileptic activity, too.

2.5.3.3 Seizure 4

Results presented for seizure 4 from patient 2 in Figure 2.22 look like a copy
from seizure 3 on the �rst sight. Activity starts at channels 15 and 26 and
proceeds to the left hemisphere to channels 10, 11 and 12 some time later.

In fact, there is a di�erence between seizures 3 and 4 in what the doctors
told us. According to their opinion, seizure onset is at channel 15 only, while
channels 24 to 27 are following after 5 seconds. Fortunately, we could reproduce
that hypothesis by simply raising the chosen threshold from 0.17 to 0.2, but we
decided to keep the same threshold for seizures 2, 3 and 4 for comparison reasons.

Two further observations have to be mentioned here. First of all, we see
interaction between channels 7 and 8 (like for seizures 1 and 3) again, although
the medics did not. And second, action on the left hemisphere around channels
11 and 12 is indicated earlier than awaited. Furthermore, it is disappearing in
the �fth plot and appearing again one plot later. We think, that this early action
is indicated wrongly, as it could not be accomplished by any of the Granger
causality measures.
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Figure 2.23: GPDC results for patient 2, seizure 2. A threshold of 0.17 has

been chosen. Upper plots represent the �rst 24 seconds after seizure onset.

2.5.3.4 Seizure 2

Seizure 2 is in some way a special one. Medics assumed the seizure to start at
channels 26 and 27, but found epileptic activity at the same time nearly on the
brain's complete right side.

Kindly, results presented in Figure 2.23 are much clearer than that. They
look quite similar to Figures 2.21 and 2.22 from the two seizures presented be-
fore. The only arrow we have not seen in one of the �rst plots of any �gure,
is the one pointing from channel 16 to 18. Fortunately, this arrow is �weaker�
than all the others calculated for the �rst four seconds, i.e. it disappears if the
threshold is raised from 0.17 to 0.21.

As we have already seen at the two seizures presented before, epileptic ac-
tivity expands to the brain's left half. For seizure 2, that should happen after
around 14 seconds. GPDC obviously indicates that action, but a quite inter-
esting thing happens before that. First of all, we see the usual activity with
channels 7 and 8 involved during seconds 4 to eight. Then, the seizure �moves
downwards� the electrode band, to channel 9 in the third window and �nally to
channels 11 and 12 as suggested by the medics.

Concluding, the focus has its onset on the right hemisphere. After some
seconds, it moves to the left half, and we �nd an activity at the electrode that
is located nearest to the right half - channel 7. In fact, it sounds realistic, that
the seizure does not �jump� directly from channel 15 or 26 to the far distant
area between channels 10 and 11.
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Figure 2.24: GPDC results for patient 4, seizure 1. A threshold of 0.14 has

been chosen. Upper plots represent the �rst 27 seconds after seizure onset.

2.5.3.5 Conclusion

As presented, all of the GPDC results for patient 2's seizures were quite good.
Only a few interactions might have been indicated falsely and none of them were
found in the �rst few seconds of the seizure, which is in fact the time frame we
are mostly interested in, if we want to �nd the seizure's initial focus.

Unfortunately, GPDC does not suggest an exact position of the patient's
epileptic center. It could be located either at channel 15, which might be more
likely when looking at the GPDC results, or at channel 26, which was slightly
preferred to be the focus by the medics. As the two channels are located far
distant, consequently, the patient has not been operated yet.

2.5.4 GPDC results for patient 4

2.5.4.1 Seizure 1

As the medics told us, seizure 1 should start at channels 27 and 28, proceed to
21 and 22 only one second later and expand to the whole left brain side another
13 seconds after that.

All channels indicated as focus channels are located nearby each other, which
should help to �nd clear results within our analysis.

Surprisingly, GPDC indicated absolutely no action within the �rst time win-
dow (i.e. the �rst three seconds after seizure onset) in Figure 2.24. Of course,
we tried to lower the chosen threshold, but it was impossible to �nd an appro-
priate value, i.e. a threshold that really indicates interaction between channels
and not just noise.
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Figure 2.25: GPDC results for patient 4, seizure 2. A threshold of 0.14 has

been chosen. Upper plots represent the �rst 27 seconds after seizure onset.

It could be, that the delay of the seizure's onset is based on our assump-
tion of stationarity, which does of course not hold, as we discussed earlier. But
following, a similar delay will be visible if partial Granger causality is used in
Chapter 3, which is in fact not based on a simple AR-model.

During the remaining windows, tracking of the epileptic seizure works quite
good. The arrows' starting points, which coincide with the focus of epileptic
activity in our interpretation, are located around channels 21, 22, 27 and 28
as awaited. Furthermore, a lot of arrows point to the brain's left half, which
sounds plausible, as the seizure should in fact proceed to the left side.

We only could criticize here, that the timing of action indicated by GPDC
is not perfect. Interactions from the right to the left brain half are indicated
immediately after brain start, whereas coupling e�ects between channels on the
left half are noticeable after approximately 18 seconds. Obviously, none of that
values coincides with the doctor's value of 14 seconds.

2.5.4.2 Seizure 2

Seizure 2 proceeds similarly to seizure 1. The doctors' descriptions for both
seizures are identical, with the only di�erence, that expansion to the left side
should take place 12 seconds after seizure onset, which is 2 seconds earlier than
for the �rst seizure.

Again, the area of the focus is located around channels 21, 22, 27 and 28.
Immediate interaction between the two brain halfs is visible in Figure 2.25, with
a lot of action on the whole left hemisphere some seconds later than expected.
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Figure 2.26: GPDC results for patient 4, seizure 3. A threshold of 0.14 has

been chosen. Upper plots represent the �rst 27 seconds after seizure onset.

2.5.4.3 Seizure 3

Seizure 3 could be compared with the second seizure of patient 2. The doctors
were not able not provide an exact diagnosis based on visualized ECoG data
only. According to their opinion, all channels are a�ected immediately after
seizure onset.

Based on that hypothesis, our result in Figure 2.26 is extremely surprising.
Seizure's onset is delayed even more than for seizure 1. In fact, no activity was
found by GPDC within at least the �rst �ve seconds. It could be, that this delay
can be explained with a lot of interaction over the whole brain's surface, which
would lead to instationarities and would further mean, that our AR-model is
not suitable. On the other hand, the length of the delay seems to be too long
for such a simple explanation.

Beyond that, results seem to be normal at the plots 3 to 9 of �gure 2.26.
Again, we have lots of arrows starting around the expected focus channels 21,
22, 27 and 28. Furthermore, there is immediate activity between the two halfs
and even on the left brain side. Unfortunately, we could therefore not base a
clear interpretation only on that �gure. But, as all the GPDC results presented
for patient 4 look similar, it is quite obvious, that the same interpretation holds
here, too.

2.5.4.4 Conclusion

Like for patient 2, tracking of all the seizures worked quite good, with a simi-
lar behavior noticed for all of them. We located the focus in the area between
channels 21, 22, 27 and 28, which is in accordance with what the doctors told
us. When taking a closer look at the three �gures presented for patient 4, we
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Figure 2.27: GPDC results for patient 1, seizure 1. A threshold of 0.14 has

been chosen. Upper plots represent the �rst 36 seconds after seizure onset.

could even try to interpret channel 28 as the single focus: most of the arrows
pointing from the right to the left brain half start at this channel. As channel
28 is in fact far distant from the other side of the brain, of course we have to
assume, that there is heavy activity around this channel.

The only point we are not happy with is the timing of some activities. Seizure
onset was delayed for two of three seizures analyzed, compared with what doc-
tors told us. Furthermore, a lot of action on the left brain half was mentioned
too late (for the �rst two seizures) while interaction between the two halfs took
place earlier than expected.

Anyway, we think that all the results presented here are quite pleasing, based
on the simplifying assumption of stationarity.

2.5.5 GPDC results for patient 1

2.5.5.1 Seizure 1

Doctors believe, that epileptic activity starts at channel 25, proceeds to channel
26 after 25 seconds and further to channels 17 and 18 another �ve seconds later.

As presented in the �rst time window of Figure 2.27 (which represents the
�rst four seconds after seizure onset), GPDC localizes the focus correctly. Ar-
rows indicating high values of generalized partial directed coherence start at
channel 25 in all presented plots.

Apart from that, results are not as pleasing as hoped for. Channel 17 is
indicated to be an origin of epileptic activity not as recently as 30 seconds after
seizure onset, but already in the second plot from Figure 2.14, which is more
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Figure 2.28: GPDC results for patient 1, seizure 2. A threshold of 0.13 has

been chosen. Upper plots represent the �rst 18 seconds after seizure onset.

than 20 seconds too early. Moreover, no change in the behavior of channel 18 is
noticeable due to GPDC after 30 seconds, which contradicts the doctor's opin-
ion, too. On the other hand, it is quite likely, that epileptic activity proceeds
from the seizure's focus to the neighboring electrode. Thus, GPDC visualizes
e�ects, which the doctors could not see. In fact, our thesis will be accomplished
by Granger causality and the fact, that 18 is a focus channel for seizure 2.

Furthermore, we see a lot of activity in the plots of Figure 2.27, that is
not nice to see. First of all, GPDC shows channel 28 involved in epileptic
activity quite often. It is not clear, why the activity should proceed to such
a far distant electrode without a�ecting electrodes somewhere in the middle.
Surprisingly, those arrows will appear again if they are based on some kind of
Granger causality and have also appeared while PSC was used. We suggest,
that there is in fact activity starting from channel 28, but not an epileptic one.

2.5.5.2 Seizure 2

According to the medics opinion, seizure 2 proceeds slightly di�erent from
seizure 1. Seizure onset should take place not only at channel 25, but on the
neighboring channel 18, too. Doctors further noticed absolutely no epileptic
activity between seconds 4 and 7, and a restart at channels 18, 25 and 26 after
that break.

To visualize this hypothesis best, we decided to reduce the chosen window
length compared to seizure 1 from four to three seconds. Thus, of course, we
also had to reduce the chosen threshold slightly (from 0.14 to 0.13).

Results presented in Figure 2.28 help to track the doctors' description of the
seizure quite good, including the expected break in time window 2. Surprisingly,
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Figure 2.29: GPDC results for patient 1, seizure 3. A threshold of 0.11 has

been chosen. Upper plots represent the �rst 27 seconds after seizure onset.

channel 18 is indicated by GPDC to be the initial focus, but arrows starting
at that channel at least point towards channels 25 during the �rst three time
frames after restart.

Obviously, there is extremely sparse activity in all the presented plots, which
would in fact not change if the threshold was a little bit lowered. We want to
mention here, that a lot of activity would be indicated around the focus channels
18, 25 and 26 after approximately 40 seconds, and looking to the time series
graphs approves, that the activity is actually epileptic. But, as the doctors were
not interested in that activity, we omit further details here.

2.5.5.3 Seizure 3

Seizure 3 should take place similarly to the �rst and second one presented for
patient 1. Doctors localize the seizure's focus at channels 18 and 25, with chan-
nel 26 further involved after about 11 seconds.

Unfortunately, GPDC results are really bad in Figure 2.29. Seizure onset is
far too late (in the second time window) and at a channel (17) that should not
really be involved in epileptic activity. Furthermore, we have activity starting
at channel 28 like for seizure 1, and even activity on the left brain side. Ob-
viously, it is impossible to distinguish a focus channel based on GPDC plots here.

As for seizure 2, we noticed a lot of activity around the focus channels later
in the seizure's progress. But again, doctors did not care about that fact.
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2.5.5.4 Conclusion

Results for patient 1 were quite good for the �rst two seizures analyzed. The
seizure's focus was localized correctly in the area between channels 17, 18 and
25, with 18 and 25 slightly favored. As this is a quite small area, and coincides
with the doctors' opinion, we think that it would be possible to base an opera-
tion on that results.

On the other hand, tracking of epileptic activity apart from the localization
of the focus did not work. We found interaction immediately after seizure onset,
although it should take place half a minute later.

Furthermore results for seizure 3 were the worst during all the GPDC anal-
ysis. Neither the focus was located correctly, nor the tracking of the epileptic
seizure did work in the following time windows.

Summarizing, based on the simplifying assumption of stationarity, we think
that results are quite good - as, out of 10 analyzed seizures only one �gure
presented was useless.
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Chapter 3

Localizing the focus of

epileptic seizures using

Granger causality

In this part we introduce another approach to analyze the ECoG-data, which
is based on the de�nition of C. W. Granger (1969)[15], the so called Granger
causality. The basic idea behind this concept is that the cause has to happen
before the e�ect: If past values of the variable y help predicting the variable x, x
is caused by y. With this concept some sort of directed �ow between connected
variables can be identi�ed.

3.1 Bivariate Granger causality

In practice there exist three di�erent concepts to deal with the abstract original
de�nition of Granger. The �rst of them is called �bivariate Granger causality�.

3.1.1 De�nition

Before introducing more appropriate Granger causality approaches, we are pre-
senting the original de�nition by Granger.

3.1.1.1 De�nition by C. W. Granger

Let X̄t represent the past values {xt−i, i = 1, . . . ,∞} and let yt be another
stationary random vector with mean zero. The predictor of xt only using Ut

1,
the information up to time t, is denoted by Et−1[xt|Ūt]. The one step prediction
error of xt is de�ned as εt(xt|Ūt) = xt − E[xt|Ūt] with a variance ΣX(1|Ū).
Analogously we de�ne the variance of the h step prediction error by ΣX(h|Ū).

Later in this work the prediction of xt, using only past values of x, is needed.
It is denoted by Et−h[xt|X̄t]. The corresponding one step prediction error

1In the de�nition by Granger in 1969, Ut is de�ned to be all information in the universe.
Because this is a completely unrealistic aspect he rede�ned Ut to be the available information.
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εt(xt|X̄t) has the variance ΣX(1|X̄). Analogously the predictor of xt, using past
values of x and y, is denoted by E[xt|X̄t, Ȳt] with an error εt(xt|X̄t,Ȳt) and a
variance ΣX(1|X̄, Ȳ).

To compare the quality of the prediction using the complete information
set Ut or using only a part of it, another notation is introduced: The term
Ut −Yt is de�ned to be the whole information set, reduced by all information
which result from y.

De�nition 3.1 (Granger causality). If and only if a better prediction of xt is
obtained using all available information U than if this information is reduced
by that coming from past values of yt, y is Granger causing x.2

ΣX

(
h|Ū

)
< ΣX

(
h|U−Y

)
(3.1)

It follows that we speak about Granger causality if the signal x depends on past
values of the signal y. Hence directed relationship between these two signals is
de�ned.

Remark. One thing to consider is that Granger in 1969 used in his work only
stationary time series. Nevertheless he remarked that this de�nition may be
used for non-stationary data, but in this case it has to be considered that a
causal relationship might change from one moment to the other.

Further it should be taken in mind that this de�nition is universal and does
not depend on any underlying process.

As in this work only autoregressive models are used, only linear Granger
causality is considered.

Let xt =(x1t, . . . , xKt) be a stationary random vector with mean zero. Fur-
thermore xt is adjusted to a linear model, where the past and present values
of the components of xt explain each other. The error of the adjustment is a
white-noise vector εt.

3

The following VAR(p)-model (with p ∈ N ∪ {∞}) with coe�cient matrices
Ai, i = 1, . . . , p represents the time series xt:

A0xt =
p∑
i=1

Aixt−i + εt

In this work we concentrate on simple models, where the instantaneous e�ects
are neglected (A0 = IK×K4).

De�nition 3.2 (Feedback). Feedback between x and y is given, if x Granger
causes y and y Granger causes x.

ΣY

(
h|Ū

)
< ΣY

(
h|U−X

)
and ΣX

(
h|Ū

)
< ΣX

(
h|U−Y

)
(3.2)

2If ΣX(h|Ū) and ΣX(h|U−Y) are matrices, it is said that ΣX

(
h|Ū

)
< ΣX

(
h|U−Y

)
if and only if

[
ΣX

(
h|U−Y

)
−ΣX

(
h|Ū

)]
is positive de�nite.

3A white-noise vector εt ful�lls the following features: Its components are uncorrelated
(E[ε′tεs] = 0 for t 6= s) and the variance of one component equals one (E[ε′tεt] = 1).

4IK×K is the K-dimensional identity matrix.
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3.1.1.2 Bivariate Granger causality

To analyze the ECoG data, represented by aK-dimensional signal x[n] =(x1[n], . . . , xK [n]),
a practical concept is introduced. To test for causal relationships of that data,
each pair of channels is tested. The �rst way to deal with the abstract de�nition
of Granger is the so called bivariate Granger causality.

De�nition 3.3 (Bivariate Granger causality). Let x[n] = (x1, . . . , xK) be a
K-dimensional signal. The component xj is said to bivariate Granger cause the
component xi, if and only if knowledge of xj [n]'s past signi�cantly improves the
prediction of xi[n]:
The improvement is measured with the help of the variances. Thus the de�nition
is equivalent to

Σxi(h|X̄i, X̄j) < Σxi(h|X̄i). (3.3)

Example 3.4 (Bivariate (linear) Granger causality). Based on the work of E.
Möller et al.[24] an illustration of the de�nition is given. Let x[n] = (x1[n], . . . , xK [n])
be a K-dimensional multivariate system (i.e. it consist of K channels).

Consider two of these channels: xi[n] and xj [n]. To identify, if xj [n] Granger
causes xi[n], an univariate and a bivariate AR(p)-model of these components
are compared.

Univariate AR(p)-model:

xi[n] =
p∑
s=1

a1,s xi[n− s] + εi[n]

xj [n] =
p∑
s=1

d2,s xj [n− s] + εj [n]

Bivariate AR(p)-model:

xi[n] =
p∑
s=1

a2,s xi[n− s] +
p∑
i=1

b2,s xj [n− s] + ε̃i[n]

xj [n] =
p∑
s=1

c2,s xi[n− s] +
p∑
s=1

d2,s xj [n− s] + ε̃j [n]

The component xj [n] Granger causes xi[n] if and only if

V [ε̃i[n]] < V [εi[n]] . (3.4)

One problem that occurs with this de�nition is that the following relationship
always holds:

V [ε̃i[n]] ≤ V [εi[n]]

Hence inequality (3.4) is almost surely ful�lled.

A sort of measure for Granger causality is necessary to identify a signi�cant
improvement of the prediction if information based on past values of the second
component is added.
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For stationary signals Geweke (1982)[11] introduced the following (non-
negative) measure (the bivariate Granger causality index ), which indicates if
xj Granger causes xi:

bGCIxj→xi = ln
(

V [εi[n]]
V [ε̃i[n]]

)
If this index receives zero, xj is Granger not-causing xi. Because dealing with

non-stationary data, we refer the interested reader for detailed information to
Geweke (1982) [11].

3.1.1.3 Bivariate Granger causality for a partitioned process

For the sake of completeness we extend the bivariate de�nition to the case of
two sets of variables. This idea is found in A. Graef et al.[13].

De�nition 3.5 (Bivariate Granger causality for a partitioned process). Let
xI [n] (I = { i1, . . . , iM }) be a M -dimensional and xJ [n] (J = { j1, . . . , jN }) be
a N -dimensional subprocesses of the K-dimensional signal x[n]. Furthermore
the subprocesses are claimed to be disjoint and to ful�ll M +N = K.

If and only if the past values of xJ [n] improve the prediction of xI [n] signif-
icantly, xJ [n] is said to be Granger causing xI [n].

ΣxI (h|XI [n],XJ [n]) < ΣxI (h|XI [n]) (3.5)

Remark. This de�nition does not imply anything about causal relationships
between the individual components of both sets. For a better understanding we
give a small example.

Let x[n] = (x1[n], x2[n], x3[n])′ be a three dimensional signal with x1[n]
Granger causing the set (x2[n], x3[n])′. With this information we cannot decide
if x1[n] Granger causes x2[n] or if x1[n] Granger causes x3[n].

3.1.2 Characterizing Granger causality with AR coe�-
cients

In this section we concentrate on AR models and the characterization of Granger
causality for this special case.

Following the work of Graef et al. [13] we will introduce a very simple form
characterizing Granger causality, only using AR coe�cients.

The �rst case considered here is the multivariate system, which consists of two
disjoint variable sets. Therefore we speak about the bivariate Granger causality,
characterized in Section 3.1.1.3.

Now a K-dimensional multivariate system, which is partitioned into a M -
dimensional set of variables xI [n] and a N -dimensional set of disjoint variables
xJ [n], is considered. As before it is claimed that x[n] = xI [n] ∪ xJ [n] and
M +N = K.
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Lemma 3.6 (Characterization of Granger causality in MA5 processes). Let
x[n] be a MA process x[n] = µ +

∑∞
s=0 Φ[s]ε[n − s] with Φ[0] = IK×K , where

ε[n] describes a white noise process with a non-singular covariance matrix Σε.
Granger causality is determined by the coe�cient matrices Φ[s] only:

If and only if xJ [n] Granger not causes xI [n] (xJ [n] G; xI [n]), the block
matrix of the moving average coe�cient ΦIJ [s] is the zero matrix (ΦIJ [s] = 0).

Proof. Let x[n] be aK-dimensional moving average process, which is partitioned
into two component processes xI [n] (M -dimensional) and xJ [n] (N = (K−M)-
dimensional).

x[n] =
(

xI [n]
xJ [n]

)
=

(
µI
µJ

)
+
(

ΦII(z) ΦIJ(z)
ΦJI(z) ΦJJ(z)

)(
εI [n]
εJ [n]

)
(3.6)

The matrix Φ(z) describes a polynomial matrix with the lag operator z. For a
better overview we present table 3.1 with the dimensions of the block matrices
of Φ(z).

Polynomial matrix Dimension

ΦII(z) M ×M -dimensional
ΦIJ(z) M × (K −M)-dimensional
ΦJI(z) (K −M)×M -dimensional
ΦJJ(z) (K −M)× (K −M)-dimensional

Table 3.1: Dimensions of the block matrices of the partitioned polynomial

coe�cient matrix Φ(z). (The lag operator is denoted with z.)

For the concept of Granger causality the one step prediction error is neces-
sary. The h-step prediction formula for MA-processes is given by

x̂[n](h) = µ+
∞∑
s=h

Φ[s]ε[n+ h− s]. (3.7)

The �rst step will be to analyze the one step prediction error of xI [n], using
past values of x[n].
Following the the one step prediction formula (equation (3.7), with h = 1), we
obtain

x̂I [n](1|x̄[n]) =
(

IM×M 0M×(K−M)

)
x̂[n](1)

=
(

IM×M 0M×(K−M)

)(
µ+

∞∑
s=1

Φ[s]ε[n+ 1− s]

)
=

(
IM×M 0M×(K−M)

)
(µ+Φ(z)ε[n])

=
(

IM×M 0M×(K−M)

)(( µI
µJ

)
+
(

ΦII(z) ΦIJ(z)
ΦJI(z) ΦJJ(z)

)(
εI [n]
εJ [n]

))
= µI + ΦII(z) εI [n] + ΦIJ(z) εJ [n].

5Moving Average
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Using sum-notation we get

x̂I [n](1|x̄[n]) = µI +
∞∑
s=1

ΦII [s] εI [n+ 1− s]

+
∞∑
s=1

ΦIJ [s] εJ [n+ 1− s]. (3.8)

To calculate the one step prediction error, the value xI [n+1] has to be expressed
with the help of the MA-representation (equation (3.6)).

xI [n+ 1] = µI + ΦII(z) εI [n+ 1] + ΦIJ(z) εJ [n+ 1]

= µI +
∞∑
s=0

ΦII [s] εI [n+ 1− s] +
∞∑
s=0

ΦIJ [s] εJ [n+ 1− s]

= µI + ΦII [0]εI [n+ 1] +
∞∑
s=1

ΦII [s] εI [n+ 1− s]

+ΦIJ [0]εJ [n+ 1] +
∞∑
s=1

ΦIJ [s] εJ [n+ 1− s]

Restricting ourselves to the case, where Φ[0] is the identity matrix, the coef-
�cient matrix ΦII [0] is the M -dimensional identity matrix (ΦII [0] = IM×M )
and the coe�cient matrix ΦIJ [0] is a M × (K −M)-dimensional zero matrix
(ΦIJ [0] = 0M×(K−M)).
Hence xI [n+ 1] can be expressed as

xI [n+ 1] = µI + εI [n+ 1] +
∞∑
s=1

ΦII [s] εI [n+ 1− s]

+
∞∑
s=1

ΦIJ [s] εJ [n+ 1− s]. (3.9)

The forecast error of xI [n+ 1] is de�ned by

ΣxI
(1|x̄[n]) = xI [n+ 1]− x̂I [n](1|x̄[n]).

Comparing the representations of the prediction (equation (3.8)) and the real
value (equation (3.9)) of xI [n+1], the one step prediction error can be calculated
as

ΣxI
(1|x̄[n]) = εI [n+ 1]. (3.10)

The projection of xI [n+ 1] on its own past is de�ned as

xI [n+ 1] = µI +
∞∑
s=0

F[i]ν[n+ 1− i] (3.11)

Similar to the projection on the space of xI and xJ , we choose the representation
with F[0] = IM×M .
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Next we want to derive the one step prediction of xI [n+ 1] considering only the
past values of xI [n]. The prediction formula leads to

x̂I [n](1|x̄I [n]) = µI +
∞∑
s=1

F[s]ν[n+ 1− s].

The forecast error is equal to the di�erence between the real value xI [n+1] and
the estimated one:

ΣxI
(1|x̄I [n]) = xI [n+ 1]− x̂I [n](1|x̄I [n])

= ν[n+ 1] (3.12)

Granger non-causality between xI and xJ is given, if and only if both forecast
errors in equations (3.10) and (3.12) are equal:

ΣxI
(1|x̄[n]) = ΣxI

(1|x̄I [n])
⇔ εI [n+ 1] = ν[n+ 1] ∀n.

Under the assumption of equality, we rewrite the representation for xI [n] pro-
jected on the past values of xI (equation (3.11)) and get

xI [n] = µI +
∞∑
s=0

F[s] ν[n− s]

= µI +
∞∑
s=0

F[s] εI [n− s]

= µI +
∞∑
s=0

(
F[s] 0M×(K−M)

)
ε[n− s].

Now we like to compare this result with the representation of xI [n] based on
past values of x (equation (3.6)):

xI [n] = µI +
∞∑
s=0

(
ΦII [s] ΦIJ [s]

)
ε[n− s].

From the uniqueness of the moving-average representation, we obtain

ΦII [s] = F[s] ∀s
ΦIJ [s] = 0M×(K−M) ∀s.

Now we have shown that the corresponding polynomial coe�cient matrix ΦIJ(z) =
0M×(K−M) if the signal xJ [n] is Granger not-causal for xI [n].

Because of equivalence of all transformations the inversion holds and the
proof is completed.

Before we adapt this result to autoregressive processes, we need lemma for
a block-wise inversion of a matrix.
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Lemma 3.7 (Block-wise inversion of a matrix). The inversion of the matrix

B =
(
B11 B12

B21 B22

)
,

where Bij (for i, j = 1, 2) are matrices, is

B−1 =
(

(B11 −B12B
−1
22 B21)−1 −(B11 −B12B

−1
22 B21)−1B12B

−1
22

−B−1
22 B21(B11 −B12B

−1
22 B21)−1 B−1

22 +B−1
22 B21(B11 −B12B

−1
22 B21)−1B12B

−1
22

)

This statement is proofed by calculating BB−1 = I.

Returning to our original problem - characterizing Granger causality in AR
processes, we have the following theorem.

Theorem 3.8 (Characterization of Granger causality in AR processes). Given
an invertible6 autoregressive model

x[n] =
∞∑
s=1

A[s]x[n− s] + ε[n],

Granger causality can be determined by considering the coe�cient matrices A[s]:
If and only if the respective block matrices of the coe�cient matrix are zero

matrices, Granger non-causality is given.

AIJ [s] = 0 ∀s ⇔ xJ [n] G; xI [n]

Proof. Every stable invertible AR process can be transformed into a moving
average process.

A(z)x[n] = ε[n]
⇔ x[n] = A−1(z)ε[n]

The polynomial coe�cient matrix (with lag operator z) is denoted by A(z). To
use the same notation for the MA-process, A−1(z) is rede�ned as Φ(z) with
Φ[0] = I.

x[n] =
∞∑
s=0

Φ[s]ε[n− s] = Φ(z)ε[n]

We are still considering the case, where theK-dimensional signal x[n] consists of
two sets of variables: xI [n] (M -dimensional) and xJ [n] ((K−M)-dimensional).
We are interested if xJ [n] Granger causes xI [n] or not.

Reminding lemma 3.6: We have shown that in the case of a canonical moving

average process, a Granger non-causality relation (xJ [n] G; xI [n]) is obtained,

6i.e A[s] is a non-singular matrix for all s = 0 . . .∞
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if and only if the corresponding coe�cient block matrices are zero matrices
(ΦIJ [s] = 0M×(K−M) ∀s).

Due to the non-causal relation (xJ [n] G; xI [n]) the polynomial matrix Φ(z)
becomes

Φ(z) =
(

ΦII(z) 0M×(K−M)

ΦJI(z) ΦJJ(z)

)
.

Re�ecting this situation to the AR process, the polynomial matrix Φ(z) has to
be inverted.

x[n] = Φ(z)ε[n]
Φ−1(z) x[n] = ε[n]

Because of the uniqueness of the representation of the AR process we get

A(z) = Φ−1(z) =

 AII(z) −(ΦII −ΦIJΦ−1
JJΦJI)−1ΦIJ︸︷︷︸

=0

Φ−1
JJ

AJI(z) AJJ(z)


=

(
AII(z) 0M x (K−M)

AJI(z) AJJ(z)

)
.

In case of Granger non-causality the corresponding block matrix of the coe�-
cient matrix is zero.

Analogously ΦIJ(z) = 0 is received by inverting the polynomial AR-coe�cient
matrix A(z) with AIJ(z) = 0. Hence for the corresponding MA representation
we obtain the following coe�cient matrix

Φ(z) =
(

ΦII(z) 0M×(K−M)

ΦJI(z) ΦJJ(z)

)
.

This is (see lemma 3.6) equivalent to Granger non-causality, which completes
the proof.

Example 3.9 (Identifying Granger causality via AR-coe�cients in a 3-dimensional
system). Let us consider a three dimensional AR(1) system x1[n]

x2[n]
x3[n]

 =

 1 0 0
2 1 3
0 8 4


︸ ︷︷ ︸

=A(1)

 x1[n− 1]
x2[n− 1]
x3[n− 1]

+

 ε1[n]
ε2[n]
ε3[n]

 :

We are splitting this system into two sets of variables: x1[n] and (x2[n], x3[n]).
For analyzing Granger causality between x1[n] and (x2[n], x3[n]), theorem 3.8
tells us to consider the corresponding block matrices of the coe�cient matrix
A(1).

Considering the block matrix A1, (2,3) = (0, 0), it follows that (x2[n], x3[n]) is
Granger not-causing x1[n]. Contrarily x1[n] Granger causes the set (x2[n], x3[n]),

because some entries in the corresponding block matrix

(
2
0

)
di�er from zero.
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3.2 Conditional Granger causality

Up to now we have just considered two sets of components, which together
amount to the whole information we are analyzing. Generally we want to use all
available information. Furthermore causal relations should be analyzed between
all variables (which do not have to amount to the whole information).

Separating two variables as done before and reducing the considered system
to these two variables, we could get a causal relation, although they are only
indirectly (through a third variable) connected. (For detailed information see
Section 3.2.2.)

Because no uniform extension for the multivariate case exists, we are going
to introduce two di�erent methods, which are often used in a neuronal context.
Both concepts are introduced in Guo et al.[16].

3.2.1 De�nition

The �rst extension of the bivariate de�nition is called Conditional Granger
causality.

De�nition 3.10 (Conditional Granger causality). Let x[n] be a K-dimensional
signal. A M -dimensional subprocess xI [n], I = {i1, . . . , iM} and a second N -
dimensional, disjoint subprocess xJ [n], J = {j1, . . . , jN} are observed. xJ [n]
is Granger causing xI [n], if and only if given the remaining components (R =
{x1, . . . , xK} \ {xI ∪ xJ}), the prediction of xI [n] using past values of xJ [n]
improves, compared to the one without this information.

ΣxI (h |U[n]) < ΣxI (h |U[n] \XJ [n]) (3.13)

The term U[n] denotes the whole information obtained by past values of the
signal x[n] (U[n] = {x1[s], . . . , xK [s], s < n} = {xI [s] ∪ xJ [s] ∪ R[n]} ).

This method is called Conditional Granger causality, because it indicates
the relationship between two variables, with respect to the rest.

One advantage of this method is, that it detects whether a variable is di-
rectly caused by another one, or whether it is indirectly connected through a
third observed variable.

In contradiction to the bivariate case with two sets of variables, it is not neces-
sary to restrict the sets of variables to these spanning the whole space.

We are only interested in the identi�cation of causal relations between two sin-
gle variables. Hence we restrict ourselves to the simple case where M = N = 1
and to linear Granger causality.

Example 3.11 (Linear Conditional Granger causality in the case of three vari-
ables). Let x1, x2 and x3 be three time series. The task will be �nding out if
variable x3 is causing variable x1 or not. For the joint autoregressive system of
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the �rst variables x1 and x2, the following representation is obtained:

x1[n] =
p∑
i=1

a1,i[n]x1[n− i] +
p∑
i=1

b1,i[n]x2[n− i] + ε1[n]

x2[n] =
p∑
i=1

d1,i[n]x1[n− i] +
p∑
i=1

e1,i[n]x2[n− i] + ε2[n].

For this system the covariance matrix is

S12[n] =
(

V (ε1[n]) Cov (ε1[n], ε2[n])
Cov (ε2[n], ε1[n]) V (ε2[n])

)
.

To be able to test if the third variable x3 is causing one of the other, we have
to calculate the joint autoregressive representation of all three components:

x1[n] =
p∑
i=1

a2,i[n]x1[n− i] +
p∑
i=1

b2,i[n]x2[n− i] +
p∑
i=1

c2,i[n]x3[n− i] + ε̃1[n]

x2[n] =
p∑
i=1

d2,i[n]x1[n− i] +
p∑
i=1

e2,i[n]x2[n− i] +
p∑
i=1

f2,i[n]x3[n− i] + ε̃2[n]

x3[n] =
p∑
i=1

g2,i[n]x1[n− i] +
p∑
i=1

h2,i[n]x2[n− i] +
p∑
i=1

l2,i[n]x3[n− i] + ε̃3[n]

The following covariance matrix is obtained:

Σ =

 V (ε̃1[n]) Cov (ε̃1[n], ε̃2[n]) Cov (ε̃1[n], ε̃3[n])
Cov (ε̃2[n], ε̃1[n]) V (ε̃2[n]) Cov (ε̃2[n], ε̃3[n])
Cov (ε̃3[n], ε̃1[n]) Cov (ε̃3[n], ε̃2[n]) V (ε̃3[n])

 .

The component x3[n] improves the prediction of x1, if and only if the variance
of the prediction error is reduced. With the help of the covariances the im-
provement of the prediction can be measured. x3 Granger causes x1, if and
only if V (ε̃1[n]) < V (ε1[n]). Analogous to the bivariate case the (non-negative)
conditional Granger causality index is de�ned as

cGCIx3→x1 = ln
(

V (ε1[n])
V (ε̃1[n])

)
. (3.14)

In the linear case the conditional Granger causality can be attributed to the
bivariate case with the help of lemma 3.7:

Lemma 3.12 (Connection between linear bivariate and linear conditional Granger
causality). Eliminating the e�ects of the rest ({x1[n], . . . , xK [n]} \ {xI [n] ∪
xJ [n]}) from xI [n] and xJ [n] and testing linear bivariate Granger causality be-
tween the two components, leads to the same result as considering linear condi-
tional Granger causality between these two variables.
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Proof. For convenience reasons we rede�ne theM -dimensional variable xI [n] as
x, the N -dimensional variable xJ [n] as y and call the rest z.

The matrices X̄ ∈ RT×N , Ȳ ∈ RT×M and Z̄ ∈ RT×(K−N−M) represent the
partitioned data (the rows represent the T data points and the columns repre-
sent the di�erent components).

First linear Conditional Granger causality between x and y (conditioned to
the rest z) is studied.

Let us consider the regression of x projected on the space spanned by past
values of x and z.

x = (X̄, Z̄)β + u

The projector on the orthogonal space of Z̄ is denoted with I − Pz = I −(
I− Z̄(Z̄′Z̄)Z̄′

)
. The corresponding least squares estimator β̂ is de�ned as

β̂ =
(

X̄′X̄ X̄′Z̄
Z̄′X̄ Z̄′Z̄

)−1( X̄′x
Z̄′x

)
.

With the matrix inversion lemma (lemma 3.7), the least squares estimator is

β̂ =

 A︷ ︸︸ ︷(
X̄′(I−Pz)X̄

)−1 −A X̄ Z̄(Z̄′Z̄)−1

−(Z̄′Z̄)−1Z̄′X̄ A (Z̄′Z̄)−1 + (Z̄′Z̄)−1Z̄′X̄ A X̄′Z̄(Z̄′Z̄)−1

( X̄′x
Z̄′x

)

=

(
A X̄′(I−Pz)x

(Z̄′Z̄)−1Z̄′(−X̄ A X̄′ + I + X̄ A X̄′Pz)x

)
.

Dealing with Granger causality we are only interested in the estimation errors.
The one for the regression of x on the past values of x and z is

û = x− (X̄, Z̄)β̂

=
(
I− X̄ A X̄′(I−Pz) + PzX̄ A X̄′ −Pz −PzX̄ A X̄′Pz

)
x

= (I−Pz)
(
I− X̄ A X̄′ (I−Pz)

)
x.

The second part of the proof deals with the modi�ed time series x, where all the
in�uences from z have been removed. Therefore the projected data (I − Pz)x
is considered:

(I−Pz)x =
(
(I−Pz)X̄

)′
β + u

Again our task is to �nd the prediction error. Hence the least squares estimation
coe�cient β̂ is needed:

β̂ =
(
X̄′(I−Pz)′(I−Pz)X̄

)−1
X̄′(I−Pz)′(I−Pz)x.

Reminding that we de�ned A =
(
X̄′(I−Pz)X̄

)−1
and that (I−Pz) is a pro-

jector and therefore idempotent ( (I−Pz)′(I−Pz) = (I−Pz) ) we obtain

β̂ =
(
X̄′(I−Pz)X̄

)−1︸ ︷︷ ︸
A

X̄′(I−Pz)x

= A X̄′(I−Pz)x.
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For a Granger causality analysis we have to determine the estimation error û of
the regressions (and its variance).

û = (I−Pz) x− (I−Pz)X̄β̂

= (I−Pz)
(
I− X̄ A X̄′ (I−Pz)

)
x

Comparing the estimation errors of both regressions, we see that they are iden-
tical.

Analogously the same result may be obtained for the regression of x at the
variables x, y and z

x = (X̄, Ȳ, Z̄)β + u.

Because both methods lead to the same errors, the same variances are ob-
tained and the Granger causality index is the same in both cases.

Lemma 3.13 (Characterization of conditional Granger causality via AR-coef-
�cients). xJ [n] is Granger non-causal for xI [n], if and only if one of the two
equivalent conditions holds:

(i) |V (xI [n]|xR∪ I [n])| = |V (xI [n]|x[n])|
(ii) AIJ(s) = 0 ∀s ∈ N

3.2.2 Comparison between bivariate and conditional Granger
causality

To justify the use of this multivariate extension, we are presenting some exam-
ples, where the pair-wise estimation fails identifying the true relations, while the
analysis using the de�nition of conditional Granger causality re�ects the correct
system.

The following models is found in a modi�ed way either in Kus et al.[21] or
in Kaminski [20]. They show that only using the bivariate method can be very
risky.

For the simulations we like to use any ECoG signal, between sample 1000 and
2000. In each step we delay the signal by one sample and add a white noise
term, generated by a normal distribution with mean zero and variance 400.

Example 3.14 (Common problems using a bivariate method). Figure 3.1 il-
lustrates the structure of the �rst example, which contains some problems we
are going to analyze in more detail later.

Channel X1 consists of the ECoG data mixed with a white noise process. By
delaying this signal (the symbol ∆ = 1 denotes a delay of one sample) and
adding di�erent noise processes, we obtain the channels X2 and X3 and so on.
We start with the bivariate analysis:

89



Figure 3.1: Structure of the simulation: In each step the signal is delayed by

one sample (denoted with ∆ = 1) and noise is added.

Figure 3.2: Pair-wise bivariate Granger causality index: The graph under

a → b shows the index of a Granger causing b. If and only if the index is near zero,

we have a non-causal relationship.

In �gure 3.2 the bivariate Granger causality index for each sample is plotted
against the time. One channel is said to Granger cause another, if and only if
the index is signi�cant higher than zero.

Using this method, too many causal relations are found. It seems impossi-
ble to identify the true connections. The channels with a high delayed in�uence
of channel X1 become terminals of activity. For a better overview the bivariate
result is presented in �gure 3.3, where an arrow represents a Granger causal
relationship.
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Figure 3.3: The result of the bivariate analysis: The bold arrows show the

correct connections, the thin ones are resulting from indirect e�ects and the dashed

arrows indicate causality falsely.

Now we are comparing this result with the multivariate analysis. Figure 3.4
presents the conditional Granger causality index plotted against the time. A
causal relation is identi�ed if the index is signi�cantly greater than zero.

With this method the causal relations are found correctly. A high index
(index at a level around 0.5) is observed for the corresponding plots of 1→ 2→
3, 1→ 4, 4→ 5 and 4→ 6. All other indices stay at a level near zero.

Figure 3.4: Conditional Granger causality index : The causal relations are found
correctly (1 → 2 → 3, 1 → 4, 4 → 5 and 4 → 6), while the indices not corresponding

to them stay near zero.

For every situation we are going to present an extra analysis to be able to
concentrate on the core of the problems.

At �rst we want to know, what happens between channel X1 and channel
X3 in a bivariate context?

X1 is Granger causing X2 and X2 is Granger causing X1. Of course X1 is
causing the variable X3, but in an indirect way. The occurring problem is, that
in a bivariate context, we cannot distinguish between a direct and an indirect
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Figure 3.5: The conditional Granger causality index �nds the correct causal relations.

Figure 3.6: Structure of the partitioned problem: Indirect cause

connection. In a multivariate analysis the structure is obtained correctly, be-
cause X2 is added in both models (set up for analyzing X1 causing X3) and
consists of all information of X1 necessary for a prediction of X3.

Figure 3.7: Di�erence of using the bivariate and the conditional Granger

index: Contrary to the conditional analysis, the pair-wise case indicates an additional

arrow, showing the problem of indirect in�uence.

Similar situations appear considering the other variables: X1 → X4 → X5

and X1 → X4 → X6.

A di�erent problem arises between the variables X2 and X6: A causal rela-
tion is identi�ed although there exist no direct connection. Figure 3.8 helps to
concentrate on the main structure of this situation.

The reason may be that even though X2 is disturbed by a not negligible
noise, there may exist some information, which is also present in X4 (the delayed
variables of X1). Hence a causal relation is identi�ed.

In the multivariate case this problem is absent. Variable X4 (or in this
shortened example X1) allows a better explanation of X6 than X2.

An overview of the results is given in �gure 3.9.

Before �nishing the comparison between the bivariate and the conditional
de�nition, we are presenting a second interesting example, where a strange
situation of an inverted relationship exists.
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Figure 3.8: Structure of partitioned problem: Causality without connection

Figure 3.9: Results of bivariate and conditional Granger causality index: In

the bivariate case a wrong relation is identi�ed (X2 Granger causing X6).

Example 3.15 (Inversion of causal relationship using bivariate methods). The
next simulation is an example of a problem that can easily happen using exper-
imental ECoG data and it shows that using only a bivariate analysis is quite
risky.

To introduce this problem we refer to �gure 3.10, where the structure of a
three dimensional system is presented in the same compact way as used before.

Figure 3.10: Example: Inversion of causal relationship when using bivariate

methods. The signals X2 and X3 were generated by adding a noise process and

delaying the signal X1 (∆ = 1 denotes a delay by one sample and ∆ = 2 denotes a

delay by two samples).

The signal X2 is obtained by delaying the signal X1 for two samples and
adding a noise process (i.e. a normal distribution with mean zero and variance
400). Delaying this signal for one sample, adding an analogous noise process
and further adding X1, delayed for one sample signal and disturbed by another
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noise process, X3 is received.

Figure 3.11 represents the results of the bivariate and the conditional analy-
sis. On the left hand side the corresponding Granger causality indices (above
the bivariate case and below the conditional one) are plotted. The right hand
side presents the structure, which visualizes the results of the plots on the left
hand side. (A high level of the index indicates a causal relationship.)

Figure 3.11: Results of bivariate and conditional analysis: In the bivariate

case an additional causal relation between X2 and X3arises, which has the inverse

direction of the real one.

Using the bivariate method, this simulations shows, that a causal relation
may appear in the inverse direction. Although only X2 should be causing X3,
a feedback occurs.

Because the delay between the signals X1 and X2 is larger than between X1

and X3, there is some information in X3 (X1 delayed by one sample) which is
useful for the prediction of the signal X2. Hence X3 causes X2 in a bivariate
analysis.

3.3 Partial Granger causality

Now we are introducing a second multivariate expansion of the original de�nition
of Granger causality, which is inspired by the idea of partial correlation in
statistics. This attempt can be found in Guo et al. [16].

Earlier in this work, when analyzing conditional Granger causality, we de-
�ned one variable causing another, if and only if the prediction error of the
�rst is reduced by adding the second variable to the model (with respect to
the remaining variables). The critical point is, that all information has to be
measured and taken into account for the model to get a correct relationship.
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In practice this condition often is violated and latent (unmeasured) variables or
exogenous inputs may distort the analysis of Granger causality.

3.3.1 De�nition

3.3.1.1 Linear model

We start with a model, which is similar to the one used for the discussion of
conditional Granger causality.

Let x[n] be a (K = L + M + N)-dimensional multivariate system, which
consists of three parts: xI [n] is a M -dimensional set of variables, xJ [n] a N -
dimensional partition of the system and xR[n] the L-dimensional set of the
remaining variables.

We are concentrating on the linear case and therefore introducing the vector
autoregressive model for the multivariate system

A(z)x[n] = u[n] = εE [n] + ε[n].

A(z) represents the polynomial coe�cient matrix with the lag operator z. To
obtain a unique representation, A(0) is claimed to be the K- dimensional iden-
tity matrix (IK×K). The exogenous not measured input is denoted by εE [n],
whereas ε[n] are the independent remaining errors. Both errors are combined in
the term u[n]. Compared to the work of Guo et al. we are not distinguishing
between exogenous and latent variables.

To identify if the time series xJ [n] Granger causes xI [n], we present a two-
dimensional system projecting xI [n] on the space spanned by the past values of
xI [n] and xR[n].

xI [n] =
∞∑
s=1

AII [s] xI [n− s] +
∞∑
s=1

AIR[s] xR[n− s] + u1,I [n]

xR[n] =
∞∑
s=1

ARI [s] xI [n− s] +
∞∑
s=1

ARR[s] xR[n− s] + u1,R[n]

The corresponding covariance matrix of the system errors is de�ned by

S[n] =
(

V (u1,I [n]) Cov (u1,I [n],u1,R[n])
Cov (u1,R[n],u1,I [n]) V (u1,R[n])

)
.

The partial covariance (see Section 2.20), where the e�ects of common latent
variables (common variables of xI [n] and xR[n]) are eliminated, is given by

SxI |xR = SII − SIRS−1
RRSRI .

For the analysis of Granger causal relations we need to expand this concept
to a three dimensional system containing variables xI [n], xJ [n], and xR[n] as
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usually:

xI [n] =
∞∑
s=1

BII [s] xI [n− s] +
∞∑
s=1

BIJ [s] xJ [n− s] +
∞∑
s=1

BIR[s] xR[n− s] + u2,I [n]

xJ [n] =
∞∑
s=1

BJI [s] xI [n− s] +
∞∑
s=1

BJJ [s] xJ [n− s] +
∞∑
s=1

BJR[s] xR[n− s] + u2,J [n]

xR[n] =
∞∑
s=1

BRI [s] xI [n− s] +
∞∑
s=1

BRJ [s] xJ [n− s] +
∞∑
s=1

BRR[s] xR[n− s] + u2,R[n]

The corresponding covariance matrix of this system is de�ned as

Σ[n] =

 V (u2,I [n]) Cov (u2,I [n],u2,J [n]) Cov (u2,I [n],u2,R[n])
Cov (u2,J [n],u2,I [n]) V (u2,J [n]) Cov (u2,J [n],u2,R[n])
Cov (u2,R[n],u2,I [n]) Cov (u2,R[n],u2,J [n]) V (u2,R[n])

 .

Eliminating the columns and rows corresponding to xJ [n] we get the only nec-
essary information of this covariance matrix used to analyze if xJ [n] Granger
causes xI [n].

Σ1[n] =
(

ΣII ΣIR

ΣRI ΣRR

)
=
(

V (u2,I [n]) Cov (u2,I [n],u2,R[n])
Cov (u2,R[n],u2,I [n]) V (u2,R[n])

)

Compared with the covariance matrix of the two dimensional system (S[n]),
we now �nd similar information in Σ1[n]. Again the e�ects of common latent
variables (common variables of xI [n] and xR[n]) are �ltered out with the help
of the partial covariance matrix

ΣxI xJ .|xR = ΣII −ΣIRΣ−1
RRΣRI .

De�nition 3.16 (Partial Granger causality). xJ [n] partially Granger causes
xI [n], if and only if the partial covariance matrix of the model including past
values of xJ [n] (ΣxI xJ .|xR) is smaller than the one if the information of past
values from xJ [n] (SxI |xR) is not used.

In other words we speak about partial Granger causality, if the estimation of
xI [n] is improved after adding the information obtained by past values of xJ [n].

De�nition 3.17. The partial Granger causality index is given by

pGCIxJ→xI = ln
(

SxI |xR
ΣxI xJ .|xR

)
= ln

(
SII − SIRS−1

RRSRI
ΣII −ΣIRΣ−1

RRΣRI

)
(3.15)

Remark. Again if the partial Granger causality index equals zero, there is no
improvement in the prediction and no partial Granger causal relation.
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3.3.2 Comparison between conditional and partial Granger
causality

Before starting with the comparison between conditional and partial Granger
causality, we give an example to see what might happen with the conditional
index if strong in�uences of latent variables are present.

Example 3.18 (Conditional Granger causality index under strong in�uence of
latent variables). Let us consider the following situation: Given three variables
x1, x2 and x3, we want to �nd out if x2 Granger causes x1.

The variables are �t into an AR-model, disturbed by individual white noise
errors εi, i = 1, . . . , 3 and an independent exogenous variable εE .

x1[n] =
∞∑
i=1

b11x1[n− i] +
∞∑
i=1

b12x2[n− i] +
∞∑
i=1

b13x3[n− i] + a1ε
E [n] + ε1[n]︸ ︷︷ ︸
u1[n]

x2[n] =
∞∑
i=1

b21x1[n− i] +
∞∑
i=1

b22x2[n− i] +
∞∑
i=1

b23x3[n− i] + a2ε
E [n] + ε2[n]

x3[n] =
∞∑
i=1

b31x1[n− i] +
∞∑
i=1

b32x2[n− i] +
∞∑
i=1

b33x3[n− i] + a3ε
E [n] + ε3[n]

For a Granger causality analysis between x1 and x2 we have to consider the two
dimensional system, where x1 is projected on the space spanned by past values
of x1 and x3.

x1 =
∞∑
i=1

c11x1[n− i] +
∞∑
i=1

c13x3[n− i] + a1ε
E [n] + ε̃1[n]︸ ︷︷ ︸
ũ1[n]

The term ε̃1[n] = ε1[n] + εx2 [n], where εx2 [n] describes the error in the space of
past values of x2. Hence ε

E [n] and ε̃1[n] are independent.

As known, the conditional Granger causality index of x2 causing x1 is de�ned
by

cGCIx2→x1 = ln
(

V (ũ1[n])
V (u1[n])

)
.

Because εE [n] is independent of ε1[n] and of ε̃1[n] we can convert the variances.

V (u1[n]) = V
(
a1ε

E [n] + ε1[n]
)

= a2
1 V
(
εE [n]

)
+ V (ε1[n])

V (ũ1[n]) = V
(
a1ε

E [n] + ε̃1[n]
)

= a2
1 V
(
εE [n]

)
+ V (ε̃1[n])

The conditional Granger causality index becomes

cGCIx2→x1 = ln

(
a2

1 V
(
εE [n]

)
+ V (ε̃1[n])

a2
1 V (εE [n]) + V (ε1[n])

)
.

If we speak about a strong in�uence of the exogenous variable, this corresponds
with an increase in a1. The fraction converts to one, whereas the index converts
to zero.
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We have found an example where strong in�uences of latent variables distort
the conditional index and push it to zero.

Example 3.19. To compare partial Granger causality and conditional Granger
causality we are going to present an example, found in a modi�ed way in Guo et
al.[16]. To simplify the system, it is disturbed by an exogenous, not measured
variable εE(t) and a white noise process εi(t) (i = 1, . . . , 5) only. The following
equations represent the simultaneously generated system:

x1(t) = 0.95
√

2x1(t− 1)− 0.9025x1(t− 2) + ε1(t) + a1ε
E(t)

x2(t) = 0.5x1(t− 2) + ε2(t) + a2ε
E(t)

x3(t) = −0.4x1(t− 3) + ε3(t) + a3ε
E(t) (3.16)

x4(t) = −0.5x1(t− 2) + 0.25
√

2x4(t− 1) + 0.25
√

2x5(t− 1) + ε4(t) + a4ε
E(t)

x5(t) = −0.25
√

2x4(t− 1) + 0.25
√

2x5(t− 1) + ε5(t) + a5 ε
E(t)

In the simulation of this model an independent standard normal distributed
process is used to model the errors εi(t), i = 1, . . . , 5 and the exogenous variable
εE(t). Because the starting values are not important for the simulations, they
are chosen manually and held constant for all simulations.

Looking at the coe�cient matrix of the system a stationary time series can
be identi�ed.

Studying the equations above we may see that x1(t) causes the time series
x2(t), x3(t) and x4(t). A feedback situation is modeled between the time series
x4(t) and x5(t). To keep track of the system, �gure 3.12 represents the relations
between the variables

Figure 3.12: Structure of model 3.16: One variable causing another is represented

by an arrow.

Changing the in�uence of the exogenous variable (by varying the coe�cients
ai, i = 1, . . . , 5), the robustness of both multivariate extensions of Granger
causality is tested. For each case a time series with 1000 samples is simulated.

First a model without common exogenous variables is considered. All disturbing
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processes εi(t), i = 1, . . . , 5 are independent. The coe�cients ai(t) of model
3.16 are set to zero for i = 1, . . . , 5.

The results of the analysis are presented in the �gure 3.13. The left hand
side shows a diagram, where the Granger causality indices are plotted for each
possible causal relation. The upper diagram denotes the conditional Granger
causality index, whereas the lower one indicates partial Granger causality.

For example the �rst bar, called �1 → 2 � (caption on the x-axis) presents
the value of the Granger causality index of variable x1(t) causing x2(t). In both
diagrams the value is clearly higher than zero. Hence a Granger causal relation
is identi�ed in the case of conditional Granger causality as well as in the case
of the partial extension.

The right hand side of the �gure shows the causal relations in the neatly ar-
ranged way we have already used before. In both analysis the true structure is
identi�ed.

Figure 3.13: Conditional and partial Granger causality index of model 3.16

without latent variables. In both analysis the correct system is identi�ed.

Next a system is considered where an exogenous variable εE(t) has the same
in�uence on each time series. The corresponding coe�cients ai, i = 1, . . . , 5 are
equal to 5. The results of this analysis are presented in �gure 3.14.

As we may see the conditional Granger causality index fails to �nd the cor-
rect causal relations, whereas the partial Granger causality seems to be the right
way for dealing with such data. We notice that the conditional Granger causal-
ity index is nearly equal to zero. This phenomenon is found when exogenous
variables have a strong in�uence on the data. For a justi�cation we want to
refer to Guo et al. [16] or to example 3.18.

The last case to be analyzed is, where the exogenous variable a�ects di�erent
time series with di�erent strength. Some time series will be even independent
of this variable, others will be in�uenced strongly. Hence we choose the corre-
sponding coe�cients (of model 3.16) as a1 = 0, a2 = 4, a3 = 6, a4 = 3 and
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Figure 3.14: Analysis of system 3.16 with strong in�uencing latent vari-

ables: Only the partial Granger causality index identi�es the correct structure.

a5 = 0. Again the result is summarized in �gure 3.15.
We see that, in contrary to the results from conditional Granger causality,

the partial Granger causality index delivers correct results. In the case of the
conditional Granger causality index the system �nds only the relation x4(t)
Granger causing x5(t) clearly. Also x1(t) Granger causing x2(t) and x4(t) is
identi�ed, but both relations are not as strong as in the partial case. (The
conditional indices show values around 0.05 and 0.06.)

3.4 Implementation

3.4.1 Recursive Least Square algorithm

In this chapter we introduce the Recursive Least Square algorithm (RLS), which
copes quite good with non-stationary signals. Therefore it seems to be a rea-
sonable concept to model the ECoG-data. We follow the derivation of Haykin
[18].

3.4.1.1 Preliminary remarks

The basic idea behind this algorithm is an implementation of the ordinary least
squares estimation, where the information is updated from sample to sample.
This model is not time independent any more: For every point of time the
information and the coe�cient matrices di�er.

Hence this concept is able to cope with non-stationary data. It seems to
be useful to work with a recursive model, which adapts the former information.
Initial conditions are necessary to start the recursion.

Let T ∈ N be the number of observations and let X ∈ RT×k be the matrix
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Figure 3.15: Analysis of system 3.16 with latent variables, having di�erent

in�uences: The conditional Granger causality index seems to have di�culties to deal

with this situation.

of data points, where x[n] = (x1[n], . . . , xk[n]) is the k-dimensional signal, ob-
served in time n for n = 1, . . . , T.

Because of instationarity we try to �t the ECoG-data in a multivariate and
time-invariant AR(p)-model

x[n] =
p∑
i=1

Ai[n]x[n− i] + ε[n],

where ε[n] describes a white noise process with covariance matrix Σε.

To rewrite this in a more compact way, we assemble the coe�cient matrices
Ai[n] (for i = 1, . . . , p) and get the matrix

A[n] = (A1[n], . . . ,Ap[n]) ∈ Rk×kp.

Furthermore the p past values of the signal are stacked together in an observation
matrix X̄[n].

X̄[n] = (x[n− 1], . . . ,x[n− p]) ∈ R1×kp

Now the AR(p)-model can be described shortly as

x[n] = A′[n]X̄[n] + ε[n].

For an ordinary least squares estimation we have to compute the following nor-
mal equations7

Â[n] =
(
X̄′[n]X̄[n]

)−1 (
X̄′[n]x[n]

)
,

7For more information see Schönfeld [29].
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where
(
X̄′[n]X̄[n]

)
is the multivariate covariance matrix Rx,p and

(
X̄′[n]x[n]

)
is the multivariate covariance vector rx,p .

Contrary to the ordinary least squares computation we want to weight the er-
rors e[i] with β(n, i) ∈ (0, 1]. With this modi�cation the cost function, which
has to be minimized, becomes

C[n] =
n∑
i=1

β(n, i)(e[i])2,

where e(i) denotes the estimation error.

e[i] = x[i]− x̂[n] = x[i]−A′[i] X̄[i]

If the weighting factor β(n, i) is smaller than one, the errors of the past become
less important - or will become more or less forgotten (after some time). An
exponential forgetting factor β(n, i) = λn−i is used to weight the errors.

The special case where λ equals one, corresponds to the ordinary least squares
estimation. Here we have an in�nite memory: each past value is as important
as each present value.

There exist two contrary e�ects to be considered when choosing the forget-
ting factor: On the one hand a small λ leads to a better adaption, but on the
other hand the estimation gets worse. The problem of �nding the best factor
will be analyzed in detail in Section 3.4.3. For our instationary data a λ smaller,
but close to one will be reasonable.

To choose an appropriate λ it is crucial to know how long errors will play a
role in the estimation, according to the chosen forgetting factor. Hence we
consider values with a weight less than e−1 (≈ 0.17) to be �forgotten�.

To express when a sample becomes unimportant, we would like to compute
a relationship between λ and the number M of non-negligible values.

λM < e−1 ⇔ M >
−1
lnλ

For a given frequency fs we get the memory time constant:

τλ =
M

fs
.

The choice of an appropriate value for λ will be based on the analysis of the
one-step prediction error. (For this discussion see Section 3.4.3.)

3.4.1.2 Derivation of the RLS

After getting some idea about this algorithm we want to go into more detail.
Before we are able to concentrate on the derivation, we give a technical

lemma.
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Lemma 3.20 (Matrix Inversion Lemma). Let A and B be two positive-de�nite
p × p matrices, D is a positive-de�nite T × p matrix and let C be an p × T
matrix. The matrix A should satisfy the relation

A = B−1 + CD−1C ′.

The inverse of the matrix A is de�ned by

A−1 = B −BC(D + C ′BC)−1C ′B.

Back to our problem �nding a recursive algorithm, we have to minimize the
cost function with the weighted estimation errors e[i] = x[i]−A′[i]X̄[i]:

C[n] =
n∑
i=1

λn−1(e[i]) (e[i])′

=
n∑
i=1

(λ
n−1

2 x[i]−A′[i] λ
n−1

2 X̄[i]) (λ
n−1

2 x[i]−A′[i] λ
n−1

2 X̄[i])′

As for a ordinary least squares estimation with the descriptive variable λ
n−1

2 X̄[n]
and the dependent variable λ

n−1
2 x[n], we obtain the following normal equation:

n∑
i=1

λn−ix[i] x′[i] Â[n] =
n∑
i=1

λn−ix[i] y′[i].

As we want to write this equation in a compact form, we de�ne

Φ[n] =
n∑
i=1

λn−ix[n] x′[n] (3.17)

z[n] =
n∑
i=1

λn−ix[i] y′[i].

We receive
Φ[n]Â[n] = z[n]. (3.18)

To get the estimation for the coe�cients A[n] we have to invert the positive
de�nite p× p covariance matrix Φ[n].

Because we like to receive a recursive algorithm, the de�nition of the matrix
Φ[n] (equation 3.17) is rewritten as:

Φ[n] = λΦ[n− 1] + x[n] x′[n].

To invert Φ[n] for every n = 1, . . . , T the Matrix Inversion Lemma is used (to
reduce the calculation e�ort). Φ[n] is positive de�nite and non singular. Hence
the inversion exists. For a better application of this lemma we de�ne A = Φ[n],
B−1 = λΦ[n− 1], C = X̄[n] and D = 1 and get

Φ−1[n] = λ−1Φ−1[n− 1]− λ−2Φ−1[n− 1]− X̄[n] X̄′[n] Φ−1[n− 1]
1 + λ−1X̄′[n] Φ−1[n− 1] X̄[n]

. (3.19)
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For simpli�cation reasons we rename

P[n] = Φ−1[n] (3.20)

k[n] =
λ−1P[n− 1] X̄[n]

1 + λ−1X̄T [n] P[n− 1] X̄[n]
. (3.21)

Reminding equation 3.19 and using de�nitions 3.20 and 3.21, an updating rela-
tionship for the inverse correlation matrix Φ−1(n) (respectively P[n]) is found:

P[n] = λ−1P[n− 1]− λ−1k[n]X̄′[n]P[n− 1]. (3.22)

With this equation we are able to interpret the vector k[n] as a gain vector:

k[n]
(3.21)

= λ−1P[n− 1]X̄[n]− λ−1k[n] X̄′[n] P[n− 1] X̄[n]
=

(
λ−1P[n− 1]− λ−1k[n] X̄′[n] P[n− 1]

)
X̄[n]

(3.22)
= P(n) X̄[n] (3.23)

To establish a recursion for the estimated coe�cients, equation 3.18 is used.
The right hand side can be rewritten as

z[n] =
n∑
i=1

λn−iX̄[i]x′[i] = λz[n− 1] + X̄[n]x′[n].

The a-priori estimation error8 is de�ned as

ξ̂[n] = x[n]− Â′[n− 1]X̄[n]. (3.24)

Contrary the a-posteriori error

e[n] = x[n]− Â′[n]X̄[n]

shows the error made by �tting the signal x in an AR-model using all informa-
tion up to time n. It represents the estimated white noise in n.

For the estimation of the coe�cients Â[n] we take in mind that we have de�ned
P[n] as Φ−1[n]. To come from the second row to the third row of the calculation
we substitute the recursion of P[n]. We obtain the following recursion:

Â[n] = Φ−1[n] z[n]
= P[n]z[n]
= λP[n]z[n− 1] + P[n]X̄[n]x′[n].

Using the recursive representation of P[n] (equation 3.22) we get

8The a-priori estimation error conforms with the one step prediction error. The real value
x[n] is estimated using the information obtained up to time n− 1: x̂[n] = Â′[n− 1]X̄[n].

104



Â[n] = P[n− 1]z[n− 1]︸ ︷︷ ︸
Â[n−1]

+ k[n]x̄T [n]P[n− 1]z[n− 1]︸ ︷︷ ︸
Â[n−1]

+ P[n]x̄[n]︸ ︷︷ ︸
k[n]

x′[n]

= Â[n− 1] + k[n]( xT [n]− x̄′[n]Â[n− 1] )︸ ︷︷ ︸
ξ̂[n]

= Â[n− 1] + k[n]ξ̂[n]. (3.25)

Thus we have found a recursion for the estimated coe�cient matrix Â[n].

To be able to start with this recursive adaption we have to �nd a useful initial-
ization. A �rst inverted covariance matrix P[0] has to be de�ned.

One way to compute such a �rst inverse covariance matrix is to use the �rst
(−n0, . . . , 0) values:

P[0] =

(
0∑

i=−n0

λ−ix̄[i]x̄′[i]

)−1

.

Another way of initialization is to de�ne P[0] with the p × p identity matrix
(Ip×p) and a positive small constant δ

P[0] =
1
δ
Ip×p.

We are using the second way setting δ = 1 and getting the identity matrix for
P[0].
At the beginning of the algorithm, where no information is available, it seems
to be reasonable to set the starting coe�cient matrix A[0] to the zero matrix.

3.4.1.3 Summary of the RLS algorithm

To get an overview which steps have to be done for each sample we want to
summarize the RLS-algorithm. The four equations (3.21), (3.22), (3.24) and

(3.25) are enough to �nd the coe�cient matrices Â[n] and further the estimated
AR-model (algorithm 3.1).

The one step prediction error (a-priori error) is used to �nd the coe�cient
matrices. Later this error will be used to determine the correct forgetting factor
λ (Section 3.20) and to calculate the Granger causality indices (in Section 3.5).

3.4.2 Channel selection

The ECoG data we are dealing with, contains between 28 and 32 di�erent
variables (channels). Using all of them for the calculations would mean on the
one hand a big calculation e�ort and on the other hand we would face serious
problems with the stability of the algorithm.

Therefore we have to choose a set of channels to work with. This can be
done in two ways:

(i) Finding an algorithm which automatically chooses a set of variables to
work with:
A detailed description might found in [12, 17]: The set of channels is chosen
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Algorithm 3.1 Recursive Last Squares (RLS) algorithm

Initialization:

Â[0] = 0

P[0] =
1
δ
Ip×p.

Compute for n= p, . . . , N :

k[n] =
λ−1P[n− 1] x̄[n]

1 + λ−1x̄′[n] P[n− 1] x̄[n]
P[n] = λ−1P[n− 1]− λ−1k[n]x̄′[n]P[n− 1]

ξ̂[n] = x[n]− Â′[n− 1]x̄[n]

Â[n] = Â[n− 1] + k[n]ξ̂[n]

by an algorithm, which decides for every channel weather an additional
channel yields enough gain to add it or not.

(ii) Choosing the set of channels manually.

We have decided to choose the set of channels manually. On one side it seems to
be reasonable, because the channel selection algorithm takes much calculation
e�ort. On the other side we keep the set constant during the whole seizure,
contrary to the channel selection algorithm. Furthermore we keep it constant
for every seizure of a patient.

For our selection we tried to consider all �interesting� channels (these which
indicate a lot of epileptic activity and these located near to them). The prob-
lem of �nding these channels will be discussed in detail in Section 3.5.

Example 3.21 (Reduction of the information). To get an idea how important
the channel selection might be, we are presenting an example, where a incom-
plete multivariate model may lead to wrong Granger causal relations. The
corresponding model can be found in Eichler [8].

x1(t) = αx4(t− 2) + ε1(t)
x2(t) = β x3(t− 1) + γ x4(t− 1) + ε2(t)
x3(t) = ε3(t)
x4(t) = ε4(t)

We claim the coe�cients α, β and γ to di�er from zero and claim the er-
rors εi(t), i = 1, . . . , 4 to be independent and identically normally distributed
with mean zero and variance σ2. (For our numerical example we will set
α = β = γ = 0.9 and use a standard normal distribution to calculate the
white noise εi(t), i = 1, . . . , 4.)

Reminding the equivalence (found in lemma 3.13) and rewriting the system
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x(t) = A(z)x(t− 1) + ε(t): The variable xi(t) Granger causes xj(t), if and only
if the coe�cient Aij(z) di�ers from zero.

Using this information we are analyzing the system above: Considering the
coe�cients, we see that variable x4(t) is Granger causing x1(t) and x2(t). Ad-
ditionally A23(1) = β indicates a causal �ow from x3(t) to x2(t).

For a better overview a graphical representation is presented in �gure 3.16.
As in earlier sections we denote the variables xi(t) with a node and a causal
relationship between two components using arrows.

Figure 3.16: Structure: The arrows denote the in�uence of a signal to another.

(∆ = i, i = 1, 2 denotes a delay by one or by two samples.)

The numerical result is given in �gure 3.17, where the bars on the left hand
side represent the corresponding conditional Granger causality indices and on
the right hand side the system is presented in the usual way. The system is
correctly identi�ed.

Figure 3.17: Conditional and bivariate Granger causality index: While using

the multivariate method, the whole system is correctly identi�ed, in the bivariate case

an additional relations (X2causing X1) is received.

In the next step we show what will happen, if not all variables are measured
or selected. So for example what does happen if we only select the channels 1 to
3? It can be shown (see Eichler [8]) that therefore the following reduced model
is obtained:
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x1(t) =
αβ

1 + β2
x2(t− 1)− αβγ

1 + β2
x3(t− 2) + ε̃1(t)

x2(t) = γ x3(t− 1) + ε̃2(t)
x3(t) = ε̃3(t)

It can be shown easily that ε̃1(t) = ε1(t) − αβ
1+β2 ε2(t − 1) + α

1+β2 x4(t − 2),
ε̃2(t) = β x4(t − 1) + ε2(t) and ε̃3(t) = ε3(t) are independent and identically
normally distributed with mean zero.

(Cov(ε̃1(t), ε̃2(t − 1)) = − αβ
1+β2 V(ε2(t − 1)) + α

1+β2 β V(x4(t − 2)) = 0, all
other covariances are zero, because εi(t), i = 1, . . . , 3 are independent normally
distributed.)

Again we want to analyze the multivariate system and search for conditional
Granger causality. Because the coe�cients a12(1), a13(2) and a23(1) di�er from
zero, we have x3(t) Granger causing x1(t) and x2(t), and further x2(t) Granger
causing x1(t). Compared to the true relationship (we had in the four dimen-
sional case), the multivariate systems tells us that x3(t) causes x1(t), although
in the original system there was no connection between the two .

The numerical result (presented in �gure 3.18) leads to the same result as
in the theoretical consideration.

Figure 3.18: Conditional Granger causality index for the partitioned sys-

tem: Contrary to the original system the signal X3 is Granger causing X1.

Something quite interesting in this example is that the bivariate analysis
for the 3-dimensional system leads to better results than that using conditional
Granger causality.

In �gure 3.17 the result of the analysis from the whole system is presented.
We see that it correctly marks a causality between x3(t) and x2(t), between

x4(t) and x1(t) respectively x2(t). The relationship between x1(t) and x2(t)
arises, because both variables are in�uenced by the third variable x4(t).

In the bivariate case the three dimensional reduction leads to �gure 3.19.
Comparing this result with that of Section 3.2.2, it leads to a contrary result.

In this example the bivariate case copes better with a reduction of the dimension.
What we like to show with this example is, that we have to be very careful when
selecting the channels for multivariate calculations. Maybe the bivariate analysis
should be used to reduce the set of channels.
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Figure 3.19: In this case the bivariate Granger causality indicates the correct rela-

tions.

3.4.3 Selection of the forgetting factor λ

Next an optimal forgetting factor λ is needed. Before starting with the calcula-
tions we give a short review:

To get a better adaptation of ECoG data to an AR model, less weight is
put on residual errors of the past, than on that nearer to the present. The cost
function, which has to be minimized, is de�ned as

C[n] =
n∑
i=1

λn−i e2[i],

with λ < 1 (to let errors in the past get less important).

To �nd the best value of the forgetting factor, we have to consider a trade
o� between two opposite tendencies:

(i) Small values of λ lead to a �short memory� (residual errors of samples far
in the past become quickly unimportant for the estimation). This results
in a good adaptation.

(ii) A �short memory� means a few samples for the estimation and that the
prediction becomes worse.

One advantage of the concept (using a forgetting factor) is to be able to deal
with a sudden change in the system. For example if one channel indicates an
epileptic activity we want to be able to adapt the AR-system as quickly as
possible. Only then we can identify the epileptic activity quickly by using the
concept of Granger causality.

Hence the ECoG signal of a patient during an epileptic seizure is analyzed
and the best adaption (the corresponding λ) of the point of time, where the
seizure is starting to e�ect this signal is searched.

Figure 3.20 presents the situation, which has to be modeled using the recursive
least squares algorithm with a forgetting factor λ. The epileptic activity starts
at second 11, where we seem to have a change in the system: The amplitude of
the signal is getting larger.

To determine the forgetting factor, the one step prediction error seems to
be a useful instrument to solve this problem. On the one hand a quite good
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Figure 3.20: Channels used to �nd an optimal lambda: The epileptic activity

starts at second 11. We see that after this time the systems changes and starts to have

a higher amplitude.

adaption is necessary to be able to predict the next value and on the other
hand a longer memory is needed to be able to predict the system. We plot the
variances of the one step prediction error against the corresponding λ (�gure
3.21). The forgetting factor with the smallest variance (λ = 0.995) is taken for
our later analysis of the data in Section 3.5.

Figure 3.21: Forgetting factor lambda vs. variance of the one-step predic-

tion error: We can see that the minimum is around λ = 0.995.

To get an idea about the e�ect of choosing this special forgetting factor, we
remind the connection between λ and the number M of non-negligible values in
Section 3.4.1.

λM < e−1 ⇔ M >
−1
lnλ

For a given frequency fs the memory time constant is

τλ =
M

fs
.

Using frequency fs = 128HZ, we obtain the following result for some interesting
values of the forgetting factor λ.

Using λ = 0.995 for the analysis in the later work means that we have to
consider around 200 samples for the estimation. This corresponds to a time
window of 1.6 seconds.
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forgetting factor (λ) M non-negligible samples memory time constant (τλ)

0.950 20 0.15 s
0.970 33 0.26 s
0.990 100 0.78 s
0.995 200 1.56 s
0.999 1000 7.81 s

Table 3.2: Connection: forgetting factor λ, the number M of non-negligible samples

and the memory time constant (τλ)

3.4.4 Order selection

Next a reasonable lag order for the RLS-algorithm is needed. To be able to
decide how large this lag should be, we consider the value of the Akaike's Infor-
mation Criterion (AIC).9

Figure 3.22: AIC criterion for the ECoG data: After order p = 6 the gain of

an higher order sinks rapidly and the question arises if the higher e�ort of an higher

order is necessary.

Hence the ECoG data of a patient during an epileptic seizure is analyzed.
As in the section before we are going to use the data of patient 2, seizure 3 to
�nd the correct order. Considering �gure 3.22, we have a low loss of the AIC
value after order p = 6. Therefore it has to be decided if it is reasonable to use
a much higher order, because the calculation e�ort rises too much. (Contrary
to a usually OLS-estimation, the RLS-algorithm is more complex). Hence we
use the order p = 6 in the following analysis.

9This information criterion is a measure of the quality of a �t of an estimated statistical
model, which reacts in�ictive to the number of parameters.

AIC = ln(σ̂2) + 2
M

T

σ̂2 . . . variance of the residual errors

M . . . number of estimated parameters

T . . . number of samples
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3.5 Results

To conclude this chapter, the results of the ECoG data analysis of three pa-
tients, su�ering from temporal lobe epilepsy, are presented. All three Granger
causality de�nitions are used and the pros and cons will be shown.

As mentioned in the introduction, one signi�cance of channels a�ected with
epileptic activity is the simultaneous oscillation. As this similar rhythm is caused
directly by the seizure's initial focus, it should help us to track the propagation
of the seizure and to �nd its focus. Granger causality measures seem to be a
promising tool.

3.5.1 Bivariate Granger causality

Before analyzing the ECoG data, we want to remind the de�nition of bivariate
Granger causality (for more details see Section 3.1).

Analyzing if xj Granger causes xi, we try to �t these channels into two
AR-models (one with xj and another without xj):

(i) xi(n) =
6∑
s=1

asxi(n− s) + ε1(n)

(ii) xi(n) =
6∑
s=1

bsxi(n− s) +
6∑
s=1

csxj(n− s) + ε2(n).

Channel xj (bivariate) Granger causes xi, if and only if adding the information
obtained from past values of xj improves signi�cantly the prediction of xi. The
measure, which should help in this decision is de�ned by

bGCI xj→xi = ln
(

V (ε1(n))
V (ε2(n))

)
.

Approaching the problem of �nding Granger causal relations for the given in-
stationary data means to �t the channels in an AR-system with the help of the
RLS-Algorithm (Section 3.4.1).

Because instationary data may change the causal relations, we calculate the
bivariate Granger causality index for each sample and try to �nd a threshold
for each patient, indicating whether the Granger causality index is signi�cantly
di�erent from zero or not. To avoid the indication of �spikes�, signi�cant inter-
action is given, if the index exceeds this threshold for 32 times (corresponding
to a quarter of a second at the given sampling frequency of 128Hz) within one
time window.

3.5.1.1 Why Common Average data are necessary

To explain why using transformed data for the analysis is reasonable (i.e. data,
which is rede�ned with reference to the common average), we want to present
the bivariate result of seizure 3 of patient 2 with the original ECoG data -
measured with reference to channel 6.
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The threshold for the original data is chosen to be 0.25 (which is the same
as used for the common average data).

Figure 3.23: Bivariate analysis of seizure 3, patient 2 - without common

average: Considering the result, many channels seem to cause channels 26 and 17.

We are going to compare the result, obtained from the data measured with
reference to channel 6 (�gure 3.23) with that measured with reference to the
common average of all channels (�gure 3.27):

Many channels are causing channel 26 and channel 17. Based on the medical
description, channel 26 is declared to be a focus channel. It seems that the
arrows (presenting the causal relation) are pointing at the focus (or near to
it). Furthermore many arrow starting points seem to be channels, which do not
show any epileptic activity.

If we consider the result of the data measured with reference to the common
average, this wrong relations vanish.

In �gure 3.24 we compare graphs of both data (starting �ve seconds before
the onset of the seizure and ending �ve seconds after). We consider one channel
of the focus (channel 26) and one showing no epileptic activity (channel 1).

While the red line represents the graph of the data, measured with reference
to the common average, the blue line shows the data, measured in reference to
channel 6. In the �rst �ve seconds (before the onset of the seizure), we seem to
have a similar situation in both channels. Using common average, many peaks
seem to be reduced.

Contrary this e�ect only is remaining for the data showing no epileptic ac-
tivity in the �rst �ve seconds of the seizure (second 5 to second 10). Channel
26 seems to have more peaks in both ways of presenting the data. Hence we
assume that the di�erent presentation might have an e�ect on the variances of
the data.
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Figure 3.24: Graph of data measured with reference to a channel (blue line) respec-

tively to the common average (red line).

Figure 3.25: Variances of data with reference to a channel and to the com-

mon average: Common average reduces the variances.

Comparing the variances of the data measured with reference to channel 6
and of the data with the common average as reference in �gure 3.25, a reduction
of the variance is identi�ed in the case of common average. Furthermore we see
that especially channels 15, 17 and 26 still have a very high variance.

For a better comparison we want to look at the percentage of the reduction
of the variances in �gure 3.26.

Channels 15, 17 and 26 (the channels which had a huge variance in the case
of channel 6 as reference electrode) are the ones with a relatively low reduction.

We want to give an assumption, why this situation may arise: There could
exist some �basic signal�, which is part and parcel of all channels. This basic
signal could be a behavior of the brain in situations of resting, but it could
also result from external in�uences. Thus the variance of non-focus channels
decreases if common average is used, because that �lters the basic signal.
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Figure 3.26: Percentage of variance reduction between channel 6 as reference

and common average as reference.

The channels delivering information in a seizure, are these showing the
epileptic activity. Hence these channels cannot be explained with the basic
signal - variances stay high, even if the common average is used.

So what could be the reason for the indication of wrong causal in�uences?
Considering the variances in �gure 3.25, we notice extremely high variances for
channels 15, 17 and 26. High variances correspond to bad estimations (pro-
jecting each channel on itself). Hence we assume that the information of any
channel is able to improve the estimation signi�cantly, because the basic signal
is strongly present in this channel.

For example the variance of channel 17 is reduced quite dramatically if com-
mon average is used. Consequently most arrows pointing towards channel 17
disappear.

3.5.1.2 Patient 2, seizure 3

The �rst data to analyze is seizure 3 of patient 2. According to the clinical de-
scription the epileptic activity appears at channels 26 and 27, two neighboring
electrodes on the right side of the brain, at 12:31:41. After about eleven seconds
the activity propagates to the other hemisphere and a�ects channels 10, 11 and
12, where the seizure ends after about one minute.

To be able to �nd a threshold for the bivariate Granger causality index of patient
2, we �rst plot this index against the time. In �gure 3.27 we present some se-
lected graphs of the index, which show a typical behavior. The red line presents
the bivariate causality index of channel 10 causing channel i = 2, 11, 21,
whereas the blue one shows the inverse causal relation.

We may discover that between an a�ected electrode and any non-a�ected
the index stays smaller than 0.25 (see the for example the graph of the causality
index between channels 10 and 21 in �gure 3.27). Sometimes we could see a
short peak reaching this value, but normally this is signi�cantly lasting less than
a quarter of a second. An analogous situation may be identi�ed between two
not a�ected channels.

The index between two neighboring channels might be a bit higher than usu-
ally (see for example the causality indices between channels 10 and 2 - for the
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Figure 3.27: Bivariate Granger causality index: The red line shows the index of

channel 10 causing channel i = 2, 11, 21 and the blue line shows channel i = 2, 11, 21

Granger causing 10.

localization of the corresponding electrodes see A.2). This might be based on
the fact, that neighboring brain regions act similarly - whether there is epileptic
activity or not.

Furthermore we recognize that between two a�ected, neighboring electrodes
(channel 10 and 11) the index is high (signi�cantly over 0.25). The indices be-
tween these channels increase signi�cantly after about 15 seconds. Comparing
this with the clinical description (a propagation to channels 10 and 11 after 11
seconds) the start of the epileptic activity can be indicated pretty well using the
bivariate method (only some seconds later as we would expect it).

From these considerations a threshold of value 0.25 seems to be reasonable.
Using this for calculation of the �rst 30 seconds, we receive the 5 second win-
dows of �gure 3.28.

Before we are going to analyze the result we want to present the clinical
description: The onset of this seizure is at channels 26 and 27 at 12:31:41.
After 11 seconds the epileptic activity propagates to channels 10, 11 and 12. At
12:32:39 the seizure ends.

The bivariate analysis does not seem to �t perfectly with the clinical de-
scription. Further channels causing another are found.

This result would lead to a focus near electrode 15. Especially in the �rst
part of the seizure it seems that channel 15 might be the cause of the epileptic
activity and the activity propagates to channels 26 and 27.

On the other hand we like to remember that in Section 3.2.2 we have found
several examples, showing that only relying on the bivariate method can be
very risky. One example showed that even an inversion of the causal relation is
possible.

Further a focus at channel 26 and 27 cannot be excluded: Causalities be-
tween them are indicated from the very beginning.

Looking at seizure 4 of this patient (see Section A.2), the start is found at
channel 15. Hence a chance to have the real focus situated near this electrode
exists. As we have mentioned before one problem of this data is, that even the
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Figure 3.28: Bivariate Granger causality for seizure 3 of patient 2: We

denote the channels to select in the multivariate case with a circle (symbol #) whereas

the neglected ones are denoted with a cross (×). In the bivariate case all channels are

considered.

medics were not sure about the real focus.

3.5.1.3 Patient 1, seizure 1

To justify the use of the bivariate method we present a second analysis. There-
fore we take another patient, where we found out that a threshold near 0.3
seems to be reasonable. This threshold yields to similar results for each seizure
of patient 1.

As before we present the result of the bivariate Granger causality index in
several windows, representing 5 seconds. We draw an arrow, if the threshold
(0.3) is exceeded for more than 0.25 seconds. The result is presented in �gure
3.29.

In the �rst seconds there is hardly any arrow - except for the two wrong
ones at the beginning. The problem could be that no other electrode is a�ected,
except for number 25 on the right hemisphere. Hence no information could �ow
from one channel to another.

From second 10 to 15 the bivariate method indicates a �rst causality. This
one (from channel 17 to channel 18) is not found in the clinical description at
this moment. But it is quite near the starting point of epileptic activity, and
otherwise channel 18 is one of the starting points for the other seizures of this
patient (Section A.1).

The last graphs show the causal relations we have expected. Bivariate Granger
causality marks channels 17, 18, 25 and 26. No wrong relations are found.
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Figure 3.29: Bivariate analysis of seizure 1, patient 1: As in the �gure above,

the electrodes, selected in the multivariate case, are denoted with a circle, the rest with

a cross. The channels, which should be a�ected, are marked.

3.5.1.4 Patient 1, seizure 3

The next example shows that the bivariate analysis could lead to some problems.
As said before the threshold is chosen to be 0.3 again.

Using bivariate Granger causality we receive the following result (presented
in �gure 3.30):

The �rst plots seem to �t quite good. Comparing them with the clinical
description we should identify an epileptic activity at channels 18 and 25: In
fact they are in causal relations. Furthermore it seems that they already are
in�uencing channels in the neighborhood.

After the �rst �ve seconds, the causal relations seem to be not signi�cant any
more. Meanwhile (in second 11) the seizure should propagate to channel 26.
This e�ect can be observed some seconds later.

The last two graphs expose some problems: At the �rst sight it seems that
many arrows point at the focus. But if we examine it in more detail we recog-
nize that none of them points at channels 18 or 25 (i.e. at the focus channels
for all seizures).

Hence we suppose that there is either the situation where an arrow changes
the direction in the bivariate case (for more details see example 3.15) or that
there is the situation where two not connected channels cause a bivariate causal
relation (see example 3.14).
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Figure 3.30: Bivariate Analysis of seizure 3, Patient 1: The channels, which

should be a�ected according to the medical description are marked. We recognize that

after second 20 many arrows point at the neighborhood of the focus.

3.5.2 Conditional Granger causality

First we would like to give a short summary of the de�nition of Conditional
Granger causality.

xj Granger causes xi in the conditional de�nition, if and only if the estima-
tion of xi is signi�cantly improved when adding the information coming from
xj (conditioned to a set of channels (xR)). Again a linear model is used:

(i) xi[n] =
p∑
s=1

asxi[n− s] +
p∑
s=1

bsxR[n− s] + ε1[n]

(ii) xi[n] =
p∑
s=1

csxi[n− s] +
p∑
s=1

dsxj [n− s] +
p∑
s=1

fsxR[n− s] + ε2[n].

The quality of the prediction is measured using the variances of ε1[n] and of
ε2[n]: The conditional Granger causality index (cGCI) is:

cGCIxj→xi = ln
(

V (ε1[n])
V (ε2[n])

)
.

Because of instationarity of the ECoG-data, we model the AR-systems with the
help of the RLS-algorithm (Section 3.4.1).

3.5.2.1 Channel selection

At �rst a reasonable set of electrodes has to be found. Therefore we tried to
consider as many of the a�ected channels as possible. To avoid instability of
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the algorithm, we have to restrict the number of selected variables to 16.

As mentioned in Section 3.4.2, we are manually selecting the set and keep it
constant for each patient. On the one hand we consider the clinical description
and try to select the channels, where the doctors found epileptic activity. On
the other hand we take a look at the bivariate analysis and try to select many
channels found in bivariate causal relations. (This might be one possible step
for an automatic algorithm.)

3.5.2.2 Patient 2, seizure 3

From the bivariate results of Patient 2 (results of all four seizures) it seems to be
reasonable to select channels 7 to 12, 15 to 18, channel 21 and channels 23 to 27.

After �nding a useful set of channels we want to start analyzing the conditional
Granger causality index.

Because we are dealing with non-stationary data, we use the same method to
�nd causal relations as in Section 3.5.1. We de�ne one channel causing another
if the causality index stays over a threshold for more than a quarter of a second.

Again the problem arises �nding such a threshold. For this we considered the
conditional Granger causality indices (similar to the bivariate case). We want
to present some typical cases in �gure 3.31.

Figure 3.31: Conditional Granger causality index: The index increases signif-

icantly, if two a�ected channels (10 and 11) are analyzed. Therefore we are going to

choose a threshold near 0.2.

Reminding the clinical description, we identify a signi�cantly higher causality
index between two a�ected and neighbored electrodes (channel 10 and 11) than
between two not a�ected ones (channel 7 and 8) or between an a�ected and a
non-a�ected one (channel 18 and 10, or 10 and 16).

After considering all seizures of this patient it seems to be reasonable to
choose the threshold to be 0.2.

Now we try to concentrate on the �rst 30 seconds of this seizure in �gure 3.32
and compare the result with the bivariate case.
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Figure 3.32: Conditional analysis of seizure 3, patient 2: Although the clinical

description (the corresponding channels are marked) would not agree with this, the

other seizures of this patient a�rm this assumption.

Following the clinical description of the �rst 10 seconds, we should �nd
epileptic activity at channels 26 and 27 only. For both channels causal relations
are indicated. But as in the bivariate case this method indicates a �ow starting
at channel 15.

Although the medics could not �nd epileptic activity at this electrode, we can-
not exclude that this method is right. Looking at the other seizures of this
patient we �nd out that in some of them channel 15 is a�ected form tho onset
on.

Comparing the rest of the seizure with the medical description the conditional
method is able to identify the propagation to channel 10 and 11 correctly. Fur-
ther even the a�ection of channel 12 is found.

Contrary to the bivariate result (Section 3.5.1.2), we obtain less causal rela-
tions. The indirect causality between the channels (for example the arrow from
15 to 26 in the �rst �ve seconds-window) have vanished.

3.5.2.3 Patient 1, seizure 1

The next seizure to analyze and to compare with the bivariate result is seizure 1
of patient 1. Using the same methods as in the case before we obtain a threshold
around 0.15 which seems to �t quite good for all seizures.

Next we have to decide, which set of channels to select. Therefore we are
considering the bivariate results and are trying to use many channels having a
bivariate causal relation for a multivariate analysis. We decided to work with
the set {1, 2, 9, 10, 11, 17− 28}.
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Using this for the analysis of conditional Granger causality, we receive the result
represented in �gure 3.33.

Figure 3.33: Conditional analysis: This method leads to some confusing results.

A focus around channel 27, 28 or 29 is indicated. The correct focus at channels

25, 26, 17 and 18 is found about ten seconds after seizure onset.

The medics assume the seizure's initial focus to be located at channel 25.
Unfortunately a causal relationship based on conditional Granger causality near
this focus is found primary more than 10 seconds later.

One quite misleading e�ect appears in the �rst ten seconds: A strong causal
relationship between channels 27, 28 and 29. If we would neglect the results
of the other seizures and ignore the medical description, we would come to the
decision that the focus has to be located there.

The reason why the real focus is identi�ed so late, could be the fact that the
medics assume only one channel to be a�ected in the �rst 25 seconds (until
03:01:14). No causal �ow has to happen earlier. Now there arises the problem,
why we are able to indicate a �ow earlier than expected (after about 15 sec-
onds)? It could be that the in�uence is not as obvious. Similar to patient 2 we
are able to identify more causal relations compared to the opinion of the medics.

Comparing both methods, the bivariate and the conditional Granger causal-
ity, we recognize the same misleading e�ect of identifying a focus near channel
29. This wrong impression is stronger in the multivariate case. The identi�-
cation after ten seconds of the focus can be observed in both cases. The only
problem with the multivariate case is that the relations between channels 27, 28
and 29 are remaining and even if we neglect the �rst ten seconds at our analysis,
we would get no unique interpretation of an initial focus.
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3.5.2.4 Patient 1, seizure 3

As already mentioned in the introduction of this section, we like to keep both
constant, the threshold and the set of channels for each patient.

Therefore the multivariate analysis for patient 1 uses a threshold with value
0.15 and the same set of channels as in seizure 1 ({1, 2, 9, 10, 11, 17− 28}). The
result of the conditional Granger causality is presented in �gure 3.34.

Figure 3.34: Conditional analysis of seizure 3, patient 1: Comparing the result

with the clinical description (the corresponding channels are marked), we receive a

pretty good match.

Considering these results, we identify causal relations near the seizure's ini-
tial focus (channels 18 and 25). Unfortunately, based only on the multivariate
result of this seizure, we might also identify channel 19 to be the focus, because
it is one of the arrows' starting points and no arrow points at it.

Examining the graph and comparing it with the mentioned clinical descrip-
tion we will �nd out, that more channels than in the description are a�ected.
But although we obtain no perfect �t, an approximate location of the seizure's
focus is localized correctly. Because the focus may lay between some electrodes,
the graphs don't have to be completely wrong.

Considering the bivariate analysis (�gure 3.30) we assess that the relations point-
ing near the focus (for example the one from channel 18 to channel 26) disappear.

Comparing this seizure with the analysis of seizure 1 of this patient, we would
have an a�rmation that the focus is located near channels 18 and 25 and not
around channels 27 to 29 as we may have assumed after the analysis of seizure
1.
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3.5.3 Partial Granger causality

In this section, we like to present all seizures of all patients to demonstrate, that
this method works quite good and in fact is able to localize the initial focus.
Before we start with the results using Partial Granger causality, we give a short
summary.

Similar to the conditional Granger causality, xj is partially Granger causing
xi, if and only if the estimation of xi is signi�cantly improved when adding the
information coming from xj (conditioned to a set of channels (xR) and common
latent errors). Again we only use a linear concept to model the variables:

(i) xi[n] =
∞∑
s=1

Aii[s]xi[n− s] +
∞∑
s=1

AiR[s] xR[n− s] + ε1,i[n]

xR[n] =
∞∑
s=1

ARi[s]xi[n− s] +
∞∑
s=1

ARR[s] xR[n− s] + ε1,R[n]

(ii) xi[n] =
∞∑
s=1

Bii[s]xi[n− s] +
∞∑
s=1

Bij [s]xj [n− s] +
∞∑
s=1

BiR[s] xR[n− s] + ε2,i[n]

xj [n] =
∞∑
s=1

Bji[s]xi[n− s] +
∞∑
s=1

Bjj [s]xj [n− s] +
∞∑
s=1

BjR[s] xR[n− s] + ε2,j [n]

xR[n] =
∞∑
s=1

BRi[s]xi[n− s] +
∞∑
s=1

BRj [s]xj [n− s] +
∞∑
s=1

BRR[s] xR[n− s] + ε2,R[n]

Contrary to the �rst multivariate extension of the bivariate de�nition we
want to �lter out the e�ects coming from external in�uences (for example chan-
nels, which are not selected). For this we use the covariance matrices

S[n] =
(

V (ε1,i[n]) Cov (ε1,i[n], ε1,R[n])
Cov (ε1,R[n], ε1,i[n]) V (ε1,R[n])

)
.

The partial covariance, where the e�ects of common latent variables (common
between xi[n] and xR[n]) are eliminated is given by

Sxi|xR = Sii − SiRS−1
RRSRi.

The corresponding covariance matrix of the system with channel xj is de�ned
as

Σ[n] =

 V (ε2,i[n]) Cov (ε2,i[n], ε2,j [n]) Cov (ε2,i[n], ε2,R[n])
Cov (ε2,j [n], ε2,i[n]) V (ε2,j [n]) Cov (ε2,j [n], ε2,R[n])
Cov (ε2,R[n], ε2,i[n]) Cov (ε2,R[n], ε2,j [n]) V (ε2,R[n])

 .

Eliminating the columns and rows, corresponding to xJ [n], we obtain the only
information needed to analyze if xJ [n] Granger causes xI [n].

Σ1[n] =
(

Σii ΣiR

ΣRi ΣRR

)
=
(

V (ε2,i[n]) Cov (ε2,i[n], ε2,R[n])
Cov (ε2,R[n], ε2,i[n]) V (ε2,R[n])

)
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To eliminate all external and common e�ects, we use the partial covariance
matrix

Σxi xj |xR = Σii −ΣiRΣ−1
RRΣRi.

xj [n] partially Granger causes xi[n], if and only if the partial covariance matrix
of the model including past values of xj [n] (Σxi xj |xR) is smaller than that
without using the information of past values from xj [n] (Sxi|xR).

The partial Granger causality index is given by

pGCIxj→xi = ln
(

Sxi|xR
Σxi xj |xR

)
= ln

(
Sii − SiRS−1

RRSRi
Σii −ΣiRΣ−1

RRΣRi

)
.

To get a stable algorithm we have to reduce the set of channels. Therefore we
choose the same set as used for the the conditional Granger causality analysis.
This set is chosen manually by considering the bivariate results and the clini-
cal description. In the �gures presenting the results the selected channels are
marked with a circle, whereas the others are marked with a cross.

3.5.3.1 Patient 2, seizure 1

As mentioned above, we are using the same set of channels as in Section 3.5.2
(which were channels 7 to 12, 15 to 18, channel 21 and channels 23 to 27).

After considering all seizures with di�erent thresholds, a threshold near the
value 0.15 seems to lead to results, which agree pretty good with the clinical
description.

We now want to interpret the result presented in �gure 3.35.

Figure 3.35: Partial analysis of seizure 1, patient 2: Comparing the seizure

with the clinical description (start at channels 7, , 8, 9 and propagates to channels 10

and 11 after 21 seconds), this method is able to �nd all activities.
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Reminding the clinical description: The medics locate seizure's onset at
channels 7, 8 and 9 at 03:04:36 (second 0 of the graphical representation).

Considering the result obtained by partial Granger causality analysis, we are
�nding causal relations between all three channels. Two arrows are pointing at
channel 7, one from channel 8 and one from channel 9. We discover that this
causal relation seems to become weaker after ten seconds and the arrows vanish.

Following the clinical description there is a propagation of the epileptic activity
to channels 10 and 11 after 21 seconds.

Comparing this with the obtained result we recognize that channel 11 seems
to cause channel 10 after the time window between second 20 and second 25.
The propagation is found correctly.

The �gure and the description of the medics seem to �t. An initial focus near
channels 7, 8 and 9 may be assumed.

3.5.3.2 Patient 2, seizure 2

We continue using the set of channels {7− 12, 15− 18, 21, 23− 27} with thresh-
old 0.15.

Figure 3.36: Partial analysis of seizure 2, patient 2: The result �ts pretty well

to the clinical description. The onset should be at channels 26 and 27, and the epileptic

activity should simultaneously propagate to channels 15 to 25. After 13 seconds the

activity proceeds to the left hand side at channels 10 and 11.

In the �rst �ve seconds strong causal relations between channels 15, 24 and
25 are identi�ed, which are later reduced to 15 causing 25 (see �gure 3.36).

Further a feedback situation between channels 26 and 27 is observed. These
two channels seem to be the ones, which are stronger a�ected than all the oth-
ers. Both of them are declined to be the focus.

126



Following the clinical description, after 13 seconds the seizure should proceed
to the left side to channels 10 and 11. Comparing this with our result a causal
relationship between channels 10 and 11 is found after the time window from
second 10 to 15.

Further we �nd causal relations with channel 12 involved. If we consider
seizure 3 of this patient, the clinical description tells us that a propagation to
channel 12 in fact is possible.

If we search for a focus we would suppose to �nd it on the right hand side
of the brain (which corresponds to left half of the plots). Because a �ow from
channel 15 to channels 26 and 27 seems to be identi�ed, the focus might be
assumed at channel 15.

Obviously channels 26 and 27 might also be focus channels as interactions
between them are indicated in every time window.

3.5.3.3 Patient 2, seizure 3

Now we want to analyze the third seizure of patient 2. This one was already
analyzed using bivariate and conditional Granger causality methods. Hence we
are going to compare all three methods to �nd advantages and disadvantages of
the methods.

Again we continue using the set of channels {7− 12, 15− 18, 21, 23− 27}
and the threshold 0.15 for our analysis.

Figure 3.37: Partial analysis of seizure 3, patient 2: Considering this result we

would assume the focus at channel 15, which is a discrepancy to the clinical description

(start at channels 26, 27, propagation to channels 10 to 12 after eleven seconds).

Comparing the result (presented in �gure 3.37) with the clinical description
we discover that channels 26 and 27 are marked from the very beginning. Ac-
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cording to the medics, both channels should in fact be focus channels.

Otherwise channel 15 seems to be the initial focus. Like for the other patients
a �ow of information might start there and proceed to channels 26 and 27. But
because the medics do not �nd any epileptic activity there we have to be careful.
Maybe the causality is not caused by the seizure.

Following the further clinical description, channels 10 to 12 should be a�ected
after second 11. Again the corresponding arrows are found in the plot after the
�rst seconds.

The task of tracking a focus channel cannot be solved easily. On the one hand
channels 26 and 27 have very strong causal relations (even a feedback situation
is obtained). Otherwise the �ow starting at channel 15 seems to be an indicator
of a focus.

Comparing this result with that from the bivariate (Section 3.5.1.2) and the
conditional approach (Section 3.5.2.2) we notice only small di�erences. In all
three results we would prefer channel 15 to be the focus and �nd the propaga-
tion to the other channels.

Reminding the GPDC result in Section 2.5.3 it seems to be nearly identical.
Similar to the Granger causality result an activity is identi�ed at channel 15.
Both methods identify the causal relations at channels 26, 27, 10, 11 and 12
correctly.

3.5.3.4 Patient 2, seizure 4

Now we want to analyze the last seizure of patient 2. As usually we use the set
of channels {7− 12, 15− 18, 21, 23− 27} and the threshold 0.15. The result
is presented in �gure 3.38.

Following the clinical description of seizure 4, we expect to see epileptic ac-
tivity starting at channel 15. Comparing this seizure with the other ones of this
patient, there is no such clear �ow starting at channel 15 in the �rst seconds.
But although the result is not as clear as before, we see that channel 15 is always
the cause and never the e�ect. Considering the plots obtained between second
15 and 25, a �ow is marked.

Similar to the seizures 2 and 3 a strong causal relation between channels 26
and 27 is obtained. Again it seems to be possible that focus is situated there.

The propagation to channels 24 up to channel 27 after about �ve seconds is
identi�ed clearly. Further even the epileptic activity at channels 10 and 11 ap-
pears correctly after 20 seconds.

Conclusion of Patient 2 Comparing the results with the clinical descrip-
tion we seem to have a satisfying �t. On the other hand an exact location of
the seizure's initial focus could not be located. Either channel 15 or channel 26
could be the focus. Because at channel 15 the propagation to the other channels
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Figure 3.38: Partial analysis of seizure 4, patient 2: Comparing the result with

the clinical description (start at channel 15, propagation to channels 26 and 27 after

about �ve seconds, further a�ecting channels 9, 10 and 11 after the �rst 20 seconds)

we obtain a pretty good �t.

is identi�ed, it seems to be more likely to be the focus. Contrary the medics
have the preference that the epileptic center is near channels 26 and 27.

Obviously results from partial Granger causality are nearly identical to those
from GPDC in Section 2.5.3. Only small unimportant di�erences are found.
Both methods lead to either a focus around channels 26 and 27 or at channel
15.

3.5.3.5 Patient 1, Seizure 1

The next three seizures we are going to analyze belong to patient 1, where a 32-
dimensional ECoG-data is given. For stability reasons the data is reduced to a
smaller set of channels (channels {1, 2, 9− 11, 17− 28 }). This set is identical
to that used for the conditional Granger causal analysis in Section 3.5.2. It is
chosen manually with the help of the bivariate analysis and with the help of the
clinical description.
After considering the results of all seizures with di�erent thresholds, the thresh-
old is chosen to be 0.14.

Analyzing the �rst seizure we obtain the result presented in �gure 3.39.
Comparing the result with the clinical description small di�erences appear.

Whereas in the doctors report only channel 25 is a�ected in the �rst 25 seconds,
this method even identi�es causal relations to channels 17 and 18. These two
channels are directly next to the e�ected one and according to the medics they
show epileptic activities some seconds later.
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Figure 3.39: Partial analysis of seizure 1, patient 1: Analyzing the result,

obtained by partial Granger causality, an approximate location for the seizure's focus

seems to be identi�ed (start at channel 25, propagation to channels 17, 18 and 26 after

25 seconds).

One problem of a causal analysis in the �rst 25 seconds is that only one
channel is a�ected according to the medical description. Hence a causal anal-
ysis seems to be not reasonable until more channels are involved. There the
result coincides with the clinical description. Both describe epileptic activity
between channels 17, 18 and 25.

Considering the �rst plots, an additional causal relation between channels 27,
28 and 29 is found, although the doctors have not found any epileptic activity
there. This probably could be explained by an action the patient made during
that time (for example rolling the eyes). Reminding the conditional and the
bivariate Granger causality analysis this e�ect was stronger there.

The graphs of these three channels (in �gure 3.40) might explain this e�ect.
Channels 27, 28 and 29 seem to have the same rhythm. No typical epileptic
symptoms are found (for example no periodic oscillations), which con�rms the
assumption of a normal behavior.

Reminding the analysis of the bivariate (Section 3.5.1.3) and the conditional
Granger causality (Section 3.5.2.3), we want to compare all three results.

Contrary to the bivariate result, in both multivariate methods causal rela-
tions are found between channels 27, 28 and 29. But this wrong identi�cation
could be explained with the help of �gure 3.40.

The advantage of the partial Granger causality is, that it is the only method
which is able to identify the focus channels (channels 17, 18 and 25) right after
the onset.

Hence either the partial consideration or the bivariate de�nition lead to the
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Figure 3.40: Channels 27 to 29 of seizure1, Patient 1: Because all three graphs

seem to have a similar rhythm in the �rst seconds, a causal relationship between them

is plausible.

best results in this seizure.

3.5.3.6 Patient 1, seizure2

Next we are going to analyze the second seizure of patient 1. Again the
threshold is chosen to be 0.14 and the reduced set of channels is chosen to
be {1, 2, 9− 11, 17− 28 }.

Using this adjustment the result presented in �gure 3.41 is obtained.

Figure 3.41: Partial analysis of seizure 3, patient 1: Comparing this result with

the clinical description (start at channel 18 and 25, after a short pause of the seizure

channels 18, 25 and 26 are a�ected) we �nd the correct channels causing each other.

According to the medics the focus should be at channels 25 and 18. After
about seven seconds the epileptic activity propagates to channel 26.

Comparing this description with the result, a causal relation between 18 and
25 is found in the time window between second �ve and ten, but later this re-
lationship vanishes, because the causality index is to weak to be noticed.
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After the �rst 25 seconds the causal relations return and identify an epilep-
tic activity at channels 18, 19 and 25. Now the causality index seems to stay
signi�cantly over the threshold.

Although the result of the partial Granger causality index seems to be delayed
in time, we are able to identify an approximate location of the seizure's initial
focus..

3.5.3.7 Patient 1, seizure 3

To complete the analysis of patient 1, we present the third seizure. As in both
seizures before the set of channels is reduced to {1, 2, 9− 11, 17− 28 } and the
threshold is equal to 0.14.

Figure 3.42: Partial analysis of seizure 3, patient 1 : We seem to get an outcome,

similar to the clinical description (start at channel 18 and 25, propagation to channel

26 after 11 seconds).

Following the clinical description, only channels 18 and 25 should be a�ected
in the �rst eleven seconds. After these eleven seconds channel 26 is showing
epileptic symptoms in the ECoG-data.

Comparing this statement with the result presented in �gure 3.42 further chan-
nels (in the neighborhoods of the starting points) are in causal relations. Some
of them become epileptic some seconds later, the others disappear quickly.

Some of the non-a�ected channels in a causal relation are the same, which were
identi�ed for the �rst seizure (channels 28 and 29). We determined that they
seem to have the same rhythm, but no typical epileptic signals are identi�ed.
They probably result from a motion of the patient before the seizure started.
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After the �rst ten seconds these causal relations vanish. The only remaining
ones are those around the focus.

Reminding the results of the bivariate and conditional Granger causality in-
dex (Section 3.5.1.4 and 3.5.2.4) both multivariate methods lead to a nearly
identical result. But compared with the bivariate result many of the disturbing
causal relations (the ones pointing near of the focus) vanish.

Hence both multivariate methods seem to be superior to the bivariate con-
sideration.

Comparing this result with the one of GPDC (see Section 2.5.3), we are able to
identify the approximate location for the seizure's focus earlier. Here we have
channels next to the focus involved right after seizure onset. But one similar
situation arises: In both methods we were not able to identify the correct focus
(channels 18 and 25) at the beginning.

Conclusion of patient 1 Considering all results of patient 1, we discover
the seizure's start in the neighborhood of channels 18 and 25, which is in great
accordance to the medical meaning.

Comparing the di�erent methods, partial Granger causality seems to be the
best for identifying epileptic activity.

3.5.3.8 Patient 4, seizure 1

To conclude the practical part of �nding the focus of an epileptic seizure using
partial Granger causality, we want to present the results of patient 4, which
seems to expose some problems. After some seconds nearly all channels are
a�ected in all three seizures. Thus the choice of the selected channels may be
critical here.

In analogy to the other patients the set of channels used for the multivariate
methods is chosen manually: Channels next to the starting points (according
to the meaning of the medics) are selected as well as channels, which seemed to
be quite often in a bivariate causal relation.

We decided to restrict ourselves to channels 3 and 4, channels 7 to 10, channel
12, channel 18 on the left side of the brain (in the right half of the plots), chan-
nels 21 to 24 and channels 27 to 30.

A threshold near 0.14 seems to represent the medical description quite good.
The result presented in �gure 3.43 is obtained for an analysis of the �rst seizure
using these restrictions.

According to the doctors the start of this seizure is at channels 27 and 28.
After one second the epileptic activity propagates to channels 21 and 22.

Contrary, Granger causality is not that clear. At the beginning causal rela-
tions starting at channels 23 and 29 are found. Although they are near the
focus, they could be wrong (because of a discrepancy to the clinical description
- these channels should never show epileptic activity).
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Figure 3.43: Partial analysis of seizure 1, patient 1: Comparing the result,

received by partial Granger causality with the clinical description (start at channels

27, 28, propagation to channels 21 and 22 after one second and after 14 seconds the

left hemisphere shows epileptic activity (channels 1− 20) ), there is no perfect �t.

After �ve seconds channel 21 causes its neighbor channel 22, and channel 27
causes channel 28. From that moment it is not clear if the focus is located
near near channels 21 and 27 or between channels 23 and 29. According to the
medical description a focus between channel 21 and 27 would be the correct one.

Furthermore the propagation to the other side of the hemisphere after 14 sec-
onds is neglected. Hardly any causal relation is found. This is probably because
not all channels showing epileptic activity are considered any more.

Comparing this result with the one obtained by GPDC in Section 2.5.3 (where
we had a delay of the seizure's onset), we are now able to identify the location
of epileptic activity from the very beginning.

3.5.3.9 Patient 4, seizure 2

As in both seizures before the set of channels is reduced to {3, 4, 7− 10, 12, 18,
21− 24, 27− 30} and the threshold is equal to 0.14.

Analyzing seizure 2 under these assumptions we obtain the result presented
in �gure 3.44.

Similar to seizure 1 of this patient, there are some discrepancies between the
medical description and the obtained result. The doctors a�rm the start of this
seizure at channels 27 and 28. One second later channels 21 and 22 should show
epileptic activity.

Using the assumptions above, causal relations between the truly a�ected chan-
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Figure 3.44: Partial analysis of seizure 2, patient 4: Contrary to the meaning

of the medics (start at channels 27, 28 and one second later at 21 and 22) it is not

that clear where the seizure's focus is located. Channel 27 or channel 29 seem to be

the favorites.

nels are identi�ed on the right hemisphere (starting at 21 and 27 and ending at
22 and 28). In analogy to seizure 1, we see causal relations with channels 23
and 29 involved. Considering the �rst seconds we could assume the start of this
seizure at channel 27, which later infects channels 21, 22 directly and channels
22, 23 and 29 indirectly.

Again the results on the other side of the hemisphere do not �t perfectly with
the clinical description. Misleading causal relations appear in the �rst seconds.
While the medics assume the onset after 12 seconds on this hemisphere, we
are not able to identify a mathematical a�rmation. Some seconds later causal
relations return on this side of the brain.

Based on this result the focus might be located in the area between chan-
nels 21,22,23 and 27,28,29. Unfortunately a more precise localization cannot
be given.

3.5.3.10 Patient 4, seizure 3

The last seizure to analyze is seizure 3 of patient 4. This one seems to be more
di�cult than all other seizures before. According to the doctors all channels are
a�ected from the very beginning.

Using the channel set {3, 4, 7− 10, 12, 18, 21− 24, 27− 30} and the threshold
0.14, we obtain the result presented in �gure 3.45.

Contrary to the medical description the onset seems to be identi�ed. In the
�rst seconds the channels in causal relations are the same the medics found to
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Figure 3.45: Partial analysis of seizure 3, patient 4: The medical description

for this seizure is, that all channels are a�ected right after the onset. Comparing this

with the result of Granger causality we identify that some of them have a stronger

causal relation than others.

be the starting points in the �rst two seizures.

Finding the exact location of the focus seems di�cult. The causality between
channel 21 and 22 changes its direction. A start at channel 22 would be a
contradiction to the other seizures. But we can assume a focus in the area
between channels 21, 22, 27 and 28.

Conclusion of patient 4: Considering the results we do not �nd an exact
location of the focus. Similar to the medics we are only able to identify the
correct part of the brain. It can be assumed somewhere between channels 21,
22, 27 and 28.

Comparing the results with the GPDC results (in Section 2.5.3) we obtain very
similar results. In both methods the location of the epileptic activity can be
identi�ed. Whereas using Granger causality methods no channel is referred
being the focus, GPDC prefers channel 28.

3.5.3.11 Conclusion

All three methods lead to satisfying results. As expected, partial Granger
causality was the most appropriate approach to �nd an approximate location of
the seizure's focus.

Contrary to the bivariate case less disturbing relations (especially see seizure
3 of patient 1) are identi�ed. On the one hand the multivariate extension re�ects
the medical description better, but on the other hand we have to restrict our-
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selves to a smaller set of channels, contrary to the bivariate Granger causality.
The choice of the channels might be critical, especially if the seizure generalizes
quickly (like for Patient 4).

The results of the conditional and the partial Granger causality are quite
similar. Sometimes (for example seizure 1 of patient 1) the partial extension
leads to a better �t.
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Chapter 4

Conclusion and Outlook

In the last chapter we want to give a short summary of topics discussed in this
diploma thesis. We will mention satisfying results as well as unresolved problems
and problematic assumptions. Furthermore, a list of potential improvements
will be given.

4.1 Conclusion

In this diploma thesis, we compared a couple of mostly modern measures of
multivariate time series analysis and their ability to localize the initial focus
of epileptic seizures. All data came from patients su�ering from temporal lobe
epilepsy, a special case of focal epilepsy.

Our experiments were performed with ECoG recordings consisting of either
28 or 32 channels, whereas each channel corresponds to an electrode attached
directly onto the brain's surface.

First of all (in Chapter 2), a frequency domain approach was implemented,
based on the assumption of stationarity within windows of 3 or 4 seconds length.
This assumption is in fact wrong, but has been justi�ed by the results and by
numerous publications.

The �rst measure used to track epileptic activity was the classical coherency
measure, which is well known as a frequency domain representation of corre-
lation between channels of multivariate time series. Unfortunately, coherence
was not able to localize the initial focus as well as its partial extension was not.
Although some of the results presented were not that bad, (partial) coherence
indicated interactions between neighboring electrodes on the brain's surface in
most cases, no matter whether there was epileptic activity or not.

Further research in frequency domain was based on parametric models, i.e.
an AR-model was �tted for each time window. Measures could then be derived
from the AR-model's estimated coe�cients.

The best known of these measures is partial directed coherence (PDC), which
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could be derived directly from the parametric representation of ordinary partial
coherence. Unfortunately, PDC works if and only if all residual error variances
of the time series's components are equal. We have shown that the focus chan-
nels of epileptic seizures tend to have much higher residual error variances. We
further proved that, if arrows represent interactions indicated by high PDC val-
ues, arrows tend to point towards channels with higher residual error variances,
thus, mostly (but not exclusively) towards focus channels.

Baccalá established a corrected version of PDC, which was called generalized
PDC (GPDC). Its de�nition was based not only on the coe�cients of the esti-
mated AR-model, but on residual error variances as well. Therefore, as awaited
after analysis of PDC results, GPDC was able to track epileptic activity quite
good.

The second part of this diploma thesis dealt with a more modern approach:
Granger causality (GC). For all Granger approaches a Recursive Least Squares
algorithm was used to estimate the AR-model's coe�cients (instead of ordinary
least squares). Using that adaptive coe�cient estimation we were able to deal
with instationarities in our biosignals.

At �rst the so called bivariate Granger causality was introduced, where the
calculation of interactions between two channels really had to be done separately
for each pair of channels. Results were surprisingly good, although bivariate GC
cannot separate between direct and indirect in�uences.

The next step of the analysis was an obvious multivariate extension of
Granger's concept. Adjusted time series were calculated by partialization, i.e.
by eliminating the in�uences from all other channels. Bivariate GC between
these adjusted time series was then called conditional GC. Obviously, as more
information is considered for each calculated GC, results were far better if con-
ditional GC was used instead of bivariate GC.

Finally, another partialization was applied to withdraw in�uences from ex-
ternal variables. In practice this step was necessary, because not all available
channels could be used for our calculations due to linear dependencies, which
cause badly scaled covariance matrices. As each unselected channel is in fact
an external variable for our calculations, results are altered by the in�uence of
those channels. Consequently the presented measure, which was called partial
GC, gave the best results for our aim of epileptic seizure tracking and focus
localization.

Due to double partialization and RLS, partial GC even has given better re-
sults than the frequency domain approach. Figures have looked clearer and less
disturbing arrows on uninvolved channels or brain sides have been drawn. In
most cases the initial channel has been localized more precisely. On the other
hand the RLS is extremely computational intensive. Thus the advantage of
better results was based on much higher computational e�ort.

In general the GPDC approach as well as the partial GC have delivered
results which were in great accordance with the �ndings of medical experts.
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In some cases results from the mathematical analysis were even better than
from medical analysis, i.e. we could �nd the correct initial focus for even more
seizures than the doctors.

4.2 Outlook

As already discussed several simplifying assumptions have been made in this
diploma thesis.

First, we always have used AR-models (i.e. stationary models) to explain
our data, although we had to deal with instationary signals. RLS estimation
is one simple concept to cope with those instationarities, but de�nitely not the
best, as it is based to some extent on the assumption of stationarity again.

Due to numerical stability reasons we had to chose a set of selected channels
for all our analysis (except for the bivariate approach). In this work this has
been done manually, either due to information we have got from a quick look
onto the graph of the time series, or by �ne-tuning due to the results them-
selves. The chosen set of channels has been held constant over time. Obviously,
a better approach would be an automatic channel selection algorithm, whereas
the selected channel set might change as the seizure proceeds.

Further research might even deal with dependencies between chosen model
orders, forgetting factors and channels sets. In fact, all of them have been held
constant in our work for simplicity reasons, i.e. we consequently over- or under-
estimated the order of our ECoG signal.

To visualize results from any of our approaches, we had to �nd an appropriate
threshold, whereas higher values of the calculated measure indicate interactions
and lower values do not. Again, this threshold has been chosen manually and
held constant over time. Further research should think about decisions based
on automatically calculated con�dence intervals and statistical tests.

Finally, we only dealt with data recorded during epileptic seizures. In prac-
tice, it will be necessary to �nd a mechanism to detect the seizure onset auto-
matically. But of course, if the onset could be found by any other tool, our work
will help to �nd the seizure's focus.

Besides all assumptions made, for the exact physiological signi�cation of
measures like partial GC and GPDC further research would be necessary. As
they are directed measures, we displayed indicated interactions by �ashes. Ob-
viously, the direction of these �ashes should be linked to physiological processes.
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Appendix A

Clinical description

A.1 Patient 1

The electrodes of patient 1 are arranged and numbered as in �gure A.1.

Figure A.1: Numeration of the electrodes of the ECoG from patient 1: The

corresponding channel numbers we use in the analysis are situated next to the electrode

nodes.

Clinical description of seizure 1, patient 1

Time Activity Electrodes

03:00:49 start channel 25
03:01:14 (after 25 sec.) susp channel 25,26
03:01:19 (after 30 sec.) prop channel 17,18
03:01:46 end

Table A.1: Clinical description of seizure 1 from patient 1: By the abbreviation

�susp� we mean a suspension of the seizure and �prop� stands for propagation.
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Clinical description of seizure 2, patient 1

Time Activity Electrodes

15:50:42 start channels 18, 25
15:50:49 (after 7 sec.) susp
15:50:49 (after 30 sec.) prop channels 18, 25, 26

Table A.2: Clinical description of seizure 2 from patient 1: The abbreviation �susp�

stands for suspension of the seizure and �prop� stands for propagation.

Clinical description of seizure 3, patient 1

Time Activity Electrodes

22:30:03 start channels 18, 25
22:30:14 channels 18, 25, 26

Table A.3: Clinical description of seizure 3 from patient 1.

A.2 Patient 2

The arrangement of the electrodes and their numeration is presented in �gure
A.2.

Figure A.2: Numeration of the electrodes of the ECoG from patient 4: The

corresponding channel numbers we use in the analysis are situated next to the electrode

nodes.
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Clinical description of seizure 1, patient 2

Time Activity Electrodes

03:04:36 start channels 7, 8, 9
03:04:57 prop channels 10, 11
03:05:27 end

Table A.4: Clinical description of seizure 1 from patient 2 : The abbreviation

�susp� stands for suspension and �prop� stands for propagation.

Clinical description of seizure 2, patient 2

Time Activity Electrodes

12:45:51 start channels 26, 27
prop channels 15-21, 24, 25

12:46:04 prop channels 10, 11
12:47:00 end channels 10, 11

Table A.5: Clinical description of seizure 2 from patient 2 : The abbreviation

�prop� means propagation.

Clinical description of seizure 3, patient 2

Time Activity Electrodes

12:31:41 start channel 26, 27
12:31:52 (after 11 sec.) prop channels 10, 11

prop channels 12
12:32:39 end channel 10, 11, 12

Table A.6: Clinical description of seizure 3, patient 2. The abbreviation �prop�

stands for propagation.

Clinical description of seizure 4, patient 2

Time Activity Electrodes

15:21:42 start channel 15
15:21:47 channels 24-27
15:22:02 prop channel 9, 10, 11
15:22:54 end channels 10, 11

Table A.7: Clinical description of seizure 4, patient 2. The abbreviation �prop�

stands for propagation.
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A.3 Patient 4

The arrangement of the electrodes and their numeration is presented in �gure
A.3.

Figure A.3: Numeration of the electrodes of the ECoG from patient 2: The

corresponding channel numbers we use in the analysis are situated next to the electrode

nodes.

Clinical description of seizure 1, patient 4

Time Activity Electrodes

07:02:02 start channels 27, 28
07:02:03 prop channels 21, 22
07:02:16 prop channels 1-20
07:03:00 end

Table A.8: Clinical description of seizure 1, patient 4. The abbreviation �prop�

stands for propagation.

Clinical description of seizure 2, patient 4

Time Activity Electrodes

08:06:34 start channels 27, 28
08:06:35 prop channels 21, 22
08:06:46 prop channels 1-20
08:07:55 end channels 1-20
08:08:30 end

Table A.9: Clinical description of seizure 2, patient 4. The abbreviation �prop�

stands for propagation.
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Clinical description of seizure 3, patient 4

Time Activity Electrodes

08:55:41 start
08:55:41 prop all channels
08:56:58 end channels 1-20
08:57:12 end channels 21-32

Table A.10: Clinical description of seizure 3, patient 4. The abbreviation

�prop� stands for propagation.
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